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Abstract

The present thesis is dedicated to study the modified theory of gravity, in particular the f(R,T)
gravitational theory. This modified theory of gravitation can be considered as a simple and
important modifications or generalization of Einstein’s General Relativity(GR) to explain the
accelerated expansion of the universe. The main focus in this thesis is to construct cosmological
models, which can be confronted with observations concerning late time cosmic speed up phe-
nomena. This phenomena has been taken care by modifying the geometrical part of the field
equations. A simple and general mathematical formalism has been presented in the thesis, so
that the analysis and interpretation of the physical aspects of the cosmological model can be eas-
ily assessed. We have considered the specific form of f(R,T) gravity such as f(R,T) = AR+ AT
and f(R,T) = R+ 2f(T) in order to construct the cosmological models of the universe.

We have incorporated some degree of anisotropy in the spatial section of the model to take
into account the possibility of cosmic anisotropic expansion, hence the models are presented
with Bianchi type VI, space-time. Within the formalism presented, the dynamical parameters
of the universe are expressed in terms of the scale factor. We have discussed the models with
power law cosmology, de Sitter space and hybrid scale factor. The deceleration parameter (DP)
may evolve from a positive value in the early phase of cosmic evolution to negative value at late
phase, which leads to the cosmic transition. Through this hybrid scale factor, the cosmic transit
phenomenon has been simulated. Hence, the cosmological models presented in the thesis are

either with constant DP or time varying DP.

Based on the modified gravity with power law and hybrid scale factor, we have reconstructed the
anisotropic universe and the effect of anisotropy in the evolutionary behaviour of the parameters
have been investigated. The effect of coupling parameter on the dynamical evolution of the
universe is also assessed. The effect of viscous fluid, electromagnetic field on the dynamics
of the universe are also studied. The viability of the cosmological models presented in the
thesis are tested through the state finder pair and Om(z) diagnostic. In addition to this,
the energy conditions, which are the geometrical diagnostic approach are also discussed. The
models presented in the thesis allow any amount of anisotropy including the minimal one that

resembles an almost isotropic universe.
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Notation

We have listed below some of the basic notations used in the thesis. We have made all attempts
to keep it as standard as possible. In some places, we have used non standard notation because
of the use of non metric connections. We have defined all the notaions used in the thesis at its

first appearance.

g :  Lorentzian Metric
g: Determinant of g%
I} :  General Affine Connection (Christoffel Symbols)
{ /\ } + Levi-Civita connection
i
Vlj Co-variant derivative w.r.t. Levi- Civita connection
(¢j) :  Symmetrization over the indices ¢ and j
[ij] © Anti-symmetrization over the indices i and j
R)..: Riemann tensor

R;; © Ricci tensor

R : Ricci scalar
Sy Matter action
T;; Stress-energy tensor

AY . Hyper-momentum
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Section 1.5 Chapter 1

from the matter Lagrangian £y;. Contracting (1.43), it gives relation between Ricci scalar R

and T the trace of the energy momentum tensor as follows
fr(R,TYR + 30fr(R,T) — 2f(R,T) = 8T — fr(R,T)T — fr(R,T)6O. (1.44)

The field equations are depend through ©, due to the physical nature of the matter field.
As it is depending on the matter field, we get several theoretical models corresponding to the
different matter contribution for f(R,T) gravity [76] models by specifying functional form of
J(R,T) as
R+ 2f(T)
J(RT) = [i(R) + foAT) (1.45)
fi(R) + fo(R) f3(T)

In this model, they have considered generalized gravity model(f(R) gravity model with an
arbitrary coupling between matter and adding an extra term 7T, trace of energy momentum
tensor coming from the matter Lagrangian Lx). They observed that the new matter and
time dependent terms in gravitational field equations play the role of an effective cosmological
constant in GR. They have seen that the equation of motion corresponding to the model show
the presence of an extra force acting on test particles, and the motion is generally non geodesic
and also obtained by using perihelion precession of mercury, an upper limit on the magnitude

of the extra acceleration in the solar system.

Therefore, they predicted that f(R,T) gravity model could lead to some major differences, as
compared to the predictions of standard GR, or other generalized gravity models, in several
problems of current interest such as cosmology, gravitational collapse or the generation of
gravitational waves. It also, provide some specific signatures and effects, which could distinguish

and discriminate between the various gravitational models.

1.5 Cosmological constant

The first physicist to consider a universe which exhibits an accelerated expansion was probably
Willem de Sitter [113]. A de Sitter space is maximally symmetric, simply connected, Lorentizian
manifold with constant positive curvature. It may be regarded as the Lorentizian analogue of
n-sphere in n-dimensions. However, the de Sitter space- time is not a solution of the Einstein
field equations, unless one adds a cosmological constant A to it, i.e. left side of the Einstein

field equations. Though it is technically possible, this term was not included initially. The

18



Section 1.5 Chapter 1

reason for not including this is that in order to arrive at the gravitational field equations, the
left hand side of Einstein field equations has to be a second rank tensor constructed from the
Ricci tensor and the metric, which divergence free. In fact, Einstein was the first to introduce
the cosmological constant with an idea that it would allow him to derive a solution of the
field equations describing a static universe (Finstein [114]). However, The idea of a static
universe was immediately abandoned, when Hubble discovered that the universe is expanding
and Einstein appears to have changed his mind about the cosmological constant. In any case,
once the cosmological term is included in the Einstein equations, de Sitter space becomes a
solution. Actually, the de Sitter metric can be brought into the form of the FLRW metric with
the scale factor and the Hubble parameter given by

R(t) = et (1.46)
H? = %AA (1.47)

This is sometimes referred to as the de Sitter universe, which is expanding exponentially. The
de Sitter solution is a vacuum solution. However, if we allow the cosmological term to be

present in the field equations, the Friedmann equations will be modified as

. 2
R 8rGp+ A K
<§> ST ® (1.48)
R A 447G
=3 3 (p+ 3p). (1.49)

From (1.49), it can be inferred that the universe has now entered a phase of accelerated expan-
sion over the matter term on the right hand side. This is bound to happen since the value of the
cosmological constant stays unchanged during the evolution, whereas the matter density de-
creases R3. In other words, the universe is bound to approach a de Sitter space asymptotically

n time.

It has already been mentioned that there is absolutely no reason to discard the presence of a
cosmological constant in the field equations from a gravitational and mathematical perspective.
Nonetheless, it is also reasonable to assume that there should be a theoretical motivation for
including it because there are numerous modifications that could be made to the left hand side
of the gravitational field equation. It may still lead to a consistent theory from a mathematical
perspective and we are not aware of any other theory that includes more than one fundamental

constant. On the other hand, it is easy to see that the cosmological term can be moved to the

19
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right hand side of the field equations with the opposite sign and be regarded as some sort of mat-
ter term. It can then be put into the form of a stress-energy tensor T,, — diag(A, —A, —A,A). It

can be noted that, the value of wy, inferred from ohservations wg. = —1.0615:55, which explains

the success of the AC DM model.

Once the cosmological constant is considered to be a matter term, a natural explanation for it
seems to arise: the cosmological constant represent the vacuum energy associated that empty
space has a non-zero energy density. Actually, local Lorentz invariance implies that the expec-

tation value of the stress energy tensor in vacuum is

Tab — —pYab, (1.50)

and p is generically non zero. In spite of any potential problems that it may have, it is still a

remarkable fit to observational data while at the same time being elegantly simple.

1.6 Bianchi cosmologies

It was Friedmann [116], who has first investigated the most general non-static, homogeneous

and isotropic space time described by Robertson-Walker metric

2

g

1 — kr?

ds® — dt* — R*(t) ( +r2do® + sm,?edgf) : (1.51)

where, R(t) is the scale factor, k = +1,0, —1 according to the universe is closed, flat or open
respectively, with a suitable choice of r. Patridge and Wilkinson [117], Ehlers et al. [118] claimed
that the present day universe is both spatially homogeneous and isotropic which can be well
describe by FRW model. However there is a small magnetic field over cosmic distant scales and
also there is evidence of a small amount of anisotropy (Sofue and Reich [119], Boughn et al.
[120]). This recommended a departure from FRW metric at the early stage of evolution. Hence
there is a need to search for a space time which can deal with the anisotropic universe. From
the theoretical point of view, anisotropic universes have a greater generality than the isotropic
models. The spatially homogeneous and anisotropic models known as the Bianchi models give
a medium way between FRW and completely inhomogeneous and anisotropic universe. Bianchi
type cosmology plays a major role in constructing cosmological models in modern cosmology.

We have presented a brief discussion on Bianchi space times.

Luigi Bianchi [121] introduced the classifications of Bianchi universes. These are spatially

homogeneous space times with three parameter isometric group acting on spatial slices. These
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Section 1.6 Chapter 1

can be described dynamically by the dynamical system with the difference that the state space
variables S are independent of the spatial coordinates. Ellis and MacCullum [122] and Krasinski
et al. [123] have classified the Bianchi cosmologies in two classes: class A and class B and
then further divided into subgroups using the eigenvalues of the matrix. Then Taub [124]
has introduced explicitly the nine types of Bianchi models, which are necessarily spatially

homogeneous.

Collins and Hawking [125] suggested that out of these nine Bianchi types, Bianchi types
1,V,VII,,VII, can tend towards isotropy at an arbitrarily large times. Therefore, it per-
mits the formation of galaxies. Bianchi types I and VI, represent the generalized flat FRW
models whereas Bianchi types V and VI, represent the generalized open FRW model. The
most general non-flat models are represented by Bianchi type 11,V I,, VII and T X space times.

The metric forms of all Bianchi types are given below: Bianchi type-I metric:
ds® = —dt* + A’dx® + B*dy® + C°d2”. (1.52)

Locally Rotationally Symmetric Bianchi type-I metric:

ds® = —dt* + A%dx® + B*(dy® + dz2?). (1.53)
Bianchi type-II metric:
ds® — —dt® + A*(dr — zdy)® + B’dy®> + C*dz>. (1.54)
Bianchi type-III metric:
ds® — —dt* + A%dx® + B?e 2*"dy? + C2d22. (1.55)
where « is a constant.
Bianchi type-IV metric:
ds® = —di* + e [ Adx® + (A2 B)dy® + 2Azdxdy| + C*d2>. (1.56)
Bianchi type-V metric:
ds® = —dt® + Adx® + > (B*dy® + C*dz?). (1.57)
Bianchi type-V Iy metric:
ds? = —dt* + Adx® + B?e 2" dy? + C%e®¥ 2. (1.58)
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Bianchi type-V 11y metric:
ds® — —dt* +(Acos’z+ Bsin® 7)dx* 4 (Asin’z -+ Beos®2)dy® + ( A+ B)sin2zdxdy -+ Cdz*. (1.59)
Bianchi type-VIII metric:
ds® — —dt* + A%dx® + B2dy® + (A%sinh*y + B2cosh®y)dz* — 2B*coshydxdz. (1.60)
Bianchi type-IX metric:
ds* — —dt* + A%dx® + B2dy® + (B*siny + Acos®y)dz® — 2A%cosydxdz. (1.61)

For the homogeneous Bianchi space time in all cases above A, B, C are the directional scale

factors and functions of cosmic time ¢ alone.

Bianchi type models or space-times are characterized by the kinematic quantities of the similar
spatial hypersurface: bulk expansion rate I, trace free shear tensor o,5 an auxiliary three-
vector €2, that measure the rotation of the frame with respect to fermi-propagated one and a
symmetric three-tensor 7,5 which determine the internal geometry on the spatial hypersurface.

This has been represented in Table 1.1:
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1.6. BIANCHI COSMOLOGIES

Table 1.1: Bianchi model classification

Physical Scales Nature of the Model
Bianchi Type
hin | nyl| ns
I 0] 010 0 Abelian and Unimodular
I1 o110 0 Nilpotent and Unimodular
II1 1101 -1 | Solvable and Not unimodular
v 11010 1 | Solvable and Not unimodular
Vv 11010 0 | Solvable and Not unimodular
Vi 01 1]-1 0 Solvable and Not unimodular
Vi, h| 0] 1 -1 | Solvable and Not unimodular
Vil 0111 0 Solvable and Not unimodular
Vi, h| 0] 1 1 Solvable and Not unimodular
VIII 0111 -1 Semisimple and Unimodular
IX 0O 1] 1 1 Semisimple and Unimodular
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1.7 Energy conditions

Based on Raychaudhuri equation (Hawking and Ellis [126], Tahim et al. [127] the energy
conditions are essentially describe the behaviour of a congruence of time like, space like or
light like curves. Here, we have presented the time like and space like curves for which the

Raychaudhuri equation can be written respectively as

2 . . do

Rz’jUzU] -+ 3 -+ O'ij(fz] — wijw” -+ E - 0, (162)
2 . o dl

Rijkzk] + E + O'Z'j(fz] — wijw” + ﬁ = O (163)

Where U* and k° are respectively time like and light like vectors tangent to the curves. 6 is
the scalar expansion which describes the expansion of volume. The positive parameters 7 and
A are used to describe the curved of the congruence and the shear tensor o,; measures the
distortion of the volume. w;; is the vorticity tensors that measures the rotation of the curves.
The quadratic term in Raychaudhuri equation may be disregarded as the situation is of small
distortions of the volume, without rotation. Then, the scalar expansion can be expressed as

the function of the Riccl tensor as

The condition for attractive gravity is @ < 0 imposing R;;U*U? > 0 and R;k'k? > 0. These two
conditions are called strong and null energy conditions respectively. The Null, Weak, Strong,

Dominant energy conditions for a perfect fluid distribution can be respectively represented as

NEC : p+p>0,
WEC : p>0,

SEC : p+3p>0,
DEC : p—p>0.

1.8 Bianchi V[, space time

In this thesis, we have considered Bianchi V1), space-time and study the physical as well as

dynamical behaviour of the universe using different matter fields. The Bianchi type-V I}, metric
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space-time can be represented as

ds® — dt* — A%dx® — B?e*dy® — C?ed2?, (1.65)

where A,B,C are metric potentials with respect to time and h — —1,0,+1 is a constant. To

construct the Einstein field equations, we need to calculate the following useful tools as below,

1.8.1 Christoffel symbols

The Christoffel symbols can be calculated as

m ] m
T~ 4" T — 50 (

oxk oI oxrm

agjm +8.C]km 8gjk>

The non-vanishing Christoffel symbol for Bianchi type VI, can be calculated as

P ]—g” (36111 g1 8.014) B ﬂ

2 oxt  Oxt  Oxt A
e (G )
rho g (G S G ) -
ey (5 oo )
oy (G TE) 5
g (5 )
e (G ) - G
g (G ) 4
gt (G G ) - e
= 5ot (G G ) - coe

An overdot over a field variable represents derivative with respect to t.
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1.8.2 Ricci tensor and Ricci scalar

The Ricci tensors can be calculated as

a, a b a b a Tb a Tb
R - Rzga 8 ]sz Ox bFz] + F F - Fz]Fab
The non-vanishing Ricci tensors are
0 0
Ry — %r‘;b o —— I+ T, — T,
AAB AAC
— AA T h? 41
5 e +n°+
0 0 .
Rig= 5o, — =20 4TI, T,
B N hC
B C
0 0 .
Rop ol T, £ Ty, T,
. BAB BBC B2 B2
_ 2z 2z 2z 20 20
BBe 7 e 5 e“* + he A2+e yE
d b d b b a b
R33 O 3r3b O },FSS + F r3a - FSSFab
. h2C? hC? CAC CBC
2hx 2h. 2hx 2hx 2hx
= -(CCe + 76 Fe Te — Te
d b d b b a b
Ry = Py r4b o br44 + F r4a - r44rab
B A B n C
A B C

The Riccl scalar

R— Z Rijg”? — Rug" + Raag™ + Razg™ + Raag™

ij=1
can be calculated as

) A B B e C

A B C

2 AB+BC+AC 2(1+h+h)
telag "B T ac ) w
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1.8.3 Einstein tensor

The non-vanishing Einstein tensors for Bianchi V' I;, can be obtained as

1
Gy = Ry — 5 Rg”

1 B C BC h
G11R11§R,C]11A2<§+5+%ﬁ>
1 B

he A
Gy = Ry — 53914 ) +

1
Gog = Rop — 53922 = B?

] .

Gag = Rss — 53933 = C? < +

_AB_BC_AC+1+h+W
AB BC AC A2

1
Gas = Rag — 53944 =

1.9 Problems investigated

In this section, we have described the problem investigated and results obtained in the thesis.
The main objective of the present work is to study the dynamical behaviour of anisotropic
cosmological models of the universe using different matter fluids like perfect fluid, viscous fluid,
cosmic string and magnetic field in Bianchi VI, space time with different functional form of
f(R,T) theory of gravity. This work has a wide scope for the comparative study of anisotropic
cosmological models in modified theories of gravity. We have presented our work into eight

chapters including the Introduction as chapter 1.

In chapter 2, we have studied the dynamics of anisotropic universe in f(R,T) gravity with a
rescaled functional f(R,T) = f(R) + f(T), where f(R) = AR, f(T) = XI', X is a constant.
These linear functions f(R) and f(T') rescale the modified gravity and generate the concept of
time varying effective cosmological constants. In the first phase, we have employed the power
law scale factor and in the second phase, the exponential scale factor has been used to construct
the cosmological models. Here, the matter is considered to be of perfect fluid. For three cases of
h = —1,0,+1, cosmological models are constructed and their physical properties and behaviour

of the models are presented.
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In chapter 3, we have investigated the dynamical behaviour of the anisotropic universe with
the functional f(R,T) = AR+ AT. Three cosmological models are constructed using the power
law expansion in Bianchi VI, space time for three different values of A = —1,0, +1. Here, the
matter field has been considered as bulk viscous fluid. We have presented cosmological models
for h = —1,0 with bulk viscous fluid by incorporating the power law expansion scale factors.

Also, we have shown the difficulty in obtaining a viable cosmological model for h = +1.

In chapter 4, we have reported the dynamical behaviour of Bianchi V' I}, universe in the presence
of one dimensional cosmic strings and quark matter. We have chosen the functional f(R,T’)
as f[(R,T) = R+ 2Ag + 26T. We have derived a more general expression and investigated

dynamics of universe concerning late time cosmic acceleration.

In chapter 5, we have considered the functional as a linear form of f(R) and f(T') respectively
as f(R) = AR and f(T') = XT'. We have investigated the dynamical behaviour of the universe
by incorporating additional anisotropy in the energy momentum tensor. The energy conditions
of the model are also derived and analysed. Also, the effect of anisotropy on the dynamics of

the universe is studied.

In chapter 6, we have investigated the f(R,T) gravity in Bianchi VI, space time filled with
magnetized anisotropy matter content. The extended or f(R,T) gravity induced by f(R) = R
and f(T) = 2Ag + 267 are likely to experience the late time cosmic acceleration in a power law
function. The effective cosmological constant and EoS parameters are derived and analysed. We
have observed that due to the non-vanishing behavior of the scaling constant A and coupling
constant 3, the field equations of f(R,T) gravity cannot reduce to Einstein field equations.
The value of the anisotropy parameter k& and the coupling constant 3 are constrained in such a
way that, the behavior of the physical parameters aligned with the observational results. The
presence of magnetic field in the field equations shows a substantial effect on the dynamical
behavior initially but at late times the effect is minimal. The energy conditions are also derived

and analyzed.

In chapter 7, the general formalism to investigate Bianchi V I}, universe has been derived in an
extended theory of gravity. We have incorporated a one dimensional cosmic string with string
density aligned along x-axis in the energy momentum tensor. We have considered the functional
as f(R,T) = R+ 2Ay + 28T to derive the cosmological model. The scalar field reconstruction
and some diagnostic approaches are incorporated to test the validity of the model. We have
employed a hybrid scale factor that simulates a transition from a decelerated universe in recent

past to an accelerated one to examine the effect of anisotropy in the cosmic evolution.
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In chapter 8, the general formalism developed in chapter 7, has been investigated in hybrid
scale factor. Cosmological models using hybrid scale factor has been developed by using the
linear form of the functional f(R,T) = A(R + T). Using the formalism developed, we have
derived the general expressions of the dynamical features of an anisotropic universe using the

hybrid scale factor.

1.10 Summary and conclusion

In this chapter, we have presented the basic introduction of Einstein’s GR and the literature
survey of alternative theories of gravity such as Brans Dicke theory, Scale covariant theory, Scale
invariant theory, Barber’s second self creation theory, Saez Ballester theory. Then we have pre-
sented a brief analysis on modified theories of gravity such as f(R) gravity, f(G) gravity, f(T)
gravity and f(R,T) gravity. A brief discussions on cosmological constant, Bianchi cosmologies
and energy conditions are also presented.The problem investigated and the results obtained
are also presented. Though Einstein’s GR has been successful in constructing cosmological
models, but in recent years the cosmological models with modified or extended gravity gained
momentum. We hope that the cosmological models obtained and presented in the thesis and
its analysis definitely put some light in the context of the uncertainty prevailing in the studies

of the late time cosmic acceleration.
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CHAPTER 2

Dynamical Aspects of Bianchi V' I, Cosmological Models

Publication details on the contents of this chapter: B.Mishra, Sankarsan Tarai, S.K. Tripathy, Advances in High

Energy Physiecs, 2016, 8543560 (2016).
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2.1 Introduction

Along the line of interest of incorporating some matter components in the action geometry,
f(R,T) theory has been proposed by Harko et al. [76] which, of late, has been an interesting
framework to investigate accelerating models. Moreover, the reconstruction of arbitrary FRW
cosmologies is possible by an appropriate choice of the functional f(R,T). In recent history,
many authors have investigated the astrophysical and cosmological implications of the f(R,T")
gravity with help of different matter. Myrzakulov [128] has studied the FLRW cosmology in
F(R,T) gravity taking the matter as perfect fluid. The behaviour of perfect fluid and massless
scalar field is studied by Sharif and Zubair [129] for homogeneous and anisotropic Bianchi type
[ universe in f(R,T) gravity. The stationary scenario between dark energy and dark matter is
studied by Rudra [130] considering the matter field as perfect fluid in f(R,T") theory of gravity.
Alvarenga et al. [131] have studied the evolution of matter density perturbations in f(R,T")
gravity. Shabani and Farhoudi [132] have investigated the cosmological solutions of f(R,T")
modified theory of gravity for a perfect fluid in spatially FLRW universe through phase space
analysis and the cosmological aspects of these theories are studied in [133]. Moraes et al. [134]
have studied the hydrostatic equilibrium configuration of neutron stars and strange stars in
f(R,T) gravity. Houndjo and Piattella [135] have investigated a description of holographic
dark energy model in term of reconstructed f(R,T) gravity. Baffou et al. [136] have studied
the evolution of the cosmological parameters, with ordinary matter and dark energy in the
generalized f(R,T) gravity and the cosmic late time acceleration is studied in mimetic f(R,T")
gravity with Lagrange multiplier [137]. Jamil et al. [138] have reconstructed some cosmological
models for some specific forms of f(R,7') in this modified gravity. Shamir et al. [139] obtained
exact solution of anisotropic Bianchi type-I and type-V cosmological models whereas Chaubey
and Shukla [140] have obtained a new class of Bianchi cosmological models using special law
of variation of parameter. Using a decoupled form of f(R,T) i.e. f(R,T) = f(R)+ f(T)
for Bianchi type V universe. Ahmed and Pradhan [141] have studied the energy conditions
of perfect fluid cosmological models. Mishra and Sahoo [142] have studied Bianchi type VI,
cosmological models assuming f(R,T) = R+ 2f(T). They have obtained exact solutions to the
modified field equations by assuming a specific anisotropic relation among the metric potential
and the model constructed for h = —1 showing the accelerating behaviour. Samanta [143| has
obtained exact solution of f(R,T) gravitational field equations in Kantowski-Sachs space time

and Shamir [144] has constructed some cosmological models in Bianchi type V space-time. In
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the frame work of this modified gravity, Mishra et al. [145] have presented the Einstein-Rosen
non-static cosmological model with quadratic form of f(R,T) gravity. Recently Yousaf et al.
[146] have investigated the irregularity energy density factor in f(R,T) theory responsible to
disturb the stability of homogeneous universe. Also Yousaf et al. [147]| have explored the

evolutionary behaviour of compact objects.

