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PREFACE

The Colloquium Lectures which I had the privilege of

delivering at the University of Chicago before the American

Mathematical Society, September 5-8, 1920, contained a large

part of the material presented in the following pages. The

delay in publication has been due to several causes, one of

which has been my desire to wait until some of my own

ideas had developed further. I have taken advantage of

a well-established tradition of our Colloquia by giving par-

ticular emphasis to my own researches on dynamical systems.

It is my earnest hope that the lectures may serve to stimu-

late others to investigate the outstanding problems in this

most fascinating field.

It is only necessary to recall the work of Galileo, Newton,

Laplace, Clausius, Rayleigh in the physical applications of

dynamics, of Lagrange, W. R. Hamilton, Jacobi in its formal

development, and of Hill and Poincare in the qualitative

treatment of dynamical questions, in order to realize the re-

markable significance of dynamics in the past for scientific

thought. At a time when no physical theor}' can properly

be termed fundamental—the known theories appear to be

merely more or less fundamental in certain directions—it may

be asserted with confidence that ordinary differential equations

in the real domain, and particularly equations of dynamical

origin, will continue to hold a position of the highest importance.

In looking back over my own dynamical work, of which

a certain period is finished with the publication of this book,

I cannot but express my feeling of deep admiration and
iii



IV PREFACE

gratitude to Hadamard, Levi-Civita, Sundraan and Whittakei',

to whom many important recent advances in theoretical

dynamics are due, and in whose work I have found especial

inspiration. It is with much regret that J have been unable to

give adequate space to their achievements.

Professor Philip Franklin cooperated with me in a first

re-writing of part of my notes on these lectures. I owe

him cordial thanks for his help.

November 18, 1927.

George D. Bihkhoff,
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CHAPTER I

PHYSICAL ASPECTS OF DYNAMICAL SYSTEMS

1. Introductory remarks. In dynamics we deal with

physical systems whose state at a time t is completely

specified by the values of n real variables

Xi, Xi, • Xn.

Accordingly the system is such that the rates of change

of these variables, namely

dxi/dt, dxi/dt, • • dxn/dt,

merely depend upon the values of the variables themselves,

so that the laws of motion can be expressed by means of n
differential equations of the first order

(1) dxifdt — X,(x,
,

• • •, x„) {i = 1 ,

• • •, «).

Thus, for a particle which falls in a vacuum at the surface

of the earth, x^ and x* may denote distance fallen and velocity

respectively. In this case the equations of motion take the

typical form
dxjdt — Xg, dxfldt — g,

where g is the gravitational acceleration.

2. An existence theorem. We proceed first to formulate

an existence theorem for a set of differential equations of

the general type (1).* The set of n functions X,- will be

assumed to be real and uniformly continuous in some open

In connection with the fir9t five paragraphs the following general

references may be given: E. Picard, TraitS Analyse^ vol. 2, chap. 11,

and vol. 3, chap. 8; E. Goursat, Cours Analyse mathimaiique, vol. 2,

chap. 19; G. A. Bliss, Princeton Colloquium Lectures^ chap. 3.

1 1



2 DYNAMICAL SYSTEMS

finite n dimensional continuum E in the ‘space’ with rect-

angular coordinates Xi, • - , Xn. A ‘solution’ x(J,) of the

equations (1) in the open interval is defined to

be a set of « functions Xi(t), all continuous together with

their first derivatives and represented for any such t by

a point a; in J?, such that the differential equations are

satisfied by this set of functions.

Existence Theorem. If the point x'‘ is in R at a distance

at least D from the houndary of R, and if M is an uppei'

hound for the functions
\

Xi\ in R, there exists a solution x{t)

of the equations (1), defined in the interval

\t— U\<D!{ynM)

and for which x{to) = x^.

To establish this theorem, we observe first that, for any

solution of the type sought, the n equations

(2) 8^
-= x^—xP^—J^^XfxJ^, ,x,)dt -= 0

hold. Conversely, any set of continuous functions x(t) in R.

which make the expressions /S', vanish in an interval con-

taining t — to as an interior point, will obviously reduce to

x^ for t — to, and will satisfy the differential equations in

question, as follows by direct differentiation.

Now define the set of infinitely multiple-valued functions

XT {xi, • •
•

,
x,^ as that given by any set X< (yj,

• •
•

, y„) taken

at a point y whose various coordinates differ from those of

the point x by not more than 1/m in numerical value. It is

evident that with this definition the n components of Z*” may
be chosen as constant in any rectangular domain

\xi— Oil ^ 1/m (i — 1, •••, n),

namely as the component parts of X(ai, • ••, a„).

If the functions Xi be replaced by XT and the functions

Xi by xT, the expressions for Si become
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We propose to show that these expressions can be made

to vanish.

Choose as X , Xn) in the rectangular domain

Xi— I

<< 1/m (i = 1, • •
•

,
n).

The integrals in the above expressions for sr will then be

linear functions of t, and hence xv^ may be defined as

as long as the point x'^ continues to be in this domain. In

geometrical terms, the expressions for xf' {t) yield the coordin-

ates of a straight line with t as parameter, which passes

through the center of the domain for t = If the n
functions AT happen to vanish, the line reduces to the pointer®.

In case the line emerges from the domain for t =
at a point we can take this point as the center of a

second like rectangular domain of the same dimensions, and

take as

in this second domain. The expressions will then continue

to vanish for f ^ until the point x^^ leaves this second

domain at a point z^\

Thus, by a succession of steps, the expressions sr can

be made to vanish for t>to and likewise for t<io. The

process can only terminate in case the broken line representing

passes a boundary point of R.

Now, if t be taken as the time and as the n coordinates

of a particle, its velocity

[(z-r+ •••

is clearly not more than n M, Hence the particle must

remain inside of E at least in the interval

i<— <o| <D/(Kn M).

1*



4 DYNAMICAL SYSTEMS

All of the functions are defined in this fixed t interval

whatever be the value of m.

As ») takes on the values 1,2,3, there arises an

infinite sequence of sets (f) of functions defined in this

interval. All of these sets lie in H, and so are uniformly

bounded. Furthermore, since the iSY" vanish for all ? and m,

the inequality

A.)— = I J/
x’^) dt\ < Mh

obtains. Hence, by a special case of a well known theorem

due to Ascoli,* there exists an infinite sequence of values

of wi for which every element of the set x^ approaches

a function Xi of the set x uniformly, these functions being

themselves continuous.

It is easy to prove that the functions Xi so obtained satisfy

the integral form (2) of the differential equations. In fact,

since the <S7" vanish for every i and m, we have

Si = Si - sT

= (xi— xT)— [ [I'i (jti, • - . Xu) — AT (.T, • •
•

,
a”)] d 1

.

For m sufficiently large, the first term on the right becomes

uniformly small inasmuch as each Xi is approached uniformly

by the corresponding x'^ over the sequence under consideration.

Also •• •,.?„) will differ from X^{x”\ • • - . x"‘) for any /

by a uniformly small quantity, since Xi is uniformly continuous

in a by hypothesis; and X^(x^, • in turn will differ

from A?" (xf,
• •

•
,
r”) by a uniformly small quantity, in virtue

of the definition of the functions A/". Hence the quantity

under the integral sign on the right also becomes uniformly

small as m increases and the expressions Si, which are in-

dependent of m, must vanish as stated, so that x(t) yields the

required solution of (1).

By repeated use of the existence theorem, the given solution

x(t) may be extended beyond its interval of definition unless

* For a brief statement and proof see W. F. Osgood, Annals of Mathe-

matics, vol. 14, series 2
, pp. 162-153.
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as t approaches either end of the interval, the corresponding

point x(t) approaches the boundary of K. Hence we infer

the truth of the following statement:

Corollary. The interval of definition for any solution x{t)

of the equations (1) may he extended so as to take one of the

follotviny four forms:

— oo < i < 4- 00
;
—:o<t < t" ;

- -f cx)
;

f< t<t"

,

where, as t approaches t' or t" , the point x approaches the

boundary of R.

3. A uniqueness theorem. It may now be proved that

there is only one solution of the type described in the existence

theorem, in case the functions possess continuous first

partial derivatives. This last requirement may be lightened

to a well known form given by Lipschitz.

Uniqueness Theorem. If for every i and for every pair of

points X, y in R the functions Y, satisfy a Lipschitz condition,

n

\ Xi (xi , , Xn) — Xiiyu , yn)
!

: 2^ Lj xj— yp,

the quantities L,, ••
•, Ln being fixed positive quantities, then

there is only one solution x if) of (1) ,such that xiU,) — x°.

For if two distinct solutions x{t) and y{t) have the same

values a*® for t = to, the corresponding integral forms of the

differential equations give at once

ori— yi — ^^[Xi{xi,- -,Xn)— Xi{yi,---, y„)]dt 0

for all values of ^, and thence by the Lipschitz condition

imposed,

Let L be the maximum of the n positive constants Li, and

let Q be the maximum of any of the n quantities lx,-— y.l

in any closed interval within the interval

\t—to\^ l/(2nL).
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The maximum Q must be attained for some value of t, say t*,

and for some i. If we insert the value t* of t in the corres-

ponding inequality above, and apply the mean value theorem

to the right-hand member, there results

Q < nLQ\t*— to\ Q/2.

This proves that Q must be 0. Hence the two solutions

y(.i) which coincide for t
—

<o will continue to do so

in any such interval. The theorem follows by repeated

application of this result.

The physical meaning of the existence and uniqueness

theorems is evidently that the motion of a dynamical system

is completely determined by the differential equations and the

initial values of the variables determining the state of the

system—a fact which is intuitively obvious.

Thus the treatment of a dynamical problem requires a

formulation of the appropriate differential equations by means

of physical principles, and a subsequent mathematical treat-

ment of the properties of the motions on the basis of these

equations.

4. Two continuity theorems. There are certain further

continuity theorems which are closely allied to the two

theorems established above.

First Continuity Theorem. If the functions Xi in (1) satisfy

a Lipschitz condition in R, the uniqm solution x(f) for which

a;(fb) = ic® is a set of continuousfunctions of the n parameters

and of t— to.

We observe first that, in changing the independent variable

t io t' — t— to, the modified differential equations obtained

differ from (1) only in that t is replaced by t', while in the

initial conditions to is replaced by 0. Hence the dependent

variables Xi involve t and to in the combination t
—

to only,

80 that it will suffice to prove the functions Xi to be con-

tinuous in a;? and t in the case #„
= 0.

A slight extension of the method used in proving the un-

iqueness theorem may be employed. It is apparent that if

Xi and yi are two solutions of (1) which reduce to x^ and
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respectively for < — 0, then by subtraction of the corres-

ponding integral equations there is obtained

provided that the value of t lies within the common interval

of definition of x,- and t/j.

Suppose that x° lies at a distance at least D from the

boundary of R, and then at a distance not more than

X)/2 from x®. This requirement will be met if we take the

maximum difference \y^—a^\ not more than D/{2Vn).
Restrict t further to lie in the interval |<1 < 1/(2«I/).

Under these circumstances if Q® denotes the maximum
difference |x®— y“l for any i, and Q the maximum difference

\xi— yi\ in the t interval under consideration, we find for

some value t* of t by means of the above integral equations,

Q Q^+nLQ\t*

,

^ QO-hQ/2.

Hence in the stated interval we have constantly Q 2^®,

i. e., the difference Xi— yi cannot exceed twice the maximum
initial difference ar?

—

m9 in numerical value. This means
j •'j

that if y® approaches a;®, then y approaches x uniformly

throughout the stated interval. Since \dxildt\< M Every-

where, the functions Xi must be continuous in a;® and t in

the restricted t interval.

It remains only to remove the restriction upon the interval t.

In any closed interval of definition 0 < t < T, the point

x{t) is throughout at a distance exceeding a positive D from

the boundary of R. Consequently in a i interval of fixed

length about kny point t' of the selected interval, each function

Xi{t) and will vary continuously with Xi{t') and t— t'. It will

then be pos.sible to select points

= 0, <1. tk -- T,

such that ti is in the interval about U, k in the interval
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about ti, and so on. Thus if we take \i^— a^l ^ q we
obtain successively

^ 2?, |a:%(ffc)— yt(fk)| < 2*9.

The truth of the theorem is now obvious for the unrestricted

interval.

Second Continuity TuEoaEM. If the functims Xi admit

contmtwus hounded first partial derivatives in R while these

derivatives themselves satisfy a lApschitz condition, then the

unique solution x(t) such that has components uith

continuous first partial derivatives as to x^ and t —
To establish this theorem we resort to a consideration of

the difference equality introduced at the beginning of the

proof of the preceding theorem. We shall restrict y to be

sufficiently near x in the interval \t— i© I ^ T, precisely

as in that proof, and in addition to be such that the straight

line from a;(<).to y{t) lies in the region R for any t. The

preceding theorem shows that this will be possible if
|

y®

—

is sufficiently small.

The mean value theorem allows us then to write

Xiiyi, •••, yn)~Xi{xu •••, Xn) =
J=1 OXJ

where the argfuments of dXi/dxj are zn, Zin with

zy = xj-\-di{yj— xj) (0 <»,<!)

so that z lies in R. Hence the difference equality can be

written

Suppose that are taken equal to ajJ,
• ••, ar®

respectively while yj is allowed to approach x^. If we write

yi—xi _ Axi yn—xn ^ AXn
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the n equations above gives us at once

A orI

— oj- r* A3. /If

'^XAdo^ A:^,
’

A^,

Axf

Ax*

•n n I r* V Axj

For
I

<— <0
1

sufficiently small, in particular for

U — ^o| ^ l/(2« L')

where L' is the upper bound of \dXildxj\ in R, we find that

none of the integrals on the right can exceed Q'/2, where Q[

is the maximum of any \AxjAx![\ in this interval. By using

the value of t and of the index i for the corresponding

\AxJAoi^^\ which yields this maximum, we establish the fact

that O' is at most 2 (compare with previous section).

Also by differentiation of the equalities above it appears

that the derivatives of these ratios AxjAoif^ as to f do not

exceed 2nL'.

Consequently Ascoli’s theorem can be applied to show that

it A 3^ be allowed to approach 0 suitably, the difference ratios

will approach limits, which may be designated by y,-, and

that these satisfy the integi'al equations

y.-i+r2^yjdt,
dxj

- =
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Evidently these conditions are equivalent to the n ‘equations

of variation’

(3 )

ilyi _ V 9

dt dxj
(/ 1 , .

.

and the set of initial conditions

yxiU) = \,lh{k) = 0. • . .. (M 0.

But these n equations and conditions, joined with the n equa-

tions (1) and attached conditions, form a system of 2w equations

and 2n initial conditions in xi, •
, xu, yi,

.
yn, to which

the existence and uniqueness theorems apply; we recall that

dXi/dXj as well as X, satisfy Lipschitz conditions. Since

the functions y, are uniquely determined, the ratios AxjAo^l

approach the limits yi uniformly no matter how Ax^ ap-

proaches 0.*

In this way it is seen that for any / and j the partial

derivatives y^
— dx/dxj exist and satisfy the equations of

variation and initial conditions

2/i(<o) = 0. . . •
,

(fo) - 0,

yjito) 1. yjAiilo) = 0, .y„(to) = 0.

By application of the first continuity theorem it follows that

these functions dx^/dx^ not only exist, but are continuous

in and t — t^.

5. Some extensions. The above theorems may be

extended and completed in various ways.

In the first place suppose that the functions X, are uniformly

continuous functions of .r,
,

• •
•
, Xn and a parameter c, for x

in R and c' < c < c", and furthermore satisfy a Lipschitz

condition in the n-f 1 variables Xi, •
. Xn. c. Consider the

system of » -f 1 differential equations

doa!dt --- Xi(xi, . Xn, Xn+i) {i — 1 ,
• •

•
,
n),

dxn+i/dt 0,

* Otherwise, by Ascoli's theorem, another distinct set yx could be found.
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with initial conditions

Mh) ' (•/ =•-
1, ••••»»), a;„n(<o) =-^

where is in E, and c<c<c". The existence, uniqueness

and first continuity theorems apply to show that a unique

solution Xi{t) (^ = 1, • •
-

,
«+l) exists and is continuous in

and c. But these functions clearly satisfy the equations

and conditions

dxj/dt — ^ii^Xi ,
* *

, Xyiy c), Xii^to) — Xq — 1, • • ,

If Xi have in addition bounded first partial derivations in

ai, • • •, Xn, c satisfying Lipschitz conditions in these variables,

then dxi/dc will also exist by the second continuity theorem.

Conseqiumtly the existence, uniqueness, and continuity theorems

can be immediately extended, to the case in ivhich the right-

hand members Xi in the differential equations (1) contain one

01 ' more parameters.

Again, suppose that Xi involve t as well as x\, , Xn.

A similar consideration of the n + 1 differential equations

dxi/d t = Xiix'i.- , Xa, a'n+i). {i = 1 ,

• •
•

,
w); dxn+i Idt = \.

with n-\-\ initial conditions

xk{to) x9, {i^ 1, •••,«); .r„+i(to) =- to

shows that there will exist a solution when t is suitably

restricted, and that there is only one solution if the functions

Xi{xi, • • • . Xn, t) satisfy a Lipschitz condition in oj], • • •. a;„, t.

Analogs of the first and second continuity theorems are

easily formulated for such a system also.

27ius a similar extension is possible to the case in which the

Junctions Xi involve the time t.

Again, let us suppose that Xi contain only thje variables

xi, •,Xn but possess continuous partial derivatives up to

those of order /*>0, while the partial derivatives of the

/*th order satisfy Lipschitz conditions. The method of proof
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of the second continuity theorem given above shows that tlie

given system (1) of differential equations can be replaced by

a system of the same type of order 2n with xi, • Xn and

yi, where y, = dxi/dx^ for instance, as dependent

variables; this system of order 2n consists of course of the

n given equations and the n equations of variation. Now
if we apply the second continuity theorem to this augmented

system, we conclude at once that the second partial derivatives

xildx^dx^ and likewise 9* x,7 9 9 will exist and be

continuous. In the augmented system, however, the right-

hand members will in general possess continuous first partial

derivatives of order y— 1 which will satisfy a Lipschitz

condition.

Repeating the above process we obtain the existence of

partial derivatives of a:i, • •
•

, Xn up to those of order y which

respect to the variables x^, , x^.
'

In case the functions Xi of xi, •
-

, Xn possess continuous

first partial derivatives of order y while the partial derivatives

of order p satisfy lAjJsehitz conditions, the comjmients xi, --, x„

considered as functions of a", • • •, .r^, i— rvill possess con-

tinuous partial derivatives in these variables of order p.

An important case, and the only one entering subsequently

into consideration, is that in which the functions A', admit

continuous partial derivatives of all orders in the variables

concerned. The components xi, • •
•

, Xn will then necessarily

possess continuous partial derivatives of all orders in

If,furthermore, thefunctions Xi are analytic in asi ,
• • •, ar,,, the

components x\, •••,Xn considered asfunctions ofx^. ••,x^, t
—

will he analytic in these variables.

Let us indicate briefly a proof of this important fact.

We observe firet that it suffices to show that the unique

solution of (1) for which x reduces to x® for t — 0 has

components analytic in x^, • • x^, t; here the device used

in the proof of the second continuity theorem, namely the

introdnction of — lo in the differential equations, is

applicable.
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Furthermore by writing

01
^

•• -

in these equations, it becomes clear that we need only prove

the components to be analytic in ••••< in

the neighborhood of the origin.

Now since A", are then analytic in the neighborhood of

the origin, we may Avrite

Xi «
M
+ J-.r«

r

(?: = 1, •••, n),

where M is a sufficiently large positive quantity and r is a

sufficiently ' small positive quantity. The relations written

mean that every coefficient in the series expansion of Xi in

powers of does not exceed the corresponding

coefficient of the series on the right in numerical value.*

Now consider the comparison differential system

dxi

Jt

M
•n +

.

OTn
•••, n),

of which the unique solution which satisfies the conditions

,T
1

'

1 ’
.r =

71 n

for t
— 0 is evidently given by

3'i = + U (i = 1,
• • •, «);

where ii is defined by the implicit equation

r )” 2r’
= Mt.

In this case xi, ,Xn are clearly analytic in a:®, • • •, <;

furthermore the explicit formulas obtained for aji,
• • •, Xn on

* For a proof of this type of relation see, for instance, E. Picard, Traiie

(VAnalyse^ vol. 2, chap. 9.
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successive differentiation of the comparison system and setting

=< = 0 shows that the coefficients in the

convergent power series for xi, •
-

,
x„ in x°, • •

•
,
a”, t are

all positive.

But the inequality relations written above obviously imply

similar relations between any partial derivatives of Xi and

of the same partial derivative of the right-hand member of

the comparison equations. Thus we see in succession that

the formal series made out with coefficients obtained by

successive differentiation of the equations (1) as to aj. •••, a-®, <

and setting . . . = a:® = < = 0, must converge since the

coefficients are less than the corresponding coefficients of

known convergent series. Thus these formal series define

analytic functions a;,, • • •, Xn, while the mode of determination

of these functions renders it certain that every difference

function

dxildt— Xi(x,, • • •. x„) (^ = ], • • •, n),

considered as functions of a:®, • • • , t, vanishes together with

all of its partial derivatives at the origin when these analytic

functions are substituted in. Hence these difference functions

must vanish identically. Thus Xi,---,itn obtained in this

formal manner will constitute the unique solution satisfying

the prescribed conditions, and the stated analyticity is pioved.

6. The principle of the conservation of energy.*

Conservative systems. In the case of many dynamical

systems the geometric configuration is determined by m ‘co-

ordinates’ qi,
•

• Qm having a spatial nature, while the state

of the system is fixed by the coordinates and the velocities

qi, -
, q'm, where q'i — dqi^dt. Such a system is said to have

m ‘degrees of freedom’. With these coordinates may be corre-

lated ‘generalized external forces’ Qi so that by definition

*For historical and critical remarks concerning this principle see the

article by A. Voss in the Enq/klopddie der mathematischen Wissenschaften,

vol. 4 or in the French version by E. and F. Cosserat. I presented the results

here obtained at the Chicago Colloquium in 1920. The following treatment

of the principle differs essentially from any other which I have seen.
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the ‘work’ W done on the system is given by

m
dW= ZQjdqj

in which the differential symbols have their ordinary signifi-

cance.

We shall assume that the functions Qi are real, single-valued,

analytic functions of the coordinates, velocities, and accele-

rations; thus there is one and only one set of external forces Qi

which yields a prescribed set of accelerations for a given set

of coordinate values and velocities. In this case the variables

determining the state of the system are clearly the 2m co-

ordinates and velocities.

As a concrete model of such a dynamical system, we may
think of a concealed mechanism which is controlled by a set

of m rods which project from a wall. If the rods project

by distances (7i, then are the ordinary

forces applied to these, rods in an outward direction.

The fundamental hypothesis which embodies the principle

of the conservation ot energy is that if, by any application

of such external forces, the dynamical system is carried through

a closed cycle, so that the set of 2w final values of g, and g<

coincides with the set of initial values?, the total amount of

work done on the system during the cycle vanishes. Any

system of this type will he called ‘conservative’.

Conservative dynamical systems can only be regarded as

idealizations of the systems actually found in nature, but

nevertheless they are of great importance.

Let us now consider the jsroperties of such a conservative

system. If it is carried through a cycle A BCA and a modified

cycle AB'CA, (which may be represented graphically by closed

curves in the 2m dimensional space of the qi and gj), the

work done in parts ABC and AI^C is the same, namely the

negative of that done along the common part CA. Thus the

work done along the part AC is independent of the path

taken, and so depends only upon the values of gi,

gJ, • • •, gm at C:
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J

^C m
ZOjdqj

AJ=1
Wiqi, qmj qi) '

? qm.

Bj' differentiation with respect to t we obtain the following

fundamental identity in the 3m variables qt, qi. qi':

(4) 2 Qj qj
dW „

')•

This relation must subsist if the principle of the conservation

of energy is to hold, and conversely it is easily seen to ensure

that the principle is valid.

It is possible to give the identity an interesting explicit

form. Let us endeavor to determine a function L of the 2m
variables qi, qi so that the following identity holds:

Comparing the coefficients of q" on both sides, we find

m conditions

V r
SW

Asqidq;,^^'^ dgi'
which hold if

(5) W,

as follows by differentiation with respect to qi. Comparing

the remaining terms which are independent of q", we get

the further condition

i,^i dqidq'j

dL
dqj

m dW ,

which is obviously satisfied if L satisfies (5).

A value of L for which (5) holds can always be found.

Observe first that if Qi, • • •, Qw can be expanded in ascending

powers of the velocities q'l, • • •, gm, then no first degree tenns

appear in W, That is, we have
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W ^ + .

where the subscript indicates the degree of the term in the

velocities. In fact the presence of a term Wi would lead

to a term not involving the velocities on the right-hand side

of the fundamental identity whereas there is no such term

on the left. If wc substitute the above expansion of W and

the coiresponding expansion of L,

L = U /.. + L, + . .

.

in the partial differential equation (5) while noting that by

Euler’s theorem concerning homogeneous functions,

(n =- 0, 1, . • •).

and if we equate terms of equal degree in the velocities,

we find

wU = L,^ 11'., •••.
n— 1

while Li is unrestricted.

Any such function L may be called a ‘principal function’

associated with the arbitrary conservative system with which

we started. When the linear terms in the velocities are

lacking in L, a special function is obtained which has

important properties.

On defining the functions Ei by means of the equations

we observe that by the definition of L we have

(7 )
- 0.

Conversely, if Qi, • • Qm are of such a form that (7) obtains,

the principle of the conservation of energy holds.

2
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If W is the work function of a conservative dynamical system

and if L is the associated principalfunction^ then the yeneralized

external forces Qi may he written in the form (6), (7).

The italicized conclusion above may be expressed in a

somewhat different fashion. As is customary, let us call a

dynamical system for which Hi- 0 (^ ^ 1, • n) a

^Lagrangian’ system. Also let us call a system W - 0 a

^non-energic’ system. The appropriateness of the latter new

term lies in the fact that whatever external forces may be

applied no work can be done. In this case we may take

L EE i) also. The alternative statement is the following:

Any conservative dynamical system has external forces trhich

are the sum of the forces of a Lagrangian system and of a

non-energic system.

Before leaving this topic we may note that for unconstrained

motion we have Qi Qm ^ 0 by definition. Here the

equations of motion take the form

A iAL\ _ Ik
dt \ dq'i I dq.

{i -= 1 . • • • . ni)

where the quantities Ei are subject to (7). Hence we may
state the following conclusion:

An unconstrained, conseitative, dynamical system undergoes

the same motion as a Lagrangian system to which a set of

non-energtc external forces is applied.

An unconstrained conservative dynamical system clearly

admits an energy integral W — const., which by means

of (5) can be written in the alternative form

Lagrangian and non-energic systems have, been defined by

means of the types of the external forces. These definitions

are not mutually exclusive. In fact let us inquire Avhen

a dynamical system wiB be both non-energic and Lagrangiail.

Since it is non-energic, we have
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w = Wo+W.-h-.. = 0,

and hence we find the most general function

m
L = Li = ^ ujq'j.

>=i

Since the system is Lagrangian, we may take Ri = 0 for

every i, and thus find directly

Hence for a system to be of both types the generalized

external forces must have this specific form.

It is worthy of note that in the case m = \, equation (7)

implies that i?i is zero, so that any conservative dynamical

system with a single degree of freedom is Lagrangian.

Similarly in the case wi = 2 the external forces may be

represented in the fonn

Q.
d IdL
dt\dqil 9 f/i

dL d idL\
dt \dq2 l

dL
dqi

where ?. is an arbitraiy function of the coordinates, velocities,

and accelerations.

7. Change of variables in conservative systems.

In the first instance the coordinates qi of a conservative

dynamical .system are actual distances, while the Qi are

forces which act in the direction of these coordinates. But

for most physical purposes it is not desirable to adhere to

a single set of coordinates.

Let us now define the modified external forces Qi corres-

ponding to the new coordinates qi by means of the equations

^ ^QJ
(8) Qi=-.ZQj-^=, (t = l,..-,n).

When this definition is adopted and a further change of

variables from qt is made, while the new external forces

are defined in terms of Qi by analogous formulas, it is found

2*
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that the final functions Qi obtained have the same expressions

as if only a single direct change of variables is made. This

group property is an immediate consequence of the above

definition.

Hence the Qi are uniquelj^ defined foi- any coordinate

system whatsoever.

It may be observed that for change from one rectangular

system to another the above formula for the determination

of the Qi in terms of Qi agrees with that obtained by the

ordinary laws for the composition of forces. In more general

cases the equations above define the generalized force com-

ponents in the appropriate sense.

Now on account of the identity

m m
dW - Z Qjdqj = Z ^dqj,

j--l 7 = 1

it follows that the system will remain a conservative dynamical

system according to our definition, in these new coordinates.

Furthermore the modified work function will be the same

as before (up to an additive constant), and since the formulas

of transformation of the velocities

q'i = ^ q’j {i. - = 1 .
. . • . w)

Oqj

are linear and homogeneous in the velocities, it follows that

the various components IFo, Fg, • • • in F will be unaltered.

If we agree for the sake of definiteness always to choose

the unique determination of L which lacks linear terms in

the velocities, it follows that the principal function L is the

same in both problems. _
Suppose now that we define R, by means of the equations

Qi = A
dt \dq/l

dL
dqt

Ei

where L is the first given principal function, but expressed

in terms of the new variables $/.
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It is easy to prove the formal identities

yf d I 9 y \ 9 y 1 dqj / Sy \ 9 y
7=1 I \ 9 ?/

/

(i = 1, • • •. n),

where on the left side y is any function of gi, g<. To see this,

we note that from the linear relationship written between the

variables gi and g/ we have

Sg'i ^ ^ ^g'i^ _ d l dgi \ .

dg'j dgj’ dgj dt\dgjl ^

Hence we deduce for any i

1, • • •, n).

V [a 111 )] -?i-' y \A. (h^ l3.j\ _ li_ A /iA.\]
j^iidt\dqjl\ dli j^i{dt\dg'j dgll dgjdt\dgil\

— A I—?!-] y A (In]
dt\dg/l dg'j dt\dgi]'

Moreover we have also for any /

y_9jp ^.9J. — A?’ y—^ 9gj

7=1 dgj dqi dqi 7=1 8^7 Sg,

Subtracting the two identities thus obtained we obtain the

specified identity.

This identity with y — i shows of course that the func-

tions JBi as obtained from Ri by the defiiung formulas have

the same sfaructure as those which give Qi in terms of Q,-.

Hence we are led to the following general result:

If the variables 'gi,---,gm of a conservative dynamical

system are transformed to gi, --,qm, the system remains

conservative in the new variables with L, W unaltered, while

Qt, Ri are both modified to corresponding new eapressions

obtained as in (8). In particular then if the system is La-

grangian or non-energic in the first set of variables, it remains

so in the modified variables.
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8. Geometrical constraints. We are now in a position

to deal with the question of 'geometrical constraints.’ Let

us suppose that various geometrical points of the given

conservative S3fstem are fixed or are constrained to lie in

smooth curves or surfaces or to move subject to connections

bj’ various rigid bars without mass.

The effect of such constraints is to reduce the number of

degrees of freedom. In fact, by properly taking coordinates

• • •) the k conditions of constraint may be made to take

the form

= const. , (jm “ const. (/i = m— A).

Now denote by L that which L becomes when the k con-

strained coordinates
, qm have these assigned constant

values, while the corresponding q'„ q" vanish of course. Then

it is clear that

j- -j. d £j d L d ij d Ij ,

.

L — L, --— = =- ---T (i 1, • • •, /O-
dqi oqi 9 qi 9 qt

Hence we have the relations

/ 9X\ 9_L

\dqil ~dq
(/ - 1,

• /tt),

where Qi and Jf, are defined as usual.

But the original external forces Qi may be decomposed

into a sum

Qi-\-Pi,

in which the ‘forces of constraint’ P, can do no work for

any possible displacement subject to the constraints. It follows

that the functions must vanish when the co-

ordinates are selected as above. Hence we may replace

Qi by Qi in the formula above for i = 1, • • •, /».

Thus we are led to the following conclusion:

If a conservative dynamical system with m degrees offreedom

is subject to k geometrical constraints^ it may be treated as

such a conseivative system with m— k degrees of freedcm.
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9. Internal characterization of Lagrangian systems.

in most of the dynamical applications, Lagrangian systems

can be regarded as dealing with a system of particles subject

to certain forces and geometrical constraints. This type of

internal characterization formed the basis of Lagrange’s

derivation of these equations, and is considered briefly in

the present section. In the next section an external charac-

terization is developed.

We shall begin by considering three particular types of

particles in ordinary space:

(a) The inertial partide.

Here if x, y, z are the rectangular coordinates of the

particle, the external forces A', 1', Z in the directions of the

corresponding axes are proportional to the accelerations in

these directions:

X mx", Y = my". Z = mz",

where the constant of proportionality, m, is termed the ‘mass’

of the particle.

This is the case of an ordinary mass particle.

The particle is seen to be of Lagrangian type with Lagrangian

function

and L is its ‘kinetic’ energy.

(b) The non-kinetic partide.

Such a particle is subject to forces independent of the

velocity and having the particular form;

X=—dYldx, Y = —dYIdy, Z^—dVIdz

where Y depends on the coordinates of the particle in space.

Here the dynamical system is Lagrangian with L — Y.

The function —F is the ‘potential’ energy of the particle

due to the field of force in which the particle moves.

An electrified particle of slight mass moving in a static

electric field is nearly of this type.
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(c) The gyroscopic particle.

By definition the gyroscopic particle is -subject to forces

with components of the type

X — {dcc/dy— d fildx)y -\-{d a! d z— 9y/9a;)/,

SO that the force vector is perpendicular to the velocity vector

and therefore can do no work. Nevertheless the system is

Lagrangian with

L ---

It will be noted that this is the type of special Lagrangian

system which is also non-energic.

An electrically charged particle of negligible mass moving

in a static magnetic field falls under this case.

(d) The system of generalized particles.

If a particle moves subject to a sum of forces of the

inertial, non-kinetic, and gyroscopic types it may be termed a

generalized particle. Such a situation is realized for example

when an ordinary mass particle moves in a gravitational field.

It is evident that the resultant system will then be Lagrangian

with a principal function merely the sum of the principal

functions associated with the component forces.

Consider further a set of such particles which do not at

first interact in any way. If we add together the Lagrangian

functions for the several particles, there is obtained a single

function L which can serve as a single function from which

the equations of motion of the system of particles may be

derived.

It is necessary of course to use suitable variables (pa, yi, Zi)

where i = 1, 2, • •
•

,
m to differentiate between the coordinates

of the various particles.

Clearly this yields a principal function L which will be

quadratic in the velocities. It is another step in the way
of generalization to take L to be any quadratic polynomial

in the velocities, in which the homogeneous quadratic part

is the kinetic energy T, in which the term TJ independent

of the velocities is the potential energy, and in which the
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homogeneous term of first degree may be called the ‘gyroscopic

energy’.

Furthermore, as has been seen above, we may suppose

the particles to be subject to certain types of geometrical

constraints, thus diminishing the number of degrees of freedom,

without affecting the Lagrangian character of the problem.

It is such a system of generalized particles wlych suffices

for most of the applications.

(e) The generalized particle in m-dimensional space.

By an obvious extension into which we shall not enter

here it appears that a single mass particle lying on an

Mi-dimensional manifold defined by a quadratic differential

form, subject to a field of force derived from a potential

function in the surface, and furthermore to gyroscopic forces

derived from some linear function of the velocities in the

surfafe, will be of Lagrangian type. The function L is

quadratic in the velocities. Conversely any Lagrangian system

with m degrees of freedom for which L is quadratic in the

velocities is representable by the motion of a mass particle

in such an m-dimensional manifold.

Thus we may interpret the motion of any dynamical system

with m degrees of freedom as isomorphic with the motion

of a single generalized particle on a suitable m-dimensional

surface.

lo. External characterization of Lagrangian
systems.* In this section we propose to characterize an

important type of Lagrangian systems by means of certain

simple properties ot the external forces.

In fact, we shall characterize those ‘regular’ dynamical

systems for which the Lagrangian function L is a quadratic

function of the velocities, without first degree terms. These

form an important class of dynamical systems in which L
has the form T— U where T is homogeneous and quadratic

*The material of this section was presented before the Chicago

Colloquinm in 1920. For an analytic characterization of the Lagrangian

system in the case when the external forces are linear in the velocities

see E. T. Whittaker, Analytical Dynamics, p. 46.
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in the velocities, while 17 is a function of the coordinates

only. It will be observed that regular systems remain of

this type under an arbitrary transformation of the coordinates

9i, •• •• «»!•

The fii-st of the characteristic properties which we shall

state is the following:

I. The external f&rces vary linearly with the coordinate

accelerations.

Evidently this means that we may write.

m
Qi = ^Oijq'J + bi

where oq, h do not involve the accelerations.

II. Pbinciple of Reciprooty.- The chanye in the accele-

ration 4/' due to a change in the i-th force Qi is the same

as the change in the acceleration q'i due to an equal change

in the j-th force Qj, (i, j = 1, • •
-
,

«).’*

In oi'der to see what this means we suppose that Qk re-

ceives a certain acceleration increment Q, in w’hich case the

above equations give
m

Q^ik == ^ OijAiqj (,i — Wi)
jr=-.l

where A denotes the increment as usual and where d* = 1

for i ~ k and Aoc = 0 for i k.

Now suppose that'Qi receives the same increment. We
And similar]}'

m

Q dfi = ay At qj •

If jwe assume that the determinant jovl is not zero, we

may solve these equations and obtain for all i, k, I

m
4i5< = ^ anQ^jk — aocQ, Atqi — duQ,

where dy is the cofactor of the element in the j-th row and

2-th column of
|

a<;
|,

divided by this determinant. Patting

* Coiupare Bayldgh, Theory of Sound, vol. 1, chap. 4:
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i — I and i — Ic respectively, we obtain from II, dot == aw.

Thus the cofactors are symmetric in i and j, whence it

follows that the elements are symmetric also, i. e. we
must have aij — aji for all values of i and j.

III. For a family of similar motions, the forces are qua-

il,ratir functions of the speed.

In other words, let qt — qi(t), (i ~ 1, • • m) be a motion

of the system. Suppose that the motion is speeded up in

the ratio 2 to 1. The external forces become

Qi = • • •• Qm, hqi, .... hqm)h*qj

-\-hiqi, qm, ^q'h •••• ^g'm)-

iuasmuch as the coordinates qi are unaltered while the

velocities ip and the accelerations q" are multiplied by ?.

and A* re.spectively.

If these expressions Qi are to be quadratic in h (qi, q'i, q'/

being entirely independent variables of course), the functions ay

cannot depend on the velocities, while h will be quadratic

in them. Thus in virtue of 111 we obtain more precisely

Qi = 21 «v?7+ 21 hkgj9kf21 Kg'j+h
j I j,k=i ;=i

where the functions a^, hjic, iq, In depend only upon the

coordinates (/, ,
• • •

. qm-

This form is rendered still more specific by the following

hypothesis.

IV. Reversibility. Any motion under prescribed external

forces may equally be described in the reversed order of time.

The meaning here is that the above relations continue to

hold when t is replaced by — t. But this changes the ve-

locities to their negatives while leaving the coordinates qr

and the accelerations qi unaltered. We infer that the

functions bq must be lacking. Hence we may write



28 DYNAMICAL SYSTEMS

m m
Qi — 2 ^ iijk^qk-i-bi

j=i

where an, b(jk = Joy, h involve only the coordinates.

All of the properties I to IV so far employed are invariant

under a change of coordinates g,- and have to do with the

nature of the external forces in the neighborhood of a set

of values gj,
•

By a suitable choice of coordinates at a point g®. • ql^,

we can reduce the expressions for Qt, • •

, Qm. to the simple form

Qi —- qi-\- h (i ~ 1 ,
• • • . w)

at that point.

To establish this fact we assume that gj,
• •,g^ is at

the origin, and make a first linear transformation

m

qi = ^ dijqj {i
------

1, • • •, m),
J= i

where the /dy are constants with Ayi 4 0- I'"or the functions Qi

we have then
^ Cl ^

Qi - I, Qj-j^ = Z Qj^ii-
j=i °qi

Hence we find by substitution for every

m

Qi = S ajkfijifikiqi'+ terms independent of q", ,qm.
i,M=i

It follows that if we choose our transformation so as to

transform the quadratic form

m
i^Jk qj qk

J,k=l

into the sum of squares

q\-\ hg^.

the quantities da will be 0 for i^J and 1 for i =J. Con-

sequently it is at least legitimate to assume that oa has
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been reduced to dy at the origin by this preliminary trans-

formation, so that we have

m
Qi ^ 9i'+ 2^ bijk q'j q'k+ b'i {i ^ 1 ,

•
•

,
w»)

J,k= l

at the origin.

Now suppose that we write further

I
m

qi == qi+
cf 2^ %k ^Jjqk

where the constants have the values specified in the

equations above. We find by differentiation that the equations

q'i - " q'i, q'i q'i ^ qjqi {i 1, •••. m)
j,k-^l

hold at the origin.

It is then found at once that in these variables qi, the

formula for Qi has the stated form at the origin.

V. Conservation of Energy. The dynamical system is

conservative.

If W is the work function we have the fundamental relation

d W
m
2^Qjqj^C

characteristic of conservative systems. But the sum on the

right is linear in the accelerations, and comparing the

coefficients of q'J obtained by employing the form for Qi above

we find
m

dW/dqj = Y an q'i (j ^ 1 •••. m),S
whence

where

W = T+U
1 m

and where Z7 is a function of ji, • • •
, qm only.
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Employing this more specific form for W, we have of

course L = T— U according to the earlier developments,

and thetoce

where Ri satisfy (7). But the first two terms on the right

yield expressions just like those for those derived above for Qu

the terms in qj being identical. It follows that we must

have the differences Ri of the form

Ri = Cijkqjq'k+Ci = 1, m).
J,k=l

Applying now the above condition (7) we conclude further

that for all t, j, Jc the relations

Ci/k + Cjki -f- Ckij — 0 ,
ri — 0

must obtain where Cyk = r^kj also of course.

Hence principles I-V lead to the type of external forces.

Qi - d

Hi

m

+ ^ Ojk q'j q'k,

J,k^-l

where the = akj are functions of the coordinates such

that for all i,j, k

Cijk 4" Cjfci -(- Ckij ” 0.

It remains to specify a final condition, as simple as possible,

which will allow us to conclude ajk = 0 for all i,j, k.

VI. If hy a fartkular choice of coiirdinates, the kinetic

energy T is made stationary in qi, • •

, qm at a certain j>oint

3?’ ’ 9m’ forces yield accelerations which are in-

dependent of the velocities.

Suppose for a moment that such a stationary T exists, so

that we have at

doHjldqk = 0 If — 1, • • •, m).
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The form for Qi at this point becomes

7n
/i IT

Qi ~ ay QJ + yT + S Cijk q'j qu-
j-i ogi

It is to be observed that the form of Qi employed holds for

any coordinate system. Now if these forces Qi are to be

independent of the velocities, we must have = 0 for

all i,j,k in the special coordinate system and thus in the

most general system by the known law of,transformation of

the terms i£,-. Consequently the desired Lagrangian form of

external forces is obtained.

The hypothesis that a stationary T exists is justified by

the well-known fact that for any coordinates of geodesic type

at

,

q^m^
the surface element ds where

m
ds* — S Uijdqidqj

has coefficients ag stationary at this point.

Conversely, it is readily seen that a regular Lagrangian

system has external forces Qi which satisfy I-VI.

II. Dissipative systems. Conservative systems are often

limiting cases of what is found in nature, since actual work

is usually done on the system during a closed cycle. A system

for which work is done may be called dissipative. More

explicitly we shall define dissipative systems to be such that

where

Qi = d 1 9L \

Ji \ 9 ^/

dL
dqi

+ Ri (* — 1
r

• •
•

;
m)

^Rjqj Z 0 .

Furthermore we shall assume that the equality sign can only

hold for motions in a manifold of dimensionality less than

m in the m-dimensional coordinate space.

Suppose now that such a system is unconstrained, or at

least is subject to external forces which do no work, so that

ZQj(^j = 0.
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Because of the obvious relation

dW
dt

m

J=i

where W denotes the work function associated with L, namely

we infer that W constantly diminishes toward some limiting

value TTfl. It is assumed that the work function cannot

diminish to — oo.

Now consider the limiting motions of the given motion.

Along these motions W has this limiting value Wo, and of

course the sum
m

ZSjq'j
J=l

vanishes.

A dissipative system of this type tends in its unconstrained

motion either toward equilibrium or, more generally, toward the

motion of a conservative system with fewer degrees offreedom.



CHAITER II

VARIATIONAL PRINCIPLES AND APPLICATIONS

I. An algebraic variational principle. On the formal

side of dynamics it has proved to be a fact of fundamental

importance that the differential equations can in general be

obtained by demanding that the ‘variation’ of some definite

integral vanishes.

To make clear the essential nature of the variational

method, we may consider an analogous question concerning

ordinary maxima and minima.

Let there be given n equations in n unknown quantities.

..., JV.) ::::::: 0 {{ =1, •••, W)

,

in which the left hand-members are expressible as the partial

derivatives of a single unknown real analytic function F,

fi ~ d Fid xi (? == 1 ,

•
•

, )

The n equations are then of the special type which arises

in the determination of the maxima and minima of F, and

they may be combined in one symbolic equation dF — 0.

Their significance is that for the values a^, •••, under

consideration, the function F is ‘stationary’.

Now suppose that the variables an are changed to yi in

the n equations, where the relation between Xi and yi is one-

to-one and andlytic. Since the phenomenon of a stationary

value of F is clearly independent of the particular variables

in terms of which F is expressed, the solutions of the original

equations can be expressed in the characteristic differential

form dF = 0, in the new as well as the old variables.

This furnishes a means of obtaining an equivalent system of

33 ,
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equations in the new variables, which is in general simpler

than that of direct substitution in the original equations.

In cases when it is not possible to write the given equations

in the special form, it is frequently possible to find combinations

of these equations which may be so written.

Moreover any non-specialized set of n equations in xi, • • •
, a;«

of the form first written is equivalent to 2n equations obtained

from dF 0 where

j~i

at least provided that the determinant
j
dfi/dxj

|

0. For we
find that Xn+i, • X2,i are 0, while r,, • • Xn must satisfy

the required equations.

From these circumstances it is easy to conjecture that

the significance of the analogous variational principles of

dynamics is largely formal.

3 . Hamilton’s principle. Let us formulate the concept

of a ‘stationary integral’. Suppose that the equations

Xi = xi(t,l) (/ = 1
,

•••, m)

represent a family of functions depending on the parameter I

in such wise that for A = 0 we have a given set of functions,

^,(<> 0)
= ^“(0 (* = 1 . »«)•

We shall assume that the functions xi{t, 1) are continuous

with continuous first and second partial derivatives in f and A.

and also that these functions of f and ^ vanish identically

sufficiently near to the two ends of the interval (to, ti) under

consideration,

Xi(t, X) = 0 (to ^ t ^ to + e, t, — ^ ^ <i).

Under these conditions the integral
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where F and its partial derivatives of the first two orders

are taken continuous, is said to be ‘stationary’ for

if for every such family of functions we have

61 ^1\
dX

|
a =:0

dX 0 .

This amounts to the equation for X 0,

( ^ I

dJ^
t

^Xj\

Jt^ j&i [da^j'JX'^ ~d7j iX/
dt = 0.

Integrating by parts and noting that dxi vanishes at the end

points, we obtain the equivalent equations

In particular we may take

Xi {t,X) — (0 + X 6x^ (/ = !,•••. m)

where the functions 6xi are arbitrary continuous functions

of fwith a continuous first and second derivative except that

they are to vanish near to and ti.

In this way the condition that the integral be stationary

is found to be equivalent to the system of m differential

equations of Euler in

dldF\dF
dt \ dxil dxi

- 0 [i = 1, • • •• m).

In fact the above integral can not vanish for all possible

admissible functions Xi{t, X) unless this condition is satisfied.*

But the m equations just written are identical in fonn

with the Lagrangian equations except that L is replaced by F.

Hence we obtain the following important result:

* See, for example, 0, Bolza, Vorlesungen fiber Variationsrechnung,

chap. 1, for fuller statements and arguments.

8*
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The Lagrangian equations may be given the variational

form Icnoum as Hamilton's principle^

According to the principle which led us to introduce the

concept of variation, we may affect any desired change of

variables in the given Lagrangian equations by introducing

the new variables in the function L. To this fact is due

much of the convenience of the Lagrangian form.

3. The principle of least action. There is a second

well-known variational form for the Lagrangian equations

termed the ‘principle of least action’, and we proceed to

clarify the relation of this principle to the one just formulated.

We assume that L — Lj-fii + ^o is quadratic in the

velocities, and recall that the Lagrangian equations admit

the energy integi'al

w -L - L,-~u - c.
j-^i\ dqj,

It is on this fact that our considerations will be based.

Let us confine attention to the case where the energy

constant c has a specified value, say c 0. Hence we have

Lt = Lo along the motion (? = 1, • • •, m), con-

sidered.

Now define I* as follows-

I* = 7— — =J^'(2K7o^ + A)<i<.

This yields

dl* = dI—2jl'(VLt— \^Lo) (dVL,— dVLo) dt.

Accordingly, if the qflit) satisfy the assumed energy condition

we shall have
il* dl

for an variations of the q^. Hence if the (f. in addition

satisfy the Lagrangian equations, so that d7 = 0, we shall

have d7* = 0 also.
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The integrand of /* is positively homogeneous of dimen-

sions unity in the derivatives ql Consequently the numerical

value of this integral I* is independent of the parameter t

used along the path of integration, and the value of the

integral depends only on the path in qu , <lm space ;t for

variations of the admitted type the end points of the path

are fixed. Thus the integral of energy can be regarded as

merely determining the parameter t, since if we write

T = Lodt,

the integral relation is satisfied in the new parameter t.

Consequently, if we have 61* — (} for qi =- q\ {t) and if

the new parameter t is chosen in this manner, we have

d/= 0 also for q^ — q'lif).

An alternative variational form for the equations of motion

of such a Lagrangian system is 61* = 0, or more explicitly,

(2) 6 r (2 -f A) df --- 0

provided that Lq is so diosen that the eneigy constant vanishes,

and the parameter i is determined as spedfed.

The equation 61* — 0 constitutes the ‘principle of least

action’ for this problem, and is usually given for the case

wher6 the linear term A in the velocities is not present.

By means of this principle not only the variables qt

but also the variable t may be transformed with facility.

Indeed, it is obvious that the condition 61* = 0 is invariant

in form under a ti’ansfonnation of the dependent variables qt

to new variables g<. For along the transformed curve the

same variational condition will be satisfied, except that L is

replaced by its expression in terms of the new variables,

while t has the same meaning as before. Consequently in

order to transform these variables, it is sufficient to effect

the transformation of L directly. The corresponding trans-

t See 0. Bolza, Vorlmingtn iiber Variationsrechnung, chap. 6.
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formed equations are then obtained by the use of the new

expression for L.

The allowable type of transformation of the independent

variable t is the following:

dt = q,n) dl.

In other words, the differential element of time is divided

by a factor /* depending upon the coordinates. We may
determine the nature of the modification which the Langrangian

equations undergo as a result of this transformation as follows

:

We note that the integral I* may be written equally well

I* =
J_‘' M A) dt.

This modified integral is of the same form as before if we set

L — f*L.

Furthermore d I* vanishes along the curve whether t or t

be regarded as parameter. By this transformation of f, then,

the equations of Lagrange and the given integral condition

go over into other equations of the same type with the

principal function L multiplied by

The differential form Ldtia invariant under transformations

of either type. We conclude therefore the following fact:

By a transformation

?<—/<(?!) •••. ?«) (t=l
,
•••,»»), dt = ,qm)dt,

the Lagrangian equations urith energy constant 0 go over into

a Uke set of equations with energy constant 0 in which L is

obtained from the formula

Lddt Ldt,

In the reversible case we have A = 0, and thus

I* =^\VLj:;dt = 2^' ds,
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where ds* = LoLtidt)* is the squared element of arc on

a surface with coordinates gi, •••, qm-

Thus in the reversible case with fixed energy constant the

curves of motion may be interpreted as geodesics on the.

m-dimensionai surface with squared element of arc

ds^ - ULiidty.

