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PREFACE 

For some time it has been recognized that by applying the 

Laplace Transformation 
00 

f(p) = J e-3'>F{t) dt, p>0, 
0 

to the differential equations previously treated by the Heaviside 

Operational Calculus a substitute for these operational methods 

can be obtained. It is simple and effective. Its principles are 

easily understood and its technique quickly learned. The diffi¬ 

culties and obscurities of the work of Heaviside and his suc¬ 

cessors are avoided. 

It is tlie object of this book to describe this new method and 

to show its use in various branches of applied mathematics. 

Chapter I deals with ordinary linear differential equations 

with constant coefficients. In the next two chapters the methods 

established in Chapter I are applied to Electric Circuit Theory 

and Dynamics. These three chapters require no more than the 

usual knowledge of the Differential and Integral Calculus. 

In Chapter IV a more advanced method is given for passing 

from the Laplace Transform to the function of which it is the 

transform. This requires some knowledge of the elements of 

the Theory of Functions of a Complex Variable and the simpler 

ideas of the Calculus of Residues. It provides a convenient 

means of verifying that the solutions obtained in the previous 

chapters, subject to certain assumptions, do, in fact, satisfy all 

the conditions of their problems. 

In Chaj)ter V this method is extended to certain types of 

partial differential equations. The remaining chapters are de¬ 

voted to its aj)plication in various branches of mathematical 

physics. These chapters are independent of each other. The 

reader interested in a particular subject need only study the 

chapter in which that subject is discussed. 

There are numerous examples for solution at the ends of the 

earlier chapters and a collection for partial differential equa¬ 

tions at the close of the book. 
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HISTORICAL INTRODUCTION 

1. Heaviside (1850-1925) originally devised his Operational 

Calculus for the solution of ordinary linear differential equa¬ 

tions with constant coefficients and some of the partial dif¬ 

ferential equations of applied mathematics. 

To take a simple example, suppose we have to solve the 

equation 

r/"x , d”-~^x , , dx , 
d- --L Q-.J_ ^ -.j- -j_ d ^ 1, <> 0, (1) 

where a^, are constants and 

dx d^x 

d(^ 

are zero when t -- 0. 

Heaviside replaced didt by p and obtained the algebraical 

(2) 

equation 
(f>(p)x 1, 

where 

He regarded p as an ‘operator’ and his ‘operational solution’ 

of the above problem is 

X==~, (3) 

1 
or, more precisely, x “ H{t), 

<f>(p) 
(4) 

where H{t) is a function of the time,t zero when t < 0 and 

unity when t > 0. 

This ‘operational solution’, when <f){p) is a polynomial in p, 

he interpreted by certain rules, of which the most important is 

the ‘Expansion Theorem’: 

Lei jOj, J92VI Pn algebraical eqmtion cf>{p) = 0, 

supposed all different and none of them zero. Then 

t Heaviside wrote 1 for this ‘ unit function *, His initial conditions are always 
those of equilibrium. 
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Another interpretation he obtained by expanding l/(/>(p) in 

a series of ascending powers of 1/p. In the above case this will 
be of the form , , 

and this operates upon H(t), 
1 r 

Heaviside regarded -H(f) as equivalent to H{t)dt, i.e. t, 
P J P 

u 

1 
and he found — H(t) by integrating n times to be 0) 

Thus the operational solution x 

actual solution 

_ 
"" ^iP) 

fn+l 

n+1 

H{t) in (6) gives the 

(8) 

Both these rules for solving the equation (1), with its given 

initial conditions, can be justified, but Heaviside was not much 

concerned with a rigorous proof. That they gave the correct 

results seemed to be enough for him. 

2, However, when he came to deal with partial differential 

equations, the matter became more obscure. His method can 

be followed most easily by taking the equation of conduction 

3v 3^v 
of heat, — — K —~, which is the same as that for current flow 

dt dx^ 
along a cable. Many of his problems deal with this equation. 

For example: suppose we have to solvet 

a; > 0, ^ > 0, 
dv __ d^v 

dt ^ dx^' 

== 0, when ^ == 0, x > 0, 

— 1, when = 0, ^ > 0. 

(1) 

(2) 

(3) 

Heaviside writes p for djdt and replaces these equations by 

d^v 
dx^ 

and 

0, a;>0, {q^ 

V = 1, X = 0, 

■■ pIx)> 
(4) 

t Heaviside, Electromagnetic Theory (London, 1899), 2, 34. This work will 
J^e referred to aa E,M.T, 

4696 b 
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The ‘operational solution’, derived from the solution of the 

ordinary differential equation (4), is 

V == (5) 

(6) 

Now it is knownf that the solution of this problem is 

0 

Comparing (6) and (8), Heaviside obtained his interpretation 

of qH(t)y q^H(t), etc. 

The simplest, and the one he was most concerned with, is 

that of qH{t). To obtain this he compared the values of dvjdx 

w^hen X = 0, obtained from (6) and (7), This gives 

qH{t) = 

i.e. his ‘fundamental formula’ 

pm(t) (9) 

From this by differentiation he obtained p^H{t) and so on up 

to H(t), when n is a positive integer, and 

(10) 

As for p'^H(i), when n is a positive integer, this he took to 

be zero, since originally he had written p for djdt. 
These successive interpretations agree with the equations (6) 

and (8) above. 

t Carslaw, Condition of Heat, 2nd ed. (London, 1921), p. 35. This work 
will be referred to in future as 
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Fox —H(t) we have already seen that his interpretation was 

t^jn\, i.e. 

when n is a positive integer. (11) 

Now Heaviside regarded ~//(O as equivalent to ^ so 
V V 

that by the integration of he obtained for it 

i.e. 

Integrating again and again he had 

' Vuvi (12) 
!'(/?,+--|) 

It will be noticed that (11) and (12), obtained by different 

methods, have the same form. 

3. Having thus given definite meanings to these ‘operators’, 

Heaviside considered liimself justified in using his method 

freely. 

For instance,! he required tlie solution of 

dv c-v ^ 
-~:z K X :> (jy t > 0, 
dt dx^ 

(1) 

with rrr: 0, Whcil t ^ 0, X 0, (2) 

and — ~ when X == 0, t > 0, 
bx 

(3) 

k being a constant. For these lie has the operational equation 

— == 0, T > 0, (q^ =-- pIk), ) 

(4) 

with 

Thus the operational solution is 

V ™ I 
h+q ^ 

h+q 

t E.M.T. 2, 14. 

or, more precisely, 
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First he wanted v forx — 0 and t > 0. The operational solu¬ 
tion is 

V = 

h+q 

q q~ 
Hit). = H/j 

? I 

Then, from §2(12), we have 

\ TT \ 3 3.5 / 

But we can also WTite (6) in the form 

V — 

Therefore, from §2(10), 

1 1.3 

TT^(h^Kt)i~^ 27r^h^Kt)'i 2M(/?;^/cO^ 

(6) 

(7) 

w 

(9) 

(10) 

The series (8) is convergent, but (10) is an asymptotic expan¬ 

sion. They are, in fact, the values respectively of 

V ? \,[ 1 — -j- erf{h \VO} 1. 

first as a convergent series and second as an asymptotic expan¬ 

sion, and they arc the known resultsf ])y orthodox methods for 

tliis problem. 

The solution for v for any positive x can be similarly obtained. 

4. One other example from Heaviside’s w^orkj will be given, as 

it illustrates his use of the Expansion Theorem when ^(p) has 

an infinite number of zeros. 

To solve 

c'v r-?? 
0 < 

A
 

V
 (1) ct cx*- 

V ^ 0, when t = 0, 0 < X < 1, (2) 

V =.1, when X — o.\ 
(3) t' = 0, w’hen X = 

6
 

A
 

t r.//., p. 52. t E,M,T. 2, 139. 
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He writes this operationally as 

— ^ = 0 dx <h 
dx^ 

V = I, when x — 0, 

V = 0, when x ~ 1. 

Thus the operational solution is 

V ~ 

^\xi\\q(l—x) 

sinh ql 

and the Expansion Theorem, § 1 (5), givesf 

niTX l-~x 2 1 . 
—f-> - SI 

/ TT ^ n 
_£!“/<■( 

I 

(4) 

Heaviside attached great importance to tlie Expansion 

Theorem. As he says in another connexion,J ‘it goes straight 

to the final simplified result’: and again,|| its ‘use, even in com¬ 

paratively elementary problems, leads to a considerable saving 

of labour, while in eases involving jiartial differential equations 

it is invaluable'. It is significant of his position, however, tliat, 

though he does give a sort of discussion oi' the theorem in the 

case of systems with a finite number of degrees of freedom, he 

])asses over altogether the question of its applicability in con¬ 

tinuous systems. 

It is doubtless because of the obscurity, not to say inade¬ 

quacy, of the mathematical treatment in many of his papers 

that the importance of his contributions to the theory and 

practice of the transmission of electric signals by telegraphy 

and telephony was not recognized in his lifetime and that his 

real greatness was not then understood. 

5. Bromwich (1875-1030) was the first to explain, and to a 

certain extent justify, Heaviside’s methods. He made use of 

the Theory of Functions of a (‘omplex Variable. 

t This agrees with the known result: C.//., p. 67. 
X E.M.T. 2, 147. 
tj Electrical Papers, 2, 373. 
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He saw that the solution of the problem stated in § 1 is 

given by 

* (1) - f 2in J 
y-1 CO 

dX 

my 
the integral being taken along the line E{X) ^ y in the A-plane, 

y being real and positive and such that all the roots of (f>{X) -- 0 

lie to the left ol‘ the line A -- y. 

This integral can be replaced by 

a 

where the path is any circle C, with its centre at the origin and 

the zeros of <^(A) all inside its cm^uniferencc. 

In this form it is easy to show that x satisfies all the condi¬ 

tions of the problem. The Expansion Theorem for this case and 

the solution in a series of ascending powers of i follow directly 

from (2). 

The interpretation of Heaviside’s operational solution 

- H{t) is thus 
</»(/>) y+ir. 

\ r dX 

2irr J X<j>{Xy 
y — t CO 

when (/>(p) is a polynomial. 

Bromwich extended this work to the case when instead of 

unity on the right-hand side of the equation we have a function 

of t (e.g. and also to the case when x, dxldt,..., d^^~^xldV^~'^ 

have given arbitrary values when t ■=-- 0. 

He discussed fully the solution of a system of simultaneous 

equations and showed that the operational method applied 

there in the moat important cases. He found, too, that it could 

also be used in particular problems for certain partial differential 

equations, but he was unable to give a general i)rpof for such 

equations, nor has any yet been given. 

His method consisted in finding a solution of the given 

differential equation and the initial and boundary conditions 
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in the form of a complex integral over a suitable path. The 

choice both of the integrand and the contour is not always easy. 

His many pa})ers and the exposition of his methods and their 

development by Jeffreys in his tract, OperatioTuil Methods in 

Mathematical Physics (ed. 1, Cambridge, 1927), did much to 

extend their use. They have since been popular with engineers, 

and books have been written by engineers giving an exposition 

of the Operational Calculus supposed to be suitable for their 

needs. This exposition cannot be said to have been satisfactory. 

Results which have been established for a particular case are 

often extended, by analogy, to a more general without justi¬ 

fication : and proofs of important theorems are frequently quite 

inadequate. 

After Bromwich, Carson contributed substantially to the 

theory.! He showed that for the ordinary differential equation 

treated in § 1 the relation between the expression l/<^(p) and the 

function x{t) is given by the equation 

/«-«*(()<((. (3) 

On this result the treatment given in his important book is 

based. But, while he established this relation for the particular 

case referred to, he assumed, quite without proof, that it holds 

in general. 

Van der Pol in 1929 gave a simpler proof of Carson’s formula 

for the ordinary differential equation with constant coefficients 

and extended it to the case when x, Dx,..., take arbitrary 

values, when ^ = 0. His method is quite elementary and in¬ 

volves multiplying the given equation by (p > 0) and 

integrating with respect to t from 0 to oo. 

Before Careon and van der Pol, however, Doetsch had been 

using the same idea,J though he multiplied|| by instead of 

t Cf. Carson, J. R., Electric Circuit Theory and Operational Calculus (1926). 
t See Doetsch, G., Theorie und Anwendung der Laplace-Transformation 

(Berlin, 1937), for the literature. 
j| It will be found that, if the multiplier pe~t^^ is used, the solution of the 

‘ subsidiary equation ’ obtained by this process is exactly the same in form as 

the Heaviside operational equation; if the multiplier is used they always 
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In the language now customary, he applied the Laplace 

Transformation 
00 

f{p) = J e-P'F{t} dt, p>0, (4) 
0 

to the differential equations of his problems, including the 

boundary conditions if any. He also made an important change 

in introducing a new symbol in the 'subsidiary equations’, as 

the operational equations are now frequently called. Heaviside, 

Bromwich, and their successors used the same symbol, e.g. x in 

the problem of §1, both in the differential equation, where it 

stands for a function of and in the 'operational equation’, 

where it is a function of p. 

Finally, he recognized the value of the 'Inversion Theorem’ 

which states that (subject to conditions on f{p) or F{t)) the 

solution of (4) can be obtained in the form 

y-\-i 30 

^’(0 = — J e^fiX)dX. (5) 

y-i<x) 

This point of view has the advantage of bringing together the 

methods of Bromwich and Carson. Carson’s method reduced 

the solution of the problem to that of the integral equation (3); 

Bromwich’s method consisted virtually in constructing a com¬ 

plex integral solution of type (1) of the original problem. (1) and 

(3) are connected by the 'Inversion Theorem’, so the two 

methods are complementary. 

It is substantially Doetsch’s method that is followed in this 

book, with some modifications when dealing with problems in 

partial differential equations. 

differ by a factor p. It vras to preserve this correspondence with the Heaviside 

solution that van der Pol used the multiplier but we have preferred, 

following Doetsch and writers on the Mathematical Theory, to drop the extra 

factor p which has no mathematical significance and sometimes complicates 

the algebra. 



CHAPTER I 

ORDINARY LINEAR DIFFERENTIAL EQUATIONS 
WITH CONSTANT COEFFICIENTS 

1. Suppose we are given the equation 

d^x d^'-^x 
4+ — -^(Oi ^ > 0, (1) 

where %, are constants, and we require the solution which 
has 

(^x 
Xf), Xj,..., x-i for the values of x, -j-,..., -5—when t = 0. 

dt dt-^ ^2) 

Write as usual Dx for dx/dt, D^x for d^^^xjdt^y etc., and let 

When the roots of <f>(D) = 0 are known and F(t) is such that 

a particular integral can be found by the usual rules, the 

customary method of solving the above problem would be to 

write down the complete solution with its n arbitrary constants 

and then obtain the values of these constants from the n equa¬ 

tions giving x, Dx,,.., when ^ = 0. We shall now give 

another and simpler method. 

Multiply (1) by where jp is a positive constant, and 

integrate with respect to t from 0 to oo. 

Now 

00 CO CO 

e-^Dx dt = +p I e-p^x dt — j* e-^x dt, 
0 0 0 

00 

assuming that lim == 0 and that | e~^^x dt exists when 
^~»•oo 0 

p is greater than some fixed positive number, t 
Again, 

OO 00 «) 

J dt = [e-P^Dx"^ -\-p J e~P*Dx dt = —Xi+p J e-^^Dx dt, 

0 0 0 
00 

t A similar assumption is made as to J e~^*F{t) dt. 
0 

4605 B 
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assuming that lim = 0. 

OO 00 

Thus J dt = —{pxQ+x^-\-p^ J dt. 
0 0 

Proceeding in this way, and with similar assumptions as to 

lim etc., we obtain 
<—►00 

00 

J e-J>^iyxdt = —(l3’’-%+l>’'"*a;i+--+iJa;,-2+*r-i)+ 
0 

00 

+P'’ J T ^ n, (4) 
0 

Therefore in place of (1) and (2) we have the equation 

00 

<f>(p) j e-P‘xdt = (jJ’‘-*a;o+l)’‘-*a:i+...+l)a;„_24-3:„_i)+ 

+ai(j2»-%+jp«-»Xi+•. • +l>a;„_3+x„_2)+ 

+a„-2(j’a:o+a:i)+ 

00 

4- J e-p*F(t) dt. 
0 

(5) is called the ‘subsidiary equation’ corresponding to the 

given differential equation and initial conditions. It will be 

noticed that, in forming it, on the left-hand side of (1) we 
00 

replace if>(D)x by <f>(p) J e~^^x dty and on the right-hand side 
0 

corresponding to a^^^Dx we write 

corresponding to we write an~2(2^^o+^i)* 
corresponding to a^^^D^x we write 

and corresponding to D^x we write 

00 

To these we add J e-^F{t) dt. 
0 
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2. Our problem is now reduced to finding a value of x which 

satisfies the ‘subsidiary equation*. 

As a simple example, consider the equation 

(D+l)x^h t>0, (1) 

to be solved with x = 0, when ^ = 0. 

The subsidiary equation, § 1 (5), is 

Thus 

But 

and 

ou 

(p+1) J e-^x dt 

00 

J dt 
0 

i=j 
p j 

1 

p' 

I 1 

p p-\-i 

e~^dt, p > 0, 
0 

00 

P+1 
= J c-Hp+IV ^ 1 ^ 

(2) 

It follows that (2) is satisfied by x = 1—e"^. 

In §§6, 7, 8 we shall work out a number of examples, F(t) 

being zero, a constant, cos at, sin at, r, where r is a positive 

integer, sinbt, cosbt, V cosat, or Vsin at. In all these 

cases, on dividing the subsidiary equation § 1 (5) by (f>{p), we 

have an equation of the form 

where g{p) and h(p) are polynomials in p, the degree of the 

former being at least one less than that of the latter. 

We then, by the usual rules, break up g{p)jli(p) into its partial 

fractions, and by the help of a few known definite integrals, 
00 

express each of the fractions in the form J e-^^^u{t) dt. The 
0 

required solution of (3) can then be written down at once. 

Very few definite integrals are, in factj requii'edf these, and 

the technique of manipulating them, can be most easily ex¬ 

pressed in the Laplace Transformation notation, which we shall 

now describe. 
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3. We shall frequently write x(t) for x to emphasize its depen* 

dence on t. We write always 

00 

x(jp) “ J dti 
0 

and x(p) is called the Laplace Transform of x{t)] p is supposed 

to be a real positive number large enough to make the integral 
converge. I 

Table If 

ao 
x{p) “ J e~^*x(l) dt x{t) 

0 

1 
1 (1) 

V 
1 

pn , n a positive mteger (2) 

1 

p~a 
p > R(a) (3) 

a 
(4) p^-\~a^ 

sinaf 

P 
a* 

cosa^ (5) 

a 
p^—a^ 

sinha^, p > \ci\ (6) 

V cosha^, P > |o| (7) p^~a^ 

P t . 
— sm at (8) 

(pM-a*)* 2a 

1 
^ (sin at--at cos at) (9) 

In Table I are collected the only Laplace Transforms which 

will be needed in Chapters I-III; a fuller table is given in 

Appendix V. 

Of these, (1) to (7) are elementary definite integrals; (8) and 

(9), which are occasionally of use, are given to illustrate the way 

in which the table may be extended by differentiation with 

t Thus, if x(t) — we must have p > a. Of course, if there is no such p, 
e.g. if x{t) ~ the Laplace Transform does not exist. 

% The parameter a is real except in (3) when it may be complex. 
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respect to a parameter. Thus, to derive (8), we take the full 

statement of (6), namely, 
CO J e-’^coBat (it= 

p^+a 2* 

Differentiating both sides with respect to a, we obtain 

j t sin at dt 
2ap 

(p^+a^)^' 

which is equivalent to (8). Similarly, from (4) we obtain (9). 

Proceeding in this wayf we may obtain the function x{t) 

whose transform f(n) is a function of type where r is 
(p^±a^Y 

a positive integer and A and B are constants. 

The following simple theorems are of great importance. 

Theorem I. If x^{p) and x^{p) are the transforms of x^(t) and 

X2(t)y then Xi{p)i:X^(p) is the transform of x^(t)±X2(t). 

The proof is obvious. 

Theorem II. If x(p) is the transform of x(t) and 

lim e’~P^x(t) — 0, 
<—►00 

then px('p)—x{0) is the transform of dxjdt. 

For 

J "1"^ J — px(p)—x(0). 

0 0 

Theorem III. If x(p) is the transform of x(t) and 

lim J x{t) drj == 0, 

1 r 
then -x{p) is the transform of x(t) dr. 

P i 

t This method of differentiating with respect to a parameter to find new 
transforms may be condensed into the following statement; 

If £{p, c) is the transform of x{t, c), where c is a parameter, and, if ^(u) is 

a polynomial in u, then 

c) is the transform of ®)* 
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For 

-\l"i 
x{r) dr 

-t 00 r ^ 

-*0 0 ^0 

x(t) dr dt 

CO 

i r e-^^x(t) dt. 
P J 

As an example of the use of this theorem, on applying it to 

(4) it follows that, if x(p) = 

t 1 
x(t) = f sinardr = -[1—cosa^]. 

j d 
0 

Theorem IV. If x{p) is the transform of x{t)y and p-\~a > 0, 

then x{p-\-a) is the transform of e~^x(t). 
CO 

For, if jp+a ^ J e-^^e-°^x{t) dt exists and is x{p-\-a). 

This result is very useful in practice, for it makes it possible 

Ap-^B 

{p^-)r<^p-\r^Y' 
where r is a positive integer, by simply completing the square 

in the denominator. E.g. 

(2)+2)-|-6 

to write down the function whose transform is 

(i) x(p) = . 
3}*+4p+5 (l)+2)*+l 

Then, by (4) and (6) and Theorem IV, 

x(t) — c“*'(cosi-|-6sin<). 

(ii) x(p) == 
2p-\-Z 2(^)+2)—1 

(p*+4p+8)* [(p+2f+if 
It follows from (8) and (9) and Theorem IV that 

x{t) = |te-*‘8in2<—^~“(ain2<—2tcos2<). 

(iii) It follows from (2) and Theorem IV that, 

1 ,.v 

of which (3) is ihe case » = 1. 

then x{t) 
(n-i)!’ 

(10) 
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Theorem V. If x{p) is the transform of x{t), then 
a > Oy is the transform of the function X(t), where 

X{t) = 0, 0 < ^ < a, I 
= x(t—a), t > a, j 

For 
00 00 00 

J e^^^X(t) dt = j e^^x(t—a) dt = j dt = e^^Px(p). 
0 a 0 

The next two theorems are given here for completeness. 
Proofs of them are relatively difficult; that of Theorem VI is 
given in Chapter IV, §33, and that of Theorem VII in Ap¬ 
pendix I. 

Theorem VI. If x^{p) cind x^j^p) are the transforms ofxi{t) and 
t 

X2(t), then Xi(p)x2(p) is the transform of j Xi(T)x2(t—r) dr, and this 
0 

t 

is equal to J x-jft—T)x2{T) dr. 
0 

Theorem III will be recognized as the case xff) == 1 of this 
result. 

Theorem VII. If two continuous functions x^it) and X2(t) both 
have the same Laplace Transform x{p), then they are identically 
equal. 

This is a special case of Lerch’s theorem, Appendix I. Its 
importance is obvious, for it ensures that if, from a known f (p) 
(for example, that which we obtain from the subsidiary equa¬ 
tion), we find by any means, e.g. from a Table of Transforms, 
a continuous function x{t) which has x{p) for transform, then 
x(t) is the unique continuous function with this property.! 

4. In §1 we derived from the given differential equation and 
its initial conditions, and subject to certain assumptions, the 
Laplace Transform x{p) of its solution. If F{t) is one of the 
simple types of function mentioned in § 2, its Laplace Trans¬ 
form, which appears in the right-hand side of § 1 (5), may be 

t It follows also from the full statement of Lerch’s theorem (see Appendix I) 
that, if we find from x{p) (e.g. by the use of Theorem V) a function x(t) with 
only ordinary discontinuities, which has x(p) for transform, then x(t) is the only 
function of this type -with x(p) for transform. 
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written down from Table I and we obtain x(p) in the form of 

a quotient f(p)lg{p) of polynomials, in which the degree of the 

numerator is at least one less than that of the denominator. 

To findf x{t) in such cases we need only break up x{p) into 

its partial fractions and then write down from Table I the 

functions of which the partial fractions are the Laplace Trans¬ 

forms. 

If g{p) is of degree n and has zeros ag,..., a^, all different, 

this may be done by using the formulaj 

9(p) ^^ip—otj.)g'((Xry 

Then we obtain from § 3 (3) 

= 2 
r==l 

g’M ■ 

(1) 

(2) 

If g{p) has some repeated zeros, the ordinary algebraical 

methods must be used. 

It frequently happens that some of the zeros, though all 

different, are complex. In this case we may either express x{p) 

in partial fractions with linear (complex) denominators, using 

(1), and subsequently combine conjugate terms in (2) in order 

to get a real solution, or we may express x{p) by the ordinary 

methods in partial fractions with real quadratic denominators 

and use §3 (4)~(7), possibly with Theorem IV. 

5. In the discussion above it has been assumed that the func¬ 

tion X has certain properties, e.g, 
00 

lim e-^z = 0, Jim e~^Dx = 0, etc., ajid f e~^x{t) dt exists, 

BO that, even if we assume Theorem VII, namely, that there is 

t In Chapter IV an entirely different method of finding x{t) from x{p) is 
given. This involvee the use of an inversion formula and the methods of the 
Theory of Functions of a Complex Variable. Examples of its use in problems 
on ordinary differential equations are given in Chapter IV, and all the problems 
of Chapters I-III may be solved in this way. But, in our view, the method 

given above is simpler. 

X Cf. Gibson, Treatiae on the CaJculua (1906), § 120. 
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only ot»e function ,r{f) corresponding to .r(p), there remain gaps 

in the argument. 

It is therefore necessary to verify, without using the assump¬ 

tions referred to above, tliat the x(l) we have oi)tained does 

satisfy the given differentiai ecpiation and ij]itial c‘onditions. 

For differential eciuations of this ty])e and for a w ide range of 

functions F{f) this verification may be ])crformed using no more 

than the elementary mathematics of this (‘[iapler:t but it is 

rather tedious, so we postpone the verificatioii to ('hapt(‘r IV" 

w'here it is sliortened by the use of tfie methods of 1 lie Theory 

of Fumdions of a (V)m})iex Variable. 

6. Exaiiiplefi in trhich F{f) ^ d. 

Ex. 1. (/F i i - 0, t -0. ) 

/Ar (Mjual to and when / - 0. / 

The subsidiary efjnation is 

(/>"-] 3p + 2)J- --- .r,) I 3p,- 

('^’i ! I ^ .pj { j'j 
(phl)(pl 2) pi ] ' pi 2 ■ 

Therefore .r 

Ex. 2. />2(/;-l).r-M), f : 0. \ 

,r, lKi\ JPx ecpial t-o .r,„ and .r.,, wIhu) / - - 0. ) 

Tl)e subsidiary erjualion is 

ir{])-l)rc {p-Ji i p^r^-+x^)-ip,}\r\ -^ i)- 
Hius 

r . i. 
-■ 2> ^ r ^P~^' 

Therefore x (x^^ - .r.^)4 (x^- x,y)ti x^ d. 

. Ex, 3. [(/> -n)" |-6").r - (», / 0. 

.T, l)x e(]ual to and x^, when t 0. 

The subsidiary equation is 

f »Soo DoetHfii, lo<’. ciL, cha])tpr 

O 4695 
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Thus 

Therefore 

X ^ I _ 

X ™ j^XoCos6^+^^--^—sinftfje^ 

Ex. 4. ilJ^~-2D+2)(D^+2D~-3)x =r- 0, t > 0, 

i.e. {D^~bD^+\{)D—%)x ^ 0. 

X, Dx, D^x, D^x equal to 1, 0, 6, and —* 14, when t — 0. 

The subsidiary equation is 

(p’^—2p-\-2){p*^-\-2p—3)x 

--- p^XQ-\-p^x^+px^~\-x^-~b{pxQ+x^) -f- lOXf^ 

Thus 

-3 p^j^2)^4. 

p^-j-p~4 p 2 
2jp + 2)(^)24„2jj —3^ 2p + 2 —3 

Therefore 

^(/>~1)+1 2 

X ~ e/(cos^-fsin/) —c“^sinh 2L 

7. Examples in which F(t) constant. 

Ex. 1. {D~-l){D-2){D-~3)x 1, ^ > 0. | 

X, Dx, and D^x zero, when ^ ~ 0. f 

The subsidiary equation is 

(p-l)(p—2)(p—3)z== 
p 

Thus 

pJp-\){p-2)(p-3) (>p'^2(p-\) 2(^-21+6(27-3)' 

Therefore x = ~ J + 

Ex, 2. [(D—a)2-f ™ 1, > 0. \ 

x, Dx equal to zero, when t ^ 0. f 

The subsidiary equation is 

[(p—aP+b^]£ ^ 
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Thus 

X _1 _ 1 n 5^ —2a \ 
2i(p~ciy^+fy^] a“+621;? 

1 (1 p~a 1 

Therefore X -- COS 6^— 
b 

Ex. 3. Z)(J9-l)2.r 4, ^>0. 

X, Dx, D^x equal to 1, 2, and ~2, when t - 0. 

The subsidiary equation is 

4 
^(^>-1)2.^ {}rx^+pxT^+x.)-~2{px^-^ 

^ + (;j2+22)-2)-2(;?+2)+1 
P 

p^—ri])-\-4 

P 

Thus f ^ P^-ryp + ^ _ 3 4 _ 2 
^ p^^{p-\y^ ^ P\P~V) ^ p^p^- p~v 

Therefore x — 3+4/~-2c^. 

8. Examples in which F(f) is of the following types: sin at 

cosat, V, and f sin at or t^ cosat {r a po^sitive integer). 

Ex. 1. (/)2-3i)+2)a‘ -= t > 0. 

x, Dx are Xq and x^, when t ™ 0. 

The subsidiary equation is 

1 

a r/: 1 or 2. 

Thus 

{2r-^p+2)T 

1 

2)—a 
-(pa?o + a-i)-3a-o. 

+ 
(p-a){p-\)(p-2) {p—\)(p~2 

1 

(a—l)(a—2)(^~a) 

or 
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'J’Jierefore 

Ex. 2. {l)--U)+2)x r- e!, t 0. 

X, Dx zero, when / “ 0. 

Tlie subHidiary equation is 

1 

1 1 

(p ^~\)(p~-2)x 

Thus .? 
1 1 

(y> -!)-(/>---2) y>-2 p~\ , 

Tlicreforo x - (/ j \y.X '* 

Ex. ,*]. : a cos 7//, t , ^ 0. 

X, Dx equal to x^^ and when / -- 0. n --P in. 

The subsidiary ecjuation is 

(//“-f7y/-).r -- a J e ~^'U‘X)Hrit dI 

0 

Thus 

ap 

jr p?r 
+px,P 

/^ / V_P \ 
7“ - /r \]i~ ] ir p" [- nr I 

.. I + r'"-+ 
\^7" ] ir p- I nrj jr \~nr p^ in' 

There lor e* 

X 
(t x 

(cos 7?/ — cos vii)~\ x^y eos vit )- sin 7/d. 
iir-tr III 

Ex. b {7/*^ 4 7/.“).r a sin 7//, t > 0, 

.7’, Dx ('qiial to and .r,, wlien t ~ o. 

1lie .subsidiary (‘quation is 

r (iTi 
()j- \ ir)x (I e-"'sii»?/7 (// -j-ipx^+Xi) = + ! -'i 

J 7>“4-7r 

Tlius 

Tliei'croi'c 

A' 

0 

X 
an px,, 

// “)- p- + n “ p^ 4 - K - 

^ ^ si 117/ / — / eos 7/f- eos n t + sin 7/ b 
/ Hn \n 

Ex. 5. D{D -I )X f (J 

X, Jlv equal to 0 and 1, when / — 0 
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The subsidiary equation is 
CO 

'p{p—\)x = f e-H~dt +1=4 + 1. 

Thus 

Therefore 

Ex. 0. 

2)^+2 __ 3 2 2 2 

p\p — i) p—i p^ p^ 

[IP 1-1 ).r ~ i/V, ^ > 0. ) 

X, Dx, J)-x zero, when / 0. j 

3 

V 

The subsidiary equation is 

13 

(pH 1).? - i J' dt = -J---, p > 1. 
0 ) 

Tlius 

1 

_ I _ 3 ,3_i_ 

“ 2(p--\f 4(i>- I f + H(p-i) 24(p+l)“Sfd.I I■ 

Therefore 

X ~ -J - iy~- J{cos 1 v3/ - v3 sin I\3t]e^^. 

Ex. 7. (//““f l):i’ = / cos 2/, / > 0. \ 

X, Dx zero, when / ^ 0. j 

The subsidiary equation is 

1 H 
(a^+l);i; — f i:o!i2t dt = - 

Thus 
. _ 1 8 

1/j.._ A.q_ 
3\^>2+l P^+V 5 . r, , 

9ja2+l ’ 9 2/H4 3 0)M-4)‘ 

8/1 3 1 

(A'+i)- /'' I 4 

Therefore 

g sin /+jl si n 2/ + ^ [ .^ s i n 2/—/ cos 2/ ]. 
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9. The method can also be used for the solution of simultaneous 

ordinary differential equations with constant coefficients. Sup¬ 

pose, for example, that we have to solve the system of n second- 
order equations 

^ ~ ^ ~ ij 2,,.., It, 
s - 1 

where 

and, when t ~ 0, 

Dx^ ^ v^, r — 1,..., n. 

Proceeding as in § 1, we find the subsidiary equations 
^ — w 
1 Prs'^s = I + T = 1,..., «, 

fi ^ 1 1 
where j)„ = 

Solving, we obtain and then, in the usual way. 

In Chapter IV we shall verify that the values of x^,..., 

thus obtained do, in fact, satisfy the given differential equations 

and the conditions when I = 0, provided that the determinant 

A = Wj, Oj2 . . aj„ 

^21 ^22 • • ^2n 

• • ^nn I 
does not vanish. 

The case A ~ 0 will not be discussed here as it is difficult 
and not of much practical importance. It will be seen that 

when ^ “ 0 a differential equation of lower order can be 

obtained by linear combination of the equations of the system, 

and this implies connexions between the initial conditions. 

Clearly the same difficulty may arise when the equations are 

not all of the same order. Particular examples, in which the 
Fj.(t) are all zero, may be dealt with as in § 10, Exs. 3 and 5. 

10. In the examples of this section Xq, x^, j/q, will be used 
for the values of x, Dx, y, Dy, when t == 0. 

Ex, 1. 2)x-j-Dy =1, ^ 0. 

Dx+\4:D+3)y ™ 0. 

OTj, = 2^0 0. 



WITH CONSTANT COEFFICIENTS 16 

The subsidiary equations are 

{Zp-\-2)x-\-py = 1, 
P 

px-\-{ip-^Z)y = 0. 
Therefore 

4p+3 _ 1 1 33 

* P(P+ l)(riiJ+6) ~ 1) - 10(Tlp+6)■ 

Thus X — I—le~‘— 

y ..I -.^ = i(J _ 
(ll2)+6)(2)+l) 5\p+l 

y = i(e-<_e-Wii). 

{D—l)x—2y = t > 0. 

— 2x+{D—l)y = t, 

^0 = 2, yo = 4. 

The subsidiary equations are 

Also 

Thus 

Ex. 2. 

--1 

(J9—l)f—2j/ =p + 2, 

— 2i+(i3—l)y p + 

Adding, we have 

i.e. x+y — 

Therefore 

(2?-3)(i+y) = p + 

o 3j>^+l _ _L 
^p^p—3) 

x+y = 2[fe®'—J]. 

Also, subtracting, we have 

(,p+l){£—y) = -2, 

i.e. 

Therefore 

Thus 

Ex. 3. 

x—y 
__2 

p+1’ 

x—y = — 2e~*. 

X = fe“—e-'—i<—J, 1 
y = / 

(2D-l)a:+(3i>-2)y = t(f, t> 0. 

(2X>+l)a:-|-(3D+2)?/ = <e“. 
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In this case, Since 2x-\-^y = when t = 0, we must 

have x-i~2y = 0, and thus 

The subsidiary equations are 

{2p-~l)x+{3p-2)y ■■= 1 
(2p+l)x+ {3p+2)i) = -y,. J 

Therefore 

Therefore 

X — 
3 3 

2(2)-1)2 2(2)-2)2 

+ 
Lp^(2)-] 

+ 

1 +I+- 
1)2 2^-1 ' 4p ' 2(2)-2)2 4{p-2) 

“2(2)-i)=* (p-2)2+\r “''®/2) (2>'-l) Hp-2) 

Thus a; = (|<—l)e'—(<4-J)e2'+(|—2yo). 

2p~l 2p+l 

2> 

Also 

i.e. y 

2py 
ip-^f (2)-1)2 

+ 22/o. 

* + ?/fl _1_1 __ 1 _ 1 
[p_2)2 fp-iys 2p(p-2f 2p{p-\f ' p 

^ 3__ 3 1_ _1_^ 

“ 4(^-2)2 2(jp-iy2'^8(2)-2)’^2(2)-i)“^^’^“ 

Therefore y = (f<+i)e“+( -|<+J)e'+(yo-f) 

Ex. 4, (D^-4D)x-{D-l)y = 1, 

(i)4-6)a:+(T>2-Z))y = c« 

The subsidiary equations are 

(p^-4p)x—{p—l)y = (pXfi-\-x^)—4Xa-ya^-K '' 

(2>+6)x+(2)*-2>)y = a^o+(m+yi)-yo+-^^. j 

;(»-s) 

t > 0. 
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Therefore 

4j>)+(2j+6)]x 

^>[2)xo+xi-4xo-yo]+m+^o+yi-yo+ ̂ z_3. 
2?—4* 

Thus 

1 X = p‘‘-^o+PK-4^o)+^o+yi-yo,_ 
{p+l)(p-2)(p-^) 

^ 6xo-Xi-yo+yi 3xo-2xi+yo-yi , 3xi-2xo-yo+, 
\2{p+\) 3(^)-2) '4(p-3) 

+ 
1 1 1 

15(i)+l) 6(j9-2) ' 10(2)-4) 
Therefore 

X = i‘j(6a;o-a:i-J/o+2/i+5)«*'+i(3.J''o-2a-i+2/o-2/i-‘i)e®<+ 

+ - 2xo-yo+!/i)e“+i6e" 
Also 

[p\p—l){p-4)-{-{p^ &){p-l)]y - i’(p-4)[ijyo+Xo+2/i-yo]— 

-(p+6)[i)Xo+Xi-4x„-2/n]+j5-?^. 

Thus 

r, - P®yo+;)*(yi-5yo)4-;j(-6xo-Xi4-5yo-4yj)-6(Xi-4x„-.v„) 

(p+\){p-l)(p-2)(p-Z) + 

+ i>+2 

Fb+l)(jp-l)(i>—2) 

30xo-5xi-52/„+5yi 1 

---T4F+ir--+4(p-lV^®^» 3y,) 

“ 3(^-2) (12Xo-8x,+4t/„-4yi) + 

+^■:r3) (6^o-9^«^i+3yo-3yi)4- 

+ ’ +. ^ p 6(J>+1) 2(),-I) 3(p-2) 
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Therefore 

y = ^(_30cro+5a:i+6yo-%i-4)e-'+ 

+ i(18a;o—7a;i+72/o—3yi-6)e'-i- 

+J(—12a:o+8xi—4yo+4j/i+2)e“+ 

+g(6xo—9xi+3^0—3yi)e«+1. 

Ex. 5. (/)2+l)x+(Z)*-2Z))y - 0, 1 

(D^^D)x+D^ = a. I ■ 

These give (D—l)x+2I}i/ = 0, 

and therefore -a:o+2yi = 0. 

The subsidiary equations are 

(p^+l)x+p(p-2}y = (pXo+x^)+(py„+y^)-2yo, \ 

p{p+l)x+p^y = (iJa:o+:Ci)+Xo+(m+2/i)- / 
Therefore 

p[{p^^\)~{p^l){p-2)']x = l>b(Xo+2/o)+a;i+2/i-22/ol- 

— (jO-2)[p(xo+yo)+a:i+Xo+yi]. 

Thus 2’(;)+3)x = pXo+2(Xo+Xi+2/i), 

and X == ? 
3\ P r 3(^+3) 

Therefore x§(xi+Xo+yi)+e~® 
O 

Also 

p\{pij^\)-{p^-p-2)]y 

= -.P(F+l)b{a:o+2/o)+a:i+j/i-2j/o]+ 

+(P*+l)[2>(^o+2/o)+^i+*o+2^i]' 
Therefore 

ij ^ ^o+^i+yi , 2xo-4X)+9^0-4^1 4xi+4yi—2xo 
32?* ' 92) 9(2)+3) * 

Therefore 

y = J(a;o+a:i+^iy+J(2xo—4xi+9j/o—4t/i)+ 

+i(4xi+4yi—2xo)e-“. 

11. In all the problems so far considered the function F{t) has 

been a simple one for which F(p) is a rational function of p. 

If this is not the case, or if F{t) is an arbitrary unknown func- 
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tion, the solution may be obtained formally as an integral by 

the use of Theorem VI. 

For example, suppose we have to solve 

(D^-\-2D+2)x = F{t), t > 0, 

with Xy Dx equal to Xq and x^ when t “ 0. 

The subsidiary equation is 

thus 

-- piro+(a:i+2.ro) + F(p); 

X = I_ 
p-+2'p+2' 

To find the function whose transform is the second term we 

take x^(p) = F(p) and x^(p) — \j(p^-\-2p~\-2) in Theorem VI. 

Then x^{t) ~ F(i)y xj(i) ~ e“^sin^, and we have finally 
t 

X = a:oe~^cos^+(-^’i+^’o)^“^«hiH- J F(T)e“^'"'^^sin(^—r) rfr. 
0 

If F{t) is a simple function such as those previously discussed, 

this method may, of course, still be used, but the evaluation of 

the final definite integral may be awkward and it is usually 

better to proceed as in §§ 6-8. 

12. When the equation to be solved is of the type 

<l>{D)x = 1, ^ > 0, 

with XQy aTi,..., zero and (t>(D) the polynomial 

the subsidiary equation is 

f(p) =- (1) 

and the solution is obtained by breaking up l/p(f>{p) into its 

partial fractions. If the zeros of <^(p) are otj, ag,..., o^,^, all 

different and none of them zero, we find from §4(1) 

i{p) - 
1 

p(l>(p) 
1 

p<f>{0) 
1 

X(t) == 
1 ^ 1 J—f y _L- e“''. and thus (2) 
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This is a special case of Heaviside's Expansion Theorem, The 

method can, of course, be extended to the case in which Xq, Xi,..., 

are arbitrary constants; also to the corresponding problems 

where we have to deal with systems of simultaneous linear 

differential equations with constant coefficients. 

Another type of expansion used by Heaviside, namely, that 

in ascending powers of can also be deduced from the sub¬ 

sidiary equation (1). It is obtained, in our notation, by expand¬ 

ing llp<l>{p) in ascending powers of 1/p and then using the 
integral 

p ,n+l J 
fn 

dt, 
nl 

0 

It will be noted that this form would be of use when t is small 

and the roots of <f>{p) = 0 are not known. 

A very simple example will illustrate both types of expan¬ 
sions: 

To solve E., t>0, 

where Z, i?, and Eq are constants and 1 = 0 when < — 0. 

The subsidiary equation is 

J _ ^0_ 
p(Lp-\^B) 

(i) For the Expansion Theorem solution we write 

1 

Therefore 

I 
R 

I = 
R 

p+RI^‘ 

(ii) For the series solution we write 

7 En 

Lp^{\-\-RjLp) 

^0^ 
Zp2 

From this we obtain 

which agrees with the result obtained in (i). 
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EXAMPLES ON CHAPTER I 

In the following examples the initial values of x, Dx, D^x,,, so far as 
required are taken to be a?o» unless numerical values of these 
are specified. The answer is' given at the end of each example. 

1. {D^-\~3D-{-2)x — 4; Xq 2, x^ ~ 0. 
[x = 2. 

2. (D-j~l){D+2)x -= 1-f 
[x ==- I—<+i<*H-(2a:o+a;i —2)e-‘-(X(|+a;i — 

3. (D^-\-n^)x — asm(m^4'a); m ^ n; Xq — x^ ~ 0, 

[X ^ ® _ ffYi COS a sin nt4-n sin a cos nt—n smimt + a)}* 
n(m*—n*) 

4. s,D^-\-n^)x = asin(n<+0£); x^^ ~ x^ — 0. 
[x ~ a{sinn^cosa~n^ cos(nf-f a)}/2n®. 

5. (D^—m^)x — oe’"*-f 6e"*; x^ ~ 0. 

[x ~ (a/2m®)(wte”*^ —sinhm04- 

6. 

7. 

(£>*+1)^ - sin<sin2£ 

(D^~4)x - 
[x = (Xo—^)cos^-f Acos3^+(Xl + i0siu^• 

[a; == a;QCOsh2/-f (Ja?! —J)sinh2/>f-J/e**. 

8. (D®+ l)a: — 1; ~ = ajg — 0. 
[x = 1 — Je~^“-|e*^co8 J<V3. 

9. ~ t; Xq ~ Xi — X2 — 0, 
[x = —Jeb(cos J^V3+VSsin J<V3). 

10. {D^-{-l)x =- ^ ^ 0 

[x = 1^2 —J«*Hcos}W3—V3sin JW3). 

11. (D®“f l)x — 1-f^-fi^*; Xq — x^ = 1, Xj — —1. 
[x = jeh(0os J<V3-f V3sin JiV3). 

12. (Z)-f-l)(Z)-|-2)(Z)-f3)a; = x^ x^ ^ x^ ^ 0. 

13. i>(Z>+l)(D+2){D+3)a? = 1. 

+ (f + 2a;a+ix^ - - (io?! -f Jx, + Jxj - 

14. (Z>^ + 4i>3-f4£>®)x = 0. 
[4x = 4xo—3x3—X8 + (4xi + 4x2-f i*?8)<+(3a?i+a?8)«“®^-f(2xa+Xa)^6‘**^ 

16. (I>*+ l)*aJ = sin^; Xq = Xj = Xj == X3 := 0. 
[x = ^(3—t^)sini—§tcose, 

16. (£>*4-l)*x = (sin^; x^ = Xj = x, ~ Xg = 0. 
[x = ^{(3«~«3)sin^-3^*co8t}. 
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17. = asin(n^-f<3t); Xq — Xn - Xo - 0. 

^(Ssinnicosa —n^(3cosn/cosa —sinn^sina)—n*/*sin(n^-f a)}* 
8n* 

18. (D^-j~n^)^x — asin(w/4 a); ^ n, Xq ~ x^ = X2 ~ x^ 

a 

0. 

\x = {2n^ sin(m^ 4- a) + m{m^ — 3n2)cos a sin nf — 

— 2w* sin a cos nt (m^ — 7i^)nt{n sin a sin nt — m cos a cos nt)}. 

19. (D2+l)(D2 4-4)(DH9)a: - 1; Xo 

[.*? 3V-2Vco.s^4-6\eos2/~3ioCos3^ 

20. (D^ — a^)(D^--b^)(D^ — c-)x = 1; ;r(, o’! x^ — x^ — — 0. 

1 1 

' * ' aWc^ a“(a“ - -c*) 

+ 
1 

cosli 6^4- ^ /'‘I 
1 

c'^(c^ — a^)(c^ — b-) 
cosh ct. 

21. (D^+l)x = 1; .To = Ti = Tg = Tg = T4 = 0. 

[x ==. I ——|e^‘^®®’^/®cos(^sin Jtt) —fe^‘^^^^/®cos(^sinf7r). 

22. (D^”—l).r — 0; To = 1. Ti — Tg = ... = x^n-i ~ 0. 

[t = " cosh^ f - ^ cos(/sin — 
L 7i n \ n / 

« -1 

Simultaneous Equations 

23. Dx ~ y, Dy = 2, Dz ^ t. 

[t -= i(a:o4-2/o-f 2o)e'- 

— “ 2to 4- 2/0+¥ ^3 - (2/0 - ^o) sin J/ \/3}. 

24. (D2-3D4-2)t4-(D-1)2/= 0, \ 
~-(D~1)t + (D2-5D4*4)2/== 0. J 
To =- Ti = 2/1 =" 0, 2/0 - 1. 

[t = 2^e®0» V = J(5c^ —e*^~2^e®*). 

25. (D2-8)t4-V6D2/ - 0, I 
- V6DT-f(D24-2)2/- 0. 1 
To I, T4 = 2/0 "= 2/1 == 9. 

[t = J(3cosh 2/--COS 20» y = J V6(sinh 2^—sin20. 

26. {2D2-D + 9)t-(D24-D4 3)2/ = 0, 1 
(2D24“i)4'7)T-(Da-D + 5)2/- 0. I 

To Ti ^ 1, 2/0 2/i == 9. [See §9.] 

