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PREFACE

HIS book, it is hoped, will fill to some extent the gap which-

still exists between the popular non-technical books on
aeronautics and the advanced mathematical works on aero-
dynamics. It is the outcome of an attempt to provide an
“elementary text-book suitable for students of moderate mathe-
-matical ability and attainment, who require an introduction to
the subject involving little else but elementary algebra and
trigonometry and the fundamental principles of mechanics.

Within the mathematical limits imposed the book is fairly
complete, and deals in turn with the performance and theory
of aerofoils, aeroplane and airscrew performance, control and
stability, scale effect, and airscrew theory. Several fully worked-
out examples are given in the text to illustrate methods and
principles, while there are also a few short sets of examples to
be worked through by the student. A list of the principal
formulae in aerodynamics is given for ease of reference.

It has been thought desirable to include some treatment of
the modern aerofoil theory which is now so widely used in
aeroplane and airscrew design. The complex mathematics
involved in the full development of the theory has been neces-
sarily omitted, but the principal features and results have been
included. Those readers who have access to wind channels
should find many interesting laboratory experiments provided
by the experimental verification of the effects of induced
velocity and centre line camber.

The author wishes to thank the Controller of His Majesty’s
Stationery Office for permission to use many diagrams and
data taken from the various Reports and Memoranda of the
Aeronautical Research Committee. He also: wishes freely to



vi Preface

acknowledge his indebtedness to the many existing works on
aerodynamics, especially to Bairstow’s Applied Aerodynamics,
Glauert’s Aerofoil and Airscrew Theory, and Warner’s Airplane
Design. Finally, he desires to thank the Clarendon Press for all

the help which they have given him.
T.G.W.

December 1930.
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I
INTRODUCTION
Air Forces. When a body is_in motion through the air, or

——
.

when it is held at rest in a_moving air-stream, it experiences

reactions which are known as air forces.

\_Aerodynamics. Aerodynamics is the name given to the

study of the air forces acting on a body due to the relative motion

of the body and the air, and in its application to the aeroplanc

deals with

(@) the determination of the air forces acting on the aero-

plane, ‘'’

and (b) the effect of these forces on the behaviour of the aero-
plane.

Air Speed. The speed of an aeroplane relative to the air is
called its air speed, and agrees with the actual speed over the
ground only if the aeroplane is flying in_still air. It must be
realized at %@M&Wpee?upon which the air

Aeroplane Parts. The names of the various parts of an aero-
plane are given in Fig. 1. The wings or main planes are fabric-
covered structures which, an account of the air forces experienced
E)X-t‘}_xgm,duq,_,to the relative speed of the aeroplane, provide a
vertical lifting force which balances the weight of the aeroplane.)
The necessary speed is provided by the airscrew which, on
being rotated by the engine, experiences an air force in a forward
direction and so urges the aeroplane through the air.

At the rear end of the body or fuselage are certain wing-like

“surfaces for stability and control. The tail plane is a stabilizing
surface which experiences a small lifting force of the same
nature as the main plane lift, the function of this force being to
give the aeroplane fore-and-aft stability and equilibrium. The
rear part of the tail planc consists of the elevators which are
movable surfaces under the control of the pilot. By altering the
position of the elevators relative to the tail plane proper, the
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pilot can vary the amount of tail plane lift and so control the
fore-and-aft attitude of the aeroplane.

In a similar manner directional stability and control are
obtained from the air forces acting on the fixed stabilizing fin
and movable rudder.

At the rear edges of the wings are further movable control
surfaces called the ailerons, movement of which calls into
play air forces tending to roll or bank the aeroplane.

The undercarriage is the structure upon which the aeroplane
makes its preliminary run in acquiring sufficient ‘flying speed’
for the development of the main plane lift, and upon which it
alights in landing. In order to prevent damage to the tail while
the aeroplane is moving on the ground, a skid is fixed to the
fuselage underneath the tail plane; this also acts as a brake
during the landing run.

The Wind Channel. Many of the air forces acting on the
various parts of an aeroplane cannot be directly calculated, but
have to be obtained from experiments on models.

Now the air forces on a body are the same whether the body
is moving through the air or the air is moving past the body,
provided that the air speed is the same in each case. In experi-
mental laboratory work on models it is clearly desirable and
more practicable to keep the model at rest and make the air pass
over it. The apparatus used in such work is called a Wind
Channel, and a typical wind channel, as used at the National
Physical Laboratory, is shown in Fig. 2.

It consists of a long wooden box through which the air is
drawn and in which the model is mounted. The air current is
produced by an airscrew E driven by an electric motor. The air
is drawn through the trumpet mouth 4 and passes through a
honeycomb B, the object of which is to disperse any eddies
existing in the air and so ensure that the air-stream through the
working portion C, where the model is mounted, is uniform and
free from turbulence. Glass doors or windows are let in to the
channel at D for the setting-up and viewing of the model. After
passing through the working portion the air enters the rear part
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F called the distributor. The distributor has specially perforated
walls through which the air is squeezed out. This breaks up the
stream and allows the air to return to the laboratory at a low
velocity.

The model is mounted on a spindle connected to a balanc/gk

ka4
)

Fi1G. 2. The Wmd Channel

by means of which the forces on the model can be measured.
In some experiments the model is inverted and a wire suspension
method of setting-up is used, the forces then being measured by
balances on the channel roof.

The channels in this country are mostly 4 or 7 ft. square. On
the continent there are circular channels, while at the National
Physical Laboratory there is a channel called the Duplex
channel, measuring 14 ft. by 7 ft., in which models as large as
% scale can be tested. More often than not the different parts of
the aeroplane are tested separately in wind channel work ; this
allows the use of larger scale models and shows how each com-
ponent plays its part. This method, however, cannot be used
indiscriminately for any component, as the behaviour of one
part of an aeroplane is often conmderably modified by the
presence of another.

The air speed used in wind channel experlments varies from
about 40 to 100 ft. per second. Aeroplane speeds are, of course,
much higher than this, but it will be shown in the later chapters
how air forces on aeroplanes at high speeds can be calculated
from model data obtained at low speeds.

The Pitot Tube. The speed of an air-stream in a wind
channel is measured by means of an instrument known as the
Pitot Tube. This consists of two fine tubes (often concentric,
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but shown separate in the figure) facing the air-stream, the front
end of one tube A (called the dynamic tube) being open, while
the other tube B (called the static tube) is closed but has its sides
perforated by small holes. The rear ends of the tubes are con-
nected to the different arms of a U-tube pressure gauge.

The principle of working lies in the fact that, when an air-
stream passes over the two tubes, the pressure in the static tube
is the normal pressure of the general stream, but the pressure in

A
—~
™~

A

C 838 RN

~

To U-tube
Fi1c. 3. The Pitot Tube.

the dynamic tube is greater than this by $pV?, where V is the
velocity in feet per second and p (the Greek letter 7ho) is the
density in slugs per cubic foot.! Hence the difference in the
level of the two arms of the pressure gauge is due to a pressure
difference of 3pV’2, so that if the density is known the velocity
can be calculated.

The value }pV'2 for the pressure difference in the two tubes
is deduced from Bernoulli’s equation; for proof see p. 44.

Air Speed Indicators. A pitot is also fitted on all aeroplanes,
often on one of the interplane struts. The tubes are usually
separate and are connected to an instrument called the Air
Speed Indicator (A.S.1.) fixed on the instrument board in the

! Since pressures are measured in 1b. per square foot the density must be
measured in gravitational mass units or slugs, so that, if w is the weight of one

cubic foot of air, the density p = %’ slugs per cubic foot.
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pilot’s cockpit. The A.S.I. is a small box divided into two
compartments by an airtight but movable diaphragm. The
dynamic tube is connected to one side of the diaphragm, and
the static tube to the other. Difference in pressure is then
registered by a movement of the diaphragm which, in its turn,
moves a pointer on a dial reading in miles per hour. Since the
pressure difference is }pV’2 the dial can only be made to give
true air speeds for one particular value of p, and air speed
indicators are all designed on a value for p of 0-00237 which
corresponds to a pressure of 760 mm. ata temperatureof 15" C.
This is called the standard density and is denoted by p,. The
correction to be applied to the recorded speed for any other
value of the density is given later.

The Atmosphere. The density of the atmosphere is not
constant, and the value of p, given above represents an average
ground level value only. The density depends upon the pressure
and temperature, both of which may vary from day to day.
Again, the density decreases as the height above the earth’s .
surface increases, although the density at any given height is
not constant owing to the variations in pressure and temperature
at that height.

From the well-known laws of Boyle and Charles the relation
between the pressure, density and temperature may be written

P_er. .. . . . . ()
P

where p is the pressure (generally expressed in millimetres),
T is the absolute temperature (i.e. the actual centigrade
temperature plus 273),
and  kisaconstant.

Hence, if the density is known for one particular value of the
pressure and one particular value of the temperature, its value
may be calculated for any other conditions of pressure and
temperature. The known standard conditions are as given
above, viz.:

p = 000237 when p = 760 and T = 288.

3729 c
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Example. Find the density at a height where the temperature is
—12° C. and the pressure is 456 mm.
From the standard ground level conditions we have
_709_ _ rxa88.
0°00237
Let p be the required density. Then, since T’ = 273 —12 = 261,
we have

7?5—6— = kXx261.
P

Hence, by division, we get

760 P 288

X — ==

000237 456 261

__ 0°00237 X 456 X 288
r= 760 X 261

= 0°00157.
Relative Density. The ratio of the density at any height to
* the standard density is called the relative density and is denoted
by the Greek letter o (sigma). Hence

i.e.

p=apy. . . . . . (2)
Combination of equations (1) and (2) leads to the equation
_ PX288
o= 6oxT © (3)

Indicated Air Speed. The speed actually recorded by the
A.S.1 is called the indicated air speed and is denoted by V;; it
gives the true speed only if the density is the standard density p,.

Consider an aeroplane flying at a true speed V at a height
where the relative density is 0. Then the pressure difference
measured by the pitot is given by p = $pV'? = jop, V2. Also,
if V; is the indicated air speed, p = }p,V,?; whence

V"z = o2
or Vi=Vdo . . . . . . (4

The above equation enables the indicated air speed to be cor-

rected for density to give the true speed.
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Example. Find the true air speed corresponding to an indicated

air speed of 100 miles per hour at a height at which the density is
0'00132.

Since ¢ = 0'00132, the true speed is given by
0'00237

V = V,jNo = 100% A/‘E‘E}J
0°00132
= 134 m.p.h.

The Altimeter or Aneroid. The instrument which gives the
pilot an approximate idea of his height above the ground is
called the altimeter and relies for its design on the decrease of
atmospheric pressure with height. It is, in effect, an aneroid
barometer recording pressures.

It consists of a hollow metal box exhausted of air, and records
the atmospheric pressure by movement of the lid. ~Suitable
mechanism and gearing transfers this movement to a pointer on
a dial graduated in hundreds and thousands of feet, the zero
reading corresponding to the standard pressure of 760 mm.,
and the graduation being based on the approximate law
h = —62,700 log p/p,, where p is the pressure at height & and p,
isthe standard pressure. This law has been deduced theoretically
on the assumption that the temperature remains constant at all
heights at 10° C. Actually, the difference in height of two points
is proportional also to the mean temperature; therefore, since
the temperature decreases as the height increases, it follows
that the height indicated by the aneroid is greater than the true
height, the error increasing as the height increases. Nevertheless
the aneroid gives the pilot a very good idea of his height; even
on a very cold day at 20,000 ft. the error is not likely to exceed
about 1,500 to 2,000 ft.

The Standard Atmosphere. The reduction of pressure,
density and temperature with height has a marked effect on the
top speed and rate of climb of an aeroplane, for the horse-power
of the engine and the air forces on the aeroplane are both affected
by atmospheric changes. The later chapters will show that the
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performance of an aeroplane (i.e. its speed and climb) falls off
as the height increases. Since, however, the atmospheric con-
ditions at any given height may vary from day to day, the per-
formance at that height may vary also, and so the word per-
formance has no precise meaning. In order to obviate this
difficulty, a ‘standard’ atmosphere has been fixed which gives
roughly the average atmospheric conditions up to a height of
30,000 ft., and upon which all aeroplane performances are
calculated and compared.

This standard atmosphere is defined by Table I given below,
densities and pressures being expressed relative to 0:00237 slugs
and 760 mm. respectively. The last column of the table gives
the aneroid height corresponding to the standard height, and
illustrates to some extent the magnitude of the difference
between aneroid height and true height arising from the assump-
tion of a constant temperature.

The relative density is shown plotted against standard height
in Fig. 140. Although aneroid height is included in the table, it
will be found that aneroids vary among themselves and require
to be calibrated in accurate aeronautical work.

The use of the table is illustrated by the following example:

Example. At a certain height the following readings were taken:

Aneroid height 15,000 ft.

Temperature —18-5° C.

Indicated air speed 102 m.p.h.
On calibration the aneroid height was found to correspond to
432 mm. Find the standard height and true speed.

From equation (3)
o = DX 288

760 x T
__432x288
760 X 254°5
= 0-646.
Hence from the curve of Fig. 140, the standard heightis 14,250 ft.
Also, from equation (4), the true speed is given by
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V.
V=14
Vo

102

No-646

= 1269 m.p.h.

TABLE I. STANDARD HEIGHT

13

Standard
height

(feet).

")

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000
10,000
11,000
12,000
13,000
14,000
15,000
16,000
17,000
18,000
19,000
20,000
21,000
22,000
23,000
24,000
25,000
26,000
2%,000
28,000
29,000
30,000

Relative

density
a.

1'000
0°971
0'943
091§
o-888
0-862
0-836
o811
0786
0762
0-738
o715
0693
0671
o650
0629
0609
o'589
0'570
o'5§1
0°533
o's1§
0°498
0481
0'464
0-448
0'432
0417
0'402
o387
0'374

Relative ' Tempera- | Aneroid
pressure ture height
p. °C. (feet).
1-000 150 o
0964 130 990
0-930 11-0 1,980
0896 90 2,970
0-864 70 3,980
0-832 50 4,990
o-8o1 30 6,020
0772 10 7,040
0'743 — 10 8,080
071§ — 3° 9,130
0-688 — 50 10,180
0661 — 70 11,240
0636 — 90 12,300
0611 —110 13,380
o587 —12'§ 14,470
o°564 —14'5 15,550
0°'542 —16'5 16,650
0'520 —185 17,760
0°499 —20'§ 18,870
0°'479 —22°§ 20,000
0460 —24'§ 21,130
0°440 —26's 22,260
0°'422 —285 23,430
0°404 —305 24,600
o387 —32'5 25,760
0371 —34'S 26,930
0355 —36'5 28,140
0340 —385 29,340
0325 —40°'§ 30,550
o311 —42'5 31,760
0'297 —44'5 33,000
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EXAMPLES

1. Given that the density of the air is 0:00237 slugs at 760 mm. at
15° C., calculate the density at a height at which the pressure is
426 mm. and the temperature is —15°5° C.

2. In the previous example, find the relative density and give the
standard height corresponding to this density.

3. At a certain height the aneroid read 5,000 ft. and the tempera-
ture was 2° C. On calibration this aneroid height was found to corre-
spond to a pressure of 630 mm. Calculate the density at this height
and give the corresponding standard height.

4. A certain aneroid reads 10,000 ft. when the pressure is 521 mm.
Show that the difference in the corresponding standard heights for
temperatures of —2° C. and —12° C. is about 1150 ft.

5. An aeroplane climbs from ground level to 15,000 ft. (standard)
at a constant indicated air speed of 65 miles per hour. Calculate the
true air speeds at heights of 3,000, 6,000, 9,000 and 12,000 ft.

