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Abstract

The present thesis is dedicated to study the modified theory of gravity, in particular the f(R, T )

gravitational theory. This modified theory of gravitation can be considered as a simple and

important modifications or generalization of Einstein’s General Relativity(GR) to explain the

accelerated expansion of the universe. The main focus in this thesis is to construct cosmological

models, which can be confronted with observations concerning late time cosmic speed up phe-

nomena. This phenomena has been taken care by modifying the geometrical part of the field

equations. A simple and general mathematical formalism has been presented in the thesis, so

that the analysis and interpretation of the physical aspects of the cosmological model can be eas-

ily assessed. We have considered the specific form of f(R, T ) gravity such as f(R, T ) = λR+λT

and f(R, T ) = R + 2f(T ) in order to construct the cosmological models of the universe.

We have incorporated some degree of anisotropy in the spatial section of the model to take

into account the possibility of cosmic anisotropic expansion, hence the models are presented

with Bianchi type V Ih space-time. Within the formalism presented, the dynamical parameters

of the universe are expressed in terms of the scale factor. We have discussed the models with

power law cosmology, de Sitter space and hybrid scale factor. The deceleration parameter (DP)

may evolve from a positive value in the early phase of cosmic evolution to negative value at late

phase, which leads to the cosmic transition. Through this hybrid scale factor, the cosmic transit

phenomenon has been simulated. Hence, the cosmological models presented in the thesis are

either with constant DP or time varying DP.

Based on the modified gravity with power law and hybrid scale factor, we have reconstructed the

anisotropic universe and the effect of anisotropy in the evolutionary behaviour of the parameters

have been investigated. The effect of coupling parameter on the dynamical evolution of the

universe is also assessed. The effect of viscous fluid, electromagnetic field on the dynamics

of the universe are also studied. The viability of the cosmological models presented in the

thesis are tested through the state finder pair and Om(z) diagnostic. In addition to this,

the energy conditions, which are the geometrical diagnostic approach are also discussed. The

models presented in the thesis allow any amount of anisotropy including the minimal one that

resembles an almost isotropic universe.
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Notation

We have listed below some of the basic notations used in the thesis. We have made all attempts

to keep it as standard as possible. In some places, we have used non standard notation because

of the use of non metric connections. We have defined all the notaions used in the thesis at its

first appearance.

gij : Lorentzian Metric

g : Determinant of gij

Γλij : General Affine Connection (Christoffel Symbols)

{
λ

ij
} : Levi-Civita connection

∇i: Co-variant derivative w.r.t. Levi- Civita connection

(ij) : Symmetrization over the indices i and j

[ij] : Anti-symmetrization over the indices i and j

Rλ
σij : Riemann tensor

Rij : Ricci tensor

R : Ricci scalar

SM : Matter action

Tij : Stress-energy tensor

∆λ
ij : Hyper-momentum
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CHAPTER 9

Summary and scope for future research
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Before, concluding this thesis or discussing future perspective of the work presented here, let

us attempt to summarize in this section some of the results presented so far. The motivation

of this thesis with different type of modified gravity theory has been thoroughly discussed in

chapter- 1. In chapter-2 to chapter-8, a number of specific models using Bianchi universe in

f(R, T ) theory are introduced and the dynamical behaviour are focused on the cosmological

and astrophysical aspects of this theory and on their viability.

As mentioned in the introduction, the f(R, T ) theory is introduced as tools of an action ge-

ometry that could help us to examine how much and in which ways one can deviate from GR.

The prime interest is to construct cosmological models which can be confronted with recent

observations concerning the late time cosmic speed up phenomenon without the need of DE.

In fact, cosmological models in the framework of GR require either a cosmological constant or

some scalar fields may be with an usual negative kinetic energy term in the Lagrangian which

are called ghost fields. Cosmological constant is well known to be entangled with the fine tun-

ing and cosmic coincidence problem. Therefore in the present thesis we have constructed some

viable ghost free cosmological models in the framework of a class of modified gravity theory

dubbed as the f(R, T ) theory where the Einstein-Hilbert contains terms of matter-geometry

coupling in place of a Ricci Scalar and does not contain any additional dynamical degrees of

freedom.

The late time cosmic speed up phenomenon is taken care of by the extra modification of the

geometry part of the field equation. In all of our models, we have considered some specific

forms of the functional f(R, T ) so that under suitable choices of the model parameters, the

theory can be reduced to that of GR. Through out the thesis our emphasis is to present the

formalism in a simplified and general manner so that, the inference on certain physical aspects

of the model can be easily assessed. The results obtained from our models are confronted and

compared with the recent observations. In most of the chapters of the thesis, we have presented

the dynamical parameters of the universe in terms of the Hubble parameter or the scale factor.