[t = J(e'4-sin 2/4-2 cos 2/), y = J(2e^ —sin 2/—2cos2/). 
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27. D^x-\-aDy--hx = 0, | 

D^y—aDx—hy == 0. I 

= yo *= 2/i = 0, x^ -- 1. 

^ Jsmott—bmpt), y ^ JcOSpt—COB Oit)t 
r “ ^ ~ a-jS' 

where a, j9 are i{ai V(a* —46)} if a* > 46. 

Discuss also the cases a* < 46. 

28. (D*--^4).r-(D4-2)2/ + (D-2)2 - 0, \ 
2Dx~{D^-3)y + {D^~4:)z = 0, 

(D-2)a:-i/+(D2-4)2 0. J 
^0 =" yo = 2:0 = 1, rrj =:= 2, yi = 3, 2^ - 1. 

[x +jScc-3«, 2/ = ^ + 

29. (D2-l):r + 2/ + 2 - 0, ^ 
x + (D2—l)2/-|-2 ==: 0, J 
X-i ?/-f(D2—1)2 _ 0. J 

[O' = J{(2aro~2/o~2:o)cobh<V2-f iV2(2ri —2/1 —2i)sinh^V2-f 
4 (^o + 2/o4 2o)^os/ L-(:ri4-yi + 2i)sm/}. 

30. Dr,, =r cx„_i, n = 1, 2,..., 
/>.ro - -cj-Q* 

.rg ~ 1, 0:3,... ~ 0 at ^ — 0, 

[^„ - ^(cO"e-“ 

31. {D’‘-4)x-{D f 2)^4 {D-2)z -= sin2<, ^ 
2Dx-(D^-Z)y + (D^-4)z = 0, 

(jD-2)r-2/4-(£»*-4)2 = 0. J 
a,-„ = xj = yo i/i = 2o = »i = 0- 

[x = —-,\8m2<4-2^>’>iih<4-Tf¥«inh3/. 

32. (/)-l)x4-ly-i2-|M = 0, 'I 
Ja 4-(I>—I)y4-i24-Jm = 0, 

-k-l2/+(i>—I)24-iw — 0, 
ia:4-iy4-424-(-D-l)u = 0. , 

[x = Xoe'-4<(yo-2zo-3t/o)e*. 



CHAPTER II 

ELECTRIC CIRCUIT THEORY 

Theoughout this chapter /, V, Q will be used for current, 

E.M.F., and charge respectively, I, F, Q lOr their Laplace 
0 0 0 

Transforms, and /, F, Q for their values at ^ ~ 0. 

13. E.M,F, V applied at t = 0 to a circuit consisting of in¬ 

ductance L, resistance R, and capacity C in series. The initial 
0 0 

values of I and Q are to be I and Q respectively 

The current is given by the equation 

(1) 

where the charge Q on the condenser and the current I are 

connected byj 

Multiplying (1) and (2) by p > 0, and integrating with 

regard to t from 0 to oo we obtain in the usual way the sub¬ 

sidiary equations 

{Lp+R)1+Iq^V+lI (3) 

and pQ 
0 

= I+Q, 

i.e. Q-- 

0 

. i+^. 
P P 

(4) 

Eliminating Q, we have the ftmdamental equation 

0 

[lp+s+^^=V+li-§-^. (5) 

t Note that in particular caaes the system has a differential equation of the 
first order and only one initial value can be prescribed. E.g. if there is no 

capacity in the circuit only 1, or if there is no inductance only 

% This implies that 1 is positive when flowing towards the high potential 
side of the condenser. 
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14. In this section we consider various types of E.M F, applied 

at t ^ to the circuit o/§ 13, the initial charge and current being 

in all cases zero. 

Ex, 1. A constant E.M.F. K ajijdicd at t — 0 to the circuit 

o/ § 13. Initial charge and current zero, 
0 0 „ 

Here = 0, and V - E/p, so § 13 (5) becomes 

Therefore 

l( ‘I «-] ’ 
' LC 

where 
1 _ 

It follows, usijig Tlicorejn IV, that 

, E . . .. 
c /''sill nf, if )w • 0, 

h' 7w 0, 

and if< 0, putting /r = - we find 

/ “ -- e~/^'sinh hi. 
kh 

Ex. 2. Aliernaling E.M,F, Ei^inwl applied at t 0 to the 

circuit of^ 13. Initial charge and current zero. 

Here V = Emnwl, so V — and by §13(5) 

ojE 

(Lp^+Ep+iie)i2A+w^y 

Expressing tliis in partial fractions with quadratic denomina¬ 

tors we find 
E iX(p+i.i)-pX' Xp~~ Ra> 
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where X - Lcj-^l/Cw, X' = Lai+llGo), = X^+R^ and 

and jjl are defined in (1). If > 0 it follows that 

I = ^ coBfit—aX' &innt)- 
nZ^ 

- {X cos wt—R sin cut) 

= |8inH-y)--^A_^e---»in(«<-8), (3) 

where tany = JT/i?, tanS'= nXIfiX'. (4) 

Ex. 3. The problem of Ex. 2; it is required to find the 'steady- 

state' current only. 

As before, I is given by (2). Instead of expressing / in partial 

fractions with quadratic denominators as was done in Ex. 2, 

it could have been expressed in partial fractions with linear 

(complex) denominators; the partial fractions are then more 

easily obtained, but the reduction to the final form (3) is longer. 

But when only the ‘steady-state’ current is required it is best 

to proceed in this way. 

The roots of the denominator of (2) are —and 

the roots —-/xim give a contribution to I which dies away 

like and so may be ignored. Thus we need only determine, 

by § 4 (1), the partial fractions with denominators p±^iw. These 

are 
_ E 1__E_1 

2it{Li(x)-{-R-\-IjCicu) (p—ico) 2i(—Lico’-\-R—YjCjio)) p-\-io} 

which correspond to current 

Ee^^^ Ee-^^* _ E . . 
2i{Licu + R+llCicu)~ 2i{^Liw^ ^sin(a; y), 

where y is defined in (4). 

The algebra of this process is almost identical with that of 

the usual method of finding steady-state solutions (by assuming 

all quantities proportional to e^^), but the subsidiary equation 

(2) contains also the transient terms if required. 

Ex. 4. Alternating EM.F. of the same period and damping 

applied t == Oto the circuit of § 13 {oscillatory case, n^ > 0). The 

initial charge and current zero. It is required to find the subsequent 

charge in the condenser. 
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As in (1), let n* = 
LC 4L*’ 

and fi = 
JR 

2L' 
Then, including 

for generality a constant phase angle a, we take 

V = Ee-i^sm{nt-\-oc). 

Thus, by Theorem IV, 

^ „ (p+M)sin“+wcosa 

{p+fi)^+n^ 

And therefore, by § 13 (4) and (5), 

Thus, using Theorem IV and (8) and (9) of § 3, 

jB r 1 1 
Q = _ — sin a e~i^t sin nt-\- cos a sin nt— 

L{2n 2n^ 

— ^ cos a e~i^t cos rd\ 
2n I 

E W 1 
= —~e~f^^\~coQ(xsmnt—tcos(nt+a) . 

2nL [n J 
Ex. 6. E,M.F. any function f(t) of the time applied at t ^ 0 

to circuit o/ § 13. Initial charge and current zero. 

In this case by § 13 (5) we find, using the notation (1), 

Then in Theorem VI we take Xi(p) — f(p), so that Xi(t) = /(/), 

and x^ip) = p/[L(p+p)^+Ln^], so that, in the case n^ > 0, 

x^it) — e-'f^^(ncoBnt—pBrant)l(nL). 

Therefore it follows from Theorem VI that 

t 

/ = ^ J e‘'^^^nco8nT—psmnT)f(t--T) dr. (6) 

0 

Ex. 6. A battery of E.M.F, E connected to the circuit of § 13 

at t 0 and short-circuited att=^T. Initial charge and current 

zero- 
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The E.M.F. V is licre given by 

V - E, 0<t<T, \ 
-0, t>T; I 

tlius 
T 

V -- K |‘ e-i‘< (It 
u P 

And so, from § 13 (5), 

] - -- - (1—e-p'?’). 
L\l>H{HiL)p-V\ILay ’ 

H(‘n(*e. using J’heorem V and tlie result of Ex. 1 (i), we have, 

in the ('Use //- T"' 0, 

/ [Ejn sm'til, 0 < t < 7^ 

(FjltiL)e~i‘^^s\\\nt~ {KjnL)er^^^"-^">s\nii{t—T), t > T, 

A d<*\ i( e whicli is very useful in ])roblems of this type in 

vvhi(‘h the a|)[)lied E.M.F. is varied by switehing ]>roeesses is tlie 

following: the applied E.M.F. F may be regarded as g(t), 
w iK‘re 

m - E., //-(}. 

and 
(j(t) . 0, i) i < 1\ 

Then, by Tiieorem V, U 
P 

and thus 
P 

as before. 

15. ElerfriraJ vet works. 

A eom])lieatcd eircuit may be regarded as built up of elements 

of the typet discussed in § 13. 

Let Lf.. ( \., Qi^. If. eurres])ond to the kih clement, let 1^ 

be the potential differenee between its terminals, and let l>e 

! Vor tilt' sli^'htly more goiiorai raso of iTuluctaiice L arul reMistaiire H in 

st rife with a h aky oondenser (tapnoity C and re.sistaneo 1/<V in parallel) equa* 

tion § 13 {~i) is roplaoed by 

Q 
a^Cp' 
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the mutual inductance between it and the rth element. Then 
for the current in tliis element we have 

Fig. 1 

Proceeding as in § 13, we obtain the subsidiary equation 

where 
r ptj. r/k 

(1) 

(2) 

We shall in future for shortness use for the ‘generalized im¬ 

pedances’ (2) and write down subsidiary equations directly in 

the form (1). 
If we add the equations of type (1) for all elements com¬ 

prising a closed circuit and use KirchhofF's second law, we obtain 

ll^krl - 2 \lJk+lMj,^-Q,lpCk]+ 1 V, (3) 

where the 2 refers to the summation over the members of the 

closed circuit, and ^ V is the sum ol' tJie tiansforms of the 

applied E.M.F.s in the closed circuit. 
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Kirohhoff's first law, ^ = 0 at a junction, becomes 

2] / = 0, at a junction. (4) 

These equations are sufficient to determine the in terms of 

the initial conditions and the transforms of the applied E.M.F.s. 

In complicated circuits the denominators of the may be of 

high degree in p, so that explicit algebraic solution is clumsy 

or impossible, but the solution can fairly easily be carried out 

numerically in actual cases. 

16, Examples of simple circuits with non-zero initial currents and 

charges. 

Ex. 1. Condenser charged to potential E and discharged at 

^ r= 0 through an inductive resistance. 

Here / = 0, C == CE, so by § 13 (5) 

Thus 
E E 

Lp^-\-Rp-\~llG L\i^p-\-pf^n^Y 

in the notation of § 14 (1). It follows that 
Jp 

/ --- e-t^sinTit, if n® > 0, 
nL 

I ==ifn^ = 0, 
Jj 

E 
I = — — e-"/^sinh if < 0, where == —n^. 

kL 

To find the charge on the condenser we have by § 13 (4) 

0 = 10+1 7 = 11^_^ _ CE^p+2p) 
p p p Lp{p>^-\-{RIL)p+llLC} 

Therefore, if > 0, 

C E 
Q = — sin nt-\-n cos nt). 

n 

Ex. 2. Steady current EjR is flowing in the circuit of Fig. 2 

with the switch S closed. Att = (ithe switch is (opened. 
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0 0 

Here / = EjR, § = 0, so from § 13 (5) 

So, in the notation of § 14 (1), 

LE E 

j ^ (P~\~J^IL) _E p~\-2ix 
R {p^^{RIL)p+\jLC] R (p+ia,)2-f 72,2’ 

Therefore 
E 

I = —e~i^%noo^ni-\-yLmnnt), if n- > 0. 
Rn 

L R 
Fia. 2 

Ex. 3. The switch S in the circuit of Fig, 3, which hm been 

closed for time T, is opened att — 0. 

It is easy to show that after the battery has been connected 

for time T (from zero initial conditions) the charge on the 
0 

condenser is Q = EO^ and the current in the inductance is 
0 
I = — (JS//i?)(l—measured in the direction of the arrow, 

i.e. towards the high potential side of the condenser. These are 

the new initial conditions. Inserting them in § 13 (5), we have 

Thus 

f __^ _n_e-^W) 
L[(p+p)^+n’^] 
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in the notation of § 14 (1), and so, if > 0, 

E E 
/ = _ e-i^sinnl— „ /isinrei)(l— 

nL Rn 

5 

Eio. 4 

Ex. 4. Steady current EjR is flowing in the circuit of Fig, 4 

with the switch 6' closed. At t = 0 the switch is opened. To find 

the subsequent current. 

The initial current is EjR in L, and zero in L'. Thus, by 

§ 15(3), for the closed circuit A BCD the subsidiary equation is 

{{L-\-U)p+R+R‘]l=^^ + ~. 
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Therefore 
j  LE E 

- (L+i’)p[y+f±*:]’ 

and 

/ = . _ri_g-<(ft+i2')/(L+x^')] 
R(L-\-U) R-\-K 

i?+^' ^ jB(i/+i')(i2+"i20 
JE L 

Notice that lim / == -„ t r7 there is an impulsive redis- 
<-♦■0 R Ju-f’jL 

tributionf of current between the inductances at ^ == 0. 

L R, 

17. In this section some easy network problems are discussed. 

Ex. 1. Can the inductive effect of a coil be neutralized by 

shunting it with a resistance and condenser in series? The initial 

curr&nt and charge are supposed zero. 

Let the currents in the branches be as shown in Fig. 5, and 

let F be the applied E.M.F. Then the subsidiary equations are 

thus _ n 

7 = 7i+/s = +B^Cp+l] 

_ n\ LCp^+Cp{B,+B^)+l ] 
YlC R2P^'\-p{L-\^ Ri R^ 

t For further discussion of this problem see Appendix 111. 
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If the system is to behave 6is a pure resistancse, the last bracket 

must be independent of p, so we must have 

LC __ _ 1 
LCRz L+RiR^C~%’ 

i.e. Rz = i?i and C — 

With these values 1 — F/JSi, so the system behaves as a 

simple resistance whatever function of the time the applied 

E.M.F. V may be. 

Ex. 2. Two circuit coupled by mutual inditction. 

Suppose that at t = 0 an E,M.F. V is applied in the first 

circuit, all initial currents and charges being zero. Then, if 

Zu = + *12 = *2S = 

the subsidiary equations are 

^11A^12-^2 ^ ^ 

Solving,t 

4 = -V and -F. (2) 
Zl2 *11*22 *12 *11*22 

In the general case the denominator is a quartic in p and 

there is no simple algebraic expression for the solution. Special 

cases are considered in the following examples. 

Ex. 3. The problem, of Ex. 2 loilh C, — Cg = 0. A oomtant 
E.M.F. E applied to the prirmry circuit att = 0. Itia retired 
to fijtd the secondary eurremt. 

Here F = Ejp, so using (1) and (2) 

j ^ ME_ 
* M^^-(L,p+Ri){Lgp+Rg) 

ME 1 
{L,Lg-M*){p-X,)(p-\y 

t It 18 known that Li > if* and we assume here Li > MK If 
Li JDi s (perfect coupling)2 the determinant of the coefficients of the 
hi^iest powers of D in the original differential equations vanishes. This is 
the special case mentioned in 19 and { 10, Exs. 3 and 5. 
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where and Ag are the roots (both real and negative since 

Ly^ L2 ^ of 

Ry R^ „2_L^1“®2+A-^2< == 0. 

So finally, 
ME . j^gAx<— 

Ex. 4. The problem of Ex, 2 toith F = -ff sin u}t. It is required 

to find the 'steady-state' secondary current. 

We have now V = 

and substituting this in (2) gives 

j _ Mp uiE 

* ““ M^p^^(L,p+Ry+llC\p)(L2P+ 

To find the steady-state current we need only evaluate, using 

§4(1), the partial fractions corresponding to the roots ±ia) of 

the denominator, f These give 

(B,X,+R,X, T B,B,-X,X,-])-^Ee^ 

“I-MZ,-'L MZ, JI "W"+ 
E 

-f conjugate imaginary == 7-—sin(a><+S), 

where 
tans = 

ByX^+B^X^ ’ 

Mui 

and 

I B,B,-XM^ 

X.y = LyOi 

I 
1 

Ciw’ 
E.2 — 

C^iO 

Ex. 5. Two circuits of resistance Ry, R^ and inductances 

are coupled by mutual inductance M, At t = 0, when a steady 

current EjR^ is flowing in th^ primary^ this circuit is opened. To 

find the secondary current. 

t strictly it i^ould be verified that the other roots of the denominator do 
give rise to transient terms, i.e. have their real parts negative. 
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The differential equation is 

= 0, 
where /j = 0, ^ > 0, and thus ^ = 0, to be solved with 

/j — EjRly /2 = 0. 

The subsidiary equation is 

{L^p+R^)l^ = Jf4 == M EjRly 

and so L = 
' 4 A 

Ex. 6. Two circuits Ri and R^ couple by mutwR 

inductance M. Li A constant E.M,F, E applied at 

t:= in the primary circuit. Initial currents zero. 

The differential equations are 

{LiD+Ri)Ii+MDI^ =^Ey\ (1) 

J/i)/i+(4^+4)/2=0. \ ^ ' (2) 

Multiplying (2) by LijM and subtracting from (1) we have, 

using Li Lg == 

Ryh-^h=E, t>0. (3) 

At < = 0 the E.M.F, in the circuit is zero,t so the initial currents 

must satisfy o » r o 
RiIi-^I,=-0, (4) 

0 0 
The values given, 1^ = 1^=: o, do satisfy (4). 

From (1) and (2) the subsidiary equations are 

(Lip+Iti)li+Mply = EIp, \ 
MpIi-\-(L^p+R^)!^ = 0. / 

Solving, we have 
j __EjL^p+R^)_ 

^ p[p{LiR,+RiL^)+RiR^y 

f The loose statement *a constant E.M.F. applied at « 0* implies that 
the E.M.F. V in the circuit is 

K « 0, # = 0, 
I>0. 
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and 
ME 

p(Li + + -^2 

Thus /i = 
E LyR^E g-K, 

1 
Ml -^2+■^) 

and „ _ g-R,fl.ff(£.«.+fi,tJ 

■^1 -^2 

B 

V F 
Fig. 6 

18. Alternating current bridges. 

Ex. 1. Anderson^8 bridge for the comparison of capacity and 

sdf-ind^ctance. 

The circuit is shown in Fig. 6. The currents are chosen to 

satisfy Kirchhofl’s first law automatically. An E.M.F. V is 

applied at / = 0 across AD (initial conditions zero) and it is 

required to find the condition for the galvanometer current Ig 

to be zero. We write Zg for the impedance of the galvano¬ 

meter. 
Appljdng Kirchhoff’s second law, § 15 (3), to the circuits A JSff, 
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BED, DEH, ABDF in that order gives the subsidiary equa¬ 
tions 

^3(W,)-L/3-Z,4=0, 

{Lp+R,)I^+R^(l,-I^) = V. 

Solving, using determinants, for Ig we have (the denominator 

A(^) is a polynomial in p which we need not calculate) 

^^)^^^^^^~^i^*)+v[CR^(R^R,+RRi+RR,)-LR,]}. 

Thus, if 

i?2 Rz “ (the direct current balance condition) 

and LR^ == CR^(R^R,+ RR^+RR,\ 

-^ == 0, and so = 0 for all < > 0, whatever the applied E.M.P. 

may be, e,g. alternating current of any frequency, or the tran¬ 
sient due to switching on a battery. 

Ex. 2. The bridge of Ex. 1 is balanced for direct current, i.e. 

i?2 i?3 = Ri R^y and at t — 0 steady current is flowing from a 

battery E connected to AD. At t 0 the battery circuit is 

opened. To find the condition that there may be no galvanometer 
current. 

The initial currents are 

Y __ E ^ E T r n 
^ ~ R^+Ri,’ * ^ ^^==^0 = 0- 

The initial charge on the condenser is 

«_ CERy 
Ry+Ry 

Also for <> 0, /, = —ly, thus /, = — Jj. 
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The subsidiary equations for the circuits ABH, BED, and 
DEH are 

(Lp+Ryk^zJ,+ R(I„-k)-\rRj^ = 

Rz(h-Jo) 

LE 

Ri'^Rz' 

ER^ _i_/ _2 / __ 
Cp^ 0^ dx+W 

Solving, we have 

where, as before, the denominator determinant F{jp) need not 

be evaluated. Thus, if 

ii?4 — CR^{RR^-\- RR^-^r 
4 = 0, 

and 4 = 0 for all ^ > 0. 

Ex. 3. Rimington's bridge. 

The circuit is shown in Fig. 7. E.M.F. V is supposed applied 

at / = 0 across AK, all initial currents and charges being zero. 

The subsidiary equations for the circuits ABE, BDE, DKH, 

ABDFy respectively, are 

{Lp+Ri)Ii+Zglg-R2li = 0, ' 

^3(A-4)-’'2d+4--4)-»‘id+4)-2'ff4 = o> 

{Lp+R^)I^+R,{I^-I,) = F. ^ 

Solving for 4» we obtain 

where A(p) is a polynomial in p which we need not calculate. 

Thus it is impossiblef to adjust the resistance so that 4 == 0 

for all F, but there are still two possible ways in which the 

bridge can be used: 

t TJnleos 0. We shall not discuss this case. 
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(i) As a ballistic bridge. The bridge is first balanced for direct 

current so that R^{r^+r^) = R^R^. (2) 

Suppose, then, that a battery of E.M.F. E is switched on at 

< = 0 (the initial currents and charge all being zero) so that 

V Fio. 7 p 

F = Elp\ we seek the condition that the total charge passed 

through the galvanometer may be zero. This requiresf 
00 00 

0 = {Igdt == lim f e-P^Ig dt = lim Ig, 
J p-»«0 J P-H) 

And, since from (1) and (2), 

4 = {^IMp)}{LCrir2P+[L{ri+r2)+C{rir2Ei—R2R3r2)]}, 

we see that lim ^ = 0 if J 

L _ r^^R^R^—RiTi) R^rl 

t The inversion of order of limiting processes below is justifiable since it 
follows from the form of Ig that Ig consists of a number of exponentially 
decreasing terms. 

t It is easy to show that A(0) ^ 0. 
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(ii) As an alternating>currcnt bridge. Suppose V ~ sin cdI, so 

that V a>/(p‘^+eo-), and that steady current conditions have 

been attained, then considering only the partial frac'tions 

involving the roots of the denominator of (1), we have for 

the steady current 

{--i(7rir26(j24-/^j(ri+r2)--y^2 

+ iw[L(ri-\-C{R^ u-R^ /I’sr.,)}} + 

-t-conjugixte imaginary. 

This will vanish if both the real and imaginary parts of the 

bracket vanish, i.c. iff 

_ “[“^2) ^ 1) 

C ^1+^2 

Here, in contrast to Anderson’s bridge, there is a balance only 

for one fref]uency, and only for the steady state of that fre¬ 

quency. 

19. Filter circuits. 

We consider a number vi of similar circuit elements ('sec¬ 

tions’) arranged in tandem so that the output of one is tlie 

input of the next. The T section, Fig. 8, is taken as typical. 

A circuit made iij) of rn such sections, with E.M.E’’. V applied 

t Not/O that tliis r(>f|uirc3s /- /fg 1^3. i-o. the bridge must not bo 
in balance for direct currents. 

469» f. 
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N 

to the first, and the last closed by impedance z\ would appear 

as in Fig. 9. 

The currents/(), /j,... are chosen 

as shown in Fig. 9, and the 

initial currents and charges are 

supposed zero. Then applying 

KirchhofUs second law, § 15 (3), 

to the meshes suc^cessively we 

obtain tlie subsidiary equations 

-- F, \ 

zl^~-{2z-\-z')li~\-zl2 --- 0, I 

^^m-2 {^Z-\' Z 0, 

{z-^ Iz' -\~z )Ij^ ^m-1 0.; 

(1) 

Except in the end sections, 

y the transforms of tlie currents 

^ in ncigltbouring sections are 

connected by the ditfereiK'e 

e(j nation 

a + f2 ~ 

(2) 

We seek a solution of (2) of 

type 4 oc /F, then substituting 

in (2), fjL must be a root of the 

quadratic 

-(2+0-+1- ̂ 0. (3) 

Thus, if /Ltj and /Xg are the roots 

of (3), a solution of (2) contain¬ 

ing two arbitrary constants is 

I = Afil+Bfil, (4) 

and this is in fact the general solution of (2). 

The roots of (4) are 

(5) 



ELECTRIC CIRCUIT THEORY 43 

which may be written (<i) 

where eosh^ 1 + — . 
2z (7) 

In this notation (4) becomes 

7, -- - |-7?e-^^, (S) 

wliere A and are to be detenniiied in tenns of V and z" by 

substituting in the first and last of equations (1), which give 

A(lz+z~-z^^) \ B{iz'^]~z^zer(^) - F, i 

Using (7) thes(' be(.*onie 

—'^1 sinh t? }-/^sinh \’jz, \ 

Ae^(sinh fJ^-j-z'^/z) {- Be "^^^( — sinli f/ f c"/::) 0. } 

Solving for A and B and substituting in (8) gives 

j V Anh^c()Ai(7/i~~r)6 I (z"/z)siu}i(/// --r)(J 

z sinli t^[sinJi wt^sinh j ‘osh/AdF| 

As sinij)le (uases we eoiisider 

Ex. I. 

(constant), z - 0, z' - 77, c Ub7>. 

Here cosh 6/ -- I f IRi'p, 

and (10) becomes 

j CE eoA\(vi. — r)0 

^ sinh t/sinh///tZ 

Nowt 

siiili ^sinh 'tuO — 1!^^' * ^(cosh d~~ 1 )(cosh 0 - cos rrhn)... 

.,.{cosh t? —(‘Os(?/'/.-- 1 )7T;7/q'(cosh 0 j -1) 

— 2^'^ ■^(l/7C'y>)(U| IRCp —vosTrjvt).., 

... {1 + J 77Cji - - c(()n — 1 )7r////1 (2 -f A RCp) 

I Cf., e.g., Ctirslaw, Vlane. Trigonometry, 3rtl od. (1930), § 119. In tlio wHino 

way the more general exproHsion (10) may bo oxjnv-^sod as a quotient of poly¬ 

nomials in fosli Q, i.o. as a lational function of p. 

(JO) 

(H) 

(IV) 
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Thus the zeros of the denorninatorf of (12) are 

2) 0, p “ 

i.e. 

P - - 

V ^ ~~ 
2 

HC 

—cos(//? —1)77////}, 7> — ~ 
RC' 

1—eos - 1, A* 0, 1, 2,.. in. 
. 77// 

The (‘orresponding values of d are isrrl'ni, s ~ 0, 1, 2,..., m, 

res|)eetively. Now 

(sinh 0sirih in(j) 
dp 

Therefore 

RC (tosh Oninh m sinh 0 eosh 7n0 

2 sinh 0 
(13) 

4“ (sinli Osinh vtO) 
[dp 2 

jJ( ,(I -cuhsttIih) 

- ‘RC’w (--])», 

- w /id, 

{-lymJtV, 

6—1, 2,..., m-l, 

6 - 0, 

6 - 111; 

llie last (wo results are obtained by taking the limit of (13) as 

0-^0 and 0 in respectively. And so, using §4(1), we have 

from (12) 

1 YE 

'in H )n R 
-Mine 

O LT ■ 1 2 A 
+ —- N cos - e 

tn R 7n 
if 1 

2/(1 -cos.S7r///<)/ liC 

(14) 

Ex. 2. 

r — A (constant), z" 0, z' — Lp-\^ R, z -- ^/Cp> 

Here 

and 

cosh/9 ~ l-\-lC2)(Lj)~\-R) 

j (J K cosh (7n~r)0 

' sinh ^ sinh 
(15) 

t It nuiy liappen that .some of those are also roots of the numerator of (12j. 

Thi.s need not be allowed for in determining tlie partial fraction.s since the 

corresponding torm.s (those with cos rArrr/m - 0) vanish in the final result. 
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The denominator of (15) vanishes for 6 ™ isirlin, s ^ 0, 1,..., 
m, and tlie coiTesponding values of p are the roots of 

O . 2 

p-+zp+a 
2 /, 
- I 1—COS —I 

\ 7n) 
— 0, 5 — 0, 1,..., VI. 

Thus the zeros of tlie denominator of (15) are 

p r- 0 and p ~~RjL, corres])onding to s 0, 

and p ^ ^ ^ 

where 

ft ~ RI2L and 
STr\ R" \ I 

-4t<r 

-^(sinh ^sinh 7nd) 
dp 

(;osh ^sinhr/^6^+msinh ^cosh IRC) (16) 
sinh 0 

Therefore 

(sinh sinh viO) 

p -p»ipi 

i//(-l)«////vf%, 

if .s* - 7n—ly 

if .V ™ Qfi. 

Also, taking the limit of (16) as 0, 

(sinh ^ sinh m^) — 7tiRC, 

Ap ip~i) 

(sinh 0 sinh 7ri0) ^771RC. 

p -lilL 

Using these results we find, on applying §4(1) to (15), 

VIR inR 

2K rsv 
4- y - ; - cos . 

7/1L ^ 
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Ex. 3. Alternating E,M.F, applied to the filter circuit of Fig, 9. 

For definiteness we shall take V ~ sinw^, z'* “ 0, and con¬ 

sider only the current in the last section, r ^ m. In this case 

(10) becomes 

I _ ^ _,_, (17) 
(/^“-f a>^)2:(^>)sinh 0(/j)sinh md{p) 

whore z{p) and 6(p) are written for and d to emphasize their 

dependen(;e on p. 

The denominator of (17) lias zeros at addition to 

those of c:(p)‘^ifd‘^(7>)«ii»h w0(/j); the latter give rise to terms 

which may be evaluated as in Exs. 1 and 2; the former give 

for the part of the current of freciuency o>/27t 

1 
^iwt 

2/;:(2(;fj)sinh (^(ia»)sinh mt){io}) 
-p conjugate. (IS) 

If CD is such that 0{ioj) is comjilex, say a~\~ib, ninh 7n6{ico) 

behaves like for large m and thus 1 liehaves like 

i.e. dectreases exjionentially as the number of sections is in¬ 

creased. Tlius tlie part of the current of freijuency aj/277 may 

be ‘stopp(Hi\ i.e. made as small as we jilease, by increasing the 

number of sections. 

If CD is such that d{icD) is ]mre imaginary, the hyperbolic func¬ 

tions in (18) become trigonometric functions so that the part of 

the current of frequency wj^ir does not decrease exponential!}’' 

as the number of sections is increased. Such frequencies are 

‘passed’ by the filter. 

The condition for d(;icD) to be jmre imaginary is that cosh d{icD) 

be real and less than 1 in modulus. That is, since (*osh d is given 

by (7), lz'{ico)lz(icD) is to be real and 

11 + Z'(icD) 

>Z(icD} 
1, i.e. — 1 

:'(ia 

‘\z(icd) 
(19) 

As examples consider 

(i) A How pass' filter z* “ Lp, z -- IjCp. Here (19) requires 

— 1 < — \LCcd'^ < 0, i.e. 0 < ca < 2aj3, where cd\ ^ IjLC, 

(ii) A 'band pass' filter, consists of inductance and 
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capacity in series, ;2: of inductance and capacity in 

parallel, so that 

LiP + 
l\p’ 

z ~ 
l + L^C^p^' 

Then (19) requires 

-1 < 
,..2 ~ 

I) L,a 
< 0, (20) 

where ~ l/Lof 2» suppose < wg. 

Let a>3 and be the roots of 

/yjC'2(a>^—a>|)(a>^—(jj\) -- 4cu“, 

then (20) is satisfied if either 0^3 < a> < cuj or < cu < 0J4. 

20. The cme of an infinite number of sections. 

If m - - 00 in §19, tlie solution is specially simple since only 

the root less than unity of § 19 (3) Ls admissible (i.e. the nega tive 

sign in § 19 (5)), and so 

-^|('+£)-[('+£)-’]T- 

Substituting in the first of equations § 19(1) gives A, and thus 

finally 

u 

For example, oonsifler the simple case 

2' =_ R, z -= l/C'p, V = E/'p. 

With these values (1) becomes 

(1) 

I = 
K 

P 

2E 

' (1 + l/fC’p) j 1 + J RC2>) - [(1 + * 1 ]*}- 

where k 2/jB6\ Using the forihula, Appendix J1 (35), it fol¬ 

lows that 9 jp 

where, on the right, f(lct) is the Bessel function of imaginary 

argument. 
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21. Any periodic E.M.F. applied to a circuit.^ 

Suppose the E.M.F. V ~ f(t) has period 27, so that 

f(t+2rT)=f(t) 
for any integer r. 

Then for the Laplace Transform of f(t) we have 

(X) 2<»'+l)T 

f(p) = J e-p‘f{t) dt J e-P'fit) dt 
n I" —0 n-iTt 2rr 

= (l+e-2J'2’+e-^p^+...) J e-i’‘f{i)dt 
0 

2T 

= A (!) 
0 

As an illustration of the method of procedure consider the 

E.M.F4 

m -1, A
 

A
 

= 0, (2r+l)T < 

applied at / — 0 to the circuit of § 

R -- 
0 

= 0 and I 

IT 1 
Then dt = -{ 

J 
0 p 

and thus by (I) 

I- 
1 

p( 1 —e-2p7’) 2>( 1+’ 

Hence from § 13(5), putting R = 0 and — l/LC, 

Thus, using the Inversion Theorem (!5§28, 29), 

y+ioo 
.1 r <^d.\ 
~ 2mL J (X*T»^')(T+e-^^y 

y —too 

(2) 

t This problem requires the motjiods of Chapter IV; it is given here for 
completeness. 

t For discussion of other wave forms see McLachlan, Phil.. Mag. (7), 24 
(1937), 1065. 
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The integrand of (2) is a single-valued function of A with 

simple polesf at A ^ at 

, _ , (2rfl)77^ 

^ i- ’ /n r 0, 1, 2,.... 

The residue at the pole \ ~ in is 

^i7\t 

2m(l 

and that at the pole A =- (2r f-l)7ri/7’ is 

7^[n2“(2rTryV^ 

It can be shown, as in the examples of Chapter IV, by using 

the contour of Fig. 10 that the line integral in (2) may be 

replaced by 27rz times the sum of the residues at the poles of 

the integrand. Thus finally 

j 1 sin JT) 2 cos(2r+5 )7r//T 

EXAMPLES ON CHAI^TICR 11 

1. E.M.E. Eco^{(dI 1 (\) is applif^I af, t 0 to a circuil consisting of 

capacity C and indneiancc /> in series. T\w. initial currc'nt and charge 

arc zero. Show that the currc'iit at tiriv* t is 

E{oj Hm(cot i a) — a cos a sin nt — w sin a cos a/} jL{a)^ ~ 7^^), 

w}]cr<i - IjLG, suj)j)ospd not ('({nal to 

2. K.M.F. of tlu^ r<\s(7nanc(‘ frc(juf'ncy, L"sin 77/, is applied at- t ^ 0 to 

a circuit consisting of capacity Cand indue,tarice L iri series. The initial 

current and charge are zero. Show that the (‘urnait in the c.inaiit at 

time I is {EI2L)tfi\n}it, wlipre ~ IILC. 

3. E.M.E. /!!7sin(air| cx) is applied at t t) to an inductiv^r^ resistance 

L, R, The initial current is zero. Show tfiat tlie current at time t is 

given by 
E{sin{y I sin(a>/Ta~ I 

where tany Lcd/R. 

t If n -- (2r-f l)7r/7^ for some integer r, the circuit is in resonance with 
one of the harmonics of the applied K.M.F. There are then double polos at 
X ~ ^in and a separate calculation must bo inado. 

4605 H 
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4. E.M.F. El for 0 < f < T, E, for t>T,Ei and Eg being constants, 
is applied to a circuit consisting of E, E, C in series, the initial current 
and charge being zero. Show that the current for < > T is given by 

{EJnL)e-^^ sin [(Ej-Eg)/nL]e“^<*-^)8in n{t- T), 

where n and ^ arc defined in § 14, Ex. 1, and it is supposed that n* > 0. 

5. E.M.F. V ^ sinojf, 0 < t < tt/oj, F =s0, t > Tr/w is applied at 
^ = 0 to a circuit consisting of E, E, C in series, the initial charge and 
Current being zero. Show that the current for t > tt I at is given by 

— (ElnZL^C^)e'~‘^^{e^^l^ sin[nf—8 — htt/co]+sin(nt—8)}, 

the notation being that of § 14, Ex. 2. 

6. Alternating E.M.F. Ee~^*sin(nf4-a), of the same period and damp¬ 
ing as the circuit, is applied at i = 0 to a circuit consisting of E, E, C 
in series. The initial charge and current are zero. Show that the current 
at any subsequent time is 

Ee'~^^{sm( oc — y )sin nt + nt 8in( nf + a + y)}/(2n®E* O*), 

where tany ~ /x/n, n and fx are defined in § 14, Ex. 1, and n® is sup¬ 
posed positive. 

’ 7. Show that a combination of capacity C shunted by resistance E, 
in series with a combination of inductance E shunted by resistance 
E, behaves as a pure resistance for all forms of applied E.M.F. if 
E = CEK 

n 8. A condenser of capacity (7,, charged to potential E, is discharged 
at f == 0 through a resistance E in series with a leaky condenser of 
capacity C and leakage conductance G, initially uncharged. Show that 
the potential across the condenser C at time i is 

■~-{E/KRC)e-^^BmhKt, 

9. A circuit consists of an inductive resistance Ej, Ej in series with 
a combination of E, E, C in series. The latter combination can be 
short-circuited by a switch E. At ^ = 0, when steady current E/Ei from 
a battery of E.M.F. E is flowing through the circuit with S closed, the 
switch E is opened. Show that the subsequent current is 

[E/n Ei( E -f El )]e*‘^^[nEi cos nf -f (Ei — Ei fi)sm nf], 

where fx = J(E'f Ei)/(E-bEi), n® = —1/C/(E+Ei), and n® is sup¬ 
posed positive. 

10. A circuit consists of resistance E in series with a parallel com¬ 
bination of inductive resistance Ei, Ei and an inductive resistance Eg, 
Eg. There is a switch S in the arm Eg Eg which is open at ^ = 0. At 
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< =* 0 a battery of E.M.F. E is applied to the circuit and &t t — T the 
switch S is closed. Show that the battery current for ^ > T is 

E(./?! “hi?g) B 
2 

B,R,^E(E, + E,) L,L,(ac,-cx,)2,^ l)W*r)x 
f=i 

X {[B, + R,+oc,lL, + L,)]/cc,+ 

where a^, aj are the roots of 

Li L^p^ i'[Li R2~\-El L2~\-E(Li~\-L2)]p-{‘El E^-^-EiEi-j-E2) “ 0. 

11. Steady-state current due to E.M.F. EaincDt is flowing in a circuit 
consisting of L, R, C in series, when at f = 0 the resistance R is short- 
circuited. Show that tlie current for < > 0 is given by 

wE E . Etii 
-^r—z-r- (cos rii ^—cos a>i) — Sin y cos nj / H-^ cos y sin ^ 
E{w* — 7ii) Zi oi/d 

where n\ == IjLCy and Z and y are defined in § 14, Ex. 2. 

12. Alternating current due to E.M.F. V — ^o8in(a»^-|-^) is flowing 
in a circuit consisting of an inductive resistance L, i?, shunted by a leaky 
condenser of capacity C and leakage conductance O. At t ^ 0, when 
steady-state conditions are supposed to have been attained, the E.M.F. 
is disconnected. Show that the subsequent potential difference across 
the condenser is 

sin^cos+ (EJ^LCZ)[\Z(RC—LQ)Bm<f>-- L—y)]e~'^*sinpt, 

where “ “ + ^)» i®* ~ —+ tany — Lco/E. 

13. A circuit consists of a parallel combination of capacity C and an 
inductive resistance L, R, The initial currents and charges are zero. 
Constant current Iq is fed in across the terminals for ^ > 0. Show that 
the potential drop across the condenser is given by 

IqR—Iq [^cos » 

Ld _J ^ A TT^_ 1 where n and ^ are defined in § 14, Ex. 1. 

14. A circuit consists of a combina||on of capacity O, resistance 1/U, 
and inductive resistance L, JR, in parallel. At t = 0, when the currents 
and cliarge are zero, current is supplied to the circuit. 
Show that the transform of the voltage across the circuit is given by 

^ _ I^{Lp-\-E){ci)COBOL—painot) 

and evaluate F. 

16. Two resistanceless circuits Lj, Cj and Lj, 02 are coupled by mutual 
inductance M. If at < = 0, when the currents and charges are zero, 
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a battery of E.M.F. iw applied in tJie primary, .show that the secondary 
current is givfjri by 

(L, 

where and — are tlie roots of 

(asina^ — jSsin^O, 

(L, f 
1 

r 0. 
c\ c\^ 

16. If E.M.F. sincu^ is applied at t — 0 in the primary circuit of 
Ex. 15, show tJiat the secondary current is 

wM I (x^ 

L^L^- AP (x’‘) 
COS at -}- 

•I /S“ Ds pt f 
(a>^ 

~ costo<[ 

in the notation of Ex. 15. It is assurn<‘d or 

17. A circuit is coiif)Ied by mutual inductance M to a secondary 
circuit consisting of A*, A, C in .series. At t ~ 0, wlien steady current 
EJRi is flowing in it, the i)riraary circuit is opened. Show that the 
sub.sequent .secondary current is given by 

MK^ cosnt—fjL^in 7ii)lnRy L, 

where /x - R/2L, = l/(AC')““yLt^ suppo.s(?d > 0. 

18. Two equal circuits, each consisting of 7?, A, C in series, are 
coupled by mutual inductance ilA. At i 0, when the currents and 
charges are zero, constant E.M.P\ is applied in one circuit. Show 
that the current in tlio other is given by 

H 
1 

-c“^dsinwi/- 
1 

e'^d.sinn..^ 
l(A-f-M)ni ‘ " (L-M)7i^ 

where /xj - i77/(A + M), ^ \RI(L-~-M), ni = -y:i~\-\IC(L-] M), 
nj — —/x!j4-1/U( A — A/), provided n\ and n?^ are positive. 

19. Two equal circuits, each consisting of A, A, C in serie.s, are 
coupled by mutual inductance M, Inhere is ‘perfect* coupling .so that 
M = A. At t ~~ 0, when the initial currents and charges are all zero, 
a constant E.M.F. Eq is applied in one circuit. Show that the current 
in the other is given by 

(Ao/4 An)c- sin nt - (E^j2R)e~^l^^\ 

where n® (1/2AU) —(A^lOA^), supposed positive. 

20. Points AI and A 2, and A^, A^ and A^ are joined by equal 
resistances i?. A^, A^^ A^t A^ are each joined to -45 by equal capacities 
O. At t ~ 0 the condon.ser.s in A^A^^ A3 A5, and A4A5 have no charge 
and the condemser in Aj A5, which has charge Q^y is discharged into the 
network. Show that the subsequent charge on the condenser A4A5 is 

i,0„+iO„ __— _2®— g-(»-/t)tiRC 
*V,+tV»e 4(2+V2) 4(2-V2)® 
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2]. The arms A^A2* A2A2, A^A^, -^4^1 of a- Wheatstone bridge 

contain an inductive resistance L, and resistances R^ 

respectively. The galvanometer, of resistance Rg^ joins A2A^. The 

bridge is balanced for steady currents and steady current is flowing 

from a battery of E.M.F. E connected toA^A^. Show that if the battery 

circuit is broken a quantity of electricity 

K L{ A*2 4' /?4) 

(77;?^y['(7^77772^Vr,, f R\)J 

will flow through the. galvanometer. 

22. The arms A^A^y A^A^, ^3^4, ^^4.^41 of a Wheatstone bridge con¬ 

tain, resp(‘ctively, inductive n*sistan(;(5 L^j R^, r(‘sistance R^y resistance 

Rj^y and inductive resistance L^y R^- -^2^4 contains the galvanometer. 

There is mutual inductanct' M betwetai the arms Ay^A^ and .41^42* 

E.M.F. V is applied in AyA^. Show that thcTc^ will b(‘ no galvanoir»eter 

current at any tirra^ prf)vided 

Li-f M R2 Ry 

1.2-M R\ nl' 

23. The arms A^A^y A^A^y ^3^4, A^Ay of a Wheatstone bridge con¬ 

tain a combination of inductive resistances L, Ry shunted by a condenser 

Cy resistunc<3 R^y r<‘sistance R^y and resistance R^ respectively. ^42^4 

contains tlx; galvanomeb'r. Show that 

(i) there is a balance for steady-state altcTnating E.M.F. connected 

to .43 if LR^ - - CRy i?2 ^3 

(ii) if the bridgt? is balanced for diu^ct curnait, and steady fmrrt^nt is 

flowing from a battery of E.M.F. E connected to AyA^y tiuTe is a bal¬ 

listic balance wlx^n the battery circuit is open(jd if L CR'j. 

24. For tlie filter circuit of Fig. 9, with z - Ry z' - Lp R'y 2'" - 0, 

V ^ Ejpy show that tho current in the rth section is given by 

m/r‘ m(^R-\-R'y 

2E 

Lm 
2^ -Cl f I — COS - [1—e “bj, 

(Xg m 

where a, — [2/if( 1 — cossrrlm) -f- R']IL. 

26, For the filter circuit of Fig. 9, with z' -= R'A-lj^'P* ^ 

= 0, F = Ejpy show that the current in the rth section is given by 

mK' ^ mR' ^ mR'A, ru 

where a, - 2[(C/2C') +1 -coss7r/»i]/.R'C’. 
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26. For the filter circuit of Fig. 9, with 2' = 1/C'p, 2 =, R, z" 

V = Ejp, show that the current in the rth section is given by 

g-tlR’C'i . g-tlC(R'+iR}^ 
mR' ^ m(R'+4R) ^ m 

where a, = l./[R'C'-|-2i?C'(l—cossw/m)]. 

m—I 

2 

0, 

27. For the filter circuit of Fig. 9, with z' — R, z ” l/Cp, z" ~ 0, 

V == sin 6a/, i.e. E.M.F. sin 6a/ applied to the circuit of § 19, Ex. 1, show 

that the transieni current in the rth section is 

w(ca*i?^C'*+16) 

^ m-1 

V 
mR 

OLg rSTT 
.<L cos — e“ 

ca'^ + aj m 

where a, — (2/i?C)(l-~coss7T/m). 



CHAPTER III 

DYNAMICAL APPLICATIONS 

In this chapter a few examples will be given to illustrate the 

application of the method to dynamical problems. Roughly it 

may be said that whenever such a problem leads to an ordinary 

linear differential equation with constant coefficients which has 

to be solved with given initial conditions, the Laplace Trans¬ 

formation provides a simple method of solution. 

22. Two flywheels of moments of inertia and are connected 

by an elastic shaft of negligible moment of inertia. The whole 

system is rotating with constant angular velocity to when att~0 

a constant retarding couple P is applied to the wheel I^. It is 

required to find the subsequent angular velocity of the wheel h. 

Let 6^ and 02 be tlie angular displacements of the wheels, 

then we may take 6^^ = 9^ = 0, Dd^ ~ 1)02 = cu, when < ~ 0. 

Let A be the stiffness of the shaft, i.e. the couple per radian 

relative twist of the wheels. Tlien the equations of motion are 

I,D^9^-X(02-0i) - -P, 
l2D%+M92-9,) - 0, 

to be solved with the above initial conditions. 

The subsidiary equations are 

(7i2j*+A)^i—AlJg = IiOi—PIp, 

— A^^,-t-(/2P^-f-A)^2 — 

W_AP 
o » 

p- 

t > 0, (1) 

(2) 

Hence 
pVihP‘^+^(h+h)]' 

If (f> is the angular velocity of /g, we have 

CO 

p 

where 

Hence 

CO XP 

* ""p hhp\p^+n^) 

AP 
(3) \p2 

2* 

4 — ^ ^ ginw^. 

Mii+^2) 
(4) 
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As another example, suppose the retarding couple P is applied 

for time T only. 

Here the couple which appears in the right-hand side of the 

first equation of (1) is 

-P, 0<t<T, 

0, i > T. 

Thus its Laplace Transform is 

T 

P f e~^^ dl ~-(1— 
J p 

(r>) 

and the only change is that —Pjp in (2) and (3) is to be replaced 

by (5). Thus 

w__AP n 
p 2)^+n^ 

(1- 
, -i>r\ 

Tlien from Theorem IV we see that <f> is given by (4) when 

0 < ^ < T, while iov t > T it is given by 

Pt P^innt P(t~T) pH\nn{t~~T) 

PT 2P 

h+I‘i '^{h + h) 
c,o^n{i — Vr)^ix\ InT, 

23. A particle of mass ni is hung by an elastic string of length I 

av/l modulus of elasticity A froyn a point vertically above, and vi at 

rest with the siring unstretched. At I ^ - i) the point of support 

comynences to ynake a vertical oscillation a sin ojI about its original 

position a nd the particle is released. To find the subsequent motion 

of the particle. 