6. Find the standard height at which the true air speed is always
25 per cent. greater than the indicated air speed.



II
THE AEROFOIL

THE wings may be considered the most important part of an
aeroplane, for their function is to provide a lifting force which
will overcome gravity and so maintain the aeroplane in the air.
As an introduction to the behaviour of an aeroplane wing, and
as an illustration of the origin and nature of air forces generally,
it is convenient to study the air forces acting on a thin flat plate
exposed to an air-stream. An aeroplane wing differs from a
flat plate principally in its cross-

section. Whereas the section of

the plate is a thin rectangle, that

of the wing is curved or ‘cam-
bered’and is known as an aerofoil _Direction of
section, the wing itself being %"
termed an aerofoil. There are a

large number of aerofoil sections

in common use ; some typical ones

are given in Fig. 8. Such shapes gic 4. Plate at right angles to
are the outcome of careful re- Airstream.

search carried out to ascertain the most efficient types of
aerofoils. The flat plate, however, formed the subject of early
e\:}ix?ents, and from these experiments a fundamental law

of gefodynamics was established.
he Flat Plate. Consider, first of all, a thin flat plate held at
right angles to an air-stream as shown in Fig. 4. As the air
moves past the plate, some of the particles of the air are deflected
from their straight line paths, and so there is a change in the
momentum of the air. Hence, by Newton’s laws of motion, the
plate must experience a reaction which is equal and opposite to
the rate of change of momentum. This reaction is a resistance
and is familiar to everyone as ‘head resistance.’
The fundamental law which has been established expen-
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mentally in the wind-channel states that, to a good order of
accuracy, the reaction R may be taken to vary directly as the

density of the air p, the area of the plate 7 the square of the

air speed V; in other words
R=ksSV*/ . . . . . (1

where k is a constant for any particular shape of plate. (See also
Chapter III, p. 35).

This equation holds, of course, whatever system of units is
used. In this country and in America, p is measured in slugs,
S in square feet and V in feet per second, so that R is measured
in Ib. weight. '

* The value of k can be obtained from experiment, and the use
of the above equation then enables the force on any geometrically
similar plate to be calculated for any speed and density.

Example. Calculate the resistance of a flat plate held at right
angles to an air-stream of 6o miles per hour, given that k = o-57,
p = 000237 and the area of the plate is 12 sq. ft. What would be
the resistance at a height of 15,000 ft.?

The given density is the standard density p,, and the resistance
is given by

R = kpSV?
= 0'§7 X 000237 X 12 X 882, since V' = 88 (in f.p.s.)
= 1255 1b.
At 15,000 ft.,
R’ = kpSV? = kop,SV?

= o X kpSV?
= 0-629 X 125°§
= 78:9 Ib.

Now consider the plate to be held at an angle to the air-stream
las in Fig. 5. Again the same law holds, but, in this case, the
reaction is inclined to the air-stream (although still nearly at
right angles to the plate), and the value of & depends, not only

on the shape of the plate, but also on the angle betweerrthe-plate
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_and the-air-stream. This angle is called the angle of incidence
and is denoted by the Greek letter o (alpha).

R

Direction of a
T= @lrstream

Y

F16. 5. Plate Inclined to Airstream,

The nature of this force shows at once how a flat plate may be
used as a lifting surface. For, if the angle between the vertical
and the line of action of R is denoted by the Greek letter y
(gamma),

F1G. 6. Lift and Drag Components.

SN —————

R may be resolved into its two components Rcosy and Rsiny
as shown in Fig. 6.

The former is, of course, the lifting force, known as the Life

and denoted by L; the latter is a resistance or Drag and is de-

L =Rcosy . . . . . (2)
D =Rsiny . . . . 3)

For all values of « between 0° and go° the resultant reaction R
¢an be resolved into its components L and D as above. In the
‘case of an aeroplane, D is a resistance which has to be overcome
by the thrust of the airscrew, and is the price which has to bq

paid for the developfaent of the lift.

At o° Incidence the lift clearly vanishes, and the resultant
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reaction is a pure resistance again as shown in Fig. 7. The
resistance in this case is not so much head resistance as skin
friction, and is discussed more fully in the next chapter.

*

Direction of

.
airstream >R

Fi1G. 7. Plate Parallel to Airstream.

The Aerofoil. A thin flat plate is unsatisfactory as an aero-
plane wing for two reasons; firstly, it is necessary from structural
considerations to have a certain depth of wing, and, secondly,
the plate is far from being the most efficient type of lifting sur-
face. B t , it is- possible to increase the lift,
while, by increasing its thickness and giviMe of a fish-
shaped appearance, it is possible to reduce its drag. This is
roughly the manner in which an aerofoil is designed, the amount
of curving and thickness being determined by the particular
requirements of the aeroplane for which it is intended.

(—' I ——

Aerofoll section RA.F.15

Aerofoil section R A F.30

Aerofor section R.AF 32

Fi1G. 8. Typical Aerofoil Sections.

Lift and Drag Coefficients. Equations (2) and (3) may be
put into a more convenient form as follows::
L = Rcosy = kpSVcosy = kcosy.pSV?,
D = Rsiny = kpSV?*siny = ksiny.pSV3.
Now it is found from experiment that y, like %, varies with
incidence. Hence kcosy and ksiny are simply numbers de-
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pending upon «, and, if they are denoted by &; and kj respec-

tively, the equations fof lift and drag become °
- L=FkpSV:. . . . . . (9
and D= kD pS V2 N )]

being termed the lift coeﬂaent agd,ka,zhgdrqg coqﬁiaent They

are called coefficients as they are numerical valugs only and have
no dimensions in mass, length or time like forces and velocities.
(In many countries, including Germany and America, it is
customary to use lift and drag coefficients C and Cp, defined
by the equations

L =C,}pSV? ? N )
and D = Cp3pSV? )

Thus C; = 2k; and Cp, = 2kp, and it is a simple matter to
change from one set of coefficients to another.)

In wind channel work the resultant force R on an aerofoil is
not measured as a whole, but its components L and D are
measured separately. The values of the lift and drag in Ib. are
then reduced to coefficient form by means of the equations

k, = and kp = —75, and the values of %, and & so

L D
pSV2 pSV
obtamed for different angles of incidence then express the
characteristics of the aerofoil non-dimensionally, without any
reference to the particular size of the aerofoil or to the particular
air speed used in the experiments. If the lift and drag in Ib. of
any geometrically similar wing are required for any given size,
speed and density, they can be obtained at once by multiplying
the coefficients by pSV2.

Effect of Incidefice. With regard to the variation of &, and
kp with incidence, all aerofoils exhibit the same general charac-
teristics, and for the purposes of illustration it is sufficient to
consider one aerofoil only. The characteristics of an aerofoil
depend upon its aerofoil section and its plan form. It is usual
to.define the plan form by the ratio of the length of the aerofoil
from wing tip to wing tip (known as the spdh of Yiegerotoll and



20 The Aerofoil

denoted by 2s) to the distance between the front or leading edge

 of the aemfoil and the rear or trailing edge (known as the chord

of the aerofoil section and denoted by c),! this ratio being termed
the aspect ratio. .

The aerofoil chosen for illustration is a rectangular aerofoil

of aspect ratio (A.R.) 6, having for its aerofoil section No. 1 of

Fig. 8, a section known as R.A.F. 15 and one which has been

o ' /I/f_\oos
/

o4 ,/ foos
1 a4 mmn.
EM{ } / 4 / . oz§
g v -

ol // ///D 00!

[ 4

- 2

1 L)
Angle of Incidence a. {egrees)
Fic. 9. Aerofoil Characteristics (R.A.F. 15, Aspect Ratio 6).

used extensively in this country. The characteristics are shown
graphically in Fig. 9, where &, and k, are plotted against «. The
actual experimental points are not given, but the curves repre-
sent the best mean curves drawn through the points.

The important features of the diagram are as follows :

(1) The aerofoil still gives a small lift at o° incidence, the lift
not vanishing until an angle of —2-1° is reached.

"The angle at which the lift of an aerofoil vanishes is called the
angle of no-lift, and varies from o° for'a symmetrical section
like No. 2 of Fig. 810 as high a figure as —7-3° for a thick, highly

1 "l'h'é'lrxgth of the chord is measured along the straight line tangential to
the under-surface at fropt and rear, except in the case of symmetrical sec-

tions, or, other sections with convex upper- and under-surfaces, when it is
melsured along the line joining the leading and trailing edges.
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cambered section like No. 3. It is obvious, of course, that a
symmetrical section must have a no-lift angle of 0°. — :

(2) As o increases, k; increases up to a certain point and then
decreases. Up to an angle of about 8° the curve is practically
straight, but heyond this incidence &, begins to. lose its. steady
rate of increase, and the_cyrve bends over until, at an angle of

147, Ry reaches its maxi : S
The angle at which k; reaches its maximum value is called

the critical angle of the

aerofoil, and the corre-
Sponding value of F, is /
written ;... The value' °
of Ry . varies considerably
with the aerofoil section; 0%
thus for aerofoil No, 3.its . / /
“value is as high as 0-655.  oos RARLS
~=(3) Over a considerable /
portion of the range of

incidence between the no-

lift and critical angles k&,
and « are connected by a /

linear Jaw, which for this

partjcular aerofoil is oc / /
5 N oo38(atz1),  oa \_’</ “

and which holds dp to an

angle of incidence of about  _§
8°. ' '
The slope of this line is
almost independent of the aerofoil section, but varies with the
aspect ratio. .
/ (4) The drag coefficient has a minimum value at an angle
of incidence of about —o'5°. On either side of this angle
it rises fairly rapidly. The magnitude and position - of the
minimum drag both vary from one aerofoil to another,
although the drag curve is always roughly parabolic in shape.

——
.

008

-l
£
\\

-5 a 5 0 75
FiG. 10. Wing Drag Curves.

e
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Discussion of the variation is left till later, but Fig. 10, which
gives the drag curves for two aerofoils of the same aspect ratio,
shpws how the drag may vary with wings of different section.
The Weight-Lift Equation. Since the weight of an aero-
plane is balanced by the lift on the wings, the weight-lift equa-
tion gives
W="FkpSV:. . . . . . (9
where W is the total weight of the aeroplane in Ib.

Although this equation is sufficiently accurate for most
practical purposes, it is not strictly correct.

F1c. 11. Forces on Aeroplane in Level Flight,

For consider an aeroplane flying horizontallv at a constant
speed, and for simplicity suppose that the eroplane has ‘one
wing only and that the chord of the wing is parallel to the centre
line of the aeroplane. In order that the lift may be large enough
to support the aeroplane, the wing and therefore the body will,
in general, be inclined at a definite angle of incidence to the
flight path as shown in Fig. 11. The aeroplane is therefore
moving crabwise, that is to say, it is not moving in the direction
of its centre line.

The forces acting on the aeroplane are as shown, T being the
thrust of the aifserewand D being the total drag, i.e. the wing
drag plus the drag of the rest of the aeroplane.” There is also a

e——
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small lifting force on the tail plane, but this is small and may be
neglected in comparison with the main wing lift L. Its neglect,
however, is another small source of inaccuracy.

The forces may now be resolved in a direction at right angles
to the flight path, giving

W = L+ Tsine.

But in normal flight « is small and never exceeds its critical
angle; sin a is therefore small and, in consequence, T'sin « may
generally be neglected in comparison with L, so that the equation
reduces to the simple form (g).

In the case of an aeroplane climbing, or gliding at moderate
.angles to the horizontal, the problem is alittle more complex, but
Tor allnormal flight conditions equation(9)is sufficientlyaccurate.

"By means of this equation the angle of incidence and the wing -
drag of an aeroplane can be calculated for any steady speed of
flight, given the weight W, the wing area S, the density p and a
diagram of wing charait[rlstlcs like Fig. 9. For the equatlon

may be written
kL=;)§I'-VI72 ... (o)
so that for any given speed %, may be calculated at once. The
corresponding angle of incidence and drag coefficient kj, can
then be read from the diagram of wing characteristics, the actual
wing drag in lb. next being obtained by multiplying %,, by pSV2.
_Example. Find the angles of incidence and the corresponding
values of the wing drag at speeds of 70, 80, yo and 100 miles per
hour for an aeroplane weighing 3,400.1b. and having 400 sq. ft. of
wing area, given that the density is the standard density and the
wing characteristic curves are as in Fig. g. .
We tabulate as under:

Speed. V. k. «. k. Wing Drag.
mph.  fps. (=W/pSV') (from diagram) ib.
70, 102*7 0°340 6:85 o'oy90 190
8o 1173 0261 48 oo131 171
9o 132°0 0206 3'3 00099 164

100 146'7 0167 23 00082 167
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\{'talllng Speed. From the above example it will be seen that
the incidence and the lift coefficient both increase as the speed
decreases. Every aerofoil, however, has a maximum value of
the lift coefficient; hence, when the wing reaches the critical
angle at which & has its maximum value, the corresponding _szeed

is is known as the stalling speed and can be calculated as

follows:
From equation (9), /,'
: w
2 = .

Hence, if the stalling speed in feet per second is denoted by ¥,

3

=3 W . l . . . .
s S

For the aeroplane in the previous example the stalling speed is
given by

v, = 3400
0754 X 0°00237 X 400

= 815 f.ps.

i.e. 556 m.p.h.

Consider now what happens when the speed of an aeraplane is
gradually reduced. As the speed decreases the incidence gradu-
ally increases until the critical angle is reached and the aeroplane
is flying at its minimum speed. If this angle is exceeded, the
lift coefficient begins to decrease, and the wings cannot provide
a lifting force sufficient to support the aeroplane ; in consequence
of this the nose of the aeroplane falls, and the aeroplane com-
mences to dive earthwards in an automatic endeavour to regain
flying speed. This motion is referred to as the stall, and the
critical angle is sometities called the stalttng angle. When once
an aeroplane stalls, it is out of the control of the pilot until it has
recovered flying speed by diving and by consequent loss of
height.
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Every aeroplane has a stalling speed, and it is the aim of aero-
plane design to keep the stalling speed as low as possible for the
following reasons: D —

(1) The speed at which an aeroplane approaches the ground
in order to land is limited by the stalling speed, and it is obvious
that, for a landing to be made in a confined ‘space, or at short
notice, the aeroplane must be capable of bemg mana:uvred ata

—e . S DRSS

slow speed.

(2) Eﬁe perfect landing is one in which the aeroplane is just
stalled as it touches the ground, for the shock of landing on the
aeroplane structure is a minimum when the landing speed is a
minimum.

Equation (11) shows that the factors governing the stalling
speed are the ratio _I;K and the maximum lift coefficient k; ..,

a low stalling speed being obtainable with a low value of the
former and/or a hxgh value of the latter. T

e e e e e

Wing Loading. The ratio % is called the wing loading and

e p—————y

is measured, of course, in Ib. per square foot. On modern aero-
planes the stalling speed varies from about 40 to 6o miles per
hour, corresponding to loadings of about 5 to TT Wit a value for
k7 mex Of 06, which is an average figure for the more common
types of aerofoil section used in practice. The choice of loading
is a compromise between the demands of a low stalling speed,
the necessary performance of the aeroplane with regard to speed
and climb, and practical design considerations. In purely racing
aeroplanes the wing area is kept so small that it is not unusual to
find a wing loading as high as 20.

The Maximum Lift Coefficient. The maximum lift co-
efficient varies from one aerofoil section to another, the extreme
range probably being about o-4 to 0-8, unless slotted wings are
used (see p. 40). High values are desirable, but here again the
choice of aerofoil section is a compromise, since a ‘high-lift’
wing may in a given case possess other features which are
nndecirable. For instance. its drag coefficient may be too large,
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-or its minimum drag coefficient may occur at the wrong inci-
dence, for optimum performance.