This result indicates the degree of generality which attaches

to the geodesic problem on an m-dimensional surface.

4. Normal form (two degrees of freedom). The

transformations deduced above admit of particularly elegant

application of the case of two degrees of freedom.* In this

case the differential element

Lidf- =
2

+

may be regarded as the squared element of arc length of

a certain two-dimensional surface. By choosing q^ and q^

to be the coordinates of an isothermal net on the surface,

the squared element of arc is given the form

]^l{dq\^d^qX).

Consequently if we choose the function as and make

the transformation of t above, X reduces to 1.

For a givm Lagrangian system with two degrees of free-

dom and given eyiergy constant 0, there exist variables of the

above type for which the 2>rincipal function L has the form

L = {q'l 4- q2 ) -faq'i-i q'l +

The equations atid condition then take the nm^mal form

— ^qi ~ dy/dq2

(X da/dqi — dfi/dq,),

== y-

* See my paper Dynamical Systems with Two Degrees of Fre^m,
Trans. Amer. Math. Soc., val 18 (1917), sections 2-5.
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Now if we regard
, qt as the rectangular coordinates of

a particle of unit mass in the plane, it is seen that the

above equations express the fact that the particle moves

subject to a field of force derived from a potential energy

— y and a force of magnitude Xv perpendicular to the direction

of motion, where v denotes velocity.

Any such Lagrangian system ivith two degrees of freedom

can he regarded as that of a mass particle in the qi ,
qt-plane,

subject to a conservatire ^fidd of force derived from a potential

energy — y, and a non-energic force Xv (v, velocity) acting

in a direction perpendicular to the direction of motion.

5. Ignorable coordinates. The search for integrals is a

task of fundamental importance in connection with differential

systems. The question as to whether integrals of a particular

type exist or not can usually be answered by formal methods.

Their determination has been considered in many cases. In

order to refer somewhat to this phase of dynamics, Ave con-

sider briefly integrals of Lagrangian systems which are either

linear or quadratic in the velocities. The variables ^j, q^
are .confined to the small neighborhood of a point q^, ^
while qi, •• •, q'm are arbitrary for the integrals treated.

We shall assume that L is quadratic in the velocities with

the homogeneous quadratic component L* a positive definite

form.

There is one very simple case in which a particular integral

of the Lagrangian equations linear in the velocities can be

found immediately,' namely the case in which one of the

coordinates, as gi, does not appear explicitly in the principal

function L. In this case, the corresponding differential

equation becomes

so that

d ldL\
dt UgW

= 0
,

dL/dqi = c

is an integral lifiear in the velocities. The coordinate qi

is then said to be an ‘ignorable coordinate’.
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It may be proved by the method of variation that the

m— 1 equations remaining, which give a system of m— 1

equations of the second order in qt, , Qm after the above

integral has been used to eliminate qi, c^ be expressed in

Lagrangian form. Let us denote by L the function of

Qt>
• • •< Qm, qh, • qm obtained from L by this elimination.

If 9?>
• • •> 9^ satisfy the given Lagrangian equations, we find

for an arbitrary variation of qt, •
-

, qm

after an integration by parts; here q[ is determined by the

integral relation, although qi is not determined up to an

additive constant. If the dq^, •••, dq^ vanish near the

end points, this l educes to

If qi is an ignorable coordinate, the Lagrangian equations

can he replaced hy a set of Lagrangian equations in qt, qm
only, with modified principal function

in which the known integral is used to eliminate q\.

We sketch the above reduction of the number of degrees

of freedom by use of such an integral because it is typical

of the kind of reduction aimed at in many dynamical problems,

namely a reduction maintaining the general form of the

equations.

6. The method of multipliers. Let us ask next the

following question: Under what conditions is it possible to

find m ‘multipliers’ Mi, depending upon the coordinates and

the velocities, such that when the Lagrangian equations are

multiplied by Mi,---, Mm respectively and added, the left-

hand member of the resulting equation is the exact derivative
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of a function V linear in the velocities? If a set of such

multipliers exist, we have

^ r d / 9i\ ail dV
j^i^Ldil'dg'j/ dqj\ df

Evidently this will lead to a generalization of the notion

of ignorable coordinates, in which special case we have

Mi — \ for some i while Mj — 0 for i

On comparing coefficients of we derive first

m
Zmj

I = 1

9*L

'dqidq'j

9F
Jq'i

(j — 1 ,
• •

•
,
»i)

.

Here, because of the assumption on L, the coefficients of Mj

are functions of the coordinates only. The right-hand member

is also a function of the coordinates only, since V is linear

in the gj. Hence the functions Mi must involve only the

coordinates, and partial integration with respect to g< yields

m
v = Z

j=i

dL
d(ii

^iqii • •
•

> ?»»)•

For a given V only one such a set of functions Mi, S exist,

since the coefficients dLldq'j of Mj are linearly independent

expressions in the velocities, g<. Furthermore, this type of

relation will persist if the variables are changed, since an

integral linear in the velocities remains linear under any

change of variable. Making then, a change from g< to g,,

we find

V =
m dL dQk

9?* 9qj
+ 8.

Thus the new coefficients are given by
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From the known theory of linear partial differential equations

of the first order, we can determine m functionally independen*^

functions qt such that we have the relations:

M, ^ I, if* 0.

On making this change, we obtain

V dLld~g[-^S.

Differentiating with lespect to t, and using the first La-

grangian equation, we find the identity

9Z/
, ^ 96'

,

0 .

Hence dL/dqi is linear in the velocities. Consequently the

quadratic terms in L must have the form

m

^ (^2 ,

• • •

. qm) gj q'k .

J, k 1

Now let us write

m
Li ^ 2^hj{qi, , qm)qj, U = p{qi, . qm).

J=i

Then the above identity simplifies to

de

dqi j=i oqj
0

We infer at once that e is independent of gi, and that if

we write 8* — ^Sdq^, then L, is given by

Li = —21 ?i + 21 Vj (92.
• •

•. 9m) q'j,

J=i ^<IJ J= 2

i. e., by an exact differential augmented by a linear expression

in q2, with coefficients depending only upon qs, qm-
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Since the L function may be modified by an exact derivative

without affecting the variation and the Lagrangian equations,

we may omit the first term in Li . Hence L may be written

so as not to involve the coordinate qi directly.

The most general case, in which multiplims Mi{qi, , qm)

of the various Lagrangian equations exist, hy the aid of which

the left-hand members of these equations may he combined to

form an exact derivative of a function V linear in the velocities

q'l,
• •^q'm, reduces hy change of variable to the case of an

ignorable coordinate qi in which all of the multipliers but one

are zero and that one is unity.

The existence of such linear integrals can be determined

by purely geometric methods. We observe that in the

derivation of the result above, only transformations involving

?i> • • •• Qm were made so that t was unchanged. Hence the

quadratic differential form ds* = Ltdt- is an invariant,

which in the final variables has coefficients only involving

•••> Qm- But of course this analytic property merely

means that the surface with differential element belonging

to this form admits of one-parameter continuous group of

transformations into itself,

Qi == q\fc, qt = q-i, qm = qm-

A necessary condition for the existence of such a genn alized

ignorable coordinate is that the surface ds* — L^dt* ad-

mits of a one-parameter continuous group of transformations

into itself.

We shall not attempt to develop such necessary conditions

further.

7. The general integral linear in the velocities.

So far as our reasoning above is concerned, we cannot as

yet infer that all integrals linear in the velocities can be

obtained by the method of generalized ignorable coordinates.

However, this may be demonstrated to be the case as follows.

Since is by assumption a positive definite form, we may
write the integral in the form used in the preceding section.
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V _^ ±M,^ + S
1 oqj

where Mi and 8 are functions of the coordinates onlj".

Employing exactly the method of that section, it appears

that by a suitable change of variables we can take Mx — I,

i¥* = • • • = Mm. ~ 0. and then by differentiation as to t

it appears just as there, that L is ess^tially independent

of qi, so that qx is ignorable.

The method of mvdtipliers specified yields all integrals of
the Lagrangian equations whidi are linear in the velocities.

8. Conditional integrals linear in the velocities.

In the preceding section we have considered integrals linear

in the velocities which hold for all values of the energy

constant. A more difficult problem is that of obtaining the

conditional integral, holding for a sijecified particular value

of the energy constant r, say for c - 0. We proceed to

treat thjs problem for the case of two degrees of freedom.

Here, by the use of the normalizing variables obtained earlier,

we may write the equations of motion and the energy integral

in the form;

ff \ 'i
f tf f f2

\ r2X +/.y ^ jV. !/
—l-J- = X -fy — y,

where Yx, for instance, denotes dyldx.

Moreover, since any change of variables leaves the linear

nature of the integral unaltered, the integral may be written

V — lf-\-mt/-^n ~ k,

where it is understood that this relation is required to hold

only when the energy constant vanishes.

If the linear integral be differentiated as to the time, thf

equation which results mast be an identity in virtue of the

differential equations of motion written above and the energy

relation. The differential equations may be employed to

eliminate x", y"

.

When this has been done, an equation

quadi‘atic in x', y is obtained, which must be an identity
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in virtue of the integral relation alone. The quadratic tenn.s

are

lx 01''^+ {ly -f War)xy+ nyy'\

In order that this sum shall combine with those of lower

degrees in x', y by use of the integral relation, it must be

of the form c(a-'*+ y'*). This implies

lx = Wj,, ly =- — rnx

i. e., that

I ~ My, Ml — tlx

where u is a harmonic function.

The integral can now be written:

uyx +uxy -{-n = A-.

According to the principles outlined abov e in section 4. a

further arbitrary conformal transformation of the x, y-plane,

joined with the appropriate change in t, will leave the

differential equation and integral relation in the normal foim.

In order to simplify further the linear integral, we shall

choose the transformation to x, y defined by

x-\-iy
I' dx-\-idy

J My+ i

This is evidently conformal in type. The inverse trans-

formation,

x-^iy = f{x+ iy),

is also conformal, and we have

j

dx-^ idy

!
dx-\-idy

i

\f(x + iy) *

Now let the transformed value of t be defined by

di = {u\-\-u])dt
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From this last equation we find at once

x' — (%— +

where x' — dxidt, y' — dyidt. Thus we have in par-

ticular

x' — Uyx' -f Ujcy-

Consequently when such a further transformation has been

made, the above integral is simplified to

x -\-n = k.

Now let this integral be differentiated as to t and let x"

be eliminated by means of the first Lagrangian equat’on.

There results

UxX +(ny— X)y'-}- = 0,

which must vanish identically in virtue of the . integral re-

lation. Therefore, we conclude that the left-hand member
vanishes identically in x', y

.

But this will happen only if

I and Y are functions of y only. In this case the equation

can be made to vanish identically by a proper choice of «,

namely j*Xdy.

If such a dynamical system with two degrees offreedom with

energy constant 0 admits of a conditional integral linear in

the velocities, then by means of a suitable transformation oj

the coordinates and the time, the equations can be taken in

normal form ivith

L =-=

^
(a;' *+ y' *) -f n {y)x -f y (y),

so that the system contains the ignorable codrdinate x.

integrable case the curves of motion are given by

ici — n)dy

V2 r — (ci — w)*

dy

i'2r— (ci — nf

In this
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9. Integrals quadratic in the velocities. The energy

integral is a known integral which is quadratic in the velo-

cities. Furthermore it is well known that dynamical systems

of the so-called Liouville type with L of the form

.. m
L ^ uZ fjiqj) qj-(W/U),

I j--l

Zvjiqj), TF ZwjiqJ)

admit of m integrals quadratic in the velocities, in particular

~ U*Vi qi— cui -f Wi = a (i — I,
,
m)

,

and can be completely integrated.

We propose here only to discuss a special converse problem:

to determine the conditions under which a Lagrangian system

with two degrees of freedom and of reversible type, with energy

constant 0, admits of a conditional integral

{ax^ -\-2bx' y' cy'^) + dx' c?/+f — ^

where a, •• •,J are functions of r and y, and where a, b, c

are not all identically zero.

If such an integral exists, any transformation of x,y,t

of the type discussed in section 3 leaves the form of the

integral unaltered. Hence we may transform the equations

to the normal form for which

L ~ + +

Differentiating the above assumed integral relation, and

making use of the Lagrangian equations to eliminate x", y”,

we obtain a polynomial of the third degree in x', y at most,

which must vanish identically in virtue of the above integi’al

relation. Now the third degree terms are

y ax «'* +{hx-\-Y “i') + y +y <V y®

,
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and these must combine with those of lower degree by virtue

of the integral relation. This can only happen if this poly-

nomial is divisible by i. e., if

(^x 2 hyy dy Cy 2 Ijx •

These are the Cauchy-Riemann differential equations for the

conjugate harmonic functions a— c, 2h, and we may write

a — c = 2uyj h = Uxj

where u is a harmonic function.

Our conclusion is that the hypothetical integral has quadratic

terms
1 t2

\
It 1 r2

I
/ /2

I
/2\y%.r -±UxXy— -Uyy + q{x -fy).

Taking account of the energy relation we may replace the

last term by 2^/. The remaining quadratic terms may
be written

where 91 stands for ‘the real part of’.

Now write

/'^ =- \!(xiy~]riux)

so that f is an analytic function of x-\- iy. Make the change

of variables

x-f-iy f{x-\-iy), dt = \f\^dt,

which leaves the normal form of the equations unaltered.

We find that the above quadratic terms, which may be written

1 ^\ f''\dx+ idyY

2 L 1/ r dt'

become

4
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in the new variables. Hence, dropping the bars, the integi'al

relation takes the simplified form

y {x'^—y'^) + dx' + ey +/ ==

Again if this be differentiated with respect to t as before,

there is obtained

dx + {dy+ ex) X y + ey
y"^

+ 0*4- Yx) x' 4- ify—Yy) y' 4- drx -\-ery == 0 .

The linear terms must vanish so that we find

r ^ v{x)-\-il>{y), f —<f{x)-\-^)iy).

But for this value of y the differential equations are of

immediately integrable type:

If a reversible Lagrangian system mth two degrees offreedom

and with the energy constant 0 admits of a conditional integral

quadratic in the velocities and distinct from the energy integral,

then, by a transformation of variables, the equations and

integral take the form

x' = g>' (x)
,

y" = (y)

,

y {x''^ + y'^) = sp(a;) 4- H>{y) •

A special quadratic integral is then

y(.r'^— y'*) = q>{x)— if){y)-{-k

and the equations are integrable with

^ ^ _1_ f dx _ Jl_ r dy

J yj J
'

The Liouville type of equations is essentially an equi-

valent case.

lo. The Hamiltonian equations. Next we proceed to

formulate another important type of variational principle,

which leads to the so-called Hamiltonian or canonical form

of the equations of dynamics.
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Let us vmte

Ch r w w
1

^
I ^PJ 9J— 2^PJ^J-\-Liqi, Qm, ru , r„^\dt = 0,

l./=i ;=i J

in which the r,- are the functions of pu • • •< Pm, qi, • • -
, qm

properly defined by the m equations

Pi — d Lid Vi (^ — 1, •••,»»),

and where ,•••

.

Pm, ,
• •

•

,

q* are to be varied independently.

The first m equations, obtained from the variation of j?i,
• • •, pm,

are of course

d jd F\ dF
, I I V / ^ L d L drj

TtWi)~ d~pi

~

- —
q'i + n = 0,

where P' stands for the integrand. The second set of m equa-

tions can be likewise obtained and may be written

Pi -f dHjdqt =-- 0,

if we introduce the abbreviation H for

m

'ZiPjrj— L.

It is important to observe that the 2w differential equations

so obtained are each only of the first order, with the general

solution containing only 2m arbitrary constants.

The first set of equations show that the functions p9, q®

which make the integral stationary are such that •

Now let r,- be fixed as q'i, so that the integral reduces to the

Lagrangian integral

The variation of qi, • • •. q™ is still arbitrary, but the variation

ot pi, Pm is determined. Furthermore if the variations

of qi, . • •
. qm vanish near to to and ti

,

so will the variations

of pi, Pm- Hence we have
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alon^ q^— ^{t), and we conclude that gj satisfy the associated

Lagrangian equations, with r9 — qf, thus determining the

corresponding p^.

Thus each solution of the proposed variational problem

leads to a solution of the associated Lagrangian equations.

The converse is also true, since the choice of pi, qi at any

time i is arbitrary and leads to an arbitrary set of values

of qi, qi.

If the principal function for a Lagrangian system is

Liqj. •••, qm, q'l, Qm) and we form the function of

pi, • - .pm, qi, Qm defined by

m

(3) H = -LfZpjVh

where the variables q'i are to be eliminated by means of the

equations

(4) Pi a Lid Qi {i 1 ,
. • .

,
m),

the original equations dfzdt =- 0 may he replaced by the

equivalent system in pi, q.

or, more explicitly,

(6) dpi/dt — — dH/dqt, dqjdt = dHIdpi {i = !,•••, w).

The equations (6) are the ^Hamiltonian’ equations, and the

variables p* are called the 'generalized momenta’. A pair of

variables p,-, qt are called ‘conjugate’. Furthermore it is to

be noted that the Hamiltonian ‘principal function’ H is the

total energy expressed in terms of the generalized coordinates

and momenta. The energy integral H = const, follows at

once from the canonical equations.
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It may be observed here that the above variational principle

leads to the same canonical equations even if L and H involve

the time i.

Converady, any Hamiltonian system (5), (6),H being arbitrary,

can be reduced to a Lagrangian system.

To prove this statement we need only define L by tlie

equation
m

L igx ,
***j Qm, 1 ,

***? rm} H pj rj
j=i

where pi, • ,pm are functions of q, and rt given by the

implicit relations

n — dH/dp-i (i ==

It is obvious that the Lagrangian system with this principal

function L is associated with the prescribed function H in

the way desired.

If H contains t, so will L of course, and the same method

is applicable.

II. Transformation of the Hamiltonian equations.

The variational principle (5) is remarkable in that it only

involves the second half of the derivatives pi,---,p'm,

q'l,-- -. gm under the integral sign, and those linearly with

coefficients precisely the conjugate variables. A general

point transformation from pi, • • •, gm to pi, • • •, ?„ will yield

a form linear in p'l, q'm but not of this special type.

We shall desire in the next section to consider the corresponding

Pfaffian type of equation so obtained, which has certain

advantages over the Hamiltonian type.

A general ‘contact transformation’ preserving the canonical

form is the following

(7) Pi —- dK/dqi, Pi
=--- —dKid'qi {i = 1, •••, w),

where K is an arbitrary funcUori of qi, qm, qi, qm, t

except it must be such as to define a proper transformation

frompi, • •
•

, gm to pi, • •
- , ?m by means of the above equations.

We shall not undertake to explain the apparent artificiality in

these equations, but proceed to prove that such transformations
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do indeed leave invariant the canonical form. By use of the

first m of these equations we modify the variational problem

to the form

dK qj-H\dt

where the independent variables are now taken as pi ,
• • •, q,,,.

But for these same variables, we have

since the expression under the integral sign is an exact de-

rivative. By subtraction and use of the second set of m
equations of transformation wc deduce

^ — = 0 H+dKidt).

The^transformation (7) preserves the Hamiltonian form

wiih H — H-\-dKldt, in case the arbitrary function K
yields a proper transformation.

Similarly we may write

(8) pi=dK/dqi, qi — dKjdpi (? ^ 1, •••, m),

and find a coiresponding result.

The transformation (8) also preserves the Hamiltonian form
with H H+dKIdt.

It deserves to be remarked that transformations of type (8)

form a group. In fact such a transformation is characterized

by the fact that
m

is an exact differential, dK. For a second such trans-

formation from 'pij, • • •, qm to 'pi, • there is a second

characteristic dK. By addition we infer
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m m

^ == d(K+X—^ pjdqj),
j—i j=i'

so that the compound transformation is of the same type.

Similarly the inverse of a transformation (7), or the resul-

tant of an odd number of transformations is of the same

type, while the resultant of an even number of transfor-

mations (7) is of type (8).*

13- The Pfaffian equations. It is clear that Hamiltonian

equations can be regarded as a special type arising from the

more general Pfaffian variational principle,

(9) \^'^\'^PjPJ^-(^dt 0,

in which the integi'al is linear in all of the first derivatives

with arbitrary functions P,, •••, P,„ Q ot pi, pn as

coefficients, and n is even.

If we develop these equations explicitly they become

(101
^l\^pj ^Pil dt

dQ

&Pi
- 0 {i= 1 , n).

Furthermore these equations are evidently those of a de-

generate Lagrangian problem with Lt = 0, Pi = ^Pjp'h
Po — Q, so that there is the particular integral Q — const.

This reduces to the energy integral in the Hamiltonian case.

These equations admit of an arbitrary point transformation

of all of the variables without losing their form. It is only

necessary to determine the modified linear differential form

under the integi-al sign by direct substitution. Thus the

Pfaffian eqqations admit of perfect flexibility of transformation,

and in this respect are easier to deal with than either the

Lagrangian or Hamiltonian equations.

13. On the significance of variational principles.

Since the variational principles have taken an important

* For the applicatioiis of the theory of contact transformations and for

consideration of the associated Hamiltonian partial differential eqaation,

the reader is referred to Whittaker, Analytical Dynamics, chaps. 10, 11, 12.
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part in dynamical theory, it is of especial interest to deter-

mine their real significance for dynamics. In other words,

what especial properties are possessed by the Lagrangian,

Hamiltonian or Pfaffian equations arising from the respective

variational principles treated above? All of these can be

regarded as systems of n = 2m equations of the first order

if we introduce the new variables n — qi in the Lagrangian

equations.

Let us first remark that so long as these equations ai’e

considered in the vicinity of a point in the corresponding

space of n dimensions not an equilibrium point, there are

no especial characteristics to be found.

Indeed if we take a dynamical system as defined by any

set of n equations

dxildt — Xi{xi, • • Xn) («' = 1, • • •. n).

it will in general remain of the same type under an arbitrary

point transformation

Xi = y<(yi, • • •
. yn) (t = 1, • •

•
,
n)

under certain conditions. Two systems of this kind will

naturally be termed ‘equivalent’ if it is possible to pass

from one to the other by an admissible point transformation

of this kind. If we confine attention to the neighborhood

of a point , x^ at which not all of the X< vanish, so

that this is not an equilibrium point, the equivalence with

other such systems is unrestricted, and the new equations

may be taken to be

dyi/dt 1
, dyi/dt = 0 (* = 2

,
•••,«),

for instance. This is readily seen as follows. Conceive of

the given differential system as defining a steady fluid motion

in Xi, • •
- , Xn space so that the curves of motion are defined

by the solution oa ~ Xi{t), (* — 1, • • •, w). These curves

which have a definite direction with direction cosines pro-

portional to Xi, • . • . Xn may be deformed into the straight

lines
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1/1= t, y, == cg, .
• y„ = c„

of a yi, •••, space by one-to-one analytic deformation.

Consequently the transformed equations have as general

solution

yt ^ “h Cl , yi = C'g
,

• •
•

t yn f^n

)

whence it follows immediately that tliese equations have the

desired normal form.

Hence in such a domain there is no distinction between

equations derived from a variational princii)le and the most

general equation.

In the following chapter we shall see that variational

principles play an important role in connection with the

formal stability of dynamical systems near equilibrium or

periodic motion. Indeed this appears to be their principal

significance for dynamics.

One further interesting remark concerning variational prin-

ciples may be made here. Suppose that we start with

n arbitrary equations of the fonn

(1 1) (Ixildt = Xiixi, . •
•

, .r„, 0 (f — 1 ,
• •

•
, «).

The equations of variation are

(lyi d Xi

"dT
"" {i = 1

,
• • •. n).

There can be formally integrated at once if the general

solution

OTi — * *
*

?
(z — 1 ,

• • • , W')

is at hand, namely

2/,
— /vi
~ H yjcn (z = 1 ,

• •
•

,
n)

u Cl 9 Cn

where ki, •
-

, kn are arbitrary constants.

Similarly the adjoint system to the equations of variation
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can be integrated explicitly by taking

(» = •••;»)•
00% OCi

Hence the given system (11) of equations of the first

order can be called ‘equivalent’ to that of the extended

system (11), (12) of twice the ’order in the 2n variables

since the explicit solution of either

system involves that of the other. But the extended

system (11), (12) is Hamiltonian with conjugate variables

an, Zi, and with
m

H^-ZXjzj,
J=i

as may be directly verified.

These remarks serve to indicate the care necessary in

assigning to the variational principles their true significance.



CHAPTER 111

FORMAL ASPECTS OF DYNAMICS

I. Introductory remarks. In the preceding chapter it

was pointed out that a system of ordinary differential equations

(1) dxildt — A', (r,, • •, Xn) (i == 1, • • •, n)

was devoid of invariantive characteristics under the general

group of one-to-one, anal3’tic transformations

(2) Xi - fi(xi.. Xn) (/
-- 1, • •

-
, n),

provided that attention be confined to the vicinity of any

point .t9. This was done under the assumption that the

functions Xi were analytic and did not all vanish at the

point r®.

The simplest case in which invariantive characteristics can

be expected to arise is that of a point of equilibrium, the

condition for which is Xi = 0, (i - 1, •••,«). Another

important case, which may be regarded as including this

one, is that associated with the neighborhood of a periodic

solution of (1) of period t

Xi fi{t) ('/ 1
,

• •
•, m)-

If we write then

x‘i = fi (0 + Xi (/ = 1, • • •. n),

the equations take the more general form

(3) dxi/dt — Xi(x\, • •, Xn, 0 ~ 1, • •
•, n);

where the functions Xi are analytic in xi. •••, x,, and t,

periodic in t with the period t of the motion, and vanish at

the origin in the new xi, • Xn space for all values of t.

We shall treat the question of the invariantive characteristics

59
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for the ‘generalized equilibrium problem’ defined by a system

of this more general type.

In the present chapter we shall in th.. main restrict attention

to those purely formal properties which have no regard to

the convergence or divergence of the series employed, and

which take for granted an equilibrium point or a known

periodic motion. By doing so we shall be able to develop

to a considerable extent the formal significance of the La-

gi-angian, Hamiltonian and Pfaffian types of equations employed

in dynamics. In order to do this we propose first of all to

develop the characteristics of what may be called the general

case of the equilibrium problem, and then to pass on to the

more special types referred to, so that a comparison may

be effected.

2 . The formal group. As a matter of notational con-

venience, the equilibrium point of (3) will be kept at the

origin in all cases. The type of transformation considered

will be

(4) 3'i 2 a^kiOxjXk-i

where the real coefficients aij, Oijk. • are pcuiodic. analytic

functions of t with period t, such that the determinant \aij\

is not zero for any t. Evidently two of these transformations

performed successively may be united into a single composite

transformation, while the inverse of such a transformation

is another of the same type. Furthermore, the form (3) ol

the differential equations is clearly maintained under this

group of transformations.

Imagine now that divergent series appear in (4). The

right-hand members Xi of the transformed differential equations

wiU then be given as definite formal power series

with coefficients analytic in t and of period r, and these series

will lack constant terms. Thus along with the formal group

we obtain corresponding formal differential equations. Now
it is to be particularly stressed that the ordinary laws for

composition of transformations, and for deriving the associated
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differential equations, hold in the case of divergence as well

as in that of convergence. This is an obvious consequence

of the fact that when the formal series involved are broken

off at terms of high degree, actual transformations and actual

differential equations are obtained for which these formal

laws are valid. By including terms of higher and higher

degree the lower degree terms in the differential equations

are not affected. Proceeding thus to the formal limiting case,

we infer that the usual purely formal relations will continue

to hold in the case of divergence.

In many cases it is convenient to introduce a slight exten-

sion of the above formal group so as to take care of certain

pairs of variables Xi and xj in a special way. In fact it is

convenient to introduce conjugate variables

I = a-i -f — 1 Xj, rj — Xi — — i Xj

so that if Xi and Xj are real, and ^ are conjugate imagi-

naries, and conversely. At the same time the transformation

from oci, • ,Xn to Xi, ,Xn may be expressed in terms of

the conjugate paire such as ?, Tj and the corresponding trans-

formed variables ?, The series involved are then charac-

terized by the property that if the conjugate variables ? and ^

are given conjugate imaginary values, while those not so paired

are real, then the same will hold for the new variables. If

we go back to the underlying transtormation belonging to

the formal group, the new variables x^, -
,
x„ will be real

if Xi, • - a^n are.

It is not difficult to determine the characteristics of the

formal series which appear in the transformation of such

conjugate pairs of variables. If the transformation within

the original group be written

at fi(^it yij • '
• , a?*, y*, X2«-i-i,

• •
•

> Xn) ,

yi — yi (xi, y\, * *
• , x$, y$, X29-f-i,

*

, an)

,

(i = 1, •••,#),

Xi — Jii (Xi, y\, ' •
• , Xsj ya? X2a-i-X9 ' ’

* j Xn) ,

(f = 28+1, ,n\
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where Xi, yi, •
- , Xs, ya are the s pairs of associated variables,

then the conjugate variables are

h — Xi + y'—
1 yi, m Xi — V — \ yi (« = 1 ,

• • • . s)

with like definitions of fn in terms of j/,. Hence we

have explicitly

((?i “1“
1/ ($1 <yiV2 ^ 1,

• • • , J’ss+l- • • • . X'fi)

yiii^l 4" >?lV2, (?1 — »Ji)/2 I — 1, • •
• , a'2,*. 1 ,

- • • . Xn) I' — 1

for i = 1, • • • . s with like formulas for (/ =“ 1. • • • . s) and

for Xi, (i — 2s-i- 1, •••, n), when we employ the modified

variables. Clearly the series on the right have the properties

of the transformations of the formal group except that the

periodic coefficients are in general complex.

If we examine the form of these series we perceive at

once that they posses the following additional characteristic

property. If the pairs be interchanged in the series

on the right, and if at the same time the periodic coefficients be

replaced by their conjugates, then the series for ?i, »?,, (y
—- 1 ,

• • • . si

are interchanged, while those for ./„(/ = 2s4- 1- • • •• ft) are

unaltered.

It is readily proved that this necessary formal property

is also sufficient. In fact suppose that .r„ tji are real quantities

and define as before so that h, are (conjugate complex

quantities. Write

=
<Pi (?i, • • •• rjg, a:2s+i,, Xn, t) (i ^ i, , s),

fji ‘•is, ^2s+l, • ,Xn, t) a 1 ,
• .9),

Xi — Xiih, , Ija, X2ai i, , Xn, t) (j = 2s + 1, • • ?0>

where the series fi, tpi, xi are assumed to have the stated

formal property and, at the outset, to be convergent. If

then we use the * as superscript to denote the ‘conjugate

of’, we find, for instance,
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I* = ($1*, • • •, II*, •
•

•
, x„, 0

'> ®n»

= tf'i (¥i, • •
•, 7*, a;2»+i, -- ^Xnft) = lit;

here y* designates the formal series obtained from by

replacing the periodic coefficients by their conjugates. Hence

h and are conjugates also. The safiie kind of argument

shows that Xi must be real for i — 28+1, •••, n.

In case the series of the underlying formal gronp are

divergent, the series belonging to conjugate variables may
also be divergent. But of course the above formal property

is still maintained as may be proved by breaking of the

formal series at terms of high degree and then applying

the above argument.

As a very simple instance of the change from real to

conjugate variables let us suppose that the transformation

in real form involves one pair of variables x, y as follows:

X = 5cos(fl+<— f'F*)—ysin(0+<

—

cr*) (F* = F*+y*),

y
— Fsin(fl+t— (F*)+^cos(d+<— cF*).

Evidently this is a transformation of the admitted type

with T = 271, Introducing the corresponding pair of con-

jugate variables ?, 17 we find readily

I = ^g-V=T(0+t-cSV)

,

and the characteristic property of the series on the right is

at once verified.

3. Formal solutions. Suppose that we substitute in

the system (3) of differential equations under consideration

(5) Xi = Fi(t, Cl,, c„) (i = 1 ,
• • •, n),

where the F, are formal power series in the n arbitrary

constants without constant terms but such that

the determinant ^dFi/dcjl is not zero for any t at the origin,
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and where the coefficients in these series are real and analytic

in <; the series may converge or diverge. It may happen

that the n equations (3) so obtained will be satisfied identically

by these series oa in the formal sense. In this case we shall

say that the series (5) give the ‘general formal solution’ of

the given differential system.

In a special case the coefficients in Fi may happen to be

periodic in t of period r. There would then be defined

a corresponding transformation

Xi = Fi(t, yu---,yn) O' = 1 ,
• • •. n)

in the formal group. If the associated formal differential

system is

dyifd t == Yi (2/1 ,
• •

•

. jCn, 0 0 1

we have then the formal identities

Z^yj ~ Fn, t) 0 = 1, • • •, n),
0 1 Oyj

in which the arguments of Fi are yi. < of course.

But the precise meaning of the hypothesis that the Fi yield

a formal solution is that

dFild t ^ XiiFi, ,Fn,t) {i = 1,..., n),

where now ci, •
-

, Cn replace yi, yn as the variables in

the series Fi. And if we replace ci, , Cn by yi, • • •, yn

respectively, as we may, and compare with the equations

which precede, it appears that

Zi^Fi/dyj) Yj ^ 0 ,

whence of course F< = 0, i = 1, • • n. Consequently this

special case is the case in which the given differential system

can be formally transformed into the normal form

dxjdt == 0 0 = 1, •••, n)
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by a transformation within the specified formal group. As
we shall see, this is not in general possible of accomplishment.

If the variables in (3) are transformed within the formal

group, any general formal solution (5) is transformed into

a general formal solution of the transformed equations.

An easy way of proving this is to extend the formal group

for the moment by allowing analytic coefficients not periodic

of period t. There will then be a transformation, obtained

from (5) by replacing ci, • • •, c» hy t/i, • • •, ?/„ respectively,

which is in the extended group, and which takes the given

equations into the system for which — 0 (^ = 1 ,
• •

•
, w)

as before. But the transformed system in Si, • • •, S» can then

be taken into this special system directly by means of the

composite transformation taking Xi to Xi, and then x, to yi.

But this means precisely that the general solution of the

transformed system may be obtained in the specified manner.

It is assumed in this reasoning that the formal laws remain

valid within the extended formal group.

The most general formal solution Xi — Oi{t, di, • •
- , dn),

(i = !,•••,«) of (3) can he obtained from any particular

formal solution (5) by substitution of n arbitrary real series

in di, dn for c\, Cn, say

Ci 5^1 ,
* * •

, dn) {i 1 ,
• •

•
,
w)

,

udth the sole proviso that the determinant \dq>ilddj\ is not zero

for di = . • • = dn — 0.

This almost obvious fact may also be established readily

by use of the extended group. The two transformations

Vi = Fi{t,Si,---, Zn), Xi (?< (f, tfi, • • •
, Wn)

(i = 1, w)

take the equations (3) into

dtildt — 0, dwildt = 0 (i — !,•••,«)

respectively. Hence we may write

ti — fi{t, M>i, •••, »n) (* = 1, •••,»»)

6
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as the transformation taking directly the equations m zi, --,Zn

into the equations in »«!,•••, Wn. We infer at once that

dzj
. y 8y« dwj _ Sy, ^ ,

dt
~

d i ^ i^x dwJ
'df dt

~
’

so that the variable t does not appear in <pi, fn, i. e.,

Zi = 9i (Wl> U’n) O' = 1, tl)-

Thus we obtain the formal identities

j^t (0 91, y 9n) Oi (t, di, , dn) (i — I, u)

,

provided that we replace Wi, • • •, t<;» by «i|, •••

,

rfn respectively.

This is the relationship which we set out to prove. Of course

I

d 9i/ddjl is not 0 for di — • — dn = 0 by virtue of the

definition of the extended group.

The question of the existence of formal solutions is

immediately disposed of. In fact let us take ci — yj,
• •

•
,
c„= y®

where stands for the value of //,; at t io. Then it

has been established that the general solution

^ i 0, Cl j
* * • ) I'n} 0 1 )

* •
1 w)

is analytic in Ci, • ••, cn for if<;, (« — 1, •••, n), small and

for any t lying in the t interval for ci — • • • = c» — 0. But

the solution is then Xi = Q 0— I, n) for all values of t,

So that the solution is analytic in ci, • fvi, f for < arbitrarily

large, provided that !c<| are then sufficiently small. Thus

the right-hand members may be expanded in power series

in Cx, Cn with coefficients analytic in t for all values of t.

Furthermore we have clearly for < = <o

d9ildcj = {da = 1
;

=: 0
, j).

Hence 07></ 3 c; (i = 1, •
. n) constitute n linearly independent

solutions of the equations of variation for > — 1, • n, and

the determinant
|
09Pi/acj| will not vanish for any t.

There exist formal solutions of any system (3).



III. FORMAL ASPECTS 67

It is obvious that if conjugate variables are introduced in

the fashion of the preceding section, then the formal solutions

will have a corresponding modified form.

The significance of the formal solutions will be specified

further in the following chapter. Suffice it to say here that

these are the type of solutions actually employed in astronomical

problems when the perturbations of a periodic motion need

to be calculated. ^

4. The equilibrium problem. As has been pointed

out earlier (section 1), the simplest case for consideration is

that presented by an ordinary equilibrium point. For this

case the functions Aj, do not involve t explicitly.

In dealing with this special case we shall use only trans-

formations of the formal group which do not involve the time t.

The equations of variation take the form

n

dljildt ^ CijI/J (/ 1, m)
J-~-l

where the constants <‘ij are the values of dXi/dxj evaluated

at the origin. In the case to which we limit attention at

first the determinant equation

(6) \vij— mdij 0

has n roots wi ,
• • *

, mn . not subject to any commensurability

relation

(7) w, -f h ht rrin 0

for any set of integers h, not all zero. These roots

are real except possibly for certain conjugate imaginary pairs.

It is to be noted that the assumed inequality excludes the

possibility of a zero root so that the determinant |ctjl is

not zero.

Now we can clearly determine a square array kj ,
(i, j 1

,
• •

•
,
n\

with U not all zero for any particular j, such that the sets

hki Jfik satisfy the n homogeneous linear equations
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In fact the vanishing of the determinant of this system

gives precisely the defining equation for the roots mu. More-

over the determinant \lij\ is not zero. This fact and the

reasoning which follows are of course well known in the

ordinary theory of linear transformations; however, for the

sake of completeness the reasoning is included. In fact,

suppose the contrary to be true, so that multipliers (>],•, ('n

not all zero exist such that

n

^lijQj ^ 0 (/ =- n).
>=i

Multiplying the earlier equations by (A- = 1,
• ••, n), and

adding, there results at once

n

0 = ^ lik ntk Qk
k- 1

SO that miQi, {i — i, • • n), also yield a second set of such

multipliers. Continuing in this way we infer that • • •

must form further sets of multipliers. Hence by linear com-

bination still more general sets of multipliers

(Cfl + c, m. h w”' ^
.

(/ = 1 ,

• •
•

,
n)

,

are obtained. But the n quantities in parentheses here can

be made to take on n arbitrarily assigned values, just because

the roots m,- are distinct. In particular the coefficient of

any 4^ 0 can be replaced by 1 while all the others are

made to vanish. But this would necessitate that lik — 0,

(i — 1, •••, n), contrary to hypothesis. Consequently iZiy]

cannot vanish.

It is also obvious that we may take the quantities so

that in the transformation
n

yi = ^ k zj {i = 1 ,
•

.

to),

from yi to Zi, the variables Zi and zj corresponding to con-

jugate imaginaiy roots mi and mj will have conjugate imaginary

values when yt, •
• yn are real, and conversely.
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Now let us introduce this change of variables in the special

type of equations (1) imder consideration. The equations

obtained by substitution in (1) of the linear expressions in

Zi for yi will then assume the form

“f"
• • • ~ 1 )

• •
• ) *^) >

j=i at

where the terms of higher than the first degree in Zi, , Zn

in the right-hand members are only indicated; in thus writing

the first terms on the right, the characteristic property of

the quantities lij is of course employed. It follows from these

relations that the equations in Zi have the form

dzild t ~ Wi Zi-\- (?'=!,•••,«)

where only the linear terms are explicitly written.

Thus we may take the system to be of the prepared form

dxild t — mi xi -j- • • •, x«) — 1, • • n),

in which we may write

Fi = Fn^Fi,-{-... («- 1, •••,»),

with F,}c a homogeneous polynomial of degree k in xi, •••, a*n.

We shall show next that we can obtain formal series

fi{Xi, Xn) = Ti2+ SPis -f • •
• {i= I,

such that the transformation

Xi = (i 1, . • • , n)

reduces the differential equations to the form

dxild t = mi Xi O' ~ 1 , . •
. ,

n).

This will be achieved, provided that the equations

dotnldl-\- d^Jdt = 9Pt) 0= 1, •••,»)
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follow in consequence of the differential equations in Xi. Usings

these equations to eliminate dxt/dt, we obtain as the desired

relations

n

+ + — nu9>i

{i= 1, • ••
, «).

On expanding Fi and 9>< in series, these take the form for

« = 1, • • •, n,

TP I V ^5^*2
Fi2 + Zd -T— r}ij Xj = mi ipii,

OXJ

m ifik,

Let us consider the first equation written for any /, which

obviously constitutes a partial differential equation for fi2 .

The coefficient Ci of the term

(/,+ ln = 2)

in fa is then evidently determined in terms of the analogous

coefficient di of Fa be means -of the n equations

di-\-\li mi-\- • •
• 4* (^t — 1) 4” • • • 4“ in win] Ci — 0.

But the term in parenthesis is not zero by virtue of the

hypothesis made concerning the quantities nn, so that Ci can

be determined as desired. Hence there is a unique set of

homogeneous quadratic polynomials fa satisfying the first set

of the equations written above.

In the same way the second set of equations determines fa
uniquely since the equation for determination of the coefficients

in fa is of the same general type as above except that we
have 4- • • • 4- = 3 in this case.

Ignoring then the questions of convergence of the series

employed we arrive at the following conclusion:
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By means of a formal transformation

n
1 "

Xi = /<(«!, •••, ^n) •••
;=1 ^J,fc=i

(t = 1 ,
. •

•

,

with \lij\ 4 0, the differential equations (1) mth an ordinary

equilibrium point of general type at the origin, can be reduced

to the normal form

(9) dzi/dt ~ miZi {i = 1, •••,«),

80 that corresponding to conjugate roots rm and mj there are

conjugate variables z, and zj.

Since the normal form just written is integrable with

general solution

z:i = Ci e**'' (i = 1, ••,n)

we may state the following conclusion also:

The corresponding formal sglution of (1) may be written in

the form

Xi = fi (ci e”*’\ Cn e”*"*) (i = 1, n)

where the f are the same formal power series as appear in

the transformation to normal form.

5. The generalised equilibrium problem. It is not

difficult to extend the above method to the generalized equili-

brium problem in which we start with equations of the form (3).

Here the equations of variation form a system of n ordinary

linear differential equations

dyildt=21^^ yj (« = l,---,n)
;=i oxj

with coefficients which are analytic periodic

functions of t of period t. Let yrk, ynk, (* = 1 >
• •

give for each It a solution such that the n solutions are

linearly independent. Then the general solution is a linear

combination of these particular solutions. When t is increased

by t, the equations of variation are unaltered. Hence we

have
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n

yik(t-\-t) = 2yii(t)cki (i,k = 1, w).
1=1

Now if we define wi, • • •, mn as in (8) by means of the square

array thus obtained, we may choose another linearly in-

dependent set of n solutions which will reduce the above

relations to a normal form

yik + ^ nik yuc = 1 ,
. .

•
,
w).

We confine ourselves as before to the general case, in

that we exclude linear commensurability relations between
• • •> and 2 rt — l/r, where = (log m^Vr. In this

event mi, •••, mn are all distinct.

Now let us write the elements appearing in the solution

of the equations of variation in the form

yik = (i,k = 1, n\

when it is apparent tha-t the functions pa will be periodic of

period t. Furthermore from a familiar theorem we know
that the determinant

I yd
I

1
fa, 4- Aide= \Pii\e^'

is nowhere 0. Consequently the particular linear change of

variables
n

Xi = 2 PiJ^J a = 1; •••, «)

from Xi, •••, Xn to Zi, •••, Zn is Within the admitted gi'oup.

The equations of variation will have a solution

y» = ^<*6^** (* == 1, •••, n)

for * = 1, •••, n, so that the new equations must be

dzi/dt = /*<«<+••• (i = 1, n),

Consequentiy we infer that it is no restriction to write the

given equations in the prepared form
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dxi/dt — fiiXi+ Fiixi, •••, Xn, t) (r= 1, •••, n)

where Fi is periodic in t of period t of course. It is ob-

vious that if certain pairs of the quantities mi are conjugate

imaginaries the transformation of variables employed may
be taken- to be of the admitted conjugate type.

Suppose that we continue by effecting a further trans-

formation of the same type as in the ordinary equilibrium

problem save that the coefficients in the series <pf need not

be constants but may be periodic analytic functions of t of

period r. If we endeavor to choose this set of functions

fi so as to normalize the transformed differential equations

as in the special case of ordinary equilibrium we obtain

analogous equations, namely

dfii

dt

dfii = (imt,
OXj

Fik+ Sfik

dt
+ ftj^j + 2;

p-hg=k

9 yip p,
95; = f^ifik,

On considering a typical term in fa,

Ci(t)x[' x‘’ (AH l-l„ = 2),

we find as the required conditions

d((t) -|- /*! -f • • • + ih— 1) /*« 4- • • • + Cf — 0

(i 1, • n)

where di is the like coefficient in ^<2 . Here the coefficient

X of c< is not zero, and it is immediately possible to solve

for Cf,

Cf(<) — — e~^*J^d{t)e^* dt.

This solution will be periodic in t of period r if and only if
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It is possible to determine ki in one and only one way so

that this equation holds, prpvided that k is not an integral

multiple of But this relation would require a

commensurability relation between the ‘multipliers’

and — l/r of the excluded type.

Thus, as before, no difficulty arises in determining •••

,

in succession in such fashion that the desired normal form

is obtained.

By means of a formal transformation

n
1

^

J’y rrrr {Z\^ * *
*

> 0 ” ^0 (0 “i~ c>
‘ *

>==1

{i = 1 ,
. .

. ,
n)

with lij analytic in t and periodic ofpet'iod r, and
|

: 4
the diffei'enticd equations (3) vrith a genei'olized equilibrium

point at the origin of gmet al type can also he reduced to the

nm'mal form

(10) dzi/dt ™ PiZi (i

The corresponding formal solution of (3) is then evidently

Vi = fiid t) (i = 1, • • n).

6. On the Hamiltonian multipliers. As a first step

toward obtaining an analogous normal form for a Hamiltonian

system of equations at an equilibrium point, we demonstrate

some fundamental well-known properties of the multipliers

in this case.”"

Here the equations occur in the particular form

( 11 )

dpi ^
dt

dH
dqi

dqi

dt

dH
dpi

(i = 1, •••, m)

where if is a real analytic function of n ~ 2m variables

pi, qm- If these equations have an equilibrium point at

* Of. Poincare, Le» MHhodes nouvtlks de la MScanique eHesUy yol.

chap. 4. His * characteristic exponents’ are our mnltipliers.
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the origin, then evidently all of the ilrst partial derivatives

of H vanish at the origin and if we ignore an additive

constant in H we may write

H - + -

where Hk is a homogeneous polynomial of degree k in these

dependent variables and where in particular we have

Hu ajkPjPk-\-hjkpjqk-\-
^

Ok?;?*)-

Here we may take Uy ------

aji, Cij =- cji, but hij are in general

distinct from bji.

The equations of variation are obtained by replacing H
by Hi and p,, qi by P,-, Qi, and may be written in the

explicit form
m m

dPiidt -ZkiPj- Z <vQj^

m m
dQi/df Z <Mj Pj+ Z K Qj (* = 1 >

• • •) "»)

J---1 ;=]

which is a particular type of system of 2tn linear differential

equations of the first order with constant coefficients.

Our first remark is merely to the effect that in general

the multipliers will be distinct. To verify this fact, it is

merely necessary to exhibit the 2m exponential solutions in

a single special case. If we take

m
^

Ht =Z
the equations of variation reduce to

dPJdt = —piQi, dQi/dt ^ PiPi (* = 1, •••, m)

with 2m particular solutions
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where 6^- has its usual significance. Hence the 2m values

of the multipliers are — 1, (A; = 1, • • •, m), and these

will be distinct if i»i,
• • •, /*», are distinct positive numbers,

for instance.

Before leaving the special case just cited we note that

if Hi is of this special form, we can introduce conjugate

variables

h = qi, in = Pi—V— 1 qi {i — 1,, m),

and then we find

dt din
’

dtii _ dH
~dr

~~ (? -= 1 ,
• •

. ,
m)

where H = — 2 V— 1 H and H takes the normal form

Hi^ - Z N hnj-

Consequently under this type of change of variables the

Hamiltonian form of the differential equations is maintained.

In this event the equations of variation are still simpler,

namely of the form

d?i/dt — fiiY— 1 li, d mid t = —mY— i in

{i I,, m).

This type of conjugate variables plays an important role

later on.

Let us suppose then that we are confronted by the general

case in which the 2w multipliers are distinct. We propose

to show that these quantities occur in m distinct pairs, each

one the negative of the multiplier paired with it. This has

already been seen above to be true in the special case cited.

Since the multipliers are distinct by hypothesis, a complete

set of solutions

Hlkf • *
• , Pmky Qlkf • • • , Qmk = 1 ,

• •
•

,
2wi),

exists of the form

Pa = Ca Qa = Dot (i = 1, • ••, m, /c= 1, - • 2m),
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where the corresponding determinant of constants of order 2m
formed from C*, Ihk is not 0. Such a complete set of

particular solutions has the property that the most general

solution is expressible as a linear combination of these

particular ones.

But if Pi, Qi and P*, Q* are any two solutions of the

equations of variation Ave have

m
= const.

This fact is readiJy verified by differentiation with respect

to and use of the equations of variation, when it is seen

that the derivative of the left-hand side reduces identically

to zero.

If then we substitute in this integral relation, pairs of the

above particular solutions we find

m

^ {Dik Cii— C'ik Dii) e*^*"^^'** const.
j --

1

for all k and 1. This clearly implies at once that either

h+ is 0 or that the constant on the right-hand side is 0.

A proper use of this fact will lead us easily to the desired

conclusion.

If each Aj has a corresponding Xj such that A* -|- A; = 0,

then there is clearly only one such root and the property

under consideration is proved. But in the contrary case

some root as A* has no value so paired with it. Hence, in

the integral I'elations deduced above, the right-hand members

must vanish for Z — 1, • • •, 2m if A- has this value, whence

we find

Dik Cil -}-•••
-f" Dntk Cml C\k Dll • • • Cmk Dml 0

0 = 1, •••, 2w).

These 2w equations are linear and homogeneous iu

D\k, • • •, Dmk, — Cik, • — Cmk, so that the determinant of

their coefficients would necessarily vanish. But this determinant

is precisely the determinant of order 2m referred to above

which cannot be zero. Hence there is no such root.
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In general at an equilibrium point for the Hamiltonian

equations the multipliers can be grouped in m pairs Xi, — i,-,

(? = 1 ,
•

•
,
»i)

,
and are all distinct.

It is plain that in general the multipliers are real or are

grouped in conjugate imaginary pairs with distinct moduli.

Consequently the conjugate of an imaginary multiplier must

coincide with its negative. By passing to the special cases

by a limiting process we conclude further:

The multipliers Xi are either real orpure imaginary quantities.

We define the general equilibrium point of this tyi)e as

the one in which Xi,, Xm are not subject to any linear

commensurability relation of the type (7), and confine attention

to this general case.

7 . Normalization of Assuming then that the equili-

brium point of the Hamiltonian system under consideration

is of this general type, we can effect a linear transformation

of variables
m m

JH 2^(dijPj-{-eijqj). q,
--

'ZiifijPj 9v ^j)

(« ^ 1 .
• • •. m),

which reduces the corresponding equations of variation to

the normal form

dPi!dt =- XiPi, dQildt = —XiQi (/ \.---,m).

In fact this reduction (see section 4) merely required that

the roots of the characteristic equation (6) be distinct, as is

here the case. Of course the associated pairs ^ are taken

as corresponding to associated roots — X,. If A, is real,

Pi, qi are real variables. If Xi is a pure imaginary, p,, q, are

conjugate variables.