Let f and x, both measured downwards, be the displacements 

of the point of support and the particle from the original posi¬ 

tion of the point of support. Then the equation of motion is 

mIPx mg—X{x~-^~~l)jl, 

or IPz+n^x = n^amneot+g+nH, 

where n'^ = Xjml. 

(1) 
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This is to be solved with x Dx = 0, when ^ == 0. The 
subsidiary equation is 

Thus, if n 7^ CO, 

n^ao) 

n^ao) 

jp^+co^ +pl- 
g+nH 

P 

_ , pl 

n^oco [1 ^ l_i_ P 
Jj2_j„y2^2 ^2j^^2 ^2 p ‘ 

Therefore 

na 
X == ^ - (cosin7i^~~7isinco<) + 

g+nH g 
cos nt. 

If CO ~ fly 

Q I n 
X — ia(sin ni—nt cos ni) + -- ^-^ cos nt, 

71^ 

24. To find the motion of a particle of charge e and. mass m acted 

on by an electric field E parallel to OX, and by a magnetic field, 

H 'parallel to OZ. The particle is projected at t — 0 from the 

origin with velocity (w, v, w). 

The equations of motion are 

mD^x = Ee+^^Dy, 
c 

mD^ = —~Dxy 

mDH = 0, 

and so, with the above initial conditions, we have the sub¬ 

sidiary equations 

2- c/f . Ee . 
rnp^x-py =-\-mu, 

c p 

mphj-\-px == mVy 
c 

mpH == mWy 
4695 
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Solving, we have 
X — °^iHv+cE) u 

._ V (x\Hv-\-cE) Ml 

w 
2 = 

P‘ 

where a = eHjmc. 

And so, using 

and 

we have 

p(p^+a^) <x^\p jJ^+a* 

y == V/— 

Z == wL 

p^{p^+ 

[Hv-^cE) 

1a~ 

(Hv+cE) 

u 
(1—cos (xt) + ~ sin oct, 

Hol ot 

u 
y, («<—sinai)—(1—cosa<), 
Ha a 

25. Motion of a projectile relative to the earth. 

We find the path of a particle, projected with velocity («, v, w) 

from the origin in latitude A: if the Z-axis is in the direction 
of apparent gravity, the .J-axis to the East, and the F-axis to 
the North, the equations of motion aref 

Dh:—2uiDyem\-\-2(DDzcoeX = 0, ' 
/)*y+2<wZ)x8inA = 0, 

Dh—ituDxcoeh = —g, , 

where a> is the earth’s angular velocity. 
Thus, with the initial conditions a'bove, the subsidiary equa¬ 

tions are 
pH—2cjpS sin A-f 2wpz cos A = «, 

p*^-j-2a)|)isinA = v, 

p*z—2tx>p£coBX = w—g/p. , 

t Lamb, Uightr Meehayiki, 2nd ed. (Cambridge, 1929), § 66. 
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Solving, we have 

« _ 2a»(v8inA—t^cosA) 2gcucosA % 

_ 4a>2 sin A(i; sin A—ti; cos A) 

4g^ai^sin AcosA 2a>wsinA v 
p3(^2.j_4^2) p2* 

_ 4co^cosA(vsin A—w;cosA) 
'+ 

45rco®co8*A 210^008 A w g 

Jj»(2:)2-|-4ai^) 4co^) /;* 

+ ' 

(1—cos2w04 

u 
(2co/~sin 2ujt)~\- -sin 2a>/, 

2a> 

(2a><—sin 2ci>0~ 

Therefore 

_ usinA—m?cosA 

2a> 
grcosA 

4cu2 . ' ' 2io 

___ sin A(v sin A—w cos A) y 

o sin A cos A,^ o.o ^ ?-6sinA,, o ^ 
— ^-- I + cos 2wt)— ^ {\ — cos2ojt) + vt, 

4a)2 2a» 

cosA(t;sinA—i/;cosA),rt ^ • o • z =-— - - ' {2(jjtsm2ojt)-\- 
2oj 

^ (2a>2^2 __ 1 _|^ eos 2ixit) + —^ ^ (1 — cos 2<xit)+wi — Uji'^, 
4:(jur 2a) 

26, Small oscillations about equilibrium using the iMgrange 

equations. 

Consider a system of n degrees of freedom in which the 

kinetic and potential energies are expressible in tlie form 

2T = f 2 «rs?r9,. 
r =1«-1 

2F =- J i c,,g,q,. 
r 1 s 1 

t In Ihijj section and the next dots will be used for differentiation with 

respect to the time. 
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The Lagrange equationsf are 

d/m BT _ ^ _ 

dt\8qj 8q,- 8q/ 

For small oscillations about equilibrium—in which case terms 

of the second order in coordinates and velocities may be 

neglected and the taken as constants with the values they 

have in the equilibrium position—these become 

i = 0, r = 1,..., n. (1) 

This is a system of n ordinary linear differential equations 

with constant coefficients which has to be solved with the values 

of Qr and qj, (r ~ 1,..., n) given when ^ = 0; it may be solved 

by the methods of Chapter I. 

The following properties of the coefficients and c^g are 

known from general dynamical theory 

^ra = ^ary <^r8 = <^8ry ^’^r all T and 8, (2) 

^11 

1 ^nl 

(3) 

It follows from (3) that exceptional cases of the type discussed 

in § 9 cannot occur. 

If there are in addition resistances to the motion proportional 

to the velocities, equation (1) is replaced byl| 

1 = 0, r = 1,..., n, (4) 
8^1 

where (2) and (3) still hold and 

(5) 

For a cyclic systernff fhe form (4) again holds with (2) and (3), 
but in place of (5) 

In problems on forced oscillations terms depending only on 

the time will appear in the right-hand sides of equations (4). 

All these cases can be treated immediately by the methods 

t Lamb, loc. cit., § 77. % Ibid., § 73. !| Ibid., § 98. tt Ibid., § 99. 
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of Chapter I. No further theory is necessary. As an example 

consider the following: 

Particles of mass 3m, 4m, 3m are equally spaced along a string 

of length 41, fixed at its ends and stretched to tension T. Ait = 0, 

when the system is at rest in the equilibrium position, a transverse 

impulse I is given to the first particle. Find the subsequent motion. 

Let x^, X2, be the displacements of the particles from their 

equilibrium positions. Then the kinetic energy of the system is 

\m{Zx\-{-4x\-\-^x\), 

and its potential energy isf 

The Lagrange equations are 

3xi-j-n^2x,~X2) = 0, ^ 

‘ix2+n^2x2—x,—X3) = 0, I (7) 

3x3+»2(2a:3—X2) = 0, j 

where — TIml. These are to be solved with 

X, — X2 = X3 = X2 — X3 = 0, x, = II3m, when t — 0. (8) 

The subsidiary equations are 

(3jp®+2n®)xi—= Ijm, "j 

—»®Xi+(4p*+2n*)x2—n^Xg = 0, | (9) 

—»*X2+(3p®d-2re*)x3 = 0. ) 

Solving successively, we obtain 

. ^_n^I _ I 6_] 

3^*-|-2w^ 10m\6p^-i-n^ p^-j-n^ 3p^^2ny’ I 
. ___, 

“ m(3p^+2n^'j'^3p^+ 2n^ 

_ JJ 
” I0ml6p^+n^^p^+n<‘^3p‘‘‘+2n^j J 

t Ibid., § 87. 
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And therefore 

X. = -smn^+-7-'Sinn< /(^ , 
10m7i(V6 V6^ ^Vf> Vw// 

~—(vOsin ^ —sinn4, 
htiny VG j I Of tin 

I (4 nt M. I -X . ftt/ . . 

Xg ~  -{— Sin -7 +sinn^-, si 
^ lOrAmlVO VG VG 

sinnt 

(11) 

27. Comparison with the method of normal coordinates. 

The classical method of solving equations § 2G (4), namely, 

n 

2 (ars?s + ('rsVs + Cr89'») =0, r = 1,..., W, (1) 

is to seek a solution of type =~- \ e°^, s ^ 1,..., n. 

Substituting in (1) we obtain the n homogeneous equations 

Z = 0> r — \,...,n. (2) 
8 -1 

The consistency condition for these is 

D(<x) 

* ^ ^nn~^^^nn 

0, 
(3) 

which has 2n roots a^ny assumed for the present to be all 

different. 

For each of these roots we can solve the system (2) for 

the ratios of the A, obtaining 

: Af :... : A'‘>. (4) 

Each of these .solutions 

9, = r=tl,..., n, (5) 

is called a normal mode of motion, and the most general solu¬ 

tion is given by a linear combination of them, namely, 

2n 
ffr = 2 ^fcA^e"*', r = 1.n, (6) 

where the 2n constants Aj. are to be found from the conditions 

at ^ = 0. If Uj. and i\ are the values of and for / ^ 0, we 
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have, when t = 0, 
In N 

2 = «r. »• = I. ', n, 
2n ^ ( ) 

^ — V,., r = !}•••) 
/c-i y 

Solving these 2ii equations we obtain the constants 

The motiont may be regarded as a superposition of vibrations 

in the normal form with amplitudes ^gn* 

It will be noticed that some algebraical steps remain to be 

filled in in the above sketch; for example, it has to be shown 

that the equations (7) are linearly independent. The complete 

theory is, in fact, not difficult unless the equation iJ(oc) = 0 has 

repeated roots, in which case considerable algebraical difficulties 

arise. J These are absent in the Laplace Transformation solution. 

Consider now the solution of the example of §26 by the 

method of this section. The equation D{a) ~ 0 is 

3a2+2n2 -7^2 0 I 0, 

—71^ I 
0 —7i2 3^2+2712 

of which the roots are ratios of the 

amplitudes in the three normal modes arc respectively 

: A^i) =-= 2:3:2, \ 
Ai2): A!/^: A<2) = 1: J, (8) 

Ai»>: A!,2): A^3) = i:0: - j. j 

The general linear combination of these terms is 

= 2^isin[.42+n//V0]+-^3wr»[^4+^^]+ \ 

*3 = 2^,8in[^24-w</V6]+438in[^4+ni]— 

—A^sm[A(i+nf,Jl]. , 

(9) 

t Routh and HoaviHido firpt finvolopod thiw method, and Heaviside {Klnctrical 
Papers^ 1, 523) gave a formula for dotormining tho amplitudoR 
Bromwich, in hmclaHsIcal paper ‘On normal cioordinatow in dynamical HystemR’ 
{Proc, London Math. Soc. (2), 15 (1914), 413), showed that tho amplitiidoR 
obtained in this way agrood with thoso found by a method related to that of 
Chapter I. Hoaviside’R <lcvplopmont of his operational method was subsequent 
to his study of this method and indeed grow out of it. 

t Lamb, loc. cit., § 93. 
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The six constants are to be determined from the 

six equations = X2 = = X2 = ~ 0, Xi == //3m, when 

t = 0, Solving and substituting gives the result §26(11). It 

will be seen that the algebra of that section is considerably 

shorter. 

The relation between the results obtained by the Laplace 

Transformation and by the method of normal coordinates may 

now be seen. For simplicity we consider only the case in which 

all the vanish; here there corresponds to each root of the 

period equation (supposed all different) a factor of the de¬ 

nominator of all the Laplace Transforms: these roots occur, in 

fact, in conjugate imaginary pairs ^ = L 2,..., n; thus to 

each such pair corresponds a partial fraction with quadratic 

denominator (p^+^k) ^he expressions for the transforms. 

The coefficients of the partial fraction with denominator 2)^+i/| 

in fj, ^2,..., are in the ratio for the normal 

mode of frequency Vfcl27r. Similar results hold when the bj.^ are 

not all zero. 

EXAMPLES ON CHAPTER III 

1. A particle of mass m moves in a straight line under restoring force 

mX times th(3 displacement and resistance 2/xm times the velocity. If it 

is projected at f = 0 with velocity Wq at distance Xq from its equilibrium 

position, show tJiat if n® ~ A—/x^ > 0 the subsequent displacement is 

i cos nt4- (^o+fiXQ)iiin ntj^ 

and discuss the cases 0. 

2. A particle of mass m can perform small oscillations about equili¬ 

brium under restoring force nm^ times the displacement. It is started 

from rest in its equilibrium position by a constant force P which acts 

for time T and then ceases. Show that the amplitude of tlie subsequent 

oscillation is 2P 

-- sin InT, 

3. A mass m rests on a horizontal plane of coefficient of friction /x, 

and is connected to a fixed point of the plane by a spring of stiffness A. 

It starts from rest at a distance a from the position in which the spring 

is neither extended nor compressed. Find the motion, and show that 

the mass will next come to rest at distance a—2rw^/u/A from the equili¬ 

brium position. 
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4. A simple pendulum of length I is set in motion from rest in its 

equilibrium position by small horizontal motion of its point of support. 

Show that 

(i) if the point of support is displaced a horizontal distance a, the 

displacement of the bob is 

a{l—cosn^), n* = gjl; 

(ii) if the point of support makes half a complete oscillation of asincu^, 

the dispiaeement is 

TKl 
-- - (oisinn^—nsinw^), 0 < < < 7r/aj» 

. 2fiaco , / mT\ nn , 
and --Z-- smi nt*~— Icos —, t > tt oj; 

— \ 2a)l 2w 

(iii) if the point of support makes r complete oscillations of the 

resonance frequency, the displacement is 

Ja(8mn^—n^cosn^), 0 < ^ < 2r7r/n, 

and —arn cos nt, t > 2r7T/n. 

6. A particle hangs at r^st in the equilibrium position at the end of 

an elastic string whose imstretched length is a. The equilibrium length 

of the string is h and the period of oscillation about equilibrium is 27r/w. 

At < = 0 the point of support begins to move so that its downward 

displacement at time t is csinco^. Show that the length of the string 

at time Hs « 
cno) . ca>® r 

o-5-sin ~{~-~r-rSlna;^ if n / w, 

or b■j-icsmnt—inctcosnt, if n ~ oj. 

6. Two equal masses m, free to move in a straight line, are connected 

by a spring of stiffness A. At £ = 0, when they are both at rest and 

the spring unstrained, a force P is applied to one of them in the direction 

towards the other mass. Show that the displacement of the other mass 

from its initial position is 

7. Show that in the problem of Ex. 6, if the force is Psinaj£, the 

displacement is given by 

P 
-7~'5-Tv sin sin n£}, 

2a>*mn.(n*—a>*) 

where n* = 2A/m, and co® ^ n*. 

8,. In the problem of Ex. 6, if the applied force is one half-wave of 

suioi^, i.e. is P sin cut for 0 < £ < tt/cu and zero for t > rrlcot show that 

the displacement is given by the answer of Ex. 7 if 0 < t < tt/cu, and 

if t > tt/cu is 

{cun(n*—cu®)(2t — tt/cu ) + 2cu* sin n( t — 7t/2cu )cos nn/2cu'} 
2cu*wn(n®--cu*)’^ 

if cu® # n*. Find also the displacement if n* = cu*. 
4995 ^ 
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9. Two particles of masses M and m are connected by a spring of 
stiffness A and are at rest in equilibrium on a smooth horizontal plane 
when the particle M is given a blow P in the direction towards the 
other particle. Show that the subsequent displacement of the particle 
M is p 

where 

10. A uniform rod AB of mass m and length 2a is supported at its 
ends by equal springs of stiffness A whose other ends are fixed to a hori¬ 
zontal plane. When the rod is at rest at ^ ~ 0 in its equilibrium position, 
a vertical blow P is struck at one end A. Show that the subsequent 
displacement of that end is 

P f 1 3 \ 
—! —sin 2^nt -\-r- sin , 
mlnV2 nv6 ) 

where n* ~ A/m. 

11. The rod AP of Ex. 10 is at rest in its equilibrium position at 
f == 0 when the other end of the spring supporting A is given a motion 
asincD^, 0 < ^ < tt/cu, zero t > 7r/a>, where a is small. Find the angular 
displacement of the rod for t > tt/co. 

12. A particle is projected vertically upwards in latitude A with velo¬ 
city F. Show that owing to the earth’s rotation it will strike the"ground 
again at a point ^ 

cos A 

to the West of its starting-point. 

13. A particle falls freely imder gravity in latitude A from relative 
rest at the origin. Show that if the earth’s rotation is taken into account 
its displacement towards the East at time t is 

J(7C08A(2aif—sin 2a)t)la}^, 

Find the Easterly deviation in a fall of 100 metres and show that 
the Northerly deviation is relatively negligible. 

14. In latitude 45^ N. a gim is fired due North at an object distant 
20 kilometres, this being the maximum range of the gim. Show that, 
if the earth’s rotation has not been allowed fpr in aiming, the shell 
should fall about 44 metres East of the mark. Show also that if the 
shell is fired South under similar conditions the deviation will be twice 
as great and towards the West. (Air-resistance is neglected.) 

16. A straight, imperfectly rough tube starts to rotsjjte at < = 0 in 
a horizontal plane about one end O with angular velocity oi. The tube 
contains a particle which is initially at distance a from 0 and at rest 
relative to the tube. Prove that at time t the distance of the particle 
from 0 is 

1 sinh ajt{ 1 -f M®)*+^ +/**)*}• 
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16. A particle is projected vertically upwards at ^ 0 with velocity 

V from the origin under gravity and resistance 2hn times the ^"elocity. 

Show that its displacement at time I is 

gt (9+2kV) 

2k^ 4fc» ' 
~2kt\ 

17. A particle travels in a resisting medium which produces a retarda¬ 

tion 2AF, where V is the ve^locity, and it is attracted to the origin with 

an intensity /xV. It is projected from (<7,0) with a velocity v parallel 

to Oy. Prove that, if /x > A, the orbit is 

X —-cos(/x/cosa —a). 
cos (X 

y" 

where sin a A//x. 

Find the orbit when /x 

fJL cos OL 

: A. 

sin (/Li/cosot). 

18. A particle of mass m and charge e is projected from the origin 

with velocity (w, 0,0) and is subject to magnetic fi(*ld H along the Z-axis 

and resistance to motion km times the velocity. Show that its co¬ 

ordinates at time t an^ 

ku ku .. V . Xu 

where A 

Xu 

“A^TI 
eHjmc, 

-kt sin Xt, 

y -f ^(A cosXi f k sin Xi), 

19. A particle of mass m and charge e is projected from the^ origin at 

t = 0 with velocity (tx^, t?, w) and is subject to an electric field E sin(cu^ H- a) 

along the X-axis and a magnetic field H along the Z-axis. Show that 

the a:-coordinate of the particle at time t is 

V . u . . , Ee ( 
sin a cos A/ }* YCOsasinA/ —sin(cui' -hcx) 

20. A particle of mass m and charge e is acted on by an electric field E 

parallel to OX and by a magnetic field H parallel to OZ and resistance 

to motion m/x times the velocity. It is released from the origin at / ~ 0 

with zero velocity. Show that its subsequent displacement paralh^l to 

OX is 

El / j__, 
m l(/x®-fa*)® (/x*-fa^) (fx^-f ot®)® 

where a = eHlmc. 

e~^^cos at 
2aM 

(/x“ + a^)“ 
"^^,sin at 

21. A machine is of total mass M and is supported symmetrically on 

four springs each of stiffness A. The reciprocating part of the nmchine 

is of mass m and moves vertically in simple harmonic motion of ampli¬ 

tude a. There is resistance to motion of the machine 2Mk times the 
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velocity. If the machine starts to work at ^ — 0 with frequency a;/27r 

from rest in the equilibrium position, show that the subsequent dis¬ 

placement of the bed is 

-f: 2kconi cos n, f+u)((x)^-f 2k- — sin Wj t}, 

where 4:X/M^ nf ~ n® —supposed positive. 

22. A light string of length 3Z is stretched horizontally between two 

fixed points. Gravity is neglected. Masses 15m, 7m are attached to the 

points of trisection. The tension in equilibrium is Xml, The particle 

of mass 15m is drawn aside a distance a, the other remaining undis¬ 

placed, and both are simultaneously released. Prove that in the sub¬ 

sequent motion the displacement of the particle of mass 7m is 

15 
26 ^ ^ 3A/35 — cos ^J{X/3 )t}. 

23. A smooth circular wire, of mass 8m and radius a, swings in a 

vertical plane, being suspended by an inextensible string of length a 

attached to one point of it; a particle of mass m can slide on the wire. 

Prove that the periods of the normal oscillations are 

27Tyj(8a/3g), 27ryJ{a/3g), 27r^(8a/9^). 

If, the system is released from rt^st with the ring in its equilibrium 

position and the mass m displac(^d through a small angle a from its 

equilibrium position, show that at time t the angle which the string 

makes with the vertical is 

■^{costyJ{3g/&a)-cosl^{ 3g/a)}. 

24. A light string of length 3Z is stretched under tension P between 

two fixed points. Masses 5m and 8m are attached to it at the points 

of trisection. The whole is at rest until a small transverse velocity u 

is suddenly given to the particle of mass 5m. Prove that in the subse¬ 

quent motion the displacement of the other particle is 

V2sin ;g), 

where — P/mZ. 

25. Two uniform rods AB, CD^ each of length I and mass 4M, lie on 

a smooth horizontal table and are freely movable about their ends A, D, 

which are fixed at a distance 4Z apart. P, C are joined by an elastic 

string which carries a particle of mass M at its middle point, the tension 

of the string being T. Initially B is displaced through a small distance 

a from the position of stable equilibrium while C and the particle M are 

held in their equilibrium position and the whole system is then released. 
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Show that the displacement of the particle at any subsequent time is 

given by ^ _ |u{cosA;^Vf—cos2A:^}, 

where k — ^(STjAMl). 

26. A light string GAB is tied to a fixed point at 0, and carries a 

mass 2m at A and a mass m at B. The lengths OAy AB are Ji, j/ 

respectively. The string is free to move in a vertical plane, and the 

system oscillates about the position of equilibrium. The inclinations of 

OAy AB to the vertical are denoted by 6y respectively. Find the 

normal coordinates. 

The system is held with the string straight and inclined at a small 

angle a to the vertical, and is let go from rest in this position at the 

instant t ™ 0. Show that at any subsequent time 

0 “ Jcx(2cosn^-f-co8 2n0» 

(f) ~ Ja(4cosn^—cos2n0, 

where n = ^/igll)- 

27. A light string of lengtli 4a is stretched at tension T, and particles 

of masses m, m are attached at the points of quadrisection, with 

the unequal one in the middle. Find the normal modes for small trans¬ 

verse oscillations. 
If the motion be started by a blow / on one of the particles m at 

the instant t = 0, prove that the displacement of the middle particle 

at any subsequent time is 

10 / /sin ai sin pt\ 

29 ml a ^ 

4 T 
where — - —, 

7 771 a ^ 
™ — 

3 TTia' 

28. Two equal rods A By BC of length 2a resting on a smooth hori¬ 

zontal plane are jointed at B by a spring such that BC can rotate about 

By the couple required to twist BC till LABC =- n — d being XB. The 

rod AB is fastened at ^4 by a similar spring. The system is released 

from rest in the position in which A15 is in its equilibrium position and 

BC is turned through a small angle a from the direction AB. Show 

that the periods of the principal oscillations are approximately 

27r/0'292n and 277/1 •942n, where n® A/ma^, 

and that the angular displacement of A15 in the subsequent motion is 

given approximately by 
0-291an2{cos0*292n/-cos l'942n^}. 

29. A disk A of moment of inertia 100 is attached to a point B by 

a shaft of stiffness (couple per radian twist) 900 and negligible inertia* 

The end B of the shaft is given a forced vibration O lsinTr/, beginning 

at / = 0, when the system is at rest and unstrained. Show that the 

motion of the disk is given approximately by 

0 0• 345(77 sin 3/ —3 sin tt/). 
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30. A disk C of moment of inertia 10 is attached to the disk A of 
Ex. 29 by a shaft of stiffness 20. Find the natural frequencies of the 
system and show that the motion of C due to motion O lsin-TT^ of B, 
beginning at ^ = 0, when the system is at rest and unstrained, is approxi- 

mately ^ ^ 0-369sinir«-0-414sm3 042<+0 070sin l-396<. 

31. Three flywheels A, B, O, of moments of inertia 37, 47, 37 re¬ 
spectively, are connected by equal shafts AB, BG of stiffness A and 
negligible moment of inertia. At ^ = 0, when the system is at i:est and 
unstrained, A is suddenly given an angular velocity a». Show that the 
subsequent angular velocity of C is 

{3 —5 cos n<-f 2costi^ Vf}, 

where nr — A/37. 



CHAPTER IV 

THE INVERSION THEOREM FOR THE LAPLACE 

TRANSFORMATION AND ITS APPLICATION TO 

ORDINARY LINEAR DIFFERENTIAL EQUATIONS 

WITH CONSTANT COEFFICIENTS 

28. In Chapter I § 1, from the differential equation 

ff>(D)x = F(t\ t > 0, (1) 

with a^o, for the values of x, Dx,..., D^^^x, when ^ = 0, 

we obtained by means of the Laplace Transformation the sub¬ 

sidiary equation § 1 (5), and for various forms of F(t) we saw 

that x(t) can be found from this equation with the help of 

elementary theorems in the differential and integral calculus. 

The method adopted was to break up into its partial 

fractions and for each fraction to write down the function of 

which it is the Laplace Transform. 

An alternative method is to use the Inversion Theoremf for 

the Laplace Transformation, an integral formula by which x(t) 

may be obtained from f (p). A formal statement of this theorem, 

without any reference to the conditions to be satisfied by the 

functions, is that 
CO . > 

if x{p) = J dt, R(jj) > 0, 

(2) 

e^f(A) dX, 

where y is a constant greater than the real part of all the singu¬ 

larities of x(A). 
So far we have made no use of this theorem as it seemed 

better to solve the problems of the introductory chapters by 

the simplest and most elementary means, but it is essential 

for the application of the method to partial differential equa- 

t It is related to Fourier’s and Mellin’s integral theorems and is sometimes 

called the Fourier-Mellin theorem. 
v+<t>o y+itt» 

{By f we mean lim f . 
y—ioo w-^-co 

y-H 

thenX x(t) = - f 2iit J 
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tions. A complete discussion of the theoremf needs some know¬ 

ledge of the Theory of Functions of a Complex Variable and 

is rather difficult. However, if we assume that x(t) satisfies 

certain fairly general conditions, the formula can be obtained 

without much trouble. This proof will be given in § 29. J As an 

alternative in §30 we shall derive the formula from Fourier’s 

Integral Theorem, again imposing certain conditions on x{t). 

In § 32 we shall apply the theorem to problems of the type 

given in the previous chapters. In these applications a slight 

knowledge of the Theory of Functions of a Complex Variable 

and of the simplest ideas of the Calculus of Residues will be 

required. 

We shall then return to the question raised in § 5 of the veri¬ 

fication of the solutions obtained by either of these methods. 

It will be remembered that in obtaining the subsidiary equation 

certain assumptions were made as to the properties of the 

unknown function x{t)^ and the Inversion Theorem is also here 

established with further assumptions regarding it. We shall 

show that the given differential equation (or system of simul¬ 

taneous equations) and the conditions imposed when ^ = 0 are 

satisfied by these solutions, when F{t) in (1), or the correspond¬ 

ing equations, is continuous or has a finite number of ordinary 
00 

discontinuities, and J dt converges absolutely when the 
0 

real part of p is positive and sufficiently large. 

29. The Inversion Theorem. 

Let x{t) have a continuous derivative, and let |x(^)| < K^, 

where K and c are positive constants. Let 

CO 

x{p) — J e-^^x{t) dt, R(p) > c. 
0 

1 C 
Then x{t) = lim I (A) d\, where y > c. 

2i7Tt ai'->Qo J 
y—iot 

f Cf. Doetsch, loc. oit., chap. vi. 
J For this section and § 84 w© are indebted to Professor Titchmarsh. 
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For y+ iw 

y-itii 

^ J e^i(A) rfA = ~ J c^rfA J e‘^^^*x{u)du 

y~iui 0 

CO y-fia> 

= j* x(u) da J dX 

0 y-iui 

(since we may invert the order of integration because of the 

uniform convergence) 

=‘ f =• f/(«)““ *, ,1, 
TT J t — U 7T J S 

0 ~t 

on putting u = t-\-s and writing/{5) = e'^'y^x(t+s). 
00 0 

We break up the integral in (1) into J and j . Then the first 
0 -1 

of these we write 

00 8 B ^ 
C vSincu^ , r ainajs J . C fis)-’f{0) . , , 

f(s)—~—ds = /(O) —— ds + '''' tiin OJS ds + 

4- 

Lk 
r . sin cos J , J /(«) — ds + 

8 

00 

J/w 
Sin ws 

8 
ds. (2) 

5 ^ 

We can choose S and A so that the moduli of the second and 

fourth integrals in (2) are less than € for all values of oj. For 

the third integral we have 
A 

. sin cos 

8 
8 

d8 

= [-5^/(,)]Vi J C08««|0)) d, = 0(i). 

Also for the first integral 

B wB 
C sinco5 , C siny , , n J—*-Jir*=2+° 

4695 L 
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Combining these results we obtain 
00 

lim r /(s) ds = h7rf(0) = iTTx{t), 
CU-+ 00 J S 

0 

0 

Treating the part J of (1) in the same way we obtain 

0 

lim f f(s) ds — lTTx(t)y 
CO-^OO J S 

~t 

and the result follows. 

30. Deduction of the Inversion Theorem from Fourier's Integral 

Theorem, 

The usual elementary statementf of Fourier’s Integral 

Theorem is as follows: Let the arbitrary function <j>(x), defined 

for all values of Xy satisfy Dirichlet's conditionsX in any finite 
cr ' -i* 

interval, and in addition let J (j>(x) dx be absolutely convergent. 
~ 00 

Then 

- J rfa J <f>(x')ooaoL(x—x') dx' = <i>{x) (1) 
0 — 00 

at every point of continuity and equals l[<f>{x+0)+(f>(x—0)] at 

every point where <f>{x-\-0) and 0) exist. 

The repeated integral can be written 

277 

— 00 ~ 00 

and it is clear that 

00 00 ™ J da J <f>{x')c08cx(X‘-x') dx\ 

00 00 ^ J rfa J ^(a;')8in tx{x—x') dx' 

‘00 — 00 

t Carslaw, Fourier Series and Integrals, 3rd ed, (1930), § 119; Titohmarsh, 
Theory of Fourier Integrals (Oxford, 1937), § 1.9. 

t For a full statement of these see Carslaw, loc. cit. Corjamon types of 
function which satisfy them are (i) functions with only a finite number of 
maxima, minima, and ordinary discontinuities; (ii) functions of bounded 
variation. 
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is zero. Thus we can replace (1) by 

JL 
27T J 

— CO 

dix dx' (2) 

for points of continuity, with a corresponding result for points 
of discontinuity. 

Now let 

x{\) = J e-^x{t) dt, R(A) ^ y > 0. 
0 

Then 

yi-iCJ y+ioj oo 

J e^',c(A) dX — I” e^‘ d\ ^ e~^'x{t') dt' 
y ~ iu> y~ ioj 0 

Ui 00 

== ieyt j dy ^ e-‘i>^'[e-y*x{i')]dt', (3) 
-a> 0 

on putting A — y+iy- 

a> CO 

But liin I dy \ e''^^^’[e’'y^x{t')\dt* 
co->-a:. 277 J J 

- a» 0 

is the Fourier Integral for the function of t equal to e~y^x{i) 

when t > 0 and zero when ^ < 0. 

It follows from (3) that 

y4 t «> 

x{t) = ^ J e^x(A) dA, 

y —100 

provided that x{t) satisfies Dirichlet's conditions in any finite 
oc« 

positive interval and | e-^y^x(t) dt converges absolutely. 
0 

31. The line integral for x{t) obtained by the use of the Inver¬ 

sion Theorem is usually evaluated by transforming it into a 

closed contour and applying the calculus of residues. The fol¬ 

lowing simple result permits such a transformation in many 

cases. 
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Lemma. If |/(A)| < when X == —tt < 0 < tt, 

R > Rq^ where Rq^ C, k are constants and k > 0, then J e^f(X) dX 

taken over the arcs BB'C and AA'C of the circle T of radius R 

(Fig. 10) tends to zero ^ oo, provided t > 0. 

We consider separately the integrals and 1^ ^ over tl\e 

arcs BB' and B*C. Those over A A' and A'C are treated in 

the same way. 

t In dealing with partial differential equationH it will frequently be necea- 
sary to take the radius of the circle F as a function of the positive integer n 
and then let n oo. Clearly the result holds if K tends to infinity in this 
way though a sequence of values for which the given conditions are satisfied. 
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For BB\ let a = co8~^(y/i?). Then 
ilT 

\Ibb'\ < ^ dd = CR’-^^'^ey^B\x\"''^(ylR), 
a 

Therefore lim = 0. 

Fort B'C, 

14-0'I < J 
iir 

= J J dO < 
0 0 

Therefore lim \Ib'c\ == ^ result is proved. 
li^OD 

In all the problems of this chapter f (A) will be a function of 

A which satisfies the conditions of the lemma and which is 

analytic except at a finite number of poles all of which are to 

the left of R(A) = y. It follows that the line integral (y—ioo, 

y+ioo) of the Inversion Theorem may be replaced by the limit 

of the integral over the closed contour of Fig. 10, when i? oo, 

and this in turn may be replaced by any circle (7, centre the 

origin, which includes all the poles of ;r(A). 

32, Examples of ordinary Umar differential equations with con¬ 

stant coefficients solved by the use of the Inversion Theorem , 

Ex, 1. (Z)2-f 4Z)+4)a; == sina>^ t > 0, 

with Xq and x^ for the values of x and Dx when t = 0. 

The subsidiary equation is 

(p+2fx == (^)a:o+:ri) + 4a:o- 

Thus 
px^-^Xy^+4:^0_tu_ 

(p+2)^ "~‘^(^>2+cu^)(j?+2)2* 

It follows from the Inversion Theorem that 
» 

y + ioo y + i 

^ ’~2i7r J ■ ■(A+2)2"^ +2+ J (A<‘+a;*)(A+2)*’ 
y —ix y — ioo 

(1) 
where y > 0. 

t In the reduction we use the reHult I > 
sin 6 2 . 

if 0 < ^ < 
2’ 
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Since the multipliers of in the integrands of (1) are all 

0(A"*), i > 0, it follows from the lemma of §31 that, if < > 0, 

the line integrals may be replaced by the integral round the 

contour of Fig. 10, and this in turn may be replaced by the 

integral round any circle C, centre the origin, enclosing the 

singularities and —2 of the integrand. 

The Calculus of Residues then gives us at once the terms in 

x(t) corresponding to each of the integrals in (1). 

For the first we have 

i.e. 

In the second, 

^-e^iXxo+Xi+iXg) 

JA=-2 

[xo+(Xi+2a-o)<]€-2'. 

the pole at iai gives 
2(a,2+4)2 

and the pole at —loj gives --* 

Adding these, we have 

(4—6L>^)sin ojt~ioj cos cut 

The pole at ~2 gives 

CO I 
Thus 

x(t) == {x^+ixi+2xo)t}e-^+ 

(4—a)^)sinwt—4wcosaj< coe~^ L . 4 \ 

In the method used in the earlier chapters we would have proceeded 

as follows: 

x{p) 
Xi + 2xo 

+ 
p + 2 ' (p-f2)* ' (pH<u*){p + 2)'‘ 

p+2 (p + 2)“' c<j‘ + 41 (p + 2 )2 (toH 4)(p + 2”) (a.* + 4 )(p*+<u*) 

Therefore 

x{t) — ®oe~"‘ + (a:i + 2a;o)«e-*‘ + 

x^ + 2x^ to 
-i- '- 

1 
■t . ~h ; 

4 — CO* — 4p 

)• 
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Ex. 2. The problem of §6, Ex. 4. 

(D^-2D+2){D^+2DS)x = 0, <> 0, 

with X, Dx, D^x, D^x equal to 1, 0, 6, —14 when f = 0. 

As before, we find 
y^+y-4_ 

(p^-2p^-2)(p^-^2p-Z) 

The Inversion Theorem gives 
y+ioo 

.= ± f c^_(^+A-4)_ 

2177 J (A2-2A+2)(A2+2A-3) ’ 
y—ICO 

The path (y—ioo, y+^oo) may be replaced by a circle (7 con¬ 

taining all the poles —3, 1, of the integrand, and x is equal 

to 27ri times the sum of the residues at these poles. 

The pole at A = —3 gives \e-^\ 

that at A ~ 1 gives — \€f\ 

those at A = give 

Adding these we obtain 

X = e^(co8<+sin/)— 

Ex. 3. {D^-\-a^fx = cos a/. 

X, Dxj D^x, D^x zero when / = 0. 

Here 
- _ p 

Therefore r =. ± j 
c 

where the integral is taken round any circle C of radius greater 

than a. 

Now 

Thus 

Also 

the pole at A = ia gives 

the pole at A — —ia gives 
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Adding these we have 

X = ~ [sin at—ai cos ai\. 

33. We now prove Theorem VI of Chapter I, §3, which was 

stated there without proof. 

Let flip) = f e-P^Fiiu) du 
0 

(1) 

and 
CO 

Up) = j e-P^F^iv) dv (2) 
u 

converge absolutely foi p = > 0. 

Then fiiP)Mp) = / e-P‘Fit) dt, (3) 

where 
0 

t i 
Fit) — J Fi{t—T)F2ir) dr = j Fi(T)F2(t—r) dr. (4) 

for p > Pa- 

On account of the absolute convergence of the integrals (1) 

and (2) we know that 

J du J dv j j dtidv, 
0 0 

where the double integral is taken over the quadrant w > 0, 

V > 0. 

The substitution -u+v == ^ and v = t transforms this double 

integral into r r 
* JJ e-P>%{t-r)F,{T) (Mr, 

taken over the region between the <-axi8 and the line < = t in 

the (t, t) plane. 

This double integral is equal to the repeated integral 

J J i\{t-T)F^(r) drj dt. 

Since the absolute convergence of (1) and (2) for p = Po > 0 

clearly carries with it their absolute convergence for p > p^, 

the theorem as stated is proved. 
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34. Verification of the solution obtained by the Laplace Trans¬ 
formation method for 

<i>{l))x =. F{t)A 

tvith Xq, x, Dx,.,., D^-^x, when t 0. 

Write the subsidiary equation of § 1 (5) in the form 

where 

<l>(p) I" e-“'xdt -- xiv)+i^{v)^ 
b 

x(v) = 

+ •*^71-1 

and F{p) ~ j e~^^^F(t) di. 

The solution is given by 

X{t) Xx(t)+XS). 
y +• ir/,. 

1 
where x. 

y-r 

and, by Theorem VI, §33, 

^2(0 = I Q(t—r)F(T) dr. 

Q(t) being given byj 

or 
dX 

f(xy 
y-1® 

(1) 

(2) 

(3) 

(4) 

t J fit is supposod absolutely convergent for p with a real part 
0 

sufficiently large and positive. 
J It is clear that the absolute convergence required in Theorem VI as proved 

00 

in § 33 is satisfied by J c~v^Q{t) dL 
0 

mi M 
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Since ;^(A) and <^(A) are polynomials in A, the degree of the 

first being at least one lower than that of the second, it follows 

that the integrands of (2) and (4) satisfy the conditions of the 

lemma of §31, and thus that, if / > 0, the line integrals 

(y—ico, ioo) in (2) and (4) may be replaced by integrals 

over a circle 6', centre the origin, which includes all the zeros 
of 

By expanding in ascending powers of 1/p it will be seen that 

Thus 

(5) 

1 r 

'liv ^ 
e^X" 

A + ••• + ■’"“A dX+ ^ - f e^'of - ^ \ 
A" / 2in J \A''+i-'"/ 

dX. 

It follows that lima:i"(<) m = 0, 1,..., w—1, since when 
/--o 

t - 0 the last term tends to zero as the radius of the circle C 

tends to infinity.f 

Also it follows from (4) that 

f f' 2^77 J ^(A)’ (6) 

and thus 
lim ™ 0, when ni n — 2, 
/“►O 

= 1, when m ~ n-l. 

Now consider 

.T,(0 j W~r)F(r) dr. 

Then, lor values of / at which F(t) is continuous, 

t i 

Hit) = Q(0)F(t)+ / Q'it-r)F{r)dr f Q'{t-r)F{r) dr, 
0 0 

t Since J dX is continuous for t > 0, 

lim z^\t) f 
<--►0 J 
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t t 

Q'{Q)F(t)+ J Q''{t-r)F{r) rfr = J Q''(t-T)F{r) dr, 
0 0 

\ Q»-^\t-T)F(r)dr. 

i ^ 

But I Q^»\t-r)F(T) dr. 
0 

t 

Thus <f)(D)x.Jd) — F{t)-\- J F(r)<f>(D)Q(t—T) dr 

= F{t), “ (7) 

since, by adding results of type (0), 

c 

Also (f>{I))x^{t) ~ l~ r JA 0. (8) 
2nr J 

Thus, from (7) and (8), 

cl>(D)x(t) F(t), 

and the verification is complete. 

35, For simultaneous equations we omit the general case and 

consider only the system of n first-orderf equations 

I ^ ^r(0, r -■= 1, 2,..., n, t > 0, 

where --- D+6,,., (1) 

and Xj, ~ ^ 1,..., n, when t ~ O.J 

The problem is simplified by breaking it up into two: 

I. The non-homogeneous case: 

2 ^ = I,-, n, 
with == 0, r ™ 1, 2,..., when i ™ 0. 

t A system of higher order van be reduced to a first-order system by yu]>- 
stitution. 

J The footnote on p. 81 also applies to the functions F,{t). 

and 

xlit) = 
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II. The homogeneous case: 

n 

2 =0, r = 1,..., n, <> 0, 
.H-1 

with Xj. r ^ 1,..., n, when ^ = 0. 

I. The non-hornogeneous case. This can be further simplified 

by taking all but one of the zero and adding the solutions 

thus obtained. Thus we take the system of equations 

2 = F{t), 

n 

2 e„x,. = 0, r=2, 

t > 0, 

with = 0, r = 1,..., w, when ^ = 0. 

The subsidiary equations are 

n _ 

where 

Thus 

where 

r =: 2, 3,..., w, 
A - 1 

Prs ~ 

X, = PuF(m> 

Pn Pii ■ ■ Pm 

Pii- • • • P%n 

Pnl * • ‘ PnnI 

and 1^3 is the cofactor of in this determinant. 

Let 

so that 

A 

00 

Then the solution of (2) with its initial conditions is 

t 

j Q,,{t-T}F{r)dT, r = l,2,...,n. 

(2) 

(3) 

(4) 

(5) 

(6) 

X, (7) 
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Verification. We have 

Qn 
_ 1 1 r.A/^r*A»-»+... 

2in J A(A) 2*77 J 
dX, 

AX”+... 

where A == “ii 0,2 • “in 

®nl ««2 • 

(8) 

and is the cofactor of a„ in the expansion of this deter¬ 

minant. We assume A ^ d. Then 

A ■ «'■<») 

Now J Qu{t-rmr) dr. 
0 

Therefore t 

/’(<)+ j* Fir}ei,,Qu(i—r) dr. 

0 

Thus, adding, 

i ^ J(0-f f i’{T)( I dr 
s-1 ' 

since le„^Qrs = ^- htj 
^XlPmsW^raW 

A(A) 

0, if r m, 

-i~ r dA == 0, r = m, 
2^7T J 

(9) 

(10) 

Hence the first equation is satisfied, and the others are treated 

similarly. 
* 

II. The homogeneous case. The equations are 

n 

2 e^a;, = 0, r = 1,..., n, t > 0, 

with Xf. — UftT ~ 1,..., TC, when f = 0. 
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The subsidiary equations are 
n 

where II (11) 

Thus 
^ 2 

r- 1 

n 

and 
r-1 

where and are defined in (5) and (0). 

Verification. It follows from (10) that 

n n n ^ ^ra^s ^ ^rsQma T = n. 

Also, when t == 0, 

-=iUrQJ0) = 2 
1 

j n n 

" i 2 2 
m-- 1 1 

= Mg, S = 1, 2,..., M. 

EXAMPLES ON CHAPTER IV 

Use the Inversion Formula to solve the equations in Exs. 1~10, with 

the given conditions whf^n t ----- 0. Tlie answer is given at the end of 

each question. D is used for didt, 

1. D(D—l).v ™ ^2, x^y x^. 

[(■«o-a-,) f .r, ~+j,- e>y 
2. {D^-\-l)x “ Xq —Xi ~ x^. 

[(»^o— s« )e"‘ + - 3< + i )e‘ - |e*‘ cos(§;r + i V3i). 

3. (D^-f l).r = fcos2^ x^y Xj. 

cos t-i-x^ sin ^ f sin ^ — ^t cos 2t -f }- sin 2t. 

4. (D®—31)4-2)a7 == Xoy a?i. 
[(^1—a:’o +1 4“ (2a^o — 1 “ Oc* • 

6. (1)2 —2i)-|-2)(D2*-2JD—3)ar — sin#, a;,, and 2:3 all zero. 

[ + 40^“* 4- 8^( 17 cos / —16 sin #)e* — A( 3 cos # 4* 4 sin #). 
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6. {D^-\-m^yx = afiin mty Xq, x^y and all zero. 

r a // 3 A . // 3 A . 3( \ 
—5 — ml-cosmt . 

/ m i 

1, (D^-{m^)h: ~ aHinnty x^y x^y a^g, and all zero. 

— n® . 
t coH mi — - —r- sin 1Y\t . 

L(m* —n*)* 2m\m^ — n^)\ m{m^ — n^) /’ 

8. (D^'\ )n^)^x ~~ «sin(m^-f a), x^y a.'j, x^y and ^3 all zero. 

[See p. 22. Ex. 17. 

9. = asin(/?^-f-a), x^y .Tj, ajg’ ‘^3 /-oro, 

[See p. 22, Ex. 18. 

10. (D—l)'*a; = 1, XQy x’j,..., Xf^_l all zero. 

[(_l)»+(_l,»-.(l_«+.^_...+(_,)n-. 

11. From the integral 

y VTT 
j rfa; ~ 2^ a and 6 positive, 
0 

show that, if <7 ~ \l{plK)y 

(>-Q^ ^-3'.»/4k< 
(i) — is the Laplace Transform of ' - , x > 0, 

Kq yl(7TKt) 

(ii) is the Laplace Transform of x > 0; 
2yJ{TTKt^) 

and from (ii) deduce that 

f>~qx 

is the Laplace Transform of 1 — erf{.r/27(^0}- 

12. Use the Inversion Formula to obtain x^(t) and a:2(0» when 

(i) ^1(7^) 

(ii) ^iip) 

{p^-\-a^f 
[t cos aL 

[^sin at. 

13. Show that 

and deduce that 

2w J ^ (A —n! 
y—ioo 

r 1 
j e^^H^cohat dt = n’xroal part of 

7 1 
J sin at di = n! x imaginary part of * 



CHAPTER V 

LAPLACE TRANSFORM METHOD IN THE SOLUTION 

OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

36. A similar method can be used in the solution of partial 

differential equations such as occur in various branches of 

applied mathematics, with initial and boundary conditions. 

For example, take the equation 

B{x,y,z,i), 

(1) 
^2 ^2 

where + / 2 ’ 2/) -) is a point in a given region, 

and t, usually the time, is positive. 

A boundary condition is to be satisfied of the form 

(2) 0(x,y,z)u+H(x,y,z)^J^~ — K(x,y,zJ), 
dn 

where djdn denotes differentiation along the normal. 

There are also conditions for t ^ 0 within the region; e.g, 

lim u{x,y,z,t) u^{x,y,z), 
/“►O 

\\m^u{x,y,z,t) -■= u^(x,y,z). 

We multiply (1) by (p > 0) and integrate with respect 

to t from 0 to oo, assuming that 

(3) 

CD V* 

J e-^'^udl, J dt, etc., 
di 

e~^'^u dt, 

exist. Also we assume that 
00 00 

J ^ V2 I* e~p'u dt. 

But, as in § 1, 

= — 
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where u = j dt, 
0 

/'■"'S*=[‘‘"S], /‘■"S * 
0 ® 0 

CO 

== -Ui+p j dl 

0 

~ —{p'U'Q+Ui)+p^u. 