The Lift- Drag Ratio. The lift-drag ratio 1s = or D) and

may be regarded as a measure of the efficiency of a wing. In
comparing aerofoils on a lift-drag basis, it is essential to com-

L .
pare the D ratios at the same values of k;, and not at the same

values of «. The reason for this is that, with different aerofoils,

i

20 /\\
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Y \\
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Fic. 12. Lift/Drag Ratio (R.A.F. 15, Aspect Ratio 6).

a given incidence may correspond to different values of %, and
therefore, for any given aeroplane, to different speeds; and it is
at the same speeds that a comparison is required. (The same is
true for a k;, comparison. For this reason the curves of Fig. 10
would be misleading if they were used to compare the two aero-
foils. If the drag were plotted against a k, base it would be
found that the difference between the two aerofoils is not nearly
so pronounced as would appear from Fig. 10).
k
From the data of Fig. g the values of iel‘ have been calculated
D

for different values of k;, and the results are shown plotted in
Fig. 12.

On reference to the example on p. 23 it will now be seen that
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if, in any particular case, the wing drag only is required (and not

e L
the incidence), it is simpler to use the peurve than the k,, curve,

For, after k, is obtained by. calculation,% can be read direct

from this new curve, and D then obtained by means of the

equation D = K ,since W = L.

D

Indicated Air Speed. Equation (9) may be written in the
form

ie. e ¢ £

L Po Sy 2 ( )
Hence, if the incidence is fixed and therefore %, is fixed, V; is
fixed. In other words, constant indicated air speed means constant
incidence, whatever the height or density may be. Since, how-

ever, V = V,/o, it follows that for a given incidence the true
speed rises as the density decreases. As a particular case it may
be noted that the indicated stalling speed is constant, but that
the true stalling speed increases as the height increases.

The Moment Coefficient and Centre of Pressure. In deal-
ing with questions of the stability and equilibrium of an aero-
plane, it is important to know not only the magnitude and direc-
tion of the resultant force on a wing, but also the point on the
chord through which the line of action of the force passes. This
point is called the Centre of Pressure or C.P.; it cannot be
measured directly, but is found from a wind channel measure-
ment of the moment of the resultant force about a given point.
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In this country it is usual to measure the moment of the force
about the leading edge, and the relation between the moment so
obtained and the position of the C.P. is explained below.

Suppose AB in Fig. 13 repre-
sents an aerofoil section of chord
¢ and inclined at an angle « to
the air-stream. Let the C.P. be
at P, and let its distance from
the leading edge be x.

The resultant force on the
aerofoil is equivalent to the
forces L and D, acting at P as
shown in Fig. 13 (@). These
may be resolved into their com-
ponents at right angles to and
along the chord. Thus L is
equivalent to L cosa at right
angles to the chord and L sin «
along it. So D is equivalent to
Dsina and Dcos o (Fig. 13 (8) ).

The forces Lsina and D cos « have no moment about the
leading edge. Hence the moment M is given by

M = x(Lcosa+Dsina)
= x(ky cos a+kpsina)p SV
_ M
" (kLcosa+tkpsina) pSV?’
an equation giving x if M is known.

The values of M and x, however, depend upon the conditions
of the experiment, e.g. the size of the model and the air speed,
and if, as in the case of the lift and drag, characteristics are
required which are independent of these quantities, it is neces-
sary to express M and x in non-dimensional or coefficient form.
This can be accomplished, by defining the position of the C.P.
by the ratio of its distance from the leading edge to the total
chord length.

Lsina

Therefore x
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Thus, the above equation may be w?(tten (on dividing each
side by ¢)

¥_1 M
¢ c(kycosa+kpsinaypSHY
or M= ;(kL cos a+kpsin a)cpSi", )

and, if k&, is written for the non-dimensional quantity
;(kL cos a+kp sin ), th.s becomes

M =kyepSV2 . . . . . (13)

Also, if kg p (called the centre of pressure coefficient) is

) x
written for -, then
c

kR, = ’Z‘i (kg cos a+kpsina)

= k¢ p(ky cos a+kpsin o),

kop, = i ...
or CP- ™ ki cosa+kpsina (14)
Generally kjsin « is so small compared with & cos « that it
may be neglected. Also, since a is small, k; cos« may be re-
placed by k;. An approximate formula for the C.P. is therefore

_ ky,
k . . . . . . (15
C. kL ( )

Hence, from the measured value of the moment M, k,, can be
found by means of equation (13), and then k; p by means of
either equation (14) or equation (135).

The variation of k,, and kg p_with &k, is illustrated in Fig. 14,
which gives the characteristics of an aerofoil of R.AF. 15
section.

It will be noticed that the values of k,, are negative. This is
because the mament about the leading edge is an anti-clockwise
moment and is considered by convention to be a negative
moment. Since %, is negative, equations (14) and (15) give
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negative values for k¢ p, but in this case there is no point in
retaining the negative sign, and kqp is plotted as a positive
quantity.

The important features of the diagram are as follows:

(1) The centre of pressure is not fixed, but moves forward as
the angle of incidence increases and reaches its most forward
position at the critical angle. When the critical angle is passed,

0
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Fi1G. 14. Moment and Centre of Pressure Coefficients (Aerofoil R.A.F. 15).

the C.P. moves rapidly backwards; this movement explains the
automatic nose dive which always follows the stall.

(2) When the lift vanishes and the resultant force, i.e. the
drag, is very small, there is still a considerable moment. This is
discussed more fully in Chapter III.

(3) Up to the critical angle the slope of the k,, curve is constant
(= —o-24), and k,, and k; are connected by the linear law

= —0-24k; —0'0175
It is found that for all aerofoils the k,, curve is practically a
straight line, so that, if the value of %, at k&, = o is represented
by k,,, then :
kp = —bkp+ky,
where —b is the slope of the line.
Experiment shows that the value of b does not vary much
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from one aerofoil to another, and is always in the neighbourhood
of o-25. This is in agreement with the aerofoil theory outlined
in the subsequent chapters.

Example 1. For g certain aerofoil at 4° incidence k;, = o027,
kp = 00134 and k,, = —0-0925. Determine the position of the
C.P. using the approximate equation, and show that no appreciable
error is introduced by the use of this equation instead of the exact
equation.

We have
kcr. = k_L
= 29925 | neglecting the negative sign,
027
= 0'343.
Now the exact equation is
kcp. = o ino’
kycosa+kpsina
and k,cosa+kpsina = (0:27 X0°9976) +(0'0134 X 0-0698)
= 02693 400009
= 0-2702.

The difference between k; cos a+kp sin o and & is negligible,
and so the approximate equation is sufficiently accurate.

Example 2. Determine the position of the centre of pressure for
an aeroplane flying at 140 miles per hour near the ground, given
that the wing loading is 10°5, k,, = —0-028 and the slope of the
moment curve is —0°245.

V = 205-3; hence
w
kL = ;—S_V’
— 10§
000237 X (205°3)*
= 0'10§
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Now k, = —o-245k; —0-028.

Ry,

Y ky
0028

= Fost oS

= 024540267
= 0'§I2.

EXAMPLES

[All examples refer to standard density p = 0:00237.]

1. A wind screen is in the form of a flat plate. Find its drag at
100 ft. per second, given that & = '0'62 and its area is 0-82 sq. ft.

2. Find the lift coefficient corresponding to .a speed of 120 miles
per hour for an aeroplane with a wing loading of ¢-25.

3. Assuming that, up to an angle of incidence of 7:5°, the lift
coefficient of an aeroplane wing may be written in the form

ky = 0-036(x+2-5),

show that, with a wing loading of g, this equation may be used to find
the lift coefficients corresponding to all speeds not less than 70 miles
per hour.

4. Calculate the stalling speed of an aeroplane, given that
W = 4,500, S = 520 and % ., = 0°56.

5. Find the increase in the stalling speed of the above aeroplane
when it is carrying an overload of 450 1b.

6. An aeroplane with 920 sq. ft. of wing area is estimated to weigh
8,250 Ib. with full load. Find the value of the maximum lift coefficient
in order that the stalling speed may be 52 miles per hour.

7. The landing or stalling speed of an aeroplane at zero standard
height is 55 miles per hour. What would be its landing speed on an
aerodrome at a standard height of 5,000 ft.?

8. The lift and drag characteristics of the wings of an aeroplane
are given in the following table:



The Aerofoil 33

] —2 4 2 4 6 8 10
k, 0003 0068 0131 0197 0260 0324 0387
kp 00069 00063 00078 o-0o111 00161 00230 00306

12 14
0'448 o'500

00396 00518

Plot k; and %, against «, and determine the incidence and wing drag
coefficient at speeds of 60 and 8o miles per hour. Find also the actual
wing drag in Ib.

The aeroplane weighs 1800 1b. and has a wing area of 325 sq. ft.

9. For the aeroplane in the previous example, find the wing drag
at a climbing speed of 55 miles per hour, and determine the per-
centage increase of drag at this speed when the aeroplane is over-
loaded and weighs 1965 Ib.

10. For an aeroplane weighing 7,500 Ib. and having a wing surface
of 840 sq. ft., the lift and drag characteristics of the wings are given
in the following table:

ky 0003 0072 0140 0209 0279 0348 o417
kp 00080 00078 00086 00110 00151 .0°0205 00276

0482 o0'549 o604 0640
00356 00453 00546 ©0'0752

Construct the curve of f’—) against k; ,and determine the lift coefficients
and speeds corresponding to a % ratio of 18.

11. From the IE' curve of the previous example find the wing drag

at speeds of 70 and 125 miles per hour.

12. Use the equation k. p = %n to construct a C.P. curve from

ky,
the following wind channel data:
o -2 ° 2 4 6 8
k, 0034 0'104 0172 0243 0314 0381
Res —0'0293 — 0'0429 — 0°0627 — 00788 —o0'0960 —oO°'1119
10 12 14 16 18

0'448 o-508 o560 o599 o602
— 01378 —o0'1424 —o0'1540 —0'1638 —o'1800



34 The Aerofoil

Hence determine the C.P. position at the stall and also its position
at a speed of 130 miles per hour for an aeroplane with a wing loading
of 8:5.

13. Assuming that the moment coefficient of an aerofoil can be
written in the form

ky = ""°°25kL+km°'
find the value of &,, which gives a C.P. position of 0:46 at a speed of

120 miles per hour for an aeroplane weighing 9,250 Ib. and having a
wing area of 1050 sq. ft.
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ELEMENTS OF AIRFLOW

Introduction. It has already been pointed out that, when an
air-stream moves past a body, the momentum of the air is
changed owing to the change in the speed and direction of the
particles of the air, and that in consequence the body experiences
a reaction which is equal to the rate of change of momentum.
Early investigators attempted to calculate
the reaction by direct application of this —
principle, but it was found necessary to —
make many simplifying assumptions with
regard to the manner in which the air
particles moved.

A simple illustration of what may be
called the Newtonian method is afforded ——
by the case of a flat plate held at right
angles to the air-stream, on the assump-
tion that the air is composed of minute
inelastic particles which, after impinging on the plate, slide off
down its surface. It is further assumed that all the particles
immediately in front of the plate come into contact with it,
and suffer no change in velocity, either in magnitude or direc-
tion, until impact (Fig. 15).

Let V be the air speed, p the air density and S the area of the
plate.

Then the volume of air striking the plate per second is SV
and the mass of this volume is pSV.

Hence the pressure on the plate = the momentum destroyed
per second

—_——

>R

>

Fic. 15.

=pSV'xV
=pSV?
According to experiment, however, the actual pressure or

resistance is kp.SV?, where k depends upon the aspect raiio of
the plate but is always less than 1. Thus, although the method
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reveals the pSV? law, it fails to give the true magnitude of the
resistance.

If the plate is inclined at an angle « to the air-stream and the
same assumptions made as before, it may be shown that the
plate experiences a force pSV?sina at right angles to itself.
This force can be resolved into its lift and drag components at
right angles to and along the direction of the air-stream respec-

‘tively, but again the calculated values do not agree with the
measured values.

The failure of the method must be attributed, of course, to
the manner in which the air is assumed to move past the plate.
Actually the air-stream is disturbed for some distance in front
of the plate and closes in again behind it, but the motion is so
complex that no simple application of the momentum theory is
possible.

The following paragraphs describe the actual manner in
which the air particles move past a body, and treat the motion
in some detail in order to provide a sound explanation of the
nature and origin of air forces.

Airflow. Airis a fluid and ‘flows’ in a general way like any
other fluid. When a fluid flows past a body, or when a body
moves through a fluid, the resulting flow may be one of two
kinds, smoot’ or turbulent. For instance, if a flat plate is dragged
broadside on through water, large eddies or whirlpools can be
observd in the wake of the plate, and the flow is distinctly
turbulent; whereas, if a boat-shaped body is dragged along, the
water is seen to flow smoothly past the sides of the body with
but little eddying motion in the wake. That air behaves in a
similar manner can be proved in a wind channel by admitting
smoke into the air-stream; the wisps of smoke reveal the nature
of the flow and show if it is smooth or turbulent. It is found
that, as in the case of water, the plate creates a turbulent flow
while the boat-shaped body allows of a smooth flow.

Streamlines. If the aitflow is steady (i.e. does not vary from
one moment to another) the type of flow can be illustrated by a
simple diagram. For, if the air is supposed to consist of minute
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particles, lines can be drawn to represent the paths followed by
the particles in their motion past the body. Such lines are called
streamlines and give the direction of flow at every point for all
time, since each line represents the path of a succession of
particles. A typical flow pattern diagram is given in Fig. 16,
which illustrates the smooth flow past a symmetrical aerofoil

/——/___—\\-\
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F1G. 16. Smooth Flow over Symmetrical Aerofoil Section.

section at o° incidence. A flow pattern illustrating turbulent
flow is given in Fig. 17.

Viscosity and Skin Friction. Whether the flow is smooth
or turbulent, there is always one type of air force experienced by
a body, and this is due to viscosity. Viscosity is a property
possessed by all fluids and is somewhat analogous to friction in
solids. When air is flowing past a body, frictional forces arise
between the surface of the body and the air, so that the air is
retarded while the body experiences a surface resistance. This
resistance is called skin friction and always forms a part of the
total resistance.

In order to appreciate the effect of viscosity more fully, con-
sider the thin flat plate moving edgewise through the air as in
Fig. 7. As the air flows over the plate, the particles of the air
adjacent to the surface of the plate are trapped, as it were, by
the roughness of the surface and brought to rest. Alternatively
the air particles may be regarded as being arrested owing to
their intermingling with the surface particles of the plate. Now
suppose that the air consists of a succession of layers of particles.
Then since the first layer in contact with the plate is stationary,
the second layer is in motion over the first, and frictiona’ or
viscous forces arise between the two layers, the effect of these
forces being to retard slightly the second layer. The third layer



38 Elements of Airflow

is then moving a little faster than the second, and the relative
motion results in viscous forces arising to retard the third layer.
This process continues throughout the stream, the retardation
clearly diminishing as the distance from the plate increases.
Actually the viscosity effects are so small that they are felt only
in a very narrow region near the surface of the plate, the thick-
ness of this region probably being of the order of a few thousandth
parts of the chord, but in this region the varying velocity
causes the streamlines to crumple up and form eddies. (In the
case of water an analogy is provided by the breakers on the
sea-shore). The surface of the plate is therefore covered by
a thin sheet of eddies or vortices, and the energy carried away
by these vortices represents the work done in forcing the plate
through the air against its ‘skin friction.’