We propose to demonstrate that this linear transformation

does not destroy the Hamiltonian fonn of the equations.

To begin with we observe that the equations of variation

can be written in the variational Hamiltonian form
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in which H is replaced by its second degree terms. Under the

above linear change of variables this evidently takes the form

*’1
[j

-P*+

+ Mju Pj yk+ Njk Qj Ok) -H^dt - 0,

where we may write

H,= Z {Pjk Pj Pk+ Sjk Pj Qk+ Tjk Qj Qk)

.

7,fc=l

Here the dashes over the letters have been omitted, and we
may obviously assume

Hij --- Hjij Tfj ~ Tji {;ijj 1, • • •, rw).

Applying the ordinary Lagrangian rule this gives the equations

of variation in the new variables,

7 r wt 1 m
(Kji Pj + Lji (Kij PJ+ Mij QJ)

m

+ ^(21iijPj-hS^jQj) - 0,

(i 1, m),
1 f" W *1 Wr

(Mji Pj+ {Lij PJ + A'y OS)

m

+ ZiSjiPj-\-2TijQj) = 0,
j=i

(t = 1,, m).

But the solutions of these equations are known. In parti-

cular we have a solution

Pi = (fik e'‘*‘, Qi = 0 (i =

which when substituted in the first of. the above equations

gives at once

Xk(Xki-Kik) + 2Pik = 0 .

Interchanging t and k, and noting that i2<k = Bki we infer

farther for any i and k
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ih-h)iKki— Kiu) =- 0,

so that Kki ^ Kik for i distinct from k as well as for i — k.

It follows also that Ea vanishes for all i and k.

Similarly we can infer that iV*f = N^ac and that T* vanishes

from the second set of equations. Thus the terms

m m
ZKjkPjPL, ^MjkQjQk

j,k^l ,k^l

are exact derivatives, and may be omitted under the integral

sign. The equations of variation are thus of the more

special form

V r w 1 m m

4 z A* ^0 «; + z -So Q; = 0 (i= 1 , . .
. ,
m)

,

= l J ;=rl J^l
Y r m

1 m m

-J7 ZMjiPj\- ZLyPj-\-'ZSjiPj^O
«f Lj=i J j-i j-i

To determine these equations still more completely we
substitute

Pi — 0, Q< = dffc e (i = 1, • •
• ,

7h)

in the first set of these equations, and obtain immediately

for all i and k

At (Mik— Lki)-\-Sik — 0.

Similarly from' the second set we obtain for all i and k,

Afc (Jlfiitj— Lffc) 5Iiw — 0.

Interchanging i and k in this equation, and comparing the

equation obtained with the preceding one we infer that for

* A: we have

Mik — Ltd, 8ik = 0.

In consequence the sum

^^^(.LjkQjn+MjkPjQlc)
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differs from the sum

ZLjjQjPj+MjjPjQJ,

and so from
m

^{MM-Lsj)Pjq'i
J=l

by an exact differential. Thus if is legitimate to write the

principle of variation in the specific foim

ruv ml
^ \

Ljj) Pj Qj + Z Sm Pj Q;- dt^o
Jto Ij- 1 J=1 J

in such new variables with equations of variation*

{Mu— Lu) Q'j 4- Sii Qi - 0, {Mu— La) P'i
— 8u Pi = 0

{i = 1, . •
• ,

m),

so tliat we have necessarily

{Mu— -Lm) a,- Sii {i = 1, , m).

Consider now the simplest case when every root is real.

In this case if we replace the real variable P< by

Pi = {Mu— Lu) Pi {i = 1, ,
m)

the variational principle is seen to have the form

<5 £^'[^^PiQi— .Z^J Pj Q\dt = 0.

This further change of variables is legitimate inasmuch as p,. qi

were not determined up to real multipliers in this case. It

appears then that the term

Zpj<^j

* The constants Mu — Lu are not zero since the equations of variation

do not degenerate.

6
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remains of essentially the same form after the linear trjjhs-

formation.

Another case is that in which every A,- is a pure imaginary

quantity. Here by taking the pairs pi, qi appropriately we
can clearly write the pure imaginary quantities Mu— Lu as

QiV— 1, (»<>0. Here we may replace Pi,Qi by

Pi VQi Pi, Qi ==: VQi Qi (« = 1 ,
• •

•
,
m)

when a like variational form is obtained.

It is apparent that this same linear change of variables

must preserve the original Hamiltonian form since

m

<ij

j 1

is essentially unaltered by this transformation.

By a miiable preliminary linear transformation with con-

stant coefficients any Hamiltonian S'ystem uith equilihrium point

of general type at the origin may be iakm in a normalized

form in which
m

Hi = ^hVjQj-
;=i

8. The Hamiltonian equilibrium problem. In order

to further .normalize the Hamiltonian equations in the vicinity

of an equilibrium point, we propose to apply a series of

transformations

Pi — dKIdqi, qi ~ dK/dp, (« —
with

m
K = ^ pj qj -j- A's A4 -f-

• • •

;=i

where A*, A4, ... are homogeneous functions of pi, qi,

(i = 1 , . m) of degree indicated by the subscripts. Such

transformations have been seen to leave the Hamiltonian form

undisturbed and to form a group. It will be observed that

if A» = 0 for «>2, the transformation is the identity.
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We begin by taking Ka = 0, >3, and by attempting to

select so as to simplify as far as possible. Here we
have

pi
------ pi d q, = qi f- d K^jdpi {i 1, .... m).

If we solve explicitly for qu, qi, ~ yh) in terms of

Pu (J 1. •. in), we will clearly obtain

Pi Pi -I- () Idqi 4" •
• qi =-• qi — 9 KtI'dpi + * • •

(i = 1, . . m),

wlnne Kt denotes the function obtained by replacing qi by qi

in A".i. Th(^ terms explicitly written give the series expansion

up to the terms of the third degree. The modified value

of R, obtained by direct substitution is

R'i ( 7>i H“ A a / 0 1 -f-
• • • ,

• •
• qnx — d K\i Idpxn . .

.) -f- •
7

where the arguments of ^^4, ••• are the same as those

of 7/2 . To terms of the third degi’ee inclusive we find then

H
m m

'JJ '^Lih
j-\ j---i

I
dKn — pj

9 AT,* \

d^jj

+ Rs i p \y • •
‘

7 qm) •
• • •

Thus, as would be expected, the form of R2 is unmodified

while Rs takes the form

I
dK, dKs\

, ,, ,

in which Ks is at our disposal. Now any term in K, may
be written

Pi'
• •

• Pm «l‘
• •

• (“» + =- 3).

The corresponding term in the modified i/g has a coefficient

e[^i {fix 4" • • * 4” ^rn (fim ^^m)] 4" h

6^
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in which h is the coefficient analogous to c in the original Hf
Moreover the coefficient of c cannot vanish unless

which is clearly not possible inasmuch as the sum of all

the a<’s and A’s is 2. Thus by proper choice of each c we
can make the new Ht vanish.

If now we proceed to try to eliminate Hi as far as possible

by a further transformation of the same type in which Ks — 0

except for s = 4 we obtain a transformation

Pi — pi-\-dKildqi-\- •••, qi — qi — d K*/dpi-\-

(i = 1, ••., »»)

which does not affect Hs or Hg 0, but alters /f, to

Here we can eliminate the terms of Hg save those which

contain each pi, qi to the same degree, namely those of

the forms

c {pi qt)*, dpi qi pj qj {i, j \ ,
-

,
m),

by the same method. For we have

«l + ' + — 4

in this case, and all terms can be made to disappear except

those for which «< = A, (* — 1, • • •, m), i. e., those of the

stated type.

Thus it is readily seen that by an infinite series of steps we
can eliminate from H all terms except the terms in the

m products ptqi.

By suitable transformations of the above types, a Hamil-

tonian system with equilibrium point of general type at the

origin may be taken into a normal Hamiltonianform in which
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only the m products PiQiy • • •
, jPm appear in H while

has the special form
m

'EhpjQj-
i=i

It may be noted that the linear transformation employed

is also a contact transformation* so that in reality this normal

form may be obtained through a single formal contact trans-

formation.

In this normal form the general formal solution is at once

obtainable. If we write Tti—piqt, the normal Hamiltonian

equations may be written

dpi _ dH
dt

dqi

dt dui
qi (i = 1, •••, wi).

whence we find formally

PiQi a (^ = 1, •
• w).

Thus the series dH/dni reduce to constants and we are led

to the following conclusion in a purely formal manner:

The general formal solution of the normal Hamiltonian

equations near such an equilihrium point has the form

pi = aiC Qi == {i 1, w),

where

dH(ai ^ am^m)/d7Ti {i = 1,
•

•
,
m).

Hi terms of the original variables the corresponding solution

may be obtained ivith the aid of the contact transformation

relating the given variables and the normal variables,

g. Generalization of the Hamiltonian problem. If

Pi = qi =--- ipiit) (i = 1, •••, m)

is a periodic motion of period r, and if we write

Pi = 9i+Pi, qi = V'i+ (» = 1) •••» w)

* See Whittaker, Analytical Dynamics, chap. 16 .
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then the differential equations for the modified variables are

of Hamiltonian form with modified principal function

Zhj qj-^’JPJ)

where the accents denote differentiation. Furthermore, this

transformation may be written as a contact transformation

jii = dK/dqi, Iji — dKldj)i (i
~

1, ”i)

with
m

K = 'Zi ( PJ Qj + % <]J
~ Pj)

;=i

In these new variables // is a function ot pi, • • •, qm and t,

periodic of period t in the last variable, with p, = q, ~0,
{i — I,

,
m), a solution corresponding to the given periodic

motion. Thus, at least in a formal sense (see chapter IV’,

section 1), the problem reduces to one of generalized equili-

brium.

It will be our aim here to show that a reduction to normal

form for such a generalized equilibrium problem can be made

which is altogether analogous to that made above in the

case of ordinary equilibrium.

We shall merely call attention to the modifications necessary

in the argument in dealing with this more general problem.

The first difference to which attention needs to be called

is to the obvious fact that in the equations of variation the

constants a</, hij, cy are replaced by periodic functions of t

with period t. The second difference is that the constants

Cij, Dij which appeared in the solutions of these equations

are also such periodic functions.

These modifications do not, however, interfere with the

argument made that the multipliers may be grouped in m pairs

^1 j >
• • •

> > ^tn

where ^ are real or pure imaginary.

The general equilibrium point may here be appropriately

defined as that in which there are no linear commensur-
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ability relations between the m+1 quantities Ai, •••,

and 27rV—

1

/t.

In the corresponding linear transformation the coefficients

fijy ffii are periodic in t of period r. Likewise in the

variational principle the quantities L^, Mij^ Nij, Rij^ Sij,

Tij are similar functions. In determining the form of these

functions one finds modified conditions such as that

Afc {Kki - Kik) + + 2 Rik - 0.

If i and Ic be interchanged and the results subtracted, there

is obtained

4t {Kki- Kik) + {Ik- k) (Kki- Kik) 0.

This differential equation in {Kui— ATjk) has no periodic so-

lution of period c (other than 0), just because Xi, are

of the general type assumed. Hence we infer as before that

Rik, Kki are equal while 2Rik is — dKikIdt.

But in this case
m

^ Rjkpjp'k
;,k=l

is an exact differential if

dKjk

dt
PJPk

be added while the negative of this last expression may be

incorporated in H, Thus it is clear that we may assume

Kij — Nij = Rfj ^ Tij = Q

as before. In fact similar slight modifications show that

the same normal form for Ht is obtained by this linear

transformation in the generalized equilibrium problem as in

the ordinary equilibrium problem.

To make clear that the analogy is complete in dealing

with Hi, Ht, •••, let us consider the new H» obtained by

a transformation
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Pi — Pi-\r ^Kti dqi, qi = qi-\-dK»/dpi (i =- 1, • • •, m),

where Ki is homogeneous of the third degree in pi, qu

{i
—

1, Ml) with coefficients which are periodic in t

of period r. The new form of H» is

The terms

+ + 2)

in Kt and Ht respectively lead to a total con-esponding

equation

d c

+ c [i, (/«! -«.) + ••• + -««)] + /l - 0,

in the attempt to eliminate such a term. This ordinary

non-homogeneous linear equation of the first order will

have one and only one periodic solution inasmuch as the

coefficient of c is incommensurable with ’inV— 1/r, since

we are in the general case. Thus can be made to

disappear.

Likewise all the terms of Ht can be made to disappear

save those in the products piqi, {i — 1, mi). The

coefficients in these latter terms can be replaced by constants

however; in fact this demand leads to an equation of the form

^ +m - c

where C is an arbitrary constant at our disposal
;
thus we find

c ^ ^(C—h{t))dt,

which is obviously periodic of period r if C is chosen as

the mean value of h{i) over a period. Hence we are led to

the same conclusion as before.

By means ofsuch a series of transformations of the generaiized

Hamiltonian equilibrium problem, the Hamiltonian Junction
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may he given the same normal form as was obtained in the

case of ordinary equilibrium,'*^

lo. On the Pfaffian multipliers. Suppose now that

we take an extended Pfafftaii variation problem

(12) •/'i ,
• •

•
,

/:>)«) -rj -\-Z{x\, , a:2m)| dt

which leads at once to the system of ordinary equations of

order 2m
A

I

(13) i;
j=i \

/ 9 A"* dXj\ djj dZ
\ Sxj dxi 1 dt dXi

0 {i 1, • • •, 2w).

We propose to consider these equations in the case when

there is an equilibrium point at the origin, under the assumption

that the 2m analytic functions Xi are such that the skew-

symmetric determinant

aX; __,9X !

8 jj 9 Xi
1

is not 0 at the origin. The constant terms in the series for

the functions A', may obviously be omitted throughout.

It is clear that the Hamiltonian equations appear as a

.special case of these Pfaffian equations (12).

.4s will be shown in the following chapter, this generalization

of the Han>iltoniau equations possesses the same property of

automatically fulfilling all of the conditions for complete

stability, once the obvious conditions for first order stability

are satisfied. Hence from this point of view the Pfaffian

equations seem as significant for dynamics as the Hamiltonian

equations, although more general in type. Moreover they

possess the additional advantage of maintaining their Pfaffian

form under an arbitrary transformation of the formal group.

* 'fhe results of this chapter were announced in iny Chicago Colloquinin

lectures of 1920. The material so far given is obviously in close relation

with previous work, and, in particular, the normal form in the Hamiltonian

case is in relation with the formal trigonometric series in dynamics

treated for instance, in Whittaker, Anudyiieal Dynamie$i chap. 16.
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In fact it is only necessary to substitute the new Yariables

under the integral sign in (12) to obtain the transformed

functions Xi and Z.

As a first step in the direction of obtaining a normal form

for the Pfaffian equations at an equilibrium point, we pro-

pose to prove that for these equations just as for the

Hamiltonian equations the multipliers are associated in pairs

To begin with wo observe that in general these roots must

be distinct since they are distinct in the Hamiltonian sub-case.

Now let us make the linear transformation with constant

coefficients which takes the equations of variation into nor-

mal form. This does not affect the Pfaffian form of course.

The corresponding equations of variation obtained from (13) are

/9a;- dyj

\ dxj dXi 1 df
1

9n 9 xj
0

and these must have the particular solutions

yi ^ (t = 1, 2»n)

for /c — 1, • • •, 2w. It is understood that the partial deri-

vatives involved in the equations of variation are evaluated

at the origin.

Substituting in these particular solutions we obtain readily

(dXi cx> d*Z

\ dxk
1 1

d Xi d Xk

If we interchange i and k here, and subtract the equation

so obtained from the one last written, we find

But if for each h we do not have Ak-f-Aj = 0 for some i,

it would follow from these equations that the skew-symmetric

determinant specified above would necessarily vanish. This
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is impossible since the equations of variation would then

degenerate. Hence there is associated necessarily with the

root A a second root Aj -- — A^. This is precisely what we
desired to prove.

In the Pfaffian equilibrium problem the multipliers also occur

in pairs, one of each pair being the negative of the other.

These multipliers may he designated by i-i, — Aj ,
. .

.

,

X„, — A^,

and mil he real or pure imaginary quantities.

It is clear that the general case is to be defined as that

in which there are no linear relations of commensurability

between A,
,

. .
.

,

A„, just as was done in the special Hamil-

tonian case. We shall restrict ourselves to this general case.

II. Preliminary normalization in Pfaffian problem

-

It is very easy to establish the fact that the normalization

used in the preceding section makes the first degree terms

in Xi
,

. .
•

, X-im take essentially the Hamiltonian form. Indeed

if we call the 2 m dependent variables Pi, • •
-

, pm, q\, qm,

in sui'h wise that pi, qt correspond to paired multipliers

A,, — A( and if we let I\, Qm denote the coefficients of

p'i,---,qm respectively under the integral sign in (12), the

previously obtained equations between the partial derivatives

dXildxj at the origin take the form

d^i

^PJ .

A <: : ,

9pi’ ^qj dqi ^
m),

dqj dpj
(^.?

=
1, •••,»»;* +i).

The first sets of equations show that the linear terms in Pi

involving pi,'-',pm correspond to an exact differential, as

do the linear terms of in gi,
• • •, g»,. Similarly the second

last set of equations shows that the term of Pi involving qj

(i 4^ j) together with the corresponding term of Qj involving p,

combine in a like manner. All of these terms may be omitted,

and there remains for consideration only terms

m

2 icjpj dqj -f dj qj dpj)

,



92 DYNAMICAL SYSTEMS

which evidentl3’ maj' be replaced by

m

2 (O - dj)pjdqj.
j= i

In these terms no tj— di can vanish, because of the hypothesis

that the fand,amental skew-symmetric determinant does- not

vanish at the origin.

If then Pi, qi are real variables we may maJte the further

linear transformation

Pi Pi^ qi = {ci— d^qi m)

to obtain the desired linear Hamiltonian term. On the other

hand if qi are conjugate variables then c, and di are

conju^gate imaginaries and d— dj is a pure imaginary quantity

qV— 1. Here wo may set

pi --= qpi, qi = V Qqi

if a >0. If (> < 0, we may interchange the roles of and g,.

Let us turn next to consider the function Z. Since we
have an equilibrium point at the origin, it is plain that

dZldpi, dZIdqi, vanish there for i - 1 , 2, • • •, i. e., that

there are no linear terms in Z. The lowest terms in Z are

then of the second degree.

Thus it is apparent that the equations of variation, which

depend only on these first degree terms in AV • • •, X2m, and

upon the second degree terms in Z, are of the same type

as in the Hamiltonian case. In consequence the same linear

transformation employed to obtain a normal form for these

lowe.st degree terms gives — Z^ the form of in the

Hamiltonian case.

We can summarize our results as follows:

By a preliminary linear transformation the Pfaffian equa-

tions with an equilihrium point of genn al type at the origin

can be written
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where

Pi = Pi + Pn + • *
*

y

= ^ + Qi2 4“ * *
* 0 = 1 .

• •
*

,
Wl)

,

m
P ^ h PJ ^ j + + • *

.

12. The Pfaffian equilibrium problem. After this

preparatory work it is a simple matter to establish the

general result, which is that by means ot point transforma-

tions (independent of t)y it is possible to reduce the Pfaffian

type of equations to Hamiltonian form. More precisely we
propose to show that it is possible to reduce Qi, {i 1, m)

to 0 by a suitable succession of such transformations without

interfering with the normal form of P?. When this has been

accomplished, it is merely necessar>^ to write

Pi Pi, qi qi {'i - K • • •, w)

to obtain complete Hamiltonian form in the case when . --.qm

are real variables. A slight modification is necessary in case

the variables qi are not all real.

In the real case suppose that we write

Pi " Pi, qi qi + Oi2 {pij - qm) H ' 1 ^ nj).

where, according to oui* usual notation, 0(2 is a homogeneous

quadratic polynomial in its arguments. The variational principle

takes a corresponding form in which the new coefficient Pi

has also an initial first degree term pi as desired, while for

the new Qi we find readily expressions in series

opi

Here the linear terms are lacking, as desired, and only the

quadratic terms are written explicitly.

Now we have
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This identity shows that, by subtracting an exact differential

under the integral sign, we may modify the new Q,2 to the

form Qi2 — Oi-i without introducing any first degree terms

in Pi. Hence if we take On = QnA'i = 1 ,
•••, >»). the

third degree terms in Qn will have been eliminated.

Next by a further transformation

pi Pi, qi qi-\-On (/ = 1, ni)

we can similarly eliminate the thiid degree term in Qi.

Preceding thus indefinitely we arrive at a variational form

where
Pi - - Pi -f- Pi 2.

-[-••• (<' 1 ,
• •

•, yn)y

which can evidently be ^iven Hainiltonitan form in the manner

indicated.

In case some of the pairs of valuables pi, (ji are conjugate

imaginaries we may first perform the simple linear trans-

formations to corresponding real variables

Pi = — !)/• qi = {pi — qi^' — ^ )/l

so that the term pi q'i is replaced by piqi except for an exact

differential. Thus the normal form for Pi, Qt is maintained

for these real variables. Operating with them as indicated

we can reach the same conclusion in this case also.

By a suitable transformation of the formal group, say

Pi = 'fiivh •, qm), qi = ^iipi, • •. qm) (i = 1
,
•••, m),

the general Pfafjian equilibrium pi'oblem may he made to

assume Hamiltionian form.

13. Generalization of the Pfaffian problem. Under

the above circumstances it is natural to expect that Pfaffian
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equations containing the time t, with generalized equilibrium

point at the origin, admit of formal reduction to Hamiltonian

form. It is not difficult to establish the truth of this con-

jecture on the basis of certain slight modifications of the

above discussion.

In the case of such equilibrium the equations are defined by

(14) d — 0

with Xi, (i = 1, • 2m), and Z periodic in t, that is by

(15)

2m
(dXi dxj

dt
^

dXi dZ
\ 9Xi I dt dXi

(i
—

r--. 0

1, 2m).

In the first place it is obvious that the multipliers are in

general distinct by consideration of the same special case

as was taken up in the ordinary equilibrium problem.

Furthermore, the equations of variation may again be

normalized by a linear transformation in which the coefficients

involved are periodic analytic functions of t of period t, so

as to have the solutions

yi d* (j = 1, • •
•

,
2 m)

for A: = 1, • • •, 2m. It follows that the multipliers A, occur

in pairs, each one of a pair being the negative of the other,

by essentially the same argument as was used in the

equilibrium problem.

Moreover the same argument shows that the linear terms

in Pi, Qi lead to certain exact differentials and terms which

may be absorbed in R, so that the same normal form for

the first order terms in P„ Qi and for the second order terms

in R is obtained as before.

Finally as in section 11 we write

Pi — Pi, Qi ~ Qi + G'<2 (j 1, •••, m)
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where now On has coefficients which are periodic in t of

period t.

Then by an obvious modification of the argument there

made, we can make ^<2 ~ 0 for i -],•••, m, and then in

succession Qm — 0, • • •

.

By a suitable transformation of theformal group the general-

ized Pfaffian problem of periodic motion may be made to

assume Hamiltonian form. Hence the normal form in the

Hamiltonian case semes also in the Pfaffian case.



CHAPTER IV

STABILITY OF PERIODIC MOTIONS

I. On the reduction to generalized equilibrium.

For motion near equilibrium of a Hamiltonian or, more gene-

rally, of a Pfaffian system, the stable case is naturally defined

as that in which the multipliers ki, , Xm are pure imagina-

ries, at least provided that there are no linear commen-

surability relations between these multipliers.

In this chapter, however, we shall limit attention to the

analogous but somewhat more complicated question of stability

for motion near a periodic motion of such a system.* The

method employed involves a reduction to the case of generalized

equilibrium. In the more general Pfaffian case this can be

accomplished by a change of variables

Xi Xi 4- fi{t) (? =•-
1, • .

. 2m),

in which the periodic functions fi{t) of period r are the co-

ordinates of the given periodic motion. By this means the

functions Zi, - •
• , Xim, Z are modified (see (12), page 89), since

they are no longer independent of t but periodic of period t; and

the given motion now corresponds to generalized equilibrium

at the origin in the new x,, •••,X2m space. Hence we are

led to consider the question of motion near such a point of

generalized equilibrium.

There is, however, a difficulty associated with this reduction

to generalized equilibrium which was first signalized by

Poincar6 for Hamiltonian systems, and which it is desirable

to explain briefly.

Following the analogy with the case of ordinary equilibrium,

the stable case is defined as that in which the multipliers

^
1 ,

• •
•

,
are pure imaginaries, at least provided that there

* Of. my article Stability and the Equations of Dynamics, Amer. Joum.

Hath., vol. 49 (1927) for a treatment of the equilibrium problem.

97
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are no linear commensurability relations between these multi-

pliers and 2n\^— 1/r. If such relations exist the questions

to be considered become more complicated in character.

Unfortunately, for a point of generalized equilibrium ob-

tained by the above method of reduction, the multipliers will

not satisfy this condition; more specifically, there will always

be a multiplier 0, which is double of course. This may be

readily seen. The Pfaffian system admits of the integi’al

Z— const, in the original variables, and therefore admits

the integral

2’ C'^'l
"1“ I’l ,

• •
•

, “h Wlni) const.

in the modified variables. By differentiation with respect to

the 2m arbitrary constants in the general solution .7’i ,

• '
*

, Ol‘‘2mr

it appears that the linear relation

dZ
^ ,

az
4-^--

-

const.

subsists for 2m linearly independent solutions yy. • •
•

, y^m of

the equations of variation, and so for the most general

solution; it is understood that dZldxi, (« = 1, • • •, 2m), have

Vi, 92m as arguments. Now if the 2m multipliers

•••, are distinct, a complete set of 2m solutions

yi ~ (i --- ].•••, 2m)

for /i: == 1, • • •, 2m exists — — P.,), in which py are of

period r in f. Since dZIdXi are also periodic, substitution of

these solutions in the linear integral relations in the i/,’s leads

immediately to the conclusion that the constants on the right-

hand side must vanish, at least for Pt 4 0. But if these

constants vanished for such a complete set of solutions, the

constants would vanish for every solution y\, • •
•, y^m- This

cannot be the case since y\, • •
•, y^m can be taken arbitrarily

for any particular value of i*

* It is not possible for dZIdx^ to vanish simultnneously for i = 1, •••, 2j»

along the original motion, since the Pfaffian equations then yield

(t = 1, •••, 2m) which is impossible, the cose of ordinary

equilibrium being excluded.
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There is then a pair of solutions of the equations of

variation which belong to the multiplier 0. Now

Xi Pi (i+ — 9‘i (0 {« == 1 ,
•

• , 2»t)

for any k defines a solution of the given equations after the

reduction, so that by differentiation with respect to k, one

solution of the equations of variation

l/j — y2«i = f2m

is obtained. This has periodic components and so belongs

to the multiplier 0. On the other hand the periodic motion

with which we start is not isolated, but varies analytically

\\ith the constant c in the known integral (i. e., with the

energy constant in the Hamiltonian case). This yields the

second periodic solution

!/i
1^1
br

S(p2m

dr

belonging to the multiplier 0. In general there will be

no others.

The difficulty may be turned in the following manner.

The variable Z may be taken as one of the dependent vari-

ables xi,---,X2m, say as X2m, in the original xi,---,X2m.

space. Furthermore the variable e — X2m-i may be selected

as the single angular coordinate, which increases by 2

n

when
a circuit of the curve of periodic motion is made. The
remaining coordinates xi, ,x2m-2 may be made to vanish

along this curv'e. Now let us restrict attention to those

motions near the given periodic motion for which

Z = c

has the same value as along this motion. With this under-

standing, the Pfaffian system becomes of order 2m— 1 in

a*i, • • •, X2m-2 , 9, and may be written in the variational form
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/2m -2 \

I (Z A>j + AW-i e'jdt = 0,

to which set of equations must be added the last equation

of the first set. But the integrand is positively homogeneous

of dimensions unity in x[, X2m- 2 ,
O', so that 6 may be

taken as parameter instead of t. Then the variational

principle takes the form

pt, pm 2
1

Jr
A>J + A 2m-iJri« - 0.

Hence we obtain a Pfaffian system of even order 2m -2

only instead of 2wi, in which the coefficients are periodic

in a variable 0 of period 27r, and the known periodic motion

corresponds to the orig-in in Xi, X2m~2 space.

By this second method of reduction to a generalized equi-

librium problem, the formal difficulties referred to above are

avoided.

For these reasons, in dealing with the applications we can

restrict attention to the case of generalized equilibrium of

stable type as above defined.

2. Stability of Pfaffian systems. Our starting point

is furnished by the equations of motion, normalized to terms

of an arbitrary degree s by means of an appropriate trans-

formation defined by convergent series, according to the

method of the preceding chapter. The equations are thus

given the form

(1)

dpi 9 if

dJ ~
Y~7T~ p* +

dqi _ d H
li t

{i 1 .
• • m)

where we may write

m
H = ^ Xjpjqj+ ^4 • • • + ^5 is s or s+ 1))
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in which Hk involves only the m products Tii — piQiy of

total degree k/2 in •••, while are

convergent power series in q^, which commence with

terms of degree not lower than the coefficients being

of course analytic and periodic in t of period r.

Suppose that we write
m

- 2pjgj.

Evidently u can be appropriately regarded as measuring the

distance of a point from equilibrium at any instant t; for,

in terras of the original real variables .ri, •••, X2my the

function is given by a real power series in Xi, •••, x^m

which begins with a positive definite quadratic form in these

variables,

2m

^ ajkit) xjxk + • • •,

for all /, whence
2m 2m

ic 2" K2 .o. K > k > 0,
J 1 2-1

in a certain neighborhood of the origin.

It is obvious then that we can choose .V so large that

; I, !
! V...

^
] ,

• •
‘

,
W)

within a sufficiently small distance of the origin.

Multiplying the first of the partially normalized equations (1)

by qi, the second by piy and adding, we conclude

1-^ ^ (i 1. m).

From the definition of ti, the inequality

I

du
I

I” jTI
mNu’>+^

then follows, so that

—mN< 1 du ^
w»+i dt = mN.
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Integrating from Iq to t, we deduce from this last inequality

wi 5 iV i ^— fo ! •

Now let us ask in how short an interval of time v can

exceed 2^^o. At the corresponding t we obtain

1 1 1

8
msN \ t — /o

I

?

1^0
-

whence obviously since s 1 ,
this cannot happen for

(2) \t—h
1

2 m s N

Hence the minimum time interval which must elapse before

the initial distance Uo can double in magnitude is of the

5-th order in the reciprocal distance.

In this same interval of time we obtain

i dt I

-- ‘

whence by integration

(3) \Tr.— 7r9 2’“^^
I

/ — /o
j

(f -- 1 •
• • * • ^^0 •

Also since H and its partial derivatives are polynomials,

we have

\dH dH^
\ drti d Tii

m
P ^ j

TTj— 71?
j ^ 2^"^^ m NPhJ+- t— to

\

(./ = 1
,

. >
. , m)

for TTj, TT® small. On the other hand from the normalized

differential equations we find in this interval

dVi ,

dt

dH
drti

'Pi-

dqi

dt

dH
ditj

< 2»+* iVMj+i

(* = 1
,

• • •, m).



IV. STABILITY OP PERIODIC MOTIONS 103

Combining these inequalities with the preceding set, there

results

dqi _ dH^
I

dt drii

< 2»+i
1 + 2» wi NPul+^

t
<— <0 i

dpi
,

dH^
dt
+

9 Tli
Pi

tor i — ],, m. These are essentially the same as the

following inequalities

d

dt
(Pi ,

dt
(Qi

< + 2*+-‘ m NPup '

t — t
0 '

where y, — dlP^ldnt are pure imaginary constants. The

fact here made use of, namely that H and its partial deri-

vatives as to Tii are pure imaginaries, can easily be verified:

if Pi, Qi, (i ~ !)•••. ”»)> be interchanged and H be changed

to its conjugate in (1), these equations are not altered; but

this means that the conjugate ofH coincides with its negative,

i. e. that H is a pure imaginaiy function. By integration

the above inequalities give

(4)

\pi—pi e
I

0
I

qi— qie ‘ "
!

2*+i
i t

.

%\^2^+^mNPul+^\t-

for i ~ 1 ,
• • • , '«

Now if M'e return to the convergent power series expressing

xi, •••, Xim in terms of/Ji, and if we replace pi, ••,qm by

0 —r, (t-

Pie
Li

qm /’ .«-U

respectively, the series obtained agree with the fomal series

solutions up to terms of the (s+ l)-th order in the 2 m
arbitrary constants

j>J,
• •

•, Sm* error committed in

so doing is of the order of the differences appearing in (4).

Hence if we express by means of the formal

series solutions derived from the normal form, broken off
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after the terms of degree s in the 2m arbitrary constants

jp®, •• •, the error committed will not exceed in numerical

value an expression

+ SmJ+i U - <0 1 + I

< - <0 r

dul'ing the interval (2), where A, B, C are suitably chosen

positive constants.

On account of the fact that s is an arbitrary positive

integer in the above inequalities, these can be given a still

more simple form. Suppose that
1

1— /<o |

is even more severely

restricted than in (2), namely to be of the order at most

(s/3)-fl in the reciprocal distance. Then the constitutents

of the sum above are clearly of order exceeding .f/S in the

distance uo itself. Consequently if all the terms of the formal

series solutions of degree exceeding s/3 are discarded, the

order of the error will exceed s/3. But s/3 is arbitrary, whence

the conclusion;

If this formal series solution of the genm'ahzed Pfnfjian

equilibrium problem of stable type is written to terms of an

arbitrary degree s in the initial values pj, of the

arbitrary constants, the 2m trigonometric sums so obtained

will have coefficients of at most the first order in Uo, and mil

represent the coordinates xi, • • •
, x-im vuith an error of order

at most during a time interval of at least the reciprocal

order. Here Uo represents the distance to the origin for t — to

in xi, •••, Xim space.

When written out explicitly these trigonometric sums for

o'l, Xim have the real form

Ao -f^ (Aj cos Ij t + Bj sin Ij t)

where

. air®
, ,

. aff® , v>, .
, ^hV —l — ti-z— -i rtm-T——, d = 2^\v\0^1 OTtm —

in which ii, •••, are integers, and where Ai, Bi are

polynomials in • • •, gji whose terms are of degree at least

d and not more than s.
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3. Instability of Pfafflan systems. In the case when
some of the multipliers Xi are real, the situation is entirely

altered. If we assume that there are positive and negative

multipliers ± ^1, • •
•

, db ^fc, there will be a real A;-dimensional,.

analytic manifold of curves of motion approaching the curve

of periodic motion. Points on these curves near to the periodic

motion leave its vicinity in a relatively short interval of time.

More exactly, the distance will exceed

if »o denotes the initial distance from the motion at t =
and X is a positive constant less than the least positive

multiplier. Similarly if t decreases the distance uo may
increase in a like manner along a second real analytic

manifold of curves.

Evidently such a situation is entirely different from that

found in the stable case and is properly termed unstable.

We shall not enter upon a derivation of results of this

sort, the fli-st of which were obtained by Poincar^.*

4. Complete stability. The work of section 2 makes

it clear that Pfaffian and Hamiltonian systems possess a

species of complete formal or trigonometric stability, in case

Xi, Xm, 2 n]^— i/r are pure imaginary quantities without

linear relations of commensurability. Let us elaborate this

concept of ‘complete stability’.

Consider a differential system of even order 2 m,

(5) dxildt = t) (i — 1 ,
•••, 2wt),

for which the origin is a point of generalized equilibrium.

Suppose that for t — the point a;J is at a distance e from

the origin. Let T be any fixed time interval, / any positive

integer, and P« {xi, • • • , xzm, t) any polynomial with terms of

lowest degree s in the coordinates and with coefficients

analytic and of period r in f. If then it is possible always

* For some of the fundamental results see Picard, Traitf d'Analyse,

voL a, chap. ).
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to approximate to P* for
1
1 — to

I ^ T with an error less

numerically than
if«/+»+!

by a trigonometric sum of order N
N

^ (Aj cosljt A- Bj sin Ij t) (| //—
|
> t> 0)

,

j=0

where M, N, I depend only on / and P*, and where to = 0,

the equations (5) will be said to be ‘completely stable’.

As a very simple example consider the pair of equations

dxjdt — kxi, dxjdt = — kxi,

of which the general solution is

xi = Acoskt B sin kt, x^
'— Asinit + Pcos/ct,

so that the coordinates Xi, xt are represented by trigono-

metric sums of the first order. Any polynomial P* of degree

^ s can also be exactly represented by a sum of order K
not exceeding Hence the conditions of the definition

are satisfied.

The restdts of section 2 show that in the case of Hamiltojiian

or Pfaffian systems, there udU be complete stability if there is

ordinary stability as defined earlier.

This is obvious since the differences h — Ij which enter

in the trigonometric sums of section 2 are nearly given by

a certain limited number of integral linear combinations of

the »»+ 1 quantities i.JV'— 1 ,
. .

.

,

h^/V— ,

2

nh, and no

such combination vanishes.

In case of complete stability, the solutions of the normalized

equations of variation (chapter III, section 5) are limits of

trigonometric sums of the specified type, and are trigonometric

by the lemma on trigonometric sums of sections 5,6. Hence

the multipliers are pure imaginaries.

It is important to establish that this definition of com-

plete stability is independent of the particular coordinates

xi,'--, Xin selected. In fact, suppose that the given system
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is completely stable. Let us make the admissible change of

variables

Xi = 5Pi (xi, • •
•

, Xim, 0 (/ 1 .
• •

•
,
2 Wl)

in which y>i are analytic in xj, , X'>m, t, vanish at the

origin, and are such that the determinant \d<fildxj\ is not 0
there, while the coefficients in y, are analytic periodic func-

tions of t of period r. Then the two variables

and

evidently serve equally well to measure the distance from

the origin at t ^ 4- since we have

- tit

in the neighborhood of the origin.

Now consider any polynomial Ps{xi, • • •. t) which can

obviously be written

P* (.?•]
,

• • • . ./'I'wi. 0 -|- Q{xi, •
•

, ./'snc 0

where P* is a polynomial in x
, ,

• • • . X2m with terms of lowe.st

degree s while (,) is given by a i)ower series commencing

with terms of degree at least f-\- .s + 1 . It is clear that the

polynomial P* can be represented by a trigonometric sum of

the specified type with an error of order /-f s -f- 1 in e, by

condition for Complete stability, while it is clear further-

more that Q is of order /-|-s-fl. Hence it is plain that

P,(xi, • • •, X2m) can be represented by the same trigonometric

sum in the desired manner. This establishes the complete

stability in the new variables.

The mere fact that the multipliers of the system of 2m
equations of the first order fall into pure imaginary pairs by

no means ensures complete stability in the above sense.
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A sufficiently simple example is furnished by the pair of

equations

dxidt ky x{x^ dyidt — A-.r +

in which k is positive, and the fundamental period is taken

as 2 /1:. The multipliers are then pure imaginaries, namely

±ikV— 1. But if the first of these equations be multi-

plied by 2 a*, the second by 2y, and the two equations so

modified be added, there results

dn/dt -- 2ir (?i x^-i-y^)^.

whence, by a further integration

Jh
J — fo)

'

But, if there were complete stability, it would be possible

to find a fixed integer JV so large that, for some constant

the inequality

held, in which <Sa represents a trigonometric expression of

order iV of the specified type
;
this follows from the fact that u

is a homogeneous polynomial of the second degree in x and t/,

while Uc is the squared distance e*. This inequality may be

written

U — Mo iSa— I ^ c'
2

,
- < A?fo-

Mq
I

Now let Uo approach 0. It is obvious that

lim 2(t-to).

We infer then that

lim
Ny— Mq

m2
t—L.

But the expression on the left is a trigonometric sum of

order at most JV of the specified form, and approaches its
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limit uniformly. Consequently by the lemma on trigonometric

sums considered in sections 5, 6, the limit of this sum is

necessarily a sum of the same type. However it is impossible

that 2 — to) should be so represented. Hence in this case

there is not complete stability.

The condition that the multipliers be pure imaginaries has

been seen to be necessary for complete stability even if not

sufficient. Henceforth we shall assume that, if the m pairs of

pure imaginary multipliers be denoted by

there are no linear comraensurability relations between

and 2/r V— X/'r, Of course by so doing

certain exceptional cases are excluded which require further

study.

For complete stability an infinite number of conditions

besides that of pure imaginary multipliers will be found to

be requisite.

5. Normal form for completely stable systems.

We have already seen that Pfaffian and Hamiltonian systems

of equations possess the property of complete stability, in

case the characteristic numbers are pure imaginaries. It

becomes a very interesting question to determine the most

general case in which there is complete stability and to find

the characteristics of motion near generalized equilibrium in

this case. This we shall do by establishing a suitable normal

form for equations of completely stable type.

Since the multiplier are of the staled type, we

may transform the variables- .T|, • • •, .rj„, to p,. •••, qm by

a linear transformation so that the transformed system is

dpi hit - —h Pi Pi, (I Qi / d i ^ h qt + Qi {i 1 ,
• •

•
,
w)

with Pi, qi conjugate, and P„ Qi beginning with terms of at

least the second degree.

Now change the variables once more by writing



no DYNAMICAL SYSTEMS

It is readily found that the equations preserve their form,

with the' new Pi, Qi having homogeneous quadratic terms

fit

'PJ

8 fit \

^QJ '
^i fit “I”

dfji

IT’

-z
7=1

PJ
9 ipu

dpj

dipjt

d t

respectively. On inspecting these terms and making use of

the incommensurability of the multipliers, it appears at once

that these new expressions can be made to vanish in one

and only one way. In fact let

P {t) f"' vf” («! ^ + = 2

be such a term in Pi while the corresponding term in fi^

has a coefficient <p{t). By comparison there is obtained the

differential equation for f

P(J) + («>

—

^j) i.j
/.,| <f> + 0

,

which can be satisfied by a periodic function n> of period t

unless _the coefficient of <p is an integral multiple of

2n — l/r. This is not possible because of the hypothesis

of incommensurability. Moreover the periodic solution is

unique (cf. chapter III, section 9).

Thus all of the second degree terms in Pi, Qi may be

removed.

By a precisely similar method all of the third degree terms

in Pi, Qi may be removed by a further transformation

m pi-\- fi», Qi qi + tpiit (? = 1, • >n)

except when the analogous coefficients

m m

2 ^j) 9 ^ ^j) 4"
j= 1 1

(«! -| = 3)
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vanish. Such exceptional terns will have the form

Pit)PiPjqj, Qit)qipjqj

But even in these terms the functions y, tfi may be so selected

as to make the new coefficients, namely

m+^l. QW+%
reduce to constants (cf. chapter III, section 9). Hence we
may normalize Ft, Qi so that

Pi == Pi (Ctl Piqi-\ + Cim Pm gm) + • • • -

Qi qi (<fil jOl gi “1“ • • •
“

1
" dim Pm qm) “f"

' • • •

where the complete terms Piz, Qa of the third degree appear

explicitly written in the right-hand members.

Our next step will be to show that in the event of com-

plete stability we must have the further relations

qi Piz + Pi Qiz = 0 (i — 1, • •
•, m),

i. e., dij — 0, In order to establish

this fact we employ the following lemma which is almost

self-evident:

Lemma on trigonometric sums. If a sequence of trigono-

metric sums of the type

N

^ (Aj cos Ij t + Bj sin Ij 0 ( |
?, — lj\> I >0),

J=o

with N, I fixed while At, Bi, k vary except that lo = 0,

approaches a limit g)(<) uniformly in some interval, then f{t)

is itself a trigonometric sum of order at most N in this

interval.

The proof of this simple lemma is deferred to the follow-

ing section.

Consider the quadratic polynomials p, g, in the coordinates.

We find from the given equations
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d{pi qi)ldt = qi Pa +pi Qa + • • •• (? = 1, • • •, m),

where the terms not explicitly indicated are at least of the

fifth degree, and where the terms written explicitly are

Pi qi “
1

“ <i?l) Pi q\-\ “
1
“ (Ctm 4" dim)Pm qm]

(z = 1, • •
•, m).

We desire to prove that these terms vanish identically.

Now the differential equations above lead at once to the

inequalities

i d Tii'id t ' ^ A" (tt, -] f- Timf (^1 Pi qi)

for i = 1, 2, • •
•

,
w, where tt,, . . are of course positive

or 0. From these last inequalities it follows that we have

and thence

! M Mo
I

\dHidt\ < niKu^

S 4 m Kul
\

t— fo
! ^ 2m K Tu^

for any given interval of time provided that Mo

is sufficiently small. This follows by the methods of section 2.

Hence — Mq is of the second order in Mo throughout this

interval, while the inequalities for dni/dt show that /r,-— 7t®

is also. Thus

qi Pa-\-pi QiZ,

which is a quadratic polynomial in tti, Jtm, differs from

its value at ^ = <o hy terms of the third order in uq, and

the differential equations above give

] ^ f
vii - is 1 I'i

By integration there results

(<-pl

in the interval under consideration.

(i 1, •••, m).

; LTuf
(i = 1, m)
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Suppose now that we write

p^^ == a.f,
(f. fi.s (i -

?

* • •

,

being m arbitrary pairs of conjugate imaginaries,

and suppose that the positive quantity e approaches 0. The

inequality last written in which no is to be regarded as

a constant multiple of shows that we have

lim (7r-7r«)/6‘ ---

where the limit is approached uniformly in the interval under

consideration. On the other hand tt,/ can be approximated

to by a trigonometric sum of the specified type to terms of

order in this interval, and consequently {tt.— 7t^)/€^ can

be approximated to terms of order Thus the left-hand

member is the uniform limit of a trigonometric sum having

the properties specified in the lemma, and must therefore

itself be trigonometric. This can only be true if the sums

Cij-{-dij vanish for all values of i and y, as we desired to

prove.

Thus Ave have to terms of the third order for / " 1, •••. m,

(Ipild t
- — Pi c^jpj

r/;J
-I-

. .
.

.

d (ji Id t p, j^A,-—
' y Vj ?;

]
+ • • • •

Evidently we have be^un a process which enables us to

remove tenms of higher and higher degi-ee in Pi, Qi except

for terras with factors p,, qi respectively, and coefficients which

are polynomials in the m. products p, qi, one’ being precisely

the negative of the other.

Any completely stable system of equations (5) may he reduced

formally to the normal form

(6) dh/dt = — Mi^i, d'qildt ~ Mit}i {i—\,---,m),

8
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where Mi, •
• •, Mm, are pure imaginary pmvet' series in the m

variables rji, i. e.y

m
Mi A,— X Cij ij i/j + • •

• (/ --- m),

and iij rji are conjugate pairs of variables.

Conversely^ if any set of equations have this normal form,

the argumefnt of section 2 is available to show that there is

complete stability.

6. Proof of the lemma of section 5. Let us consider

a sequence of trigonometric sums ifj {t) of the type prescribed

in the lemma to be proved. For such a sum we have

where D indicates ordinary differentiation with respect to t in

the symbolic differential operator on the left. Direct integration

2 iV+ 1 times gives

where P{t) is a polynomial of degree at most 2N.

Now all of the h exceed I in absolute value, for by

hypothesis

\li-U
\

(?- 1
,
•••, N).

It is clear then that, by suitable choice of a sub-sequence

*p{t), the reciprocals m, -- l/f,, which are less numerically

than Ml, will approach limits m* with |m*| ^ Ml. Any
two of the quantities w? will be distinct unless both are 0

of course. Now divide both members of the above integral

equation by the product • Py, and pass to the limit.

Since V* approaches y uniformly, we obtain at once

[n + • •
• + • •

•Jo
vil) dP^ = Qit),
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where Q{t), being the uniformly approached limit of a

sequence of polynomials P{i) of degree not exceeding 2Ny is

itself such a polynomial. This leads at once to the conclusion

that (p satisfies the linear differential equation with constant

coefficients

// + 1) •
- (m*" + 1)] V'

- 0,

with general solution a trigonometric sum

A'

6' +^ \C cos (^/m*) -f- Pi sin (^/m*)]

where the sum is only extended over those values of j for

which m* is not 0. Hence <p is of the stated type.

7. Reversibility and complete stability. It would

be possible to show further how intimately the variational

principle and the requirement of complete stability are inter-

related.t Instead I prefer to follow another direction of

thought in older to show that the requirement of complete

stability is also very intimately connected with that of re-

versibility in time of the given differential system, provided that

tlie ordinary definition of reversibility is suitably generalized.

We shall say that a system (5) with generalized equilibrium

point at the origin is ‘‘reversible’ if when t is changed to

— t the system then obtained is equivalent to (5) under the

formal group.

By this change of sign of t, the multipliers Aj are changed

to their negatives — A/. Hence it is obvious at the outset

that in the reversible case of even order, these multipliers

are grouped in pairs, each member of a pair being the negative

of the other. We are primarily interested in the case Avhen

these multipliers are furthermore pure imaginaries and with-

out linear commensurability relations. For this reason we
shall assume that these conditions for first order stability are

satisfied.

t See my paper, Stability and the Equations of Dynamics^ loc. cit.

8*
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It is clear that this definition of reversibility is independent

of the dependent variables employed. Hence if we have

a completely stable system to begin with, we may take it

in the normal form (6). The change of / to — / gives

a modified system,

d'U! dt ^ Mi Si, df^iidt — Mifji (i
~

1. w)

where we introduce the dashes to avoid confusion. But it

is possible to pass from one set of equations to the other

by the aid of the transformation of the formal group

^ tji, 'fii Si {( 1, • w).

Therefore if there is siahiUty of the first order
j a necessary

condition for complete stability is that (5) is reversible in the

sense of the above definition.

It remains to prove that this simple necessary condition

of reversibility, together with the requirement that the

multipliers are of the })rescribed type, is also sufficient.

The same process of normalization used in section 5 leads

us to the noiinal form of more general type

(7) dSildt UiSi, drji/dt ~ {i -- 1,

where Ui, Vi are functions of the m products ?i ,
• • •.

with initial terms A/, — Xi respectively. This may be obtained

without the hypothesis of complete stability.

Now if we change t to — t these normalized equations

become

(8) dSi/dt -
* — UiSi, dr^ildt = — 17^// {i -- 1,

These are to be equivalent, by hypothesis, to the original

equations (7). It is to be observed that the equations (8)

are the same in form as (7) save that the roles of Si and rji

are interchanged, while —Ui, — T7 take the place of Vi, Vi

respectively.

But it is readily proved that the most general transformation

preserving this normal form (7) is of the type
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(9) = hfi, n'i ^ fli 9i (i I, m),

where fi and //i are arbitrary power series in the m products

i^i, not lacking constant terms, and with co-

efficients independent of t.

The fact that these transformations do preserve the normal

form is obvious upon direct substitution. In the first place,

we note that the inverse relations are of the same type

'^i
^ /i/y tji

' tjj hi

with

(* = 1,
• •

• ,
m)

fi hi fi hi == 1

Hence we find

(^ 1, • •
•

,
m).

d^^i/dt Ui ii

where

ru - / Ui + Z ( u.i + 10) Vj] {Ui =

together with like expressions for d^ii’d t and Vi, for i ---
1 ,

• •
•

,
m.

In order to establish the fact that this group of trans-

formations is the most general preserving the normal form,

we shall proceed step by step.

Consider the terms of the first degree in any such series

for tji. These may be written

htii,

respectively, so that we must have, for instance.

^ (a h. + h ^i) - ah ?,— b I, t;, -f ‘ ‘

if the normal form is to be preserved to terms of the first

degree only. Hence we infer that b vanishes and « is a con-

stant. Similarly c vanishes and d is a constant, conjugate

to a.
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Of course this means that the transformations from jy,

to iji are of the specified form as far as the first degree

terms are concerned.

Hence the most general transformation which preserves

the normal form ma}' be obtained by the composition of the

special linear transformation of the group

h = V drji {i !.•••, m),

and a transformation of the form

in which F/, Gi begins with terms of at least the second

degree.

Denote the quadratic terms in F and G, by F/2 and Gr>

respectively. Thus we have to consider

+ Fi2+ • *
'

? Vi H"” + • • • 1 ,
• •

• , m)

with inverse transformation

= ?/ — F/2 + * • • .
~ fji — Gr2 (i

^
1 .

