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PREFACE 

A LARGE number of books on Mechanics have appeared 
more or less recently—some of them excellent—so that an 
author who ventures to add to their number feels bound 
to offer some explanation. During my long activity as a 
teacher I have frequently observed that the difficulties 

with which the student has to contend when he first enters 
the realm of theoretical physics are more often concerned 
not with the mathematical form, but with the physical 

content of the ideas which are presented to him. It is 

not the calculations with equations that cause him most 
trouble, but the setting up of the equations and, in 

particular, their interpretation. The chief purpose of the 
present volume is to lend him a helping hand in this 
respect. It is intended primarily for those students of 
science who arc already in possession of a certain amount 
of mathematical knowledge, being familiar with the ele¬ 
ments of Analytical Geometry and of the Infinitesimal 
Calculus. The particular method which I have proposed 

to myself is that of presenting the structure of Mechanics 
not as something already given, but as something which 
has been evolved step by step; the student is not, so to 
speak, led along in the direction traditionally prescribed 
by the classical writings of science, but rather is advised 
and occasionally warned at the decisive turning-points, 
in order that something of that particular pleasure may 
be retained which every person of independent thought 
experiences when advancing for the first time into a 

new field of science. 
The fact that the manner of treating the subject-matter 

follows in general the same lines as were actually pursued 

when the science was being evolved, will be apparent to 
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anyone who, like myself, inclines to the opinion that the 
history of an exact science does not deviate markedly 
from its structure as developed logically; this is true, of 

course, only as a whole, for often external circumstances, 
particularly such as are rooted in the idiosyncrasies of 
the pioneering investigator, have led to detours and even 

false routes, to follow which once again would be un¬ 
necessary and harmful to oxir purpose. Nevertheless, in 
deriving the theorems, I have by no means always sought 

the shortest and most elegant proof, l)ut alwa,ys that which 
has seemed to mo to bo the most suggestive and the most 
lucid. For my c^iidoavour has been, not to represent 

either how the theorem was actually discovered or how it 

was subsequently jxroved most directly, but rather how it 
could have been found most simply. It must be conceded 
that this leaves a certain amount of freedom of play for 
the personal view. 

There is not, of course, the slightest intention of treating 

any part of the subject completely, since the character 
of the book is elementary—as is indicated by its title. 
For an exhaustive treatment the reader is referred to the 
more comprehensive text-books on Mechanics and to the 

detailed special literature. Often, however, a fitting 
occasion arises for again proving in a new way a theorem 
that has already been derived earlier. For there is no 

better way of exhibiting in its true light the particular 
nature of a problem and also the power of the individual 
methods used to solve it than to treat one definite problem 
in different ways. 

An alphabetical list of all the definitions used and of 

the most important theorems will, it is hoped, increase 
the usefulness of the book. 

Max Planck. 
Berlin-Orunewald, 

August^ 1916. 



PEEFACE TO THE SECOND 
EDITION 

Tjie printing of a new edition enables me not only to 
make some necessary corrections, but also to insert a few 
additions, some small and some considerable. Among 
the latter I must mention in particular the introduction 
of the partial differential equation of Hamilton and Jacobi 
which has recently become of paramount importance for 
the quantum theory. I wish to take this opportunity 
of thanking again for their kind interest those of my 
colleagues who suggested these changes. 

Max Planck. 
Bcrl in-Orunewald, 

December t 1910. 
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PREFACE TO THE FOURTH 
EDITION 

The character of the book has been preserved in this 
new edition. In particular I have continued to endeavour, 
in deriving each law, to use not the way which is the 
shortest formally, but that which follows the physical ideas 
most closely, and which approaches most nearly to that 
used originally. For the compactness of a formula often 
makes the relationship which it expresses appear simpler 
than it is in reality; this is because the real difficulty has 
been transferred to the definitions. As a first introduction 
to a branch of knowledge, it is essential, in my opinion, 
that the ultimate definitions should not be placed at the 
beginning as ready products, but that their usefulness and 
necessity must impress themselves only in the course of 
presentation in discussing definite problems. 

Among the slight improvements that have been made I 
need mention only that I have here used for Lagrange’s 
function (the kinetic potential), instead of the symbol H, 
used by Helmholtz, the now more generally used symbol 
L, and I have reserved the symbol 11 for the Hamiltonian 
function. But I could not persuade myself to represent 
the kinetic energy, which, following Boltzmann, I have 
hithei-to denoted by L (vis viva), by means of the letter T, 
which is frequently used for it nowadays. For the letter 
T must be reserved for temperature, which often appears 
conjointly with kinetic energy, as in statistical thermo¬ 
dynamics. I have preferred to use for the kinetic energy 
the symbol K, which immediately suggests itself and which 
is hardly ever likely to give rise to confusion. 

Berlin-OrunewcM. Pl-ANCK. 
March, 1928. 
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INTRODUCTION 

§ 1. Mechanics is the study of the laws of motion of 
material bodies. Motion is change of position in time. 
But the concept of motion involves not only the con¬ 
cepts of space and time but also the concept of what 
moves, and this need not in general be a material body. 
For example, we also speak of the motion of a crest of a 
wave on a water surface, which is of course to be carefully 
distinguished from the motion of the water particles 
themselves ; or we speak of the motion of a shadow over a 
bright surface, or of the motion of a line of force in a 
magnetic field. In these cases what moves is not matter but 
a certain state ’’ on which we have fixed our attention. 
To characterize the motions of material bodies more clearly 
we therefore also call them corpuscularor “ con¬ 
vective ” motions. Mechanics is concerned only with 
these corpuscular motions, but this does not exclude the 
possibility that a corpuscular motion may simultaneously 
be regarded as a wave-motion, as instanced above in the 
case of the water wave. The view that all physical changes, 
and they include all kinds of motions, may be traced 
back to corpuscular motions is called the mechanical view 
of nature. We do not propose to discuss the question as 
to whether it is justified. 

§2. The simplest material body is a material point, 
that is, a body whose spatial dimensions are vanishingly 
small compared with all the dimensions that play a part 
in its motion. The question whether a definite material 
body may be taken as a point thus depends on the nature 
of the motion under consideration. We may, for example, 
regard the earth in its motion around the sun as a material 
point, but not when dealing with its rotation about its 

B 



2 GENERAL MECHANICS 

axis; in fact, we can never regard a body which rotates 

about an axis which lies in its interior as a material point 

so far as this rotation is concerned. 

The material point must be carefully distinguished from 

the geometrical point. The latter is completely character¬ 

ized by the point at which it is situated, but the former also 

depends on the constitution of its matter; indeed, the 

material points are to be regarded from the very outset 

as different not only quantitatively but also qualitatively. 

For it is not possible to specify ab initio a general measure 

for the quantity of matter. For example, quantitative 

comparisons in the case of two different substances, say 

iron and lead, can be made only with reference to some 

special property. 

A material body may always be regarded as composed 

of such small parts that each of them may be conceived 

as a material point, and, correspondingly, any motion of 

a body, no matter how complicated it may be, can be 

traced back to the motions of the material points of which 

it is composed. Hence we first consider a single material 

point. We therefore divide mechanics into two parts : 

the mechanics of a material point and the mechanics of a 

system of material points. 



PART ONE 

MECHANICS OP A MATERIAL POINT 





CHAPTER I 

MOTION ALONG A STRAIGHT LINE 

§ 3. We shall first consider the rectilinear motion of a 
material x>oint in itself, such as it juesents itself to direct 
observation, without inquiring into its causes (study of 
pure motion; kinematics, or phoronomy). A moving 
point changes its position with time; its motion is deter¬ 
mined if we know its position at every arbitrary moment 
of time—that is, if its position is given as a function of 
the time. Its position is characterized by a geometrical 
j)oint P, and the latter point is given by its distance x 

Fiu. 1. 

from a point 0 assumed fixed in space—namely, the 
origin of co-ordinates (Fig. 1). We assume the quantity 
X, the abscissa of the point P, to be positive or negative 
according as P lies to the right or to the left of 0. Then 
P coincides with 0 when x 0. The path of the point P is 
the a:-axis, or the axis of abscissa). The direction in which 
X increases is called the direction of the axis; it is denoted 
in Fig. 1 by an arrow. To be able to express the distance 
X by means of a definite number we must introduce a 
definite unit of length, for which we usually choose the 
centimetre; this is the hundredth part of the length of 
the standard metre which is preserved in Paris and which 
very nearly represents the ten-millionth part of the 
quadrant of the earth’s meridian. The quantity x is then 
the number of centimetres which is found by measurement 
to be contained in the length OP. 

In precisely the same way as a definite position is 
5 



6 GENERAL MECHANICS CHAP. 

indicated by a geometrical point P, so a definite time is 
characterized by a moment of time (or point in time)— 
namely, by the length of the time t which has elapsed since 
a point of time assumed definitely fixed, this initial 
point of time being measured by any clock that goes with 
sufficient regularity. We assume the co-ordinate of time 
t to be positive or negative according as the point of time 
is later or earlier than the initial moment, for which ^ = 0. 
As the direction of the time-axis we take the direction from 
earlier to later times. As a rule we shall take the second 
as the unit of time; this is the 86,400th part of the mean 
solar day. Then the quantity t denotes the number of 
seconds which have elapsed since the time if = 0. 

The motion of the material point is determined when its 
position is given as a function of the time—that is, when : 

3:^ fit).(1) 

where we assume the function / to be real, one-valued, 
continuous and differentiable. For the material point 
occupies a definite position at any moment of time and 
does not leap suddenly to a new position. 

If we solve equation (1) in terms of t, we get: 

t “ (j>{x) 

which gives us the answer to the question as to when the 
material point is to be found at a definite point x. The 
function <f> need not be either real or one-valued; for it 
may happen that the material point never actually reaches 
a definite point x, or, again, that it reaches the point a 
number of different times, as, for example, when the 
motion is periodic. 

§ 4. As an illustration we shall first take the special case 
where the function f{t) is linear^—^that is : 

X — at ^ b,.(2) 

where a and b are constants. 
The physical meaning of the constant b is simple : it 

denotes the position of the point when t = 0. The mean- 



I. MOTION ALONG A STRAIGHT LINE 7 

ing of the constant a becomes clear from the following 
reflection. Let us inquire into the length of the path 
which the point traverses in any interval of time V — t ^ 

This comes out as x' ~ x, if: 

x' = at' + b 

that is: 
x' — X Ax ^ a{t' ~ t) ^ a, At. 

Hence in the motion (2) that we have assumed, every 
distance Ax that has been traversed is proportional to the 
times At required to traverse it, or equal distances are 
covered in equal times. We see then that the quantity a 
is precisely the constant ratio of a distance to the time 
required to traverse it—^namely : 

Ax 
AT a (3) 

and this ratio is called the velocity of the moving point. 
It is the path traversed in unit time; the path is reckoned 
positive or negative according as x increases or decreases 
when t increases. The motion (2) here considered, in 
which the velocity is constant, is therefore called a 

uniform ’’ motion. 
Let us now take the general case of any arbitrary motion: 

X f[t), and let us again inquire what distance is traversed 
by the moving point in any interval of time t' — t ^ At. 
This again comes out in an analogous way as x' — x, if 
x' -^f{t'). Thus: 

x' - x = Ax = fit') - fit) =fit + AO - fit). 

Division gives : 

^/(i±, ^.0 " /W. 
A^ A^ 

This ratio of a distance to the time required to traverse 
it is called the mean (or average) velocity of the moving 
point during the interval of time between t and t + At. 
Thus in general the mean velocity depends on both t 
and A^. 
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If we make the interval of time smaller and smaller we 
ultimately get the limiting value : 

'“■H■ ■ ■ ■ W 
and we call this differential coefficient the velocity u of the 
moving point at the time t. This quantity now depends 
only on the time t itself. 

For a point which is in uniform motion we again get 
doo 

from (2) for the velocity : u == a \ for a point which 

is at rest x = const., u == 0. 
§ 5. Before we can express the value of a velocity by 

means of a definite number, the units of length and time 
must of course first be fixed. According to the choice of 
these units the physical meaning of a number which serves 
to represent a velocity varies. Hence we say that velocity 
is not a “ pure ” number, but has a dimension —namely, 
the dimension of a length divided by a time : 

This symbol, which was introduced by Maxwell to 
express dimensions, at the same time indicates how the 
numerical value which is to be written for a definite 
velocity alters when the length or the time or both are to 
be altered. For example, if we wish to refer the velocity : 

20 
Lscc. J 

to metres and minutes, we have only to write : 

1 [cm.] = [metre], 1 [sec.] = [minute], 

and we can now calculate with these symbols as with 
mathematical quantities. Substitution then leads to the 
required result: 

20 [52:1 . 12 
Lsec.J Lminute J 
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We can proceed in the same way with any derived 
quantity so soon as its dimensional formula is laiown. 

§ 6. After the case of uniform motion u = const, we now 
consider the special case where the velocity depends 
linearly on the time, thus : 

n a^t '\- hi.(5) 

where and are constants. The constant is called 
the velocity of the point for t 0. The significance of 
the constant emerges from the following consideration. 

Let us inquire into the change which the velocity 
experiences dining any interval of time i' — t At. 
This is equal to u' — u if: 

Thus: 

tc — (1'^ -f- b^. 

u' — u Au = ai(t' — t) = (ii. At. 

In the motion that we have assumed the velocity thus 
always changes proportionally to the time, and the 
constant ratio of the change of velocity to the time in 
which the change occurs is the quantity : 

i^) 

and is called the acceleration of the moving point. It is 
the increase of velocity per unit of time and is positive or 
negative according as the velocity u increases or decreases 
as t increases. Hence the motion (5) here considered, in 
which the acceleration is constant, is also called a “uniform 
acceleration.” 

Let us now consider the general case of any arbitrary 
motion, that is, by (4) : 

«=/(<), 

and let us again inquire into the change of velocity Au 
during any interval of time t' — t = At. In a manner 
analogous to that given above this is again equal to 
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u' — u if u* = /(^')» if divide by t' — t, we 
get: 

/(^ + A^) —f(t) 
AT 

This ratio of a change of velocity to the time during 
which it occurs is called the mmn acceleration of the 
moving point in the interval of time between t and t -f- A^. 
Hence the mean acceleration depends in general on both 
t and A^. 

If we now make the interval of time smaller and smaller, 
we finally get the limiting value : 

T du • •• 

and this differential coefficient is called the acceleration 
of the moving point at the time t. It now depends only 
on the time t itself. 

For a point which is moving uniformly as well as for 
one which is at rest the acceleration u = 0. 

The dimensions of an acceleration are, as we see from 
(7): 

Hence, for example (cf. § 5), the acceleration : 

We may, of course, pursue this method still further and 
define accelerations of a higher order.” But such 
quantities play only a small part in physics. 

If one of the quantities x, u, ii is given as a function of 
the time t the other two can be found by differentiation or 
integration with respect to t. For example, in the case 
of the motion of uniform acceleration (5) the co-ordinate 
X depends quadratically on L 

§ 7. So far we have spoken only of the motion itself 
without considering its causes. We shall now also take 
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the latter into consideration and for this purpose we must 
refer back to particular observations. Experience has 
made us familiar with motions of very different kinds— 
for example, those of a thrown ball, a falling stone, a 
vibrating pendulum. In every case we note that a 
definite cause can be given for the type of motion : in the 
case of the thrown ball the cause is given, say, by the taut 
muscles of our arms; in that of the falling stone it is the 
earth; in that of the vibrating pendulum it is, besides, 
the method of susj)ension. This is only to express that if 
the bodies mentioned (arm, earth, method of suspension) 
were not present, the motion in question would not occur in 
the manner observed. The main object of mechanics 
is to find the motion which results from a prescribed 
cause. 

The first question which we shall answer is this : How 
docs a material point move if we disregard its previous 
history and if we eliminate all the causes which may 
previously have influenced its motion—^that is, if the 
material point is now completely isolated in empty space 
at an infinite distance from all other bodies ? Of course, 
this experiment cannot be carried out exactly in practice; 
indeed, it may be doubted whether this question has a 
physical meaning at all. For it can never be determined 
with certainty whether there are not enormously great 
bodies at enormously great distances which have an 
appreciable influence on the motion of the point. On the 
other hand, in the case of any special motion we can reduce 
the influence of the bodies which, as we know, come into 
question as causes of the motion, and, in principle, we can 
reduce this influence to an unlimited extent. Thus we 
can allow the thrown ball to follow its course freely, we 
can cut through the pendulum thread, and so forth. We 
cannot, of course, remove the earth, but we can eliminate 
its influence by making the material point move on a fixed 
plane which is accurately horizontal—for example, on the 
surface of a suitably large billiard table. Experiment then 
shows that the material point—^for example, a billiard ball 
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—will move in a straight line with gradually decreasing 
velocity. But the decrease of velocity occurs the more 
slowly the more the plane base is free from unevenness; 
on a very smooth ice-surface the decrease of velocity is 
very much less than on the billiard cloth. From this it is 
concluded that on an absolutely plane surface, in which 
surface phenomena due to rubbing and to warming 
resulting from roughnesses are excluded, the decrease of 
velocity would be zero—that is, the velocity would be 
constant. Hence we answ^er the above question by saying 
that a material 'point 'which is deprived of all causes of 
motion, moves uniformly and rectilinearly, in accordance 
with equation (2). (Principle of Inertia, Newton's First 
Law of Motion.) 

The above derivation is by no means intended as a proof 
of the law of inertia. It merely serves to describe a way 
by which we can arrive at an enunciation of the principle. 
The proof of the law is to be sought only in the confirm¬ 
ations which its innumerable applications have presented. 
Its significance consists actually in the fact that it ex¬ 
presses in a single sentence the sum of all the observations 
that have been collected in this field. 

On the other hand, we must not regard the principle of 
inertia as obvious or as a mere definition; for it contains 
a definite physical statement the correctness of which can 
be tested by experiment to a high degree of accuracy. 

§ 8. Let us now take the case whore a material point 
which was originally completely isolated—^that is, was 
moving uniformly and rectilinearly, say a sphere on an 
absolutely smooth horizontal plane—is accelerated or 
retarded by some cause of motion in the direction of its 
motion. If we produce a change of motion by means of 
our muscles by pushing the sphere from behind, in the 
case of positive acceleration, or obstructing it in front, in 
the case of negative acceleration, then we experience a 
feeling of exertion which is incapable of being defiined more 
precisely as a sensation, but whose intensity is certainly 
related causally to the amount of acceleration produced. 
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Wc shall therefore use the sensation of our muscular 
sense as a measure for the cause of the acceleration and so 
call the cause of the acceleration the “ force X, which 
we exert on the sphere. Experiment then teaches us that 
a more intense muscular sensation—^that is, a greater 
force X—corresponds to a greater acceleration it and that 
the direction of the acceleration is reversed when the 
direction of the force is reversed. When X — 0, then == 0 
in accordance with the principle of inertia. 

We can get no further than this by experimental means 
in determining the relationship between force and acceler¬ 
ation, because our muscular sensations are far too in¬ 
definite and fluctuating to give us an exact measure of the 
value of the force that is exerted. We bridge over this 
gap by proposing a more precise definition. We set the 
force X fro'portional in magnitude and sign to the acceleration 
it that is produced. (Newton’s Second Law of Motion.) We 
may do so because this new convention, so far as an 
experimental test is possible at all, agrees with the 
relationship between X and u already fixed above, which 
was derived from our muscular sensations. Moreover, 
it has the advantage, which we shall presently make use of, 
that we can immediately apply it to the general case where 
the acceleration is not j^roduced by our muscles at all 
but by any other body, so that there can be no question 
of a sense-impression. So we now define quite generally 
for any arbitrary motion that the cause of the motion is a 
force and we set its value proportional to the acceleration 
produced by it. This value corresponds to the exertion 
which we should experience if we were to produce this 
change of motion with our muscles instead of with the 
causative bodies. 

The question immediately suggests itself to us whether 
it would not be simpler, and hence more rational, to 
define force from the very outset by means of acceleration 
and not to proceed indirectly by means of muscular 
sensation. To this it must, however, be objected that the 
concept of force is something quite different from that of 
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acceleration and that we get much nearer to the content 
of this concept by bringing it into relationship with the 
muscular sense than with acceleration. This will manifest 
itself clearly in the next section and also repeatedly later 
on, for example, in the case of relative motions (§ 57). 

Moreover, this method of defining a fundamental 
physical concept by first referring it back to a specific 
sense-impression and then supplementing and refining 
this first primitive definition by means of a second 
definition is the one usually adopted in physics and is 
probably the only possible one. For example, we first 
define the degree of warmth of a body by means of the heat 
sense and the colour of a ray of light by our colour sense. 
For exact use, however, these definitions must be refined, 
and this is done in every case by referring them to a 
phenomenon which is susceptible of accurate measurement: 
in the case of heat reference is made to volume changes 
(thermometer), in the case of colour to wave-length 
(interference fringes). If we wished to define heat directly 
by means of volume changes or colour directly by means 
of wave-length, just as we measure force directly by means 
of acceleration, then these concepts would lose just that 
significance which has made them of value for more exact 
investigation and which has smoothed the way for the 
further development of physical theories (a matter of still 
greater importance). 

Actually, the definition of force which is based on 
acceleration is not the final definition, but is capable of 
being further improved and generalized, as will be shown 
later (§ 124). 

§ 9. It would obviously be simplest to set the force X 
not only proportional to the acceleration u, but directly 
equal to it. But this would bring us into conflict with the 
primary definition of force based on our muscular sense, 
for then a definite force would have to produce a definite 
acceleration under all circumstances. Let us take two 
spheres, one of wood, the other of iron, say of the same 
size, both moving with the same constant velocity on a 
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smooth horizontal plane. Experiment then teaches us 
that it requires a greater effort to accelerate or retard the 
iron sphere in a definite way than the wooden sphere. 
Hence we say that the iron sphere “ has more inertia ” 
than the wooden sphere and we have to insert a (positive) 
constant of proportionality in the relationship between 
force and acceleration : 

,r . du d^x 
= ... (8) 

which is determined by the constitution of the moving 
material point (§ 2). Since a greater force is necessary to 
produce a definite acceleration in the case of the sphere 
which has greater inertia, m is greater in this case; hence 
in general we call m the inertial mass of the material point. 
This is of course the same for all the different kinds of 
motion of the point and for all the different forces which 
act on it. 

We take as the unit of mass ni the mass of a perfectly 
definite part of a certain body—namely, the 1000th part 
of the mass of the standard piece of platimim preserved in 
Paris—and we call this part 1 gramme. It is very nearly 
equal to the mass of 1 c.c. of water at 4° C. 

By fixing the unit of mass we of course also, by (8), fix 
the unit of force. Moreover, a force has the dimensions : 

§ 10. As a first application of the fundamental equation 
(8) we discuss the motion of a material point which is 
projected vertically upwards in a vacuum. After the 
point has been projected and is left to itself, only the 
attractive force of the earth acts on it; we call this force 
the ‘‘ weight G of the point and regard it as constant, 
acting in a direction vertically downwards. If we choose 
the positive it^-axis in the upward direction, then : 
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Substituted in (8) this gives : 

m 
du 
dt 

Integrating, we get: 

mu 

The constant of integration C can be calculated if the 
velocity u is known for a definite moment of time for 
example, for the initial moment t 0. If we call the 
(positive) initial velocity Uq, then when ^ = 0 and u == Uq, 
we get from the last equation that: 

muQ = C. 

Hence by substitution : 

or : 
mn — Gt f niUQ, 

O, dx 
di 

(10) 

Thus the velocity u decreases uniformly as the time t 

increases. For t == it becomes equal to zero, and 

after that becomes negative—^that is, the material point 
begins to fall. By integrating once again we get from 
(10): 

X - \ — -\- UQt + C", 
2m ^ 

and it X = Xq when ^ — 0, then : 

X ~ Xq UqI “ 2 ^ * ’ ’ ' ^ ^ 

This fully describes the motion. 
The maximum height Xm attained—^that is, the maxi¬ 

mum value of X—^is obtained if we substitute in (11) the 
value of t corresponding to the moment in which the 
velocity is reversed : 

1 m 
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By eliminating t from (10) and (11) we get the answer to 
the question as to what velocity u the point has at a 
definite place x : 

m2 _ ^ (xo - a:) . . . (13) 

For o; > Xm, it becomes imaginary, as is natural; for 
X = Xm, u becomes equal to zero, and for x < Xm, u has two 
equal and opposite values, the positive value corresponding 
to ascent, the negative to descent. Thus the descending 
motion is fully symmetrical with the ascending motion. 

If X and Uq are not known, the integration constants 
C and C' remain indeterminate in the equations of motion. 
Hence the two quantities which denote the initial position 
and the initial velocity of the material point are summar¬ 
ized in the term ‘‘initial state,” and we may enunciate 
the theorem that if the acting force and the initial state 
are given the motion is determined in all its details. In 
general, we take the “ state ” of a material point to denote 
comprehensively its position and its velocity. 

The preceding laws which govern the motion of falling 
material points were first established experimentally by 

6r 
Galileo. He also found that the quotient is the same 

^ m 

for all material points; that is, if we set: 

(14) 

then the quantity g, the acceleration due to gravity, does 
not depend on m. On the other hand, g is slightly different 
at different places. Its value increases as we pass from 
the equator of the earth to the poles—^namely, from 

978 
cm. 

-sec.2_ 
to 983-2 

_sec.2J 
Hence the weight 0 = mg of a definite material point 

is different at different places on the earth. The weight 
of 1 gramme amounts to 978 dynes at the equator and 
983-2 dynes at a pole, 

c 
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§ 11. The circumstance that the acceleration g due to 
gravity of a material point is independent of its mass gives 
us a very exact method of measuring masses. 

Suppose we have two exactly equal vessels fastened at 
the ends of a string which runs over a fixed pulley, and 
that a material point of mass m is placed in the one vessel 
and a certain quantity of water of mass m' is placed in the 
other. Then the pulley will begin to turn in the direction 
in which the string is being pulled the more strongly— 
that is, in which, by § 8, the greater force is acting. The 
string will therefore remain at rest permanently if the two 
forces are equal—that is, if the weight G of the material 
point is equal to the weight G' of the water that has been 
poured into the second vessel, or by (14), if: 

m = m'. 

Now by § 9 w' is equal to the volume of the water, 
expressed in cubic centimetres. So we get the law : 
the mass of a material point is equal to the volume of 
water which keeps it in equilibrium. Hence we are not 
concerned at all about the value of the acceleration g due 
to gravity : a material point weighs the same number of 
grammes everywhere, since the weight G of the point 
changes from place to place in the same ratio as the weight 
G' of the corresponding volume of water. To prove that 
G changes we could, for example, use an elastically ex¬ 
tensible string in the above experiment. Then the two 
halves of the string would be stretched more by the same 
bodies and hence would be longer at the north pole of the 
earth than at the equator. 

§ 12. Particular interest attaches in physics to those 
forces which express themselves as attractions and 
repulsions and whose value depends only on the distance 
which separates the points between which they act; these 
are the so-called “ central forces.” 

Let us discuss the case of the rectilinear motion of a 
material point which is attracted to a fixed centre with a 
force which is proportional to its distance from the centre. 
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If we take the centre as our origin of co-ordinates, then 
the distance of the moving point P from the centre is 
equal to x, and the attractive force is, in magnitude and 
direction : 

X = — cx(c> 0). 

Hence we get the equation of motion (8) : 

In the initial state, t = 0, let: 

X = 0 and u — (> 0) . . . (Ifi) 

To integrate the equation of motion we multiply both 
dx 

sides by == n and obtain : 

or, integrating with respect to t: 

^ = — I + G, 

and, since when x — 0, u = Uq, we get: 

~ miitT — cx^ = m 

From this we sec among other things that the velocity 
u never exceeds Uq and that the distance x never exceeds 

To perform the second integration we write the last 
equation in the form : 

dt = 
V mu^ — 

Integration then gives : 

>«.sin-d* J-^-) i-C'. 
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From the initial condition (16) we get C' 0; and hence: 

* = 

Thus the motion is a periodic vibration with the fixed 
point of attraction as centre. 

The constant factor in front of the sine is called the 
amplitude,” the angle under the sine, which varies 

with the time, is called the phase,” the constant factor 
preceding t is called the “ angular or radian frequency ” 
of the vibration (number of vibrations in the time 27t). 

The derivation of a period of vibration is 27r^^ and hence, 

like the frequency, does not depend on the initial velocity 
Wq, nor on the initial position; since the case of any 
arbitrary initial position Xq can be directly reduced to the 
case here discussed by transferring the initial point of the 
time t to the moment where x = 0. 

§ 13. The special law of motion here discovered plays a 
very important part in physics, for it holds quite generally 
for small oscillations of a point about a stable position of 
equilibrium, as can easily be proved. 

If a point which is originally at rest is disturbed from its 
position of equilibrium by a blow which imparts to it an 
initial velocity Uq, then if its position of equilibrium was 
stable a force acts on the point at every moment, which 
pulls it back to its position of equilibrium and which we 
suppose to depend on its position in some way, thus: 

Let X = 0 denote the position of equilibrium. 
If the oscillations are sufficiently small, we can expand 

f(x) in a power series : 

X = Cq + CiX + C2X^ + . . ., 

in which the first constant Cq = 0, since X = 0 for a; = 0, 
and the second constant c^is negative, since the equilibrium 
is to be stable. If the terms of the series which are of a 
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smaller order of magnitude are omitted we obtain precisely 
the motion treated in the preceding section. So we get 
the general theorem that the period of a small rectilinear 
vibration about a stable position of equilibrium is inde¬ 
pendent of the nature of the disturbance. It will be 
found later, in § 70, that the same law also holds for 
non-rectilinear oscillations. 

§ 14. If several forces act on a material point simul¬ 
taneously in the same or in opposite directions, which we 
shall express by Xg, X3, . . ., these forces are equi¬ 
valent to a single force X which can be represented in 
magnitude and direction by: 

X“Ai-|-A2-j- X3 +.(1^) 

We say that the individual forces combine to form the 
‘‘resultant'’ force X. If X = 0 the individual forces are 
in equilibrium and the material point behaves in every 
way as if no force acted on it at all. 

§ 15. As an example we consider the case of the recti¬ 
linear motion of a material point which, as in § 12, is 
attracted to the origin of co-ordinates by the force cx, 
but is at the same time “damped” in its motion by friction 
or some other cause owing to the action of a force whose 
magnitude is proportional to its instantaneous velocity u. 
Then by (19) the resultant force is : 

where: 
X = Xi -1- X2 

Xi = — cx and Xg 

{p is a constant coefficient of friction) 

and the equation of motion (8) runs : 

d^x 

W 
dx 

^ dt 
. (19a) 

or, if we use the abbreviations: 

c 
m 

and 
2m 

■w, 
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then: 
d^x , d x , 

+ 2w + ax ■■ (20) 

As in § 12 let the initial state again be given by: 

X ~ Oy u = Uq{> 0). 

A particular integral of the differential equation (20) is : 

where the constant A is arbitrary, but the constant a 
must satisfy the equation : 

a- + 2'W(x + a = 0 

Let us call the two roots of this quadratic equation a and 
P, then : 

— K) :z — a . . . (21) 
H j 

and the expression : 

X = Ae^^ + .... (22) 

is also an integral of equation (20); it is, in fact, the general 
integral, since it contains two arbitrary constants A and B, 

From (22) we get by differentiating : 

dx 
^^u=AoLe-^ + Bpe(^^, . . . (23) 

The values of the constants of integration A and B are 
determined by the initial state. For if ^ 0 it follows 
from (22) and (23) that: 

0 = A + B and Uq ■-= Aoc + B^ 

Consequently if we calculate the values of A and B and 
substitute in (22) and (23), then : 

X == - - (e®^ ~ .... (24) 
oc p 

• (25) 
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These equations, taken together with (21), completel,y 
determine the motion. To investigate its more detailed 
peculiarities we shall consider successively the cases where 
the square root in (21) is real, zero or imaginary. 

1. Let > a. Then a and p are both negative; and 
— [3 > ~*a. Hence x comes out as positive for all times t 
except for ^ = oo, when x becomes equal to zero. The 
motion is aperiodic ; the moving point attains its position 
of greatest displacement—^that is, the maximum value of 
X for u — 0 and : 

and then returns immediately to its position of equilibrium. 
2. Let == a. Then, by (21): 

a = (3 = — -m;. 

Since the expression for x in (24) assumes the form || for 

this case, we get the true value by setting — a ^ 
so that: 

oc~—^ ~ — w — e. 

We now insert these values in (24) and proceed to the 
limit obtaining. In this way : 

X = UQte~^\ u == '"’^(1 — wt) . . (26) 

The motion is again aperiodic, the displacement x is 

always positive; and its maximum value is which it 

attains at the time < ™ ™- 
w 

3. Let w’^<a. Then, by (21), a and (3 are conjugate 
imaginaries, namely: 

“I = — ± i^ya — where i == 
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Substituting in (24) we get: 

X = . sin {t . \/a — . (27) 
y a -- 

The material point executes damped oscillations and 

TT 
comes to rest at the time t = oo . Vort== (where n 

ya — 

is an arbitrary integer) the point passes through the position 
of equilibrium, in the positive direction when n is even, 
and in the negative direction when n is odd. The duration 
of a period is the time which elapses between two suc¬ 
cessive transitions in the same direction through the 

position of equilibrium—that is, ; it increases as 
y OL — 

the resistance w increases, but, as in the case of undamped 
oscillations, it is independent of the initial state. 

The velocity u comes out as : 

u — 

jeos (/. • (28) 

Hence for a transition through the equilibrium position 
in the positive direction we have : 

_ 2nnw 

U = UqC .(29) 

These velocities increase in geometrical progression for 
the successive transitions {n = 0, 1, 2, 3, . . .) or the 
natural logarithms of the velocities decrease in arithmetic 

progression—^namely, by the amount in each 
ya~-w^ 

transition. This number is therefore called the ‘Togarithmic 
decrement of the oscillations, and since it is constant 
these oscillations are said to be uniformly damped.’’ 

The amplitudes of the oscillations—^that is, the maximum 
displacements—do not result from (27), say, by setting 
the sine equal to 1, but from (28) by putting 0 in it. 
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They have the same logarithmic decrement as the 
velocities (29) in passing through the position of 
equilibrium. 

For w = 0 the oscillations become periodic and un¬ 
damped, and the equations of motion become identical 

with those derived in § 12. For w — ■s/a, (27) and (28) 
again reduce to the limiting case (26) which has already 
been discussed. 



CHAPTER II 

MOTION IN SPACE 

§ 16. As in the case of rectilinear motion in § 3, so here 
we treat the motion of a material point at first entirely 
without regard to its causes—^that is, purely as a problem 
of phoronomy. The motion of a point in space is deter¬ 
mined when its position is given as a function of the 
time t. To characterize the position of a point in three- 

z z 

Fig. 2a Fig. 26. 

dimensional space three co-ordinate axes are necessary; 
we shall assume these axes to be mutually perpendicular 
and shall denote their positive directions by x, y, z. 

This convention does not yet, however, determine the 
nature of the co-ordinate system; rather, an ambiguity 
remains which is illustrated in the two Figures 2a and 26. 
It is clear that the two co-ordinate systems shown in 
these figures cannot be made to coincide exactly by dis¬ 
placing or rotating one or other in any way; they are 
related as the right hand to the left hand. But any other 
rectangular co-ordinate system can be made to coincide 
completely with either the system a or the system 6 by 

means of a displacement and a rotation. 
26 
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Hence all co-ordinate systems fall into the two groups 
a and 6, which may be characterized in the following way : 
if we open our hands so that the thumb, index-finger and 
middle-finger are mutually perpendicular and if we take 
the thumb as pointing in the rr-direction, the index-finger 
in the ,^-direction and the middle-finger in the 2:-direction, 
then the right hand represents a co-ordinate system of 
the group a and the left hand a system of the group 6. 
Hence a-systems are also called right-handed and /^-systems 
left-handed. We shall always 
use right-handed systems hero, 
as in Fig. 2a, unless the con¬ 
trary is expressly specified. 

§ 17. Instead of using the 
co-ordinates x, y, z, to char¬ 
acterize the position of a point 
P in space we often use its 
distance r from the origin 0 
and the angles rj, ^ which 
the direction from 0 to P 
makes with the positive co¬ 
ordinate axes. Then OP == r 
is the diagonal of a rectangular 
parallelepiped the lengths of whose edges are x, y, z (Fig. 3) 
and we have : 

7*2 = .j_ y2, ^2, 

cos ^ = cos ^ = p cos ^ ^ 

We always assume r to be positive and the direction- 
angles I, Tj, ^ to lie between 0 and tt. Hence to a negative 
co-ordinate there always corresponds an obtuse direction- 
angle. The values of r, t], ^ are then uniquely deter¬ 
mined by X, y, z, and vice versa. But the angles t], ^ 
cannot be chosen independently of one another; rather, 
according to the last two equations, they must satisfy 
the identity: 

cos^l -I- 008*^77 -h cos^^ = 1 . . . (32) 

Z 

Fig. 3. 
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Hence by (31) : 

cos ^: cos rj: cos t, ^ x:y :z . . . (33) 

These three cosines, the sum of whose squares = 1, are 
briefly called direction-cosines ” and their ratios 
‘‘ direction-ratios.” 

The distance OP measured in the direction (^, rj, ^), 
which uniquely determines the position of the point P 
in space is called a “ directed magnitude ” or a vector,” 
and, like all other vectors, is here denoted by the corre¬ 
sponding letter in clarendon type, r. The numerical 
value of r, the ‘' absol ute value ’ ’ or the ‘' magnitude ’ ’ of the 
vector is : 

r — \ r\.(34) 

It is important to see clearly the distinction between r and 
r. For example, if Ave have two points P and P\ the 
equation r = r' denotes that P and P' are equally far 
from the origin 0, but the equation r = r denotes that 
P and P' coincide, and the equation r = — r that P and 
P' lie at the same distance from 0 but on opposite sides. 

The quantities x, y, z defined by (31) are called the 
‘‘ components ” of the vector r in the direction of the 
co-ordinate axes. They are the projections of the dis¬ 
tance OP on the co-ordinate axes. 

In general the component x' oi a vector r in any arbitrary 
direction is defined as the projection of the distance 
I r I == r in this direction—^that is : 

a;'=rcos8.(35) 

where S is the angle (acute or obtuse) which the direction 
of x' makes with the direction of r. 

If the direction angles 77', of x' are given, the com¬ 
ponent x' (and the angle 8, which is not marked in Fig. 
3) is calculated as follows. Instead of projecting the 
distance r = OP directly on the a;'-direction, we first pro¬ 
ject the distance OA = x (Fig. 3), then the distance AB = y 
md lastly the distance BP = z all on the -direction. 
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That is, we allow a point to travel rectilincarJy from 0 
through A and B to F and at every moment drop a 
perpendicular on the a;'-direction. The projection of the 
moving point—^that is, the foot of the perpendicular— 
then traverses in its whole journey the rectilinear distance 
from 0 to P\ the projection of P. Thus the algebraic 
sum of the three distances that are projected on z' is equal 
to the distance of the origin O from P'; accordingly : 

X . cos f' + y • cos 7)' + z , cos . . (.‘{O) 

Hence, by (31) and (35) : 

cos S = cos I cos + cos rj cos rj' + COS ^ COS . (37) 

By equation (35) the component of a vector r in its own 
direction (8 = 0) is equal to r, that in the opposite direction 
(8 = 7t) is equal to — r, and that in any perpendicular 

direction (^8 = is equal to zero. 

The equation (36) tells us that the component z' of a 
vector r in any direction (^', 17', ^') may also be obtained by 
starting out, not from the absolute value of the vector r 

but from its three components x, y, z and by forming from 
each of these components the component in the direction 
(!', 7]', ^') and then algebraically adding the amounts so 
obtained. Hence in this respect, too, the three rectilinear 
components x, y, z are completely equivalent to the vector 
r itself. 

§ 18. The motion of the point P in space is determined 
if its three co-ordinates y, z are given as functions of the 
time t : 

^ = /W» y = ^ = «A(^) • • • (38) 

where the functions /, <f>, \fj are assumed to be real, single¬ 
valued, continuous and differentiable. They, of course, 
also determine the orbit of the point; this is a certain 
curve in space, the two equations of which are obtained if 
the time t is eliminated from the three equations (38). 
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We ni6w deflac, as in § 4, tlic three quantities : 

dx 
di 

X ^ u 

= 

dt 

dz 
di 

y^v 

w 

m 

and call them the components of the velocity in the 
direction of the co-ordinate axes ” of the point P at the 
time t. These are the velocities with which the projections 
of P on the co-ordinate axes move rectilinearly. Following 
on this we get a more general definition by differentiating 
(36) and so have as the velocity-component of P in any 
arbitrary direction I') the velocity : 

dx' 
dt 

x' u' ^ U cos V cos r]' -f IV COS (40) 

with which the projection P' of the point P moves 
rectilinearly in this direction. 

On the basis of this definition we can prove that velocity 
is a vector. For if we set: 

V- = (f 

U . V w 
“ = cos A, " = cos /X, -- = cos p, 
q q q 

(41) 

(42) 

with the limitation that q must be positive and the 
direction-angles A, /x, v must lie between 0 and tt, then, by 
(40): 

u' = g'(cos A cos -f cos/x cos + cos cos 

and by (37) : 

^t'==:gco8e.(42a) 

where € denotes the angle between the directions (^', y)\ C) 
and (A, /a, v). The component u' is thus the projection of 
the distance g, drawn in the direction A, /x, r, on the x'- 
direction. 
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This directed quantity is called the “ velocity vector ” 
and is denoted by the letter q in clarendon type : 

q = r.(43) 

Hence the differentiation of a vector r with respect to the 
time does not mean the differentiation of its absolute 
value r, but rather it denotes a vector whose components 
are the differential coefficients of the components of r. 

The vector q has a very graphic geometrical significance. 
For if we take into account (39) the equations (41) and 
(42) become : 

^ dx^-h ^ dz- fdsV 
r - - - -rfi. - U ■ ■ ■ 

and: 
N dx dy dz 

cos A = f y cos ix = / , cos V = - 
ds ^ds ds 

where ds denotes the element of arc of the space curve, 
taken positive in the direction of the motion. Thus the 
direction of q coincides with the direction of the element 
of arc or of the tangent of the orbital curve, and the 
quantity ^==1^1 is the speed of the motion along this 
curve. By (41) and (42) the vector q is, in magnitude and 
direction, the diagonal of a rectangular parallelepiped the 
lengths of whose sides are u, v, w. 

§ 19. Further, as in § G, we define the three quantities : 

d^x 

W 
dhj 
d¥ 

— X 

= y 

d^z •• dw 
dt^ 

(46) 

and call them the ‘‘ acceleration components in the 
direction of the co-ordinate axes ” of the point P at the 
time t. These are the accelerations with which the 
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projections of P on the co-ordinate axes move rectilinearly. 
Generalizing as before, we differentiate (40) to define the 
acceleration component of P in any arbitrary direction 
(f, r}\ D, which is : 

-r du^ 

This is the acceleration with which the projection P' of 
the point P moves rectilinearly in this direction (f', rj', 

On the basis of this definition we can prove that acceler¬ 
ation is a vector. For if we set: 

i- V- . . . . (48) 

~ = cos a, - = cos B, - = cos y . . (49) 
p ' p P ^ 

with the limitation that p must be positive and that the 
direction-angles a, [3, y must lie between 0 and tt, then by 
(47) : 

— P (cos a cos I' -f- cos p cos 97' 4- cos y cos ^') 

and by (37) : 

u'=p COB 9.(50) 

where 6 denotes the angles between the directions (f77', ^') 

and (a, p, y). Thus the component u' is the projection of 
the distance p, which lies in the direction (a, p, y), on the 
x' direction. Analogously to (43) we call this directed 
quantity the acceleration vector ” : 

.(51) 

From (48) and (49) we see that it is represented in 
magnitude and direction by the diagonal of a rectangular 

parallelepiped the lengths of whose sides are u, v, w, 
§ 20. The term “ acceleration ’’ often misleads beginners 

to confuse the quantity | q | ~ p with the quantity q = 

S. It is the same error that would be made if we set 
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g(= \r\) equal to Let us therefore investigate the 

relationship a little more closely. By (41) we get by 
differentiating with respect to the time : 

qq = uu vv ww, 

and hence by (49) and (42) : 

q = p(cos (X cos A + cos p cos fi + cos y cos i^) 

and by (37): 

^ = p cos (p, q).(52) 

Comparing this with (50) we get q as the component of 
the acceleration vector in the direction of the velocity. 
Since the directions q (a, p, y) and q 

(A, p, v) are entirely independent of ^ 
each other, q can have any value 
between + p and — p. It is only 
when these two directions coincide, 
as in rectilinear motion, that q = p. 
But if, for example, the acceleration 
is perpendicular to the velocity, 
then q = 0—that is, the value of 
the velocity q is constant, whereas the 
acceleration p may assume any arbitrary (positive) value. 

§ 21. To illustrate the above definitions and theorems 
still further we shall consider a special simple case, namely, 
uniform motion of a point P in a circle. Such a motion is 
represented by the equation ; 

X == rcosiof, y == r^incoty is = 0 . . (53) 

where r denotes the radius of the circle, a){> 0) the 
angular velocity or radian frequency (§ 12). The orbit of 
the circle (Fig. 4) is obtained by eliminating t from (53) : 

0:2 + p2 y.2^ 2 = 0. 

The components of the velocity are obtained from (39), 
if we use ^ as an abbreviation, in the form : 

u ^ — a»rsin(^, v — cor cos (f>y w = 0, 
D 
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The magnitude and direction of the velocity PA are 
obtained from (41) and (42) as : 

q = a>r, 

The components of the acceleration are, by (40) : 

^ = — coVcos (f), V = — wh sin <f), w = 0. 

Finally, the magnitude and direction of the acceleration 
are, by (48) and (49) : 

p = a)V.(54) 

a. = TT - (f), p=| + ^, y = ^- 

Thus the acceleration vector is directed from P to the 
centre 0, and here we have an example of the case men¬ 
tioned at the end of the preceding section in which the 
direction of the acceleration is perpendicular to .the 
direction of the velocity, which causes q to be constant. 

§ 22. At this stage we go a step further and now inquire 
into the cause of a motion. For this purpose we introduce 
the force that produces the motion. It is obvious that 
the definition of a force in the case of motion in space 
must contain that used for rectilinear motion as a special 
case. Hence, following on (8) we are compelled to set: 

X = mu = m 
(Px 

V * X ^ mv = m - 

Z = mw = m 
dH 
dt^; 

(55) 

where m again denotes the inertial mass of the material 
point, which is independent of the nature of the motion. 
Further, following on (47): 

X' = mifc' == X cos -f F cos iq' Z cos . (56) 
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Hence we define generally the force component in any 
direction (|', rj', ^') as the product of the mass and the 
component of the acceleration in this direction. From 
this it follows that force is a vector, whose direction 
coincides with the direction of the acceleration and whose 
value differs from that of the acceleration only by a 
constant factor m. In fact, if we denote the force vector 
by F—that is, set : 

F == mq = mr.(57) 

then we obtain for the absolute value F ot this vector 
from (55) and (48) : 

F2 = + 72 ^ . . . (58) 

and for the direction of the vector, from (49) and (55) : 

cos a : cos p: cos y = X : Y :Z . . . (59) 

and for the component in any arbitrary direction (^', 7]\ ^'), 
which forms the angle 6 with the direction of the force, from 
(56) and (50) : 

A'-F.cos 0 . . . ’ . . (60) 

In virtue of (58) and (59) the force^vector F will be 
represented in magnitude and direction by the diagonal 
of a rectilinear parcllelepiped, the lengths of whose sides 
are X, Y, Z, Since, as comparison with (56) and (60) 
shows, these three components may completely replace 
the force vector F and vice versa, they are also completely 
equivalent to it causally—^that is, we can compound 
together three forces X, Y, Z that act in the directions of 
the co-ordinate axes to form a single force whose value F 
is determined by (58) and whose direction (a, p, y) is 
determined by (59). In the same way we can resolve any 
arbitrarily directed force according to the same law into 
three forces that act in the directions of the co-ordinate 
axes. 