Form Drag. In addition to skin friction there is another type
of resistance experienced by a body. Unlike skin friction,
however, this depends not so much on the extent of the surface
as on the shape of the body. It is due essentially to turbulence
and the formation of vortex motion in the wake, and can be well
illustrated by a flat plate held at right angles to the air-stream,
for experiment shows that the flow is very turbulent. The
streamlines are as shown in Fig. 17, and it will be seen that the

retardation of the air particles near
the surface of the plate causes the
streamlines close to the edges of
the plate to bend inwards and form
large vortices. These are continu-
ally carrying away energy, and so

the plate experiences a resistance.
This resistance is called form drag,

\_

/ and, since it is not a frictional or
rubbing force acting tangentially
to the surface, like skin friction,

S

it must appear as a pressure force
F due to unequal air pressures at
1G. 17. )
Turbulent Flow over Flat Plate the front and rear of the plate.
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Streamline Bodies. Since the form drag is due to the vortices
shed from the sides of a body and the formation of a region of
turbulence, it is clear that low drag can be obtained only by
reducing this region to a minimum. Suppose that the plate in
Fig. 17 has a tail or fairing added as in Fig. 18 (a). The fairing
gives the streamlines a chance to resist the tendency to crumple
up, and the turbulence is reduced. If, in addition, a nose is
added as in Fig. 18 (b), a further improvement is noticeable, for
the nose allows a better entry for the
streamlines and their deflexion is accom-
plished more gradually. The net effect
of this fairing or ‘streamlining’ of the
plate is to reduce the form drag to such
an extent that the total drag is con-
siderably reduced, although the skin
friction is increased owing to the in-
creased amount of surface. o

A body in which the form drag has Fic. 18.
been practically eliminated is called a  Streamlining of Body
streamline body, and the smooth flow associated with it is
generally called streamline flow.

Airflow over an Aerofoil. An aerofoil is a good streamline
body at small angles of incidence, but as the incidence increases
it loses a little of its streamline properties owing to the develop-
ment of form drag.

The type of flow occurring over an aerofoil section for different
angles of incidence is shown in Fig. 19.

At the lower angles of incidence the flow is faxrly smooth, and
the eddying motion is confined to a very small region on the
upper surface in the neighbourhood of the tail. As the angle
increases the eddying motion increases and spreads further
along the surface, until at 16° incidence violent eddying extends
over the whole upper surface from the nose to the tail. Beyond
this angle the eddying is even more violent, and the wake is a
region of excessive turbulence. From these diagrams it is clear
that at low angles of incidence the form drag must be nearly
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negligible, but that it increases as the angle increases. (The
reader is warned against concluding that the increase of form
drag with incidence accounts for the total increase of the aerofoil
drag. It is shown in the next chapter that a lifting surface is
subject to another type of drag, and it is the increase of this drag
which, up to the critical angle, is responsible for the greater part
of the total increase).

More important still is the connexion between the turbulence
and the lift. The turbulence is not very great until an angle of
incidence of about 12° is reached, and it is in the neighbourhood
of this incidence that the lift coefficient is beginning to lose its
steady rate of increase, until, at an angle of about 16°, the critical
angle is reached and the lift breaks down altogether. From this
it would appear that the turbulence not only gives rise to in-
creased form drag but also accounts for the break-down of lift.

The Slotted Wing. In this connexion reference may be made
to the slotted wing, which is an invention made to preserve the
streamline flow and so delay the approach of the critical angle.
In a slotted wing the leading edge is movable with regard to the
main aerofoil, and forms a small auxiliary aerofoil whose action

is as follows:
/A

()

Fi1c. 20.
The Slotted Wing.

7’

Suppose that the slot is open at an angle at which turbulence
would normally have set in over the upper surface. Then
Fig. 20 (b) shows that the auxiliary aerofoil is still at a small
angle of incidence, and therefore has a smooth flow over it.
This smooth flow sweeps down over the upper surface of the
main aerofoil and tends to resist the turbulence. In this way a



o INCIDENCE

i, 19a

4” INCIDENCE

Fi16. 196

Roval Air Force official.—Crozen copyright reserved



S INCIDENCE

12 INCIDENCE

Fre, 1gd

Roval Ao Force official, Cromn copyright vesert e



16 INCIDENCE

1. 19e

20 INCIDENCE

1. 19f

Roval iy Force otticial, - Crozen copyaright vesacved






Elements of Airflow 4i

smooth or streamline flow is preserved up to a greater ang'e of
incidence, with a consequent increase in the maximum lift
coefficient (see Fig. 21).

In practice the opening of the slot may be either automatic or
mechanically controlled by the pilot, and in the automatic type
the slot opens progressively as the incidence increases. This is

08
With slot
06 4
L /VTlthout slol
0 //
02 //
-5 0 5 o 1 i5 20 %5

F1G. 21. Lift Curve of Slotted Aerofoil.
R

o

Fi1G. 22. Resultant Force on Auxiliary Aerofoil.
accomplished by so designing the mechanism connecting the
main and auxiliary aerofoils that the slot is capable of being
moved by the action of the air forces on the auxiliary aerofoil
itself, the amount of movement being made to depend upon the
position of the centre of pressure of the auxiliary aerofoil. It
can easily be seen how the resultant force can be used to open
the slot, for Fig. 22 shows that the flow over the auxiliary aero-
foil is deflected from its free direction by the presence of the slot,
80 that the resultant force is inclined as shown and therefore has
a forward component.

Pressure Distribution over an Aerofoil. Reference has
been made on p. 38 to the difference in pressure at the front and

rear of a flat plate held at right angles to the air-stream. Experi-
379 [

\
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ments have also been carried out, both on models and on actual
aeroplanes in flight, to determine how the air pressure varies
over the surface of an aerofoil. It is found that on the under
surface of the aerofoil the pressure is everywhere positive, that
is to say, the pressure is greater than the atmospheric pressure
of the undisturbed stream. On the upper surface, however, the

F1G. 23. Pressure Distribution.

oS

-05

Fi1G. 24. Pressure Distribution Diagram.
pressure is negative except just on the nose of the aerofoil
(Fig. 23). The pressure at any point of the surface acts, of course,
at right angles to the surface, the vertical component being the
element of lift and the horizontal component the element of
drag (excluding skin friction which acts tangentially to the
surface and is not a pressure force). Thus it will be seen that
the lift is due to a suction force on the upper surface and a
direct positive pressure force on the lower surface. Experiment
shows further that the suction force contributes more to the lift
than the pressure force. A typical pressure distribution diagram
is given in Fig. 24; the horizontal scale represents the distance
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from the nose measured as a fraction of the chord, and the
vertical scale represents the pressure, above or below atmospheric
pressure, in lb. per square foot divided by pV2. The positive
pressure of the under surface is represented by the area of the
curve above the horizontal, and the negative pressure or suction
of the upper surface by the area below.

Figs. 23 and 24 show that the maximum positive pressure
occurs at the nose and is given by ;—%—2 =o0-5,i.e.p = 3pV2 This
is always the magnitude of the pressure at a point which receives
the air-stream full on, and can
be deduced theoretically from
Bernoulli’s equation which is
given below.

Fig. 24 is roughly represen-
tative of the pressure distribu-
tion for all angles of incidence Fic. 2s.
up to the stall, except in the ¥ Suction Couple at Zero Lift.
neighbourhood of zero lift. As A
the incidence decreases from its critical value, the suction of the
upper surface and the direct pressure of the lower surface both
decrease, but the latter decreases more rapidly than the former.
Eventually the latter changes into a suction force also, and,
when the suction forces of .the two surfaces are equal, the
aerofoil ceases to lift. Pressure diagrams show, however, that
when this happens the resultant forces of the two surfaces do
not act at the same point. The aerofoil therefore experiences
a couple (Fig. 25), so -that the centre of pressure is at infinity.
The magnitude of this couple is given, of course, by the value
of &, (i.e. the moment coefficient at zero lift.)

Bernoulli’'s Equation. This equation states that, in a stream
of fluid in which the velocity is changing, the pressure p and the
velocity v at any point are connected by the law

pt+ipet = H,

R

where H is a constant.
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The proof of this law is somewhat intricate, and, before it is
given, it will first of all be shown how the law leads to the value
4p V2 for the pressure on the nose of an aerofoil and to the value
4p V2 for the pressure difference in the pitot (see p. 8).

_ Consider an air-stream flowing over an aerofoil. Let p, be the
pressure of the undisturbed stream and V its velocity, so that
the value of H is p,+4pV? and the equation becomes

p+1p0® = po+3pV
Now, at the point on the nose of the aerofoil which receives the
stream full on, the velocity of the stream is destroyed. (This
point is marked on a flow pattern diagram like Fig. 16 by the
abrupt ending of a streamline.) Hence the pressure at this

point can be obtained by putting v = o, and the equation giving
the pressure becomes

P = pot1pV?
i.e. the pressure is greater than the ordinary static or atmospheric
pressure by 3pV2,

Similarly, at the open end of the fine dynamic tube 4 (see
Fig. 3) of the pitot, the velocity is again arrested, and so the
pressure in the tube is py+4pV2 At the small holes in the static
tube B, however, the velocity of the stream is unaltered, and
hence the pressure in this tube must be the ordinary stream
pressure p,. Thus the pressure difference is 4 pI’2.

This pressure of $p¥? is called the dynamic pressure of the
stream, and the constant H (= p,+3pV?) is called the total
pressure head or Pitot pressure.

Proof of Bernoulls’s Equation. Consider an air-stream moving
to the right with increasing velocity as shown in Fig. 26 (a), and
suppose ABDC represents a portion of a stream-tube, i.e. a
thin tube of air always enclosing the same stream-lines. Suppose
that after a small interval of time ¢ the mass of air ABDC takes
up the position 4’B’'D'C’ as shown in Fig. 26 (b). Then the
mass ABB’A’ is equal to the mass CDD'C’, i.e. the volume
ABB'A’ is equal to the volume CDD'C’, since the density is
constant,
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Let p;, v;, Sy be the average pressure, velocity and cross-
section of the volume ABB’A’, aud p,, v,, S, the corresponding
quantities for CDD'C’,

Then the volume ABB'A’ = S; x BB’ = S; xv,t,
and the volume CDD'C’ = S, xDD’ = S, X v,t.
Therefore Syut = Su,t = K(say).

[Since v,>w,, it follows that S, <.S; ; that is to say, the stream-
lines get closer together as the

velocity increases. ] -~
Now the difference between —8 0  —— — ——

___//
themasses ABDCand A'B'D'C'’ 7

is that the portion ABB'A’ at ———]

velocity v,, has been replaced by _—____J__;_//
an equal portion CDD'C’ at

velocity v;. The mass of each
of these portions is pK; hence
the change in the kinetic energy
of the mass ABDC in the small ' £
intervalof timetis $p K(vy2 —v,2). ——-—:l i I_.: ,"{S"
Again, the only forces actingon ? > 58 °
the mass in the direction of —
motion are the average pressure

1S, of the air to the left of AB

and the average pressure p,S, to the right of CD. During the
interval of time ¢ the former is moved through a distance v, and
the latter through a distance vyt. Hence the work done by the
former is p,S; Xv;t, and the work done against the latter is
3Ss X vgt, so that the total work done is (p; X Sy0;2—pgy X Sy0,t),
i.e. (p—po)K, since S,v,t = S,vyt = K. Therefore, since the
change in the kinetic energy is equal to the work done,

1pK(v? —v,%) = (P, —pl)K,
ie. 1pvs —}pv* = py—ps,
or prtipv? = pytipvgd
In other words p+ 4 pv? is constant.
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Origin of Lift. Since the lift of an aerofoil is due to reduced
pressure on the upper surface and increased pressure on the
lower, it follows from Bernoulli’s equation that above tlie aero-
foil the velocity of the 4ir is greater than that of the undisturbed
stream, and below it is less. The flow over the aerofoil may
therefore be considered as a combination of the ordinary transla-
tional flow and some form of circulating flow, as shown in Fig. 27;
for the circulation has the effect of speeding up the air above
the aerofoil and retarding it below. It must be noted that the
presence of this circulation does not imply that any particles of

FiG. 27. Circulation Round Aerofoil.

the air actually travel round the aerofoil, but that its existence
must be presumed in order to explain the velocity difference
above and below the aerofoil.

This conception of a circulation superimposed on the ordinary
translational velocity forms the basis of what is known as the
Circulation Theory of Lift. The mathematics involved in the
development of this theory is far beyond the scope of this book,
but a general outline is given in Chapter V, where it is shown
that thc circulation imposed on the stream as it passes the aero-
foil is yet another viscosity effect.

The circulation theory forms, in its turn, the basis of the
Vortex Theory of Aerofoils, which deals with the problem of
the aeroplane wing in so far as its behaviour is dependent upon
such features as aspect ratio and the interference of one wing of
a biplane on the other. Again the mathematics must be almost
entirely omitted, but in the following chapter an outline of the
theory is given, together with the principal formulae established.
The whole theory of wing lift rests on the assumption that the
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flow is perfectly streamline outside the very thin vortex region
surrounding the surface of the aerofoil, and in consequence the
formulae are strictly applicable only over the range of incidence
in which the turbulence is negligible and the lift preserves its
steady rate of increase. In practice, however, the formulae are
found to give results in such excellent agreement with experi-
mental data, right up to the critical angle, that they are used
universally in aircraft design.
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THE AEROPLANE WING

Aspect Ratio. It was shown in Chapter II that the use of
non-dimensional ¢toefficients enables the air forces on an aero-
plane wing to be calculated from experimental data obtained
from a model wing, provided the wings are geometrically similar.
This similarity must apply not only to the aerofoil section, but
also to the plan form of the wing. In the case of a rectangular
wing, plan form is defined by aspect ratio, and the effect of
change in aspect ratio on the non-dimensional coefficients is
most marked. With all aerofoils, of whatever section, it is
found that an increase of aspect ratio results in a higher lift
coefficient and a lower drag coefficient at every angle of
incidence up to the critical angle. Before an explanation of
this phenomenon can be given, reference must be made to one
further type of experiment.

Lift Distribution Across the Span. The lift of an aerofoil
is not umformly distributed over the whole span. If pressure-
distribution diagrams are obtained

<

; for different sections of an aerofoil,

3 the lift at each section can be calcu-

5 lated, and a curve then drawn show-

= o ing how the lift per foot run varies
Fic. 28. across the span. For wings of rect-

Lift Distribution Across Span angular plan form and constant
aerofoil section, it is found that the lift distribution curve is of
the form shown in Fig. 28. The lift isa maximum at the median
or central section, and diminishes towards the wing tips, slowly
at first but more rapidly near the tips.

Three-Dimensional Flow. This variation of lift, or
pressure, across the span gives rise to a further disturbance of the
airflow over an aerofoil. For consider the upper surface of the
aerofoil ; the pressure is negative over the whole span, but the
magnitude of this negative pressure is a maximum at the centre
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and decreases towards the wing tips. Hence the air passing over
the upper surface tends to flow inwards from the tips towards
the centre, i.e. towards the region of lowest pressure. Similarly,
on the lower surface which is in a region of positive pressure, the
maximum positive pressure occurs at the centre, and so the air
passing on the under surface tends to flow outwards from the
centre towards the tips. This is illustrated in Fig. 29, the full
lines representing the flow above the aerofoil and the dotted
lines the flow below. This figure
shows that the flow past an aerofoil
is three-dimensional, for the stream- , )
lines suffer deflexion both in the \ X !

,1 /I

\ L/
plane of the aerofoil section and in AV
the plane of the span and chord. \ \ X j<

/ /
Diagrams like Fig. 16 give the flow /] \i \ / / N
in the plane of the section only,and [/ RS

are therefore only truly representa-
tive of the flow over the median
section. For such two-dimensional diagrams to be representa-
tive of the flow over every section, the span must be considered
to extend throughout the whole fluid; in other words, the
aerofoil must be regarded as of infinite aspect ratio.

The Trailing Vortices. From Fig. 29 it is clear that trans-
verse vortices (i.e. vortices at right angles to the direction of
flow of the free stream) will arise at the trailing edge where
streams of different directions unite. For consider the flow to
the left of the centre line; the streamlines above the aerofoil
have a component of velocity towards the centre of the aerofoil,
while those below have a component outwards from the centre.
Hence at the trailing edge vortices must arise spinning in a
clockwise direction. Similarly, to the right of the centre line,
vortices must arise spinning in an anti-clockwise direction.
These vortices prove to be unstable, and quickly roll up into
two main vortices, one behind each wing tip as shown in Fig.
30 (b). These are called the trailing vortices of the aerofoil,
and their presence has been established experimentally, both in

3729 o

Fi1G. 29.
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the channel and in actual flight, by attaching streamers to the
trailing edge.