• • • . n/),

in which F«2, Gi2 are merely F/2, Gr2 respectively with r;,

replaced by respectively. We are to determine what

is the most general form of Frz, Gn which can preserve the

normal form. Now we have

dh
(It

7n ,

Uih-i-'Ehki
J= i \

d F/2 9 F/2
\

J

dFi,

~dt
+

Uih

for i \. ••.m, whence by comparison of second degree

terms

; V J- Vs if: I

^Fii a r \ \

The constituent terms which may occur in Fiz can be dis-

cussed by the methods of section 5
, and this leads to the
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conclusion that must vanish. Likewise On is found to

vanish. Thus the transformation has the stated form to terms

of the second degree inclusive, and it is necessary to con-

sider next a transformation

~ + Fit -+-•••, yt = + On+ • •
• (^ = 1 ,

• •
•

,
m)

with inverse transformation

It = It — Fa+ • •
•

, Vi ~ Vi— “I"
• •

• (* — 1 »
• •

•
)
w*).

Here we are led to m equations

J- -1 \ 9 w
VJ

9 J'taj

S'?;
' +

S Fit

dt

ii

hAlhz.

1 ,
• •

•
,
wi)

,

where A TJa denotes the difference between the second degree

components of ?7, and TJi, when hVif--->^mVm replace

li ^1 ,
• • •, im^m in tii. Thus AUn is a linear function of

these m products with constant coefficients. But the method

of section 5 shows then that Fa contains a factor It in every

term, these terms being of the form

It Cij Sj VJ (^ = 1 ,
• •

•
,
w).

1

Of course Ga has a corresponding similar form in which tn

appears as a factor.

It follows that the transformation has the stated form to

terms of the third degree inclusive. But then the most

general transformation can be expressed as one of the specified

group followed by a further transformation

It = I) -j- Fh+ • • •
, iji^ — Vi 4" On -!-••• (i 1, •

,
m),

and we can continue the above method of treatment to the

terms of fourth degree and of all higher degrees. Thus we
arrive at the conclusion desired that the most general type

of formal transformation preserving the normal form is given

by (9).
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It remains to consider in what cases it is possible to pass

from (7) to (8) by a transformation of the type (9), whore

now we shall introduce dashes so jis to distinguish the two

sets of variables
,

• •
•

,
and

,
• •

•
,

If we write

tH — hnii h Wi ^ Ui-\-Vi, we obtain the two

associated sets of equations in and

(10) d Ui/d t — Wi (mi ,
• •

•
, Um)ui (i -- 1 ,

- •
•

,
ill),

(11) dui/dt — — •••, Um)ui {i = \

while we have the relations

(12) M, == U' li{ui , •
, Hm)

(i 1, , m).

Furthermore the constant term in /, is (<«, a real positive

constant, for reasons given above. It is very easy to show

that it is impossible that (10) and (11) are related by (12)

unless Wi ^ 0.

To begin with, we recall that Ui and F, have constant

terms which are the negatives of one another. In consequence

Wi starts off with terms of positive degree r in «<],•••, Um,

the aggregate of which we designate by ll'V- If we perform

the indicated change of variables, we obtain the identities

= — Qi Il'iv(Cl Ml. Qm I'm) M/ + • • •

^ QiWiriUi, • • •, Mm)M.,-f •

in which only the terms of lowest degree r -f 1 are explicitly

indicated. Hence we obtain by comparison

Wir(t<l, •••, Mm)+ IF,>(9it<i, •• ., (!nUm) == 0.

But consider some term of IF,>, say

Ciu“> • • m“” («i •+ 1- = r).

This identity yields

ci(l +pi“' •••(?«) = 0
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which is impossible for Cf 4 0. Hence every term of Wir

must vanish, which is contrary to assumption. In consequence,

we must have Wi ^ 0 ,{i ~ I m)

.

In other words the

requirement of reversibility necessitates that the normal form

(8) has the special property characteristic of the case of

complete stability.

If there is stability of the first order, reversibility is a

sufficient condition for complete stability nn the generalized

equilibrium problem.

The case of ordinary equilibrium is of course still .simpler

than that of generalized equilibrium, and the results are

entirely analogous.

8. Other types of stability. We have already defined

stability of the first order, and complete or trigonometric

stability. It was proved in section 2 that, for the equations

of dynamics (taken as of Hamiltonian or Pfaffian type), first

order stability necessitated complete stability. Other types

of stability also possess interest.

In the first place as of the greatest theoretic importance

may be mentioned ‘permanent stability’, for which small

displacements from equilibrium or periodic motion remain

small for all time. This is the kind of stability of ordinary

equilibrium when the potential energy is a minimum. The

equations of dynamics are of the type for which this stability

may obtain, although in general the problem of determining

whether or not it does obtain is one of extraordinary diffi-

culty, and constitutes the so-called ‘problem of stability’.

Thus far the problem has only been solved when a known

convergent integral guarantees such actual stability of per-

manent type.

Another type of stability is that in which these displace-

ments remain small for a very long interval of increasing

and decreasing time. A sufficient condition for such ‘semi-

permanent stability’ is the existence of a formal series integral

starting off with a homogeneous polynomial of least degree

constituting a definite form in the dependent variables. It

seems likely that a slight extension of this sufficient condition
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will turn out to be necessary. Complete stability necessitates

semi-permanent stability of course.

Finally a type of ‘unilateral stability’ in which the dis-

placements remain small for OO, and in general tend to

vanish as t increases indefinitely, has been considered by

Liapounoff and others.* It is easy to demonstrate that if

the m multipliers possess negative real parts, this kind of

stability will obtain. Furthermore it is necessary for this kind

of stability that none of these real parts are positive. In the

case of the equations of dynamics, however, the real parts

of the multipliers can not all be negative, since with every

multiplier A, is associated its negative. Thus the only possi-

bility of unilateral stability in dynamics is seen to arise

when the multipliers are pure iraaginaries. In this case the

proof of unilateral stability would lead to the proof of per-

manent stability.

Thus for the problems of dynamics the important types

of stability are complete or trigonometric stability, and the

permanent stability mentioned above. We shall recur later

(chapter VIII ) to the important problem of stability concerned

with the interrelation of these two types.

*
See, for instance, Picard, Traitf d’Analyse, vol. 3, chap. 8.



OHACTER V

EXISTENCE OF PERIODIC MOTIONS

I. Role of the periodic motions. The periodie motions,

inclusive of equilibrium, form a veiy important class of

motions of dynamical systems. It will be our principal aim

in this chapter to consider various general methods by which

the existence of periodic motions may be established. In

the next chapter a deeper insight into the distribution of

the periodic motions is obtained for dynamical systems with

two degrees of freedom. wSuch systems are of the simplest

non-integrable type.

The case of a single equation of the tirst order presents

no intfuest. If the equation is

d.r/df - A (./•).

there will clearly be equilibrium for roots of X - 0, vhile

for all other motions there will either be asymptotic approach

to one of the equilibrium positions or indefinite increase of

Here the equilibrium positions play the central role.

For the case next in order of simplicity there are a pair

of equations of the first order. Here the geometric methods

of Poincare* yield the qualitative characteristics of all possible

motions, and it is found that the equilibrium positions and

periodic motions play the central role. The next following

section will be devoted to an example of this type.

When we restrict attention, however, to a pair of equations

of Hamiltonian or Pfaffian type (corresponding to a single

degree of freedom), there is the special circumstance of an

energy integral. Here we assume that the time f does not

* See his paper Sur ten courhes definles par une equation differentielle

.

.Journal de Math^matiques, ser. 3, vol. 7 (1881), vol. 8 (1882), ser. 4, vol. 1

(1885), vol. 2 (1886).
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explicitly appear in the equations; the case when t is in-

volved as a periodic variable is properly to be regarded as

of the same degree of generality as ^hat of two degrees of

freedom. If we represent the two variables p, q hy points

in the plane,* the curves of motion will pass one through

each point and can only form closed curves or branches

open toward infinity in both senses. The corresponding

families of periodic motions and unstable motions constitute

the totality of motions, except that certain of these curves

may contain one or more equilibrium points, in which case

there is asymptotic approach to equilibrium in one or both

.senses.

In the case of dynamical systems of more complicated type

it is not clear that the periodic motions take an equally im-

portant part. For dynamical systems with only two degrees

of freedom, such as are considered in the next chapter, it

is, however, almost certain that they continue to play a do-

minant role. In more complicated cases of still more degrees

of freedom, the recurrent motions, introduced in chapter VII,

are perhaps to be regarded as the appropriate generalization

of the periodic motions, and so likely to become of considerable

theoretic importance.

2. An example. The example alluded to in the preceding

section is concerned with the rectilinear motion of a particle

in a field of force of general type.

More exactly stated, we consider the motion of a particle P
of unit ma.ss which moves in a line subject to a force f{x, v)

dependent on its space coordinate x and its velocity v.t For

the sake of definiteness we shall assume that there is one

and only one possible position of equilibrium in the line of

motion, and that the motion under consideration is stable in

the sense that, for <> 0, a; and v remain limited in absolute

magnitude.

* It is conceivable that p, q are coordinates on a more complicated

surface, but we will refer only to tbe simplest case here.

t For an outline of the treatment here given see my paper, Stabilita

e Periodicity nella Dinamica, Periodico di Hatematiche, ser. 4, vol. 6 (1926).
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The usual form for the equation of motion is the single

equation

drxldt^ — f{xj dxidt),

where / is a known function which we shall assume to be

analytic in the two variables involved. On taking the point

of equilibrium at x ~ 0 we have further

/(0,0) = 0; /(a;, 0)4 0 if .^ 4 0.

Write dxidt -- y and replace the above equation of the

second order by the equivalent pair of equations of the first

order

dxjdt — ijy dy/dt = f{x,y).

These are clearly a pair of equations of the type to which

the existence and uniqueness theorems apply.

If we take x^ y as the rectangular coordinates of a point Q
in the plane, the possible motions of the particle coiTespond

to analytic integral curves, filling the x^ y plane, for which

dy/dx = j\x',y)ly.

The only point curve is the origin 0 which corresponds

to equilibrium. The other curves have everywhere a con-

tinuously turning tangent, since not both dxidt and dyidt

vanish except at the origin. Moreover it is only along the

X axis that the slope is

infinite.

Consider now the parti-

cular integral curve corre-

sponding to the given

stable motion. Let Qo (see

figure) be the point of this

curve which corresponds

to 0. For definiteness

we assume Qo to lie in

the upper half-plane; the

modifications in our statements necessary to make them apply

if the point Qo lies in the lower half-plane are obvious. Since
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(Ix/dt ^ y positive as long as the point Q on the integral

curve fails to cross the x axis, Q moves continually towards

the right as t increases from 0.

But by hypothesis the point Q lies in a square of sides

2M with center at 0 and sides parallel to the axes.

Hence, while t increases but remains less than any time

corresponding to a crossing of the x axis, which is also

increasing and bounded, must approach a limit x.

If t approaches a finite limit t as x approaches x, then

by the existence theorem the motion can be continued further,

but of course not with //>0 according to the definition of t.

Hence in this case y must be 0, and the curve crosses the

axis at (j;, 0). It is to be noted that x cannot be zero.

Else we should have two solutions, namely the given solution

' (0? :v(0 and also x 0, y 0, both of which satisfy

the initial conditions x 0, y — 0 at ^ -- i, and this

would contradict the uniqueness theorem.

If t approaches an infinite limit as x approaches j:, we
may show that (.r, y) approaches (0, 0). If possible suppose

the contrary to be true. It is apparent that, inasmuch as x
continually increases but remains less than M in absolute

value while y also remains less than M in absolute value,

the point (.r, y) either approaches a point {x, y), or a

strip (.7', y) where yo y < iji.

But this second possibility would clearly require indefinitely

large curvature x of the integral curve near (.r, ^o) and

ih), given by

V yW^y-YfyD—r

(where Jx,fy denote partial derivatives), and an indefinitely

small value of y* +/*. This necessitates of course that

Vo, Vi vanish, contrary to hypothesis.

Hence y must approach a value y as t approaches infinity.

Now clearly the arc length
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will become infinite with t unless {x, y) approaches (0, 0),

and indefinitely large arc length would also imply indefinitely

large curvature.

It follows then that either Q approaches the origin 0 from

the left as t becomes infinite, or that Q crosses the axis at

some point Qx = {xx, 0).

In this second case it is obvious that the point Q, on

crossing the x axis at Q,, starts to move to the left. By
the argument employed above, Q will either continue to move

to the left and approach O as t becomes infinite, or it must

cross the x axis again at Qt = fe, 0) for the second time.

The point must, however, lie on the opposite side of 0
from Qx in this case; otherwise /(xi, 0) and /(^s, 0) have

the same sign, and the point Q would move downwards

at Qi as well as at Qx. It is seen then that falls to the

right of (), and Qi to the left of 0.

In fact it follows always that Qx is to the right of 0, for

if Q lies to the left of 0, the particle cannot approach 0
after passing Qx since it then moves to the left. Thus a

point Qi would fall on the same side of 0 as Qx.

By repeating this argument indefinitely, we either arrive

at a finite number of crossings Qx>Qi. -,Qn, alternately

to right and left of 0, after the last of which Q appro-

aches 0, or we find an indefinite set of points ^i, Qi, •••.

Prom the analysis situs of the figure it is apparent that

the integral curve must either expand away from 0 towards

a limiting oval about 0; or must fom such an oval; or

must contract towards such an oval (like that indicated in

the figure); or contract towards the point 0 itself. Of course

the curve cannot touch or cross itself, by the elementary

existence and uniqueness theorems.

Hence we have the following types as the only possible

ones for a stable rectilinear motion of a particle in a force

field with single equilibrium position:

(a) The particle oscillates indefinitely often back and forth

past the equilibrium position with expanding amplitude, and

approaches a periodic motion asymptotically.
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(b) The particle oscillates periodically about the equilibrium

position.

(c) The particle oscillates indefinitely often back and forth

with decreasing amplitude and approaches a periodic motion.

(d) The particle oscillates back and forth a finite or an

infinite number of times and approaches the equilibrium

position.

(e) The particle is in the equilibrium position.

A very clear idea of all the possible motions of the particle

under an arbitrary law of force of this type is readily ob-

tained, on the basis of the above discussion.

Let us consider the ordered set of distinct closed curves

in the x, y plane corresponding to the periodic motions. All

of these must evidently enclose the origin which can properly

be regarded as the innermost curve of the set.

Any other curve of motion may lie between a pair of

the periodic curves in which case it will continue between

them always and so be stable. The particle then approaches

one of these enclosing periodic motions asymptotically as t

increases indefinitely and the other as t decreases indefinitely.

In the only alternative case the curve will lie outside of

the outermost curve of the set of periodic motions, and will

clearly be stable in one and only one sense of time t and

will approach the corresponding periodic motion asymptoti-

cally in this sense.

3 . The minimum method. Suppose now that we have

a Lagrangian dynamical problem,

SI ^ S V" Ldt --=
0,

w'here L is a function of the space coordinates Qi, •••, qm
and of the velocities q[, •••, g™, being quadratic in these

last variables. There is an integral of energy, namely

Li— Lo = const.

By adding an appropriate constant to Lo, we may assume

that the arbitrary constant vanishes for the given motion.
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We propose to simplify the given problem by making use

of the integral of energy which may then be written

Li— Lq ~~ 0 .

As has already been seen, it is possible to give an alter-

native variational formulation of the problem

dt -- 0

(see chapter II, section 3), in which the integrand is pos-

itively homogeneous of dimensions unity, so that the value

of the integral is independent of the parameter t employed

along the path of integration.

Now the underlying variables here are gi, • But it

is not important which particular set of variables is employed,

since an arbitrary one-to-one, analytic transformation does

not affect the validity of the variational principle. It is

important, however, to require that the sets of coordinate

values gi, •••, g^ form a certain analytic manifold M of

known connectivity. Accordingly we assume that the co-

efficients in L are analytic in gi, •• •, g^ over this manifold

when gi, ••., qm are properly chosen. Let us furthermore

assume that ArLoLt— L\, which is a homogeneous quadratic

form in the velocities, is a positive definite form. The

expression ds^ ~ Lq dt^ may be considered as the element

of arc on the Characteristic surface’ M.

Let I denote any closed curve in M which cannot be con-

tinuously deformed to a point. Here A/ is taken to be

multiply connected in the sense of linear connectivity.

Suppose further that under such deformation the integi^al I
taken around the curve I increases indefinitely if I does not

remain wholly on the finite part of the manifold, and also

that I exceeds a certain positive constant Iq for any choice

of L There will then be a positive lower bound for 1 along

these curves.

It is intuitively apparent that this bound will be attained,

and will yield a closed curve corresponding to a periodic
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motion. We shall not attempt here to enter any of the

logical details but merely to state the result.*

Oivm a Lagrangian dynamical, problem of this type with

L ~ Lq

L

i y

and such a circuit I not deformable to a point on the charac-

teristic surfacBj then, for the prescribed value c of the energy

constant, i. e., of

Ljq ' ~ c

,

there exists a periodic motion of the same type as I for which

/ =- (2 V{Lo + '(TX;^U)dt

is an absolute minimum.

If Li “ 0, so that the problem is reversible, the integral I
becomes the arc length s on the characteristic surface., and the

periodic motion corresponds to a closed geodcMC of the given

type.

In the case of two degrees of freedom (m -- 2), this minimum

method yields only those periodic motions of unstable type

for which the two non-vanishing multipliers are real.t Doubt-

less analogous results hold for any number of degrees of

freedom, and can be obtained by means of classical methods

in the calculus of variations.

If the energy constant c varies, it is almost obvious that

these periodic motions of minimum type vary analytically.

Here is an instance then of the analytic continuation of a

periodic motion with variation of a parameter (see section 9).

4. Application to symmetric case. There is one case

in which the direct application of the minimum method fails,

namely that in which there is no circuit I on the characteristic

*
Cf. my paper, Dynamical Systems with Two Degrees of Freedom^

Trans. Amer. Math. Soc., vol. 18 (1917), where the minimum method is

developed more fully, and the important antecedent papers by Hadamard,

Whittaker, Hilbert and Signorini are referred to.

t Cf. my paper (loc. cit), section 14.
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surface not reducible to a point. It is interesting to observe

that even here a slight modification of the minimum method

may be applicable. This will be possible in those cases when

the dynamical problem is ^symmetric/, in the sense that the

points of the characteristic surface may be grouped in distinct

symmetric pairs, such that 1 has the same value along any

curve and along its symmetric image. When this property

is satisfied and the co()rdinates gi, •••, qm of each point of

a pair are taken to be locally the same, then Lo, Li, are

also the same at symmetric points.

To illustrate the idea involved, let the surface M be thought

of as lying in ordinary space, and symmetric in the origin

(but not passing through it), so that if x, y, z are the co-

ordinates of a point ofM then — x, — ^ are the coordi-

nates of the symmetric point of M. Of course M is taken

to be connected and as having the properties previously

specified; in particular, M may be a convex surface symme-

trical in the origin. The integral 1 may be thought of as

ordinary arc length along a curve in the surface M\
Now suppose any closed curve ABCDA is drawn in M

such that ABC is the image of CDA^ with A and C as

symmetrical points. Let this curve I be continuously deformed

in any manner, but with the condition that it is always to

be composed of two symmetrical arcs ABC, CDA.
The integral I along I will then possess an absolute

minimum which will be attained along some curve of this

type. In fact we need only regard symmetric points as iden-

tical and consider I along the closed curve ABC on the

modified manifold M' so defined.

If a Lagrangian problem of this type admits of symmetry in

the sense specified, and if I is any symmetric circuit on the

characteristic surface M, there will exist a symmetric periodic

motion of the same type as I, for which I over any I is an

absolute minimum.

In particular let there be a closed m-dimensional analytic

surface with the connectivity of a hypersphere, which lies

in (m + l)-dimensional space and is symmetric in the origin.

9*
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The result above is at once applicable and indicates the

existence of at least one closed geodesic without multiple

points.

More generally^ if the Layrmigian problem of this type

admits of an analytic transformation, T into itself whose k-tli

iterate is the identical transformaiion^ and if I is a ciradt

invariant under T and not deformable to a point on Mj there

trill exist a periodic motion of the same type as L

5. Whittaker’s criterion and analogous results.

Hitherto we have dealt with Lagrangian dynamical problems

possessing characteristic surfaces M without any boundary

save at infinity. It is, however, very simple to extend our

results to the case when M has one or more analytic (m— 1)-

dimensional boundaries, provided that the unique short geo-

desic arc joining any ordered pair of nearly points within M
also lies within M\ A boundary will be termed V.onvex’ in

case it has this property.

In fact the minimizing curve in M is then either a closed

extremal, in which case it is obviously not tangent to any

of these boundaries and so lies within Af or it is composed

of a finite or infinite number of extremal arcs whose vertices

must lie on these boundaries of course. But, by the very

definition of the convex boundary, boundary vertices cannot

occur on the minimizing curve. In fact a short arc AVB of

such a minimizing curve with vertex at V can be replaced by

the shorter single extremal arc AB, which must lie wholly

withhi Af, This is absurd.

The surface AI^ defned in the preceding sectioJi, may he

ttssttmed to pos,sess any mimber of finite convex boundaries in

aadition to the possible boundaries at infinity^
without affecting

the existence theorems there obtained.

The original criterion of Whittaker referred to the re-

versible case of two degrees of freedom when Jlf was a

ring. Here the result obtained is that there is a periodci

motion of minimum type which makes a single circuit of

the ring.*

Cf. my paper, loc. cit., sections 10-13.



V. EXISTENCE OF PERIODIC MOTIONS 133

6. The minimax method. By means of the ‘minimax’

method it is possible to establish the existence of still further

periodic motions.

Perhaps the simplest illustration of the method is obtained

through the consideration of the geodesics on a torus-shaped

surface in ordinary three-dimensional space. Evidently the

minimum method explained above yields at least one closed

geodesic having the type of any closed curve on the torus

not deformable to a point. Now let a closed curve I be

moved in any way from this minimizing geodesic back to the

same position, while at least one of the two angular coordinates

increases by 2k7i. It will be necessary certainly to increase

the length of I during this movement of I, and there will

be a least upper bound of length I*, necessary in order that

the movement be possible. At some intermediate stage then

the varying curve will actually be of this length and will

be taut. This position of I corresponds to a closed geodesic.

Clearly it is not possible to deform all nearby curves of

length less than I* into one another or I* would not be the

minimax specified. This property is characteristic of geodesics

of minimax type.

The above treatment is intuitive. However a rigorous

treatment can be given.t

More generally we are led to the following conclusion:

A Lagrangian problem restricted as in section 4 and loith

A: > 1 periodic motions of minimum type associated mth a

closed curve I, will necessarily possess at least k— 1 further

periodic motions of minimax type associated with this same

circuit.

If we omit consideration of all exceptional cases and use

an intuitive form of reasoning, this more general principle

may be made plausible as follows. Let f, •••,Tk be the

values of the integral I along the k periodic motions of

minimum type which are known to exist, and let I* be so

large that it is possible to deform a curve I from any one of

t Of. my paper, loc. cit., sections 15-19, for a development of the

minimax method in the case of two degrees of freedom.
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the corresponding curves k, h into any other without 1

becoming as large as J*. For definiteness let us suppose

that lu -
, Ik are in increasing order of magnitude.

Let u be a variable parameter and consider the closed

curves I of the given type for which 1 < u. For m < 7j (the

absolute minimum) there are no curves but, as u increases

through 7i. closed curves not differing much from the curve

for 7i are admitted, and the more u increases the more

extensive the variation of I about the curve for I may be

with 1< H. Similarly as u increases through 7* a new

isolated set of curves I in the neighborhood of the curve

for li come into existence, for which 1 n. And as u

increases finally through Tt a last A-th set of curves comes

into existence about the curve for 7/,.

Now as u increases some two of these k sets of curves

may unite, i. e. it becomes possible to deform a curve I from

the curve for one J,, into a curve for 7^. There will then

be a least value of ?/ for which this is possible, and a corres-

ponding periodic motion of minimax type. Each time that

such a union takes place the number of sets of curves I

with 7 - ^ u is diminishes by 1

.

But when ?< - 7* there is only one common group, so

that k— 1 unions have taken place. This is what we desired

to prove.

It is not difficult to show that, unless the periodic motion

of minimax type is multiple, only two sets of curves can

coalesce at one of these critical values of u.

When the characteristic surface admits of discrete trans-

formations into itself, an exceptional case arises in which

the periodic motions of minimum type are to be counted

more than once. This is the case of the torus alluded to above.

It is also of interest to observe that when a curve I is

regarded as described k times, Ac> 1 ,
the motions of minimum

type remain so, but the motions of minimax type associated

with them will not be the same as in the case A: = 1 , but

will be distinct from these.

The general situation here requires further study.
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7. Application to exceptional case. The case of the

m- dimensional Lagrangian problem when the characteristic

surface can be set into one-to-one analytic correspondence

with the hypersphere is of exceptional interest, but the mi-

nimax method outlined above is not directly applicable since

there are no closed cun^es I, not deformable to a point,

from which to start. Nevertheless the existence of a periodic

motion of minimax type may be established.

In order to make the reasoning as concrete as possible we shall

direct attention to the reversible geodesic problem, although it

is clear that the reasoning applies equally well for a Lagrangian

problem of the kind treated in the preceding sections, with

characteristic surface homeomorphic with the hypersphere.

Our first step will be to define what is meant by a ‘covering’

of the surface. In the case of a two-dimensional surface let

the surface of the sphere be set into one-to-one analytic

correspondence with the given surface. The small circles

on the sphere in planes perpendicular to some axis are

evidently carried into a set of closed analytic curves covering

the given surface, two of these being point-curves. Thus

we may conceive of the spherical surface as being distorted

analytically to form a covering of the given surface M by

means of this set of closed curves. The points of the covering

can then be .specified by two angular coordinate functions 6, f
on the surface where 6 and y represent colatitude with respect

to the given axis and longitude respectively. The given

closed curves correspond to — const., while f varies from

0 to 27t. The coordinate 6 ranges from 0 to tt only, with

the two extreme values corresponding to the point curves.

Now conceive of this covering as continuously deformed.

This means that each point of the covering is carried by

continuous variation into nearby points, while the curves of

the covering go over into new curves. It is obvious that

such a covering wrill always actually cover each point at

least once and cannot reduce to a point.*

* The suggestion for a proof may be found in a footnote, p. 246 of my
article, loc. cit., and this proof extends readily to the m-dimensional case.
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Similarly for the m-dimensional case, we introduce a system

of small circles on the hypersphere

••• + 4+1 == 1

,
• • • . ifm+i rectangular coordinates) with equations

•^8 ” > ’
•^''<‘+1 ^ 4 + 1 ' ajJ+ r* — 1 a

j ^ ,
.

Here the null circles of the set are in one-to-one, continuous

correspondence with an {m — l)-dimensional hypersphere.

The image of this system of circles leads to an analytic

covering of the given characteristic surface M. The points

of the covering can then be specified by suitable coordinates,

and we may conceive of the covering as continuously varied.

It is obvious that such a covering will always cover each

point of M at least once.

Now there is a maximum length L* for any image of

a circle, and there can be selected a distance d such that

two points at geodesic distance not greater than d from each

other in M are connected by a unique minimizing geodesic

of length S <id. Let n be the positive integer such that

^ 'd -
^ A!

n ^ «— 1
'

On the image of any circle select the point Pi as the point

which corresponds to 5P = 0 and divide the curve into n arcs

PlP2,P8 P8 , PnPu

of equal length < d. Let a point Qi move from P* to P,+i

(P»+i = Pi) on each such arc in such wise that each arc

is constantly divided propoilionately. Consider the short

geodesic arc Pi Qi and the arc Q, P<+i of P, P<+i during this

process. At the outset the combined arc is P<Pt+i while

at the conclusion it has been varied continuously to the

geodesic arc PjPf+i.
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In this way we see that it is possible by continuous

vaiiation to replace the covering with the given images of the

circles by a covering of closed curves made up of geodesic arcs

Pi • • • P„ Pi . Furthermore it is clear that the maximum length

of any curve of the new covering cannot exceed L*, while the

maximum length of any component geodesic arc is less than d.

This constitutes our fii-st step in a sequence of continuous

variations of the given covering. The second step is to

divide each curve of geodesic arcs in n equal parts starting

with the midpoint of P, P*. Thus points Qi,---,0» are

obtained, and a second modified covering made up of geodesic

arcs QiQi. • •

, QnQ\, each of length less than d, while the

closed curves are of length less than L*. The modification

can be affected by essentially the same device as before.

The process of successive w-section and variation thus com-

menced can be indefinitely continued. At each stage the

individual arcs are of length less than d, and the total length

of each curve is less than L*. Furthermore the effect of

each step is to diminish (or at least not to increase) the

length of the curve.

It is conceivable that some of the intermediate curves

reduce to points during the process, but this would in no

way invalidate the reasoning here made. However it is not

possible that the maximum length of every curve becomes

less than d. This may be seen readily. In the contrary

case the curves Pi • • P« Pi of geodesic arcs of the corres-

ponding covering can all be reduced to point-curves as

follows: let each point Q move toward Pi along the unique

short geodesic joining it to Pi ,
in such wise that proportional

parts of this distance are simultaneously described by every

point P. In this way the m-dimensional covering becomes

(m— l)-dimensional at most, and so cannot passthrough all

points of M, which is absurd.

In connection with this last step it should be noted that

the process adopted leaves the set of points Pi an analytic

(«i— l)-dimensional manifold at each stage, so that no difficult

point-set questions connected with dimensionality arise.
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We infer that the maximum length Lp at the j?-th stage

diminishes as p increases, and approaches a positive lower

limit Ly-d.
It is now easy to prove that any corresponding sequence

of geodesic arcs

p(P)...p(fp(p) (p==l,2, •••)

for which the length is this maximum Lp will contain a closed

limiting geodesic of length L. In fact we shall be able to

establish this fact at once on the basis of the following lemma

:

Lemma. If any closed curve of n equal arcs P1P2, •••, PnPi
each of length ^ d, and of total length ^ d, is modified to

the curve of geodesic arcs Pi Pn Pi

,

and then to the

series of geodesic arcs Qi •
• Qn Qi joining the midpoint

Qi of Pi Pi with the points Qu, Qn of n-section, and if

the exterior angle between the geodesics PiPi+i at some

vertex exceeds d>0, then the difference between the length

of the initial and final curve exceeds a specifiable positive

constant dependent only on <5.

In the first place we note that the two steps each decrease

total length. Hence the proposition will certainly be true

unless the first step changes the total length only very

slightly. Since n is fixed one for all, this means that each

geodesic arc PiPi+i is substantially the same in length as

the original arc Pi Pm . By Osgood’s theorem in the calculus

of variations, the ori^nal arc must be very near to the

modified geodesic arc, and these latter arcs are nearly equal

also. Hence the points of Qi of n-section of the geodesic

arcs fall very near to the points half way between the points

Pi of w-section on the original curve. In consequence it

appears that if the exterior angle at any .P,>i exceeds a

specified d the sum of the geodesic arcs Qi P,+i and Pf+i Q,+i

will exceed the geodesic arc Qi Q,+i by a specifiable positive

quantity. This would lead to the desired conclusion.

Thus an outline of the proof has been given. Obviously

the proof is of such a character that a full statement of all
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the questions of uniformity involved would be lengthy,

although the outline sufficiently indicates the general direction

of procedure.

On the basis of the lemma our discussion is at once

completed. In fact the lengths of the sucessive curves

specified would decrease indefinitely often by a specifiable

amount unless the exterior angles at the vertices of the

geodesic arcs approach 0 uniformly. Hence these exterior

angles approach 0. Put the jjoints e at least one

limit point P, and the directions of the geodesics have a

limiting direction, so that there is a limiting geodesic which

is cl(;arly closed and of length L precisely.

If the yn-dimemional characteristic mirface M is homeomorphic

rrith the m-dimensional hyperspliercy there exists at least one

periodic motion nhtained hy the process specified, above.

It is natural to expect that such a motion is of minimax type,

but we shall not attempt to establish this conjecture here.

In the simidest case of two degrees of freedom this conjecture

holds true.

8. The extensions by Morse. The methods of minimum

and minimax suffice only to give certain of the periodic motions.

Remarkable recent work by Morse* indicates with a high

degree of probability that all of the types of periodic motions

can be discovered by suitable extension of these methods,

based on a deeper use of the principles of analysis situs.

Moreover the number of periodic motions of the various types

(the minimum and minimax types being the simplest of a

series) are characterized by certain interrelations discovered

by Morse, although so far only explicitly developed by him

as to apply to dynamical systems with two degrees of free-

dom in the neighborhood of a periodic motion.

9. The method of analytic continuation. The method

of analytic continuation of Hill and Poincare starts with a

* See his paper Relations Between the Critical Points of a Function

ofn Independent Variables, Trans. Amer. Math. Soc., toI. 27 (1925), and a

forthcoming paper, A Theory of the Ordinary Problem of the Calculus

of Variations in the Large,
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known periodic motion and then obtains an analytic continu-

ation of it with variation of a parameter c.

For the sake of definiteness we consider a system of

Hamiltonian equations

d Pi 9 II

dt dqi
^

dqi dH
dt dpi

(i 1 ,
• •

•
j
wi)

,

in which H is analytic in pi, , qm, t, c, and periodic in t

of period 2n. Furthermore we suppose that the origin is

a point of generalized equilibrium for c = 0.

By proper preliminary linear change of variables of the

type made in chapter in, section 6, we may take H in the

normal form
m

H = -

for c = 0, in case ^i, • are distinct.

Now the general solution, of the given system may be

written

Pi = PiiPv- -^ Qmi ^ ^ iPv •
• •> ^ c)

for i — 1, m, where p\,---,q^^ denote the values of

Pi, Qm respectively at < = 0.

The condition for periodicity is then contained in the system

of 2m simultaneous equations

PiiPv •
•

•
» C 2 ^, () =- P% qiiPv • •

•
, C 2 ^, c) •= 3i

0 = 1, • m).

Here all the variables are involved analytically as was
established in chapter I. But this system of equations admits

of the solution

p'l
- ••• ql = 0

for c = 0, by hypothesis. Hence there will be a unique

solution p\, analytic in c, provided that the functional

determinant
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9jp,
1

9j)i

’ 9pr
9 Pi

9p»

9 qm 9 Qm 9 Qjn

9j>r

does not vanish for t ^ 2n, c = 0. But the 2m functions

^vV
'

(i = 1, -
• m) form m solutions of the equations of variation,

as do also

9 V\

9?r

{i 1, w). In addition these reduce to 0 at < = 0,

except for 9p/9p® and 9qJdq^ which are 1 for — 1, • • •, m.

The known nature of the terms in H for r = 0 yields as

equations of variation

dyildt — ^iyi, d'zildt — I, Zi (i = 1, • •
,
wi),

where iji, Zi correspond to jtn qt- Hence the solutions above

are of the following explicit forms

0
,

0

0

0
, 0

,

—A,,/

where the only non-zero elements are the diagonal terms,

namely

Consequently the determinant written above reduces to

m
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and cannot vanish unless some is an integral multiple

of V~L
Under these circumstances then we have an analytic family

of solutions

Piit, c), , qm{t, r),

periodic of period 27i in t, as we desired to prove.

These restrictions may be notably lightened. In the first

place, when not all the multipliers are distinct,

a similar normal form of solution exists. For example, take

Ai — Ag, while taking distinct from each other

and Ai, In general the first and second solutions now have

the forms

0
,

0 ,..-, 0 ,

te^'\ 0, 0,

and the (»n+l)-th and (w+ 2)-th solutions likewise

0, e~^'\ 0, • 0,

ter'^'\ 0, •••, 0

respectively. If the first and second rows are interchanged

as well as the {m + l)-th and (m + 2)-th rows, it appears

that the final determinant will have vanishing elements on

the lower side of the diagonal and will not itself vanish

unless some U is an integral multiple of V— 1 .

This is an entirely general result, namely that analytic

continuation is possible so long as there is not a multiplier li

which is an integi’al multiple of — 1 .

But such a multiplier indicates neither more nor less than

the presence of a solution of the equations of variation with

the period 2 nr of the given motion.

Let us define the generalized equilibrium point as ‘simple’

when there is no solution of the equations of v ariation with

the period of the generalized equilibrium point, and other-

wise as ‘multiple’.

Analytic continuation of the generalized equilibrium is possible

so long the equilibrium is simple.
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By a change of variables

Vi — Pi il, c) + 1\, qi — qi {t, <) -\-Qi {i — m),

we obtain modified Hamiltonian equations

dPi dH* dQi dH*
,

,^ —0^r
’

“avr
where

m
H* ^ Zii6Qj~-qj Pj)-

These are of the same type as before, but have a generalized

equilibrium point at the origin for all small values of c. We
have written p'i , q'i for the time derivatives of pi{t, e), qi {t, c)

respectively.
*

The formal series solutions of a system of this type will

of course also involve the parameter c. It is formal series

of this type which are often useful in the applications; and

the vanishing of the parameters such as c may correspond

to a special integrable case of the dynamical problem when

the periodic motion from which we start admits of explicit

determination.

10. The transformation method of Poincarfe. Some-

times a dynamical problem can be given a striking change

of form. In fact the solutions of n differential equations of

the first order, with right-hand members independent of the

time t, can be represented by the steady motion of an «-dimen-

sional fluid, of which a moving point has the dependent

variables as coordinates. Now suppose that a closed, (n— 1)-

dimensional, analytic surface S can be constructed in this

‘manifold of states of motion’, such that every stream line

cuts 8 at least once within any fixed interval of time r,

sufficiently large, and always in the same sense. Then 8 may

be called a ‘surface of section’. If a point P of 5 be followed

along the stream line through P in the sense of increasing

time, it intersects 8 again at a first subsequent point Pi.

Thus there is defined a one-to-one, direct, analytic trans-
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formation of the surface of section into itself, namely the

transformation T which takes each point P into the point Px .

In this manner it may be possible to associate the given

dynamical problem with a discrete transformation Tof a closed

(« — l)-dimensional surface into itself. Properties of the

motions are then mirrored in properties of T. For example,

the periodicity of a motion represented by a closed curve

in the manifold of states of motion meeting aS’ in P, P,, •••, P^-i

is reflected in the symbolic equations

P =- T{P), P, r(P,), - -,P - P(Pfc-i),

so that P, Pi ,
. • • , Pfc are all invariant points of S under

the Pth iterate of T. Conversely, if P is so invariant, there

is a corresponding periodic motion, represented by a closed

curve meeting S in the k points P, T{P), •••, T’^~^{P).

A surface of section in this sense will only exist if there

is an angular variable f in the manifold of states of motion

which may be so defined as to constantly increase along

each stream line. The necessity of this condition may be

seen as follows. If a surface of section S exists, let 7' be

defined as 0 on this surface and as 2 nth at any other

point P, where t is the complete time interval necessary to

pass from S to 8 along the stream line on which P lies.

Evidently <f is an analytic function of position which increases

along every stream line by exactly 2n between successive

intersections with 8. Hence an angular variable f exists.

Conversely if such a variable f exists, then y -- 0 will

yield a surface of section.

A necessary and snfficient condition for a closed surface

of section is the existence of an angular variable f in the

manifold of states of motion which constantly increases along

every stream line.

More explicitly stated, there must exist a differential

inequality
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in which <2>» satisfy integrability conditions,

d0 i _
9 Xj 9 Xi

{i,j 1, •• •, n),

and Xij • Xn denote the right-hand members of the differ-

ential equations as usual.

An extremely interesting type of surface of section possessing

boundaries can be found in certain dynamical problems. Here

the boundaries of S are closed analytic (n— 2)-dimensional

manifolds of stream lines, and every stream line not on these

boundaries of S cuts the interior of aS at least once within

any interval of time t, sufficiently large, and always in the

same sense.

In the case n -- 3, the surface of section is two-dimensional,

and its boundaries may then be the closed curves corres-

ponding to a single periodic motion. Now in the case of

a Hamiltonian or Pfaffian dynamical problem with two degrees

of freedom, the use of the energy integral reduces the order

to n 3. For such problems there seem in general to exist

surfaces of section, as will appear in the next chapter.*

The example of the next section illustrates the possibility

of such a surface of section when there are more than two

degrees of freedom, In such a case, however, it is necessary

to make use of an (n— 2j-dimensional, analytic, closed surface

made up of stream lines, such as do not appear in general

to exist.

Another case of very decided interest is that of an open

analytic surface of section such as Koopmant has obtained

in the exterior case of the restricted problem of three bodies.

It IS evident in all of these cases that hy the reduction to

a transformaiio7i prohlemy the determination of the periodic

motion is made to hinge njion that of the invariant points

of a surface of section S nndef^ a transforniatiofi T and its

itej'ates.

*
Cf. my paper, loc. cit., sections 22-29.

t On Rejection to Infinity and Exterior Motion in the Restricted

Problem of Three Bodies, Trans. Ainer. Math. Soc,, vol. 29 (1927).

10
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II. An example. An example showing that such surfaces

of section may exist for Hamiltonian problems of more than

two degrees of freedom is afforded by the following dynamical

problem:

A particle P in a conservative field of force in space

moves in such wise that the force has always a positive

component towards a fixed plane for points outside of that

plane.

Here the equations of motion form a system of the sixth

order and may be written

dxldt = dy/dt y, dz/dt : - ,j',

d.r'Idt
--- — dUjd.r, dy'/dt •' —dUldy, dz'/dt -- —dU/c :,

where x, y, z are the rectangular coordinates of P in space,

and where z — 0 may be taken as the fixed plane. Also

dUidz has the same sign as z, so that

dU / dz iz

where A is a positive analytic function of x, y, z. The inte-

gral of energy may be written

\{.r- +y" +z^-)+U : . 0,

provided that we absorb a suitable constant into U. Thus

we restrict attention to the totality of motions satisfying

this last relation, thereby reducing the system from the

sixth to the fifth order. We shall consider only the case

in which the surface V “ 0 in space constitutes a closed

simply-connected surface intersecting z - 0 in an oval, with

C/ < 0 within the surface. The particle is then necessarily

restricted to lie in the region U < 0.

The five-dimensional manifold M of states of motion con-

sists of the sets x, y, z, x'
,
y'

, z', subject to the integral

relation. The selected surface of section S will then be

the four-dimensional part of M for which z vanishes with

z' = dz/dt>0. The three-dimensional boundary z — z' — 0
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of S is evidently made up of stream lines, since a point

^ 0 for any value U of t remains always of this

type.

Now the differential equation

shows at once that £ vanishes at least tuice in an interval

of time T sufficiently large, but cannot vanish twice in an

arbitrarily small interval of time. Hence a j)oint of S followed

along its stream line in the manifold of states of motion will

cut S again within an interval 2t of time, and always in

the same sense, since for ^ 0 we have d^/ rl f ' 0 within S.

Evidently there is thus set up a one-to-one, analytic trans-

formation of points within into themselves. Furthennore

for z' small, we have nearly

,r
- 0,

where ./, y are the coiirdinates of the motion in the plane

near the given motion. Hut the particular solution of this

equation for which z ^ 0 at ,r Xq, ij ^

y ya, with

i-W + ?/) + //(.7o, 0) - 0

of course, vanishes at .ti, ?/i, .ri, with

‘ (.*•;* f </(*) [ ?/.,()) 0.

where ;ri, yi, aa, y[ are evidently analytic in 2/0 , .ri, yo.

It is thus seen that the transformation T of S into itself

can be regarded as one-to-one and continuous even along

the boundary of S, provided we define T as taking the

point

•^Oj VOy 2/Oy 0

10*
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of S into the point

yu 0, y'h 0.

We propose to show by means of this reduction to a trans-

formation problem that there always exists a periodic motion

intersecting the plane z =0 twice, unless there is a multiple

periodic motion lying in the plane z = 0.

In order to do this, let us consider the connectivity of the

surface of section S. Evidently we may change the variables

X, y to x,y so that the oval z - = 0, becomes the circle

x*-\~y^ 1.

Jf then we write

U = p{x, y) (x* + y*— 1)

with p>0 within this circle, and if we write further

x' Vpx', y' ~
y'i) y', z = Vp z',

the equation for S takes the form

4- y'"+ 2^''+ 'x*+ y* 1 (i' ^ 0)

which may be written

z (1 — X — y —

X

— y ) .

Hence the interior and boundary of S are in one-to-one,

continuous correspondence with the interior and boundary

of the four-dimensional hypersphere

1-

The transformation T defines a one-to-one, continuous,

direct transformation of this hypersphere into itself.

But, by a well-known theorem due to Brouwer, such a trans-

formation leaves some point invariant. In the problem at
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hand, we conclude that a periodic motion exists which inter-

sects z ~ 0 twice, (case of an interior invariant point), or

else a periodic motion e — 0 exists (case of an invariant

boundary point). But this last case is that in which the

equations xi ~ xo, yi~ yo, = xq, y'\ — yi obtain. This

clearly means that the equations of variation possess a periodic

solution along this plane periodic motion in which the

z component is not 0. Hence the periodic motion is multiple,

and, in a certain sense there is still a periodic motion in the

infinitesimal vicinity of — 0, intersecting z — 0 twice. It

seems highly probable that an actual periodic motion inter-

secting z — 0 twice must exist in all cases.



CHAPTER VI

APPLICATION OF POINCARE’S OEOMETKIC THEOREM

I. Periodic motions near generalized equilibrium

(wi —- 1). Poincare’s last geometric theorem and modifications

thereof* yield an additional instrument for establishing the

existence of periodic motions. Up to the. present time no

proper generalization of this theorem to higher dimensions

has been found, so that its application remains limited to

dynamical systems with two degrees of freedom. It is our

aim in this chapter to give some of tin' fundamental ideas

involved in the theorem and its application.

It will be remembered that motion near to a periodic

motion of a Hamiltonian or Pfaffian system, with m degrees

of freedom and not involving tin; time e.xplicitly, can be

reduced to that of a similar system with only m— 1 degrees

of freedom but with an independent variable involved of

period 2/r. Here the periodic motion itself ai)pears as general-

ized equilibrium. This reduction is accomplished by means

of an analytic device (chajiter IV. section 1).

In the present section we shall take uj) the (|uestion of

the existence of motions with ])eriod 2/. /f near the position

of generalized equilibrium foi- a single degree of freedom.

We shall prove the existence of infinitely many such nearby

periodic motions in the general stable case by a process of

reasoning which, wdiile not employing Poincare’s geometric

theorem explicitly, is piecisely that which establishes the

theorem in certain simple cases. Later (section 3) these

results are interjireted with reference to the original dynamical

problem with two degrees of freedom.

’•'See ray paper, An Extension of Poincare’s Last Geometric Theorem,

Acta Mathematica, vol. 47 (1926).

150
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Let the single pair of variables be p, q, so that the

Hamiltonian function H involves p, q, f, being periodic in t

of period and vanishes at the origin p - q -= 0, together

with its first partial derivatives, for all values of t.

If then (po, qo) is any point near to the origin, there is a

unique solution

P fipo, t), q qipn, q„. f)

which for t 0 takes on the values po, qo, and which is

analytic in po, qo, t for t arbitrarily large and po, qo suffi-

ciently small. Let p,, q, denote the values of p, q after a

complete period 2ti. Evidently we have

Vi ./'( /A). ^0 ,
Stt), q, ff(p„,qo,27T)

where ,/' and are analytic in po, q,,, and vanish with these

variables.

In this way a transformation T is defined, of the same

nature as the transformation of the surface of section obtained

in the preceding chapter (section 10). For if we write r = t,

the pair of Hamiltonian equations may be replaced by the

equivalent set

dp d H dq d H d

r

df dq ’ dt dp' dt
'

in which H is a function of p, q, r of period 2n in r. Here

the manifold of states of motion is the three-dimensional

p, q, r space in which the r axis represents a periodic motion,

namely that corresponding to generalized equilibrium; it must

not be forgotten that r is an angular variable. Now 9 r --=0

will serve as a surface of section according to our earlier

work, although here we ai-e limited to a certain neighborhood.

A point {po, qo, 0) in this surface of section is taken along

its stream line to {p,, qi,2n), i. e., to {pi, q^, 0). Thus the

transformation written above is indeed a transformation T
of a surface of section S which is, however, only locally

defined. Such ‘local surfaces of section’ can of course be
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constructed near a periodic motion in any dynamical problem

by merely taking an element of surface which intersects

but is not tangent to the corresponding stream line in the

manifold of states of motion.

Now the fluid motion defined by the above three equations

is that of an incompressible fluid, since the divergence of

the right-hand members is 0. Consequently if we follow any

tube of fluid made of sections of stream lines between the

parallel planes r = 0 and r == 2-t, which will move constantly

with unit velocity in the r direction, we infer that the loss

of volume at one base in time jMs nearly (obi area

of first base), while the equal gain at the other is nearly

Oi At (0i ,
area of second base). By allowing A

t

to approach 0

we infer that ffo = a,.

Since Oq is an arbitrary area in r =- 0, it is clear that T
must be an area-preserving transformation of the variables

Po , 2o • This important property of T corresponds to a general

property of the surface transformations associated with

dynamical problems.

It is necessary now to state the conditions to be imposed

upon the generalized equilibrium, with the aid of which the

conclusion stated may be established.

We assume in the first place that the generalized equilibrium

is of general stable type, and therefore completely stable.

The significance of the normal form (chapter III, section 9)

is that the solution may be written

p = po 4- q == tp

in properly cnosen conjugate variables _p, q. Here ©, are

given as convergent power series in po, So with initial terms

of arbitrarily high degree 2p-f 1, and with all coefficients

analytic functions of these series converge absolutely and

uniformly for any fixed range of values for t, such as |f| ^ 2nr,

when po, go are small. The function M can be taken as

a polynomial o^ degree not more than p in the product

Po go, with pure imaginary constant coefficients, of the form
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A+ (7o -f • •
• + sp^},

with A the multiplier. By the hypothesis of stability ^ / V— 1

is not rational, and in particular is not 0.

Our second assumption is that I is not 0. In case I vanishes

but some other coefficient in M is not 0, essentially the same

argument would apply. Thus the only case of failure is that

in which the formal series M in the complete normal form

reduces to a mere constant A. This is a highly degenerate

case, and actual examples can be constructed to show that

an analogous conclusion cannot then be drawn.

The normal form gives a means of studying the trans-

formation T. The property of the transformation T necessary

for our present purposes is embodied in the following lemma

whose proof is deferred to the next section;

Lemma. For i 4^ 0, upon suitable choice of the variables

p, q, the positive quantity e may be taken arbitrarily small,

and then the integer n so large that any transformation T"
(p < n) takes the circle r s about the invariant point

r ~ 0 into a region within the circle of radius 2s, while

the angular rotation effected by 7”* increases from nx/l^—

1

with r along any radial line for r < e, being at least 2;r

greater for r - s than for r — 0.

Let r, 6 be polar coordinates and let (7„, d„) denote the

iterate of (r, 6) under T", where the rectangular coordinates

p, q, the radius e, and the integer n are selected as in the

lemma. For any fixed do the difference d„ — do "ill then

increase from n A/ V— 1 at r - 0 to a quantity at least

2 71 greater at r s. Hence there will be a unique solution

of the equation

dn — do — 2kn

along a fixed radius vector, where 2k 7t is the least integral

multiple of 271 exceeding nX/V^— 1. Hence the analytic

curve C given by this equation is met once and only once

by each radius sector.

Now let us consider the image Cn of this curve under the

transformation T"; the curve Cn intersects C at some point Q,
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since if Cn is wholly within C or outside C, would not

be area-preserving in the original variables. The point Q is

obtained from some point P, also on (7, by the transformation T^,

Moreover P and Q have the same by definition of C, Thus

P and Q must coincide, and P is invariant under T”. Since

€ is arbitrarily small, we obtain the result stated:

In the case of generalized equilibrium of general stable type

for a Hamiltonian problem with one deyree offreedom (/ 4 0),

there exist infinitely many periodic motions in the vicinity,

2. Proof of the lemma of section i. Let us define

F{n) by the equation

luF\u) - M{n)- I,

It is clear that POO is the square root of a real polynomial

of degree y — 1 and constant term 1. If then we write further

- F{i)q)p, q = F{pq)q.

it is found that the above normal form for T is further

simplified and may be written

so that all of the terms of M except the first two disappear.