§ 23. The equations (55) or (57) contain the fundamental 
law of the mechanics of a material point. We may either 
use them, when the motion (38) is known, to determine 
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the force which causes this motion, or, conversely, when 
the force is known to determine the motion which is 
caused by the force. The former is, as we see, a problem 
involving differential calculus, the latter one which involves 
integral calculus and is hence in general more complicated 
mathematically. 

Let us first discuss a problem of the former kind, by 
inquiring into the force which causes the uniform circular 
motion considered in § 21. This comes out directly by 
combining equations (54) and (58) as : 

F = mcjrr.(61) 

and is directed, like the acceleration, from P towards the 
centre 0 of the circle. Its existence can be demonstrated 
by swinging the material point P round in a circle at the 
end of a thread. F then gives us the tension of the 
thread. The equation (01) may also be written in the 
form : 

.(62) 
r 

These two forms of expression (61) and (62) give us a 
good example of the theorem that the question : ‘‘ Is 
directly or inversely proportional to r in a uniform 
circular motion ? ” has no sense so long as it is not specified 
whether co or <7 is to be regarded as constant in the motion. 
The same holds for any quantity which depends on more 
than one variable. 

In applying the theory to processes in nature we are 
mostly concerned with solving the second problem 
mentioned—namely, to determine the motion when the 
force is given. Then we have to integrate three differential 
equations of the second degree, so that six constants of 
integration occur. These are determined by the initial 
state ” (§ 10) of the material point—^that is, by the 
position and velocity of the point at the time ^ = 0 ; 

^ ^ = go.(63) 

which give us precisely the six required conditions. In 
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general we take the state ” of a material point at any 
time t to be the complex concept {Inbegriff) formed of the 
six quantities which denote the vector of the 2)osition and 
the vector of the velocity for this time. 

Let us take as our first examiJe the sim|)]est case where 
the force F = 0. It then follows from (55) by integrating 
once and by using the initial state (63) that: 

dx dy dz 
dt “ ^ ~ dt “ ^ ^ ^^0. 

and by integrating again : 

X = HqI 7j = VqI + ^ ^ ^0^ “J" ^0 * 

The orbital curve is : 

x-Xq ^ y - yo ^ g - gp 

7/o Vp ’ 

that is, a straight line, which is given by the initial position 
and the direction of the initial velocity and which is 
traversed with uniform velocity—in accordance with the 
law of inertia. From this it follows that whenever a 
material point moves in a path which is not a straight 
line, even if the motion is uniform, the presence of a force 
is indicated. We have already found this confirmed above 
for the case of uniform circular motion. 

§ 24. If several forces Fg, F3, . . . act simul¬ 
taneously on a material point, they may be replaced by a 
single force F; for in every motion of the point its acceler¬ 
ation has a definite value. This resultant ’’ force F is 
found by resolving each of the individual forces F^, Fg, F3, 
... by (58) and (59) into its components : 

= Fx cos ai, Fi = cos Pi, = Fj cos . (65) 

and then combining them by (19) by adding algebraically 
the components which correspond to a definite co-ordinate 
direction. In this way the three components : 

Z-rZi, Z^EZ^ . . (66) 
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of the resultant force F result. In vector calculus this 
composition is briefly denoted by : 

F = Fj^ + F2 + -^^3 + • • • “ . , (67) 
where the ‘‘ sum of the vectors ” or the “ vectorial sum ’’ 
denotes a vector whose components are the algebraic 
sums of the components of the individual vectors. The 
absolute value of this sum F which represents the magni¬ 
tude of the resultant force is, of course, to be carefully 
distinguished from the sum of the quantities jPg? ^3» • • • 
of the individual forces. 

§ 25. Before we pass on to consider further applications 
we shall draw a somewhat clearer picture of the general 
causal relationship between force and motion. Suppose 
a given force F of arbitrary magnitude and direction acts 
on a point which is moving with an arbitrary motion and 
whose velocity-state is given by the vector q. What is 
the influence of the force on the subsequent motion ? If 
F were equal to zero the point would continue to move in 
a straight line, but only in this case. Hence it follows that 
F has some definite relationship with the deviation of the 
motion from uniform motion in a straight line. 

Which part of F effects the deviation from uniform 
motion, that is, which alters the absolute value | q | == O', 
and which part effects the deviation from linear motion— 
that is, the change of direction (A, fi, 1/) of g ? 

The answer to this question is obtained most simply by 
the following calculation. If in the equations (55) we 
replace the quantities u, v, w according to (42) and (45) 

then, if we perform the differentiation 

d^x 

ds^ 

. . (68) 

ds^ 
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If we denote the first summands in these equations by 
Aj, and the second by Xg, Zg, then by (67) 
we may regard F as the resultant of two single forces 
Fj and Fg, whose components are represented by these six 
summands as given above. Hence : 

F - Fi -f Fg.(69) 

The first single force Fj_ has the absolute value : 

t\ = + 7^2 + 2,2 = m 
dq 

dt 
(70) 

and its direction coincides with the direction of the element 
of arc ds or the velocity q. 

The second single force Fg has the absolute value : 

and its direction ratios are : 

d^x ^ dhj ^ dh 

ds^ ’ ds^ * ds^ 
(72) 

The two forces F^ and Fg are mutually perpendicular, for: 

dx d^^x dy d^ dz d'h _ . 
ds ds^ ds d&^ ^ ds ds^ 

as we find by differentiating the identity : 

with respect to s. Hence we have here resolved the force 
F into two components F^ and Fg, the first of which acts in 
the direction of the motion and the second in a direction 
perpendicular to the direction of motion; and of all the 
normals to the curve the direction (72) is that of the 
‘‘ principal normal ’’ or the normal which lies in the 
“ osculating plane ” of the curve {KrUmmungsebene)— 
that is, in the plane which has three successive infinitely 
close points in common with the curve. These three 
points also determine the circle which approaches the 
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curve most closely and whose radius is therefore called the 
“ radius of curvature ''pot the curve. Its reciprocal value 
is equal to the square root in (71) : 

All these results can be combined in the following 
physical statement: to find the influence of any arbitrarily 
given force F on a material point which is moving with an 
arbitrarily given velocity q we resolve the force F into the 
two components parallel and perpendicular to the direction 
of the velocity. The absolute value of the first com¬ 
ponent, the “tangential force ” F^ gives, by (70), the change 
in the magnitude of the velocity : 

.(14«) 
(It m 

where the -f or the — sign applies according as the 
direction of F^ is in the same direction as the velocity or 
in the opposite direction. The direction of the second 
component, the “ normal force ’’ Fg, gives us the principal 
normal to the orbital curve and hence the osculating plane; 
its absolute value gives, by (71) and (74), the radius of 
curvature: 

P = (75) 

Since the normal force is directed towards the centre of 
the circle of curvature it is often called the “ centripetal 
force.’’ This term is not entirely free from objection, as 
it easily gives the impression that this force acts in the 
direction of a prescribed objective, the centre of curvature. 
But the actual state of affairs is just the reverse : what is 
primarily given is the force Fg, and the curvature is only 
secondary, being produced by the force; by (75) the 
curvature depends not only on the force, but also on the 
velocity-state of the moving point. The more rapidly 
the point is moving the greater is p and the smaller is the 
curvature. 



IJ. MOTION IN SPACE 41 

The reader who is not familiar with the anal^iiical 
relations that have here been used and that involve the 
principal normal and the radius of curvature of a space- 
curve may derive the above mechanical theorems in the 
following more geometrical way. Prom (56) we get by 
differentiating with respect to t and taking into account 
(42a) : 

X' == (r/ cos e) = m 
da . de 
^-cos.-w/sme^^ (70) 

where X' denotes the component of the force F in any 
arbitrarily chosen fixed direction x' and e is the angle which 
this direction forms with the direction of the velocity q. 

According as we make the constant direction x' coincide 
with the tangent e == 0 or the principal normal 

e == ^, cZe = — or the bi-normal (e = cZe == o) at a 

definite point of the space-curve we get from (76) either 
the tangential force or the normal force or zero, and hence 
the preceding theorems follow. 

The relationship between the tangential force and the 

acceleration component ~ is clearly a generalization of 

the law (8) which governs rectilinear motion, and that 
between the normal force and the radius of curvature p is 
a generalization of the law (62) which governs uniform 
circular motion. 

§ 26. We next consider the motion of a material point 
under the influence of its gravitational force alone; this 
is the same problem as that treated in § 10 except that now 
the initial velocity Qq of the point need not be in a vertical 

direction, but may form any arbitrary angle Aq (^ <^) with 

the horizontal. The motion clearly follows in that 
vertical plane which is defined by the direction of the 
initial velocity. If we now choose (as we shall make a rule 
of doing in the sequel) the 2;-axis to be in the upward 
direction, the x-axis in the plane of the motion and the 
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origin of co-ordinates at the initial position of the point, 
then the complete equations of motion (55) run : 

X = 0 == m • Z = — mg == m • (76a) 

with the initial conditions, for < = 0 : 

^0 = Uq = ^0 cos Ao, Wq = Ao 

Integrating once and taking into account the initial 
conditions, we get : 

dx . ] 
= ^ =r/oCOsAo 

i . . (77) 
dz . . . 

-(7^ + goSinAo 

Integrating again we have : 

X = Qq cos Ao . t 

- = 5o«inAo.^ 

Eliminating t from these two equations we get the 
equation of the orbital curve : 

;2: r= - -f tanXq.x . . (79) 
25'o^cos^Ao 

a parabola whose axis is parallel to the 2;-axis (Fig. 5). 
Its second point of intersection with the x-axis gives the 

horizontal range or distance of throw {W^irfweite) : 

OA = 
9 

The height of its vertex above the x-axis (Wurfhohe) is 
X dz ^ 

given by^ = 0: 

T^Q go^sin^Ap 

^9 

If we assume as constant but Aq as variable, we get 
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the greatest range when Aq = j; and the greatest height 

is attained when Aq = The highest point reached is 

technically called the culminating point. 
To strike a definite point Zj) for a given definite go 

we must choose Aq so that the equation (79) is satisfied by 
X = z = Zj^. This gives us a quadratic equation for 
tan Aq, and hence again either two or no real values for Aq 
except in the limiting case. Hence for a given initial 
velocity either the target-point can be struck by aiming 
in two different directions [Flachschuss (low or direct aim), 

Z 

Steilschuss (high or indirect aim)] or, if it is too far away, 
by no aim at all. 

Another noteworthy relationship is that which tells us 
how great the velocity q of the point must be at a definite 
height z. This is obtained by eliminating t from (77) and 
(78) and comes out very simply as : 

q^ + 2gz = qQ^.(80) 

The velocity q does not therefore depend on Xy but only 
on the height Zy and the parabola does not only lie sym¬ 
metrically with regard to its axis, but is also traversed 
symmetrically, since at the two points for which z has 
the same value, the velocity is again the same. 

§ 27. If we wish to take into account the resistance of 
the air we must introduce a second force in addition to 
gravity, and this force is directed at every moment 
oppositely to the velocity at that moment; also its magni- 
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tude W depends in a certain way on q. 
motion are then, in view of (66): 

X = 

Z = 

TJT 1T7 ^ du 
— W -j- — — W - = m -j. 

ds q di 
TT7 IJ7 

The equations of 

These equations can be integrated only if IF is given as a 
function of q. For smaller velocities IF is proportional 
to q (cf. § 13), for greater velocities it is found experi¬ 
mentally that IF varies more rapidly with q than its first 
power. The orbit no longer comes out as a parabola but 
as a “ ballistic curve.” If this curve is evaluated in a 
particular case it can serve conversely to determine IF as a 
function of q. 



CHAPTER III 

CENTRAL FORCES. POTENTIAL 

§ 28. Before passing on to integrate the equations of 
motion of a material point we must first find out what 
force is acting on it. The present chapter is devoted to 
this problem. Among all forces in nature those which 
have been most investigated are central forces (§ 12), and 
among them the most important again are those whose 
magnitude is inversely proportional to the square of the 
distance, as in Newtonian gravitation. We shall therefore 
deal with the inverse square law first. We may leave 
out of the discussion entirely the question as to the origin 
of gravitation; for the significance of the law of gravitation 
does not depend on the answer to this question but on 
the circumstance that it comprehends the motions of all 
the heavenly bodies to the smallest details in one very 
simple and very accurate expression. 

According to Newton's law of gravitation a material 
point of mass m is attracted by another material point of 
mass {Ji and at a distance r with the force : 

.(»2) 

Here /, the gravitational constant, denotes an absolute 
or universal constant whose numerical value of course 
depends on the units fixed for length, mass and time; 
moreover, by (8a), / has the dimensions : 

[a. 
We shall calculate the numerical value of / later in cms., 

grms. and secs. (§ 34). 
45 
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If we had not already arbitrarily fixed the unit of mass 
there would have been nothing to prevent our choosing 
the unit of mass so that : 

/=i- 

The gravitational constant would then be a pure number 
and the mass would not be a self-dependent quantity but 
would have the dimensions : 

m 
The unit of mass so defined is used for convenience in 

astronomy and is called the “ astronomic unit of mass/’ 
From this we again see that the dimensions of a physical 
quantity are not inherent in it, but constitute a conven¬ 
tional property conditioned by the choice of the system 
of measurement. If this circumstance had always been 
properly appreciated, a great number of unfruitful con¬ 
troversies in physical literature, particularly concerning 
that of the electromagnetic system of measurement, 
would have been avoided. 

§ 29. The expression (82) not only gives us the force 
with which the point m is attracted by the point but 
it also represents the force with which the point /x is 
attracted by the point m, as can be inferred at once from 
the symmetrical form of the expression. This is a special 
case of Newton’s Third Law, the Principle of Action and 
Reaction, which states in its general form : to every force 
which one material point exerts on a second point there is an 
equally great and oppositely directed force which is exerted 
on the first point by the second. A stone of weight O which 
falls to earth attracts the earth with the same force O as 
the earth exerts on the stone. The fact that the earth 
does not move appreciably towards the stone is only due 
to the inertial mass of the earth being enormously greater 
than that of the stone, so that by (8) the acceleration of 
the earth due to the force O would be vanishingly small. 

Newton’s third law can be traced back quite generally 
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to other principles (cf. § 129). The following remarks 
will suffice for the special case under consideration. We 
imagine the two material forces m and /x to be ‘‘ rigidly 
connected ”—that is, to be fastened to the ends of an 
incompressible and inextensible rod of vanishingly small 
mass, but free to move about. Now if the attractive 
forces exerted on the two points by each other, indicated 
by arrows in Fig 6, were not equal, the whole system under 
consideration would have to start moving in the direction 
of the greater force, and since the distance r and hence also 
the forces remain constant, the difference 
would also remain constant and hence 
the velocity of the rod would in the 
course of time increase beyond all limits, xu" 
Such a process is impossible in nature. 

§ 30. If we denote the co-ordinates of 
the point m (Fig. 6) by x, y, z and those of the point /x by 
f, 7], then the components of the gravitational force 
which acts on m are : 

_ .mil ^ — X 
J 

Y = . VJZI \ . . . (84) 

Fig. 6. 

where 

„ _ „m/x C-z 

r2 ^ (o: - ^)2 + (y- ^)2 + . . (85) 

As a consideration of simple special cases easily con¬ 
vinces us, these expressions also give us the correct sign 
for the components for all positions of the two points, if 
the magnitude r is always taken as positive. 

If the point m is attracted simultaneously by several 
points whose masses are fxg, /Xg . . ., the components of 
the resultant force which acts on it are, by (60) and (84): 

X = fm. £ ^ and so forth . . (86) 



48 GENERAL MECHANICS CHAP. 

where the summation is to be taken over the indices 
1, 2, 3, . . . 

§ 31. We shall now assume that the attracting masses 
occupy a finite space continuously—that is, we shall 
calculate the gravitational action of a continuously 
extended material body on a material point. This 
problem may be reduced to the preceding problem by 
dividing the material body by means of an (infinity)® 
family of planes parallel to the co-ordinate planes into 
an (infinity)® number of volume elements, each of which 
contains a mass /x which may be regarded as a material 
point. To find /x we first assume the body to be ‘‘ homo¬ 
geneous ”—that is, that it contains equal masses in equal 
volumes. Then the ratio of any part of the mass to the 
volume which it occupies is a constant, and is equal to the 
quotient of the mass M of the whole body by its volume 
V: 

V~' 

The constant k is the density ” of the homogeneous 
body. But if the body is not homogeneous the ratio of any 
part AibT of the mass to the volume A V which it occupies is 
called the mean density of the body in the volume in 
question. The mean density depends in general on the 
position, size and shape of the volume considered. If we 
now allow the volume A V to decrease without limit until 
it becomes the volume dV, in which process the contained 
mass also shrinks to a material point /x, the mean density 
merges into the local density : 

— — k 
dV~~ (87) 

which now depends only on the position f and not 
on the size and form of the element of volume : 

dV d^ ,dri .d^ .... (88) 

If k is given as a function of t], ^ the distribution of 
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mass in the whole body is completely determined. In 
particular, the total mass of the body is, by (87) : 

M^Syi = jkdV .... (89) 

By substituting the value of p from (87) in (86) we get 
the components of the attractive force which the material 
point m experiences owing to the action of a continuously 
extended material body of given density k : 

X = fm j so forth . . (90) 

where: 

r (y - rif + (^ - O' . (91) 

The integration is to be performed over all the points 
^ of the body, where k is to be regarded as a given 

function of rj, whereas the quantities x, z remain 
constant during the integration. 

§ 32. As an illustration we shall calculate the attraction 
which a material sphere of given density k exerts on the 
material point m. To perform the integration in (90) it is 
expedient to introduce in place of the rectilinear co¬ 
ordinates Tj, I the polar co-ordinates p, 6, <j), whose 
meaning can be exemplified as follows from Fig. 3 (§ 17). 
If the polar co-ordinates p, 6, <j> refer to the point P then 
p (positive) is the distance OP, 9 (between 0 and tt) is the 
angle between the 2:-axis and the direction OP, and 
(between 0 and 2??) is the angle between the 0:2:-plane AOz 
and the plane BOz which contains the point P, measured 
in the direction from the xz-plane to the i/^j-plane. From 
this we arrive uniquely at the relationships between the 
polar co-ordinates and the rectilinear co-ordinates 7/, ^ 
of the point P : 

f = psin^co8^, 7/= psin^sin^, ^ = pcos^ . (92) 

We also divide the body into elements of volume dV 
which correspond to the polar co-ordinates that have 
been introduced. First we divide the whole sphere into 
infinitely thin concentric spherical layers, one of which 

E 
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has the internal radius p and the external radius p -1- dp, 
and we first calculate the attraction of the mass contained 
in this spherical layer on the point m—that is, we take the 
integration in (90) only over the volume-element dF of 
this spherical layer. Then p and p + dp remain constant 
during this integration and we have only to integrate over 
6 and (/>, To express dF in polar co-ordinates we sub¬ 
divide the spherical layer further by means of an infinite 
number of infinitely near surfaces 6 = const, and ^ = const. 
The former are simple circular cones described with their 
centre at 0 around the 2;-axis; the latter are half-planes 

2^ which are bounded by the 2;-axis. Two 
^ adjacent cones 6 and 0 + dd cut two 

parallel meridians of latitude out of the ® sphere p, two neighbouring planes ^ and 
^ -h d^ cut two half meridians of longi¬ 
tude out of the sphere p (Fig. 7). These 
four lines mark off a rectangular element 
of surface, whose area is represented by 
the product of the element of arc on the 

Fio. 7. meridian of longitude, p,dd, and the 
element of arc on the meridian of lati¬ 

tude, p sin d.d<f>. Multiplying this element of area by dp 
we get as the volume-element of the spherical layer : 

dF = p^sinff.d^.di^.dp . . . (93) 

To simplify the calculation we assume the attracted 
point m to lie on the positive 2;-axi8, which in no wise 
restricts the generality of the argument—^that is : 

X ^ Q, y — 0, z> Q , . . . (94) 

If we assume the spherical layer to be homogeneous— 
that is, assume the density k to be independent of 6 and 
(f>j then, as we can easily see on physical grounds, X = 0, 
y == 0, and the whole attraction of the spherical layer or 
shell reduces to the component Z, which by (90) and in 
view of (92) and (93) comes out as : 

Z =fmkpHp • J. sine. ded<j>. 
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The integration over <{> from 0 to 2tt may be performed 
and gives : 

Z *= 27Tfmhp^dp • j —~ . sinBdd. 
Jq r 

The last integral may be easily evaluated if we use r as 
the variable of integration. Here we have, by (91), (92) 
and (94) : 

7*2 = p^ -|- — 2pz cos 6 ... (95) 

and hence, when p and 2: are constant: 

rdr pz sin ddO .... (96) 

Consequently^ if we introduce r and dr in place of Q and 
dd: 

Z . Vp • (' 

Here and are the values of r for 0 = 0 and 0 = tt, 
and so by (95), since r>0 : 

ro= |2:-p|, = p . 

If we perform the integration we get: 

(97) 

To be able to evaluate Tq we must distinguish between 
two cases. 

Case 1. z>p\ that is, the point m is situated outside the 
spherical layer. 

Then Vq = z — p, and: 

Z = . . (97a) 

where we use dM to denote the total mass of the spherical 
layer. Hence the attraction exerted by a homogeneous 
spherical layer on a material point outside it is just the 
same as if the mass of the layer were concentrated at the 
centre of the sphere. 

Case 11. z<p ; that is, the point m is situated inside 
the hollow space of the spherical layer. 

Then Tq — p — z, and: 
Z = 0.. (97b) 
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The attraction exerted by a homogeneous spherical 
layer or shell on a material point inside it is thus equal to 
zero. 

§ 33. The results which have been obtained for the 
gravitational action of an infinitely thin homogeneous 
spherical layer may be applied directly to calculate the 
attraction of a spherical layer of finite thickness; the solid 
sphere is included as a particular case. It is only necessary 
to assume that the density k is independent of the angles 
6 and whereas it may depend arbitrarily on the radius 
vector p. 

We shall restrict ourselves here to considering the 
attraction exerted by a hollow homogeneous sphere of 
radii pi and P2(>Pi)y on a point-mass m situated at a 
distance Tq from the centre of the sphere. Three cases 
are to be distinguished. 

Case I. The point m lies outside the hollow sphere. 

ro>p2- 
Then each of the concentric and infinitely thin spherical 

layers acts as if its mass were concentrated at the centre 
of the sphere. Hence the whole mass of the sphere : 

acts in the same way and the attraction becomes : 

= TTfmh ■ e?’“/L . . . (98) 

Case II. The point m lies somewhere inside the hollow 
sphere. rQ<pi, 

The attraction is then : 

i^2 = 0.(99) 

Case III. The point m lies inside the mass of the layer. 

P2 > ^0 > Pv 

In this case we describe a concentric sphere which passes 
through the point m, its radius being Tq, This sphere 
divides the hollow sphere into two parts, an internal 
hollow sphere of radii p^ and Tq, and an external hollow 
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sphere of radii Tq and The attraction due to the latter 
is zero, by (99), so that only the attraction of the former 
remains, which is expressed, according to (98), by : 

. . . (100) 

It is interesting to investigate how the value F of the 
attraction varies when the attracted point m is brought 
from an infinite distance (^o = co) up to and into the 
interior of the sphere until Tq — 0. First the formula 
(98) holds, then the formula (100) and finally the formula 
(99) . It is of particular importance that for the limiting 
cases Tq = p^ and Tq ~ p^ the successive formulae should 
each time give the same value for F, namely for = p2 

the value : 

= = . . (101) 

and for Tq = p^ the value : 

J’3 = i’2=0. 

Thus the attractive force varies continuously throughout 
with the position of the point m, even when the point 
passes through the surface of the attracting masses. 
This theorem is clearly valid generally, even for non- 
spherical masses; for if the attraction F at the surface of 
an attracting mass were discontinuous—that is, if it had 
different values on the two sides of the surface—the 
abrupt transition could be due only to the gravitational 
action of those particles of mass which lie on the surface 
and are nearest to m; but these particles can be imagined 
to a sufficient degree of approximation to be a portion of 
a homogeneous sphere of appropriate density, and for 
this case continuity was proved above. 

For a solid sphere of radius R we have pj, = 0, pg = 
and the attraction exerted on a point m at the distance 
rQ<R from the centre is, by (100) : 

F^^TrfmkrQ .... (102) 
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That is, the attraction of a homogeneous sphere on a 
point-mass in its interior is directly proportional to its 
distance from the centre and is independent of the radius 
of the sphere. The attraction attains its greatest value at 
the surface of the sphere. 

§ 34. An important example of the laws above obtained 
is given by the gravitational action of the earth on a 
point-mass m situated at its surface; for this represents 
the weight G — mg of the point-mass (§ 10). Although 
the earth is certainly not homogeneous its density k will 
depend essentially only on p and not on the direction 
[6, (j)), so that we may imagine the earth’s sphere to be 
divided into concentric and infinitely thin homogeneous 
layers. Accordingly its attractive force on a point m at 
its surface is : 

fmM 
= mg, 

where B denotes the radius and M the mass of the earth, 
or : 

fM 
= 9 (103) 

Here g and R are to be considered directly measurable, 
so that we can obtain the value offM, On the other hand, 
the two factors fM cannot be separated without a special 
measurement being made. The problem of determining 
the mass M of the earth is therefore essentially identical 
with the problem of determining the gravitational con¬ 
stant /. This is solved by measuring the gravitational 
action of any known mass, for example of a mountain of 
known form and density, or of a block of lead. The 
mass of the earth is usually given by specifying its mean 
density : 

Since the density of the rock masses which lie at the 
surface of the earth amounts to about 2-5, the density of 
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the earth increases rapidly towards the centre of the 
earth. 

The numerical value (104) corresponds, by (103), to the 
value of the gravitational constant: 

/ = 6-7.10- 
_cm.® 
grm. sec.2 

§ 35. We now revert to the general case of any arbitrary 
central forces and consider the resultant attraction 
exerted by a system of masses in arbitrary positions on an 
individual point-mass P. Since in this portion of the 
present volume we are concerned with the motion of a 
single material point, we assume the attracting point- 
masses, whose co-ordinates we again take as rj, to be 
at rest, but the point P, on which the attraction acts and 
which is therefore called the reference-point ’’ {Aiifpunkt) 
as capable of motion; that is, its co-ordinates x, y, z may 
vary in value. The question now is : how does the 
attraction depend, in magnitude and direction, on the 
position of the reference-point P, that is, on its 
co-ordinates ? 

For the sake of generality we shall not take the special 
Newtonian law of gravitation but any arbitrary law of 
attraction by setting the value of the attraction which a 
point rj, 1^ exerts on the point P equal to any fimction 
f{r) of the distance. For the Newtonian law of attraction 
f{r) then becomes (82). For the more general law of 
force the components of the resultant attraction exerted 
by a system of point-masses at 77, ^ on the point P are, 
on the model of the equations (84) and (86) : 

(106) 
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The summation is to be performed over the order 
numbers 1, 2, 3 of the attracting masses. The case of 
repulsive forces is also contained in these equations; for 
then we only need to take / as negative. If the acting 
masses are distributed continuously over a finite space, 
then integrals occur in the place of the sums, as above in 
§31. The following considerations also apply in that case. 

§ 36. To find the influence of a change of position of 
the reference-point P on the magnitude and direction of 
the attractive force which acts on it we must investigate 
the components X, Y, Z of the resultant force as functions 
of the co-ordinates x, y, z of the reference-point. We 
then arrive at the important result that the three functions 
X, y, z can always be referred back to a single function. 

For if we set: 
Jf(r).dr = Fir) .... (107) 

and: 
U = Firj) + Fir^) + ... = i:F(ri) . (108) 

we get the following result by differentiating with respect 
to X, say, the function U so defined : 

dU _ ydF{r^) 
dx' ~ ^ drjT 

dvi 

dx' 

Now, by (85) we have if we differentiate partially with 
respect to x : 

= • • • • 

If this is substituted in the last equation, we get, in view 
of (106), the relationship : 

A = — and similarly, 7 = — andZ = ~ ^ 

The function U, whose negative derivatives with respect 
to X, y, z represent the force components, is called the 
potential of the masses acting on the point P. An additive 
constant remains undetermined in it on account of the 
indefinite lower limit of the integral (107). This constant 
clearly has no physical significance. 
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For the special case of Newtonian gravitation f{r) 
becomes (82) and accordingly, by (107) : 

m = 

and the gravitational potential is, according to (108) : 

.... (Ill) 

Here, for the sake of simplicity, we have given the 
additive constant a value such that U vanishes when the 
reference-point P moves to an infinite distance from all 
the attracting masses. 

Through the introduction of potential the treatment of 
the whole jiroblem of attraction becomes enormously 
simplified, since now only one function need be found 
instead of three. Moreover, the potential has several 
advantages over force itself; for example, it is simple and 
symmetrical in its structure, and in compounding the 
effects of several masses the potentials simply add up 
algebraically, whereas the forces must first be resolved 
into their components. Quantities such as the potential 
U and the mass m which have no direction, but which are 
defined completely by a single numerical value, are called 
scalar quantities or scalars,” to distinguish them from 
vector quantities. 

If the attracting masses are continuously distributed 
in space with a density which is given as a function of 

r], then by (87) the sum (111) becomes transformed into 
the integral: 

.... (112) 

Here dF is given by (88) and r by (91), and the integra¬ 
tion is to be performed over all the points rj, ^ of the 
apace occupied by the attracting masses. Since r>0 
always, the gravitational potential U is an essentially 
negative quantity. 
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§ 37. To bring out clearly the advantage of introducing 
the potential we shall now discuss the same example as 
above in § 32 : the attraction exerted by an infinitely 
thin homogeneous spherical layer on a reference-point 
situated on the positive 2-axis; but now we shall use the 
potential. The notation remains the same as formerly. 
Then by (112) and (93) : 

The integration with respect to (f>, from 0 to 27t, can be 
performed directly. Instead of 9 we again introduce r, 
by means of (95) and (96) and we then easily obtain : 

U = - 27rfmkpdp ■ 

where Vq and are given by (97). 
We must now again distinguish between two cases : 
Case I. z>p—^that is, the reference-point is situated 

outside the spherical layer. Then Vq = z — p and: 

U = 
4:Trfmhp^dp 

z = -/ 
m. dM 

z 
(113) 

where dM again denotes the mass of the spherical layer. 
Thus the potential of a homogeneous spherical layer for a 
point-mass outside it is exactly the same as if the mass of 
the layer were concentrated at the centre of the sphere; 
and by (110) the attractive force becomes : 

^ dU _ . dM 
dz •'“72— 

which agrees with (97a). 
Case II. z<p—^that is, the reference-point lies inside 

the hollow space. Then Tq = /> — 2, and: 

?7 =. - ^fmkpdp = . . (114) 

Thus the potential of a homogeneous spherical layer 
with respect to a point-mass in the interior of the hollow 
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space is independent of its distance from the centre and is 
exactly as great as if the point-mass were situated at the 
centre. In that case it is equally distant from all elements 
of mass of the layer, and the potential, which is the sum 
of the individual potentials, is obtained simply by dividing 
the total mass dM of all the elements by the common 
distance p. 

For the attractive force we again obtain by (107) : 

which agrees with (976). 
§ 38. Let us now also calculate the potential of a 

hollow homogeneous sphere of radii p^ and P2(>pi) with 
respect to a point-mass m at a distance Tq from the centre. 
Here again, as in § 33, three cases are to be distinguished. 

Case I. The point m lies outside the hollow sphere. 
Tq>p2^ Then each of the concentric and infinitely thin 
spherical layers acts exactly as if its mass were concen¬ 
trated at the centre. Hence the whole mass of the hollow 
sphere acts in the same way, and the potential becomes : 

. . . (115) 

Case II. The point m lies somewhere in the interior of 
the hollow space. . 

Then the potential is independent of and exactly as 
great as if m were situated at the centre—^namely, by (114), 
if we integrate over all the spherical layers : 

[Q» 

C/g = — ^TTfmk / pdp, 

--2iTfmk(p^^-p^^) . . . (116) 

Case III. The point m lies inside the layer of the mass 

itself. P2>^o>Pi- 
We describe through the point m the concentric spherical 

surface of radius rg, which divides the whole hollow sphere 
into two parts, an inner hollow sphere of radii p^ and 
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and an outer hollow sphere of radii Tq and pg. The 
potential of the inner hollow sphere results from (115), 
that of the outer from (116), the respective radii being 
taken into account. Thus the required potential, being 
the sum of the two partial potentials, is : 

C73 = - ^^fmk (Sp/ - - ro^) • (117) 

If we move the reference-point m from an infinite 
distance (rQ = cc ) up to the hollow sphere and through the 
layer of matter into the inner hollow sphere, first the 
formula (115) holds, then (117) and finally (116). For the 
limiting cases and Tq = the successive formulae 
in each case give the same value for U; namely : for = 
p2 the value is : 

-Pf) ■ . (118) 
' p2^ 

and for Tq = the value is : 

^^3 = C/g == — 27Tfmk {p2^ — py^). 

Thus the potential U changes continuously with the 
position of the reference-point m, even when m passes 
through the surface of the attracting mass, and it is easy 
to see from considerations similar to those adduced in 
§ 33 that this theorem also holds for non-spherical and 
non-homogeneous masses. 

For a solid sphere of radius R we have p^ = 0, pg = R^ 
and the gravitation potential at a point m at a distance 
VqKR from the centre is, by (117) : 

o_ 

U = -fmk (3R^ - . . . (119) 

§ 39. Let us now consider more closely the physical 
significance of potential; we shall not restrict ourselves 
to gravitation, but, in conformity with the expression (108), 
we shall assume any arbitrary law of attraction. Corre¬ 
sponding to every point x, y, z of space regarded as a 
reference-point there is a definite value of the potential 
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[/, and by equation (110) each of the three force-compon¬ 
ents acts in the direction in which U decreases; if, for 
example, U increases in the positive direction of x, then 
X is negative. Moreover, the force-component is the 
greater, the more irapidly U varies with the co-ordinate in 
question; it is equal to the ‘‘ potential gradient ” in the 
direction in question. This may also be expressed by 
saying the attractive force tends to decrease the potential 
t7. 

Since any direction in space may be chosen as a co¬ 
ordinate axis, we also have that for any arbitrary direction 
x' : 

Jf' = _ .(120) 
dx' 

To show this in a more analytical way we form the 
differential coefficient : 

dU _dU dx dU dy , (120a) 
dx' dx dx' dy dx' dz dx' 

Here the second factors of the 
three products are the cosines of 
the angles iq', which the 
direction x' makes with the co- ^ 
ordinate axes, as may be seen from Fig. 8. 

Fig. 8, where FA = dx', PB = dx, 
and the angle P = Thus, taking into account (110) we 
have : 

- (Xcosf + FcosV + ZcosD, 

from which, by (56), we immediately get (120). 
The preceding discussion at the same time shows quite 

generally that the differential coefficient of any scalar 
function U of x, y, z with respect to the different directions 
of space always represents the components of a vector, 
which is called the space “ gradient of Z7 ’’ and is written : 
grad C/. We may therefore write equations (110) in 
vectorial language briefly as : 

- grade/.(121) 
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§ 40. The way in which the attracting force F depends in 
magnitude and direction on the position of the reference- 
point is brought out most clearly by a graphical method 
of representation. Let us imagine that at every reference- 
point the corresponding value of the potential has been 
noted and let us take together all those reference-points 
which have a definite value, say c, for the potential. 
The co-ordinates of these points then satisfy the equation : 

?7 =c, 

Fig. 9. 

That is, the points form a surface, which is called an 
“ equipotential surface.” Corresponding to every value 
of the constant c there is a definite equipotential surface 
and by varying c from — oo to -f oo we obtain all the 

possible equipotential surfaces which 
fill the whole of infinite space. A level 
surface may also consist of several 
shells entirely distinct from one 
another, but two different equipotential 
surfaces can never intersect. 

If all the active masses lie in finite 
regions and if the potential of a mass 
is equal to zero at an infinitely distant 

reference-point, as in the case of gravitation, then for all 
infinitely distant reference-points U — 0—^that is, the 
infinitely distant spherical surface is an equipotential 
surface. Then none of the other equipotential surfaces 
goes off to infinity, but every one of them is a closed surface 
(Fig. 9) the form of which of course depends on the position 
of the acting masses. 

The representation by equipotential surfaces gives us 
a direct intuitive knowledge of the characteristic properties 
of the field of force—^that is, of the magnitude and direction 
of the force F at any arbitrary reference-point. For if we 
take the reference-point P (Fig. 9), through which we shall 
assume the equipotential surface )7 = c to pass, and de¬ 
scribe through it the tangential plane to the surface, then, 
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if dx' denotes an infinitely small displacement of the 
reference-point in the tangential plane : 

dJl 
dx' 

= 0, 

and by (120) : X* = 0—that is, the component of the 
force F in the direction of any tangent to the equipotential 
surface is equal to zero, or the force is perpendicular to 
the tangential plane. Thus if n denotes the normal to 
the equipotential surface measured in the direction of F 

the component of F in the direction n is at the same time 
the total resultant force : 

F ^ .(122) 
dn 

In general, the quantity F has different values at 
different points of the equipotential surface. The graphical 
representation of equipotential surfaces also gives us a 
clear picture of this law. Let us consider two very close 
equipotential surfaces U = c and U = c', where c' is to 
be a little smaller than c. Then the force F acts at all 
points P of the surface c in the direction from c to c', and 
the magnitude of the force is, by (122) ; 

where A — dn denotes the (positive) distance in space 
between the two surfaces. That is, the value of the force 
is inversely proportional to the distance between the two 
surfaces. The closer the surfaces lie together, the greater 
the force. 

In this way the equipotential surfaces are closely 
analogous to the isothermals and isobars represented by 
curves in meteorological maps; in these maps the place of 
potential is taken by the temperature or the pressure, the 
negative gradient of which gives the value and direction of 
the current of heat-conduction or of the pressure. 

Th^ curves which intersect the equipotential surfaces 
c, c\ c", . . . normally (indicated by dotted lines in Fig. 
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9) and in the direction of decreasing potential are called 
the ‘‘ lines of force ” of the field, since they give the 
direction of the force which acts at each point of them. 
For example, in the case of a homogeneous sphere which 
acts according to the law of gravitation the equipotential 
surfaces are the concentric spherical surfaces, the lines of 
force are the straight lines which run from the outside to¬ 
wards the centre. If the sphere has a concentric spherical 
space in its interior this whole space represents a single 
degenerate equipotential surface, in which the course of 
the lines of force remains indeterminate. 

In general, the equations of a line of force are, by (110) : 

dx : dy : dz 
dU dJJ dU 
dx ' dy ' dz 

(123) 

A line of force cannot return into itself, but must either 
go off to infinity or end at a singular point. For, as it 
always runs in the direction of decreasing potential, and 
since, by definition (108), the potential has a single definite 
value at every point in space except for an arbitrary 
additive constant, it is impossible for a line of force to 
return to its starting-point. 

§ 41. Let us consider lastly the special case where the 
reference-point P is in equilibrium—for example, mid-way 
between two equal attracting point-masses; then by 
(110): 

(124) 

that is, the direction of the line of force which passes 
through P is indeterminate. A point of equilibrium of 
this kind, which we shall denote by Pq, is thus a singular 
point in the system of equipotential surfaces and lines of 
force. By (124) this is the case, for example, if the function 
U has an absolute maximum or minimum at Pq. It is 
easy to see then that in the former case the equilibrium is 
absolutely unstable and in the latter case absolutely 
stable. For if the reference-point P is displaced a little 
from its position of equilibrium Pq, the equations (124) no 
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longer hold, and the point is set into motion by the force 
which acts on it—namely, in the direction of decreasing 
potential. 

If the potential C7 is a maximum at Pg the moving point 
accordingly cannot return to its position of equilibrium— 
that is, the equilibrium is unstable. The reverse is true if 
the potential U has a minimum at Pq. 

But the equations (124) may also hold without U being 
a maximum or a minimum; the answer to the question 
whether the point when displaced from its position of 
equilibrium returns to it or not depends on the direction 
in which the displacement has occurred, and the equili¬ 
brium is called conditionally stable or conditionally 
unstable. 

If, finally, U is constant within a finite space, as in the 
case of the internal space of a hollow^ sphere discussed in 
§ 38, the equations (124) hold in the whole S2)ace. The 
equilibrium is not disturbed at all then by a displacement 
of the reference-point and is therefore said to be neutral 
{indifferent). 

§ 42. Whereas the above laws, from § 39 onwards, hold 
for any arbitrary law of attraction, we shall now deal in 
particular again with New^ton’s law of gravitation. In the 
expression for the Newtonian potential U, which is 
represented by (111) or (112) according as we are dealing 
with masses distributed as points or spatially, the essential 
and characteristic feature is the function multiplied by 
—/m, which is therefore often called the “potential 
function ” ^ in contrast to the potential U. The 
expression for it is, in the two cases given ; 

.(125) 

and: 

= .(126) 

The most important difference between these two 
expressions for the potential function is this, that if the 

F 
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reference-point x, y, z moves into one of the active masses 
17, ^ the first expression and all its differential coefficients 

become infinitely great, whereas the second expression, as 
we saw in § 38, is finite in the interior of the active masses 
and remains continuous even in passing through the 
surface. 

Let us next also inquire into the differential coefficients 
of the potential function <f> in (126) with respect to x, y, z. 
The first differential coefficients give the components of 
the attractive force, and hence are, by § 33, finite and 
continuous throughout. Their values are obtained from 
(126) by differentiation, if we bear in mind that k depends 
only on ^ but not on x,y,z\ 

f(^ — x)kdV j n .1 /io^\ 
== j - - -and so forth, . . (127) 

which agrees with (90). 

The fact that the quantity is finite for an internal 
dx 

point in spite of in the denominator may be seen 
directly if we express dV in polar co-ordinates, with the 
reference-point x^ y^ z as origin. Then the factor 
becomes in the expression (93) for cZF, and in (127) we 
are left, apart from only finite quantities, with only the 

p _^ 
factor =-, which is less than 1. 

r 
§ 43. The circumstances become different if we pass on 

to the second differential coefficients of cf) with respect to 
X, y, z. For if we again differentiate (127) with respect to 

This expression has a definite meaning only if /* is different 
from zero throughout—^that is, if the reference-point lies 
outside all the active masses. For if Xj y, z coincides with 
one of the 77, ^’s, r becomes equal to zero, and by intro¬ 
ducing polar co-ordinates we see, as at the end of the 
preceding section, that every term in 128) tends to 
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infinity logarithmically, so that the value of the difference 
assumes the indeterminate form oo — oo . 

We therefore first restrict our attention to the case 
where the reference-point x, y, z lies outside. By forming 

we get, taking into account (85), the important relation¬ 
ship, which is characteristic for the Newtonian potential 

analogously and adding these three integrals, 

function : 
02,^ 
0a;2 

0^ 
0y2 (129) 

which is called Laplace^s Equation, 
§ 44. Let us now inquire into the value of A<^ for a 

reference-point in the interior of the active masses. The 

equation (128) is useless for this case; 

and also ^ and have a finite value even in the interior 

of the masses. 
For example, if we take the simple case of a homogeneous 

sphere of radius JS, whose centre is at the origin of co¬ 
ordinates, then we have for a point x, y, z in its interior, 
by (119): 

^ ^ jfc(3i?2 - a;2 - _ ^2) , _ (130) 

which is obtained from the expression for the potential 
TJ given in (119) if we omit the factor — /m and remember 
that ^0 represents the distance of the reference-point from 
the centre of the sphere. Hence it follows that: 

^ 4??, ^ 9^^ _ 9^0 
9a;2 3 'by^ 92^ 

and ; 
= — 4:7rk.(131) 

which is independent of the radius of the sphere. This last 
equation is called Poisson’s Equation, 

We may easily generalize Poisson’s equation for the 
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case of a non-homogeneous mass of arbitrary shape. For 
this purpose we imagine a very small sphere described 
about the reference-point situated in the interior of the 
mass ; we call this very small mass 1 to distinguish it from 
the remaining mass 2. The potential function (/> of the 
whole mass is then equal to the sum of the potential 
functions due to the mass 1 and those due to the mass 2 : 

^ 4- (/»2, and likewise: — A^i + A^g* 

But by (129) A</>2 = 0 because the reference-point is an 
external point with respect to the mass 2, and so we are 
left with Acf) = A<^i. Since the sphere is very small we 
may regard it without appreciable error as being homo¬ 
geneous and, in fact, as having the density which the 
active mass lias exactly at the point where the reference- 
point happens to be situated. This is obtained by 
substituting the values x, tL z for 77, t in kt Hence it 
follow, by (131) that: 

= — 4c7rkx^y^z .... (132) 
Poisson’s equation may be regarded as a generalization 

of Laplace’s equation in that we may imagine the active 
masses to occupy the whole of infinite space, without leaving 
gaps, with a density k, which is partly zero and partly 
different from zero. The reference-point is then always 
situated within the masses, and the equation (132) always 
holds. At places where there is no actual mass k = 0, and 
we get Laplace’s equation in place of Poisson’s equation. 
At the same time, we see, if we take this point of view, that 
the abrupt change which the second differential co¬ 
efficients of </> experience when the reference-point passes 
through the surface of the masses is due to the sudden 
change of the density k in this transition. 

§ 45. From the mathematical point of view we see that 
if the potential function ^ of any spatial distribution of 
masses is given at all points of space, the density k of these 
masses can be calculated by a simple unambiguous dif¬ 
ferential operation, whereas the reverse problem of finding 
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the potential function (f) from the density h is one involving 
the integral calculus. In other words, the expression (126): 

in which we assume Ic to be infinitesimal at infinitely distant 
points I, 7/, ^ is an integral of the differential equation 
(132); it is not the general integral but that particular 
integi’al which is limited by the condition that <f> vanishes 
when the reference-point moves off to infinity. 

The general expression of a single-valued continuous 
function (whose first differential coefficient is also con¬ 
tinuous) which satisfies the differential equation (132) is : 

■^ = /-7- + <^o .... (133) 

where satisfies the equation A^o = 0 in the whole of 
infinite space. <j)Q may always be regarded as the potential 
function of masses which are entirely at infinity. For 
example, the special value : 

(f)Q = const., 

which clearly likewise satisfies the equation A(/>o = 9, is 
equal to the potential function of a homogeneous spherical 
layer of infinite radius, (Cf. § 37.) 

§ 46. We shall also calculate the potential function for 
the special case where the density of the active masses is 
independent of one of the three co-ordinates, say of 
This case is realized when the masses are arranged 
cylindrically parallel to the s-axis in such a way that the 
density is constant in every infinitely thin cylinder. 

The potential function cf) will then depend only on x and 
y but not on z, and without loss of generality we may 
therefore assume the reference-point to lie in the :ry-plane : 
2: = 0, so that 7-2 becomes : 

r2 =: ^2 4. ^2. 

where we have used the abbreviation : 

P^ = {x - + (y -vY ■ ■ ■ (134) 
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p is the distance of the reference-point from the straight 
line which passes through the point rj, ^ and is parallel 
to the z-Sixis. If we now substitute for dV its value given 
by (88) and use as an abbreviation for the cross-section of 
an infinitely thin cylinder : 

d^dr] da.(135) 

we get for the required potential function by (126) : 

= f .... (136) 

We first perform the integration with respect to 
Then : 

<l>^jkda. [log a + +7*)] • 

Here I denotes half the length of an infinitely thin 
cylinder, which is to be assumed so great that a further 
increase in size no longer has a physical meaning. If we 
now consider that for a sufficiently great value of I: 

we get: 

, i + + 4Z2 21 

(^ = J kda. 2 log — = const. — 2 J k log p . da. 