The Induced Velocity. The continual shedding of these trail-
ing vortices results in a cylindrical tube of vortex motion being
formed behind each wing tip, and such vortex tubes attempt to
impart their rotation to all the fluid particles. Hence Fig. 30 (b)
shows that an upwash is imparted to all the air outside the

\mm r‘\ﬂ\\
A

L\
a

N\ AN

(1-2]
FiG. 30. The Trailing Vortices.
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F1c. 31.

wing tips and a downwash to all that inside. The effect of these
trailing vortices is damped out, of course, at any great distance
in front of the aerofoil or beyond the tips, but clearly the flow
past the aerofoil is deflected inwards and downwards. The
inward deflexion is unimportant and is neglected in the aerofoil
theory, but the downward deflexion is of considerable impor-
tance, and the downward velocity imparted is called the induced
velocity. If this velocity is denoted by w, the resultant velocity
at which the air meets the aerofoil is given by a simple vector
diagram like Fig. 31. The effect of w is seen to be a small in-
crease in the actual velocity of the air and a small reduction in
the angle of incidence. Since w is very small compared with the
velocity V of the undisturbed stream, the difference in magnitude
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between ¥ and the true resultant velocity can be neglected, but
the slight reduction in the angle of incidence is very important.

Effect of the Induced Velocity. Let « be the angle of incidence,
6 the angle through which the air is deflected, and «, the
effective angle of incidence. Then

tanf = ;, from Fig. 31,

Qg = a—o,
and the aerofoil experiences the same forces as it would do
if it were at an angle of incidence o,, and there were no
L
Ao
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Ourection of Free sirstream

Fic. 32.
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trailing vortices. If, however, there were no trailing vortices,
the flow over every section would be the same, i.e. the flow would
be two-dimensional. Let &, and kj be the lift and drag co-
efficients in this ideal two-dimensional flow. Then the true lift
and drag characteristics may be obtained by resolving &, and
kp, at right angles to and parallel to the direction of the undis-
turbed stream. Thus

ky = kp cos6—kp sin,
and kp = kDocos 0+k,_osin0.
But 6 is very small, and therefore cos § may be taken as unity.
Also %, sin 6 may be neglected in comparison with k;,. Hence
the above equations reduce to

kL = kLo’
and kD = kD +kLo sino
= kp,+Ri8,

since sin 0 = @ (in radians) when 8 is small.
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Thus, due to the induced velocity and the consequent tilting
back of the flow, a component of the lift becomes drag.
Now the induced velocity w, and therefore the deflexion

vV
vortices, and these are dependent upon

(1) the form of the lift distribution curve and the aspect
ratio, for these determine the directions of the inflow
and outflow of Fig. 29.
and (2) the magnitude of the lift developed, for this determines
the strength of these flows.

If the lift distribution curve is assumed to be a semi-ellipse,

(since tan § = E)’ depend upon the strength of the trailing

<
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F1c. 33. Elliptic Distribution of Lift.

as shown in Fig. 33, it can be proved that § is constant over the
2

74

aspect ratio. The lift component which becomes drag is there-

whole span and has the value — k; radians, where 4 is the

2 . .
fore k0 = — k2. Hence the equations connecting the actual
m

three-dimensional flow with the two-dimensional flow are as
follows:

2
== 2k
kL = kLo
and kp = kp + -—2/—1 k2.
.

These equations show that the lift coefficient of an aerofoil in
actual three-dimensional motion at an angle of incidence o is the
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same as the lift coefficient in two-dimensional motion at a reduced
2
7A

. L . 2
drag in three-dimensional motion is greater by ] k2.
.

angle of incidence oy, where oy = o — — k;, but the corresponding

Thus, for a given lift coefficient &,

2

°‘=°‘0+ka N ¢ )
and kD=kDo+:—AkL3. )

Although these formulae hold strictly for elliptic distribution
only, they can be used with sufficient accuracy for all kinds of
lift distribution (see p. 58).

Now, in the ideal two-dimensional flow, each section of an
aerofoil provides its own quota of skin friction and form drag,
and no other type of drag is encountered. Hence in two-dimen-
sional flow the drag depends solely upon the shape and attitude
of the aerofoil, and for this reason the drag is called profile drag,
kp, being called the profile drag coefficient. The additional type
of drag occurring in actual three-dimensional flow is called the

2
mA
This drag is quite independent of the aerofoil section and, for a
given lift coefficient, depends only on the aspect ratio of the
aerofoil. Equation (2) shows that the induced drag decreases as
the aspect ratio increases, eventually disappearing when the
aspect ratio becomes infinite and the flow is two-dimensional.

induced drag, and its coefficient k;? is denoted by kp, .

Again, by taking kp, = ;zgk,f, the induced drag coefficient

can be calculated for different values of k;, and the profile drag
coefficient can then be obtained by subtracting the induced
drag coefficient from the measured total drag coefficient. This
has been done for R.AF. 15, whose characteristics for 4 = 6
are given in Fig. 9, and the results are shown graphically in
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Fi1G. 35. Lift Curve for Infinite Aspect Ratio.

Fig. 34, where the profile drag coefficient %y, the induced drag
coefficient k5, and the total drag coefficient k,, are all shown
plotted against k.

It will be seen that, except near the critical angle, the increase
of aerofoil drag with incidence is due almost entirely to the
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induced drag. The profile drag is naturally rather irregular, as
it has to bear all the experimental errors.

The kp, curve of the figure can now be used in conjunction
with equation (2) to determine the drag of any aerofoil of
R.A'F. 15 section.

Example. An aeroplane having W = 4200 and S = 500 is
climbing at 775 miles per hour in standard density. If the aeroplane
is a monoplane of aspect ratio 5 with R.A.F. 15 aerofoil section,
calculate the induced drag at this speed, and obtain the ratio of the
induced drag to the profile drag.

w
pSV?

- 4200
000237 X 500 X 1103
= 0°293.

V = 110; therefore k;, =

o le = ;;22 kLz = 0°0109.

Hence the induced drag = 0-0109 X 000237 X 500 X 110%

= 156 Ib.
[alternatively,

the induced drag= kp pSV?
= ]ill‘ Xk, pSV?
ky,
__0'0109
0293
=1561b.]
Again, from Fig. 34, the value of kp, atk; = 0293 is 0-0062.

X 4200

Hence, D, ko,
Dy kp,

__ 00109

"~ 00062

= 1-76.
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The lift-incidence curve for infinite aspect ratio can be ob-
tained by means of equation (1), and Fig. 35 gives the curve for
RAF.15.

This figure shows that, as the aspect ratio increases, the slope
of the curve increases, but it reveals no variation in the value of
kpmax- Actually there is some experimental evidence that &; .
increases as the aspect ratio increases, and the failure of the
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Fic. 36. Effect of Aspect Ratio.

theory in this respect is due to the assumption on which it rests,
namely, that the turbulence may be neglected (see p. 47). The
variation in the value of %, ,, is small, however, and for normal
aeroplane wings is of quite secondary importance.

Note that the angle of no-lift does not change with changing
aspect ratio. This follows from equation (1), since a = o, when
kL = 0.

Corrections for Aspect Ratio. If the characteristics of an
aerofoil section are known for one aspect ratio, those for any
other aspect ratio can easily be obtained without first con-
structing the kp  curve and the corresponding lift-incidence
curve for two-dimensional flow.

For suppose it is required to find the characteristics of an
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aerofoil of aspect ratio A’, given the characteristics for aspect
ratio A. Let the corresponding angles of incidence for a given
lift coefficient k; be o and « respectively. Then

B 2
o =°‘0+ka

and a = oyt T-;zsz.

so that of —a = 3(—%—%)& N )]
. , 2(1

Similarly, k' —kp = 2 (Z’ —%)k,"" L@

It is customary to use the notation of the calculus and denote
the incidence difference o' —a by da and the drag difference
k' —kp by 4k,. Note that da is expressed in radians.

Example. The lift and drag characteristics for a RA.F. 15
aerofoil of A.R. 6 are given in the following table:

« —2 o 2 4 6 8 10
ky 0004 o080 o155 0232 0308 0383 0452
kp 00069 00063 00078 00115 00165 0'0229 00308

12 14 16

0'512 ©0'539 0°'524
0'0418 00602 —

Obtain the characteristics for an aerofoil of the same section but of
4.R. 10, and compare the lift-incidence and drag-incidence curves
of the two aerofoils.

From equations (3) and (4) we have

2(1I I
=255

= —0°'0424k, radians
= —2'43k; degrees,
and dkp = —o-0424k;*.
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The corrections can now be applied at each value of the lift
coefficient, and we tabulate as under:

ky « kp da dkp o kp’
o004 —2 000069 —oor <) —2'01 0-0069
o-o80 0 00063 —o0'19 —00003 —0'19 00060
0’155 2 00078 —o0°38 00010 +162 00068
0232 4 oo115 —0'56 —00023 3'44 0°0092
o-308 6 o00165 —075 —o0'0040 §'25 ©0-012§
0383 8 00229 —o093 —o0-0062 7:07 00167
0'452 10 00308 —1'11 —0'0087 889 o0-0221
o512 12 00418 —124 —o00II1 1076 00307
0'539 14 00602 —1'31 —0-0123 12:69 00479
o524 16 — —1-27 — 1473 —

The curves obtained by plotting the lift and drag coefficients
against « for the two aerofoils are given in Fig. 36.

Effect of Lift Distribution. The principal formulae (1) and
(2) have been deduced on the assumption that the lift distribu-
tion curve is a semi-ellipse, and it has been found that this leads
to a constant value for the induced velocity over the whole span.
Actually the usual type of lift distribution for a rectangular
aerofoil is of a more rectangular form, as shown in Fig. 28, ard
the induced velocity is not constant. It has been proved, how-
ever, that the effect of taking the correct form of distribution is
merely to increase the average value of § by about 5 per cent., so
that no great error is introduced by the use of equations (1) and (2).

If desired, this can be allowed for by taking kp = N x ‘”—2-‘4 k2,

where N has a value of about 1-05.

Aspect Ratio of Non-Rectangular Wings. Aeroplane wings
are often not rectangular (Fig. 37), and the determination of the
induced velocity is very complex. Nevertheless equations (1)
and (2) may again be used with fair accuracy, provided the
aspect ratio is defined as the ratio of the mean span to the mean
chord. An alternative method of expressing the aspect ratio is
given below.
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For a rectangular aerofoil, the

AR, = Span

chord

2 ;
1.e. A= . .. (5)

In this form for 4 the chord does not appear, and it is the
chord which generally varies most in non-rectangular aerofoils.

K )

@y Wing with shaped tips

-

by Tapered wing
Fi1G. 37. Non-Rectangular Wings.

Hence the above equation is frequently used to determine the
aspect ratio, 2s being taken as the overall span.

Biplane Effect. The non-dimensional characteristics of a
monoplane cannot be applied to a
biplane of the same aerofoil section, ¢
even though the two wings of the
biplane may be absolutely identical
and both of the same aspect ratio as
the monoplane, for the trailing vor-
tices of each wing impose an induced
velocity on the flow over the other,
with the result that the induced velocity of each wing is increased.
The interference between the two wings is therefore equivalent
to a reduction in aspect ratio, so that, at any angle of incidence,
the lift coefficient of the biplane is less and the drag coefficient
greater than the corresponding coefficients of the monoplane.

>

_Lep

¥
Fic. 38. Gap of Biplane.
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It is found that, due to the increased induced velocity, the
angle @ through which the flow is deflected is increased by an

2k . . .
amount equal to _ZL o, where o is a quantity which depends on
T - .

the ratio of the gap of the biplane (defined as the shortest dis-
tance between the two wings) to the span, and is given by the
curves of Fig. 141.

Thus the formulae for a biplane corresponding to equations
(1) and (2) for the monoplane are

a=ao+"_f4(x+a)kL. S (6

2
and kD = kD°+ 772 (I +a)kL2 . . . . (7)

The above equations refer to a biplane with wings of the same
aspect ratio but not necessarily of the same size.

Example. The lift and drag characteristics of a R.A.F. 15 aero-
foil of A.R. 6 are given in the example on p. 57.

Obtain the characteristics of a biplane of the same section and
aspect ratio, given that the biplane has equal wings and a gap|span
ratio of 1°52.

The corrections to be applied to the monoplane characteristics
are

do = ;%"k"

_2xo056
T Tax6
= 0°0594k,, radians
= 3-40k; degrees,
and Akp = 0-0594k; 2.
These corrections are made at each value of k; as in the example
on p. 57. The actual working is not shown, but the curves
obtained by plotting the lift and drag coefficients against inci-
dence for the monoplane and biplane are given in Fig. 39.
It will be seen that the theoretical corrections applied indicate

kp, for ¢ = 0-56 from Fig. 141
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no change in the value of %, .. due to biplane effect. Since,
however, biplane effect is of the same nature as an aspect ratio
reduction, it is only to be.expected that the maximum lift co-
efficient of the biplane is slightly less than that of the monoplane
(see p. 56), and this is confirmed by experiment. The reduction
in the value of k7. is generally of the order of 5 per cent.
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Fi1c. 39. Biplane Effect.

If the aspect ratio is not the same for both wings of a biplane,

the expression —32(1 +o0) must be replaced by the general ex-
.
pression S ———I:—o—’;— , where s,, sy are the semi-spans and

27 5,2 — 205,545
S is the total area of both wings.
Example. Find the induced drag of the following biplane at a
speed of go miles per hour:

Weight . . . . . 2,400 lb.
Top Wing . . . . 3o ft.xg5 ft.
Bottom Wing . . . . 26 ft.x4 ft.

Gap . . . . . 4ft, 3in,
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We have V =132,S = 254;
hence, ky = 2400 =
. 0'00237 X 254 X 132
= 0229.
Now 5 = 15,5 = 13}

.. gap/mean span = % = 0'152,

and ratio of spans = gg = 0-87.

Hence from the curves of Fig. 141 we get, by interpolation,
o = 0°545.

R — S 1—o?

TUDL T s P—205,5, 452 ¢
=254 170297 2
= L

2w 225 —212'3+169

= 0156k, 2.

2

Therefore the induced drag in lb. is given by

D1=D~l—lle

= 0156k, X W
= 86 Ib.

Stagger. In order to improve the pilot’s view, or from con-
siderations of stability, it is sometimes desirable to have one
wing of a biplane forward of the other. The distance of one
wing in front of the other is called stagger and is generally
measured by the angle of stagger. The stagger is said to be
positive if the top wing is in front of the bottom one, and nega-



The Aeroplane Wing" 63

tive if the bottom is in front of the top. This is illustrated in
Fig. 40.

Negative stagger is very seldom used, and there is but little
aerodynamic advantage to be gained from the use of positive
stagger. What little advantage there is lies in a slight increase
in the value of k; ., with increasing positive stagger, and a
slight increase in the slope of the lift-incidence curve. The
theory shows that the induced drag is independent of the stagger,
for the work done against this drag is equal to the energy carried
away by the trailing vortices, and, for a given lift, this is constant

m £ /_————_._\
i "
(Y /y
[ /
() /o

\ A
) '

Ie 10F
fi"n ,\,\ / !
Slogget

ta) Positive staqger D) Negatrve stagger

F1G. 40.” Biplane Stagger.

whatever the stagger. The effect of stagger on the profile drag
is probably negligible.

Curvature of the Streamlines. There is another type of
interference between the two wings of a biplane which has not
yet been discussed.