In this chapter, we have presented cosmological models of the universe for the choice of the
functional f(R,T) = AR + AT, where X is a constant. We have incorporated two scale factors
such as power law and exponential law to study the dynamics of the universe. This chapter
is organised as: in section 2.2, we have derived the basic field equations of f(R,T) gravity,
in section 2.3, the dynamical parameters are derived and its behaviour are presented for h —
—1,0,+1 in three subsections respectively using the power law factor. In section 2.4, the
physical behaviours of the model with power law has been discussed. In section 2.5, we have
assumed the exponential scale factor and discussed the anisotropic behaviour of the universe
for h — —1,0, +1 in three subsections respectively. The derivation and behaviours of physical
parameters along with energy conditions are presented in section 2.6. The conclusion of the

chapter has been given at the end in section 2.7 .

2.2 Basic formalism

To study the dynamical behaviour of the model in the frame work of modified gravity, we
consider spatially homogeneous and anisotropic Bianchi VI, (abbreviated as BVI},) space
time (1.65). To construct Einstein modified frame of field equation, we consider the action as
given in eqn. (1.41). This frame is useful as long as it can be used to write the field equations
of the corresponding gravity theory in a compact form. Now the stress energy tensor of the

matter is defined as

T | (2.1)
V=g  0g¥
Assuming that Lagrangian density of the matter depends only on the metric tensor component

¢ and not on its derivatives, eqn. (2.1) reduces to

oL,,
T = Gis Ly — 2 D (2.2)
The matter source is a perfect fluid which can be expressed as
Tij = (p + p)usu; — pgs;- (2.3)
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where p and p are proper energy density and pressure of the fluid respectively and the matter
Lagrangian can be taken as £,, — —p. So the velocity in co-moving coordinates, which satisfy
the condition w;u’ — 1 and uu® = 0. By varying the modified four dimensional Einsten-Hilbert
action (1.41) with respect to the metric tensor component g%, the generalized Einstein field

equations for the algebraic function f(R,T) = fi(R) + fo(T) yields
1
TrRi; — §.f(R).Qz’j + (9,00 = ViVy) fr(BR) = 8Ty + fr(T)Ty,

o TR V(] PP EY

fr — 8f ) and fr — 8<TT> are the partial differentiation of the respective functional with
respect to their arguments. The functional f(R,T) can be chosen arbitrarily to get viable
cosmological models. The role of the particular choice of the functional f(R,T) = AR +T),
A being a constant, can be well understood in getting such a simplified approach to a modified
theory which does not contain any dark sector component but can be instrumental in providing

viable accelerating models. With this choice of the functional, eqn. (2.4) reduces to

1 87+ A
R,’j — §Rgij - ( )\ > Tz’j + A(T)gi]a (25)

Eqn. (2.5) can now be recast as the usual Finstein field equation, where A(T) = p + %T can
be identified with the cosmological constant that evolves with cosmic time. Using the Bianchi

VI, space-time (1.65), the f(R,T) gravity field equations (2.5) can be explicitly written as

B C BC h 167 + 3A P

B¢ Be W ( > ) (2.6)
é g AC B h_2 167T+3)\ P (27)
Al C T AC A2 2’ '
A B AB 1 167 + 3A P

Atetas e ( >P 2 (28)
AB BC CA 1+h+h2 167r+3)\ P (2.9)
AB " BC Toa Ty '
B (* A

An over dot on a field variable denotes differentiation with respect to time ¢. The constant
exponent h decides the behaviour of the model and can take integral values such as —1, 0 and

1.
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2.3 Dynamical features with power law

In this section, we have studied the dynamics of the background expansion of the models for
assumed integral values( h = —1,0,1) of the exponent h. The dynamics of these models can
be studied if we change the metric potential into directional Hubble rates. Once the cosmic
expansion behaviour is known, it becomes simpler to study the background cosmology of the
diagonal BV I, universe. Here, each value of h corresponds to a different cosmological model
with different dynamical behaviour. In view of this, in the following, we discuss the dynamical
features of the three possible models in the frame work of f(R,T) theory. We define the
directional Hubble parameters along different directions as

%, Hyg, Hzg. (2.11)
The mean Hubble parameter becomes [ = (H, + H, + H,). The field equations (2.6)- (2.10)

can now be expressed as

H,

) ) h P
2 2
; ; 2 2 h? P
HerHZJerJrHZJerHZ—ﬁ*ap—E, (2.13)
2 2 _
Hm+Hy+Hr+Hy+HmHy*ﬁ—ap*§, (2.14)
1+ h+h?
H,H, + HyH, + H,H, — % — —ap+ g, (2.15)
H,+hI, — (1 +h)H, =0, (2.16)
(2.17)
where o — (L2X2) With an algebraic manipulation of eqns. (2.12)- (2.16), the pressure p

and rest energy density p can be obtained as

P = Gy RO ) — €U Hy B (2.13)

2

P = m [X(ch, Hy) - 20[5([‘[30, Hyv H,, h)] ) (2'19)

where,

. . 1

x(H,, H,)) = H, + H, + H? + Hj + H.H, — T
1+ h+ h?

S(Hz; Hy, HZ, h) — HmHy + Hsz + Hsz — T
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Irom eqns. (2.18) and (2.19), we obtain the equation of state parameter (w — L) and the

effective cosmological constant (A = p — p) as

2

W — a4 (4o — 1)¢(Hy, Hy, H,, h) |

x(H,, H,) — 2a&(H,, H,, H,, h)
X(H,, Hy) + &(H,, Hy, H,h)
(2a+ 1) '

(2.20)

A = (2.21)

The eqns. (2.18)-(2.21) provide the dynamical behaviour of the universe. However, the dy-
namics can only be assessed if the behaviour of these properties are known in terms of the
directional Hubble rates for a given value of the exponent A. In other words, the formalism as
described above, can help us to study a background cosmology for an assumed dynamics of the
universe. In this circumstances to study the dynamical behaviour of the model, we consider the
power law cosmology, where the cosmic expansion is governed through a volume scale factor
of the form v — t™, where m is an arbitrary positive constant usually determined from the
background cosmology. Power law cosmology has been widely studied in recent times because
of its functional simplicity and ability to provide a first hand information about the dynamics

of the universe. For such an assumption, the radius scale factor can be R = (ABC')% — 1%,

2.3.1 Casel (h=-1)

A substitution of h = —1 in eqn. (2.16) yields, H, = H,, where the integration constant has
been rescaled to unity. Assuming an anisotropic relationship H, = kH,, we can write the
functionals y(H,, H,) and {(H,, H,, H,, h) as

x(H,, H,) = H,+H,+H+H+H.H,

A2
- (k+1)Hy+(k2+k+1)Hy2%, (2.22)
gwwmmﬁm%+%m+mm—%
= 2k DHy - . (2.23)
where k is an arbitrary positive constant. For a power law cosmology, we have H, — (ﬁ) %7
H,=H, = (%) % Consequently the directional scale factors are A = #555 and B = C = {752,
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Thus we can have

Er1\ 1 m \? 1 1
De —m{ =) b+ ——) — — —
x(*) m<k+2>t2+( tR )<k+2> 2k

o [mPP AR D) mE DR E2)) T (2.24)
B (k +2)2 2 4 '
m \° 1 1
H=k+1)[—) = —
) = (2 + )<k+2> 2 T
(2k + 1)ym?] 1 1
— || - 2.2
{<k+2>2 P (2:25)

The dynamical behaviour of the model is decided from the behaviour of the EoS parameter w
and the effective cosmological constant A. However, these two parameters depend on the time
varying nature of functionals y(¢) and &(¢) which in turn depend on the parameters m and k.
If mk > k+ 2, the terms within the square brackets in eqns. (2.24) and (2.25) dominate at late
times of cosmic evolution whereas the terms containing +~# dominate at early phase of cosmic
evolution. Here, we intend to adopt a dimensional analysis to get some idea into the general
behaviour of these functionals. Since m and k are two dimensionless constants, it appears that
the dimensionality of the time dependent factors for a given functional should remain the same.

In other words, we can have m =1+ 2 so that x(¢) and £(¢) become respectively
1 —E*\ 1
x(t) = ( 12 > 2 (2.26)
142k — K>\ 1
¢{t) = (T) (2.27)

t_QA

The FEoS parameter can give the ideal picture of our universe, which can be obtained from
(2.20) as

(40[2 B 1)€(H$7Hy7Hzah)
X(Hm Hy) o 20‘5(}[17 Hya HZ) h)
(40 — 1) (1+2:sz ) t%
(5E) & — 20 (LB E) T

1+ 2k — K
(1 —2a)(1 — k?) + 4ak |

w =20+

= 20 +

=20+ (4a® — 1) { (2.28)

We clearly get from the above expressions that, the EoS parameter w is a constant quantity for
a given value of scaling constant A and the anisotropic parameter k. The cosmic acceleration
of the universe can be characterized by the equation of state. More generally, the expansion of
universe is accelerating when the EoS parameter should be negative with values less than —%

at late times. This behaviour will enable us to constrain the parameter k.
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Figure 2.1: Variation of the EoS parameter with the parameter & for h = —1.

In Fig.2.1, we have shown the variation of w as a function of k. Here we chose a negative value

8w
8r+1"

). The reason behind this particular choice is to look at the present

of the scaling constant A i.e A = — Accordingly the model parameter « is decided from

16m+3)\

the relation o = ( >\

problem from the backdrop of GR where the modified gravity field equations (2.5) appears as
the Einstein field equation with a time varying effective cosmological constant A. It can be
inferred from the Fig.2.1 that, the EoS parameter w increases almost linearly from a negative
value for lower k to zero at higher k. It can be noted that, the present model will collapse
at & = 1 and therefore, we restrict the values of k& below 1. For k& < 0.64, w remains in the
quintessence region. It may happen that, the results may be sensitive to the choice of the

parameter o.
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The effective time varying cosmological constant of the model is obtained from eqn. (2.21)

7X(Hm) Hy) + S(Hmy Hya H,, h)

Alt) =
) (2a+ 1)
(1;§2> ,le 1 (1+2}§ka> ,le
- 20 + 1
B 2 E—k—171 (2 29)
C 2a+41 k2 12 '
50 — 1 ' 1 T T T 1 7 Vg7
(a) h=-1 (b) h=-1
40 . 8 1 .
30 - 6 - _
< 1<
20 4 - 44 _
—k=0.64 ——k=0.64
10 — k=0.8 n 2 ——k=0.8 |
—k=0.9 —k=0.9
0 — 1 1 T O 7T T T
00 05 10 15 20 25 0 4 8 12 16 20
t z

Figure 2.2: Evolution of the effective cosmological constant for three representative values of k£ in the model
h = —1. (a) Effective cosmological constant is shown as a function of time. (b) Evolution of effective cosmological

constant shown as a function of redshift.

Here, the effective cosmological constant is a time independent quantity and it decreases
quadratically with cosmic time. In order to get viable cosmological models in conformity
to recent observations, the cosmological constant should be dynamically varying from large
positive values at an initial epoch to vanishingly null values at late times of cosmic evolution.
Similarly, in Fig. 2.2, we have shown the dynamical variation of the effective cosmological

constant for some representative values of k. As is required for an explanation to the late time
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cosmic acceleration, A varies from a large positive values in the beginning to vanishingly small
values at late times. In the left panel of Fig.2.2(a), the evolution of A is shown as a function of
cosmic time where as in the right panel its evolution is shown as function of redshift z = % — 1
with the scale factor at present epoch being unity in Fig.2.2(b). As it appears from the Fig.
2.2(a) and 2.2(b), the evolutionary behaviour of A is affected by the choice of the values of k.
At remote past, curves of A with low values of k& remain below the curves with higher values of
k. However, at certain point of cosmic time corresponding to a redshift of z = 6.2, there occurs
a reversal of the behaviour i.e curves of A with higher values of & remain below the curves with
lower values of k. The choice of the model parameter o does not affect the general time varying

trend of the effective cosmological constant.

2.3.2 Case-II (h =0)

In this case, eqn.(2.16) reduces to H, = H,. An anisotropic relation H, = nH, among the

respective directional Hubble rates in the power law expansion of volume scale factor yields,

H,=H, = (%) % and H, — (f—g) % The directional scale factors become A = B — 72 and
C' = t»+3. Here n is a constant parameter. If n = 1, the model reduces to be isotropic. The

functionals () and &£(t) for this model are obtained as

: 1
x(t) =2H, + 3H2 — —

A2
Y (20 Y (R0 N
n+2)/) 12 n+2) 2 5
3m? — 2m(n + 2) 1
) 4 tn+2
1
) = @+ DA = 55
(2n + 1)m?\ 1 1
— | = — . 2.31
( (n+2)2 )2 2 (2:31)

The dimensional consistency of terms involved in the expressions of x(¢) and () constrains the

exponent m to be m — n + 2. Using eqn. (2.30) and eqn. (2.31) in (2.20), the EoS parameter
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of the model is given as

(40® — 1)¢(H,, Hy, H,, h)
X(HmaHy) - 2a€(H$7 Hy; Hz; h)

(2n+1) m?2 1 1
ao? — 1 | () # — 2

w =20+

= 20+

[M”_Hl}ii | 72a[(g2n+1gmz>li 1 }
<n+2)2 $2 t”?% - (TL+2)2 12 t”?%

(102 = 1) [0 1 iP5 (a1 2]
S (2.32)

[3m? — 2m(n + 2) — 2a(2n + 1)m?] == (20 — 1){(n + 2)2752'

Eqn.(2.32) will not give a clear picture of the universe, so we consider dimensional consistency
terms to get a clear picture of the universe. Here, we have taken m = n + 2. With this

constraint, eqn. (2.32) becomes
1

:%’

As in the previous model, the EoS parameter in the present model is also a constant quantity

w

(2.33)

that depends on the scaling constant A through «. In this model, we chose A to assume
a negative value so that o becomes negative. This puts w in the negative domain. It is
interesting to note here that, the EoS parameter is, in general, not affected by the choice of
anisotropy in the model. In Fig. 2.3, we have plotted w as a function of « in its negative
domain. It is clear that, w lies in the quintessence region (shaded portion in the plot) for the
range —1.5 < o < —0.5. For a > —0.5, the EoS parameter enters into the phantom region.
The behaviour of the effective cosmological constant of this model is obtained from eqn. (2.21)

by using eqn. (2.30) and eqn. (2.31) as

7X(H$7 Hy) + S(Hm, Hya HZ? h)

A(t) =
*) (2a 1 1)
|:3m272m(n+2):| 1 1 + (<2n+1)m2> 1 1
T nr2)? % (nt2? )0 5
(200 + 1)
2n

o 2.34

(20 + 1)22 (234)

It is certain from eqn. (2.34) that the effective cosmological constant can be positive for
a < —0.5. In other words, an accelerated expansion with positive cosmological constant in this
model favours a quintessence phase. The time evolution of the effective cosmological constant
is shown for different values of the anisotropic parameter n in Fig. 2.4. Here, the parameter o
is chosen to be —1. A change in this value within the quintessence bound will result in a change

in A without changing its general behaviour. Within the quintessence bound, higher value of
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Figure 2.3: Variation of the EoS parameter with the parameter « for h = 0. The shaded portion denotes the

quintessence region.

a will yield higher A. The values of n in Fig. 2.4 are chosen so as to get negative deceleration
parameter. In order to satisfy this condition, n has to be constrained in the range n > 1. It
is clear from the figure that, A decreases from large positive values to small positive values
during the cosmic evolution and vanishes at late times. One interesting thing in the present
model is that, even if the model favours a quintessence phase, the decrement in A is bit slower
than that of the previous model with h = —1. As in the previous model, the behaviour of A is
affected by the choice of the anisotropic parameter n. In order to assess the behaviour of the
anisotropy dependence of A, we have shown its variation as a function of redshift z in the right
panel of Fig. 2.4(b). In the remote past, the curves of A with higher values of n remain below
the curves with lower values of n. However, there occurs a reversal in this behaviour at a red
shift z = 2.9.
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Figure 2.4: Evolution of the effective cosmological constant for three representative values of n in the model
h = 0. (a) Effective cosmological constant is shown as a function of time. (b) Evolution of effective cosmological
constant shown as a function of redshift. Here, we have considered a representative value oo = —1 so as to get

positive values of the effective cosmological constant.

2.3.3 Case-III (h =1)

In this model with A = 1, we obtain from eqn. (2.12) and (2.16) as

i o,
—— +0=0 2.35
qu; o Hy + ? ( )

where @ is a constant. Fqn. (2.35) can be integrated for the power law cosmology to obtain

H,— H,+ ,im (2.36)
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Here the integration constant e is related to the present day value of the directional Hubble
parameters as € — Hyo — Hyp. For h = 1, eqn. (2.16) becomes 2H, — H, + H, which implies
H, = H and consequently
%:H—%, m:H+%. (2.37)
One can note that, since the dimension of H is that of + ', ¢ has a dimension of ™ '. The
functionals y(#) and &(t) are obtained as
2 1

X)) = 2H+3H2+;+m — (2.38)
2 3
&(t) = 3H? — o (2.39)

From dimensional consistency, the parameter m can be constrained as m = 3. In order to get
accelerating models, the deceleration parameter ¢ should be negative which requires that m
should be greater than 3. However, the dimensional analysis yields ¢ = 0 for the present model.
Also, interestingly the EoS parameter and the effective cosmological constant are obtained to
be w =1 and A = 0. Even though, a vanishing cosmological constant is acceptable, w = 1 may
not be acceptable in the context of dark energy driven cosmic acceleration. In view of this, the

BV I} model may not be in conformity with the present day observations.

2.4 Behaviour of physical parameters

In this section, we have presented behaviour of some physical parameters with the power law
cosmology. The volume scale factor V' and the average scale factor R can be defined respectively
as

V——g— VABZ— ", (2.40)
R=Vi=t% (2.41)

w3

It indicates that the spatial volume as well as the scale factor increases with increase in time
and finally constant at infinite time. The Hubble parameter which is (i) a manageable two-
dimensional phase space, (ii) reduction to the old linear redshift behaviour at low red shift, (iii)
well behaved, bounded behaviour for high red shift, (iv) high accuracy in reconstructing many
scalar field equations of state and the resulting distance-red shift relations,(v) good sensitivity

to observational data, and (vi) simple physical interpretation can be defined as

H—=—-—"4+—=4+—] — —. .
3<A+B+c> 3t (2.42)
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The scalar expansion # of the model is
9:3H—? (2.43)

The deceleration parameter of the model is given by

RR 3
- — 14

R2 m’

q— (2.44)
The deceleration parameter for power law expansion of the universe is constant. It is specified
here that a positive g describes a decelerating universe where as a negative ¢ describes an
accelerating universe. For m > 3, the universe is accelerating and m < 3, the universe is

decelerating. The shear scalar (0?) and the rate of anisotropy parameter of the model can be

defined respectively as

| 1 1 mik2 - 2)  m?
o — (2}11- - §92> - <M - m—> A (2.45)

2 2\ (k+22 2
PRERESYEA (2.46)
-3 H ) 7 '

A is a measure of deviation from isotropic expansion. For an isotropic model, the rate of
anisotropy, A = 0. The state finder diagnostic pair (r, s) which provide us an idea about the

geometrical nature of the model can be represented as,

R 9 /2
_ — = 1 .
T R - (m > + 1, (2 47)
— 1 2
s = — — ==, (2.48)
3((]* 5) m

These parameters are constants of cosmic time and depend only on the exponent m.

2.5 Dynamical features with exponential law

It is interesting to investigate cosmological models from the point of their compatibility with
other cosmological and astrophysical data as well. It is also important to study the cosmolog-
ical models of the universe filled with perfect fluid which is having FoS parametrization and
investigating the compatibility of these models with the mechanical approach. We have consid-
ered the exponential expansion of volume factor in the form V = '™, where m is an arbitrary

constant to be determined from the background cosmology. With this consideration the radius
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tm
3

scale factor and deceleration parameter can be respectively obtained as R = (ABC)% =e
The reason behind to carry such scale factor because, the universe transits from an decelerated
expansion phase to a normal expansion phase through a contraction phase. As in the case of
power law scale factor, in the following subsections, we have presented the cosmological models

and its behaviour for the three values of h = —1,0, 41

2.5.1 Casel (h=-1)

For exponential cosmology, the directional Hubble rate becomes H, = f’—g7 H, = H, = 5.
thkm

Consequently the directional scale factors are A = e*+2, B = C = 45, Then eqns. (2.22)-
(2.23) becomes

e —e k2 (2.49)
2
m, 1
$= 2k 1) <k+2> 2
m?(2k + 1 _2ktm
(é+2)2 ) — TR, (2.50)

The FoS parameter of the model is obtained from eqn. (2.20). But the clear picture of the EoS
parameter will get after using eqn.(2.49) and eqn.(2.50) in eqn. (2.20) as

(42— 1) (e )

(k+2)°
W = 2/7 + 2( 2 —2ktm 2 —2ktm
(492 — 1) [(2/? + 1)m?* — (k + 2)267%}
— oyt (2.51)

8 k2 2y D42 T
Fig. 2.5 represents the graph between the EoS parameter and cosmic time. It is observed that,

w is asymptotically increases with the growth of cosmic time from a higher negative value.

The effective cosmological constant (A) for A — —1 can be obtained from (2.21) as
m2<k2+k+1) —2ktm m2(2k+1) —2ktm
P = L S =
2v+1

(R 3k 2)m? g 2k 2)2e R (252
B (2v + 1)(k +2)2 ' '
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Figure 2.5: EoS parameter versus cosmic time ¢.
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Figure 2.6: Effective cosmological constant versus cosmic time 7.

In Fig. 2.6, it has been shown that A, the effective cosmological constant remains positive
throughout the cosmic evolution with time dependent. At later epoch, the cosmological con-
stant decreases with the growth of the cosmic time. Such behaviour is in consistent with

ACDM model where a small positive value of cosmological constant is required to explain the
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accelerated nature of the universe.

Since, the eqns. (2.12) - (2.16) are highly non-linear, an explicit relation between p and p
could not be established. All the solutions were implicit in nature; hence it was difficult
to study the behaviour of the universe. Therefore, we have studied the physical behaviour
first by determining a general relationship between p and p with the help of w. Then for the
representative values of the parameters, the model will reduce to different physical states. When
m = 0.45, v = 0.51, k = 1.362, t = 0.1, the equation of state w = —1/3, which subsequently
resulted p + 3p = 0. The behaviour of the universe is going to radiation era. In early stage of
the big bang, most of the energy was in the form of radiation and that radiation was dominant
on the expansion of the universe. Later, with cooling from the expansion the roles of mass
and radiation changed and the universe entered a mass-dominated era. Recent, results are
suggested that we have already entered an era dominated by dark energy, but examination of
the roles of the mass and radiation are most important for understanding the early universe.
Similarly, when m = 0.45, v = 0.51, k = 1.362, t = 7.25, the EoS parameter becomes 1, which
satisfies the stiff fluid model. However, with the same combination of values and for a very

small £, the model reduces to false vacuum model.