The numerical value of the constant, although infinitely 
great, has no physical significance (§ 36). We therefore 
write the potential function thus : 

(f) ^ — 2 j k^ r] log p , da . . . (137) 

and observe that in this expression everything that refers 
to the 5;-direction has vanished, so that it applies ex¬ 
clusively to the 'plane. We may therefore also interpret 
<f> as the potential function of certain fictitious masses 
which are distributed over the xy-ploxie with a surface- 
density 2k = Kin the surface-element dor, at a reference- 
point situated in the same plane and at a distance from 
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da which is given by p. But the law of force is no longer 
that of Newtonian attraction. 

For we have for the force-components, except for a 
factor which is of no importance : 

d6 [kx — P 

ai ““ “ ip~7“ 

dcf) __ [^y V 
dy ~ ~ }p p 

• da 

• da 
J 

(138) 

from which we see that the attractive force is inversely 
proportional to the distance p. 

The logarithmic potential: 

^ - J logp. da, ... (139) 

is for the plane what the Newtonian potential is for space. 
In particular Poisson’s equation (132) holds for it : 

27TKx^y (140) 

which becomes for a point outside the masses : 

dx^ 
+ ^-^ = 0 (141) 

as we may show directly by* differentiating (138) with 
respect to x and y. 

The following theorems also hold for the logarithmic 
potential; they may be derived from the equations (138) 
in precisely the same way as the theorems for the attraction 
of a homogeneous spherical layer according to the Newton¬ 
ian law may be derived from equations (90). 

The attraction of a ring-shaped sui'face, bounded by two 
concentric surfaces and with mass distributed uniformly 
over it, at a point outside it is exactly the same as if the 
whole mass were concentrated at the centre of the circle; 
the attraction exerted at a point in the interior of the 
smaller circle, on the other hand, is zero. Hence we get 
in exactly the same way as in § 38 the following expression 
for the potential function of this homogeneous circular 
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ring, if and iig the radii of the inner and outer 
boundary and the distance of the reference-point from 
the centre : 

For pq > i?2: 

(f, — 7tk {R<^ — R^-) logpo • • (142) 

For R^ > po ^ ^1 • 

(f) = (i?2^ Po^) ~ TTKR^XogRo + 77/c7?i^ log Po • (143) 

For po < /?!; 

<j> = (i?2^ — R^) ~ 7r/c7t!2^logi?2 + TTKR-^logRi . (144) 

It is easy to show that ^ and its first differential co¬ 
efficient with respect to p^ are everywhere continuous, 
whereas for A(/) the equations (140) and (141) hold. 

For a complete circle of radius R we have J?i = 0, 
R^ — R and so the potential function for a point at a 
distance Pq<R from the centre becomes by (143) : 

^=^^!^{R^^p,^)^7TKRHogR . . (145) 

whereas for an external point (po> R) the potential function 
has, by (142), the value : 

^=-/i,logpo .... (146) 

where p, == denotes the total attracting mass. 



CHAPTER IV 

INTEGRATION OF THE EQUATIONS 
OF MOTION 

§ 47. The problem of determining the motion of a 
material force under the action of given forces requires the 
integration of the equations of motion (55) and this again 
can be performed directly only if the force-components are 
given either as constants or as functions of the time t. 

Mostly, however, the force-components will depend on the 
position of the point or on its velocity, and then the 
equations of motion require particular treatment if the 
integration is to be performed. Some of these methods 
of tre^atrnent, which allow the integration to be performed 
in many cases, will now be described. 

If we multiply the equations (55) successively by ii, v, w 
and add, we get : 

, • • • , -xr dy rr dz 
m{uu + vv + ww) = X + 7 - + 

or, by (41), if we multiply by dt: 

d{^7nq^ “ ^dx -f Ydy + Zdz . . (147) 

The quantity mq^ is called, perhaps a little inappro- 

priately, the “ vis viva ” of the reference-point, whereas 
the differential expression on the right-hand side is called 
the work ” A which the force F performs at the reference- 
point, when it passes from the position x, y, z to the position 
X dx, y dy, z + dz. Using the relationships (60) 
and (45) we may also express the work in the form : 

A F -ds * (cos a cos A + cos p cos (jl + cos y cos v) 

= F •ds • cos (F, dr) (148) 
73 
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That is, the work is equal to the product of the magnitude of 
the force, the magnitude of the displacement and the cosine 
of the angle between them. If the angle is obtuse the work 
is negative; if the angle is a right angle the work is zero. 

In vector calculus the quantity (148) is called the product 
of the two vectors F and dr : 

A==F.dr.(149) 

and it is specifically called the scalar product ” because 
work belongs to the group of scalar quantities (§ 36). The 
unit of work in the absolute e.g.s. system—that is, the 
work performed by a force of 1 d3me in displacing the 
reference-point through 1 cm. in the direction of the force, 
is called an erg. 

§ 48. The significance of the equation (147) which states 
quite generally that the change in the vis viva of the reference- 
point is equal to the work performed by the active force 
consists in the fact that it enables the integration to be 
performed directly in numerous important cases. It is 
true that in general integration is not possible; for even 
if the force-components X, T, Z are Imown as functions 
of X, y, z, it is not always j)ossible to find a function of 
Xy y, z whose differential is equal to A. For example, if : 

X^y^, Y ^x\ 
then : 

A — y^dx -f- x^dy 

In such a case A is called an “ incomplete differential ” 
and the integration must be performed in a way different 
from that used in forming A. 

But if the active force is, in particular, a central force 
which is due to stationary point-masses, then by (110) a 
potential U exists and the work becomes ; 

.4 = .(150) 

That is, the work of the force is equal to the decrease in 
U, By substituting in (147) and integrating, we then get: 

-^mqo^^Uo-U . . . (151) 
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where and TJq denote the values of q and U at the time 
t = 0. According to this the velocity q depends only on 
the potential U. Thus if the point passes through a 
definite equipotential surface U = const., no matter at 
what point, in what direction or at what time, it always 
has a definite velocity. From (150) we also derive the 
physical meaning of the potential U. It is the work 
which the central force performs as a whole when the 
reference-point moves in any way from a place where the 
potential U exists to a place where the potential is zero. 
The equation (151) is then called the “ Principle of Vis 
Viva.” 

Actually, we have already applied the principle of vis 
viva on a number of occasions without characterizing it 
as such. 

For a heavy point of mass m we have : 

X = 0, r = 0, Z=-- mg. 

From this we get by (110) : 

U =5 4- mgz -}- const. . . . (152) 

and, if 2: = 0 when ^ = 0, then by (151) : 

~ 'mgz . . . (152a) 

which agrees exactly with (80). 
We further have for the example treated in § 12 ; 

X = — cx, 

from which, by (110) : 

U ^\cx^ + const.(153) 

and, since a; = 0 when < == 0, by (151): 

which agrees exactly with (17). 
When friction comes into play, as in the case treated 
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in § ] 5, the principle of vis viva no longer applies, because 
friction is not a central force and therefore the work done 
by friction does not represent a complete differential. 

§ 49. We have seen that the mechanical principle of 
vis viva is applicable in only a limited region. But as 
soon as we pass beyond the realm of mechanics it can be 
formulated in a more general way and expresses a law 
which is valid without exception in the whole field of 
physical and chemical phenomena : it is the Law of 
Conservation of Energy. This principle is founded on the 
recognition of the circumstance which is derived from 
experimental observations made during several centuries, 
that it is in no way possible to build a perpetual motion 
machine—that is, a device by which effects of some kind 
are continually being produced—without certain other 
effects being correspondingly used up; or, in other words, 
that in nature there is a certain quantity E which we may 
regard as a capacity ” for producing effects and which 
has the peculiarity that, like the supply of matter that 
occurs in nature, it can present itself in the most varied 
forms and is susceptible to various transformations, but 
its total amount can never be changed, but rather is 
always conserved : E = const. 

The decisive feature in the foruiulation of the energy 
principle is the appropriate defiiution of JS7, and there have 
been many differences of opinion and controversies about 
this point, but not about the validity of the principle itself. 

The only way to answer the question correctly is to 
start out in the first place from particular facts and to seek 
out those among the relationships which form the ex¬ 
pression of these facts that are capable of being interpreted 
as = const. Hence when we look for such a relationship 
in the realm of the mechanics here being considered we 
must bear in mind above all that although E may contain 
the co-ordinates and the velocity components explicitly 
it must not contain the time t explicitly, because E, being 
the capacity for producing effects (Wirkungsvorrat, stock 
of effects), can depend only on the instantaneous physical 
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state of the point—that is, on its position and on its 
velocity. Then there is no longer possibility of doubt. 
For the only relationship among those found by us which 
does not contain the time t explicitly is that expressed by 
the equations (17), (80) and more generally by (151). 
Hence it follows that the equation (151), which expresses 
the principle of vis viva : 

U — = const., . (154) 

is to be regarded as the application of the principle of 
conservation of energy to purely mechanical phenomena, 
and that in them the mechanical energy is to be written as: 

E = \mq^ -{-U =-K + U . . . (155) 

Thus the mechanical energy consists of two parts, the 
kinetic ’’ energy K (energy of motion) and the potential 

or the potential ” energy U (energy of position). Their 
sum remains constant in all purely mechanical processes. 

Since by § 48 the principle of vis viva holds only for 
such forces as have a potential the mechanical energy 
remains preserved only for forces of this kind, which are 
therefore called ‘‘ conservative forces.’’ For non-con¬ 
servative forces, for example, friction, the mechanical 
energy changes and the universality of the energy principle 
demands that in this case the process is not purely 
mechanical, but that it generates a new kind of energy to 
an equivalent amount—for example, heat. The equation 
(154) then becomes generalized in the following way : 

{K - Ao) + (U Uo) + If = 0 . . (156) 

where W denotes the heat generated in the interval of 
time from 0 to t. For example, the equation (19a), when 

dx 
multiplied by ^ and then integrated with respect to t 

between the limits 0 and t, gives us the relationship : 

[K - K,) + (U -U,)+p l‘ = 0 . (157) 
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The last integral represents the heat generated, W. 
Another example of a non-conservative force is given by 

the case where the force is some function of the time t, 
such as when we act on the material point by means of our 
muscles according to some arbitrary rhythmical law. 
We can then, of course, alter the mechanical energy of the 
point according to our wishes, but the energy principle 
then demands that the change in mechanical energy be 
exactly compensated by an equivalent amount of muscular 
energy. 

§ 50. Another method of integrating the equations of 
motion (55) may always be applied when the direction 
of the force F, no matter what its magnitude, always 
passes through a fixed centre. Then the orbit of the 
reference-point lies in a plane which is defined by the 
centre, the initial position and the initial velocity of the 
reference-point. Let us choose this plane as the ir^z-plane 
and the centre as the origin of co-ordinates, then 
2: 0, Z = 0 and : 

X:Y 

Substituted in (55) this gives : 

d 
dt 

dN dH ^ d ( dy dx 
ysi (167a) 

and hence by integration : 

dy dx , 
. . (158) 

This equation admits of a simple interpretation if we 
introduce plane polar co-ordinates r and (f) by means of the 
relationships : 

X = r cos <56, 1/ = r sin . . . (159) 
For then: 

dx = dr cos — r sin (f)dcl> 1 

dy = dr sin ^ -f r cos J 
. . (160) 

and the equation (158) becomes : 

11 0
^

 

. . (161) 
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which, expressed as an integral, becomes : 

rrHcf> .(162) 
Uo 

Now rH(f> is, except for smaller quantities of the second 
order, twice the area of the infinitely small triangle AOB 
(Fig. 10) which is formed by th(i radius vectors OA and OB 
at the times t and t + dt, and the element AB of the orbit. 
So, according to equation (162), the area which is enclosed 
by the radius vectors at the times 0 and t and the orbit of 
the reference-point is proportional to the time t; in other 
words, the radius vector sweeps out equal areas in equal 
times. Hence equation (161) or (158) is also called the 
‘‘ Principle of Sectorial Areas.’’ 

§ 51. Another application of the law of sectorial areas 
occurs when the force F is directed, 
not through a fixed centre, but through 
a straight line fixed in space. For if 
we take this line as the 2;-axis, then 
we have, not 2: = 0 and Z = 0, but 
X : Y — X : y, and equations (161) and 
(162) follow from this exactly as in § 50. Hence in 
this case the principle of sectorial areas does not hold for 
the reference-point itself, but it does hold for the motion 
of its projection on the xy-plane—^that is, for the motion 
of the point whose co-ordinates are x, y and 0. 

§ 52. We shall now apply the theorems that have been 
derived to a special case which is of particular importance 
in nature, and for this purpose we choose the motion of a 
material point m which is attracted to a fixed centre y by 
a Newtonian gravitational force, just as a planet is attracted 
by the sun. 

We at once see then that the motion occurs in a plane 
and hence requires only two equations to define it. To 
obtain these equations we shall use the principle of vis viva 
and the principle of sectorial areas, and we shall take the 
plane of the motion as the a:y-plane. 

Now, by (154), the principle of vis viva gives us, if we 
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substitute the value of the gravitational potential for a 

single centre from (111) and divide by : 

(163) 

The principle of sectorial areas is given by (161). The 
values of the constants c and c' are determined by the 
initial state—^namely, if we denote the values for ^ = 0 by 
adding the suffix 0, we have : 

^0“ - 

2/m (164) 

The constant c' depends, in addition, on the direction of 
the initial velocity. We find it more expedient to express 
this direction not by the angle made with the .r-axis, 
because this angle has no physical meaning, but by the 
angle made with the radius vector, namely aQ; this gives 
us the advantage that the choice of the a;-axis still 
remains completely open. Now in the right-angled 
triangle ABC (Fig. 10) ; 

AB = (Is, AC = rd(j), < B ol 

Consequently : 

and, divided by dt: 
rd(j) = ds. sin a 

gsina 

Hence for the initial state, by (161) : 

c'= ro^o <5Co.(165) 

§ 53. If t is eliminated from the equations of motion 
(161) and (163) we obtain the orbit of the planet. It is 
of course advantageous in the present instance to use 
polar co-ordinates. 

Then, by (160): 
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and by (163) : 

(167) 

and by eliminating dt from (161) and (167) we get as the 
diffej'cntial equation of the orbital curve : 

dcj> 

Integrating, we get : 

c'dr 

r\/cr- -1- 2//xr — c'^ 

(f) = COS“^- 

. (168) 

. (168a) 

The integration constant c" is determined by the value 
which (f) assumes when r = Since we have not yet 

fixed the direction of the x-axis, we can without loss of 
generality set c" = 0, which only means that we have 
decided on our choice of x-axis. 

We then obtain : 

cos (f) = 
_— ffir 

rVPiJr + cc'2 
(Hi9) 

If we solve this equation for r and use the abbreviations : 

.... (170) 

. 
we get: 

_I_.... (172) 
1 -f e cos (f) 

This is the equation to a conic section (Fig. 11) whoso 
focus is at the origin of co-ordinates, whose major axis is 
along the a;-axis and whose latus-rectum (ordinate at the 
focus) is p and the numerical value of the eccentricity is : 

e = .... (173) 

G 

a 
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The values of the semi-axes are given by : 

and 6^ = . . . (174) 

All these constants are obtained from the conditions for 
the initial state and according to (170) and (171) 

if we take into account the values of c and c' in (164) and 
(165) as follows : 

1 
a 

sin^a^ + cos^ao, p 

. o ^0^ gp 

7*0 2ffl 

Mo" 

sin- ao 

fl^ 
(175) 

(176) 

The conic section is an ellipse, parabola or hyperbola 
according as the eccentricity € is smaller than, equal to, 
or greater than 1, or, by (170), according as c is negative, 
zero or positive. Actually, by (163), \/c denotes the 
velocity at an infinite distance, which becomes imaginary 
for an elliptic orbit. For the initial state it follows from 
this, by (164), that the conditions for these three kinds of 
conic section are, respectively : 

Qo > 
2/m (177) 

It is noteworthy that the species of the conic section and 
also the length of the semi-major axis a do not depend on 
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the direction of the initial velocity, but only on the sign 
of the energy constant c. 

The elliptic form of the planetary orbits with the sun as 
a focus constitutes the content of the first of the three laws 
found empirically by Kepler, the second law is the state¬ 
ment of the principle of sectorial areas, the third follows 
in the next section. 

For the earth’s orbit the eccentricity e is approximately 

equal to the parameter p is approximately equal to 

kms 
148-10® kms., the velocity q averages 30-and so the 

secs. 
angular velocity is about: 

I = 2-10-’.(178) 

The condition that the orbit should be circular is : 
€ = 0, and so for the initial state according to (175), 
since is the sum of two squares : 

cos (/.Q = 0 and 
^0 

That is, the velocity must in the first place be perpendicular 
to the radius vector and in the second place must have just 
that value which leads to the relationshij) (62) which holds 
for uniform circular motion. The latter condition becomes 

clear at once if we remember that here the force F == 

§ 54. More complicated relationships hold for the 
dependenqe of the co-ordinates r and ^ on the time t, and 
their evaluation in problems of astronomy can be performed 
only by means of expansion in series. Assuming that the 
path is elliptic, we shall now also calculate the time T 
required for one revolution. This can be done most 
simply by using equation (162) of the principle of sectorial 
areas and performing the integration from ^ = 0 to ^ = T— 
that is, from <f> ~ <f)Q to <!> <I>q -{• 27r. On the left-hand 
side we then get the double area of the ellipse, that is : 

2ab7T« c'T. 
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If we eliminate c' by means of (171) and b by means of 
(174) we get: 

/772 _47r^a^ 

“7/- 

(179) 

That is, for a given fx (the sun) the square of the time of 
revolution is proportional to the cube of the major axis 
(Kepler’s third law). 

In this way the three Kepler laws which in their original 
form appeared to be in no way inherently related present 
themselves as deductions from the one Newtonian law of 
gravitation. But the significance of Newton’s law does 
not alone consist in the fact that it allows Kepler’s laws 
to be derived from it. It embraces above all the laws 
which govern weight on the earth. For we may also 
apply equation (179) to the earth as the centre of attraction 
with its mass /x by substituting for T, the time of revolution 
of the moon, and for a, the radius of the moon’s orbit. 
But by (103) the value for fix which then follows is equal to 
E^g where R denotes the radius of the earth and g the 
acceleration due to gravity at the earth’s surface. Thus : 

_ 4tTr^a^ 
3 - 

(180) 

If we substitute in this expression the values : 

a = 60-1. i? 
R = 637.10® cms. 
r = 1 month = 236.10^ secs. 

we get <7 = 981, which agrees sufficiently well with 
measurements on the earth (§ 10). This calculation gave 
Newton the firm foundation for his theory of general 
gravitation. 

But Newton’s law of gravitation does far more than 
combining the earth’s gravitation and Kepler’s laws in a 
single expression. For as was found subsequently it also 
gives the perturbations caused by the mutual gravitation 
of the planets as well as a number of other celestial 
phenomena in complete agreement with the results of 
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observation (motions of comets, double stars and so forth). 
It is not only simpler but also more accurate than Kepler’s 
laws. Since the efficiency of such a hypothesis can 
certainly not be ascribed to chance, it seems justifiable 
to conclude that the enunciation of Newton’s law of 
gravitation is not au fond an expedient invention, as some 
physicists maintain, but rather is to be regarded as an 
epi.stemological discovery. 



CHAPTER V 

RELATIVE MOTION 

§ 55. In deriving the laws governing the motions of 
planets in the preceding chapter we assumed the sun to 
be at rest. This is, however, certainly not true, since the 
sun can move freely and is attracted by every planet 
according to the law of gravitation. To be accurate, then, 
we must also take this motion into account. 

Besides this, however, there is also another circumstance 
to be considered. What we observe and measure, and 
therefore what w^c may alone use in any test of the theory, 
is not the absolute motion of the sun and the planets at all, 
but rather the motion such as it appears to us inhabitants 
of the earth. For we have not a stationary co-ordinate 
system at our disposal, but rather the co-ordinate system 
to which we refer the motions of all bodies, including 
celestial bodies ; this system moves with the earth around 
the sun and, indeed, turns in various directions during 
the course of the day. 

We shall therefore attack the problem at once from the 
widest angle and shall inquire into the laws of motion of 
a material point, such as they ap})ear to an observer 
moving in a definite way. 

For this purpose we imagine that besides having the 
stationary co-ordinate system x, y, z which we have 
hitherto used (we may leave the possibility of its realiz¬ 
ation out of the question altogether), we also have an¬ 
other rectangular co-ordinate system x\ y\ which 
moves in a manner definitely given, and we suppose that at 
the origin 0' of this co-ordinate system we have an 
observer R' rigidly connected with O', say in such a way 
that for him the z'-axis points upwards, the x'-axis to the 
right and consequently the i/'-axis straight in front of him. 

86 
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The question now is : What equations of mechanics 
hold for the observer jB' instead of the equations (55) or 
(57) ? We obtain the answer to this question by expressing 
the components of the acceleration r on the one hand and 
the components of the force F on the other hand in terms 
of the components of the corresponding quantities r' and 
F' referred to the moving observer, and substituting these 
values in (55). 

§ 56. The problem of expressing ‘r in terms of r or 
conversely is purely one of kinematics. Since the motion 
of the accented co-ordinate system is regarded as known, 
the co-ordinates of the origin O' as well as the 
direction-cosines of the three axes x\ y\ z* are known 
functions of the time t. We call them y^, ag, P2» 

^3, P3, 73, where wo allocate the letters a, p, y to the 
unaccented axes x, y, z and the numbers 1, 2, 3 to the 
accented axes x\ y\ z\ Generalizing the result of (36) we 
then get: 

x' = ai(x - Xo) + - y^) + y^{z - z„) 

y' = a2(x - Xo) + P2O - 2/0) + 72(3 - 2o) ■ • ' 

z' = a3(x - Xo) + - Vo) + 73(2 - 2o). 

To these three equations there must be added three 
exactly corresponding equations which are obtained by 
considering that the direction-cosines of the three un¬ 
accented axes X, y, z with respect to the accented axes 
x\ y\ z' are, successively: a^, a^, a3, pj, P2, P3 and y^ 
73 : hence : 

X — Xq=^ ol^x' + oL^y' -f ags' 

2/ - 2/0 = M + P32' 

z - Zfl = Yix' + + y^z' 

To find the relationships between the velocity-com¬ 
ponents v\ w' of a material point, such as they appear 
to the observer and the components u, v, w referred 
to the stationary system, we need only differentiate the 
equations (181) or (182) with respect to the time t, 
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remembering, however, that the direction-cosines in 
general depend on the time t. 

A second differentiation with respect to the time i gives 
us the relationships between the acceleration-components 
n\ v', w' on the one hand and u, v, w on the other, and this 
completely solves the problem of expressing the vector 
r' in terms of the vector r. 

§ 57. From the physical point of view it is more difficult 
to define the important force-vector F' for the observer 
B\ To do this two ways immediately present themselves, 
both of which represent a generalization of equation (56). 
We might think either of setting the force F' generally 
equal to mass times acceleration q, and hence also X 
equal to m'a ; or we might generally put X' equal to ol^X -H 
PjF -f y-yZ. These two definitions are mutually con¬ 
tradictory, since in general mu' differs from ol^X + 
yjZ, as is easily seen if we differentiate the first of the 
equations (181) with respect to t and then compare the 
values (55). 

We can come to a decision as to which of these alter¬ 
natives is to be adopted only by reverting to the funda¬ 
mental train of ideas described in § 8 in setting up the 
concept of force, according to which force is to be regarded 
from the very beginning not as an acceleration but as the 
objective cause of motion. For if in general the observer 
B' were to set force equal to mass times acceleration he 
would be compelled to conclude that if the force F' which 
acts on a material point is equal to zero, the velocity of the 
point q is constant in magnitude and direction. 

Now there is one case where the force is undoubtedly 
zero for every observer—^namely, the case where the 
material point is completely isolated and is situated in 
empty space at an infinite distance from all other bodies 
(§7). Then there is no cause for motion in the objective 
sense, and hence no force, so that F' is equal to zero. 
But in this case the velocity of the point for the observer 
will by no means be constant in magnitude and direction, 
as the simplest experiment shows, but will depend entirely 
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on how the observer moves, whether, for example, he 
rotates. Hence q does not in general vanish with F' and 
the definition of F' on which we are fixing our attention is 
untenable. On the other hand, the reflection just made 
shows that F' always vanishes simultaneously with F 

and this condition leads us to adopt the second of the 
above alternatives for the definition of F', so that we set 
generally : 

Z' = aiZ + PiF -f yi2) 

Y' + yA • ■ 

Z' = -f- + YsZ) 

. . (183) 

and conversely 

X = aiX' Yo^^Y' + asZ'] 

Y = ^,X’+ + 

Z = yiX' +y^Y' + y^Z’j 

, . (184) 

In principle this solves the problem of relative motion. 
For if on the one hand we take the components of the 
force F from (184) and on the other hand the components 
of the acceleration q from (J 82) and substitute these values 
in (55) we get the relationships between F' and q. 

In performing this calculation we shall, however, 
restrict ourselves for the sake of simplicity to a few 
special cases of particular importance. 

§ 58. The simplest case is that where the accented 
co-ordinate system is immovably fixed to the unaccented 
co-ordinate system—that is, where both Xq, Zq and also 
the nine direction-cosines are independent of the time t. 

If we differentiate (181) and (182) we then get the simple 
relationships : 

u' = -f -f- .(185) 

u = oiiu' -f -I- a3^e',.(180) 

* ' = ai?i -f PiV + y-^w,.(187) 

u = OLiU -f agv' -f 0L^w\.(188) 

from which, in view of (183) and (55), it follows that: 

X' mu\ r' = mb', Z' == mw' . . (189) 
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that is, the same equations of motion hold for the accented 
system of reference as for the unaccented system, or : the 
equations of motion are “ invariant ” with respect to the 
transformation of co-ordinates that has been effected. 
The velocity and the acceleration also retain their value, 
whereas the components alter. 

§ 59. Let the origin of co-ordinates O' of the accented 
co-ordinate system move arbitrarily, but let the directions 
of the axes x\ y\ z' always remain parallel to the axes 
X, y, z. 

Then x^, y^, Zq are dependent on the time, whereas : 

ai = 1, = 0, = 0 "j 

a2 = 0,P2= 1,72 = 0 i • . . (190) 

“3 = 9, Ps = 0, 73 = 1 J 

In this case the equations (181) become : 

Xf ^ X — Xq, . . . 1 

%i! = u ~ '2^0, • • • I * • • (1^1) 
it' ^ u — Uq, . . . ) 

and the equations (183) become : 

X' == X, Y' ^ Y, Z' == Z . . . (192) 

so that by (55) we get as the resulting equations of motion : 

mu' — X' — m?>Q,.(193) 

which differ from the equations (55) for a stationary system 
of reference. Since the equations of motion can be 
tested experimentally, the observer B' has a means of 
gaining information about his motion with respect to a 
stationary co-ordinate system by mechanical means. He 
can, however, measure only the acceleration components 
Uq, Vq, Wq, but not the velocity components Wq. 

We see actually that if we assume the accented system 
to be in uniform motion, say so that: 

x' = x — u^ty y' y Vofy z' = z — w^t . (194) 

where u^y Vq, Wq are constant, then the equations (189) 
again result from (193)—^that is, the equations of mechanics 
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are invariant also with respect to the transformation (194), 
which is called a ‘‘ Galileo transformation ” in honour of 
the discoverer of the law of inertia. Tims an observer 
B' who is moving uniformly can never find out anything 
about the velocity of his motion by mechanical measure¬ 
ments ; nor are we able to specify a point in world-space 
about which we can assert that it is absolutely at rest. 
Rather, an additive constant which is undefined and 
undefinable remains in every velocity. This law is called 
the classical “ Principle of Relativity.’’ (It must be 
carefully distinguished from the modem Principle of 
Relativity of Einstein, which correlates from a higher point 
of view the invariance, discussed in the preceding section, 
of the equations of motion with respect to a rotation of 
the co-ordinate S3^stem and the invariance with respect 
to a uniform translation of the origin of co-ordinates.) 

It is noteworthy that besides the velocity also the kinetic 
energy of a material point may be defined only relatively; 
and, moreover, since the Idnetic energy depends quad- 
ratically on the velocity, there is left undetermined in the 
expression for the kinetic energy not only an additive 
constant, but also a linear function of the velocity. From 
this we see how necessary it is in all our calculations with 
mechanical quantities to characterize accurately the 
system of reference which is being used. As soon as this 
is done all indefiniteness, of course, vanishes. 

§ 60. We shall make a further application of equations 
(193) to planetary motion by first regarding the sun as 
freely movable, as described in § 55, its co-ordinates being 
Xq, ^0’ investigating the motion of the planet with 
respect to an observer B' situated on the sun. Let the 
directions of the accented co-ordinate system be parallel 
to those of the unaccented system. Although 
are not given here as functions of the time, yet we can 
easily find these quantities with the help of the equations 
of motion for the sun. For by the principle of action and 
reaction (Newton’s third law) the force of attraction 
exerted by the planet m on the sun fi is equal and opposite 
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to the force X, Y, Z which the sun exerts on the planet; 
thus : 

fiiiQ == — X, . . . 

Substituted in (193) this gives : 

mu X' +X 
m 

and by (192) : 

mu = X • --> (195) 

Now by (84) and (191) : 

where : 

•xyr /» UVlJj tX/ 
A = J • - „ • 3 

" ^<5 ^ 

r2 = x'2 + l/'2 + Z'2. 

Consequently the equations for the relative motion run : 

•, . m (u + m) x' ,, Of!, 
mu = - f- . 

This is the motion of a material point of mass w, which 
is attracted according to the law of gravitation by a centre 
which is at rest at the origin of co-ordinates and which has 
a mass m (jl. This theorem refers the laws governing 
the relative motions of planets to those derived in §§ 52 
to 54 for absolute planetary motion. The fact that the 
factor /Lt is replaced by the greater factor /x + m, which 
makes the attractive force appear greater than it really is, 
arises from the circumstance, of course, that the planet 
draws somewhat nearer to the sun when the sun is freely 
movable than when it is fixed. 

But we may go a step still further. There is nothing 
to prevent our following the same argument and making 
the same calculation for the motion of the sun relative to 
an observer situated on the planet. For we have in¬ 
troduced no restrictions about the ratio of the magnitude 
of the quantities p, and m. 

We may therefore enunciate the following theorem : 
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for an observer situated on the planet the sun moves in an 
ellipse (the ecliptic), at one focus of which the planet is 
situated, according to the principle of sectorial areas, 
exactly as if the planet were fixed and had the mass 
/X -f m. This ellipse is of course exactly the same as that 
of the planetary orbit relative to the sun. 

§ 61. To approximate more closely to the conditions 
which obtain on the earth—and we are, after all, dependent 
on them alone—we now investi¬ 
gate the equations of motion of a y 
material point for a co-ordinate 
system which rotates with a 
constant positive angular velo¬ 
city CO. We first make the 
origin 0' of the rotating system 
coincide with the origin O, and 
the axis of rotation z' coincide 
with the s-axis of the stationary system. If 0 is then 
the angle which the a:'-axis makes with the a;-axis, then 
we have (Fig. 12) : 

QCl — COBcf) Pi = sin (f) yi = 0 

ag = — sin (/» P2 = cos (f) y2 = 0 

ag == 0 r-i = 1 

where we may set: 

(j> ~ cot 

We then obtain from the equations (181) : 

(197) 

(198) 

x' = X cos <j) + y sin (f> 

y' — — X sin (/>-{- y cos (f> - 

z' ^ z 

and by differentiating : 

u' = u cos (f) V sin </> + coy' \ 

v' u sin (f) + V cos (f) — cox'V • 

w' = w ) 

(199) 

(200) 
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Similarly: 

ii' u cos + i; sin <f> + 2wv' + cj^x' 1 

= — wsin^ + vco8(j> — 2a)u' + co^y' V (201) 

w' = w I 

If we multiply these equations by m, then if we take 
into account (55) and (183) we obtain the required differ¬ 
ential equations in which, since only accented quantities 
now occur, we may omit all the accents : 

7)iu = A + 2mcoi? + moj^x \ 

7nv = 3^ — 2moju + Tnoj^y [ • • (202) 

7nw = Z J 

Thus the laws of mechanics undergo a change for the 
rotating observer; this change may be characterized by 
saying that the true ” or objective ” force, whose 
components are X, Y, Z, and which may be so produced 
by the muscles, say (§ 8), is supplemented by two “ appar¬ 
ent ’’ or ‘‘ subjective ” forces whose components are 
TTioj^x, 0 and 2m<jyv, — 2moyn, 0. The first additional 
force, which depends only on the ^position of the reference- 
point, is, by § 25, equal in magnitude and exactly opposite 
in direction to the centripetal force which occurs when the 
motion of the reference-point is one of rotation about the 
axis of rotation with the angular velocity co : it is therefore 
called the “centrifugal force.” The second additional 
force which depends only on the velocity of the reference- 
point in the moving system is called the “ Coriolis force ”; 
it is perpendicular both to the axis of rotation z and to the 
velocity q, as we see by adding together its components 
when they have been multiplied respectively by u, v, w. 
This Coriolis force forms with q and z a right-handed 
system (§ IG), which is in general, of course, not rectangular. 
That is, if the observer, for whom the axis of rotation z is 
directed upwards, looks in the direction q, the Coriolis 
force acts towards his right-hand side. The magnitude 
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of this force is twice the product of the mass m of the 
reference-point, of the angular velocity w and of that 
component of the velocity q which is perpendicular to 
the axis of rotation. 

§ 62. We now displace the origin of the moving system 
from the point 0 of the axis of rotation (centre of the 
earth) to a point O' on a spherical surface (earth’s surface) 
whose radius is E (earth’s radius), and this spherical 
surface is to rotate together with the system above 
considered. For simplicity we assume O' to lie in the 
Xy 2:-plane, the picture plane of Pig. 13. We take the 
2:'-axis in the direction of the earth’s radius pointing 
outwards, the ^/'-axis parallel to the ?/-axis (downwards in 
the figure). Then the a:'-axis lies in the plane of the 
diagram. By transforming to the 
new accented system we then get 
the equations of mechanics for an 
observer B' w^ho is standing on the 
earth’s surface in such a way that 
for him the 2:'-axis points upwards, 
thei/'-axis eastwards and the a;'-axis 
southwards. 

Since the new system is rigidly 
connected with the former system, 
the simple relationships (185)-(188) hold for this trans¬ 
formation, Now if Po denotes the angle which the earth’s 
radius 00' makes with the x-axis (the equator), positive for 
the northern hemisphere and negative for the southern, 
then the co-ordinates of O' in the former system are : 

Xq== E cos Po» yo = Zq=^ E sin % . . (203) 

Further, the direction-cosines of the accented axes with 
respect to the unaccented axes are : 

ai = sin j3o, Pi = 0, 71 = - cos po 

0C2 = 0, p2 ~ L y2 ~ ^ 

a3 « cos Po, p3 = 0, 73 = sin po 

(204) 
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Consequently, by (187) : 

ii' = u sin % — w cos Pq, 

i)' = V, 

w' u cos po + ^ Po- 

We multiply these equations by m and substitute for 
u, i), w their values from the equations of motion (202). 
Finally we express all unaccented quantities in terms of 
accented quantities, namely by (182) : 

X — R cos Po -{- x' sin Po + z' cos p^, 

y = y'> 

and by (186) : 

u == %i' sin Po + w' cos Po, 

V v', 

and by (184) : 

X = X' sin Po + Z' cos Po, 

F= 7', 

Z — — X' cos Po + Z' sin Pq. 

If we now omit all the accents simultaneously we obtain 
the equations of motion for an observer standing on the 
earth’s surface in the direction of the earth’s radius in the 
following form, no terms being neglected : 

Southwards: rnu = 
X + 2mo}V sin Po + moj^ sin Po(i2 cos Po + sin po -f- z cos po) 

Eastwards: mv = 
Y — 2ma) {u sin w cos po) + moj^y 

Upwards: moj = 
Z H- 2 mcov cos Po + mcj^ cos cos Po + a: sin Po + 2 cos Po) 

If the distance of the reference-point from the location 
of the observer is small compared with the earth’s radius, 
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wc may neglect the terms in x, y, z as being much smaller 
than those in R and we get the simpler equations : 

Southwards: 
mil = X + 2m(x}V sin Po + moj^R sin Po cos Po 

Eastwards: (^06) 
mi? == r — 2mco {u sin po + ^ cos Po) [ 

Upwards: 
mco — Z + 2m(x)V cos Pq -f mafiR cos^ p^ 

§ 63. Let us next consider the case where the reference- 
point is subject only to its own weight. Then the force 
acting on it is, X = 0, F = 0, Z = — where the 
acceleration due to gravity for an observer who does not 

move with the earth, has the value by (103). 

if we allow the i)oint to fall with the (relative) initial 
velocity zero—that is, from rest,’’ then, so long as the 
velocity ?/, v, w is still very small, the following relationshi])s 
hold : 

u = oj-U sin Po cos po ] 

i? = 0 . . (207) 

* = - ^0+ «^^-ScOs2po J 
Thus the acceleration is constant, but its value and 

direction differ from those of ^o* The square of the 
acceleration is : 

gr2 == 4- m2 = _ 2groa>^i^ cos^ Po + oj^jR^cos^ Pq. 

Here the third term plays no appreciable part, since , . oji^R r 

the ratio-tor : 

= ^76^0 =10-5sec-1, 

B = 037.10«cm., 

983 ~ acceleration measured at the pole, for Po = 
sec. ^ 

has the value 0*00343. Hence the acceleration itself 
comes out very nearly as : 

g^QQ- co^R cos2 Po = 983 - 3-37 cos2 Po . (208) 
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whereas we get from the most accurate measurements 
with a pendulum : 

^ = 983 - 5*2cos2po • • • (^09) 

The fact that the decrease of the acceleration diie to 
gravity is considerably greater when we approach the 
equator than according to the theory here developed is 
due to the circumstance that the earth is not exactly 
spherical in shape, but is flattened. 

The direction of the acceleration due to gravity—that is, 
the direction of the plumb-line or of the vertical, by means 
of which the zenith-point of the observer is determined— 
does not, by (207), coincide with the 2:-axis on the earth’s 
radius, but rather has a component which is perpendicular 
to it. The angle 8 made with the earth’s radius, since 
it is very small, amounts to : 

3 -- Po Po _ "Po (210) 

For the pole and the equator 8 = 0. On the northern 
hemisphere 8 is positive, on the southern it is negative— 
that is, on the former the plumb-line is deflected south¬ 
wards from the direction pointing to the earth’s centre, on 
the latter it is deflected towards the north. The maximum 

TT 
value attained by 8 is for Pq = namely : 

Smax = = 0*00171 = 5*9 minutes . (211) 

The vertical also determines the geographical latitude 
p of the observer; it is the angle between the vertical and 
the equator. 

Hence the following relationship holds for this angle : 

p-Po = S.(212) 

§ 64. The equations of motion of a heavy point-mass 
become a little simpler if we choose as the ;2-axis, not the 
earth’s radius, but the vertical—^that is, if in the table (204) 
giving the direction-cosines we replace the angle Pq by 
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the geographical latitude p. For in that case the south¬ 
ward component of the acceleration in equations (207) 
drops out, and the equations (200) give in this case : 

Southwards : u = 2(jjv sin p 

Eastwards : v = — 2oj(n sin p -f ^ cos p) 

Upwards towards the zenith : —g -]-2wv cos p 

(213) 

Let us now also follow the motion of the point-mass for 
greater velocities by letting it drop with an initial velocity 
zero from a high tow^er of height h. In this case, too, we 
may simplify the discussion considerably by taking 
advantage of the peculiarities here involved. 

Of the three acceleration components w is of a higher 
order of magnitude than u and v; hence we may also 
neglect u and v in comparison with w, and we get, more 
simply : 

il = 0, 

V = — 2ojio cos p = — 2a> cos p • 

w = ^ g. 

With the initial conditions (t 0) : 

X — 0, y = 0, z = h, 

u = 0, 0, w ~ 0, 

the first and the third equations give on being integrated : 

0, X = 0, 

w== -gt,z= -^gt^ + h, 

but the second gives : 

V = ~ 2a) cos P . (:2 — h) “ a)g cos ^ 

y cos p. 

Hence by eliminating t we get as the path of the freely 
falling point: 

2/ = 3 cos 
- (214) 
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which is called a Neil parabola (Fig. 14); it lies in the 
vertical plane which points eastward. 

1 

Fig. 14. 

The deviation from the vertical which 
passes through the apex of the tower 
{z = h) amounts at its foot (z = 0) to : 

Thus for S = T and A = 10^ cms. it is : 

=1-5 cms., 

which agrees with the results of numerous 
measurements. 

If besides gravity another force, whose 
components are X, 7, Z, acts on the 

point-mass, the equations of motion (213) become 
generalized to : 

Southwards : rnii == X ^.mwv sin ^ 

Eastwards : mv — Y — 2mw{u sin p + tecos p) 

Upwards towards the zenith : 
m w = Z — mg -f 2mwv cos p 

(215) 



CHAPTER VI 

CONSTRAINTS 

§ 65. Hitherto we have assumed that the material 
reference-point that has been under consideration was sub¬ 
ject to no influences other than certain forces each of which 
tended to set it into motion according to a definite law which 
was assumed known. There are cases, however, where the 
motion of the point is influenced by causes other than the 
forces given at the beginning, as, for example, when the 
point is compelled to remain on a fixed surface or on a 
fixed curve, or, more generally, when the motion of the 
point is subject to certain conditions prescribed from the 
outset. The question is : according to what rules are 
these cases to be treated ? 

To solve this problem we again revert to our original 

derivation of the force-concept. If we maintain the view 
that every causal influence that affects the motion of the 
point always makes itself felt through a certain force, we 
must conclude that even a prescribed condition can be¬ 
come physically effective only if it can be realized through 
a certain force. If we add this force to the other given 
forces the point moves exactly like the so-called “ free 
point that we have hitherto been considering. It is 
true that the forces of this new kind have properties 
essentially different from those so far treated, as may 
easily be recognized by the fact that their magnitude is 
not directly given, but depends on the remaining forces. 

Hence we shall in future call a force of this kind a 
‘"constraining force,” Z (Zwangskraft), to distinguish it 
clearly from the “ driving or propelling forces,” F 

{treibende Krdfte), which have so far been alone considered 
and which we shall still continue to regard as being given, 

101 
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After what has been said, the equations of motion (57) 
then become generalized to : 

rnq ~ F Z.(216) 

where F denotes the resultant of all the driving forces and 
Z the resultant of all the constraining forces. The total 
resultant F -h Z is also called the moving force ” or, 
more commonly, the “ effective force.” 

It is clear that the equations (216) are not sufficient to 
determine the motion; for there are now three new 
unknowns in it, namely the components of Z, Hence we 
require three further equations and must therefore look 
round for further conditions. In the first place we find 
the prescribed conditions themselves, of which we shall 
assume that they may be re])resented by one or more 
equations between the co-ordinates x, ?/, 2: of the reference- 
point. A single equation, alone, means that the point is 
constrained to remain on a given surface; two equations 
denote that the point can move only on a given curve. 
This exhausts all the possibilities that come into question; 
for when there are three equations the j)oint is fixed and 
hence its position is given for all time. 

But the prescribed conditions are not yet sufficient in 
themselves; rather, we require still other properties of 
the constraining forces Z. These can be found only if we 
consider the prescribed conditions to be realized materially 
in some way. For example, if the reference-point is con¬ 
strained to remain on a fixed curve, we imagine it to be 
movable in a very narrow fixed tube or, say, to be punctured 
to allow a suitably bent but very strong wire to pass 
through it, so that the point can move along the wire : 
in each case the motion must of course occur without 
friction, because the constraining force only prevents the 
point from leaving the curve, whereas it is of no significance 
for the motion along the curve. It follows immediately 
from these considerations that the constraining force can 
have no component in the direction of the tangent to the 
curve, neither an accelerating nor a retarding component— 
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in other words, the constraining force must be in a direction 
normal to the curve. In the same way, we must conclude 
that the constraining force due to a fixed surface must 
always act normally to the curve. 

It is easy to see that this law which governs the direction 
of the constraining force, when taken in conjunction with 
the prescribed conditions, completes the three equations 
which we found to be necessary above for supplementing 
the general equations of motion (216) if we are to be able 
to find the motion of the reference-point as well as the 
magnitude and direction of the constraining force. For 
in the case of a fixed curve we have two prescribed con¬ 
ditions and we have as our third equation that which 
asserts that the constraining force acts in a direction 
normal to the curve. In the case of a fixed surface, we 
have only one prescribed condition, but in addition we have 
the two equations which express that the constraining 
force coincides with the normal to the surface—that is, 
that it lies in a perfectly definite direction. For the sake 
of completeness we may add the two extreme cases of 
the completely free and the completely fixed point. In 
the former the three supplementary equations are the 
equations Z = 0; in the latter the equations q — 0. 

From (216) we then get in the first case the motion of the 
point, in the second case the magnitude and direction of 
the constraining force Z which keeps it fixed. 

The greater the number of prescribed conditions, the less 
is the number of independent variables, the so-called free 
co-ordinates. Hence we find it appropriate to speak of a 
greater or lesser freedom of motion of the point and we set 
the number of free co-ordinates equal to the number of 
degrees of its freedom of motion. A point has 3, 2, 1, 0 
degrees of freedoni of motion according as it is free, or is 
movable on a surface or a curve, or is fixed. ^ 

The above discussion completes the essential features of 
the theory of motion of a point which is not free. We 
have now only to consider the most important applica¬ 
tions. 
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§ 66. The general equations of motion (216) are often 
written in the more symmetrical form : 

F Z . . . . (217) 

which is enunciated as the theorem : if we imagine that 
besides the propelling force F and the constraining force Z 

there is a third force — mg, which also acts on the reference- 
point, then these three forces maintain equilibrium among 
themselves. However slight this change of expression 
may seem it is nevertheless very important in applications 
owing to its convenience and vividness; it has therefore 
received a special name as the Principle of d’Alembert.” * 
It refers the laws of motion quite generally to the laws of 
equilibrium, but of course it adds nothing substantially 
to the Newtonian equations. The fictitious force — rnq 

is usually called the “ inertial resistance.” 
Instead of resolving the forces along the fixed co-ordin¬ 

ate-direct ions X, y, z, we may also resolve them, as in § 25, 
along the directions of the tangent r, the principal normal 
V and the binormal p of the orbital curve of the reference- 
point, and so obtain the following expression for d’Alem¬ 
bert’s Principle, if we take into account (74a) and (75) as 
well as the fact that the constraining force has no com¬ 
ponent in the direction of the tangent: 

.(218) 

F, + if, - = 0 .... (219) 
P 

4- = 0 .(220) 

Here r must be taken in the direction of the velocity, 
V in the direction pointing towards the centre of curvature. 

A question which has often been raised and discussed 
vigorously is whether the inertial resistance or its com¬ 
ponent, the centrifugal force, is a “ real ” force. It is easy 

* The name d’Alembert’s Principle is often also given to the 
equation (383) which results from the combination of (217) with 
the Principle of Virtual Work (321). 
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to answer this question as soon as we have come to a 
decision about the definition of force, which is arbitrary 
from the very beginning. If, as in § 9, we set the force in 
the same direction as and proportional to the acceleration, 
then the inertial resistance is not a real force : for the 
inertial resistance is not in the same direction as and pro¬ 
portional to the acceleration. But if we modify the 
definition of force (and no objection can be raised against 
this) in such a way that all the forces are always in equili¬ 
brium, then the inertial resistance must also be reckoned 
as a force. The essential feature is not the names but the 
equations (217) and they certainly do not contain the 
slightest indefiniteness. 

§ 67. We shall call attention at once here to an important 
property of a constraining force. Since the component 
of the constraining force is zero in the direction of the 
velocity so also the work performed by the constraining force 
(§ 47) is equal to zero, and, clearly, this theorem also holds 
for the two extreme cases of the free and the fixed point, 
because in the first case = 0 and in the second case 
q = 0. 