When an air-stream flows over an aerofoil, the streamlines
are changed from straight lines to curved lines, and therefore
any body in the neighbourhood of the aerofoil is subject to a
curved type of flow. Hence the two wings of a biplane are each
in a curved type of flow due to the presence of the other. The
effect of this curvature of the streamlines is found to be equiva-
lent to a further increase in the angle 8, and hence equations (6)
and (7) are not strictly accurate. Approximate formulae have
been developed to allow for the curvature, and these show that,
while the effect on kp, is negligible, the incidence reduction

2
amounts to 8%(2) kg radians, where c is the chord and 4 is the
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gap, provided the stagger is zero. The true incidence formula
for zero stagger is therefore

2 I/fc\2
o = ao+ ;;:4'(1 +0)kL+ g(z) kL . . . (8)

If the stagger is not zero, this new correction is not so large.
For an angle of stagger of 10° its value is about go per cent. of
that for zero stagger, while for an angle of stagger of 20° its value

7z
- e
A
pZd
R P
7 (A From fig 40
i v e
w L]

F1G. 41. Lift Curve of Biplane

is about 70 per cent. The magnitude of this correction can be
gauged from Fig. 41, which gives the biplane lift curve of
Fig. 39 fully corrected for the curvature of the streamlines,
assuming zero stagger and a gap/chord ratio of unity.

Frequently, however, this correction is not applied to the
incidence, for the most important characteristics of an aeroplane
wing are the value of k;,,, and the shape of the lift-drag or
7 curves.

Distribution of Lift between Biplane Wings. For structural
reasons it is necessary to know how the lift of a biplane arrange-
ment is divided between the two wings. Experiment shows that,
even if the two wings are identical, the load intensity on the
upper wing is always greater than that on the lower one, pro-
vided the stagger is zero or positive.

Aerofoil theory has been developed to take into account the
variation in the lift distribution with stagger, and approximate
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formulae have been deduced, but the theory is lacking in an
explanation of the difference in the lift between the two wings
at zero stagger.

It is possible, however, to obtain a general explanation of the
difference in load intensity between the two wings without a
detailed study of the actual flow. For, since the difference is due
in some way to the intérference of one wing on the flow over the
other, it is only reasonable to

suppose that the interference :.5 >
effects are greatest on the K2 Torw //
under surface of the top wing "4 /gm,,, wiry
and the upper surface of the o2 A
bottom wing. Butitis known o /
that the upper surface of a L V4 —
wing contributes more to the. L @
lift than the under surface; o° Stagger.
therefore the lower wing must %9
suffer more from interference ol /\/’“
than the top one. ot Y

Channel Wall Constraint. °) A Bottom wing
In experimental work on aero-  °* ¥
foils it is found that wind *| 4 |
channels of different sizes do - @ W 5 o)
not give quite the same results. 30° Stagger.

This is due to the fact that Fic.42. Distribution of Lift between
the flow in a wind channel Biplane Wings.

differs from actual free air conditions owing to the constraint
of the channel walls on the air-stream, and the effect of this
constraint, for a given size of model, must clearly be greater
in the case of a small channel than a large one. By means of
the vortex theory it has been proved that the effect of the
constraint in a closed rectangular channel is in the form of an
upwash, and is therefore equivalent to an increase in aspect
ratio, so that, for a given lift, both the incidence and drag are
under-estimated. The formulae for the correction of wind

channel data to free air conditions are :
3729 K
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do=1 5°7g ky(degrees) . . . . (9)

and AkD=o;274gkL2 R ¢ 4]

where S is the area of the model aerofoil and C is the cross-
sectional area of the wind channel.

The use of these equations brings the results obtained from
different channels into excellent agreement.

There are some circular channels in use, which have an open
working portion. For these channels the corrections are

da = —14-3gk.,, R € 49
S
and dky, = —o-zsoak,}. o (12)

Example. At an angle of incidence of 3° the lift and drag co-
efficients of a model aerofoil 30 tn. by 5 in. were measured in a 4 ft.
wind channel and were found to be o-310 and 0-0158 respectively.

Correct the incidence and drag to free air conditions.

We have §=3X5mdCc =16
144
g = 0065
Hence, da = 157 X0065 X 0310
=032,
and 4dkp = 0°274 X 0065 X (0°310)®
= 0°0017.

The true incidence is therefore 3-32° and the true drag co-
efficient 0-0175.
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EXAMPLES

1. Calculate the induced drag coefficient at k; = o'3 for a mono-
plane of aspect ratio 5°5.

2. The following table gives the results of a wind channel test on
an aerofoil of aspect ratio 6:

« —38 —26 —12 —o1 11 28 66
ky 0033 o081 o132 o174 o217 0281 o414
kp 00052 00052 00060 0°0071 00094 0'0140 0°0268
87 10°5
0465 o500
00352 0°0466
Obtain the values of kp, and plot kp, against k;. Draw the mean
curve through the points, and show that the minimum value of kp, is
00039 and occurs at a lift coefficient of about o-18.
3. A monoplane weighing 7,850 1b. is of 70 ft. span and 12 ft.

chord. Calculate the induced drag at speeds of 8o and 120 miles
per hour.

4. The profile drag of a certain aerofoil section is given by the
following table:

kg 0042 0119 o190 0268 0340 0413 o480 o0-528

kpo 00063 0°0052 00050 0'0052 0'0066 0'0082 0'0107 0°0240

Find kp, in terms of k; for a rectangular Wwing of aspect ratio 7-2.
Hence construct the total kp curve, and from the curve read off the
values of kp at ki, = o'15and k; = o°35.

5. The wing of a monoplane is shown in the figure. Find the
aspect ratio of the wing, and so obtain an cenrae
expression for the induced drag co- LINE

. oy }
efficient k, . Hence, by assuming that 3 i
the profile drag coefficient is approxi- o
mately constant at 00065 between k; = i
L : : P
o'1 and k;, = o4, construct theBcurvc (eneem2g 02 - oo e 6

of the wing between these limits of k;, and determine the maximum

value of % and the value of k; at which it occurs.



68 The Aeroplane Wing

6. The following table gives the lift and drag characteristics of an
aerofoil of aspect ratio 6:

« ' —44 —24 —o4 17 37 58 76 95

ky, 0066 o141 0214 0204 0366 0433 0492 ©0°'526

kp 00066 00081 o'0112 0'0160 0'0217 ©0'0287 ©°0363 ©'0454

Obtain expressions for the corrections da and 4ky, which must be
applied in order to arrive at the characteristics for an aerofoil of the
same section but of A.R. 7.

Determine these characteristics, and draw the hft—mcxdence and
drag-incidence curves. Hence find the incidence and wing drag
coefficient at 60 miles per hour of an aeroplane having this aerofoil

as a monoplane wing, given that % = 8.

7. Calculate the induced drag coefficient at &, = 0°33 of a biplane
with equal rectangular wings, given that the span is 4o ft., the chord
5°5 ft., and the gap 5 ft.

8. The aerofoil section of example 6 is used in the following
biplane:

Top Wing . . . 62 ft. x 7 ft..
Bottom Wing . . 56 ft.x 7 ft.
Gap . . . . 7 ft.

Find the 111) ratios at k; = 0°294, 0366 and 0'433.

9. Prove that, for a g;'ven span and a given area, a biplane is always
more efficient than a monoplane of the same aerofosl section.

2
(Assume the biplane has equal wings, use 4 = %- and compare the

expressions for kp .)

10. Prove that, for any given speed, the ratio of the lift to the induced
drag is inversely proportional to the ‘span loading’ [span loading =
wet'ght/(span)”]

(Take kp, = k ?, a8 for monoplane.)
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THE AEROFOIL IN TWO-DIMENSIONAL
‘ FLOW

REFERENCE has already been made to the idea of a circulation of
flow round an aerofoil, and this forms the basis of all aerofoil
theory. In fact all the formulae of the previous chapter have
been established on the assumption that such a circulation exists.
The present chapter deals with the origin of the circulation, and
gives an outline of the Circulation Theory which treats of the
lifting properties of an aerofoil in two-dimensional flow.

The Perfect Fluid. The starting-point of aerofoil theory is
the conception of a perfect fluid. The perfect fluid is the name
given to the imaginary fluid free from viscosity. In the motion
of the perfect fluid past a body it is possible to calculate the
direction and speed of flow at every point. (This branch of
mathematical physics is called Hydrodynamics.) If this could
be done for a real viscous fluid like air, it would be possible to
calculate the reactions experienced by a body, without any
simplifying assumptions or approximations. Unfortunately the
presence of viscosity renders the problem too difficult for
mathematical investigation, and in consequence attention has
been directed to studying in what essentials the viscous flow
differs from the perfect flow, and to ascertaining to what extent
the principles underlying the latter can be applied to the
former.

The Boundary Layer. Now the perfect fluid differs from a
real fluid only in its freedom from viscosity, and it has been
shown how viscosity effects can arise only when there is relative
motion between the particles of the fluid. In the case of air
flowing past a good streamline body like an aerofoil, the greatest
viscosity effects occur near the surface of the body, where the
particles of the air next to the surface are arrested while the
others move on. The assumption made in the development of
the aerofoil theory is that the region in which the viscpsity effects
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are important is confined to a very thin layer surrounding the
surface of the aerofoil (see p. 38), beyond which layer the effect
of viscosity is considered to be so small as to be negligible, and
therefore the flow outside the layer is the same as that of the
perfect fluid. This layer is therefore referred to as the boundary
layer, and consists of a thin sheet of vortices surrounding the
aerofoil. If then this thin boundary layer is regarded as being
part and parcel of the aerofoil and capable of transmitting
pressures, the general mass of air may be regarded as flowing
past this combined body in the same way that the perfect fluid
would flow, and the methods of Hydrodynamics become im-
mediately applicable. It follows at once that the theory can hold
good only so long as the flow is streamline and the viscosity
effects are small enough to allow the assumption of a thin
boundary layer. Obviously, in the region of the critical angle,
the flow is so turbulent as to invalidate the theory, which is
therefore confined to the range of incidence covering normal
flight.

Profile Drag. One of the first rules of Hydrodynamics is that
a body exposed to a stream of the perfect fluid in two-dimer.-
sional motion experiences no resistance. This can be proved
mathematically, but may be regarded as the obvious consequence
of the absence of viscosity. Without viscosity there can be no
skin friction and no form drag, and these are the only types of
drag occurring in two-dimensional flow in a viscous fluid.
Hence in the perfect fluid every body is a streamline body, and
the streamlines everywhere follow the surface of the body. An
aerofoil, however, does experience a certain amount of drag,
namely profile drag, but this is small compared with the lift and
may be neglected. In any case the profile drag of aa aerofoil
consists mostly of skin friction due to the presence of the
boundary layer, and, since the boundary layer is supposed to
be bound to the aerofoil, the existence of the profile drag is
not contrary to the assumption that outside this layer the flow
is sensibly perfect.

The Origin of Lift. Now an aerofoil section is a complex
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shape mathematically, and, since any shape is streamline in the
perfect fluid, the origin of lift is generally illustrated in Hydro-
dynamics by the simple case of a cylinder of circular cross-
section.

If the cylinder is at rest, the streamlines are symmetrical
about the centre line, as shown in Fig. 43 (a), and the cylinder
experiences no reaction. If, however, the cylinder is rotating
about its axis, or is surrounded by a circulating flow, then it can
be proved that the combination of the translational flow and the

L

3y Simple translational Flow 15y Translational, Flow super-
imposed on circulatio

Fic. 43. Origin of Lift.

circulation leads to a flow pattern as in Fig. 43 (), and the
cylinder is found to experience a reaction or lift L as shown.
The circulation has the effect of increasing the velocity above the
cylinder and decreasing it below, so that, by Bernoulli’s equa-
tion, there is reduced pressure above and increased pressure
below. This pressure difference is revealed by the streamlines,
for it can be seen that some of the fluid which passed below the
cylinder when the cylinder was at rest is now passing above it,
and hence there is a flow from a region of high pressure to one
of low pressure.

Although a circular section has been chosen for illustration,
it can be proved that, for any section, such pressure conditions
can exist only if there is a circulation. In the case of an aerofoil
these pressure conditions are known to exist ; hence the lift of an
aerofoil must be due to some form of circulation.

Circulation. The origin of the circulation round an aerofoil
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is not obvious, and, in order to explain its existence, it is neces-
sary to return to the boundary layer. This layer consists of a
thin sheet of vortices, those on the upper surface of the aerofoil
clearly spinning in a clockwise direction (if the flow is from left
to right), and those on the lower surface in an anti-clockwise
direction. Now a vortex attempts to impart its rotation to the
general mass of the fluid; hence every elementary vortex in
the vortex sheet imparts a rotational velocity to the rest of the
stream, the velocity induced at any point depending upon the
distance of the point from the centre or core of the vortex, and
upon the direction of spin. The resultant velocity at any point
is then the vector sum of all the elementary velocities. Owing to
the complex and indefinite nature of the boundary layer it is
impossible to calculate the actual resultant rotational velocity
at any point, but, from what has been said, it is clear that the
net effect of the layer must be equivalent to some form of
circulation.

Thus it appears that, although viscosity is responsible for
skin friction and form drag, without viscosity an aerofoil would
not lift. . ,

From Circle to Aerofoil. In the case of the circle of Fig. 43
it is possible to calculate the lift if the ‘strength’ of the circula-
tion is known. Now, by a mathematical device which cannot be
entered into here, it is possible to transform the circle into an
aerofoil section and the streamlines for the circle into those for
the aerofoil ; and the aerofoil lift can be calculated. The shape
of the aerofoil section depends upon the actual particulars of
the transformation, and, by varying the numerical details of the
transformation, an infinite number of shapes can be obtained.
Again, the lift obtained for the aerofoil will depend upon the
circulation strength assumed, and so far nothing is known as to
the correct value to be taken. Clearly, however, the flow pattern
is also dependent on the circulation, and if the circulation is
assumed to be that which makes the calculated flow pattern
agree with the known flow pattern, the true lift will be obtained.
The principal feature of the flow pattern in this connexion is
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the manner in which the streamlines meet and leave the aero-
foil, and the circulation is determined in the theory by supposing
that the flow is absolutely smooth, so that the streamlines
divide at the nose and re-unite at the tail.

For all reasonable shapes of aerofoil section obtained in this
manner, it is found that the lift coefficient and angle of incidence
are connected by the equation

kp =m(a+f) . . . . . . (1)
where —p is the angle of no-lift, and both « and 8 are expressed
in radians. The theory shows, of course, no critical angle, since
it is based entirely on the assumption of streamline flow outside
the thin boundary layer; hence this formula can only be re-
garded as applicable to that range of incidence over which &,
increases uniformly with «. Again, due to the fact that the
actual flow does depart slightly from the perfect flow as the
angle of incidence increases, it is better to reduce the slope of
the lift curve from = to about 3. Then, if x and B are expressed
in degrees, the lift-incidence equation becomes

kp =oo052(a+B) . . . . . (2)

This equation has been applied to R.A.F. 15, using the
measured no-lift angle of —2-1°. The calculated lift curve is
shown in Fig. 44, where it is compared with that of Fig. 35,
obtained from model data corrected for infinite aspect ratio by

. 2 .
means of the equation « = o+ -71kL. The agreement is seen
kg

to be very good indeed, the slight discrepancy being due to the fact
that, in the construction of Fig. 35, the above formula for elliptic
lift distribution was used instead of that for the true distribution.

From equation (2) and the equation o = ay+ iA k; it follows
.

that the slope of the straight part of the lift-incidence curve of an
aerofoil of finite aspect ratio is independent of the aerofoil section
and depends only on the value of the aspect ratio. For all reasonable

shapes of aerofoil section this is very well confirmed by experi-
ment,
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Again, the theory enables the moment of the lift about the
leading edge to be calculated, and it is found that, if k,,, is the
value of the moment coefficient at zero lift, k,, and &, are always
connected by the equation

hy = —025kithy . . . . . (3)
This also agrees very well with experiment (see p. 30).
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F16. 44. Lift Curve for Infinite Aspect Ratio.