2.5.2 Case II (h =0)

For h = 0, the functionals x and £ with an exponential scale factor can be obtained as
X =2H,+3H; — A

2
m 2tm
=3 —— — e k2
<k+2> ‘

377”],2 —2tm

= (2.53)

=

(k+2)2
§=H.+2H,H, — A

m \?° m km —2tm
= — 2 — e k2
k+2 k+ 2 k+ 2

777,2(2,% + 1) —2tm

As in the earlier case, here also the EoS parameter can be obtained from (2.20) as

(492 — 1) | m2(2k + 1) — (k + 2)% *73
o2t J (2.55)
(3 —2v —4Avk)m? 4 (2v — 1)(k + 2)%e *+2
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The graphical behaviour of the EoS parameter with the cosmic time 7 has been represented

0.5}

wit, 0.45, 051, 0.9)
— wft, 0.45. 051, 0.92)

-0.5f

— wit, 0.45, 051, 0.94)

Figure 2.7: EoS parameter versus cosmic time ¢.

in Fig. 2.7. We have observed that with the increase in time, w decreases and becomes flat at
w — —0.8. It is worthy to note here that for different representative values of the parameter,
the model gives different physical state. When m = 0.45, v = 0.51, &k = 0.9, t = 1.9, the EoS
parameter becomes —1/3. This satisfies that the nature of the universe is in the radiation era.
Whenever, the representatives values are, m = 0.45, v = 0.51, &k = 0.9, t = 8.58, the EoS
parameter becomes 1, it satisfies the stiff fluid matter. In the same manner, we observed that
with a very small time i.e. £ the initial time, the physical state becomes a false vacuum model.
We have also observed that w is staying negative throughout the evolution for a particular
value of m = 2 with time dependent, which is a good sign to explain the acceleration of the
universe. With increase in time, w enters into the quintessence region (w < —1). The effective

cosmological constant for this model can be obtained from eqn. (2.21) as

—m2(4 4 2k) + 2(k + 2)2e TS

A= (k+2)%(2y + 1)

(2.56)

We have plotted the effective cosmological constant with respect to the cosmic time in Fig. 2.8.
The curve is lying entirely in the positive domain. It is clear from the graphical representation
that A decreases from large positive values to small positive values during the cosmic evolution

and vanishes subsequently.
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Figure 2.8: Effective cosmological constant versus cosmic time ¢.

2.5.3 Case III (h =1)

For h = 1, we have obtained the following relation from eqns. (2.12)-(2.13),
i,

— 4+ 0=0. 2.57

Using the exponential cosmology, eqn. (2.57) gives H, — H, — e# <. Here the integrating
constant ¢ is related to the present day value of the directional Hubble parameter as ¢ =
H,,— H,,. Moreover, H, = H and consequently H, = H — Tt and H, = H +e%5+<. The
functionals y(#) and &(t) are obtained as

X(£) = 2H + 3H? 4 ¢ O0mi2e _ =5 (2.58)

—2tm

E(t) = 3H? — ¢ 5T 3075 (2.59)

The respective directional Hubble rates in the exponential law expansion of volume scale factors
vields H, — m, H, — m — et and H, —m+ e5 . The directional scale factors becomes

tm 2ktm, 2tm
A—e3, B— 3D and C — e3*+D, So, subsequently we get

X(£) = 3m? 4 ¢ Simi2e _ o From, (2.60)
E(t) = 3m? — ¢ Omi2e _ geTim. (2.61)
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The EoS parameter (w) and the effective cosmological constants (A) calculated as

(472 — 1)(3777,2 L ebimA2e g, 72;777,)

w = 2’)/ + —2tm (262)
3m2(1 — 27) + (1 + 2y)e 6tmt2e — (1 — 6y)e s
76 /2 4/72tm
A _bmT e s (2.63)
1+ 2

From the above expressions, it can be noted that both the EoS parameter and effective cos-
mological constant becomes constant at late time. The values of the parameter chosen in the
previous case to show an accelerating model, in this case the EoS parameter behaves different,
we have concluded that for A = 1, the model may not provide an accelerating universe. How-
ever, the positive effective cosmological constant will not have any role to play. Hence, a viable

cosmological constant can not be obtained in this case.

2.6 Behaviour of physical parameters

We have presented here some of physical parameters of the model with the exponential scale

factor. The volume scale factor of the model is given as
V = (ABC)3 = '™/3, (2.64)

The deceleration of the model ¢ can be given as

—RR  —e%
- — 1 2.65
1=, o (2.65)
The Hubble parameter H of the model is given as
1 )
= S(H, 4 2H,) - % (2.66)

The scalar expansion # of the model is given as
0= 3H = m. (2.67)

The shear scalar o of the model is given as

1 1 m? 2km?
o (NH - 0] = —  ———. 2.68
772 ( 3 3 (k+2) (2.68)
The rate of anisotropy parameter A4 is given as
1 (AHN\? 4
A== 2] = - 2.69
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The state finder pair of the model is given as

TR

r

and
or—1 9
T3 D)
As expected, the deceleration parameter remains as a constant with value —1 leads to accel-
erating model. The scalar expansion depends on the exponent m and the rate of anisotropy
found to be again a constant. The state finder diagnostic pair is well in agreement with the

prescribed value.

2.7 Conclusion

The dynamics of the anisotropic universe is studied by using Bianchi type VI, metric for a
perfect fluid matter distribution in the frame work of f(R,T) theory of gravity proposed by
(Harko et al. [76]). In this work, we choose f(R,T) = f(R)+ f(T), where f((R) = AR and
f(T) = AT, where X is a positive constant. We have examined three different models corre-
sponding to three value of the metric parameter h = —1,0, 1. The dynamics of the model are
investigated for assumed power law expansion of the volume scale factor as well as exponential
law expansion of the volume scale factor. We have adopted dimensional analysis method for
both cases to study the physical parameters. In power law case, with h = —1 and A = 0, the
behaviour of the cosmological constant is lying in positive axis throughout the evolution form
large positive values at the beginning to small values of late times. The EoS parameter for
both the models lying in negative domain throughout the evolution. With suitable choice of
the model parameters both models favour quintessence phase (—2 < w < —1). On the other
hand, for exponential case, with same values of h = —1,0, the cosmological constant is lying
in positive domain.The EoS parameter of the model for both the cases are fluctuating, at be-
ginning with small value ot time, the EoS parameter is staying in negative phase while with
increase of time, it goes to positive phase at late time. However, for the third model with
h = 1, viable cosmological model could not be attained for both cases. In general from first

case, anisotropy affect the dynamics of the universe, where in second case it does not happen.
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Role of Bulk Viscous Fluid in Bianchi V' I;, Universe with Modified

Gravity
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3.1 Introduction

Cosmologists extensively studied the evolution of isotropic cosmological models with perfect
fluid. However, it would be important to study cosmology with richer structure both geometri-
cally and physically than the standard perfect fluid models. Bulk viscosity is such a dissipative
phenomena that plays an important role in the study of accelerated expansion of the universe.
Viscous fluid models have been used in an attempt to explain the observed highly isotropic
matter distribution on the high entropy per baryon in the present state of the universe. The
strong dissipation due to neutrino viscosity may considerably reduce the anisotropy of black
body radiation. The viscosity mechanism in cosmology can explain the anomalously high en-
tropy per baryon in the present universe. There have been considerable interests in cosmological
models with bulk viscosity, since bulk viscosity leads to the accelerated expansion phase of the
early universe, popularly known as the inflationary phase (Brevik and Timoshkin [148], Brevik
et al. [149, 150])).

Motivated by the great success of cosmological constant as a simple and good candidate of dark
energy, Harko et.al. [76] introduced a new generalized gravity model called as f(R,T) theory
along the line of interest of incorporating some matter components in the action geometry.
Here, the Lagrangian is described by an arbitrary function of the Ricci scalar R and trace
of the energy momentum tensor 7. In this gravity, the cosmic acceleration may result either
due to the diametrical contribution to the cosmic energy density or its dependency on matter
contents. This theory can be used to examine several uses of current interest and may lead to
some major differences; however of late it has been an interesting framework to investigate the
accelerating models. Several authors have developed different ideas to study the nature of the

universe in f(R,T) gravity.
Belinski and Khalatnikov [151] studied the viscous fluid matter in Bianchi type I space-time.

They have indicated that without removing the initial big bang singularity, the viscosity can
affect the qualitative aspects of the solutions around the singularity. Baffou et al. [152] have
studied FLRW universe using viscous generalized chaplygin gas with f(R,T) gravity. Satish
and Venkateswarlu [153] have obtained the Kaluza-Klein cosmological models filled with bulk
viscous fluid in the framework of f(R,T) gravity and Samanta et al. [154] discussed the bulk
viscous fluid Kaluza Klein model with validity of the second law of thermodynamics and the
generalized second law of thermodynamics in f(R,T') gravity. Devnath [155] has studied bulk
viscous FLRW cosmological model with isotropic fluid in f(R,T) gravity. Fabris et al. [156]have
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developed a phenomenological model for dark energy based on a viscous dark fluid with con-
sidering the Eckart formalism. Saha [157] has obtained the Bianchi type I cosmological model
with viscous fluid by considering a self consistent system of non-linear spinor and gravitational
fields.

Singh and Srivastava [159] have described the effects of cosmic non-perfect fluid on the evolu-
tion of the universe in f(R,T) gravity using a new Holographic dark energy model and also
Srivastava and Singh [158], have studied new holographic dark energy model in modified grav-
ity within the framework of flat FLRW model with bulk viscous matter content. Reddy et al.
[160], have studied Kaluza-Klein cosmological model in the framework of f(R,T) gravity by
considering the matter fluid as the string and bulk viscous fluid. A spatial and anisotropic
Bianchi type-111 cosmological model is studied in the presence of bulk viscous fluid in f(R,T)
gravity in [161]. Naidu et al. [162], have investigated a spatially and anisotropic Bianchi type-
V cosmological model in modified theory of gravity, where the source for energy momentum
tensor is a bulk viscous fluid containing one dimensional cosmic string also Kantowski-Sachs
space-time cosmological model is studied in frame work of f(R,T) gravity in [163]. Singh and
Kumar [164] have investigated the effect of bulk viscosity in f(R,T) theory and suggested that
inclusion of dissipative energy sources like bulk viscosity may be able to explain the early and

late time accelerations of the universe.

As a sequel to our studies in the previous chapter on the dynamics of anisotropic universe, in
this chapter, we have considered Bianchi type V I}, space time with the matter field in the form

of viscous fluid.

3.2 Basic equations

By varying the modified four-dimensional Einstein-Hilbert action (1.41) with respect to the
metric tensor components ¢¥, the algebraic function f(R,T) has been chosen as a sum of two
independent functions f(R,T) = fi(R) + fo(T). fi(R) depends on the curvature R whereas
f2(T) is on the trace T [76]. Hence, the generalized Einstein field equations from(1.43) yields

1 _ 1
JrB — §,f(R).C]ij + (950 — ViV;y) fr = 87Ty + fr'ly; + {pr + §f(T)} Gij- (3.1)
Here, fr = 8];]5”) and f; = %. In order to frame a cosmological model, we assume the

functional f(R,T) in the form f(R,T) = AR+ XT', subsequently the field equations (3.1), takes
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the form

1 8T
Ri; — §R.Ch'j . <1 + 7) Tij + A(T)gi;- (3.2)

where, A(T) = p + 1T can be identified with the cosmological constant which is instead of
being a pure constant evolves with cosmic time.

We are intending to study the dynamics of the anisotropic universe in the f(R,T) gravity. We
know that the standard FLRW universe is homogeneous and isotropic. Therefore, in order to
address the small scale anisotropic nature of the universe, Bianchi space time is well considerable
as it represents a globally hyperbolic spatially homogeneous, but not isotropic space time.
So, we consider a Bianchi-type VI, space-time (1.65), where the constant exponent A can be
assumed values —1,0, 1. The energy momentum tensor 7;; for the viscous fluid can be expressed

as

Tiy = (p + p)uin; — DYsy, (3.3)
where p is the proper energy density and p — p — (@ is the viscous pressure and ( is the bulk
viscous coefficient. In the co-moving coordinate system, we have u* = (0,0,0,1). Also, u* = 6%

which satisfies g u‘v/ = 1 and w'z; = 0. With the co-moving coordinate system, the field

equations (3.2) for the metric (1.65) and energy momentum tensor (3.3) can be obtained as,

B C BC h

Btetee m % 6.4
nghg(lJrh)%O (3.8)

An over dot on the field variable A,B.C denotes the differentiation with respect to time ¢ and

g = (% + 8{) In order to study the dynamical behaviour of the universe, we have redefined

the above set of eqns. (3.4)- (3.8) in the form of Hubble rates along different direction (2.11)
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as

] ; 2 2 h P

Hy+HZ+Hy+HZ+HyHZ—ﬁ—5p—§, (3.9)
2 2 h? P

H,+ H,+ H?>+ H?>+ H,H, — /P—mfé, (3.10)

1
H,+ Hy+ H? + H? + H,H, — AQ:B;@—S, (3.11)
1+ h+ h2
HHy + HyH, + L, — —— 0~ 5y (3.12)
H,+hH,—(1+h)H, =0, (3.13)

The effect of both proper pressure and barotropic bulk viscous pressure can be defined as
p = p— (0. From eqns. (3.9)- (3.13), a general expression based on directional Hubble

parameter for the effective pressure p and rest energy density p can be established as,

2
ﬁ:pfcez ?W[S(HmHyaHzah)*25X(H17Hy)]7 (314)
2

P = m [255(}[17 Hy7 HZ; h) - X(Hm Hy)] ) (315)
Wherex(Hx,Hy,Hz,h) H, Hyt Hy Ho+ Hy H,— Y5 and €(H,, Hy) — o+ Hy+ H24 H2+
H,H, — 5. Subsequently the effective EoS parameter Weff = g and the effective cosmological

constant A can be yielded from equations (3.14) and (3.15) as

(HT) Hya HZ; h)
Werr =26+ (1 — 452 , 3.16
1= 2 08 e ) (T TRy (3.16)
H,, H,, H, h H,, H,

1+ 28

The bulk pressure p, energy density p, EoS parameter w.ss and effective cosmological constant
Acyy will help in investigating the dynamical behaviour of the model. The understanding on
the behaviour of the universe would be more appropriate if the properties of the parameters
can be expressed in the form of Hubble rate. Because of the simplicity and ability to provide
information about the dynamics of the universe, here we have considered the volumetric power
law cosmic expansion in the form » = #*, where m is an arbitrary constant calculated from the
back ground cosmology. With this assumptions, in the subsequent section, we have developed

the cosmological models in f(R,T) gravity for the value of h — —1,0, +1.
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3.3 Cosmological models with power law

Each of the value of the exponent h in the field equations leads to a cosmological model with

different dynamical behaviour. In the following subsections, we have presented the three cases:

3.3.1 Case-I (h=—1)

In this case, we observed that with a suitable absorption of integrating constant with metric
potential, the Hubble rate in both y and z direction are same i.e. H, — H,. Moreover, to
study the anisotropic nature of the space time, we assumed an anisotropic relationship between
the directional Hubble parameter in the form H, = kH,, where k is a positive constant.
Subsequently, the functionals x(H,, H,) and {(H,, H,, H,, h) respectively reduced to x = (k +

D Hy+ (k*+k+1)H2 — 5 and € = (2k+ 1) H2— 4. For a power law cosmology, the directional
Hubble parameters can be obtained as: Hm — ( . +2) o Hy — H, — (k—JrQ) % and subsequently
the directional scale factors provides A = t#55 and B = C' = {752, So, the functionals y(H,, H,)

and &(H,., H,, H,, h) takes the form

[ HEEE) (R m (3.18)
|l 2+ k)2 (24 k)| 2 2= '
[+ 2k)] m? 1

£ {(2+k)2 T (3.19)

We know that the EoS parameter w, ;s and effective cosmological constant A,y are defined in
(3.16)- (3.17) depend on the functionals £ and y, which are functions of the cosmic time. So,
using eqns. (3.18) and (3.19) in eqns. (3.16)-(3.17), respectively, we obtain

S(Hma Hya HZ? h)
255([‘]1, Hya HZ, h) o X(ch, Hy)

wepr = 204 (1—453%)

|:(1+2k:)m,2:| 1 7f%
2 2 4
- 25+ m(1+k+k?) (1+k) S 1:21@ m —2km ’ (3'20)
[ 2+k)? 2tk 2.1 (2+k)? } 7+ (28— Dier
A — 7[€(H$7Hy7H27h))+X(H$7Hy)]
It 1+ 28
1 —m(l + k + k? 14+ k (1 -+ 2k ) —om
— m A7) A4k mU A2k m e gy
1428 (2+ k)? (2+ k) (2 + k)2 2
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Since the functionals £ and y are essential for analysing the EoS parameter and effective cos-
mological constant, we are interested here to adopt a dimensional analysis on the dimensionless
constant m and k as m = 1 + 2. When k = 1, the model reduces to an isotropic one. So, ()
and £(t) becomes Y (1) = (1k2’<2>ti2 and (1) = (%ﬁ) . Using this, we obtain from eqns.
(3.20)-(3.21), the corresponding EoS parameter and effective cosmological constant as

5 E* 2k —1
2 kE+111
At = 155 {1 - ; } 5 (3.23)

So, from eqn. (3.22), we can infer that for a given value of scaling constant p — 2%7 B — %+8f7
the EoS parameter is constant as the anisotropic parameter & is also a constant. It is also
observed from eqn.(3.23) that, A.ys, decreases quadratically with the increase in cosmic time;
of course with a given scaling constant. To frame a realistic cosmological model, we need to
address the scaling constant and anisotropic parameter in such a way that the EoS parameter
would be negative and would be less than —1/3 at late times. Moreover, in order to achieve a
realistic cosmological model, the effective cosmological constant should be large at initial time
and should vanish at late times. The same has been represented in Fig 3.1 and Fig 3.2 with an

appropriate choice of cosmic time scale.

1000

500

Wert
(e}

-500

—1000

1.0

k

Figure 3.1: w.yy versus k for h = —1.

From Fig 3.1, as indicated earlier, we have observed that wesy is a constant value for a given
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0.0030F —————
[ — A(t, -25.5,1.2) |
0.0025F — A(t, -25.5,1.5) |
[ — A(t,-255,1.7) |
0.0020- 7
< 0.0015; *
0.0010F :
0.0005F 1
0.0000F .
0 10 20 30 40
t
Figure 3.2: Effective cosmological constant versus ¢ for h = —1.

value of f and assumed anisotropy parameter k. According to the observational data the weys

should stay in negative axis and less than —15. To stay in negative axis we chose a negative
value of the model parameter (8 — —25.5). We can observed from the Fig 3.1 that the EoS
parameter increases nearly from a negative value for lower value of k to zero. As indicated
earlier, in Fig 3.2, the effective cosmological constant varies from large positive values in early

epoch to almost vanished at late time.

3.3.2 Case-II (h=0)

Substituting the value of the exponent A = 0 in eqn. (3.13), we observed that the Hubble
rate is same both in x and y directions. With an assumed anisotropy relation on the y and 2
direction in the form H, = rH, leads the directional Hubble rate in power law expansion of

volume scale factor as H, — H, — (%) % and H, — (%) % Thus the corresponding metric

mr

potentials are A = B = {72 and C' = t=+2. The functionals x(¢) and &(t) for this model are

3m? —2m 2} 1 1
o = |t S - .21
2 Dm?] 1 1
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The effective pressure and energy density from eqns. (3.14)-(3.15)

= o (€ o Ha by — 251 )
2 (2r + 1)m? — 28(3m? — 2m(r + 2)) —am
452 { T 2 + (26 — 1)t } , (3.26)
b T ROSUH Hy Hh) — (I 1)
2 26(2r + 1)m? — (3m?* — 2m(r + 2)) —2m
REEEE { T 2 + (28 — 1)t } . (3.27)

Using the dimensional consistency m = r + 2, in eqns. (3.26)-(3.27), we obtain

() (2)

2 4 48 — 2
(e ()

Subsequently, the EoS parameter and the effective cosmological constant can be obtained

{(Hy, Hy, H,, h)
255(1{17 Hya Hza h) o X(Hmy Hy)

(2r + 1)ym? — (r 4 2)2p—2nt2ri2)

. (330)

26(2r + 1ym? —3m?2 +2m(r +2) + (26 — )t~ 2
75([_]17 Hya HZ? h) + X(HI7 Hy)

weff — 25 + (1 - 452)

=28+ (1487

A=
1426
(2r + 1ym? + 3m2 — 2m(r +2) — 2(r + 22 e
= . (3.31)
(r+2)2t2(1 + 20)
Using the dimensional consistency m — r + 2, in the above equations, we obtain

1

Weff — ﬁa (332)
—2r

= . 3.33
T (359

As in the previous case, here also we have employed the dimensional consistency term m = r+2.
In this case, we employed the same consideration in eqns. (3.26) - (3.27) and (3.30)-(3.31). As
a result, the bulk viscous pressure remains in negative domain, the energy density remains in
positive domain, w. s, which is a constant and the effective cosmological constant, A, is time
varying. Again, to obtain an acceptable cosmological model, the scaling constant has been
constrained to be negative, which ultimately assumed 3 to be negative. With this constraint,

werr would be in the negative domain and do not affect by the choice of anisotropy in the
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model, as there is no anisotropy term in the expression. The same has been represented in
Fig. 3.3. The effective cosmological constant remains in the positive domain and decreases
with increase in time (Fig. 3.4). It is important to note here that weys lies in the quintessence

region when the scaling parameter is < —% and when it is more than —%7 wery enters into the

phantom region.

-0.3f

/ ]

-0.4

-14 -12 -1.0 -0.8 -0.6
B
Figure 3.3: w.yy versus 3 for h = 0.
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i — A(t, -25.5,1.7) |
0.0020f |
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< 0.0015F :

0.0010F 1

0.0005"

0.0000F

Figure 3.4: Effective cosmological constant versus ¢ for h = 0.
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3.3.3 Case-III (h =1)

In this case, substituting A = 1, again in (3.13), we found that the change of Hubble rate in z—
direction is half of the sum of the Hubble rate in y— and z— directions. This leads to another
important fact that the mean Hubble rate and the Hubble rate in x— direction are same. As
in the preceding section, here also, we have used the power law cosmology in the form v — ™

and obtained the functional y and £ as

2 1

X(t)2H+3H2+fZ_mszmv (3.34)
72 3

Where 7 is an integrating constant. In order to make the functionals dimensional consistent,
the value of the exponent m should be 3. With this value of the exponent m, the deceleration
parameter would not be negative, which in turn, does not provide an accelerating model.
Moreover, w.ss found to be unity, which is not in agreement with the dark energy driven
cosmic acceleration; though the effective cosmological constant vanishes. Therefore Bianchi
type VI, (h = 1) space-time is not compatible in the study of present day accelerated expansion

of the universe.

3.4 Physical parameters of the models

In this section, we have analysed the behaviour of the physical parameters of the cosmological
models obtained in the previous section. The power law model studied is based on the fact that
the growth of the scale factor (R oc t™) depends on the exponent m. When m lies in the positive
domain the observed universe is expanding whereas it contracts for a negative m. We know that

the role of Hubble parameter and the deceleration parameter inscribed in the study of power

law cosmology. We obtained both the parameters in the form H = % (% + ;’g + %) = 37 and
q= —%f = —1+ % The deceleration parameter changes from positive to negative according to

m > 3 and m < 3 and vanishes at m = 3. So, the late times describes an accelerating expansion,
with the deceleration parameter being changed from positive to negative values depends on m.
The Hubble parameter decreases with increase in time and may vanish at infinite future. The

scalar expansion of the model is 0 = > H; = which also indicates that it decreases with

m
t
m>

time and may vanish at late time. The shear scalar of the model, 02 = Lo

and the average
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anisotropy parameter A is defined to be A = %E (Aé{if. The viscous coefficient ( for h = —1

and for h = 0 can be respectively calculated as

B 2 (v —28)(1 — k*) + (1 —289)(1 +2k — k)] 1
((h=-1)= 71 { P2 - (3.36)
Ch=0) = 4522] {(1T2+5;")2r} 1? (37)

Fig. 3.5 and Fig. 3.6 respectively give the graphical representation of the viscous coefficient.

For h = —1 and h = 0, it is observed that the coefficient remains positive throughout. Even if,

for different representative value of the anisotropy parameter k& = 0.64,0.8,0.9 in Fig. 3.5 and

r=1.2,1.5,1.7in Fig. 3.6, the coefficient behave same. It is also observed that in both the cases

the bulk viscous coefficient remains constant throughout. The state finder diagnostic pair that

gives an impression on the geometrical nature of the model is found to be r = (1 — %) (1 — %)
2

and s — =. For a large value of the anisotropy relation m, the state finder pairs are having

value (1,0).