A number of important consequences follow from this. 
Let us first imagine the reference-point to be at rest, 
situated on a fixed surface or curve and acted upon by a 
given propelling force F, 

In general it will begin to move—^namely,in the direction 
of the resultant F + Z. Hence the work performed by 
the total force in the initial displacement, whose amount 
is dr, is positive : 

(F -f Z) . dr > 0. 

But since Z .dr = 0, it follows that: 

F.dr> 0.(221) 

That is, if a free or a constrained reference-point at rest is 
set into motion by a propelling force, the work of the 
proj3elling force is positive, or the initial displacement 
forms an acute angle with the propelling force. 



lOG GENERAL MECHANICS chap. 

If the propelling force has a potential U, then, in view of 
(150), we have : 

dU < 0 .(222) 

that is, the potential decreases when the motion begins. 
Prom this a sufficient condition for equilibrium immediately 
follows. For if among all the directions of displacement 
of which the movable reference-point is susceptible in 
consequence of the prescribed conditions there is not one 
for which the potential decreases, no motion can occur and 
the reference-point must remain at rest. 

This is realized when, for example, the reference-point 
is situated at a point on its surface or curve where the 
potential is a maximum or a minimum. For in that 
case §[/ = 0 for every displacement, and so the inequality 
(222) cannot be satisfied. Hence the reference-point is 
then in equilibrium. But we also see further that if IJ is a 
maximum the equilibrium is unstable. For if the reference- 
point is displaced slightly from its position of equilibrium 
and is then again released, it will, of course, begin to move. 
But since according to (222) the motion takes place in 
the sense of decreasing potential, it is impossible for the 
reference-point to return to its position of equilibrium, 
which corres})onds to the maximum. Conversely, the 
equilibrium is stable at a position corresponding to a 
maximum of the potential. But if the potential remains 
constant over a finite range of displacements, the equili¬ 
brium is neutral (indifferent). For then the reference- 
point is in equilibrium at every point because there is no 
possibility by which it may be enabled to fulfil the con¬ 
dition (222) which is necessary if motion is to occur. 

A vivid example of these theorems is given by a heavy 
point on a fixed surface or curve. Here U is given by 
(152), and the condition (222) becomes : 

dz<0.(223) 

Hence the motion always starts in the downward 
direction. If the height of the surface or the curve has a 
maximum or a minimum anywhere, the reference-point is 
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in stable or unstable equilibrium at those points; if the 
surface or curve runs horizontally for some distance, the 
reference-point is in neutral equilibrium along that 
distance. 

If we now consider, instead of a reference-point which 
was originally at rest, one which is moving with arbitrary 
velocity, the theorem that the work of the constraining 
force vanishes also holds in this case, and hence of the 
work of the whole force only that of the propelling force 
remains. 

Hence the equation (147) of vis vwa holds equally well for it, 
exactly as if the constraining force and the prescribed 
conditions were not present at all; and if the propelling force 
has a potential the integral principle (IT)!) of vis viva also 
holds. 

A heavy point-mass which can move on a fixed surface 
or curve thus always has a definite velocity at a definite 
height, no matter when, where and by which route it 
has arrived at this height. The greater the height the 
smaller the velocity. 

All the theorems develoj^ed in this section are capable of 
being considerably generalized; these generalizations will 
be discussed in the second chapter of the second part of 
the present volume, and serve as a good basis for under¬ 
standing those extensions. 

We proceed to discuss special cases, beginning with the 
simplest: a single straight line as the only degree of 
freedom. 

§ fi8. Fixed Curve. In addition to the equations of 
motion (217) we have also the two equations to the curve 
and the condition that the constraining force is per¬ 
pendicular to the curve : 

dx 
'ds 

+ Zt 
ds +4:=» (224) 

where the direction-cosines of the curve-element ds are to 
be regarded as given. 

Let us next inquire into the condition that the reference- 
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point be in equilibrium under the influence of a given 
propelling force F. Then the acceleration is zero and by 
eliminating Z from (217) and (224) we get as the condition 
for equilibrium ; 

JPx -J 
as 

, „ dv „ dz 
(225) 

Thus the propelling force need not vanish, as in the case 
of a free point, but it is sufficient if it acts at right angles to 
the curve. 

We next inquire into the motion of the reference-point 
in the cpse wlu^re the driving force is equal to zero. Then 

7 it follows from (218) that : 

q == const., 

that is, the velocity is constant. 
From (219) and (220) : 

% = 0, Z, 
9 

¥w. 15. 
that is, the constraining force 
coincides with the centripetal force. 

For a fixed straight line the constraining force is equal 
to zero. 

§ 69. We now consider the motion of a heavy point 
along a fixed vertical circular arc—that is, a circular 
pendulum. This is realized most simply by a rigid 
weightless rod, which can rotate about a fixed point in 
a vertical plane and which carries the point-mass at its 
free end. 

As usual, we take the vertical as the 2;-axis, the plane 
of the circle as the a:;2:-p]ane, and the origin of co-ordinates 
0 at the lowest point of the circle, whose radius, the length 
of the pendulum, we assume to be I (Fig. 15). 

Then the equations to the circle are : 

y ~ 0 and 

+ 2:2 = 2lz . (226) 
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Since the reference-point has only one independent 
co-ordinate, it is sufficient for calculating the velocit}^ to 
integrate the equations of motion once. We find it 
convenient, by § 07, to use the principle of vis viva (152a) : 

q^ + 2gz-=qQ^.(227) 

where qQ denotes the velocity for z ~ 0. 
Since there is a definite velocity q corresponding to 

every height h, the motion is periodic. But its character 
is quite different according to whether the velocity q^ 
with which the reference-point leaves its stable position 
of equilibrium is sufficient to bring it into the unstable 
state of equilibrium, 2; = 2Z, or not. In the former case 
the oscillations of the pendulum are all in the same sense; 
in the latter case the pendulum comes to rest at a height 
z<2l and the oscillations occur alternately to and fro. 
The limiting case, however, is that where the initial 
velocity qQ just suffices to reach the greatest height z == 21 
with the velocity q = 0, and so, by (227): 

qo = ^VTg.(228) 

In that case the reference-point remains at rest in the 
uppermost position. But if : 

Jo < 2\/lg.(229) 

then the pendulum comes to rest for : 

z = |^(<2i) .... (230) 

and then reverses. 
The constraining force Z in this motion is represented 

by the pull inwards or the pressure outwards, which the 
rod exerts on the reference-point A, being positive when 
it acts towards the centre of curvature C—that is, inwards. 
Actually, in (220), the direction p, the binormal coincides 
with y, and since Fy = 0, Zy also vanishes, and the whole 
constraining force Z acts in the direction of the radius. 
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Since, further, p = ZandF^. = 
I — z 

fng , the component 

of the weight in the direction towards C', it follows from 
(219) that : 

A positive value for Zp may also be realized by taking 
an inextensible thread instead of the rigid rod. But if 
Zp comes out negative, a thread no longer suffices to 
maintain the condition for rigidity, and we are then 
compelled to take the incompressible rod. The last 
equation shows that for z<l—that is. in the lower half of 
the circle—Zp is always positive. In this case, therefore, 
a thread or string is sufficient under all circumstances. 
In general, we obtain by eliminating q from (227) : 

Zr=j{go^ + g.[l-^z]) . . . (231) 

As z increases Zp decreases. 
Let us take again the limiting case (228) considered 

above, in which the reference-point just reaches its highest 
point. Then: 

X„ = ^(5Z-3z) . . . . (232) 

that is, the constraining force remains positive up to the 
5Z 

height 2: = ~ ; after that the pull becomes a pressure, and 
o 

if the reference-point attains the height 21 with the velocity 
zero, the pressure has become equal to — mg, corresponding 
to the weight of the point, which is now at rest. 

For very great values of the initial velocity we see, 
by (231), that Zp always remains positive; hence a thread 
is then sufficient to swing the pendulum around, as in the 
case of a sling. The smallest permissible value of Jq 
for this is obtained from the condition that Zp has its 
lowest value, zero, at the highest point, z = 21: 

go" = %.(233) 
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which is of course^ a little greater than the limiting value 
(228). 

But a thread will suffice instead of the rod even for the 
vibratory motion provided the initial velocity is 
sufficiently small—namely, when is smaller than that 
initial velocity for which is zero in the highest position 
(230). By (231) this limiting value is : 

qo = 2Z^.(234) 

Hence it is only when lies between the limits (233) 
and (234) that a rod is necessary to keep the reference- 
point in a circular orbit. In other cases an inextensible 
thread is sufficient. 

§ 70, Let us next inquire into the relationship between 
space and time. For this purpose a second integration is 
necessary, for which we find it expedient to introduce the 
angle of displacement (f) (Fig. 15) by means of the 
equations : 

. . (235) 

Then we easily obtain from (227) : 

where we have set ^ = 0 for ^ = 0. 
This elliptic integral reduces to an elementary function 

only for the limiting case (228), in which the initial velocity 
q^ is just sufficient to bring the pendulum into the imstable 
position of equilibrium (^ = tt). The time which passes 
until then comes out from (236) as having an infinite 
logarithmic value; this arises from the circumstance that 
the velocity finally becomes vanishingly small. 

We now further investigate the more important case 
of oscillations to and fro (vibrations)—^that is, we assume 
the inequality (229) to be fulfilled. By (230) the pen- 
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dulum then comes to rest for the angle of displacement 
<f>i, when by (230) and (235) : 

sin=it- = !r. 2 % 
(^1 is the amplitude of the vibration. If we introduce 

(f>i in place of Qq in (236) we get: 

t (238) 

Since ^ increases and decreases periodically as the 
time incj’cases, the square root is to be taken alternatively 
positive and negative. Prom now onwards we restrict 
our attention to the first upward swing of the pendulum— 
that is, the first quarter of the first vibration. Then the 
square root is positive, and likewise </>. 

To bring the integral into its normal form we introduce 
instead of cf) the integration variable 6 by means of the 
relationship : 

sin ^ = /c. sin 9 , (239) 

where we use the abbreviation : 

sin — AC.(240) 

We then get from (238): 

IL /V- 
A ^ ^ 1 _ ^2 giji2 g (241) 

The reciprocal of the square root may be expanded as a 
series which converges the more rapidly the smaller the 
amplitude; the integration may then be performed term 
by term. If we stop the series at the term containing /c^, 
the approximate value ; 

(242) 

follows. 



VI. CONSTRAINTS 113 

The first quarter-vibration ends when ^ and con¬ 

sequently when 6 has become equal to Hence if T 

denotes the time of a whole vibration we have : 

and by (240), since the sine may bo replaced by its arc as 
a first apj)roximation, we have : 

For infinitely small amplitudes the time of vibration is 
completely independent of the amplitude; but even for 
amplitudes of only a few degrees the term in is very 
small. 

If we wish to restrict ourselves from the very beginning 
to infinitesimal amplitudes, it is better, in deriving the laws 
of vibration, to start directly from the equation (218), 
which for its application to the present case runs, by (235): 

(/sin^ + 0 .... (244) 

If we replace sin </> by ^ here we have precisely the 
differential equation (15), and we may take over directly 
the results there obtained. 

The laws which we have found for the infinitely small 
vibrations of the circular pendulum may easily be general¬ 
ized to apply to the vibrations of a heavy point along any 
arbitrary curve that lies in a vertical plane about its 
position of stable equilibrium. For since in these vi¬ 
brations the reference-point moves to only an infinitesimal 
extent from its position of equilibrium, only the infinitely 
adjacent points of the curve come into question in the 
process, and hence the laws for the circular pendulum 
apply here too, except that, in place of the circular radius 
I, we now take the radius of curvature of the curve at its 
lowest point. In the case of finite vibrations, however, 

I 
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the further course of the curve has an influence. If the 
radius of curvature I is constant throughout, then by (243) 
the time of vibration increases as the amplitude increases. 
But if the curvature of the curve increases with the height 
—that is, if the curve ascends more rapidly than the circle 
of curvature at its lowest point, the time of vibration 
becomes less than in the case of the circle, and by choosing 
the curvature appropriately we may also succeed in making 
the time of vibration independent of the amplitude even 
for finite vibrations. (This curve, called the “ tauto- 
chrone,” is the ordinary cycloid which is produced by 

rolling a circle of radius j on a straight line; any point 

on the circle then traces out a cycloid.) 
§ 71. Fixed Surface. For a point-mass which is con¬ 

strained to remain on a given fixed surface we have, by 
§ 65, besides the equation of motion (217) also the equation 
to the surface: 

f{x,y,z)~-^ 0 .(245) 

and secondly, the condition that the constraining force 
acts perpendicularl}^ to the surface, that is, in the direction 
of its normal : 

Zx ’ Zy Zz — 

df df df 
dx' dy ‘ 

(246) 

From these equations all the laws of the motion, and 
also the magnitude and direction of the constraining force, 
may be derived uniquely. 

Let us first again inquire into the condition that the 
reference-point be in equilibrium under the influence of a 
given driving force. Then the acceleration is zero, and 
by eliminating Z from (217) and (246) we get as our 
condition of equilibrium : 

Fx \ Fy Fz — 

0/ 0/ df 
dx • dy ' 0z ’ 

(247) 

This represents two equations, whereas for the equili- 
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brium of a ])oint on a fixed curve only the single equation 
of condition (225) must be fulfilled. 

If we add that in the extreme case of a free point the 
three equations F ~ 0 and that in the opposite extreme 
case of a fixed point no condition at all is necessary for 
equilibrium, then it is clear that in each of all the cases 
quoted the number of equations of condition for equili¬ 
brium agrees exactly with the number of degrees of free¬ 
dom of the point (§ 65)—a theorem which will be con¬ 
siderably generalized later. 

For the motion of a point on a fixed surface in the case 
where the driving force F = 0, we get from (218): 

= 0, (jr = const. . . . (248) 

and from (219) and (220) : 

.(249) 
P 

exactly as in the case of motion under no forces (krdftefrei) 
on a fixed curve. There is an essential difference, how¬ 
ever, in that here neither the radius of curvature p nor the 
orbital curve is at all known from the outset, but that it 
must first be found. F'or the initial state gives us only 
the position and the tangent to the orbit : the further 
course of the curve on the surface / = 0 is to be S2)ecially 
calculated. 

For this purpose we have the equations (246), which, in 
view of the fact that the constraining force is the only 
force which is acting here, give, by (68) and (248) : 

(Px _ d^y _ r/2z ^ df. df. df _ _ _ /2go) 
ds'^ ’ ds^ * dx * dy ’ dz 

that is, the principal normal at any point of the orbital 
curve coincides with the normal to the surface at this 
point. This is a particular property of the orbital curve, 
which does not belong to every curve drawn on the surface. 
For example, on a spherical surface the princii)al normal 
of any arbitrary circular section is the radius of this circle, 
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whereas the surface normal is the radius of the sphere. 
A curve with the distinguishing property (250) is called a 
“ geodetic line ” of the surface; the name arises from a 
further important property of these curves which is to be 
derived later (§ 111). Hence according to what has been 
said, the geodetic lines are the great circles, for the plane 
they are the straight lines; for the normal to the plane is 
the direction perpendicular to the plane, whereas for every 
plane curve which is not a straight line, the principal 
normal lies in the plane. Hence a point-mass which is 
not subject to a driving force moves on a fixed surface 
along a geodetic line with constant velocity. The orbit 
is determined by the initial state; for there is only one 
geodetic line on the surface which passes through a definite 
point and has a definite tangent. This is seen most clearly 
if we reflect that the first clement of the curve and the 
known normal to the surface at the end-point of the 
element determine the plane of curvature of the curve, 
and the point of intersection of this plane with the 
surface determines the second element of the curve, and 
so forth, successively. 

So a point-mass under no forces moves on a sphere in the 
great circle and on a plane in that straight line which is 
determined by the direction of the initial velocity. The 
magnitude of the force of constraint is in each case given 
by (249). 

§ 72. We next consider the motion of a heavy point on 
a fixed spherical surface—^that is, a spherical pendulum. 
This is realized most simply by a rigid weightless rod which 
can be turned about a fixed point in all directions and which 
carries the point-mass at its free end. By (246) the 
direction of the constraining force coincides with the radius 
of the sphere. If it acts in the direction of the centre of 
the sphere, the rigid rod may be replaced by an inextensible 
thread. 

In the following remarks we restrict ourselves to de¬ 
termining only the motion of the pendulum. Let us 
again take the origin at the lowest point of the sphere and 
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the 2:-axiB vertically upwards; then the equation to the 
sphere of radius I is : 

+ 1/2 + (Z — 2:)^ = . . , (251) 

In addition we have, by § 67 and (152tt) the equation of 
vis viva : 

-\-2gz^c.(252) 

Besides these we here also need a second integral of the 
equations of motion; for this we may by § 51 use the 
principle of sectorial areas in its extended form. For 
the total force acting on the reference-point—^that is, the 
resultant of the weight and the force of constraint—does 
not, indeed, go through a fixed centre, but through a fixed 
straight line—namely, through the vertical at the centre 
of the sphere. Hence the equation (161) holds for the 
projection of the reference-point on the :r2/-plane : 

where: 

(253) 

a; = r cos <^, y = r sin ^ . . . (254) 

To determine the orbit we introduce everywhere instead 
of the rectilinear co-ordinates x, y, z the cylindrical co¬ 
ordinates r, (f), z. Then (251) becomes : 

r2 + ^2 _ 2Z2:.(255) 

and (252), in view of (166), becomes : 

Further, if we eliminate dt by means of (253), and 
r2 and rdr by means of (255), and use the differential 
equation derived from (255) : 

rdr = (Z — z)dz .... (257) 

we get the following relation between (j) and 2;: 

d6 =-. (268) 
{21 — z) .z . V(c — 2gz) . {21 — z) .z — c'* 
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In general, this leads to an elliptic integral. Since by 
(253) <f> always changes in the same sense as we may, 
without essential loss of generality, assume (j> to be always 
increasing and hence assume c' and likewise c as positive. 
On the other hand,will alternately decrease and increase, 
and the square root in (258) will have to be taken positive 
or negative correspondingly. The vanishing of the root 
gives the liighest and the lowest positions of the pendulum. 
The equation for this is cubic in z and so has three roots, 
but it is easy to show that one root is greater than 2l and 
hence is of no significance physically. For the expression 
under the root changes sign if 2; is made to increase from 
2Z to CO . 

Of course, is ])(U‘iodic with respect to But the 
orbital curve is closed only if a whole multiple of the 
period of 0 is equal to a whole multi])]e of 2tt—that is, if 
the ratio of this period to tt is rational. 

If the maximum and the minimum of coincide or if 
the two roots of tlu? cubic equation that come into question 
are equal then the pendulum remains constantly at the 
same height z and executes horizontal circular vibrations ; 

in that case r and arc also constant. We obtain these 
at 

values by differentiating the expression under the root in 
(258) with respect to 2; and setting the result equal to ze^ro : 

{c - 2gz)[l -z)- g{2lz - z^) = 0 

or, by (252) and (255) : 

q2(^l ^z)-gr^-^ 0 . . . . (250) 

This equation can be satisfied for any arbitrary value of 
z between 0 and I—that is, on the lower half of the sphere. 
The corresponding value of r is obtained from (255), and 
then q and the angular velocity from (259) : 

■ ■ ■ ■ 

For 2; == Z the angular velocity becomes infinite; for 
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infinitely small values of z it assumes a definite finite value 
—^namely, precisely that which corresponds to the period 
of vibration (243) of a circular pendulum of infinitesimal 
amplitude. 

The constraining force—that is, the tension of the 
pendulum thread—is, by § 66, in equilibrium with the 

centrifugal force and the gravitational force mg. 

The resultant of the last two forces passes through the 
centre of the sphere, since their quotient, by (259), is equal 

V 
to the tangent of the angle of displacement: ^—- (Pig. 16). 

The magnitude of the tension is : 

For z = 0, it becomes equal to mg, for 
3 = Z it becomes infinite, as is evident. 

§ 73. If we now consider infinitesimal 
vibrations of a spherical pendulum in 
general, we may again start out from 
(258) and introduce into it the simplifications which 
are characteristic of infinitesimal vibrations. For this 
purpose we assume that both r, the displacement, and 
q, the velocity, are infinitesimals of the first order, 

whereas (f) and may be finite. By (255) the height z, 

and by (252) and (253) the constants c and c', are infinite¬ 
simals of the second order, and hence it follows that for 
the whole duration of the motion all these orders of mag¬ 
nitude persist. 

Hence the curve of the reference-point coincides as far 
as quantities of the second order with its projection on 
the xy-plsine—that is, it is approximately a horizontal 
plane curve, and the equation (255) becomes simplified to : 

== 2lz.(262) 

If we now consider the differential equation (258) in the 



120 GENERAL MECHANICS CHAF. 

light of the above restrictive simplifications we find that 
the factor 21 —z may be replaced to a high degree of approxi¬ 
mation by 2h But this is the only permissible simpli¬ 
fication; for otherwise the individual terms in all the 
sums and differences have the same order of magnitude. 
Hence we now obtain as the differential equation for 
infinitesimal vibrations : ,,_ 

^ 2zV2lz(c — 2gz) — c'^ 

Integrated this gives : 

1 , ICZ- C'2 
- COS”^-, . 
2 - ^Igc'- 

(263) 

where we set the integration constant equal to zero for 
the same reason as in integrating (168). 

Since the curve lies very approximately in the a:y-p]anc, 
wo introduce in (263) in place of (j> and 2: the rectangular 
co-ordinates x and y, by (262) and (254), and so obtain 
the equation : 

Ij^ 
(264) 

where and arc the two values which the expression : 

2Zc'2 

Ic 
(265) 

has, according as the root is given the one or the other 
sign. Thus the curve is an ellipse with semi-axes a and b. 
To discover how this ellipse is traversed, we set: 

X — a cos 6, y — b sin 0 . . . (266) 

which satisfy equation (264) identically, and find how the 
angle 0 depends on the time t. We get from (253): 

dt 
dy dx 

dt 

Hence : 

(267) 
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if we set 0 — 0 for t = 0: this is a very simple relationship. 
If the values of a and 6 are substituted from (265), we get: 

0- 

and this value, inserted in (266), gives : 

X a cos t and y = b sin i (268) 

which determines the motion in all its details. Then a and 
b are given by (265) and z by (262). The period of 
vibration is independent of a and b and is the same as in 
the case of the circular pendulum of infinitesimal amplitude. 

It is interesting to observe that the motion here foimd 
agrees exactly with that of a freely moving point-mass 
which is in the a:y-plane and is acted on by a certain 
central force emanating from O. For such a motion, as 
wo saw in § 52, is determined by the two equations of the 
principle of sectorial areas and the principle of vis viva. 
The former is fulfilled by (253), but the latter is also to bo 
regarded as fulfilled if we write the equation (252), in view 
of (262), in the form : 

mq^ mqr^ 
2 + = 

(269) 

and if we recollect, on the other hand, that for the central 
motion which we have assumed the principle of vis viva 
holds in the following form, which follows from (151), 
(109) and (108) : 

jf{r)dr = const., 

where f{r) denotes the attractive force in magnitude and 
sign. Comparison with (269) gives : 

f{r) = 'f-r.(270) 

that is, the force is an attractive one and is proportional 
to the distance from 0. Of course, we may also show 
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directly that this law of attraction leads to the equations 
of motion (268), not only for infinitesimal vibrations, but 
also for arbitrarily great vibrations. 

§ 74. We shall now investigate the influence of the 
earth’s rotation on the vibrations of a spherical pendulum. 
For this purpose the equations (215) are available; they 
express the laws of motion of a material point m for an 
observer situated on the earth’s surface at the geographical 
latitude [3, the j)oint m being acted on by a force, whose 
components are X, 7, Z, in addition to its own weight. 
If S is the tension of the thread, then : 

y.-s.f. 
and the equations of motion run : 

Southwards: in a = 

Eastwards : ini^ 

Towards the 
zenith: miv == 

+ 2mcov sin |3 

— 2mco{u sin p -f v) cos p \ (271) 

^ -}_ 2majv cos p ^ 

These equations together with (251) contain the com¬ 
plete solution to the problem. 

We now inquire whether the principles of vis viva and 
of sectorial areas still hold here. For this purpose we 
multiply the equations of motion successively, as in § 47, 
by u, V, w, then add and integrate. We find that the terms 
in S, the terms in oj and also those in r cancel out; the 
former because the equation (25J) holds for all times, and 
hence may also be differentiated with respect to t; and so 
the principle of vis viva is found to be valid in precisely 
the form (252). 

There still remains the principle of sectorial areas. As 
in § 50 we multiply the first equation of motion by y, the 
second by x, and subtract. Then : 

XV — yii = — 2a){xu sin p + icu; cos p + yv sin P) 
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Wc now again assume the vibrations to be infinitely 
small. Then w becomes an infinitesimal of the second 
order compared with u and v. So if we omit the term in 
w we get, on integration : 

== — oir- sin p + const. . . (272) 

Hence the princi|)le of sectorial areas does not hold here. 
We can, however, obtain a picture of the motion by making 
a simple substitution. For if we set: 

-^cl> + w sin p. . . . . (273) 

then (272) becomes : 

” const.(274) 

That is, the principle of sectorial areas holds fo]* a co¬ 
ordinate system which rotates about the 2:-axis (the vertical) 
with the angular velocity — w sin p. For when cf)' is con¬ 
stant we have : 

(Jcf. . . 
sin p. 

(U ^ 

Hence if we refer the vibrations of the pendulum to this 
rotating co-ordinate system we find that exactly the same 
laws hold as were deduced in § 73 for a system absolutely 
at rest. To prove this we now require to prove only that 
the principle of vis viva is valid also for the rotating system. 
For this principle, together with the principle of sectorial 
areas, determines miiquely the motion on the spherical 
surface. If we write (269) in polar co-ordinates and 
neglect wc have : 

== const. (275) 

and if, by (273), we introduce <f>' in place of (f>: 
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a relation which, if (274) is taken into consideration, has 
exactly the form (275), except that now takes the place 
of (f) and the constants are slightly altered. 

Hence we may enunciate the theorem that, relatively 
to the rotating earth, the vibrations of the pendulum of 
infinitely small amplitude occur in the same way as 
relatively to the fixed earth—that is, in an ellipse, except 
that the axes of the ellipse rotate with the angular velocity 
— CD sin p—that is, in the direction south-west-north-east 
on the northern hemisphere (P>0) and in the reverse 
direction on the southern hemisphere. The phenomenon 
vanishes entirely at the equator and its effect is a maximum 
at the poles. 

Foucault’s famous pendulum experiment confirms the 
theory. 

§ 75. We shall now investigate the case where the 
prescribed conditions are depeyident on the time—that is, 
where the reference-point is constrained to remain on a 
curve or a surface, which moves in some given way. 

The equations / == 0 and ^ = 0 then contain, besides 
the co-ordinates x, y, 2: of the reference-point, also the 
time explicitly. The problem of determining the motion 
of the reference-point for a given driving force F may be 
treated on exactly the same lines as those described in 
§ 65. Exactly the same result is obtained—^that is, the 
motion is determined by the three equations of motion 
(216) or by d’Alembert’s principle (217) in conjunction 
with the additional three equations which express the 
prescribed conditions and the theorem that the con¬ 
straining force Z is directed at right angles to the curve or 
surface. 

On the other hand, the theorems derived in the later 
§§ 66 and 67 lose their validity here in general. In 
particular, it is no longer correct to assume that the 
constraining force Z is directed perpendicularly to the 
tangent of the reference-point. For, in general, the orbital 
curve has a different tangent from that to the prescribed 
curve or surface at the same point. 
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A simple example will make this clear. Suppose the 
reference-point is constrained to remain on a straight line 
which rotates with a given angular velocity in a horizontal 
plane. Let Ot be the position of the straight line at the 
time t, Ot' its position at the infinitely near time t' (Fig 17). 
Let the reference-point be situated at A at the time t and 
at A' at the time t'. Then the tangent of the orbital 
curve is AA', whereas the tangent of the prescribed curve 
is AB, and in general these two directions make a finite 
angle with each other. Since the constraining force Z 

acts perpendicularly to AB, it will in general form an 
acute or an obtuse angle with AA'. Hence it follows that 
the work done by the constraining force is not, as in § 07, 
equal to zero, and also that the y 
principle of vis viva is not in 
general obeyed, even when the 
driving force has a potential. 

Let us perform the calculation 
for the simple example we have 
chosen, under the assumption that 
the angular velocity oj is constant 
and that no driving force is 
acting. We take the central point O of the rotation as the 
origin of co-ordinates and the plane of rotation as the 
{x, 2/)-plane. Then by (216) the equations of motion are : 

mu = Zxj mv — Zy , . . . (276) 

The equation expressing the prescribed condition is : 

2/= tan (caf).(277) 

and the theorem concerning the direction of the con¬ 
straining force is : 

xZx-^yZy^^.(278) 

These expressions and the initial state determine the 
motion. We get by eliminating Zx and Zy: 

X .u y ,v ^ Q . . . . (278a) 
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and, by introducing polar co-ordinates r and (/>, according 
to (254), and taking into account (277) : 

- a>V - 0 .(278/>) 

This equation may be integrated term for term if we 
multiply by r : this leads to : 

“ ojh- = const. 

Let us assume that in the initial state r — a and r = 0; 
then we get the value of the constant of integration and 
hence the differential equation : 

dt 
dr 

— a- 

Integrating this we have : 

r = + e-“0 .... (279) 

Thus the reference-point is flung outwards with ever- 
increasing velocity—which is easy to understand from 
the circumstance that the constraining force always 
performs positive work, as we see from Fig. 17. From 
(279) and (277) we obtain as the orbital curve : 

7-= ? (e^ + e-.... (280) 

a logarithmic spiral, whose shape is independent of oi. 
It suggests itself to ask what the position is with regard 

to the universally valid principle of conservation of 
energy (§ 49), since the mechanical principle of vis viva is 
here transgressed. The energy principle, of course, also 
remains valid here; the vis viva of the reference-point 
by no means arises from nothing, but is supplied by the 
work of the source of power which occasions the rotation 
of the straight line. For in order to maintain the pre¬ 
scribed condition that the angular velocity remain constant 
power is necessary which must be supplied from outside, 
and this will be the greater the further the point-mass 
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moves outwards. The work performed by this force is, 

by the principle of energy, exactly equal to the increase of 

the vis viva of the material reference-point. 

More generally we may say that in every case where a 

prescribed condition contains the time explicitly, a certain 

amount of external work will have to be performed to 

maintain this condition, whereas the conditions which are 

independent of the time need no performance of external 

work to be realized ; this corresponds with the circumstance 

that the work of the constraining force is zero in their 

case (§67). 





PART TWO 

MECHANICS OF A SYSTEM OF MATERIAL POINTS 
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CHAPTER I 

STATKAS OF A RIGID BODY 

§ 76. In nature we have to deal, not with material 
points, but with material bodies of finite extent. But we 
may regard every point as composed of very many material 
points and we may trace the differences in the mechanical 
properties of bodies back to the circumstance that their 
individual ])oints act on one another with different forces. 
This reduces the question of the equations of motion of 
material bodies to that of the mechanics of systems of 

material points. 
From this point of view there are in nature no other 

mechanical forces at all except those between material 
points. Every material point moves in response to the 
resultant of the forces which are exerted on it by all the 
remaining points of the universe. Whenever we speak of 
a force which a whole body exerts or experiences, we do 
not mean this to be taken literally, but only as an abbrevi¬ 
ated mode of expression. In reality only the individual 
points are the places where the forces originate or act. 
For every force acts from one definite material point ^ to a 
second definite material point B. 

Hence all forces in nature can be grouped in pairs 
inasmuch as corresponding to every individual force there 
is a second force which is exerted from the second point 
B on the first point A, and any two such corresponding 
forces are, according to the principle of equality of action 
and reaction (§ 29), equal to each other in magnitude and 
direction. 

§ 77. We shall next deal in particular with the mechanics 
of point-systems which are at rest—^that is, with statics— 

130 



CHAP. I. STATICS OF A RIGID BODY 131 

and we shall fix our attention first on a system whose points 
always remain at fixed distances from one another in 
virtue of the forces that act between them, and which is 
therefore called a “ rigid ” body. A rigid body is of an 
absolutely invariable form in all its parts, but as a whole it 
can be set into motion by the smallest possible force. 
Perfectly rigid bodies do not occur in nature at all, but 
they are approximately realized by bodies that belong to 
the solid state of aggregation. The importance of rigid 
bodies for the theory does not depend on this circumstance 
alone, but rather on the fact that the mechanics of 
arbitrary point-systems may be reduced to the mechanics 
of rigid bodies (cf. § 130 below). 

The problem to which we wish to devote the present 
chapter is the following. Let a stationary rigid body 
of arbitrary dimensions be given, on which forces of given 
magnitude and direction act at definite given points, the 
‘‘ points of action ” (Angriffspmikf). We inquire into 
the condition under which the forces maintain equilibrium 
among themselves or, if this condition is not fulfilled, into 
the force or forces which must be applied in addition to 
establish equilibrium. 

We solve this problem by reducing the given forces to as 
simple a form as possible, and in this process we proceed 
from the more special cases to the general case. The 
simplest case is that where only two forces are acting. In 
order that two forces which act on a rigid body should 
maintain equilibrium, it is obviously necessary that they 
should be equal in magnitude and opposite in direction. 
But this is not yet sufficient. For equilibrium it is also 
necessary that the line connecting the points of application 
A, B (Fig. 18) should coincide with the direction of the 
forces. For if the second force were to act at B' instead of 
at B there would be no equilibrium, and a rotation would 
occur. 

This condition with regard to the direction of AJS is 
in fact sufficient for equilibrium. The length of the dis¬ 
tance AB and the form of the body do not matter at all. 
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The latter can be seen at once, if we imagine the body to 
be disposed perfectly symmetrically about the connecting 
line AB and also symmetrically with resi)ect to the 
bisecting plane of the line AB (see figure). No one will 
doubt that equilibrium then occurs. Moreover, it is 
impossible for this equilibrium to be disturbed when the 
body is enlarged by the addition of arbitrary masses on 
which no forces are acting. 

It immediately follows from this law that the physical 
meaning of a force which acts on a rigid body is no way 
changed if the point of application of the force is disj)laced 
by any arbitrary distance in the direction of the force. 
For, without causing disturbance, we may apply two equal 
and opposite forces F at any arbitrary point C of the body 
situated on the straight line AB (Fig. 3 8). Since the 
force which acts at C to the right and that which acts at 
A to the left maintain equilibrium these two forces may 
be omitted simultaneously, so that we are left with the 
force at C which acts towards the left instead of the force 
at A towards the left. But we cannot alter the point of 
application of a force in any direction other than that of 
the force (or in the opposite direction) without altering the 
physical meaning of the force. From this we see that 
besides the magnitude and direction also the point of 
application of a force plays a certain characteristic part 
and hence must always be specified if the force is to be 
regarded as completely known. 

Of course the displacement of the point of application 
of a force is only allowed within the material of the 
body. But we may also make the displacement go be¬ 
yond the limits of the body if we arrange that the point 
of application of the force remains rigidly connected with 

the body. 
§ 78. If several forces act on a rigid body, whose 

directions all intersect at a point, it is easy to combine 
them into a single resultant—namely, by transferring the 
points of application to the common point of intersection, 
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which, if it lies outside the body, must be regarded as 
being rigidly attached to it; and then we use § 24 

to combine the forces that act at this point into a 
resultant F whoso point of application may now again 
be displaced in the direction of F by any arbitrary 
amount. 

As an example we shall consider the attraction which a 
rigid homogeneous sphere experiences, according to the 
Newtonian law of gravitation, as a result of the attraction 
of a material point P which lies outside it. The attraction 
is the resultant of the forces which the point P exerts on 

Fig. 18. 

all the elements of mass of the sphere; the directions of 
all these forces pass through P. Hence we first transfer 
all these forces to P and there combine them into one 
resultant F. This is accomplished very easily if we 
reflect that the attractive force exerted by P on an element 
of mass of the sphere is equal and opposite to the attraction 
exerted by the element of mass on P. Accordingly, by 
§ 33, P is equal and opposite to the force which the mass of 
the sphere, imagined as concentrated at the centre of the 
sphere, exerts on the point P. Now we may again 
transfer the point of application of F from P into the 
interior of the sphere, for example, to its centre. In 
this way we arrive at the theorem that the attraction 
which a rigid homogeneous sphere experiences on 
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account of the action of a material point of exactly 
the same amount as if its mass were all concentrated at 
its centre. 

This simple theorem, however, holds only for a rigid 
sphere, and not, say, for a liquid sphere. For in the case 
of a liquid sphere the above line of argument, which 
operates with the transference of the })oints of application 
of the individual forces, which is legitimate only for rigid 
bodies, is not allowed. There is, in fact, an essential 
difference between the forces which a body exerts and 
the forces which it experiences. The former, if they 
act at a definite point, may be at once combined to 
form a single resultant, no matter how the body is con¬ 
stituted ; the latter may be so combined only if the body 
is rigid. 

Actually, the attraction which a liquid sphere experiences 
on account of gravitation cannot be combined into a 
single resultant force at all; rather, the sphere becomes 
deformed (cf. ebb and flow of the tides). 

If the forces which act on the rigid body all lie in one 
plane, they may in general likewise be combined to form 
a single resultant. This may be done by selecting any 
two of them and forming the resultant at their point of 
intersection; the same process is then applied to the 
resultant and a third force, and so forth until the last 
force has been used. There is an exception, however, in 
the case of parallel forces, which we must therefore treat 
specially. 

If among a number of forces there arc even only two 
whose directions do not lie in one plane, the process which 
has here been described for compounding the forces 
becomes illusory, because the force cannot be transferred 
to a common point of application. To solve this most 
general case it is therefore necessary to extend the 
theory. We shall first consider the case of parallel 
forces. 

§ 79. Parallel Forces. We choose as the plane of our 
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diagram the plane defined by the points of application 
A and B and the directions of the two given forces and 
Fg which act in the same sense (Fig. 19). Since the 
directions of and Fg do not intersect we introduce two 
equal and opposite additional forces K which act at A and 
B in the direction AB and exactly cancel each another. 
Then at A the force Fj combines with K to form G,, and 
at B the force F^ combines with K to form and now 
we can easily construct the resultant of and by trans¬ 

ferring the points of application A and B to the point of 
intersection C (see Fig.). The forces Gy and G^ are 
compounded most easily by first resolving Gj and G^, 
again into their components Fj and K and Fg and 
respectively; this is equivalent simply to transferring 
the force-parallelograms from A and B to C, The two 
forces K then again cancel and we get the resultant: 

F.= Fi-|-F2.(281) 

which is parallel to the forces Fj and Fg and which acts at 
C or at any point in its own direction, for example at its 
point of intersection H with the straight line AB, This 
point H is distinguished from all other points of the 
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straight line CH in that its position depends only on the 
magnitudes and points of application of the forces and 
-Fgj but not on their direction. 

We get this result if we reflect that the triangle formed 
by the forces K, 0^ (one-half of the parallelogram of 
forces) is similar to the triangle ACH, and hence : 

AH :HG ^ K:F^. 

In the same way : 

BH:HCr=K:F^, 

Consequently : 

F^-AH = F^^BI1 .... (28la) 

or : 

= . . . (282) 

Hence if we keep the magnitude of the parallel forces 
jFj and i^2 constant, but rotate them about their points 
of application A and B, the resultant F also rotates about 
its point of application H and remains unaltered in 
magnitude. 

When F2 — 0, H coincides with A, and when F^ == 
F^, H lies midway between A and B, as is natural. But in 
all cases H lies between A and B. 

To deal with the case of any arbitrary number of parallel 
forces we shall introduce the analytical method of treat¬ 
ment. Let be the co-ordinates of A, and ^2 

the co-ordinates of B. Then the equation to the straight 
line JJ? is : 

^^^1 ^ y-vi _ . 

^2 - y2- yi ^2 - 

Moreover, the co-ordinates Xq, y^, of the point H are 
determined by the fact that they satisfy the above 
equation and also the equation (282). Thus : 

^0-^1 ^ yo~yi ^ gp-gj _ ^ ^2 
^2 - 2/2 “ Vi ^2 “■ gi F^ + F2 
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Hence in view of (281) it follows that: 

Xq {Fi + Fj) = x^F = XjFi + x^Fi\ 
y, {F, + F,) = j/oF = j/iFi + y,F^ I • (283) 

Zq {Fi + F^ = ZqF = + Z2 F2, 

That is, the product of the resultant force F and one co¬ 
ordinate of its point of application is equal to the sum of 
the products of the components and the corresponding 
co-ordinate of its point of apj)lication. 

It is easy to generalize this result for any arbitrary 
number of parallel forces. 

For example, if we have three forces Fj, Fg, F.^ we first 
imagine F^ and F.^ to be combined into a resultant F', 
whose magnitude is Fj and F^ and whose ])oint of appli¬ 
cation z\ is given by (283). 

Then the required force F is the resultant of F' and F3, 
and hence, by (281), its magnitude is : 

F = F' + F3 - Fi + F, + F3, 

and, by (283), its point of aj^plication is determined by the 
fact that the product x^F is equal to the sum of 0:3 F3 and 

^'0 

But by (283) the latter product is again equal to : 

x^F^ -f XgFg. 
Consequently : 

XqF = a^iFi + x,Jf\ -f ajgFg, 

and similar exi)ressions hold in the co-ordinates y and z. 
Hence in the case of any arbitrary number of parallel 

forces Fi, Fg, Fg, ... all acting in the same sense at the 
points x^, 2/^, Zj, Xg, 2/2? 2^2, .. . the magnitude of the 
resultant force is given by : 

F = 2:Fi.(284) 

and the point at which the resultant acts, namely, Xq, y^, 
Zo, is given by : 

x^F = Fo^.Fi, y^ ^ Ft/iFi, = Lz^F^ . (285) 
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and the point of application may bo displaced by any 
arbitrary amount in the direction of F. 

§ 80. Application to Gravity. As a particularly im¬ 
portant application of the theorems which have just been 
deduced, we consider the question of the resultant of all 
the forces which the earth exerts on a rigid body according 
to the law of gravitation. The earth acts on an element of 
mass m-^ of the body with the force rn^g in the direction 
of the earth’s centre (§ 34). So long as the dimensions of 
the body remain vanishingly small compared with its 
distance from the earth’s centre, the forces of attraction 
on all the individual elements of mass , . . of 
the body may be regarded as parallel and hence combine 
into a single resultant F in the same direction and of 
magnitude given according to (284) by : 

F ^ g • Fvii.(286) 

which acts at the point (xq, where by (285) : 

XQll7ni = UrriiXi,.(287) 

The point Xq, Zq determined by these equations is 
called the centre of gravity of the body. Its position de¬ 
pends not only on the direction of the force of gravity and 
on the magnitude of the acceleration g due to gravity, 
but also on the relative positions of the elements of mass in 
the body. Hence it has a far greater importance than 
that of being the point of application of the resultant 
gravitational force and is more correctly called the centre 
of mass of the body. 

It is often found convenient to speak of the centre of 
gravity of elements of mass even when they are not 
rigidly connected with one another; for example, we speak 
of the centre of gravity of a system of freely movable 
points of masses, m^, , where we regard this centre 
of gravity to be defined at every moment by the equations 
(287). In this case the significance of the centre of 
gravity as the point of application of the resultant 
gravitational force becomes altogether void of sense. 
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If we wish to find the centre of gravity of a system of 
bodies, it is often expedient to perform the summation in 
(287) not directly over all the elements of mass of all the 
bodies, but first for each body individually and then, by 
imagining the mass of the body to be concentrated in this 
centre of gravity of the body, to determine the centre of 
gravity again for the new point-masses so obtained. 

The fact that this method of procedure always leads to 
the correct result is seen most simply by supposing all the 
bodies to be rigidly connected together and to have weight. 
For the resultant force of gravitation of the whole rigid 
system will certainly come out correctly if we first form the 
resultant force of gravity for every body individually and 
then again combine the forces so obtained into a single 
resultant. 

If the mass of a body is distributed continuously in 
space the element of volume dV contains the mass kdV 
(§ 31), where the density k may depend on the co-ordinates 
X, y, 2:; then the sums become replaced by integrals. 
From (287) we get in this case for the position of the 
centre of gravity : 

XQ^kdV = JkxdVy.(288) 

If, in particular, the body is homogeneous—that is, if 
k is constant—k cancels out entirely, and we have : 

ZofdV = fxdV.(289) 

It is in this sense that we also speak of the centre of 
gravity of a volume, and likewise of the centre of gravity 
of a surface or of a line, by imagining the geometrical 
configuration in question to be uniformly covered with 
mass, whose density then cancels out in each case. 

Let us, for example, calculate the position of the centre 
of gravity for the surface of a circular sector of radius 
r and angle of aperttire a. 

We take the centre of the circle as our origin of co¬ 
ordinates and the bisector of the angle a as the a;-axis. 
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We then easily get in the manner of (289), using p and ^ as 
polar co-ordinates : 

^0 / jpdp<J4 = j jp cos (j>*pdpd<j) 
and: 

yoj jpdpdcj) j jp sill (f>‘pdpd(p 

with the limits 0 and r for p, and — ? and + -“forf 

Hence : 
4 oc 

For a == 27r we have the complete area of the circle; 
2 

for this case Xq == 0. For a — 0, however, we get Xq = ^r, 

^ which corresponds to the 
if centre of gravity of an in- 

H A /q finitely narrow triangular 
/ 'T / area whose base is at a 

^ / / distance r from its vertex. 
A ll’ We must be careful to 

/ distinguish between the 
Fig. 20. centre of gravity of a tri¬ 

angular area and the centre 
of gravity of the periphery of the triangle. The latter can 
be found most easily by means of the theorem deduced 
above, by first finding the centres of gravity of the 
separate sides (namely, their mid-points) and then sup¬ 
posing each of these points to have the mass of the whole 
side (meavsured by its length). 

§ 81. Anti-parallel Forces. Let us consider two 
forces Fj and which act at the points A and B, but in 
opposite senses; such forces are said to be “ anti-parallel.” 
Suppose that F^>F^ (Fig. 20). 

We then get the resultant force most simply as follows. 
We resolve the greater force F^ into two parallel forces 
that act in the same sense, one of these acting at B and 
being equal and opposite to Fg, whereas the other, F, 
acts at a point H on the other side of A. This is always 
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possible if we arrange that is the resultant of these two 
forces—that is, so that by (281) : 

+ . . . . (291) 
and by (281a) : 

F.HA^F^.BA , . . . (292) 

We next substitute for the force F^ its two components 
F and Fg. Then the two forces F^ at B cancel out and we 
are left with the force F, whose magnitude is given, by 
(291), as : 

F - - ^2 .(293) 

and whose direction is the same as that of the greater 
force F^. The point H at which it acts lies outside the 
line AB on the side of the greater force F^, its distance 
from the point of application A being given, by (292), as : 

AH = AB.^ .... (294) 
£ 

The equations (293) and (294) may also be regarded as 
generalizations of the equations (281) and (282), which 
were derived for parallel forces, since they arise from the 
latter if F2 is taken as negative. Then the negative value 
oi AH indicates that H lies on the side of A remote from 
the point B. 

The more Fg approaches F^ in magnitude, the further 
H moves off, and when F2 == F^ our method of determining 
the resultant force becomes illusory. Two equal anti¬ 
parallel forces cannot be combined into a single resultant 
force at all; they form a special class of forces called 
“ couples.” 

If we have any arbitrary number of parallel and anti- 
parallel forces acting on a rigid body they can in general 
be combined into a single resultant. For a simple con¬ 
sideration along the lines of the result obtained for two 
anti-parallel forces shows that the formula3 (284) and (285) 
for the resultant of a system of parallel forces are still 
applicable even if some of the forces act in the opposing 
sense. We need only introduce the latter force into the 
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equations with a minus sign. Then the sign of the 
algebraic sum of all the forces EF^ gives the direction of 
the resultant, whereas the value of EF^ gives its magnitude. 