Thus, with the above assumptions as to the nature of the 

unknown function u, we obtain from (1) and (3) the ‘subsidiary 

equation' 

VH+[A^{x, y, z)2)^+A^{x, y, z)p+A^{:x, y, z)]ii 
00 

= A^(x,y,z)[puQ-\-u^]+A^{x,y,zyuQ-\- J e-»‘B(x,y,z,t) dt. (4) 
0 

The boundary condition (2) is replaced by 

0{x, y, z)tl+H{x, y, [ e-P'K{x, y, z, i) dt. (5) 

0 

37. If we can find u from (4) and (5) of §36, our problem is 

reduced to finding u from the equation 
00 

u{x,y,z,p) = J t-P^u(x,y,z,t) dl. 
0 

It may happen that xi[x, y, z,p) appears in the Table of Trans¬ 

forms and then }i(x, y, z, t) can be written down directly. If this 

is not the case, wo obtain u from u by the Inversion Theorem, 

§29, namely, y+i* 

«(a;, y, 3, <) = J e^il(x,y,z,\) dX. (1) 

y—too 

The line integral is then evaluated by transformatiun to a 

suitable closed contour and the use of the Calculus of Residues. 

Most of the problems with which we shall be concerned fall 

into two classes according to the nature of Hix, y, 2, A) as a func¬ 

tion of A: 
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I. u(x, y, z, A) is a single-valued function of A with an enumer- 

ably infinite number of poles. In this case we use the contour 

of Fig. 10, choosing for the radius R of the large Circle F a 

sequence of values such that none of these circles passes 

through any pole of u{x, y, z. A). Then, if u(x, y, 2, A) satisfies the 

conditions of the lemma of §31, the integral round the circle of 

radius if,, in Fig, 10 tends to zero as n 00. Thus, by Cauchy’s 

theorem, the line integral in (1) may be replaced by the limit as 

n -> 00 of 27ri times the sum of the residues of the integrand 

at its poles within the circle F of radius if,, . 

II. u{X) has a branch point at the origin but otherwise only 

a finite number of poles. In this case we use the contour of 

Pig- 11. § 39. If u(x, y, 2, A) satisfies the conditions of the lemma 

of §31, the integrals round the arcs BF and AC of the large 

circle F tend to zero as its radius R tends to infinity. The 

integrand will be single-valued within and on the contour so 

that, when if -> 00, the solution is obtained as a real infinite 

integral (derived from the integrals along CD and EF) together 

with 2Tri times the sum of the residues at poles within the con¬ 

tour, and possibly a term arising from the integral round the 

small circle about the origin. 

Other types, such as those of Chapter IX which have two 

branch points, will be dealt with as they arise. 

In §§ 39-44 three simple examples are solved to illustrate the 

methods of procedure. The proofs that the integrals round the 

large circle F of radius R tend to zero as i? 00 are given in 

detail in these examples. In the problems of later chapters they 

will be omitted, but in all cases they can be supplied along the 

lines of those in §§39, 41, 43. 

38. In deriving the subsidiary equation and its boundary con¬ 

ditions in §36, and in obtaining n(Xyy,z,i) from u(x,y,z,p) by 

the use of the Inversion Theorem, certain assumptions as to the 

nature of u(x,y,z,t) were made, so that the previous discussion 

is incomplete. The same difficulty arose for the ordinary dif¬ 

ferential equation, but there it was found possible to give a 

general verification process, §§34, 35, which would cover all 
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cases. For partial differential equations this is not possible and 

a separate treatment must be given for each problem. 

It should be remarked that the assumptions referred to above 

are reasonable and not at all restrictive from a physical point of 

view If we assume a 'priori that there exists a solution of the 

problem with these properties the preceding analysis becomes 

valid. This point of view seems adequate for most purposes in 

applied mathematics. 

To make the solution completely rigorous it is necessary to 

verify that the result obtained does satisfy the original differ¬ 

ential equation and the initial and boundary conditions. This 

must be done for the particular problem under consideration. 

The final form of the solution may be best to work upon. In 
y } 1*00 

other cases it may be better to deal with the line integral | 
y—too 

obtained from the Inversion Theorem, and there it may be 

possible and advisable to change the path L into the path U 

of Fig. 15. We shall return to this question of verification in 

§58; for the present we take the point of view of the preceding 

paragraph and simply remark here that for complete rigour 

verification is necessary and that it can be performed for most 

of the solutions obtained in the text.| 

39. Linear flaw of heat in a semi-infinite solid, x > 0.* the 

boundary a: = 0 kept at a constant temperature v^; the initial 

temperature of the solid zero. 

Here we have to solve 

dv bh) ^ n < ^ A — = K—a: > 0, < > 0, 
dt dx^ 

(1) 

with V = Vq, when a; = 0, < > 0, (2) 

V = 0, when a: > 0, / — 0. (3) 

t An entirely different method has been used by Churchill {Math, Zeitschrift, 

42 (1937), 567, and 43 (1938), 743; Math. Ann. 114 (1937), 591, and 115 
(1938), 720). The Inversion Theorem, § 29, was proved under conditions on 
x{t). In place of this it might have been proved undir conditions on ^'{p). 

Further, it is possible to state conditions on ^p) under which x{t) obtained 
from x{p) by the Inversion Theorem has the properties required for the 

verification. 
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Then, using the Inversion Theorem, we have 

y-f ioo 

v= f (7) 
2in J A ^ ^ 

y —too 

The integrand of (7) has a branch-point at the origin, so in 

evaluating (7) by contour integration we have to choose a path 

which does not contain the origin. 

Consider the closed circuit of Fig. 11, where AB k parallel 

to the imaginary axis at a distance y from it. The circle F of 

radius B and centre at the origin cuts this line at A and B and 

the imaginary axis at A' and JS'. There is a ‘cut' along the 

negative real axis. The small circle with its centre at 0 is of 

radius e. This circle is open at DE and F is open at CF, The 

argument of A is — tt on CD and tt on EF. 

We take 2i7r J 
■xV(A/k) dX 

over this closed circuit and we know that the integral is zero. 

Since | A|^|-i a,nd AC the conditions of the 

lemma of § 31 are satisfied, and it follows that the integrals over 

BF and AC tend to zero as i? oo. 

It follows that 
y+iw 

JL r gA/-irV<A/K)^ 
2iTT J A 

y—ICO 

is equal to the sum of the integrals over CD and EF, and that 

over the small circle, when i? ->■ oo and e ->■ 0, In the integrals 

along CD and EF put A = pe-" arid A = pe^” respectively, and 

we get 

i.e. — - r e-i*»\nx^(plK)-^-, 
. w J p 
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'sinwa:- i.e. J 
0 

x/2V(#fO 

i.e. —f e-^* duA 
VTT J 

0 

Also from the small circle we get 1. 

Thus from (7) we have 
! Xl2^(Kt) . 

= J e-'duj 

X 

where erfa: — ^ J e-”"’ du. 

(8) 

40. Linear flow of heat in the solid 0 <x <1: no flow across the 

boundary x ~ Q; the other boundary x ^ I kepi at a constant 

temperature ; the initial temperature of the solid v^^, 

Here we have to solve 

| = 0<.<l. i>0, 
dt dx^ 

(1) 

with 
dv 
— — 0, when a; = 0, < > 0, 
dx 

(2) 

and V = Vif when x = 1, t > 0, (3) 

and V = Vqj when ^ = 0, 0 < a; < Z. (4) 

The Subsidiary equation is 

o<x<!, 
dx^ K K (5) 

with ^ = 0, when a; — 0, 
dx 

(6) 

t This well-known integral can be obtained from 
00 

J e"®*** cos 2bx dx 
0 2a 

by integrating with respect to 6 from 0 to 6. 
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and V = > when X = 1. 

Thus f == !!? -L coBha:V(p/>c) 
p p cosh I'^Jip/K)' 

Then, by the Inversion Theorem, 

(7) 

(8) 

y-1-1 TO 
,, ,, I f «A«cosh zy(A//c)^ 

® 2iiT j cosh^(A/»c) A ' 
y — icc 

The integrand is a single-valued function of A and there are 

poles at A ~ 0, and A = —?t = 1, 2,.... 

Consider the closed circuit of Fig. 10, where ^jB is parallel 

to the imaginary axis at a distance y from it. If the circle has 

radius jR equal to Kn^ir^jP, it will not pass through any pole of 

the integrand. As n -> oo the integral over the arc BCA tends 

to zero; this will be proved in §41. 

Thus we can replace 

y+ ioo 

1 r ^^coHhx^iX/K) dX 

2in J ^ coshZ^(A//c) A 
y-tico 

by the limit when n -> oo of this integral over the closed circuit 

A BCA. And by Cauchy’s theorem this is equal to 2in times 

the sum of the residues of the integrand at its poles. 

The residue at the pole A = 0 is 1. 

The residue at the pole A = is 

i{n— I )7TXll 

A|-{co8hZV(A/K)}l 
L h=^~ic(n K{n-h)*TTVl* 

7r(2n-l) 
QQg 

(2n— l)7ra; 

21 * 

Using these results in (9) we obtain 

4(^1-Vo) 
Vo + y cos . 

2w—l 2l 
n-l 
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/< 

41. To show that when 0 < x < I and t > 0, 

^^Bhx^iX/K) dX 
cosh Q(X/k) X 

vanishes in the limit over the arc BCA of Fig. 10. 

We have to show that ^) 
X cosh ly/{X/K) 

satisfies the conditions of the lemma of §31 on the circle F of radius 
R X- Kn^TT^jlK 

Using the result 

2cosh(a-|-^6)cosh(a —^*6) = cosh 2a-f cos 26, 

we find at the point A = Re^^ 

2|coshZ^(A/#c)|® = cosh(2n7rcos cos(2n7rsini^) 

= cosh{2n7rcos J^)[l -|-sech(2n7rcos J®)cos(2n7rsin J^)]. 

(2) 

Let 

Wlien TT 

sin J/3 — 
2n-~ 

2n 
so that cos IB ™ 

^ 4n 

2mT > 2/i7rsin 2n7rsin J/3 ~ (2a—J)7r, 

and thus cos(2a7r8in Id) > 0. 

Thus, when tt > ^ > jS, 

2|oosh/^(A//f)|* > cosh{2n7rcoH 1$). 

Also, when jS > 0 > 0, 

|soch(2n7roos J^)co.s(2n7rsin J^)| < sech(2n7rcos 10) 

< soch(2n7rco8 J/3) 

= soch J7r^(8n—1) 

< sech JttV?, when n > 1. 

Using (3) and (4) in (2), it follows that 

2|cosh^^(A/Af)p > (1 — sech j7rV7)cosh(2n7rcos J^) when tt > ^ > 0. 

Tlierefore 

|coHh/^(A//<‘)| > C cosh * (2n7r cos J^), tt > 0 > 0, 

whore (7 is a con8ta;nt, independent of n. Also 

|cosha;-^(A/#c)| = (cosh{(n7r//)a;(cos Jff-f isin Jd)}| < co8h[(a7r//)x*cos 

^ cosh{(n^//)xco8 Jfl} 

C-^[cosh 2n7r(co8 Jl9)] 

(3) 

(4) 

Hence 
jcosha:7(A/K) 
I cosh Q{X/k) 

^^innH)si;cmi6 

< C\ when n > $ > 0. 

And this holds also for tt < d < 27r. 

Thus the conditiona of the lemma of §31 are satisfied and the result 
follows. 
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4?. A stretched string with its ends fixed at the origin and x ^ I 

is plucked at its middle point and released ai f = 0, If the dis¬ 

placement is 6, find the subsequent vibration. 

Here we have to solve 

(1) 

(2) 

(3) 

= 0, when x = 0 and x ~ I, t > 0. (4) 

Multiplying (1) by er^^ (p > 0), integrating with regard to t 

from 0 to 00, and using (2) and (3), we obtain the subsidiary 

equation 
0 <x <f (5) 

where 
fix) - jx, 

a;), JZ < a: </, 

and y = 0, when x ~ 0 and a: = Z. (6) 

We solve (5) and (6) by the method of variation of para¬ 

meters,! as follows: 

Let y — A cosh qx+ B sinh qx, (7) 

where q = pjc and Ay B are functions of x to be determined. 

Then y' = q(A sinh qx-j-B cosh qx) 

provided that A' cosh qx+B' sinh qx = 0. 

Also ^ 

y'^ = q^{A coshga;+i?sinhga;)+g(A'sinhg'a;-(-JS'cosh^fa:). 

t For an alternative method, using the ideas of Chapter I, see Appendix IV, 

Ex. 3. 
4m o 
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Thus y"—qiy — gf(^'sinhg'a:-f£'co8hg'a;) 

and so y == A coshg'x+Bsinhg'x satisfies (5) 

if A' cosh qx-\- B' sinh qx = = 0 (8) 

and ^'sinh^x+^'coshga; = - fi^) 
c 

(9) 

From (8) and (9) A' — ■^sinhqx 
" 1 (10) 

and B' — cost ?a:. 

But from (6) ^(0) = 0. 

Therefore 

X 

A(x) = ^ j f($)smhqi di- 

A 

(11) 

Also A (l)cosh ql+B{l)smh ql = = 0. 

Therefore B(l) = — ^ coth ql J /(^)8inh q^ d^. (12) 

Thus, from (10) and (12), 

B(x) = 
- t L -y 

f /(i)co8h di — coth ql J /(f)sinh df . (13) 
' X 0 

Finally, from (7), (11), and (13), 

X 

cmihqly = 8mhg^(Z—a;) J /(Dsinhgfd^ + 
0 

+sinhg'a: J /(^)8inhg(i—^^) d^. (14) 

Then, substituting fox f{x) from (2), we have 

I ^ X c sinhoar . . ^ 
26^ p p*C08h^l * 

(16) 

I . l—x c 8iiihq(l—x) „ ^ 
26i'--r~F“ ecJifai ■ (1«) 

and 



OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 99 

We have now to find y, and from symmetry it is clear that 

we need only deal with (16). 

The first term on the right gives x. 

1 sinhga: 

cosh \ql 
we use the Inversion Theorem and have 

y-t*lQO 

1 r sinh(Ax/c) dX 

lin J ^ cosh(AZ/2c) ‘ 

We now consider this integral taken over the closed circuit 

of Fig. 10. The circle P of radius R equal to ^mrcjl does not 

pass through any pole of the integrand as these are at A ^ 0 

and A = ihin — \, 2,.... 

As n -> 00 the integral over the arc BCA tends to zero; this 

will be proved in §43. We can thus replace (17) by the limit 

when n 00 of this integral over the closed circuit ABC A. 

Then from the Theory of Residues we obtain the value of 

(17) as an infinite series. 

The pole at A ~ 0 gives xjc, (18) 

The pole at A 
.(2n~l)7rc . 

gives 

p i{1n-\)7TCill ^ 
sinhi(2n—l)7rx// 

A^ cosh 
XV 

A-i 

(-\\n^ sin(2n-l)TO/Z 
^ ’ TT^C (2w~l)2 

So the poles at ±i(2w—l)7rc/i give 

8in(2»—l)^cos(2»—1)~~ 
If V 

Then from (15) we have 

\ (2m- 

(—1)” . {2n—\)nx (2m—l)7rc< 

(20) 
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Thusf 
86^(-1)«-i . (2w—l)ira; (2n-l)irc< 

*' = 2 CO.'—., (21) 
n=. 1 

when 0 ^ X ^ 

For II ^ X ^ I, we replace a: in (21) by (/—a:). 

43. To show that when 0 < .r < J/ and t > i) 

r ainh(Ax/c) dX 

J ^ co«h(A//2c) A^ 

vanishes in the limit over the arc BCA of Fig. 10. 

If we can show that 
sinh(Aa'/c) 

cosh(A7/2c) 

is boiuncled on the circle F of radiu.s R ^ 2mTclU the result will follow 

from the lemma of §31. We prove this for A in the first quadrant, 

In 6 > 0; the other quadrants are treated similarly. 

If A — Rej^, wherii R - 2nnclU we have? 

cosh ‘ 

Now let 

.so that 

Then, if Jtt 

= cosh(2n7rcos^)[)-f sech(2n7rcos^)cos(2/J7rsin0)]. (1) 

2n~ I 
(‘OSj3 — 

sin^ “ 

\TT-p, 

2n 

y/{Hn~ 

An 

0 < < Jtt, 

1) 

2nn > 2nnmi6 > 2r?7rcosjS " (2a—J)7r, 

and thus ’ cos(2a7rsin^) 0. 

Therefore 2|cosh(Ai/2c)|* cosh(2n7rcos^). (2) 

Also, if in> e 0, 

|sech(2n7rcos^)cos(2a:Tsin^)| < sech(2a7rcos^) 

.sech(2n7rsinjS) 

- HOch^n^JiSn~~ 1) 

< sechjTrV?, when n > 1. (3) 

t It should be remarked that for this problem it is not possible to verify 
directly that the solution obtained as a line integral satisfies the differential 
equation and initial and boundary conditions. It will be found that the solu¬ 
tions obtained from (15) and (16) by the Inversion Theorem cannot be twice 
differentiated under the integral sign and thus we cannot verify by direct 
differentiation that they satisfy the differential equation. The difficulty is due 
to the fact that the given initial form of the .string has a discontinuous deri¬ 
vative at a; ^ Jh The solution obtained by the Wave Method in §44 can be 
verified. 
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Using (2) ^nd (3) in (1) we obtain 

2|cosh(A//2c)|* > (1—sech J7^V7)cosh(2?^7rcos^), Jtt > ^ > 0, 

and thus 

|co8h(AZ/2c)| > (7eosh*(2n7rcos0), Jtt > ^ > 0. 

But 
. , A.r 

sinh — 
c 

cosh 
/2n7ra- 
^ ^ cosy|. 

Hence 
I sin}i(Aa;/c) | eosh{(2n7rir//)coH^} 
lcosh(A//2c) i ^ 6’'cosh*(2n77-coH^) 

< < C', 

where CV is A.constant. This is the result required. 

44. The solution obtained in §42(21) can be put in another 

form which shows the shape the string assumes as t changes.! 

Since y is periodic in t of period 2//c, we need only consider the 

interval 0 < < 21, 

First we prove the following lemma: 

y f ?■ 00 ' 

when a > 0, 

when a ^ 0, ^ 

(i) When a > 0, it follows from the lemma of §31 that 

j «aA aA 
J2 2tVa, 

y-i 
0, 

taken over the arc BCA of Fig. 10 tends to zero when the 

radius R of this circle tends to infinity. 

Also there is a pole at A = 0. Thus 

2i7r J fiuX 
A* 

a. 

when the integral is taken over A BCA and the radius B-*-co.^ 

y-eioo 

Therefore J = 2i7ra. 

y~too 

t Heaviside made frequent use of this device, which he called the Wave 
Method. Cf. E,Ai,T. 2, 71. 
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(ii) When a ^ 0, we take the closed circuit ABHA of Fig. 17, 

p. 200. There is no pole inside this circuit, and an argument 

similar to that of §31 shows that when the radius tends to 

infinity the integral over BBA tends to zero. 

0<ct</2L 

ct = ^2 L 

cfc = L 

Fio. 12 

y-t <50 

It follows that I dA 
= 0. 

y —100 

We now return to §42(16). This gave, by the Inversion 

Theorem, y-n* 

26 
f 

2iir J 
sinh(Aa;/c) dA 

^ co8h(Ai!/2c) A*’ 
(1) 

y—too 
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anh(^/c) ^ 
cosh(Ai/2c) ' i_[.g-Aj/c 

CD 

Thus 
y + ioo 

4- f 
sinh(Ax/c) dX 

2i7T J cosh(AZ/2c) 
y^ico 

y+ico 

i/t' ,A(c/~i/+x)/c_ >gA(ci~i/-x)/cJ 2 (_1 )Wg-mA//c^ ^ ^2) 

We can integrate this series term by term, since it is uniformly 

convergent, and obtain 
^ y + ico 

f j'gA{cMw+i)^+x}/c_gA{cMm+jy-xl/cj ^ ^ 

^■“0 y-ioo 

The result is obtained by applying the lemma above to the 

successive terms of this series. 

It will be convenient to take t 

(I) in the interval 0 < 

(II) in the interval < ct ^ 1. 

I. The term eA{x-(j/~u/)}/c jjj (2) gives zero when x < by 

the above lemma. 

It gives {ct—\l-\-x)lc when x > \l—ct. 

The term gives zero. 

And all the other terms give zero. 

Thus, when 0 < 

A y = a;, when x < 
Zo 

== x--‘{ct—\l-\-x)y when x > ^Z—cZ, 

y = —X, when x < ^Z—cZ, 
V 

2b 
y — when X > ll—ct. 

I 

When ct = \l,y = 0. 
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All the other terms give zero. 

Thus, when <ct ^l, 

= x—{{ct—{l+x)—{ct—{l—x)}, when x < ct—\l, 

— x—{ct—\l->rx), when x > ct—\l, 

26 \ 
y = —j-a:, when x < ct—\l, 

L 

2b 
== when x ^ ct—^L 

I t 

When ct = l,y = —^x. 
L 

As ct passes from I to 21, this motion takes place in the 

reversed order. 

It will be seen that, except when ct is a multiple of the 

form of the string consists of three straight portions: the outer 

having the same gradients as the two pieces into which the 

string was initially displaced, while the middle portion is parallel 

to the axis of x. The middle portion moves parallel to itself 

with velocity 26c/Z and its ends have a velocity c parallel to the 

axis of X, 

It is clear that except at the corners d^yjdx^ is zero and 

d^y/dt^ is also zero. So the equation of the problem is satisfied 

excepo at these points, and the initial and boundary conditions 

are also satisfied. 

The result for the general case in which the string is plucked 

at the point x = oc will follow in the same way for any a < Z. 

It is simpler to take oc < \l and in the discussion the intervals 

0 < cZ ^ a, a < cZ ^ I—a, Z—a < Ct <, I 

would be considered in place of the equal intervals for a == JZ, 

The form of the string plucked at its mid-point is shown in 

Fig. 12, and that of the string plucked at a point of trisection 

in Fig. 13. 

4695 P 



CHAPTER VI 

CONDUCTION OF HEAT 

45. The rate of flow of heat in a homogeneous solid across a 

surface is —K— per unit area, where v is the temperature and 
dn 

K a constant called the thermal conductivity, djdn denoting 

differentiation along the normal. Taking as an element of the 

solid at the point P (x, y, z) a rectangular parallelepiped with 

P as centre and edges parallel to the coordinate axes, of lengths 

dx, dy, and dz, we find that the rate of flow of heat into the 

element is KV^vdxdydz. (1) 

But the element is gaining heat at the rate 

pc^dxdydz, (2) 
ot 

where p is the density and c the specific heat. Thus, if there 

is no gain of heat in the element other than by conduction, 

we have -, 

it = 
where k = K/cp. 

If heat is being produced at (x, y, z) in any other way, a term 

must be added to the right-hand side of (3), 

In this chapter we shall discuss various problems in the con¬ 

duction of heat where the flow is either linear and equation (3) 

reduces to ^ 

^ (4) 

or the distribution of temperature has cylindrical or spherical 

symmetry, so that equation (3) reduces to 

dv IdH . 1 dv\ 
(6) 

Jt ~ 

dv _ jdh} , 2 dv\ 
(6) or 

Jt ~ 

There will also be initial and boundary conditions which the 

temx>erature must satisfy. 
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46. Before proceeding farther it is advisable to mention some 

fundamental solutions of the equation of conduction which we 

shall have occasion to use in some of the following sections.! 
First we note that § 45 (3) is satisfied by 

and it will be seen that, when t-^0, this value of0 at all 

points except fe', where it becomes infinite. But 

j I 
— 00 — cr 

00 J V dxdydz — Q, 
— 00 

when t > 0, 

since each of the integrals 

2yJ(7rKt) 

00 oo 

r f,-u-x'WKi ]— r e-^v-vriM jy' 
J 2^(nKt) J 

2^(TrKt) J 
~ CO 

is unity. 

The solution in (1) is said to be the temperature due to an 

instantaneous point source of strength Q at {x\y\z') aM = 0, 

since the quantity of heat instantaneously generated at the 

point is Qpc, 

Similarly, v = (2) 

satisfies 
dv 

dt 

(dH 

\dx^ + 

and it tends to zero when ^0 at all points except {x\y*), 

where it becomes infinite. 

Also, when t > 0, 
oo CO J j V dxdy = Q, 

t Cf. Carslaw, Conduction of Heat (2nd ed., 1921), chap. ix. This work will 
be referred to in future as C,H, 
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Again, 

satisfies 

V 
Q 

2^(nKt) 

dv ___ d^v 

¥t ~ 

(3) 

and it tends to zero when < ->■ 0 at all points except x', where 

it becomes infinite. 

Also 
CO 

^ vdx Q, when t > 0. 
— 00 

Equation (2) can be obtained from the point source in three 

dimensions by integrating 

Vdx dy'dz' fu^xy+iu-vy+iz-zyv^Kt 
[2^(7rKt)f ^ ^ 

with regard to z' from — oo to oo, and finally substituting Q for 

V dx'dy\ From this point of view (2) can be said to be the 

temperature due to an instantaneous line source through (x\y') 

at t = 0 of strength Q per unit length. 

Similarly, (3) can be obtained from (4) by integrating with 

regard to y' and z' from —oo to oo and finally substituting Q 

for Vdx'\ and, from this point of view, (3) can be called the 

temperature due to an instantaneous plane source through x* at 

^ = 0 o/ strength Q per unit area. 

Other important solutions of the equation of conduction are 

those for the Instantaneous Cylindrical Surface Source and 

Spherical Surface Source, 

In the former we are dealing with flow in two dimensions, 

and we obtain our solution by integrating 

Vr dr dd ^^(r*+r'*--2rr'coa9')IM 
4:irKt 

with regard to 6' from 0 to 2rr, This gives 

V = e~(r*+r'«)/4ic< 

4:7TKt 

2n J g(rr72K0co8^' 
0 

Fr'd/ 

2Kt 
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and, writing Q = 27rr'Vdr\ 

v = ^ (6) 
^TTKt \2Kt} 

It will be seen that (5) satisfies 

dt \dr^ r dr)' 

the form the equation of conduction takes for cylindrical sym¬ 

metry. Also V tends to zero when f -> 0 at all points except on 

the cylinder r ~ r', where it becomes infinite. 

But, using Weber’s First Integral,! 

I e-<‘’'‘'Jo(l>u)udu = 
0 

00 

we have 27r J vr dr — Q, when t > 0. 
0 

We can thus regard (5) as the temperature due to a quantity 

of heat Qpc per unit length instantaneously generated on the 

surface of the cylinder r = r' at ^ = 0. 

Again, with spherical polar coordinates, integrating 

^ Vr”^ dr' sin d' de'd<f,' 
[2^{7rKt}f 

over the sphere of radius we have 

V == ~.J ^(rr'l2Kt)co9 ^'gin tf' dd' 

47r*(/c0» j 
0 

1 

— e-(r*+r'‘)/4#f< r Arfl2Ki)^i 

J ^ 

Vr'dr' 

2r(nKt)^ 

and, writing Q == 4:7rr'Wdr\ 

|g-<r-r')V4»rf_g~(r-hr')V4Arfj ^ 

V = ^ _rg~(r-r')V4W_g-(r+r')*/4/c/'] 

S7Trr'(7TKt)^ ^ 
(6) 

t Watson, Theory of Besael Functions (1922), § 13.3 (1); Gray and Mathews, 
Treatise on Bessel Functions (2nd ed., 1922), p. 68 (16). These works will be 
referred to in future as W,B,F,, and O, and M. 
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It will be Been that (6) satisfies 

dt \dr^ r dr! 

the form the equation of conduction takes for spherical sym¬ 

metry. Also V tends to zero when ^ 0 at all points except on 

the sphere r ^ r\ where it becomes infinite. 

But 47r J vr^ dr == Q, when ^ > 0. 
0 

Thus we can regard (6) as the temperature due to a quantity 

of heat Qpc instantaneously generated on the surface of the 

sphere r == r' at / = 0. 

The solutions obtained in (5) and (6) are said to be those 

for an Instantaneous Cylindrical Surface Source of Strength Q 

and an Instantaneous Spherical Surface Source of Strength Q 

respectively. 

Linear Flow 

47. Flow of heat in a semi-infinite solid, x > 0, The boundary 

a; = 0 kept at acoscot, t > 0. The initial temperature of the solid 

zero. 

The equations for the temperature at a; at the time t are 

dv d^v 
(1) 

= 0, when ^ =i= 0, a; > 0, (2) 

V = acosca^ when a; = 0, ^ > 0. (3) 

Then the subsidiary equation is 

= 0, a; > 0, (4) 

with V = when a: = 0. 
p^+w^’ 

(6) 

From (4) and (6) 

■0= e-V(i>/«c)!r 
(0) 
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and we have to find v from ^^ == / dty i.e. 
0 

J 
^ 0 

Using the Inversion Theorem, 
y-f ioo 

' = /‘"-'"'V+ir.®- («> 
y—100 

There is a branch-point at the origin, so we use the contour 

of Fig. 11, §39. The integrand is single-valued in the region 

bounded by this closed circuit and has poles at ±^^0* 

It is easy to showf that when i? -> oo the integrals over BB' 

and B'F tend to zero. 

The same remark applies to the integrals over CA' and A'A, 

C A d\ 
t To evaluate lim i, when I ~ , taken over the area BB' and 

i?-*.00 J /\*+£U* 

B'F of the circle T of radius R. 

[See Fig. 14. p. 112.] 

Lot 

Then 

Also 

thus 

Therefor© 

Over BB\ 

Thus lim I 
a-+oo 

Over B'F. 

= cos->^, 

jR, = 7,-^e^p, 
i?j ~ IT > 0 

R 

jRj ^ R~~~uif 

<2. if i? > 2u>. Jx^ 

< 2ey‘(l»r-/5) = 2ev<sin-*-5. 
Jti 

n 

|/| < ^ J 
in in 

< 2 j de< 2j d$ < ^ 

Thufi lim i 0. 
ll-xso 



Fio. 14 
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Then, by Cauchy’s theorem, 

y-f i® 

® f e^- 
2nr J 

■'J(XIk)x XdX 

A*+a>2 
y—ICO 

_^/sum of the integrals over CD, the small circled 

2iV\and EF when R -^ao and e -> 0 / 

picol 
-^a~ ■ft8inirr)_j_^ J_^~V(a>/Af)4co8iTr-isin Jtt) 

2 2 

To evaluate the integral over CD^ put A = and we 

obtain, when B-^oo and e -> 0, 

oo 

2?7r J 

Similarly, with A = for EF, we obtain 

oo 

217T j p^ + w- 

And the small circle gives zero when e -> 0. 

It follows that 

V ™ ae" /(a>/2«)x cos{a>^“-^(a>/2/c):r} —^i\\ J{pIk)x-^^^^-. (9) 
77 j p^ + o}^ 

48. The same solid: radiation at x = 0 into a medium at zero; 

initial temperature of the solid Vq. 

Here the equations for v are 

dv ' dh) 

dt cx^ 
■, > 0, ^ > 0, 

V when ^ — 0, a; > 0, 

— j^JiD 0, when x = 0, ^ > 0. 
dx 

(1) 

(2) 

(3) 

Then, as in the preceding section, the subsidiary equation is 

d^v . 
pt? = —Vq, X > 0, (4) 

46(6 
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.-f At? = 0, when x = 0, 

where v = j dt, 
0 

Solving (4) and (5), 

_A 

P I -sliPlx) 

i.e. V 1—e*-v(j)/K)x^ (5) 
P 'J(Px)U(PlK) + h] 

We knowf that 

~(1 = J e~P' ^ J e~‘‘’du dt. 

We have now to find F(t), where 

'^PUiPlx)-\-h} 

Using the Inversion Theorem, 

1 
= f e-P‘F(t)di. 

> K)+h} J 

y+ t X) 

F(t) ^ -I f 
2nT J VA(y 

dX 

l(^lx)+hy 

We take again the closed circuit of Fig. 11 and note that the 

integral round the closed circuit is zero, and that when R->oo, 

the integrals over the arcs of F -> 0. Thus 
y-l-loo 

r g\i-si(xiK)x__ 

2i7r J VA{.y/{A/«-)+A} 
y — iao 

^ 1 /the sum of the integrals over CD, the small circle,\ 

2i7r\and EF, when R^co and € -> 0 / 

It is obvious that the integral over the small circle 0 when 

€ -> 0. 

Also 00 

the integral over CD == i f J h-i^ipjK) Vp 
0 

t § 39, (7) and (8). 
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00 

‘I And the integral over EF — i I e-i^ -— 
^ J h + i^(plK) V/3 

Thus „ 

F(t) = - r c-p‘^‘' ->l{plx)^ 
ttJ h^+pjK - ' '\'p 

But 

And 

Therefore 

2V/f r ^ ..Acosaa;—(xsinc^ , 

TT J rr-\-or 
0 

0 

2V/C 

u 

Hence, from (6), (7), and (8), 
Xl2^{Kt) 

_ 2^0 

GO 
‘ ^ r j cosol(x-{-$) d^ 
J J 

0 

/ '■*'[] e-'^“’'cosa(a:+^)da 

0 0 ■ 

00 

')J 

doL 

di 

V == 
Vtt 

r e-“' dw + ^ f e-* J ^VM)J 
(x + M)*/4#rf 

(8) 

0 0 

49. Instantaneous unit source at x' at t ~ 0 in the semiAnfinite 

solid X > 0, Radiation at x = 0 into a medium at zero. 

We require a solution of 

dv d^v ^ A ¥ ^ A 

which shall satisfy 

dv 
-\.hv — 0, when x = 0, t > 0, 

dx 



116 CONDUCTION OF HEAT 

and shall be infinite as —-—^ at x = x\ when f 0, 
2i^j{7rKt) 

but be zero for every other positive x when / -> 0. 

u ~_^-(x-xyjiKt 

V = u + w. 

Then w has to satisfy 

Write 

dw d^w ^ ^ _ 

10=0, when f = 0, x > 0, 

™ -~hu, when x = 0, ^ > 0. 

J e~^^u dt, 

V ~ I e~^^v dt. 

We knowf that 

J e~^p^u 

ql —_^-\'(p}k)\x-x'\ 

2^(kp) 

The equations for iv are 

d^w 
pw ™ 0, X > 0, 

— ~ when X = 0, 
dx dx 

, when x = 0. 
Q/X 

i 

J <P 
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It follows that 

and 

Q ^__\/(P/^) ^ ^->/(x)Ik)(x+x') 

2^{kp) ^{plK)+h 

V = 
2^{kp) 

_ I e-V(j)/(f)|a:-x'|_j_ e-V(p/(cXx i-ar') 2h 

^{plK)+h 
g-V(p/AfXa;+x' I 

The first and second terms of v are the Laplace Transforms of 

^ g-(x-x')’/4w ajjfj _L_g-ix+xyiixt 
2,J('7TKt) 

respectively. 

Also we have seen in § 48 (8) that 

is the Laplace Transform of 

2yj(VKt) 

_I e-?-|-(x4x'+f)V4W^i 
V(^«0 J 

-^(j)IkXx f X') 

Therefore 

V = - L-._/e-(x-x-)*/4W I g-(x+x')’/4i(r<_2;i f g-/-f-(x + x'+f)’/4«« 
2V(W)| ^ J ^1 

50. Unit source at x' at t ~ 0 in 0 < x < I, The ends x === 0 

a7id X =^l kept at zero. 

We require a solution of 

dv d^v ^ 7 

^ 0<x<l,t>0, 
dt dx^ 

which shall vanish when a? = 0 and x = I, when ^ > 0, and 

shall be infinite as ——g-Cx-xW^c/ at a: == x\ when ^ 0, but 
2^{TTKt) 

be zero for every other value of a: in 0 < x < i when t ->■ 0. 

As before, write 

u = ^ g-(x-x')V4(rf 

2^(nKt) ’ 

and let V = u+w. 
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Then w is given by the equations 

dw _ S^w 

'm "" 

t/; = 0, when i = 0, 0 < a; < /, 

w = —Uy when x = 0 and a: = i, ^ > 0. 

Let 

0 < x < Z, t > 0, 

u = j dty 
0 

00 

V = j dty 

and 

We know that 

w =/ 

u 
1 

dt. 

.g~V(p/#c)(x-a;'|^ 

y{xp) 
Thus from (1), (2), and (3) the equations for w are 

dHu 
K —pw = 0, 0 < a; < Z, 

(1) 

(2) 
(3) 

w — — — —^e-v(p/*)i' vphen a; = 0, 

2V(«P) 

when X = 1. 
N(xp) 

Therefore we have 

__ 1 e"''^/*X'~*'^sinh ,^{2)//c)a:4-e-^^*’^'^^'sinh <y(^/>c)(Z—a;) 

^ 2^(kp) sinh yj{plK)l 

_ 1 cosh ^J(p/k){1—cosh ^J(pIk)(x—x') 

~ 2^{kp) sinh ^(pIk)1 

But V = «+w). 
Therefore 

^-2Jkp)^ 

cosh^(pjK){l-x-x')-e-'^f^l'‘^co8h^(plK)(x-x') 
[ sinh '^(pIk)1 

_ 1 cosh.,J(plt<){l+x—x')—cosh^(pjK)(l—x—x') 

~ 2^(kp) sinhV(j)/'c)i ’ 
when X < x'. 
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And when x > z' we must interchange x and a;' in this 
result. 

Then, by the Inversion Theorem, 
y + ioo 

_ 1 r ^(io^\i^J{XjK)(l-\-x—x')—oosh^{Xlk){l—x—x')dX 
J ^ sinh^^/Af)Z VA* 

y~loo 

when x < x\ 
In this case we use Fig. 10, since the integrand is a single¬ 

valued function of A in the region bounded by the closed circuit 
of this figure, and, as before, we take the radius of T equal to 
K{n+^)^(7T^ll^)y so that it will not pass through a zero of 
sinh-y/(A//c)Z. 

The integral over the circular arcs -> 0 when co and we 
find that 

__ 1 _^^gt^,llt^COBS7T{l-\-X—x')ll—OOSSTr(l — Z — x')ll 

= y 2 *siny a:'. (4) 

1 

This has been obtained for x < x\ but it is symmetrical in x 
and X* and thus holds for a: > x' as well. 

For a source of strength Q we replace 2/Z in (4) by 2QIL 

If we take a source of strength Q = fix') dx' at x' at ^ — 0 and 
integrate the result obtained above, we find 

I 
fiTT nrr 

‘ sin ~ - X sin X 
t L 

' dx'. v=-jf 

0 ^ 1 

and with suitable restrictions on f(x) we may wi’ite this in the form 
00 

V = 2 sin “ x, 

1 
/ 

where ^ J J f(x')Hm^x' dx'. 

This result may be obtained by tho method of § 42. It is, of course, the 
classical form of the solution obtained from the Fourier’s Sine Series for 

t Cf. C,H., § 20. 



120 CONDUCTION OF HEAT 

51. We consider now the temperature in a wire, along which a 

steady electrical current is flowing. The ends of the wire are kept 

at constant temperatures Radiation takes place into a 

medium at a constant temperature Vq, The initial temperature of 

the wire is taken as zero.'\ 

Let the wire be of length /, and K, c, p, and H its thermal 

conductivity, specific heat, density, and emissivity. Let I be 

the strength of the current and a the electrical conductivity, 

i.e. the reciprocal of the resistance per unit cross'section, per 

unit length. 

Take the element of the wire contained between the sections 

distant x and x-\-dx from the end. 

The rate of gain of heat in this element from the flow of heat 

over the sections at x and x-]-dx is 

Koj 
dx^ 

dXy 

o) being the cross-section of the wire. 

The rate at which heat is lost at the surface of the element is 

H(v~VQ)sdx, 

s being the perimeter of tlie cross-scction and Vq the temperature 

of the surrounding medium. 

The rate of gain of heat due to the current 1 is 

wa 

The total rate of gain of heat is therefore 

\ dx^ 

This must be equal to 

Kw — -H{v-Vo)3+ —] dx. 
waj 

dv j 
iocp—dx, 

ot 

and therefore the equation of conduction is 

dv ^ K dH Hs , ^ \ I __ 
dt cp dx^ cp(jL> ® cpa)^(j dx^ 

, K . Hs . . 
where — —, and a == —r- 

Cp cpu) epoj^a 

—6y-f 

t Cf. f 38. 
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52. In the problem* stated at the beginning oi‘§51 we have to 

determine v from the equations 

L , 1 . rv /IV ^ 0<a;<;, ^>0, (1) 
at dx^ 

V = when x — 0, \ ^ ^ q 
V when x = I, } 

V = 0, when t = 0, 0 < x < L 

The subsidiary equation is 

with 

and 

V 
V ~ , when x ~ 0, 

P 

tJ = when X = 1. 

P 

Writing q ~ 

from (4) and (5) we obtain 

(2) 

(3) 

(4) 

(5) 

(6) 

p(p+b)[ 
1- 

cosh 2^—sinh qx sinh q(l—x) 

cosh \ql psinhgZ pm\\iql 

(7) 

We apply the Inversion Theorem to each of the three expres 

sions on the right hand of (7). 

From the first we have 
y4 IOC' 

f c^/[i 
"Htt J [ coshi/xZ JA(A+6)’ 

y— too 

(8) 

where (i — ^{(A+6)/k:}. 

The integrand is single-valued inside the closed circuit of 

Fig. 10 in the A-plane, and it has poles at 

A = 0 

and A = -[/c(2n-f l)*7r®/l*-f 6], n = 0, 1, 2,.... 

We choose the radius of the circle F as 6-l-4/<(n®7r®/i*), so that 
it does not pass through any of these poles. 
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![■ 

When n oo, the integral over F in Fig. 10 vanishes and 

we obtain for (8) 

coshy(6/K)(JZ—^ 

cosh^(6/K)p J 
4a 'lA l)7r/Z}:r 

V 2/ (271+1 )[/c(271+1)V/Z2+^ * 

Again from the Inversion Theorem we have for the second 

expression in (7) 

2i7T J 
^;^sinh fjLX dX 

sinh/xZ A * 
(10) 

y—1-00 

We take again Fig. 10, and the poles are at 

A = 0 

and A = —[K(n^7T^/l^)-\-b], = 1, 2,.... 

In this case we take the radius of F, and 

obtain for (10) 

(sinh J(h/K)x , 2k7t ^ ^ 

^lsinhV(W {/c(7iV/Z2)+6} ^ ^ ^ 

Also, from the third expression in (7), we have 
y-l too 

;^sinh/Lt(Z—o:) cZA 
— f 2in J sinh/xi A ’ 

(11) 

(12) 

y— i<yj 

and this gives, as above, 

Zsinh ^J{blK)(l—x) 2k7t 

Z2 Z. K(n^7ryi^)+b n^l M sinh7(^/Ac)Z 

From (9), (11), and (13) we have finally 

fi 

^ (,-[K(n*rrVJ’)+61< 

2 (13) 

a( 

"=6r 

coshy(6//f)^p^4)| _ 

cosli ^](bjK)\l j 

~ + “T^+1)['<(2»+1 )’‘Tr<‘/i^+b]~ 

Vj sinh y/(b/K)(l—x)-i-V2 8inh »J(blK)x 

sinh ■\/(blK)l 

2k7t e“f''*"*"'’^*'^+*^(t;2Cosn7T—Vi)nBia(n7r/l)x 
+ 

W«1 K{n^7r^lP)-\-b 
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Circular Symmetry 

53. We now take some problems dealing with conduction in 

circular cylinders, the temperature distribution being dependent 

only on the distance from the centre. 

A circular cylinder of radius a has its surface kept at a constant 

temperature Vq, The initial temperature through the cylinder is 

zero. To find the temperature at time t. 

Here the equations for v are 

tdH 
0 

rdr) 
^ r < a, t > 0, 

dv 

di 

V ~ 0, when ^ = 0, 0 ^ r < a, 

V = VQy when r ~ a^ t > 0. 

The subsidiary equation is 

0 < r < a, 

(1) 

(2) 

(3) 

(4) 

with when r = a. 
p 

From (4) and (S),! v ^’o 

V 
where q = ■<J{pIk). 

The problem is thus reduced to finding v from 

(5) 

(6) 

P ^(9«) 
t~v^v it. 

U 
(7) 

Using the Inversion Theorem, 

2i7r 

y + jao 

J /o(k) d\ 

loipa) A ’ (8) 
y—ioo 

where p = ^(X/k). 

Now lQ{pr)llQ(pa) is a single-valued function of A, so we use 

Fig. 10. The poles are at the‘origin, and A = —/caf, —/ca|,..., 

where ±ai, ±a2>*-* roots (all real and simple)J of 
JJj{aa) = 0. We take the radius of the circle F as K{n-i~l)^n^/a^ 

since in that case we know§ that there is no pole on its circum¬ 

ference. 

I Soo Appendix II, § 5. t § 15.25. § Ibid., § 15.32. 
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The approximations for /o{V(A/k)>'} and /o{^(A//c)o} show that 

when n-*-co the integral over the circle BCA tends to zero. 
y+ioo 

Thus we can replace J in (8) by the limit of the integral 
y—ioo 

over the closed circuit of Fig. 10 when w -> oo. 

It follows from the Theory of Residues that 

.-Ji 
Jaiot^a) 

“I ^ [A(d/dA)4{V(A/K)a}],_,,,, 

the pole at the origin giving the first term. 

But = 2g+4^+... 

and A;i/,{V(A/«)o} = iV(A/«)<»/;{V(A/«)o)- 

where ±ai, are the roots of Jo(aa) = 0. 

54, The same as in §53, bid the surface temperature Vq cos cot. 

Here the equations for v are 

Id^v . I dv\ . 

00 

and V = Vg j e“^''cosa>< dt, when r = a. 

V = when r = o. 

From (1) and (2), 

^(r) P 
°Io{qa) p^+w^’ 

and, by the Inversion Theorem, 

y-r 

^0 r gA/ ^ 

2i7T J IqIpm) 

where p = 
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We use Fig. 10, as before, and obtain 

vn ^ iIjMK)e^^-ay^ LU{u>lK)e-^^^aV 

+2y„ . 
~a oig Jo(“s®) 8==1 

Using the notationf 

ber2:+^bei^ = 

ber2:—ibei2 == 
this reduces to 

V __ ^^^^^ber y^(6u//c)rber>^(a>/#c)a+bei-^(a>//c)rbeiy(co//c)a 

Vq ber^ ^(cu/#c)a+bei^ ^(ai//c)a 

(5) 

(6) 

+ 

4-sin (jjt 
ber ^J(a}lK)r bei -y/(a>/#c)a—bei yj(wlK)r ber .J(o)/K)a 

ber^ ^{<x}/K)a+hei^ ^(oi/zcja 

ocl , _ 

where ita2> ••• roots of Jo(o(a) = 0. 

(7) 

55, Instantaneous Cylindrical Surface Source of strength Q over 

r = r' < = 0. The surface r a kept at zero. 

We have seen in §46 that the temperature due to an Instan¬ 

taneous Cylindrical Surface Source of strength Q over r ^ r* 

at ^ = 0 in the infinite sohd is given by 

Q 
4:7rKt 

or 
2n 

f l'rr'\ 
°\^tj 

CO 

J* €“'^“*^a«/o(af)Jo(Q^^^) (^oc, 

by Weber’s Second Integral.}: 

Thus,, for the problem in this section, we have to solve the 

equations 
dv Id^v , ^ dv\ ^ ^ r. /IV 
s = V+?s)' »<’■<».<>'>. W 

t> = 0, when r = a, t > 0, (2) 

and V = u-\-w, (3) 

t p. 81. t Ibid., § 13.31. 



126 CONDUCTION OF H£AT 

where 

Id^w I div" 

^ \dr^ T dr^ 

00 

+-~). 0 r dr j 

ar) Jo(ar') da, 

r < a, t > 0, 

ID ~ 0, when ^ — 0, 0 ^ r < a, (6) 

w — —Uy when r — a, ^ > 0. (7) 
00 

Writing as usual u = ^ e-^^udt, etc., and q == 
0 

knowf that 

u = Io(qr')Ka{qr), when r > r’, ) 

(8) 

=- -^JSl^W^iqr'), when r <r'. j 
t One way of establishing this result is as follows: it is known {Q. and M,^ 

p. 74 (59); W,B.F„ § 11.3 (8)) that 
CO 

K^,[qR) ^ I^{qr')KQ{qr)-\-2 ^ /,,(5'r')A%,(yr)cosn0, 
1 

where R — —2rr'cos^) and r > r'. 
Also ((?. and M., p. 51 (33); W./i.F., § G.22 (15)) 

/i„(9/f) = i J e-"< 

Therefore j K^i{qR) dd = 27tJQ{qr')KQ{qr), r > r\ 

f,~Rn(AKt) I 
e-^Pt , dt\de=~~ 27rl,{qr')h\{qr). 

The integral converges uniform ly and we can integrate under the integral 
sign, so that we have 

27Tlo{qr')Ko{qr), 

1 r p-(r^^T'^)l*Kt f /* 1 ^ e-pi ^- eirr l2Kt)oosedd\ dt - 27rI^{qr')K^{qr). 

0 Ly J 
00 

r , e-(r»+r*)/4#c« /rr'\ 
Thus ■n J e- f'---^«(^) ^ 257/o(?r')A'„(9»'). 