Therefore, it becomes easy to reach to a conclusive inference. In this approach, if a specific

dynamical behaviour of the Hubble rate or the scale factor is known, then one can easily track

the evolution history of the universe through the calculation of the EoS parameter and the

DP. The viability of the constructed models are tested through certain diagnostic approaches

such as the calculation of the state finder pair and the Om(z) diagnostic. In addition to the

geometrical diagnostic approaches, the energy conditions also put some additional constraint

on the models. We have discussed the energy conditions for all the constructed models and

the dynamical evolution of the energy conditions for different choices of the model parameters
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have been discussed. In light of this, it is probably preferable to share that this theory is most

advance theory to investigate the accelerating models without help of DE.

The present universe is observed mostly to be isotropic and homogeneous and can be well

described by an FRW model. However, we have incorporated some degree of anisotropy in

the spatial section of the model to take into account the possibility of cosmic anisotropic

expansion as has been predicted in recent time. In view of this, the models are presented

in the background of an anisotropic Bianchi V Ih metric. One interesting thing about our

models is that, these models allow any amount of anisotropy possible including the minimal

one resembling an almost isotropic universe. In this view, our model is more general than the

FRW model and is interesting to investigate in the framework of modified gravity. The exponent

h in the Bianchi V Ih metric can be either 1, 0,−1. Considering these choices of the exponent,

we have analysed the dynamical aspects of the models in chapter 2 and 3 and obtained that,

a viable model can be achieved for the choice h = −1, 0. Tripathy and co workers have also

obtained similar conclusion in favour of h = −1 based on the Tryon’s conjecture advocating a

null energy condition of isolated universe. In view of this, in rest of the works presented in the

thesis, we concentrate only on this particular value of the exponent.

In general, the deceleration parameter is a dynamical quantity which may evolve from a positive

value in the early phase of cosmic evolution to a negative value at late phase. This leads to

a cosmic transition from a decelerated universe to an accelerated one. We have simulated a

cosmic transit phenomenon through a hybrid scale factor. The hybrid scale factor is a product

of a power law expansion scale factor and an exponential scale factor. The parameters of the

hybrid scale factor have been constrained in the work from different physical basis. Also we

have discussed under what situation, the model can either be reduced to a power law case or to

a de Sitter space. Besides the consideration of a hybrid scale factor, we have considered some

models for constant negative deceleration parameter simulated by a power law scale factor in

chapter 2 to chapter 6.

We have reconstructed an anisotropic universe based on the modified gravity considering a

power law expansion of the universe. The effect of the anisotropy on the evolutionary be-

haviour of the EoS parameter and the cosmological constant have been investigated for a

simple extended gravity model with a cosmological constant where the functional is given by

f(R, T ) = R + Λ0 + βT . The effect of coupling parameter on the dynamical evolution of the

universe is assessed. An increase in the coupling parameter a higher value of the EoS parameter

is obtained. Similarly, with an increase in the cosmic anisotropy the EoS parameter is found
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to increase. The work has been revisited with a hybrid scale factor. It is observed that the

EoS parameter and the energy conditions are affected by the anisotropic parameter and model

parameters. One interesting observation is that, with the increase in the anisotropy, the energy

conditions are altogether altered. In otherwords, at the early phase, the model satisfies the SEC

whereas for an increased anisotropy, at late there is a violation of SEC. In these models we have

seen that, the models favour quintessence phase. We have reconstructed scalar fields from the

constructed hybrid scale factor expansion in the frame work of the extended gravity and the

reconstructed scalar fields slowly rolls from an early time to late phase of cosmic evolution. We

have also investigated the effect of an one dimensional magnetic field on the cosmic dynamics

in this extended gravity model. It is found that, the cosmic dynamics is greatly influence in

presence of the magnetic field. Our models are compared with the well established models like

CPL and BA.

In another choice of the functional i.e. f(R, T ) = λ(R+T ), the model has a rescaled functional.

Eventhough such a model can provide beautiful results concerning the late time cosmic speed

up phenomenon it can not be reduced to GR. The interesting thing about this model is that,

the rescaled functional provides a simplified structure of the field equations and can be elegant

in reproducing results comparable to observations. The field equations are obtained in general

formalism. In these models, the EoS parameter evolves in quintessence region to overlap with a

cosmological constant at late times. Models with extra dissipative such as bulk viscous matter

is considered in this model to assess their effect on the dynamics of the universe. It is observed

that, the presence of bulk viscosity does not affect the dynamics greatly.

In future, the problem can be extended to study the dynamical behaviour of the cosmological

models using the scale factors of trigonometric, logarithmic function and hyperbolic functions.

Since two types of modified gravity models in the class of f(R, T ) gravity theory have obtained

and the dynamical parameters are obtained in most general form in terms of the scale factor

or the Hubble rate, there is enough scope in our models for investigation of bouncing universe,

cyclic universe etc. The anisotropic behaviour can be further studied to check the possibility

of getting a better range. In this thesis, we have only considered the Bianchi type V Ih space

time, which is itself is an anisotropic expansion. Hence, other Bianchi type space-time both

diagonal and non-diagonal can also be examined. The same formalism can be used to test the

anisotropic behaviour with the isotropic FRW space-time to check whether anisotropic arises

from isotropic background or not.
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