There is an exception, however, in the case EF^ = 0. 
For here the equations (285) that serve to determine the 
point of action of the resultant lose their meaning, 
and the whole system of forces reduces either to a couple 
or it maintains equilibrium. 

Which of these two cases occurs is decided by the follow¬ 
ing considerations. We first combine all the forces that 
act in the one direction F'j, F'2, F'g, . . . into a resultant 
F\ and then all those that act in the opposite direction, 

^"2, ^"3, , . . (taken positively) into their resultant 
F'\ 

By our assumption we then have : 

EF\ = EF'\ . . 
Further : 

x'oEF\ - Ex\F\. . . 
and : x"oEF'\ = Ex'\F'\ . . . 

We next investigate whether the line connecting the 
points of application of the two equal anti-parallel 
resultants F' and F" coincides with their direction or not. 

In the former case we have equilibrium ; in the latter 
case we have a couple. For equilibrium the following 
condition must be satisfied: 

(295) 

(29G) 

(^"0 “ ^’'0) : {y"o ~ y'o) • (^"0 - ^'0) = cos a : cos p ; cos y 

whore a, p, y are the direction-angles of the forces. 
If we substitute the values (29C) in this expression we 

get, if wo take (295) into account and introduce the 
symbol F (positive or negative) for the magnitude and 
direction of a force, that the necessary and sufficient 
condition for the equilibrium of a system of parallel and 
anti-parallel forces is : 

and: 
EFi = 0 

Ex^Fi: EyiFi: Ez^Fi = cos a : cos p ; cos y ) (297) 
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For example, if the forces are parallel or anti-parallel 
7T 7T 

to the 2-axis, then a = P y conditions 

for equilibrium become : 

2JFi - 0, = 0, Uy^Fi == 0 

B 

The 2-co-ordinates of the points of application do not 
enter here at all—as is natural, since every force can bo 
displaced arbitrarily in the direction of the 2-axis. 

§ 82. Let us now deal with couples more particularly. 
We choose as the plane of our diagram the plane of a 
couple which consists of two anti-parallel forces F and we 
displace the point of applica¬ 
tion of the one force F so far 
in its own direction that the 
line connecting the two points 
of application AB is perpendi¬ 
cular to F. Then AB is called 
the arm ” of the couple. 

It is easy to see that a 
couple may b(i displaced as 
far as we please in the direction 
of one of the forces without 
altering its physical meaning, 
for example, to A'B' (Fig. 21). For what is allowed by 
§ 77 for any single force must also be possible for the two 
forces together. 

Misgivings which may arise about this theorem and the 
way in which they are disj)osed of may best be dealt with 
in the form of a little dialogue. 

How can the couples AB and A'B' be equivalent, since 
a rotation of the body about the middle of AB is not the 
same as a rotation of the body about the middle of 
A'B'V^ 

B' 

Fto. 21. 

The two rotations mentioned are certainly not identical. 
But it has not been asserted, and it is not at all true, that 
a couple causes a rotation of the body about the mid-point 
of its arm. 
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But by § 76 every point moves according to the 
resultant of the force that acts on it. Consequently, if 
the couple acts at A and B the points A and B, which are 
initially at rest, move in the direction of their forces F, 
and since the forces are equal, this motion is a rotation 
about the centre of AB.'' 

By § 76 every point moves according to the resultant 
of the forces which are exerted on it by all the other forces 
in the universe. 

Now in the present case we have not two isolated 
points A and B, but a rigid body to which the points A 
and B belong. Thus they are under the influence of the 
forces which are exerted on them by the other points of 
the body, particularly by those in their immediate neigh¬ 
bourhood which cause the body to be rigid. These 
internal forces must also be taken into account when we 
are dealing with the motion of the points A and B, and 
not only the forces F, 

But the internal forces of the body are unable to set 
the body into motion; they maintain equilibrium and may 
therefore be omitted.” 

It is true that the internal forces of a rigid body main¬ 
tain equilibrium if they are all combined together to form 
a resultant. This follows from § 76 by the principle of 
the equality of action and reaction (Newton’s third law). 
But here we are dealing, not with the resultant of all the 
internal forces of the body, but with the resultant of 
those internal forces which act on the point A (or on the 
point B). 

The fact that these forces are not always in equilibrium 
is most easily recognized by considering any other arbitrary 
point C of the body (Fig. 21). 

If the body is set into motion by the couple the point 
C will also begin to move. What force causes its motion ? 
Only the resultant of the internal forces that act on it, 
for they are the only forces to which it is subject. Just as 
much as the internal forces act on C with a finite resultant, 
so they may also in general act on A or J5, and it is this 
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resultant combined with F which determines the motion 
of A and B, So we see that a couple does not necessarily 
rotate the body about the mid-point of its arm and that 
our misgivings about the complete equivalence of the 
couples AB and A'B' are imfounded. 

But how does the body actually move under the 
influence of a couple if it does not rotate about the mid¬ 
point of its arm ? ” 

This question cannot be fully answered at this stage. 
The complete answer, which is unambiguous, will be given 
below (§ 149). 

But a couple may also be displaced by an arbitrary 
amount in the direction of its arm AB without its signi¬ 
ficance being affected. 

For if we apply two forces F, equal and opposite to the 

A ' 

A 

A' 
E 

T 

j—0— 

> f V 

Fig. 22. 

original forces, at each of two points A' and B' situated on 
the straight line AB, and such that A'B' — AB, then 
these forces do not disturb the system of forces at all, since 
they cancel out in pairs (Fig. 22). The force F at A 
combines with the force F at B', which is parallel to it, to 
form a parallel resultant 2F which acts at the mid-point 
O of AB'. In the same way, the opposite parallel forces 
at B and A' combine to form the resultant 2F, which is 
parallel to each of them and which acts at the mid-point 
of BA'—^that is, also at O. Thus these two resultants 
cancel out and we are left with only the couple at A'B', 
which is nothing else than the displaced original couple. 

Furthermore, the arm of the couple may also be rotated 
by an arbitrary amount about its mid-point O in the plane 
of the couple—^that is, of the diagram. To show this, we 
again suppose two equal and opposite forces F to be applied 

L 
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perpendicularly to A'B' when the arm A'B' has been 
rotated through an arbitrary angle. These two forces do 
not disturb the system of forces (Fig. 23), and on the one 
hand combine the original force at A with the force at A' 
which points towards it, and on the other hand the original 
force at B with the force at B' which points towards it, 
to form a single resultant in each case; we displace the 
two components as far as the point of intersection in each 
case (see Fig.). 

Since the forces are equal, the resultants lie in the 
direction of the bisector of the angle between the two arms. 

and since they are equal and opposite, they cancel out. 
Hence we are again left with the original couple, but with 
its arm rotated. If the arm is rotated through the angle tt 
we again get the original couple. 

It is clear then that by successively displacing the couple 
parallel to itself and rotating it we can transport the 
couple to any position in its own plane without altering 
its physical meaning. 

But we may go still further. The couple may also 
be transferred to any other parallel plane. To show this 
we suppose that the plane of the couple is horizontal 
(Fig. 24 which depicts the plane in perspective), the force 
F at A pointing towards the reader, the force at R in the 
opposite direction. We then again apply two equal and 
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opposite forces F at the points A' and JB' at the same heights 
vertically above A and B; these forces do not disturb the 
system. 

The force at A, which points towards the observer, when 
combined with the parallel force at B' acting in the same 
direction, gives a resultant 2F, which is equal and opposite 
to the resultant of the force at B acting away from the 
observer and the force at A' in the same direction. These 
resultants also act at the same point, for the mid-point of 
the distance AB' is also the mid-point of the distance BA', 
Consequently we are left with only the original couple, 

Fig. 24. Fig. 25. 

but now displaced into the upper plane and capable of 
being displaced in any arbitrary way in that plane. 

Finally, the length of the arm AB may also be altered 
by an arbitrary amount without the physical meaning of 
the couple being affected. For if we resolve the force F 
which acts at B into two parallel components, of which 
one, F\ acts at an arbitrary point B' of the straight line 
AB, whereas the other, F — F', is assumed to act at A 
(Fig. 25), then we may replace the force at B by its two 
components, if we have, by (281a) : 

F' .B'B^(F --F').AB . . . (298) 

At A there then remains a force F — {F — F') = F', and 
at J5an equal anti-parallelforce F'—that is, we have a couple 
whose force is F' and whose arm is AB', where, by (298): 

F'. AB' ^F,AB , . . . (299) 
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That is, the product of the force and the length of arm are 
exactly the same for the new couple as for the old. If 
we call this product the moment of the couple, we have the 
theorem that two couples situated in the same plane or in 
I)arallel planes and having equal moments are identical. 

§ 83. Having })ecome acquainted with the properties of 
transformation of couples, we may now also answer the 
question as to what actually characterizes a couple at all. 
According to the above theorems a couple is obviously 
determined first by its moment, secondly by the direction 
of its plane, and thirdly by its sense. In Fig. 26 we see 
two couples which have the same moment and lie in the 

same plane but which are nevertheless 
I not identical. For they maintain equi - 

A_I librium—that is, they are exactly 
B opposite to each other. This compels 

us to assign a sense (of rotation) to a 
couple. This sense suggests itself if 
we fix our attention on the rotation 

_B‘ which is indicated by the directions of 
A* I the two force arrows. To be able to 

i define the sense of rotation uniquely 
Fio. 26. we shall ascribe to every rotation a 

definitely directed axis of rotation, and 
we do this once and for all by making the convention that a 
rotation of a co-ordinate system about its origin, such that 
the positive a;-axis moves towards the positive i/-axis,has the 
positive z-axis as its axis of rotation. The reverse rotation 
has the negative z-axis as its axis of rotation. Since we 
always use right-handed co-ordinate systems (§ 16), 
this convention is equivalent to the following : the axis 
of rotation of the hands of a clock is from the observer 
towards the dial; or the axis of rotation of a cork-screw 
which is being twisted into a cork is the direction in which 
the cork-screw as a whole moves in the fixed cork; or 
the axis of rotation of the earth is in the direction from the 
South Pole to the North Pole. 

Accordingly, the axis of the couple AB in Pig. 26 is 
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in the direction pointing from the plane of the diagram 
to the observer, that of the couple A'B' is from the 
observer to the plane of the diagram. 

This convention enables us to represent a couple, just 
like a force, by means of a simple geometrical symbol— 
namely, by means of a directed distance whose length 
denotes the moment N and whose direction denotes the 
axis of the couple. But in order to prevent confusion 
with the symbol for a force we shall indicate the direction 
of the axis by means of a double arrow-head. 

Accordingly, the vertical (double) arrow in Fig. 27 
denotes that couple whose moment N is equal to the 
length of the arrow and whoso (horizontal) plane is 
perpendicular to its direction, and 
whose axis is in the direction of 
the double arrow-head. (The corre¬ 
sponding forces are shown in per¬ 
spective by means of dotted lines.) 
This symbol may be disj)laced in 
any way, even laterally, so long 
as it remains of the same size and / 
parallel to itself. The ‘'point of ^ 
application” of a couple, then, 
has, in contradistinction to the point of application of a 
force, not the slightest physical meaning. 

§ 84. Composition of Couples. Through introducing 
the above described symbol for a couple we are able to 
formulate very simply the laws according to which couples 
are compounded. 

Let us first consider a system of any arbitrary number of 
couples Aj, Ag, Ag, . . . with parallel axes. These 
may all be brought to lie in one plane and, when in this 
plane, to act at a common arm. At the one end of the 
arm the forces all act perpendicularly to the arm, and so 
are compounded simply by addition to form a resultant, 
to which there is a corresponding anti-parallel resultant 
at the other extreme of the arm. Thus the result is a 
single couple, whose moment is represented by the 
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product of the length of arm and the sum of the individual 
forces—^that is, by the sum of all the moments N^, Ag, A3, 
. . .—and whose axis is the common axis. If anti- 
parallel couples are also present we need only take their 
moments as negative; we then obtain the sense and 
magnitude of the resultant moment by adding all the 
moments algebraically. 

We next consider two couples Aj and Ag whose axes 
form any arbitrary angle. We again combine the couples 
at a common arm AB on the straight line in which the 
planes of the two couples intersect. We describe the 
pJane of Fig. 28 through the point A and perpendicularly 

A 
Fia. 28. Fio. 29. 

to the arm, so that the other extreme B of the arm lies 
behind the plane of the diagram. Then the forces and 
Fg, which act at A, lie in the plane of the diagram, and 
likewise the axes A^ and Ag, but at right angles to the 
forces, in the sense indicated. According to the parallelo¬ 
gram law, the forces and Fg combine to form the 
resultant F, to which there is an equal anti-parallel 
resultant at B. The result is a couple of moment A, the 
direction of the axis of A being perpendicular to F, and 
the ratio A to F having the value : 

A Ai_^ 
F^ Fj^ Fg 

- AF. 

The quadrilateral formed by the distances A is a 
parallelogram; for it is similar to the parallelogram of the 
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forces F, and is rotated through a right angle with respect 
to them. Hence we have the theorem that if we character¬ 
ize any arbitrary couples by means of their symbols, they 
are compounded and resolved, like forces, according to 
the parallelogram law. In other words, couples behave 
like vectors. This induces us to denote couples by the 
letter N in clarendon type. The absolute (or numerical) 
value of the vector N is the moment N, and its direction 
is the axis of the couple. Couples iV^, iVg, N^, ... no 
matter how great their number, which act on a rigid body 
are compounded quite generally by vectorial addition to 
form the resultant couple : 

N = FiVi.(300) 

or, expressed in terms of the components : 

N cos A = 2Ni cos Aj = ZNxi' 

N cos fi = SNi cos fjLi = SNtji ■ • • (3^1) 

N cos V = ZNi cos vi = ZNzi 

where A, fx, v denote the direction-angles of an axis. 
§ 85. Composition of Arbitrary Forces. The problem the 

solution of which we had to postpone in § 78 because we 
were unable there to compoimd two forces whose directions 
did not intersect may now be taken up again, since we 
have learned how to compound couples quite generally 
and since, as we shall presently show, it is possible to 
displace the point of application of a force quite arbitrarily 
by introducing the appropriate couples. 

For if we have a force which acts at the point P (Fig. 
29) we may introduce at any arbitrary point 0 of the rigid 
body two equal forces F, one parallel and one anti-parallel, 
which mutually cancel. 

We then get as a result first the force F displaced to 
the point 0 and secondly the couple composed of the 
original force F and the anti-parallel force at 0, 

Let us calculate its moment and the direction of its axis. 
The value of the moment is the product of F and the 
length OQ of the perpendicular dropped from 0 on the 
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direction of the original force that passes through P. It 
is represented by the surface of the parallelogram formed 
by the sides OP and F. 

This quantity is therefore called the (statical) moment 
of the force F acting at P with respect to the point OP 

If O lies in the direction of the force PP, the moment 
vanishes. The axis of the moment is perpendicular to 
the plane OFF and is directed from the diagram towards 
the observer in Fig. 29. 

We now see immediately how any arbitrary forces 
acting at any arbitrary points may be compounded : the 
forces are all displaced in the manner just described to a 
common point of application—for example so that they 
all act at the origin of co-ordinates; here they are all 
combined into one resultant. Besides this resultant we 
then also have the couples which result from the displace¬ 
ment of the forces, and by § 84 these couples are likewise 
all combined to form a single couple. 

§ 86. To apply this idea in actual calculations we first 
consider the displacement of a force F acting at the point 
r to the origin 0, and calculate the three components of 
the couple which results from this process. For it is these 
components which we require afterwards in compounding 
the different couples. We find it expedient to use Fig. 
3 (§ 17) for this purpose, and we consider individually the 
three components Fx, Fy, Fz of the force F that acts at the 
point P. Let us first take the component This 
component may immediately be transferred from P to the 
point B in the a::y-plane, because BP lies in the direction 
of the force. But if we now displace Fz further from B 
to the point A on the :r-axis, we get in the process a couple 
parallel to the i/2-plane, of moment AB. Fz = yFz, 
whose axis is the positive x-axis. If, finally, we displace 
Fz from A to O we get a couple which is parallel to the 
a:2:-plane; it has the moment AO ,Fz — xFz and its axis is 
the negative ^/-axis. 

The displacement of the other two force components 
Fx and Fy of P to 0 may be carried out simply by a cyclic 
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exchange of letters in the results already obtained. 
Accordingly the displacement of Fx leads to two couples 
of moments zFx and yFx, whose axes are the positive 
y-Sbxis and the negative z-axis; and the displacement of 
Fy leads to two couples of moments xFy and zFy, whose 
axes are the positive s-axis and the negative a:-axis. 

By (301) these six couples combine to form a single 
couple A, where 

Nx = yFz - zF,j \ 

Ny = zFx - xFz I . . . . (302) 

Nz = xFy — yFx ] 

§ 87. A vector N, which is composed of the two vectors 
r and F according to (302) is called the ‘‘ vector product ” 
(or external product ”) of r and F to distinguish it from 
the scalar product ’’ (or ‘‘ inner product ”) r . F == xFx -r 
yFy + zFz (§ 47), and is designated by : 

iV = [r, FJ = - [F, rj . . . (303) 

By § 85 the absolute value of the vector product of 
r and F is equal to the area of the parallelogram formed by 
the vectors r and F, and its direction is the normal to this 
parallelogram, in such a way that the directions N, r, F 

or r, F, N or F, iV, r form a right-handed system, which, 
moreover, is right-angled if ^ F. 

These theorems may of course be directly derived from 
(302) : the fact that iV J_ r and F may be seen by 
multiplying the individual equations (302) with the 
components of r or with the components of F and sub¬ 
sequently adding. Also, for the square of the absolute 
value of N we get by squaring and adding (302) : 

(yFz - zFy)^ -1- (zFx - xFzY^ f* {^Fy - yFx)^ 
= (x^-^y^-{-z^)(Fx^-i-Fy-~{-Fz^)-(xFx+yFy + zFzy^ (304) 
== y2jp2 _ ^2jp2 eos2 (r, F) 

= r^F^sin^ (r, F), (305) 

that is, the square of the parallelogram formed by r and F. 
The quantities Nx, Ny, Nz, defined by (302) are also 

called the (statical) moments, with respect to the three 
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co-ordinate axes, of the force F which acts at P. Hence 
the moment of a force with respect to any straight line in 
space is equal to the product of the component of the 
force perpendicular to this line and the distance from the 
force to the straight line. We confirm that this theorem 
is correct by reflecting that the moment Nz of the force 
Fx, Fy, Fz acting at the point {x, ?/, z) with respect to the 
2-axis is, by (302), equal to the moment of the force 
{Fx, Fy, 0) acting at the point {x, y, 0) with respect to the 
origin of co-ordinates (§ 85). 

§ 88. Taking into consideration the idea described at 
the conclusion of § 85, we may now write down directly 
the result of compounding any arbitrary forces Fj, F^, F^ 

. . . acting at the points r^, 1*2, rg, . . . . The result is : 

P = ) . . . . (306) 
N = F,] J 

Or, in words, if any forces whatsoever act on a rigid 
body, they may always be compounded into a single force 
F which acts at the origin of co-ordinates and a single 
couple N, where F and N are compounded from the given 
forces in accordance with (306). These equations (306) 
contain all the theorems hitherto derived, including 
those dealing with parallel and anti-parallel systems of 
forces, as special cases. If we consider that of the two 
forces of the resultant couple N the one force may be 
supposed to act at the origin of co-ordinates and may 
there be combined with the resultant force F to form a new 
resultant, it becomes clear that the most general case 
of a system of forces acting on a rigid body may also be 
reduced to two forces. 

For a system of forces acting on a rigid body to maintain 
equilibrium it is sufficient but also necessary that both the 
resultant force F as well as the resultant couple N should 
vanish. By (306) this gives : 

ZFi - 0, FJ = 0 . . . (306a) 

So we have six equations of condition between the com- 
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ponents of the forces and the co-ordinates of the points of 
application. 

§ 89. A cert-ain arbitrariness occurs in our method of 
reducing any system of forces whatsoever to a single 
resultant and a single couple in that the point of appli¬ 
cation of the resultant was chosen at random. The 
question arises whether and how the result becomes altered 
if all the forces, instead of being displaced to the point 0, 
are displaced to a different point Oq. In particular, it 
would be of interest to investigate whether it is not possible 
by suitably choosing the point to get a specially simple 
result for the reduction of the system of forces. This 
answer to this question may be found most conveniently 
by displacing the resultant F and the 
couple N, which represent the whole 
system of forces, directly from the 
point of application 0 to the point 
of application 0^. The displacement 
of F then gives rise to a new couple 
iV', whose axis is perpendicular to F ' ^ 
and to 00Q, and which combines with 
iV to form a single couple Nq. 

Thus we finally obtain at 0^ the Fia. 3o. 
resultant F and the couple NqI from 
this we see at once that the resultant force F of a system 
of forces is quite independent of the position of its point of 
application Oq, whereas on the other hand the associated 
couple does depend on Oq, Can we choose Oq so that N' and 
N exactly cancel—that is, so that JVq — 0 ? In general, it 
is clear that we cannot do so. For then N' would have to be 
equal and opposite to N, whereas actually iV' is restricted 
by the condition N' X F, which does not hold for JV. 

But the following simplification may always be achieved. 
If we resolve N into a component Nq parallel to F and a 
component perpendicular to F (Fig. 30), we may choose 
the new point of application Oq so that the couple iV' 

which results from the displacement of F to Oq becomes 

equal to — 
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We need only choose to lie on the receding normal 
of the plane formed by F and iV (the plane of the diagram) 

N 
and make the distance 00q = 

Then only the force F and the couple remain at Oq, 

and we obtain the theorem that every system of forces acting 
on a rigid body may be reduced to a force and q> couple whose 
axis lies in the direction of the force. 

To obtain a convenient survey of the conditions that 
hold in the most general case, wo imagine that at every point 
O of the body we construct the resultant F that acts at 
it and the corresponding couple N. It is then clearly 
sufficient to consider all points 0 of a plane perpendicular 

to F; for F and N are the same 
on every straight line parallel to F. 

We take as such a plane the plane 
of the diagram in Fig. 31. Let Oq 
be that point of the i)lane at which 
the axis of the corresponding couple 
iVo coincides with F, and hence, like 
F, is perpendicular to the plane. 

We suppose the force F to be directed towards the reader. 
If we pass over to another point O of the plane we get as a 
result of displacing the force F from Oq to O a couple of 
moment N' == OqO . F, whose axis lies in the plane of the 
diagram and is perpendicular to OqO. This couple com¬ 
bines with Nq (not shown in the figure) to form the resultant 
couple N at 0, whose moment is given by : 

A2 = A^q2 4- A'2 = AqS 4- OqO^ . . . (307) 

and whose axis lies in the plane perpendicular to OqO and 

makes an angle with the plane of the diagram given by : 

tan 9 = ^^.(308) 

If we make the point 0 move round a circle described 
about Oq, N\ N and 6 remain constant. But if the 
distance OOq is increased N' and N increase to an im- 
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limited extent, while the angle d at the same time decreases 
to an indefinitely small amount. If we take point 0 out 
of the plane of the diagram into space, all the points 0 
having a definite moment N form an infinite circular 
cylinder, whose radius increases to an infinite amount as N 
increases. The common axis of all these circular cylinders, 
the locus of all the points O^, is called the cemtral axi^ of 
the system of forces; for it the resultant couple N has 
its smallest value 

§ 90. In addition to the most general case, we shall also 
consider briefly a few important s|)ecia] cases. 

If Aq ==-- 0, the couple N corresponding to the point of 
application 0 of the force F reduces to iV' (Fig. 31). 

Then there is no couple at all on the central axis—that is, 
the system of forces reduces to a force F, which acts at a 
point on the central axis. 

The condition for a system of forces to reduce to a force 
alone is not, then, that the resultant couple iV == 0 (the 
origin of co-ordinates 0 being chosen at random), but that 
N should be perpendicular to F, or, by (306), in vectorial 
notation, that : 

EF^ . i;[ri, Fi] = 0 . . . . (309) 

Actually, by choosing the point of application of the 
resultant appropriately, we can then always make the 
couple N vanish. 

If, on the other hand, F vanishes, the central axis 
becomes indeterminate. The system of forces then re¬ 
duces to a definite couple iV, whose point of application is 
arbitrary. This case is realized, for example, in the in¬ 
fluence of the earth’s magnetism on a rigid magnet. 

If, lastly, F and N both vanish, we have equilibrium; 
here, too, the choice of the origin of co-ordinates is 
immaterial. 

§ 91. Bodies with Limited Freedom of Motion. The 
conditions of equilibrium (306a) refer to a body which is 
freely movable. But if certain limits are set to the free¬ 
dom of motion of the body—say by external forces of 
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constraint—^the equations (306a) represent sufficient but 
by no means necessary conditions of equilibrium, and our 
next question is : What are the necessary conditions in 
each individual case ? 

Let us first consider a body in which a straight line is 
kept fixed, and which is acted on by an arbitrary system 
of forces JP^, r^, . . . . Such a body represents the most 
general type of lever. For let us take the fixed straight 
line as the 2:-axis, and first reduce the system of forces to 
the resultant F that acts at the origin of co-ordinates and 
the associated couple N. In order that equilibrium be 
maintained it is not necessary that F == 0; for at the 
origin of co-ordinates and at every point of the 2:-axis 
constraining forces act which under all circumstances 
neutralize the driving forces acting at these points. 

Moreover, with regard to the couple iV, its component 
Nx may be represented by two anti-parallel forces which 
act in the direction of the y-axis at points on the 2:-axi8, 
and therefore become destroyed by the external constraint. 
The same holds for the component Ny, whose forces 
may be assumed to act in the direction of the x-axis at 
points on the 2:-axis. The component Nz alone cannot be 
annulled by the resistance of the a:-axis. 

Hence it is sufficient for equilibrium but at the same 
time nccessaiy that: 

DJz = 2J[x-j^Fyj^ — “ 0 . . . (310) 

That is, we require only one equation between the com¬ 
ponents of the driving forces and the co-ordinates of their 
points of application. If Nz is not equal to zero, the 
driving forces bring about a motion—^in this case a rotation 
of the body about the 2:-axis. For this reason the statical 
moment Nz of the system of forces with respect to the 
2:-axis is also called the turning moment {Drehungs- 

moment) about this axis. 
Hence whereas of the six equations (306a) for the 

equilibrium of a free rigid body only one is of use in the 
present instance, the other five are necessary to answer 
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the question as to the resistance which the fixed axis must 
offer—that is, the constraint which must be exerted on it 
in order that, regarded as a freely movable body, it may 
remain at rest. This constraint is evidently such that it 
exactly cancels the action of the driving forces according 
to (30Ga); thus it consists of a force — F which acts at 
the origin of co-ordinates and a couple whose components 
are — Nx and — Ny. 

A couple which has the 2;-axis as its axis is of course 
unable to supply the constraint, since all the constraining 
forces pass through points of the 2;-axis. It is easy to see 
that to keep the 2:-axis fixed it is sufficient only to keep 
two points on it fixed, for example, the origin of co¬ 
ordinates and one other point. 

Hence the forces of constraint may in this case always 
be reduced to two forces which act at these two points. 

If the body, besides being able to turn about the 2:-axis, 
can also glide along this axis (we may imagine the body to 
be traversed by a smooth fixed rod or pin), then (310) is not 
sufficient for equilibrium; rather, we must add : 

UFz = 0.(311) 

For in this case the constraining force is unable to supply 
a component in the direction of the 2;-axis. 

It is easy to see, indeed, that the more freely movable 
the body is, the less the constraint, the greater is the 
number of equations of condition which the driving forces 
must fulfil if equilibrium is to be maintained. This leads 
us to refer to the remark made in § 71 apropos of the 
motion of a material point. A body which can be rotated 
about a fixed axis has a single degree of freedom; for its 
position is determined by a single variable, the angle of 
rotation. Accordingly, a single equation of condition is 
sufficient to ensure equilibrium. If the body can at the 
same time glide along the axis of rotation, a second degree 
of freedom is added and, with it, a second condition for 
equilibrium; and we can proceed further in this way, as 
will be seen in the next chapter. 
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Suppose the body can be rotated about a fixed point 

and let us take this point as the origin of co-ordinates 

0. Then the resultant F that acts at 0 will be cancelled 

by the constraint, and the necessary and sufficient condition 
for equilibrium is : 

A = Siri, Fi] = 0 . . . . (312) 

This represents three equations between the components 

of the driving forces and the co-ordinates of their points 
of application. 

We shall see that such a body also has three degrees 

of freedom. If A differs from zero, the driving forces 

effect a rotation of the body about 0. Hence the statical 

moment A of a system of forces with respect to a point 0 
is also called the “ moment of rotation ” of the forces 

about this point. 



CHAPTER II 

STATICS OF ANY ARBITRARY SYSTEM 

OF POINTS 

§ 92. We shall now generalize the laws of statics of a 
rigid body for the case of an arbitrary system of material 

points (or point-masses). For this purpose we first 
propose the problem of finding the conditions for the 

equilibrium of a system of n point-masses, on which given 

driving forces , , , Fn act and whose motions are 

subject from the outset to certain restrictions. We sup¬ 

pose these conditions to be represented by a certain 

number p of equatioios between the co-ordinates of the 

points. Our problem then includes as special cases the statics 

of a single material point, considered in Part One, and the 
statics of a rigid body, since a rigid body is nothing else than 

a system of points whose distances are kept constant. 

The system here assumed has 3n—p degrees of freedom. 

For of the total 3n co-ordinates only Sn—p are freely 
variable; the remaining p co-ordinates are determined 

by the prescribed conditions. The number p cannot be 

greater than the number 3n, In the limiting case, p = 

all the points are fixed, since their positions are already 
determined by the conditions; in the opposite limiting 

case, p ^ Oy all the points are free. 
To solve the proposed problem we follow the same line 

of reasoning as led us to a successful conclusion in the case 

of a single material point. We take into account the 
physical influence of the prescribed conditions by intro¬ 

ducing constraining forces Z, which represent this influence; 

for in no other way but by forces can this influence manifest 

itself. 
After having introduced these constraining forces 

M 1^51 
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we may regard the points as free, and we obtain as the 
condition of equilibrium for the system of points the 
following Zn equations between the force-components : 

- 0,.(313) 

Here denotes the resultant of the constraining forces 
which are called up at the point 1 by all the p conditions. 
If in particular one of the equations of condition does not 
contain the co-ordinates of the point 1, it of course makes 
no contribution to Zj. 

The form (313) of the equation of condition remains 
unfruitful so long as we know nothing further of the 
constraining forces that have been introduced. We there¬ 
fore next endeavour to set up as general as possible a 
property of the constraining forces. In the mechanics of 
a single material point with restricted freedom of motion 
we found that the constraining force always acts perpen¬ 
dicularly to the fixed curve or the fixed surface, and that 
the work done by the constraining force during any 
motion of the point that may occur always vanishes. 
The first form of this theorem is not capable of being 
generalized to apply to the system of points here in 
question, since the prescribed conditions may be quite 
different from those for fixed cui*vcs or surfaces. But it 
is possible to deduce quite generally the theorem that in 
any motion of the system of points under the influence of 
arbitrary driving forces the work of all the forces of 
constraint at all points taken together must always be 
equal to zero, or : 

2;Zi.dri-0.(314) 

where as in (149), denotes the vectorial distance 
traversed in the time dt by the point 1. 

§ 93. The equation (314) forms the basis of the whole 
statics of non-free point-systems. To prove them we 
must investigate more closely the physical meaning of 
the p equations of condition for the co-ordinates of the 
points. We can do this only by supposing these equations 
to be realized physically in some way. Such considera- 
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tions can by no means be circumvented, for the equations 
in themselves cannot exert constraining forces at all. 
They have a physical meaning only if they are regarded 
as the comprehensive expression for the mode of action 
of certain real mechanisms. 

We shall first give the proof of equation (314) for a few 
simple cases. For a single point (?^ = 1, p = 0, 1, 2, 3) 
the equation has been fully shown to be valid in Chapter VI 
of Part One (§ 67). 

Let us now take two point-masses and first consider 
the special case where both points are connected by a 
rigid mass-less straight line (rod) of length I, but are 
otherwise free. Then the following equation of condition 
holds between the co-ordinates : 

{x^ - j;i)2 + (2/2 - 2/i)2 + (^2 - Zi)2 = li . (315) 

What do we Imow in this case, for any arbitrary motion 
of the two points under the influence of arbitrary driving 
forces, of the forces of constraint and Z2 which by 
virtue of the rigidity of the coimecting straight line act 
at the two points 1 and 2 ? 

\t ZI and Z2 arc introduced as special forces, we may, 
without the motion being affected, regard the two points 
as free. But of course we need not do this; thus if the 
points remain rigidly connected they move under the 
influence of the driving forces exactly in the same way 
whether the constraining forces Z^ and Zg are specially 
introduced or not. Hence these two forces acting on the 
rigid system cancel each other out; this requires that 
they shall be equal and oj>posite and that their directions 
shall be the same as that of the line connecting the two 
points. Thus : 

/y   Ql 1/2 Vl rw   O ^2 ~ ^1 
^ ' O • ^ 

y _ C ^,2 "■ ^ Q ^2 ~ 
M4Zy O • ^ ^ ^ 

(316) 
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where S, the terivsion of the rigid rod, denotes the value 
of the constraining force, being positive when a pull is 
being exerted, and negative when the force is a pressure. 

By (316) the total work of the constraining forces is : 

= - 7 {(^2 - a'i)(^^2 - <K) + (2/2 - ViWVi - dyi) 

+ (^2 - ~i) (dz2 - dzi)j (317) 

and this expression vanishes for all times, as we see 
immediately if we differentiate (315) with respect to the 
time. 

We next assume the two rigidly connected points no 
longer to be free, but to be further restricted in their 
motion by being compelled to remain on a fixed curve. 

The equation (314) then continues to remain valid. 
For the sum-total of all the constraining forces is the sum 
of the amounts of work done by the individual forces of 
constraint, and as such we here have, besides the tension 
of the rigid straight line, only the resistances of the fixed 
curves, for which the theorem has already been proved. 

In the same way we can dispose of the more general 
case of a series of point-masses, each of which moves on 
a fixed curve and, besides, is connected with the preceding 
and the following point by means of a rigid mass-less 
straight line (except the first and last point, which are 
not connected with each other). In this case, too, the 
total work of all the constraining forces is zero in any 
motion that may occur. 

The system of points just considered has a single degree 
of freedom. For the motion of the first point on its 
curve, which depends on a single variable, completely 
determines the motion of all the other points, as we see 
immediately if, starting out from the first point, we look 
for the position of the second, third, etc., points and 
reflect that each succeeding point, besides lying on its 
own curve, also lies on a spherical surface which is 
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described about the preceding point with a definite radius 
—namely, the length of the connecting line. 

§ 94. After these preliminaries we shall now give a 
systematic proof of equation (314)—first for a point- 
system having a single degree of freedom. 

The case n — I has already been considered (a point- 
mass on a fixed curve). The case n = 2 corresponds to 
two point-masses and five equations of condition between 
the six co-ordinates. 

In order that the equations of condition may have a 
physical sense we must realize them in some way by 
means of a mechanism. This may be done as follows. 
If we eliminate from the five equations of condition the 
co-ordinates of the second point we obtain for the co¬ 
ordinates of the first point two equations, which represent 
a fixed curve, on which the point is constrained to remain. 
We imagine this curve to be realized as a material thing 
and that the ])oint 1 is kept attached to it (cf. § 65). In 
the same way, we realize the fixed curve calculated from 
the equations of condition for the point 2. All that 
remains for us to do is to find an appropriate mechanism 
to compel the point 2 to move on its curve in a perfectly 
definite way prescribed by the equations of condition, 
when the point 1 moves in any known way. If we were 
to connect the points rigidly together, this condition 
would be much too special; so it would not be able to 
fulfil its purpose. The following construction, however, 
always leads to the desired goal. At each of the point- 
masses 1 and 2 we attach a mass-less straight line of 
arbitrary lengths and which must not, however, be 
too small, and we connect together the other end-points 
of these two straight lines in such a way that they can 
move freely against each other at their meeting-point P, 
If, now, the point-masses 1 and 2 move in a maimer 
which satisfies the five equations of condition, the point P 
is still able to move in very different ways. From these 
curves we now choose a definite one and regard it as 
being materialized, so that we may compel the point P to 
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remain on it. The three points 1, P, 2 then form a 
mechanical system with a single degree of freedom after 
the manner of that considered in the preceding section, 
whose single point-masses 1 and 2 are subject to the five 
prescribed equations of condition. Thus this mechanical 
system represents a realization in material form of the 
five given equations of condition and is fully equivalent 
to them physically. If we refused to recognize this con¬ 
clusion we should not be able to attribute a definite 
physical meaning to the equations of condition at all. 

In the preceding section we proved the validity of 
equation (314) for the forces of constraint in a system of 
points of the kind in question; consequently it also holds 
quite generally for the forces of constraint, conditioned 
by the five equations, which act at the x>oints 1 and 2. 
For, as concerns the specially introduced point P, it is 
true that forces of constraint also act on it which are 
due to its fixed rigid curve and to the rigid straight lines 
Zj and Zg- Rut their resultant Z and hence also the work 
done by them is, by equation (217), equal to zero for any 
arbitrary motion of the point P, because the point P has 
the mass m == 0 and because the driving force F which 
acts on it is also zero. 

If we have the case n = 3—^that is, three j)oint-masses 
with eight equations of condition between their co¬ 
ordinates—these equations may also be realized by a 
mechanism of the kind described, by making the point- 
masses 1,2,3 move on the fixed curves and by interposing 
a point P between 1 and 2 and also another between 2 
and 3, just as before. Then the same considerations lead 
to the same goal; and the case of any arbitrary number n 
of point-masses with one degree of freedom may be 
disposed of in the same way. 

We have still to consider a point-system with several 
degrees of freedom. If such a system performs any 
motion under the action of any driving forces, clearly we 
can, if we assume the motion to be known, add to the 
existing p equations of condition between the co-ordinates 
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any further arbitrary number of arbitrary equations as 
new fixed conditions between the co-ordinates, which are 
compatible with the .motion, without the motion being 
disturbed. But these additional conditions play only a 
formal part, since they are actually superfluous. 

If we now suppose ^ ~ 1 such new conditions to 
be introduced, the total number of conditions amounts 
to 3/1 — 1, and the point-system has a single degree of 
freedom; thus the equation (314) is fulfilled for the total 
work done by the forces of constraint arising from all the 
real conditions. But since the forces of constraint of all 
the new conditions that have been introduced are equal 
to zero, the expression for the total work reduces to the 
work done by the forces of constraint which arise from 
the real conditions, and so the equation (314) is proved 
to be valid quite generally. We can express it in words 
as follows : forces of constraint may individually do work 
or use work but never when taken as a whole. This law 
is intimately connected with the principle of conservation 
of energy; for so long as the continual maintenance of 
the fixed conditions which we realize mechanically 
entails no gain or loss of work, no gain or loss of work 
can arise from their method of acting (cf. § 75 in this 
connection). 

§ 95. On the basis of (314) we may now make exactly 
the same deductions for an arbitrary system of points as 
in § 67 for an individual point. But since the line of 
reasoning is exactly the same in both cases, we need here 
only state the results. If a system of point-masses which 
was originally at rest, and whose co-ordinates are restricted 
by several prescribed conditions, is set into motion by 
the driving forces that act on it, each point-mass moves 
in accordance with § 76 in the direction of the resultant 
of the driving forces F that act on it and the forces of 
constraint Z. Hence we have for the infinitesimal dis¬ 
placements of the points that occur in the first element 
of time : 

+ ^i) • > 0 . . . . (318) 
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and in view of (314) : 
ZF^,dr^ X).(319) 

That is, when motion begins to occur the driving forces on 
the whole perform positive work. Thus motion can occur 
in a system of points at rest only if the points can perform 
a displacement for which the work of the driving forces 
is positive. If the prescribed conditions are such that 
the points are unable to undergo a displacement at all in 
which the driving forces perform positive work, no motion 
can occur at all and the whole system persists at rest— 
that is, in equilibrium. Hence we get as a sufficient 
condition for the equilibrium of the point-system that 
for every infinitesimal displacement of the co-ordinates 
which is compatible with the given equations : 

. 8ri0 .(320) 

Here Sr denotes a perfectly arbitrary displacement among 
all those compatible with the prescribed conditions, and 
is therefore called a virtual displacement, in contrast with 
the real displacement dr which occurs in the element of 
time dt. So the equation (320) is called the Principle of 
Virtual Displacements or the Principle of Virtvial Work. 
It was discovered by John Bernoulli in 1717. 

In the cases here under investigation the expression 
for the principle may be considerably simplified. For 
since the prescribed conditions are expressed by equations 
(and not by inequalities between the co-ordinates of the 
points), we see that for every possible system of virtual 
displacements Sr^, Srg, . . . the exactly opposite system 
of displacements — Sr^, — Sr.^, ... is possible. Now 
if the points are in a position for which a system of 
virtual displacements can be effected which allow 
negative work to be performed, there is certainly also 
a system of virtual displacements for which positive 
work may be performed—namely, exactly the opposite; 
and so it is possible for motion to occur in the direc¬ 
tion in question. Hence the equilibrium is guaranteed 



n. ARBITRARY SYSTEM OF POINTS 169 

for all directions only if for every system of virtual 
displacements : 

. Sri - EFxMi -t- FyjSyi + Fz,hz, - 0 . (321) 

§ 96. The significance of the principle of vij*tual work 
consists essentially in the circumstance that in order to 
find the conditions of equilibrium we need not enter in any 
way either into the mechanisms by which the prescribed 
conditions arc realized nor into the constraining forces 
which arise from them. It is quite sufficient to know all 
the kinds of displacement which the given conditions 
allow to the points which are subject to them. Moreover, 
the principle has the important practical advantage that 
it combines the entire set of conditions of equilibrium in 
a single equation—a result which is attained only because 
this is no ordinary equation, but a variational equation 
which holds not for definite but for any arbitrary quan¬ 
tities. For it is clear that the content of such a varia¬ 
tional equation is so much the richer and the conditions 
which it postulates are so much the more comprehensive 
the more arbitrarily we may choose the variations which 
must obey it. 

For example, if the variations Sr^, Srg, . . . niay all 
be chosen quite arbitrarily—that is, if all the points are 
free—(321) can be fulfilled only if : 

F, = 0, ^2 = 0, . . . 

for there is nothing to prevent our taking all the variations 
of all the co-ordinates equal to zero except for one single 
variation, say Of the virtual work only the one 
term Fx^ . Sx^ then remains, and since the virtual work is 
to be equal to zero, the first factor Fxj must vanish in 
the product mentioned. In this way the principle of 
virtual work leads us to the well-known conditions of 
equilibrium for a system of free points. 

The opposite extreme is that where all the points are 
fixed—that is, their co-ordinates are already given by the 
prescribed conditions. Then the permissible displace- 
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ments Sr are all equal to zero, and the condition for 
equilibrium (321) is identically fulfilled for every arbitrary 
value of the driving forces, so that equilibrium exists in 
all circumstances, as direct evidence demands. 

In general, for any arbitrary number p of prescribed 
conditions between the 3n point co-ordinates—^that is, in 
the case of a system of 3n — p degrees of freedom, we 
arrive from the variational equation (321) at the finite 
conditions of equilibrium between the force components 
and the point components by first reducing the 3n varia¬ 
tions Sx^, 8//i, 8.^2, ... by means of the p given equations 
of condition which we shall denote by / = 0, ^ = 0, 
^ ~ 0, ... to 3n — p arbitrarily selected variations, 
which are then quite independent of one another. This is 
done by solving the j) homogeneous linear equations of 
condition : 

Sy, +|f Sy,- 
dxi ^ cyi dzi ^ dx2 dy^ 

Scf) ^ 2 1 S: t S 1 

. =0 

= 0 

= 0 

(322) 

in terms of the p variations, which are to be regarded as 
dependent on the remaining 3n — p variations. 

By substituting these values in (321) we then obtain 
the virtual work as a homogeneous linear function of the 
3n — p variations which are independent of one another, 
and according to the above reflection concerning a system 
of independent variations the vanishing of the virtual 
work demands that each individual coefficient of each 
variation that is independent of the other variations must 
be zero. 

In this way we obtain just as many equations of con¬ 
dition between the force-components and the point- 
co-ordinates as there are independent variations—that is, 
degrees of freedom, namely 3n — p—and so we have 
generalized the theorem which we have already found to 
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hold for a single material point (§ 71) as well as for a 
rigid body (§ 91). 

§ 97. If we endeavour to carry out the calculation in 
the manner just described, we find in general that very 
awkward operations are involved. We have, however, 
in Lagrange’s method of elimination (by means of un¬ 
determined multipliers) a method of great value for 
arriving at the result in a way which, although indirect, 
can easily be followed. 

We multiply equations of condition (.322), after the 
operation of variation, successively by certain quantities 
A, fi, V, . . ., the choice of which we leave open, and then 
add them to equation (321). We then get as the equation 
for equilibrium : 

4- A rlf . ) 8.^1 = 0 (323) 

where the summation is to be performed over all Sn 
co-ordinates ; this equation holds for all arbitrary virtual 
displacements and for all arbitrary values of the j) 
quantities A, ya, v . . . . 

We next choose these p quantities so that the bracketed 
coefficients of the first p variations, starting from Sajj, vanish. 

The virtual work (323) then reduces to a linear homo¬ 
geneous function of the *Sn — p remaining variations, and 
since we may regard these as completely independent of 
one another, the variational equation, just as above, 
demands that the coefficients of these — p variations 
vanish individually. 

The net result is simply that all 3n coefficients of the 
expression (323) may be set equal to zero : 

,0/ 00 00 

F„ A fji -A V ^ . 
^2/1 

(324) 

for all points and co-ordinates. 
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When A, fji, V . have been eliminated, these equa¬ 
tions are actually the equations of condition between the 
force-components and the point-co-ordinates, and so 
represent the desired conditions of equilibrium in a 
symmetrical and concise form. 

§ 98. By comparing the conditions of equilibrium (324) 
with the conditions of equilibrium (313), we may arrive 
directly at the values of the constraining forces—for 
example, of the :r-component of the resultant of all the 
constraining forces that act on the point 1 : 

Xj-i = A + . (325) 

The individual terms refer to the forces of constraint 
that originate in the individual conditions. If a co¬ 
ordinate of a point does not occur at all in an equation 
of condition, this condition furnishes no corresponding 
component for the constraining force that acts on the 
j)oint. 

If, on the other hand, we inquire into the various 
forces of constraint which are exerted owing to a definite 
condition—for example, / = 0—on the different points, 
their components are in the ratio : 

. 3/. 
0:^1 ’ * ai/2 ‘ 

(326) 

which represents a generalization of the expression (246) 
which is valid for a single material point on a fixed 
surface. 

§ 99. We shall now apply the principle of virtual work 
to the equilibrium of a free or non-free rigid body. 
Although we have already treated this case above, it is 
interesting to apply a new method to a problem which 
has been solved elsewhere, because in this way we become 
aware of its peculiar properties, and are often led to 
answer a series of new questions, which is of use for 
treating other problems later. 

A rigid body is a system of material points whose 
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mutual distances remain constant : it is immaterial here 
whether the points are finite in number or whether they 
fill space continuously as infinitesimal elements of mass. 

We next inquire into the condition for the equilibrium 
of a rigid body which is able to rotate about a fixed axis 
and on which definite driving forces act at definite points 
of application. 

If we wished to write down all the equations of con¬ 
dition/== 0,^ ==(),... and to api^ly the above described 
method of Lagrange, we should have to deal with very 
long calculations. It is much more convenient to apply 
the method first described in § 96 and to refer the varia¬ 
tions of all the point-co-ordinates directly to just as 
many independent variations as there are degrees of 
freedom. 