0 
00 rOO 

i.e. 2K7r J e~Pi\ J e“'^'**^aJo(ar)jQ(ar')dal dt — 2iTlQ{qr')KQ{qr), 
0 Lo J 

CO rOO -y j 

Hence J j e~^“*Wy(af)Jo(ar') da j di == -Io{qr')KQ{qr), 
i Iq 4 J ^ 

i.e. 2k7t 

when r > r\ 
Interchange r and r' for r < r\ 
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Thus the equations for w are 

Id^w , 1 dw\ . _ 
0 < r < a, (9) 

and w) = — ^/(,tjr')Ao(ga), when r — a. (10) 

From (9) and (10), 

Q I(,(qr')Kn(qa) , 
(11) 

And 

V = 

= ^ r > r', (12) 

= ^|^^j{/o(?a)^ro(gr')-/o(5r')if„(?a)}, r < »*'. (13) 

Using the Inversion Formula, and writing /x — VW^:), 

^ttHk 

y-f IOC 

y—tco (14) 

when r > r\ and we have to interchange r and r' when r < r'. 

The integrand in (14) is a single-valued function of A and 

we again use Fig. 10, taking the radius of the circle T as 

K(n+|)^(7r*/a2) so that it does not pass through a pole. When 

n 00, the integral over F in the figure tends to zero, and we 
y-hico 

can replace f in (14) by the integral over fJie closed circuit. 
y—ico 

It follows that, when r > r\ 

Z ' "[(d7dAr/o{V(A/K)a}£ 1^. ■ ’ 
(15) 

the summation being over the positive roots a„ aj,... of 

Joiota) = 0. 

But |j/.WW«)o} - 2;^«VW«W- 
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Hence we have 

7;(2)z„(2)-/o(2)i:'(z) = 1/2. 

KoK®)? ’ 

and, as this is symmetrical in r and r', it holds both for r > r' 

and r < r\ 

Put Q — 2TTrJ(r')dr' and integrate from 0 to a in (16). 

In this way we obtain the solution for an initial temperature /(r) in 

the cylinder, the surface being kept at zero, namely, 

0^1 
With suitable^ restrictions on /(r) we may invert the order of integra¬ 

tion and summation and obtain 

2 L'fir' )Jo{ci,r') dr. 

56. When radiation takes place at r = a into a medium at tem¬ 

perature zero, we replace (2) of §55 by 

— ~ 0, when r === a. 
dr 

Then, with the same notation as in §55, we have 

,7._ Tf.^>M{qa)+hKo{qa) 

But V = u-\- IV. 

Thus 

fj = ^o(9r'll9Jn(9a)+f<'Io(ga)]-hi9r)[qKoiqa)+hKoiqa)] ^ 

2ttk qrf,{qa)-]-hl^(qa) 
X I^iqr'), r > r', 

^ Ko(9’'')[9Ki^f^)+hIo{qa)]-Io(qr')[g^(go)+hKpiqa)] ^ 
2nK qlo(qa)+hlo(qa) 

X Io(qr), r < r\ 

Using the Inversion Formula, and proceeding as in §55, we 

“ , Q V ,-.v,«l-'.(..rR(o,./) , , 

’-na^Z^ (4>+.,V8(«,.)’ =• ' 
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the summation being taken over the positive rootsf of 

Q:t/o(oea)-t“iUo{aa) = 0. 

Putting Q = 27jr'/{r')df', we obtain the corresponding solu¬ 

tion for an initial temperature /(r) in the cylinder, in the form 

V = (A*4.aJ)J§(a,a) 

If we put A = 00, this gives the result of § 55. 

If we put A == 0, we have the case where no heat escapes at 

the surface. It will be noticed that in this case we have in the 

summation a term corresponding to a = 0 as well as the positive 

roots o£2,.w of e7o(o£a) = 0. 

Spherical Symmetry 

57. Sphere of radius a, Ii^itial temperature coristarity Badia^ 

tion at surfa^ce into medium at zero. 

The equations for v are 

dv (dh) , 2 3t;\ ^ ^ a 
(1) 

V = Vff, when t = 0, 0 ^ r <. a, (2) 

-\-hv = 0, when r = a, t > 0. 
or 

(3) 

The subsidiary equation is 

IdH , 2 dif\ « A ^ ^ 
(4) 

with ^+M=0, when r = a. 
dr 

(6) 

These may be written 

and 

0<r<a. 

= 0, when r = a. 
dr a 

(6) 

t All real and simple: W.B.F., §§ 15.23, 16.26. 
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Solving (6), using {Cr) = 0 when r = 0, we have 

^ _ Vq ha\_Binhgr_ 

p rp og'co8h}o+(ofe—l)8inhg'o’ 

where q — ^(p/k). 

We use the Inversion Theorem to find the part of v corre¬ 

sponding to the second term on the right hand of (7). 

This gives 
y-+-ioo 

f 
\nrr J (ah— 

sinh fir dX 

l)8inhfjM+fiacoshfia A ’ 

where, as usual, fi = ^J(X|K). 

We knowf that the roots ±f2»*** 

(aA—l)8inf+^cos^ = 0, (9) 

are all real, and their values can be obtained graphically by 

drawing the curves 

tana; and y= — 
ah—I 

on the same diagram. 

Thus the roots of 

{ah—l)8inhfia+fiaco&hfia = 0 (10) 

are given by fia = 

and the poles of the integrand in (8), which is single-valued in 

A, are at 

A = 0 and A = —/c^, —.... 
a* a^i 

We take again Fig. 10 and choose the radins of the circle F 

as K{n^n^ja^), so that it will not pass through h pole. 

It will be found that when n->oo the integral over the part 
y+iflo 

of the circle F in Fig, 10 tends to zero, so we can replace J 
y~<oo 

by the limit of the integral over this closed circuit. Then, using 

the Theory of Residues, we obtain the value of (8) as an infinite 

series. 
t C.B., p. 137. 
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The pole at A = 0 gives, at once, Vg. 

The pole at A = —gives 

_Binb idir/a)_ 

r [(d!/dA){A(oA— l)8mh /m+A/m cosh *(f{/a')* 

But 

dA 
A[(aA— l)8inh fia-j-fM cosh /la] 

dfi 
= o*[Aco8h/io-(-/iBinh/to]A^, when A 

(La 

== ^*co8h/>ta(A+/Atanh/Lta)^(A/#c) 

Taking account of the position of Ij,..., we find that the pole 

at giv®8 

/_ n» ^^‘^0e.-K^i]Ja‘)\t V{^n+(fflA-l)i^} ain(rg„/a) 
^ ^ r ^l+ah{ah-l) * 

Thus 

r Z/ ^ ^^+aA(aA-l) “ 
(11) 

58, The examples in these sections seem sufficient illustration 

of the use of this method in solving problems in Conduction of 

Heat. Questions involving a solid bounded by two concentric 

cylinders, or a solid bounded internally by a cylinder, and more 

complicated problems dealing with a sphere, can be treated in 

the same way.f 

It may be noticed that no attempt has been made above to 

verify that the expressions found in these sections do, in fact, 

satisfy the given differential equations and the initial and 

boundary conditions. 

In some, direct verification of the final result offers no diffi¬ 

culty. In others, the simplest verification is given by returning 
y+iao 

to the solution obtained in the form of an integral of type J . 
y~<oo 

t Carslaw and Jaeger, PUL Mag, (7), 26 (1938), 473. 
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In many problems we can choose a new path L', lying as in 
Fig. 16, which begins at infinity in the direction argA = —/5, 
where tt > /S > Itt, passes to the right of the origin, keeping 

Fio. 16 

all singularities of the integrand to the left, and ends in the 
direction argA = Then, owing to the presence of the term 
e^, and the fact that no singularities of the integrand lie between 
the paths L (y—ioo, y+t'oo) and L\ we are able to transform 
the path L into L', sidce the integral over the part of the circle 
intercepted between L and L' tends to zero as the radius tends 
to infinity. 
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Now on the path L' the integral will be found to be uni¬ 
formly convergent in x (or r) in the given region, when t is 
a fixed positive number, and uniformly convergent in t for 
i ^ 0, when x (or r) is fixed. We can then differentiate imder 
the sign of integration and we see that the given differential 
equation is satisfied. For the same reason the initial and 
boundary conditions will be found to be satisfied. 

As an example we verify that the solution given in §40(9), 

y+ioo 

„ _ „ I f wC08ha;V(A/>c) dA 
* 2t7r J coshl^(A/>c) A 

y—too 

satisfies the differential equation, §40(1), 

| = 0<*<U>0. (2) 

and the boundary and initial condition8,‘§40(2), (3), and (4). 
These, written in full, are:t 

for fixed ^ > 0, dv/dx -> 0, as x ->• 0, (3) 

for fixed t > 0, v -> t?i, aa x-> I, (4) 

for fixed a? in 0 < x < /, v v®* as i ->• 0. (6) 

I. First we need some results as to the order of magnitude of the 

expression in the integral of (1), and its first and second 
coshy(A/#c) 

differential coefficients with respect to x. 
Since 

|cosh(a+i6)| = (cosh®a—sin*6)* = (sinh*a+cos®6)*, 

cosh a > |cosh(o+t6)| > sinha, when a > 0. 

A = Klte^y 7T > Oq ^ 6 ^ 0 and 0 < x < I, (6) 

|cosha;<y/(A//c)| < cosh(xJR* cos 

|coshZ^(A/ic)| > sinh(ZjR* cos 

Let 

Then 

and 

Therefore 

But 

and 

coshxV(A/K) < 
cosh V(A/#f) \ 1 ~-e"***^*«»*<^ f 

> J, when R > say. 

f Boundary and initial conditions in such cases are always to be interpreted 
in this way. 
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Hence 
[oosha;^(A/ic) 

< when i? > R^. 
cosh ly/{XfK) 

Similarly, and subject to the conditions in (6), 

^A\ 8inha?^(A/#c) yg) \K/ C08hl^(A/lc) 

A cosha?V(A/ic) 

#c coshi^(A/ic) 

These results hold also for a; = 0 and a? = i, 

and 

< when B > «*, ] 

< when R > Rq, 

(7) 

(8) 

II. We shall now show that the path (y—too, y-f too) of the integral 
in (1) can be replaced by the path L' of Fig. 16, when / > 0 and 
0 < X < L 

To prove this we have to show that 

J .^coahx^(X/K) ^ 
co8hZ^(A/#c) A 

taken over the arcs BB'B'" and A'"A'A of the circle of radius kR in 
Fig. 16 tends to zero as jR ->• oo. 

Let Ii and be these integrals over BB' and B'B", Then from (7), 
replacing 0q of (6) by jS > itr, we have 

|/i| < 4ey*sin~*^^j, when R > Rq, 

and 

Also 

Ji -> 0, when i? oo. 

|/j| < 4 f dS 

<4 I 
0 

< 4 f dO 
0 

Thus /g 0, when i? oo. 
A similar argument applies to the integrals over A A' and A'A'", Thus 

we can write our solution (1) as 

„ = „ I f .,C08hxV(A/K) ^ 
® 2t7r J cosh^VW^c) A ’ 

1/ 

(9) 

III. Using (7) and (8) it is easy to show that we have the uniform 
convergence which allows differentiation under the integral sign in (9) 
for Bvjdt and d*vldx\ when t > 0 and 0 < a; < Z. 

It follows at once that v, as given by (9), and therefore also by (8), 
satisfies the differential equation (2), when Z > 0 and 0 < a; < Z. 
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IV. We now show that it satisfies the boundary conditions (3) and (4). 
We know that 

^ - gtir_”p f ^,8inha;V(A/>c) dX o<x<l flOJ 
dx 2ijTK* I ooshi^(A/K) VA • ( ) 

From (8) we see that this integral converges uniformly for a fixed t > 0 
in 0 < a? < Z. 

It is thus a continuous function of a; in this interval. 
But it is zero when a; = 0. Therefore 

lim ^ = 0 for fixed ^ > 0. 

cosh x^(XIk) ^ 

coshQiX/K) A 

converges uniformly in 0 < a; < / for a fixed ^ > 0. 

. Vt — Va C wdA 
limv = Vo4-~.“ f 

2t7T J A 

= 1, when i > 0. 

V. Lastly we show that the initial condition (6) is satisfied. 
For fixed a; in 0 < a: < Z the int^ral in (9) over L' is uniformly con¬ 

vergent in ^ > 0, and it is thus a continuous function of Z in Z > 0. 

Hence 
f cosha;V(A//f) dA 

But, at every point of the arc of Fig. 15, 

It follows that 

co8ha;^(A//c) coals 

cosh Z-^(A/#c) 

r cosh x^(XIk) dX 
J coshl^J(X/K) X 

tends to zero when oo. 

over B'^BHAA'^ 

Hence 
* cosh x^(XIk) ^ ^ 

coshZ^(A/#c) A ~ 

since there are no poles within the closed circuit of Fig. 16. 

Therefore limv = Vq, when 0 < a; < Z. 

This method of transforming L into L* and then verifying 
the result for U is suitable for problems in Conduction of Heat 
and some in other fields. But cases arise in the theory of 
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vibrations and in electrical theory in which the transfoiro f(A) 

has a sequence of poles extending to infinity either along the 

imaginary axis or along a line parallel to it. In such cases the 

path L cannot be transformed into L' and the method is not 

available. The most satisfactory procedure then may be to 

perform the verification in much the same wayf on the integral 

over the path X; this can usually be done if the initial and 

boundary conditions are sufficiently well-behaved functions of 

the space and time variables respectively.f 

t The reader who is interested in these questions should consult a series 
of papers by Churchill in the Math, Annalen (see p. 91, above). 

t Cf. Jeffreys, Operational Methods in Mathematical Physics^ C.U.P., § 8.7. 



CHAPTER VI1 

VIBRATIONS OF CONTINUOUS MECHANICAL 

SYSTEMS 

59. Longitudinal vibrations of a uniform bar. 

Let be the stress at the point x of the bar, u the displaee- 

merit at that point, p tlic density of tlie bar, F the body force 

per unit mass, and F Young's modulus, then 

X - E 
^du 

cx 

The equation of motion is 

fbY 

c)X 

(I) 

(2) 

or, using (1), 
r-ii 1 dhf. F 

c“ c“’ 
(3) 

where cr Elp. (4) 

60. A bar of length I is at rest in its pquiUbriuni position with 

the end x 0 fixed. A constant force S per unit area is applied 

at t -- 0 at the free end. 

AVe hacc to solve 

with 

^ o 
cru ] b-fl 

0, 0 < .r < /, 1 > 0, -— 
cx- c- dt- 

U ™ 0, ^ 0. wlioii t — c, 0 < .r < / 
dt 

u ™ 0, w hen x -- 0, t > 0, 

du S . , . 
— - ^ wmen x = 1, t > 0. 
dx E 

Tire subsidiary equation is 

to be solved wi’tli 
dx^~c^^ 

- 0, 

il ~ 0, wdien a; ™ 0, 

dil S 

dx Ep* 
and when X ™ L 
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The solution is 
Sc sinhpxic 

Ep^ cosh pi jc ’ 

Therefore, by the Inversion Theorem, 

y + ioo 

Sc r e^sinhAa:/c 

“=2S£ J A> SoshS/c<*> 
y —100 

The integrand is a single-valued function of A with a simple pole 

at A — 0 and simple poles at A ± (^n-l- l)i7rc^ ^ _ q 2,.... 

We use the contour of Fig. 10, choosing B = mrcjl so that 

r does not pass through any pole of the integrand. It will be 

found that the integral over BCA tends to zero when n oo. 

Thus the integral in (1) equals 2i7r times the sum of the residues 

at the poles of its integrand. 

The residue at A ~ 0 is xjc, and that at A ™ {2n-\-\)iTTcl2l is 

4Z(~1)« 

n^2n+lf 
g(27i+l)7ric//2/ gjj]. 

{271-\- 1 ^TTX 

21 

Therefore the solution is 

u 
Sx 

E 

_ m Y 

(2n+\Y 

. (2n~{~l)7rx {2n-]-\)TTCt 
sin-—cos- 

21 21 

61. Vibrations of a bar under its oum weight. 

The bar is hung vertically and clamped so that the displace¬ 

ment is zero at all points. At Z — 0 it is released save at the 

upper point. 

By § 59 (3) we have to solve 

d^u 1 _ g 

dx^ c^ dt^ 
t>0,0<x<l, 

with u — when Z = 0, 

and u == Oy when a; = 0, Z > 0, 

3u 
— =.0, when x = I, t > 0. 
dx 
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The subsidiary equation is 

to be solved with 

d^u . 

dx^ 

u — 0, when x — 0, 

when a:-/. 
dx 

The solution is 

u ■-= 9 - 9- 
p^ p^ coshj>//6‘ 

Therefore, using the Inversion Theorem for the second term, 

f Zm J 

^coshA(l--x)/c dX 

cosh XI jc * 

The integrand is a single-valued function of A having a triple 
^2 x(x_2/) 

pole at A = 0 with residue - + - , and simple poles at 
W 4jC 

A = ±^{2n~\-l)Trcil2l, n ~ 0, 1, 2,..., with residues 

(2^+1)W 21 . • 

Thus, using the contour of Fig. 10, we have in the usual way 

^ gx{2l-x)_ 

■ 2c2 

_ V ^~ ^pm )^(^-^){2»H-1 )nct 

77*0^ 2/ (2?i+l)* 21 ^ 21 ' 

62. Bar of length I and area a. The end rr = 0 is fixed, a mass 

m is attached to the end x — L The bar is initially stretched by 

a tension 8 per unit area, and att = ^ the end x ~ I is released, 

Let u be the displacement of the point x of the bar, and ^ 

that of the mass m, so that ^ = lim u. 

At ^ = 0 we have 
. SI 

I Timoshenko, Vibration Problems in Engineering (1928), p. 211. 



110 VIBRATIONS OF CONTINUOUS 

The e(|uatioii of motion of the bar is 

b‘^u 1 
— 0, 0 < .r < /, t 

cJx^ 

with n = 0, when x ~ i), t :> 0 

Cli 
and u = - 

dt 
0, when t ^ 0, 0 < x < L 

The equation of motion of the mass m is 

rn — Ea 
dt- 

cu 

ix 

with 
SI d$ 

E' dt 

X l 

0, when t — 0. 

The subsidiary equation derived from (1) is 

d -u ji- _ p Sx 
— u — 

dx- E ' 

to be solved with 

f( — 0, wlicn X - (), 

and, from (1^), 
// il 'i 1 

when X 
o. j, dfi 7HpSI 

1. 

A 

(1) 

(2) 

(3) 

(4) 

1'ho solution of (3) which vanishes at x ™ 0 is 

il - \-A sinh^^‘^, 
pE c 

aiul, substituting in (4), we find the arbitrary constant 

Sla 

//a7>-[(p//r)sinil(/>//(:)-{-/.• cosli(7>//f;){' 

wlieri^ k - (Eahnv- - alp!tn, the ratio of the mass of the bar 

to the mass attached to its end. Hence 

Sx >S7a sin]i(;Ar/r) 

]} E 7fi ry)"! (pf/c )si n h (pljc) + /* (^osl djdl(')\' 

So. by the Inversion Theorem, 

_ Sx Sla e^'sinh(A.r/V) r/A 

E 277irnc J A-[(A//r)sinh(A//r) -[ /• c*osi\(XIjcj] * 
y-./A 
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Tlie integrand is a single-valued function of A and we use the 

contour! The poles of tlie integrand are A = 0 (with 

residue xjkc) and A = where 6* = 1, 2,..., are the 

roots (all real and simple) of 2 tan 2: = k. 

Now 

X-^iC3igll 

Therefore the residue at the pole A = icacjl is 

^±e^ca.tti ^ ^inxocjl ^ 
coi^ (k -f- -f- a|)cos oc^ 

Thus finally, from (5), 

__ 2Sl^a ^ cos a,d//sin:raj/ 

^ mc:^ a^(A:+/:2+a:“)cos oc^ ’ 

d M . , M ^ , AA 
-J sinh -f-AX'Osh 

dA\c c c 

63. Bar of length I with a mass m attached to the end x — I, At 

^ = 0, ivhen the bar is moviiuj with velocity U in the direction of 

its length, the end x ^ i) is fixed. To find the tension in the bar 

at the origin.X 

Let u be the displacement of the point x of the bar, and ^ 

that of the mass m, so that ^ ===: lirn ii. 
x-H 

The ecpiation of motion of the bar is 

CJ-ll 1 b-ii 

CJX“ “c2 dt- ' 

with li ~ 0, 
bu _ 

dt ’ ’ 

and u ™ 0, when X 0. 

(1) 

If a is the area of the bar, the equation of motion of the 

mass ni is 
m 

with 

dH 
dtr 

di 

Ea 
cu 

X I 

^ ~ 0, A", when t 0. 
dt 

(^) 

t For tlie solution of a prohlein ol‘ this typ<‘ in terms of waves see § 03. 

t Ferry, ‘ Wimiing Hopes in Mines’, /Vn7, Mwj. (Oj, 11 (1900), 107. 
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The subsidiary equation corresponding to (1) is 

/* 2 ’ 
d'^u ])^. 

. u 
dx^ 

with 

and, from (2), 

u 

mp^u 

0, when x 

du 

0, 

~~\r7nU, when x ~ L 
dx 

(3) 

(4) 

(5) 

A - 

The solution of (3) which vanishes at a; ™ 0 is 

u ~^(1—coshra)+-4 sinhgx, 
p- 

where q pjc. 

Substituting in (4) we find 

U ql cosh ql+k sinh ql 

qr ql sinh ql -f k cosh ql ’ 

where k ~ Ealj^ric^ = alpjm. 

Thus, from (5), 

.7 - «;n1. + 1^) 
ql ainh ql-}^ k cosh ql 

The tension at any point of the bar is given by X ~ E{dujdx), 

so at a: = 0 it is 
X,^E 

du 

dx -* j 
and thus 

X 7 _ rn 

ii . 
L -*x=0 

EU ql cosh gZ+i sinh gZ 

cp gZ sinii gZ+A; cosh gZ 

EU 

cp 

where b is written for ckjl, and we have expanded in a series of 

exponentials in order to obtain a solution in terms of multiply 

reflected waves as in §44. 

We apply §3, Theorem V, to the terms of (7) successively, 

using for shortness the notation 

H(t) = 0, when Z < 0, | 

H{t) = 1, when I > 0, j 
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Thus we have 

c c 

2EU 
H{t-4l/r.) + .... 

The second term is zero for 0 < ^ < 2//c, i.e. until the wave 

reflected from x = I arrives; the third term is zero for 

0 < /. < 4//c, i.e. until the three-tiraes-reflected wave arrives, 

and so on. 

The displacement at any j)oint may be found in the same 

way; we calculate it for x 1. Putting x — I in (6) we have 

[u] = 
*- -* j: - Z 

U kU 1 

gZsinh5fZ-l-i:cosh5'Z 

_ U_^ckU__ 

p^ Ip^(p-fb) 

where h = kcjl. Therefore 

-pile e-2p//c_|_ / 

\p+N 
c- 

TU 2/f/ u “ Ut—-— 
kc •(■-3 

. J Z/c) 

21U 

kc 

64, Two equal rods'\ of length /, mouing longitudinally in opposite 

directions with equal speeds, collide. To find the subsequent 

motion. 

Suppose the collision takes place at < — 0, at the origin. Then 

by symmetry it is sufficient to consider one of the rods: we 

choose the rod 0 < x <l and suppose its initial velocity to 

be -U, 

So long as the rods are in contact we have to solve 

dx^ 

1 ^ 
c2 dt^ 

-0, 0 < X < I, t > 0, 

t The problem of a bar struck at one end by a particle moving in the 
direction of the length of the bar is considered by Bromwich, Proc. Lond, 
Math, Soc, (2), 15 (1914), 427. 
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w- ~ 0, at = 0, ^ > 0, 

= 0, Sit X ~ I, t > 0, 

u — 0, IJ, when ^ ~ 0, 0 < a; < Z. 

The subsidiary equation is 

dx^ ^ C“ ’ 

0, X = Z, and u 0, x 0. 

The solution is 

Z/ cosli j){l --x)lc 

cosh pi/c 

p2 

Therefore 

Z/7+Lqz-~ // Z~‘^ -rf7 Z- 

-U t 

wJiere II{t) is defined in § 03 (8). 

This solution is only valid while the rods arc in contact, i.e. 

while the pressure between them is positive, or ^ < 0. 

To find when contact ceases, we have from (1) 

~ —^^tanh^zZ/c 

ei., 

- {1 — 26-2-''''''+ 2e-^J*—...]. 
) 

Therefore [dujdx]^^^ < 0 for 0 < Z < 2Z/c, and at Z = 21 jc it 

becomes positive and the rods separate. Thus the solution (2) 
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holds only for 0 < ^ < 2Z/c, and so only the first three terms 

are needed and we have 

u 

Similarly, 

du 

dt 
- U-\- 

when 0 < ^ < 2Z/c. 

21 
when 0 <t < 

c 

From these it follows that, when t -> 2Z/c, 

u -> 0, 0 < X < I, 

du 

dt 
—> TJj 0 <c X <c[ Z, 

i.e. the rod is unstrained and moving with velocity U, These 

are the initial conditions for the subsequent motion. Clearly 

the rod rebounds without vibration and with velocity U, 

65. Transverse vibration of bearns. 

The approximate differential equation for transverse vibra¬ 

tion of a uniform beam is 

d^u 1 d^u P 

^ ifr ^ ^ 

where u is the displacement at the point x of the beam, P{x, t) 

the externally applied force (including gravity if this is not 

neglected), p and E the density and Young’s modulus of the 

material, 8 and I the area and moment of inertia of the cross- 

section of the beam, and k^ ™ EIj{pS). 

We consider tliroughout the case of a beam freely hinged at 

its ends, x ~ 0 and a; — Z, in which case the boundary condi¬ 

tions are ^2 

M = ^ = 0, when x = 0, (2) 

and u = when X = 1. (3) 

4695 TT 
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Tlieii, if the initial displacement and velocity of the point x 

of the beam arc f(x) and ^(x) respectively, the subsidiary equa¬ 

tion is 
(4) 

with -22 — o ~ when x — 0, 
ax- 

(5) 

and ^ ^ ~ 0, when x ^ 1. 
dx^ 

(6) 

Writingt <f - -vW. (7) 

and (8) 

te liave to solvet 

A- ^ 
dx* 

with the boundary conditions (5) and (G). 

Now 

' f j._i_.] t J e-^'-'^sinh (/a;-~8in(7j:j rfo;; 

0 

thus, using §3, Theorem \1, a Particular Integral of (9) is 

0 

Adding the complementary function, the general solution of 

(9) is 

ft A sinh qx~\-B cosh qx+C sin qx-]-D cos qx~{- 

X 

+ A f';i(^)[sinli?(x-^)-sing'(x-f)]d^. (10) 
J 
0 

t The minus sign in (7) is introduced since the differential equation (9) is 
a little easier to handle than {D*-\-a*)y = 

t As an alternative to this method. Variation of Parameters as employed in 
§ 42 may be used. 
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Tlie conditions (5) require B D ~~ 0, and tJien by (C) wc 

must have 
i 

A 8inh^Z4-C'sin5'/+ J —sin qil~i)] ~ 0, 

0 
and 

i 

Asinhql—Csinql+ f <f>{^)[smh q{l—sinq{l—^)] ^ 0. 

0 

Solving for A and C and substituting in (10), wc have finally 

/ 
w = —- f q(l~^)smh qx\ 

2q^ J ( sin ql sinh ql f 
0 

X 

+ -2^3 J 
0 

_ 1 

2q^ sin ql sinh ql 

X 

X J^(^)fsin(^(Z—:r)sin(^^sinh(/Z—sinh(7(/—»r)sinhf/^sing/] d^ |- 

0 

+ X 
2g^ sin gZ sinh gZ 

i 

X J (f){^)[m\q(l—^)sinqxBinhql—sinhq(l—^)sinhqxsinql] d^, 

- (11) 

In the following examples we shall determine u from this for 

particular values of (f>(x). The general case may be treated in 

the same way. 

Ex. 1. The beam under no external forces and initially straight. 

At t Q velocity v is given to a small length e at x' (e.g. by an 

impulse).'\ 

Here, from (8), ^{x) equals vjk^ in the small length c at .r' 

and is zero outside this. So in (11), if 0 < a: < x\ the first 

t Timorfheiiko, loc. cit., p. 2IJ0. 
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integral vanishes and in the second the integrand may be given 

its value at ^ x' since € is small. Thus we obtain 

- _ sing(/—aj'lsing^rsinhg^i!—sinh5^(Z-a^'lsinh^'xsing'Z 

g^singZsinhq'Z 
0 < X < x\ 

where, by (7), q ™ and, if x' < x < I, we have to inter¬ 

change X and x\ 

Thus, using the Inversion Theorem, we have 

U “ 
V€ 

47rik^ ^ 

y-f too 

X J e" 

y —ioo 

where 

sin /a(Z—a:')sin fxx sinh /xZ—sinh /x(Z—a:')sinh jxx sin ^Z 

/a^sin/aZsinh/xZ 
(12) 

(13) 

It follows from the series for sin z and sinh z that the integrand 

of (12) is a single-valued function of A with no pole at A = 0. 

To find its poles we notice that the region tt > argA > — tt of 

the A-plane corresponds to |7r > arg/x > — Jtt of the /x-plane. 

Thus the required poles are at the zeros of sin/xZ sinh/xZ in this 

region, namely, 
mr 

i.e. A — 
kyi^TT^ 

n = 1, 2, 3,..., (14) 

and 
inn 

T’ 
i.e. A = 

kn^n^ 
n = 1, 2, 3,.... (15) 

The residue at the pole A — kn^n^l(il^) is 

2ikl . nnx . nnx' 
sin- 

n^n^ I L 

and that at the pole A = ~knhr^l{iP) is 

2ikl . nirx . nnx' 
—„ sm -f— sm —- — e**"^" ‘i‘. 
n^n^ I I 

(16) 

(17) 

Therefore, using the contour of Fig. 10, we obtain in the usual 

way 

u = 
2lve 

n^k 2 
1 . nnx . nnz^ . knhrH 
-sm--sm---8m-^,-. 0 < a: < a:', 

(18) 
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and this result, being symmetrical in x and x\ holds also for 

x' < X < I, 

Ex. 2. The beam initially straight and at rest. To find the 

vibration due to suddenly applying a load W at x' (gravity forces 

on the beam being neglected). 

Suppose the loading is Wje per unit length over a small length 

€ about x\ and zero elsewhere. Then, by (8), ^(x) — WKeEIp) 

in this region and is zero outside it. Thus, from (11), 

. W s\nq(l-~x')^mqx^ii\hql~Bm]iq(l--x')^^\nhqx^\nql 

2Ei pq^wiqli^mhql 

0 <x < x'. (19) 
Therefore, by the Inversion Theorem, 

W 

^sin p(l—x')^u\ pxsinh pl—Qinhp(l-—x')Hmh pxsin 

Xp^ sin pi sinh pi 
dX, 

(20) 

where p = y]{iXjk). 

The integrand of (20) has a pole at A ~ 0 in addition to those 

given by (14) and (15). 

The residue at the pole A = 0 is 

^x{l—x'){2W—x^—x'^), 
oL 

and those at the poles A = ±ikn^7r^j{il^) are obtained by multi¬ 

plying (16) and (17) by ib^T7()bi27r2) respectively. 

Thus, finally, if 0 < a: < x', 

2WP ^ 1 . n-TTx' 

El-n^ i ] 
. nrrX 

sin _ ~ 
t 

cos 
kn^rrH 

(21) 

and, if a:' < a: < Z, we have to interchange x and x' in this 

result. The first term of (21) is, of course, the static deflexion. 

Ex. 3. The vibraiion due to a pulsating force sin uii applied 

at t = 0 at x', the beam being initially straight and at rest.'\ 

t Timoshenko, loc. cit., p. 239. 



150 VIBRATIONS OF CONTINUOUS 

The solution for this case may be obtained from (19) by 

replacing Wjj) by so that we get in place of (20) 

X 

y4 t 'Xi 

sin /x(i—rr')sin /xarsinh /xZ—sinh iJi(l—x')sinh fxx sin fxl 

/x^(A-4- a>^)«in fil sinh fil 
(22) 

where 0 < x < x', and /x “ 

The integrand of (22) has poles at A == ^ioj as well as those 

given by (14) and (15). 

The residue at the i)ole A = iw is 

sinh(Z-~x')^/(aj/A^)sinh x-^(a;//i-)sin lyj{cDjk)~ 

—mi{l~-x')yj{(A)jk)^m xy^(aj/fc)sinh l^lwlk) 

^ 2ico(cojk)^ sin Z-^(a>/A;)sinh lyl{<x>lk) 

Also, the residues at the poles A = ^krt^ir^Kil^) are obtained 

by multiplying (16) and (17) byf 

1 _ _ 

w^-k^n^rr^jP ” khi^TT^-^ 

So, finally, 

__ Pq sin cut 

^ 2EIw^ sin if^(cu/A:)sinh ly/lcolk) ^ 

X {sin(l--x')^{cvlk)smxyj{a>/k)iiinh l^J{a)lk) — 

—^mh(l—x')yJ{o)/k)smh x^(wlk)sinl^(cjolk)} — 

2kcollPo Y 
t^EI Z 

1 . mrx' . nnx . kyi^irH 
--, sin - , sin -- sin - - , 
n\kH^7T^~-ojH^) I I P ' 

0 < X < x', (23) 

and for x' < X < Z we interchange x and x' in (23). 

Ex. 4. The beam initially straight and at rest. At t = 0 a con¬ 

centrated load W starts from x — 0 and moves along the beam 

with uniform velocity v.% 

t It is assumed that cu^ ^ k^n*Tr*fl^ for any integral n, i.e. that the applied 

force is not in resonance with any natural frequency of the beam. If this is 

not the case, the integrand of (22) has double poles at A = dt'^co and a separate 

calculation must bo made. 
t Timoshenko, loc. cit., p. 242. 
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We regard the load W as a uniform loading Wje per unit 

length spread over a small length €. 

Then 

P{x,t) = Wje for -(:r—U) < i < ^ 
V “ V ^ 

and is zero at all other times. 

Thus (x-\ ie)/» 
. w r 

P{x) ^ 

(wC- 4e)/r 

neglecting the square of the small quantity e. 

So (11) becomes 
X 

W C 

^ sinq{l~x)smqii>inhql~~sinhq{l--x)i>inhq^s\nql ^ 

r/*^sin ql sinh(?/ 

, !r, f X 

sin ^)sin gxsinh g/~sinh q{l-~^)H\nh ^.r sin ql , l 

^ ^ sin 5^/sinh (/Z 

Therefore, applying the Inversion Theorem and interchanging 

the orders of integration, we have 
X y 4 - / oo 

w r di r 

/IJ 
eMi-ilr)y 

0 y — i'jo 

sin fji(l~x)8in sinh /aZ—sinh fx(l—x)sinh fii sin /xl 

jj^sm/xlsinh fxl 

l y4 ?oo 
W [ f eA«-f/r)x f, 

> ] 2tti J 
X y —100 

^ sin jLt(Z—^)sin fix sinh /aZ—sinh fi(l-~^)sinh fix sin fil 

/X® sin/xZ sinh/xZ 

where fi == 
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Now since the integrand of the second line integral of (24) 

differs from that of (12) only by the factor we have from 

(18) and §3, Theorem V, 
y-ftoo 

y — ioo 

sin /Lt(?—|)sin (jlx sinh /x?—sinh jjlx sin jjlI 

jx^ sin sinh /xi 
X - 

= 0, when t < 

m UTTX . nrr^ . kn^TT^I f 

n~=i 
sm - - sin - ~ sin 

t L i' 
t~ , when t > 

and this result holds also for the first lino integral in (24) since 

(18) is symmetrical in x and x\ 

Thus (24) becomes 

vt „ 

2BW 
u 

2kl\V r T> ^ 1 . nTTX . utt^ . kri^TT'^l A 

J 2 -r“"-p-rw 
0 

W 1 . v,TTX C . n7r( . kn^TT^I 2klW 

tt^EIv 

__ 2BPW ^ 1 . nnx riTTVi 

71 ~ 1 

2kvl*W Y 1 „• 
tt^EI T” P ’ 

provided v ^ krinjl for any n. If v ^ kimrll for some integer 

w, the terms n = m of the series are to be omitted and a term 

WP ( . rriTTVt rmrvt niTTVt] . niTrx 
n r i i sin~--— cos —y— sm—~ 
Elrr^m^ I / I I f I 

added. 

66. Semi-infinite beam a; > 0 initially straight and at rest. At 

t = 0 the end x = 0 is given a small displacement a. 

We have to solve 

1 d^u 
a; > 0, > 0, 
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with u, 

i-H 

(\)C^ 

a, when x - .0, t • (1, 

0, when X -- 0, / > 0. 

The subsidiary equation is 

with 
a dhl , 

il “ 0, when x --- 0. 
]) ’ dx^ 

The solution of (1) which remains finite as x - ^ (xj is 

u - r A sin qx A- cos <p\ 

wlicre q yjip'rlk). 

The conditions (’J) require B ajp and A ^ 0. TJius 

(1) 

a 
u - - (‘osr/.r. 

P 
'^rherefore, usin^ the Inversion Theorem, 

y : i f. 

V.r i ^’{X/’2k) . (:>) 
2irr j ‘ A 

y - 

The integrand of (:>) lias a brancli-point at A 0, so w(' use 

the contour of 11. There are no poles within this path, 

and it may be verified that the integrals over ^-1 f^ and BF' 

vanish when R -> X‘. So the integral in (A) is the sum of 

integrals along fVA, the small circle, anfl KF, 

From CD and EF we obtain, ])utting A == 2Iiirc on CD, 

and A ^ on EF, 

- r cosh XU ^ f cosh XU ~ 
in J u in J u 

0 

cr> 

2a C J r C\\] XU. coA) XU 
du 

0 
.r(-/r/) - i 

\7r j 

The small circle gives a, 
4695 X 
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Thus finally 
x{2kt)~^ 

a 
u = a-7- 

\7T 

0 

J (cos \y^} dij. 

67. A doubly infinite string stretched along the x-axis has a 

particle of mass m attached to it at the origin] transverse motion 

of the particle is resisted by a force myfi times the displacement. 

At t ™ 0, when the system is at rest in the equilibrium position, 

the particle is given a transverse velocity U; to find the subsequent 

motion. 

Let y be the displacement of the point x of the string and 

^ that of the particle, so that ^ = lim y. We need consider only 

a; > 0; the motion for x < 0 will be symmetrical. Let T be the 

tension of the string, p its density, and c^ — T/p. Then the 

equation of motion of the string is 

d^y 

dx^ 

1 ^2?/ 

c2 bt^ 
-0, x > Q, t > 0, 

bt 
with f/ = 0, when t ^ 0. 

The equation of motion of the particle is 

*- -* -r n 

with 

The subsidiary equation is 

when ^ = 0. 

= x>o. 

with m{p^-\-p?‘)y—2T^^ ^ mil, when a; = 0. 
dx 

The solution of (1) which is finite as x -> oo is 

y = Ae-^^^^, 

t Lamb, Proc. Lond. Math. Soc. (1), 32 (1000), p. 208. 

(1) 

(2) 
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Substituting this in (2) we find 

a\p^+ii?+~p\ = u. 
[ me I 

Thus writing 6 ~ mjp, so that Tjmc = c/ft, we have 

^ (^ + c/ft )2 -f — c2/ft2) ' 

If /x^ > c2/ft2, the solution is, by § 3, Theorems IV and V, 

^ sm{i-xlc)^(ix^-c^lb^), x < ct, 

= 0, a: > cL 

If p? < c^ft^, the solution is 

y —-e-<'^'-*)'*sinh(<—a:/c)V(c^/62—/it*), x < ct, 

== Oy X > ct. J 

And if = c^ft^, 

y — U(t—xjc)e~i*-^^-^^^\ X < ct, \ 

= 0, X > ct. j 

68. A heavy chain is hung from one end. To find the motion 

from given initial conditions. 

Let the origin be the equilibrium position of the free end, 

X the fixed end, and y the horizontal displacement of the 

point X of the chain. Then the equation of motion isf 

dx\ dx) g dt^ 

Suppose that y = f(x), dyjdt = 0, when t ~ 0. Then the sub¬ 

sidiary equation is 

dx\ dx) g 
(1) 

with 

y — 0, when x = 1, and y finite, when x = 0. (2) 

t Lamb, Higher Mechanics (2nd ed., 1929), p. 225. 
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To solve this vvc seek the Oreen\s function!* G(x,^) which is 

to satisfy the homogeneous equation corres})onding to (1), 

namely, , . o 
IJ^\ v\i G 0, 

dx\ dxj g 

except at tlie point x where we are to have 

l«]f,■“ « 

Also, at X r 0 and x I, O is to satisfy the same boundary 

conditions (2) as if, i.e. 

G{x,^) 0, wlien x I (6) 

and G(x,^) is to be finite, wlien :r — 0. (7) 

To solve (.‘i), put have 

dHi 1 (IG 

d-J ■ dz 
-G - 0, 

solutions of which are J^{z) and Kq(z). 

Thus we assume 

Gix,()^^^ A fJ2p 

lilJ-Ip ±] fCA’„ •_> X C:: I, 

which satisfies the condition (7). Idie other three conditions 

((»), (4), and (5) rcajuire 

«!.h’ l‘\ :■= 0, 1 

4I’l-y,< Jtrl-hy /^\ -1^- 

Solving for A, H, (\ using the result 

/,(.)A-(c)~A;(c)/'(c) - 

g] 

t Aherriativoly of Vuruitiviers^ may be used; for thiai see § 42. 
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and substituting in (8), we obtain 

Gix^i) 

/o2^ 
U'^p^IWg)} 

“■ - k{‘p^mn\'U grxN g) 

0 < a: < 

./r„(2,y; 

^ ^ X ^ 1. 

(10) 
Having found C?(a:,^), the solution of (1) and (2) is easily 

determined in terms of it. Multiply (1) by 0(x,^) and (3) by 

subtract these equations and integrate with respect to x from 

0 to Ij and we get 

- - f f{x)G{x, ^) dx (? : X 
dx\^ dx) '^dx\dx)j 

dy .d(n^~° \ ^dy .dO 
\xO^^-xrr* 
[^^dx ^d: 

where, in the reduction, (2), (4), (5), (6) have been used. 

Thus, writing G{x,^;jj) for G(x,^) to emphasize its depen¬ 

dence on the solution of (1) and (2) is 
i 

y{x,p) = —^ J G{'f],x\2})f{y)dy. 

0 

Therefore, using the Inversion Theorem, 
y ( too I 

y'^~2i„g J G{ri,X-,X)f{ri)dy 

y — ico 0 

I y Fico 

== f(y)dy I* Xe^G{y,x;X)dX, (11) 

assuming that the orders of integration can be inverted. 



168 VIBRATIONS OF CONTINUOUS 

Now the poles of 0{ri,x\X), regarded as a function of A, are 

at the zeros of lQ{2X^{llg)}, i.e. A == where ±a,, 

5 = 1,2, 3,..., are the zeros (all real and simple) of Jq{z) = 0. 

If 0 r; < a:, using the first formula of (10), the residue of 

Xe^O{rj,x;X) at A = 

21 4(*a«) 

21 Jlioc,) 

using (9) and the facts that Jq(z) = —Ji{z) and I^iiz) = 

The same result holds for x ^ Thus, using the path of 

Fig. 10, the line integral in (11) may be replaced by 27ri times 

the sum of the residues at these j)oles, i.e. 

1 r '^)K \/(^/0K{«8 V(’?/0} 
VfK) " 

««= 1 
cos(|a,<V(S'/0} •^qKVi^/O] J /(’?)'^K V(’?/0} dv’ 

0 

provided/(o:) is such that the orders of integration and summa¬ 

tion may be interchanged. 

69. A circular membrane of radius a is stretched by tension T 

and at rest in its equilibrium position. At t ~ 0 a uniform pres¬ 

sure P^sini is applied to the surface. It is required to find the 

motion. 

Let T be the tension and p the surface density of the mem¬ 

brane, = Tjp. Then, if u is the displacement of the membrane 

at radius r, the equation of motion is 

^ 1 ^ 

dr^ r dr c^ dt^ 

jF^sin cot 
p 0 < r < a, ^ > 0, 

with u 0, r a, ^ > 0, 

du 
u == _ = 0, when f = 0, 0 < r < a. 

dt 
and 
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The subsidiary equation is 

d^u I du JJ, 

+ f dr “ c* “ “ “ T{p^+w^) ’ 

to be solved with u = 0^ when r ^ a. 

The solution of (1) finite at the origin is 

u -~ 
Tp^p^+co^) 

+AIo{prlc), 

and the condition u 

A - 

0, when r 

PqCjc^ 

a, requires 

1 

Thus u 

Tp^ip^A-^'^) Upajc)’ 

[ 

pQoyC^ 2 hiwh)\ 
hipalc)]' 

(1) 

and therefore, using the Inversion Theorem for the second term, 

Po a>c2 r “ e^I„{Xrlc) dX 
2m T J X^(X^+w^)I„(Xalcy 

y—ioo 

The integrand is a single-valued function of A with a double 

pole at A 0 with residuef t/w^. 

Also there are simple poles at A ^ ±^01 with residues J 

u 
~ cjT 

t-sin tot 
CO 

(.±icol J^i^ajrjc) 

^2ico^ Jo(aiu/c)‘ 

Finally there are simple poles at zb^ca^, where ± 

are the roots (all real and simple) of J^iaz) = 0. 

at these are 

±taCa|(to®—C*a|) j;(aa:g) ’ 

»«>■?== 1, 2,..., 
The residues 

provided none of the a, equals oi/c (in which case there is 

resonance with one of the natural frequencies and there are 

double poles at Collecting these terms, we have (from 

the usual argument, using Fig. 10) the solution 

,, _ ,Po(Wc) ^ _8mc(xJJ^,{r<x„) 

a>^P UM/c) / aT Z 

/o(')- 1+J + .... 

I^{iz) = 7i(u) = -iJ'^{z), 
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70. A circular membrane of radius a, stretched by tension T, is 

set in motion at t ^ 0 with velocity f{r). 

The equation of motion is 

d^u . 1 du 1 dhi 

dr^ r dr 

with 

and 

0, 0 < r < a, ^ > 0, 

u ~ 0, when r =~^ a, t > 0, 

dn 
u -- 0, = f{^)> when t = 0, 0 < r < a. 

Writing q ~ pje, tlio subsidiary equation becomes 

dHi 1 dll 2 - 
dr^ r dr ^ ->)> (1) 

with il “ 0, wJien r a, (2) 

and u to be finite, when r -- 0. (3) 

To solve (1) we proceed as in §()8 and seek the (ireen\s func' 

tionf G{i\^) for the homogeneous equation corresponding to 

(1) and the boundary conditions (2) and (3). 

Assume 

a{r,^) ^ AI^,{qr), 0r < ^, \ 

$ ■:r r < n-, j 

this is finite when r 0, and lias in addition to be continuous 

at r == ^, and to satisfy 

and 

'Kf 

tr 

G(r,^) 0, when r ~ a. 

These conditions require 

B^(qa) I CAl(qa) 0, 

^U^i)-BIa(qi)-CKo(qi) -= 0, 

-A/M)+m^i)+eA-M) = i. 

t In Bromwich, Vroc. Land. Math. Soc. (2). 25 (1926), 103, the properties 
of tho Green’s function of this problem are fully discussed. 
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Solving and substituting in (4) we find 

0 < r <: i, 

' ) (5) 

== — j^^{ki<l(^)Ko(qr)-K^(qa)I^{qr)}, ^ cQ r ^ a. 

Then, proceeding as in §68, the solution of (1) is found to be 
a 

M = — ~ J ■nG{r),r)f(r)) dr}. (6) 

0 

As an example, suppose/(?;) has the value vje- if 0 < < e, 

where c is small, and is zero outside this region. Then in the 

integral in (6) we may give G(rj,r) its value when 7; = 0 and 

obtain, using the first formula of (5) and the result /o(0) — 1, 

. V Ia(qa)Ko(qr)-K^(qa)^(qr) 

2c^ Uqaf^ .• 

Thus, using the Inversion Theorem, 
y-h too 

U 
r „M<^^h)Ko{r\lc)-K^{a\lc)In{r\lc) 
J ■ ■ ^ hiaXjc) • 

y—rx 

The integrand of (7) is a single-valued function of A with 

simple poles at A — where ot^, s — 1, 2,..., are the roots 

of Joiaoc) — 0. 

The residue at the pole A = icocg is 

cKo(ia<x,)In{ir(x,) picloCf 
ocgJl(aoL^y 0/1 Q^'iooCg'j 

using §68(9). 

Thus, using Fig. 10, it follows in the usual way that the line 

integral in (7) equals 2in times the sum of the residues at the 

poles of its integrand, i.e. 