AVhen the associated real variables are introduced, and

we let a and s denote the real constants 2ni./V— 1 and

2n.VV— 1 respectively, we obtain formulas defining T,

p, - P^ cos (<T+ 5 — q^ sin (a+ s r^) + P (/-g = pi + ryj),

( 1 )
-- sin + srg) -f ^QC0S{tr4- srj) + Q,

where P, Q are real power series in po, qo with initial terms

of degree 2/i + l at least. It is apparent then that with

these variables T is an ordinary rotation through a variable

angle except for terms of order 2/tt+ 1 in the distance

from the origin.. It is such a choice of variables that will

be adopted. If ^ ^ 0, we may take s as positive.
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Hence we have, in some fixed neighborhood of the origin

and for a fixed K.

(2) \P\, \Q.'

From the above formulas we find at once

(3) j'l - ra-\- R,

where the series R begins with terms of at least the degree

2/< + 2. This gives, for the increment An - ri— n,

(4) \An\<LrT^^

where L is a fixed constant.

From (4) it is seen that n increases less rapidly ui)on

successive iteration than if

dn f dn — L
But this yields

?•„ ro/(.l — L ft ri'^

.

Hence r„ can only incresise to twice the initial value ro

after n I: v iterations; where

Lfi r =- (1—2"*'')/
/-o’".

that is for 7i of at least the order of r~-f\ Likewise /„ can

only decrease to half the initial value for n of the same

order. These results may be combined in the form

(5) I
< nJn <2 {n <

This is our first important conclusion.

Likewise since we have from (1)

g] Po go (po+ go) sin (o'+ gyo)4-po^— gpi^

PiPo + gi go, (po+ go) cos (o'+ sro) + go Q +Po P
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it follows that we have

(6) Oi flo + 4- ><ri |- W

where 0 is a power series in >o beginning with terms of

degree 2/* at least, with coefficients of simple trigonometiic

type in 0o- Moreover 0 is uniformly and absolutely con-

vergent for >0 sufficiently small, and its partial derivatives

are given by derived series of a similar sort. This formula

shows that for ro 0, we have 6»„ 6o -f- n a, while for

>0 > 0, the difference 6,i— — no can be made arbitrarily

large by taking n sufficiently large but in the range (5).

By the aid of (3) and (6) we obtain

(7)

-1!
I
9 Co

:

I
9 Co I

i At

--
' '

i, 9 Cl !

"9 C„
I

\dd,

,
dOo

-li -lc^

where we have written and where A is a suitably

chosen positive constant.

But the identities

9c« 9Ch 9 Cn- 1

1

9?,, 9 On-l

9 Co 9C«-r 9 Co 9 9 Co

d_e^ 9Cn-l ,

9Co

94, 9 -

1

9 Co 9c« -1 9 0»-i 9 Co

may be written

(1 f ^j) ^^w-1 + /’n-b

Vn (s +A3)^/n-l+

in which we put

Un dOn/dQo, Cn dOjd()o,

while, by (5) and (7), for n ^

1

^
4 !
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These equations (8) enable us to determine 'Wn, i?n in suc-

cession for n 1; 2. •
. with the initial conditions wo 1?

f'o 0.

Suppose now for a moment that the small terms be neglected

in these equations (8). They then take the form

U}i Un \- Vn SUn i f" Tn— ]

,

whence, by elimination of w, we obtain

Vu^ 2 ^ Vn-i 1 I'n 0.

It is easily verified that the complete result of elimination

yields similarly

(9) i" T/i ^5 A Vn 4“ ^(5 (hi ^

in w^hich we have

00) ifj', {n-^ Nq^h

within a small region about the origin. Furthermore, the

initial conditions may be written

(llj 0. +

where denotes the value of when are replaced

by (>o, ^0 respectively.

It is obvious that is positive and thence, by

use of (9), Vi, V3 . • • are also positive for n = 1, 2, • • • until

H becomes large if po is small enough, the approximate value of

v„ being ns. We desire to obtain a more definite idea of the

range of values for Po and n for which Vn remains positive.

During this range the angular variable 0 ,, increases with Vo,

for a fixed angle do-

Now the equation (9) is a homogeneous linear difference

equation of the second order in Vn, and we are considering the

particular solution satisfying (11). Evidently vn will remain

positive so long as Avn continues positive. A first question

is then to determine the range of values of n throughout
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which both and \ Vn necessarily remain positive. But the

linear difference equation yields

A* I'n ^ [! 4 , + I ,

so that clearly Vn and ii;„ diminish less rapidly than if

—^Qo +

while i'n and Ai'n remain positive. Thus Vn and Avn will

remain positive for = 1, 2, - at least as long as for the

solution of the linear difference equation of the second order

with constant coefficients

»'W2
-- (2 — + = 0

satisfying the initial conditions (11). But this solution is

. p 1 .

where «i, «g are defined by the equation

a -- 1,2).

But Vn and Avn as thus determined will certainly remain

positive until dvnidn vanishes, i. e.

(a - a_)n /

e * ’ -- «*/«!.

Since the leading term in «i— is clearly

2

while the leading term in ag / «, is — 1 , this relationship

shows that n must be of the reciprocal order



VI. POINCARE’S GEOMETRIC THEOREM 159

Hence we infer that so long as n < (compare

with (5)), the angle Bn will increase with ro for fixed Bo in

the prescribed neighborhood.

The nature of the inequalities derived above makes it clear

that we can select a value of ro so small, and then of n

so large, that the conditions laid down in the lemma are

satisfied.

3. Periodic motions near a periodic motion (m — 2).

We have already seen (chapter IV, section 1) how the general

Pfaffian system in which the time t does not appear explicitly

admits of a reduction to a similar system with one less degree

of freedom, provided that we are considering motions near

a given periodic motion. In the reduced equations, however,

an angular variable of period 27i appears in the differential

equations, and the given periodic motion takes the form of

generalized equilibrium.

In this section we propose to consider the periodic motions

near a given periodic motion for the special Hamiltonian

case (m - 2)

(13)
dpi _ dH dqi _ 9H
dt dqi ’ dt dpi

in which H is an analytic function of joj
, 71 , pt, qt, not

involving t. However such a periodic motion admits of

analytic continuation with variation of the energy constant

H == Ji (chapter V, section 9), and so is not isolated. Our

aim then will be to consider only those nearly periodic motions

which belong to the same value of h as the given periodic

motion
;
this value may be taken to be /t = 0

.

The possibility of reduction to a Pfaffian case m -
1

,

combined with the results of the preceding section renders

it highly probable at the outset that there will in general

be infinitely many nearby periodic motions -of long period,

provided that the given periodic motion is of stable type.

In considering this question, we shall make the further

assumption that the given Hamiltonian problem is associated

with an ordinary Lagrangian problem whose principal function L
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is quadratic in the velocities. If qi, g* are the coordinates

in this Lagrangian problem, the equations

(^ - 1
,
2)

aqi

serve of course to define the variables PijPt*

Let ~ ^i(Oi (h equations yielding this

periodic motion of period and consider the corresponding

analytic curve in the (p, plane.

Evidently we can introduce a modified system of coordinates

^1 ,
such that q> vanishes along the motion, while q\ in-

creases by 2 7r as a point makes a circuit of the motion. For

instance, if the curve of motion is witliout double points, it

may be deformed into a circle concentric with the origin,

in which case qi and (72 may be taken as angle and radial

displacement respectively. It is clear indeed that we may take

qi 2Tit'z along the periodic motion. Of course such

a change of variables from g, ,
to i/i, g2 does not affect the

Lagrangian character of the dynamical problem, although the

new principal function L is periodic of period 2 7r in the

variable q\.

The corresponding Hamiltonian problem will have the

form (13) in which H is periodic of period 2n m q^^ while for

the periodic motion under consideration we have q^
~~ ^nilr

,

q.> 0. From the Hamiltonian equations in these variables,

we have also along the periodic motion

2 7t/t dH/'dpi, 0 dH/djh-

It is obvious then that we may solve the equation H— h

for Pi ill the form

(14) Pi + K{qi, Pi, qi, h) == 0

where is a real, single-valued, analytic function of its

four arguments, periodic in qi of period 2n. Furthermore

we may regard h, qi, pi, qt as the dependent variables instead
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of Pi> Pit \
we observe that (14) may be solved explicitly

for h, since from the relation H — h, -we derive

9pi 9 h

so that dpi/dh + 0 along the motion. When these variables

are used instead of Pi, gi, Pt, gt, the variational principle

(chapter 11, section 10) takes the form

(15) d (— Kg[ +pzg2 — h)dt^0,

which leads to the four equations

dgi
I

9K dh^ . 9K dpt . dK dq^

dh dt ’ dh dt dpi dt dgt dt ’

dq^ dK dq^ dp^ . dK dqi _

dt dpi dt ’ dt dqi dt

From these equations we infer directly h const., which

we know to be true of course.

Now it is evident that near the given periodic motion qi

can serve as independent variable as well as f. If we
eliminate t in the above equations, we find

dpi dK dgt dK
dqi dgi dqi dpi

Here we are to set h ~ 0 in the function K, and K is

periodic of period 2/1 in qi. The given periodic motion

corresponds to

Pi = f{qi), g* 0

where y is periodic of period 27r in gi. These equations are

clearly in Hamiltonian form (m = 1), with a generalized

equilibrium point at the origin, at least after the simple

modification

P2 = — h = Qtt
11
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in which we may take

K - K — {q\)qt’

Conversely, if we have a solution of (16), we can deter-

mine t from the equation

(U _
dqi dll'

and obtain a solution of the original system when t is taken

as independent variable. Thus (13) and (16) are equivalent.*

Periodic motions near the given periodic motion for (13)

correspond to motions near the origin of period 2k

n

for (16).

For a Hamiltonian problem (13) which reduces to a gene-

ralized equilibrium problem (16) of stable type {I ^ 0), thece

will exist infinitely many periodic motions in the vicinity of

the given periodic motion^ makmg in general many circuits

of that motion before re-entering.

This result is of course obtained as the direct application

of section 1 for the reduced problem.

4. Some remarks. The general conclusion which appears

in consequence of the preceding sections is that, for a given

value of the energy constant, there exist in general periodic

motions in the vicinity of a periodic motion of stable type, at

least when the dynamical system has two degrees of freedom

and is of ordinary type. The fact that there may exist isolated

periodic motions of stable type, even for dynamical systems

with two degrees of freedom, may be brought out by means

of the following elementary example.

Let us write

H = y 1c\p\ + i) + y dpi + 3“),

where the quantities k, I are incommensurable with one an-

other, of which the general solution is

* For the reduction employed, cf. Whittaker, Analytical Dynamia,
chap. 12.^
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Pi COS A: ^+ -B sin c/i
~ — A sin A: <+ cos A: <.

Pi ~ C cos ^ ^ 4- -D sin It, g* = — C sin lt->r D cos I f.

The energy constant h is defined by the relation

H -
]j /4 (4*+ £*) + Z* «7*+ Z>*) - h.

The only periodic solutions are the two analytic families

rzrr Q aud P2 Qs ~ 0,

all of which are of stable type* For an assigned value of

the energy constant, there are only two such periodic motions;

thus all periodic motions of the second family with assigned

represent the same closed curve in the three-dimensional

manifoldly^ h in four-dimensional //j, j;g, space. If

the transformation T be set up for this case as in the pre-

ceding section 2, it is found to be essentially a rotation

through an angle incommensurable with 27r, and so to corres-

pond precisely to the highly degenerate case there excluded

from consideration.

A first question as to a possible generalization of the above

results in the case m 2 is the following: Suppose the origin

is a point of generalized equilibrium of general stable type

for a given differential system which is, in addition, completely

stable; if the constant I is not 0, does it follow that there

will always exist infinitely many periodic motions in the

vicinity of the origin?

It seems to me very doubtful that the answer is in the

affirmative. In the preceding argument the area-preserving

property played a vital part. For this more general com-

pletely stable type, there is no reason to believe that this

property continues to hold, even in the Pfaffian case.

The example can be generalized so as to indicate a pre-

liminary necessary requirement if the conclusion that there

are infinitely many periodic motions near a given stable

periodic motion is to hold for Hamiltonian systems with

more than two degrees of freedom.

11*
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In fact, consider the case of a dynamical system

dpi dH dqi dH /• i \

"ST
=

-"8,7' -dr = ^. (.
= 1. ,».)

in which is a function of the m products PiQi, PmQm
with Pi, qt conjugate imaginary variables, namely

H ^ Cjpjqj-^--^ 'Z, djkpjqjpkqk.

Here the coefficients a, dij are periodic of period t m t.

The origin is a point of generalized equilibrium with multipliers

X (•!== 1, m),

so that it_will be of general stable type if these m quantities

and2:TK— l/r have no linear commensurabiUty relations.

If for the sake of brevity we write

the general solution is at once found to be

Pi =- q. =
q'l

e' (i == 1, . .
.

,

m).

Moreover if we write

Ci d t ^ ^ij ^ ^ y

the condition that the solution is periodic of period A:r is

m
Ci -^_Z Dij P] < - 2 TT K=T/Zr

where Ici, • • •, Icm are integers. But these form m linear, non-

homogeneous, algebraic equations in
,

{i —
,
m),
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which can he solved if the determinant
|
Dij

|

is not 0. More-

over by making the ratios hlk small, the periodic motion

can be taken near the origin. On the other hand if
[

Dij
\

— 0,

such a determination will be impossible in general.

In the particular case when the r,’s and tZy’s are constants,

the system appears in complete normal form, and the tv’s

are the multipliers, while the dy’s are invariants analogous

to I in the case wi 1.

Hence at least the condition ( dij
| t 0 must be imposed in

the case wi>l, as analogous to the condition Z 4 0 in the

case ni =- 1, if an infinitude of nearly periodic motions is to

be anticipated in all cases.

Any generalization must of course take proper account of

the uniform analytic integrals (such as the energy integral)

which exist. In fact, if there are k of these integrals which

are independent, the given stable periodic motion will admit

of /f-fold analytic continuation. Evidently it is not such

periodic motions of the same analytic family as the given

motion which interest us, but rather nearby periodic motions

for the same values of the constants of integration as the given

periodic motion, and making many circuits of it in a period.

5. The geometric theorem of Poincar6.* Poincare

showed that the existence of an infinite number of periodic

orbits in the restricted i>roblem of three bodies and other

dynamical problems would follow at once from a certain

geometric theorem to which the lemma of section 1 is inti-

mately related.

For convenience we shall first state:

PoiNCARfi’s Theorem. Given a ring 0 a :> / h in the

r, e plane (r, 6 being polar coordinates), and a one-to-one,

continuous, area-preserving transformation T of the ring into

itself, which advances points on r = o and regresses points

on r = h. Then there will exist at least two points of the

ring invariant under T.

* This section is essentially the same as section 34 of my paper,

Dynamical Systems with Two Degrees of Freedom, Trans. Amer. Math.

Soc., vol. 18 (1917).
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We will indicate briefly the proof of this theorem.

Let us take x = ft, y — as the rectangular coordinates

of a point in the x, y plane. The ring then appears as a

strip Sy The transformation T of this strip ad-

vances points of the boundary y — to the right, and

moves points on «/ = If to the left. Moreover T is area-

preserving in the x, y plane (for we have 2rdrdft = dxdy),

and displaces any two points which have the same ordinate

and whose abscissas differ by a multiple of 2 71 in the same way.

Let us combine T w'ith a further transforaiation which

effects a translation of the x, y plane in the direction of

the y axis through a distance f> 0. The transformation T
followed by yields an area-preserving transformation TT^
which shifts the given strip into the strip a* -f- f ^ y < If -f e.

Suppose if possible that there exists no invariant point

of ?. There exists then a positive quantity d such that all

points are displaced at least a distance d by the transfor-

mation T. Choose f less than d.

Consider now the narrow strip <y 0 *
-f- 1 . By the

transformation TT^ the lower edge of this strip is carried

into the upper edge and the strip is carried into a second

strip lying wholly above the first one save along the common
edge. By a repetition of the transformation TT^ the second

strip goes into a third, and so on.

By a continuation of this process, a series of strips is ob-

tained forming consecutive strata. Each of these strata is

unaltered by a shift of 27r to the right. This follows from

the fact that T and Tg are single-valued over the ring.

The images of these strata on the ring are a set of closed

strata about the ring, all having equal area of course since

TT, is an area-preserving transformation in the r,d as well

as in the x, y plane. Consequently some one of the strata on

the infinite strip, say the A:-th. must overlap the upper edge

y = h\

In the X, y plane let Q be a point of the upper edge of

the fe-th stratum for which y is a maximum. Let P be the

point ot y = of from which Q is derived by A:-fold repe-
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tition of TTe, and let P', P", •••, P''^* == Q denote the

successive images of P under the iteration of TTs. Draw

the straight line PP' which will obviously lie on the first

stratum. The successive images of this line, PP', P'P", •••,

p(k-i)p{fe)
]jg jjj successive strata, and will have no

points in common except that successive arcs have an end-

point in common. Thus we get a single arc PQ, made up

of all these lines, which is without double points.

Consider now a vector LL' drawn from a point L to its

image L' under TT^, of which the initial point moves from

P to P^'‘ along the line PQ. The angle which this vector

makes with the positive direction of the x axis at the outset

may be taken to be a positive acute angle, since the image

P of P lies to the right of and above P. When L has

varied to its final position the same angle lies in the

second or third quadrant, since P**'^ lies to the left of

p(fc-i),
t)y the hypothesis of the theorem.

Our construction of the successive arcs PP', P'P", ••

renders it apparent that as L moves from P to P^^-'^\ its

image L' moves along the same curve from P' to Q.

Therefore we see at once from the figure that LU has

rotated through the least positive angle from the fli’st direction
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to the second. If L' be moved further in a vertical direction

from Q up to y 1 the same statement will still hold

of the standai'd curve described by L provided that e is

small, since Q lies at most s above y ~ h*.

Suppose now that L moves in any manner from a point

of y — a* to a point of y — 6* in the given strip. The

transformation TTs leaves no points of this region in-

variant, so that the point L will never coincide with L'

.

In the initial position for i on y — «* the angle made by

LL' lies in the first quadrant. In the final position it lies

in the second or third quadrant. But the total variation of

angle during the variation of L has been seen to be through

the least positive angle in a special case. Since any one

path of L from y — io y = can be varied continuously

into any other, the same must be true always.

Now let e approach zero. As e becomes smaller the vector

LL' continues to have a definite direction, since no invariant

points under TTe are present. By a limiting process we
infer that, for the transfoimation T, the angular variation

of LL' is through the least positive angle consistent with

its initial and final directions. It should be observed that

for L on y - a* the direction of LL' is that of the j)Osi-

tive- X axis, while on y = h* the direction is that of the

negative x axis.

Consider now the inverse transformation which is of

the same type as T although it moves points on y — a* to

the left, and points on y - h* to the right. By an entirely

analogous argument to that given above we are led to infer

that if a vector LU~''-^ with end-point = T~^{L) has

its initial point L varied from a point of y — a* to a point

of y = 6*, the total angular variation will be the least

negative angle consistent with its initial and final positions.

But the total rotation of LL^~^^ is precisely the same as

that of the oppositely directed vector L which joins

a point ot y — a* to its image L under T.

Hence by our earlier result the total angular variation of

L must also be the least positive angle consistent with
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the two positions. Thus we have been led to a contra-

diction, so that there must exist at least one invariant point.

To prove that there are at least two invariant points we
may adopt the method used by Poincar^.

Let the point L describe the fundamental rectangle

0 < X ^ 2^:, y ^

in the x, y plane, in a positive sense. It is obvious that

the total rotation of the vector LL' is 0 over this circuit,

since there is no rotation along y -- - or y — b*, and the

rotations along x ^ 0 and x ~ 2 n are the negatives of one

another. But around a simple invariant point the rotation

is ± 2 TT. Hence, according to obvious reasoning, there will

either be at least two simple invariant points with rotations

-\-2n and — 2n, or there will be at least one multiple

invariant point. As a matter of fact, there will always be

at least two geometrically distinct invariant points.”*

6. The billiard ball problem.t In order to see how the

theorem of Poincar6 and its generalization can be applied,

we will consider first a special but highly typical system

of this sort, namely that afforded by the motion of a billiard

ball upon a convex billiard table. This system is very illu-

minating for the following reason: Any Lagrangian system

with two degrees of freedom is isomorphic with the motion

of a particle on a smooth surface rotating uniformly about

a fixed axis and carrying a conservative field of force with it.t

In particular if the surface is not rotating and if the field

of force is lacking, the paths of the particle will be geo-

desics. If the surface is now flattened to the form of a

plane convex curve C, the ‘billiard ball problem’ results.

* See my paper, An Extension of Poincar&s Last Geometric Theorem^

Acta Mathematica, vol. 47 (1926).

t The sections 6-9 are taken from my paper On the Periodic Motions

of Dynamical Systems^ about to appear in the Acta Mathematica.

JSee my paper, Dynamical Systems with Two Degrees of Freedom,

Trans. Ainer. Math. Soc., vol. 18 (1917), section 7. It is assumed that the

Lagrangian principal function is quadratic in the velocities.
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But in this problem the formal side, usually so formidable

in dynamics, almost completely disappears, and only the

interesting qualitative questions need to be considered. If C
is an ellipse an integrable problem results, namely the limiting

case of an ellipsoid treated by Jacobi.

In the billiard ball problem one can arrive at the existence

of certain periodic motions by direct maximum-minimum

methods. As of interest in itself I wish to show how this

can be done. Results which are being obtained by Morse

(see chapter V. section 8) indicate that the scope of these

methods, already developed to some extent by Poincare,

Hadamard, Whittaker and myself, can be further extended.

Thus the power of such maximum-minimum considerations

in the billiard ball problem is likely to prove typical of the

general case.

The longest chord of the boundary C of the billiard table,

when traversed in both directions, evidently yields one of

the simplest periodic motions. The billiard ball moving along

this chord strikes the curved boundary at right angles and

recoils along it in the opposite direction. If we seek to vary

this chord continuously, Avhile diminishing its length as little

as possible, so as finally to interchange its two ends, there

will be an intermediate position of least length, which will

be the chord crossing C where C is of least breadth. Detailed

computation of the slightly perturbed motions indicates that

the first of these two periodic motions is unstable, while

the second may be stable, or unstable.

Next we ask for the triangle of maximum length inscribed

in C. Evidently at least one such triangle will exist, and

can have no degenerate side of length 0. At each of its

vertices the tangent will of course make equal angles with

the two sides passing through the vertex. Hence a ‘harmonic

triangle’ is obtained which will cori’espond to two distinct

motions, one for each of the two possible senses of description.

Moreover, if>we seek to vary this triangle continuously,

not changing the order of its vertices and diminishing the

perimeter as little as possible, so as finally to advance the
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vertices cyclically, we discover a second harmonic triangle,

also corresponding to two periodic motions.

In this way the existence of two harmonic w-sided poly-

gons which make h ^ n/2 circuits of the curve C Qc prime

to n) can be proved. The two periodic motions corresponding

to the polygon of maximum type will be unstable, while the

others of minimax type may be stable or unstable.

In the case of a circular boundaiy the totality of regular

inscribed polygons (simple or cros.s) form the harmonic polygons.

7. The corresponding transformation T. We propose

next to set up a ring transformation T associated with the

billiard ball problem, and to show how the geometric theorem

of Poincare in its first form leads to the conclusion deduced

above. The reduction to a ring transformation is of funda-

mental theoretic importanc.e, quite aside from the relation to

the question of periodic motions. It should be noted also

that, in the cases of most interest like the restricted problem

of three bodies, the method of reduction to a ring trans-

formation and application of the geometric theorem of Poin-

care. is available for the treatment of the periodic motions,

while the maximum-minimum method has not as yet been

shown to be applicable.

To begin with we suppose the length of C to be 2rr and

to be measured from a fixed point to a variable point P
by an angular coordinate y.

At P, taken as the point of projection of the billiard ball,

let 0 denote the angle between the positive direction of the

tangent and the direction of projection. The variable B varies

between 0 and n only. These coordinates B, y suffice to

represent all possible states of projection unambiguously.

If 5p be taken as an angular coordinate in the plane, while B,

augmented by a constant, say n, be taken as a radial co-

ordinate, the set of values (B, <r) is represented on a ring

bounded by concentric circles of radii tt and 2 tt respectively,

namely the circles B = 0 and B — n.

Consider now a definite state of projection at P with

given B, 91. The billiard ball leaves the table at P, to strike
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it again at Pi, there to be projected in a state iOi,fi), say,

and so forth indefinitely. If C is an analytic curve, as we

assume it to be, the correspondence between 0, <p and Bi, >fi

is evidently one-to-one and analytic within the ring. When
6 is nearly 0 or n, the ball is projected at a slight angle

to the edge, and strikes it again at a nearby i)oint with B

nearly 0 or tt as the case may be. Hence the points on

the bounding circles correspond to themselves with B, B,

(Pi = f.

One further lemark needs to be made about the cones-

pondence along the two boundaries of the ring. If we think

of each point {B, (p) as being carried into (ft,, fi) by a trans-

formation or deformation of the ring, this transformation T
will effect a certain number of complete rotations of the

inner circle, and also of the outer circle, since the points

of these boundaries are invariant as just seen. We may
arbitrarily regard the inner circle as having undergone no

rotation, but the same will not then be true of the outer

circle, which can at once be shown to have undergone a single

complete revolution in the positive sense. For let the pro-

jection angle B, for a given point P and coiTesponding fixed sp,

vary from 0 to n. It is obvious that then B, will increase

from 0 to JT while </ increases by 2n since the point Pi

makes a complete circuit of P in a positive sense. In other

words, the transformation T takes radial segments across the

ring into curves starting at the same point of the inner

circle, but winding around the ring just once w'hile crossing it.

Hence the outer boundary has undergone a single positive

revolution under the transformation T.

Suppose now that we have a periodic motion, for example

that corresponding to one of the harmonic triangles taken

in a positive sense. It is evident that the transformation T
of the ring takes the point of the ring representing the state

of projection at the first vertex into that at the second; and

likewise takes the state for the second vertex into that for

the third, and that for the third vertex into the first. Thus

when T is applied, the triple of points on the ring is
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cyclically advanced, and each point of the triple is un-

altered by the application of the third iterate T* of T. Con-

versely, to any triple with this property, or to any point in-

variant under T*, together with its images under T and T*,

corresponds a motion belonging to a harmonic triangle. Evi-

dently then, from considerations advanced earlier, there are

at least four such triples. It is obvious that there can be

no invariant points under T itself because y is increased but

by less than 2n.

In this way the search for harmonic polygons and the

allied periodic motions in the billiard ball problem resolves

itself into the detemination of sets of distinct points

Pi, 7» cyclically advanced by T, so that in general

T'^(Pi) -= Pj. More generally, each and every interesting

})roperty of the motion of the billiard ball is mirrored in

a corresponding jiroperty of the transformation T. Thus the

dynamical problem is effectively reduced to that of a parti-

cular transformation of a circular ring into itself.

8. Area-preserving property of T. There is a further

property of the transformation

7’: f{», y). yi " n y),

which plays a fundamental part in applying the geometric

theorem of Poincare; the double integral
J J*sin d<70ffy taken

over any area a of the ring has the same value as over

the image of <t under T and its iterates. This is essentially

an area-preserving property in modified cor»rdinates.

Before passing to the entirely elementary proof of this

fact, one immediate application may be cited in justification

of the earlier statement as to the fundamental theoretic im-

portance of the ring transformation. Since the integral

evaluated over ffi, Og • •
-, has the same value, and since its

value over the entire ring is finite, being d/r, some two of

the images a* and oj overlap. Employing the inverse trans-

formation we infer that Ot-i and or,-

1

also overlap, and thus

finally that and ob overlap But, interpreted for



174 DYNAMICAL SYSTEMS

the. billiard ball problem, this means that the ball can be

projected very nearly with arbitrary position and direction

to return subsequently to nearly the same position and

direction. As elaborated by Poincare,* this chain of reaso-

ning leads to the conclusion that the 'probability’ is unity

that an arbitrary motion returns infinitely often to the neigh-

borhood of its initial state. He called this property of the

dynamical system ‘stability in the sense of Poisson’.

The proof that the double integral is invariant depends

on an explicit evaluation of the determinant

j
d d(/

,
^ 0, d g'l

de d(/> df do
'

In fact, if
J* J

M(0, <j')dO(lfp is invariant we have

Jj 31 (Oi, sPi) dOidffi
J*

J

31 (0, f) dOdf

where the vaiiables 0,, (pi range ovei’ the region a,, just as

do over a. But according lo the fundamental theorem

for change of variables, the change of variables T gives

the integral on the left the form

J j
31 {Oi, (ft) J do d(i'.

Comparing this expression and the integral on the right,

which are both integrals over the same arbitrary region o',

we deduce the functional relation

31 (Oi, fi)J 31(0, (f)

as the necessary and also sufficient condition for invariance.

Hence to establish that
J J*sin 0 dy is invariant, we need

only prove

Let
J — sin O/sin Of

X = F{q>), y = 0{(f>)

* See his Methodes nouvelles de la Mecanique celeste, vol. 3, chap. 26.
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be the equations of C in rectangular coordinates, so that,

if X denotes the angle between the positive x axis and the

positive tangential direction at a point of f7, we have

tan'
Q'iff)

F'if)

Similarly let denote the like angle at the transformed

point, which will be given by the same expression save

that fp is replaced by 9),. Finally let « designate the angle

between the positively

directed axis and the

direction of initial pro-

jection (figure).

It is evident that

the following two re-

lations will hold \lO^

f) --- a

Substituting in the

above value for r and

the analogous value

for Tj, and also substituting in for « the value

tan-i

evident by inspection, we obtain the explicit formulas

T:

tan"
Oiy>t)~Giy>)

di =-- tan
(y.)

tan~
(?'(<?)

F'if,)

-F{y>) F'if)

„-i G(y>i)— 6if)

F{y>i)— F{yi)
tan~

== i(y, SPi):

= M{y>,y)i).

These two equations define the transformation T from (ff, f)

to (®i, sPi)- Taking differentials, we find
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do = Lq, d(fi L(f^ dfi, ddi — Mq dy> Mq^dfi,

wheace at once

ddi —

dfi =

This gives

do— y-'f df.
Jjq^ L,f^

Mq [i?’(yi)-F(9.)](?'(<p)-[0(9>i)- 0{f)]F'(9)

But F(fi)— F(<p), 0{fi)— G(<f>) are proportional to cos «,

sin a respectively, while also

F'(9))= cost, (?'(
5p)— sinr, F'lyt) ~ costj, = sin v, .

so that finally we obtain

j _
sin (a — t) sin 0~
sin (ti— «) sin 6i

as was stated.

9. Applications to billiard ball problem. As has

been seen, there are no points of the ring which are invai iant

under T. On the other hand consider T* followed by a rotation

of the 9 , q> plane through an angle —

2

n, which we desig-

nate by E-i. The resultant transformation of the ring admits

the same area integral as T of course, but advances the

points of the outer circle by an angle 27i, and those of the

inner circle by an angle — 2 tt of opposite sign. These are

the two conditions essential for the application of Poincare’s

geometric theorem. Hence T*R-i (the compound trans-

formation) possesses two invariant points. This means that

T* has two geometrically distinct invariant points of oppositely

signed indices,* although these correspond to an increase of

2 71 for <p.

* See my paper An Extension of Poincare’s Last Geometric Theorem,

Acta Mathematica, toI. 47 (1926). By the index of an invariant point is

meant the number of positive rotations of a line joining a point P to

its image Pi, when P makes a small positive circuit of the invariant point
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If P is such ail invariant point, so is T{P) of course but

with the same index. Thus we get two pairs of points, say

P, T{P), Q, T{Q).

all four distinct. These evidently correspond to the two

fundamental periodic motions.

For the application of the theorem of Poincare to the

periodic motions of more complicated type, it is necessary

to take account of the fact that every such motion is asso-

ciated with a distinct second such motion, obtained by reversing

the direction of description, although these motions have the

same index. However one of these motion^ increases 9 by

21c n, the other increases it by /r)>T. By only con-

sidering invariant points of T*' for which v increases by

2 A /r, (A* < n/2), we clearly obtain each harmonic w-sided

polygon only once. It may be noted in passing that this

pairing of motions in the billiard ball problem is fully reflected

in the fact that T is a product of two involutory transform-

ations; it was the same special property of the ring trans-

formation in the restricted problem of three bodies which

enabled me to prove the existence of infinitely many symmetric

periodic orbits.*

Now turn to the invariant points of the compound trans-

formation E where E~k denotes A-fold rotation through

the angle —

2

7r. The rotations on the outer and inner circles

are clearly

2 (n — AOtt and — 21<n^

which will be of opposite sign. Thus we can infer the

existence of at least two geometrically distinct series of points

p, T{P), .

.

r"-! (/>), Q, T(Q), .

.

(g)

such that T" (P) ==i P, T" (Q) — Q, while f has been in-

creased by ‘i/i-Tr; it is assumed that k and n are relatively

prime.

* See my paper The Restricted Problem of Three Bodies, Rendiconti

di Palermo, vol. 39 (1915), in particular, section 14.

12
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To prove this assertion in detail, we may let P be one

such invariant point, such that T" increases tp 2 kn. If

the n points

p, r(P), •••, T'< -^{P)

are not distinct, let T”*'{P) “ P, (m < n —1), and suppose

that f is increased by 2j7i. By combination of the two

symbolic equations T”^ (P) “ P, P" (P) == P, we obtain

(P) = P where rf ( -j: 1 of course) is the greatest common
divisor of m and n. Thus P is invariant under T‘^. Suppose

that under the y of P increases by 2f7T. From the

equation 7’" — we see that T" will then increase the

of P by 2qfn, so that /. -- qf. Thus k and n would possess

a common factor q, contrary to hypothesis.

Not only are the n points distinct but they have the same

index. Hence there will be a point y invariant under P'*

and with oppositely signed index. This, with its images under

successive powers of P, will necessarily be distinct from the

points of the set generated by P, and leads to a second

distinct series of n points.

Hence we obtain for every w > 2 and every relatively

prime k ^ «/2, two geometrically distinct, harmonic polygons

with n sides and making k circuits of the curve C. Corre-

sponding to these there will be of course four periodic motions.

We shall not attempt to develop here the characteristics as

to type of stability and instability, dependent upon the sign

of the index.

It is worthy of observation that the method of sections 2, 3

is evidently applicable here to show that there exist infinitely

many periodic motions lying in the vicinity of any periodic

motion of general stable type if the constant I is not 0.

We shall indicate in particular how this same method seems

to apply to the limiting type of periodic motion in which the

billiard ball is rolled around the table.

For this purpose it is essential to examine the explicit

formulas given tor P in the case when 6 is small. A direct

computation leads to the result
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0i & - “ •••?

2 ^ 4 //
,

9i — 9' — ^
^ • •

•

,

where the, functioi) k{ip) denotes the curvature of C at the

point with given and where the functions 1, m, • ^ • depend

on f only. Proceeding entirely formally and replacing 6^— d

and —
(p by AO and iy respectively, we obtain the

approximate differential equation

dS 1 A:'

3 7r
’

which gives by integration

e =

Here the value of 0 for a point of curvature unity.

1'his result indicates that, to a iirst approximation, the curve

0 — near the inner boundary 0 0 of the ring

is nearly invariant under T, and can probably be modified

by the inclusion of higher order terms so as to be still more

nearly invariant. Evidently the limiting periodic motions

formed by C are to be regarded as analogous to stable

periodic motions on this account.

Also if the variable ti represents the number of iterations,

we have the approximate differential equation

whence by integration

n

It follows that (p will increase by more than 2 7t along the

approximately invariant curve ifn^o exceeds where K
denotes the maximum curvature of C,

It thus appears as highly probable that the lemma of

section 2 is applicable and that there exist infinitely many
periodic motions uniformly near to C,

12*
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10. The geodesic problem. Construction of a trans-

formation TT*. AVe turn our attention next to the problem

afforded by the geodesics on an analytic surface. In order

to obtain as concrete results as possible, we shall restrict

the surface S to be closed and convex, although it is evi-

dent that these limitations are not altogether essential for

the argument which follows.

AVe have already established the existence of at least one

closed geodesic // of minimax type (chai)ter A
,

section 6),

which we shall assume to be without double points. Onr

first assertion is that there exists a positive quantity L so

great that any geodesic arc of length exceeding L intersects

(/ at least on(‘>e (or falls along r/). In the contrary case

there would exist a sequence of geodesii* arcs (jn of length

Ln with lim Ln •'^uch that each arc fjn does not

meet g. This fact would require that for Ln large enough

no part of gn is nearly coincident with //, since nearby geo-

desics meet a closed geodesic*, of ininimax type in a suc-

cession of points separated by arcs of limited length; more

precisely, it may be proved that if P is any point of g and

P" is its second conjugate point in the sense of the calculus

of variations, then the arc l*P” constitutes at least one

complete circuit of g,\

Hence if we let Pn be the mid -point of q,,. the sequence

of points P„ will have a limiting point P not on g, and the

geodesic qn will have at least one limiting direction at P,

such that the complete geodesic h through P in this direction

fails to meet g and indeed nowhere approaches //.

Consider now that part of the surface S (which is divided

by g in two parts) upon which h lies, and in particular the

part of S lying between g and li. One boundary of this

region s is <7, of geodesic curvature 0 everywhere, while the

other boundary y consists of part or all of //, and of its

limit points.

Let Ki and N2 be two nearby accessible points of the

fFof a proof see my paper, Dynamical Systems with Two Degrees

of Freedom, Trans. Amer. Math. Soc., vol. 18 (1917). in particular section 19.
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boundary y so obtained, so that a short curvilinear arc

A exists in the rej^ion with all of its interior points

not on ihe boundary. Consider also the short geodesic arc

jS iGA^2- Then AA\G delimits a region o'.

If any interior point of NxG^2 Is part of the boundary

;% all of must be part of it; otherwise the curve h

would cut across Ni G and so certainly intersect A'l A iV2,

contrary to hypothesis. In this case is a i)art of

the boundary y and the region (t lies entirely in s\ If there

is no sucli interior point, the geodesic arc X1GN2 lies inside

of N except at Ni and AV Hence if we surround the boun-

dary y by a cyclical chain of nearby i)oints

A,, a;, .... A'..

the short distinct geodesic arcs

A
1 ..\ 2 ,

A 2 A .
• •

. A yj A I

lie inside of s or coincide with We assume that this chain

encircles y in a i)ositive angular sense: in this event, the

part toward y will lie everywhere to the left.

Noav in the geodesic j)olygon so formed, the angle in .s* at

any vertex will be less than or ecjual to rr. For if the

angle at A'^-^i, say, exceeds i and we consider the short

geodesic arc A'/ Ah 2. it is apparent that lies to the left

of A'^ AVj j also, so that AVu is completely encircled by i)oints

not on which is impossible.

But the integral curvature of th(‘ ])art of S bounded by

this polygon will be pi’ccisely the sum of these n interior

angles diminished by {n — 2 ) .t by a well known formula,

and so will be less than 2 /r, which is impossible since the

integral cuiwature of either part of S bounded by g is ex-

actly 2 n by the same formula.

Thus a contradiction has been obtained, so that the original

assertion must be true.

We now introduce parameters as follows. Let an arbitrary

directed geodesic f cut the directed geodesic g in a point I\
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The position of P may be measured by means of the arc

length 6 from a fixed point Pq of g; if the total length of g
be taken as 27r by an appropriate choice of a unit of length,

the variable ^ is a periodic variable of period 2Tr, Further-

more let ^ denote the angle between the positive directions

of g and / at the point P so that 0 ^ < tt.

The next crossing of g by // will be in the opposite sense,

and the coiTesponding and will vary analytically with 0

and if. Thus a transformation P is defined

T'- = Av- 0), »,* ffiv, ^),

which takes the ring

E: 0 ^ -C! /f , ^ ' 2 -T

(y, 6, polar coordinates) into itself.

Similarly a crossing in the opposite sense at y*, d*, will

be followed by a crossing y,, Oi, thus defining a second

one-to-one, analytic transformation

T*: y, = /*(y*. e*), 0, = g*(A,

of R into itself.

Along and near the boundaries of IL T and T* are. to

be regarded as continuous. This fact may be seen as follows;

If a geodesic / near to g intersects g at a small angle y
with given 6, then of course / will intersect later at a small

angle y* with coordinate 6* nearly that of the conjugate

point to the first point of intersection, as was observed above.

Obviously this ensures the specified continuity. Furthermore,

we know that three successive conjugate points correspond

to an arc of more than one complete cycle of g.

If we have y --- 0 or tt we have respectively y* — 0 or tt,

while if y* = 0 or TT we have likewise yi — 0 or n. Further-

more as B or e* increases along a boundary so will 0* or
;

in fact it has been noted that if d is the coordinate of P,

then et is the coordinate of the conjugate point P'. Hence
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T and T* are direct transformations leaving the outer and

inner boundaries of R invariant.

It is now desirable to consider somewhat more in detail

the nature of T and T* along the boundaries. These trans-

formations are evidently not determined up to a complete

rotation, and it is desirable to make a convention which

eliminates this arbitrary factor, and enables us to compare

the transformations along the inner and outer boundaries.

Let us consider any directed geodesic arc Pol\ of / between

two successive crossings I\ and 1\ of g by /, and let us

define a double point Q of Pq Pi as positive if a moving point

in describing the arc PqPi passes over the arc PqQ already

described at Q. from the left to the right side; and as negative

in the contrary case.

The ‘index’ of Po Pi

be defined as tlie differ-

ence between the number

of positive and the num-

ber of negative crossings

within Po Pi» Let us

define the value Of of 6

at Pi as that corre-

sponding to the posi-

tively taken arc PqPi increased by 2/ri where i is the index.

AVe can now show that, as thus defined, dt varies con-

tinuously with 6, In fact as 0 and change, no new crossings

can be introduced witliin Po Pi inasmuch as a geodesic arc

cannot be tangent to itself. If a positive crossing is intro-

duced at Pi, evidently dt increases through an exact multiple

of 2 7t as it should. If a negative crossing is introduced,

decreases similarly. Thus the convention is appropriate

to all cases.

Now it is also evident that if a geodesic arc PqPi near

to g be continuously deformed near g while not maintaining

its geodesic character, with Po and Pi fixed, and only simple

interior tangency allowed, then positive and negative crossings

appear in or disappear in associated pairs. Thus if the
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arc Po Pi be deformed into a spiral so as to eliminate all

negative crossings, it is plain that the index will equal the

number of apparent circuits of g made by the spiral. In

this case the increase in B, namely — 6, will be measured

by the arc length along the curve g, according to our con-

vention. However if the positive crossings are eliminated,

the convention gives 27ri (? > 0) increased by the angular

value of the short positive arc Po Pi as the difference dt— B,

and hence this difference exceeds the arc length PqPi by 27t.

Consequently it is seen that d*

—

B is measured in the

sense of the convention by the actual increase in B along

for tp = 0, while, for ip — n, Bt—

B

is measured by the

algebraic increase along the arc (actually a decrease) aug-

mented by 2 n since Po Pi is to be taken positively.

Now in going from a point P to its second conjugate

point P" with (p 0, B increases by an amount «,

2kn • a <C 2 (/.• 1 ) ?r,

where k > 1 is independent of the position of P; in fact

the one-to-one, direct transformation of the points of g fi om

Pto P" defines a rotation numbert which lies between 2kTi

and 2(A:-|-l)7r with because of a property of the

conjugate points along a geodesic of minimax type already

specified. Hence we infer

2^^ 5^ (Ot — B <2 {k+ 1) TT.

Similarly if we consider tp ~ n, then B*— 2n is diminished

by a like amount so that we find

— 2k7i a g{7t, B)— B < — 2 {k— l)n.

It follows that the transformation T (or T*) advances points

in opposite angular directions along the two boundaries of R,

t For definition and short discussion of the Poincar6 rotation numbers,

see my paper, Surface Tramformaiione and their Dynamical Applicationa,

Acta Mathematica, vol. 43 (1922), section 45.
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at least if the exceptional case of a second conjugate point

coincident with the initial point after a single circuit be

excluded.

II. Application of Poincare’s theorem to problem.

The geodesic problem is of Hamiltonian form of course, with

principal function H given by the squared velocity. In the

four-dimensional manifold of states of motion, the quadruple

integral

Ipx dqi dpi dq2

is an invariant integral. In a particular invariant sub-manifold

H — const, there must then be an invariant volume integi'al,

namely

dpi dqt,

provided that H — are taken as coordinates

(section 3). The restriction H — const, merely fixes the

constant velocity.

The ring R of .states of motion crossing g positively is

evidently represented in this manifold by a ring R bounded

by the two closed curves representing g traversed in the two

possible senses. The transformed point TT* (P) of a point P of

this ring by TT* is obviously obtained by following the

corresponding stream line until it meets R a first time.

Further consideration shows that the ring R so obtained is

an analytic surface.

Now if we consider a tube of stream lines with two bases

of areas iffi, Aa^, in R, with qi as independent variable, and

if «i, a* be the angles which the stream lines make with R at

these two surface elements respectively, then the loss of

'volume’ at one base in time Aqi is nearly

(sin a,

while the gain at the other is nearly

(sin «, 40's) Aqi.
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Thus
I

sin a tier yields the positive invariant area integral

necessary for the application of Poincare’s geometric theorem.

Hence there exist two points of H invariant under

and this gives immediately the following conclusion:

Let there be given a convex nnalgtic surface on which the

closed geodesic of minimax type known to exist is without double

points^ and suppose that the second conjugate perint of no point

on this geodesic arises on lorecisely a single complete draiit.

Then there uill exist a second closed qeodesic ichich intersects

the kno^vn minimax geodesic o'nhj twice.

Of course a single closed geodesic yields two invariant points.

Under the same conditions there must he two distinct closed

qeodeMCs which meet the geodesic of mmwiax type only twice*

To prove this we proceed as follows. We have for the

points of R
T{e, f) - {0*, fV

b3
’ definition. On the other hand the same geodesic may be

taken in the opposite sense so that

T(0*, 7X — («, .1 — f).

If then we define the ‘reflection ' C in such wise that

U{9, y) {0, n — f),

we obtain

T U(0, (p) == (0*, 7T— (p*)

and thence

TUTU = /

where 1 is the identity. Hence T ?7~ F is a transformation

of period 2, as is U, and we find T = VU, i. e. T is a product

of two involutory transformations. Similarly we find T* = V*U
where V* is also involutory. Hence we infer that TT*
has the form VUV* U. Suppose now that there is an in-

variant point P under TT* so that

VUV*UiP) P.



VI. POINCARE’S GEOMETRIC THEOREM 187

We obtain then, by inverting,

UV^UViF) = P,

whence

TT*V{P) = y{P).

Hence if P is an invariant point under so is V{P).

But F(P) must be a geometrically distinct point from P
itself. Otherwise we should have

TU{P) -- P

or. more explicitly, for the corresponding {d, f)

et d, 71 — (pt — f.

But this would mean that the first intersection of the geo-

desic with the minimax geodesic g crosses it at the same

l)oint and in the opposite direction, which is manifestly

impossible.

Now the indices of the invariant point P and of the

associated invariant point F(P) under the transformation

T'T* are equal. In fact make the change of variables corre-

sponding to the symbolic equation

Q -- T^(P),

by which any point P is taken into F(P). The modified

transformation less is of course

FTr*F =

as is at once verified by substitution of the factored form of

TT* derived earlier. Hence the transformation TT* in

tlie neighborhood of one invariant point is equivalent to the

inverse transformation in the neighborhood of the associated

invariant point. But the index of an invariant point is un-

altered by a change of variables, and is the same as for the
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inverse transformation. Consequently the indices of the two

associated invariant points are necessarily equal in all cases.

It is obvious geometrically that the association of pairs

of points arises from the circumstance that every geodesic

may be traversed in two opposite senses.

Since the extended theorem of Poincare allows us to infer

the existence of two invariant points with oppositely signed

indices, we infer that there exist two geometrically distinct

closed geodesics which intersect the closed geodesic only

twice.

This completes the proof of the ]»revious italicized

statement.

By applying the same theorem to higher powers of TT*
the existence of other types of closed geodesics could be

inferred. Moreover the methods of section 1 are applicable

and show that there will be in general infinitely many closed

geodesics in the immediate vicinity of a closed geodesic of

stable type.

There are two fiiither remarks concerning the geodesic-

problem which 1 will make in conclusion. In the first place

the conclusion that there will exist at least two other distinct

closed geodesics meeting the geodesic of minimax type only

twice is no doubt valid for surfaces of much more general

type.

Secondly, if the convex surface is symmetric in space about

a plane containing a geodesic y, there will be various closed

geodesics which intersect </ twice at right angles. Methods

for dealing with these symmetric closed geodesics can be

used analogous to those which 1 employed in dealing with

certain .symmetric periodic orbits in the. restricted problem

of thi'ee bodies (loc. cit.). In fact if g is of minimax type, the

transformations T and T* become identical, and T T* appears

as the square of a product of two involutory transformations,

as is the case for the fundamental transformation in the

restricted problem of three bodies.



CHAPTER VII

GENERAL THEORY OF DYNAMICAL SYSTEMS

I. Introductory remarks.* The final aim of the theory

of the motions of a dynamical system must be directed toward

the qualitative determination of all possible types of motions

and of the interrelation of these motions.

The present chapter represents an attempt to formulate

a theory of this kind.

As has been seen in the preceding chapters, for a very

general class of dynamical systems the totality of states of

motion may be set into one-to-one correspondence with the

points, P, of a closed w-dimensional manifold, M, in such

wise, that for suitable coordinates xi ,
•••. the differential

equations of niotioti may be written

dxjldt - Xi (a-j. • • •• Xn) (/ = ],. n)

in the vicinity of any i)oint of M, where the Xi are n real

analytic functions and where t denotes the time. The motions

are then presented as curves lying in M. One and only one

such curve of motion passes through each point P,, of M,
and the position of a point P on this curve varies analytically

with the variation of Fq and the interval of time to pass

from Po to P. As t changes, each point of M moves along

its curve of motion and there arises a steady fluid motion

of M into itself.

By thus eliminating singularities and the infinite region, it

is evident that we are directing attention to a restricted class

of dynamical problems, namely those of ‘non-singular’ type.

Sections 1-4 are taken directly from my paper Vher gewisse zenfrah

Bewegungen dynamischer Systenie^ Gottinger Nachrichteii (1926). The

remainder is closely related to my papers, Quelques theoremes stir les

mouvements des aysiemes dynamiques^ Bull. Soc. Math. France, vol. 40 (1912),

Surface Transformations and Their Dynamical Applications^ Acta Mathe-

matica, vol. 43 (1912), in particular sections 54-57.
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However, most of the theorems for this class of problems admit

of easy generalization to the singular case. The problem of

three bodies, treated in chapter IX. is of singular type.

The difPerential equations of classical dynamics ai*e more

special, and in particular ])0ssess an invariant n-dimensional

integral over J/. In consequence any small molecule,

of M about a point }\ at time must subsequently overlap

its first position ^o- This fact may be deduced as follows:

Suppose that at a time /, following r units after the

molecule is in an entirely distinct position, and consider its

positions at times r, 2 x. • • • after the initial instant These

])ositions cannot be entirely distinct from one another; for if v

denotes the value of the invariant integral over the molecule

in its initial position, this value will be the same in such

subsequent ])ositions, and since the value of th(' invariant

integral over M is finite, say V, the number of distinct

positions cannot exceed Y/r. Hence some /-th and 7-th mole-

cules overlaj) But it these overlap, then in the corre-

sponding positions units of time earlier, they will

still do so. It follows that the {j— position of f/ over-

la])s ^o. By this argument and its natural extension, Poincare"^

proved that in genei-al the motions of such more special

dynamical systems will recur infinitely often to th(' neighbor-

hood of an initial state, and so will ])ossess a kind of stability

‘in the sense of Poisson’.

It will be our first aim in this cha])ter to show that with

an arbitrary dynamical system not .so restricted, there is

associated always a clo.sed set of ^central motions' which do

possess this property of regional recurrcm^e, towai-ds which

all other motions of the system in general tend asym])totically.

2. Wandering and non-wandering motions. Consider

an arbitrary point Pq of the manifold M of states of motion.