1T — £(k, -25.5,0.64,0.1) |

— &(k,-25.5,0.8,0.1)

— &(k,-25.5,0.9,0.1)
0.10r 8

un
0.05r .
0.00r 8
0.0 0.2 0.4 0.6 0.8 1.0
t
Figure 3.5: { versus cosmic time ¢ for h = —1.
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0.6f — £k, -25.5,1.2)
i — £(k, -25.5,1.5) |
0.5r b

i — &£(k, -25.5,1.7)
0.4f 1
“o3f .
0.2} .
0.1r 1
0.0 .
0.0 0.2 04 0.6 0.8 1.0

t

Figure 3.6: { versus cosmic time ¢ for A = 0.

3.5 Conclusion

In this chapter, we have constructed the cosmological models of the universe in f(R,T) gravity
keeping the dimensional consistency at the background using power law scale factor. The linear
functional f(R) = AR and f(T) = AT considered here generates the idea of a time varying
effective cosmological constant. In both section for h = —1 and h = 0, we have obtained the
cosmological models; however for h = 1, cosmological model could not be obtained. In the first
two models obtained here, the effective cosmological constant start evolving from large positive
value initially and subsequently become small at late times. This result is in accordance with
the present observations on dark energy driven cosmic acceleration. For a large m, the state
finder diagnostic pair having the value (1,0), which is in agreement with the behaviour of

ACDM model. The physical parameters are derived and analyzed.
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CHAPTER 4

Cosmological Reconstruction in f(R,T") gravity

Publication details on the contents of this chapter: B.Mishra, Sankarsan Tarai, S.K. Tripathy: Modern

Physics Letters A, 33(29), 1850170 (2018).
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4.1 Introduction

Cosmological models are constructed in recent times to account for the predicted late time
cosmic acceleration usually by incorporating possible DE candidates in the field equations
or by modifying the geometrical part of the action. Amidst the debate that, whether dark
energy exists or whether there really occurs a substantial cosmic acceleration (Riess et al. [10],
Perlmutter et al. [12], Nielsen et al. [165]) researchers have devoted a lot of time in proposing
different DE models. These models are also tested against the observational data accumulated
over a long period of time. Some vector-tensor models are also proposed to explain the cosmic
speed up phenomena without adopting these approaches. In these vector-tensor models, the
presence of a vector field such as the electromagnetic field provides the necessary acceleration
(Ferreira et al. [166], Jimenez and Maroto [167, 168], Jimenez et al. [169], Dale and Saez [170]).

Usually in GR, it is not possible to explain the late time cosmic acceleration without the as-
sumption of additional dynamical degrees of freedom besides the tensor modes. Some scalar
fields are considered as a solution to this. These scalar fields are usually ghost fields hav-
ing negative kinetic energy, at least around at, cosmological or spherically symmetric back-
grounds e.g. Boulware-Deser mode in massive gravity ( Boulware and Deser [171]), bending
mode in the self accelerating branch of Dvali-Gabadadze-Porrati model (Koyama [172], Shisa
[173],Gumrukcuoglu et al. [174]). Among all the constructed models to understand the cos-
mic speed up phenomena, geometrically modified gravity theories have attracted substantial
research attention. In geometrically modified theories, instead of incorporating some additional
matter fields (may be ghost scalar fields), the Einstein Hilbert action is modified considering
some extra geometrical objects. These models thereby provide a ghost free and stable alterna-
tive to GR. In this context, Harko et al. [76] have proposed f(R,T) gravity theory in which,
the geometry part of the action has been modified in such a manner that, the usual Ricci scalar
R in the action is replaced by a function f(R,T) [76].

In the context of string theory cosmological models in f(R,T) gravity, many researchers have
studied the feature of the universe. Yadav [175] has searched the existence of Bianchi V string
cosmological model in f(R,T) gravity. In this work, the massive strings dominate the early
universe but they do not survive for long term and finally disappear. Sharma and Singh [176]
have investigated the Bianchi type II cosmological solutions of massive strings in the presence
of magnetic field in the framework of f(R,T) gravity with help of special law of variation for

Hubble parameter. In the context of late time accelerating expansion of the universe, Aygun
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[177] have investigated homogeneous and anisotropic Marder space-time with bulk viscous string
matter distribution in f(R,T) gravity. Zia et al. [178] have studied the anisotropic Bianchi
type V1 dark energy cosmological transit models with string fluid source in f(R,T) gravity.
Pawar et al. [179] have studied Kaluza-Klein string cosmological model in framework of f(R,T")

gravity by using a time varying deceleration parameter.

In this chapter, we have constructed anisotropic cosmological models in f(R,T) gravity. We
have adopted a simple approach to the cosmic anisotropy to investigate the effect of anisotropy
on cosmic anisotropy. In order to provide some anisotropic directional pressure, we have con-
sidered an anisotropic source along x-direction such as the presence of one dimensional cosmic
string. The effect of the coupling constant in the determination of the cosmic evolution has been
investigated. We organise the chapter as follows: in section 4.2, the basic equations concerning
different properties of the universe are derived for Bianchi V' I, model in the framework of the
modified f(R,T) gravity. The dynamical features of the models are discussed in section 4.3. In
section 4.4, the anisotropic universe with quark matter has been presented and the concluding

remarks are given in section 4.5.

4.2 Basic equations for f(R,T)= R+ 2Ay + 25T

In this case, we have considered a functional form of f(R,T") in such way that the field equations
in the modified gravity theory can be reduced to the usual field equations in GR under suitable
substitution of model parameters. In this context, we have a popular choice, f(R,T) = R+25T.
However, we consider a time independent cosmological constant Ay in the functional so that
F(R,TY = R+ 2Aq + 28T. Here [ is a coupling constant. For this particular choice of the
functional f(R,T), the field equation in the modified theory of gravity (2.4) becomes,

1
R,’j — §Rgij — [871' -+ 25] Tij -+ A(T)gi]a (41)

Here A(T) = (2p+T) B + Ao can be identified as the effective time dependent cosmological
constant. If 3 = 0, the above modified field equation reduces to the Einstein field equation in
GR with a cosmological constant Ay. It can be noted that, the effective cosmological constant
A(T') picks up its time dependence through the matter field. For a given matter field described
through an energy momentum tensor, the effective cosmological constant can be expressed in

terms of the matter components.
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In this case, we consider the energy momentum tensor as
Tij = (p + p)uiug — pgs; — Exam;, (4.2)

where ufu; — —a'r; = 1 and v’x; = 0. In a co-moving coordinate system, u* is the four velocity
vector and p is the proper isotropic pressure of the fluid. p is the energy density and £ is the
string tension density. The strings are considered to be one dimensional and thereby contribute
to the anisotropic nature of the cosmic fluid. The direction of the cosmic strings is represented
through z* that are orthogonal to u*. The field equations (4.1) of the modified f(R,T) gravity
theory, for Bianchi type VI, space-time (1.65) with the energy momentum tensor eqn. (4.2)

can be obtained as

B C BC h

o -ty Bt i (43)
%+C:+ig%zap++(p+f)5+/\o, (4.4)
%Jr%Jr%%aer(erf)ﬁJer, (4.5)
ig+§g+gﬁ1+Zjh2ap(p€)5+Ao, (4.6)
gw% (1+h,)§o (4.7)
The above set of field equations for A = —1 can be written with respect to Hubble parameter as

considered in (2.11). Moreover, eqn.(4.7) provides H, = H,. Then eqn.(4.3)-eqn.(4.6) becomes,

: 1
2H, +3H; + 5 = —alp =& + pB + Ao, (4.8)
. . 1
HerHZJrH§+HerHtz—ﬁ*—aer(erf)ﬁJer, (4.9)
1
2H,.H, + H? — o= P8+ Mo (4.10)

with an algebraic manipulation, from the above field eqns.(4.8)-(4.10), we obtain the expressions

for pressure, energy density and the string tension density as

1

p= m[(% —s2+83) 0 — saa + (o — B) Aol (4.11)

P e s (0 ) A (1.12)
S1 — So

-t (4.13)
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Consequently, the EoS parameter w and the effective cosmological constant A can be expressed

as
— 1 S 4.14
W - +<a+5)815*83(){+(0[*5)/\0’ ( )
A % (524 s — 281~ so 4 8208 — (o 4 B)(s2— 1) — 20— B)Ao]
+ Ao. (4.15)

In the above equations, si, sy and s3 are functions of the directional Hubble parameters and

scale factor, as

: 1
T 2HZ+3HZQ+E, (4.16)
. : 1
eg—Hx+HZ+H§+H§+HmHZ—ﬁ, (4.17)
1
53— 2H,H, +H?—F (4.18)

Eqns (4.11)-(4.15) describe the dynamical behaviour of the model. Once the evolutionary be-
haviour of the functions sy, so and sz are obtained from some assumed dynamics, the dynamical
nature of the model can be studied easily and the modified gravity model can be reconstructed

accordingly.

4.3 Dynamical parameters of the model

We intend to investigate the cosmic history through the assumption of an assumed dynamics
concerning the late time cosmic acceleration. In view of this, we assume the scalar expansion
be governed by an inverse function of cosmic time i.e. 0 = (H, +2H,) = 3 and also we assume
that ¢ be proportional to the shear scalar ¢ = 1 (3 H? — 16%);i = z,y,2. Consequently,
H, — (k+2) o Hy = H, = (k+2) 1 The directional scale factors can be expressed as

A — Fm/kt2) g — ¢ — /2 For such an assumption, the functions sq, s and ss reduce to
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: 1
a:ﬂu%%+ﬁ

o (m 1+37n21+1
B k+2) 12 k+2) 2 s
1

+

3m? — 2(k+2)m] 1
_ 2 4.19

e 1

. ) 1

@—m+m+@+@+mmfﬁ
B km 1 m 1 n km \? 1 n km \? 1
a kE+2) ¢t k+2) ¢t kE+2/) t2 kE+2/) t2
km? 1 1

N aooe 2

(k+2)2) 12 5%

BP4k+1m?—k+Dk+2)m] 1 1
— - (4.20)
o (k -+ 2)2 t2 t% ' ’
1
%:QHJQ+H3—25
km? 1 m \?1 1
gl et i s) 2 o=
(k+2)2)1t kt2) 12 s

(2k +1)m?7 1 1
S (R LA . 4.21

{ (kt2? |12 3 (4.21)

With the substitution of eqn.(4.19)-(4.21), the pressure, energy density and string tension
density can be obtained as:
1

p=—5—5(s1 = s2+83) f— s2a+ (a— ) A
a? =3
B 1 O l (a+B) B
e o) w e ), i
where ¢1 = m{(k* +k—2)8+ (k* + 3k + 2)a} —m?{(k* — k — 3)8 — (k* + k + 1)a} is redefined
constant.
p— a8 (0 5,
_ 1 b2 l (B —a) o
e arm) w ), 2
where ¢p = (2k + 1)m2a — (3m? — 2km — 4m)p is redefined constant.
o S1 — 89
5* v — 5 )
1 (k — 1)(m? —m) B
5 | e f—} | (424)
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These physical quantities evolve with the cosmic expansion. Their evolution is governed by two
time dependent factors: one behaving like =2 and the other behaving as 5% Since m and k
are positive quantities, the magnitude of the physical quantities (neglecting their sign) decrease
monotonically with cosmic time. It is interesting to note that, ¢ also decreases from a large
value in the initial epoch to small values at late phase of cosmic evolution. This behaviour of &
implies that, at the initial phase, more anisotropic components are required than at late phase.
From eqns. (4.22)- (4.23), we obtain the EoS parameter w = £ and the effective cosmological
constant respectively as

S2 — S3

$10 — ssa+ (a— ) Ay’

Ps
O4+ (a— B)(k + 2)? {AOtQ N tg(k*:jrn;ﬂ)} )

w=—1+(a+5)

— 1+ (a+p) (4.25)

where ¢3 = (k? — 2k)m? — (k* + 2k + 3)m and ¢4 = (3m? — 2km — 4)3 — (2k + 1)m2a are

redefined constants.

A= 02— 2 [(s2 + s3)a — (251 — 82+ 53)8 — (@ + B)(s2 — s1) — 2(a — B)Ao] + Ao,
_ g ¢s 20+ p) B P
(02— 3% [(k+2)22 Fis 2o = Ao (k4 2)212
n g 1A, (4.26)
(0 pyia
Where ¢5 — {(k+1)a+ (k—3)5}(m?—m) and ¢ — ﬂ% are some redefined constants.

The dynamical nature of the model can be assessed through the evolution of the EoS parameter
w. In Fig. 4.1, w is plotted as function of red-shift for four different values of the coupling
constant 8 namely 5 = 0,0.5,1.0 and 2.0. g = 0 refers to the case in GR. The anisotropic
parameter is considered to be k = 0.7 and m is fixed from the observationally constrained value
of deceleration parameter ¢ = —0.598. For all the cases considered here, w becomes a negative
quantity and remains in the quintessence region throughout the period of evolution considered
in the work. It decreases from some higher value at the beginning to low values at late times.
However, at late phase of cosmic evolution, w grows up a little bit which may be due to the

anisotropic effect of cosmic strings.

The coupling constant [ affects the dynamical behaviour of the EoS parameter. In order to
understand the effect of 5 on w, the EoS at the present epoch is plotted as a function of g in

Fig. 4.2 for three different values of k. One can note that, w increases with the increase in the
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0 2 4 6 8 10

Figure 4.1: Dynamical evolution of the EoS parameter for different representative values of the coupling

constant 3.

value of the coupling constant. In view of the recent observations predicting an accelerating

universe, the value of coupling constant 5 should have a lower value i.e. § < 1.

In Fig. 4.3, we have shown the effect of anisotropy on the EoS parameter. In the figure, we
are assumed three representative values of the anisotropy i.e & = 0.7,0.8 and 0.9 for a given
coupling constant 5 = 0.5. Anisotropy brings a substantial change in the magnitude as well
as the behaviour of the EoS parameter. There occurs a flipping behaviour of w at a redshift
zr ~ 4. At a cosmic time earlier to z¢, with the increase in the anisotropy of the model, w
assumes a higher value. In other words, prior to z¢, higher the value of k&, higher is the w.
It displays an opposite behaviour at cosmic times later to z;. Also, at the redshift z;, curves
corresponding to all & considered here cross each other. In general, the rate of evolution of the

EoS parameter increases with the increase in the value of the anisotropic parameter.
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-0.50 . . . , . ,
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-0.65
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Figure 4.2: EoS parameter as function of the coupling constant at present epoch for a given anisotropic

parameter.

4.4 Anisotropic universe with quark matter

It has been believed that, quarks and gluon did not yield to hadronization and resisted as a
perfect fluid that spread over the universe. It may contribute to the accelerated expansion of
the universe. Here, we have presented an anisotropic cosmological model with non-interacting
quarks that may well be dealt as a Fermi gas with an equation of state given by (Kapusta [180],

Aktas and Yilmaz [181]),
_
3

where p, is the quark pressure, p, is the quark energy density and B, is the bag constant. We

pq - B(:) (427)

assume that quarks exist along with one dimensional cosmic string without any interaction.
The quark energy density can then be expressed as p, — p — & — B.. Going in the same manner

as described in the previous section, we can have the expressions for the quark pressure and
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Figure 4.3: Effect of anisotropic parameter on the EoS parameter.

quark energy density as

Pa = 5 i 3 (a4 B)sa + ssa — (o +20)s1 — (a— ) Ao| — Be, (4.28)
1B,

n = gm0t B (01 29m 0 H)h

If we put 8 = 0, the model reduces to that in GR with a cosmological constant. In that case,

(4.29)

the above equations reduce to

1

Pqg — 8_ [82 + 83 — 81 — Ao] — Bc, (430)
s
1 4B

Pqg — E [82 + 83— 81 — Ao] - 3 . (431)

Substituting the expressions for s;, s, and s3 in eqns. (4.28) and (4.29), the quark matter

energy density and quark pressure are obtained as

| ¢or 1 (a+36)
L ’

~(0—B) Ao} B, (1.32)

Pg 0/2752 k+2)2t_2 t?vale
! ¢r 1 (at3P) 4B,
a ) —(a—B)Ao| — 4.33
" 3m2w>hk+mw2 (@A) = (4.33)

where ¢7 — ¢ — (k— 1)(m* — m)(a+ ). For some reasonable value of the coupling parameter

£ and the anisotropic parameter k, the quark energy density and quark pressure decrease
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smoothly with the cosmic evolution. Bag constant certainly has a role to play at late times

when the value of p, and p, are mostly dominated by this quantity.

4.5 Conclusion

In this chapter, we have investigated the dynamical behaviour of an anisotropic Bianchi type
VI, universe in the presence of one dimensional cosmic strings and quark matter. Anisotropic
cosmological models are reconstructed for a power assumption of the scale factor in the frame
work of f(R,T) gravity. In the process of reconstruction and study of dynamical features of
the model, we chose the functional f(R,T) as f(R,T) = R+ 2Aq + 25T. From some general
expressions of the physical quantities, we derived the expression of the FoS parameter and the
effective cosmological constant. The effects of anisotropy k& and the coupling constant 3 are
investigated. It is observed that, with an increase in the coupling constant the EoS parameter
assumes a higher value. Anisotropy is observed to affect largely to the dynamics of the model.
The EoS parameter undergoes an increased rate of growth with an increase in the anisotropy.
We hope, the present study will definitely put some light in the context of the uncertainty

prevailing in the studies of the late time cosmic phenomena.
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5.1 Introduction

In the last three decades, the standard model of cosmology has gained a lot of research attention.
The prime reason behind this is, its ability to address complex observational issues with a simple
theoretical structure. The two major successes of this model are (i) the explanation of the
observed light element abundances in early universe and (ii) the prediction of the relic CMB.
Over a period of time, cosmological theories have come up with a number of novel predictions
including the possible existence of topological defects, extra dimensions, inflation, relic non

baryonic dark matter candidates.

Substantial progresses have been made in recent years in acquisition of cosmological data both
in quality and quantity. This advancement obviously lowers the gap between theory and obser-
vation. Also it provides a window to understand the physics of the very early universe. In the
past two decades, the supernovae cosmology project group and the high- z supernovae group
have presented enough evidences with observations and theoretical justification that the uni-
verse is undergoing an accelerating expansion at the present epoch (Riess et al. [10], Schmidt
et al. [11], Perlmutter et al. [12]). It is interesting to investigate anisotropic models in modified
theories. Although there have been a lot of debate going on in the issue of cosmic anisotropy,
anisotropic models can be more interesting in the sense that, they are quite general than
the usual FRW models and may provide some interesting cosmological results (Antoniou and
Perivolaropoulos [182], Mariano and Perivolaropoulos [183], Zhao et al. [184], Tripathy [185],
Saadeh et al. [186]). Sharif and Zubair [187], have investigated Bianchi type cosmological mod-
els in f(R,T) theory. Moreover, Shamir [188] has obtained the solutions of the LRS Bianchi
type 1 space-time with the assumption of a relationship between the metric potentials of the
space-time. Sharif and Nawazish [189] have investigated some cosmological models for Bianchi
type I, III and Kantoskwi-Sachs space-time using Noether symmetry approach. Also,Sharif and
Nawazish [190] have explored the Noether and Noether gauge symmetries of anisotropic cosmo-
logical model in f(R,T) gravity. Shabani and Ziaie [191, 192] have studied the existence and
stability of Einstein universe in f(R,T) gravity. Zubair et al. [193] have analysed the stability
of cylindrically symmetric objects with anisotropic fluids. Sahu et al. [194], have constructed
accelerating cosmological models in a modified gravity theory. Sharif and Zubair [195] have
investigated the energy conditions and stability of power law solutions in this modified gravity
theory. Moraes et al. [196] have obtained the general solutions for static wormholes in f(R,T")

gravity and the physical and geometrical solutions are obtained using analytical approach.
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In this chapter, we have presented the dynamical behaviour of the cosmological model with the
functional in the form of f(R,T) = A(R + T) by incorporating source of anisotropic fluid in
the energy momentum tensor. In section 5.2, the field equations in f(R,T) gravity have been
derived with the composition of energy density due to perfect fluid and anisotropic fluid. The
dynamical features of the model have been presented in section 5.3. The cosmological model for
h — —1 has been presented in section 5.4. In section 5.5, the physical behaviours of the model
are discussed and energy conditions are presented in section 5.6. In section 5.7, the concluding

remark is given.

5.2 Field equations for [(R,T)= AR+ \T

With the choice of function f(R,T) = A(R + T), A being a constant, the field equation for
f(R,T) gravity can be written as

1 8T+ A
Rij — 53% - (T) Tij + A1) g5 (5.1)

where A(T) = p+ %T is an effective cosmological constant that depends on time. It picks up its
evolutionary behaviour through the matter fields. It is worth to mention here that, the scaling
factor A cannot be zero as the model diverges for this value. Also, it is certain that, one cannot
recover the corresponding field equations of GR by putting a value of A by hand. However, as
it can be seen from our discussion, we may obtain viable models by rescaling the GR equations
through this parameter A. An important feature of this model is that, the field equation appears
to have the same form as that of GR with a time varying cosmological constant and a redefined
Einstein constant (x = 82—4‘;7 GG and ¢ are respectively the Newtonian gravitational constant and

speed of light in vacuum). We assume the energy momentum tensor as

Tij = (p+ p)ust; — pgss — prTT;, (5.2)

%

where u'u; = —x'r; = 1 and u'z; = 0. In a co-moving coordinate system, u* is the four velocity

vector. x* represents the direction of anisotropic fluid (here x-direction) and is orthogonal to

u'. p is the energy density and is composed of energy density due to the perfect fluid and

anisotropic fluid pg. The field equations (5.1) for Bianchi type VI, space-time (1.65) and the
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energy momentum tensor (5.2) can be obtained as

B C BC h 0
Brot e o ety (5.3)
A C AC W 1

Al C Sz 5 A
4+Q+AC 2 apt g ten), (5.4)
AVBLAB 0 il 55
A BJFAB* 2z Q(p PB), )

AB  BC  CA 1+h+h? 1

AB BC T CA A2 O‘P*§(P*93), (5.6)
B C A

B i UG =0 (5.7)

where, o — %. In the set of above field equations, an overhead dot denotes time derivative.

5.3 Dynamical features of the model

In some recent papers, Tripathy et al. [197, 198] have calculated the energy and momentum of
anisotropic BV I, universes and have shown that the energy and momentum of such universes
vanish for A — —1. If we assume that, the metric should envisages an isolated universe with
null total energy and momentum, then the choice A — —1 is preferable to any other value of the
exponent. In view of this, we assume this value of A and study the dynamics of the anisotropic
universe in presence of anisotropic energy sources. The directional Hubble rates considered as

in eqn.(2.11). Using this directional Hubble rates, the above set of equation (5.3)-(5.7) becomes

as
] ] 2 2 h P
Hy+Hz+Hy+Hz+HyHrﬁ*fa(pprHg, (5.8)
2
. . , 1
H1+HZ+H§+HerHmHz—ﬁ*—aera(erpB), (5.9)
. . 1 1
Hm+Hy+H5+H§+HmHy—ﬁ:—ozp+§(p+pp;), (5.10)
14+ h+ h? 1

H.H,+ H,H, + H,H, — — + 5 (p—pB), (5.11)
H,+hH, — (14+h)H, =0, (5.12)

With h = —1, it is straightforward to get H, = H, from (5.12). The mean Hubble parameter

becomes, H = % = %(HT + 2H,) where R is the mean scale factor of universe.
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The set of field eqns. (5.8)-(5.11) can be reduced to

60k -+ 2 +27H2 + (b + 2R %) = (b 2)* [~a(p— pp) + 2] (5.13)

S 1 3k L 9k +k+ DI — (k4 2)*R(5%8) = (k1 2)2 {Ozp + % (0+p8)|
(5.14)

02k + 1)H? — (k 1+ 2)*R (&) = (k + 2)? {Ozp - % (p— pg)} . (5.15)

Here, a linear anisotropic relation among the directional Hubble rates is assumedie. H, = kH,.