V f7J,(rcv,) . . 
^ = -o > ro, - 

Similarly, we obtain from (6) for the general function/(r) 

00 ^ 

“f vfiv)Mv°^s)dv> 
« C f-> JKao^s) J 8-1 0 

with suitable restrictions on /(r). 
4695 Y 



CHAPTER VIII 

HYDRODYNAMICS 

71. yl long straigh t tube of cross-section a ha^ at one pomt a close- 

ft ting piston controlled by a spring, but otherwise free to move in 

the tube. The mass of the piston is m and its period of oscillation 

in vacuo would be 'iTrjn. The tube is open to the atmosphere at 

both ends and initially the piston and the air are at rest, A velocity 

It is suddenly given to the piston at t 0. Find the subsequent 

displacement of a layer of air at a distance x from the piston. 

The eqailibriuyn density of the air is and c the velocity of 

sound, f 

Diking the equilibrium position of the piston as origin, let 

^2 f)c the (lisf)lae(unent of the layer of air at x for x > 0, and 

that for X < 0; also let the displacement of the piston be 

for a: = 0, < > 0. (1) 

Also and are to satisfy 

_ 1 <H\ t>0,x>0, ] 

1 
c- di‘^ 

0, < > 0, x < 0. j 

(2) 

For the motion of the piston we have 

^ -* jc==0 

These are to be solved with initial conditions 

= u, ^ = Oy when / ~ 0, 

A ™ ~ 0, when ^ — 0, a; > 0, 

^ ™ 0, when < = 0, a; < 0. 

t Math. Tripos, Part II, 1032. 
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The subsidiary equations corresponding to (2) are 

= x<(). j (5) 
(ix^ c/ 

1l\\g solutions of (4) and (5) which remain finite as :r ±oo 

respectively are 

and (fi) 

From (1) wo have 

I lim -- lim 
j--»• — () 

and thus from (fi), A = B (7) 

The subsidiary equation corresj)onding to (3) is 

— mu-\ PqC 
“ dx dx ’ 

and, on using (6) and (7), this becomes 

and so 

(P+A:)^+7i^ 

^ K z Tz\ 

where k is written for p^occ/m, and we have assumed k < n. 

Also, from (6), (7), and (8), 

{p~\-ky^-\-n^~k'^ 

and therefore, by §3, Theorem V, 

— 0, when i < xjc, 

^J(n^—k^) 
- e''^^^~^l^hin{t-—xlc)yJ(n^—-k^)j when t > xjc. 

72. A sphere of radius a, surrounded by air at rest, commences 

to pulsate radially at t ~ O.f 

t Jeffreys, loo. cit., § C.3. For other problems of the same type see Brom¬ 
wich, Proc, Lond. Math, Soc. (2), 15 (1914), 431. 
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Let the displacement of the surface be 

^ ™ B sin cot, t > 0, B supposed small. 

We have to solve 

d\r^) 1 b^{r(f>) 

dr^ bfi 
0, r > a, i > Q, (1) 

(2) 

(3) 

■with — cos cut, as r -> a, for < > 0. 
dr dt 

The subsidiary equation derived from (1) is 

= 0, 
df^ c2' 

which by (2) has to be solved witli 

Bp 

dr p2+ct>“ 

The solution of (3), which is finite as r~>oo, is ™ Ae-^dc^ 

and hence, by (4), we have 

CO Bp 

as r a. 

I ac 
Tlius, finally, 

r<^ — 

2i"-\ (o^ 

(oBa^cp 

(p'^+uj-){ap-\-c)' 
p-p(r-a}/c 

) Bah cp-\-coh 

Therefore, by § 3, Theorem V, 

r<j> ^ 0, when / < ^ 

^-p{r-a)lc^ 

to Bah" 
COSa> f 

■“1+7 

when t > -—(5) 
c 

As another cumnple of the stone type, suppose that the S2)here 

only emits a single pulse. 

Then f = i?sincu/, 0 < t Trjeo, \ 

~ 0, i ^ 7r/oj, j 



HYDRODYNAMICS 166 

Thus 

ttIco 

sinojtdt = + 

and proceeding as before we obtain 

rf = 
(p^+a)^}(ap^c) (p^+u}‘^)(ap+c) 

The first term has been evaluated in (5), and for the second we 

have merely to replace {r—~a)/cin (5) by (r~a)/c-|7J’/<^, which gives 

wBa^c^ 

(. / ct — r fa, nc \ 
r — a 7r\ [ ' a ^ aw) 

t~--] — € 
c 

: cc 

(jjBo^C^ 

a^co^-\-c^ 

X I —COStOi 

X 

/ r—a\ coa . / 
t- -sino;/ — 

\ c j c \ 

/ rf — r^] a . irr \ 
T — <2 \ \ a aw) 

—e 
c 

when t > (r—a)lc~\-Trlaj, and 0 when t < (r-~a)/ctt/oj. 

Adding these results, we have finally 

r(f) 0, when t < 
r—a 

wBa^c^ . r~a\ (joa . I r—a\ 
cosojU-l-j- - smcuD—- g-(r/-r+rt)/a 

, r—a , r—a tt 
when- < t < ~ +“> 

C C CO 

. +€’''•/“«], when t > 
a^co'^-\~C^ L j C CO 

73. A sphere of radius b and mass M makes small linear oscilla¬ 

tions in air of density p under a restoring force Mn^ times the 

displacement.The motion is started from rest in the equilibrium 

position by giving the sphere a velocity U at t = 0. 

f Jaovo, Proc. Lond. Math. Soc. (2), 2 (1904), 100; l^roinwicli, ibid. (2), 15 
(1914), 491; Lamb, Hydrodynaynics (5th od., 1924), § 9U1. 
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Let i be the di.s])lacement of the centre of the 8j)lierc at time 

t. Then for small motif)ns the surface of the sphere may be 

taken to be i a \ 

where 9 is measured from the line of motion as axis. 

Because of the form of (1) we seek a velocity potential in the 

air of type ^ — 7?cos0, where R is indef)endent of 0; then con¬ 

tinuity of normal velocity at the surface of the sphere requires 

dt 

dR 
(2) 

The equation of motion of the sphere is 

P 
M 

dR 
iiOHW2TTb^i>.me de = , J L J f If %} 

' bidt] r b 
0 

(3) 

where jS ~ = p/a, and a is the density of the sphere. 

Also, since (f> satisfies -rr: R must satisfy 

1 a 
dr \ dr dr ) *72 ■ 

1 dm 
-- 0. (4) 

The subsidiary equations corresponding to (4), (2), and (3) are 

pi 
dR 

dr ; 
L JT-=b 

To solve (5) put R — Tr-^. Then Y satisfies 

(6) 

(7) 

dW \dY 

dr'^ r dr 
(1 +7’^] 
\4r^^c^) 

0. 

The solution of this, which remains finite as r 

Y AK.ipr/c), 

Thus R “ Ar~iK^{pr/c) 

■ 00, IS 

'y(s)e+?.)' (8) 

where we have used the result K^{z) = -^(7r/22)e“'*{l-fl/s). 
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To find A we substitute (8) in (6) and (7) and obtain on 

reduction 

A 
=My* 

pWU 

{p^+){p^b^-{ 2pbc+2c2)+Pph(pb-^cY 

Therefore 

^ ~ EcosO 

b^cU COS0 p(pr-\-c) 

+n^){p^b^ + 2pbc + 2^^) -j ^cp^('ph+c) 
f-p(r~b)lc^ 

(«) 

rf) may be found from (9) when the roots of the biquadratic 

in the denominator are known. An approximate solution is 

obtained by neglecting the ratio of the mass of the sphere 

to that of the air it displaces, whi(;h in practice is small. Then, 

putting p = 0 and a ^ c/6 in (9), and expressing the right-hand 

side in partial fractions, we have 

^2(^44^4) 

bcU cos6 

+1- 

-2oc^Yp-\-[27i^(xc-\~r(7i^ ~ -2nH^)] 

p^-\-v?‘ 

2(y})~ 2(x'nP‘r]p -f [ r{4rA - -2nV) 

Thus, using §3, Theorems IV and V, we have 

r^(n^+4 

be UCOS0 

^-p(r-6)/cq_ 

™ [2a^7rr--c(n“-~2a^)]cosn|^---- ^ 

+ \nr{n^— 2a^) + 2na:c]sin - j + 

+ \c.{n^— 2(x^)—cos — —- - j 

-f [r(4a^— sin ~j, 

+ 

when t > 
r—b 

0, when t < 
r—b 
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74. A right circular cylinder of radius a contams air. The whole 

is moving with velocity V perpendicular to its length when the 

cylinder is stopped at t 0. To find the subsequent motion of 

the air. 

If (f) is the velocity potential, we have to solve 

<>0,r<a, (1) 

with ^ ™ _ 7yco80, ^ = 0, r < a. (2) 

and r a, t > 0. 
dr (3) 

The subsidiary equation is 

(4) 

with ~ 0, when r ~ a. 
dr 

(5) 

We seek a solution of (4) of type f — E(r)cos0. Then B has 

to satisfy 

dr^ ^ r dr \r^ ' c^j c^ 

A particular integral of this is — Vrjp, and a solution, finite 

at the origin, of the corresponding homogeneous equation is 

Alf^prlc). Thus the general solution of (4) is 

^ ™ —COS0, 

and the condition (5) requires 

c ^\c I p 

Therefore f) — — — cos0+~^ 
p p^ 

Thus, using the Inversion Theorem, 

/ T7 Q ^ 
(h == — Frcos04-— 

2i7r 

y + ioo 

y—100 

ju/i(Ar/c) dX 
(Xajc) A*' 

(6) 
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Using the series [^{z) - i':(I-f ^ see that th(i inte¬ 

grand in (ti) is a single-valued fumdion of A with sinif)le poles 

at A - - 0 and A -- where ia.,., s* - 1, 2. arci t he 

of 

We use the eontoin* of Fig. 10, choosing tlu; I’adius of the 

circle as imr/a so that it will not. pass through any /a/ro of 

l[{Xajr). From the asynif>totic expan.siojrs of the Bess(‘l func¬ 

tions it can })e shown that wluni rt - X' tlu* integral oven* the 

circle BCA Bnids to zero. Thus the intt^gral in (t.) niav h(^. 

repla(‘(‘d Igy the limit of the integral oveu’ the closcal circuit, of' 

Fig. JO as 71 x>. 

The residue of tlic int(‘grand of (0) at IIh* pole A O is 

r/'c, wliile that at A - /r is 

acxl 

Thus, finally, hy Cauchy’s theoi'cm. 

'IV ra^O 

(I 
> ■ ' „ ■ coh \ji. 

f--,'■^jC \,) 

75. Vi'^coy,<i h< 1 (n'rn j>ar(tlb 1 ])lnn(s y --- j ft is st I in tttoiioN 

by unijonn body force X ftp plied ai t - 0.:j: 

If u is the velocity parallel to and v tlic kiiunnatif* visc^osity, 

we have to s(jlve 

ir u , r-u , 
- A ] !■ h < y 

(t (}r 

with u ~~ 0 w hen y 1 d- 

The subsidiary equation is 

dhl 

dy- 

to he solved with u - 0 w hen y 

The solution is 
.Y 
■„2 

/O t 

P - ll 

±Jl, 

U 1 
v.onh y^t(p I v) 

cosh 

t /,(u) U,(z). 
t Bromwich, Journ. Lond. Math. Soc. 5 (1930), 10. 

Z 4r»uit 
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Thus, by the Inversion Theorem, 

y —ioo 

cosh j/-y/(A/v)' 

coshh^JX/v) 

dX 

A2* (1) 

The integrand of (1) is a single-valued function of A with simple 

poles at A = 0 and A = — ti = 0, 1, 2,.... Using 

the contour of Fig. 10 we may justify in the usual way the 

replacing of the integral in (1) by 2i7T times the sum of the 

residues at poles within the closed circuit. 

The residue at A ~ 0 is 

2v 

The residue at A —(vTT‘^jh^){n-\~.\Y‘ is 

16/^2 l)7r/2/<^}?/ 

vTT^ (2n.+ l)^sin(n+|)7r 

So, finally, 

.Y(/i2-7/2) 

2v VTf^ Zw 

(-l)n 

(2n+l)3 
(2n+l)y -(»^7rW)(n+i)V^ 

76. A heavy vertical thm lamina falls under gravity, from rest at 

t ~ 0, through viscous liquid between parallel vertical walls^ {body 

force on the liquid neglected). 

Let o be the mass per unit area of the plate, p the density 

of the liquid, v the kinematic viscosity, v, V the velocities of 

the liquid and plate respectively, and h the distance of the plate 

from the walls. 

Then for the motion of the liquid we have 

= V —h <x <0 and 0 <x <h, t > 0, 
dt dx^ 

with = 0, X ~ < > 0, 

17 = F, a: ~ 0, < > 0, 

i; = F 0, / = 0; 

t CroHsley, Vroc. Camb, Phil, Soc. 24 (1928), 231. 

(1) 



HYDRODYNAMICS 171 

while for the motion of the plate we have 

[dv] dV , 2pv 

at a dx 

The subsidiary equation derived from (1) is 

dH p ^ A 
— =: 0, 

dx^ V 

with f; = 0 when x ~ and v 

The solution of these is 

V when x ~ 0. 

(2) 

_ yS\nh{h-x)^l(pM 0 ^ ^ 

^ Hinh h^(p/y) ’ 

The subsidiary equation corresponding to (2) is 

fdv] 
pV 9 , .2p^ 

P or dx 
x-O 

and introducing the value of v above w'e have 

Thus, using the Inversion Theorem, 
y -f 1 '00 

n 

V 
y r 

27Tt J A 
dA 

y~za 

{A -f- (2pi//a)^{A7i')cotli h^!{\jy)y 

(3) 

F/(p/^)oothAV(p/v)l . (4) 
Pi o 

(5) 

The integrand is a single-valued function of A with a simple 

pole at A “ 0, which gives a term aghj2pv. 

To find the other poles put A ==: —(vlh'^)or in the denominator 

which becomes 

^a^cotalatana—A:}, where k ~ 
a 

So the poles of the integrand (other than A — 0) are at 

A == —{vlh^)oi% s = 1, 2, 3,..., where the are the real positive 

roots of a tan a—A: — 0. 

Then, using the contour of Fig. 10 and proceeding in the 

usual way, we findf 
y_agh ^gph^ ^~vtoc\ih* 

2pp ^ af(a| + A:M-^")’ 
o— 1 

t [4A(A-)-^\'(A/.)eothV(AW/,)] -- -+ 
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For the velocit}^ of the liejuid we Jiavc, from (3) and (4), 

^ (jH\nh{h~~-x)^l(p/p) 

p{p-\ ('2pv/(i)^l(])/v)M>ih h^l(plv)lm\h iQlpjv)' 

and evaluating as before (llic j)oles of the integrand are the 

same as tliosc in (5)) 

(jhah —x ip(j}r^ ^ ^ w^j/Zr \i,\r\ cxjli~~x)jh, 

2pp h I'CT /■) sirio:^, 

0 < X < h. 

77. V i^coKs fluid is coniainrd bfhvem iivo infinite concentric 

cylinders^ radii a and h. At t (> the outer cylinder starts 

rotating v'ith atajular velocity il. To find the subsequent motion 

of the. liquid. 

We have to solve 

i'^v ^ If V V 
r i> I ^ *> 
07'“ r cr r- 

^ , a r < b, t > 0, 
r it ' 

with V - ilh when r b, and v -- 0 when r a, 

44ie subsidiary e(]uation is 

dH) ^ I dv 

dr^ ‘ r dr 
- 0, where “ pjv. 

the solution of w4neh is 

V r~: Af(qr)+BK^(qr). 

To determine A and B we know that v ~ 0 when r = a, 

and V ilbjp when r = b. Ho 

Af{qa)-{ BA\{qa} 0, \ 

AI^{qb) + BK,(qb) --- Qblp. I 

Solving, we have finally 

V k^(qa) f{qby 

t (ioulstciu, Vroc. Lo^td. Math. Soc, (2), 34 (1031), 51. Thi« important paper 

cotjtuins a nurrilxT of ])n)bl(anfl on viscous motion, condufjtion of heat, 
and (IdTusion of v(ji t l<‘ity. 'IOm’ last ofthf'He subjects is not disciissctl in this 
chapter as the profjlcms are similar to those of (Jorahiction of Heat. 
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Therefore, by the Inversion Theorem, 

y + i‘» 

2^ J /i{aV(A/0}^i{VW'')}-^i{«V(^/*'))4{<'VWW} A • 
(1) 

It is easily verified that the integrand is a single-valued func¬ 

tion of A, so we use the contour of Fig. 10. To find the zeros 

of the denominator put A = — then*)* it becomes 

Let «!, agj*-* fhe roots of the equation J 

Ji(a(x)Yi(b(x)—Jj(ba)Y^(aa) ™ 0, (2) 

Then the poles of the integrand of (1) are A - 0 and A ~ 

. But 

^ [»/i(aa)Fj(6a)—Fj(aa)Ji(6a)] — aJ^(aa)Yi(da)-i-bJi(aa)Yl(d(x) — 
ClOL 

—ay{(aa)Ji(6a) —6Fi(aQ:)J{(ta). 

Also, if is a root of (2), 

Therefore 
J,{ba^) “ 7,(6a,) 

say. 

\^JJ,(aa)Y,{boc)~Y,(aoc)J,(boc)}] 
L Ja=r:aj 

= 6A:K(6«,)7;(6=.,)-j;(K)y,(6«i)}- 

7T0Li\ h] 

Tra, t/,(aoci)t/,(6a,) 

So the residue at the pole A = — mf is 

[Ji(aa,)7,(mi)—7,(aai)J,(ra,)] jt )J(h(v 

t l,{iz) iJ,{z), K,(iz) - 
J It is known that those aro all real and simple. Of. Q. and Mp. 82. 

li J,(z)Y[(z)-Y,(z)J[(z) == 2/at. 
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Also, since/i(2) = Ki{z) = l/a:+^zlog |2+..., 

1) 
the residue at A = 0 is - 7--r. 

r o‘—a^ 
Thus, finally 

^ r b^-a^ 

t/f(6aj —Ji(aaJ 
5-1 

78. A cylinder of radius a arid moment of inertia /, per unit 

lengthy immersed in infinite viscous liquid is set in motion by a 

couple Ny per unit lengthy applied at t = 0. 

For the motion of the liquidf we have 

d^v 1 dv 

r dr 

V 1 dv 

r^ V dV 
t > 0, r > ay (1) 

with V 0, as r -> oo, and v ~ V when r “ a, wdiere V is the 

peripheral velocity of the cylinder. 

The frictional couple per unit length of the cylinder is 

Therefore the equation of motion of the cylinder is 

1 dV ,7,0 2 \&v V _ __ = N+^ira^pv- 
a dt [cJr 

dH 1 dv 

dr^ r dr 

The subsidiary equation corresponding to (1) is 

= 0, where — pjv, 

with V = V when r = a. 

The solution of this which remains finite as r -> co is 

The subsidiary equation derived from (2) is 

(2) 

(3) 

N 

P 
+2™v[J-3^ 

t Knd effects are neglected; i.e. the motion is taken as two-dimensional. 
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and substituting for from (3) in this we havef 

V = —_j ^ 27raV 
vl apq[aqKi{aq)+kK2{aq)]’ I 

Thus, using the Inversion Theorem, 

Y + ioo 

y _ 1 Na^ r e^Zj{a^(A/v)} dX 

~ 'ini vl J Xa^(X/u)[a^{Xlv)K~{^^^ 
y-ioo 

(4) 

The integrand of (4) has a branch-point at A = 0, so the 

contour of Fig. 11 must be used. It is easily verified that there 

are no poles in or on this contour, and that the integral over 

the large circle vanishes as its radius tends to infinity. 

The integral round the small circle givesj 

__ N_ 

2vkl Anapv' 

Putting A = vuH on CD, X = vuH^'" on EF, and using the 
relations 

Ky(iz) = -|7T[Ji(2)-tTi(2)], K^{iz) = \m[J^{z)-iY^{z)\ 

we obtain after some reduction 

_N__ 

4napv + 

2Na^k fe-*'"’' I Ji{au)Y2(au)--Y^(au)J2{au) 

TTvI J [auJ^{au)--kJ.^(au)Y+[auY^{^^ 
du. 

79. A canal of rectangular section^ containing water to a mean 

depth h, is terminated by two vertical walls whose distance apart 

is 2L The ivater is initially at rest with its surface inclined at 

a small angle p to the horizontal. It is required to find the subse¬ 

quent form of the surface, 

I. Neglect the vertical acceleration of particles of the liquid. 

Let iq be the displacement at x of the surface above its 

t zK[(z)--Ky^{z) = -zKJiz), 

J K^{z) ^l + iz\ogiz+„., == ^-1-.,.. 
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equilibrium level, the origin of x being taken at the middle 

point of the length of the canal. 

Then, writing = ^J{gh), we have to solve 

8x^ c2 
—l<x<l,t>0, 

with dr]ldx ~ 0 when x ~ ±1. 

Since the initial value of r) is and that of drjjdt is zero, 

the subsidiary equation is 

dx^ c2 ’ 

with drjldx ™ 0 when x = 

The solution is 

^x ^csinh(p.r/c) 

p p^cosh{pf/c)' 

Thus, using the Inversion Theorem, 

V 

y-f 
o Rc C 8inh(Aa;/c) 

J A= cSHaK) " 
y —ioo 

The integrand is a single-valued function of A, so we use the 

contour of Fig. 10. 

In the usual way we find that the integral is 27ri times the 

sum of the residues at the poles of the integrand. These poles 

(all simple) are at A = 0 and A = (2n-f l)i7Tc/2Z, = 0, ±1>-- • 

The pole at A = 0 has residue xjc, while that at (2n-f I)i7rc/2Z 

has residue 

_ _^ L A2n-i.l)nicil2l * 
(2n+lf7Th 21 

Thus, finally, 

SPI {— 1 f ,1V 7TCt . f - * rrx 

»*»o 

II. The canal is too deep for the assumption I to be valid. 

We take the aj-axis in the equilibrium position of the free 
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surface, and the y-axis vertically upwards. Then, if cf) is the 

velocity potential, we have to solve ^ 

^ + ^ = y, when —k<y<0,—l<x<l,t>(), 

^ = 0, Avhen y = —h, —l<x<l,t>0. 

~ = 0, when x — ±_l, —h < w < 0, i > 0, 
cx 

+g^ = 0, when y = 0, —I < x < I, t > 0, 

with the initial conditions 

— 0, when ~h < y < 0, 

and — g^Xy when y — 0, —l<x<l. 
dt 

The subsidiary equations are 

with = 0, when y =■ —A, —l<x<ly 

0, when x = —h < y < 0, 

and p^+9 rr when y = Oy —I < x < I (4) 
dy 

A solution of (1) satisfying (2) and (3) is 

„ = 0,1,2,.... 

So we assume 

^ = 2 cosh XrhA ,i„ (2!L^, ,5, 

4696 A a 
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Substituting in (4) we have 

TA(2re4-l) 
2 ^®cosh — + 

, TTg(2n+\) . ^7rA(2w4-1)] . (2»+ l^a: 
H-o/--oi--07—~ 21 21 J 21 

= gpx 

2 
»~o 

(-1)'^ . (2n+l)7Ta: 
' iSin 

(2n+l)* 21 

introducing in the last line the Fourier series for ar. 

Thus 

TT^ (2W+1)2 21 

■7Tg(2n+1) J7-A(2ra+1)] 

21 2i J ’ 

and substituting this in (5) we have 

SgTjSZ 2 (—l)"cosh{7r(2w4-l)(y-4-A)/2Z}sin{(2n+l)7ra:/2Z} 

w==0 
(2n+ l)*(2>^-fw»)cosh{7rA(2n+1 j/2Z} 

where w: 
2 _ 7rgr(2n+l)^^^^7rA(2w+l) 
”-t^nh---. 

(6) 

(7) 

<f> may be determined from (6). We require the surface eleva¬ 

tion 1] which is given by 

And thus 

V 
ir^' 

V 
p 

[a=o 

_ V p „i„(2n+lKa; 
w* ^ (2»-fl)*{j)*-|-a>*) 2Z 

w=sO 
Therefore 

’? = 
8^Z 

w* 2 
n-^O 

(-1)" 
(2n-fl)2 

cos a7„ t sin 
{2n~{-l)‘nx 

2Z 
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80. Deep vxiter rmves^ in infinite liquid produced by an initial 

surface elevation. 

Let the x-axis be in the free surface of the liquid, with the 

y-axis vertically upwards; the surface elevation is taken to be 

a function of x only. 

We have to solve 

^ + ^ = 0, j/<0,-oo<x<oo,l >0. 

with 

and 

by 
0 as y-> —00, 

dH dJ> 
= 0, when y = 0, —oo < x < oo, <> 0. 

ct^ oy 

The initial conditions are 

^ = 0, when «/ < 0, —oo < x < co, 

and 
dt 

gf{x)y when y == 0, —oo < oj < oo, 

where f(x) is the (small) initial surface elevation. 

The subsidiary equations are 

P^f+9^ = 9f{^)> y -00 < a: < 00, 

bZ 
with 0 as y-> —oo. 

We take as a general solution of (2) and (3) 

00 

^ = J dm. 
— 00 

Substituting in (1) we obtain 

00 

J (p*+|migr)^(m)e<"“dm = gr/(x). 

(1) 

(2) 

(3) 

(4) 

t Lamb, loc. cit., § 238. 
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and, inverting this by JFjoiirier’s Integral Theorem,! we have 
CO 

So 

Therefore 

2» J J ' 

00 CO 

^ I* gimli^+fmx flfy^ r dx' 
^ 2n] S^lg) ’ 

— 00 —00 

— r —-- dk r f{x')Qo^k(x—x') dx\ 

81. Long water waves% in an infinite two-dimensional sheet of 

water of depth h and density p. 

The motion is supposed to be initiated from rest at ^ = 0 by 

a variable pressure P(r, t) acting on the surface (for simplicity 

we consider only the case of symmetry about the origin). 

Then, writing F{r, t) 
1 dP , 

—,andc: 
pc^ dt 

yj(gh), we have to solve 

^ c* 8t^ dr^ r dr 

1 £2^ 

c2 e<2 
—F{r,t), 

with, at ^ == 0, and d<f>ldt zero for all r. 

The subsidiary equation is 

d^f I ^ 
dr^ r dr 

P 
(1) 

t Multiply both sides of (4) by and integrate with respect to x from 
—QO to 00. Then we obtain 

00 00 00 

J dx J dm = g J e-^^'^f(x)dx, 
— 00 — 00 — 00 

By §30(2) the left-hand aide equals 

2iT{p*+\m'\g)>^(m'), 

and tlie result (6) follows on writing m for m' and x' for x. 
{ Lamb, loc. cit., § 195 et seq. 
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To solve this we seek the Green’s function,! 

= ). r > f, 

where [(3|!; = = 0 | 

Solving^ A — —KqIp^Ic), B — —loip^jc), and the solution of 

(1) becomes 

f{r,p) 

= I dr, J ^^^r,F{r,,p) dr,. 

0 r (2) 

Now for simplicity suppose the applied surface pressure con¬ 

centrated in a vanishingly small circle about the origin and let 
00 

I rF(r,t)dr = g{t), 
0 
00 

SO that J rF{r,p) dr == g{p), 
0 

Then, since /q(0) = 1 and F vanishes except near the origin, 

(2) may be replaced by 
00 

^{r,p) = J r,Fir,,p) dr, 

0 

= g(p)Koi^)- (3) 

To determine <f) from this we require first the function whose 

transform is ^^{prlc). By the Inversion Theorem this is 
y+ioo 

J'*> 
y — ico 

t See §68. The result (2) may also be obtained by variation of parameters. 
t I,{z)Ki(z)^K,(z)Ii{z) - -1/z. 
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(i) 1ft < rjc we use the contour of Fig. 17. AB distant y 
from the imaginary axis and parallel to it, the circle C is of 
radius R which will tend to infinity. 

The integrand of (4) has no pole or branch-point inside or on 
this contour. Using the asymptotic expansion for the Bessel 
function, it may be shown that when t < rfc the integral over 
C vanishes as 1? -> oo. Thus, from Cauchy’s theorem, 

7 = 0, when t 
c 

(ii) Ift > rjc, we use the path of Fig. 11, since Kf^{Xrlc) has 
a branch-point at the origin. It is easily verified that the 
integrals over the large and small circles approach zero as their 
radii approach oo and 0 respectively. The integrand has no 
poles within the contour, so I reduces to a sum of integrals over 
CD and EF. Putting A = pe-^^ and A — on these we obtain 

0 0 

<*—^1 \ whenO-, 

where, in the last line, we have used the resultf Appendix II (35). 
Thus, finally, J 

So from (3) and (5), using § 3, Theorem VI, 

r/c 
co8h~^c</r 

= J ^coshwj dw. 
0 

t Putting n = 0, and remembering loiiz) — 
t This result may also be obtained from the integral {W.B,F.t p. 181 (5)) 

00 

Kt(z) = J 
0 
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82. Wave motion in air under gravity^ and at constant tem¬ 

perature. 

Let the x-axis be taken vertically upwards and let ^ be the 

vertical displacement of the particles initially at x. Suppose 

the motion initiated from rest at < = 0 by a small displacement 

^0 of the plane x == 0. 

We have to solve 

dx^ 

2k 

c dx 

1 8^ 

c* di^ 
0, < > 0, a: > 0, 

J=0, 

with ^ == ^0, when x == 0^ t > 0, where k = ygl2Cy y the ratio 

of specific heats. 

The subsidiary equation is 

2k I 

dx^ c dx 

with i when x = 0, 

Choosing the solution which remains finite as a; -> oo, we have 

^ ^ gArar/c-(j^c)V(p*-j-A*)^ 

P 

Thus, using the Inversion Theorem, 

^~ 2nt^ J A ■ 
y-ioo 

Integrals of this typej will be discussed in detail in Chapter IX, 

§§90-2. 

Assuming the result §90(16) and replacing r by c, a by JtA, 

(5 by —^ik, a = a—j8 by ik, and p = a+jS by 0, we have 

1 = 0, t < xjc, 

xlc ^ 

t Lamb, loc. cit., § 309. 

X This problem has been given since the result can be derived from § 90. 

The integrals arising in problems of physical interest may be evaluated by 

the type of manipulation used in §§ 90-2. 



CHAPTER IX 

ELECTRIC TRANSMISSION LINES 

83. Let jB, L, Cy 0 be the resistance, inductance, capacity, and 

leakage conductance per unit length of the line.f Let V be the 

potential, and I the current, at the point x of the line at time ty 

and let and be their values at < — 0. 

V and / have to satisfy the differential equations 

L^+BI = 
8t 

dV 
C^-^ + GV^ 

ot 

dV 

dx ’ 

0/ 
dz’ 

t > 0. (1) 

Multiplying these by p > 0, and integrating with respect 

to t from 0 to co, we obtain the subsidiary equations 

{Lp+R)I 

{Cp+G)V= -^ + CV«>K 

(2) 

Eliminating I we have the ordinary differential equation for F, 

-.^Lp+B)iCp+G)V = L'^^-CiLp+BWW, (3) 

and 1 is given by 

i = - L_ j. ^ 
Lp-\-B dx Lp-\-B' 

(4) 

If we write = {Lp+B){Cp+G), (6) 

the complementary function of (3) is Ae^^+Be-'^^, where A and 

B are to be found from the terminal conditions. 

The general case in which none of B, L, G, C vanish is 

relatively difficult, but there are various special cases in which 

t These are taken to bo constant. The case of a ‘non-uniform’ line, i.e. on© 
in which they are functions of x, is considered briefly in § 94. 
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q takes a simple form and the problems are of the types treated 

in Chapters V, VI, and VII: 

(i) 

(ii) 

R^G = 0, 

R_G 

L ~ C' 

(hi) L — G = 0, 

(iv) £ = 0, 

q = p^{LCy, 

q = ^(RC)ylp; 

q = ^{RCU(p+GIC). 

Of these, (ii), Heaviside’s ‘distortionless line’, and (iii), which 

approximates to slow signalling on a submarine cable, are of 

some importance. In (i) and (ii) the solutions are of wave type, 

while in (iii) and (iv) they are of diffusive type, as in the linear 

flow of heat. 

84. Problems in which L = (? = 0 already solved as problems 

in the linear flow of heat. 

Ex. 1. Semi-infinite line x > 0. Initial current and potential 

zero. Att ~ Oan alternating E.M.F. a cos cot connected atx — 0. 

We have to solve §83(1) with L — G ^ 0, and terminal 

conditions 

V ~ a cos ojt, when a; = 0, \ ^ ^ q 
V finite, when x ->(X>. ) 

Thus, by §83(3), the subsidiary equation is 

^-RCp^O, x>0, 

to be solved with 

F when a: = 0, 

and V finite as a; oo. 

This is exactly the problem of §47 with RC in place of 1/fc, 

and so, making this change in §47 (9), we have the solution 

7T 

0 

B b 

f e-P‘sinx^(RCp)-^-^ 

4695 
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Ex. 2. Semi4nji.nite line x > 0, Indial current and potential 

zero. At t 0 a constant E.M.F, Vq applied at x — 0, 

Replacing k by IjRC in §39(8), we obtain 

V = Fo[l-erf 

Ex. 3. Line of length I with initial potential Vq and zero initial 

current. The end x == I kept at potential for t > 0, Open 

circuit at X = 0 for t > 0. 

Writing I IRC for k in the result of § 40, we get 

7T Zw 2n—1 21 
n 1 

Ex. 4. Liiie of length I with zero initial current. The initial 

potential of the line an arbitrary function f{x). The ends x ~ 0 

and X ~ I kept at zero potential, ^ > 0. 

Putting L - G - 0, /<«> - 0, PW -/(ir) in §83(3), the sub¬ 

sidiary equation is 

dW 
-RCp - -RCfix), 0<x<l, 

to be solved with F 0, when = 0 and x = I, 

The solution of the corresponding problem in conduction of 

heat has been given in § 50 (ji. 119, small jirint). Thus, writing 

IjRC for K, we get 

85. Line of length Z, L = (? = 0, earthed at x ~ 1. Initial cur¬ 

rent and potential zero. At t ^ 0 an alternating E.M.F, e^^ is 

applied at the end a: “ 0. 

We have to solve §83(1) with L ~ G ~ 0 and 

F = 0, when x = Z, Z > 0, 

F == when it: = 0, Z > 0, 

yio) _ jio) _ 0^ 0 < a: < Z. 

From § 83 (3) the subsidiary equation is 

dW 

dx^ 
^RCpV = 0, 
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to be solved with 

y ^ , when a: == 0, 

and F ™ 0, when x = 1. 

The solution is 

y 1 sinh(l—x)yJ{RC])) 

p—ico mnlil^(RCp) 

Therefore, using the Inversion Theorem, 

y + ico 

y _ I r sinh{l~x)^{RCX) 

“ 27Ti J A-1^ ~BmhQ{RCX)^ ■ 
y — i(X) 

The integrand is a single-valued! function of A with simple poles 

at icL>, and —{n^ir^lPRC), n — 1, 2,.... 
We take tlie contour ABC A of Fig. 10 and choose its radius 

R = (n+^)^7rWIiC), 

so that r does not pass through any pole of the integrand, 
y+ioo 

The integral over F tends to zero as ti -> oo. Thus may 
y~ 100 

be replaced by the limit of the integral over ABC A as n -> cx), 

and by Cauchy’s theorem this equals 27ri times the sum of the 

residues of the integrand at poles within the contour. 

The pole at iw has residue 

.iSinh{l—x)^(ECioi) ^ .^sinhil—x)(l+i)^l{iECw) 

sinh l^J{EC(o^) smhl{l-\-i),J(lECu)) 

and the pole at —yiJ^Ti^jP’EC has residuej 

2 (—ly^e-n'-n'tupnc) rnT{l—x) 

t Since, using the series for sinh a?, 

sinh{l—x)y/{RCX) _ l—x 1-f J(Z~a:)27?(7A f-... 
J^CA) ~ "" ~T 

involves only integral powers of A. 

IIHIO 

:^)coshZv'(I?CA)] 
^ f JA«-n*7T*, 

nen 
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Therefore 

^ ainhl(l+iyTfJtCcj) ^ 

2 ^ (_i)»e-«WKC) . mT{l-x) 

If the applied E.M.F. is cosojt, we have to take the real part 

of this, namely, 

(coah{l-x)^(2RCoi)-coa{l—x)^{2RCo})n , .j,. 

\ coahQ{2I{Cw)-c6aQ{2BCa)) / ^ 'P 

(-1)» 
+ -t - ^77 7i{l + B^C^u>H*jn*-n*}i 

7117(1—X) 
I " > 

where 

tan<^ = iMi(l—x)^(\RCw)Qoi\i{l—x),J(\RC(x)), 

tan^' = tn.nl^(\RCcx})Qoi\il^(\RC(jo), 

tan0^ = RCl^wIn^ir^, 

86. Line of length L At x = l the line is earthed through an 

impedance z^. At x ~ a constant EM.F. is applied at t ~ 0 

through an impedance Initial charge and current zero. 

Z. 
E 

x.l 

Zt 

Fio. 16. 

Let Vq, /(,, Vi, I, be the potentials and currents at a; = 0 and 

X = I respectively. Then for the concentrated impedances the 

subsidiary equations are 
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For the line itself, by § 83 (3), the subsidiary equation is 

dW 

dx^ 
—qW = 0, 0<x<l, 

where q is given by § 83 (6). 

The solution of this is 

F = ^ sinhg'a;-|-5coshg'a:, 
and, by § 83 (4), 

2 = 

(2) 

(3) 
Jjp-\- R 

A and B are to be found by substituting in the terminal con¬ 

ditions (1) which give 

Lp+R ^ p 

coBhql-\-Bsinhql]z2 = ^sinhg’Z+.Bcoshgl. 

Solving for A and B and substituting in (2) we obtain 

y __ g'ZjCoshg'ZZ—a;)+(i?+ip)sinhg(Z—x) 
p g(Zi+22)cosh5'Z-|-[(iZ+ Z^)+2j CpijsinhqV 

As a simple example let L = G* = 0, = 0, z^ = ilC^p', then 

(4) becomes 

y _ E 8inh{l—x)^{RCp)-i-^J(C/RClp)coBh(l—x)^{RCp) 
~ p sinD^^C^)+5(^iZC|pl^sFZV(.BC^ ’ 

Therefore, using the Inversion Theorem, 

F = 
E 

/• e^Binh{l-xy{RCX)+yl(CIRClX)coBh(l-x)^(RCX) ,, 
J A sinhZV(iZOA)+V(CZ/iZqAycoshZV(^<5A) 

y-ieo ^5J 

■ The integrand is a single-valued function of A with simple 

poles at A = 0, and A = —(af/iZCZ®), « = 1, 2,..., where ±(*1, 

±are the roots of 
. IC 

atana = 

It is easily verified that these are all real and simple. 
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We use the contour of Fig. 10 with radius (w+ 

Then F does not pass through any pole of the integrand. The 

integral over F tends to zero as n->oo. Thus, by Cauchy's 

theorem, the line integral in (5) may be replaced by 27ri times 

the sum of the residues at its poles. 

The residue at A ~ 0 is 1. 

The residue at A — — isf 

2lCe~<^VKRCP) “s <x,(l-x)jl-lC cos <x,{l-x)ll 
(/CC2+W+C'l sin a. 

Therefore 

F == E+21CE^ 
S^l 

r-<xUI(RCl'A «« 0C,(1-X)II-IC COS (X,{l-x)ll 
{ICC^+l^C^+ClatKBmoc, 

87. Line of length 1. Initial current and potential zero. Open 

circuit at X ~l. A constant E.M.F. E applied at t ~ 0 at the 

end X = 0. 

We have to solve § 83 (1) with 

V ~ Ey when x = 0, ^ > 0, 

7 = 0, when x = 1^ t > 0, 

p(0) _ /(O) _ 0, i)<x<l. 

The subsidiary equation § 83 (3) is 

dW 

dx^ 
-qW 0, 

where = {Lp-{-R){Cp-^G). 

This has to be solved with 

and, by § 83 (4), 

when X ~ Oy 

= 0, wdien x = L 
dx 

I ic , c.oci 
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The solution of this is 
^ E co^h q(l—x) 

p cosh ql 

Therefore, by the Inversion Theorem, 
Y + ico 

E r 

2m J 
E r —x) 

dX, (2) A cosh fil 
y - ioo 

where \x ^ [(LA+i?)(CA+(?)]i. 

The integrand of (2) is a single-valuedf function of A with 

poles at A = 0, and at the roots of cosh/x? == 0, i.e. at the 
roots of 

(i/A+i?)(CA+(?) 
__ (2n+l)V 
- “ 4^2 - w == 0, 1, 2,.... (3) 

Using the notation 

E , G R G 
V = (Lcyi, 

^ 2L'^2C’ "" 2L~2C’ (4) 

(3) becomes 

A*+2/}A+p2-a2+ 
(2re+l)W 

n ■= 0,1, 2,..., 

the roots of which are —P±iv„, (6) 

where = 
((2n+l)W , 

\ ' 41^ 
jl 

(6) 

We shall assume that is real for all n, i.e. 
L 

G 

C 

so that all the roots (5) are complex with real part —p; if this 

is not the case, the roots for small n will be real and negative 

and the form of the solution slightly different. 

Using the contour of Fig. 10, the usual argument shows that 

the line integral in (2) may be replaced by times the sum 

of the residues of the integrand at its poles. 

The residue at A = 0 is 

cosh(Z—x)^(jR(?) 

coshlyJ{RG) 

t Sinoe == l + W-xnLX + R){CX + G)+,., 
' cosh/x/ l + i/*(LA4-i^)(C7A4-C) + -« ' 

and thus contains only integral powers of A. 
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Also, since 

^“Cosh/xil 
d\ JA- -p-^iVn 

21^ 

the residue at A 

(2n-\-\)nv^ 

-p+ivn is 

C08(i-x)(2n+1 W(2/), 

where tan0^ = 

Therefore, finally, 

V = ^cosh{l—x)^{RG) 
coshZ>^(jRG) (8) 

n-^0 

88. The solutions of the problems so far considered have all 

been obtained as trigonometrical series. In discussing mechani¬ 

cal vibration problems in Chapter V, § 44, an alternative 

method of solution was developed in which the hyperbolic 

functions in the transform were expanded in a series of exponen¬ 

tials; this procedure gave a solution with a convenient physical 

interpretation in terms of successively reflected waves. The 

same method can be applied to transmission-line problems. 

As a first example consider the problem of § 87 with 

i? = = 0. 

Then == LCp^ = in the notation of § 87 (4), and putting 

this value of g in § 87 (1) we have 

y __ E cosh p(l—x)lv 

p coshpl/v 

TP 

Eii 

P\ -p(6i-x)lv_• (1) 
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It follows from Theorem V, §3, that the function whose 

transform is {Elp)e-“P is 

0, for t < a, 1 

E, for t>a, ] 

which for shortness we shall write EH(t—a), where H(t] is 

defined by 
H(t) = 0, < < 0, I 

= 1, t>0. j 
(2) 

Applying this to the terms of (1) successively we find 

F = 0, if 0 < t < xjv, 

= E, if xjv <t< {2l—x)lv, 

= 2E, if {2l—x)lv < < < {2l-\-x)jv, 

= E, if (2l-\-x)lv < t < {U—x)lv, 

= 0, if {U—x)lv <t < {4:l+x)lv, 

etc. 

Or in terms of the function H{t) 

Thus, if we regard the potential as propagated with velocity 

V, the potential at x is zero till the direct wave reaches it, E 

from this time till the wave reflected from x = I reaches it, 

then 2E till the twice reflected wave reaches it, and so on. 

If we form the Fourier series for the ‘step function’ (3) we 

obtain the trigonometrical series §87(8) for the case S — 0 = 0. 

Treating in the same way the problem of § 87 with none of 

B, L, O, C zero we have from § 87 (1) 

F = ^ cosh^(1—a;) _ ;®rg_8a:_^g-flr(2/-z)_g-!Ka/+a:)_e-9(«-i)..^,„l 
p coshql p^ 

(4) 
where now 

q = [{Lp+B){Cp+G)]i = 

in the notation of § 87 (4). 
4<95 c c 
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V can be obtained from this when the function whose trans¬ 

form is (l/p)e-'^^ is known; this will be found in §90, and the 

solution completed in §93. 

In the case of the ‘distortionless’ line in which a ~ 0, 

g = (p+p)/v, (4) becomes 
_ ET 

y — _rg-*(p+p)/i>_j_g-<2/-iXj>+/>y»_g-(2/+xXj>+p)fo— 1 
pL 

Thus 

The structure of this is the same as that of (3) except for the 

attenuation factors involving the distance which each wave has 

travelled. 

Finally, consider a distortionless line of length Z, with open 

circuit atx ^l, and zero initial current and potential. An E.M.F. 

f(t) is applied aZ a; = 0, Z > 0. 
00 

We have only to replace EJp in (4) by / = J e~^f{t) dt, and 
0 

we obtain 

coshgZ ^ j ' / 

where q == (p+p)lv. 

To find V from (5) we require the function whose transform 

is where a is a constant. By §3, Theorem V, this is 

f{t—a)H{t—a), Using this result in (5), we find 

2Z—a:j 

89. A line of length I with initial potential =f{z) and zero 
initial current, Att=^0 the end x ==: 0 is earthed^ the end a: = Z 

being left insulated. 
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By§S3(3) the subsidiary equation is 

==-C{Lp^-R)f{x), (1) 

where = (Lp’\-R){Cp'\'0). 
This has to be solved with 

F — 0, at a: = 0, 

and ^ = 0, at a: = 
ax 

(2) 

By §3, Theorem VI, a Particular Integral of (1) is 

— J /(^)8inh3(x—d^, 
0 

and thus the general solution of (1) is 

X 

V = A avahqx+Bcoshf f($)smhq{x—$) di, 
J 
0 

where A and B are to be found by substituting in the terminal 

conditions (2). These give 

5 = 0 
i 

and qA cosihql—C{Lp-{-B) J/(^)cosh?(i—di = 0. 
0 / 

Thereforef 

^ ^ Ofe-bg) co^5^ f /({jsinhjf if + 
q cosh ql J 

0 

X 

As an example, suppose 

f{x) = 0, 0 < X < o, ' 

= QIC, a <x <b, 
= 0, b < X <.1. . 

t This could iJso have been obtained by using the Green’s function as in 

§ 68, or by using variation of parameters 6is in § 42. 
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We det^mine the potential for x < a. In this case (3) becomes 

coshgZ^- 

Therefore, by the Inversion Theorem, 

y+ioo 
sinh/xa:[sinh/x(Z~a)-~sinh^(i—6)] dA 

27ri J (TA+G cosh/id 

where y = [(XA+JB)(C'A+G)]*. 

The integrand is a single-valued function of A with poles at 

the roots of co8hMl = 0. 

These have been found in § 87 (3) and (6) to be 

n = 0, 1, 2,..., 

where, as in § 87, we assume real for all n. 

As before, using Fig. 10, the line integral in (4) may be 

replaced by 27ri times the sum of the residues at the poles of 

its integrand. 

By §87 (7), 

and thus the residue at A = —p+iv^ is, writing tan 0„ = a/i/„, 

Bin X 

X (cos 
{2M’-}-1)ito (2?t-{-1)176 

cos^— 

Therefore 

Y (2«+l) cog/ \f,j„(2»+l)wa: 

X {cos 
(2»4-l)rro (2n+1)176) 

for X < a. The other ranges of x may be discussed similarly. 
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90. Uniform semi-infinite transmission line, x > 0, loith zero 

initial current and potential. At t = Q a constant E.M.F., E, 

applied at the end x = 0. 

From § 83 (3) the subsidiary equation is 

dW 

dx* 
-q‘P = 0. (1) 

where g* = (Lp-i-E)(Cp-\-0) — i(jp+2a()(p+2j8), (2) 

with the notation of § 87 (4), namely, 

= (LC)-*, a = BI(2L). j8 = (?/(2C), 

P = at+Pf a = (x—p. (3) 

The solution of (1), which is finite as a; ->■ oo and takes the 
value E/p for a; = 0, is 

rt_ 

(4) F = ^. 
P 

And, by § 83 (4), the transform of the current is 

-V(: 

e-«® Cp-hO\ 
Lp+Rj p ' 

Therefore, using the Inversion Theorem, 

y+<<» 
17 r A/ 

y—ioo 

dX 

(«) 

(6) 

(7) 
y—ioo 

where /* = (l/»)[(A+2a)(A+2/S)]*. 
The integrals (6) and (7) can be evaluatedf in terms of the 

Bessel function of imaginary argument,^ ^7 using the 

t For an entirely different treatment see Jefhreys, loc. cit., p. 104. A dis¬ 
cussion using the Inversion Theorem is given by McLaohlan, Math, Oazeiie, 
22 (1938), 37. 