J^et O' be an open continuum of small diameterf containing

* Methodes nouvelles de la Mecanique cdeste^ vol. 3, chap. 26.

t It is evident that distance may be defined in an appropriate fashion

in M. The diameter of a set of points is merely the upper limit of

distances between pairs of points of the set.
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Pq. As the time t increases, this ‘molecule’ <r moves. It

may happen that Po represents a state of equilibrium; in

that case the. molecule will always continue to overlap Po;

we exclude this case for the moment. In any other case o

will move outside of itself if % is small enough, since the

velocity components dxjidt are approximately the same as

at Po throughout the molecule. If it is possible to take e

so small that <i never again overlaps its first position, we
shall call Po a ‘wandering point’, and the corresponding motion

a ‘wandering motion’. In the contraiy case P, Avill be termed

a non-Avandering point, and the corresponding motion a non-

wandering motion. With this second class we naturally include

equilibrium points and the degenerate corresponding motions.

There is an ai)parent asymmetry between the increasing

and decreasing directions of the time t, as far as these

definitions go. But it is easily seen that there is no asymmetry

in actuality. In fact if the image of intersects itself after

T units of time, it does t units of time earlier; for the over-

lapping molecules ft and (i. e. taken r units afterward)

occupy the positions <r_r and a respectively, r units of time

earlier, and these continue to overlap.

Thus the wandering point Po is characterized by the fact

that the corresponding molecule <t describes an w-dimensional

tube which never overlaps itself as t changes from — oo to

-f- oo . For this reason the characterization as ‘wandering'

seems legitimate, since Po never recurs to the infinitesimal

neighborhood of any points once passed.

The set W of u anderhtg points of M is made up of airres

of motion fitting open n-dimensionnl continuu. The set d/i

of non-ivttndering points ofM is made up of the eoniplementurg

closed set of curves of motion.

For the reasons just' presented all of this statement is

obiious, except perhaps for the assertion that W is open

and consequently Mi is closed. But if Po is a wandering

point, so evidently are all the points of the molecule a

including Po. This shows at once that IF is made up of

open continua, and hence that Mi is closed.
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If the set Ml of non-wandering motions contains points

which are not limit points of the set the^e form a siih-set

Ml of mrves of motion filling up open n-dimensional confinua

find possessing the property of regional recurrence.

It is clear that M[ is made up of a set of curves of motion,

for since Q of M[ is not in the immediate neighborhood of

any curve of motion of W the same will be true of all other

points on the curve of motion containing Q. Also a sufflciently

small molecule containing Q will be entirely in M[ so that

Ml is made up of open dimensional contiiiua of non-

wandering points. Hence the property of regional recurrence

is obvious.

Evidently the set Mi — Ml Mf is merely the set of

boundary points of the n-dimensional open continua W, M\.

It is made up of a closed set of complete motions, of less

than n dimensions.

A.9 time increases or decreases^ every wandering point ap-

proaches the set Ml of non-wandering curves of motiori.

The proof of this fundamental property of wandering motions

is not difficult.

Consider any small open neighborhood of Mu within which

Ml lies, and the complementary closed set C made up ex-

clusively of the points W. About each point of C can be

constructed a small molecule o', such that the molecule never

overlaps itself as time changes. Hence a finite set of these

molecules can be found which cover C completely. A moving

point can enter any one of these molecules (held fixed) only

once, and can stay within it only a short interval of time.

It is thus obvious that after a finite time the moving point

lies always inside of the arbitrary neighborhood of Mi.

Hence any moving point must approach Mi, as stated.

A more detailed study reveals certain further characteristics

of the mode of approach of the wandering motions to the

non-wandering motions. Since in the above discussion the

moving point enters one of the fixed molecules covering C
only once and stays in it for only a brief period of time,

the following facts are obvious.
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Any wandering motion remains outside of a prescribed neigh-

borhood of Ml only a finite time T, and goes out of this

neighborhood only a finite number of times N, where N and T
are nyiiformly limited, once the neighborhood is chosenA

3. The sequence M, Mi, M^, — Having arrived at the

closed set of non-wandering points Mi, between points of

which distance may be detined as in M, we are in a position

to define wandering and non-wandering i)oints relative to Mi,

(instead of M) as follows. Choose an arbitrary point Fq

of 3/1 , and an open continuum a, of small diameter, con-

taining Po certain other points of Mi. Setting aside the

case when Po is an equilibrium point, and choosing the dia-

meter of a small enough, we see that this molecular part

of Ml will move outside of itself away from its initial position.

If the diameter can be chosen so small that the part of Mi
in a never again overlaps itself, we may say that Po is a

wandering point of 3/i (though of course non-wandering with

respect to M by definition of xl/j). Other points, including

equilibrium i)oints, in Mi may be termed non-wandering

points of Ml.

It is clear that the parallelism is complete. The non-

wandering points 3/g relative to Mi form a closed set of

motions toward which any point P of the set of wandering

points Wi is asymptotic as time increases or decreases, and

similar uniformity properties relative to Mi hold.

The same process may now be repeated with respect to

Mi as a basis, and thus are defined 3/3 and Hg. Continuing

in this manner we obtain M. Mi. M^, • • . AVe regard the

process as terminating it any 3/^-fl is the same as Mi, in

which case there are no points TT/ of course. In case the

process does not terminate in this way the sequence of distinct

closed sets M, Mi, il/g, each within its predecessors,

defines a unique limiting set M^, which is evidently closed

* To render the count of exits precise, it is desirable to take each

covering molecule so as to have at most one segment cut off by any

neighboring stream line, and then to consider the neighborhood outside

of the covering molecules as the given neighborhood of Mi.

13
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and composed of curves of motion. Further application of the

process yields
, Ma+2 ,

• Thus are defined successively

M,

3/ M Si , , M, ,s I

,

i.) 4- 1 ^ <>> 4-2

in accordance with the well known theory of transfinite

ordinals given by Cantor.

But these form an ordered set of distinct closed i)oint sets

each with an immediate successor and contained in all of its

predecessors. Such a set is certainly numerable. Hence the

process does eventually terminate in some 3/,-.

Thus there exists n well-ordered, terminatimj set of distinct

closed sets

3/j 3/ij 3/2 .
* * *j 3-/(t>. • *

*j 3/j*j

in which an element Mp^\ immediately following Mp consists

of the non-ivandering motions relative to Mp, while an element

Mp u'ithoiit an immediate jnedecessor is the limit of its pre-

decessors. The wandering points Wp of Mp tend asymptoti-

cally toward the non-wander ing motions 3/p+i in such irise

that the total time outside of a given neighborhood of Mp,\,

as well as the number of exits from this neighborhood, are

uniformly limited.

The final set obtained, Mr, is the set of ‘central motions'.

It is obvious that these have the property of regional re-

currence since there are no wandering points Wr. From
this property it may be inferred by the method of Poincard

(loc. cit.) that in any arbitrary neighborhood of a point of

Mr there is a motion which enters this region infinitely often

in past and future.

In fact, if there is an isolated curve of motion of 3/, in

the region, the curve must be closed and this motion must
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be itself periodic, since the motion is non-wandering. In

this case the periodic motion itself has the desired property.

If there is no isolated motion, we can select a neighborhood

of the given point as small as we please which OA^erlaps it

in Mr again at least once at some later time. Thus we get

two points P, Q, on the same curve of motion of Mr, both

in the molecule about the given point, but not near together

in time. Next we choose a still smaller molecule about P,

so small that every point P' in this molecule continues to

meet the original molecule at a point Q' near to Q. But by

choosing P' suitably, we can find a iK)int E' before P' in time,

lying in the same molecule as P\ Q\ Thus we obtain an

arc E' P' Q' of a curve of motion of Mr such that the three

l)oints E\ Q' lie in the given molecule taken at the outset

at three different times. Next by choosing a still smaller

molecule about J*' we are led to an arc E" P" Q" then

to jj(8) p(3i (^(H) limit of the points

P, P', P", • • will be a point of M, in the given molecule,

which traverses that molecule infinitely often in the past and

in the future.

It is obvious that the periodic motions in the dynamical

problem must lie in the set of central motions. The motions

defined later (section 7) as Recurrent’ will also.

4. Some properties of the central motions. It is

ea.sy to see that every point of J/ approaches within an

arbitrarily given neighborhood of the central motions at least

once within every sufficiently large fixed interval of time.

For sucli a point certainly approaches M2 in this manner

inasmuch as every motion of Mi approaches M2 uniformly

often, and therefore every motion near Mi does also. Con-

tinuing in this mannei’ we see that this uniformity property

holds for 3/1, M2, • ••. If the series continues to Mu,, the

same property must be true for Indeed an Mn can then

be found in any neighborhood of Mui since Mu> is the inner

limiting set of the closed sets Mn* Since a point approaches

an arbitrarily given neighborhood of M,, uniformly often, it is

therefore evident that it does the same for J/,„. By continuing
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indefinitely in this manner with J/,u4 ],
• • •. M,,)', , Mr we

arrive at the stated conclusion.

Now the motions of M w'ere seen to approach those of Mi
in a definite manner, while in tuni those of Mi approach M^
similarly. By combining these results it would be possible to

make certain statements as to the mode of approach of any

point of M to Mi- This method of description might be

carried on to J/3 ,
• M(a, • But for the general purpose

of this paper we shall merely establish a simpler result for

all the sets Mp,

Let us define the ‘probability’ that an arcPQ lies in a

given region 2 as the ratio of the time interval for the part

that does lie in 2 to the total interval.

The prohahility that an arc of a acrvc of motion lies inside

of an arbitrary neighborhood of a set Mp, and in particular

the set of central motions Mr, approaches unity uniformly as

the interval of time for such an arc imreases indefinitely.

From what was proved at the outset concerning J/,, the

probability that any arc lies in a given neighborhood of M,

approaches unity uniformly as the interval of time increases

indefinitely.

To prove a like result for Mt, we recall that any arbitrary

motion of Mi is represented by a curve which lies inside of

a prescribed neighborhood of Mi except for a limited number

of arcs corresponding to a limited total interval. Now any

long arc sufficiently near to Mi will share the property of

the motion of Mi, of being inside the prescribed neighborhood

except for a limited number of arcs of limited total length,

provided that first the length of the long arc is taken arbi-

trarily large, and then the neighborhood of Mi within which

it is to lie is chosen suitably. Furthermore if a point is near

enough to Mi it will evidently lie on such a long arc of

a curve of motion.

Hence, since the probability that an arc of M lies within

the prescribed neighborhood of Mi approaches unity as the

time interval is tak^i longer and longer, and since eveiy

point in such a neighborhood of Mi is part of a long arc
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near to except for a finite number of pieces of limited total

length, it is obvious that the probability that an arc in M
lies within a given neighborhood of approaches unity

uniformly as the time interval for the arc becomes larger

and larger.

This same argument is evidently applicable for il/g, ilij, • • •.

For Mu> we need only note that since Mu, is the inner limiting

set defined by Mi, Mi, •• •, it will he approached as a limit

by this set in such a way that for a sufficiently large n

every point of Mn will be within distance « of some point of

Mu,- Since the probability that an arc of an arbitrary motion

for a sufficiently long interval is within distance t of Jl/„ is

at least 1 — 6 where d is small, the probability that it is

within distance 2e ot Mu, is at least 1 — d.

Evidently this reasoning admits of indefinite continuation

and leads to the desired conclusion.

5 . Concerning the role of the central motions. It is

obvious then that a first problem concerning the properties

of dynamical systems is the determination of the central

motions.

For the equations of classical dynamics the central motions

are obviously the totality of motions, at least for the case

without singularities to which we are now confining our

attention. In fact the property of stability in the sense of

Poisson involves that of regional recurrence, characteristic

of the central motions.

The superior usefulness of the equations of classical type

may very well be a refiection of the fact that the central

motions are the most probable motions, rather than any con-

sequence of the laws of nature.

6. Groups of motions. Consider now any curve of

motion in M with a point Pt moving on it. The points Pt

constitute the ‘point group’ of the given motion.

Every limit point of the set Pt for lim t - + x will

be termed an w limit point of the motion, and every limit

point of the set Pt for lim f = — x will be termed an « limit

point.
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In all cases the limit points of either class form a closed

point set.

The set of w («) limit points of any motion Ptform a closed

connected set of complete motions. The distance of Pt from

this limit set approaches 0 for lim < — oo (— co ).

In fact let P* be an o> limit point which Pt approaches

for lim / = + oc
,
and let P** be a point of the curve of

motion through P*, after an interval c. Evidently Ptu
will approach P** in the same sense. That is to say, P**
is an w limit point if P* is. From this argument we infer

that all points of the point group of P* are m limit points.

To establish that the distance from Pt to this set ap-

proaches 0. we employ an indirect argument. If Pt did not

approach the set of w limit points uniformly for lim t -f oc
,

it would be possible to select an infinite set of indefinitely

increa.sing values of t, such that Pt would be distant from

any w limit point by at least a definite positive quantity d.

There would then be at least one limit point Pi of the

set Pt. and this point would be at least d distant from

any o> limit point. By definition, however. Pi is an w limit

point, so that a contradiction results.

It is obvious that the o limit set is connected inasmuch

as it is approached uniformly by the point Pt as t becomes

infinite, while Pt moves along its curve of motion continuously.

If we consider the groups of motions Mi, M^, • • which

lead to the central motions Mr, it is obvious that the «

and w limit motions of a motion in Mp will form part of Mp+i.

7. Recurrent motions. Consider now an arbitrary, closed,

connected set 2 of complete motions. It was observed above

that the « or w limit motions of any motion fom such a

set of motions. More generally, if w'e take any connected

set of complete motions and adjoin to it the limit points,

we obtain an enlarged set X
If a set 2 contains no proper sub-set 2' of the same type

we shall say that 2 is a ‘minimal set of motions’. In this

case if P is any point of 2
,

its « and w limit points form

closed sets in 2
,
which must therefore coincide with 2.
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By definition any complete point group in a minimal set

forms a recurrent point group and any motion in that group

is called ‘recurrent’.

All recurrent motions belong to the central motions. In

fact the « and w limit points of any such motion in Mp form

a set 2 in A/p+i. which must coincide with the minimal set,

so that no point of the set can be in Mp but not in Mp^\.

Hence the minimal set corresponding to the recurrent motion

lies in J/,-.

In all cases but the simplest one, in which - consists of

a single closed curve, a minimal set 2 contains a non-

dennmerable perfect set of curves of motion. For suppose

a minimal sfet to have an isolated curve of motion. A point Pt

on this curve has the points of the curve as its « or <»> limit

])oints. Hence this curve must be closed and constitutes the

minimal set 2.

In order that a point proup generated l>g a motion Pt he

rernrrent, it is necessary and sufficient that for any positive

quantity e, hoicever small, there exists a positive quantity T
so large that any arc Pt Pt^r of the curve of motion has

points within distance e of every point of the curve of motion.

This condition is necessary.

If not there is a recurrent point group J generated by Pt

and a positive e such that a sequence of arcs PtPt+^r {T.

arbitrarily large) can be found for each of which no point of

the arc which comes with distance f of a corresponding

point Q of 2. As T increases, the point Q has at least one

limit point Q*, and thus it is clear that for a properly taken

subset of the sequence Pt Pt+2 T, no point lies within distance

f/2 of Q*. Consider the sequence of middle points Pt^r

of such arcs. For a limiting position P*. wo infer that

every ])oint of the complete point group of P* is at distance

at least s/2 from Q*. Hence P* defines a closed set of point

groups lying within the closed minimal set - defining the

given recurrent motion, but forming only part of it, and in

particular not containing Q*. This is absurd by the very

definition of a minimal set.
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To prove the condition sufficient, we note first that the

sets of « and w limit points of a point group satisfying this

condition must coincide. We need only take f -= 0 in the

arbitrary arc Pt Pt+r to see the truth of this fact. Call the

.set of these common « and <•> limit points,

If the set 2 is not minimal it would contain a proper

subset 2' of the same sort to which some point Q ot 2 w'ould

not belong. Now, when the point Pt approaches .sufficiently

near to a point of 2\ it will remain very near to this closed

connected set of complete motions for an arbitrarily long

interval of time and so will not approach all of .2 in this

interval, as demanded. Thus the assumed condition would

not be satisfied by the point group generated by Pt.

Hence .If is minimal, and the motion is recurrent.

Clearly all recurrent motions are central motions, but of

(bourse central motions need not be recurrent. Indeed in the

case of the differential equations of classical dynamics, all

the motions are central, but need not be recurrent.

8. Arbitrary motions and the recurrent motions.

The importance of the motions of recuiTent type for the con-

sideration of any arbitrary motion is evidenced by the follow-

ing result;

There exists at least one recurrent (jroap of motions in the

<»)(«) limit motions of any yiven motion.

Let 2 denote the closed set of w limit points of the

given motion. We need to prove that the set 2 contains

a minimal sub-set.

Divide M into a large number of small regions of maximum
span not gi’eater than «, an assigned positive constant. Among
the motions of 2 there will be one which enters a least

number of these small regions ofM under indefinite increase

and decrease of t. Let 2^ be the corresponding closed set

of complete limit motions. This set is part of 2 and lies

wholly in the same small regions. Divide these small regions

into regions of maximum span e/2. Among the motions of 2^

there will be one which enters a least set of these smaller

regions of M under indefinite increase and decrease of t.



VII. GENERAL THEORY 201

Define as the corresponding closed set of limit motions,

which will be part of

Proceeding in this way we determine an infinite sequence

. of closed connected sets of complete motions, each

set being contained in its predecessors. Now let P» be any

point whatever of 2„, and let P* be a limit point of the

set Pii. The point P* belongs to 2 of course since it is

a limit point of points of 2. Furthermore since Pn is contained

in (m ^ n), the limit point P* lies in all of the regions

Likewise since the complete curve of motion

through Pn is contained in 2^ (m < n), the complete cuiwe of

motion through P* lies in .2, 2',
,

•
- Hence, in accordance

with the property b}’ which these regions were defined, the

curve through P* must enter all of the sub-regions at every

stage, and hence its limit points must consist of all the

points 2r common to . . ..

The same argument shows that any motion lying in 2r has

this complete set as its set of « or w limit points. In other

words the set 2r forms the desired minimal set.

The following further result shows that either a point Pt

generates a recuiTent motion, or else that it successively

approaches and recedes from such recurrent motions uni-

formly often;

For any f > 0 there existe an interval T so large that any

arc Pt Pt+T in M contains at least one point within distance s

of some grouj) of reairrent motions.

The proof is immediate.

If the theorem is not true it is possible to obtain arcs

PtPt+2 T, not coming within distance f of a recurrent point

group for T arbitrarily large. Let then Pj+t denote the

middle point of such an arc. If P* is a limit point of the

points Pt+T for lim t = -t-cc, evidently the complete

curve through P* has none of its points within distance e

of any recurrent point group. But the set of « and m limit

points of P* each contain a minimal set. Thus a contra-

diction appears, since every motion in a minimal set is by

definition recurrent.
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9. Density of the special central motions. It is

evident that the structure of the set of central motions Mr
is of vital theoretic importance. Now this closed set of

motions has been seen to be characterized by the property

of regional recurrence, and thus the existence of an 72-dimen-

sional invariant volume integral for the equations of classical

dynamics insures that the totality Mr is M itself in this case.

We propose to establish some simple properties of the set

of central motions.

The set Mr is made up of one or more connected parts,

each of which contains at least one minimal set of recurrent

motions.

Any central motion whose u or w limit points do not fill

up all of the connected part of Mr on which the motion lies

will be termed a ^special' central motion. A recurrent motion

is special according to this definition unless the corresponding

minimal set constitutes all of the connected part of ilfr to

which the recurrent motion belongs.

In particular then for classical dynamics, the special motions

are those which do not pass arbitrarily near all possible

states of motion, either as time increases or else as time

decreases.

The spenal central motions are everywhere dense on any

connected jyart of the set Mr of central motions^ unless that

part is made up of a single minimal set of recurrent motions.

For the case of classical dynamics {Mr M) the special

motions are thus dense througluyui Mj unless M is made up

of a single mmimal set of recurrent motions.

In establishing this result we shall take Mr as M itself,

but it will be evident that the proof applies equally well

to any connected part of Mr provided that by a region of

Mr is understood any connected part of the set Mr, no point

of which is a limit point of points not belonging to the region

but in Mr*

Suppose if possible that there is a closed region E no point

of which belongs to a special motion. Now there exists at

least one set of recurrent motions 2 in M, which are special
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motions in tin' case under consideration and so fall entirely

within the complementary region F = M— E.

Consider all of the points within a distance s of 2’ where

t is chosen so that the s neighborhood of .i’ lies entirely

Avithin F.

As / increases indetinitely. this e neighborhood moves, and

two possibilities arise: either (1) no points of the « neighbor-

hood go outside of F for e sufficiently small or (2) at least

one point of the neighborhood finally emerges from F, no

matter how small f is chosen.

The second alternative is easily disposed of. Let e ajiproachO

and consider a sequence of .arcs FQ of curves of motion in F
such that P lies in the t neighborhood of 2, while Q lies on

the boundary of F and corresponds to a later time t.

evidently the half curve of motion in the sense of decrenmuj

time through any limiting position Q of Q for lime = 0.

lies wholly in F, and constitutes a special motion of the type

whose existence was denied. Thus w^e may confine our

attention to the first alternative.

But in the first case choose e as large as possible so that

the set of motions passing through the f neighborhood of -

continue to lie wholly in F as t increases. It is apparent

that the upper limit of values e for which this is true is also

a permissible value of t. The points on these motions and

limit motions constitute an augmented region R within which

A' lies. No motion of R when continued in the sense of

decreasing time can emerge at a point F on the boundary

of F, for then the motion through P for ina-cimng time

would be a special motion leaving E at P, and thereafter

lying within F. For the same reason R must lie wholly

Avithin F. But noAv if -we consider the points within the

e neighborhood of R, some of these must emerge at a later

point Q from F\ otherwise the region R would not corres-

pond to a maximum value of e. Thus there arises a limiting

point Q, the motion through Avhich is special of course, and

remains in F with decreasing t. Thus a contradiction folloAvs

in all cases.
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A slight extension of this reasoning enables us to establish

the following more precise result:

If a connected region of Mr contains a motion ivithin it,

there exists at least one special motion passing through a point

of its hoandarg and lying within the region as i increases

(decreases).

Suppose that we consider an e neighborhood of the com-

plete motion within the region F. If t decreases indefinitely,

this region moves and our earlier argument shows that the

fact stated must be true unless no points of this e neighbor-

hood ever go outside of F with decrease of time, for e small.

If we consider the s neighborhood together with all of

the part of F into which it moves as / decreases we obtain

an augmented region. This augmented region must lie in F
when t increases as well as decreases, and it must be in-

variant. For if a point of the augmented region moves

outside of itself to a point Q as t increases, them a small

enough molecule about Q would never overlap Q again as t

decreases, contrary to the property of legioiial recurrence.

If we take e as the upper limiting value, we obtain an

invariant region R in F made up of com])]ete motions. By
considering points in the 6' neighborhood of 7/ and letting t

decrease, we find as before that some of the motions in this

neighborhood must finally leave F at a point Q. By allow-

ing to approach 0, a limit point Q is found through which

passes a motion lying in F for increasing t, as desired.

lo. Recurrent motions and semi-asymptotic central

motions. We shall sa}’^ that a motion is ])ositively (nega-

tively) 'semi-asymptotic’ to a minimal set of recurrent motions

in case that set is the only minimal set among its w(«)

limit motions. With this definition in mind, we can state

the following conclusion:

Either there are other renirrent motions in the immediate

vicinity of a recurrent motion, or there exist central motions

positively (negatively) semi-asymptotic to the recurrent motion.

The proof is immediate. Choose a small neighborhood of

the given minimal set of recurrent motions. By the preceding
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section there will be a motion entering this neighborhood

at a point P, and remaining within it subsequently. If this

motion has other minimal sets besides the given minimal set

in its set of w limit points for s arbitrarily small, the state-

ment made is true. In the contrary case the motion through

P will be positively semi-asymptotic to the given recurrent

motion, also in accordance with the result stated.

II. Transitivity and intransitivity. Let us consider

a ‘molecule’ about an arbitrary point in some connected

part of the manifold of central motions, Mr. As t increases,

this molecule moves in accordance with the differential

equations and will sweep out a tube in M which must ulti-

mately overlap itself because of the property of regional

recurrence. Let R denote the tubular region so described

together with its limit points. As t increases, the end of the

tube R moves into the tube, and the region R is carried

into all or i)art of itself. But, because of the property of

regional recurrence, this region cannot move into part of

itfielf, and so is carried precisely into itself, as t increases,

or decreases. Thus the complete tube formed from the

molecule by allowing t to vary in either direction yields the

same region R, made up of complete motions.

Now two possibilities arise: either for every point P of M,

and any molecule about the point, a region R is obtained

which coincides with M. or for some point P and choice

of an enclosing molecule, R is only part of M.

In the first case we shall call the connected part of the

set of central motions Mr of ‘transitive’ type, whereas in the

second case it is of ‘intransitive’ type.

For the problem of classical dynamics, transitivity means

that any small molecule ultimately sweeps out the entire

manifold M of states of motion (except for nowhere dense

motions), whereas this is not true in the intransitive case.

A necessary and sufficient condition for the intransitivity

of a ccmnected set of central motions is that there exists

an invariant closed region in the set, forming only part

of it.
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The rharadrristic of the intransitive ease of classical dynamics

is thus that there exist invariant n- dimensional continna of

complete motions filling only part of M.

Evidently the stated condition is necessary since such an

invariant region is found in the region R described above.

On the other hand, if there is an invariant region R in J/,

.

a molecule lying within R must always continue to lie in R
for increasing or decreasing so that the motions are

intransitive.

In the intransitive case all motions are special. For an

arbitrary motion either lies in such an iin ariant sub’Continuum.

or in the complementary set of invariant sub-continua, or on

the boundary of the given invariant sub-continuum.

In case a coauected part of the set of central motions Mr
is tf'ans'itive, there null exist motions trhicli. as t cit/nr i}n riuises

or decreases, nltimately p(fss arbitrarily near all jfoints of ila^

manifold of states <f motion.

For definiteness we shall take Mr M in our demonstration.

Moreover w(' make the pndiminary observation that e\ovy

molecule must fill M with increasing t; else it would defim*

an invariant partial region R of M of the type excluded in

the transitive case. Hence there exist arcs of curves of

motion which go with increasing / from the neighborhood

of a given point P to that of a second given point Q.

Let us begin by choosing a positive quantity d less than 1.

and any numerable set of points Ru,{k 1,2, • • 0^ whicli

is everywhere dense in M, It is clear that if a second set

P/c, (k -1,2, ••) is assigned such that Pjc is distant at

most # from Pjc for k =-
1, 2, • • then the second set will

also be everywhere dense in M,

To obtain a motion which is not special we may i)roceed

in the following manner. ^\'ithin the d neighborhood of Pi,

the point Pi and an arc Pi P^ of a curve of motion can be

found such that P^ lies in the d^ neighborhood of Pi, Mark

now about P[ a smaller neighborhood, lying within the d

neighborhood of Pi and such that if Pl" vaiies anywhere

within it, the point PlJ of the curve of motion through
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still may be taken to vary continuously within the d* neigh-

borhood of Pi. This is obviously possible.

Now within this smaller neighborhood of K a point P"
may be selected so that the point Qi' of the arc of a curve

of motion P" lies in the d* neighborhood of Pi. Thus

an arc of a curve of motion Q2 P” P% is obtained, such that

Q2
' is within the d* neighborhood of Pi while P", Pi' are

within the d and d* neighborhoods of Pi and P* respectively.

Furthermore, we can take a neighborhood of Pi still in

the d neighborhood of Pi, so small that as P{" varies con-

tinuously within this neighborhood, both Pi" and Qi" of an

arc Qi' Pi" Pi" vary continuously within the d* neighbor-

hood of Pi.

By another similar step we may fix upon a P#" of an arc

Qi" Pi" Pi' Ps" so that Pi" lies within the d^ neighborhood

of Pa. By still another step we obtain an arc Qi^ Pi\
and so we may proceed indefinitely. In this way we con-

struct at the /.--th stage an arc of a curve of motion

qT 1 I I I 2 Pti

such that Pt^^ and yj/’ lie in the # neighborhood of P*.

It is clear that by a limiting process we arrive at a curve

of motion

(^ Q* Pi Pi p:

in which Pi* and Qk lie within the d''' neighborhood of P*.

Consequently the sets Pi*, P*, • and Q*, Q*. are

everywhere dense in M. Hence the « limit and the w limit

motions make up all of M, and the motion itself is not special.

In the following chapter (section 11) an example of a non-

singular geodesic problem of transitive type is given. It

seems probable that, in general, after the obvious reductions

by means of known integrals are effected, the problems of

classical dynamics are of transitive type.

Between the general transitive case and the highly

specialized cases of completely integrable type, there is a
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prodigious variety of intermediate possibilities, dependent on

the particular properties of the differential equations.

In the following chapter we conrider the case of a system

Avith two degrees of freedom. Unfortunately it does not seem

to be the fact that the methods there employed admit of

simple extension to the case of more degrees of freedom. The

problem of three bodies, treated in chapter IX, is extremely

instructive as an instance of this more complicated case,

although it is of singular type.



CHAPTER Vra

THE CASE OF TWO DEGREES OF FREEDOM

I. Formal classification of periodic motions. In

chapter VI we studied dynamical systems of Hamiltonian

type {m = 2) in a preliminary way, with particular reference

to the periodic motions. We propose now not only to obtain

a more complete idea as to the existence and distribution of

these periodic motions, but also of the various other types

of motion.

For systems of this type the manifold of states of motion

is four-dimensional at the outset, with coordinates QuPi, q^-

However, by specification of the constant of energy, H= li,

a three-dimensional analytic sub-manifold is defined, and it

is a particular such manifold M which is the manifold of

states of motion under consideration. In other words, by

use of the energy integral the system of differential equations

is reduced from the fourth to the third order.

In order to limit attention to a definite type of case we
assume that M is non-singular, i. e. closed and analytic, and

furthermore we exclude the possibility of equilibrium in il/.

since equilibrium cannot arise for a general value of h.

Consider now a periodic motion, which will be represented

by a closed curve in M. Imagine that curve to be cut by

an analytic surface 8. If a point P of /S is followed along

its corresponding curve of motion in the sense of increasing

time, it will intersect 8 again at a point Pt. We write

Pi = r(P), thereby defining a one-to-one, analytic trans-

formation of 8 into itself, at least in the neighborhood of

the given periodic motion. The transformation T leaves

invariant the point corresponding to the periodic motion.

For periodic motions near to the given periodic motion, but

represented by curves making k circuits before closing, there

209 14
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will be a corresponding set of h points, P, T{P), •••, T^~^{P'}

with T^(P) — P, where the meaning of the notation is

manifest.

There is a particular and important case in which we can

specify the characteristic properties of the transfomation T.

on the basis of our earlier work. This is the case in which

the Hamiltonian problem is derived from a Tjagrangian problem

with principal function quadratic in the velocities (chapter VI,.

sections 1-3).

Let us recall the precise method of selecting the coordinates

in this case. In the first place the Lagrangian coordinates

(jt, Qi are so selected that is an angular coordinate reducing-

to 2 nth (r, the period) along the periodic motion, while g-?

is 0 along it. Then, from the differential equations, dH/dpi

is not 0 along the periodic motion, and we can solve the

equation JT = h for in the form

PihKiqi,pi. qt, h) 0,

where K is analytic in its four arguments and is periodic

of period 2;r in qi. Hence qi, pt, qt constitute a suitable

set of coordinates for M in the torus-shaped vicinity of the

given periodic motion. In these variables the equations of

Hamiltonian type

dpi _ _ dK dqt dK
dqi dq^' dqt dpt

subsist. The equations (1) enable us to express the coordi-

nates Pi, qt of any curve of motion in terms of the angular co-

ordinate qi ;
and t may then be found by a simple integration.

A final modification is to use Pi— p” as coordinate instead

of Pi. Here pi {t) is the expression for Pi along the given

curve where t is thought of as replaced by its value qyxl2n

along the periodic motion. If at the same time we modify

K by adding a term qtdpljdqi, the form (1) is preserved,

and the periodic motion corresponds to p* — 3, = 0.

Furthermore K remains periodic of period 2n in qi.
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In this way the nature of the coordinates employed in the

reduction to generalized equilibrium becomes apparent. These

coordinates have the advantage that when the ^plane’ gi = 0

is taken as the surface of section 8, the transformation T
becomes area -preserving. Furthermore, if the periodic motion

is of general stable type, so that the multipliers ± A in (1)

are pure imaginary and incommensurable with —
1, it was

seen (loc. cit.) that T may be given the normal form

cos (a+sr2)-r., sin ®
, , . , , , .

r, (ff.fsr2) + r,,cos(rr+sr^)+ '/^
'

in suitably chosen variables where </>, are given

by convergent power series in ?y(,, to starting off with terms

of arbitrarily high degree, at least if a certain quantity

I _ [/— Is/2 7t does not vanish.

It should be remarked that the choice of the surface S
does not affect the transformation T obtained except by a

change of variables.*

The detailed study of the transformation T on the basis

of the area -preserving property and the normal form (2)

enabled us to infer that infinitely many periodic motions

exist in the immediate vicinity of the given periodic motion

of stable type.

In the case when the periodic motion is of general uji-

stable type the multiplier A is either real, or 2 A — 1/^1
may be taken real. The same method as was employed in

the stable case (chapter III, sections 6—9) leads to an

analogous formal solution, and to a real normal form for T

(3) Hi ^ -t~ (Z>, Cl
“ — (ju

in the case L 4 0, where 0, are of the same type as in (2).

This general unstable case is very simple to treat analyti-

cally.* There will be two invariant analytic curves through

* Cf. my paper, Surface Transformatiom and Their Dynamical Appli-

cations, Acta Mathematica, vol. 43 (1912), section 27, or the paper by

Hadamard, Sur Viteration et les solutions asymptotiques des equations

dijfcreniielles, Bull. Soc. Math. France, vol. 29 (1901).

14*
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the origin, which may be taken to be the u and v axes.

Points along one of these invariant curves approach the

origin upon successive iteration of T; points on the other

invariant curve leave the vicinity of the origin; while points not

on these curves first approach and then recede from the origin.

If then we interpret this situation in the manifold M near

a periodic motion of unstable type, we find that there are

two invariant analytic surfaces through the curve of periodic

motion, one of these corresi)onding to an analytic family of

positively asymptotic motions, the other to an analytic family

of negatively asymptotic motions. Other nearby motions first

approach and then recedt* from the given periodic motion

of unstable type.

It is clear that there can be no periodic motions what-

soever lying wholly near to the periodic motion of unstable

type, in contrast with the fact that there must bo periodic

motions near to any periodic motion of geneial stable type

(/40).

In this way it is seen how fundamentally the classes of

periodic motions of stable and unstable type differ from one

another.

We are now prepared to state to what extent the apparent

limitations introduced are necessary.

In the first place not all the first partial derivatives of H
can vanish at any point of the periodic motion, so that the

manifold H h is a regular analytic three-dimensional

manifold i/ along the periodic motion. If variables g, r, A

are selected as coordinates instead of piy qi, the

invariant integral of ordinary four-dimensional volume takes

the form

5P dp dq dr dh

where y > 0 is analytic in p^q, r, h. Hence JJ dp dq dr

is invariant in M,
It follows further that T will leave a double integral

dudv invariant, where m, v are coordinates in 8, and
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V'>0 is analytic in « and v. The argument is essentially

that of chapter VI, section 1 . This fact alone suffices to

lead to the norma] forms (2), (3), and to the conclusions

cited above.*

Hence the Hamiltonian problem need not be restricted

in this manner.

In fact it is found that for the most general transformation T

with such an invariant double integral tpdudv, there

is always a formally invariant function v) given by

a formal power series in u, v. We may define the case in

which the equation II = 0 yields real formal invariant cuiwes

as of unstable type. In this case there are always asymptotic

invariant analytic families of motions (or analytic families

of periodic motions containing the given periodic motion).

All other nearby motions approach and then recede from the

given motion. Thus there are no nearby periodic motions,

except those that belong to the same analytic family as the

given periodic motion, if there are such.

If U —- 0 yields no real formal invariant curve of this

kind, the periodic motion may be called of stable type. In

the general stable case treated above, ii is > *, to terms of

higher order. When a is incommensurable with 2?!, while s,

together with some but not all of the set of analogous constants

perhaps, vanishes, no essential modification is required except

that the term sr- in (2) is replaced by a term If,

however, all of these constants vanish, the normal form (2)

holds with s - 0, and for these irregular periodic motions

it is no longer possible to apply the reasoning by which the

existence of infinitely many nearby periodic motions was

established.

On the other hand, no essential difficulty arises in the

case of stable type when w is 0 or ± ?r or, more gener-

ally, is commensurable with 2n; this is the case when the

given periodic motion is multiple, at least when taken as

* See my paper (loc. cit.) for justification of the fact stated as well

as of what follows.
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described a certain number, /r, of times. It is only necessary

to consider in place of T, for which the number (s

is also 0. Here the invariant function starts off with

higher degree terms than the second, and casual inspection

indicates that T is analogous to a rotation through an angle

which vanishes at the origin but increases for decreases) with

distance from the origin. It would therefore seem highly

probable that in this case too there must be infinitely many

neighboring periodic motions, although the analytic details

need to be carried through.

Consequently it appears that in very general stable cases,

and probably in all cases except the highly exceptional case

when T is equivalent formally to a pure rotation through

an angle incommensurable with "In, this ])roperty will con-

tinue to hold. This exceptional case is that in which the

function M in the formal solution reduces to its first term /.

Hence in the most (/(Oieral fase of nnstahlc type {m ==-- 2 )

the phenomenon of asymptotic analytic families of motions

{or at least of analytic families of periodic motions contffininff

the given ynotion) is cliaracteristic. (Hher nearby motions

approach and then recede from the yivoi periodic motion.

In the ynost (jeneral stable cas(\ except the highly degenerate

case adiere a is incommensarable with 2 n and the formal

series involve no variable periods, there irill be neighboring

periodic motions.

It is to be emphasized that the second of these conclusions

has been formulated without completion of a detailed proof,

such as ] have not yet had the opportunity to effect.

The degenerate case of stable type includes a real ex-

ception, as the example of chapter VI, section 4, shows, and

should be further studied. Moreover the formal series break

down in the stable case when A is commensurable with

V— 1. These must be replaced by much more complicated

types of series, a suggestion for the structure of which may
perhaps be found in my paper referred to above; the earlier

definition of complete fomal stability will need to be extended

so as to permit of indefinitely large periods.
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Between the non-specialized dynamical problem and the

highly exceptional integrable case, there exists an enormous

variety of intermediate cases. In order to possess the

analytical weapons with which to treat all cases whatsoever,

it will undoubtedly be necessary to treat the question of the

stability and instability of analytic families of periodic motions

in much the same way as that which is outlined for the

periodic motions above. While the individual periodic motions

in such a family are to be regarded as unstable, this fact

yields no information as to how nearby motions behave with

respect to the familj' of motions as a whole.

In order to avoid complication then, rather than because

of any essential mathematical difficulty, we propose to deal

mainly with the class of dynamical problems for which every

periodic motion and its multiples are simple with 1 4^ 0. Such

systems will be termed ‘non -integrable systems of general

type’. The integrable case will be treated separately (section 13),

while indications as to the nature of the result in the inter-

mediate cases wfill be given.

2. Distribution of periodic motions of stable type.

Our first aim will be to establish the following result:

For nmi-intcgrahle Hamiltonian systems of yeneral type

{m —- 2), the set of periodic motions of yeneral stable type is

dense on itself in M.

It Avill be observed that this result constitutes a slight

improvement over the result of chapter VI, sections 1-3,

according to which other {)eriodic motions, stable or unstable,

lie near such a periodic motion of stable type.

To begin ivith, we recall the facts developed in the lemma

of chapter VI, section 1 . It was found there that an arbitrarily

small vicinity of the origin, r < q (r, B, polar coordinates)

can be selected at pleasure, and then an iilteger n such that (1

)

all the points of r ^ q remain in the region r < 2^, under

T, T*, • • •, T" and (2) d 0„/dro is positive for r^q, 6„ being

at least 2n greater for r — q than for r — 0. It is easy

to extend the argument to show that drn/dro, dBjbBo are

positive under the same circumstances.
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In this way the curve

On — »o — 2k7T = 0 ,

where k is so chosen that the left-hand member is negative

but not less than — 27t for r — 0, will have one and only

one point (r, 6) on each radius vector, with r < q. Thus

the equation written defines an analytic curve V encircling

the origin and meeting each radius vector only once. But,

by the defining property of C, each point P of C goes into

a point Pn on the same radius vector; thus the curve C„ is

also met only once by any radius vector. Also, because of

the area-preserving property of T", C,, and C will intersect

in at least two points, and these are obviously invariant

points of T". In the case under consideration C„ and C can-

not coincide, for C would then correspond to an analytic

We propose to con-

sider more closely the

indices of these inva-

riant points. Let us

regard r, 6 as rectan-

gular coordinates and

consider the adjoining

figure in which I is an

invariant point at which

the curve (7»passes from

within C to outside

of C, as a moving point

describes C in the sense

of increasing 0.

If a point P makes a positive circuit of I, for instance

around a rectangle KLMN, the vector PP„ will have

a component to the right above C, a component to the left

below C, as follows from the facts noted above. At the

points Q and R the vector PPn is directed upwards and

downwards respectively. It is therefore apparent that during

the circuit, the vector PP» rotates through an angle -\-2n,

family of multiple periodic motions.
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SO that the index of 7 is + 1 ;
while the invariant point 7.

at which Cn crosses C in the opposite sense has an index — 1.

Now by hypothesis the periodic motions corresponding to

7 and J are not multiple. If of stable type, the number <r

is not commensurable with 2n, The corresponding normal

forms are either of the type (3), in which fi is positive or

negative but not i 1 ,
or of the type (2).

By the aid of these forms it is easy to determine the

ies])ective indices. In the first and second cases, tin' slopi^

of the vector PP,i is

rji
__

I H

n -f-
* • •

’

where only the first order terms are indicated explicitly in

the numerator and denominator. It thus appears that if /i

is negative the rotation is the same as that of the vector

drawn from the invariant i)oint 7 at the origin to the t)oiiit

(/(, /'), i. e., 2;7. Henc(‘ the index is + 1 if H negative;

likewise the index is obviously — 1 if ft is positive. More-

ov(‘r, in the third cast' of stable tyi)e when the numbei* a is

by hypothesis incommensurable with 2 7r in (2), 7’"' is approxi-

mately a rotation through an angle incommensurable wn'th 27t

near the origin, so that the vector PP,f I'otates through

during such a circuit. Hence the index is }- 1 if the

motion is of stable ty])e.

We infer then that J corres])onds to a periodic motion of

unstable type, while it is not clear as yet whether 7 is of

stable or unstable type.

As a matter of fact, howa^vei-, under the conditions stated

7 must be stable. The numbers fi are the roots of tln^

characteristic equation, which takes the form

dr,

I

fro

de,,

d ro
’
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when the variables r, 6 are used. Since the roots are the

reciprocals of one another, this equation reduces to

in which we are assured that the coefflcient of ft is negative.

Consequently is positive and I corresponds to a periodic

motion of stable type.

This disposes of the general case when there are no multiple

periodic motions and Z ^ 0.

If the original motion is of stable type but not of that

highly exceptional type when there are no variable periods

in the formal series, it seems to me that analogous results

are to be expected, i. e. that there will exist nearby periodic

motions of stable type.

This exceptional case merits particular attention; it is

conceivable that it can only aiise for integrable dynamical

problems.

3. Distribution of quasi-periodic motions. Let us

suppose that there exists at least one periodic motion of

stable type for the Hamiltonian system under consideration,

taken of non-integrable general type. This motion is repre-

sented by a closed curve C in the manifold M of states of

motion.

Now select any such closed curve C’l of motion of stable

type. Very near to it can be found a closed curve C* of

motion of stable type Avhich makes ki circuits of C before

closing. Next choose a closed curve of motion 63 of stable

type very near to C* and making circuits of Ci, and so

ki Ict circuits of Ci ,
before closing. Thus we obtain a sequence

of closed curves Cn, {n — 1, 2, •••)> which can evidently

be chosen so as to tend toward a definite geometric limiting

set (7 as « becomes infinite, merely by restricting sufficiently

the successive «eighborhoods of Ci, C*, •••. Furthermore,

we can prevent C from being itself one of the numerable set

of closed curves of motion by the same process. For instance
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at the nth stage we might confine attention to a neigh-

borhood of Cn which is so small as to contain no closed

<5urve of motion fother than of length less than there

are only a finite number of such motions of course.

It is interesting to inquire into the analytic form of the

set <7. Let be the angular coordinate in M which increases

by 271 when a single circuit of C is made. Then qt

may be thought of as appropriate coordinates of this motion

(section 1), and we may write

Ih - !h{(h)j <J2
t = jlniqi)dqi

as the equations of the periodic motion dx
,

in which fi ,
r/,

,

hij Itx -0 are analytic periodic functions of g, of periodic 2 /t.

For C2 we have likewise

P-. A (q ^ ) ' - fh (//i ) • qi (q \ ) , ^ j h {qi ) d qx

where ./a ?
analytic periodic functions of qx of

pei’iod 2/1*1 Thus we form in succession a sequence of

functions A, <}n^ h.,,. Pn, periodic of i>eriod 2 kx kn-~\ 7i

in qx , corresponding to the periodic motions (7m 0^ ” 1 ?

If we take points qx ^ 0 so as to approach a limit, it is

obvious that /7, //?, , //«, On approach limits f\ g, A. where

the limits are approaclied uniformly for all values of gi

.

If there arisfs a Hiriffle periodiv motion of stable type for a

nonyinteyraUe Hamiltonian problem of general type, there

/(ill exist infnitely many nearby motions, qaasi-periodic bat

not periodiv, aith coordinates (f the form

It 00

ji)j
= - lini Hu (7,),

M-iiOC

7s lim hniqi),
00

lira l<n{qi)</(h-
n^oc

/rhxe fn. gn, hn* hn are analytic periodic fanctions of qi wit]/

periods 2.t/v*, . • • kn Ih, • • •, kn being positive integers which

may he take^i greater than 1. The convergence is uniform

for all values of qi

.
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Evidently there is a noii-denumerable number of such

quasi-periodic motions, and the coordinates are functions of

the type treated by Bohr. It is clea>* that they constitute

a class of recurrent motions of a new type.

4. Stability and instability. For the consideration of

the periodic motions of stable type in dynamical problems,

a fundamental division of cases must be made. It may happen

that all motions sufticiently near the given periodic motion

remain in a small neighborhood for all time. This is the

simpler of the two cases, in which case the peiiodic motion

in question may be termed ‘stable’. The other i)Ossibility is

that for some small lixed neighborhood of the given periodic

motion, there may be found motions which are arbitrarily

near the given periodic motion at the outset but ultimately

pass out of the fixed neighborhood. In this case the periodic

motion in question may be termed ‘unstable’.

Evidently the classification here effected may be niadt*

not only for periodic motions but also for recui’i'ent motions

of any type. Stability in this fundamental (lualitative scnise

is not to be confused with the 'coniplet(‘ formal stability’

introduced earlier, and a periodic motion ‘of stable type’

may or may not be stable.

The transformation T of the siu face 8 yields an immediate

simple condition for stability.

Consider a small region i> of aV about the invariant point,

and its images s, under successive applications of the

transformation T. All of these contain the invariant point

as interior point. The infinite set of regions .Sj.s*!,-- - will

lie in the vicinity of the invariant jioint, according to the

hypothesis of stability. These regions taken together occlude

a certain neighborhood s of the origin, which is taken into

all or part of itself by the transformation T since the set

s, Si y Si, ' ‘

'

is taken into si, $2 ,
* • But s cannot be taken

into a part of itself because of the existence of an invariant

area integral. Hence s yields an invariant area in S, corres-

ponding to which there is an invariant torus-shaped region ofM
enclosing the curve of the given periodic motion in its interior.
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A necessarij and S'afficient condition for stability is the

exAstence of infinitely many invariant torns-shaped regions

closing do7vn upon the curve of the given periodic motion in

the manifold M of states of motion.

5, The stable case. Zones of instability. What
then is the nature of the boundary of such an invariant

torus-shai)ed re^^ion in M suiTOunding the given closed curve

of stable' periodic motion? In answering this question w(‘

naturally turn to consider the nature of the corresponding

invariant closed (*urve in S forming the outer boundary of

invariant region ,v.

Let us assume that tlu' ])eriodic motion, although of general

stable' type is not such that the formal series involve no

variabh' periods (section 1). In this case a normal form (2)

with .S'

\ 0 (or a similar form) can be used. We may assume

that .s is positive', for if is negative for Tthe corresponding

(piantity, - .s. is positiv(' for This normal form (2)

shows that the count (‘r-clo(*kwise rotation about the invariant

l)oint increases with radial distanc(‘ if r is sufticieiitly small.

No region .s lying very near to th(' invariant point can

he met mon' than once by sonu' radial line. In fact let

denote tlu' part of the })lane formed by the radial lines ex-

tended to the most distant points on the boundary of s.

The regions of not forming part of .v are of one of two

j)Ossible types: either tlu'y ar(' bounded by the boundary

of .V and a i)iece of a radial

line on the left, or by the

boundary of cS’ and a piece

of a radial line on the

right. But the transfor-

mation T evidently takes

a region bounded on the

left by such a radial line I

into a region bounded by

s and the image /, of

this radial line L Since the angular coordinate increases

with the radius, it is geometrically evident (sec figure) that
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the image of such a region will necessarily fall within a region

of the same t3T)e.

But this situation is not possible since the transformation

admits an invariant area integral, and consequently no set

of regions can be taken into part of itself by T. Thus there

exist no regions bounded on the left by such radial lines.

Similarly the use of the inverse transformation shows

that there are no such regions bounded on the right by such

radial lines.

Hence the boundary of the invariant region s is met only

once by any radius sector.

The impossibility of a radial segment forming part of the

boundary of s is obvious, so that there is actually only one

point of intersection with each radial line.

A more elaborate consideration based on the nonnal form

shows that the boundary curve r =- f{6) is one for which

the difference quotient

is bounded and indeed small for invariant regions near enough

to the invariant point,* The truth of the fact seems almost

obvious if one observes that T rotates positively directions

differing by any considerable amount from the directions

perpendicular to the radial direction into other directions

differing still more from that direction.

Our conclusion may thus be summarized in the form:

For a stable periodic motion of general stable type and with

variable periods in theformal series, the invariant torus-shaped

regions are such that their intersections with the analytic

surface of section S may he represented in the form r — f{0),

where r, 0 are polar coordinates with the invariant point at

the origin, and where f is a continuous periodic function of‘

6 of period 2 n for uhich the difference quotient is bounded.

The curves of motion on the boundary of such a torus-

shaped region form a closed invariant family. In any such

* For details see my paper (loc. cit), sections 42-48.
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closed invariant family of motions near the given stable

periodic motion, there is of course at least one recurrent motion.

If the rotation number x along the corresponding invariant

curve on S is incommensurable with 27i the surface of the

torus may represent a single minimal set of recurrent motions.

In this case the coordinates and the time can be expressed

in terms of continuous doubly periodic functions. In order

to make this clear, let us first select angular coordinates 6,

f on the torus as follows. The coordinate y will be taken

to vanish in S, and to increase proportionately with the time

along each curve of motion, the factor of proportionality

being so taken as to increase ^ hy 2 n between successive

intersections with S. The coordinate e will be defined along

the invariant curve on iS so that the transformation T takes

the form di — 0 + * where x is the rotation number specified.

Elsewhere on the torus the variable 6 may be defined as the &

of the corresponding point on S diminished by x^/2n in

order to make d single-valued on the torus. In these coor-

dinates the equation of a curve of motion is ® — Oo — *sp/27t.

Moreover the coordinates 5* are doubly-periodic

continuous functions of 0 , y, and dtldy> is also. Hence

we may write

i>i =/(xy/27r, y), <i{xip/2rt, y), = h{xq>l2n, y),

Qt ~ kixip/27T, (f), t = j
l{x<f/2n

, f) df,

where /, g, h, k, I are continuous doubly periodic functions

of period 2 ;t in their two arguments.