Algebraic manipulation of the field equations (5.13)-(5.15) yields

P =~ el (R) +ss(R) = (1+ 20)s2(R)), (5.16)
p = ral(R) - 20s(R)) (5.17)
pp = —[n(R) - m(R)] (5.15)
Here,
WR) - g i sy 606+ 24 2TH 4 (h 2R ()], (5.19)
w(R) = g i Sy 3064 3k 24 O 4k ) PR ()] (5.20)
w(R) = g i S5 902+ I (k4 2R ()], (5.21)

The EoS parameter w = g and the effective cosmological constant A are obtained respectively

$2(R) — s3(R)
$1(R) — 2as3(R)

- (H—lm)[sl(n) b s5(R)]. (5.23)

w = —1+(1+2a)

(5.22)

The dynamical features of the model are decided by the physical quantities given in eqns
(5.16)-(5.23). However these quantities depend on the mean scale factor. In view of this, we
can study a background cosmology and associated dynamics if we presume the behaviour of

the mean scale factor.
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5.4 Model with power law cosmology

In the study of cosmic dynamics, power law cosmology has gained a lot of attention. Power law
cosmology has emerged as an alternative to ACDM model and considers the evolution of classical
fields that are coupled to the curvature of the space in such a way that their contribution to the
energy density self-adjusts to cancel the vacuum energy (Dolgov [199]). The motivation for such
a scenario comes from the fact that it does not encounter flatness and the horizon problem at
all. Another interesting feature of these models is that they easily accommodate high redshift
objects and hence alleviate the age problem. These models are also purged of the fine tuning
problem (Dolgov et al. [200], Ford [201]). In power law expansion cosmology, the scale factor
is assumed to grow as some power function of cosmic time i.e. R = #"/3, where m is a positive
constant and can be constrained from observational data on the deceleration parameter (DP)
or the jerk parameter (JP). The geometrical features such as Hubble parameter, DP and JP
respectively become H = 22, ¢ = —1+ % and j = % (% — ]) + 1. Here, we have employed such
a scale factor to investigate the background cosmology in the presumed modified gravity model.
With such an assumption we obtain the pressure, energy density and density of anisotropic fluid
source from (5.16)-(5.18) as

p——ls1(R) + sa(R) — (14 20)52(R)

1—4@

(1740/2 { T2 ( (k+2)H+27H2+’R (kfz)”

9(2k + 1) H® — (k + 2)273(;?—&))}

)
1f402 {k+2
b

(1+ 2a) o
3(k* + 3k + 2)H +9(k* + k ()
17402 k1 2)2 +3k+2)H + 9K +k+1)H — (k+2)°R" +2>
_ 2 ¢1 2a¢2 2 1
(1 —4a?) { (k+2)? } 2 (1-2a)2%° (5.24)
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P ﬁ[%m) — 2as3(R)]
1 24(12 {(k J: 2)2 (G(k + 2)F7 +27H? + (k + 2)273(%))}
N 4(1@2 {(k +1 2)? (o2k + DA? — (k+ 2)273(5—1“2))}
= 2 ¢3 — 202k + 1)m?| 1 5
(1 40?) { (k+2)? } Ry )
pB — ] 220 [52(R) — s1(R)]
i L (B0 9k 20 k) (g 2R ()
1 22a {(k Ji 2)2 (G(k + 2)F7 +27H? + (k + 2)27%(%))}
2 P4 1 4 1
C(1-20) {(HW} P 1—20) 25 (5.26)

where ¢1 = (k* + k — 2)m — (k* — k — 3)m?, ¢o = (K* + 3k +2)m — (K> + k + 1)m?, ¢35 —
3m? — 2(k + 2)m and ¢, = (m? —m)(2 — k — k?) are redefined constants that depend on the

choice of the parameters m and k.

The FoS parameter w and the effective cosmological constant are obtained from (5.22) and
(5.23) as

w=—1+(1+2a)|—

3(k2 1+ 3k + 2) 1T +9(k% — k) H2>

=14 (14 2a) . —
6(k -+ 2)H +9(3 — 20(2k + 1)) H> + (1 + 20)(k + 2)°R (&)

i 2 2 /7.2
= —1+4 (1 +2a) (k" Kym — (k"1 3k + 2m I k,,,,)] . (5.27)
(3 —20(2k + 1))m? — (k + 2)2m + (1 + 2a)(k + 2)2t #+2

| 1
A — m[el(’/%) + 53(R)] = (k4 2)(1 + 2a) [

N 2 m(m — 1)] 1
(14 20) { kot 2 }1‘_2 (5.28)

6H + 18H2}

5.5 Physical behaviour of the model

In Fig. 5.1(a) and (b), we have shown respectively the behaviour of pressure and energy density

1

as function of redshift z = =

1. The radius scale factor at the present epoch is considered to
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Figure 5.1: (a)Pressure as a function of redshift (b) Energy density as a function of redshift. Four different
values of the scaling factor have been considered to assess its effect. Anisotropy parameter is assumed to be

k= 0.65.

be 1. The behaviour of the physical quantities are shown for four different values of the scaling
constant A\. The anisotropic parameter k£ can be considered as a free parameter in the work.
However, we assume a representative value of anisotropy i.e k& = 0.65 for plotting the figures.
The exponent m has been constrained from the value of deceleration parameter, ¢ — —0.598,
obtained from an analysis of observational data (Montiel et al. [202]). In general, pressure is
obtained to be negative in the whole range of redshift considered in the work. In fact, for a given
value of A, pressure increases from some large negative value at an early epoch to vanishingly
small values at late times. The choice of the scaling parameter A substantially affects the
magnitude of pressure. At a given redshift, pressure assumes large negative values with an
increase in A. On the other hand, energy density remains in the positive domain and decreases
to small values at late times in Fig.5.1(b). At a given redshift, energy density increases with an
increase in A. The evolutionary behaviour of the energy density of the anisotropic fluid source,

pg, is shown in Fig. 5.2. Its evolutionary behaviour is studied by assuming a fixed anisotropy
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Pe

Figure 5.2: Evolution of energy density of the anisotropic fluid source for four different values of the scaling

constant A.

and an accelerating universe with ¢ = —0.598. The magnitude of pg is more at an initial epoch
compared to late phase. At a late cosmic phase, pg becomes negligible. The variation of pg
with different choices of X is also shown in the figure for four representative values of A\. One
can note that, pg increases with an increase in A at a given redshift. The scaling constant also
decides the rate of decrement in the energy density of the anisotropic fluid source. Higher the
value of A, more is the rate of decrement ( or slope) for pg. It is evident from (5.27) that the EoS
parameter w evolves with time that depends on three parameters A, m and k. In Fig. 5.3(a),
the time evolution of w is shown for four different values of A\. The anisotropy parameter is
considered to be &k = 0.65 and m is constrained from the deceleration parameter. w remains in
the negative domain favouring a quintessence phase. EoS parameter decreases with time. The

choice of A value affects the equation of state, mostly it affects the slope of the evolution curve.

(k2 —k)ym—(k’>4-3k+2)
3—2a(2k4-1))m—2(k+2)

at the beginning to some higher negative values compared to this one at late phase of evolution.

The slope increases for higher value of A. w evolves from w = —1+(1+2a) (
The value of w at late times depends on the choice of A\. For the given anisotropic parameter

i.e. k = 0.65, the value of w in the present epoch becomes —0.614, —0.611, —0.604 and —0.597
corresponding to A = 0.8,1.0, 1.5 and 2.0 respectively.
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Figure 5.3: (a) Evolution of the EoS parameter. (b) Effective cosmological constant as a function of redshift.

The effective cosmological constant A decreases quadratically with time and depends on the
parameters A,m and k. In Fig. 5.3(b), A is shown as a function of redshift. It is a positive
quantity for all the choices of \. We have presented the modified gravity model in such a
manner that, the theory behaves as that of GR with a time varying cosmological constant. In
case of GR, the late time cosmic speed up phenomena, requires a positive non zero cosmological
constant that should dynamically roll down to a value close to zero at late times. From our
model, we obtain a similar behaviour of the effective cosmological constant. The evolutionary

behaviour is more or less the same as that of the energy density of the anisotropic fluid pp.

We have explored the effect of anisotropy on the dynamics of the universe as well as on the
energy conditions. Here k is taken as a free parameter. Anisotropy substantially affects the
dynamics as is evident from Fig. 5.4. In the figure, w is plotted for three values of & namely
0.65,0.8 and 0.9. It is observed that, effect of anisotropy is more visible at early phase of
evolution compared to that at late times. An increase in the value of k increases the value of
w at an early time and decreases the value at late times. In other words, model with higher &
has less value of w at late epoch. Interestingly all the curves with different values of anisotropy

intersect at a particular redshift z ~ 4.08 when the EoS parameter is —0.562. At the present
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Figure 5.4: Effect of anisotropy parameter k on the EoS parameter.

epoch, the anisotropic effect on the equation of state is better understood through its values
w — —0.614, —0.65 and -0.678 corresponding to k = 0.65,0.8,0.9. In order to assess the fact
that, out of two parameters, A and %, which one affects the EoS parameter to a greater extent,
we have plotted the EoS parameter at the present epoch as a function of the scaling constant
A for four different values of k in Fig. 5.5. It is obvious from the plot that, for a given value of
k, EoS parameter is marginally affected for a variation of A within a suitable range. However,

with an increase in &, the EoS parameter decreases substantially.

The energy density of anisotropic fluid pg considered along x-direction is also affected by the
variation in directional anisotropy rates in the same manner as that of w. In Fig. 5.6(a), the
effect of anisotropy on the anisotropic fluid density is shown for three representative values of
k. One can note that, in the late phase the requirement of an anisotropic fluid is much less
for higher anisotropy whereas at an initial cosmic phase, more anisotropic fluid is required to
maintain a higher anisotropic expansion rate. However, all the curves of the anisotropic fluid

energy density intersect at a redshift z ~ 4.08.

The dynamical features can also be assessed from a dimensional analysis of the quantities.

In eqns. (5.24)-(5.26), the dynamical behaviour is governed by two terms: one depending on
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Figure 5.5: EoS parameter w at the present epoch as a function of scaling constant A. The effect of anisotropy

is also shown for four representative values of k.

N

k

t~2 and other on + #2. Since the parameters m and k are dimensionless, we expect that the
two terms appearing in these quantities must have the same dimensions as quantified. The
parameter m is already constrained from the deceleration parameter. In view of the argument
on the basis of qualitative dimensional analysis, we can put a constraint on k as km = k + 2.
With this constraint on m and k, pressure, energy density and energy density for the anisotropic

fluid reduce to
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Figure 5.6: (a) Effect of anisotropy on the anisotropic fluid density (b) Effect of anisotropy on energy condi-

tions. Solid curves in (b)refer to k = 0.65 and the dotted curves to k = 0.9 for the respective energy conditions.

2 {¢1+2a¢1 1 2 1
b _

1 _4a?) | (ht22 |22 (1_ 2@) T
2 {(k2+k2) — (k? —2)m?® + 2a ((K* + 3k + 2)m — (B> + k+ D)m?)] 1
(1 402) (k 1 2)2 2
2 ]
(1 —20) %3
N l(3m S dm £ 8) a(m 124201+ 2@)} i (5.29)
1 — 402 12’
B 2 gzﬁg — 202k + 1)m?
P —4ad) | (kro2p } 1 2a) 2@) Pz
2 [3m? - 2(k + 2)m — 20(2k + )m?] 1
(1—402) | (k1 2)2 }_2 1—2@&’%
= ﬁ[(m D {(Bm —7) + 2a(m —3)} + (1 + )] (5.30)
2 ds 1 4
PE 0 2a) {(k+2) } 020 2
B 2 (m? —m)2—k—k)] 1 N 4 1
(1 20) { (k + 2)° } (1 20) 25
7 ]20 [m(m — 1)(m — 3) + 4] :—2 (5.31)
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For a given scaling constant A, the magnitude of these quantities now quadratically decrease

with time. Consequently, the EoS parameter becomes

(9m? + 54m + 33) + 2a(3m? — 14m + 19)
(12m?2 — 40m + 29) + 2a(m? —4m +4) ’

which is a non-evolving constant and depends only on A and m. For A\ = 0.8 and m as

constrained from the deceleration parameter, we obtain w = —0.577. With the constraint
from dimensional analysis, the effective cosmological constant becomes A = (T’Jr;ozgtlz. The

evolutionary behaviour of the effective cosmological constant remains the same as before. It

decreases quadratically with time in the positive domain.

5.6 Energy condition of the model

Energy conditions put some additional constraints on the models (Carroll[203], Sharif et al.|[204]).

For a perfect fluid distribution the energy conditions are

Null Energy Condition(NEC) : p+ p >0,

Weak Energy Condition(WEC) :p+p >0, p>0,
Strong Energy Condition(SEC) : p+3p >0, p+p >0,
Dominant Energy Condition(DEC) : p£p >0, p>0

From eqns. (5.29)-(5.30), the energy conditions are obtained as
2[52(R) — s3(R)]

NEC: = > ()
p+p [ 2 >0,
WEC: p — [52(R) — s1(R)] > 0,
1 — 2«
SEC : p+3p = —5— = [s1(R) + (3+ 20)55(R) = 3(1 + 20)5:(R)] > 0,
2
DEC : p— P m [28] (R) - (1 -+ 2(1)82(7?,) -+ (1 - 2(1)83(7?,)] Z 0.

NEC is implied in all other energy conditions. Since in our calculation, we assume small values
for the scaling constant A, the factor 1 — 2o is a negative quantity. Consequently, in order to

satisfy the null energy condition and weak energy condition, we require s1(R) > s2(R) and

231 (R)+(1—2a)s3(R)
142«

to be satisfied. For SEC, we need an extra condition s;1(R) > 6as3(R). We have calculated

$3(R) > s2(R). Dominant energy condition requires the inequality s2(R) >
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the energy conditions within our formalism with a power law scale factor. These conditions

can be expressed as

2 k(k—1)ym? — (k+ 1)(k+2)m] 1
2 3(k* =k —2)m* — 3k — 1)(k +2)m] 1
SEC:p+3p12@{ (k + 2)? }72
do TGBR2—k+1)m?—3k+ Dk +2m] 1 4(1+a) 1
+]2(x{ (k + 2)2 L—?]zm?t%’
2 (k* +3k+8) —da(k* + k+1))m* + 2(k* + k —2)m]| 1
DEC:p—p= Sl
| = E
4
1 20,25

The energy conditions as obtained are plotted in Fig. 5.7. The energy conditions in the figures
are calculated for & = 0.65 and A = 0.8. The present model satisfies all energy conditions
except SEC. The behaviour of the energy conditions remain the same for different choices of
the scaling constant A\. However, for large values of A, say A = 20 or more, the behaviour may
change. Since we are interested in modified gravity models close to GR, we assume a small
value of the scaling constant A and in these range of A, the behaviour of the energy condition

remains almost the same as shown in the Fig. 5.7.

In Fig. 5.6(b) we have shown the effect of anisotropy on the energy conditions. We have
considered two representative values 0.65 and 0.9 of the anisotropic parameter k for a given
value of m and A. As shown in the figure, the effect of anisotropy is dramatic. Anisotropy
affects marginally to NEC. An increase in the value of k lowers the value of p+ p at late phase.
However, at a late epoch, it is almost unaffected by the choice of k. Also, in case of SEC and
DEC, the anisotropy has little affect during the late epoch. But at an initial epoch, an increase
in the value of k decreases the value of p — p and it goes down to the negative domain violating
the dominant energy condition. With an increase in &, p-+ 3p increases into the positive domain

for higher z values thereby enabling the model to satisfy the strong energy condition.

5.7 Conclusion

In this chapter, we have investigated the dynamical features of the cosmological models in
a Bianchi type VI,(h — —1) space-time in presence of some anisotropic sources in f(R,T)

theory. It is observed that the choice of the scaling constant controlled the behaviour of EoS

90



Section 5.7 Chapter 5

Energy conditions

Figure 5.7: Energy conditions for the model shown for A = 0.8 and k& = 0.65.

parameter. The effective cosmological constant is time dependent and dynamically decreases
with cosmic time irrespective of the choice of the scaling constant. The energy conditions which
are few additional conditions for the matter content of the gravitational theory remain same
for different values of the scaling constant; however for a higher value of the scaling constant,
the behaviour may change. An increase in cosmic anisotropy within the present formalism
substantially affect the energy conditions. It is also observed that more anisotropic fluid is

required to maintain a higher anisotropic expansion rate at an initial cosmic phase.
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6.1 Introduction

It is believed that magnetic fields exist in galactic and intergalactic spaces and therefore mag-
netic field may play an important role in the description of the cosmic dynamics and energy
distribution (Maartens [205], Grasso and Rubinstein [206]). It can be seen that the large scale
magnetic fields can be detected by observing their effects on the CMB radiation. Also, since
the expansion rate will be different depending on the directions of the field lines, these fields
would enhance anisotropies in the CMB. Mazharimousavi et al. [207] have obtained solution
for modified gravity coupled with electromagnetic field. Bamba et al. [208] have demonstrated
the logarithmic non minimal gravitational coupling of the electromagnetic theory in modified
gravity. They have also mentioned that due to this effect, gravity may produce time varia-
tion of the fine structure constant which may increase with decrease of the curvature. Sharif
and Yousaf [209] have analysed the role of electromagnetic field in f(R) gravity. Saha [210]
developed the system of interacting scalar and electromagnetic field within the framework of
this theory and obtained an improved result for a standard Einstein-Hilbert model. Yousaf
et al. [211] have investigated the electromagnetic field and modified gravity on the evolution
of cylindrical compact object. Aktas and Aygun [212] have obtained the magnetized strange
quark matter solution with cosmological constant. Agrawal and Pawar [213] have studied the
magnetized domain wall and quark and strange quark matter in f(R,T) gravity. Pradhan
and Jaiswal [214] have studied Bianchi type V cosmological models in f(R,T) gravity in the
presence of magnetic field.

In this chapter, we have constructed an anisotropic Bianchi type VI, cosmological model filled
with magnetic field in f(R,T') gravity (Harko et al. [76]). In section 6.2, we have developed the
field equations of f(R,T) gravity with the matter field in the form of electromagnetic field and
presented the formalism for the dynamical parameters. In section 6.3, the cosmological model
has been constructed with the power law cosmology. In section 6.4, the energy conditions and

physical parameters of the the model are analysed. The conclusion is given in section 6.5

6.2 Field equations in the framework of f(R,T) gravity

The gravitational action (1.41) for f(R,T) gravity, which is the generalisations of Einstein GR

has been considered. The matter Lagrangian can be considered either as £,, — —p or L,, — p,
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however for the conciseness of expression, we will choose £,, — —p. The energy momentum

tensor for magnetic field can be defined as
Ti; = (p+ p)ugu; — pgi; + Ey, (6.1)

where u'x; — 0 and v'u; = —2'x; — 1. It is worthy to mention here that the co-moving coordi-
nate system u; — /g44(0,0,0, 1) is the four velocity vector of the fluid. p, p respectively denote
the pressure, energy density and F;; is the part of the energy momentum tensor corresponding

to the electromagnetic field and is defined as

1

8 1 8
By — e P fistip — Z.Qijfspf 1 (6.2)

Here, g;; is the gravitational metric potential and fs, is the electromagnetic field tensor. In
order to neglect the effect of electric field, we assume an infinite electrical conductivity such that
f1a — foa — [s4 = 0. Also, aligning the axis of the magnetic field along the axis of symmetry,
we obtained fi3 = fi3 = 0, foz # 0. So, the non-vanishing component of electromagnetic field
tensor is only fos = — f30 and it can be represented as foz3 = — f3 = M, a constant, from the

reference of Maxwell equations, which can be expressed as
4
F;j - 47T7 ) (63)

where j* represents the four-current. Now, the field equations for f(R,T') gravity (2.4) for the
choice of functional f(R,T) = f(R)+ f(T) can be reduced to

TrR; — %f(R).Qij +(g;;0 — Vi) fr(R) = 8Ty + frli; + {pr(T) + %f(T)} gi;,  (6.4)

where fr and f; are partial differentiation with respect to the respective functions. We are
interested to consider the functional form of f(R,T) in the form f(R,T) = R+ 2Aq + 28T,
such that the field equations of f(R,T) can be reduced to the field equations of Einstein GR.
Here, Ay and § are respectively the cosmological constant and coupling constant. With this,

the field equations of f(R,T) gravity can be obtained as

frfsy — 5f(R)gsy = (37 + 26)Ty + MT)gy; (65

where, A(T)) = (p—p)5+ Ao be the time dependent cosmological constant and mostly controlled

by the behaviour of pressure and energy density of the fluid. Now, in order to construct the
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cosmological model of the universe in frame of f(R,T) gravity in the assumed functional form
f(R,TY = R+ 2Ag + 28T, we consider Bianchi type VI, space-time (1.65). So, the field
equations (6.5) with the space time (1.65) can be explicitly written as

B C BC h

§+é+BCﬁ(a+ﬁ)p+pﬁau+Ao (6.6)
%+g ig%(a+5)p+pﬁ+au+/\o (6.7)
§+%+%%(a+ﬁ)p+pﬁ+au+/\o (6.8)
ﬁ§+§g+gﬁl+2jh2((Hﬁ)pﬁpauﬂ\o (6.9)
g+hg(1+m§ =0 (6.10)

An over dot represents ordinary derivative with respect to ¢ and because of brevity, we take

h=—1. Herea:8w+25andu:8wﬁf—;cz.

For h — —1, eqn.(6.10) reduces to H, — H, with suitably absorbing the constant of integration.
So the mean Hubble parameter becomes H — % — i(H, + 2H.). An anisotropic relation
among the directional Hubble rates is assumed in the linear form as H, = kH,. With these

considerations, the system of field equations (6.6)-(6.10) can be obtained in the form of scale

factor as
1 R R )
| R R )
(k +2)? 3RSk 25 18 s (ke 2)2Rk_+6§] — —(a+B)p+pBtapt A,
(6.12)
| R2 S
(k+ 2)? 92k + l)ﬁ —(k+2)"RE=2| = (a+ B)p— Bp— ap+ Ao, (6.13)
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If we represent the L.H.S. of the field equations (6.11)-(6.13) respectively as

1 'R 'RQ _6k
S — —— ; — — 2k — + (k IR
Sy DL 6(k+2) + 306~ 20) 75 + (k+2) R+>
1 R R2 —6k
— [ 3(* 4+ 3k +2)= 2% + 1) = — (k + 2)*R*=2
Sa (k+m2:% +34+)R+3( +)R2 (+)RMJ
1 R2 —6k
szm 9(2/{7+1)§(/€+2)2Rk+2> :

and with algebraic manipulations among the field eqns. (6.11)-(6.13), we can obtain the pressure

(p),energy density (p) and magnetic energy density (i) respectively as

p= 20(a 1 28) [(a 4 20)S) + aSy — 2855 — 2a\y], (6.14)

p= —2a(al+ 25) [0Sy — (v + 20)S1 + 2(a + §) S5 — 2], (6.15)
(1+8)+8 1

: (%) %2 5 (6.16)

Moreover, using eqns. (6.14)-(6.15), we can express the EoS parameter and effective cosmolog-

ical constant as

O[SQ — (O/ -+ 25)31 + 2(0/ + 5)33 — 2(J/AO’

[(S3 = S1)] + Ao, (6.18)

w=—1

B

«

(6.17)
A=

To study the accelerating behaviour of the universe, we will study eqns. (6.14)-(6.18), which
may give us a clear picture about the cosmic expansion of the present universe. However, in
order to understand the physical behaviour of these equations, we need to have a scale factor,
so that the parameters can be expressed with respect to the cosmic time. Therefore, in this
theme, we have considered the power law cosmology, where the cosmic expansion is governed
through the scale factor of the form R(t) = t%, where m is an arbitrary constant. The motive
behind choosing such a scale factor is because of its functional simplicity and provides some
important information on the dynamical behaviour of the universe. Hence, in a very general
way, we can mention, the solution obtained with power law cosmology presents the matter
dominated phase and accelerating phase at the later stage. The deceleration parameter for the
power law cosmology can be calculated as ¢ — —1 + % It is informative to mention here that

the present value of deceleration parameter for the accelerating universe is ¢ = —0.81 + 0.14.
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Before we will move to find the behaviours of the expressions defined above, we will define some

physical parameters of the universe that would be instrumental to study the behaviour of the

2

universe. The scalar expansion @, shear scalar ¢ and the average anisotropy parameter (.A4)

can be respectively defined as 6 = XH;, 02 = § (X2H,; — 160%), A= 1% (%)2. From one of the

basic dynamical equations of cosmology, we know % = —M (p + 3p). The state finder pair

(r,s) give the geometrical behaviour of the cosmological model which can be computed with
r—1

the higher order derivatives of the scale factors as r = Rgg and s = The pair can be

8(a—3)"
expressed with respect to pressure and energy density as r = 1 + S ;i;p )2 5 and s = %’% Also
the deceleration parameter can be expressed as ¢ = R%Q == + S’p’ It can be noted that the

ACDM model with w = —1 leads to a constant state finder parameters as (r,s) = (1,0). This
means that the ACDM model corresponds to a fixed point (r = 1,s = 0) in the state finder rs
plane [215]. So, with the power law scale factor, the pair can be obtained as r = 1 — 2 + 1§

m m?2
(4—2m)

and s = =05 It is observed here that for m = 2, the (r,s) pair reducing to (1,0).