Now, a rigid body with a fixed axis clearly has only a 
single degree of freedom. For its position is determined 
when we know the angle which a fixed plane described 
through the axis of rotation and lying in the body makes 
with a j)lane which likewise contains the axis of rotation 
and is at rest in space. 

Hence all the virtual displacements must be expressible 
by a single variation—namely, by the infinitely small 
angle of rotation. 

This is achieved most simply by introducing cylindrical 
co-ordinates : p, z, where, as before, we take the axis 
of rotation as the z-axis. 

Then we have for a point of the rigid body : 

Xi = piCos<l>i, yi = Pisin<f>i, Zi = Zi 

and for the variations of the co-ordinates, since and 
remain constant when the body is rotated about the 
z-axis : 

8xi = — Pi sin ] 

§2/1 = Pi cos <f>Mi (■ ■ ■ ■ 
(5zi = 0 j 

Now S(f>i has exactly the same value for all points of 
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the body—namely, the value of the angle of rotation, 
which we shall denote by ^; hence : 

8^1 = “ 2/i • 8^1 == 82:1 - 0 . (326/j) 

and if we substitute these values in (321) we get the 
following expression for the work performed by the 
driving forces during an infinitesimal rotation of the body 
through the angle ^ : 

^^ . . . (327) 

According to § 91, this is the product of the angle of 
rotation and the angular momentum of the driving forces 
about the 2;-axis. If the driving forces set the originally 
stationary body into rotation, then by (319) the work 
done by the driving forces is positive—that is, the rotation 
occurs in the sense of the angular momentum. 

Hence if the angular momentum is zero, the driving 
forces are unable to do any work at all, and the body 
must remain at rest. We therefore again obtain as the 
condition of equilibrium the equation (310), but in a 
much sim])ler manner, formally, than before. 

If the body can also glide along the axis of rotation 
(cf. § 91), then its displacement is more general, being 
dependent on two variations—^namely, that of the angle 
of rotation ^ and that of the distance glided w, which is 
common to all points of the body. The variations of the 
point-co-ordinates then become : 

= -Vi-L Sj/i = 82, = tv 

and the principle of virtual work (321) gives : 

^ - y^F,) - 0 . . (328) 

which, since ^ and w are independent of each other, 
give the two conditions of equilibrium (310) and (311). 

§ 100. We now assume that only one point is fixed in 
the rigid body and that the body can be freely rotated 
about this point. Our first question is : what is the 
number of degrees of freedom of this system ? To 
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characterize the position of the body it is not sufficient 
to specify the position of one of its movable points. 
Hence, as in § 56, we introduce a second right-handed 
rectilinear co-ordinate system x\ y\ z' which is fixed in 
the body and so moves with it. We make the origin 
coincide with the origin of the stationary co-ordinate 
system z, which is situated at the fixed point. The 
position of the body is then determined by the position 
of the “ accented ” system and depends only on the nine 

direction-cosines aj, . . . 73 (§ •''>6)- 
In the equations of transformation : 

X == a.ix' + + agz' 1 

y = M I ■ 
Z = + 72?/' + y^z' ] 

the accented co-ordinates arc independent of the position 
of the body for a definite material point of the body, and 
hence the variations of the unaccented co-ordinates are : 

8x = cr'Saj H- y'Sag + \ 

Sy = :r'SPi 4- ?/Sp2 4- z'h% 1 • • (330) 

Sz = x'Syi + y'By^ + z'Sys J 
But the variations of the direction-cosines do not yet 

represent the independent variations. For, like the direc¬ 
tion-cosines themselves, they are connected together 
among themselves by a scries of relationships. 

By (32) we have : 

+ . 
0C3' + + ya" = 1 . 

and, besides, since the accented axes form a right-angled 
system, by (37) : 

^1^2 + P1P2 + yiy2 == 0 ' 

^20^3 + P2P3 + y2y3 =- 0 - . • . (‘k32) 

^3^1 + P3P1 + yayi - 0 ^ 
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Altogether we thus have six relationships, from which we 
gather that of the nine direction-cosines only three may 
be chosen arbitrarily and then the other six are deter¬ 
mined by them. Thus the movable body has three 
degrees of freedom, and accordingly we must expect three 
conditions of equilibrium. To find them we must refer 
the co-ordinate-variations (330) to three independent 
variations common to all points of the body. 

It would be inexpedient to select from the nine varia¬ 
tions Sa^, . . . any three arbitrarily as independent varia¬ 
tions, because this would destroy the symmetry of the 
equations. We do better to proceed indirectly by first 
replacing the accented co-ordinates in (330) again by 
unaccented co-ordinates, in accordance with the equations 
(181). We then get : 

8x = (a^Saj agSaa + agSag)^; -f (Pi8a| -}- 

-}- (yiSai + y2^^2 + 

8/y - (aiSPi + a28f:!2 ^38^3).!: + (Pi8Pi + PgSpa “I" Pa^Pa)// 

-h (yiSPi -f ygSpa + ra^Pa)- 

Sz = (ai8yi + a28y2 H- a38y3).r + (Pi8yi + p28y2 + Pa^ya)?/ 

+ (yiSyi + 72^2 + 73873)- 

On account of the relationships that exist between the 
direction-cosines and their variations we may now effect 
considerable simplifications. 

In the first place, it is easy to see from geometrical 
considerations that the relationships (331) and (332) 
retain their validity if we exchange in them the figures 
1, 2, 3 by the letters a, p, y—that is, the accented co¬ 
ordinate-axes by the unaccented axes. The analogous 
relationships then follow : 

-f a32 = 1 1 

Pi^ + P2" + Pa" = 1 

yi® + Yi + 73® = 1 i 

(333) 
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and : 

Piyi + ^272 + PaVs = 0 i • • • (334) 

yi*l + 72*2 + 73*2 = J 
which of course lead to nothing essentially new, being 
already contained in (331) and (332). \ly performing 
variation on those equations we get : 

+ agSag + == b 

PlSPi -\- d- P38B3 = 0 ■ 

ri8yi + 72^72 + 73^^73 = . 
and : 

aiSPi -1- +a38fi3= - (pi8ai +[^28^2 ^ 1 

P1871 + ^3872 + ^3873- - (yi8pjL +728P2 + 73^P3) ^ r 

7i8ai f-y2^^2 -1 •73^^3 - (^uS7i +3C28y2 f- -= V ' 

if we introduce for the sake of brevity the infinitesimal 
quantities rj, which correspond in their notation to the 
letters a, p, y or the unaccented co-ordinates a:, y, z, 
respectively. 

The above equations for the co-ordinate-variations then 
run singly : 

Sx = riz- Cy ] 
hy \ • • • • (837) 

bz=^ ^y -rjx ) 

and in this form they appear simply reduced to terms of 
three independent variational quantities I common to 
all points of the body. 

Substituting in (321) we get for the virtual work (321) 
of the driving forces, if we use the abbreviation (306) : 

^ • Ac d* 17 • Ay -f- ^ • Ar, . . . (*138) 

and the condition for equilibrium is the vanishing of all 
three components of A, as in (312). 

§ 101. The equations (337) for the most general dis¬ 
placement of the points of a rigid body with a fixed origin 

(335) 

(336) 



178 GENERAL MECHANICS chap. 

of co-ordinates may, by (303), be written in vectorial 
form as : 

8r = [«, rj.(339) 

if we take o as standing for the vector whose components 
are the infinitesimal quantities f, r/, The simplicity of 
this formula suggests that the vector o has an important 
kinematical meaning; we shall now investigate this more 
closely. 

For the special case ^ = 0, 77 = 0 the equations (337) 
become : 

Sx == — 'CVi S;: ^ 0 . . . (340) 

These are precisely the expressions (32f)/>) for the co- 
ordinate-variations when a rigid Ixxly is rotated about 
the ;:-axis through the infinitesimal angle In the same 
way the equations : 

Sx == 0, hy ^ - iz, Sz = iy, . . . (341) 

Sx = 7jZy 8y = 0, 8z = — yx . . . (342) 

represent rotations of the body about the x- and the i?/-axis, 
through the infinitesimal angles ^ and y. 

It is easy to see that we obtain the most general dis¬ 
placement (337), if we add together the variations (340), 
(341) and (342) for each individual co-ordinate—that is, 
if we subject the body successively to the three rotations 
mentioned, but in any order of sequence. We must take 
care to note, however, that when the first rotation has 
been carried out, say about the ;2;-axis, the material point 
which was originally situated at the point x, y, z now has 
the co-ordinates x — i^y,y ^x, z, and that therefore these 
values and not the values x, y, z are to be substituted in 
the equations (341) for the second rotation, if we wish to 
find out at what point of space the material point which 
was originally situated at x, y, z finally arrives as a result 
of the three successive rotations. But we may convince 
ourselves by performing the calculations directly that the 
error caused by neglecting this circumstance is one of a 
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higher order of infinitesimals. For the more exact equations 
run, for the first two rotations taken together : 

8x== - Sy = 8z « ^(y + ^x). 

Here the term in is an infinitesimal of the second 
order and may therefore be neglected. The same holds 
for the third process of rotation. 

Nevertheless, we see from these considerations that in 
the case of finite angles of rotation the result of the 
successive rotations would no longer be independent of 
the order of sequence in which the rotations are cari'ied 
out. This is a special case of the general law which allows 
us to superpose small events without their disturbing 
one another, which resolves itself ultimately into the 
mathematical theorem that a function of several variables, 
so long as they are infinitely small, is a linear function. 

If we now fix our attention on the final position assumed 
by the body after the three rotations i, t], ^ have been 
performed, we get a very simple view of it if we calculate 
the displacement which a material point, originally 
situated on the straight line : 

x:y:z=:^:7]:C . . . . (343) 

has undergone as a whole. This straight line })asse8 

through the origin of co-ordinates and in general makes 
finite direction-angles with the co-ordinate axes. For it 
the equations (337) give : 

8x = 0, Sy = 0, 82; = 0 

That is, the point is situated in the same place at the end 
as at the beginning. Hence the total displacement 

17, f simply represents a rotation of the body about the 
straight line (343), and we get the theorem that the mo6t 
general infinitesimal displacement of a rigid body with one 
fixed point is a rotation about a straight line which passes 
through this point. Of course, both the direction of the 
straight line and the magnitude of the associated angle 
of rotation are fuUy determined by the quantities 17, 
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and by (343) the direction of the straight line is the 
direction of the vector o. The magnitude of the angle 
of rotation results if we take the magnitude of the dis¬ 
placement : 

I 8r I - §“^2 ,|_ §.2 

from (337) and divide it by the distance of the point 
X, y, z from the axis of rotation : 

r. sin (r, o). 

C,^alculation then gives, exactly as in (304) and (305), the 
following value for the angle of rotation : 

that is, the absolute value | o | of the vector o. We there¬ 
fore also say : the three rotations compound in 

magnitude and direction into a single re¬ 
sultant rotation in accordance with the law 
of the parallelogram of forces.” This of 

Fra. 32. course has only the sense that the rotations, 
when performed in any arbitrary order of succession, lead to 
a final position of the body which may also be arrived at by 
a single rotation with the characteristics above noted. 
For in all these reflections there is no question of force 
effects. 

According to these theorems, we may completely 
symbolize an infinitesimal rotation and the composition 
of several such rotations graphically by means of a 
directed straight line which starts out from the fixed 
point 0, its length giving the magnitude of the angle of 
rotation, on a convenient scale, and its direction being 
designated by the axis of rotation in the sense defined in 
§ 83. To avoid confusion with the symbol for a force we 
may indicate the end-point of the straight line by means 
of a rounded arrow instead of a sharp arrow (Fig. 32). 
We may now operate with these symbols exactly as with 
those for forces; in particular, several rotations about a 
common axis may also be compounded simply by adding 
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up algebraically the angles of rotation to a resultant 
rotation, as we see immediately if we imagine the rotations 
to be executed in succession. 

From this we also obtain the answer to the question as 
to the final position assumed by the body after it has 
been subjected to an arbitrary number of given (infinite¬ 
simal) rotations in succession. If 03, . . . are the 
individual given rotations, the final result is a single 
rotation : 

o - iJoi.(344) 

exactly as in equation (07). 
The condition that the final })osition of the body should 

coincide with its initial position or that all rotations should 
mutually cancel is : o = 0. 

§ 102. All the theorems derived in the preceding 
section refer to a rigid body with one fixed point. Hence 
the axes of all the rotations hitherto considered pass 
through this point. The next question that suggests 
itself is : how do we compound infinitesimal rotations 
whose axes do not intersect ? To answer this question 
we must of course from now on imagine the rigid body to be 
completely free. 

The peculiar advantage of the method used in the 
preceding section for compounding forces now manifests 
itself. For although we are not concerned now with 
forces at all, but with displacements, the problem here to 
be treated, taken formally, amounts to exactly the same 
as the former problem; this is shown in the complete 
agreement both of the starting points and of the auxiliary 
methods used in the solution. 

In the first place, it is clear that the symbol of a rotation 
(Fig. 32) may be displaced arbitrarily in its own direction 
without its kinematic meaning being altered, so long as 
the initial point of the straight line lies on the axis of 
rotation. This corresponds precisely with the displace¬ 
ment of the point of application of a force in the direction 
of the force. On the other hand, the initial point of the 



182 GENERAL MECHANICS CHAP. 

straight line cannot be displaced laterally; for rotations 
about parallel axes are no more identical than are parallel 
forces. 

If we next reflect that for the whole development of the 
theory of forces acting on a rigid body we used no other 
foundations, in §§ 78 to 90, than those which are also used 
for infinitesimal rotations, it immediately becomes clear 
that for rotations we here get the same result by the same 
method as we there obtained for forces, and that con¬ 
sequently it is quite sufficient to state the results at once 
and to refer to the earlier discussion for details. Hence 
we may immediately enunciate the following theorems, 
all of which of course refer only to infinitesimal rotations. 

Rotations about parallel axes, if they are in the same 
sense, compound by addition of the angles of rotation into 
a single rotation about an axis parallel to each. But 
if the rotations are in opposite senses (anti-parallel) a 
single rotation also results in general when the angles of 
rotation are added together algebraically. There is an 
exception, however, in the case where the algebraic sum 
of the angles of rotation is zero. Then the rotations 
either all cancel out or, more generally, there are left 
two equal anti-parallel rotations, which are called a 
“rotation-couple” (§81). A rotation-couple thus re¬ 
presents a displacement of the body, which cannot be 
regarded as a rotation. It is a vector q, whose absolute 
value is equal to the “ moment ” of the rotation-couple— 
that is, the product of the angle of rotation and the 
distance between the two axes of rotation, and whose 
direction is perpendicular to the plane of the rotation- 
couple that passes through it, in the sense determined by 
the two directions of rotation. This vector can be sym¬ 
bolized by a distance drawn from an end-point and pro¬ 
vided with a double hook, as in Fig. 33, where the two 
rotations indicated in this way are also shown in per¬ 
spective by dotted lines. In contrast with the symbol for 
a simple rotation, that for a rotation-couple can also be 
displaced laterally without its kinematic meaning being 
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changed (§ 83). If we subject the body to several quite 
arbitrary rotation-couples q^, r/3, . . there will still 
always result a rotation-couple q, which is obtained simply 
by vectorial addition (§ 84) : 

q = Uqi.(344a) 

The simplicity of the properties of rotation-couples 
leads us also to surmise that a rotation-couple has a simple 
kinematic meaning. We can easily determine this by 
inquiring what is the displacement which the body under¬ 
goes when it is subjected to two equal anti-parallel 
rotations. If we take the one axis of rotation as the 
a;-axis and the arm h of the rotation-couple as the y-axis 

Z 

Fid. 33. Fia. 34. 

(Fig. 34), it is sufficient to calculate the displacement, 
which a point of the body originally situated in a co¬ 
ordinate-plane experiences through the two successive 
rotations. For a point of the a:y-plane (;;: = 0), for 
example, the displacement is each time directed parallel 
to the z-axia—namely, for the one rotation SjZ = ^y, for 
the other == — ^{y — h), so that together : 

+ .... (345) 

Thus the displacement is everywhere of the same 
magnitude and in the same direction for all points of the 
xy-plane and hence also for all points of the body. Such 
a displacement of the body is called a translation. Hence 
we have quite generally the theorem that a rotation- 
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couple q re])resents nothing else than a translation whose 
magnitude is by (345) the moment | ^ | of the rotation- 
couple and whose direction coincides with the axis of 
the rotation-couple. 

The equation (344a) now acquires a new graphical 
meaning as regards the composition of rotation-couples 
in different directions, and likewise the theorem that the 
vector of a rotation-couple may also be displaced laterally. 
For, in a translation of a body, in contradistinction to a 
rotation or a force, all straight lines ])arallel to the direction 
of the vector are equivalent. 

Furthermore, the following theorem (§ 85) holds. A 
rotation o about an axis which })asses through any point 
r is kinematically equivalent to a rotation o about a 
parallel axis through the origin of co-ordinates, together 
with a translation : 

q o].(346) 

which coincides in magnitude and direction with the 
displacement which the origin of co-ordinates undergoes 
through the originally assumed rotation (§ 87). 

Finally, we may also answer generally the question 
proposed at the beginning of this section about the 
composition of arbitrary rotations (§ 88). If a free rigid 
body is subjected in any arbitrary order of sequence to 
an arbitrary number of infinitesimal rotations Oj, Og, 
03, . . . whose axes pass through the points r^, r2, rg, . . 
the resultant displacement of the body is equivalent to a 
single rotation o about the origin of co-ordinates combined 
with a translation q, where : 

o = q = i;[ri, oj] . . . (347) 

Here o does not depend on the choice of the origin of 
co-ordinates, whereas q does. 

§ 103. Before we proceed we must yet assure ourselves 
that the displacement (347) of the body is also the most 
general infinitesimal displacement which it can undergo 
at all. Actually, however the body may be displaced, 
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the displacement can clearly always be produced by a 
translation which is so calculated that the origin of co¬ 
ordinates (or, more correctly, the material point wliich 
lies originally at tlie origin of co-ordinates) can be brought 
into its final position, and afterwards the body can l)e 
rotated about the origin of co-ordinates which is kept 
fixed. Whether this rotation follows about the origin of 
co-ordinates (at rest in space) or about the material point 
which lay at the origin of co-ordinates before the trans¬ 
lation, causes only a vanishingly small difference in the 
result, since points which lie infinitely near the axis of 
rotation undergo dis])lacements through the rotation 
Avhich are only of a higher order of infinitesimals. 

Having obtained this result, we may now use the })rin- 
ci[)le of virtual work directly to derive the condition of 
ecpnlibrium for a free rigid body. J^et driving forces 
Fj, Fg, . . . act at the points rj, 1*2, ... of the body. 
We then suppose the body to be subjected to the Tuost 
general displa(;ement by means of a rotation o about the 
origin and a translation q. By (339) the displacement of 
a point of the body is then : 

8ri = g + [o, rj .... (348) 

where q and o remain without an index, since they are 
common to all points of the body. If this value is 
substituted in the expression (321) for the virtual work, 
we get after a little simplification the following condition 
for ecpiilibrium : 

2Fi . Sri = q . ^Fi + o • U[ri, Fj] = 0. . . (349) 

and since q and o are quite arbitrary, the equations (300a) 
follow, corresponding to the six degrees of freedom of the 
system. 

§ 103a. We revert once more to the kinematic con¬ 
siderations of § 102 and pursue the analogy of the system 
of rotations with the system of forces a little further, in 
the sense of §§ 88 to 90. We may then immediately 
enunciate the following theorems. 
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The most general infinitesimal displacement of a free 
rigid body may also be represented as the result of two 
rotations whose axes do not intersect. Furthermore, it 
is always possible to choose the origin of co-ordinates 
so that the total displacement (347) of the body is re¬ 
presented by a single rotation o about Oq and a trans¬ 
lation Qq which falls in the direction of the axis of rotation. 
This special axis o which passes through Oq is called the 
central axis of the rotations which produce the displace¬ 
ment (347). The corresponding translation is the 
smallest among all the translations q which correspond 
to other origins O. Such a displacement (o, q^) is called 
a “ screw.” Hence every infinitesimal displacement of 
a rigid body may be regarded as a screw. In special 
cases screw motion degenerates into a pure rotation 
(go = 0) or a pure translation (o = 0). 

§ 104. Hitherto we have always regarded the driving 
forces JP as given and have made no detailed assumptions 
about their nature. It is obviously very important, 
however, to be able to make some general statements 
about these forces; we therefore proceed next to consider 
this aspect. 

In the mechanics of a single material point we have 
already seen (§ 36) that if the resultant driving force F 
arises fromcentral forces its components are the derivatives 
of a definite function, the negative potential — U, with 
respect to the co-ordinates of the j)oint, or, what amounts 
to the same thing, the work of the driving forces forms 
the complete differential of — U. Precisely the same 
may be asserted in the case of any arbitrary system of 
points, both when the forces originate in fixed centres and 
when the moving points mutually act on one another with 
central forces. 

To prove this assertion we reflect that the total work of 
the driving forces during any motion of the system of 
points is the sum of the amounts of work done by all the 
individual forces; we therefore consider the terms of this 
sum individually. Concerning the forces which arise from 
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the fixed centres we at once recognize that the work done 
by them at each of the moving points 1, 2, 3, . . . is 
individually represented by a complete differential 
— dU-^, — — dU^.. as was proved in § 36. 
With regard to the mutual actions of the moving points 
we likewise imagine the total work resolved into the 
amounts of work done by the forces which two points 
exert on each other, for example, the points 1 and 2. 
This work is of the form : 

where the first of the two indices denotes the ])oint on 
which the force-component acts, the second denoting the 
point in which it originates. If we denote the magnitude 
of the force by /(ri2) (calling it positive when it attracts), 
where: 

^ {X, - + {y, - f- (^2 “ -1)^ • (351) 

then the equations (!()()) hold for the six force-components, 
and the expression (350) for the work becomes : 

(^2 - xi){<ix.^ - (ixi) + {^2 - yi){dyz - dyi) 
^12 ^ 

+ (^2 - Si)(c/-2 - = -f(rrz)(K^ = - dF{ri^). (352) 

according to the notation introduced in (107). 
We therefore set the force-potential : 

U = + XF(rj^) .... (353) 
1 J, 2 

where the summation is taken over all comliinations of tlie 
points in pairs. Then, in any displacement of the points, 
the work performed by all the central forces is : 

ZF^-dr^==-dU .... (354) 

and the negative derivative of U with respect to any 
co-ordinate represents the corresponding resultant force- 
component. 

If we imagine the whole point-system to be sub-divided 
into two partial systems, then we see from equation (353) 
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that the x>oteiitial of the whole system is not equal, say, 
to the sum of the i)otential8 of the individual systems, but 
that there must be added to these “ self-potentials ” of 
the two systems the potential of the one system with 
respect to the other system.” A corresi)onding result 
holds for the resolution into more than two systems. 

§ 105. If we now apx)ly the theorems of § 95 to the case 
where the driving forces have a j^otential U, we arrive at 
conclusions which rej)rcsent a generalization of those 
already obtained in § 07. First, we have by (354) and 
(319) r 

dU 0 .(355) 

That is, if a system of points which is originally at rest 
and which is subject to any arbitrary })rescribed con¬ 
ditions is set into motion by central forces the x^otential 
decreases in the j)rocess. We may also express this by 
saying : the forces strive to diminish the potential.” 
But if we have for every possible virtual disjdacement : 

S17>0 .(356) 

in the sense of (320), then a state of equilibrium exists. 
For if tliere is no possible way by which the forces can 
diminish the j)otential, they cannot effect a change in the 
])Osition of the point-system. 

We may go still further. If in a certain position of the 
f)oint-system the function U has the smallest value which 
it can assume at all in view of the prescribed conditions, 
then this system is in stable equilibrium in this position. 
For not only does the condition of equilibrium Si/ == 0 
then hold, but the system also reverts, when slightly 
disturbed from its j)osition of equilibrium and then loft to 
itself, to its position of equilibrium, by (355), since the 
potential cannot be diminished by another displacement. 
Conversely, the equilibrium is unstable when (7 is a 
maximum, because the point-system, when disturbed from 
this position, is unable, by (355), to return to it. But if 
U is quite independent of the co-ordinates of the points, 
then likewise SC7 = 0, and hence there is also equilibrium; 
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but this equilibrium is neutral—that is, it exists for every 
position of the ])oints. 

§ 100. As a simple example of the theorems here 
derived, we (consider a system of discrete or continuously 
distributed heavy point-masses . . . which 
are subject to arbitrary prescribed conditions, being, say, 
partly connected with one another rigidly or being fixed, 
and so forth. Since gravitation is a central force, the 
driving forces here have a potential which, if the ;3-axis 
is taken as vertical, is obtained according to (3r)4'> and 
(76a), from the equation : 

= — gSrnidzi = — dU 

and by (287) : 
U = . Uwi -h const. . . . (357) 

That is, the gravitational potential of a point-system is, 
cxcej^t for an additive constant of no importance, the 
product of the acceleration due to gravity, the total mass 
of the system and the height of the centre of gravity. 
Since in this product the height Zq of the centre of gravity 
is the only variable, we obtain, according to the preceding 
section, the general theorem that every transition of 
such a point-system from a state of rest to a state of 
motion is accompanied by a lowering of the centre of 
gravity, and that a maximum, a minimum, or no change 
in the height of the centre of gravity denotes unstable, 
stable or neutral equilibrium. In many cases we are 
able to see at once that this theorem is correct, as, for 
example, in the case of a rigid body with a fixed axis 
about which it may rotate; hero the centre of gravity lies 
above, below or at this fixed point. But in other cases 
it leads to consequences which do not appear evident at 
the outset. For examj)Ie, if we suspend a heavy chain of 
any kind, with equal or unequal links, from two fixed 
points and allow it to hang freely between them, then when 
the chain is in stable equilibrium it always assumes of all 
possible positions that for which its centre of gravity lies 
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lowest. From this condition it is ])ossibIc to calculate 
the form of the chain when in cc^uilibrium. 

§ 107. Having dealt with three-dimensional rigid bodies, 
we shall next consider another example of a partially non- 
free system of points—namely, an inextensihle hut perfectly 
elastic thread or string. Such a system is represented by 
a singly infinite series of one-dimensional—that is, linearly 
infinite—small rigid elements of mass, each of which is 
connected at its extremities with the preceding and the 
following element in a manner allowing of free rotation. 
Only the starting-point and the end of the string are 
unconnected and subject to special conditions. Let us 
suppose that given driving forces act on the string; we 
shall take them to be distributed continuously over its 
elements, assuming that the force which acts on tlie clement 
of arc ds of the string has the components : 

Fxds, FpdSy Fzds .... (358) 

Suppose the two extremities of the string to remain fixed. 
Our object is to find the position of equilibrium of the 
string. 

We shall discuss this problem, too, according to the two 
methods with which we have become acquainted, each of 
which has its particular advantages : the first introduces 
constraining forces, the second uses the principle of 
virtual work. 

Concerning the forces of constraint, which cause the 
string to be inextensible, those acting at a point P of the 
string are defined by the circumstance that they represent 
the forces which must be applied at the point P in order 
that the mechanical state of the point-system in question 
shall in no way be disturbed if we imagine the string to be 
severed at this point. Obviously we must apply two 
forces at P for this purpose, which represent the con¬ 
straining forces with which the two elements of string 
that are adjacent at P act on each other. According to 
Newton’s third law (principle of action and reaction) these 
forces are equal in magnitude and opposite in direction, 
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and are called the tension ” /S of the thread at the point 
P. 

The magnitude of S will in general vary from point to 
point. Since the constraint opy^oses only the lengthening 
and not the bending of the string, the direction of S co¬ 
incides at every point with the direction of the tangent 
to the curve of the string. 

Equilibrium will occur when every element of the 
string is in equilibrium. Let us consider such an element 
PQ of the string, its length being (h (Fig. 35). Three forces 
act on such an element: (1) the tension S at the point P, 
(2) the tension S F dS at the point Q, (3) the driving 

B 

force F . ds. We form the x-components of these three 
forces and set their sum equal to zero. The tension at P 
acts tangentially on the element of the string in the 
direction of decreasing s, if we set : 

6’ = 0 and s = I (length of the string) . (359) 

at the extremities A and B of the whole string : thus the 
„dx 

The tension at Q has a required component is : 

different value and a different direction from that at 
P, in addition to the difference in sign. Hence its x- 
component is : 



192 GENERAL MECHANICS CHAr. 

By adding up the three comi)onent« and omitting the 
common factor ds we get : 

Similarly : 

and : 

Tliis solves the problem in every respect. For these 
three expiations not only give us the two eepiations for 
the eipiilibrium curve of the string, when we eliminate S, 
but they also give us the value of the tension at every 
])oint of the string. No special condition of equilibrium 
is required for the extremities A and B of the string, since 
these are fixed points. 

§ 108. Wo shall now solve the same problem by using 
the jirinciple of virtual work. For this purpose we must 
set up the most general expressions for the virtual dis¬ 
placements of all the points x, y, z of the string. Since all 
the individual elements of length are rigid, the variation 
of ds or of ds^ == dx^ -f dy^ -f dz^ is equal to zero, thus : 

dx . Mx -f- dy. 8dy -h dz . 8dz = 0 . . («161) 

In order to bring out the sense of these expressions 
clearly, we may suppose that the co-ordinates x, y, z 
besides dejiending on the parameter 6‘, also depend on a 
second parameter 'p chosen quite arbitrarily. Correspond¬ 
ing to a definite value of p there is then a definite curve for 
the string, and for a changed value p ^ 8p there is a 
definite infinitely near curve which represents the positions 

8x 
of the varied points. At the same time, 8x = 

so forth. The operations d and 8 which correspond to the 
changes ds and 8p are entirely independent of each other 
and may therefore be commutated—that is, 8dx = d8x, 
and so forth. 
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The equation (361) represents an infinite number of 
fixed conditions of the form (322). We apply to them 
Lagrange’s method of elimination described in § 96, by 
multiplying them by factors which are left undetermined 
initially and which vary from equation to equation, then 
adding them together and to the virtual work, and treating 
the variations 8x, 8y, 8z as independent of one another. In 
this way we get from (361) : 

dx d8x ^ dy d8y 
ds ’ ds ds ’ ds 

dz cZS2:\ 
ds * ds / 

. A • = 0, 

where A may be a perfectly arbitrary function of s; by 
adding this expression to the virtual work of the driving 
forces (358) we get : 

i + 
To reduce this expression to terms of the independent 

variations 8x, 8y, 8z, wo must change its form, since 8x 
does not occur explicitly in the term containing A, but 
differentiated with respect to s. This may be done by 
integrating by parts : 

I x 

Jo 
dx d8x 

ds 
ds = 

\dx . '' 
A -J- • 8x 

- ds j -/ Jo -^0 
ds . (362) 

Here the first term on the right-hand side vanishes because 
the extremities of the string are fixed. Hence we obtain 
as the condition for equilibrium : 

and by setting the coefficients of all the individual vari¬ 
ations for each element of the string equal to zero we get : 

. 

If we eliminate A from these three equations we clearly 
o 
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obtain the same curve as in (360), and so the results are 
in agreement. 

The advantage of using the principle of virtual work 
consists, as always, in the fact that this method is in¬ 
dependent of particular mechanical considerations. For 
the same reason, however, it gives no insight into the 
mechanical conditions. For the physical meaning of A 
emerges only when we compare the equations with equ¬ 
ations (360), which show that A is the negative tension. 

§ 109. We now draw conclusions of a general kind from 
the equations (360). If we write them in the form : 

dSdx ^ d^x 
ds ds ds^ 

+ Fx = 0, . . . (364) 

multiply them by the direction-cosines of the bi-normals 
(§ 25) of the curve and add up, we see that the direction 
of F lies in the plane of curvature of the curve of the 
string—which we also find necessary from simj^le physical 
considerations. 

But if we multiply them by the direction-cosines of 
the element of arc ds and add, we get by (73) and (73a) : 

dS 
ds 

dy 
ds 

+ F,* - 0 
ds 

(365) 

That is, the change of the tension along the string is 
measured by the component of F in the direction of the 
string. If the force F is everywhere perpendicular to the 
curve of the string, the tension is everywhere the same. 

If the force F has a potential, then : 

5^ — ^ = 0, = J7 + const. . . (366) 

That is, the tension is equal to the potential (referred to 
unit length) except for an additive constant. 

§ 110. Let us next assume that the driving force 
is gravity and that the string is homogeneous; its form 
when in equilibrium is called the catenary {Kettenlinie). 
If the mass of the whole string is M, that of the element 
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ds 
ds of the string is equal to M • y, and the components 

(358) of the force which acts on it are : 

r/*? 
F:c = 0, Fy == 0, Fzds ^ . . (3G7) 

Hence the potential of the force F is : 

M 
U = —gz + const.(368) 

By § 109 the curve of the string lies in a vertical plane 
which is determined by the extremities A and B of the 
string. If we choose this plane as our -plane, the 
equations (360) reduce to : 

d 
ds 

d 
ds 

Integration gives : 

. 

®S"T ■ (™) 

where c and represent two constants having the dimen¬ 
sions of a length. 

The following relationship, which results from (366) and 
(368), is also of value : 

S = ^(z + c,) .... (371) 

To get the equation to the curve in rectilinear co¬ 
ordinates we find it convenient to eliminate S from (369) 
and (371): 
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By substituting = dx^ + dz^ we get the differential 
equation ; 

dx 
cdz 

the integral of which is : 

Solving for 2: we have : 

(372) 

(373) 

The values of the four constants c, Cg, C3 are given by 
the two equations (359) and the two conditions that the 
given points A and B lie on the curve. 

The equation to the catenary assumes its simplest form 
if we take as the origin of co-ordinates the point x = C3, 
z = — Cg. It then runs : 

z e" + e (374) 

The curve runs symmetrically on both sides of the 
2:-axis; as x increases or decreases it rapidly ascends and 

dz 
has its minimum at the point = 0, or 

a; = 0, 2; = c. 

Instead of the points A and B we may of course take 
any other two arbitrary points of the curve, on the same 
side or on the opi)osite side of the minimum, as the fixed 
points of suspension without changing the form of the 
curve. The tension 8 then simply becomes by (371) : 

8^ 

I ^ 

and its minimum value is thus 
Mg 

(375) 

§ 111. We shall next consider the equilibrium of a 
string which is stretched over a fixed surface/(a;, y, z) = 0, 
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and shall begin by considering the special case where a 
driving force F acts only on the extremity B of the string. 
This may be imagined to be realized by having the string 
fixed at the point A of the surface and to be drawn through 
a small ring fixed at the point B of the surface, where it is 
held taut by the force F. The fixed surface of course 
presents its convex surface to the string, for otherwise 
the string would not lie on the surface at all. The 
equations (360) then become : 

where the components of the force of constraint Z which 
is exerted by the fixed surface on the unit of length of the 
string satisfy the condition (246). From this and from 
the equation to the surface/ = 0, or also in the differential 
form : 

4. ^ 4. ^ = 0 
dx (Is dy ds dz ds 

(377) 

we get the equation to the curve of the string, as well as 
the tension S of the string and the force of constraint Z 

that acts on it which, by Newton's third law, also represents 
the pressure which the surface experiences owing to the 
stretched string. 

dx 
If we multiply the equations (376) by and so forth, 

and add up, we get, in view of (246) and (377) : 

dS 
ds 

= 0, 8 = const. . (378) 

That is, the tension of the string is everywhere the same 
and is equal to the value F of the driving force, since it 
balances this force at B—a result which emerges directly 
from (365) if we consider that the force of constraint Z 

is everywhere perpendicular to the curve of the string. 
So the equations (376) become simplified to : 

d^x 
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from which we get the value of the constraining force 
as : 

or, by (74) : 

(380) 

That is, the value of the pressure exerted by unit length 
of the string on the surface is equal to the quotient of the 
stretching force and the radius of curvature of the curve 
of the string. The more curved the string, the greater 
this pressure; for a straight line it vanishes entirely. 

Since the direction of Z is given by (246), the equations 
(250) follow from (379) for the curve of the string; these 
equations state that when the string is in equilibrium it 
assumes the form of a geodetic line on the surface; this 
line passes through the points A and B, 

In view of the principle of virtual work a new and 
important property of geodetic lines follows from this. 
According to this principle the string is in stable equili¬ 
brium when, of all the curves that can be drawn on the 
surface from A to B it assumes that which is of shortest 
length. For otherwise the driving force F, the only 
force which is present at all, would be able to perform 
positive work by drawing the string through the ring B 
(§ 95). Hence every curve of shortest length on the 
surface is at the same time a geodetic line of the surface. 
It is to this property that geodetic lines owe their name, 
since the distance between any pair of points on the earth’s 
surface is measured by the shortest connecting line. 

On a sphere the shortest lines are the great circles; on 
a plane they are the straight lines. 

But the converse of this theorem is not in general true. 
That is, a geodetic line is not always the shortest line 
between two of its points, just as the equation =» 0 is 
indeed the necessary but not always at the same time the 
sufficient condition, that 8 should be the minimum. For 
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example, an arc of a great circle on a sphere actually loses the 
property of being the shortest connecting line between its 
extremities if the length of the arc is greater than the semi¬ 
circumference. A stretched string which lies along it is 
then in equilibrium, but this equilibrium is no longer stable. 

§ 112. In all our discussion so far we have assumed the 
driving forces to be given. But in nature we often have 
to do with problems in which driving forces of a compli¬ 
cated kind difficult to define come into play, particularly 
when they act in the interior of the bodies. It is therefore 
of very great importance to have a principle which 
leads to a simple and conveniently applicable condition 
of equilibrium even in the most complicated cases. To 
derive this principle we revert again to the arguments 
brought forward in the introduction to the present part 
of this volume—namely, § 76. On the view there de¬ 
scribed we may divide all active forces into internal and 
external forces. Internal forces are all those which arise 
from points of the system, external forces are all those 
which arise from points outside the system. The question 
as to whether a certain force on which we fix our attention 
is an internal or an external force may accordingly be 
decided only when we have made our choice of the system 
of i)oiiits, this choice being quite arbitrary at the outset. 
In this way we can convert every internal force into an 
external force by excluding the point at which it arises 
from the system, and conversely. 

This division into internal and external forces is not of 
course coincident with that into driving forces and forces 
of constraint. There are internal and external driving 
forces, and there are internal and external forces of 
constraint. In the case of a heavy rigid body with a 
fixed point of rotation, for example, the molecular forces 
are internal forces of constraint. The support of the fixed 
point is an external force of constraint, the gravitational 
force is an external driving force. But if we include the 
earth in the system of points all these forces become 
internal forces. 
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What makes the distinction between internal and 
external forces so fruitful is the circumstance that the 
internal forces in a point-system always occur in pairs, 
and, moreover, so that they are equal in magnitude but 
opposite in sign (§ 76). 

This circumstance combined with the theorem—the 
truth of which we immediately recognize—that every 
state of equilibrium of every point-system remains 
preserved as such if we imagine all the points of the 
system to be rigidly connected together, leads to the 
fundamental theorem : if a point-system is in equilibrium 
the external forces maintain equilibrium among themselves 
when acting on the system which we suppose rigid. For 

p p since the internal forces acting 
A A on the rigid system cancel each 
I ^ Q other in pairs, they may be 
A*-1 -IB omitted altogether. This gives 

rise to a considerable simplifi¬ 
cation which is the more appre¬ 
ciated since it is just the in- 

2 . ternal forces that are very little 
30 known in many cases. 

Since the choice of the point- 
system is perfectly arbitrary, the principle just mentioned 
entails numerous consequences, the abundance of which 
may be demonstrated in a few special examples. 

§ 113. Let us take the simple case of a rigid rectilinear 
rod which is in equilibrium under the action of two equal 
parallel forces F at its end-points A and B, and an anti¬ 
parallel force 2F at its mid-point. We now select a part 
of the rod, say AD (Fig. 36), as a point-system. Then 
the external forces consist of the force F at A, the force 
2F at C, and the forces with which the part of the rod 
DB at D acts on the part AD. Since the external forces 
together maintain equilibrium among themselves, the 
action of the part DB on the part AD consists of the force 
F with the point of application D together with a couple 
of moment F. BD, whose axis is perpendicular to the plane 
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of the diagram (in Fig. 36 this direction is from the 
diagram towards the observer). 

This couple can be realized only by different forces 
acting at different points of the cross-section of the rod at 
i). (In Fig. 36 the forces acting on the upper half are from 
right to left; on the lower half they are from left to right, 
as is indicated by the small arrows.) An infinitely small 
cross-section or a flexible string would not be able to 
achieve this; but in a finite cross-section there is a 
pressure on one side and a tension on the other. 

In this way our principle gives us information about 
the force conditions that 
obtain in the interior of the 
body. ('Corresponding to the 

V. 
/ 

7 

V 

action of one part of the 
body on another as above 
considered there is of course 
always the equal and opposite 
action of the second part on -C [)■ the first. 

§ 114. We take another ex¬ 
ample from the realm of 
fluids. Let us consider a i 
large quantity of some heavy 
liquid in a state of rest and 
let us choose a part of it of 

( 

Fk 

% 
7 

5. 37. 

arbitrary shape, which is surrounded on all sides by liquid, 
as a point-system, then the external forces are : the 
weight of the liquid system, Gf, and the pressures exerted 
by the adjacent parts of the liquid on the system (in Fig. 
37 these are indicated by arrows) with the resultant F. 

Hence, by the theorem of § 112, we have : 

- Gf.(381) 

The pressures give a resultant which is equal and opposite 
to the weight of the liquid system and is called the 
“ upthrust.’' 

Let us next suppose that in place of the point-system in 
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question we have any rigid system of exactly the same 
form, which we assume to be heavier than the liquid and 
which is prevented from sinking by being suspended by a 
string. If we take this rigid body as a point-system, then 
the external forces are its weight G, the pressures of the 
adjacent liquid with the resultant and the upward 
pull of the string, which gives the '' apparent weight ’’ 
O' of the body in the liquid. Accordingly we have : 

G + - G' = 0 
or, by (381) : 

O' =^0-Of.(382) 

That is, the apparent weight of the body in the liquid is 
equal to its real weight diminished by the weight of the 
liquid displaced; this is Archimedes’ Principle. 

§ 115. Finally we apply our principle to a gaseous body 
—namely to the equilibrium of the atmosphere. Let us 
consider a vertical cylinder of air of unit cross-section and 
let us imagine a layer of air to be cut out of it by means of 
two horizontal cross-sections; we take this portion as a 
point-system. The external forces are then, first, the 
weight of the layer of air, secondly, the pressure of the 
surrounding air which acts downw^ards at the upper cross- 
section, upwards at the lower cross-section, and horizon¬ 
tally inwards on the curved surface of the cylinder. Our 
principle § 112 then demands that the weight of the layer 
of air be equal to the difference of pressure at the lower and 
the upper cross-section. 

If we assume the layer of air to be infinitely thin, then 
its weight is proportional to the density of the air at the 
height in question, and by introducing the general 
relationship between density and pressure we get the 
differential equation which enables us to calculate the 
decrease of the pressure of the air as we ascend. 

So we see how fundamental laws in hydrostatics and 
aerostatics emerge from the general principle of equilibrium 
for rigid bodies. 



CHAPTER III 

DYNAMICS OF AN ARBITRARY POINT- 
SYSTEM 

§ 116. We are now sufficiently prepared to develop the 
general laws which contain as special cases the laws of the 
mechanics of a single material point and the laws of 
statics of any arbitrary point-sj^stem. 

Suppose we have to determine the motion of a system 
of n material points of mass ... on which the 

driving forces Fj, Eg? • • • w^hose freedom of 
motion is restricted by p equations of condition / = 0, 
<f) = 0, . , , between the co-ordinates of the points and 
the time t. 

The solution of this problem is obtained directly by 
applying the principle of d’Alembert (§ 66), according to 
which the point-system is in equilibrium at any moment 

of time t, if we suppose the inertial resistances 

— — m2^/25 • • • acting at the individual points 
to be added to the forces acting on those points. 

Thus with one stroke this problem of dynamics is con 
verted into a problem of statics, and we may immediately 
apply the principle of virtual work (321) : 

I!{Fi — rriiqi). = 0 ... (383) 

or the equations (324) of Lagrange : 

i'-. + . . .== 0 . (384) 

and so forth for all co-ordinates and all points. If we 
multiply the equations (384) individually by the corre¬ 
sponding co-ordinate variations 8%, . . . and add, we 
again get (383), if we take into consideration the equations 

of condition (322) for the variations. 
203 
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The elimination of the p quantities A, /x, . . . from 
(384) gives us 3^ — ^ linear equations between the 
accelerations and the driving forces, which, when taken 
with the p prescribed conditions, enable us to calculate 
the accelerations uniquely. 

§ 117. A special remark must be made about the case 
where the time t occurs explicitly in the equations of 
condition / == 0, . . as, for example, when a point is 
constrained to move on a surface which is itself compelled 
to move in a certain way. We might be doubtful from 
the very outset as to what condition the virtual displace¬ 
ments must satisfy, since the equation of condition con¬ 
tains the variable parameter t. The equations (322), 
which, according to our above discussion, must also be 
valid here, show that when the co-ordinates are varied 
the time t remains unvaried—that is, that, for example, 
in the case of a point situated on a moving surface, the 
virtual displacement at the time t is of the same kind as if 
the surface is at rest in the position which it occupies at 
the time t. 

A concrete idea of the meaning of this circumstance is 
given by the case treated in § 75 of a straight line which 
is rotated with constant angular velocity w, as depicted 
in Pig. 17. Here the virtual displacement must be taken 
along the straight line which is at rest at the time t 
—that is, in the direction AB and not in the direction 
AA'; it is only then that the virtual work of the con¬ 
straining force is equal to zero. Consequently we have 
from the equation of condition (277), when subjected to 
variation with t constant: 

8y = tan (cjt). Sx, 

and this combined with the principle (383) : 

gives us the same equation of motion (278a) as before. 
§ 118. The equation (383) holds for every arbitrary 
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system of infinitesimal co-ordinate displacements . . . 
which satisfies the conditions (322). If by way of con¬ 
trast we consider the infinitesimal co-ordinate displace¬ 
ments . . . which actually occur in the element of 
time dt when the points move, w^e see that they satisfy 
the conditions : 

y-dt- 
dr- 

= 0 (385) 

which are definitely distinguished from the equations 
(322) in that they contain in addition the terms in 

If’ ‘ ‘ ‘ general the true displacements 

... do not belong to the system of virtual displace¬ 
ments, and we are not allowed to replace Sr in (383) by dr. 

But if the prescribed conditions / = 0, (^4 = 0, . . .do 
not contain the time explicitly, as wo shall now assume, 
the terms which constitute the difference between (322) 
and (385) vanish, and the actual displacements become a 
special case of the virtual displacements. Hence by 
(383) we also have : 

— ^%^i). dr^ — 0, 

or, otherwise expressed: 

where we set : 
dK = EF^ . dr I . (386) 

A = ~ Em^q^ = | Em^{u^^ + V ^ ^ (337) 

If we call the quantity K the kinetic energy or the vis 
viva of the point-system, the equation (386) states that 
the cfuinge in the kinetic energy of the point-system is equal 
to the total work of the driving forces; this is completely 
analogous to equation (147) and is quite independent of 
the prescribed conditions, as in § 67. 

This simple relationship arises of course from the fact 
that the total work of the forces of constraint vanishes 
not only for every virtual displacement, but also for every 
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true displacement of the point-system in the element of 
time dt. This would not be the case if the prescribed 
conditions contained the time t explicitly, as was explained 
in detail in the simple example of § 75. 

§ 119. For forces which have a potential U, we have by 
(354) and (386) if we integrate with respect to the time t: 

X -}- [7 = const. — Kq Uq , . . (388) 

and if we again, as in § 49, call the quantity : 

a: -f C7 = jE?.(389) 

the energy of the point-system—that is, the sum of the 
kinetic energy K and the potential energy U—then the 
equation (388) states the law of conservation of energy. 
We have already discussed in detail in § 49 how it is to be 
generalized for non-mechanical processes. 