Calculation of g and k,,. The values of 8 and k,, depend
upon the particulars of the transformation, and, given the shape
of an aerofoil section, it is a difficult matter to find the exact
transformation which will convert a circle into this shape. It
has been proved, however, that 8 and &, depend primarily on
the shape of the centre line of the aerofoil section, the actual
thickness being relatively unimportant. Thus, for the purposes
of calculation, the aerofoil section may be replaced by the curved
line representing the mean of its upper and lower surfaces, the
section itself being regarded merely as a fairing placed round
this centre line to render the flow streamline.

(@) Centre line a straight line. When the centre line is straight,
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i.e. when the section is a symmetrical one, it is clear from
symmetry that the angle of no-lift is zero, and also the value
of &,,. :

(b) Centre line a circular arc. When the centre line is a circular
arc it can be proved that 8 and %, are given by the simple

relations
B=z2y . . . . . . . (4
and Fo, = -’2_’,/ N ()]

where B is expressed in radians and y is the camber of the centre

Fic. 4s.

line, defined by the ratio of the maximum ordinate of the centre
line to the chord. In equation (4) B is taken to be measured
from the line joining the leading edge and trailing edge ; it must
therefore in general be corrected to read from the true chord
which is defined as the tangent to the under surface. Thus in
Fig. 45 the calculated value of B would be measured from 4B
and would therefore have to be increased by the angle 6.

Example. Calculate the angle of no-lift and the value of k., for
an aerofoil with a centre line of camber o-03, given that the line
joining the leading and trailing edges is inclined at 1-66° to the
chord.

We have B =2y
= 0-06 radians
= 3-44 degrees
.. angle of no-lift = 3-44+1-66 degrees
= §1°
Again k, = — "2_’»,

= —0'047.
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In order to test the accuracy of the theory, several aerofoil
sections have been developed by curving the centre line of
symmetrical sections into circular arcs. For instance, the section
known as R.A.F. 32 was obtained from the symmetrical section
R.A.F. 30 (sce Fig. 8) by giving the centre line a camber of 0-05,
and another section known as R.A.F. 31 was obtained by using
a camber of 0-02. The results of wind channel tests on these
two aerofoil sections are given in Table II below and compared
with the calculated characteristics. The table also includes
particulars of two other sections, R.A.F. 25 and R.A.F. 26,
which are of half the thickness of the series R.A.F. 30-2.

) TABLE 11
COMPARISON OF OBSERVED AND CALCULATED AEROFOIL
CHARACTERISTICS
Aerofoil | kg Angle of no-lift
Section ] Camber ,(obsen'ed) (calculated) | (observed) (calculated)
RAF.z5| oor — o016 — o016 — 32" — 32"
w 26| ooz | —o0028 — 0031 =36 —36°
w31, o002 l — 0'029Q —-o031 | —62° -~ 6°4°
, 32! o005 | —o0067 —o0078 | —73° g

It will be seen that, except for the moment coefficient of the
aerofoil of greatest camber, the agreement between theory and
experiment is quite good.

(c) Other forms of centre line. When the centre line is not
a circular arc, § and k,, can be calculated by means of the
integral calculus if the equation of the centre line is known, or
determined graphically if it is not known. The method is
somewhat intricate and is given in the appendix.

Further Camber Effects. Experiment shows that, for a given
thickness of section, the maximum lift coefficient increases as
the centre line camber increases, so long as the centre line
camber does not exceed a value of about 0-08. In practice the
camber rarely exceeds a value of 0-06, for reasons which will
appear later; hence, if the value of k., were the only con-
sideration, it would always be desirable to use a section of high
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camber. In the choice of aerofoil section, however, there are
two other points to be considered, namely, the shape of the
profile drag curve and the movement of the centre of pressure.

(a) Profile Drag. Consider the two aerofoil sections R.A.F. 31
and R.A.F. 32 of the same thickness but of different camber.
The profile drags of these sections have been determined
from model tests on aerofoils of aspect ratio 6, by using the

equation kp = 1°05X iAkL2 (see p. 58), and the drag curves
.

are shown in Fig. 46. It will be seen that, although the value of
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F1G. 46. Profile Drag Curves Illustrating Effect of Camber.

the minimum profile drag coefficient is the same in each case,
the value of the lift coefficient at which this minimum occurs is
quite different. The figurc shows that R.A.F. 31 would be a
suitable section for a high speed aeroplane working at a low lift
coefficient, whereas R.A.F. 32 would be more suitable for an
aeroplane in which the minimum profile drag is required at the
slower climbing speeds.

An explanation can be found for this variation in the position
of minimum kp, by considering an aerofoil as a circular arc.
For it is only reasonable to suppose that the profile drag will be
a minimum_when the aerofoil is at an incidence o° (in two-
dimensional flow.) Now k; = m(«+p), and therefore the lift
coefficient corresponding to « = o is given by &, = nf = 2my,
since § = 2y. Hence the minimum value of &, might be
expected to occur at a lift coefficient of

kL' = 217')’ . . - .. . . (6)
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- The application of this equation to R.A.F. 31 and R.AF. 32
gives the values of k; for minimum &, as 0-13 and 031 respec-
tively, and these values agree fairly well with those determined
from experiment and revealed by Fig. 46.

The above equation also shows that, if the camber is very
great, the profile drag will not reach its minimum value until
a very high lift coefficient—probably outside the useful range—
is reached, so that for all normal flying speeds the profile drag
will be excessive.

(b) Centre of Pressure Movement. The use of the equations

kep = —% (taking a negative sign to make k¢ p_positive)

and = —o025k; +k,,
leads to the equation

kcp. = 025— k_: .

Hence, since %, is always negative, a large value for the
camber and therefore a large value for%,, (= gy) means a back-

ward position of the centre of pressure. Now structural con-
siderations demand that the travel of the centre of pressure, as
given by its most forward position at the stall and its backward
position at top speed, should be kept as low as possible, and it
can easily be shown from the above equation for k¢ p that a
large value of %, leads to a large travel. Consider, for instance,.
a high speed lift coefficient of k, = o'12 and a stalling speed
coefficient of 0:6. Then the C.P. travel when k&, = —o-0201is
from 0-417 to 0-283, while when &, = —o-060 it is from o-750
to 0-350. A large camber therefore leads to an excessive C.P.
travel, besides possibly throwing the position of minimum &p,
outside the normal flying range. For these reasons the camber
seldom exceeds a value of 0-06.

It is possible, however, to reduce the value of %, by departing
from a circular arc centre line, in which the curvature is con-
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stant throughout the length, to a centre line in which the curva-
ture decreases towards the trailing edge;; and, if the centre line

is given a certain amount of reflex curvature (Fig. 47) the value
of k,, may be reduced to zero, so that the C.P. is stationary at

0-25. Thls is discussed more fully in the appendix.
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Two slight disadvantages attend this method of reducing
C.P. travel, viz.:
(1) the value of kan is slightly reduced,
and (2) the proﬁle drag is slxghtly increased, although if the
maximum camber remains unaltered, the position of
minimum kp remains practically unchanged.
 Effect of Thickness. The theory does not take into account
the actual thickness of an aerofoil section, but experiment shows
that, for reasonable values of the thickness/chord ratio (called
t/c ratio), say not exceeding o-16, the lift and moment charac-
teristics are almost independent of the thickness and depend
upon the centre line camber only, as indicated by the theory.
As might be expected, however, the profile drag increases with
thickness, and Fig. 4.8 shows the approximate values of minimum
kp, for varying t/c ratios.
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This curve has been prepared from experimental data on
aerofoils obtained by curving the centre lines of symmetrical
sections into circular arcs, but it probably gives a good indica-
tion of the nature of the increase in min. k;, which accompanies
increase in thickness for all aerofoils of good streamline form.
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FiG. 49. Profile Drag Curves for different Thickness, Chord Ratios.

Another feature of the profile drag is that, while the profile
drag curve of any aerofoil section is roughly parabolic in shape,
the curve rises more steeply on either side of the minimum for
the thinner sections. Thisisillustratedin Fig. 49, which givesthe
mean kp, curves for R.A.F. 31 and R.AF. 26. These sections
have the same centre line camber of 0-02, but the former is twice
as thick as the latter.



VI
PARASITE DRAG

Parasite Drag. In addition to the drag of the wings there is .
the drag of the remaining parts of the aeroplane, including the
fuselage, tail unit, landing gear, struts and wires. Except for the
tail plane, which behaves as a small aerofoil, these various parts
contribute nothing to the support or propulsion of the aero-
plane, and their drag is therefore called parasite drag. Generally
a little lift comes from the fuselage, but this is so small as to be
negligible in comparison with the main plane lift. (Strictly
speaking, the profile drag of the wings should also be labelled
parasite drag, for it is only the induced drag which owes its
existence to the wing lift.)

Parasite drag consists of skin friction and form drag, and can
be kept low only by careful streamlining. Like the profile
drag of the wings, it cannot be directly calculated, but must be
obtained from wind channel data.

Dynamic Similarity. It hasbeen proved both experimentally
and mathematically that every type of air force can be written
with a good degree of accuracy in the form

R = kpl*V?,

where [ is some typical linear dimension of the body, so that /2
represents an area. In the case of aeroplane wings /2 is replaced
by the wing area S; in the case of parasite drag it is convenient
to replace it by the frontal or projected area 4. The use of the
above equation then enables model data to be corrected to full
scale.

In estimating the parasite drag of an aeroplane it is usual to
express each item in Ib. at 100 ft. per second in standard density.

Example 1. The drag of a flat plate 6 in. square and held at
right angles to the atr-stream is found to be 1-215 lb. at 6o ft. per
second. Find the resistance coefficient k and the drag of a plate
1 ft. square at 100 ft. per second.

3729 M
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We have A = }x} = o25; hence
R .
- . rs
" 000237 X025 X 3600
= 0°57.

Hence the drag when 4 = 1 and V' = 100 is given by
R = 057 X 0°00237 X 100%
= 135 Ib.
Example 2. The drag of a }; scale fuselage at 40 ft. per second is
009 lb. Find the full scale drag at 100 ft. per second.
Let A be the frontal area of the model; then the full scale

areais 4 x 122. Hence, if R, R’ are the model and full scale drags
respectively, we have

R = kpA x 40?
R’ = kpA x 12% x 100?
. R 12*x100?
SR e
2 2
SR = Ez—’_raigg X 0°09
= 81 Ib.

Streamlining. As was stated in Chapter III, the object of
streamlining is to reduce the form drag by eliminating as far as
possible the turbulent motion in the wake, and it is found that
the best streamline forms all possess two common charac-
teristics, namely,

(1) afairly blunt nose,
and (2) a shaped profile leading to a ‘tail’.

The drag of any bluff-shaped body can be reduced by the
addition of a shaped nose and tail, but there is obviously a limit
to which useful streamlining can be carried out by these means.
For the additional surface of the fairing increases the skin



Parasite Drag 83

friction, so that, if the profile is drawn out to a great length,
there may be an increase in skin friction without any corre-
sponding reduction in form drag.
The drag or resistance coefficient of a streamline body

depends upon )

(1) the actual shape or curvature of the profile,

(2) the position of maximum thickness,
and (3) the fineness ratio, which is the ratio of the length

of the body to its maximum thickness.

A C
8 0’

Fi1G. so.

Corresponding to these three items, the following points
should be noted:

(1) The profile should possess continuity of curvature. Flats
like AC and BD, with discontinuous points like 4, B, C
and D, should be avoided (Fig. 50 (2) ). A smooth flow
can only come from a smooth regular contour.

(2) A very blunt nose, with the maximum thickness close to
the nose, is clearly still associated with form drag (Fig.
50 (b) ).

(3) A very long tapering shape as in (c) results in excessive
skin friction. '

Numerous experiments have been carried out to determine
the best form of a streamline body, and it is found that the
resistance coefficient has its lowest value when the fineness ratio
is about 3 and the maximum thickness occurs at a point about
40 per cent, of the length back from the nose.
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The foregoing remarks apply both to solid bodies like fuselages
and airship envelopes, and also to the cross-sectional shapes of
bodies like struts and wires; which are long in comparison with
the length of their cross-sections and over which the flow is
therefore approximately two-dimensional.

Struts. The main vertical members connecting the two
wings of a biplane are called the interplane struts. The body
struts connect the fuselage to the wings, while struts are also

used to connect the undercarriage and
the tail plane to the fuselage. A typical
type of strut section of fineness ratio 3

Fic. s1. 3: 1 Streamline 18 shown in Fig. 51. For values of the
Strut Section. fineness ratio between 3 and 4 the re-

sistance coefficient varies but little and has a value of about
0-042. This corresponds to a drag of 1 lb. per square foot of
frontal area at 100 ft. per second in standard density.

Example. A 4:1 fineness ratio strut is 65 ft. long and 5 in. wide
Find its drag at 120 miles per hour.

Since the fineness ratio is 4, the thickness of the strut

5. 5
= 2in. = = ft.
4 48
*. frontal area = 6—5-8- 5 sq. ft.
Also V =176 f.ps.
Hence, taking the resistance to be 1 Ib. at 100 f.p.s., we have
65 X 5 1762
R =
X 48 % Too?
=21 lb.

Where a strut joins the wing, the strut end and socket disturb
the flow and so increase the drag. The actual amount of extra
drag produced depends upon the type of joint which is used, but
an average figure is about o-2 Ib. at 100 ft. per second for each
end. In some aeroplanes with thick wing sections the strut ends
are buried inside the wings, and the ‘end effect’ is negligible.
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Wires. The interplane and body struts are braced and cross-
braced by wires. These wires are called R.A.F. wires and are
elliptic in cross-section with a fineness ratio of 4. (Fig. 52) They
have a much lower drag coefficient than ordinary circular wires,
and the drag could be still further reduced, of course, by using
a streamline strut type of cross-section. It is found, however,
that the reduction is not worth the increased
difficulty of manufacture. The actual drag ©
coefficient is about o-18, but the drag is Fic. s2. Streamline
usually expressed in lb. per foot run at 100 ft. Wire
per second. The following table gives the drag for the various
sizes of wires, together with the added drag due to end fittings
and wiring plates. It will be seen that the end effect is re-
sponsible for the greater part of all streamline wire drag. This
is due mostly to the interference which arises between the
fittings and the wings.

TABLE III
WIRE DRAG
Drag | Drag per ! Drag | Drag per
(Ib. per | end fitting (lb. per | end fitting
Wire ft. run) (1b.) Wire ft. run) (.)
4 BAA. 0025 021 3” B.S.F.| o052 090
2 B.A. 0027 030 s, o-0b6o 1-06
}” BS.F| o034 044 T 0064 1’15
2" ., | o037 0's3 13" . 0067 132
o 0°041 068 o, 0'071 1'51
7, l 0'049 076

The Fuselage. The fuselage is a long box-like structure
consisting essentially of four main longitudinal members (called
the longerons), braced by struts and wires, and covered with a
streamline fairing. Owing to the presence of the engine,
cockpits, wind screens, &c., all of which considerably disturb
the flow and mar the streamlining, it is often a difficult
matter to obtain a good streamline fuselage. In addition, the
fuselage of a single-engine machine is situated in the slipstream,
i.e. the rotating mass of air thrown backwards by the airscrew,
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and this further upsets the streamlining. Thus a jood fuselage
can only be designed after some difficulty and expense, and in
some cases the increased cost of design and manufacture may
outweigh the advantages to be gained by careful streamlining.
Since, however, the drag of the fuselage may easily be anything
up to 75 per cent. of the total parasite drag, high performance
can be obtained only by careful fuselage design. It should be
noted that, in the case of a twin-engine aeroplane in which the
engines are housed either on or between the main planes, the
absence of the slipstream and of the disturbing influence of the
engine in the nose renders a good streamline body compara-
- tively simple of attainment.