6.3 Dynamical behaviour with power law cosmology

With power law cosmology R(t) = ¢, the directional Hubble parameters take the form H, —
(k—m>—andHny *(

L kmz l ll(f (f—l (] b (]( — (] kkm d. km md md d E
g . SpaC 111 ccomes S T T 2 X T 2 ((1 U € z ) an lll(f lllSl(illl

The metric potentials can be implied as A = t:_f?, B=C=

tensor can be redefined as

1 R ’]22 —6k
g — kot 2)—~ —2k)— + (k + 2)°R*2
SRCEE <6( PR T R M)
9m? — 6m(k +2)\ 1 1
_ 1
( L >f2+f2i2, (6.19)
1 'R ’].3/2 —6k
30243k 12 22+ 1 k4 2)*RF>
% oy <3( PR IR Uy~ (Y M)
C(3mP(F k1) - 3m(k 43k 2\ 1 (6.20)
3(k + 2)? 2 g |
52
2%+ 1)~ — (k+2
% (k+2) W2k + 1)y — b+ 2R
2k + 1)ym2\ 1 1
_(errmiy 1o 21
( (k+22 )12 & o2
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Now, the parameters (6.14)-(6.18) reduce to

P ((J/ + 25) [(0/ + 25)S1 + Sy — 2533 — 2aA ]
( (k2 + &+ 4o + 48(1 — k)] m[(/f2+5k+6)a+4ﬁ(k+2)]>}
a+25 { (k + 2)%?
20(a + 28) { BETE — 20|, (6.22)
p= m [aSy — (o + 26)S1 + 2(a + 8)S3 — 20/
B 1 m* (K 1+ Sk)a + 45(k — 1)) — m(a(k* 1k —2) 45k 12) A}
- 2a(a + 2p) { (k + 2)22 alo|
(6.23)
all +6)+ 06 1
K (202(a+25)>52%91
[ a4+ B+ B\ (mPk*+E+ 1) — m(k® 4 3k + 2) 1 /3m® —2m(k +2)\] 1
KW((H?B))( (k + 2)2 >2a< (k1 2)2 ﬂf
a(l+a+30)+ 0 =z
- ( 202(a 1 25) >t : (6.24)
w=——1+ 2(0‘4“25)(33*31)
O[SQ - (0/ + 25)3] + 2(0/ + 5);93 - 20/A0
oy mPe +28)(k — )]+ mid(a +28)(k +2)] - 48k + 2%
B m2((k2 + 5k)a+ 48(k — 1)) — m(a(k® + k — 2) — 43(k + 2)) — 2a(k + 2)22A
(6.25)
A= C1(Ss— S0] 4 Ay
o ﬁ (2]? — 2)777 + 2777(]? + 2) ff:;n
o (k -+ 2)22 — 2t + Ag. (6.26)

We can now discuss the dynamical behaviour of the model from the above equations. In other
words, we can say that the formalism as described above can help us to study the expansion
rate of the universe for an assumed dynamics of the universe. In the above equations, all
the physical quantities are expressed with respect to cosmic time; however, we can very much
define a relation between the scale factor and the redshift as 1 + 2z = % Now, we can illus-
trate the physical parameters of the model graphically with respect to the redshift z. It is
important to mention here that the recent observational results predicts a transition redshift
of 0.4 < z < 0.8. We have expressed the physical quantities in the Planckian unit system
(¢ =G = h = 1), where ¢, G and h are the generic constants in the Einstein field equation of

GR. Also 1 unit of cosmic time = 10 billion years.
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Figure 6.1: Energy Density (p) versus redshift(z) (m =75,aa=2.1, 8=0.01, k=1.01, Ag = —0.1)

We have chosen different representative value for the free parameters m = 7.5, a = 2.1,
8 =0.01,0.05,0.09, k = 1.01, Ag = —0.1 in order to keep the redshift in the observed range.
It is noticed that the deviation free anisotropic parameter k has the range —1 < k < 1.01
with three representative values of 7 = 0.01,0.05,0.09 . For such formation, the behaviour
of energy density (p) (Fig. 6.1) stay in the positive range and decrease to small values at
the late times. The isotropic pressure(Fig. 6.2) remains negative for all these assumed values
throughout the evolution as expected which in turn indicates the accelerated expansion of the
universe. The concrete dynamical nature of the model can be observed through the evolution
of the EoS parameter w(Fig. 6.3). For all the above considered values of parameters, w stays
negative. Mostly it remains in the phantom region. However, it evolves from a phantom phase
to a quintessence phase after crossing the phantom divide. It is clear from the figure that w
increases from some higher negative value at early time and overlaps with the A CDM model at
late times. The time varying cosmological constant with the considered values of the parameters
remains in negative domain. When « is considered to be negative, there is some deviation in

cosmological constant, it stays negative for higher value of & at beginning then becomes positive
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Figure 6.2: Pressure(p) versus redshift(z) (m = 7.5, = 2.1, 5 =0.01, £k = 1.01, Ay = —0.1)

for low values of « at late time. The behaviour of magnetic field term p is quite clear from Fig.
6.4. Though at the initial stage it has some role in the expansion history of the universe but

at late times it does not show any significant effects to the dynamics of the universe.

6.4 Energy conditions of the model

The energy conditions are the co-ordinate invariants that incorporates the common characteris-
tics shared by almost every matter field. As standard matter is assumed to satisfy the necessary
energy conditions, so for a magnetic fluid distribution, the general inequalities of energy con-
ditions are (i) Null Energy Condition (NEC): p 4+ p > 0 (ii) Weak Energy Condition (WEC):
p+p>0,p>0 (ili) Strong Energy Condition (SEC): p+ 3p > 0, p+ p > 0 (iv) Dominant
Energy Condition (DEC): p+p > 0, p > 0. These conditions show that the violation of NEC

leads to the violation of all other conditions(Raychaudhuri Equations). The energy conditions
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Figure 6.3: EoS parameter versus redshift (z) (m =75,a =21, 8=0.01, k= 1.01, Ag = —0.1)

for the cosmological model discussed here takes the following form

1
PP = 28) [(a+38)Ss — afa +28)S1] > 0
B 1 m?[4(a +268)(k — D] + m[d(a +28)(k +2)] ~2km
20(av + 2) { (k + 2)2t2 40t } > 0,
1
p = %00 1 25) [0Sy — (o +2B)8; + 2(a + B)Ss — 2aAg] > 0
B 1 m?((k* + 5k)a + 48(k — 1)) — m(a(k®> + k — 2) — 458(k + 2))
20(cx + 20) { (k + 2)22
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Figure 6.4: p versus redshift(z) (m = 7.5, = 2.1, §=0.01, £k =1.01, Ay = —0.1)

p+3p= m [—aSy — 2(a + 26)S1 + (a0 + 35)S3 + 2aly] <0

1 m*2a(—k* + k — 6) + 166k — 1)] + m[2a(k® + 7k + 10) + 108(k + 2)]

alo+25) { (k + 2)22
1 —2km

f o 68 20| <0, (6.29)
1

pr*m[SerSg—QAO] >0
1 al(m? —m)(k* + 3k + 2)] 2km
(o +28) { (k + 2)22 2Bt =20 ) 2 0. (6.30)

With the same representative values of the physical parameters, we have graphically repre-
sented the energy conditions of the model with power law cosmology (Fig. 6.5). We have
considered the present observational value of deceleration parameter, jerk parameter and snap
parameters as gy — —0.8140.14, ry = 2.1610% and sy = —0.227035. It is clear from the figure

that the present model is satisfying all the energy conditions except SEC.
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Figure 6.5: Energy conditions versus redshift(z) (m = 7.5,a = 2.1, 8 = 0.01, k = 1.01, Ag = —0.1)

6.5 Conclusion

In this chapter, we have studied the dynamical behaviour of Bianchi type VI,(h = —1) cosmo-
logical model in presence of magnetic field. We have developed a formalism to find the physical
parameters from the field equations and with the power law assumption the cosmological model
is constructed. We assume the functional in the form f(R,T) = R+ 2A¢ + 257 to obtain the
model in f(R,T) gravity. The dynamical behaviour of the model is also investigated. We have
observed that, the value of the anisotropy parameter k and the coupling constant 3 are played
significant role to align the behaviour of the physical parameters with the observational results.
The presence of magnetic field in the field equations shows a substantial effect on the dynamical
behaviour initially but at late times the effect is minimal. The energy conditions in modified
theory of gravity have a well defined physical motivation along with attractive nature of the

gravity in GR. In this work all energy conditions are satisfied except SEC.
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Cosmological Models with a Hybrid Scale Factor-|

Contents of this chapter has been submitted for publication
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7.1 Introduction

The most fascinating point in cosmological models on modified gravity is that generally the
models are strongly constrained by cosmological observations. The most simple modification to
GR has been suggested as f(R) theory [216]. Recently the generalization of f(R) gravity has
been developed, which is known as f(R,T) gravity [76]. Shabani and Farhoudi [133] obtained
the cosmological parameters in terms of some defined dimensionless parameters that are used
in constructing the dynamical equations of motion. Junior et al. [217]| have reconstructed the
ACDM model for f(T,T) gravity. Velten and Carames [218] have challenged the viability of
f(R,T) as an alternative modification of gravity. Abbas and Ahmed [219] have formulated the
exact solutions of the non-static anisotropic gravitating source in f(R,T') gravity which may
lead to expansion and collapse. Carvalho et al. [220] have shown the equilibrium configurations
of white dwarfs in a modified gravity theory. Sharif and Nawazish [221] have determined the
existence of noether symmetry isotropic universe in non-minimally coupled f(R,T) gravity
admitting minimal coupling with scalar field models. Yadav et al. [222] have studied the LRS
Bianchi type I dark energy model in f(R,T) gravity with hybrid law expansion. Esmaeilli
[223] has studied the anisotropic behaviour of the Bianchi type I cosmological model in f(R,T")
gravity in the form of perfect fluid. The cosmological models are presented using power form

of exponential function and hyperbolic form.

In section 7.2, we have presented the basic field equations in f(R,T") gravity with some relevant
quantities on the geometrical aspects of the proposed model. In section 7.3, the anisotropic
nature of the space time has been discussed. The equation of state parameter and energy
conditions are presented in section 7.4 and in section 7.5, the scalar field reconstruction is
presented. Cosmological model with hybrid scale factor has been written in section 7.6. In
section 7.7, we have given some diagnostic approach of the model and the physical parameters

are discussed in section 7.8 and finally the conclusion at 7.9.

7.2 Basic field equations of f(R,T) = R+ 2A¢ + 25T

Within the scope of an extended gravity theory as proposed by Harko et al. [76], the Einstein-

Hilbert action is given by (1.41), we expressed the Einstein field equation with consideration
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of the functional as f(R,T) = R+ 2Ao + 20T is

G = T3 (7.1)
with
1
G = Ru— QRQW, (7.2)
Aess(T)
T = T, " 7.3
jir4 M + 8 + 25 .QM ( )
Here we have a redefined Einstein matter-geometry coupling constant x = 8z + 25 and

Nesp(T) = 2p+T) B 4+ Ag. For 8 = 0, Aesp(T) becomes the usual cosmological constant
Ag and the above field equation reduces to the Einstein field equations with a cosmological

constant. For non-vanishing value of 5, A f;(1') becomes a time dependent quantity.

We consider the universe to be filled with a cloud of one dimensional cosmic strings with string

tension density £ aligned along the z-axis. The energy-momentum tensor for such a fluid is

given by,
T = (p+ pugtty — pguw — x0T, (7.4)
with
utuy, — —atr, =1, (7.5)
and
utx, = 0. (7.6)

p represents the energy density and is composed of the particle energy density p, and the string
tension density &, p = p, + &.

We wish to investigate dynamical aspects of the universe in f(R,T’) theory as described above

for an anisotropic Bianchi type VI, (BVI},) space-time given by (1.65).
Now, the field equations for BV I}, space-time with h = —1 in the extended theory of gravity

can be written as
B C BC 1

G, BC+A2:—a(p—E)+pﬁ+Ao, (7.7)
%‘Fg A? %12 = —ap+(p+&)PL+ Ao, (7.8)
%‘F% #—%—aer(erf)ﬁJer, (7.9)
28+;;§+gij%<w(p85+Am (7.10)
%%A (7.11)
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Here ov = 87 + 35 and we denote the ordinary time derivatives as overhead dots. With h — —1,
it is straightforward to get H, — H, from (7.11). The mean Hubble parameter becomes,
H = % — $(H, + 2H.) where a is the mean scale factor of universe. The set of field eqns.
(7.7)-(7.11) can be reduced to

6 . 27 1

H H?> 4+ — = (k+2)? [—alp — A 7.12

3(k+1) - k4 E+1)_, 1 )
H— —=(k+2 A 7.13

92k +1) 1 5
— L — = (k+ 2 —(p— Aol . 7.14
Some relevant quantities in the context of discussion of geometrical aspect of the model include
R 1(A B
> rate: = —=—=| = — NI
Hubble rate: H =3 <A + 2B> , (7.15)
A B
Expansion scalar: 6 = ul, = <Z + 2§> : (7.16)
Decelerati ter: = —1+ i l (7.17)
eceleration parameter: ¢ = T\77) )

7.3 Anisotropic nature of the model

In this case, we have considered a spatially homogeneous and anisotropic BV I;, universe with
different expansion rates along different spatial directions. The quantities that measures the
departure from spatial isotropy are the Shear scalar o? and the average anisotropy parameter

A defined respectively as

. . 2
1 1 1 (A B
2 1 2 L2} LA
o 2<§ H: 30) 3<A B) : (7.18)

A = %i(A}?)Q (7.19)

AH; = H; — H, where the directional Hubble rates are as in (2.11). In view of eq.(7.11),
2

we have I, = H,. For isotropic models these quantities 0% and A identically vanish. From
observational perspectives, the anisotropic nature of a model is usually quantified through the
estimation of the amplitude of shear & at the present epoch. Using the data from differential

microwave radiometers aboard the Cosmic Background Explorer (COBE), Bunn et al. have
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placed an upper limit to this quantity as (%)O < 3 x 1077 [224]. For the best case with Qg = 1,
they have obtained (%)pl ~107% — 107" [224]. In that work Bunn et al. [224] have concluded
that primordial anisotropy should have been fine tuned to be less than 102 of its natural value
in the Planck era. Saadeh et al. used CMB temperature and polarisation data from Planck
and obtained a tighter limit to the anisotropic expansion as (%)O < 4.7 x 1071 [186]. In view
of these recent observational limits on cosmic shear and anisotropic expansion rates, we have
adopted a simple approach in the present chapter and have assumed a proportional relationship
between the amplitude of shear ¢ and Hubble rate. This assumption leads to an anisotropic
relation among the directional Hubble rates H, = kH,. The parameter k takes care of the
anisotropic feature of the model. Obviously, & # 1 provides an anisotropic model. For the

Bianchi VI, metric, we obtain the amplitude of shear expansion in the present epoch as

o E—1

(ﬁ>o ~ V3 <m> A (7.20)
Even though tighter constraints on cosmic anisotropy are available in literature and evidences
against the departure from global isotropy are being gathered, these observational analysis
need to be fine tuned as the analysis are prior dependent (Saadeh et al. [225]). In view of
this, we wish to construct some accelerating anisotropic models keeping enough room for any
amount of cosmic anisotropy. However, we can set some constraints on the parameter & basing
upon the observationally found upper bound on (%)O. While the bounds of Bunn et al. [224]
constrain k as k = 1.000000008, that of Saadeh et al. [186] disfavours any classical finite
departure from & = 1. However, in the present work, we consider &£ = 1.0000814 that provides
(%)O = 4.7 x 107°, a result obtained in an earlier work (Mishra et al. [226]).

Within the formalism discussed here it is easy to show that A4 = % (%)2 Consequently, the
average anisotropic parameter in the present epoch can be calculated as Ay = 4.91 x 10719,
Since the large scale structure of the universe may show a departure from isotropy, the cosmic
anisotropy can be estimated from Hemispherical asymmetries in the Hubble expansion. In a
recent work, Kalus et al. [227] estimated the Hubble anisotropy of supernova type Ia Hubble
diagrams at low redshifts (z < 0.2) as ATH < 0.038 [227]. Using the value of the anisotropy
parameter k at the present epoch, we obtain the expansion asymmetry as A—HH = 0.814 x 1074,
One can note that, the predicted anisotropy from our model is well within the observationally

set up bounds (Campanelli et al. [228§]).
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7.4 EoS parameter and energy conditions

The presumed anisotropic relation among the directional Hubble rates has a simplified structure
and within this formalism it can provide us a simple approach to study the cosmic dynamics.
For a given anisotropic parameter k, the directional Hubble rates become H, — (k?’—fQ) H and
Hy = H, = () H.

The physical properties of the model such as pressure, energy density and string tension density

are obtained from the field equations (7.7)-(7.11) as

p= (e ) 165 () = () 4 8401 5 — (i) (7.21)

|
+ () o By, (122

|
p= (oo ) 18t i3 (- Bl (7.23)
= Sl(H{i?(H), (7.24)

where

S = +1 R :G(k V2V 1 2THE 4 (k + 2)2 R’(%)} , (7.25)
S = 5 +1 R :3(142 3k + 2)H + 9k + k 1)H2} R (), (7.26)
Sa(H) = (k+12)2 :9(2k+1)H2— (k + 2)2 R*(f—fz)] (7.27)

Algebraic simplification of the above expressions yield

p= () [ a I b i @y RG] B
p= (ag - 52> Gako BT+ dalk DI — (o 4 ) R (552) | (QAj 3 (7.20)
= (a l ﬁ> [%(lf) (H + 3H2) +2 R ()| (7.30)
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where

Glk.6) = sl + Dot (- D) (7.31)
by (k, B) ( P > (K 4+ k4 Da+ (K> — k — 3)3], (7.32)
boikf) =~ (7.33)
balk, B) <k12>2ﬁ%7%U03m, (7.34)
ooty = X2 (7.9

It is interesting to note that for o + 8 = 0 i.e. for 8 = —27 we have
ol B) = dalk, B) and  Galk, B) = balk, B), (7.36)

and consequently in the limit § — —2m,

p=—p. (7.37)

In other words, within the scope of the present formalism, ACDM model with p = —p can be
recovered from the model for o+ g = 0. Of course, overlapping of the present model with that

of ACDM requires a negative coupling constant.

The EoS parameter is defined as the pressure to energy density ratio, w — ':—’). For a # 44, it

is straightforward to obtain w as

Sa(H) — S5(H)
Si(H)B — Ss(H)a+ (o — B) Ay’

As is obvious from the above expression, the dynamical behaviour of the EoS parameter de-

w=—1+(a+5) (7.38)

pends on the parameters of the Hubble rate H and the coupling constant 5. For any realistic
cosmological model, the Hubble parameter is a decreasing function of time and therefore at
late phase of cosmic evolution, we expect that, the functionals Sy(H) and S3(H) will behave
alike thereby cancelling each other at late times. Therefore, for any value of 5(# — 2w, # —A4w),
the EoS parameter behaves as a cosmological constant (w = —1) at late epoch. However, at an

early epoch, the Hubble rate assumes a very high value thereby pushes w to a larger value.
In the limit § — 0, the model reduces to that of GR and the EoS parameter becomes

Sa(H) — S35(H)

:—1~|» ,
Ao — S3(H)

(7.39)
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752(7—7)
Ss(H)

equations. One can note that, similar conclusion on the dynamical evolution of w as above may

which becomes w — in the absence of a cosmological constant Ay term in the field
be derived for 5 — 0. In other words, the dynamical behaviour of the EoS parameter will not
be sensitive to the choice of the coupling constant at late times. All the trajectories of w will
behave alike at late phase of cosmic evolution. However, at an early epoch, the model will pass

through different trajectories which may be 5 dependent.

Another dynamical parameter is the effective cosmological constant A.s; that appear in the
equivalent Einstein Field equation for the extended gravity theory. Unlike the dynamical cos-
mological constant in GR, this effective cosmological constant depends on the matter field

content such as the pressure and energy density. We can obtain A.s; as

)
Aerr — | —— ) [(S1(H) + S3(H)) — 2A Ap. 7.40
i (G5 1607+ 8 — 20 + (7.40)
In terms of the Hubble parameter, we may express A.ss as
Apr— 9| S (1302 — 20| + Ao, (7.41)
¢ at B |k+2

For oo + § # 0, the magnitude of the effective cosmological constant decreases with the growth
of cosmic time. The sign of this quantity will depend on the sign of 3. Since at late times the
contribution coming from the term H + 3H? is negligible, A, #¢ reduces to (Z—jrg) Ag. Obviously
as mentioned earlier, for a vanishing coupling constant 3, it reduces to the usual time indepen-

dent cosmological constant Ag.

Since energy conditions put some additional constraints on the viability of the models we wish
to calculate the different energy conditions for the constructed model in the modified gravity
theory. In our formalism, the energy conditions are obtained as

[S5(H) — Sa(H)]

NEC : p+p— 0 ] > 0,
WEC : p— <02]52> (Ss(H)or— Sy(H)B — (0 — B) Ag| > 0,
SBC ¢ 3= (= ) (1) — 350000+ (25— 35,01) + 35,(11)
+ 2A0 > ()
(a+p3) 7
DEC = p—p () I6:() + SuC))a — (25,(11) = Su(01) + Su(11)3)
_ 2 > ()
(a+p3) 7
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These energy conditions are expressed in terms of the Hubble parameter as

NEC:p+p= a+]5 {212;39}12 + (Z i ;) 3}4 , (7.42)
WEC : p > 0, (7.43)
8009 ot | (T O Y )]
S |G Gt ) e
DEC:p-—p— — 1 52 KW(;EZ; 291 + (Z i ;)%H jQ> }
' 5 Kkzk/+k2)269ﬁ a (Z T 2)3H - %) 5} - (0,2105)‘ (7.45)

We wish to present our model in such a manner that the WEC be satisfied through out the
cosmic evolution. In order to achieve this, one has to take a balance between the parameters
of the Hubble rates and the choice of the coupling constant J. Since at late times, our model
overlaps with ACDM model, the NEC and DEC are satisfied atleast at late phase of cosmic
evolution. On the other hand, the SEC condition is violated at late times even though there
occurs some possibility that SEC be satisfied at an early epoch. In fact, a detailed analysis on
these energy condition may be possible once the cosmic dynamics is fixed up from an assumed
or derived Hubble rate.