There is a second possibility to be considered also. The

minimal set of curves of motion may correspond to a perfect

nowhere dense set of points on the invariant curve; all other

curves of motion on the surface of the torus-shaped region

will then approach this minimal set of recurrent motions

asjmiptotically as the time t either increases or decreases.*

* For proof of these facts and reference to the prior work of Poincard,

see my paper Quelquea thtorhnes gineraks sur le mouvement de$ sysUmex

dynamiques. Bull. Soc. Math. France, vol. 40 (1912).
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When, however, the rotation number is not incommensurable

with 2 /1
,
but is 2p TT Iq (p, q, relatively prime integers), there

will of necessity exist points of the invariant curve which

are invariant under T'L It can be proved that the entire

curve is then made up of analytic arcs terminated by points

invariant under while the interior points of such ares tend

asymptotically towards these invariant points upon iteration of T
or its inverse.* We are thus led to the following conclusion.

Any snch dosed miuiriant family of motions near the yicen

stable periodic motion of yeneral stable type a)ul irith variable

periods in the formal series is characterized by a rotation

number. If this number is incommeymcrable ivith 2n, either

the family consists of a single mmimal set of recurrent motions

of contmuous type^ or it contains a perfect noicherc dense

minimal set of recurrent motions of discontiaons type which

all other motio7is of the family approach asymptotically as t

increases or decreases. If this number is com mensnrable with

2 /1
,

there exists one or more dosed periodic motions in the

family, ivhile the other motions form analytic branches

asymptotic to these periodic motions.

It may be observed that this is a result concerning in-

variant sub-manifolds of the manifold M and, in particular,

concerning the central motions in this sub-manifold. Inciden-

tally it appears that, although in dynamical systems of classical

type, all the motions are central witli reference to the whole

manifold, the same is not necessarily true of invariant sub-

manifolds, so that the concept of central motions continues

to play a part even in the problems of classical dynamics.

Any two of these closed families must be entirely distinct

from one another, except when both have the same rotation

number, commensurable with 271. Clearly the rotation number,

which measures the mean angular rotation, must be the

same for two intersecting families. To establish that this

number must be commensurable with 2 7t, we note that since

the two families have at least one motion in common although

they do not coincide, the two corresponding curves, r —f (6),

* See my paper in the Acta Mathematica, loc. cit, sections 42-48.
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;* = /a (e) in iS will enclose one or more areas between

them, each bounded by a single arc of either curve. Under

iteration of T this area must ultimately overlap itself and

so coincide with itself, the tAvo arcs going into themselves

of course. The two common end points of the two arcs

will then be invariant, and hence the rotation number is

commensurable with 2n,

Conversely, any two families with distinct rotation numbers

must be entirely distinct, the one further away from the

}>eri()di(r motion having the greater rotation number.

By convention let us consider all of the invariant families

with the same rotation number commensurable with 27t, as

forming a single family. This is natural since any two of

the constituent families must then intersect. The outermost

boundary of the (a)rres])onding network of invariant curves

on S, and the innermost boundary curve cannot be wholly

distinct of course, since then they would correspond to

distiiud rotation numbers. This augmented family is clearly

composed of a finite number of periodic motions and of certain

analytic families of asym}d.otic. motions, according to the

statement made abov(‘.

Consider now an infinite expanding or contiacting sequence

of su(di invaiiant families. The sequence evidently defines

a limiting invariant family, provided it does not close down

upon the invariant point, nor expand beyond the neighborhood

of a stable periodic motion to which attention is confined.

These inrariaiif families of moiio'tis are e)itirely distinct

from one miother, ivith rotation nnmhers that increase {or

decrease) wifJt the distance from the stable periodic motion,

and form a closed seqaence.

In case the sequence of invariant families of motions

contains a pair of successive members, the region of M
within the outer of the two corresponding torus -shaped

regions and outside the inner one may be called a ‘zone of

instability’.* On the surface S the zone corresponds to a

* In section 8 the question of the existence of such zones of instability

is briefly considered.

15
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ring-shaped region lying between tw'o successive invariant

curves. Such regions will certainly exist unless the invariant

families fill up the neighborhood of the stable periodic motion

completely, aside from the regions occluded by the invariant

families with a rotation number commensurable with 2 7r.

Many of the methods here employed might be used to

develop further details concerning the sequence of invariant

families, the zones of instability between them and their

relation to nearby periodic motions (see sections 8, 9). We
shall merely establish the following property:

In any zone of instahility about the given stable periodic

motion there exist motions passing from an assigned arbitrar-

ily small vicinity of a motion of either of the hounding in-

variant families into a like arbitrary assigned vicinity of

the other bounding invariant family.

In fact consider the inner boundary of the corresponding

ring in 8, and a small area which abuts on some arbitrary

point of that boundary in the ring. Upon indefinite iteration

of T an invariant part of the surface 8 is defined, made up

of the part of it formed by the interior of this inner boundary,

together with this boundary, the small region and all of its

images. The boundary of the invariant part of 8 so defined

must coincide with the outer boundary of the ring, since

the inner and outer boundaries are successive invariant curves.

But this means that the images of the small area extend

arbitrarily near to the outer invariant curve, which is what

we wished to prove.

6. A criterion for stability. It is an easy matter to

give an analytic criterion for stability.

Let

Ml = /(«6 v), Vi -=-• g (m, v)

be the equations defining the transformation T of the surface

8 in the vicinity of the invariant point and let r = F{0)

be the equation of one of the invariant curves in polar co-

ordinates. According to the conclusions reached above, F
is then a single-valued continuous function of Bi of period
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'in and with bounded difference quotient. Since this curve

is invariant under T it may equally well be written in the

form ri = F{0i), where the expressions for Vi, 0i in terms

of r, 6 are to be obtained for the coordinate relations above.

If then in the modified equations so obtained we replace r

by Fid), we are lead to an identity and to the following

simple criterion:

In order that a ptn'iodic motion of general stable type and
with variable periods in the formed series he actually stable,

it is necessary and sufficient that a certain related functional

equation

/'fFcos ft, i'’sin ft) f g'^iF cos 6, F sin 0)

— g(F COS 0, Fsin 6)

\ ~f(F cos 6, F sin 6)

admits of (vnUnuou^ solutions F{d), periodic of period 2n with

|F| arbitrarily small, hut not 0.

7. The problem of stability. An outstanding question

in dynamics is whether or not the complete formal stability

of a periodic motion of stable type assures stability in the

fundamental qualitative sense defined above.

The analytic criteria which distinguish the stable from the

unstable case are exceedingly delicate. There are two types

of questions which present themselves here. Does formal

stability assure such actual stability? If not, does formal

stability assure actual stability in important special cases

such as the restricted problem of three bodies?

It appears to be certain that in the general case there is

instability, although no proof of this conjecture has been

obtained. The second of the above questions is much the more

difficult one, and is at bottom arithmetic in character; it may

be compared to the question of determining whether or not

an assigned number is trancendental.

8. The unstable case. Asymptotic families. Let us

turn to a like consideration of unstable periodic motions of

general stable type and with variable periods in the formal

15*
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series. In this case there exist no invariant families of curves

of the type present in the stable case, at least if attention

be restricted to a sufficiently small neighborhood of the given

periodic motion. Corresponding to this fact there will be no

invariant curves enclosing the invariant point on tlie surface S.

hi miili a region of instaMlHy ahout an unstable ije^iodie

m.otion of stable type, there exist two eonneeted families (f
motions reaching to the boundary of the region, which remain

indefinitely within it as t increases and decreases respectively.

To prove this fact we consider as usual the transformation T
of the surface S in the corresponding neighborhood of the

invariant point. Let a be a very small region met by each

radius vector once and only once. "The images = 1, 2, •••)

of a under must always contain the invariant point within

them, and for some value of n must finally extend to the

boundary of otherwise they would occlude an invariant

region rr, whose boundary would be an invariant cuiTe of

the excluded type, according to the argument of section 4.

The points of On remain in S for n iterations of T at least.

Now take the diameter of a smaller and smaller. The

limiting closed set thereby obtained will be connected with

the invariant point and the boundary, and must remain in A’

under all iterations of T L If we had started with

instead of T in our reasoning, we would have obtained a

second similar set remaining within S under all iterations

of T, Obviously these two conne<*ted sets of points corre-

spond to two connected families of motions possessing the

])roperties specified.

Let us add the hypothesis that the periodic motion is of

general stable type with variable periods in the formal series.

In that case it has been observed that the transformation T
rotates the tangent directions to a curve in a counter clock-

wise direction, relatively to the radial direction, except for

tangent directions nearly perpendicular to the radial direction

at the point.

With this property in mind, let us consider the total set

of points remaining in S under all iterations of and
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connected with the invariant point by points of the same

kind. According to what has just been established, the set

extends to the boundary of S.

Imagine any regular curve AB drawn from a point A
on the boundary of S\ starting in the inward radial direction

at /I, and never turning to the right of the radial direction.

All the points outside of are accessible from the boundary

of S along such curves AB
which have no point in

common with Jrr (see figure).

To prove this ieft-handed

accessibility ' of from

the boundary of we sup-

pose if possible that there

are one or more inaccessible

regions (see the region "

of the figure), which will

evidently be partially boun-

ded by radial segments

which they lie to the right

of in the inward radial direction. The transformation T~^ will

evidently take these inaccessible regions into ])arts of them-

selves, since it rotates radial directions in the clockwise sense

relative to the radinl direction. But this yields an impossibi-

lity, because of the existence of the invariant area integral.

Let the unsUfble periodic motion be of (general stable, type

irith ruriabh' jfcriods in the formal series, and suppose for

definiteness that the rotation increases away from the motion.

Then the closed connected families of motion, and Jw,

remaininy in the region of instahiliiy as t decreases or in-

creases respectively and reaching to its houmiary, are respectively

leftdiandedly accessible and right-handedly accessible from that

boundary.

Let us return to the representation of on 8. The

set on S must wind indefinitely often to the right about

the invariant point from its intersection with the boundary

of 8. In order to establish this fact it is convenient to take
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the polar coordinates 6 and r as rectangular coordinates

with the 0 and r axes directed to the left and upwards

respectively. The surface 8 then appeal’s as an infinite strip,

and the region in the strip to the right of and above the

connected set 2a cannot extend to the right of the point

of 2a on the boundary of S-, otherwise there would clearly

be inaccessible regions of the excluded type.

If then 2„ does not extend indefinitely far to the left, it

will be entirely included between two vertical lines in this

representation. But the work of section 2 shows that two

points, one on r = 0 and another nearby, move at sufficiently

different rates in the direction of the 6 axis so as to separate

by an arbitrarily large amount. Hence on sufficient iteration

of T~ ’ the curve 2,-. (whose images under T ' all lie in 8)

must spread over an arbitrarily laige strip in the 0 direction

and so intersect 2a. Thus 2a and this image will contain

an area which must remain in 8 under all iterations of T '.

But this would lead us to an invariant area a in 8 as before.

Hence extends indefinitely far in *the direction of the

negative 6 axis. It follows that 2a winds indefinitely often

to the right about the invariant point, while 2„, Avinds in-

definitely often in the opposite sense. Evidently then the

two sets 2a and 2„, intersect infinitely often.

In conclusion Ave observe that 2'« must tend uniformly

towards the periodic motion under iteration of Other-

wise the limit points of 2a under iteration of T~^ would yield

a closed set 2'a, connected with the invariant point and

remaining in 8 under the iteration of T as well as of T~^.

The set of such points would then constitute an invariant

region a, whose boundary would be met once and only once

by every radius vector according to the argument of section 5.

By hypothesis there is no such invariant region.

We may summarize these conclusions in the following way

:

The families 2a and 2u, of motions wind indefinitely often

to right or left about the periodic motion, accoi'ding as they

are ^ft-handedly or right-handedly accessible, and so intersect

in infinitdy many common motions. The motions 2a and 2at
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are respectively negatively and positively asymptotic to the given

periodic motion, while the infinitely many common motions

are dcnibly asymptotic to the given periodic motion.

Entirely analogous considerations to those used above may
be applied to any zone of instability. There will exist posi-

tively and negatively asymptotic connected sets attached to

either boundary and reaching to the vicinity of the opposite

boundary. The two sets intersect infinitely often. Further-

more, by the kind of argument employed in the foUowing

section, it could be proved that the set positively asymptotic

to one boundary intersects the set negatively asymptotic to

the other. In consequence there must exist infinitely many
motions positively and negatively asymptotic- to the two

boundaries in any one of the four possible ways.

9. Distribution of motions asymptotic to periodic

motions. Hitherto in this chapter we have limited attention

to the vicinity of a periodic motion. We turn now to the

consideration of the totality of motions in M. which we take

to be a closed analytic manifold.

In doing so we shall assume that there exists a surface

of 860^006’ of genus one, and a corresponding transformation T.

The boundaries of 8 are to correspond to periodic motions of

general stable type, and 8 is cut in the same sense by every

curve of motion in M, at least once in any interval of time

of sufficient length. Any point P of 8 if followed along

the curve of motion in the sense of increasing time meets

it again at Pi, and we write Pi — T{P), thereby defining

a one-to-one analytic transformation of 8 into itself, which

we take to be continuous along the boundaries.

We shall not attempt here to give conditions for the

explicit construction of a surface of section 8 . The details

seem to be special to each case (see chapter VI) and not

particularly illuminating. Such surfaces of section 8 and

associated transfomiations T exist in very wide classes of

problems.

Moreover we propose to introduce the working hypothesis

that the dynamical system is transitive. This hypothesis is
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certainly satisfied in certain cases as the example given later

(section 11) shows, and in all probability is satisfied unless

exceptional conditions obtain. However, since the presence

of a single stable periodic motion obviously would bring

about intransitivity, the conjecture just made can not be

established unless the problem of stability is also solved.

Jf we interpret the hypothesis of transitivity on the sur-

face of section S', it means that, given arbitrary points Fo

and Qo of S, then points P and Q arbitrarily near to Fo

and Qo respectively and an integer n can be found such

that Q ^ T"iP)-

Suppose now that there exists a single i)eriodic motion of

general stable type and with variable |)eriods in the format

series. Since this motion is unstable there exists a network

formed by the corresponding connected sets and 2„,.

Let us consider a boundary of this network which cuts

off a small neighborhood of the invariant ])oint. Such

a boundary is afforded by the part of S inaccessible from

without a given region enclosing the invariant point but with-

out intersection with the corresponding branches 2a and 2,„.

This boundary is not made up wholly of 2a or2',u. Other-

wise under indefinite iteration of or of T respectively

the images of the boundary would continue to lie in that

l)art of S, and an invariant part of S would be defined.

Instead it is obvious that under iteration of T~ for instance,

the part 2a of the boundary approaches the invariant point,

while the part 2,„ must finally extend into every part of S'

whatsoever. Otherwise the part of S reached and occluded

would also yield an invariant part of <S' under T, such as

is excluded by the hypothesis of transitivity.

Consequently the sets 2„ and 2m, connected with the in-

variant point under consideration and asymptotic to it under

iteration of and T respectively, are both everywhere

dense on the surface of section S.

We have seen (sections 1,- 2) that near such a periodic

motion of stable type there are infinitely many other periodic

motions of stable type which correspond to invariant points
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of S under some iterate of T. Consider any such periodic

motion which is of general stable type with variable periods

in the formal series. It has a set X and X, both of which

must also be dense throughout S,

Now the sets X and X have no points in common, inas-

much as a motion cannot be negatively asymptotic to two

different periodic motions. Similarly the sets X and have

no points in common.

Hence it is apparent that the sets X and X> have infinitely

many points in common, as have the sets X and X.
In the transitive ease of tiro degrees offreedom when there

exists a periodic motion of general stahle type haring variable

periods in the formal series^ there nill exist infinitely many
otlnr periodic motions of stahle type. The motions positively

negatively asymptotic to any periodic motion of this infinite

set tchick is of gc7ieral stahle type with variable periods in

the formal series, form a set everyichere dense in S. There

exist infinitely many motions positively asymptotic to any one

of these periodic motions, and, at the same time negatively

asymptotic to any other periodic motion of the same set^ or

eceyi to the same periodic motion.

We shall consider next the periodic motions of unstable

type and the motions asymptotic to them.

As has been remarked, there exist analytic families of

motions positively and negatively asymptotic to sUcli a periodic

motion. In the simplest case, to which we may limit attention,

there are two corresponding analytic invariant curves through

the invariant point, one yielding the positively asymptotic

motions and the other the negatively asymptotic motions

(section 1). The two arcs of the same invariant curve ending

at the invariant point cannot intersect of course, no matter

how far extended.

On the contrary, two arcs belonging one to each invariant

curve may intersect. In this case the same argument is

applicable as was made for the analogous X, X curves

above, to show that these two invariant curves are each

everywhere dense in 8 and intersect infinitely often.
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Furthermore we can argue as before and obtain the con-

clusion that infinitely many motions exist, negatively asymptotic

to an assigned periodic motion of general stable type with

variable periods in the formal series or to an assigned periodic

motion of general unstable type with doubly asymptotic

motions, and at the same time positively asymptotic to an

assigned periodic motion of one of these two types.

It is evident that if two arcs of positively and negatively

asymptotic types for such a periodic motion of unstable type

intersect the network of one motion of stable type, they will

intersect all such networks, and also each other.

If then we can establish that all the four arcs attached

to the invariant point intersect these networks it is obvious

that we can extend our previous conclusions about motions

asymptotic to the periodic motions of stable type to those

of unstable type. We shall prove that this is the case

provided that (1) the asymptotic analytic arc from one such

invariant point of unstable type is not identical to that from

a second such invariant point and (2) there is no periodic motion

of general stable type with invariable periods in the formal series.

The cases when one of these two assumptions fails to hold are

to be regarded as highly exceptional. The argument is made

only in the case when there are no multiple periodic motions,

although the result holds under much wider conditions.

In order to establish this fact, let us suppose that some

one of the four arcs belonging to the periodic motion of

unstable type does not intersect these networks, and show

that a contradiction results.

By extending this arc indefinitely, we obtain a connected

limiting set 2 on S. This set I is clearly invariant under T.

Furthermore, in consequence of this fact and the hypothesis

of transitivity 2 cannot enclose an area. Hence, by a well

known theorem due to Brouwer, there exists an invariant

point of I under T. This must correspond to a periodic

motion of unstable type, since by hypothesis the extended

asymptotic arc cannot approach a periodic motion of stable

type with variable periods in the formal series.
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Now it is obvious that roust contain at least two of the

asymptotic arcs of opposite type to this invariant point

unless the original extended arc coincides with one of these

arcs. But this possibility was also excluded.

It is clear that these new arcs in JS* do not intersect the

networks belonging to the periodic motions of stable type,

and so we may take any one of them, thus deriving a set Si

within S, In this way a process is set up which must

finally yield h. S* in S containing a minimum number of

invariant points correspond

ding to a periodic motion

of unstable type, and of

asymptotic arcs. Any arc

of S* in such a set extended

from an invariant point must

then have itself as limit

point, and there will be at

least two such arcs of oppo-

site type to the same in-

variant point.

Let us consider separately

the cases when there are

two, three and four such

arcs to the invariant point 7

(see figure).

To take the first case, let

IJ and IM be the positively

and negatively asymptotic arcs in Now IM extended

must return to the vicinity of 1 and can only do it along IJ.

Let IJKLM be constructed as follows: e/iT is a short

curvilinear arc which meets IJ at J; is an arc made

up of an are KKi joining K to its image Ki near to IJ
and of its images Kx K^, K^K^y • • • till the point L is reached

near to IMy with LM s, short segment. The curvilinear

polygon IJK'L'M' is similarly constructed on the opposite

side of IJ. The extended arc IM cannot approach IJ
along JK'Ki for then evidently IM' would also lie in 2*.
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Hence IM produced intersects JKKi. Likewise IJ produced

intersects MLL^i, The analysis situs of the figure shows

that IM and IJ extended will intersect, contrary to hypo-

thesis.

Next suppose that three arcs, say IJ of one type and IM,

IM' of the other, lie in J*. It follows as before that IJ
extended meets MLL-^i and M' IJ L' i. But if there arc no

intersections of IJ extended with IM or I M\ it is apparent

from the analysis situs of the figure that 1

M

intersects J K' K[y

and also that 1
M'

intersects JKKi. Thus IM and IM'
would necessarily intersect which is im])Ossible since these

asymptotic arcs are of the same type.

There remains to consider th(‘ case when all four arcs lie

in J*. Here IM must intersect . A'l /rJ/t' if extended.

But IM cannot intersect JK' Ki, for then IJ if extended

could not approach IM'

,

according to the analysis situs of

the figure. Hence IM must intersect JKKi, and similarly

IM' must intersect JA^'A'i. But the same argument applied

to IM as to IJ shows that IJ must intersect MLL-\,
Hence IJ and I

M

intersect, which is impossible.

We are now prepared to state oui* conclusion:

Suppose that there is a surface of section S of yenus one for

a dynamical problem ivith two degrees of freedonly of transitive

type. Suppose furthermore that all of the periodic motions of
yeneral stable type involre variable pm iods in the formal series,

and that no two analytic asymptoticfamilies attached to differoft

p)eriodic motioris of U7istahle type conicidr.

Under these cirmmsta^ice, all of these asymptotic families

are dense in M, ayid there will exist infinitely many motions

asymptotic^ in e'ither sense to any unsigned periodic motionSy

whether of stable or of imstable type*

The special hypothesis made that the periodic motions

are not multiple is not essential to the method of attack^

but was made in order to restrict attention to the general

case, for the sake of simplicity.

The above result makes plain a certain analogy between

the motions of stable and unstable type.
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It has been proved earlier that in the neighborhood of

a periodic motion of general stable type and with variable

periods in the formal series, there are nearby periodic motions

both of stable and unstable type. Are there also periodic

motions which approach arbitrarily near to any periodic

motion of unstable type? Of course such a motion cannot

remain lumr throughout a period. The answer is in the

affirmative. It may be proved that when the two asymptotic

analytic branches of a periodic motion of unstable type

intersect, there will be infinitely many ])eriodic motions coming

into an aibitrarily small vicinity of the corresponding doubly

asymptotic motion and of the given periodic motion of un-

stable ty])e.*

Thus it ai)i)ears that in a certain sense the totality of

l)erio(lic motions, whether of stable or unstable type, will be

dense on itself in very general cases. The conjecture of

Poincare that these periodic motions ai‘e evervvvlnuc' dense

lias be('n seen not to be always true (chai)ter VI, section 4),

but doubtless liolds in very general cases also.

10. On other types of motion. Thus far we have

only considered peiaodic motions, the quasi-])eriodic motions,

and certain oilier simple types of recurrent motions, among

the various types of recurrent motions. Such recurrent

motions almost certainly form an endless hierarchy of

more and more comiilicated types, even for non-integrable

dynamical systems with two degrees of freedom such as we
have been considering. Among motions asymptotic to recurrent

motions in either sense we have only considered those

asymptotic to periodic motions. We have not considered

other special motions, nor non-special motions. The general

methods used in this and the preceding chapter yield a variety

of results in this connectfon.t

We shall not attempt to go further in this direction. The

See iny forthcoming paper in the Acta Mathematica, On the Periodic

Motions of Dynamical Systems.

t See my paper Surface Transformations and Their Dynamical Ap-

plications^ Acta Mathematica, vol. 43 (1922), sections 54-73.



238 DYNAMICAL SYSTEMS

example taken up section 11 will give some idea of the

complexity of the situation to be expected.

II. A transitive dynamical problem. The problems

of dynamics usually called ‘integrable’ are those of intran-

sitive type, and the motions are represented by curves which

lie upon invariant analytic manifolds in M, of one or two

dimensions. For example, in the case of the problem of two

bodies, every motion is periodic, and these invariant mani-

folds in M are closed curves. For the integrable cases

(sections 12, 13), the special analytic relations are sufficient

to yield complete information about the motions and their

interrelations.

Any non-integrable problem of transitive type might, how-

ever, be considered to be 'solved’, in case a special algorithm

of sufficient power could be devised for dealing with it.

I propose here to develop such an algorithm for the transitive

geodesic problem on a special analytic surface with negative

curvature. The results obtained seem likely to be typical

of the general transitive case in many respects, and can be

readily extended to any analytic closed surface with negative

curvature. It will only be possible to give an intuitive

justification for the results. For the technique, I may refer

to the notable work of Hadamard* and Morse,t the methods

and ideas of which perform the principal role in the case

here treated.

It seems improbable that any analogous algorithm exists

in the geodesic problem on closed analytic surfaces with

positive curvature.

The particular surface which we consider is defined by the

equation

z* = 1 — e* sin* x sin* --y (e> 1)

* Les surfaces a courbures opposees et leur lignes gMesiques, Journ.

de Math., ser. 5, vol. 4 (1898).

t Recurrent Geodesics on a Surface of Negative Curvature^ Trans. Amer.

Math. Soc., vol. 22 (1921); A Fundamental Class of Geodesics on Any
Closed Surface of Genus Greater Than One^ Trans. Amer. Math. Soc.^

Tol. 26 (1924).
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in which x, y, z are rectangular coordinates, and where we
shall make the convention that all points

{x±:2kn, y:^2ln) (A:, Z = 0, 1, 2, • • •)

correspond to the same point of the surface. This convention

is legitimate inasmuch as the linear group of translations

a; = 2kit, y ^ y + 2ln, z — z,

takes the surface into itself. A fundamental domain for x, y
is then the square given by

0 < .r 2 ;r
,

0 < y 2 .

For any z this equation may be written

sin* X sin* ^^y {I— z*)le*.

Hence for
i
.sb

I
< 1 the trace of the given surface in the plane

z = Zo consists of a convex, symmetrical, analytic oval within

the fundamental square, with center at the mid-point of the

square. As Zo increases or decreases from = 0 towards

a’o — rb 1, this oval expands analytically, and becomes the

fundamental square for ± 1. It is easily verified directly,

but is also obvious from the above qualitative considerations,

that this surface is everywhere analytic, with curvature which

is negative except at the points on the surface corresponding

to the corner of the limiting squares, ^ == ± 1.

The connectivity of this closed suilace is readily determined.

If the equatorial oval z ~ 0 were capped, the upper half of

the surface would be homeomorphic with a square in which

pairs of opposite points on parallel sides are identical, i. e.

with an anchor ring. When this cap is removed we find

that the upper half of the surface is homeomorphic with

the surface of an anchor ring having a hole in it. The

l6wer half is of the same type. Thus the total surface is

homeomorphic with a double anchor ring of genus 2.
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A fundamental property for such a surface of negative

curvature is that there is one and one only geodesic arc AB
of given type, from the standpoint of analysis situs, which

joins two assigned points of the surface. For example, take

any closed curve circling around one copy of the surface.

There is only one closed geodesic of this type, which of

course is the oval 5 0. If we use the complete representation

in X, y, z space by means of the surface and the infinitely

many congruent copies, the above result means that any

continuous line in this surface joining a fixed point A to a

fixed point B can be continuously deformed into a uni(|ue

geodesic arc A B.

Let us seek to introduce a symbolism ade(piate to express

the type of ain^ arc A B. (-onsider the projection of the

given surface upon the equatorial plane. This will cover

doubly all of that plane except the part inside any one of

the geodesic circles in the equatorial plane. In th(‘ adjoining

figure these circles are then the images of these geodesic

circles, and likewise the horizontal and viutical segments of

the square net work having the centers of these circles as

vertices, will obviously correspond to closed geodesi(*s.

Suppose that the projection of A lies within a square of

the network as well as that of B. As a point P moves from

A to B along AB. its projection traces a continuous curve

in the x, y plane. Moreover if this projection is given, to-

gether with the points on the circles wdiere P moves from

a region of the surface ^>0 to a region 0, then the

curve AB is determined.

Let the symbol x denote a crossing of a vertical segment

in the positive x direction, and x~^ a crossing in the opposite

direction; likewise let the symbols y and y~^ denote crossings

of a horizontal segment in the directions of the positive y
axis and the negative y axis respectively. From a point

within a square there are four accessible quadrants of circles,

in the lower left-hand corner, lower right-hand comer, upper

right-hand corner and upper left-hand corner. Denote the

corresponding crossings of the geodesic circles toward the
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positive axis by Wi, W4 , respectively, and also the

oppositely directed crossings by \ respectively.

Jt is then geometrically evident that any arc AB corresponds

to a symbol formed by a finite set of these 12 symbols written

in the same order as the corresponding crossings. Conversely,

if such a symbol is given, restricted solely in that after any

ir, follows a 7vy^, and vice versa, there will be a unique

corresponding path. The reason for this restriction is that

the point P moves from a region ^<0 to a region ^>0,
and then from a region ^>0 to a region z< 0 .

To every allowable deformation of the path AB (.4 and B
being fixed of course) will correspond a modification of the

symbol. The class of symbols obtained from one another in

this way may be called ^equivalent’. It thus becomes important

to determine the legitimate type of modification of a symbol,

and a normal form of each class of equivalent symbols.

16
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The legitimate operations are of two types. The first

allows us to insert or remove any pair of elements a or

a * a in the symbol, since this corresponds to a deformation

over a boundary. The second operation allows ns to replace

such a symbol as y by y w., ;
or w~^ y hy y or w„ y~^

hy y~^ u’^, or y~^ hyy~^w,~^-, these are the changes

possible in the symbol when a point P of is deformed

through the point common to the quadrants Ws, of a

geodesic circle. There will be similar operations at the point

common to n%, uu, at the point common to Wi, Wi, aud at

the point common to Wi,

In order to obtain a normal form we reduce the number

of elements in the symbol as far as possible by the following

three processes. First we strike out any pair or a

.

Secondly we replace any triple such as yw^ by its equi-

valent here we have

yw2y~^ = icniyy^^) = m

of course. For each of the sixteen operations of the second

type specified above there will be two corresponding triples

of the form p p~^ or p wr^ ]}~^ where p is x, y or y~^,

which can be replaced by a single letter or Thirdly

we replace any triple such as w^yw~^ by y. For each of

the sixteen operations of the second type there will also be

two corresponding triples of the same sort which can be

replaced by a single letter x, x~'^, y or

Lastly whereever possible we invert all ordered pairs such

as y~^W2 made up of an element x, x~'^, y,
y~^ followed by

element w^ or w~^, so that an element of the second type

appears first. Thus y~^ W2 is replaced by Way~^.

The normal form will be defined as that which results

when all of these processes have been carried out. We
propose to show that the normal form is unique. For this

purpose we divide the symbol into components made up of

the elements x, y, y~^, and into those made up of the

letters tv^, For the arc AB of the figure the symbol

is evidently
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xy xw2 y ^ wi x^^

.

It is in normal form and breaks up into the four components

xyx, y-\ x~\

We will argue that this particular normal form for the symbol

of AB is unique, but the method used is obviously general.

The first comj)onent evidently gives the least number of

squares passed by the projection of a point P moving from

A to B along a path of this type, before the point P crosses

the equatorial plane, and it identifies them uniquely in proper

order. Hence any other normal symbol for AB must have

the same first component xyx as this one. Similarly the

second component describes uniquely the greatest number of

passages which P can make across z 0 in the same copy

of the surface always cutting distinct geodesic circles in

succession. In this case there is only one element iv2 in the

second component. Thus the second component is in any

other normal symbol.

In general, only the inevitable crossings are made of the

sides of the squares and of the geodesic circles, while the

latter are made as soon as possible. This is the geometric

interpretation of the operations reducing to normal form,

and may be made the basis of the proof of uniqueness.

The condition that a symbol is in this normal form merely

requires that certain sequences of elements are not to occur.

The forbidden sequences are obviousl}^

XX~^, X~^ X
. yy ir^y, w. M;ri, wtI tv. (/ =r

1, 2, 3, 4).

XW^y XW^y XW~^y xtv^\ a?—' M’j, ^ tVg, x^^ x^^ ^

,

yw-\ y~^
M's' y~^ y~^ y~^

The infinite symbol corresponding to a complete geodesic

will obviously possess the same minimum property as the

normal symbol, since the geodesic arc will cross the auxiliary

geodesics a minimum number of times. We will call this

16*
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symbol the ‘reduced symbol'. The letters y,

follow each other in the reduced symbol ordered precisely

as in the normal symbol. But the exact position of the

elements ui can not be determined without a more explicit

knowledge of the given surface, and would be different for

other surfac(\s of the same general type.

For the rediic(Ml symbol the points of crossing may be

associated with the corresponding elements of the symbol,

and intermediate points may be indicated by placing an

ordinary real number (0 < n < 1). between two successive

elements fi, thereby indicating that the point 7n lies the

fractional part n of the way from the crossing cc to the

crossing along the geodesic arc.

In this way we obtain a symbol for a ^ state of motion'

in the problem, by adjoining the number a to the complete

reduced symbol. Continuous variation of the state of motion

will vary v continuously if n be regarded as periodic of

l)eriod 1. The corresponding variation of the symbol itself

is ’continuous' in that a slight variation of the state of

motion can produce only changes in a distant element of the

reduced symbol, or else will introduce allowable changes of

order in successive elements. The cori’esponding variation

in the normal symbol is in general continuous also, but here

a component of the form iviccc • • • where c is a given set of

elements is to be regarded as the same as rcc • • •. The two

ends evidently vary continuously, but no other changes of

order may occur anywhere in the symbol.

We are now prepared to take up the question of the types

of motion and their interrelation.

In the first place the periodic motions, corresponding to the

closed geodesics, are evidently in one-to-one correspondence

Avith the normal types of finite symbols, in which cyclic order

is not considered. The two periodic motions corresponding

to the senses in which one and the same closed geodesic may
be traversed will correspond to such a symbol and the same

symbol taken in the reversed order. The normal symbol for

the complete geodesic is eAudently the partial symbol taken
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an infinite number of times. Since the partial symbol may
be arbitrarily chosen, the corresponding periodic motion can

be made to approach an arbitrary geodesic motion.

The periodic motiom are everywhere dense in the fotaliiy

of motions.

Next let us consider the motions which are positively

asymptotic to a given periodic motion. For this to happen,

the normal symbol of the motion under consideration must

of course be the symbol of the periodic motion from a certain

point on, and this condition is sufficient. In order to be

negatively asymptotic to the periodic motion generated by

the finite symbol p^ and positively asymptotic to that gene-

rated by q, the symbol must repeat the partial symbol p
sufficiently far to the left and q sufficiently far to the right.

The intermediate part of the symbol can be taken arbitrarily.

If the symbols p and q are the same, a motion doubly asymp-

totic to one and the same periodic motion may be defined.

Since the intermediate part of the symbol is arbitrary the

motions of either type are everywhere dense, but must be

numerable.

This reasoniny shows the existence of a continnous family

of positively or negatively asymptotic motions to a given

periodic motion. There exist also inf7iitely many periodic

motions iwsitively asymptotic to one assigned periodic motion

and negatively asipnptoiic to a second assigned periodic motion,

ayid these motions are everyixhere dense although 7iumerahle.

More generally, if a motion is merely to be asymptotic in

one sense to any given motion, only one end of the symbol

is assigned.

.1 similar conclusio7i holds then concerning the motions

as7j7nptotic to any two given, motions m assigned senses.

There exist also motmis semhasy7nptotic to the given motions,

so that u'hile not actually asymptotic to them the deviatio7is

become intreasmgly infrequent as the time increases or de-

creases indefifiitely.

To make up the corresponding symbol we need merely

write down a normal symbol such that in one direction it is
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in increasing proportion made up of increasing components

of the symbol of one of the given motions taken further and

further out in its symbol, while in the opposite direction it

is similarly made up principally of components of the symbol

of the other given motion.

Let us next pass to the general recurrent motion not of

periodic type. Evidently the corresponding normal .symbol is

characterized by the fact that given an arbitrary positive

integer n, there exists a second integer N so great that

every sequence of w figures in the .symbol can be found at

least once in any N successive figures.

Morse (loc. cit.) has given a specific method of construction

of such a symbol.

There is probably a hierarchy of such lecurrent motions

dependent in degree of complication upon the way in which

N varies with n. Here I wish merely to indicate a pos.sible

method which will lead to the discovery of recurrent motions

not of periodic type for the .system under consideration. Let

/(.ri, •••, Xji) be any function which is analytic and periodic

of period 1 in Xi, •••. Xp, (p > 1). If ci. •••. are p

quantities without linear relation of comrnensurability between

them, then /(cj 1 . • • •. CpX) is a quasi-periodic function of A.

Suppose now that we let {o} denote the integral part of the

least residue of a taken modulo q, so that {«} is one of the

numbers 0, 1. • • •, q— 1. The function (/(c, X, . cpX)} will

then yield a doubly infinite sequence of the integers

0,1, •••. q — 1 for X an integer, which will possess the

characteristic recurrence i)roperty desired, and will not be

of periodic type unless / happens to be very nearly periodic.

Suppose for example that we take q 8 and identify

0, 1, •-, 7 with X, x~^, y, jy"’, Wi or (Ci"’, or

1V3 or u'8“S uu or Wi~^. The apparent ambiguity is unim-

portant since the symbols tv^, iv~^ alternate. Then we should

obtain a symbol for a recurrent motion on our surface, corre-

sponding to any function /.

It is in the nature of this proposed method of construction

of recurrent non-periodic motions that they possess a certain
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}) underlying periods, and may very well be of continuous

type. The example proposed by Morse was established by

him to be of discontinuous type.

The theory of chapter VII shows that eve^ij motion has a

certain set of recurrent motions among its closed connected set

of cc and to limit motions.

The method there used for constructing such a recurrent

motion has its symbolic counterpart, whereby at least one

normal symbol of recurrent type can be obtained from either

end of any normal symbol.

The question arises in how far the closed connected « and m

sets ma}"^ be assigned at will. Now it is apparent that since

the given motion approaches the f» limit motions asymptoti-

cally as time increases, it is possible for a sequence of in-

definitely long arcs

AB, B'C, CD,

of the limit motions to be found such that B' is very near

to B, C” to C, etc., and such that these arcs taken together

trace out arbitrarily closely all of the set of limit motions.

To this end we may use the given motion in which each long

segment MX, NP, PQ, •
• • is near the to limit set, so that

segments AB, B'C, • • of this set near MX, XP, • respect-

ively exist, and so near all of the to limit set. Let us say

that any such closed connected set of motions is ‘cyclic’.

Such a and w limit sets are necessarily cyclic. Conversely

given any two cyclic sets of motions, there exist in the case at

hand everynhere dense motions which have precisely these sets

as cc and w limit sets.

In fact, construct a symbol such that in one direction it

contains a succession of symbols attached to arcs AB, B'C,CD, • • •

of the 0) cyclic set as above, in which these symbols increase

in length while at the same time the distances BB', CC,
become smaller and smaller; and do the same in the symbol

with respect to the a cyclic set, but operating in the reverse

direction. In between the two parts an arbitrary finite symbol

may be inserted. Such a s3'mbol evidently corresponds to
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a motion with the desired property, and these motions are

clearly everywhere dense because of the presence of tlu*

arbitrary symbol.

Finalhj there exist tion-spedal vwtions so that the dynamical

problem in hand is transitive.

In order to obtain non-special motions we need only write

down normal symbols which contain all allowable .seiinenei's

of symbols.

The set of non-special motions is of course measurable in

the sense of Lebesgue, and it is natural to conjecture that

its measure is that of the totality of motions in M, i. e. that

the special motions arc of measure 0. I have not been able

to establish this conjecture.

Thus there is an enormous complexity of types of motion

in this geodesic problem on a closed analytic surface of

negative curvature; but nevertheless a specific algorithm exists

which suffices to describe adequately this complication by

means of certain symbols.

Of course the above problem differs from the most inte-

resting class of dynamical problem, typified by the geodesic

problem on a convex surface, in that all of the periodic

motions are of unstable type. Nevertheless it seems to be

typical of the general case in many respects.

12. An integrable case. A well-known integrable problem,

discovered by Jacobi, is afforded by the geodesics on a convex

ellipsoid.* If this ellipsoid flattens to a limiting elliptical

form, a special integrable case of the billiard ball problem

(chapter VI, section 6) results. This example is still more

concrete inasmuch as the geodesics become broken straight

lines with vertices lying on the ellipse and making equal

angles with the normal at any vertex.

It is a fact of elementary geometry that if a single segment

of such a broken line passes through one focus of the ellipse,

alternate segments will continue to pass through alternate

* A very suggestive treatment of certain integrable cases will be found

in a paper by Whittaker, On the Adelpkk Integral of the Differential

Equations of Dynamics, Proc. Royal Soc. Edinburgh, vol. 47 (1917).
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foci, no matter how far produced. A further well-known

fact is that if the system of confocal conics containing the

limiting ellipse be drawn, successive segments (or these

segments extended) will be tangent to a particular conic of

the set, which may be an ellipse or a hyperbola; if these

points of tangency lie on an ellipse, the billiard ball will

continue to go around the table in one and the sense

indefinitely; if these points lie on a hyperbola, the successive

points of tangency lie on the two branches in alternation,

while the successive segments are between its branches; the

major and minor axes constitute two limiting cases of

periodic motion.

Suppose now that we make use of the coordinates f and H

already employed chapter VI, section 7, for setting up the

ring transformation T. Here y denotes an angular coordinate
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of period 27t which measures arc length along the ellipse

while 0 measures the angle of projection which the rebounding

billiard ball makes with the positive direction of the tangent

at the given point of projection on the ellipse.

For any (0, q>) where O + rr, g> may be taken as essentially

polar coordinates on the ring-shaped surface of section (figure),

there is one and only one state of projection of the ball,

and, as time increases there is a next following state of

projection (0i, fi). The transformation T is then defined as

that which carries {0, y) into {0i, yO. We shall not under-

take to write down the explicit analytic formulas involved

although these can be obtained either directly or as a limiting

case of formulas arising in the geodesic problem on an ellipsoid.

Such explicit formulas are not necessary for our purpose.

We propose to determine qualitatively the character of the

transfomation T in this integrable case.

In the first place the motion of a billiard ball around the

table in either of the two possible senses evidently corresponds

to a succession of points on a single closed analytic curve

lying near 0 — 0 or 0 — n respectively, according as ^

increases or decreases; the two limiting cases 0 — 0 and

0 = n correspond to rolling motion of the billiard ball along

the elliptical boundary in the two possible senses. Thus we
get two analytic families of closed curves which abut on

0 = 0 and 0 = n, and which are invariant under the trans-

formation T. According to the results obtained in chapter VI,

the transformation T leaves invariant the points on » = 0

but rotates the points on 0 = n through an angle 2tt.

Secondly, if we consider a state of projection which is

associated with tangency to a hyperbola, there is one and

only one such point of tangency lying on the straight line

formed by the segment described by the billiard ball, or that

segment extended, and the point of tangency may be con-

tinuously varied over the complete hyperbola. There are

two kinds of projection, however, corresponding to the values

of f on either of the two elliptical arcs of the given ellipse

which lie between the two branches of the hyperbola under
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consideration. Here each hyperbola gives two closed analytic

curves within the ring, and, as the hyperbolas tend to ap-

proach the minor axis of the ellipse, we obtain two analytic

famUies of curves closing down upon two points Mi — (;r/2, 7t/2),

Mi — (7r/2, Znl'2), corresponding to motion along the minor

axis.

Evidently the limiting case of any of these four types of

motion is that referred to at the outset when the straight

line segments pass through the foci. But the states of pro-

jection through either focus correspond to a single closed

analytic curve, and these two cun^es have two points in

common, namely the points A’, — ( 71 /2 , 0), Ni = {nl2, n),

corresponding to projection along the major axis.

In this way the points of the ring which represent each

state of projection are seen to be divided up as represented

in the figure above.

The transformation T leaves the points of the inner boundary

invariant and rotates the analytic curves which abut upon

it through an angle which increases with distance from the

boundarj’, inasmuch as if 9 is increased whDe f is held fast,

it appears that y, is thereby increased. For the limiting

curve of this family made up of two analytic arcs which

end at and Ni. it appears that the transformation T
rotates Ni into and Ni into Ni in a positive sense,

while interchanging the two arcs through Ni,Ni.

Similarly the transformation T advances the points of the

outer boundary by an angle 27t and rotates the analytic

curves which abut upon it by an angle less than 27r, which

decreases as the distance from this boundary increases. The

limiting curve of this family is made up of two analytic arcs

which end at Ni and A’*, and the transformation T ro-

tates A^i into Ni, and Ni into Ai, and interchanges the

two arcs.

Examination of the motions which pass through the foci

shows that these tend asymptotically toward the major axis

in either sense. This agrees with the fact that all points

within the inner arcs Ni Nt are advanced by an angle less
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than Jt while those on the outer arcs Ni Nt are advanced

by an angle more than n.

It is clear that there are no invariant points under T.

Let us consider now the various types of motion, and to

begin with, one of the type corresponding to a cun'e of the

analytic family abutting upon y — 0.

Let ns adopt analytic variables (9), xp) where ip varies

with the curve of the family. The transformation T takes

the form
9P, = F{f, Ip), ipi == tf>,

Avith Jacobian determinant

J= dF/dfy> 0 .

If the invariant area integral is
,

dip

in these variables (see section 1), we will have

dF/d^ = Ky, ip),

SO that the integral otjld^ over any arc tp = const., and

over the transformed arc has the same value.

Now write

Jif, 'P)d9,

thereby introducing a new analytic angular variable x of

period 2 ?r which can replace 9, The transformation T will

take the form

*1 = x-\-a{lp), tpi=tp

in these special variables. Here « (tp) is an analytic function

of tp.

Hence the transformation of each invariant curve of the

analytic family which abuts on 9 = 0 is essentially a rotation

of that curve into itself through an angle a which varies

analytically with the curve and increases from 0 along d = 0

toward a limiting value n. But this variable tp is not to
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be regarded as defined along the limiting non-analytic curve

of course.

Consequently, if a{tp) is commensurable with 2 t, say

« = 2np/q, eveiy point of the invariant curve corresponds

to a polygonal periodic motion of the billian' ball going p
times around the ellipse and having q vertices. Here p is

taken relatively prime to q, and p, q take all values for

which p <. q/ 2.

If a(^) is incommensurable with 2;r, the entire curve

corresponds to a single minimal set of recurrent motions of

continuous type.

Furthermore, along the analytic family of invariant curves

which abut on d — rr, the transformation T is essentially

a rotation with rotation number say, which varies analyti-

cally from one invariant curve to another, and which di-

minishes from 2 71 at the boundary towards a limiting value ti.

In this case we have a similar distribution of periodic motions

and motions of recurrent type.

If now we turn to the two analytic families of cuiwes

which abut on the points Mi and M* respectively, and which

are interchanged by T, it is apparent that it is desirable to

consider T* rather than T, inasmuch as T* will leave every

cm-ve of either family invariant, and no point on any of

these curves can be invariant save under an even iteration

of T.

In the same way as before, it follows that the trans-

formation of each of these invariant curves into itself under

T* is essentially a rotation, of which the rotation number r

varies analytically from curve to curve; at either invariant

point Ml, M», the value of y is merely the rotation number

for the corresponding stable periodic motion along the minor

axis while y tends toward a limiting value along the limiting

non-analytic cui-ve of the family.

If y is commensurable with 2 nr, say y — 2np/q, every

point of the invariant curve corresponds to a polygonal

periodic motion going 2q times across the ellipse and os-

cillating in direction p times about the minor axis. If y
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is incommensurable with 2n, the curve corresponds to a

single minimal set of recurrent type.

Evidently the points iVi, Ng correspond to periodic motion

along the major axis, and are of unstable type with analytic

asymptotic branches represented by the invariant curves

through these points. Similarly M,, Mg correspond to periodic

motion of stable type along the minor axis.

Thus it is seen that the analytic weapons at our disposal

have put us in a position to determine the possible types of

motion and their interrelations.

Not only so, but the other natural questions which arise

can be answered without difficulty.

For example, in the case of motion around the table in

either sense is there a unique number which may be properly

termed the mean angular rotation? The answer is affirma-

tive in the periodic case, and can also be shown to be so

in the non-periodic case. For note that if n denotes the

number of vertices passed in any interval of time and if /n

denotes the corresponding increase in the coordinate x

defined earlier then we have clearly

lim f„ln — a
n=oo

where « is the rotation number. Furthermore, if n is large

the vertices will be distributed with approximately equal

density for x between 0 and 2n. But the time from any

vertex to the next is proportional to the length of the

segment and so of the form l(x), where I is analytic and

periodic in x of period 27t. Hence the total time between

the n vertices is

Z (x) -f- (! (x|) -j- • • •
-f- i (x„_i),

which is approximately given by

Thus we conclude that there is a mean angular rotation which

has the value
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2na{xp)

r
n
l{x)dx

where « and I are definite analytic functions.

13. The concept of integrability. Questions concerning

the integrability of a given dynamical problem possess gi*eat

interest. It is a well known fact that for certain problems,

auxiliary analytic relations can be deduced by means of

Avhich the solutions of the system of differential equations

can be satisfactorily treated, in which case the system may
be said to be 'integrable’. When, however, one attempts to

formulate a precise definition of integrability, many possibilities

appear, each with a certain intrinsic theoretic interest. Let

us consider briefly the concept of integrability, not forgetting

the dictum of Poincar^, that a system of differential equations

is only more or less integrable.

Let us note that in the particular problem just treated

there are four periodic motions which play a special role,

namely the motions along the two axes of the ellipse and

the two motions of roiling around the ellipse.

All other periodic motions fall in analytic families of such

motions and so are of highly degenerate type from a formal

point of view. But these special motions are isolated and

of general type. About these points there will be the usual

formal series developments for the coordinates*, and these

expressions may of course be taken to converge and to be

analytically extended throughout a certain domain of the

motion; in fact these properties are merely the counterpart

of simUar properties of the integrable transformation T,

according to which it rotates certain invariant curves sim-

rounding the invariant points in a specific manner.

Let us note also that in this problem four suitable neighboi-

hoods of the four fundamental periodic motions yield the

entire manifold M\ in fact the two families of motions around

* Of conne a discrete integer n figwes in the fonnal series instead

of the time f.
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the ellipses, the family of motions across the ellipse and the

single periodic motion along the major axis yield the totality

of motions.

These facts suggest the following (not wholly precise)

definition of integrability, based upon a local property and

and a non-local property;

A given system of analytic differential equations on a

closed analytic manifold M will be said to be integrable

if there exists a finite set of periodic motions such that the

corresponding complete formal series developments may be

taken to converge, and to provide a corresponding analytic

representation for every possible motion.

U.sing this definition as a kind of norm, some reflections

suggest themselves.

In the first place it is natural to define ‘local integi'ability’

in the vicinity of a periodic motion of general stable type,

as that in which the formal series may be taken to converge.

Hence the motion is stable in the integrable case, and the

explicit formulas yield complete information as to the character

of nearby motions.

Now it is conceivable that, although these series do not

converge, they may represent asymptotically functions con-

tinuous together with some or all of their derivatives near

the periodic motions, with the aid of which the differential

system can be transformed into a normal form like that of

chapter III, section 13, in which Mt,, Mn are functions of

'^iVu } continuous together with certain of their

derivatives. Here the qualitative behavior is the same as

in the case of convergence. Shall the differential system be

called ‘locally integrable’ in this more general case?

Furthermore, the qualitative behavior of the motions near

a periodic motion of general unstable type in the case of two

degrees of freedom is essentially independent of convergence

or divergence. Shall we call every system locally integrable

near such a periodic motion of unstable type?

If the differential system involves a parameter /*, we may
inquire into that kind of local integrability in which the
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formal series are required not only to converge but also to be

analytic in /tt. It was in this sense that Poincard established

the non-existence of further uniform integrals in the problem

of three bodies.* But evidently this definition is logically

distinct from that presented in the above definition. Even

if a system be non-integrable in this sense, it might perhaps

be integrable according to our definition for each particular

value of (t .

As far as 1 am aware, the local non-integrability of no

single dynamical problem in the sense formulated above has

been hitherto established. We shall, however, establish it in

the following way for w = 1.

Let us suppose, if possible, that every Hamiltonian problem

is locally integrable in the vicinity of a generalized equilibrium

point of general stable type (see chapter III). The use of

the normal variables shows then that the associated trans-

formation T is essentially a rotation through a variable angle.

Along the invariant analytic curves with rational rotation

numbers, all the motions will be periodic in the integi'able

case, with the same period 2 fe/r. It is this fact upon which

we base our argument.