X I has been used here for oturent in place of the engineer's i to avoid 
confusion with The Bessel functions always have a su&c, so there 
will be no ambiguity. 
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integral representationf of this function; namely, 

y-f-ioo 

du 

u n+l' 
n > —1. (8) 

y—itO 

We discuss first (6) and, to reduce it to a form similar to 

(8), make the substitution: 

(A+2a)*+(A+2^)^ == 

so that (A+2a)*—(A+2)S)* = 2orf“"*, 

Vi, = [(A+2a)(A+2i3)]* = 

^ dX dX 
an j = 

(9) 

The path from y—ioo to y-\~ioo in the A-plane transforms 

into one of the same typef in the |-plane, which we shall denote 
y'+ioo 

by J . If we apply the transformation (9) directly to (6) no 
y^ioo 

t W.B.F.y §§ 6.2, 6.22, or (?. and ikf., p. 63 (43). Formally the result may 
be derived as follows: since is the Laplace Transform of (when 

m> — 1), we have, by the Inversion Theorem, 

y-fioo 

m\ 
± f 

J A«+»’ 
m > —1. 

y—400 

Now ^»(*) ^ 2.^ !(n4-r)!* 

Introducing in this the result above, with < = 1, and n+r written for m, and 

assuming we may invert the orders of integration and summation, we have 

00 V+ioo 

2 
r“0 y—400 

dX 
^n^+i 

y + 4Q0 

2iri 
(iz)0 I 

y — ico 
A»«Z< AVI 

r-o 

Ml 
2in 

y+ioo 

J dX 

y~4oo 

For a complete proof, see references above. 
t It is, of course, not a straight line but can be deformed into the line 

(y'—ioo, y'-fioo) by Cauchy’s theorem. 
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simplification will result, but the last result of (9) suggests that 

we evaluate first 
y-f*ioo 

-• f - 2m J 
y —<00 

M-fiX 

t?/X 
dA, (10) 

which becomes, on making the substitution (9), 

y' + ioo 

y'—<00 

If f > xjv, putting l$(t—xlv) = « in (11) we have from (8) with 

» = 0: 
e-P‘1 (12) 

For the case t < xjv consider the integral of the integrand 

of (11) taken round the contour of Fig. 17, consisting of portion 

of the contour (y'—ioo, y'+ioo) completed to the right by 

portion of a circle of radius R and centre the origin. The 

integrand is regular inside and on this contour and has no poles 

within it. Thus, by Cauchy’s theorem, the integral round the 

contour is zero. It is easy to show that in the limit iJ->oo 

the integral round the circular arc vanishes. Thus we are left 

with 
Z = 0, ^ (13) 

Combining (12) and (13), 

y + <oo 

y —<00 

where H(t) is defined in § 88 (2). 

Integrating (14) with respect to t from 0 to < gives, assumingf 

t These operations and also those lectding to (16) may most easily be 
justified by using the paths L and L* of §58. It is easy to show that the 
integrals round the portions BB" and AA" of the large circle in Fig. 16 vanish 
in the limit as = oo, and thus the path L (y—too, y+too) can be trans¬ 
formed into the path V. Then all integrals concerned along L' can be shown 

to be uniformly convergent. Also, in this way, it may be verified that (6) and 
(7) satisfy the differential equation (for t ^ x/v). The proofs follow the lines 

of the example given in § 68. 



that we can invert the orders of integration on the left-hand 
side.t 

y+i” 

y—ioo 

Xlv 

= 0, t < xjv. 
t Using Fig. 17 it can be shown that 

(16) 

y+ioo 

f €!1 ■<iA ss= 0, 
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Differentiating (15) with respect to x, assuming that the 

orders of differentiation and integration on the left-hand side 

may be interchanged, gives 

1 f J A® 
y-<oo ^ 

xlv 

= 0, < < xjv, 

where we have used the results 

(16) 

(17) 

and 7o(0) =1. (18) 

The left-hand side of (16) is the integral required for V in (6). 

Therefore finally 

(t®—a:®/?;*)* 
. (19) 

Thus the potential at the point x is zero until time t = xjv, 

when the disturbance reaches it; it then jumps to Ee-P^l'’ and 

varies according to (19), its final value as < oo being! 

E<7X 
CO 

vix 
(t^—x^Iv^)^ 

— S7«-{2x/r)V(ai3) rr. 

t From the Inversion Theorem and (14) we have 

0 xlv (20) 
Differentiating with respect to x gives, using (17) and (18), 

xlv 

since the last integral is uniformly convergent. Also both sides are continuous 
functions of A; so letting A -► 0, 

. (i-(t«/c)V(«S)_e-P*/ii = " f e-P* 
V J ((*—a?»/v*)* 

x/v 

Dd 4695 
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To dttermme the currejit we liave, by (7), 

2771 \ \Lj J imyL 
y -i-x) 

Therefore 

using (14) and (15). 

Thus I -■ 0 for t < j'[v, at I ~ xjv it jumps to E^I{ClL)e~P^^'’, 

andf as t -> oo, / - > 

91. I Jniforvi infmiti iratmnission Ime, x > 0, ivith zero 

initial current and charge, E.M.F, f(t) aj)plicd at x 0, for 

t > 0, 

I(p) f then, proceeding as in §9f), wo obtain 
6 

in place of (B) and (7), 

y 4 i'f' 

y — 100 

To evaluate (1) we notice that using §90(14) and §3, Theo¬ 

rem VI, 

t Tutting A 0 in (20) givon 

Cr-> 

ar/fi 

lini c™PTo|cf(<* ~ 9, Kincp /> cr. Al«o 
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DilTerentiatingf (3) with respect io x l)rings tlie left-lnuid side 

to the form (1); thus, using §9h(J7) and (18), we have 

J' 
y ~ i ifi 

0, ^ < x\v. 

^ >XIV, 

(4) j 

To find tlif current: DifTerentiate (4) with respect to ot, 

using p a-h/J, o a—fiy fx (J/'/;)[(A~|-2a:)(A"f 2/'?)p, and w'e 

obtain 

_1_ a; ^7”(A+2;^e^-/‘*/(A) dX 

27ri V J pLV 
y—ico 

=-YHy'’'’+v 1 
xjv 

7i[cT(T2-a:*/D2)‘] 

(r^~x^/v^Y 

-CTT/(<-T)e-P^ 
lj[o(r^-x^lv^Y] 

{r^—x^jv^Y 
-I- 

+ cTf(t-r)e-P^i: dry t > xjVy 

= 0, ^ < xjv. 

t Afisuming that the integral can be (differentiated under the integral bign, 
which implies conditions on f(t). 
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Thus, using (2) and the result = zIq{z), we have, 

for t > xjv, 

-pxjvj^ 

If a = 0, the integrals in (4) and (5) disappear, and the 

potential at x follows accurately that at a: = 0 with a time lag 

xjv and a constant diminution in amplitude. Hence the term 

‘distortionless* line. 

92. A doubly-infinite line, ~oo < a: < oo, with initial potential 

P'(O) and initial current == g{x). 

The subsidiary equation § 83 (3) is 

= Lg\x)-C{Li>+R)f{x), (1) 

where, in the notation of §90(3), g* = (\jv^)(p-\-2ai){p-\-2^). 

We solve (1) by finding the Green’s functionf 0(x,i) for the 

differential equation 

dW 
-g*F 0, (2) 

and boundary conditions, 

V finite as a: -> ±oo. (3) 

Let it be 0{x, $) = Ae-o’^, a: > f, 1 ,,. 

= x<^. I ^ ’ 

This will satisfy (2) and (3). It has also to satisfy the conditions 

0(x, i) is to be continuous at x = (, 

t See §68. Variation of parameters may also be used. 



ELECTRIC TRANSMISSION LINES 20S 

Substituting from (4) these give 

Beflf = 0, \ 

= 1/g. J 

Thus A = —B = — 
2g ^ 

and ’ (6) 

= a; < f 

Thus, as in § 68, the solution of the non-homogeneous equation 
(1) and boundary conditions (3) is 

?{x)= j 0(M[Lg'($)-C(Lp+R)m]di 
— 00 

X 

= 1 J [C{Lp+R)m-Lg’(0]e^^-^ 'd^ + 
— ® ^ CO 

+1 J [C(Lp+R)m-Lg'm^-'^^-^^d^. 
X 

Putting ^ = x—VT) in the first, and f = x+vij in the second of 
these, we get 

00 

^ J {C{Lp^R)[f{x-vrt)-\-f{x+vr^)-\- 
0 

—L[g\x—vri)-\-g'{x+vri)^e-v>v dij 
00 

= ^ J [RCf{x—Vfi)-\-RCf{x+vri)~ 
0 

—igf'(a?—di7 + 

00 

0 

= Fi(a:)+Fa{a:), say. (6) 

We consider the two parts separately. Taking first Vi{x), 
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applying the Inversion Theorem, and assiimingf that the orders 

of the A and t] integrations may be interchanged, vve have 

Vi(x, t) 

CO 

J [ECf(x-vr,)+RCf(z+vrj)- 

0 

y-f'iCO 
C flVT) 

—Lg'{x—vy]}--Lg'(x+vri)]dri | ^ dX, (7) 

y - icx) 

where /a = (]/?;)[(A-f 2ct)(A-f2/J)p. 

The contour integral in (7) has been evaliiatod in §90(14), 

so, inserting this value in (7), we find 

[RCf{x~Vri) + RCf{x+vy])- 

^ h 

Lg\x--V7]) — Lg\x~\-V7j)]e~f^lQ[cr{t^-- rj^)^]H(t—7j) drj 

i 
= j [RCf{x-V7})—Lg'{x—vrj)]Ifla{t'^ — r)^)i]dy] + 

0 

t 
+ lv^e-i>‘ j [RCf(x+vri)-I^'{x-\-r7j)]IJ[^a{t'‘‘ -7]^}i] d-g. 

0 

Putting x—VY) = f in the first of these, and x-\-vr) ^ ^ in the 

second, we have finally 

z-i'Vi 

V,{x,t)=^lve-f^ j [RCm-Lg’mo 

X—Vt 

<2- 
) . 

d^. 

(8) 

To evaluate Vi{x,t), we have from (6) and the Inversion 

Theorem 
y-fioo 00 

y-ioo 0 

t To justify this, conditions must bo imposed on f{x) and g{x). The same 

remark applies to the operations involved in evaluating Ft(x, t). 
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Integrating this equation with respect to t from 0 to ^ gives 
t y-f too 00 

J Fj(x,t) dr — I* ^ j [f{x—V7j)+f{x+Vr])]e-VH'V dri 

y — ioo 

LCv 

47ri 

00 y-f<co 
C r fiM-'nu.v j [fix—vr))+f{z+vr))]dr) j dA. 

y-tco (9) 

The contour integral in (9) has been evaluated in §90(14), so, 

inserting this value, 

jV,(a;.T)dr 

= [/(z—vr])-i-/(x+VT])]If,[a((<‘-ij^)^]ff((—rj)drj 
0 

== ■>?“)*] dTj 

a’ ) vi 

2v 
X “ vl 

Differentiating this with respect to /, and using the results 

/o(0) — 1, Iq{x) = Ii(x), we have 

V^(x,t) = \e-P‘U{x-\-vi)-\-f(x-vt)]~ 

-I/-" / /(C4{.[i‘-'*/’]‘jif + 

+ 

x-vt 
x-^vt 

-c-p< f (10) 
x-vt 

Adding (8) and (10), 

Y{x,t) = ie-'^[f{x+vt)+f{x-vt)]+ 
x~Yvt 

X-^Vt 

J [<2::(a.-:.^)2/„2]i ®f- (11) 

+ 

x-vt 
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In the ‘distortionless’ case, o — 0, this becomes 
X + Vt 

V(z,t) = ^e-f*[f(x+vt)+f(z-vt)]-~e-f>f J gr'(^)df 
x-vt (12) 

93. The finite line with none of B, L, G, C zero. 

In § 88 a method was developed for expressing solutions in 
terms of successively reflected waves, and this was applied to 
the pure wave cases R = O = 0 and RjL = OjC. It may now 
be applied to the general case. 

For the problem of § 88 we have, by § 88 (4), 

^ _g-s(a+x)_g-8(4/-i)_j__ 

jP 
(1) 

where q = {ljv)[(p-{-2ac)(p-{-2fi)]*. 
The function whose transform is {l/p)e~«® has been found in 

§90(16); using this result in the terms of (1), we have 

xlv 

I V J [t*—(21—a:)®/r*P 
^ {2t-®)/e 

Thus, in addition to the terms of the first column which repre¬ 
sent the arrival of successively reflected waves, there are the 
terms of the second column representing ‘tails’ of these waves. 

The case in which the E.M.F. applied at a: = 0 is an arbitrary 
function of the time can be dealt with in the same way using 
§ 91 (4) in the place of § 90 (16). 

94. Non-uniform lines. 

If the parameters R,'L, 0, 0 of the line are functions of x, 
equations (1) and (2) of §83 still hold, but in place of (3) we 
shall have for F a linear second-order differential equation 
whose coeflioients are functions of x. 
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As an example consider Heavivside's ‘Bessel cable’ in which 

L = L'jx, R =- R'jx, C - C'x, G - G'x, 

where L\ R\ C\ G' are constants. Then, if-- 0, 

equations (2) of § 83 become 

dW 1 dV ~ 
Hence 0, (1) 

dx- X dx 

where “ {Uj)-\~R'){C''p-\-G'). Also 1 . 
L p -] R dx 

The general solution of (1) is T ~ AI(^{q'x)~{-BKf^(rj\r). w here 

A and are to be found from the terminal conditions. If 

L' G' 0, the problem is of the same type as those on radial 

flow^ of heat in circular cylinders discussed in Cha2)tcr \T. 

4695 
E e 



CHAPTER X 

ELECTRIC WAVE AND DIFFUSION PROBLEMS 

95. The Maxw ell equat ions for a uniform isotropic mediumf of 

dielectric constant /c, permeability /x, and conductivity cr, are 

curlH „ I®. (1) 
c c dt 

curlE--^?”, (2) 
c ot 

divE = ^-^, (3) 
K 

divH ~ 0, (4) 

where E and H are the electric and magnetic field strengths, 

and p is the volume density of free electricity. E, /c, p, and a 

are measured in electrostatic units, and H and p, in electro¬ 

magnetic units. 

Multiply these equations by p > 0, and integrate with 

respect to t from 0 to oc'. Then, if E^^^ and are the values 

of E and H wdien t ~ 0, and w'e wTite E and H for the vectors 

whose components are the Ija|)laee Transforms of the com¬ 

ponents of E and H, w^e have from (1) to (4) subsidiary 

equations 

curlH -= (5) c c c 

curlE = (6) c c 

divE = 
4it . 

(7) 

divH = 0. (8) 

t The medium is supposed not to contain discontinuities of electric or 
magnetic force. For a discussion of cases in which it does, see Bromwich, 
iVoc. Lond, Math. Soc, (2), 28 (1927), 438. 



ELECTRIC WAVE AND DIFFUSION PROBLEMS 211 

Prom these we obtain, on eliminating E and H respectively, 

curl E(o>, (9) 
p c 

V^E-g^E grad div ^ curl (10) 
c 

where ^2 (,1) 

The general solution of (9) and (10) may be obtained by the 

methods of Potential Theory, and E and H then follow on 

applying the Inversion Theorem. For an application of this 

method of procedure in a similar ])roblem see § 105, also Brom¬ 

wich, loc. cit. In particular cases, however, it is usually easier 

to write down equations (1)~(I) in the appro])riate curvilinear 

coordinates and to solve directly the resulting subsidiary eejua- 

tions. 

In the following sections we shall confine ourselves to two 

simpler cases: 

(i) a non-conducting dielectric 

a=0, (12) 
c- 

(ii) a good (metallic) conductor in whicli the displacement 

current may be neglected in comparison with the conduction 

current. Here 
(13) 

96. A flat conducting plate, —a < x < a, —go < y < x\ 
—X < 2 < X, is mitially free from electric and magnetic fields. 

At t ^ 0 a magnetic field Hq cos wt, parallel to the z-axis, is estab¬ 

lished at both faces a; = 

Here, since all quantities are independent of y and 2:, the 

subsidiary equation is, byf §95(9), 

dm, 
dx^ 

-qm, = 0, —a <x <a, (1) 

where = pik and (2) 

f This may, of course, easily be obtained from first princ iples without using 
the general equation of §95. 
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IL when X ~ :^a. 

This is to be solved with boundary conditions 

cosh qx 

coshqa' 

y f 700 

The solution is H.-- 

therelbre //. “ f 
2l7T J cc 

(3) 

(4) 
.coshva: XdA 

L'osh i^a 
y icfj 

wheref 
The integrand is a single-valued function of A. Proceeding in 

the usual way, using Fig. 10, we find that the integral in (4) 

may be replaced by 2{7t times the sum of the residues at its 

poles. These poles are A — and A ~ — 

n 0, 1. 

The residue at A — ~k(7i~\-l)^Tr^ja^ is 

4U-7r3(27/,+ lf(-l)^'^i 
/’-(LbHl)%4-f 1660^4 

The residue at A ^ io) is 

e * 0*7;V/a® cOS(n-|- i) 
770: 

(5) 

cosha(ia}/lc)^ " eosha>'a(l+z)' 

where oj' ~ (wl2k)K 

This reduces to 

V here 

and 

tany 

cosh 2ai'x+co8 2aj'x\i 

cosh 2ai'a-j-cos 2oj'a (6) 

_ sinh :r)sina>'(«+:r)+sinha»'(a-fx)sina»'(u--“:r) 

cosh cu'(a—^)coscu'(a-(~x)~f-cosh ro'(a-f x)cos ca'(a—a:)* 

(7) 
Thus, finally, 

K == 

(2n+l)3(-l)”+i ' -ST 
“ Z i2(2w+l )V 

. oosfr+i) ^ 

+^fl'oCOS(a><—y), 

t Througlioiit this chapter i^will be used in place of the usual p for V(^/^) 
to a\'oid confusion with the permeability. 
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where jS and y are given by (6) and (7), The last term is the 

usual expression for the steady state magnetic field.| 

97. The expressions for the Maxwell equations m cylindrical and 

spherical polar coordinaies% are collected h^re for reference. 

I. Cylindrical coordinates. (1) and (2) of §95 become 

rdd dz 

dz dr 

r dr rdd 

dE^ BEq 

r dd dz 

n'dj^ 
c 8t ’ 

(1) 

(2) 

(3) 

(4) 

dE^ dE^ _ jx dHg 
dz dr c dt ' 

rdr rdd c dt 

We shall require only the case in which all quantities are 

independent of so that the terms in the equations above 

involving derivatives with respect to z disa})pear. Equations 

(l)-(6) then fall into two groups of three, namely, (1), (2), (6) 

containing E^., and Eq, and (3), (4), (5) containing 

and E^. 

The subsidiary equations for the first set are 

t Russell, Alternating Currents, 1 (2nd ed., 1914), 495. 

t For the change of variables see Weatherbum, Advanced Vector Analysis 
(1924), §11. 
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Substituting from (7) and (8) in (9) gives 

1 d r 

r dr dr _ r^ dd^ ^ " c rdr c rdd 

where, as before, 
47T€r/i , KUL „ 

V 
(10) 

(H) 
■ C“ 

When has been found fi*om (10), and Eq are obtained 

by (7) and (8). 

For the second set the subsidiary equations are 

d(rH0) DIE /47r(T 

rdr r 80 

% 
rdd 

dE^ 

dr 

\ c 
■ + c I c ^ 

Hence 

I d \ di 
„ r--- 
r dr I d dr 

1 d^^E.^ 
+ Jd^- ' 

c c 

(12) 

(13) 

(14) 

C /• (.^0 r dr 

KfJL 

/.2 

(15) 

II. In spherical polar coordinates (1) and (2) of §95 become 

rsin0[^^ dr 

I 

rsin 

1 

(4'jTa , K d 

\ 0 

47Ta 

- + c dt 
E., 

■ '^Ss^e). 

J 
mj 

"ee j 

rsiii 

1 

r [ dr 

m 
" sin 0 [ d^ 

1 

dr 

dE; 

■■061“ 

J 
P ^^0 

c dt 

'^(rEg) 

rl dr 

8K 4> 
c dt 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

If the system is independent of (f>, the.se split up into two 

sets, namely, (16), (17), (21), containing I/^, E^, Eg, and (18), 

(19), (20), containing //,., Hg, E^. 
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The subsidiary equations for the first of these sets are 

r dr \c c ) c ^ 

1 _1 H — 
r dr r dd c ^ c ^ ^ 

whence, eliminating E^, and Eq, 

Id^rJ^ I d 

r~dr^ ‘^r^dd 

1 d 

sin d dd 
{mi9H^) - 

d{rEf^) 
+- 

p ^ rc dr 

K 8^ 
rc 86 

(22) 

(23) 

(24) 

(25) 

98. A circular conducting cylinder 0 < r < a is initially free 

from electric and magnetic fields. At t ==^ 0 a magnetic field 

HqCo^coI is established outside the cylinder j^cinallel to its axis,'\ 

The system is independent of both 9 and z\ so by §97(10) 

the subsidiary equation is 

1 d 

r dr 
-am. = 0, 0 !^r < a, 

[dr \ (1) 

where q ~ Jiplk) and k ~-. 
47r/xa 

The boundary condition is 

(2) 

j % = when r = 61. (3) 

This system of equations is exactly that discussed in § 54 with 

Hj, in place of r, and Ic in place of k. Thus, writing a>' = ^(w/k), 

we have, using §54(7), 

IT Tj .bercoVberoi'a+beiwVbeicu'a , 
//- == /in cos ojt----;-V-t;;-;-h 

ber^co a+bei^co a 

-f jHJjsin Q}t 
ber a>V bei a>'a—bei coV ber wa 

ber^oi'a+bei^cu'a 

J'(c.,a) a 
(4) 

t Cf, Russell, loc. cit., pp. 503 et seq. 
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where 

s — 1, 2,..., are the roots of J^((xa) ~ 0. (t5) 

Similarly, if the external magnetic field is constant,Hq, the 

result follows from §53(10): 

a d^{aoif) 

where the are the roots of (5). 

(6) 

99. An infinite hollow conducting cylinder a < r <b is free from 

electric and magnetic fields. At t ~ 0 a uniform magnetic field 

Ho is established outside the cylinder and j)Cirallel to Us axis. 

Since all quantities are independent of both 6 and 2:, the 

subsidiary equation is, by §97 (10), 

—^0, a < r < b, (1) 

where = p/k and k = c^l(4-7TGiJi). (2) 

Also, by § 07 (8), Ee^- (3) 

The boundary condition at the outer surface is 

™ HJp, when r = b. (4) 

That at the inner surface may be foundJ most easily as follows: 

Neglecting displacement currents, the magnetic field in the hol¬ 

low interior is independent of r, and thus has the value at the 

inner surface r — a. Also and Eq are continuous at r = a. 

Now §95(6) gives 

curlE = —-H, r < a, 
c 

t The problem of the decay of magnetic field in a cylinder when the external 
field is removed may be treated in the same way. It is discussed in detail 

by Bromwich, Proc. Lond. Math. Soc. (2), 31 (1929), 209. 
I It may also be obtained by a limiting process, e.g. regarding the interior 

0 < r < a as having conductivity oi and taking the limiting form of the 

boundary oondition at r = o as 0. 

1 d^ 

r dr 

dH, 

' dr 
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and thus, taking the line integral of E round the circle r — a, 

we find o 

^ttCiEq = 

rra^p ff . 
— ^ when r = a. 

c 

or II — when r ~ a, 
2c " 

(5) 

and this is the required boundary condition. 

The general solution of (1) is 

K -= AlQ{qr) + BKQ(qr), 

and substituting in (4) and (5) we have for A and B 

AT^{qh) + BKQ{qb) = HJjh | 
A[hi;^(qa)—qlQ{qa)] + B[hKQ{qa)~qKQ(qa)] - 0, / 

where h ~ 2/x/a. 

Solving, we find 

H = 4(?^)[f'-K^iqa)-qKJqa)]-Kn{qr)lhi;,{qa) —qlpiga)] 
V hi<li>)[hKi{qa)~qko{qa)]—Kj^qb)[hrf^{qa)—qIa(qa)]' 

(6) 
Thus, using the Inversion Theorem, 

//.- 
^ f eA<ko(va)~vK^(va)]—A"o(vr)[/t7o(va) — vla(va)] d\ 
J 'tJyb)[hKo{m) — vko{va)]—KQ{vh)[hr^{va) — v\{va)] A ’ 

where v — yji^lk). 

The integrand of (7) is a single-valued function of A with a 

pole at A — 0. To find its other poles put A ~ —koc^ in the 

other factor of the denominator, which becomest 

Dice) 

= lQ{iboL)[hKQ{ia(x)—i(xKQ{ia(x)]—K^(iboc)[hlQ{iaa) — i(xlQ{ia(x)] 

~ — \in[jQ{ba)\hY-^{aoL) — a}^(aa)]—YQ{boL)[hJi{aoL) — ocJQ{aoc)]}. 

(8) 

It can be shown that the zeros of (8) are all real and simple. 

So if these are ±ai, poles of the integrand of (7) are 

A == 0 and A = —iaf, 5 = 1, 2,.,.. 

t loiiz) = Joiz)* Koiiz) 

4696 Ff 
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Then using the contour of Fig. 10 it follows in the usual way 

that the line integral of (7) equals 2i7t times the sum of the 

residues at the poles of its integrand. 

The residuef at A — 0 is 1. 

Using (8), we see that the residue at A = — fcaf is 

— X 

ag[dZ>(a)/da]„=a. 

Now from (8) 

li 
7T da. 

= —bJi{ba)[hYi{aa) — a}^(aa)]-)-^J^i(i>a)[At/j(aa)—Q!t7(,(ao£)] + 

4- - Jg{ba){a(ah—l)Y^{aa) — {h—aa^)Yi{aa)} — 

(9) 

— }^(6a){a(aA— 1 )i7(,(aa) — (h—aa*)«/j(aa:)}, 
a 

where we have used the recurrence formulae 

zJ'„{z) = zJ„_i{z)—nJ„{z), 

zY'„{z) = zY„_i{z)-nY^{z). 

When a = otg, a zero of (8), we have 

(10) 

(11) 

Joiba^) Yoiba,) 
T, say. (12) 

(13) 

hJi(aa,) — a, Jo(aag) hYi{aag)—a, Ygiaa,) 

Introducing this in (10) and using the result 

Joi^)Yi(z)-Yo{z)Ji{z) = 
TTZ 

we get 

= -1 (T(AH«f-2A/a)_l) 
Ja=a. 

Trot, Jo(bag)[hJi{aa,)—a, Jo(®“«)] 

t AU) = 1 + 1*’+.... K,(*) = -loglz + .... 
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Thus, finally, we obtain 

H, = ^0+ 

' (^Ha|-2A/a)J5(6aIJ-[/^jl(aa^)-a!/4(«“»)]* 

100. An infinite conducting circular cylinder of radius a is free 

from electric and magnetic fields. At t ^ 0 a magyietic field which 

is uniform at a large distance from the cylinder is established per¬ 

pendicular to the axis of the cylinder. The disturbance in the 

region outside the cylinder is supposed to be propagated infinitely 

rapidly. 

The 2:-axis is chosen along the axis of the cylinder, and the 

a:-axis in the direction of the applied field 

The field outside the cylinder is given by 

dtl> 

dr' 
He^ 

d<t> 

rdd' 

where V-(f> = 0. (1) 

Also Hj. and are to be chosen so that 

H^~>HQCosd, H0~>—HQsind, asr->oo. (2) 

A solution! of (1) satisfying (2), and with <f> proportional to 

COS0, is 

(f, = |~-jHor + ~jcos0, 

^r=(^O+^,)cOS0, 

He = 

(3) 

where A, a function of is to be determined from the boundary 

conditions at r = a. 
Within the cylinder we have to satisfy §97(13), (14), (15), 

t Throughout this chapter, as in the corresponding static problems, we 
merely seek a solution satisfying the prescribed conditions. The question of 

uniqueness will not be discussed. 
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with == 0 and = 4Tr(j,i27lcK Then § 97 (16) 

becomes j ^ > j ^2^ ^ 

Here let ™ X(r)sin0. Then X must satisfy 

iPX 1 fix 

df^ ' r dr (.=+')a- 0. 

Tlierefore, elioosing the solution which is Unite at r “ 0, 

X ~~ BE{qr)^ and K. BI^(qr)^u\d, 

Hence, using §97 (13) and (14), 

e blL c 
H, -= 

Also, from (3), 

Hp r ad fjipr 

c c E^ qc 

pp br fip 

Bl^{qr)ao^0, 

Bl[{qr)i>>\\\6, 

r < a. 

(4) 

(•^) 

IL 
'/> V 

Ug =:= { _:^'.|..-f \sin0. 
2) r-j 

a. («) 

The boundary conditions at r ~ a are coiitinuity of tangential 

magnetic force and normal magnetic induction. These require 

fj.p 

Mo. A ^ 

2> a^’ 

ap qj 

Solving, we have 

B - 

A - 

2paH^ 

c[aql[(qa)'-\-pI^(qa)\ 

am^qal[(qa)-pl^{qa) 
(7) 

p qal[(qa)+pl^(qay 

Substituting these values in (5) and (G) gives the transforms 
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of Hj, and Hq inside and outside the cylinder. We consider only 

the interior of the cylinder, then, from (7) and (5), 

2all JM^) —' cohO, r < a, 
pr [aql^(qa) \-ixl^{qa)] 

2qaHr^ • a ^ a. 

(8) 

From (8), by the Inversion TlK>orem, 

_aIIgCQse^'c. 

^ ■' 77/r J A ’ 
y~i yj 

where k — c^jinaix. 

The integrand of (10) is a single-valued function of A. Its 

})oles are A ~ 0, and A -~{k/a-)a^, s 1, 2,..., where the 

are the roots (all real and simple) off 

zMz)+iix-i)Mz) == 0. 
Since 

d 

dz 
OCt 

/X—1 

the residue of the integrand of (10) at A — —kalla^ is 

. 

Also, since Ii(z) ----- 2:-J-the residue at A “ 0 is 

r 

So, finally, 

jj ^ 2//oCOS0 Y 4a(M-l)^/oCOs6> 

M+1 
Similarly, 

^4-1 (aj+zx'^—1) Jg((x^) 

t It is supposed that p > L If /n — 1, the denominator of (10) reduces 
by the recurrence formula c/J(c)--f-/i(;:) ~ zTq{z) to 

«V(^/^-)/o('^-v(A/A0}. 
A problem witli ^ - 1 is discussed in § 101. 



222 ELECTRIC WAVE AND DIFFUSION PROBLEMS 

The problem of a conducting sphere placed in a uniform 

magnetic field may be treated in a similar way. 

101. The problem of §100 with an oscillating field H^sinco^ in 

place of the constant field 

Here HqIp is to be replaced by in §100(10), 

giving 
jj _ aujHQCosd 

iTtr 

y-\ ico 

9 r 

J avl 'i 
y-i CO 

JM)_ 
(m)+iJLli{va) 

dX, (1) 

where v — ■\J(Xlk}. 

Here we consider only the case/x = 1 (see footnote on p, 221) 

in which (1) becomes 
y + 'ico 

aojHQCOsd 

Trir J _ 
avlQ{va) 

dX. (2) 

y~lCO 

The poles of the integrand of (2) are 

A — and A = —kocljd^, 

where 5 = 1,2, 3,..., are the roots (all real and simple) of 

Mz) - 0. 

The residue of the integrand of (2) at A = io) is,t writing 

a>' = ^{oj/k), 

ciuit Iiiroj’ii) fiwi berirto'+ibeiirw' 

2tco aco WQ(ra»'il) 2ww'ail beraco'+i beiaw' 

The residue at A = —koilja^ is 

.. _ Mrocja) 
k^(x*+w^a* Ji(ocg) 

Therefore, 

__ ^2flocos0[berf aiV+bei|a)V]|^ 

roj' [ber^co a+bei'^a»a 

4a^Z:a»jyQCOs0 V_\_k^Ula‘ 

, , ^ bei.rco , 5. beiao; 
where tan 8i = =—-—;, tan Oa = =-;. 

berjfcu beraa> 

•f ber„«+ibei,ia; = 
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102. Charge is bound with surface density Z>cos0 on the surface 

of a perfectly conducting sphere of radius a. At t ~ the charge 

is released. To find the disturbance in the medium (/c = /x == 1, 

a =r 0) outside the sphere, 

The initial conditions are the electrostatic field of the charge 

distribution DcobO, namely, 

2A cos 0 _ A Bind 
^9 ^3 ’ 

/r;"* = 0, 

where A = 2TrDa^, 

The problem is independent of </»; so we use the subsidiary 

equations (22), (23), (25) of §97. These become 

__..L .^MndHA 
rsinddd^ c 

r dr c ® 

2 A cos 9 

cr^ 

A sin 6 

(1) 

(2) 

r dr^ dd sinfl dO 
{Bin0H^) = (3) 

c 

These have to be solved with boundary condition Eq = 0, when 

r ^ ay for every 0. Because of the occurrence of sin0 in the 

right-hand side of (2) we seek a solution of (3) of the form 

Ha = R{r)Bin0. Then (3) gives for JR 

Id^rR) 

r [r^^c^l 
R = 0. 

To solve (4) put R 

dr^ 

r-^Y. Then Y satisfies 

(4) 

dr^ r dr \4r® c*/ 

The solution of this, which remains finite as r oo, is 

Y = BK^iprlc). Thus 

— Br-^K^{prlc)sin6. (6) 

The boundary condition Eg — 0 at r = a now becomes, 

A using (2), 

ca' 3* 

t Love, Proc, Lond, Math, Soc, (2), 2 (1904), 102. 
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Hence, using the result 

Hz) 

we find B 

Therefore, = —A 

__ l2pU ApeP^^^- 

\ttc) p-a^^pac-^c^' 

(pr~\-c)^^nd 
p{r~a)lc 

9\^' ’ 

and from (1) and (2) 

2^cos^ 2cyl(^r+c)c*os0’ 
Er 

Ed = 
prri 

From (6) Are have 

A sin^ A 

+^ac+c‘^) 

(6) 

(7) 

(8) 

Ih 
a‘r (p+cj2a)^+'dc~l4a^ 

and thus, by Theorems IV and V of §3, 

Ha 
^sin0f cV3r. r—a 

a^r 
cos- 

2a 
t- 

2a-—r) . cV3r, r~a 

773“"”l5r[‘—V- 

+ 

g-(r/2r0l/-(r-«)/r]^ WhcU t > 

0, when t < 
r—a 

r—a 

(0) 

Putting d' — (c/2a)[^ —(r—a)/c] and tanS ^ (r—2a)/rV3, 

(9) becomes 

= 0, z? < 0. 

In the same way Ej. and Eq may be obtained from (7) and 

(8). The charge distribution on the sphere is obtained from 

1 _ ^cos0 Cu4(pa4-c)cos0 

in ^2npa^ 2npa^(pV-\~pac-\-c^) 

ApQOBd 

2na%p-^cl2af+ ^c^jia^} * 
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Thus 

The case of a sphere of finite conductivity may be treated 

along the same lines. Equation (5) will still hold for the space 

outside the sphere, and proceeding in the same way we should 

find inside the sphere 

= B'r-*Jj(g'r)sin0, 

where q — ^J(4:W(jfip/c^). The constants B and B' are then found 

from the boundary conditions, continuity of and at 

r = a. 

103. The problem o/§ 102 with the initial surface density a zonal 

harmonic of order 2, P^icosd). 

Here the initial conditions are the electrostatic field of this 

distribution, namely, 

= ^4(3cos>>0-1), 
3J. sin ^ cos 0 

Hf = 0. 

where A = ^na^. 

Equations (22), (23), (25) of §97 then become 

^ ^[ameH^] = ^E, 
rsind dd 

dr c 

1 8 if(ri4) 11: 
r 8r^ deiBine 88^ 

(1) 

-^sin^cos^, 
cr^ 

(2) 

_
1

 
1 II p

 

(3) 

We seek a solution of (3) of type 

has to satisfy j d\rB) 

r dr^ 

Putting R = r~iY in this, Y has to satisfy 

R{r)smd coad. Then R 

dW 1 dY 

dr^ r dr 
0. 

The solution of this, finite as r oo, is K^(pr|c), and so 

= Br-^K^{prlc)am.dcoad. (4) 

og 
4m 
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As in § 102 the boundary condition is Eg = 0, when r = a, for 

every 6. 

Using (2), this requires 

B 

dr 
riK 

l^r)} 3A 

m*’ 

Thus, using the result 

we have 

B = 

and 

^P\i^pal€ ^ 3Ap^ 

TTCI +3cp^a^ + 6c^pa + 6c^ ’ 

_-,e-^(-“V^8in0co80. (6) 
p^a^-f %c^pa+6c® 

and Eq may now be determined from (1) and (2). 

The equation 
3 3c 2 . 6c2 , 6c® . 

has one negative real root and two complex roots with negative 

real parts.f Denoting these by A^, Ag, and A3 respectively, we 

have from (5) 

34 Ajr®4-3cAir+3c® 

a®r® {Aj A2)(Aj A3) 
g^,I/-(r-a)/r]gjj^ Q ^Qg 

3^ A|r2+3cA2r+3c2 

^i®r® (A2 Aj)(A2 A3) 
^AaU~(r^a)/c]gjj^ Q COS 0 — 

3A A|r®+3cA3r+3c® 

a®r® (\~Ai)(A3-A2) 
^A3t^-(r~a)/clgjj^ Q QQg 

when t > {r—a)jc and ™ 0, w'hen t < {r—a)/c. 

The first term is of exponential type, and the other two 

represent damped harmonic vibrations. 

The case in which the initial charge distribution is a zonal 

harmonic of order n may be treated in the same way. In this 

case the equation of type (4) for will involve K^^^ipr/c), 

t The roots are approximately —I SOc/a, ( —0*70il*81r)c/a. 
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104. The field due to an oscillating electric dipole along the z-axis 

at the origin. 

Suppose that at ^ ~ 0, when the field is that of a dipole of 

moment the moment starts to oscillate like M^co^wt, To 

find the disturbance in the external medium in which k ~ fi ~ 1, 

a = 0. 

The dipole is taken to consist of charges ±:Q whose distances 

from the origin are z — ±:lcos<x)t, for t ^ 0, so that A[^^ ™ 2QL 

The magnetic field of the system at points so near the 

origin that the time of transit of disturbances to tliem may be 

neglected, isf 

Ha —--caisinco^sinu ---smcotsind. 

Thus the solution for r > 0 must satisfy 

wMq . , . 
- sin (x)t sm t/, as r -> 0, 

cr^ 

i.e. -^ -^0 _ sin e, as r 0. 
9 cr^{p^-\-w^) (0 

The initial conditions are the electrostatic field of a dipole of 

moment Mq, namely, 

J5;(o) — h^o) ^ q 

Thus the subsidiary equations §97 (22), (23), (25) become 

1 2il/ocos0 

cr3 “ ’ rsin^ dd 

_ 1 =^Eg- 
dr cr^ 

r dr^ ^r^a^Lsinffae' ^ 
P' tL - 0. 

As in § 102, a solution of (4) with H^cc sin0 is 

= Br-iKf{prlc)aine = + 

(2) 

(3) 

(4) 

(5) 

t Cf. Jeans, Electricity and Magnetism (5th ed., 1925), § 572. 
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where B is to be determined from the boundary condition (1). 

This gives 
B 

sst- 

Using this value we have, from (5), (2), and (4), 

r __o\ ^ 

En = Mo(oHp^^+prc+c^) , . 
pr^ pc^r^(p^-^w^) 

(6) 

(7) 

(8) 

Hence, using § 3, Theorem V, we obtain 

fj ^ r cos a)\ —siricDj^ 

0, when t < r/c, 

-j sin0, 

when t > rjCy 

2Mqci} 

cr^ 
rsina>i 

2ifocos0 , . ^ , 
—y ^ when t < rjCy 

COS0, 

when t > rjc, 

Ea 
Mqoj^ / 2 * A , • L A 

^ COSCOU—~ -f — SinCDU—- 

^7 \ c/ ^ I c/. 
sind, 

ifosin0 , ^ ^ / __.v — ^ when t < r c. 

when t > r/c, 

105 • The retarded potential formulae. 

It is required to solve the equation 

= (1) 

in the region 

t > 0, —00 < X < cOy —00 < y < oOy —oo < « < oo. 

p{XyyyZyt) is a known function; <f> and d<}>ldt are to take the 

values f{Xy y, z) and g{Xy z) respectively, when ^ == 0. 
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The subsidiary equation for (1) with these initial conditions is 

= p{Xyy,z,p) — ~[pfix,y,z)+g{x,y,z)], (2) 
C" 

where = p^/c^. 

By Green’s theorem! the solution of (2) is 

47r^{x',y',z') 

= _ JJ" + // - 
— jjj^^p(x,y,z,p)—^[pf{x,y,z)+g{x,y,z)'^ dxdydz, 

(3) 

where the integrals are taken over the surface and volume of 

a closed surface S which is to be made indefinitely large, d/dn 

represents a differentiation along the outward normal of this 

surface, and 

We assume that (f> is such that the surface integrals in (3) 

vanish as the least diameter of S approaches infinity. Then 
00 00 oo 

4Trfix',y’,z’} = ~ j j j 1ipf+g)^ dxdydz. 

— 00 — 00 — 00 

Here we may take x' = y' ~ z' ~ 0 without loss of generality 

and obtain 
00 00 00 

47r^ = 477^(0,0,0) = — J J J p_i(^/-l-gr)j dxdydz. 

— 00 — 00 — 00 (4) 

We transform this to spherical polar coordinates and write 

F{r) = r ^^f(r,e,^)dw, 

0{r) = r jj g(r,e,tfj) dw, 

TT 2Tr 

where JJ da> is written throughout for J J BinO dddifj. 

(5) 

0 0 

t Bateman, Partial Differential Equations of Mathematical Physics (1932), 

p. 189. 
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Then (4) becomes 
00 47t^ = — JJ du) J re^^^^^p{ri6,tpyp) dr + 

0 
00 00 

4.^ J e-i»’l‘-F(r) dr + i J e-P'l<^0(r) dr. (6) 

0 0 

To determine <f> from (6) we consider the three terms separately. 

By § 3, Theorem V, the function whose transform is 

j/f,p) is 

0, 

when i > y 
c 

when i < 
c 

Thus (assuming that the orders of integration can be inter¬ 

changed) the first term of (6) makes a contribution to 47r^ of 

ct 
I /fV 

(7) — jjdcoj rdrplr,ff,t^,f — ^j. 

Applying the Inversion Theorem to the last term of (6) gives 
y*fioo 00 y-fioo 

J dA J e~^'I‘-0(r) dr = ^ J dA J e-''“(?(CM) du 

0 

(8) 

y—ioo y—ioo 

= -0(ct), 
C 

by Fourier’s theorem, equation (12) below. 

Applying the Inversion Theorem to the second term of (6) 

gives 
y + ico 

2^? I 
y~lQ0 

y-j-ioo 

= ~ j d\ j e-^"F(cu) Ae^dA 

y —ioo 0 

du 

(9) 
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by equation (13) below; the condition F(0) = 0 will by (5) be 

satisfied if lim r/(r, 6, ifj) = 0. 
r-*-0 

Therefore, from (6), (7), (8), (9), we have finally 

ct 

47T(f> = ^Q{ct)--{'F'(ct)— do) J f dr, (10) 

0 

which is the usual result.f 

Fourier’s Integral TheoremJ states that (subject to certain conditions 

on 4>) r ' QO OO 

i / e-t«* 

Here let ^(t) == f{t)e~‘yK t > 0, 
= 0, ^ < 0. 

Then, inserting these values, (11) becomes 

J dt, 

- GO 

> 0, 1 
< 0. / 

00 CD 

^ J eiv-*«)*da J e-<v-‘«)«/(0 =/(a:), a; > 0, 

= 0, X A
 

p
 

ia - = A, this becomes 
y + ico 00 

/• 1 

27ri 
r 1 

= /(*). X > 0, 

7 
J /~ioo 0 

= = 0, X < 0. , 

Also, iff{t) = ^ > 0, and i/f(0) = 0, 
00 00 

J = a J e~^*ilf{t) dtf 

and (12) becomes 
V-f ioo 00 

^ J Ac^* dA J dt = ^'(ir), a; > 0, 

= 0, a: < 0. 

t Abraham, Theorie der EUktrizitdt (Leipzig, 1906), 2, § 7 (39). 

t Cf. §42. 



MISCELLANEOUS EXAMPLES INVOLVING PARTIAL 
DIFFERENTIAL EQUATIONS 

1. Obtain the solution v(x,t) of 

such that 

dv d^v ^ 
*>0.00. 

v(0,«) = 0, ^ > 0, 
v(x, 0) == Vq, X > 0. 

[v = VQerf{x/2y/{Kt)}. 

2. Obtain the solution of 

dv dH _ _ 
= *>o.«>o. 

V — asinco^, when a; = 0, ^ > 0, 

t; 5= 0, when x > 0, ^ = 0. [( ^ V — a|e~®^H2'f)sin^a>^—a; + ^ j e~‘ 
^^Bin x^{p/k) 

3. Obtain the solution of 

dv d^v ^ - * > 0. < > 0, 

V ~ (l){t)^ when a; — 0, ^ > 0, 

v = 0, when a; > 0, ^ = 0. 

2V(it<c) 
J ^ Theorem VI.] 

4. Obtain the solution of 

dv d^v - . 
^ = *>0.00. 

^ = ahcoBwtf X = Oy t > 0, 
ox 

V = 0, a: > 0, « = 0. 

r == 

J (K*«*+a>* 
(A siniwj+wcoswa:) 

) W^) * 

‘»TJ5WS5- 
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5. Obtain the solution of 

such that 

and 

dv dH . 

Sv 
— — -^hv = h<l>(t)y a? = 0, ^ > 0, 

(/X 

V = 0, X > 0, t = 0. 

sin cos ux 

6. Obtain the solution of 

u dwj dr. 

[Use § 3, Theorem VI.] 

dv d^V r u r\ 
^ = /c— 0 < X < I, t > 0, 
dt dx^ 

with v(Qyt) = Vq and v(Ut) = Vi, when t > 0, 

and v{x,0) = 0, 0 < a; < L 

[v = v„ j-p - - ^ sm -x| + 

V ^ ; 

7. Obtain the solution of 

dv d^v . , ^ 
0<x<l,t>0. 

with V = ), X — 0, t > 0; v==0, a; — ?, t>0, 

and V == 0, 0 < x < I, t == 0, 

[00 t 

1 0 

8. Two semi-infinite solids of different materials arc in contact along 
the plane a; = 0. The initial temperature in a; < 0 is a constant Vi and 
that in a: > 0 is zero. Taking Aj, #ci in a: < 0 and ifj* Kj in a; > 0, show 
that the temperature at the time ^ > 0 is given by 

, where a — 

MM Hh 
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9. In the solid of Ex. 8. if the initial temperature in a; < 0 is zero 
and in a: > 0 is a constant Fg, show that the temperature at t is given by 

a:<0. 

where a is as in Ex. 8. 

10. Find the temperature due to a unit instantaneous plane source 
at .r' (> 0) at ^ = 0 in the solid of Ex. 8. 

[The temperature Vg in a; > 0 is the same as if the whole solid 
had been of the material and another source of strength 

been placed at ~ z\ 
XjV/fi-f-AiV/fg ^ 

The tf^mporature in a; < 0 is the same as if the whole solid had 

been of the Ki material and a source of strength -v /Hi 
Ag Vxi+Ki Vxg V xg 

had been placed at x'^(kiIk^), 

11. Obtain the solution of the equation 

dv d^v 
TT — #c , 0 < X < I, t > 0, 

V ™ 0, when a: ~ 0 and x ~ I, t > 0, 

V = X, 0 < X < Uy 
ad TIT, 

== Z —.r, il < X < 1. 

[Show that the subsidiary equation is 

-q^v =-, 

K 
0 < X < JZ, 

Z—a: ,, , 
=-, iZ < a? < Z, 

K 

ij ™ 0, when a; = 0 and a; = Z. 

Verify that this is satisfied by 

Hence show that 

1 8inhg{Z—a;)] 

g cosh iql J < X < L 

(2n+l)7r 
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12. Find the temperature v at time t due to a unit instantaneous line 
source generated at / = 0 along the axis of the cylinder r = a, the tem¬ 
perature of the cylinder then being zero and its surface thereafter kept 
at zero. 

7ra*Z, JKocay 
a 

the summation being taken over the positive roots of J^(oLa) = 0. 
[Use the integral 

00 

A'o(gr) “ i J y, whore g® = p//c. 

13. If in Ex. 12 the surface condition is that no heat escapes across 
r = a, show that 

Jl{oca)y 
.-if 

Tra* L 1+2*- 

where the summation is taken over the positive roots of J^aa) -- 0. 