7.5 Scalar field reconstruction

In GR, the late time cosmic acceleration phenomena is modelled usually through a scalar field
¢ which may either be quintessence like or phantom like with the EoS parameter being w > —1

or w < —1 respectively. The action for such cases is given by

So = / d'r/—g {— T am e — V(e (7.46)

where ¢ = +1 for quintessence field and ¢ — —1 for phantom field. V(¢) is the self-interacting
potential of the scalar field. The scalar field dynamically rolls down the potential and thereby
mediating for cosmic acceleration. In this work, we wish to draw a correspondence between the
geometrically modified gravity theories discussed above with that of the scalar field cosmology

and also wish to reconstruct the scalar field along with the scalar potential. In a flat Friedman
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background, the energy density and pressure are expressed by

ps — S V), (7.47)

P = 58— V(9). (7.48)

A direct correspondence of our model with the scalar field yields

€

o — 5 1S5(H) = Sy(H)]. (7.49)
Vo) = (Gt ) () 1 St} o= (25,(1) - Su(H) 1 Su(10) 0
%A (7.50)

Since the factor S3(H) — Sa(H) decreases with the cosmic evolution, we expect the magnitude
of ¢ to decrease with cosmic time. It is worth to mention here that the exact behaviour of the
scalar field will be model dependent and can be investigated with some specific evolutionary
behaviour of the Hubble rate.

7.6 Model with a hybrid scale factor

The formalism developed in this work can be used to investigate certain aspects of cosmic
dynamics. One can note that all the dynamical properties are expressed in terms of the Hubble
rate H. Therefore, if for a given dynamics the Hubble rate is known, then it becomes easy to
track the evolution history. In view of this, we employ a hybrid scale factor (HSF) R — e
in the formalism. Here a and b are the model parameters and are constrained from different
observational and physical basis. The reason behind the choice of such a scale factor is that
it simulates a transition from a decelerated universe in recent past to an accelerated one.
Moreover, the dynamical behaviour of HSF as predicted remains intermediate to that of the
power law expansion and exponential expansion. The parameters of HSF have been constrained
in some of our earlier works [229]. Transit redshift z; is an important cosmological parameter
which has been recently been constrained from an analysis of type la Supernova observation
and Hubble parameter measurements as z; = 0.806 (Jesus et al. [230], Farooq et al. [231]. In
a recent work, we have constrained the parameters of HSF as a = 0.695 and b = 0.085 so as to

obtain a transition redshift z; = 0.806. The Hubble parameter for the HSF is given by H = (J,Jr%’

so that the directional Hubble rates become H; — k?’—fQ ((1, + %) and Hy — Hz — k_i2 ((1, + %)
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Figure 7.1: (a)Deceleration parameter for HSF showing the transition redshift (b) ¢'(z) as a function of

redshift. The model does not favour a slowing down at late phase.

The deceleration parameter for HSF is ¢ = —1 + W' In Fig. 7.1(a), we have shown
the deceleration parameter ¢ which displays the signature flipping behaviour at a suitable
transit redshift. Recently, analysis from a host of Hubble parameter measurements and type
Ia Supernova observational data casts a doubt that, the universe has already reached the peak
of its acceleration and may be we are currently witnessing a possible slowing down (Shefieloo
et al. [232], Zhang and Xia [233|. Such a feature is investigated through the reconstruction of
the slope of the deceleration parameter from observations. In order to check whether the HSF
can predict such a feature we have plotted the function ¢'(z) = g—g as a function of redshift
z= %1 in Fig.7.1(b). Here Ry is the scale factor at present epoch. The figure shows that there
is no slowing down in cosmic acceleration at late phase of cosmic time. However, we find an
interesting feature where ¢'(z) peaks up at around z = 1.5. In order to have a quantitative
idea about the deceleration parameter, we have listed some of its values at different epochs in

Table-7.1.
In Fig.7.2, the dynamical aspect of the model is assessed through the plot of the FoS parameter
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Table 7.1: Deceleration parameter at different epochs

epoch 7. q

Late phase | —0.9 | -0.99
Present 0 -0.86

At transit 0.8 0

Early phase | 1.5 | 11.5

as function of redshift. In the figure w is shown for a fixed anisotropic parameter & = 1.0000814
and for three different values of the coupling constant 3. In general, the EoS parameter de-
creases from an initial positive value to behave like a cosmological constant at late phase. The
initial positive value depends on the choice of 3. As expected, at late times, the model is insen-
sitive to the choice of the coupling constant 8. However at an early epoch, the EoS parameter
evolves through different trajectories. The w trajectory for low values of 5 remains in the top
of others at early epoch. The § dependent splitting in these trajectories is visible at around
2z = 1.5. At the present epoch, the model predicts an EoS of w = 0.89 which is well within the
observational constraints. In the figure, for a comparison, we have also shown the trajectories

for two well known w parametrizations such as CPL (Chevallier and Polarski [234], Linder [235])

z(1+z)
1422

and BA (Barboza and Alcaniz [236]) given by w(z) = wo + wa7=; and w(z) = wo + wo
respectively. It is clear the comparison that, in a time zone in the range —0.25 < z < 0.5, EoS

from HSF is in close agreement with other models.

The effect of the anisotropic parameter k& on the EoS is investigated in Fig.7.3. In the figure, we
have shown the evolution of w for a given coupling constant 3 — —0.5 for three representative
values of & namely & = 0.8,1.0000814 and 1.2. We note here that, we have considered a specific
shear expansion to Hubble rate ratio in the present epoch within the observational limits and
have constrained k to be 1.0000814. This value of & shows a very little departure from its
isotropic value. Unlike that of the coupling constant, cosmic expansion anisotropy affects the
cosmic dynamics both at an early epoch and at late times. The effect of cosmic anisotropy is
almost symmetrical about z = 1.15. At epochs z < 1.15, higher the value of k, lower is the
value of w and at epochs z > 1.5, the EoS shows an opposite behaviour i.e higher the value of

k, higher is the value of w. A quantitative idea on the effect of the cosmic expansion anisotropy
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Figure 7.2: EoS parameter for three representative values of the coupling constant 8. k = 1.0000814

on the FoS can be obtained from the values listed in Table-7.2.

In order to assess a simultaneous effect of the coupling constant 5 and the cosmological constant
Ay on the EoS parameter, we have shown the variation of w at the present epoch with respect
to 8 for four different values of Ag and a given cosmic anisotropy & = 1.0000814 in Fig.7.4. The
representative values of Ag are considered as multiples of the present value of energy density
po. One should note that, the present values of the energy density pg are also § dependent. w
increases with the increase in the coupling constant for a given value of Ag. Also for a given [,
it increases with the increase in Ag. However, the net variation of w with respect to g for the
range of 3 considered in the figure for a given value of Ay decreases with an increase in Ag. To
get a quantitative view, in Table-7.3, the values of the EoS parameter at the present epoch are

given for some representative values of the cosmological constant and the coupling constant.

In Fig.7.5, the quintessence like scalar fields are reconstructed from our model for three represen-
tative values of the coupling constant 5. The anisotropy parameter k& and the time independent
cosmological constant Ag are chosen to be 1.0000814 and py respectively. As per expectation,

the scalar field is found to decrease with the cosmic expansion. In Fig. 7.6, the evolution of the
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Table 7.2: Variation of EoS parameter with anisotropy parameter

epoch 7 k=081 k=1.0000814 | k=1.2

Late phase | —0.9 | -0.932 -0.994 -1.064
Present, 0 -0.819 -0.892 -0.971

At transit 0.8 | -0.012 -0.08 -0.152

Early phase | 1.5 3.68 3.76 3.86

10 T T T T T T T T T
— k=0.8 B=-05
sd [ k=1.0000814
—k=1.2
—— ACDM
s -
25
Figure 7.3: EoS parameter for three representative values of the anisotropy parameter k. 5 = —0.5

self-interacting potential for the quintessence like scalar filed is plotted. The self-interacting

potential increases with cosmic expansion. The choice of the coupling constant 5 does not

affect the general evolutionary behaviour of these two quantities. However with an increase in

g value at a given epoch, the scalar field decreases and the potential increases.
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-0-75 T I T I T I T I T I T
k=1.0000814 A,=0
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-0.80 Ag=p, -
—— A,=10p,
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-0.95 . , . , . , . , . —
15 -1.0 -0.5 0.0 0.5 1.0 15

Figure 7.4: EoS parameter as function of coupling constant § for three representative values of the cosmological

constant . £ = 1.0000814

7.7 Diagnostic approach

There are two important diagnostic approaches used in literature. They are the determination
of the state finder pair {j, s} in the j — s plane and the Om(z) diagnostics. These geometrical
diagnostic approaches are useful tools to distinguish different DE models. While the state finder
pair involve third derivatives of the scale factor, the Om(z) parameter involve only the first

derivative of the scale factor appearing through the Hubble rate H(z).

7.7.1 State finder diagnostic

State finder pairs provide a useful tool to distinguish DE models since they involve the third

derivative of the scale factor. They are defined as

118



Section 7.7

Chapter 7

Table 7.3: EoS parameter at present epoch for different values of cosmological constant Ag

AO u)o(ﬁ - *1) u)o(ﬁ - *05) u)o(ﬁ — O) u)o(ﬁ = 05) u)o(ﬁ = 1)
0 -0.902 -0.897 -0.892 -0.888 -0.883
0o -0.898 -0.892 -0.888 -0.883 -0.879
500 -0.872 -0.869 -0.866 -0.862 -0.859
10p¢ -0.815 -0.819 -0.821 -0.822 -0.822
1000
750 -
5 500 i
=
L
250 —
0 T T T T T T T
0 10 20 30 40

H(2)

Figure 7.5: Squared Slope of Reconstructed Scalar field as a function of Hubble rate.

. R H
J s e (2130 (7.51)
J—1
; S 7.52
> 3(g_05) (7.52)

In our formalism, the deceleration parameter is a time varying quantity and therefore the state
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-1500 -
-2000 —
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H(2)

Figure 7.6: Scalar potential as a function of Hubble rate.

finder pair evolve with time. In Fig.7.7, the j — s trajectory in the 7 — s plane is shown for the
HSF considered in this work. We observe that, our model evolves to overlap with the ACDM

model in the present epoch.

7.7.2 Om(z) diagnostic

Another geometric diagnostic methods is the Om(z) diagnostic that involves first derivative
of the scale factor and therefore becomes easier to apply to distinguish between different DE
models (Sahni et al. [237]). The Om(z) parameter is defined by

E*(z) — 1
Om(z) = ——— 7.53
) = g (7.5)
where F(z) = %? is the dimensionless Hubble parameter. Here H, is the Hubble rate at the

present epoch. If Om(z) becomes a constant quantity, the DE model is considered to be a

cosmological constant model with w — —1. If this parameter increases with z with a positive
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Figure 7.7: j — s trajectory in the 7 — s plane.

slope, the model can be a phantom model with w < —1. For a decreasing Om(z) with negative

slope, quintessence model are obtained (w > —1). In Fig.7.8, the Om(z) parameter for HSF is

shown as a function of redshift. It can be observed from the figure that, the model looks like

a cosmological constant model for a substantial time zone in the recent past (0 < z < 0.7).

Before this period, the model evolves as a phantom field.

7.8 Physical parameters of the model

Some relevant geometrical parameters such as the scalar expansion , shear scalar o2, average

anisotropy parameter A4 are expressed as

0—=3H = (k+2)H,, (7.54)
1 1 1

0 = - (SH? — -0*) = —(k* — 2k + 1)H?, (7.55)
2 -3 3
1 (AHN? 2 (k- 1)°

A §< o > §<—k+2> A (7.56)

Of these geometrical parameters, # and ¢? depend on the cosmic dynamics whereas the average

anisotropic parameter depends only on k.
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Figure 7.8: Om(z) parameter.

Other dynamical parameters that depend on the higher derivatives of the scale factors are the

deceleration parameter (DP) ¢ — —1 — % and the jerk parameter j —
model they are given by

RLI;,S. For the present

3\ H,
p— ili — —— M
’ <k+2> = (7.57)
- ’ 2HZ—(2+3)
J kt2) 1 v

(7.58)
One should note that, once the dynamical behaviour of H, is known, then the evolutionary
aspects of these two parameters can be well assessed.

7.9 Conclusion

In the present work, we have constructed a cosmological model in an extended theory of gravity
by considering the functional f(R,T) = R + 2Aq + T, where Ag is a constant. This model
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reduces to the usual GR equations with a cosmological constant in the limit of a vanishing
coupling constant 5. Investigation of dynamical features of universe in such an extended theory
requires an involved calculation. In order to study certain dynamical cosmic aspects, we have
adopted an interesting approach in the present work and obtained the expressions in a more
general manner. Although the cosmological principle assuming a homogeneous and isotropic
universe is a good approximation to the present universe, it is yet to be proven in high energy
scales. In view of this, we have considered an anisotropic universe which is more general than the
FRW model for our purpose. The anisotropic model we have constructed can be applicable to
any amount of cosmic anisotropy. The anisotropic behaviour can be assessed through the value
of the anisotropy parameter at the present epoch which has been constrained as k& = 1.0000814.

ag

This value of cosmic anisotropy leads to (—)O — 4.7 x 107°. The expansion asymmetry from

H
our model is obtained to be A?H — 0.814 x 10~* which is in conformity with the observations.

A dynamically changing universe with a feature of early deceleration and late time cosmic
acceleration is simulated through a hybrid scale factor. The parameters of the HSF are con-
strained from some physical basis to reproduce the transition redshift as obtained from different
observational analysis. This HSF provides a good estimate of the deceleration parameter and
the Hubble rate at the present epoch. Recently there has been a belief that, we are at the peak
of the cosmic acceleration and the universe is now slowing down. We have investigated such a
feature of the universe employing the HSF and obtained that there is no such slowing down in

recent past or recent future.

The dynamical behaviour of the model is assessed through the calculation of the EoS parameter
employing the HSF. The EoS parameter decreases from a positive value in an early phase to a
value closer to —1 at late times. The behaviour of the EoS parameter is sensitive to the choice
of the coupling constant at late times and all the trajectories of EoS parameter for different
choices of the coupling parameter behave alike at late phase. However at an early phase, the
trajectory splits into different 5 channels. Trajectory with low values of 3 lies in the top of
all trajectories. Different diagnostic approaches have been adopted to analyse the viability
of the present constructed model. At late phase, the model looks like a ACDM model for a

substantial cosmic time zone. In the rest phase, it behaves as a quintessence field.
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CHAPTER 8

Cosmological Models with a Hybrid Scale Factor-I|

Publication details on the contents of this chapter: B.Mishra, S.K. Tripathy, Sankarsan Tarai, Modern

Physics Letters A, 33(9), 1850052 (2018).
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8.1 Introduction:

Bianchi type models with anisotropic spatial sections are interesting in the sense that they are
more general than the Friedman models. Even though there is a strong debate going on the
viability of Bianchi type models [186], these models can be useful in the description of early
inflationary phase and with suitable mechanism can be reduced to isotropic behaviour at late
times. In the framework of f(R) gravity, Shamir and co authors have investigated different
aspects of Bianchi type models [238, 239, 240]. Momeni and Gholizade obtained some cylin-
drically symmetric solutions in this theory [241]. Singh et al. [242] have demonstrated the
bouncing scenario in the frame work of f(R,T) gravity. Nagpal et al. [243] have presented
a A(t) cosmological model obtained by a simple parametrization of the Hubble parameter in
a flat FLRW space-time in f(R,T) gravity. Moraes [244] obtained some exact solutions in
higher dimensional space-time in f(R,T) gravity. Zubair and Hassan [245| have reconstructed

cosmological models for Bianchi type I, III and Kantowski-Sachs solutions.

The chapter is arranged as follow: in section 8.2, we have developed the basic field equations in
the framework of f(R,T) gravity and derived the relevant geometrical parameters. In section
8.3, the dynamics of the model is presented along with the energy conditions. The model is
compared with some other observational aspects in section 8.4 and also shown the reduction to

power law and exponential law. The conclusion is given in section &8.5.

8.2 Basic equations

In this section, we discuss briefly the formalism developed to investigate certain models in a
minimally coupling f(R,T) theory. We consider a Bianchi VI, (BVI},) space time (1.65) and
study the anisotropic nature of the model. The matter field is considered through an energy

momentum tensor
Ti; = (p+ p)usu; — pgij — pBET;. (8.1)

Here ur; = 0 and 7'r; = —u'u; = —1. In a co moving coordinate system, u = ¢ is the four
velocity vector of the fluid. x* represents the direction of anisotropic fluid (here z-direction)

and is orthogonal to u*. The energy density p is composed of energy density due to the perfect

fluid and that due to an anisotropic fluid pp. For the modified gravity model, we consider here
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a minimal coupling of geometry and curvature assuming f(R,T) = f(R) + f(T).
A specific choice of f(R,T) = AR+ T) leads to the field equations (2.4) as

81+ A

where A is a non zero scaling factor that rescales the usual field equations in GR. The factor
A(T) = p+ 4T appearing in the field equation (8.2) may be identified with a time dependent
effective cosmological constant. Here A(T) depends on the matter content and helps in pro-
viding an acceleration. Even though, the field equations in (8.2) have the same mathematical
form of GR with a time varying constant, it cannot be reduced to GR because of the non van-
ishing quantity A. However, eqn.(8.2) is a rescaled generalisation of GR equations. The field
equations (8.2) of the modified f(R,T") gravity theory, for Bianchi type VI, space-time(1.65)

can be explicitly written as

g+g+gg+%5a@mﬂ+§ (8.3)
%+%+ig%w+<w;g, (8.4)
éw-g+§g;%ap+cm;p>, (8.5)
N
g.g) (8.7)
where o — % and ordinary time derivatives are denoted by overhead dots. The field

equations eqn. (8.3)- eqn.(8.7) can be expressed in terms of H as

6 27 1 P
H H2 4+ — — —ap— r .
(k+2) + (k + 2)2 + 12 alp—ps) + 2 (8.8)
3k+1) ., 9K +k+L) , 1 p+pn
k12 (k12 FER R S B (8.9)
92k + 1) , 1 p— pB
H? - — — _ . NI
(k + 2)2 a2 P ( 2 (8.10)

Two different approaches can be adopted to get some viable cosmological models from the

above field equations. Firstly, one can chose to assume a physically acceptable equation of
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state and then the dynamics of the universe is studied. On the other hand, basing upon the
observationally chalked out dynamics of the universe, one may consider a presumed expansion
behaviour and then the background cosmology is investigated. In the present formalism, we
consider a presumed dynamical behaviour of the universe according to recent observational

data and investigate the evolutionary behaviour.

8.3 Dynamics of the model

From the field equations (8.8)-(8.10), we will be able to obtain the expressions of the physical

parameters of the model as

.. . 2

B 6 (k=1 +2ak+1HR N (2K =4k =7) + 2002 + 1) [R (8.11)
P= 0" 10?) (k1 2) R (k + 2)2 R '

IR

1 —2a’

6 2 R (52 —6a2k+1) (RY | 2R

p= at PR — ||+ , (8.12)

(1—4a?) | k+2R (k + 2)? R 1 2a

6 Eo (R R AR (3.13)
PR 2a0) [\k 12/ \R "R 120 '

Other dynamical features of the model are the EoS parameter w and the effective cosmological

constant A. Using the scale factors, these parameters are obtained as

w— —1
n AA (Lt 20)[8(k* + 3k + 25 +6(k* — 3k — 1)773_5] |
6k + 202 —3(2k — 5)Z5 + (k +2)2R 77 — 20|92k + DB — (k +2)2R
(8.14)
6 R R
N R iR2| 8.15
d+2a)(hi2) |R R2] (8.15)

In the above equations, all the physical parameters are expressed in terms of the scale factor.
Therefore, if the expansion history can be tracked by assuming a scale factor, then the back-
ground cosmology can be easily investigated. It is almost conclusive from different observational
data that, the cosmic acceleration is a recent phenomena and there must have occurred a tran-

sition from deceleration to an accelerated one in recent past. One should note that a constant
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Figure 8.1: Deceleration parameter g for HSF.

deceleration parameter cannot explain such a characteristics of the expansion. In view of this
a time varying DP is required to understand the present universe that can behave according to
the early deceleration and late time acceleration. In other words, the deceleration parameter
should be positive at some initial epoch and after a signature flipping at some point of time,
it becomes negative to describe an accelerated universe. Such a deceleration parameter can be
obtained by a hybrid scale factor (HSF), R — e#®, proposed in some earlier works [226, 229].
The time varying deceleration parameter as obtained from a HSF is given by ¢ = —1 + W.
It behaves as ¢ ~ —1 + % when ¢+ — 0 and as t — oo, it becomes ¢ ~ —1. The positive
constant parameters of HSF, a and b can be constrained from the cosmic transit behaviour.
Mishra and Tripathy [229] have constrained b from some physical and plausible arguments to
be in a range 0 < b < % However, in the present work, we chose a = 0.695 and b = 0.085
so that it can predict a transition redshift of z; = 0.806. This value of transition redshift has
been obtained by Jesus et al. [230|. Similar results have also been obtained from an analysis
of Hubble parameter data (Farooq et al. [231]). In Fig. 8.1, we have plotted the deceleration
parameter obtained from the HSF that shows a transition at a redshift z; = 0.806.

128



Section 8.4 Chapter 8

Assuming the HSF, we can express the directional Hubble parameters as, H, — k?’—g(n + l—t’) and

Hy — H, — 5+ %) The mean Hubble rate becomes H — a + 2. The directional scale
factors can be obtained as A — e#3¢%2 and B — ' — eF2¢%2. The kinematical parameters

of the model with the presumed HSF are obtained as

30

E—1\° b\ >

It is now straight forward to obtain the expressions of the pressure p, energy density p and the

energy density of the anisotropic fluid pp from egs. (8.11)-(8.12) using the HSF:

B 6 b(3bg252 — QZ51) + 3atg252((1,t + 2[)) 1 2 _6akt _ 6bk
P T { (k +2) P2 T (8.18)
6 303 — 20(k + 2) + 3atgs(at + 2b)] 1 2 cakt, 6ok
P T aa { (k + 2)2 } PRI L (8.19)
~6(k— 1) [b(3b— 1) + 3at(at +2b)] 1 4 sekt _ebk
PB T o0 { T2 2T T oaf EEAEE (8.20)

In the above equations, we have redefined the constants as ¢, = (2 — k — k%) — 2a(k* + 3k + 2),
s =(3+k—k*)—2a(k*+k+1) and ¢3 = 3 — 2a(2k + 1). Consequently, the EoS parameter

w and A are obtained as

w— —1
. [ 3(1 + 200) (3b[3b(k* — k) — (k? + 3k + 2)] + 9(k2 — k)at(at + 2b)) (8.21)
3[362¢s — 2b(k 1+ 2) 1 3atds(at + 20)] + (1 + 2a)(k + 2)%e E5 = |
6 1
A= [b(3b— 1) -+ 3at(at + 2b)] (8.22)

(k+2)(1 + 20) 2

8.4 Comparison with CPL and BA

In order to assess the dynamical aspects of the model, we have plotted the EoS parameter w
as a function of redshift in Fig. 8.2. In this figures, we have fixed the anisotropic parameter as
k = 1.1. The HSF parameters as constrained from recent transition redshift data are considered
for plotting the figure. w decreases from a positive value in the early phase to behave as a pure

cosmological constant at late phase of cosmic time. The behaviour of the EoS parameter of
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Figure 8.2: Evolutionary behaviour of w of HSF. The EoS parameters as calculated from the CPL parametriza-
tion (dotted curve), BA parametrization (dash-dotted curve) and the prediction of ACDM model ( solid black

line) are shown for comparison.
HSF model has been compared with that of some well known EoS parametrizations such as the

Chevallier-Polarski-Linder (CPL) (Chevallier and Polarski [234], Linder [235]) and Barboza-

Alcaniz(BA) (Barboza and Alcaniz [236]) parametrizations given as

z

CPL = ——— .2
w(z) wo + w, 7 (8.23)
z2(1+ =z
BA: w(z) = wp era%’ (8.24)

where wy and w, are constants. The redshift z is defined through 1 + z — %1 where Rg is the

scale factor at the present epoch.