Furthermore, it is in the nature of the transformation T
that there are no other periodic motions near equilibrium

with this same period 2k n, since the rotation constantly

increases with the distance, and the invariant family is

represented by a curve which meets every radius vector

only once.

Now let us write

H - +

where Hq is the given value of the principal function, /* is

a small parameter, and is an analytic function of pi , qi

and t, periodic in t of period 2;r, which is free of terms up

to the fourth degree in pi, qt at 2h = qi = 0, but is other-

wise arbitrary. It is readily verified that the multiplier X and

the constant I are independent of /» in the modified problem.

* MUhodea nouvelles de la Mecanique ciletle, vol. 1, chap. 5.
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Furtiiermore we may assume that Ho is in normal form

Ho = +

since 4be normal variables are available. Along any motion

of the analytic family, the equations of variation have one

periodic solution of period 2kn, and only one, as direct

computation shows.

Let /* vary from 0. There are two possibilities. Either

the curve representing the periodic analytic family for /» = 0

can be continued analytically, in which case there is a nearby

curve for /w + 0. Or there will only be a finite number of

periodic motions of this period for small in absolute value.

In the first case there must obviously be a periodic solution

of the equations of variation as to /», which are obtained by

adding non-homogeneous terms — dHJdqi, dHjdpi to the

respective right-hand membei-s of the equations of variation

referred to above. But, since dHJdqx, dHi/dpi can be

taken almost at pleasure, along any particular periodic

motion, the ordinary explicit formulas for the variations

6pi, dqx show that no periodic solution will exist in general.

In fact the functions dpi, dg, can be expressed as integrals

linear in these arbitrary functions, augmented by the general

solution of the homogeneous system, one part of which is

periodic. Thus there are two conditions to fulfill and only

one essential constant, and the condition for compatibility

demands that a certain integral over a range 2kn vanishes,

in which the integrand involves dHJdqi, dHIdpi linearly.

Evidently this cannot in general be the case.

Consequently for H suitably chosen and then p taken

arbitrarily small, there will only be a finite number of

periodic motions with this period.

But by hypothesis the modified system is integrable. By
an other much slighter modification of H we can destroy an

analytic periodic family much nearer to the position of

genmulized equilibrium while not introducing further periodic

motions of period 2k n.
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Continuing in this manner we set up a limiting admissible

principal function Hy for which I and 1 are unmodified, but

for which there are no analytic periodic families belonging

to rotation numbers as near to that of the generalized equi-

librium as desired. This limiting problem cannot therefore

be locally integrable in the specified sense.

Since there are only a denumerable set of periods 2hn
(fc = 1, 2, . •

•) which enter into consideration, it is readily

seen that no periodic analytic families near equilibrium will

exist for suitable H.

In a locally integrable Hamiltonian problem near generalized

equilibrium of general stable type^ ^ 4 0, there will exist in-

finitely many nearby analytic families of motions periodic in

a multiple of the fundamental period.

In general a Hamiltonian problem near such a periodic

motion will be locally non-mtegrabley and will possess no

analytic families of nearby periodic motions.

It would be possible perhaps, and of considerable interest,

to use the same method to show that nearby invariant families

asymptotic in opposite senses to one and the same periodic

motion do not exist in general. This would eliminate the

possibility of invariant families belonging to a rational rotation

number, and would establish that in general there is either

complete instability or zonal instability;

The same method allows us to establish that multiple periodic

motions do not exist in general for dynamical problems of

this type.

17*



CHAPTER IX

THE PROBLEM OF THREE BODIES

I. Introductory remarks. The problem of three or

more bodies is one of the most celebrated in mathematics,

and justly so. Nevertheless until recently the interest in it

was directed toward the formal side, and in particular toward

the formal solution by means of series.

It was Poincare* who first obtained brilliant qualitative

results, especially with reference to the very special limiting

‘restricted problem of three bodies’ treated first by Hill.

As far as the general problem i.s concerned, the main achieve-

ments of Poincare were the following: (1) he established the

existence of various types of periodic motions b}^ the method

of analytic continuation; (2) he proved that, by the very

structure of the differential equations, complete trigonometric

series w'ould be available
;
and (.S) he pointed out the asymp-

totic validity of these series. All of these results hold for

any Hamiltonian system as well as for the problem of three

bodies. Unfortunately an accessory parameter fi is present

always in his researches, where for 0 the system is of

a special integrable type. . Thus the difficulties which arise

are partly due to the special nature of the integrable limiting

case when two of the three bodies are of mass 0, rather

than inherent in the problem itself.

It is not too much to say that the recent work of Sund-

mant is one of the most remarkable contributions to the

problem of three bodies which has ever been made. He
proves that, at least if the angular momentum of the bodies

is not 0 about every axis through the center of gravity,

* See his MHhodes nouvelles tie la Mecanique cileste.

t See his Memoire mr le problhne deg trots corpSj Acta Mathematica,

vol. 36 (1912); in thk connection see also J. Chazy, Sur Vallure du mouve-

ment dans le probltme des trois corps, Ann. Scient. de I'Ecoie Normale

Sup. (1922).

260
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the least of the three mutual distances will always exceed

a specifiable constant depending on the initial configuration;

thus triple collision is proved to be impossible, while it is

shown that the singularity at double collision is of removable

type. In this way a conjecture of Weierstrass as to the

impossibility of triple collision is established, and convergent

series valid for all the motion are found for the coordinates

and the time. By obtaining such series Sundman ‘solved’

the problem of three bodies in the sense specified by Pain-

leve.* As a matter of fact, however, the existence of such

series is merely a reflection of the physical fact that triple

collision can not occur, and signifies nothing else as to the

(jualitative nature of the solution.

In the present chapter I propose to take up the problem

of three or more bodies, and to endeavor to apply as far as

possible the points of view developed in the earlier chapters,

and in particular to show what seems to be the real signi-

ficance of Sundman’s results.t

2. The equations of motion and the classical

integrals. Let us suppo.se the three bodies under con-

sideration (taken as particles) to be at the points Po< Pi. Ps

in space, and to have masses wzo. wb, respectively. We
denote the distance Pn P by r,. Po P by r, and I\ Pj

by To. If we write

( 1 )

,, »Wo nil
,

nif) nu
,

nii nu
(' + ' H

rt n /•„

and if we let ay, //,, Zi (i — 0, 1, 2) be the rectangular co-

ordinates of the corresponding bodies P,, while x',-, y'i, z'i stand

for the components of velocity, the equations of motion may

be written as 9 equations of the second order

nii
d*Xi

iW
dU dhji dlJ d^zi dU
dxi’ dP ""

dy]' fzi

a - 0
,

1 , 2),

* See his Lemons sur la thcorie anali/tique des equations dijfferentiellcs.

fMost of the new results found in this chapter were announced by

me at the Chicago Colloquium in 1920.
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which are evidently of Lagrangian form; or as 18 equations

of the first order

doci t dyi f dzi j
dt

= Xi^
dt
= y.r

dt

it = 0, 1, 2)

M dy'i dU dz'i __ dU
dt

_
dXi '

”*•77 syi’
”** di d4

[ 0 = 0
,

1 , 2),

which are of course easily converted by slight modification

into Hamiltonian form. We shall not effect this modification,

which may be done in the usual way, nor shall we state the

usual principles of variation applicable to this case (see

chapter II).

The integral expressing the conservation of energy is seen

to be

(4) yZ »«.• = U-K

where .S’ is a constant of integration.

Besides this integral there ai'e of course the 6 integrals

of .linear momentum expressing the fact that the center of

gravity moves with uniform velocity in a straight line; if we
take a reference system in which the center of gravity is

fixed and at the origin, these integrals reduce to

—Z'^iVi —Z^^i — 0
,

Z”HXi =Z”*iy'i =Z”*i^'i = 0 .

There are also 3 integrals which express the constancy of

the total angular momentum about any axis fixed in space.

If we take the axes as the coordinate axes, these integrals

become

2^miixiyi— yia^) = c,

where a, b, c are constants of integration.
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These 10 integrals are all the essentially independent inte-

grals which are known.

3. Reduction to the 12th order. The reduction of the

system of differential equations (3) to the 12th order may
be at once accomplished by use of the integrals of linear

momentum as, for instance, by the following method due to

Lagrange. Let the coordinates of Pj with reference to

be {xj y, z) and let the coordinates of Pj, with reference to

the center of gravity of Po and Pi be (^,15^,0. If we write

for convenience

(7 )

mi

mo + '

M wio+ mi+ ,
m —

fl

mo _
mo -f mi

'

nil

mo+ mi
’

(mo+ mi)mg

mo+mi+ mg
’

we obtain the explicit formulas of transformation

j* == xi—xoy y Vi — Vo, z = Zi— Zoy

(8) .rg— pxi — qxo, fj = y^ — pyi — qyo,

? Z2—pZi~ qzoy

together with the inverse formulas,

Xo - - M ^— p^> yo M
Za - Vi

TUi ..
, ,

-yl + g^.

W).0 + Wi

TT-^’
mo 4- '”i

y* = -M
Zl = WJO + WJl y.

M t,

which follow with the aid of (5).
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The system of the 12th order so obtained may be written

in the elegant form

dx f
dy = 2/'.

dz f

di
= X

,

dt Tt
Z

y

dS dfi /

dn = c'

dt
- y

dt
V 1

dt

dx' _ ^ dy' dV dz' __ dU
dt dx ’

dt
~ dy ’

dt "dz

dr dll dij'

^ dt
— lE. dC dU

dt “ df’ dfj ’ 9C

With these variables the equations (5) may be regarded as

satisfied identically while the integrals of angular momentum

take the form

(11 )

m(yz — zy')-\- yint'— t'n') — a,

m(zx'— — 1C') = b,

m{xy — yx')-\- —
7 ?') = c,

and the integral of energy is

(12) + + = U-K.

It will be seen that equations (10) may be looked upon

as the equations of motion of two particles in space at

{x, y, z) and (?, tj, C), with masses m and respectively, and

in a conservative field of force with potential energy — TJ.

These equations can also be derived from either the Lagran-

gian or Hamiltonian form by use of the variational principles

(chapter II).

4. Lagrange’s equality. Let us write

(13) i?* = ”*2*1 +
where

(14) r* = X*+ 2
/* + q* == + C*.

If now we substitute in (13) the explicit values of r* and p*

obtained from (14), and differentiate twice, there results an

equality due to Lagrange,
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( 15)
dt^

= 2{U—2K)

when use is made of (10) and (12); it is to be observed that

U is homogeneous of dimensions — 1 in x, y, z, S, i?, C

so that

dU
,

dU
,

dU
,
^dU

,

dU
,

^dU
dx

== - V

5. Sundman’s inequality. In order to arrive at vSund-

man’s inequality, we propose to seek an upper bound for

{dJRJ dty when x, y, z, ?, C are regarded as given

quantities while x', y ,
z

j
f', r/, V are to vary at pleasure

except that they are to yield the given values of the con-

stant K of energy and of the constants a, hy c of angular

momentum. This is a purely algebraic problem.

We have

Kit' = mrr' fiQQ
.

whence

if R'^ “ (mf (mr‘^ + Q^) —

which may be written

ry2 t2
I

f2 My , f ,.2R mr +yg — {rg —gr) ,

Furthermore we have the obvious identities

x'^ + y'^ + z'^

= ^ [(?//— zy'Y + (zx — xz'f + {xtj — yx'f]

,

r

= e'"+ [(^ r- c fi'f+ (? r- ? c'f + (f v'
- 7 ?')]

Multiplying these last two equations through by m and /*

respectively, and subtracting them, member for member, from

the preceding equation, there results the equation
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(16} + P = 2(f/— iT)

wiiere P (to be minimized) is a sum of seven squares,

P ^ ^ [(l/z — zy'f + {zx — xz'f + {xij — yx'f]

( 17 ) + -^ [(7 r - c 7')- + (fr- wf + (?7'- n rf]

Here the energy integral (12) has been made use of.

From this relation due to Sundman we may derive the

inequality which plays a fundamental part in his work and

in the present chapter.

If we write

U^yz'-zy'. F-

it will be observed that there are two terms in P of the

form

S = r*.

while the first integral of angular momentum yields

wj P4-/I F - a

,

It is easily found that the minimum value of when U and
1’ vary subject to the restriction just written, while r and p

remain fixed, is a*/R*. Similarly there are two other analogous

pairs of terms with minimum values h*/R*, c*/R* respectively.

Hence we conclude that we have

(18) p :z

(19) /* = a»+ h*+ c».

Suppose now that we eliminate U between Sundman’s

equality (16) and Lagrange’s equality (15). This gives us

2EB"i-R'^ + 2K = P,
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whence, by using (18), we obtain the inequality refen'ed to:

(20) 2E iT* -f 2 X" > ^

.

JtC

If we define the auxiliary function of Sundman,

(21) E == EE'*+ 2XB + ^,K
the inequality (20) enables us to infer the relation

(22) H' FR (F ^ 0).

Hence H increases (or at least does not decrease) as R
increases, and decreases (or at least does not increase) as R
decreases. This is the consequence which is of fundamental

inportance in what follows.

6. The possibility of collision. Thus far we have

been taking for granted the existence of solutions in the

ordinary sense. In fact, inspection of the differential equations

shows the existence of a unique analytic solution for which

the coordinates and velocities have assigned values at < = to,

provided that the bodies Po, Pi, Pt, are geometrically distinct.

In the case of the coincidence of two or three of these

bodies, the right-hand members of the differential equations

are no longer analytic, or even defined, so that the existence

theorems of chapter I fail to apply.

But, according to the results there obtained, either these

solutions can be continued for all values of the time, or (for

example), as t increases, continuation is only possible up to t.

Let us consider this possibility in the light of the elementary

existence theorems.

In the 18-dimensional manifold of states of motion associated

with the 18 dependent variables

yif yif (* 1 ? 2),

we need to exclude the three lb-dimensional analytic manifolds

r< = 0 (* = 0, 1, 2).
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The remaining region is open towards infinity and along

these excluded boundary manifolds.

According to the results obtained, indefinite analytic extension

of a particular motion will be possible unless as t approaches

a certain critical value /, the corresponding point /^approaches

the boundary of the open region specified.

Now suppose if possible that the least of the three mutual

distances does not approach 0 as i approaches /; here it is

not implied that a specific mutual distance such as

remains least near to t. We can then find positions of the

three bodies for t arbitrarily near to /, for which the

three mutual distances exceed a definite positive constant d.

But by the energy integral relation (4), in which

U

'

(/a^o yni j- nto nu aii niP! (L

it is clear that the velocities x'l, (/[. r/j are uniformly limited.

It is physically obvious that for such an initial condition,

(‘ontinuation of the motion is possible for an interval of time

independent of the particular mutual distances or velocities,

because of the character of the forces Avhich enter; we shall

not stop to obtain an explicit expression for such an interval

on the basis of our first existence theorem. Thus a contra-

diction results.

Analytic continaatnni of a particular motion in the jtrohlem

of three bodies ivilJ be possible unless as t approaches a certain

ralue t, the least of the three mutual distances approaches {).

At this stage it is desirable to revert to Lagrange's

equality (15). As t approaches 7
,
U becomes positively in-

finite of course. Hence if we represent IP as a function of t

in the plane by taking t and IP as rectangular coordinates,

the corresi)onding curve will be concave upwards for t suffi-

ciently near /. Therefore IP either becomes infinite, or tends

toward a finite positive value, or approaches 0.

The first case is manifestly impossible, since one of the bodies

would then recede indefinitely far from the two which approach

coincidence as t approaches t\ and such a state of affairs
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is impossible because of the fact that the forces ou the

distant body are bounded in magnitude.

In the second case it is clear that a particular distance

approaches 0, for instance while the other two approach

definite ecpial limiting values. This is the case of double

collision. Since the forces on the non-colliding body are finite

near collision, it approaches a definite limiting position
;
and

thus the other two colliding bodies approach a corresponding

limiting position, since the center of gravity may be taken

fixed and at the origin in the space of the three bodies.

In the third case we have triple collision of course, and

this takes place at the origin. Howevei* if the constant / is

not 0, triple collision cannot take place, as follows from (22)

immediately. For it is seen that dli^idt will be negative

for f near i in the case of triple collision, since d^R^/dt'^ is

positive by Lagrange’s ecpiality (15). Hence H will decrease

with R (or at least not increases) as t approaches /. But

inspection of U shows that H becomes positively infinite as

R approaches 0, Thus a contradiction is reached,

A*? f approaches f, there is either' doable collision hetwee/n

a definite pair of tJfc bodies at a definite pointy while the third

body approaches a definite distinct pointy or there is triple

collision at the common center of gravity. If however
, f is

not 0, i. c., if the angular momentum of the three bodies about

(VHiry awis in space is 7iot constantly 0, triple collision can

never take place at t.

Henceforth we shall make the assumption />0, thereby

eliminating the possibility of triple collision in the sense

above specified.

This assumption may be looked upon as merely confining

attention to the general case. In fact it is readily proved

that in the case f= 0, the motion is essentially in a fixed

plane. Thus immediate reduction of the problem is possible.

Moreover in the case / = 0 the angular momentum about

a perpendicular to the plane of motion at the center of gravity

vanishes. Thus we are only excluding a special case of

motion in a plane. The case excluded is of great inter-
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est and should be given thorough consideration on its own

account.

7. Indefinite continuation of the motions. In the

general case under consideration it is thus plain that any

motion can be continued up to a double collision.

We propose now to take up briefly the case of double

collision in order to render it physically plausible that the

motion admits of continuation beyond such a double collision

in a certain definite manner. Analytic weapons sufficiently

powerful to deal with the singularity of double collision

were first developed by Sundman (loc. cit.). A different

method of attack, not going outside of the domain of

equations of usual dynamical type, has since been obtained

by Levi-Civita.* A rigorous treatment of the question will

not be attempted here, but the analytic details can be

Supplied without difficulty on the basis of the researches of

Sundman or Levi-Civita.

Let us suppose that the bodies Po and Pi collide for

instance, while P* is at a distance away. The motion of

Po and Pi near collision will clearly be essentially as in

the two body problem. What we propose to do is to ignore

the disturbing forces due to P* dming the near approach of

Po and Pi to collision, i. e. to replace U by its single compo-

nent momi/rt, and then to take it for granted that the

situation is of essentially the same nature in the actual case.

But if the motion of Po and Pi were just as in the two

body problem, their center of gravity would move with

uniform velocity in a straight line, while, relative to this

point, Po and Pi would move in a fixed straight line until

they collide. More precisely, Po and Pi will be at distances

inversely proportional to their masses from the center of

gravity, while their squared relative velocity is 2(wio-!- wi)/) *

increased by a certain constant whose value depends on the

total energy relative to the center of gravity. The motion

relative to the center of gravity will be thought of as merely

* Sut'la rigMlaritation d« probleme des trots corps, Acta Mathematica.

vol. 42 (1921).
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reversed in direction after collision. In the original reference

system the bodies Po and Pi will describe two cusped curves,

and will collide at the ^common cusp; the cuspidal tangents

of the two curves are of course oppositely directed, and it

would be easy to specify the precise motion near collision

by giving the explicit formulas.

Evidently such a motion of collision in the two body

problem is completely characterized by the following quantities;

(1) the three coordinates of the point of collision; (2) the

three velocity components of the center of gravity at collision;

(3) the two angular coordinates 0, f fixing-the direction in space

of the axis of the cusp described by Pi, which is the same

direction as that of the line of motion relative to their center

of gravity; (4) the energy constant. Thus 9 coordinates in

all are required to characterize uniquely a state of collision in

the two body problem. But to specify any state of motion

before or after collision it is necessaiy to give the time t

that has elapsed since collision.

Furthermore, any motion in which the two bodies almost

collide can be characterized in a similar way. Here it is

supposed that the initial conditions are slightly modified at

some time before collision. In the modified motion it is easy

to generalize the above coordinates as follows; (1) instead

of the coordinates of the point of collision, we may take

the coordinates of the center of gravity when the bodies are

nearest to one another; (2). the corresponding velocity com-

ponents of the center of gravity may be used as before;

(3) the angular coordinates 6, y may refer to the direction

of the transverse axis of the conics described relative to the

center of gravity; (4) the constant of total energy may be

used as before. When the motion is modified slightly in

this manner, these 9 coordinates will be only slightly modified.

In addition to these 9 coordinates, the plane of the relative

motion must be fixed by a further angular coordinate ip,

and the perihelion distance p must be specified. This gives

11 coordinates to fix upon a particular motion of the two

bodies in general position. In order to specify a particular
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state of motion it is sufficient to specify the time r measured

from perihelion passage.

The coordinate p is not available in the special case of

circular motion relative to the center of gravit}" but this

possibility does not arise near a state of collision of the type

under consideration.

Hence we find 12 appropriate coordinates in all, corres-

l)ondiiig of course to the fact that we have a system of differ-

ential equations of the 12th order in the two-body problem.

Let us consider the coordinates in the two-body problem

somewhat more attentively. The 6 coordinates determining

tlie position of the centei* of gravity at nearest approach

are obviously unrestricted coordinates. In other words, these

sets of 6 coordinates are in one-to-one correspondence with

the neighborhood of a point in G-dimensional space. Similarly

the 2 coordinates fixing the axial direction are in one-to-one

<*orrespondence with the neighboi hood of a point of the 0, y

sphere and are thus unrestricted in the same sense; and so

are the total energy and the time r of course. On the other

hand, the perihelion distance p is always positive', and as p
approaches 0, the motion approaches that of a definite motion

of collision, independently of the coordinate which fixes

the plane of the motion. Suppose then that we introduce

the following coordinates

a = p cos - p sin

as coordinates serving to replace p and ip. Collision is then

characterized by the conditions

,, -- 0 .

The new coordinates a, are, however, unrestricted.

Consequently in the problem of two bodies, the states of

motions near a particular state of collision are in one-to-

one, continuous con'espondence with the neighborhood of a point

in a 12-dimensional space. With this representation the
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states of motions at collision constitute a 9 - dimensional

surface through the point.

It is obvious that in a certain sense the singularity of

collision is removed by the use of the above coordinates.*

Let us return now to the problem of tliree bodies in the

case under consideration when two and only two of the

bodies, say and P, , collide. For the motion of collision,

we must have as before a definite point of collision, a definite

vector velocity of their center of gravity at collision, a cuspidal

direction in which collision takes place, and finally a limiting

total energy. Furthermore any state of motion before or

after collision is characterized by the elapsed time r.

For motions near a motion of collision, these 9 coordinates

admit of simple generalization. For example the instant of

‘perihelion’ passage can be fixed as that at which the distance

/o Pi i^ minimum, and in this way the position and velocity

coordinates of the center of gravity, the axial coordinates,

and the perihelion distance can be defined at once, and also

the energy constant. The angular coordinate </' can be taken

as that given by the plane which bisects the small dihedral

angle defined by the two planes through Po Pi and the

velocity vectors at Po, J\ respectively relative to their center

of gravity. The tiiiui r is di'fined as before. The coordinates

p, i/f may be replaced by «, of course.

T/uis on fhv hoi^ls of jflit/sical reasoning it appears eertain

that the singalarifg of doahle eoUisio7i is of remorable tgpe.

and that the states of motion at doulde collision form three

\b-dimensioyial {analytic^ snh-manifolds in the \%alimensional

manifold Mis of states of moUoiiy corresponding to the rol/isions

of Po and Pi, of I\) and P^, and of Pi and P^ respectively.

When the manifold of states of motion is augmented by

the adjunction of the parts of the boundary corresponding to

double collision, it is obvious that indefinite analytic con

* For actual removal of the singularity by analytic transformation in

the two body problem and similar problems, see Levi-Civita, Traiettorie

singolari ed urii net prohlema ristretto dei tre corpi^ Annali di Mathematica,

ser. 3, vol. 9 (1903).

18
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tinuation of a motioii^ is possible unless, as t approaches

a certain value < (f< < say), there are an infinite number of

double collisions. Let us eliminate this possibility for the

case />0, which is under consideration.

In the first place we observe that not only B but also B'

must be continuous at double collision. In fact the differential

equations themselves show that d*ti/dt*, d^Hdt* are

continuous at collision so that g' as well as q must be con-

tinuous. On the other hand r' will not be; but, since we have

r*r'' — {xx -\-yy' zz')^ < {x* y* z'‘^{x'^-{- y'^-\-
z'^)

2m
{U+\K\)

on account of the energy integi'al (12), it is clear that rr'

is continuous and vanishes at collision. Hence B' is con-

tinuous at collision, having the value y^q'/B, as follows

from (13).

Secondly, as t approaches t, the least u must approach 0.

Otherwise we should have r,-> d > 0 (« = 0, 1 , 2) indefinitely

near t. We have already seen that, because of the energy

integral, this would require x, y , z', S', »/,
£' to be limited,

so that continuation of the motion during a definite interval

of time, dependent only on d, would be possible without

collision. This is absurd. _
Thirdly, B must approach a finite limit as t approaches t,

as follows from Lagrange’s equality (15), just as in the case

of approach to double collision, inasmuch as Bf and B are

both continuous at double collision. Reasoning on the basis of

Sundman’s inequality (22) in the same way as befor^ we
infer also that B cannot approach 0 as f approaches t.

Hence we conclude that as t approaches t, the body P,

approaches a definite limiting position distinct from the corre-

sponding definite limiting coincident position of Po and P,.

But it is physically obvious, and might readily be established

analytically, that there can only be a finite number of collisions

for t<t in such a case. Thus a contradiction arises.
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In the augmented manifold of states of motion Mx%, inde-

finite continuation of every motion for which /> 0 is possible

in either sense of time. In the case /= 0, continuation can

only he. terminated by triple collision.

Hitherto we have dealt with only the IS-dimensional mani-

fold J/jg. It is easy to modify the above results so as to

apply to the manifold Mu

,

obtained when only those motions

are considered for which the center of gravity of Pg, Pi, Pg

lies at the origin. In this case the six coordinates fixing

the position and velocity of the center of gravity of Pg and Pi,

for instance, determine these coordinates for Pg,

Entirely similar results obtain in the \2-dimensional mani-

fold Mxt obtained by fixing upon those motions for which the

center of gravity of the three bodies lies at the origin.

As remarked earlier, these results can be fully established

by use of the explicit regularizations effected by Sundman

or Levi-Civita. An inspection of the formulas leads to the

following additional conclusion:

In the augmented manifold not only are the states of

motion at collision to be regarded as constituted by three

lb-dimensional analytic manifolds, but the cui-ves of motion

are also to be regarded as analytic and as varying analytically

tvith the initial point and interval, provided this interval be

measured by such a parameter as u where

t = J*rgrirgdM.

8. Further properties of the motions. The case AT< 0

is immediately disposed of, so far as the general qualitative

character of the motions are concerned. Lagrange’s equality

(15) insures that d*R*ldt* will then exceed 4|.K’|. Hence R*,

when plotted as a function of t in the t, R* plane of rect-

angular coordinates, yields a curve with a single minimum
which is everywhere concave upwards and rises indefinitely.

Evidently the same conclusion holds for JE" = 0, at least

unless V approaches 0. But this can only happen if aU three

mutual distances increase indefinitely.

18*
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In the vase K < 0, y’>0, at least two, if not all three,

of the mutual distances increase indefinitely as time increases

and decreases. In the case /T < 0, / = 0, the same is true

unless the motion terminates in triple collision in one direction

of the time.

A fuller qualitative consideration of the motions K < 0

is obviously desirable. But on account of the results just

stated it seems proper to consider this case as ^solved’ in

the qualitative sense.

Henceforth we shall confine attention to the case f >0,
K >0, i. e. to the case when the angular momentum of the

thiee bodies about every line through the center of gravity

is not constantly 0, and the potential energy is insufficient

to allow all three mutual distances to increase indefinitely.

The case / “0, A^>0 thus remains. Here the motion

is essentially in one plane, and it may be possible to obtain

results similar to those here obtained in the case />0, K >0
by suitable refinement of Sundman’s inequality.

We proceed to develop some of the simple and important

properties of the motion in the case/X), AX).
In the case />0, the least of the three mutual

distances cannot exceed A/V(3A").

The proof is immediate. By the energy integral (12), U is

at least as great as K. But tq, ri, are at least as great

as r, the least distance. Hence we obtain

(mo mi + -f mi mg)/ r ^ K.

The numerator on the left is not more than whence

the stated inequality follows at once.

In the case />0, A>0, the largest distance ri will neces-

sarily exceed k times the smallest distance rj, provided that

ie < 2m*i/2y^/(P3/») or R k K)

,

where m* denotes the least of ike three masses mo, mi, mg.

To establish this fact, let ki denote the actual ratio of the

largest to the smallest distance. Then we have at once
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'//M Mki//3

where r denotes the smallest distance. Likewise we tind by

a similar calculation

r < -j“ !??() »?2 + M^/3 r.

But Simdniairs equality ( 16) together with fl8) gives

JVR^ . 2 U,

If we employ the inequalities for R^ and U derived above,

this gives readily

r ,\f).

Hut inasmuch as U is at least w’ -r, while m in turn is at

least half of the least mass »?/“ (see <7)), we find

Consequently if R is at most of the first stated value, we

infer at once that /o exceeds A*. This proves the first of

the two results.

In order to ])rove the second result, let /* denote the

greatest distance. We then obtain

R^ { nioyn^-]- J/r^/3,

whence there results

If we use the inequality already derived for the least

distance r, in combination with the one just written, we find

L\

Hence if R is at least of the second value, h\ will exceed

L This is the second result to be proved.

In the ease f :i), K : 0, ani/ part of the earre R R{t),

{t,R, reetaiujular eoor((inates)for altieh R ft {2'^ - -) eonsisis
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of a finite arc, concave upwards and with a single minimum.

If R — Rq gives this minimum, the curve rises on either

side until

R>f^l(2KRo),

with corresponding slope R! at least as great as demanded by

the inequality

Bf* > R— R^ \JL.

at every intermediate stage.

To prove this statement, we observe first that when R is

restricted as in the first part, R cannot be a constant. In fact

if it were, Lagrange’s equality (15) would yield U = 2 K.

But the combination of Sundman’s equality (16) and of (18)

with the equation U=2K would give

/*/R* < 2K,

in contradiction with the limitation imposed upon R. The

same kind of argument shows that if Rf vanishes when R
is so restricted, then B" must be positive. For otherwise,

by using Lagrange’s equality, we find V < 2K, and thence

by using Sundman’s equality (16) and (18) we are led to

the contradictory conclusion written above.

If there is a point R' — 0 along the arc under consideration,

it corresponds to a proper minimum. On either side of it H
(section 5) will increase (or at least not decrease) with R,

until a second point R — 0 reached for R~Ri. Hence

we obtain

2KR, +^>2KR^-^^
xti jKo

whence, since Ri ^ Rq
f

2K> r
R^R, •

In this case R does increase until the specified value is

passed. Furthermore until this happens, R is as great as Hq.
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This fact demonstrates that is as great at every stage

as stated, so that R must finally so increase.

The case when i? 4 0 anywhere along the arc can be

eliminated. Here H must decrease (or at least not increase)

with decreasing B. Consequently R cannot approach 0, since

H then becomes infinite. As R approaches its lower limit JBo

,

jB' will approach 0. Consequently we infer that the inequality

of the statement for B!^ continues to hold if R^ be defined

in this manner.

But this kind of asymptotic approach to i? = jK^ as t in-

creases (or decreases) indefinitely is impossible. This im-

possibility may be made evident as follows. In the inequalit}’’

H > Ho we may replace the inequality sign by the equality

sign. Thereby we define a new curve R = R{t) whose slope

for any R is not greater in numerical value than that along

the actual curve under consideration. Hence the new curve

so defined approaches the t axis less rapidly, and must also

approach R — Ro asymptotically as follows from the equation

H — Ho- But, by differentiation of this equation as to t,

there results

2RR"-\-R'^+ 2K— ^i = 0 .

Hence as i approaches infinity, and R, R' approach Ro, 0,

it is clear that R" would approach a definite positive quantity,

which is absurd.

The results thus far obtained may be regarded as concerned

with motions in which the three bodies are all near together

at some instant t — to, the amount of separation being

measured by R. The bodies will separate in such a way
that R increases, and very rapidly as long as R is not too

large or small, until R has become very large.

We turn next to derive somewhat analogous results when

at least one of the three mutual distances is large. Here

it is convenient to use the quantity q instead of R, but it

is to be borne in mind that r denotes the smallest of the

three distances in what follows.
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In the case j^>0, as long as q^2M^Hj^K)j one

and the same distance n is the least distance.

Under this condition it follows that q is at least twice

the least of the distances r r^. Hence ro and }\ exceed r,

since q is the distance from to the center of gravity of

Po and Pi. But when u and are greater than 7
*

2 ,
one

and the same distance remains least.

In the casef , Ky'O^for 2M^ ! (^6K), the inequality

obtains. If for any such value of (>, we have

o' >

(> rvill constantly increase without hound.

We begin with the identity

ff
1

/2 I
f' I 1 I

'2
1

v/2

QQ -f(> -\-VV +? +Q •

The last three terms on the right give the square of the

velocity of the point ($, 17 ,
while is the square of the

radial velocity and is therefore not greater. By virtue of

this fact and the differential equations (10) we obtain

V dU
9 fj

But the terms in parenthesis on the right are precisely

QdUldn where 1\ is taken to vary by a distance n along

the straight line which joins Pg to the center of gravity of

Po and P,. Clearly the rate of change of 7o and ri with

respect to n cannot exceed 1 in absolute value, and we infer

QQ
tr nix m2

r,2
0

(see (7)). Now in the case under consideration »o and »i

exceed q— r and therefore qI2. This leads to the first

inequality to be proved.
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Instead of continuing analytically we need simply observe

that this inequality may be looked upon as requiring that

a particle moves along a q axis acted upon by a force towards

the origin which does not exceed the gravitational force due

to a mass SM. But in this case it is obvious that the

particle will recede indefinitely provided that the initial velocity

outward is as great as the velocity of fall from infinity under

the attraction of such a mass. This is precisely the fact

stated.

It should be noted that since the initial value of q is as

great as 2 M*I{3K), q continues greater than this quantity,

and accordingly one and the same distance r is the least of

the three distances always.

We propose next to combine these results in order to show

that, for the minimum Eq sufficiently small, R and q increase

indefinitely. The qualitative basis of the reasoning is obvious.

According to what has been proved, for R* and R*' arbi-

trarily large a positive R<, can be chosen so small that all

motions for which the minimum R is not more than Ro
con-espond to an R which increases from the minimum to R*
and has, for R == R*, a derivative J?' which is at least as

great as R*'. This means of course that q* is arbitrarily

large since
,

lim R/(> ~~ (wio + w,
jR= oo

uniformly. Furthermore since the relation

RR' — m r r' fi,(> q

obtains, it is clear that |^(>'| must be large, and in particular

i

(>'
I

must be large, provided that
|

r
»

' |

is uniformly bounded.

But we have

r'^ ^ x~ -f //^ z'' < 2f7/m

by the energy integral (12). Hence

r'^ <C 2 (nto -f mo m* -|- mi m*) r/m 2 Af^ rim*
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since m exceeds one half of the least mass tn*. Thus we
find

|rr'l<

and thereby establish the fact that |rr'
|

is uniformly bounded.

For f^O, .£’>0, if Bit is taken suffcienUy small, every

motion for which the three bodies approach so closely that

B ^ Ro dt some instant is such that two of the distances

r„. Vi become infinite with t while r. remains less than M*/{3K).

We shall not pause to develop an analytic formula which

yields a suitable Bg. although the specific results found

above would supply the basis for such a computation.

There is aii interesting question to which we wish to

refer briefl}' in conclusion. Which one of the three bodies

will recede indefinitely from the other two nearby bodies, in

the case of a near apjuoach to triple collision? The answer

is to be found in the following statement:

Any motion of the above type is characterized by the pro-

perty that one and the same body Pt remains relatively re-

mote from the two nearest bodies Po, P: throuyhofut the entire

motion.

The truth of this fact is readily infen’ed. At the beginning

of this section it was shown that, for B greater or less than

fixed values, the ratio of the largest to the smallest distance

would be arbitrarily large. Hence we need only consider

this intermediate range of values of R. But in such a range,

if the ratio of the largest to the smallest side did not re-

main lai^e for Bo sufficiently small, there would be con-

figurations of the three bodies in which the distances r,- and

the ratios rilrj lie between fixed bounds, no matter how
small Bo is chosen. However, the value of U does not

exceed an assignable quantity in such configurations, and

thus, by the energy integral (12), the same would be true

of the velocities x', y', e', I', S'. Finally it is clear that

BB' would not exceed an assignable quantity. But we have

established that B' becomes arbitrarily large in such a de-

finite range of values of B, so that this conclusion is absurd.
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Evidently there is further work to be done in the more

precise determination of the motions on the quantitative side,

but the facts developed above are sufficient to show that

the only possibility of simultaneous near approach of the

three bodies for given /> 0, JO 0, is that in which the

three bodies act as a pair of bodies, one member of which

con’esponds to a close double pair Po, Pi, while the second

is P,. The motions of P* and the center of gravity of Po,

Pi are then along nearly hyperbolic paths, while Pq, Pi move

in nearly elliptic paths relative to their center of gravity.

g. On a result of Sundman. Sundman established

(loc. cit.) that for given initial coordinates and velocities

with f> 0, K ,"> 0, the quantity R (t) for the corresponding

motion will always exceed a specifiable positive constant.

This fact is at once evident from the analysis of section 8.

In the contrary case we should have indefinitely near

approach to triple collision, and thus a motion for which

R' is arbitrarily large for the given initial value of R, which

is of course absurd.

lo. The reduced manifold M, of states of motion.

Let us turn next to the consideration of the problem of

three bodies after use has been made of the 10 known

integrals to reduce the system of differential equations from

the 18th to the 8th order. In other words the 10 corre-

sponding constants of integration are given fixed values, and

attention is directed towards the oo'^ motions which corre-

spond to the given set of constants. In what follows we
shall suppose that not all the constants of angular momentum

vanish, and that the constant of energy is positive, i. e. we
take /> 0, X > 0.

The angular momentum vector with components a, b, c

will define a spatial direction which plays an important role

in the sequel. Evidently two motions which coirespond to

the same configuration of positions and velocities at some

instant, aside from mere angular orientation relative to this

axis of angular momentum, will continue to differ merely in

this respect. In other words, if 9> denotes any angular
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coordinate which fixes the orientation about the axis of

angular momentum, while are any set of relative

coordinates which do not involve ys the differential equations

defining the oc‘ motions take the form

duildt .
• *, //;) (/ 1, • • •, 7),

The first set of equations constitutes a system of the 7th order

in the coordinates ?/]. • • •, while the last equation enables

one to determine ^ by a further integration. If it be desired,

the time t can be eliminated, and the system becomes of

the 6th order,

duiidi(\ '-Ui/Vi (t = 2, 3, •••, 7).

Thus from the purely formal standpoint the system of the

18th order can be ‘reduced’ to one of the 6th order.

From the point of view which we shall adopt, there is no

essential gain in actually carrying through such a reduction

which can be accomplished without affecting the Hamiltonian

form.*

Let us consider the augmented manifold J/ih of states of

motion, in which the singularities corresponding to double

collision have been removed by the method indicated in

section 7.

The boundary of Mis is to be regarded as made up of

states of motion specified by one of the following possibilities:

one of the coordinates Xi, //, , iv increases indefinitely in absolute

value; the quantity approaches 0; the energy constant of

some pair /'i, Ij of the bodies relative to their center of

gravity at the instant increases indefinitely in absolute value.

It is clear that points away from the boundary in the specific

sense of these three possibilities will have limited coordinates,

with not all three distances small; the condition of energy

imposed insures that the energy constant relative to the

center of gi'avity of all threes bodies is not large in absolute

* See, for instance, Whittaker, Analyi'tad Dt/naniics, chap. 13.
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value, while the fact that the relative energy constants are

not large means that the nearest pair of bodies must shortly

separate to a considerable distance. Thus either all coordinates

and velocity components are limited, and none of the mutual

distances are small, or else the motion is near such a state

in time, and therefore not near to the boundary of il/ig.

In ilfiH the totality of motions is represented as a steady

fluid motion, in which the stream lines correspond to the

possible types of motion. When the 10 constants of integration

are specified, we are directing attention to the corresponding

fluid motion of the sub-manifold 3/g into itself in which the

stream lines represent the oo^ motions under consideration.

Motions which differ merely in orientation with respect to

the axis of angular momentum yield a closed one parameter

family of stream lines, corresponding states of which give

closed curves; in other words Ui, • • •, W7 are the same along

such a curve, while fp varies from 0 to 2 7t, In the special

case of the Lagi'angian equilateral triangle and straight line

solutions when the mutual distances are inalterable,* the

corresponding closed curve is itself a stream line.

The ‘reduced manifold il/7 of states of motion' corresponds

to the 'xP set of states of motion given by sets of coordinates

such as • • •, ?<;, Avhich are distinct except in orientation

about the axis of angular momentum.

It is evident that in the original Mig the closed curves

which give the states of motion differing only in orientation

will give Go^” analytic curves, one and only one through

each point. Hence if we desire to obtain more precise

information as to the i)ossible singularities of it is only

necessary to determine the singularities of Mg, \\ e propose

to investigate the singularities of Mg, and thus of iI/7 ,
suffi-

ciently to establish the following result:

Fo 7^ general values of />0, A">0, the analytic reduce^

manifold JIA of states of motion is ivithout singularity^ and

lias a boundary speeijied by the fact that either R approaches

* See Lagrange’s paper, Essai sur le probleme des trois cotys^ (Euvres,

vol. VI.
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0 or oo, or that the energy constant of some pair of the bodies

rdaiivdy to their center of, gravity become indefinitely large

and negative.

Let us first justify briefly the statement made about the

boundary of J/7. At some distance from the boundary none

of the coordinates can be large since none of the distances

Vi are large, and the center of gravity is at the origin. Since

the energy constant for the three bodies is given, the partial

energy constants cannot be large and positive. Consequently

unless one of these partial constants is large and negative,

the state of motion is not near the boundary of Mi.

In dealing with the analytic character of M^, and so of

Ml, we can assume that the state of motion under consideration

is not a state of double collision. In fact the ‘molecule’ of

states of motion in M,i near a state of double collision is

carried analytically into a molecule about a modihed position,

not corresponding to a state of double collision. The invariant

sub-manifold Mi, will thus be analytic all along a particular

stream line or nowhere along it.

Let us then employ the coordinates x, y, z, %, J, x, y, z

,

t! ,fl',t which are available in Mu, within which we may
take Ms to lie. The sets of these 12 coordinates which

satisfy the remaining angular momentum and energy conditions

(11) and (12), furnish uniquely the states of motion of Ms
near to the particular motion of Ms under consideration.

It is evident that in general these 4 equations may be solved

analytically for any 4 of the 12 variables; i. e. Ms analytic

at the corresponding point.

We can show, however, that for general, values of /> 0

and K>0 there can be no singularities whatsoever in Ms.

Let us choose coordinate axes so that x = y = 11 — 0

the instant under consideration, i. e. the particle Pi lies in

the z direction from Po, while the line from P, to the center

of gravity of Po and P, lies in the x, z plane. Let us attempt

to solve the 4 equations for a;', y', z', tj' as functions of the

other variables. The condition that this be possible will

be satisfied if the corresponding Jacobian determinant
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0 0 0 ?

0—g 0—

C

« 0 0 0

X y' £ 1)'

does not vanish; here we have removed an obvious factor

m from the first three columns, and a factor from the last

column. Thus Mg is analytic at this point provided that

the inequality

— ?0*/+O

holds. But it has been pointed out that z is not 0. Further-

more, we can take ? 4^ 0 unless P» is on the straight line

Po Pi constantly. And we can take 4 0 unless the distance

Po Pi (and similarly any other distance P< PJ) is a constant.

Hence we infer that either Mg is analytic along the particular

stream line under consideration, or the three bodies lie upon

a straight line, or at a constant distance from each other,

but not in the same straight line.

In the latter case the bodies Po, Pi, P* are known to lie

at the vertices of an equilateral triangle in a plane perpen-

dicular to the angular momentum vector; this triangle rotates

at a constant angular velocity about its center of gravity.

Furthermore it is known that there is one and only one size

of triangle of this kind for an assigned angular velocity.

Thus there will be in general no such motion for which /
and K have the preassigned values.

Similarly in the first case farther examination shows that

the distances are inalterable. It is known that there are three

solutions for an assigned angular velocity, and thus in general

no solution for general values of / and k.

In any case the manifold Mi can only have a singidarity

at a point corresponding to an equilateral triangle solution or

to a straight line solution at constant mutual distances. These

possibilities will only arise when certain analytic relations

between f and K are satisfied. It is only as f and K vary

through these critical values that the nature of Mi from the

standpoint of analysis situs can change.
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The manifold M-j has fundamental importance for the problem

of three bodies, but so far as I know, it has nowhere been

studied even with respect to the elementary question of

connectivity. The work of Poincare refers to the existence

of certain periodic motions, i. e. of certain closed stream lines

in ilf;
,
obtained by the method of analytic continuation from

a limiting integrable case of the problem of three bodies;

nearby motions, i. e., stream lines in the torus-shaped neighbor-

hood of such a closed stream line, are also considered in

relation to the formal series; but he does not consider I/7

in the large.

In conclusion it may be observed that the states of motion

in which the three bodies move constantly in a plane through

the center of gravity perpendicular to the angular momentum

vector, correspond to an invariant sub-manifold within

il/7, which contains the exceptional singularities when these

exist. So far as dimensionality is concerned, this manifold

il/5 would be suited to form the complete boundary of a

surface of section (chapter V) of properly extended type.

II. Types of motion in i/7. The problem of three bodies

is distinguished from the type of non-singular problem which

we have considered earlier, in that the manifold of states

of motion is not closed. The singularity along the boundary

cannot be removed by any exei*cise of analytic ingenuity.

In fact consider a tube of stream lines in i/7 described by

a ^molecule’ of states of motion near triple collision at t — 0.

It is clear that the molecule tends toward the boundary of

i/7 as t increases, since we have then lim R - - oc according

to the results deduced above (section 8). The half tube so

generated is then carried into pail of itself, and would have

to correspond to an infinite value of the invariant 7 -dimensional

volume integral. This situation does not arise when the

manifold of states of motion is closed and non-singular.

More precisely, the stream lines corresponding to motions

of near approach to triple collision not only lie wholly near

the boundary of 3/7, and approach it as t increases or decreases

indefinitely, but they fill out three entirely distinct regions
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of M-,, since for every such motion there is a particular one

of the three bodies which recedes indefinitely from the other

two bodies.

The stream lines corresponding to near approach to triple

coUision thus fill three distinct l-dimensimial continua of il/7,

corresponding to the fact that Pq, Pi, or may he the relatively

distant body during simh a motion. These continna lie near

to the hoandary of M-,, and every stream line in them approaches

th(‘ boundary in either sense of time.

Of course these continua are not precisely defined until

the de^^ree to which triple collision is approached is precisely

specified.

It is natural to believe that in this case of indefinite

recession, the two nearb}^ bodies have a definite limiting

energy constant, orientation of i)lane of motion, eccentricity,

and a limiting linear and angular momentum with reference

to the center of gravity of the three bodies. In any case these

motions may properly be regarded as to a large extent ^known’.

The very interesting question noAV arises: Do the motions

for which lim P oc in one or both directions of the time

fill J/7 densely or only in part? It is important to under-

stand the nature of the difficulty inherent in this question.

By actual computation of the motions, it can doubtless be

established whether or not a specific motion belongs to one

of these continua or not. Certainly, for \K\ small, almost

all of i/7 would be filled by these continua in consequence

of the results obtained in the case K < 0. Nevertheless

when there exists a single periodic motion in i/7 of stable

type, it will not be possible to determine whether or not

nearby motions belong to these continua without solving

the fundamental problem of stability in this particular case.

e have already alluded to the highly difficult character of

the problem of stability (chapter VIII), which arises precisely

because in a dynamical problem such as the problem of three

bodies, formal stability of the first order insures the satis-

faction of all the infinitely many further more delicate con-

ditions for complete formal stability.

19
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The question can, however, be put in a very suggestive

form, which in my opinion renders it probable that the

motions for which lim i? = oo for lim < = + <» flU up if

densely, as do those for which lim B = oo for lim f = — oo

;

because of the reversibility of the system of differential

equations, both conjectures must be either true of false.

The manifold has already been conceived of as

a 7-dimensioDal fluid in steady motion. This fluid must be

thought of as having infinite extent and as incompressible,

in consequence of the existence of a 7-dimensional volume

invariant integral. The three types of motion with near

approach to triple collision correspond to three streams which

enter M-, from the infinite region and leave it there.

What is likely to happen to an arbitrary point of the fluid?

It seems to me probable that in general such a point will

move about until it is caught up by one of these streams

and carried away. It may, however, be anticipated that

there will be found certain points which remain at rest or

move in closed stream lines, and so are not carried off.

In conformity with the results of chapter VII, there must

then necessarily exist other stream lines which remain near

to the closed stream line as time increases or as time decreases.

More generally, there will exist recurrent types of stream lines

corresponding to recurrent motions, and various other stream

lines which remain in their vicinity as time increases or decreases.

The stream lines corresponding to such recurrent motions and

nearby motions cannot of course approach the boundary of Jf;.

For the determination of the distribution of such periodic

motions, recurrent motions, and motions in their vicinity, it

obvious that elaborate detailed analysis would be necessary.

In conclusion we shall merely effect an obvious classification

based on the function R{t):

An arbitrary motion in the problem of three bodies for the case

^>0, K'>0 is of one of the following types as t increases:

(1) R increases toward -f >
in which case one body recedes

indefinitely from the other two, while the near pair remain

tvithin finite distance of one another-,
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(2) R tends toward a value R while U approaches 2K, in

which case the limiting motion is of special determinable type

as in Lagrange*8 equilateral triangle solution

\

(3) R{t) is uniformly hounded as in case (2) hut oscillatory.

Here the motion is wholly one offinite distances and velocities

except possibly for occasional double collisions or approach to

such collisions, and there necessarily exist periodic or othei'

recurrent motions among the limit motions'^

(4) R{t) is oscillatory with upper bound +00 and a positive

lower bound. This is an intermediate case in which the motion

is one with finite velocities except near occasional double

collision or approach to double hut not triple collision, while

from time to time one of the three bodies recedes arbitrarily

far from the near pair only to approach them again later.

Similar residts obviously hold as t decreases.

The only part of this statement calling for any explanation

is that if R approaches R, U approaches 2K. But this can be

proved to follow from Lagrange’s equality (15).

12 . Extension to n>3 bodies and more general

laws of force. In indicating the possibility of generalizing

the above results, both in respect to the number of bodies

and the law of force, we shall entirely put to one side the

question of collision. It would suffice for our purpose,

however, if any kind of continuation after multiple collision

were possible in which the constants of linear and angular

momentum as well as of energy are the same after as before

collision, and if also i?', where

may be regarded as continuous at collision; here the masses of

Pi, P„ are wi, • • •, »i„ respectively, while M is the sum

of these masses, and denotes the distance PiPj.

Let the function U of forces be any function of the mutual

distances ry, of dimensions — 1 in these distances. For a

function U of this type, the original form of differential

equations, of the 10 integrals, and of Lagrange’s equality
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(15) and of the inequality (20) due to Sundman will subsist,

provided that f denotes the total angular momentum of the

system about the center of gravity. Our main reasoning

above was essentially based upon this analytical frame^^ork.

Hence we can state the following result:

Let U be any analytic Junction depending on the mutual

distances hetiveen n bodies Pi, {i 1, • •
•, w), with coordinates

{xi, yi, Zi) and masses mi respectively, let IJ be Jnrthermore

homogeneous of dimensimis — 1 i7i these distances. If the n

bodies are sufjiciently near together, with assigned positire

values of the total angular momeritum f and the constant of

energy K, at least two of the mutual distances trill become very

large in either sense of the time.

Further consideration shows that the condition of homo-

geneity upon U can be lightened to the form of an inequality

:e
dU
9 Xi

4-
yi

dlJ
,

dU\
dyi dzil

— d U

where 0<.d^2, without affecti/ng the argument that at least

two of the mutual distances become very large.

In this argument the function H has to be generalized to

the form

I have not attempted to ascertain conditions under which

at least two of the mutual distances become infinite.
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