The equation (388) also makes it possible for us to make 
a further deduction from the arguments contained in 
§ 105. It was there shown that corresponding to a 
minimum of the potential TJ there is a stable state of 
equilibrium of the point-system. We proved this by 
reflecting that when the point-system is slightly disturbed 
from its position of equilibrium and then left to itself 
at rest, it can only move in a direction leading to the 
minimum of U. Now, a slight disturbance of the equili¬ 
brium can also be produced in a more general way— 
namely, by imparting to the points a small initial velocity 
before they are left to themselves. 

In the initial state of the motion which then occurs Kq 
is a small positive quantity, and is equal to -f 
JJ'q, where is likewise small and positive. Con¬ 
sequently we have by (388) for the whole duration of the 
motion that : 

K^-U - == ATo + C7'o . . . (390) 

is small and positive. Since K consists only of positive 
terms and since U — is positive, the velocities of all 
the points are permanently small, and the point-system 
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persists near its position of equilibrium—that is, the 
equilibrium is stable. A corresponding argument holds 
for a maximum of U, 

§ 120. In general, the driving forces which act on the 
point-system are not of a conservative nature (§ 49), 
particularly not when more or less arbitrary disturbances 
are introduced from outside. Hence we shall now assume 
that the driving forces are of two kinds : conservative 
forces and external forces of a non-conservative kind which 
we denote by Fa. Then we have in general for the work 
of the driving forces : 

^ -dU + A . . . (391) 

where we write : 
A = ZFa -dr.(392) 

for the work of the external forces or the ‘‘ external work.’’ 
The equation (386) of energy then becomes : 

diK-{-U)^dE == A, . . . (393) 

That is, the change of energy of the point-system is equal 
to the external work, being positive or negative according 
as the external work is done ‘‘ on ” or by ” the system. 
In the former case the change occurs in the sense of the 
external forces, in the latter in the opposite sense. 

If we include the points or bodies from which the 
external effects emerge in the point-system under con¬ 
sideration, all the externa] forces vanish (cf. § 112), and 
the system is called a “ complete ” or a “ closed ” system. 
For a closed system the energy-principle again holds in 
the form (388) as the law of conservation of energy, and 
in this sense we speak of the conservation of energy of the 
whole world as of that material system which comprises 
all bodies capable of producing effects. We must bear in 
mind, however, that in nature a closed system in the 
absolute sense cannot be demonstrated with certainty, 
and hence that we cannot calculate with the energy of 
the “ world ” as a definite quantity. 
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This does not, of course, prevent us in some circumstances 
from treating even arbitrarily small finite point-systems, 
if sufficiently isolated, as closed systems. 

If we resolve a complete system into two partial systems, 
then the work done by the points of the one partial system 
on those of the other will entail a change in the energies 
of the partial systems—that is, through this work energy 
will be transferred from the one partial system to the 
other, whereas the total energy will remain constant. We 
must take care to note, however, that in general the 
potential energy of the whole system is not, like the 
kinetic energy, equal to the sum of the energies of the 
partial systems (§ 104). 

§ 121. To obtain a clear idea of the magnitude of the 
kinetic energy of a point-system it is often found expedient 
to refer it to a moving co-ordinate-system, whose origin 
is at the centre of gravity of the system. Then the 
equations of transformation (191) give us the following 
expression for the value (387) of the kinetic energy : 

-f -f + w^7n^w\ + ^ 

But since, as we can find by differentiating (287) with 
respect to the time : 

— 2'mi(% ~ i^^) = 0, . . . . (394) 

the kinetic energy reduces to : 

A = ^ q^Zm^ + ~ . . . (394a) 

That is, the kinetic energy of a i)oint-system is composed 
additively of the kinetic energy of its centre of gravity, 
if we suppose all the masses to be concentrated in it 
(energy of translation ”) and the kinetic energy relative 
to the centre of gravity (energy of “ vibration,’’ which 
includes motions of rotation as special cases). 

§ 122. The fundamental law of mechanics which we 
have hitherto expressed in the equations (383) or (384) may 
be formulated in several other ways, which have exactly 
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the same physical content, but in their applications 
emphasize very different features. The most important 
of these is the Principle of Least Action, We shall develop 
it here in the form given by Hamilton. 

Since the equation (383) of the principle of virtual work 
holds for any time t, we may also integrate it with respect 
to t between the limits and t^, and so obtain : 

j‘yt. 2j[fs - m^f)Sx = 0. . . (395) 

where the summation is to be taken over all co-ordinates 
and all points of the system. Here not only the co¬ 
ordinates X, y, 2;, but also the variations 8a;, . . . are to 
be treated as functions of the time t. To see this clearly 
it is best to imagine the co-ordinates of all the points, 
besides depending on t, also to depend on a second para¬ 
meter p which is selected quite arbitrarily and which 
is finite, as has already been done in § 108. Corre¬ 
sponding to a definite value of p, there is the required 
motion of the pgint-system, for the present still unknown, 
and corresponding to a changed value p hp there is 
another definite motion ‘‘ infinitely adjacent ’’ to the 
real motion, but which docs not satisfy the equations of 
motion. The operations d and 8, which correspond to the 
changes dt and hp, are entirely independent of each other, 
and may therefore be commuted : 

d'bx __ ^dx 
~dt 

(396) 

The variations 8:r 8p, . . . are quite arbitrary at 

every moment of time t and are subject only to the 
conditions (322), in which the functions f, cf), , . , may 
also contain the time t explicitly. 

By writing the time-integral (395) in a somewhat 
different form, we next obtain for the virtual work, by 
(391) : 

^ -8U + A , . . . (397) 
p 
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where U denotes the potential of the conservative forces 
of the system, and A the virtual work of the external 
forces. An external force, which is at the same time 
conservative (such as gravity), can be included either in 
— SC/ or ^ according to our wishes. 

Further, integration by parts gives us the term : 

(398) 

and, if we now introduce the assumption that the variations 
of the co-ordinates of all the points vanish for t = (q and 
t == ti, then in view of (396) : 

and hence by substituting in (395), by (387) : 

(399) 

dt {SL -f- ^) = 0 

where we have used the abbreviation : 

(400) 

L^K^U.(401) 

The equation (400) expresses Hamilton’s principle of 
least action. The function L, which is not to be confused 
with the energy E, is caUed Lagrange's function or the 
kinetic 'potential. In contrast with d’Alembert’s principle, 
according to which the motion is determined by the initial 
positions and initial velocities of the points, the motion 
here, by the principle of least action, is determined solely 
by the initial positions {t = ^q) and the final positions 
{t zsz tf) of the points. For it is these points which are 
kept fixed in all the infinitely near motions that are con¬ 
sidered, whereas the velocities, including the initial 
velocities, may be varied arbitrarily within the range of 
the prescribed conditions. 

The supreme importance of the principle of least action 
for the whole of physics depends on the fact that the 
concepts of potential and external work that occur in it 
also have a meaning outside mechanics and on the further 
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fact that the principle has not been shaped for use with a 
definite kind of co-ordinates. These circumstances enable 
it to be applied directly also to electrodynamic and thermo¬ 
dynamic processes, where it has everywhere been of great 
value. 

§ 123. Let us consider a simple application. How does 
a material point subject to no driving forces move on a 
fixed surface ? By (400) and (401) we have for this case : 

f'dt.8K = 0 

or: 

Expressed in words : among all the motions possible 
on the surface, which bring the point from a definite 
initial position in a definite time — Iq into a definite 
final position, that motion actually occurs in nature 
which makes the time-integral of the kinetic energy a 
minimum. 

This single theorem gives us both the form of the 
orbital curve and the velocity with which it is traversed. 
For if we substitute the value : 

we get from (402) ; 

or, if we perform the variation and then integrate by parts : 

Since 8s is arbitrary for any intermediate time, it follows 
dh 

from this, first that for all times = 0, and so the 

velocity^ « const. (§71) and secondly that 8{Si — 82) = 
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0, where — Sq denotes the length of the orbital curve. 
Thus the orbit is a geodetic line of the surface (§ 111). 

§ 124. We shall next use the convenient form of 
Hamilton’s principle to transform the equations of motion 
of a point-system from rectilinear right-angled co- 
ordmates to any arbitrary co-ordinates whatsoever. For 
in many cases it is found expedient to choose instead of 
rectilinear co-ordinates others which are better suited to 
the prescribed conditions of the system—^for example, in 
the case of rotations the angle of rotation. We then need 
to take only so many co-ordinates as there are degrees 
of freedom in the system and we may regard these co¬ 
ordinates, which we shall call • • •»independent of 
one another. The rectilinear co-ordinates y^, z^, . . . 
are always definite functions of the g’s which are known 
from the very beginning and which, if the prescribed 
conditions are dependent on the time, also contain the 
time t explicitly. If this is not the case the velocity 
components are definite homogeneous linear 
functions of the g’s, whose coefficients may, however, be 
dependent on the g’s. 

Since the variations . . . are at any rate homo¬ 
geneous linear functions of the Sg’s, the expression for the 
virtual external work A in (400) and (392) has the form : 

A — 4" • • • • • (403) 

where the quantities 0 are given by the external forces 
and are called the external ‘‘ generalized force-com¬ 
ponents ” corresponding to the general co-ordinates q. 

This definition of force is the most general that can be 
given at all; it links up with the universal concept of 
work, that is, of potential, and extends its significance to 
every kind of change of state which can be characterized 
by a change of a variable q. It is worthy of note that the 
dimensions of the generalized force-component adapt them¬ 
selves according to the dimensions of g. If, for example, 
g is an angle, 0, according to (327), is an angular 
momentum. 
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Furthermore, with regard to the variation of Lagrange’s 
function, L is a definite function, regarded as known, of the 
second degree in q^, . . whose coefficients depend on 

ggj • • •» possibly on t. Accordingly, since the 
time t is not subjected to variation : 

+ • • • + li +iqz + • • • 

Let us imagine the expressions (403) and (404) sub¬ 
stituted in (400) and all the variations that occur reduced 
to terms of the independent variations Sg^, Sg.^, .... 
This is accomplished in the case of the quantities Sg — 

S by means of integration by parts, according to 
dt dt 

the scheme 

hqdl. 

since at the limits of the integral the variations 8g . . . 
vanish just like the hx, . , . 

After each term behind the integral sign of (400) has 
received one of the variations Sg^, 8g2, ... as a factor, 
we must have, if (400) is to remain valid and since these 
variations are mutually independent: 

dt 

dt 

(dL\ ?L 
\dqj ■ dqi 

(dL\ dL 
\dq,J ■ 

(405) 

These are the so-called Lagrange equations of motion 
“ of the second kind ” as contrasted with those, (384), of 
the first kind. 

§ 125. As an example we determine the equations of 
motion of a free point in 'polar co-ordinates r, 0, The 
external work is : 

A == R8r -h 080 4- 08<f> . . . (405a) 

where R, 0,0 denote the corresponding force-components. 
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If no potential energy is present Lagrange’s function 
is equal to the vis viva K, and hence, in view of (92) : 

L = ^ (r2 + rW + sin* 6^^) . . (4056) 

and consequently the required equations of motion (405) 
are : 

d 
dt 

{mir) — mr (^^ ^ 9^^) == R 

d 
dt 

{mrW) — mr^ sin 9 cos 9^'^ = 0 (405c) 

d 
dt 

{mr^ sin^ 9^) = 0 
J 

a simple result which could have been obtained directly 
from (55) and (92) only by laborious calculations. 

In a corresponding way we obtain for the cylindrical 
co-ordinates />, z by (159): 

^^(m-p) - mp<j>^ = P 

. (405d) 

|{mz) = Z 

§ 126. We shall now derive the principle of vis viva 
directly from Lagrange’s equations of the second kind and 
shall therefore assume from now onwards that the time t 
is not contained explicitly in the expression for Lagrange’s 
function L, If we multiply the equations (405) in turn 
by ^1, q^, . , . and add, we get for the work performed by 
the external forces in the time dt: 

= A = . (406) 

If we compare the expression on the right-hand side 
of the equation with the complete differential: 

dL^ 
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then we see that the two expressions when added together 
give : 

and this is the complete differential of : 

dL 

Accordingly, we get A = dE or the equation of vis viva, 
if we set: 

E = .... (407) 

The agreement of this equation with the definition of 
the kinetic potential given in (401) follows at once if E 
is replaced by jfiT + C/ and i by A — U, and if we reflect 
that TJ does not depend on q. For then it follows that: 

K Eh (407a) 

a relationship which always holds, since A is a homogene¬ 
ous function of the second degree in the g’s. 

The relationship, which here appears for the first time 
in (407), between the energy and Lagrange’s function has 
a significance which is essentially more general than that 
expressed in (401). For the equation (407) retains a 
definite sense even in the case where the energy E cannot 
be divided into kinetic and potential energy, as, for 
example, in electrodynamic processes. 

§ 127. As we have seen in § 75 and, more generally, in 
§118 the principle of vis viva loses its validity if the 
prescribed conditions contain besides the co-ordinates also 
the time explicitly. But the equations of motion (405) 
also remain valid in this general case, as is seen from the 
way in which they were derived. In the case of the motion 
of a point on a straight line which is rotating with constant 
angular velocity a>—a case which we have discussed in 
§ 75 and in § 117 : 



216 GENERAL MECHANICS CHAP, 

and so by (405): 

^ (mf) — mroy^ == 0, 

which is in agreement with {27Sb), 
As a further example we discuss the vibrations of a 

pendulum moving in a vertical plane, its length I changing 
in some definite given way. Then Hs a given function of 
the time, and we obtain, if we take the angle of displace¬ 
ment <f) as the only independent co-ordinate, by § 70 : 

A = ^ ^ __ ^gi cos (f) + const. 

Consequently, by (401) : 

X = — (^2^2 4. 4. Yngl cos ^ |- const. 

and, by (405), we get as the equation of motion : 

^ (mP(j>) + mgl sin <^ = 0 

or : 

2i(t> 4- sin 0 — 0 . . . (408) 

an equation which differs from the equation (244) of a 
common pendulum in having the term 21^. 

We can choose the rhythm with which the length alters 
so that the energy of the vibration is influenced pre¬ 
dominantly in a definite sense. It is owing to the same 
circumstance that we may swing ourselves as high as we 
wish by properly timed impulses. 

§ 128. The first quantities that occur in Lagrange’s 
equations (405) : 

dL dL lACiCw 
= Pa..(409) 0^1 

are called the generalized momenta corresponding to the 
general co-ordinates q. They are linear homogeneous 
functions of the velocities q—that is, they may be expressed 
simply in terms of the g’s and conversely. Corresponding 
to the rectilinear co-ordinates x, y, z we have the momenta 
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mi, m^,m^, which areobtained directly from the expression 
for L. 

It is often found useful to characterize the state of the 
point-system by using, in addition to the co-ordinates g, 
the momenta p in place of the velocities g. The equations 
of motion then assume a particularly simple form if the 
energy E is introduced as the characteristic function 
instead of the Lagrange function L, We then write the 
equation (406) for A = dE'm the form : 

dE = - f^dq^ 

and consider E SiS a, function of the g’s and p's ;* from this 
it directly follows that: 

and: 

dE _ , dE _ . 
dpi ~ dp2 

(410) 

The suffixes outside the brackets are to denote that E 
is to be differentiated while p is kept constant and L is 
to be differentiated while g is kept constant. 

By using the last relationships we may write the 
equations (405) as follows : 

dqi _d^ - ] 
~dt dpx dt Sg'i ^ 

^ ^ ^ ■ • (412) 
dt dp2 dt dq^ ^ 

These are “ Hamilton’s canonical equations of motion.” 
From them we obtain, if besides the external forces also 
the energy E is given as a function of the g’s and jp’s, all 

♦ Here the g’H and p’s are no longer assumed to bo functions 
of the one variable t but independent variables. This is justified 
bj?- the circumstance that the equation is valid for all arbitrary 
forces, and hence also for any arbitrary change of state of the 
point-system. 
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the g’s and p’s as functions of the time t and of those 
constants which refer to the initial state. 

Also the energy principle follows directly from the 
equations (412), if we use it to form the expression for 
the complete differential dE, 

If the external forces 0 are given as functions of the 
time t the equations of motion (412) may be simplified in 
form by introducing ‘‘ Hamilton’s function ” : 

= js; — 2]0iqi .... (412a) 

The equations (412) then become : 

^ _d_H.m j26) 
dt dpi dt dqi 

For a closed system {0 = 0) Hamilton’s function H 
becomes coincident with the energy E, and we obtain : 

dqi ^ dE dpi _ dE 
dt ~ dpi dt ~ dqi 

(413) 

§ 128a. A general method of integrating the equations 
of motion (413) that hold for a closed system may be derived 
by considering a little more closely the ‘‘ action integral ” 
or the ‘‘ action function ” : 

W= f^Ldt.(414) 

which occurs in Hamilton’s i>rinciple. 
This quantity has a perfectly definite value for the real 

motion, if the initial and final positions of the system are 
given. By (400) this value is characterized by : 

SW = f'SL.dt = 0 . . . . (415) 

for every variation of the motion. 
Let us next inquire what value SIF assumes if we also 

vary the initial and the final positions of the system— 
that is, the initial and the final values of the co-ordinates 

?2> • * ‘j while the time t remains unvaried throughout. 
The answer to this question is obtained by calculating 
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Sir on tlie basis of equation (404), exactly on the lines 
there followed, by means of integration by parts; only 
the circumstance need be taken into account that the 
variations Sg^, Sgg? ... do not now vanish at the limits 
of the integral. We thus obtain, if we use the equations 
of motion (405) for the closed system (c^ == 0) : 

SW 
dL 
agi Sgi Pi^^i (416) 

According to our above remarks, we may regard W as a 
definite function of the initial co-ordinates, the final 
co-ordinates and the times and ti. If from now on we 
call the initial co-ordinates gg®, . . . and the final 
co-ordinates g^, gg, . . . , then, since the time is not 
subjected to variation : 

8W 
dW 

and comparison with (416) gives : 

dW dW 

air_0 ajF 

(417) 

(418) 

We shall now also take the dependence of the integral 
of action W on the time into consideration; and hence¬ 
forward we shall denote the time by t for brevity. 
From (414) we have for this dependence : 

dt 
(419) 

where the differentiation of W is to be “ total —that is, 

such that the co-ordinates gi,g2, . . . change with the time 
t in accordance with the actual motion, while the initial 
co-ordinates q^\ ... as well as are kept constant. 
That is, we have : 

dW dW dW . . dW . ^ 
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where -i— now refers to “partial” differentiation, the 
ot 

co-ordinates being kept constant. If we take into 
account (417) and (419), the last equation gives : 

d_W 
dt 

+ Piqi + Piii -f . . . - A = 0, 

or, by (409) and (407) : 

dW 
df 

E = 0. 

If we here regard the energy, as in (413), as a known 
function of the ^’s and g’s, which wo shall indicate by 
means of the term Ep^g, and replace the momentum 
co-ordinates p in it by their values in (417), the last 
relationship runs : 

^ -f A 0 • • • • (420) 
dt 

It shows that the integral of action W, regarded as a 
function of gg? • • • 92^ , . . satisfies a definite 
partial differential equation—the Hamilton-Jacobi dif¬ 
ferential equation. 

§ 1286. Exactly as we can prove the validity of the 
differential equation (420) from the expression for the 
action integral W for a definite motion, so conversely by 
integrating (420) we can find a function W which re¬ 
presents the action integral of a motion, and closer 
inspection shows that every integral W of the differential 
equation, which contains besides the variables g^, - •t 
and the additive integration constants just as many 
constants of integration aj, ag, . . . as the system in 
question has degrees of freedom, gives the general integral 
of the equations of motion (413). If by (417) we write, 
assuming that such a function W has been found : 

dW dW 
(421) 
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and remembering that, by (418) : 

dW 
doco 

(422) 

then we have altogether for n degrees of freedom 2n 
equations, which may serve to calculate the 2n variables 

(ji, 0^2? •• • Pv P2’ ... as functions of the time t and the 
2n integration constants a^, P2» • • • 
equations of motion (413). 

The fact that when (420), (421) and (422) are valid the 
equations of motion (413) are also satisfied may easily be 
shown in the following way. If we differentiate the first 
equation (422) ‘‘ totally ” with respect to we get : 

or: 

m = 0 

dW y dW dqi 
doi^dt , doLidqi dt 

(423) 

where the summation is to be extended from 1 to 7^. In 
the same way, — 1 further equations follow, which 
together with (423) enable us to calculate the n velocities 

?• 

On the other hand, we get by differentiating (420) with 
respect to a^, using (421) : 

dW ydE d^W 
docidt i dpi doLidqi 

(424) 

and, in a corresi)onding way, the n — I other equations, 
so that from these n equations we can calculate the n 

dE 
quantities uniquely. But the coefficients in the 

systems of equations (423) and (424), the second partial 
differential coefficients of W, are absolutely identical. 
Hence it follows that the n roots of the equations are also 
identical—that is, that for every i : 
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and so the first half of the equations of motion (413) is 
satisfied. 

Concerning the second half, it follows by differentiating 
(420) with respect to that : 

iq^dt dqi i d'pidqidqi 

or, by (425) : 

or finally : 

dW yd^dqi , 
dqidt 7 dqjdqi'dt dq^ 

d/m\ 
dt V0gi / 

+ ^’ = 0 

from which, by (421), the validity of the other half of the 
equations is established. 

The equations (422), although related in form to the 
equations (418), are essentially more general, because the 
constants a need not be the initial values of the co¬ 
ordinates q. 

§ 128c. Since in the Hamilton-Jacobi differential equa¬ 
tion (420) the time occurs only as a differential, it admits 
of an integral of the form : 

- oiit-hV . . . . (426) 

where V depends only on the co-ordinates jg? • • • 
the constants a^, ag, . . . . We then obtain for the 
function V the condition : 

Ee_V-oii=:^ 0 . . . . (427) 

Here the constant represents the total energy of 
the system. The equations (421) and (422) then become : 

as'."*’". 
and: 

0F 0F 
+ .(429) 

The integration of (427) can sometimes be successfully 
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effected by separating the variables—^namely, when the 
left-hand side of the equation may be represented as a 
function of n arguments, each of which depends only on a 
single co-ordinate qi and the corresponding differential 

dV 
coefficient . Then we may set each individual argument 

equal to a constant a. Further, we may assume : 

F « Fi -f F2 + F3 + . . . + Vn . . (430) 

where each of the quantities F^, F2, . . . depends only 
on a single co-ordinate q^, qo, . . ., thus ; 

. 
dqi dgi’dg^ Sg/ 

and so we obtain for each of these functions a special 
differential equation which may be solved by direct 
integration. 

§ 128rf. As a simj)le example of the application of the 
Hamilton-JTacobi differential equation we consider the 
planetary motion already treated in § 52 et seq,y and we 
shall use the same notation as previously. We then have, 
for two degrees of freedom : 

qi = ^ = <f>, 

and further the energy as a function of the co-ordinates 
and velocities ; 

£J = K + U = '^(r^ + rW) - . {432} 

the kinetic potential : 

L = ^ (fs + r2^2) + . . . (433) 
iw T 

the momentum co-ordinates (generalized momenta): 

dL . dL ,. 
(434) 

and the energy as a function of the co-ordinates and 
momenta ; 

E = + 
2mr^ Vi 

2 _ fmix 

r 
(435) 
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Hence the differential equation (427) here runs : 

1 /0FV , 1 /9F\2 fmii 
2m) + W\^) ~'T'“ = '‘i• • 

This equation may bo integrated by using (430) and 
writing : 

F = F, -f F, 1 

~ ^ ^ j 

and consequently : 

aF 0Fi 
2mai + 

We then get, if we omit the unimportant additive 
constants : 

F2 = a2<^ 

V [ /9-—2- Fi = j V 2mair2 + 2fm^fj.r — ol./ • - 

and from (428), (429), (434) and (437) : 

= mr 
2f7n^u ag^ 

2mai + --i- 
^ r 

^2 = mr^ = == ag 

Fi f mr. cZr i + p, = 
9^1 y 2moipr'^ + S 

ft ^ ?Zi a. rA - ^ ~ 
Sag ^ ^ jrV2moL^r^ + : 

2/m‘^/xr — ag^ 

r V 2mair2 + 2jm^iir — ag 

= (j) — COS"^ 
ag^ — 

r's/fhn^li^ + 2maia22 

These four equations show themselves to be fully 
identical in form with the equations of § 53, if we set: 

^2 — > r2 — ^ 
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§ 129. In nature neither the expression for the energy 
nor that for Lagrange’s function is directly given. Hence 
in applying the theory it is of the greatest importance that 
there is yet another theorem of very general character, 
which also holds : the principle of the equality of action and 
reaction. We have hitherto introduced and used this 
principle only for point-systems at rest. Moreover, the 
argument by which we made its validity in nature plausible 
(§ 29) cannot be applied to points which are moving 
arbitrarily and whose distances vary with the time, 
particularly when non-conservative forces, such as 
friction, come into consideration. 

Hence it is doubly important to convince ourselves that 
the principle of action and reaction is intimately connected 
with the universal principle of the conservation of energy; 
this is accomplished by means of the principle of relativity 

(§ 59). 
For let us imagine two material points 1 and 2, between 

which some forces or other act, moving in an arbitrary 
way. Then by (147) the change in the sum of the amounts 
of vis viva which occur in the time dt is : 

dK — X^dxi + Yjdyi -f Zidz^ 

-f + ^2^2 + Z2dz2 . . (443) 

The principle of relativity states that this quantity dK 
remains unchanged if we pass from the stationary co¬ 
ordinate system to a co-ordinate system in uniform motion 
by means of the equations (194), no matter whether the 
forces have a potential or not. For the principle of 
relativity holds not only for mechanical, but for all 
physical events—^for example, also for the transformation 
of mechanical energy into heat; that is, the amount of 
mechanical energy transformed into heat is independent of 
any uniform rectilinear motion of the co-ordinate system. 

Hence we get the following relationship for the trans¬ 
formation of co-ordinates above mentioned, by (443) : 

K'^dx^-^ , , . X^X2~\~ . . . — .Y -^dx “h . • • ~\~2dx'• • • 
Q 
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and in view of (192) and (194) : 

4" . . . A "f" • • • “ ^\{dx'j^ — u^dt) -h . . . 
-j- X^idx^^ UQdt) ~f- . . . 

or : 
(Xj 4- X2)Uq + (El + ^2)1^0 + {^1 ^2)^0 ~ 

a relationship which is obeyed for any values of Uq, Vq, Wq, if 
we have quite generally : 

Xi == - X2, r, = - 72, - ^2 . (444) 

in agreement with the principle of the equality of action 
and reaction. 

§ 130. The full meaning and fruitfulness of the principle 
last mentioned come into evidence if we again, as before 
in statics (§ 112), divide all the forces that are active in a 
system of material points into internal and external forces. 
If we then also adduce d’Alembert’s principle (§ 66) we 
may immediately enunciate the following theorem : 

In every motion of a system of material points the external 
forces and the inertial resistances are in equilibrium in the 
system supposed rigid. 

To clothe this fundamental law in analytical language 
we denote the external forces (driving forces or forces of 
constraint) by Fa, Then, in accordance with the con¬ 
ditions of equilibrium (306) of a rigid body : 

Z{Fa — mr) = 0 .(445) 

Ulr, (Fa - mr)] = 0 . . . . (446) 

These six equations form the common starting-point for 
the whole mechanics of rigid, solid, liquid and gaseous 
bodies. We shall elucidate their meaning by describing a 
few general applications. 

§ 131. Equations (445) assume a very simple form if 
we introduce the position of the centre of gravity by (287). 

Accordingly we have by differentiating twice with 
respect to the time t: 

r^Em == Ernr.(447) 
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so that equation (445) runs : 

T^Zm — ZFa.(448) 

That is, the centre of gravity of a system of material 
points moves as if the whole mass of the system were 
concentrated in it and as if all the external forces acted on 
it. Hence the internal forces play no part at all in the 
motion of the centre of gravity. 

For examx)le, if we fling any solid or liquid body freely 
into the air, its centre of gravity moves in the parabola 
which is prescribed by its initial conditions, so long as no 
external force except the weight of the individual paits of 
the body come into question. 

Even an explosion of the body cannot disturb this 
parabolic path, so long as none of the pieces striltes an 
external obstacle. In the same way, the explosion of a 
planet would not prevent its centre of gravity from con¬ 
tinuing its elliptic motion about the sun. 

Only an external force is able to impart an acceleration 
to tlie centre of gravity. 

Even the strongest man, if placed on an absolutely 
smooth surface, is unable to move from his position if he 
is initially at rest, or to stop if he is in motion. From this 
we see the great importance of the friction of the earth’s 
surface, of street pavements, of railway lines, for moving 
heavy loads. When a horse draws a wagon, the force of 
the traces acts with the same intensity (and not more) 
on the wagon forwards as on the horse backwards, but for 
the wagon this is the only force that comes into question, 
whereas for the horse the friction also acts, which his hoofs 
experience when pushed against the ground and which 
must act in the forward direction and be at least great 
enough to overcome the tension of the traces. 

Moreover the question which we proposed earlier in 
§ 82 and left unanswered—^namely, regarding the way in 
which a resting rigid body is set into motion by a couple— 
receives the first part of its answer here. For by equation 
(448) the centre of gravity of the body remains at rest. 
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Thus the motion is a rotation about the centre of gravity. 
But we must not suppose that the axis of rotation always 
coincides with the axis of the couple. We shall discuss 
this relationship later in § 149. 

§ 132. If no external forces act at all or if the external 
forces satisfy the equation UFa = 0, then by (448) r == 0 
—that is, the centre of gravity moves with uniform motion 
in a straight line (conservation of the motion of the centre 
of gravity). 

We may also formulate this theorem in another way by 
introducing the momenta (§ 128); we write the integral 
of Unir = 0 in the form : 

Smir = Zmq = const. . . . (449) 

We call this vector, which is constant in magnitude 
and direction, the resultant momentum ’’ of the point- 
system. This is compounded from the momenta of the 
individual points just like the resultant force is compounded 
from the individual forces. The equation (449) then 
expresses the law of the conservation of momentum or 
impulse. A characteristic difference between this law 
and that of the conservation of energy consists in the 
circumstance that momentum is a vector but energy is a 
scalar; that is why the conservation of momentum is 
expressed by three equations in contrast with the one 
equation of the conservation of energy. 

An example of the law of conservation of momentum is 
given by the recoil associated with the firing of a cannon, 
in which process the projectile and the cannon move apart 
with momenta which are equal and opposite, since the 
resultant momentum was zero originally and must 
remain zero so long as no external force comes into 
play. 

§ 133. As a further example of the law of conservation 
of momentum we shall discuss the laws governing the 
collision of two material points 1 and 2 moving on the 
same straight line—say, the a;-axis. Let their co-ordinates 
be and X2>Xi, and their velocities before the collision 
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and ^2* order that a collision may occur at all we 
must have : 

% > 1^2 .(450) 

where the quantities u may be positive or negative. 
A collision is a very complicated process, in which 

intense forces come into action; these, however, last for 
only a short time and depend to a high degree on the 
material constitution of the points. This makes it the 
more important to derive from general mechanics relation¬ 
ships of wide application for the magnitude of the velocities 
after the collision. 

In the absence of every external force the law of 
conservation of momentum holds for the system of two 
material points : 

niiUi + ~ '^1^1 + '^2^2 . . (451) 

where Ui and U2 denote the velocities after the collision. 
To determine u^' and uniquely this equation is not, of 
course, sufficient. For this purpose we require a further 
condition which will be different according to the material 
constitution of the points. But the following inequality 
must be obeyed in all circumstances : 

Ui' <U2 .(452) 

since the points are assumed to be impenetrable. 
Among all the possible cases we consider those two which 

are of particular interest as ideal limiting cases. 
§ 134. Inelastic Collision. A collision is said to be 

perfectly inelastic when the two points do not reboimd 
from each other but continue their path as one body. 
Hence we have for this case : 

Ui — U2 = u' . . . . (453) 

and by (451): 
_ mi% + m2U2 (454^ 
- ' m, + . 

If the masses are equal, the velocity after the collision 
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is the arithmetic mean of the velocities before the collision. 
If the momenta are equal and opposite, the common final 
velocity is zero. 

In an inelastic collision mechanical energy is always 
lost. Let us calculate the amount of this loss. The 
difference in the values of the vis viva of the two points 
before and after the collision is : 

or by (454) : 
1 
9 - + m2 

— 'W/2)“ (455) 

which is positive. 
According to the universal energy principle, a corre¬ 

sponding amount of molecular energy must be gained in 
the form of heat, deformation or electricity. 

The fact that this transformation of energy always 
occurs in one direction, in that of a decrease of the vis 
viva of the motion, just as in the case of friction, already 
points to the controlling power of some universal law, 
which is in itself foreign to the energy-principle; this law 
has received exact expression in the second law of thermo¬ 
dynamics. 

§ 135. Elastic Collision. A collision is called perfectly 
elastic when the two material points undergo only tran¬ 
sitory and not lasting changes in their molecular con¬ 
stitution—that is, are neither warmed, nor permanently 
deformed, nor changed in their molecular energy. 

By the principle of conservation of energy the sum of 
the amounts of vis viva of the points, being the only 
kind of energy which comes into consideration here, has 
the same value after as before the collision, thus : 

\ + ^2^2^) = \ -f (456) 

^ 1^) — ^2 2^ — "^2^)’ 

or: 
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and by dividing by the equation (451), after it has been 
suitably transposed : 

^2 “1“ ^2 * • • (4^7) 

from which we obtain, in conjunction with (451), the 
values: 

, _ (m, — m2) -f 2m2^2 
^ H- m,2 

, __ - (mi - m2) U2 
660 — ' ' '^r ' ■ 

^ + m2 

which satisfy the inequality (452) if we take (450) into 
account. 

If the masses are equal, then we have == ?^2 

U2 ~ That is, the velocities simply exchange values. 
If m2 is very great compared with m^ (m2> >mi), then 
we get, if we divide the numerator and denominator by 

m2 : 
=^-U,+2U, I _ 

U2 = ^^2 J 

This case corresponds with the elastic reflection of a 

material point, moving with a velocity which strikes a 
wall moving with the velocity itg- '^2 — point 
rebounds from the stationary wall with the same velocity 

u 
u^\ if U2 == the point comes to rest permanently; 

if U2> the point follows the wall at a gradually 

increasing distance. The fact that the principle of 
conservation of energy is preserved, although the velocity 
of the point changes w^hile that of the wall remains 
essentially unaltered, is guaranteed by equation (456). 

§ 136. The process involved in a collision has given rise 
to the introduction of the concept of instantaneous forces. 
These are forces which differ from zero only during an 
extremely short time r, but during this time are of such 
magnitude that they produce an appreciable change of 
velocity. To find the characteristic features of an in- 
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stantaneous force we assume in the general equations (412) 
the external components of force 0^, ... as instantan¬ 
eous forces, which act from the time t to the time t + r, 
and integrate the equations which refer to the co-ordinates 

• • • with respect to t from ^ to ^ f r. We then 
obtain, if we denote the values referred to the moment of 
time ^ + T by a dash : 

Qi — Vi “■ jPi == j 0xdt, and so forth . (460) 

For on account of the smallness of r the time-integrals, 
which are to be taken over finite quantities, vanish. 
Hence, whereas the co-ordinates q themselves are not 
appreciably changed by the instantaneous forces, since 
the velocities always remain finite, the momenta (and with 
them the velocities) undergo a sudden change, whose value 
is represented by the instantaneous force in question. Thus 
this time-integral is characteristic of the action of the 
instantaneous force; it is called the “ impulse ig? • • • 
of the force. 

If, as described in § 128, we use instead of the velocities 
q the momenta p to characterize the state of a point-system 
in addition to the co-ordinates g, we may imagine these 
momenta to be produced—^in a way that is easily pictured 
—by instantaneous forces, whose impulses are equal to 
the quantities p. Hence the momenta p are also called 
impulse co-ordinates. 

The principle of action and reaction holds for impulses, 
as for all other kinds of force—^that is, corresponding to 
every impulse which is exerted on one material point by 
another there is an equally great and opposite impulse 
exerted by the second point on the first. 

Let us now also calculate the work A done by these 
instantaneous forces. This work is equal to the change of 
energy E or, what comes to the same thing, to the vis viva 

because, by (460), the potential energy is not appreci¬ 
ably changed by the instantaneous forces. Thus : 

A K' -K, 
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and by (407a) and (409) : 

Since jfiT is a complete homogeneous quadratic function 
of the q's (and of the p’s), we have by (409) : 

= ^QiPi ■ ■ ■ ■ (461) 

Consequently we may also write : 

^ = I + 9i) • (Pi' - Pi) 

or: A = .... (462) 

That is, the work of the instantaneous forces is obtained 
by multiplying the impulses by the arithmetic mean of the 
velocities before and after the collision. 

The advantage of introducing instantaneous forces is 
shown, for example, in deriving the laws of elastic collision 
treated in § 135. For this wo have by (462) : 

< + % . < _o 
2 + 2 *2 - 

On the other hand we have by the principle of action 
and reaction : 

H + ^2 ~ 

and from this equation (457) follows in a simpler way than 
before. 

§ 137. We shall now consider the general equation (446) 
a little more closely, and for this purpose we write it in the 
form : 

27[r, mr] = I][r, Fa] .... (463) 

Let us next take the special case where the right-hand 
side of the equation vanishes, as when no external forces 
at all are acting, thus : 

2:[r, mr] = 0 .(464) 

Each individual term of this sum is called the “ moment 
of momentum” or the “impulse-moment” (Drehimpuls 
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or Impulsmoment) of the point-mass in question with 
respect to the origin of co-ordinates; and the whole sum 
is called the resultant moment ” of all the momenta, or 
the resultant moment of momentum ” with respect to 
this point. The notation, the law of formation and the 
compounding of moments of momentum correspond 
exactly, according to §§ 85 to 88, with the laws which hold 
for the moments of forces. Similarly, the direction of the 
vector (464) is called the “ axis ’’ of the resultant moment 
of momentum. 

Equation (464) acquires a concrete kinematic meaning 
if we reflect that according to the discussion in § 50 the 
projection of the resultant moment of momentum on to any 
plane described through the origin of co-ordinates—that 
is, the component of the vector (464) in the direction of 
the normal to this plane—is equal to the algebraic sum of 
twice the ‘‘ areal velocity ” multiplied by the mass of each 
individual point; these areal velocities are measured by 
the surfaces described by the radius vectors of the points 
in the plane in question, being taken as positive or negative 
according to the sense of the individual rotations. If the 
plane selected passes through the axis of the resultant 
moment of momentum, the algebraic sum of twice the 
areal velocities multiplied by the respective masses 
becomes equal to zero, because the component of a vector 
in a direction perpendicular to its own direction vanishes. 
But if the plane is perpendicular to the axis, this sum is a 
maximum, being equal to the absolute value of the 
resultant moment of momentum (464). This favoured 
plane which remains fixed in space for all times is therefore 
called the invariable plane ” and the theorem expressed 
in (464) is called the ‘‘ principle of sectorial areas.’’ 

If the constant (464) is equal to zero, the resultant 
moment of momentum vanishes at all times. But this 
does not allow us, as in the case of the momentum in § 132, 
to derive a law of conservation, because the equation 
cannot in general be integrated with respect to the time. 
Hence, for example, a person who stands freely on an 
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absolutely smooth surface cannot impart to himself a 
velocity of rotation, but he can effect a turn, say by 
stretching his right arm out sideways, then passing it 
round in a horizontal semicircle in front, to the left and 
finally drawing it to his side again. This movement, if 
repeated sufficiently often, effects a rotation of the person 
about an angle of any arbitrary size to the right. This 
explanation also accounts for the famous apparent 
paradox of the falling cat, which always manages to drop 
on to its feet. 

§ 138. In general, it is not possible to integrate equation 
(463), but it may often be simplified by introducing in 
place of the stationary co-ordinate system a moving 
system whose axes remain parallel to themselves and 
whose origin is at the centre of gravity, in accordance with 
the equations (191), which run, in vectorial form : 

r r' + r = r' + Tq, r = r' 4* ^o* • (465) 

where, on account of (287): 

Zmr' = 0, Umr = 0, Smr'. == 0 . . (466) 

Since, further, by (192) Fa = Fa', we get if we substitute 
accented co-ordinates in (463) : 

S[r' Vq, m{r' -f Vq)] = S[r + Vq, Fa] 
or : 

i7[r', mr'] -f HItq, mi-'] -f 2[r', mvo] + ^[ro, mr^ 

= 2;[r', Fa'] + r[ro, Fa'l 

In this equation the second and third terms on the left- 
hand side vanish on account of (466), as we see by cal¬ 
culating any component; but the fourth term is, by (448), 
equal to the second term on the right-hand side of the 
equation, so that we are finally left with : 

S[r\ mr'] = S[t', Fa'] . . . (467) 

and this is again precisely the equation (463), but now 
with accented quantities. Its particular importance 
consists in the fact that the resultant moment of the 
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external forces with respect to the centre of gravity often 
has a simpler value than that with respect to an origin 
which is fixed in space. If this moment is equal to zero, as, 
for example, in the case of gravitation, then the principle 
of sectorial areas (464) holds for the relative motion of the 
point-system about the centre of gravity, no matter in 
how complicated a way the centre of gravity may move. 
If we throw a heavy rigid body into the air in any way, it 
turns, if we disregard the resistance of the air, in exactly 
the same way about its centre of gravity as if the centre 
of gravity were at rest and no external force were acting 
at all. This theorem combined with the theorem of § 131 
on the motion of the centre of gravity enables us to answer 
fully the question as to how the body moves. A similar 
inference may be drawn with regard to the rotation of a 
planet about its centre of gravity. 



CHAPTER IV 

DYNAMICS OP A RIGID BODY 

§ 139. We shall now apply the genera] equations of 

dynamics to the motion of a rigid body and shall first 
convince ourselves that in every case the six equations 
(445) and (446) suffice to solve the problem completely. 
For if the body is completely free it has, according to 
§ 103, six degrees of freedom, corresponding to the six 
equations of motion, in which all the external forces Fa 

are to be regarded as given. But if the motion of the 
body is restricted from the outset by prescribed conditions, 

the external forces partly consist of forces of constraint, 

and the equations which contain these forces of constraint 
cannot serve to determine the motion. But we already 
know from § 91 that in the case of equilibrium the driving 

forces alone must always satisfy just as many equations 
as there are degrees of freedom; and it is just these 
equations, generalized by the addition of inertial resist¬ 
ances, which also contain the laws of the motion. If the 
motion of the body has been determined in this way we 
can derive from the remaining equations the constraining 
forces which are necessary to maintain the prescribed 

conditions during this motion. 
§ 140. Let us first take a body which can be rotated 

about a fixed axis; it has one degree of freedom. We 

take the axis of rotation as the z-axis. We suppose the 
driving forces to be given and to be compounded, according 
to § 88, into a single resultant F that acts at the origin, and 
a couple N; in the same way, we shall suppose the forces 

of constraint, which are unknown at the outset, to be 
compounded into a resultant F' and the couple iV'. 

Then of the six equations (446) and (446) only the last 
237 
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contains no memberwhich refers to the forces of constraint. 
For by § 91 the forces which keep the ;2:-axis fixed furnish 
no moment of momentum about this axis. Hence we 
have for the 2;-component of (446) : 

where the summation is to be performed over all the 
individual point-masses or elements of mass of the body; 
and this equation suflSces to determine the motion. We 
have only to express all the variables that occur in it in 
terms of the single independent variable, which determines 
the position of the body ; for this we shall take the angle 
<f), which an arbitrarily selected plane fixed in the body 
and passing through the ;2-axi8 makes with the a;2:-plane. 
Then, if we introduce cylindrical co-ordinates, as in 
(326a) : 

dt 
Pi sin <f> 

d4 I 
^dt 

dt 
(469) 

where denotes the constant distance of the point 1 from 
the z-axis; and by differentiating once again, we have : 

li¥ 

dP 

-PiCOs.^,(g)'-pisin^,g 

- P,sin4>,{^J + p,cos<f>/~^- (469a) 

and consequently, by substituting in (468) : 

= m .... (4696) 

This equation of motion has exactly the form of that 
(8) of a point-mass moving in a straight line, except that 
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the acceleration is replaced by the angular acceleration, 
the force by the moment of momentum and the constant 
inertial mass by the constant sum which last 
is therefore called the moment of inertia J of the body with 
respect to the z-axis. 

The equation is therefore integrated by methods perfectly 
similar to those used in the case of rectilinear motion. 

The method of derivation is still more direct if we use 
Lagrange’s equations of the second kind. For the work 
of the external forces in a displacement of the body about 
the angle dcj) is by (327) : 

A d(j>, 

and so the external component of force is, by (403) : 

0 = Nz. 

On the other hand if we use (469) the Lagrange function 
is : 

L = K . . . (470) 

and so, by (405) : 

J^^Nz.(471) 
as above. 

§ 141. Now that the motion is determined by means of 
(471) we get for the resultant force and the resultant 
moments of momentum of the forces of constraint by 
which the axis of rotation is kept fixed or, what comes to 
the same thing, for the resistance which the axis of 
rotation must offer, the following five equations, from 
(445) and (446) : 

F' == Em^r^ - F 

NJ = - Zi^) - 

/ d%\ 

(472) 

(473) 

We shall here investigate the special case where the 
driving forces are all zero—^that is, where the body rotates 
with a fixed angular velocity (j> about the fixed 2:-axis. 
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Then F and N are both zero, whereas the forces of con¬ 
straint F' and A' are determined by the last equations, 
if we omit the terms in F and N in them. 

The resultant force of constraint F' may be clearly 
visualized. For if we substitute in (472) for the com¬ 
ponent of the values (469a) we get, in view of ^ = 0 and 
(287) : 

Fx = i^^Z'miPiCos 

Fy = 

F/ = 0. 

That is, the resultant force of constraint is equal and 
opposite to the centrifugal force of the centre of gravity 
rotating with the mass Sm^ and the angular velocity 
<j) about the axis of rotation—a theorem which also 
follows directly from the principle of the motion of the 
centre of gravity (§ 131). 

If we further assume that the axis of rotation passes 
through the centre of gravity, the resultant force of 
constraint F vanishes entirely, but the moments of 
momentum of the forces of constraint Nx^ and Ny' in 
general differ from zero, being : 

iVx' = I . . . (474) 

This signifies that even in the present case the axis of 
rotation must be supported by external forces—^namely, 
by a couple, if it is to remain at rest; or that once the axis 
is released the body, although no driving forces are acting 
and although the centre of gravity remains at rest, will no 
longer be able to preserve its direction of rotation. The 
question as to how the axis of rotation changes belongs to 
a later investigation where wc deal with motion about a 
fixed point. 

It is only in the special case where : 

= 0 and Ettit^x^z^ = 0 . . (475) 

that the external constraint vanishes entirely in the 
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rotation in question, and that the 2:-axis has the property 
of being a ‘‘ free ” or a permanent ’’ axis of rotation. 

§ 142. Having been led in § 140 to form the concept of 
the moment of inertia Smp^ == J of a body with respect 
to a definite axis, we shall now investigate the question 
more closely as to the laws connecting the magnitude of 
the moment of inertia of a definite body with the position 
of the axis. For the latter may be chosen quite arbitrarily 
from the outset and mav even lie quite outside the mass of 
the body. 