14. A solid is bounded internally by the cylinder r = a and extends 
to infinity. The initial temperature is zero and the surface is kept at 
a constant temperature Vq. The temperature in the solid at < > 0 is 
denoted by v. Show that 

P Kaiqa)’ 

and, using the Inversion Formula, obtain v. 

U 1 + ? f C- 

L^o 
0 

Yl(ua) u 

15. Find the temperature in the sphere r = a at time ^ > 0, if the 
solid is initially at zero and the surface is kept at 

V 

^’o ' TTT ^ n a 
i 

16. Find the temperature due to a unit instantaneous spherical sur¬ 
face source at ^ = 0 over r == r' in the sphere r = a, the solid being 
then at zero and the surface thereafter kept at zero. 

r 00 
V = e“^^”*"W^8in —rsin —r'. 

27rafr' Zw a a 
1 
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17. Find the temperature due to a unit instantaneous spherical sur¬ 
face source at ^ = 0 over r = r' in the sphere r = a, when radiation 
takes place at the surface into a medium at zero. 

1 V , w (a/i—O'* . 
== o ■ ■ / / —m—:r.fiinoLrHin(xr . 

27rarr ~f ah{ah — 1) 
<x 

the summation being taken over the positive roots of 

aacosaa-f l)sina« — 0. 

18. A solid is bounded internally by the sphere r — a and extends 
to infinity. The surface r ~ a is kept at a constant temperature Vq and 
the initial temperature is zero. Find the temperature v at the time t. 

r . 
1 — erf 

(r-a)'l 

2yJ(Ki)l 

19. Find the temperature due to a unit instantaneous spherical sur¬ 
face source generated at ^ = 0 over r = r' in the solid bounded internally 
by the sphere r ~ a and extending to infinity, the surface r = a being 
kept at zero for t > 0. 

- -_ g-(r+r'~2a)«/4Ke\ 
^irrr' 

20. Find the temperature in the solid of Ex. 19 due to a unit instan¬ 
taneous spherical surface source at ^ = 0 over r — r\ when radiation 
takes place at the surface r — a into a medium at zero. 

Srrrr'^iTTKt) ^ 
00 

X +;i) J e-O/a+^X-c+r'-xi+ftViKt dfj. 

21. A heavy uniform string of length I and line density p is stretched 
between two fixed points, .t = 0 and x ~ I, to'tension pc^. It is plucked 
a small distance 6 at a point distant a from the origin and released at 
f = 0. Show that its subsequent displacement is 

2bl^ 

7r^a(l--a) I 
1 . nrra . nirx nrrct 
— am —r- sm —r-cos —r~* 

I I I 

22. A uniform string of density p and length I is stretched to tension 
pc* between fixed points, x ~ 0 and x ^ I, The string is plucked a small 
distance b at the point x ^ \l and released at f = 0. Show that the 
subsequent form of the string is given for 0 < < < //3c by 

Zbxjl when ic < JZ—cf, 

36 . 96 
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and ^ when I > x ^ ct + \l. 

Determine also the form of the string in the intervals JZ < < JZ and 
JZ < ct Z. 

23. A heavy uniform string of length Z and line density p is stretched 
between two fixed points, x 0 and x — U to tension pc^. At Z = 0, 
when the string is straight and at rest, a blow is struck at a; = a so,, 
that momentum cr is cornmunicate^d to a small region about a: = a. 
Show that the subsequent form of the string is 

CO 

2(7 1 . r?7ra . nrrx . mrct 
— > - sin sin sin —. 

TTDC n I L I 
w-l 

24. An indefinitely long string x > 0 of line density p is stretched to 
tension pc^ and is at rest in its equilibrium position. For t > 0 the end 
O’ — 0 is given a small oscillation asincuZ. Show that the displacement 
at the point x is given by 

afi'mw(t — xlc) if t > x/c, 

0 if Z < x/c. 

25. A string of density p and length Z is stretched to tension pc^. The 
end a; == 0 is fixed and the end a' — Z is attached to a massless ring free 
to slide on a smooth rod. At Z — 0, wlien the system is at rest with 
the ring displaced a small distance a from the equilibrium position, the 
ring is released. Show that the subsequent displacement of the string is 

8tt 

77^ 

00 

1 
r**0 

( — 1)^ . (2r4-1)773? (2r 4- 1 )7rct 
'2Z 

26. A string of density p and length Z is stretched to tension pc^. The 
end 3- ~ Z is fixed and at Z — 0, when the string is at rest in its equili¬ 
brium position, the end .r = 0 is given a small oscillation asincoZ. Show 
that the subsequent displacement of the point x is 

00 
asina>Zsinco(Z-~3’)/c , 2lcaw .^rnct 

sin w/'/c Z ~ ~T ■ 

27. A uniform string of length 2Z and density p has a particle of mass 
ni attached to its middle point and is stretched to ten.sion pc^ between 
the fixed points a; == At Z = 0, when the string is straight and at 
rest, the particle is set in motion by a transverse impulse /. Show that 
its subsequent displacement is 

211 ^_1_. (XnCt 

me a^fl + A'cosec^aw) Z 
7l»»l 

where h = 2pHm and a„, n = 1, 2,..., are the positive roots of A: cot a = a. 
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28. A heavy uniform string of length 31 and line density p is fixed 
at the ends and a particle of mass m is attached at a distance I from 
one end. The tension is pc*. A transverse velocity v is given to the 
particle at < = 0, Show that the subsequent displacement x of the 
particle is given by 

^ _ mvsinh(pZ/c)sinh(2pZ/c) 
mp^ Qmh{pi/c)smh(2pl/c) +pcp sinh(3pl/cj * 

and evaluate x up to the time 42/c. 

29. A pipe, open at one end and closed at the other, is suddenly 
brought to rest at time t = 0 after having been for some time in motion 
with uniform velocity v parallel to the length of the pipe, Show that 
the subsequent displacement of the air at the point distant x from the 
closed end is 

CD 

2 
n-0 

1 . (2n-fl)7ra; . (2n-f l)Trc^ 
21 * 

30. In the problem of Ex. 29 show that the displacement is also 

vt. a <ct< X. 

vxfc, X < ct < 21--X, 

v(2l—ct)lct 21—X < ct < 21-{-x, 

—vxjc, 21+x < ct < 41—X, 

etc. 

31. A closed pipe of length 21 contains air whose density is greater 
than that outside in the ratio 1 -f €: 1, where € is small. At ^ = 0, when 
the air is at rest, the ends x = db^ of the pipe ore opened. Show that 
the velocity potential at the point x at time t is 

SccU'O ( — IK (2r+l)7rx . (2rH“l)7rc^ 

2, (2rTl)*““■ TZ " * 
f-O 

32. Fluid is contained in a long straight tube closed at one end x = 0. 
When t 0 the fluid is everywhere at rest while the condensation a is 
^0 (constant) for values of x between 0 and a and zero elsewhere. Deter¬ 
mine 8 for all X, t; draw («, t) graphs for the values Ja and fa of x and 
explain the differences between them. 

33. A uniform bar of length 21 is compressed by forces applied at its 
ends so that its length is 2/(1—c). At « = 0 the forces are released. 
Show that the subsequent displacement of the point x is 

8c/( — 1)”+^ . (2n-)-l)7rx (2n+l)7rc< 
— >-sm-^-COB - 

TT* (2n+l)* 
n-*0 

21 21 

where the origin is at the middle point of the bar and c is the velocity 
of longitudinal waves in the bar. 
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34. A uniform bar 0 < x < Z of imit area, mass m, and length I is 
at rest on a smooth horizontal plane, when at Z = 0 constant force P 
is applied at the end x = Z in the direction of the length of the bar. 
Show that the subsequent displacement of the point of the bar originally 
at X is 00 

2in ^ 7r*c*wi 2 (-1)^ 
n* 

finx/. 
C0S~y~ ^1—008 

mrct\ 

n-l 

where c is the velocity of longitudinal waves in the bar. 

35. A uniform bar of length Z is at rest and unstrained when at Z = 0 
the end x = 0 is given a forced oscillation a sin wL Show that the motion 
of the end ® = Z is given by 0. 0 < c< < 1. 

2a8ina>(Z—Z/c), I < ct < 3Z, 

' 2a[sinaj(Z—Z/c)—sincu(Z—3Z/c)], 21 < ct < 61. 

36. A uniform bar of unit area, mass tn, and length Z, initially at rest 
in the position 0 < x < Z and unstrained, is given a longitudinal blow 
P at the end x = 0 at time Z = 0. Show that the displacement of the 

other end is 0. 0 < c« < I, 

2cPIE, I < ct < 3Z, 

4cPIE, 21 < ct < 6Z, 

and find the displacement at any point. 

37. A uniform bar is hanging vertically from a fixed point, tod 
stretched tmder its own weight, when a concentrated load is suddenly 
attached at the lower end of the bar; obtain equations to determine 
the stress at the fixed end at any subsequent time. 

In particular, if the weight of the load is equal to the weight of the 
bar, prove that the instant of maximum stress is given by 

cZ/Z = 3+i(l + l/e*), 

where Z is the length of the bar and c is the velocity of extensional 
waves in the bar. 

38. A bar of length Z with the end x = 0 fixed is struck at the other 
end by a particle of 1/n times its mass moving with velocity V in the 
direction of the length of the bar. Show that the pressure on the struck 

end of the bar is {EV/c)e-’‘*. 0 < ct < 21. 

(EVIc)e-’‘*+2{EV/c){l-k{t-2llc)}e-’‘<*-*'l». 21 < ct < 4,1, 

(JE7/c)e-*‘+2(ilF/c){l-A:(<-2Z/o)}6-»«-*V«4- 

+ 2(J5r/c){l-3;fc(<-4Z/o)+)b*(«-4Z/c)*}e-*(‘-*>/«, 4Z < cZ < 6Z, 

where c is the velocity of longitudinal waves in the bar, and k == nc/Z, 
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39. A circular membrane of radius a and density p is stretched to 
tension T, At < = 0 a uniform normal pressure P per unit area is applied 
to the surface. Show that its subsequent displacement is 

P 2a. 2 cos {^]}, 

where = T/p, and the summation extends to all roots of t7o(u)) == 0. 

40. A semi-infinite transmission line a; > 0 has resistance R and 
capacity C per imit length and zero initial current and charge. At ^ = 0 
constant E.M.F, Eq is applied at a: = 0 through resistance Rq. Show 
that the potential at x is 

where k = RjiCRl), 

41. In the problem of Ex. 40 show that the current at a; = 0 is 

42. A semi-inlinite transmission line rr > 0 has resistance R and 
capacity C per unit length and zero initial current and charge. At < = 0 
unit E.M.F. is applied at x = 0 through capacity Cq. Show that the 
current at x is 

Oo 1 _ erf [ixV( i? 

where ic = C/RCl ' 

43. A semi-infinite transmission line has resistance i?, capacity C, 
and leakage conductance O per unit length. At < == 0 unit E.M.F. is 
applied at £C = 0 from zero initial conditions. Show that the potential 
at a; is 

je-vvco)] 1 -erf [X - V(2)8<)]) + 1 -erf [X +^(2^1)]), 

where y = XaJ(RC) end p = G/2C, 

44. A cable of resistance R and capacity C per unit length is earthed 
at a: = L At t ~ 0, when there is no current and charge in the cable, 
constant E.M.F. E is applied through resistance R^ at x =-• 0, Show 
that the potential of the point x is given by 

ER(l—x) 

JR-f- JBj 
^2ER^ > sina»(Z—a?) 

n«-l 
OLn{R(Ri 4* ) + IRi aJ}cos /a„ 

where n nx i, 2,..., are the positive roots of 

Rtaxila+aRi = 0. 
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45. A cable of icsistanco R and capacity C per unit length is earthed 

X ~ 1. At t ^ 0, when there is no current and charge in the cable, 

constant E.M.F. E is applied through capacity at a; = 0. Show that 

the potential of the point x is given by 

2R'^Cl 

00 

E^a„e-‘'nW 

n~ 1 

sin a,—a:) 

where oc^^, n = 1, 2,..., are the positive roots of a tan a/ = CjCi, 

46. A distortionless line (RjL ~ GjC) of length I is earthed at x ^ I 

and has zero initial current and charge. At ^ = 0 E.M.F. sin 0)1 is applied 

at X = 0. Show that the potential at x is 

e-p^A'sina>(/—a'/zj), 0 < ^ < .r/?% 

e~^**^/^’sina>(^--.r/e)-f e“^(2^~*V’’{sinaj{t-~(2/—a:)/z?j, xjv < t < {2l — x)li\ 

etc., 

where p — RJL and v - ■ (LC)~^. 

4^1, A distortionless line (RjL -- GjC) of length I is initially charged 

to unit potential. The end x I is insulated and at < ~ 0 the end x ~ 0 

is earthed. Show that the potential at x is 

00 

n —0 

1 
(2n-T-l) 

. (2??-fl)7r.r 
sm--cos 

(2n -f* 1 )7r7’^ 

" 21 

where p = RjL, v = (LC)"^^, 

48. A finite transmission line 0 < a* < Z has none of R, L, G, G zero. 

The initial current and potential are zero. The end x ~ I is insulated. 

At Z — 0 constant E.M.F. E is applied at a; — 0. Show that the current 

at X is 

/(a\ ^Hl-x^iRG) 
V \r) coshQlna) 

■rr^v^E -O (2w + 1)»cos(i/„t~d„ — (l>„)aos{2n + l)Trxl2l 

n-^0 

where the notation is that of § 87 and 

tan^„ = pivn* tan^„ — LvJ(R — Lp). 

49. A transmission line of length I has zero initial charge and current. 

The ends ar = 0 and x^l are kept at imit and zero potential respectively 

for t > 0, Show that the potential at the point x is 

oo ' 
smh(l—x)^{RG) 2ttv'^ ncos(vy^Z—^yt)sinn7ra:/Z 

smhl^{RG) ^ 2^ Vn(vl+p^)^ 

where tan0„ = p/vn* and the other quantities have 

their usual meanings. 
4695 li 
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50. Prove that the solution of 

, 8v , 8v 
t > 0, 

with t; = 0 when x = 0, v = V when x = a, ?; = 0 when ^ = 0, is 

+ 
00 

( ™ )”n7rsin nTTxja 

(n7r/a)2-f (^/2/c)2 
exp{A’(,r—a)/2/<:—^[(nW/<**) + (^V4^)]}* 
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Lerch's Theorem 

The Laplace Transform f(p) of a given function F(i) is defined Ly 

ther equation ao 

np) = (1) 
0 

where p is a positive number (or a number whose real part is positive) 

and the integral on the right hand conv(^rges. 

It is knownt that if 0[t) is another function which satisfies (1), 

F(t)-0{t) = iV(0. 

where N(t) is a null-function, i.e. a function such tliat 
t 
J N(t) dt 0 

for every t ^ 0. ^ 

A particular case of a null-function is a function which is zero except 

at a finite number of points. 

It is clear that a continuous function cannot be a null-function unless 

it vanishes for f > 0. It would thus follow that if, for a giv’en f(p), wo 

can find a continuous function F(t) satisfying (1), this is the only con¬ 

tinuous function which satisfies it. 

And again, if for a given/(p) wo can find a function'/^(/) with only 

ordinary discontinuities satisfying (1), any function which satisfies (1) 

and has ordinary discontinuities at the same points as F(i) can iliffer 

from F(t) only at these points. 

We shall prove this uniqueness theorem for the case of the continuous 

function by elementary methods. The proof requires the following 

lemma 4 

Lemma. Let ^(x) be continuous m 0 < a; < 1 and let 

1 

J dx — 0, for n — 1, 2,.... 
0 

Then ip{x) sn 0 in 0 < cr < 1. 

If ipix) is not identically zero in the closed interval, there must be an 

interval (e.g. a < x < 6, where 0<a<6<l)in which ifj{x) is always 

positive (or always negative). Take the first alternative. 

From the parabola y — (b—x)(x—a) we see that, if c is the larger of 

the two numbers ab, (1—a)(l—6), then 

1 > 1, when a < x < b 
c 

t Doetsch, loc. cit., chap, iii, §7. The proof is rather difficult. See also 

Lerch, Acta Mathematical 27 (1903), 339-52. 

J Cf. Bremekamp, Kon, Akad. v. Wet. Amsterdam, Proceedings of the 

Section of Sciences, 40 (1937), 689. 
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and 

0 <; 1 _j... 1(1';_.'!•)(a:* —a) < 1, when 0 < a: < a and 6 < a: < 1. 
c 

Thus [1-}-(l/c)(6 —a-)(a’ —a)y can be made as large as we please in 

a < X < b by making tlie positive integer r greater and greater, and 

in 0 < a: < a, b < a: < 1 it can in the same way be mad(3 as small as 

we please. 

But [1 f (l/c')(?; —a‘)(a; —a)]^ is a polynomial in a:, and by our hypo- 
1 

thesis J a:'*~^^(a) dx 0 for n -= 1, 2,.... 
0 

Tlierefore we sliould have 

1 y 

J [l+*(6-.T)(a--flr)] >j){r) 

0 

dx — 0 

for every positive inh'ger r. Wliereas from the above, by choosing r 

large enough, i 

J[l +^ (6-a-)(.(;-rt)j ^{.v)dx > 0. 

0 

Thus with the first alternative wo are brought to a contradiction; and 

a similar argument applies to the other. 

It follows tliat ^(x) 0 in 0 ' .r c' 1. 

Cfj 

Theorem. Iff(2^) ■= J er^^F(t) dt, p > is satisfied by a continuous 
0 

function F(t)y there is no other continuous function ivhicfi satisfies the 

equation. 

For, if possible, let there be anoth(*r continuous function G{t) satis¬ 

fying tlie ettuation. Lot g(t) Then 

00 

J dl ^ 0, p > (2) 
0 

and g{t) is continuous. 

Let p ™ PQ~\-n, where n is any positive integer. 

Then since, by integration by parts, 

CTj t OO 

n dt J dt ~ ^ dt^ 

0 0 0 

it follows from (2) that 

00 

J dt = 0, 

0 

t 

4>{t) = j e-P’^git) dt. 

0 

where (3) 
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Put in (3) a; ~~ e"'^ i/f(x) = ^[log(l/a:)]. Then i]j(x) is continuous in the 

closed interval 0 < a; < 1, since we take 

i/r(0) - lirn and ^(1) == ^(0)0. 
t—>-00 

1 

Also J a:”"Y(a:) dx ^ 0, n = 1, 2,.... 

0 

It follows from the lemma that ifjix) :rr. 0 in 0 < x < 1, and therefore 

I 

-™ J dt — 0, when t > 0. (4) 

0 

Now is continuous in ^ > 0, so it follows from (4) that 

0, wdien t €, i.e. g{t) = 0, when t > 0, and the theorem 

is proved. 
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Note on Bessel Functions 

1. Bessel’s equation of order n, 

j 1 dy 
dx^ ~ X dx (1) 

is satisfied by y = J„(x) = ^ ^ r^w+rV' ’ 
r«0 

when n is a positive integer and x is real. 

Jn(^) is usually called the Bessel function of order n of the first 

kind.f 
It is often necessary to deal with values of n other than positive 

integers and with the independent variable complex. 

Jj^(z) is thus defined for any realj n and the complex variable z by 
the equation 

J„{z) = 

f = 0 

where the general Gamma function § is used and 2” is taken as 
exp(nlog2), the argument of 2 being given its principal value.|| 

2 r! r(n-f r-l" 1)^ 
(3) 

2. When n is not an integer, Jn{z) and independent solutions 
of Bessel’s equation, but, when n is an integer, J„(2) = ( — 1)”J_„(2). 

The most useful second solution, available for all values of n, is 
denoted by F^(2), where 

Y„iz) = (4, 
sinnTT 

the limit being taken when n is an integer.^ 
We shall call F„(2) the Bessel function of order n of the second 

kind. 

t Bessel functions of the second and third kinds are defined below, 
X The Bessel functions are also similarly defined for complex values of n, 

but in this work this generalization is not required. 
§ For the properties of the Gamma function see (e.g.) Whittaker and Wat¬ 

son, Modern Analysis (3rd ed., 1920), chap. xii. 

11 In other words 2 = r(co9 6-|-i sin^), 

and argz = 6, —ir < argz < w. 

log 2 = logf+i^, 

^ i.e., when n is an integer, 
J^(2 )cos vTt—J^v(z) 

y„(2) = lim' 
sm vit 
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3. With this definition of F„(«), we have 

irrFoW = Jo(^){log(^^) + y} + + (1 + K i) 

(5) 
where y is Euler’s constant.f 

Also, when n is any positiv^e integer, 

f»0 

_ 2 „) 
r=«o 

n-f f r n 

where, for r = 0, instead of ^ ^ we write 2 
m = l w=*l 

Since Fi(2) ~ ~Yq{z) it is easy to write down Fi(«) from the expres¬ 
sion given in (5) for Yq(z). 

4. The functions t/„(2)i?In(2) are also solutions of Bessel’s equation of 
order n. They are now usually denoted by called 
Bessel functions of the third kind. 

Thus = J„(2)+fF„(j) I 

== (7) 
i sin niT J 

and H^Piz) J,(z)~iY,{z) ^ 

_ (8) 

—isinnTT * / 

the limits on the right-hand side being taken as in §2, when n is an 
integer. 

It is knownj that 

H'n'Kz) = + 

and = +oQ))' 

5. The equation S?+ ® 

differs from Bessel’s equation only in the coefficient of y and is of equal 
importance, especially in Applied Mathematics. 

t r - lim (l+5 +5+ ...+i-logn) = 0-5772167... = -F'il). 
n~> 001 iS o n ) 

For Euler’s constant see Whittaker and Watson, loc. cit., §92.1. 
t W.B.F., p. 198, (3) and (4), 
0(1/2) denotes a function of the order of magnitude 1/2 as 2 -►oo; i.e. if 

^(2) = 0(1/2), a constant K exists such that \z<l>{z)\ < K when |2| > Z. 
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It is easily seen that it is satisfied by Jn(iz) and Y^iiz), but it is more 
convenient to take as standard solutions the following functions which 
can be obtained from the above by multiplication by constants. 

For the solution of the first kind, we take 

4(2) = 2 
r»0 

_ 
r! r(n-+^+1)* 

(11) 

available for all values of n. 
As in Bessel’s equation,/„(2) and I_n(z) are independent solutions of 

(10), when n is not an integer, but /„(z) ~ when n is an integer. 
It is usual to take as the standard solution of the second kind, avail¬ 

able for all values of n. 

Kn{z) - 
I_^(z)-Uz) 

(12) 

the limit being taken, as in § 2, when n is an integer. 
With this definition of X„(z), wo have 

K,{z) = -/o(2){log(J*) + y}+(4z)»+(l + J)|||P+(l + i + J)||f|I + ... 

and, when n is any positive integer, 

Kn(z) = (-l)"+'4(z){log(i2)+y}+ 

(13) 

-h 

n-l 
An-r-\)\ (14) 

r=0 

w jn-Vr ^ \ ‘ 
where for r = 0, we write 2 1^^ place of ( 2 ^“^4- 2 

Since Ki(z) — —Kq(z), it is easy to write down ifi(z) from the expres¬ 
sion in (14) for K^(z). 

These solutions have the important propertiesf 

In(z) - 
€* 

(27rz)l ('+<- 
e-»+(n+l)ni( n 

when — iTT < argz < 

g-z-(n+*)»r» 

(15) 

when — Itt < argz < Jtt. 

^«(2) = y(£)«"‘(l+o(^)}, when |argz| < Itt, (17) 

SO that when R(z) -> oo, VzX„{z) tends exponentially to zero. 

t §7.23. 
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6. Some important properties of the Bessel functions which have been used 
in the text are collected here for reference. 

Recurrence relations: 

zl'„{z) + nl„{z) = (18) 

niz:)-nl„{z) = 24+i(2). (19) 

zK'„{z) + nK„{z) -zK„_i{z), (20) 

zK'n{z)-nKn{z) —zK„_^,(z}, (21) 

zJ'„(z) + nJ„(z) =: zJ„_i(z), (22) 

zJ'„(z)-nJ„(z) = -zJ„+i(2). 

F„(2) satisfies the same relations as 

(23) 

Wronsk ian relat ions: 

J,Xz)Y:,{z)-Y„{z)J'n(z) = 
TTZ 

(24) 

4{2)«'n(2)-A'„{2)/;(2) = - t (25) 

Functions of argument 

JnizeF^^) - (26) 

^ c“^”'^"^F,,(2) -{-2isin mH7TCotn7rJ„(2), (27) 

K„{z) i7TicM’”H',]\iz), (28) 

JJz) = e < argi :' Jtt, 1 
c^”’"J„{zc~*’’'), Jtt < argi t, rr, 1 

(29) 

(30) 

K„{zei*n - Tj77-?V„(s)Tir„(2)}, (31) 

7i(2e±**’') = ±t^i(2), (32) 

(33) 

7. Finally we deri^^e formally two results required in the text. For a 
complete proof along thcjse lines justifying the steps made here see 
tF.B.F., §6.2, 6.22, or G, and M., p. 53 (43)^ 

Since ^ ~ I dt. m > 0, 

it follows from the Inversion Theorem that 

Now 

im 

ml 
V —ioo 

m > 0. 

ao 

4(2) = 2 
f e.0 

r! (n + r)!' 
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Introducing in this the result above with ^ = 1 and n + r written for 

m, and assuming that we may invert the orders of integration and 
summation, we have 

y + ioo 

Xn+r+1 
y~ioo 

y-fioo 00 

^ 2, 2jrtrl J 
f-0 y-ic 

y-fioo 

2rrr® ' J A-'+i Z A^r! 
1 ■ 

/f ic 

/ <M! 
2Tri 

y —ioo 

yfjoo 

gA-}-2»/4A 

r-0 

dA 
Anfl- 

y-ioo 

In this result put 
2A 

(34) 

BO that 

The contour becomes one which may be deformed into (y—too, 
y+too) and we obtain 

yf ico 

4(*) 27Ti 

It follows that 

J 
y —ico 

y-fioo 

Jm—^(m*—1)]" dw 

^ 27rt J oV(A”-a») ’ 
y —ico 

and hence by the Inversion Theoremf 

F e-»‘/ (az) dz - Je l„(az)dz- • (36) 

t Cf TF.B.J?’., §13.2(8). 
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Impulsive Functions 

The so-called impulsive functions have not been used in the body of 
this book, since a careful treatment of them presents considerable difti- 
culties. It is desirable that the student should have some knowledge of 
them, both because they provide a convenient idealization of certain 
types of problem of practical importance, and because th(‘y give a 
physical interpretation to tlie solution in cases in which the previous 
methods are not applicable. We take these applications in order. 

The Dirac 8 function is definedf to be zero x -/- 0 and to be infinite 
at a; — 0 in such a way that 

oo 

JS(a:)dx = l. (1) 
— 00 

It is here regarded as a concise way of expressing the idea of a func¬ 
tion which is very largo in a very small region, zero outside tliis region, 
and has unit area. Several continuous functions have been used which 
possess this property in the limit as a parameter tends to zero, but we 
shall here take the simple function 

^(x) = 0, ir < 0, 

= 1/e, 0 < a: < £, (2) 

= 0, X 

where € may be made as small as we please. This function clearly 
possesses the property (1). The only other result we require is the 
following: 

If f(x) is a continuom function^ 

00 

J /(x)S(x—a) dx = /(a). (3) 
— 00 

This follows since, from (2), 

CO a-fe 

/(.t) dx 

— OO a 

= /{o+ee), 0 < ^ < 1, 

and, since f(x) is continuous, the right-hand side f(a) as c 0. 

t Dirac, Quantum Mechanics^ Ist ed., p. 64. 8(x) is there taken to be an 

even function, but a definition of type (2) is more convenient for the present 

applications. 

J da; == ^ J 
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A particular case of (3) is 

00 

j e-’><'b{x)dx = 1, , (4) 
0 

i.e. the Laplace Transform of tlie 8 function is unity, 

Mecha n ical appl leaf ions. 

Unit instantaneous impulse at ^ = 0 in tlie mechanical sense may 

now be rt‘gar(locl as due to force S(/) and treated in the usual way, as 

in the following examples. 

Ex. 1. Instantaneous impulse P is applied at t = 0 to a particle of 

mass m at rest at the origin. 

The equation of motion is 

7nD\v ~ P B{t). 

Thus the subsidiary equation is 

7np\v =-= P. 

Therefore x = Pilm. 

Ex. 2. A uniform rod of mass m and length 2a is at rest on a smooth 

horizontal plane when at t ~ 0 instantaneous impulse P is given at one 

end hi a direction jwrpendicular to the rod. 

Let 0 be the angular displacement of the rod and x the linear dis- 

placem(a)t of its middle point. The equations of motion are 

jnDKr PB(t), 

}7na^lP6 =■- PaB(t). 

The subsidiary equations are mp^.v P and Imap^d — P. 

Therefore^ x = Pthn, 6 ~ BPtjma 

Ex. 3. A particle of mass m oscillates in a straight line under restoring 

force mn^ times the displacement. The particle is at rest in its equilibrium 

position at t ~ 0. Impulses P are given at t ~ rT, r = 0, 1, 2,_ Find 

the motion of the particle. 

The equation of motion is 

~ P ^ B{t~rT). 

Thus, using Chapter I, § 3, Theorem V, the subsidiary equation is 

CO p 

^ ^"vni ~ly T \ * m(p^ ~j~n^)( 1 — e 

Therefore, using the Inversion Theorem, 

y-j-ico 

P f _ e^^dA 

^ 2whn J 
y-ioo 
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The integrand has simple poles when A = ± in, and when A = ±2r7ri/T, 
r =ss 0,1, 2,..., provided T not an integral multiple of 27r/n. Evaluating 
the residues at these poles we obtain, in the usual way, 

Pcosn(/-f iT) . P . 2Prv 1 2r7r^ 
2?/msinJnP ~ rmi^T m —4rV) ‘ T 

i 

Electrical applications. 

In electric-circuit theory an impulsive E.M.F. Ef^h(t)y typifying a very 
large voltage applied for a very short time, so that the time-integral 

’ of the E.M.F. is Pq, is of interest. 

Ex. 4. Such an E.M.F. applied to the circuit o/ §13 with zero initial 
conditions gives the subsidiary equation 

Thus / = 
EoP 

L[(p+iJLf+nn' 

in the notation of §14(1). Therefore, in the case n'*‘ > 0, 

E 
I =- ^ e~e<(n cos nt—p sin nt). 

Ex. 5. If the problem is that of the circuit o/ §13 with zero initial 
conditions excited by impulsive E.M.F.s Eq applied at t ^ rTy r — 0, 1, 
2,..., the subsidiary equation is 

and 1 is obtained on proceeding as in Ex. 3 above. 

Application to a space variable. 

The 8 function may also bo used with space variables when con¬ 
centrated loads or disturbances have to be considered. For example, 
the forces P(Xyt) considered in the examples of § 65 are all of this type, 
being Wh(x — x')y Posina)^8(a;—ar'), Wh{x~vt) in Examples 2, 3, 4 of 
that section respectively. Parts of this and other sections could have 
been written more shortly by using the present notation and (3) above. 

When a formula has been obtained involving an initial distribution 
f(x) of some quantity, the result for a concentrated distribution at x* is 
obtained by putting 8(a?—a;') for f(x) and using (3). For example, from 
§92 (12) it follows that the potential at any point of a doubly infinite 
distortionless transmission line due to initial potential h{x—x') and zero 
initial current is 

j€~p<[8(a:—a;' -f vt) -f 8(a;—a;'—vt)]. 
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The function whose Laplace Transform is a constant. 

All the applications above may be regarded as justifiable along the 
liK'^s by which (3) was deduced. There is another type of application 
which we do not attempt to justify, but which may nevertheless be 
useful as providing an indication of the solution in cases to which the 
ordinary methods are not applicable. The most important case of this 
type is that in which the Laplace Transform of the solution of the 
problem turns out to be a constant. We have seen above that the 
Laplace Transform of 8(0 is 1, the inverse statement is that the func¬ 
tion whose transform is unity is a constant.f Consider the following 
examples. 

Ex. 6. Constant E.M.F. Eg applied to a pure capacity C. 

The subsidiary equation, § 13 (6), is 

±1 = ^ 
Cp p ■ 

Thus I — CEg and I = CE^h(t), tliat is, the charging current is instan- 
taneously infinite. 

Ex. 7. The filter circuit o/ § 19 with z' ~ l/(7jt>, z — Rj z" ~ 0^ V = E 
{constant). 

Here §19(10) gives 

. __ Ecosh(m—r)^ 

** i^psinh^sinh 

where cosh^ — 1-f 1/(21?Cp). On evaluating the numerator and de¬ 
nominator of /^, as in §19, Ex. 1, it will be found that they are of the 
same degree in p, and in fact 

j CE^mEcos\\(m---r)B—-CERps\nhOsmhmd 
^ m mRp sinh 0 sinh mO 

Then, proceeding as in § 19, we obtain 

-M+ J® ‘V 
mR ^ 1—coss7r/m " 

m—1 

where == 1/[21?C(1—cos57r/m)]. 

Ex. 8. In the problem o/ § 16, Ex, 4, it is required to find the potential 
difference, V, over CD, 

t It will be remembered that we have only found the function whose 
Laplace Transform is p^, where n < 0. The case n = 0 is now recognized as 
8(0 and in a fuller treatment n = 1, 2, 3,... would appear as the successive 
derivatives of h(t). These, however, rarely appear in practice. 
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This is given by 

F = (L'p + R')I 

Therefore 

R{L + L') 

E(IJp-\-R')(Lp-\-R) 

Rp{(L-^U)p-^(R^R')] 

ELL' ER' 

R(Li-L'r(R+R')p'^ 

E(RL'--LRy 

R(l^l')(r-\^r')[{l^l')p-^rVR'V 

8(0 + 
R-\~R'^ R{L-^L'f(R-\-RT 
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Two-point Boundary Value Problems for Ordinary Linear 

Differential Equations 

Throughout this book we have been concerned with the solution of 
the differential equation <j>(D)y = F(x)y x > 0, with 2/, Dy,,., given when 
X ~ 0, This is the typical problem of dynamics: given the forces acting 
on a system and the initial conditions, to find the subsequent motion. 
In other fields of applied mathematics other types of problem arise: 
(i) the range of the independent variable may be finite, 0 < x < a, with 
y, Dy,.„ all given at x — 0; (ii) the range of the independent variable 
may be finite, 0 < x < a, with some of y, Dy,,., given at x ~ 0 and 
some at X — a; (iii) the range of the independent variable may be finite 
and not the actual values of y, Dy,..., but linear connexions of them 
may be specified, some at x = 0 and some at x ~ a. 

In the classical method of solving differential equations the distinction 
between these types is not so apparent. The general solution is obtained 
as a sum of the particular integral and the complementary function, 

the latter containing n arbitrary constants. The boundary conditions, 
whether at x = 0 or x — a, furnish sufficient equations to determine 
the arbitrary constants. 

The question naturally arises whether the methods of Chapter I can 
be applied to problems of the above types and whether it is worth while 

doing so. 
Firstly it must be remarked that the Laplace Transformation method 

gives a solution in the same form as the classical method, i.e. as a sum 

of a particular integi’al,t the function whose transform is F(p)/<^(p), and 
a number of terms involving the initial conditions. 

Now suppose we have to solve the differential equation ff>(D)y = F(x) 
in 0 < X < a with some of y, Dy,... given at x = 0 and some at x = a. 
We consider the differential equation <f>{D)y = F(x) inj: x > 0 with 
initial values y^, y^... of y, Dy,...; some of these are given and the rest 
are to be regarded as arbitrary constants. The conditions at x = a will 
be sufficient to determine these. 

Whether this procedure is preferable to the classical method depends 
largely on the problem; it has the advantage that the theorems of 
Chapter I may be used; this is valuable in problems in which F{x) is 

a step or broken function. In many problems a convenient compromise 
is to write down the complementary function in the usual way but to 
find a particular integral by the methods of the Laplace Transformation, 

t The particular integrals derived by the two methods may differ by terms 
of the complementary function. 

i It must be assumed that the Laplace Transform of F{x) exists. This 
restriction is, of course, not necessary in the classical solution. 
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which are often simpler.f An example of tliis proccjchin^ is p;ivon in 

Ex. 3 below. 

Ex. 1. Part of a uniform heavy chain of weight w per unit length rests 

on the upper surface of a rough vertical circle of radius a, and 2)art hangs 

vertically. If one end is at the highest point of the circle^ find the greatest 

length that can hang freely. 

When the chain is in limiting equilibrium the tension T at a point 

distant ad from the highest point is giv(‘n by 

—pT — wa(pcoHB~H\i\d), 0 < 6 < Jtt, 

wl»('re p is the coedheient of friction. 

Phis has to be solv^ed with T - 0, when B - 0. Tims the subsidiary 

ecpiation is 
{p~p)T = wa 

Tliercforc* 

Hence 

^_PP~ 1 
wa {p--p){p^^i) 

T 
wa 

p^~T 
j {(/x^ — 1 — ip^ — 1 )cos ^ T 2p, sin ^}. 

The greatest length which can hang freely is tlie tension wlien B ~ 

div'jded by w, i.e. 

p \ L 

Ex. 2. A uniform beam of length I has load w.r per unit length hi 

0 ' X <. J/ and w{l~x) in II < x < 1. The beam is built in at x' — 0 

and freely hinged at x ----- 1. To find the deflexion. 

Wo hav^e to solve LPy f{x), wilh/(x) ~ fiM \ /2(‘^)> where 

and 

AM ■ 

AM 

wx 
0, 

0, 0 x < \l, 

a: ii. 

Then, by § 3, Theorem V, 

erj J e~^^f(x) dx ~ 
w 

Elp^ Elp^ 

The boundary conditions are 

y — Dy = 0 when x = 0, and y D^y ~ 0 when x 1. 

8o wo solve the differential equation in x > 0 with y, Dy, D'^y, D^y 

t Cf. Jeffreys, loc. cit., § 1.8. 
4695 L 1 
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equal to 0, 0, when a? == 0, where y^ and y^ are subsequently to 

be determined to make y satisfy y — D^y ~ 0 when a: = Z. 

The subsidiary equation is 

?/3 , ^2 , ^ 
EIp^ EJp>* 

-*7)Z 

Therefore, using § 3, Theorem V, 

y = i«’3/3-+ lxhji + 
to 

~EIb\ i-;/! x>ii. 

The conditions y D'^y ~ 0 when x — I now require 

15 wl^ \ 

3 wl^ 
i'/3 + 2/2+4 3,j^.;^ = 0. 

5 wl^ 21 wl- 

“ 128 El ““ ~ I'M £7' 
Thus 

Therefore, finally, 

Ely = —jl^xH^+-gl-gWxH^+j-h'>^x^y 0 < x < il, 

w 

Ex. 3. To solve 

dx^ 
-a^y ^f{x), 0 < x < I, 

with 2/ “ 0 when x 0 and x ^ 1. 

(1) 

Problems of this type have frequently arisen in Chapters VI~X as 

subsidiary equations of partial differential equations. They may be 

solved either by variation of parameters or by the use of the Green’s 

function, or by the method sketched above. 

A particular integral of (1) is the function whose Laplace Transform is 

i.e., by Theorem VI, 
X 

i J* f(x')smha{x.~-x') dx'. 

Adding the complementary function, A sinh a.r 4-Bcosliaj:^, we obtain 

for the complete solution of (1) 
a; 

y = Asinhax-^- B co^hax-\-^^ f{x')smh.a{x--x*) dx\ 
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The conditions y - - Q when x = 0 and x ~ I give 

^ j*/(;r')sinh a(Z —.t') c7.t' 0. j 

6 / 

Introducing these values wo obtain 

I ( f 
y, sinli a(/-.r) /(.r')sinha.r'c/.t’'4- ^ usirihrf/l ' J ' 

0 

i 

-fsinhao: J/(x')siiiha(Z —x') dx' 

LI 
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Table of Laplace Transforms 

00 

= J dt. 

0 

x{p) x(l) 

1. 
1 e 

p1l+l r(n+l)’ ” ^ 

2. p COB at 

3. 
a 

sin a^ 

4. P 1 cosh at 

5. 
a 

p^—a^ 
sinh at 

6. P 
(jD* + 0*)* 

t . 
— sin at 
2a 

7; 
a2 

~ (sin at — a^ cos at) 

8. 
1 

{e"®^ -f ei®^(co8 ^^2at — V3 sin \ V3a/)} 

9. P 
p^-{-a^ 

™{_-.g-a^_^gia«(cos J V3a^ + V3 sin ^VSn^} 

10. P^ 
p^ + a^ 

^(e-a<_2e*‘'<cos JV3aO 

11. 
1 1 

p^ -j- 4a* 
(sin a^ cosh ai — cos at sinh at) 

IK 

12. P 
p* + 4a* 

sin at sinh at 
2a* 

13. 
p% 

jy* -f 4a* 
^ (sin at cosh at -f cos at sinh at) 

14. 
^3 

jo*4-4a* 
cos at cosh at 

15. 
1 

2^(sinha^ —sin a/) . 
p* — a^ 

10. P 
p^ — a^ 

^ (cosh a^ — cos a/) 
I 2a* 
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x(;p) x(t) 

17. (sinh at + sin at) 
2a 

18. 
p^ 

p^ — a* 
^ (cosh a/-h cos at) 

19.t 
2V(7T«“) 

20.t 
g-aVp 

V/> V(w0 

21.t 
e-avp 

V 

OD 

f e~“’dit = 1 — erf ^ 
Vtt J 2V« 

22.t 
e~oVp 

jo-f 6Vj:> e |i ori^nv«+2vJi 

23.t A'o(aVp) I.-.,.. 

24.t Ka(a]fy 
i 

1 0, 0 < < < a 

1 t > a 

26.t TT e'~^'^^{ap) 1 0, t > 2a 

1 {((2a-t))-*, 0 < t < 2a 

26.t 
(7o(a'Vp)Ao(aVp), 

1 /(,(ayp)A’o(a'yp), 

a > a' 

a <a' 

00 

= J e““*^aJo(aa)Jo(aa') da 

0 

27. 
1 

^o(0 

28. W(p*+i)-p}" 

'“V(PHI) 

29. 
1 

V(p»-1) 
-^0(0 

30. 4(0 
v(p“-iy 

31.t 
1 0, when 0 < t < a 

1 JQ{byl{t^~a'^)}y when t > a 

. ( 0, when 0 < t < a 

32.t abJ^{b^{t^^a^)} , ^ 

l--yz-air- ’ 

t In these a is to be taken positive. 
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x(p) x(t) 

1 0, when 0 < ^ < a 

1 lf^{hyj(t^—a^)}, when t > a 

1 0, when 0 < f < a 

34.1 — 
whent>a 

Tfiis tabli‘ is not meant to be complete. But all the transforms used 

in this work are contained in it and a few additional ones, which arise 

in similar problems. 

j In these a is to be taken positive. 
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The numbers refer to sections. Those of the Introduction are prefixed with I 

Air column, longitudinal vibratipns 
of, 71. 

Alternating current bridges, 18. 
Artificial transmission line, 20. 

Bar, longitudinal vibrations of, 59, 
60, 61, 62, 63; transverse vibra¬ 
tions of finite bar, 65, of semi¬ 
infinite bar, 66. 

Bes.sel functions, note on and collec¬ 
tion of results, App. II. 

Bromwich, I 6, 27. 

Carson’s Integral Equation, I 5. 
Chain hanging under gravity, vibra¬ 

tions of, 68. 
Charged particle moving in electric 

and magnetic fields, 24. 
Circular membrane, vibrations of, 69, 

70. 
Collision of equal rods, 64. 
Conduction of Heat, equation of, 45; 

in a semi-infinite solid, 39, 47, 48, 
49; in a slab, 40, 50; in a wire 
carrying electric current, 51, 52; 
in an infinite circular cylinder, 53, 
54, 55, 56; in a sphere, 67. 

Deflexion of beams, App. IV. 
Differential equations (ordinary linear 

with constant coefficients), appli¬ 
cation of Laplace transformation 
metliod to, 1, 2, 4; worked exam¬ 
ples, 6, 7, 8; assumptions involved 
in this method, 5; justification of 
solutions, 5, 34; solution using the 
Inversion Theorem, 32; connexion 
with Heaviside’s method, 12. 

Differential equations (simultaneous 
ordinary linear), application of 
Laplace transformation method to, 
0; worked examples, 10; cases in 
which there must be relations be¬ 
tween initial conditions, 9, 10; 
justification of solutions, 35. 

Differential equations (ordinary li¬ 
near), two-point boundary value 
problems for, App. IV. 

Differential equations (partial), appli¬ 

cation of Laplace transformation 
method to, 36; method of evalua¬ 
ting solutions, 37; examples, 39, 
40, 42; a.ssumption8 involved in 
the method, 38; v^erification of 
solutions, 38, 58. 

Diffusion of magnetic field, in a slab, 
96; in a circular cylinder for longi¬ 
tudinal alternating field, 98, for 
transverse field, 100, for transverse 
alternating field, 101; in a hollow 
cylinder, 99. 

Dirac’s S function, App. III. 
Dootsch, 1 6. 

Electric cable, 84; finite cable with 
alternating applied E.M.F., 85, 
with terminal impedances, 86; 
semi-infinite cable, 84. 

Electric circuits: circuit containing 
inductance, resistance, and capa¬ 
city in series, 13; various types of 
E.M.F. applied to such a circuit, 
14, App. HI; electrical networks, 
15; circuits with non-zero initial 
currents and charges, 16; trans¬ 
former, 17. 

Electric oscillations on a sphere, 102, 
103. 

Electric transmission lines, 83; lino 
with resistance and capacity only, 
84, 85, 86 ; finite lino with terminal 
impedances, 86; finite lino with 
constant aj)))lied E.M.F., 87; solu¬ 
tion for finite lino expressed in 
wave form, 88, 93; finite line with 
non-zero initial conditions, 89; 
semi-infinite lino with constant ap¬ 
plied E.M.F., 90; with arbitrary 
applied E.M.F., 91 ; doubly infinite 
line with given initial conditions, 
92; non-uniform lines, 94. 

Filter circuits, 19; alternating Fl.M.F. 
applied to filter circuit, 19; tran¬ 
sients in filter circuits, 19, App. 
Ill; case of an infinite number of 
sections, 20. 

Fourier-Mellin Theorem, 28. 
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Green's Function for ordinary linear 
differential equations, 68. 

Heaviside: operational solution for 
ordinary linear differential equa¬ 
tions, I 1, extension to partial 
differential equations, I 2,1 3; unit 
function, I 1, 63; expansion theo¬ 
rem, I 1, I 4, 12, use for partial 
differential equations, I 4; series 
expansion, I 1, 12. 

Hertzian oscillator, 104. 

Impulsive function, App. III. 
Instantaneous heat sources, 46; in a 

slab, 50, in a semi-infinite solid, 
49; in an infinite circular cylinder, 
55, 56. 

Inversion theorem for Laplace Trans¬ 
formation, I 5, 28; proof, 29; de- 
(iuclion from Fourier’s Integral 
Theorem, 30; use of contour inte¬ 
gration to evaluate solutions, 31, 
37, 41, 43; application to ordinary 
linear differential equations, 32; 
application to verification of the 
solution of ordinary linear differen¬ 
tial equations, 34, of simultaneous 
ordinary differential equations, 35. 

Jeffreys, I 5. 

Kirchhoff’s Laws, 15. 

Lagrange’s equations, 26. 
Laplace Trajisformation, 3; thooroms 

on, 3, 33. 
Laplace Transforms, table of, 3, App. 

V. 
Lerch’s Theorem, 3, App. I. 

Maxwell’s equations, in vector fofrn, 
95; in cylindrical and spherical 
polar coordinates, 97. 

Normal modes of vibration, 27. 

Partial fraction expansion, 4. 
Periodic E.M.F. of any wave form 

applied to a circuit, 21. 
Projectile moving relative to the 

earth, 25. 

Retarded potential formulae, 105. 

Small oscillations about equilibrium, 
26; comparison with method of 
normal coordinates, 27. 

Solutions expressed in wave form, 44; 
for plucked string, 44; for vibra¬ 
tions in a rod, 63; for transmission 
lines, 88. 

Stretched string, vibrations of, 42, 
44, 67. 

Subsidiary equation, I 6, 1, 36. 

van der Pol, I 5. 
Variation of Parameters, 42. 
Vibration of air, duo to pulsating 

sphere, 72; due to oscillating 
sphere, 73. 

Viscous motion, between parallel 
pianos, 75, 76; between concentric 
cylinders, 77; in the region outside 
a cylinder, 78. 

Water waves, in canal, 79; in infinite 
liquid produced by initial surface 
elevation, 80; in an infinite two- 
dimensional sheet, 81. 

Wave motion in air under gravity, 82. 
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