In the low redshift region, predictions from these parametrizations are more or less the same
as that of our model with HSF. However, at high redshift, FoS parameter from HSF rises with
greater slope than these parametrizations. Since the HSF has a power law behaviour at early

times and an exponential behaviour at late times, the same has been reflected in the figure. At
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late epoch, w coincides with that of the ACDM model. At the present epoch, this model gives
an w — —0.929 which is close to that of the ACDM model i.e w — —1 which is consistent with
the observational bounds. It is to mention here that, the EoS from HSF, may have different
trajectories if we constraint the HSF parameters from some other physical basis but at late

times all those trajectories overlap with that of ACDM model.

The interesting feature of the dynamical properties of the model with HSF is that, the expres-
sions as obtained above are more general than the power law or the exponential expansion. It
is worth to mention here that, in most of the cosmological models, authors use either a power
law scale factor or an exponential one. These two behaviours appear as the two extreme cases
of HSF. In fact, the dynamical evolution track of the EoS parameter for HSF lies in between
the two extreme tracks predicted by a power law and an exponential scale factor. From the set
of the equations (8.18)-(8.22), we can always recover the relevant equations for the two extreme

cases.

8.4.1 Case-I: a =0

The power law behaviour can be recovered from HSF, if we consider a = 0 in the eqns. (8.18)-
(8.22), so that we can obtain the required expressions for pressure, energy density, energy

density of the anisotropic fluid, EoS parameter and the effective cosmological constant:

S 6 5(3[)@252 — Qﬁ]) + 3atg252((1,t -+ 2[)) l B 2 ef%tf%ﬁ
1 — 4a? (k+2)? 2 12«
6b(3bds — 1) ] 1 2
- — t 8.25
{(14(12)(/¢+2)2 2 1-20 (8.25)
2
P 6 3b s — 2b(k + 2) + 3atps(at + 2b) l . 2 okt o
1 — 402 (k+2)? 21— 2
18625 — 12b(k +2)] 1 2
- I - 8.26
{ (1 — 4a2)(k | 2)2 }t2+1—2a o (8.26)
S0 1) (3D 1) ¥ Satat 4 )] 14 g
1 2a k12 21 24
6b(3h— Dk~ 1)1 4w
_ - t® 8.27
{(12a)(k+2) 2 120 (8:27)
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3[362s — 2b(k 1+ 2) + 3atds(at + 20)] + (1 + 2a)(k + 2)% 3T

. [ 3(1 + 200) (3b[3b(k> — k) — (k* + 3k + 2)] + 9(k — k)at(at + 2b)) ]

b[3b(K — k) — (K + 3k + 2)
e ) 8.28
+9(1 + 2a) 33623 — 20(k -+ 2)] +(1+20/)(k+2)2t%k+k2+—23%2] ( )
6 1
A= (k + 2)(1 + 2a) [b(3b — 1) + 3at(at + 2b)] 3
B 6b(3b —1)) ] 1
N {(k+2)(1+2a)} I2h (5.29)

A substitution of b = % in the above equations recovers the assumption of a power law scale

factor behaving like R — % as in chapter 5.

8.4.2 C(Case-1I: b=0

If one considers b = 0 in the HSF, de Sitter model with an exponential expansion can be

achieved. In such a case the dynamical parameters of the model become

S 6 5(3[)@252 — Qﬁ]) + 3atg252((1,t -+ 2[)) l B 2 eii(f;tf%ﬁ
1 — 4a? (k4 2)? 21— 2
18(]/2¢2 2 _ bakt
_ _ == 8.30
040k 12? 1 20 (8.30)
2
p— 6 3b QZS3 — Qb(k + 2) -+ 3at¢3(at + 26) l 2 ef?c(f; ti%rk?
1 — 402 (k + 2)? 21— 2«
18(1,2@53 2 _ bakt
_ ST 8.31
(1—4@2)(l€+2)2+]—2@€ ™ ( )
or— 6(]? — 1) b(gb — 1) + 3(1,75((1,75 + 2[)) l B 4 eiiﬁ?’ﬁt*%
1 —2x k+ 2 21— 2«
2 - t
B 18a*(k — 1) 4 eiiﬁ, (3.32)
(1-2a)(k+2) 1-2a
w=—1

Gkt 2(k12 3bk)

30203 — 2b(k + 2) 4 Batps(at + 2b)] + (1 4 2a)(k + 2)2e w2t #12
14 27(1 + 20)(k* — k)a?
9025 + (1 + 20)(k + 2)2e 52

. [ 3(1+ 2a) (3b[3b(k — k) — (K2 + 3k + 2)] + 9(k* — K)at(at + 2b))
3]

(8.33)
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6 |
A= b—1) + 3at(at + 2b)] —
(5 2)(1 1 20) (30— D)+ Satlal 4 20)] 5

18a?
T (k+2)(1+2a) (8.3)

In the exponential model, w increases from some higher negative value in the phantom do-
main in an initial epoch to behave like a cosmological constant at a late epoch. The effective

cosmological constant becomes a time independent quantity for this model.
Different energy conditions like the Null energy condition (NEC) (p + p > 0), Strong energy
condition (SEC) (p + 3p) and the Dominant energy condition (DEC) (p — p) can also be

investigated in the model with HSF. Different energy conditions as obtained in this model are

.. . 2
6 (I+20)(k+ DR 20+20)(K -3k—1) (R
PP T e kt2 R (k + 2)2 R
6 [3(¢s—¢2)(at +0)° — b2k +4— )] L (3.35)
1 4a? | (k + 2)2 12’ '
B . . 2
gy O 3k~ 1+ 20(k+ 1) B (67 — 14k — 16 + Ga(2k* — 2k)) (R
PP = e kot 2 R (k + 2)2 R
A g
1 — 2«
6 3(¢s — 3da){at +b)* —b(2k +4—341)] 1 (5.36)
1 402 (k 1 2)2 2 '
4 _ Bakt _ 6bk
_ T 20/6 E+2 ¢ k+2’
B .. LN 2
6 3ok —20(k+ )R (27 42k +12) - 200287 +6k+4) (R
PP T 02 k2 R (k +2)? R
+142(1R£’
6 [3(dsta)(at +b)” b2k + 4+ )] 1 (8.37)
1 4a? | (k 1 2)2 2 '
4 _ 6akt _ 6bk
kT2 1 k+2
1 —2a

The curves of the energy conditions will remain intermediate between the two extremes cases:
a =0 case and b = 0 case. It is to mention here that the energy conditions of the two extreme

cases can well be recovered by using these extreme values of the HSF parameters.
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8.5 Conclusion

In this chapter, we have developed a general formalism to investigate Bianchi VI, universe
in an extended gravity theory where the geometrical part of the action integral is modified.
The Ricci Scalar R is replaced by a rescaled functional A(R + T') assuming the geometry to
couple with a bit of matter minimally in two cases. The motivation behind this is to obtain
a set of field equations that can look like the Finstein Field equations with a time varying
cosmological constant. However, it is not possible to reduce the field equations to Einstein
Field equations because of the non-vanishing nature of the scaling constant A. Keeping in view
of the recent observations predicting an accelerated universe at a late epoch that signals a
possible transition from an initial state of deceleration, we employ a hybrid scale factor both
cases. The HSF simulates a signature flipping behaviour of DP. The parameters of the HSF
as have been constrained from some recent estimates of transition redshift. The HSF contains
two factors, an exponential and a power law functions of the scale factor. While the power law

factor dominates at an early cosmic epoch, the exponential part dominates at the late times.

Within the formalism developed here, we have derived the general expressions of the dynamical
features of an anisotropic universe using the HSF. These expressions are more general in the
sense that, the power law and exponential behaviour appear as the two extreme cases. In first
case, the dynamical behaviour of the properties remain intermediate to these two extreme cases.
In order to assess the dynamical aspects of the model, we have plotted the EoS parameter
w as a function of redshift and compared its behaviour with the CPL parametrization, BA
parametrization and ACDM model. The EoS evolves with redshift and behaves as a pure
cosmological constant at late phase of cosmic time. The rate of dynamical evolution is greatly
affected with the change in the HSF parameters. However in the present work with parameters
constrained from transition redshift, we obtain a quintessence like behaviour. This shows that
the modified gravity theory reproduces quintessence phase of evolution. In second case, we
have studied the anisotropic nature of the model using the hybrid law. Also, two important

diagnostic approaches studied using HSW.

We have also calculated the energy conditions for both cases that can be suitably reduced to
the results already obtained in some earlier works. Since the present approach with a hybrid
scale factor appears to be more general than that with a power law or an exponential scale

factor, the results of the present study may be more natural and be closer to observations.
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Summary and scope for future research
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Before, concluding this thesis or discussing future perspective of the work presented here, let
us attempt to summarize in this section some of the results presented so far. The motivation
of this thesis with different type of modified gravity theory has been thoroughly discussed in
chapter- 1. In chapter-2 to chapter-8, a number of specific models using Bianchi universe in
f(R,T) theory are introduced and the dynamical behaviour are focused on the cosmological

and astrophysical aspects of this theory and on their viability.

As mentioned in the introduction, the f(R,T) theory is introduced as tools of an action ge-
ometry that could help us to examine how much and in which ways one can deviate from GR.
The prime interest is to construct cosmological models which can be confronted with recent
observations concerning the late time cosmic speed up phenomenon without the need of DE.
In fact, cosmological models in the framework of GR require either a cosmological constant or
some scalar fields may be with an usual negative kinetic energy term in the Lagrangian which
are called ghost fields. Cosmological constant is well known to be entangled with the fine tun-
ing and cosmic coincidence problem. Therefore in the present thesis we have constructed some
viable ghost free cosmological models in the framework of a class of modified gravity theory
dubbed as the f(R,T) theory where the Einstein-Hilbert contains terms of matter-geometry
coupling in place of a Ricci Scalar and does not contain any additional dynamical degrees of

freedom.

The late time cosmic speed up phenomenon is taken care of by the extra modification of the
geometry part of the field equation. In all of our models, we have considered some specific
forms of the functional f(R,T) so that under suitable choices of the model parameters, the
theory can be reduced to that of GR. Through out the thesis our emphasis is to present the
formalism in a simplified and general manner so that, the inference on certain physical aspects
of the model can be easily assessed. The results obtained from our models are confronted and
compared with the recent observations. In most of the chapters of the thesis, we have presented
the dynamical parameters of the universe in terms of the Hubble parameter or the scale factor.
Therefore, it becomes easy to reach to a conclusive inference. In this approach, if a specific
dynamical behaviour of the Hubble rate or the scale factor is known, then one can easily track
the evolution history of the universe through the calculation of the EoS parameter and the
DP. The viability of the constructed models are tested through certain diagnostic approaches
such as the calculation of the state finder pair and the Om(z) diagnostic. In addition to the
geometrical diagnostic approaches, the energy conditions also put some additional constraint
on the models. We have discussed the energy conditions for all the constructed models and

the dynamical evolution of the energy conditions for different choices of the model parameters
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have been discussed. In light of this, it is probably preferable to share that this theory is most

advance theory to investigate the accelerating models without help of DE.

The present universe is observed mostly to be isotropic and homogeneous and can be well
described by an FRW model. However, we have incorporated some degree of anisotropy in
the spatial section of the model to take into account the possibility of cosmic anisotropic
expansion as has been predicted in recent time. In view of this, the models are presented
in the background of an anisotropic Bianchi VI, metric. One interesting thing about our
models is that, these models allow any amount of anisotropy possible including the minimal
one resembling an almost isotropic universe. In this view, our model is more general than the
FRW model and is interesting to investigate in the framework of modified gravity. The exponent
h in the Bianchi VI, metric can be either 1,0, —1. Considering these choices of the exponent,
we have analysed the dynamical aspects of the models in chapter 2 and 3 and obtained that,
a viable model can be achieved for the choice h = —1,0. Tripathy and co workers have also
obtained similar conclusion in favour of h — —1 based on the Tryon’s conjecture advocating a
null energy condition of isolated universe. In view of this, in rest of the works presented in the

thesis, we concentrate only on this particular value of the exponent.

In general, the deceleration parameter is a dynamical quantity which may evolve from a positive
value in the early phase of cosmic evolution to a negative value at late phase. This leads to
a cosmic transition from a decelerated universe to an accelerated one. We have simulated a
cosmic transit phenomenon through a hybrid scale factor. The hybrid scale factor is a product
of a power law expansion scale factor and an exponential scale factor. The parameters of the
hybrid scale factor have been constrained in the work from different physical basis. Also we
have discussed under what situation, the model can either be reduced to a power law case or to
a de Sitter space. Besides the consideration of a hybrid scale factor, we have considered some
models for constant negative deceleration parameter simulated by a power law scale factor in

chapter 2 to chapter 6.

We have reconstructed an anisotropic universe based on the modified gravity considering a
power law expansion of the universe. The effect of the anisotropy on the evolutionary be-
haviour of the EoS parameter and the cosmological constant have been investigated for a
simple extended gravity model with a cosmological constant where the functional is given by
F(R,TY = R+ Ao + 8T. The effect of coupling parameter on the dynamical evolution of the
universe is assessed. An increase in the coupling parameter a higher value of the EoS parameter

is obtained. Similarly, with an increase in the cosmic anisotropy the EoS parameter is found
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to increase. The work has been revisited with a hybrid scale factor. It is observed that the
EoS parameter and the energy conditions are affected by the anisotropic parameter and model
parameters. One interesting observation is that, with the increase in the anisotropy, the energy
conditions are altogether altered. In otherwords, at the early phase, the model satisfies the SEC
whereas for an increased anisotropy, at late there is a violation of SEC. In these models we have
seen that, the models favour quintessence phase. We have reconstructed scalar fields from the
constructed hybrid scale factor expansion in the frame work of the extended gravity and the
reconstructed scalar fields slowly rolls from an early time to late phase of cosmic evolution. We
have also investigated the effect of an one dimensional magnetic field on the cosmic dynamics
in this extended gravity model. It is found that, the cosmic dynamics is greatly influence in

presence of the magnetic field. Our models are compared with the well established models like
CPL and BA.

In another choice of the functional i.e. f(R,T) = A(R+T), the model has a rescaled functional.
Eventhough such a model can provide beautiful results concerning the late time cosmic speed
up phenomenon it can not be reduced to GR. The interesting thing about this model is that,
the rescaled functional provides a simplified structure of the field equations and can be elegant
in reproducing results comparable to observations. The field equations are obtained in general
formalism. In these models, the EoS parameter evolves in quintessence region to overlap with a
cosmological constant at late times. Models with extra dissipative such as bulk viscous matter
is considered in this model to assess their effect on the dynamics of the universe. It is observed

that, the presence of bulk viscosity does not affect the dynamics greatly.

In future, the problem can be extended to study the dynamical behaviour of the cosmological
models using the scale factors of trigonometric, logarithmic function and hyperbolic functions.
Since two types of modified gravity models in the class of f(R,T’) gravity theory have obtained
and the dynamical parameters are obtained in most general form in terms of the scale factor
or the Hubble rate, there is enough scope in our models for investigation of bouncing universe,
cyclic universe etc. The anisotropic behaviour can be further studied to check the possibility
of getting a better range. In this thesis, we have only considered the Bianchi type VI, space
time, which is itself is an anisotropic expansion. Hence, other Bianchi type space-time both
diagonal and non-diagonal can also be examined. The same formalism can be used to test the
anisotropic behaviour with the isotropic FRW space-time to check whether anisotropic arises

from isotropic background or not.
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CHAPTER 9

Summary and scope for future research
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Before, concluding this thesis or discussing future perspective of the work presented here, let
us attempt to summarize in this section some of the results presented so far. The motivation
of this thesis with different type of modified gravity theory has been thoroughly discussed in
chapter- 1. In chapter-2 to chapter-8, a number of specific models using Bianchi universe in
f(R,T) theory are introduced and the dynamical behaviour are focused on the cosmological

and astrophysical aspects of this theory and on their viability.

As mentioned in the introduction, the f(R,T') theory is introduced as tools of an action ge-
ometry that could help us to examine how much and in which ways one can deviate from GR.
The prime interest is to construct cosmological models which can be confronted with recent
observations concerning the late time cosmic speed up phenomenon without the need of DE.
In fact, cosmological models in the framework of GR require either a cosmological constant or
some scalar fields may be with an usual negative kinetic energy term in the Lagrangian which
are called ghost fields. Cosmological constant is well known to be entangled with the fine tun-
ing and cosmic coincidence problem. Therefore in the present thesis we have constructed some
viable ghost free cosmological models in the framework of a class of modified gravity theory
dubbed as the f(R,T) theory where the Einstein-Hilbert contains terms of matter-geometry
coupling in place of a Ricci Scalar and does not contain any additional dynamical degrees of

freedom.

The late time cosmic speed up phenomenon is taken care of by the extra modification of the
geometry part of the field equation. In all of our models, we have considered some specific
forms of the functional f(R,T) so that under suitable choices of the model parameters, the
theory can be reduced to that of GR. Through out the thesis our emphasis is to present the
formalism in a simplified and general manner so that, the inference on certain physical aspects
of the model can be easily assessed. The results obtained from our models are confronted and
compared with the recent observations. In most of the chapters of the thesis, we have presented
the dynamical parameters of the universe in terms of the Hubble parameter or the scale factor.
Therefore, it becomes easy to reach to a conclusive inference. In this approach, if a specific
dynamical behaviour of the Hubble rate or the scale factor is known, then one can easily track
the evolution history of the universe through the calculation of the EoS parameter and the
DP. The viability of the constructed models are tested through certain diagnostic approaches
such as the calculation of the state finder pair and the Om(z) diagnostic. In addition to the
geometrical diagnostic approaches, the energy conditions also put some additional constraint
on the models. We have discussed the energy conditions for all the constructed models and

the dynamical evolution of the energy conditions for different choices of the model parameters
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have been discussed. In light of this, it is probably preferable to share that this theory is most

advance theory to investigate the accelerating models without help of DE.

The present universe is observed mostly to be isotropic and homogeneous and can be well
described by an FRW model. However, we have incorporated some degree of anisotropy in
the spatial section of the model to take into account the possibility of cosmic anisotropic
expansion as has been predicted in recent time. In view of this, the models are presented
in the background of an anisotropic Bianchi VI, metric. One interesting thing about our
models is that, these models allow any amount of anisotropy possible including the minimal
one resembling an almost isotropic universe. In this view, our model is more general than the
FRW model and is interesting to investigate in the framework of modified gravity. The exponent
h in the Bianchi V I}, metric can be either 1,0, —1. Considering these choices of the exponent,
we have analysed the dynamical aspects of the models in chapter 2 and 3 and obtained that,
a viable model can be achieved for the choice h = —1,0. Tripathy and co workers have also
obtained similar conclusion in favour of h = —1 based on the Tryon’s conjecture advocating a
null energy condition of isolated universe. In view of this, in rest of the works presented in the

thesis, we concentrate only on this particular value of the exponent.

In general, the deceleration parameter is a dynamical quantity which may evolve from a positive
value in the early phase of cosmic evolution to a negative value at late phase. This leads to
a cosmic transition from a decelerated universe to an accelerated one. We have simulated a
cosmic transit phenomenon through a hybrid scale factor. The hybrid scale factor is a product
of a power law expansion scale factor and an exponential scale factor. The parameters of the
hybrid scale factor have been constrained in the work from different physical basis. Also we
have discussed under what situation, the model can either be reduced to a power law case or to
a de Sitter space. Besides the consideration of a hybrid scale factor, we have considered some
models for constant negative deceleration parameter simulated by a power law scale factor in

chapter 2 to chapter 6.

We have reconstructed an anisotropic universe based on the modified gravity considering a
power law expansion of the universe. The effect of the anisotropy on the evolutionary be-
haviour of the EoS parameter and the cosmological constant have been investigated for a
simple extended gravity model with a cosmological constant where the functional is given by
f(R,T) = R+ Ay + BT. The effect of coupling parameter on the dynamical evolution of the
universe is assessed. An increase in the coupling parameter a higher value of the EoS parameter

is obtained. Similarly, with an increase in the cosmic anisotropy the EoS parameter is found
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to increase. The work has been revisited with a hybrid scale factor. It is observed that the
EoS parameter and the energy conditions are affected by the anisotropic parameter and model
parameters. One interesting observation is that, with the increase in the anisotropy, the energy
conditions are altogether altered. In otherwords, at the early phase, the model satisfies the SEC
whereas for an increased anisotropy, at late there is a violation of SEC. In these models we have
seen that, the models favour quintessence phase. We have reconstructed scalar fields from the
constructed hybrid scale factor expansion in the frame work of the extended gravity and the
reconstructed scalar fields slowly rolls from an early time to late phase of cosmic evolution. We
have also investigated the effect of an one dimensional magnetic field on the cosmic dynamics
in this extended gravity model. It is found that, the cosmic dynamics is greatly influence in

presence of the magnetic field. Our models are compared with the well established models like
CPL and BA.

In another choice of the functional i.e. f(R,T) = A(R+T), the model has a rescaled functional.
Eventhough such a model can provide beautiful results concerning the late time cosmic speed
up phenomenon it can not be reduced to GR. The interesting thing about this model is that,
the rescaled functional provides a simplified structure of the field equations and can be elegant
in reproducing results comparable to observations. The field equations are obtained in general
formalism. In these models, the EoS parameter evolves in quintessence region to overlap with a
cosmological constant at late times. Models with extra dissipative such as bulk viscous matter
is considered in this model to assess their effect on the dynamics of the universe. It is observed

that, the presence of bulk viscosity does not affect the dynamics greatly.

In future, the problem can be extended to study the dynamical behaviour of the cosmological
models using the scale factors of trigonometric, logarithmic function and hyperbolic functions.
Since two types of modified gravity models in the class of f(R,T') gravity theory have obtained
and the dynamical parameters are obtained in most general form in terms of the scale factor
or the Hubble rate, there is enough scope in our models for investigation of bouncing universe,
cyclic universe etc. The anisotropic behaviour can be further studied to check the possibility
of getting a better range. In this thesis, we have only considered the Bianchi type VI, space
time, which is itself is an anisotropic expansion. Hence, other Bianchi type space-time both
diagonal and non-diagonal can also be examined. The same formalism can be used to test the
anisotropic behaviour with the isotropic FRW space-time to check whether anisotropic arises

from isotropic background or not.

138



Bibliography

[1] M. A. H. MacCallum, A. H. Taub: Commun. Math. Phys., 30, 153-169 (1973).

[2] E. Hubble: Proc. N. A. S.,15(3), 168-173 (1929).

[3] H. Bondi, T. Gold: Mon. Not. R. Astron. Soc., 108(3), 252-270 (1948).

[4] F. Hoyle: Mon. Not. R. Astron. Soc., 109, 365 (1949).

[5] R. A. Alpher, R. C. Herman: Phys. Rev. 75, 1089 (1949).

[6] A. A. Penzias, R. W. Wilson,: Astrophys. J. 142, 419-421 (1965).

[7] G. F. Smoot et al.: Astrophys. J., 360, 685 (1990).

[8] G. F. Smoot et al.: Astrophys. J., 396, L1-L5 (1992).

[9] U.S. Nilsson, C. Uggla, J, Wainwright, W.C. Lim: Astrophys. J., 521: L1-L3 (1999).
[10] A. G. Riess et al.: Astron. J., 116, 1009 (1998).
[11] B. P. Schmidt et al.: Astrophys. J., 507 46 (1998).

[12] S. J. Perlmutter et al.: Astrophys. J., 517, 565-586 (1999).

139