Let us first consider the moments of inertia of a definite 
body with respect to all such straight lines as pass through 
a single point, the origin of co-ordinates 0. The position 
of such a straight line is determined by its direction 
cosines A, ju, v. Now, if x, y, z denote the co-ordinates of 
the point-mass m, and r its distance from 0, then : 

p = r. sin 0, 

where 6 denotes the angle between the radius vector r and 
the straight line (A, /x, v); thus : 

cos 0 = A-+ V • 
T ^ T T 

Consequently, the moment of inertia of the body with 
respect to the straight line (A, /x, v) has the value : 

J = sin2 d = Umr^ (A^ + /x^ + — cos^ 6) 

J — • Zm {y^ -f- z^) 4- fJL^Zm {z^ -f x^) + v^Zm{x^ + 

— 2fjLvZmyz — 2vXZmzx — 2XiJiEmxy . (476) 

If we now allow the direction of the straight line, and 
hence A, /x, v to vary, the six sums E remain constant, and 
therefore show that they are characteristic for the magni¬ 
tudes of the moments of inertia with respect to all the 
straight lines that pass through 0. The last three sums 
are the moments of inertia Jx, Jy, Jz with respect to the 
three co-ordinate axes. The last three are also called 
the '' moments of deviation.” 

A good idea of the manner in which the quantity J 
B 
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depends on A, p,, v may be obtained if we imagine the 

value of to be marked off as a distance from O on each 

direction A, p, v passing through 0. The end-points 
7], I of all these distances then constitute a surface, 

whose equation is determined by the relationships ; 

^ VJ’ ^ VJ’ VJ 
together with (47f>). 

Eliminating A, /x, v from these four equations we get 
for the equation to the surface : 

PJo; + rfjy + — 2r]^Zmyz — — 

2^y]I,mxy = 1 . (477) 

that is, an ellipsoid whose centre is at the origin; it is 
called the ‘‘ ellipsoid of inertia ” of the body with respect 
to the point 0. 

Every point in the whole of infinite space may be 
regarded as the centre of such an ellipsoid of inertia, and 
the moment of inertia of the body with respect to any 
straight line which passes through this point is equal 
to the reciprocal of the square of the corresponding semi¬ 
diameter of the ellipsoid. 

Since the magnitude of the moment of inertia is inde¬ 
pendent of the choice of co-ordinate axes, the form of the 
ellipsoid of inertia is also independent of this choice. 

The principal axes of the ellipsoid are called the “ princi¬ 
pal axes of inertia,’’ and the corresponding moments of 
inertia the ‘‘ principal moments of inertia.” The latter 
are at the same time the reciprocals of the squares of the 
semi-axes of the ellipsoid. 

The equation to the ellipsoid of inertia assumes a 
particularly simple form if we allow the co-ordinate axes 
to coincide with the principal axes of inertia; in that case 
it runs : 

ai + 62 + c2 “ ’ 
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or, if we denote the principal moments of inertia by P, Q, 
R: 

Re + Qe -{-Re I . . . (478) 

Comparison with the general equation (477) shows that 
when the principal axes of inertia are the co-ordinate axes 
the deviation moments vanish ; 

Em/yz = 0, Emzx = 0, Emxy = 0 . (479) 

and from this it again follows by (476) that the moment of 
inertia of the body with respect to a straight line which 
makes direction-cosines A, p,, v with the principal axes of 
inertia are : 

7 = PA2 + Qyfi + Rv^ ... (480) 

The greatest of the three principal moments of inertia 
P, Q, R, namely that which belongs to the smallest axis 
of the ellipsoid of inertia, at the same time represents the 
greatest moment of inertia which a straight line through 
0 can have at all, and conversely. If in particular 
P — Q — R^ then J — P, and the ellipsoid of inertia 
becomes a sphere. This holds, for example, for the centre 
of a homogeneous body in the form of a sphere or a cu be, 
on grounds of symmetry. 

The position, the magnitude and the direction of the 
axes of the ellipsoid become changed if the centre of the 
ellipsoid is displaced. In general it may be said that the 
dimensions of the ellipsoid of inertia contract the more 
the further the centre of the ellipsoid is away from the 
body. 

If we compare the equations (479) and (475), we find 
that the principal axes of inertia which pass through the 
centre of gravity of the body have at the same time the 
property of free or permanent axes of rotation, and are the 
only ones of their kind to have this property. 

§ 143. We next inquire into the moments of inertia of a 
body with respect to two straight lines, which do not 
start out from the same point. We shall begin with two 
parallel lines. If we take one as the 2;-axis, we may take 
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the second as the 2:'-axis of a second accented co-ordinate- 
system with its axes parallel to the first. We then obtain 
for the two moments of inertia that are to be compared : 

Jz = Em{x^ + i/2), Jz' = Em{x'^ + 

Without loss of generality we may further take the 
plane through z and z' as the x^j-plane and the origin O' 
to be on the a;-axis. The equations of transformation then 
simply run : 

x' == X -h,y' = z, 

where h denotes the distance between the two parallels; 
the moment of inertia with respect to the z'-axis becomes : 

Jz' = Em(x^ H- i/2) — EhEmx + h^Em. 

If we now allow the 2;-axis to pass through the centre of 
gravity of the body, Emx == 0, and the last equation runs : 

Jz^ Jz + h^Em .... (481) 

That is, the moment of inertia of a body with respect to 
any straight line is equal to the moment of inertia of the 
body with respect to the parallel which passes through 
the centre of gravity, increased by the product of the total 
mass and the square of the distance of the straight line 
from the centre of gravity (Steiner’s theorem). Hence of 
all the straight lines parallel to a certain direction that 
which passes through the centre of gravity has the 
smallest moment of inertia, and the remaining parallels 
group themselves according to their moment of inertia in 
coaxial circular cylinders about this one straight line. 

This at the same time gives the answer to the general 
question as to the moment of inertia J of a body with 
respect to any arbitrary straight line. For if M denotes 
the mass, P, Q, R the principal moments of inertia with 
respect to its centre of gravity, then by (460) and (481) : 

J = PA2 4-Q|x2 + jBv2+m2. . . (482) 

where A, /a, v denote the direction-cosines of the straight 
line with respect to the principal axes of inertia, and h its 
distance from the centre of gravity. 
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§ 144. We shall now apply our results to the motion of 
a heavy body which has a fixed horizontal axis of rotation, 
a so-called ‘‘ physical pendulum,’’ in contrast with the 

mathematical pendulum ” treated in § 69. In addition 
to the notation there used, we define the position of the 
body by the angle (f> which the plane through the axis of 
rotation and the centre of gravity 8 of the body makes 
with the vertical plane through the axis of rotation, and 
take as the plane of the diagram (Fig. 38) the plane 
through 8 and perpendicular to the axis of rotation, 
which intersects it at the point O. Then the driving 
force Mg has the point of application 8, and 
its turning moment with respect to the fixed 
axis is : 

— Mgh sin 

where h = 80 h the distance of the centre of 
gravity from the axis. Accordingly, by (471): 

J ^ - Mgh sin ^ . . . (483) 

If we compare this equation with the equa¬ 
tion (244) for a mathematical pendulum of 
length I we see that they become fully identi¬ 
cal if we set ; 

i = y.(484) 38. 

That is, the motion of a physical pendulum takes place 
exactly like a mathematical pendulum of length I deter¬ 
mined by (484). Hence this quantity is called the 
‘‘ equivalent or reduced length of the pendulum,” and the 
point at a distance I from O on the straight line 08 is called 
the “ vibration centre ” or “ centre of oscillation ”0'. 

The way in which the distances I and h depend on each 
other is ascertained as follows. 

By (481) we have ; 

Mh^ 

where Jq is the moment of inertia of the body with respect 
to the straight line which passes through the centre of 
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gravity S and is parallel to the axis of rotation. By 
substituting in (484) we get: 

l = h + -4 
Mil 

(485) 

hence r>h, as depicted in Fig. 38. If we displace the 
axis of rc^tation to another parallel straight line, then 
h and I change in accordance with (485), whereas Jq and 
M remain constant. 

Even when h becomes very small, as well as when it 
becomes very great (centre of gravity very near to or very 
far from the axis of rotation) the reduced length of the 
pendulum I and with it the time of vibration assume very 
great values ; in the latter case the centre of gravity and 
the centre of vibration come close together as in the case 
of the mathematical pendulum. There is a minimum of 

f for A = namely I = 2^^ = 2h. 

If we start from any arbitrary value of h, to which a 
certain value of I corresponds, and displace the axis of 
rotation to the parallel through the centre of gravity O', 
so that we make : 

then we get as the new centre of vibration the point which 
is at a distance from 0' given by : 

V +^, = l-h+h^l . . (486) 

That is, the new centre of vibration coincides with 0 and 
the reduced length of the pendulum is the same as before. 
The importance of the reversible pendulum depends on 
this theorem. 

§ 145. We next consider the motion of a rigid body about 
a fixed point, which brings us to an essentially new class 
of phenomena. For whereas the rotation of a body about 
a fixed straight line, as we have seen, exhibits a certain 
analogy with the motion of a point on a circular arc 
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(physical and mathematical pendulum), the rotation 
about a fixed point is essentially more complicated than 
the motion of a point on a spherical surface, because 
here there are three degrees of freedom as contrasted with 
two in the former case. 

Let us therefore first get a purely kinematic picture of 
the nature of such a rotation. 

We know from § 101 that the rotation about a fixed 
point 0 is at every moment a rotation about a straight 
line which passes through 0. This straight line will not, 
however, be the same for all times, but will change its 
direction continuously, both in space and in the body—that 
is, not only the angles will change, which the instantaneous 
axis of rotation makes with the co-ordinate 
axes, but also the material points which re¬ 
present the axis of rotation. 

To obtain a clear picture of this we may first 
imagine that the rotation occurs for a finite 
but extremely small time about the instan¬ 
taneous axis of rotation at each moment, 
and then suddenly changes abruptly to a 
very closely neighbouring axis of rotation. 

The directions which assume the part of 
the axis of rotation then form a succession of straight 
lines in space : OPj, OP^, . . . (Fig. 39). 

On the other hand, those material straight lines, about 
which the rotation occurs in succession, form a sequence 

of straight lines in the body : OP^, 0^2 ^ • • • which 
we may fix by assigning symbols to their points of inter¬ 
section Pi', P^', P3', . . . with the surface of the body. 
When these two sequences of straight lines, those fixed 
in space and those fixed in the body, are known, we arrive 
directly at the nature of the motion ; it is a rotation of 
the body, and hence also of the sequence of straight 
lines OP' that lie in the body, about the straight line 
which is at each moment in question common to the two 
sequences; at the moment taken in the diagram (Fig. 
39) this is a rotation about the straight line OPj. The 
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abrupt transition to the next axis of rotation always 
occurs at the exact moment when the next straight line of 
the sequence OP' coincides with the next straight line 
of the sequence OP—in the figure, when OP^ coincides 
with OPg- way the axes of rotation OP^, OP2, 
OP3, . . . come into action successively, so soon as the 
material straight lines OPj', OP^, OP^', . . . come to 
lie in their directions. 

If we finally pass from the finite small times and angles 
to the infinitely small values, the two sequences of 
straight lines become transformed into two cones OP and 
OP' which touch along a straight line, the first of which is 
fixed in space and the second is fixed in the body. The 
motion of the body about the fixed point 0 is shown to 
be identical with the rolling of the cone which is fixed in 
the body on the cone which is fixed in space, the term 
‘‘ rolling ’’ being applied to the motion where the straight 
line of contact of the two cones remains at rest. 

If one of the cones contracts to a single straight line, so 
does the other. The rotation then occurs about an axis 
which is fixed in space as well as in the body. 

§ 146. The dynamical laws of the motion are com¬ 
pletely contained in the three equations (463) : 

Il[r, nir] = iV.(487) 

where JY denotes the moment of momentum of the driving 
forces with respect to the fixed point 0. 

For the forces of constraint which keep this point fixed 
are unable to contribute a moment of momentum about 
it. The difficulty of the problem consists only in referring 
the sum S to the three independent variables on which 
the position of the body depends, and to their first and 
second differential coefficients with respect to the time. 
We shall here attack this problem directly. 

To deal with the position of the body we foUow the 
method given in § 100, in order not to lose the advantage 
of symmetry, and introduce an accented co-ordinate 
system, which is fixed in the body, by means of the 
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equations (329). There are then six relations between 
the nine direction-cosines, to yg. These relations may, 
according to requirements, be expressed in the forms 
(331), (332), (333), (334), but may also be formulated in 
other useful ways. The most important of these formul¬ 
ations results if we solve the equations (329) for x\ y\ z' 
and then identify them with those equations which result 
from (329) if we simply exchange the unaccented quantities 
in it with the accented quantities and at the same time the 
letters a, p, y with the digits 1, 2, 3. 

It then follows that: 

^ ^ hn - ^372 Q _ 72*3 - 73«2 

yj _ ®'-2P3.^ QQ forth . (488) 

D denotes the determinant of the equations, namely : 

aj ag ag 

D= p, (^2 fig ... . (489) 

ri 72 73 

This determinant has a very simple value. For if we 
square and add the three equations (488), we get by 
(331) : 

= (1^273 [^372)“ (72^3 ““ 73*^2)“ + (^2(^3 “■ ^3(^2)^ 

= (^2^ + + 72‘^)(^3^ +1^3^ + 73^) - (<^2^3 + [^2^ + 7273)**^ 
= 1 

Hence : 
D = i 1 .(490) 

The sign of D is determined by considering a special 
case. For since the direction-cosines change continuously, 
D is also continuous and in view of (490) is absolutely 
constant. If we now make the a;'-axis coincident with the 
a;-axis and the y'-axis coincident with the ?/-axis (a^ = 
1, p2 ~ 1)> l^he 2:'-axis also coincides with the 2:-axis 
(73 =4-1), since quite early, in § 100, we also assumed 
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the accented co-ordinate system to be right-handed. 
Accordingly the determinant (489) is : 

D - 

1 0 0 

0 1 0 

0 0 1 

- 1 . (491) 

and retains this value for all positions of the fixed system 
in the body. 

Hence the equations (488) become : 

= Pays - ^372 .... (492) 

and analogous expressions for each of the other eight 
direction-cosines. 

The law according to which these nine relations are 
formed becomes clear immediately if we observe that on 
the right-hand side of the equation only those letters and 
digits occur which are absent on the left-hand side. 

For example: 

72 = forth. 

§ 147. Let us next consider the state of the body as 
regards velocities. Here, too, we link up with the result 
derived in Chapter II, that the most general infinitesimal 
displacement of the body is represented by the com¬ 
ponents of a rotation with respect to the three co-ordinate 
axes. We also adopt the notation of § 100, but shall now 
take 17, ^ to stand, not for the infinitesimal angles of 
rotation themselves, but for the finite ratios of these 
angles to the element of time dtj which we find it appro¬ 
priate to call the components of the velocity of rotation with 
respect to the co-ordinate axes x, y, z. Instead of the 
equations (336) we then get : 

dcL. , dao dao 

^dt ^ ^ 'I* "^‘^37/7'“ ■ 

JQ \ \ 

^3 ) 

■dt ^ ^dt •(P: 
da, dag dag 

(493) 
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and instead of the equation (335) we get the analogous 
equations : 

aj 4- + ^3 forth . (494) 

The ratios of the components r], ^ again determine 
the direction of the axis of rotation, and the absolute 
value of the vector determines the value of the velocity 
of rotation—that is, the ratio of the infinitesimal angle of 
rotation to the element of time dt: 

CO - + v^2T^2-:jr^2 . . . (495) 

As in the case of every vector so also in that of the 
velocity of rotation the component in any arbitrary 
direction is obtained by multiplying the three quantities 

rj, ^ individually by the corresponding direction-cosines 
of the direction in question, and by adding together the 
products so obtained. We also obtain according to the 
same rule the components of the velocity of rotation in 
those directions which the accented co-ordinates assume 
at the moment in question : 

Pi’? + yiC = f I 
I- Pal? + yaC = ’?' j ' ' 

*3! + Ps’? + yaC = C j 

or, as immediately follows from them : 

^ = aif -f- ] 

V = Pif + + Par I ’ ■ ‘ 
^ == rif + 72^?' + rsV f 

The notation has again been chosen in such a way that 
the unaccented quantities 17, ^ correspond to the letters 
a, p, y and the accented quantities to the digits 1, 2, 3. 

We usually call 77', the components of the velocity 
of rotation of the body with respect to the accented 
co-ordinate axes. But this term is to be used with caution, 
since the body is fixed in the accented co-ordinate system 
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and hence has the velocity of rotation zero with respect 
to it throughout. 

Introducing the components of the velocity of rotation 
gives us the important advantage that the time difiFerential 
coefficients of all nine direction-cosines a^, . . . may 
be expressed conveniently and symmetrically in terms 
of these three quantities. Hence, for example, by (496) 
and (492) : 

- ^2^' == (a2^ + + yaO ~ + ?>iV + YiO 

~ YsV .(497a) 

and further, by 493 : 

= y3(: Yi 
cZa^ 
dt 

dcf.<i doiK 

dt di dt 

— aiX 
da, da. 

dt dt 

Therefore : 
drf 
5 = a,V-a2f.(498) 

and, correspondingly, eight other relations; the law 
according to which these expressions are constructed is 
characterized by the fact that on the right-hand side of 
the equation only that letter occurs which also appears on 
the left-hand side (a in (498)), whereas conversely just 
those digits occur on the right which are missing on the 
left (1 and 2 in (498)). 

Parallel with these nine relations we have, by (497a), 
the other nine of the form : 

da 
== ya^/ — pa^, and so forth . . (499) 

in which the letters a, p, y and the digits 1, 2, 3 have 
exchanged roles. 

The perfectly analogous construction of the accented 
and the unaccented components of the velocity of rotation 
is also shown in the relationships by which the $''s 
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are expressed in terms of the differential coefficients of 
the a, p, y’s. We arrive at them by combining (496), 
(492) and (499) : 

I' = {hVi - Paya) ^ + (y2«3 

= *2 (Ps^ - ys*?) + Pa (ya^ 

ya^a) V + (“aPa “ “aPa) C 

- “aS) + ya (aa’? “ Pal) 

l' = 
^*3 , a ^Pa I ^Y3\ 

^— + ^3-^+Y3^7> and so forth . dt ^ dt 
(500) 

which is completely analogous to (493). 
Corresponding to the three equations (494) there are the 

following three : 

+ Pi^^-= 0, and so forth . (501) 

§ 148. We are now sufficiently well prepared to reduce 
the three equations (487) directly to terms of the in¬ 
dependent variables. We write the first of them in the 
form : 

(502) 

and introduce in place of the unaccented co-ordinates 
X, y, z of the point mass m the accented co-ordinates, 
since the latter do not depend on the time. We accomplish 
this by means of the equations (329) and their derivatives : 

dx 
dt 

d^ 
dt ^ ^ dt 

+ z‘ dt 
(503) 

and we get for the sum in (502) a number of terms in 
which the direction-cosines and their derivatives can be 
placed in front of the summation sign E, The six quan¬ 
tities Emx'^f Emy'^, Emz'^, Emx'y\ Emy'z', Emz'x' 
alone remain after the sign, and they are all independent 
of the time. 

If from now on we allow the accented co-ordinate axes 
to coincide with the principal axes of inertia of the 
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body with respect to the fixed point 0, then by (479) the 
last three sums vanish and of (502) there only remains : 

dVi 
dt 

= 2Vx 

or if we introduce from the relations (498) and 
take into account (492) : 

+ “sD Smx'^ + (ag^' + ajf) + 
(ajf' + 0^7]') Emz'^} = Nx 

and finally, if we again, as in § 142, denote the principal 
moments of inertia by P, Q, R and con*espondingly write 
the three components of the velocity of rotation referred 
to the principal axes of inertia thus : 

$' =p, r)' =q, l’ . . 

then we have : 

(aipP + + ccstR) = Nx 

likewise: 

+ PzS'O + h'rR) = iVy > • 

and: 

{y^pP + y^qQ + y^rR) = iV, 

(504) 

(505) 

Although these three equations are constructed very 
simply and compactly, they have the disadvantage that 
the nine direction-cosines occur in them. We can get 
rid of them by multiplying the equations in turn by the 
corresponding direction-cosines and adding them together 
—that is, by referring the equations of motion to the 
accented co-ordinate axes instead of to the unaccented 
co-ordinate axes. We then get, by first multiplying by 
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*i> Pi> 7i afterwards adding, taking into account 
(501), (500) and (504) : 

P^£-{Q- R)qr = 

- {R - P)rp = N,/ )■ ■ ■ 

similarly: 

and: 

R%-iP- Q)n = 

These are called Euler’s equations of motion. Their 
characteristic feature is the second term on the left-hand 
side, by which they are distinguished from the equation 
for the rotation about a fixed axis, and which cause the 
I)erturbations of the axis of rotation. 

§ 149. We shall now consider some special applications, 
the first being the case where the body is initially at rest— 
that is, the initial values Vq all vanish. The question 
is : about which straight line will the body begin rotating 
under the action of the given forces ? 

Since the direction ratios of the axis of rotation with 
respect to the principal axes of inertia are represented in 
general by the ratios p : q : r, and since for a sufficiently 
short time t : 

P = Po + 

we have at the beginning of the motion : 

p :q:r === 

and by (506) : 

p:q:r — 
Nx' Nr 

P'Q 
Nz^ 

R 
(507) 

This equation also completely disposes of the question 
which was left unanswered at the end of § 131 concerning 
the nature of the motion into which a couple sets a free 
rigid body originally at rest. We there saw that the 
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centre of gravity of the body remains at rest; here we 
have found the direction of the initial axis of rotation. 
This direction coincides with the direction of the couple 
iV only if either the three principal moments of inertia 
are equal to one another or if the axis of the couple is a 
principal axis of inertia. Then the two other components 
of N are equal to zero. 

In general, the relationship between the direction of the 
couple and the direction of the initial axis of rotation can 
be clearly visualized by means of the ellipsoid of inertia. 
For the direction of the axis of rotation is the conjugate 
diameter to the plane of the couple with respect to the 
ellipsoid—that is, it is that diameter of the ellipsoid at 
whose end-point the tangential plane is parallel to the 
plane of the couple. For the tangential plane of the 
ellipsoid (478) at the extremity of the diameter p : q : r 
has the direction Pp : Qq : Rr as its normal, and by (507) 
this is also the direction of the axis of the couple N, 

§ 150. We next consider the special case where for a 
given initial state the turning moment N of the external 
forces co7npletely vanishes, as, for example, when the body 
is supported at its centre of gravity or when no gravita¬ 
tional force acts at all. Then Euler’s equations simplify 
to : 

P ^ — (§ — i?) gr = 0 . . . (507a) 

We first inquire into the condition that the rotation 
shall always occur about the same axis. Then, as we 
have already seen in § 145, this axis remains fixed both 
in space and in the body, and the rotation takes place 
with constant velocity, in accordance with the principle 
of vis viva. So p, q, r are constant, and, from (507a), it 
follows that : 

{Q - R)qr - 0 

together with the two corresponding equations. These 
three conditions require either that P = Q :=: R—^that is, 
the central ellipsoid becomes a sphere—or, for any arbitrary 
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body, that two of the components p, q, r be equal to zero— 
that is, that the motion occurs about a principal axis of 
inertia—a result which agrees exactly with that derived 
at the end of § 142 in a much simpler way. 

In the general case, with any initial state, the three 
equations (507a) admit of two simple integrations. By 
multiplying by p, q, r and subsequently adding up we get, 
by integrating : 

Pp^ + Qq^ + . . . (508) 

and by multiplying by Pp, Qq, Rr we get in the same way : 

P^P^ + ^ = c'2 . . . (509) 

We easily convince ourselves that (508) expresses the 
principle of vis viva and (509) the principle of sectorial 
areas. For according to the former principle the vis viva 
of the rotation, being the only kind of energy present, is 
constant; that is, by (470) and (480) ; 

ii: = 1 1 (PA2 + 4)^2 + p^2)^2 

= \ + Qq^ + = I' • (510) 

and according to the principle of sectorial areas the 
equations (505) give, on being integrated : 

oiipP -h + ol^tR = c'x 

yipP + y22Q + ys^P — > 

(511) 

By § 137 the constants c'x, o'y, c'z are the components 
of the resultant turning moment with respect to the point 
0, and their ratios c'x, c'y, c'z give us the fixed direction in 
space of the axis of the resultant turning moment, which 
is perpendicular to the invariable plane; and the sum of 
their squares is, by (511) and (509) : 

P2^2 4. ^2gr2 4 P2y2 == c'x^ + c'+ c'- c'^ . (512) 

To determine the velocities of rotation p, q, r as functions 
of the time t, we require in addition to (508) and (509) a 

s 
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third integral; this integral may be obtained without 
sacrificing symmetry by calculating the values of q^, 
from the two equations mentioned taken in conjunction 
with 4. ^2 4. j-2 — thus: 

, QBw^ - c\Q + R) + c'2 

(P-Q){P-R) -■ (513) 

If we now multiply the equations of motion (507a) in 
p q r 

turn by ^ and add, we get: 

dp 
'^di 

dq dr _1 dio^ 
2 dt 

Q-R R-P P-Q 
P ^ Q ^ R 

]pqr (514) 

and by substituting the values of p, q, r from (513) : 

= 2V'(A - (B - 0)2) (C - a>2) . (515) 

where we have used the abbreviations : 

Accordingly o)^ is an elliptic function of t; that is, it is 
periodic, and so, by (513), are the components of the 
velocity of rotation with respect to the principal axes of 
inertia. 

§ 151. There is a geometrical representation, which can 
be easily visualized, of this generally rather complicated 
motion. It is obtained, according to Poinsot, if instead of 
fixing our attention on the body itself we consider its 
ellipsoid of inertia, which is rigidly connected with the 
body and hence rotates with it. 

Let us suppose that at any moment chosen at random 
the axis of rotation is OP', where P' denotes its point of 
intersection with the ellipsoid, the so-called pole of the 



IV. DYNAMICS OF A RIGID BODY 250 

motion,” which has the co-ordinates x\ y\ z* (Fig. 40). 
Then by (478) : 

Px'2 + =1 . . . (516) 

and the direction-cosines of the axis of rotation, referred 
to the axes of the ellipsoid, are : 

x' :y' :z' — \ q\ r^ where = cu^. 

Hence if we set the length of the semi-diameter OP' = 
p, we get : 

q , r 
x'^P. p,y ■= (517) 

and from (516) : 

Pp2 + Qq2 + ^ 

In conjunction with (508) this 
gives : 

o) = cp . . . (518) 

That is, the velocity of rotation is 
always proportional to the length of 40. 
the semi-diameter which happens to 
represent the axis of rotation at the moment in question. 

Further, according to (478) the normal of the ellipsoid 
at the pole P' of the rotation has the direction ratios : 

Px': Qy': Pz' =^Pp :Qq :Rr 

The direction-cosines are themselves therefore, in vii'tue 
of (509) : 

.(519) 
c' ' c' ’ c' 

Thus the normal of the ellipsoid at P' in general changes 
its direction with respect to the principal axes of the 
ellipsoid. But if we multiply these three direction-cosines 
by a^, ag, aa, we get, by (511), a constant—^that is, the 
angle which this normal makes with the unaccented x-axis 
which is fixed in space is constant, and likewise the angle 
with the i/-axis and the 2;-axis. Hence the direction of the 
normal remains fixed in space; by § 137 its direction is 
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nothing else than the normal to the invariable plane; 
this plane is accordingly parallel to the tangential plane to 
the ellipse at P'. 

But still more. The tangential plane to the ellipsoid 
of inertia at the pole P' of the rotation not only always 
remains parallel to itself, but also remains fixed in space. 

For if we calculate its distance h from the point of 
rotation 0 (Fig. 40), we get: 

h = p - cos S 

where 8 denotes the angle between the diameter OP' and 
the normal to the ellipsoid at P'. Hence by (517) and 
(519): 

cosS-'’.^?+ -?.«? +I 
o) C CO C (o 

Rr 
d 

and in view of (508) and (518) : 

A- (520) 

which is constant. 
If we recapitulate these theorems we get the following 

simple picture of the motion. The ellipsoid of inertia 
rotates about its fixed centre in such a way that it rolls 
along on a definite fixed tangential plane (§ 145), the 
velocity of rotation always being proportional to the 
distance of the point of contact—that is, the pole of the 
rotation, from the centre. 

We again observe here that the axis of rotation preserves 
a constant direction only if it coincides with a principal 
axis of inertia, for in every other case the nature of the 
curvature of the ellipsoid forces the axis of rotation OP* 
into ever new positions. 

We shall enter a little further into the question of the 
axes of rotation for the present case by linking up with the 
discussion of § 145. The conditions become clearly 
visualized if we imagine the fixed (invariable) plane to be 
blackened, say, with lamp black, so that it leaves its trace 
where it has made contact with the ellipsoid. Then the 
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black points P' on the ellipsoid define the fixed cone in the 
body, and the points P on the invariable plane which 
have parted with their lamp-black define the cone of the 
axes of rotation which is fixed in space. 

Let us first consider the points P' on the ellipsoid; they 
form the so-called poJhode.” Its co-ordinates x\ y\ z' 
satisfy not only the equation (516) but in virtue of (517), 
(509), (518), also the equation : 

PV2 + (3Y2 + = 1 • • • (521) 

Both equations combined give : 

P(PA2 - l)a;'2 + ^ 1)^'2 + l)/2 ===0 . (522) 

This is the equation to the cone of the axes of rotation, 
which is fixed in the body and which cuts the polhode 
out of the ellipsoid of inertia. It is a cone of the second 
order, and so the polhode is a closed curve in a compact 
form. The shape of the cone depends for a definite body 
on a single parameter, the quantity which by (520), 
(508) and (509), has the value : 

,2 Pp^ f Qq^ -f Rr'^ 
“ P2^2 ^ + ^^2 

. (523) 

To obtain a clear picture we shall choose the notation of 
the principal moments of inertia as follows ; 

P>g>P.(524) 

so that P corresponds to the shortest and R to the longest 
axis of the ellipsoid of inertia. 

Then : 
PA2>1, 1 . . . (525) 

as we easily see from (523). 
Three cases are to be distinguished, according as is 

greater than, less than or equal to -q- 

The corresponding forms of the polhode are indicated 
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in Fig. 41, where the axis of the middle moment of inertia 
Q is to be imagined perpendicular to the plane of the dia¬ 
gram. The polhode consists of two separate parts which 
lie symmetrically on both sides of the centre 0. According 
as is greater than or less than 1, the polhode surrounds 
the jB-axis or the P-axis; that is, the axis of the smallest 
or the axis of the greatest moment of inertia; but it never 
encloses the axis of the intermediate principal moment of 
inertia. In the limiting case Qh^ == 1 the cone (522) 
degenerates into the two planes : 

. [p(p - Q) 
a:' ^ -P) 

(526) 

and the polhode consists of two ellipses which intersect 
each other at the extremities 
of the intermediate principal 
axis of inertia (indicated by 
straight lines in Fig. 41); these 
are the points of contact of the 
ellipsoid with those tangential 
planes which are at the distance 

h == -4= from the centre. 
VQ 

Corresponding to the geometrical conditions just 
described we have the particular features of the physical 
processes. During the motion of the ellipsoid the pole of 
the rotation P' advances on the polhode defined by the 
initial state, but not, of course, in the sense of an ordinary 
motion of a material point on a curve. What moves is not 
the matter of the point P'—for this is at rest at the moment 
of rotation—but rather its property of being the pole of the 
motion. We here again have a good example of the 
concept of motion which was described in § 1. 

If the pole P' is situated initially at the extremity of a 
principal axis of inertia, it remains there for all time, 
corresponding to its property, which has been repeatedly 
established, of being a free axis of rotation. But we here 
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again recognize an essential difference between the behaviour 
of the axis of the greatest and that of the least principal 
moment of inertia as compared with that of the inter¬ 
mediate principal moment of inertia. For if the pole P' 
does not exactly coincide with the extremity of the P-axis 
or the P-axis, but only approximately, it remains con¬ 
stantly near this extremity, since the polhode surrounds 
the axis, as is evident in Fig. 41. But if it deviates from 
the extremity of the Q-axis ever so little, the polhode on 
which it pursues its path carries it to great distances from 
its initial position. For this reason the axes of the 
greatest and least principal moments of inertia are called 
“ stable ” axes of rotation, whereas that of the intermediate 
principal axis of rotation is called an '' unstable axis of 
rotation. 

The curve of the pole of rotation P on the invari¬ 
able plane, which defines the cone of the axes of 
rotation which is fixed in space, is called a herpolhode ” ; 
it is of a more complicated form and, in general, is not 
closed. 

§ 152. Let us now again resume our discussion of the 
general case of arbitrarily given external forces and 
besides inquiring into the velocities of rotation p, q, r also 
inquire into the position of the body at the time t. It will 
often be found desirable to express the position, not in 
terms of the nine direction-cosines, but by three mutually 
independent angles, which, of course, entails a sacrifice of 
symmetry. 

We adopt this method of expression here. First we 
define the direction of the (positive) 2;'-axis by means of 
the two polar angles d (between 0 and rr) and </) (between 
0 and 27r), as in § 32. 

A point on the 2;'-axis at a distance r from the origin then 
has the co-ordinates : 

X r sin 9 cos (f> = r-cx.^ 

y — r sin 0 sin r • P3 

z = r cos 9 = r • yg. 
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Thus : 
olq == sin d cos (f) 1 

P3 = sin 0 sin i • • • • (^^27) 

yg = cos 6 j 

The 2;'-axis having been fixed in this way, the accented 
co-ordinate system can still turn about this axis. Hence 
we define the direction of the (positive) a;'-axis by means 
of the angle 0 (between 0 and 27r), which it forms with a 
fixed direction in the (x', 
projection of the (positive) 2: 

Fig. 42, 

y )-plane, namely with the 
-axis on this plane, reckoned 

in the sense of a positive 
rotation about the 2:'-axis 
(Fig. 42). 

A point P on the 2:-axis 
at a distance /* from the 
origin then has the co¬ 
ordinates : 

a;' == r sin 6 cos if/ = 

y' = — r sin 0 sin i/f = r • yg 
z' ^ r cos 6 = ^ ■ 73 

. and so : 

yi = sin 0 cos ^ | ^^28) 

yg == ~ sin 0 sin i/j J 

These expressions then also determine the remaining 
three direction-cosines. 

For from the relationships (492): 

we get: 
= P273 - p372» p2 = 73°^! 71^3 

ai(l - 73^) == - 7173^^3 ~ 72P3 

ai = sin sin 0 — cos cf) cos ^ cos 0 \ 

Likewise: Pg = — cos ^ cos ^ sin ^ sin ^ cos 0 | (599) 

ag = sin <!> cos ^ + cos ^ sin ip cos 0 j 

Pj = — cos (p sin tp — sin <p cos ip cos 0 J 

Now we may also express the components of the 
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velocities of rotation 17, ^ or 7]', respectively, 
directly in terms of the independent angles 6, ip and their 
differential coefficients with respect to t, say by means of 
the relations (493) or (500). We get: 

7) = sin d sin ^ + cos (/> 

?-cos«!S+^ 
^ dt dt 

/ ■ a ■ 1*^4 ; 
Tf] — — sm o Sin T ^ ~ T 

(530) 

(531) 

Any of the general relations derived in § 147 
used to test and confirm these expressions. 

The three independent angles <^, 6y «/r may also 
be introduced by applying directly Lagrange’s 
equations of motion of the second kind (405) or 
Hamilton’s canonical equations of motion (412); 
but on account of lack of symmetry the resulting 
values are not in a compact form. 

§ 153. Finally we shall discuss an example in 
which a given external force is acting. For this 
we choose a simple symmetrical top^ which is supported 
at a point 0 on its axis of symmetry. We take the axis 
of symmetry, on which the centre of gravity S is also 
situated, as the ;r'-axis, but the upward vertical, as usual, 
as the 2;-axis (Fig. 43). 

If h denotes the distance of the centre of gravity S from 
the fixed point 0, and M the total mass of the top, then 
the external force is : 

may be 

Fia. 43. 

F, = 0, - 0, F. = - Mg. 
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Its point of application is : 

^0 = 2/o = ^0 = % • • • (S32) 

and its moment of momentum : 

JVx = - Mgh%, Ny = MyM^, iV^ - 0 

or: 

Nx' = Mghy^j Nt/ = — Mghyi, Nz' = 0. 

The equations of motion become considerably simplified 
owing to the fact that on account of the symmetry of the 
top P = Q. To integrate them completely we require 
three mutually independent relationships, and as such we 
choose the simplest, namely the third of the equations 
(505), which when integrated gives : 

iViP + y29.)P + 73^-^ = const. . . (533) 

secondly, the third of the equations (506), which gives : 

r = const.(534) 

and, lastly, the principle of vis viva, which here runs, by 
(510) and (357) : 

^ (Pp2 -f. ^ ^ const. 

or, by (532) and (534) : 
P(p^ + + ^Mghy^ = const. . . (535) 

To these must be added the general relationships which 
link up the quantities p, q, r and yg? 73- 

Suppose that in the initial state the top rotates only 
about its axis of symmetry; that is, for Z = 0, let ^ 0, 
g = 0, r == r0, and let the axis of symmetry make an angle 
^0 with the vertical, acute or obtuse, according as the centre 
of gravity S lies above or below the point of rotation 0, 
Then the three equations of motion are ; 

(7iP + 72?)^ + cos 6 • TqR == cos 6. VqR 

r^ro 

P(p^ + q^) + 2Mgh cos 0 =* 2Mgh cos 9q. 
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We now reduce all the variablew to terms of the in¬ 
dependent angles 0, <^, i/f, by replacing and by (528), 
and 'p, r by (504) and (531). It then follows that: 

P sin^ Off) — Rvq (cos Oq — cos 9) . . (536) 

cos 6 • (f -{• tp = Tq . . . . (537) 

P(sin2 0(^2 _{_ 02^ ^ 2Mgh(coH 6q — cos 0) . (538) 

The first and the third equations enable us to calculate 
0 and (/>, and then we can calculate ip from the second 

equation. The elimination of (p from (536) and (538) 
gives : 

A,. cos 00 — cos 0 /.,, , 02 = - -..P-p. --.. . [2Mgh -RV(co3 Oo - CO^)\ . 
P s^r ■ / ^ 

and from this we obtain t as an elliptic integral in 0. 
We shall carry the calculation further for the case, 

which is interesting physically, where the velocity of 
rotation is very great, or, more accurately expressed, 
where : 

ro>> 
MPgh (540) 

since a relationship between magnitudes has a physical 
meaning only when it is independent of the choice of the 
units of measure. 

If we now set : 
0 = 00 + 0'.(541) 

it follows at once that 0' is positive. For, by (538), 6q< 
0; that is, the axis of symmetry of the top is steepest at 
the beginning. 

Hence on the right-hand side of (539) the second factor 
is also positive; that is : 

/Pro2(cos 00 — cos 0) 
P sin^ 0 

< 2Mgh 

or, in view of (540) : 

cos 00 — cos 0 < < 1, 
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that is, d' is small, and therefore, approximately : 

cos Oq — cos 0 = 6'. sin 

Substituted in (539) this gives : 

P sin Of 

which, when integrated, the initial conditions being taken 
into account, gives : 

. . (542) 

Thus the angle of inclination 6 of the axis of the top to 
the vertical fluctuates to and fro periodically between 
its smallest value 6^ and a value very little different from 
it, the period being independent of the acceleration due to 
gravitation. The greater the velocity of rotation of the 
top, the more rapid and the smaller the fluctuations. 

If we now fix our attention on the angle which the 
vertical plane that passes through the axis of the top 
makes with a vertical plane fixed in space, we get for it, 
from (536), (541) and (542) : 

d(l) _ 2Mgh . ^RrJ, 
di ~ Itr^ 2P 

Integration gives : 

, MgJif P . -Z?roA , , 

That is, the axis of the top performs a “ precession,” in 
which its vertical plane constantly rotates in a definite 
sense, with an angular velocity which varies periodically 
from a zero to a maximum value and which is independent 
of the angle of inclination of the axis of the top to the 
vertical. In this case, too, the fluctuations occur the more 
rapidly and are the smaller, the greater the velocity of 
rotation, whereas the mean angular velocity decreases as 
the number of rotations increases. 

The sense of the precessional motion corresponds with 
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the sign of r^. Thus if rQ>0, the centre of gravity S on 

Fig. 43 moves away from the reader. We can characterize 
the relationship between the direction of the gravitational 

force, the position of the centre of gravity, the sense of 
the top's motion and the precessional motion in a manner 

independent of the choice of the directions of the axes by 

the simple theorem that in the precessional motion the 

positive direction of the axis of the top moves towards the 

positive direction of the turning moment due to the 

gravitational force. The latter passes from the front 

to the rear in Fig. 43. 

This relationship of course persists if, in place of the 

force of gravity Mg, any other force F, say a blow, acts at 

any point 8 of the axis of the top. 

A convenient way of visualizing the content of the last 

theorems is to observe an ordinary toy top, which has been 

set into rapid rotation and placed with its lower point on 
the floor so that the axis makes any arbitrary angle with 

the vertical. 

For since the rate of rotation is gradually retarded 

through frictional resistances the different motions that 

correspond to the different values of gradually present 

themselves in succession. At first the axis appears to 

stand almost still, whereas actually it is performing very 

rapid fluctuations of small amplitude both in the direction 

of the vertical as well as perpendicularly to it. It then 
slowly begins to process in the sense above indicated. At 

the same time its inclination to the vertical begins to 

fluctuate appreciably, first only a little and not very 
definitely, but then more and more violently, while at the 

same time the precessional motion becomes more and 

more rapid until finally the axis of the top leans over so 

far that a point on the circumference comes into contact 

with the floor. 
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mean, 10 
of higher order, 10 
uniform, 9 

Action and Reaction, Principle of, 
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Action, function of, 218 
integral of, 218 

Aim, direct and indirect, 43 
Amplitude, 20 
Angriffspunkty 131 
Anti-parallel forces, 140 
Apparent weight, 202 
Archimedes’ Principle, 202 
Areal velocity, 234 
Astronomic unit of mass, 46 
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Attractive forces, components of, 
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Aufpunktf 55 

Bernoulli, 168 
Binormal, 109 

Canonical equations of motion, 
Hamilton’s, 217 
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Centre of gravity, 138, 226 

of mass, 138 
of oscillation, 245 

Chains, 189 
Circular motion, uniform, 33 
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Components of acceleration, 31 
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velocity, 30 
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cylindrical, 174 
impulse, 232 
polar, 49, 78 

Coriolis forces, 94 
Couple, 141 

arm of, 143 
composition of, 149 
moment of, 148 
sense of rotation of, 148 
vector, 151 
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Curvature, radius of, 40 
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Degrees of freedom, 164 
Density, 48 
Dimension, 8 
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Drehungsmomentf 158 
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Einstein, 91 
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Energy, 77, 126, 206 

kinetic, 208 
potential, 187, 208 
translational, 208 
vibrational, 208 

Equilibrium, 65 
stable, neutral and unstable, 65 

Equipotential surfaces, 62 
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Elder’s equations of motion, 255 
Explosions, 227 

Falling bodies, 16 
cat, 235 
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Fixed axis, 173 
rotation about, 173 

FlachschmSf 43 
Force, 13, 14, 35, 36, 38 

anti-parallel, 140 
centrifugal, 94, 104 
centripetal, 40 
conservative, 77 
constraining, 101, 167 
Coriolis, 94 
effective, 102 
external, 199, 226 
instantaneous, 231 
internal, 199, 226 
lines of, 64 
moving, 102 
normal, 40 
objective, 94 
subjective, 94 
tangential, 40 

Free axis of rotation, 241 
point, 101 

Frequency, angular, 20 
radian, 20 

r;, 17, 18, 84 
Galileo, 17 

transformations, 91 
Generalized co-ordinates, 212 

force-components, 212 
momenta, 216 

Geodetic lines, 116, 198 
Geometrical point, 1 
Grad, 61 
Gradients, 61 
Gramme, standard, 15 
Gravitation, 45, 84 
Gravitational unit, 55 
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centre of, 138 
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Hamilton, 209, 210 
canonical equations of motion, 
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Equation, 220 

Herpolhode, 283 
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Impulse moment, 233 
Impulses, 232 
Impulsmoment, 234 
Incomplete Differential, 74 
Inertia, 15 

moment of, 239 

Inertia, principle of, 12 
Inertial mass, 15 

resistance, 104 
Infinitesimal displacements, 167 
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Invariable plane, 234, 260 
Invariant equation, 90 
Isobars, 63 
Iso thermals, 63 

Jacobi, 220 

Kepler’s laws, 84 
Kettenliniet 194 
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Kinetic energy, 77, 205 

potential, 210 
Krdftefrei, 115 
Krummungsebeney 39 

Lagrange’s equations of first kind, 

second kind, 213 
function, 210, 213, 215 
method of elimination, 171, 193 

Laplace’s equation, 67, 68 
Lines of force, 64 
Liquid sphere, 134 
Logarithmic decrement, 24 

potential, 71 

Material point, 1 
Metre, standard, 5 
Moment of couple, 148 

deviation, 241 
inertia, 239 
momentum, 233 
rotation, 160 

Motion, circular, 33 
convective, 1 
corpuscular, 1 
linear, 5 
imder no forces, 115 
uniform, 7 

Neil parabola, 100 
Newton, first law of motion, 12 

law of gravitation, 84, 85 
second law of motion, 13 
third law of motion, 46, 91, 144, 

225 

Orbit, earth’s, 83 
elliptic, 81, 82 

Oscillations, 24 
Osculating plane, 39 

Parabola, 42 
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Parallel forces, 135 
Pendulum, circular, 108 

mathematical, 245 
reduced length of, 245 
reversible, 246 
spherical, 116 

Period of vibration, 20 
Permanent axis of rotation, 241 
Phoronomy, 5, 26 
Planetary motion, 79, 223 
Poinsot, 258 
Point, geometrical, 2 

material, 1 
of action, 131 
application, 149 

Poisson’s equation, 67, 68 
Polar co-ordinates, 49, 78, 213 
Polhode, 261 
Position in space, 26 
Potential, 45, 56 

energy, 77 
function, 65 
gradient, 61 
logarithmic, 70, 71 
Newtonian, 67 

Principal axes of inertia, 242 
moments of inertia, 242 
normal, 39 

Principle, d’Alembert’s, 104, 203 
of Energy, 77, 126, 206 
Least Action, 209, 210 
Relativity, 91 
Sectorial Areas, 79, 122, 234 
Virtual Work or Virtual Dis¬ 

placements, 168, 192 
Vis Viva, 75, 79, 126 

Product, inner and outer, 153 

Range, 42 
Reference-point, 55 
Relative motion, 86 
Relativity, 91, 225 
Resultant force, 21, 37 

moment of momentum, 234 
momentum, 228 

Rigid bodies, 131 
connections, 47 

Ring-shaped surface, attraction of, 
71 

Rolling, 248 
Rotating axes, 93, 95, 124 
Rotating couple, moment of, 182 

Rotation of rigid body about fixed 
point, 174 et seq. 

Scalar, 57 
product, 74, 153 

Screw, 186 
Self-po ton ti al, 188 
Small oscillations, 20 
Stable axis of rotation, 263 
State, 1, 17, 37 

initial, 17, 36 
Statical moment, 152 
Steiner’s theorem, 244 
String, elastic, 190, 191 

Tautochrono, 114 
Top, motion of, 265 -269 
Transformation of co-ordinates, 89 
Translation, 183 
Treibende Krdfte, 101 
Turning moment, 158 

Ilndetormined multipliers, 171 , 
irnstablo axis of rotation, 263 
Upthrust of liquid, 201 

Variations, 168, 169 et seq.y 209 
Vector, 28, 151 

absolute value, 28 
acceleration, 32 
components of, 28 
magnitude of, 28 
product, 153 

Vectorial sum, 38 
product, 153 

Velocity, 7, 8 
mean, 7 
vector, 31 

Vibration, centre of, 245 
Vibrations, 111 

infinitesimal, 119, 120 
Virtual displacement, 168 
Vis Viva, 72 

principle of, 75, 79 

Weight, 15 
Wirkung&vorrat, 76 
Work, 72 
Wurfhohe, 42 
Wurfweite, 42 

Zwangkraft, 101 
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