Unfortunately the fuselage varies so much from one aeroplane
to another that it is almost impossible to give any generalized
data for the estimation of fuselage drag, and the only way of
obtaining a low resistance is by systematic wind channel experi-
ments. Obviously, however, the frontal area must be kept as
small as possible, but equally important is the necessity for
continuity of curvature and absence of flats. Thus the drag of
a rectangular type of fuselage with sharp edges can often be
reduced by adding a streamline fairing, although by these
means the frontal area is increased.

In the case of a single-engine aeroplane with the engine in the
nose, the presence of the engine may have a devastating effect.
For instance, while it may be possible to obtain a basic shape
(i.e. the shape before the engine, cockpits, &c. are added) for
about 2 Ib. per square foot of frontal area, the final shape with,
say, a radial air-cooled engine may give a figure as high as
6 or 7 1b. This is due mostly to the turbulence created by the
projecting cylinders, and can often be slightly reduced by care-
ful shaping of the nose in front of the engine and by local fairings
behind the cylinders. A new and better scheme, which gives a
considerable reduction, consists of the addition of a ring enclos-
ing the cylinders, the section of the ring being of aerofoil shape.
This ring is called a turbulence ring and acts in a similar manner
to the auxiliary aerofoil of the slotted wing. The smooth flow



Parasite Drag 87

over the ring sweeps down on to the general mass of air behind
the cylinders and tends to break up the turbulence and smooth
out the flow (Fig. 53).

An insight into the minimum basic drag obtainable is afforded
by some experiments carried out on airship envelopes. Five
models were tested, and they were all solids of revolution but of

T g iy

F1G. 53. Turbulence Ring.

varying fineness ratio. The generating curves are shown in
Fig. 54, and the resistance characteristics of the bodies are given
in Table IV.

. TABLE IV
DRAG OF AIRSHIP ENVELOPES
Model Fineness kp b./sq. ft.
No. Ratio R at 100 f.p.s.
1 60 0'0348 o082
2 4'5 0'0279 066
3 40 0'0251 0'59
4 35 0'0245 o'58
5 30 00224 0’53

Such low values for the drag cannot, of course, be realized
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for aeroplane bodies, even for basic shapes. It is impossible, for
instance, to taper a fuselage right down to a point, and the
inevitable foreshortening of the ideal streamline body must
give rise to form drag. Again it is generally impossible to have
a fuselage perfectly symmetrical about its centre line, or of
circular cross-section throughout its length. The result of such
departures from the ideal form is that a figure of 2 1b. per
square foot for the basic shape probably gives the absolute
minimum—and that only to be obtained in exceptional cases.

el
el

F16. 54. Airship Envelopes.

The Undercarriage. The undercarriage consists of wheels,
axle, struts and cables. The wheel drag depends upon the hub
fairing used, but for the normal types of faired wheels a figure of
about 4 to 5 lb. per square foot may be taken. Axles are generally
streamlined and may be regarded as struts. Cable drag depends
upon the ratio of the length of the cable to the diameter, but an
average figure is about 10 Ib. per square foot.

The Tail Unit. The tail unit comprises fin, rudder and tail
plane, all of which are thin symmetrical surfaces of aerofoil shape.
The drag of the tail plane depends upon its incidence and the
position of its elevators, but, for the purposes of a rapid estimate
of paragite drag, the whole tail unit may be considered to be
working at a normal aerofoil drag coefficient &, of about 0-0070.
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Interference. When two bodies are in close proximity each
affects the flow over the other, and it is not safe to assurhe that
the sum of the drags of the two bodies when tested separately
is equal to their drag when tested together. When the drag of
the combination is greater than the sum of the individual drags
the difference is called interference drag.

The interference drag of the two wings of a biplane has
already been studied and found to be calculable ; that of parasite
drag can only be determined by experiment.

It is found that large interference drag may arise at the
junction of the struts, axle and wheel of an undercarriage, and
the total interference drag of both sides may amount to as much
as the drag of the wheels themselves. The true undercarriage
drag can therefore be obtained only by testing the undercarriage
as a complete unit.

Again, interference may arise between the wings and the
fuselage, and in this case the interference may not only increase
the drag but also decrease the lift. Experiment appears to show
that, in the case of a biplane, the best results are to be obtained
by having the fuselage on the lower wing. This results in a loss
of lower wing surface, but by careful experimenting it is generally
possible to get the same lift from the body-wing combination
as from the biplane with full lower wing span, while interference
drag is excluded altogether.

Other possible sources of drag are interference effects between
fuselage and undercarriage, and between fuselage and tail
unit.

Effect of Incidence. Since parasite drag consists of skin
friction and form drag, the variation of parasite drag with inci-
dence is of the same order as that of the profile drag of the
wings. The drag of struts and wires actually decreases slightly
as the incidence increases, owing to the reduction in the pro-
jected area at right angles to the air-stream. On the other hand,
the drag of the fuselage generally increases with incidence,
while the undercarriage drag often decreases at first and then

later starts to increase. This is illustrated in Table' V, which
3729 N
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gives the model fuselage drag and undercarriage drag (tested
complete) of an early type of fighting aeroplane.

TABLE V
FUSELAGE AND UNDERCARRIAGE DRAG

Effect of Incidence.

Angle of Fuselage Drag Undercarriage Drag
incidence (model drag in lb.) | (model drag in Ib.)
-2 0'091 0042
o 0'090 0041
2 0°090 ‘0-040
4 o090 0039
6 0°092 0'039
8 0-095 0'039
10 0°099 0040
12 o105 0042
15 o113 0045

With regard to body-wing interference it is quite possible
for this to be zero at small angles of incidence but to develop
and increase as the incidence increases. Body-wing combina-
tions should therefore be always carefully tested over the com-
plete range of incidence covering normal flight. Especially is
this important with twin- or multi-engine aircraft in which the
engines are housed in small streamline nacelles and mounted
on or between the wings, as it has been found that large inter-
ference effects may arise at the higher angles of incidence.

Distribution of Parasite Drag. The relative importance of
the various parts of an aeroplane in giving rise to parasite drag
varies with the type of aeroplane, but an average distribution of
drag for a typical single-engine fighting aeroplane at o°incidence
is given in Table VI.

Drag of Complete Aeroplane. When the total parasite drag
of an aeroplane is known for one speed and density (generally
100 f.p.s. and standard density) it can be converted into co-
efficient form by dividing by pSV2. This is called the parasite
drag coefficient, and the addition of this coefficient and the
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wing drag coefficient then gives the total or overall drag coefficient
of the complete aeroplane.

TABLE VI
PARASITE DRAG OF COMPLETE AEROPLANE
i
_Companem | (5. at 100 f.p.s.)

Fuselage I 60
Undercarriage 20
Struts and wires 15
Tail unit and skid 10
Miscellaneous s

Total Drag i 110

Example 1. The parasite drag of an aeroplane at o° incidence is
122 /b, at 100 ft. per second in standard density. Find the parasite
drag coefficient, given that the wing area is 320 sq. ft.

. D
ParaSlte kD = ;S"Vz
122
0°00237 X 320 X 100%
= 00161

Example 2. If the parasite drag coefficient of the above example
tncreases by 0-0003 for every 2° decrease or increase of incidence
from o° incidence, find the overall drag coefficient of the aeroplane,
given that the wing characteristics are as in the following table:

a -2 o 2 4 6 8 10 12
k, 0003 0070 0132 0199 0262 0327 0390 0450
kp 00070 00066 00082 0'0I119 0'0175 0'0247 0°0330 00428
14 16
0'502 0°530
0'0550 0°0740

Hence construct the L|D curve for the complete aeroplane and
determine the maximum value of LD and the value of k; at which
it occurs.
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We tabulate as under:

ke 0003 0070 0132 0199 0262 0°327 0°390
Wing kp 0'0070 00066 0'0082 0'0119 0'017§ 0°0247 00330
Parasite kp 00164 00161 00164 00167 00170 00173 0'0176
Overall kp 00234 00227 00246 00286 00345 00420 00506
L'D o13 308 537 696 760 779 771

0'450 0°502 0°§530
00428 00550 00740
00179 00182 0-0185
0'0607 0°0732 00925
741 686 573

The curves of kp and L/D against k; are shown in Fig. §3,
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Fic. 55. Overall Lift/Drag Curve.

from which it will be seen that the maximum value of L/D is
7-80 and occurs at about k; = 0-33.

From the overall L/D curve of an aeroplane the total drag at
any speed can easily be obtained.
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EXAMPLES

1. The drag of a model engine nacelle at 40 ft. per second is found
to be 0-156 Ib. Find the resistance coefficient, given that the overall
diameter is 6 in. Hence find the drag at 100 ft. per second of the full-
scale nacelle which is 48 in. in diameter.

2. The resistance coefficient of a certain type of strut section is
0'044. Find the drag at 100 ft. per second of a strut 4 ft. long and
1°25 in, thick.

3. A 3-1 fineness ratio strut is 2-5 ft. long and 3 in. wide. Find its
drag at 60 miles per hour. (Take 1 Ib. per sq. ft. at 100 f.p.s.)

4. The drag of a }; scale fuselage of a large passenger-carrying
aeroplane at 6o ft. per second is 0:148 Ib. Find the full scale drag at
100 ft. per second. )

5. The parasite drag of a heavy bombing aeroplane is 315 1b. at
100 ft. per second. Find the parasite drag coefficient, given that the
wing area is 920 sq. ft.

6. The following table gives the parasite drag of a single-seater as
measured and estimated. Find the parasite drag coefficient, given
that the wing area is 310 sq. ft.:

Fuselage . . . }scaleat 6o f.ps. . . o551b.
Undercarriage . .} scale at 6o f.p.s. . . 049 1b.
Struts and wires . . Estimated full scale at 100

f.ps. . . . . 19lb.

Tail unit, skid and miscel-
laneous . . R " » . 11 lb.

7. The profile drag of a certain aerofoil section is given in the
following table:

Ry, 005 010 01§ 020 02§ 030 035 040

kp, ©0'0066 00060 0'0056 00055 ©0°0055 00061 ©0'0068 0-0078
If this section is used on a biplane having equal wings of 4.R. 7 and a
gap/span ratio of o'13, calculate the total drag coefficient for each
value of the lift coefficient, given that the parasite drag coefficient is
approximately constant at 0°0142.

L . .
Hence construct the D curve and determine the maximum value
L
of =.
D



VII
AEROPLANE PERFORMANCE

THE previous chapters have described how it is possible to
arrive at the lift and drag characteristics of an aeroplane, so
that, for any given speed, the drag of the complete aeroplane
may be determined. It is proposed in this chapter to deal with
the part played by the power unit in overcoming this drag, and
with the calculation of the performance of the aeroplane, i.e.
its maximum level speed and maximum rate of climb.

The Power Unit. The power unit consists of the engine and
airscrew, whose function is to provide a propulsive force which
will overcome the drag and so maintain the aeroplane in flight.

The engines used in aeroplanes are mostly internal com-
bustion engines whose essential characteristics are reliability
and lightness. In principle they do not differ from the ordinary
motor-car engines, and derive their power from the explosion
of a mixture of petrol and air in the cylinders. The actual horse-
power of an engine is obtained from brake tests, and is called
the brake horse-power or B.H.P. and is generally denoted by P.

Airscrews are made of either wood or metal and generally
have two or four blades. An airscrew, on being rotated by the
engine, discharges a mass of air backwards through the airscrew
disc, and therefore develops a forward thrust T which is equal
to the rate of change of momentum of the air so discharged.
Like any other machine, the airscrew cannot convert into useful
work the total work put into it, and the ratio of the useful work
to the total work is called the efficiency and denoted by the
Greek letter 7 (eta).

The Slipstream. The rotating mass of air discharged back-
wards by the airscrew is called the slipstream, and this increases
the drag of an aeroplane. For those parts of the aeroplane which
are situated in the slipstream are subject to an air speed which
is greater than the forward speed of the aeroplane; hence their
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drag is greater with the airscrew running than it would be at the
same forward speed in free air. The parts of an aeroplane
situated in the slipstream are the fuselage (and/or the engine
nacelles in the case of multi-engine aeroplanes) and portions of
the undercarriage, tail unit, wings and interplane struts and
wires, but the increase of drag is due mostly to the fuselage
or engine nacelles. In the wind channel it is possible to measure
the ratio of the body drag with airscrew running to its drag in
free air, and so the body drag can be corrected for slipstream
effect. Instead, however, of increasing the body drag, it is
sometimes convenient to regard the added drag as equivalent to
a loss of thrust and to allow for the slipstream effect by reducing
the airscrew efficiency. The corrected efficiency is then called
the net airscrew efficiency.

Horse-Power Required. Consider an aeroplane flying level
at a speed V, and let its drag at this speed be D. Then the work
to be done against the drag is DV ft.-Ib. per second. Hence the
horse-power required ( = H.P,) to maintain a steady level
speed V is given by

HE =2 M
550

By means of this equation and the overall k;, or L/D curve
the horse-power required for any level speed may be calculated.

Example. Given that the aeroplane of the example on p. 91
weighs 2,950 Ib. and has 320 sq. ft. of wing area, use the LD curve

of Fig. 55 to find the horse-power required to maintain the aero-
plane at a level speed of 120 miles per hour.

We havs k= ;,;1;78 and V = 176.
ok = 2950
0'00237 X 320 X 1762
= 0-126. |

L L
From the T curve, 3 = 5117 at k, = 0'126.
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W s
Therefore, D = D’ since W =L
= 295°
517
= 571 lb.
Hence, HP, = 124
550
_ 571X176
550
= 182-7.
The horse-power required for the aeroplane in the above
® !
E)OD!— ,/
: /
.g 200 g
4 g
£ 100 —W /
b1
40 60 80 100 120 140 160
Speed MPH.

Fic. 56. Horse-Power Required for Level Flight.

example has been calculated over a range of speeds, and is
shown graphically in Fig. 56. It will be seen that H.P, decreases
continually as the speed decreases until a speed of about 6o to
65 miles per hour is reached, when it begins to increase again
owing to the rapid increase of the drag coefficient which out-
weighs the decreasing speed.

(Notice that H.P, = DV _ kopSV? )
550 550
Horse-Power Available. The horse-power available (=H.P,)
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for driving the aeroplane is the product of the airscrew
efficiency and the brake horse-power, that is,

HF =P . . . . . . (2

The horse-power available is not constant for all speeds of
flight, for both the airscrew efficiency and the engine power
vary with speed even if the throttle setting remains unaltered.
The actual variation depends primarily on the airscrew charac-
teristics, which are discussed in detail in the next chapter; but

g 30
3 L ——]
3 —]
'BLUV /
¥ 1
o
§loo
40 60 80 100 120 140 160
Speed MPH.

Fi1G. 57. Horse-power Available at Different Forward Speeds.

if, as is often the case, both the engine power and the airscrew
efficiency attain a maximum in the neighbourhood of top level
speed, then the general nature of the variation of horse-power
available is as shown in Fig. 57.

This curve has been prepared by taking a figure of 400 for
the maximum horse-power and a figure of 70 per cent. for the
maximum net airscrew efficiency.

Speed and Climb. Fig. 58 below consists of the curves of
Figs. 56 and 57 put on the same diagram; such a diagram is
called a performance chart, for by its use the performance of the
aeroplane can be determined.

The intersection of the two curves on the chart clearly gives
the maximum level speed, for at the speed given by the point of
intersection the horse-power available is just equal to the horse-

.power required. Thus for the aeroplane chosen the top speed

is 139+7 miles per hour.
3729 0
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The excess of H.P, over H.P, at any other speed gives the
horse-power which is available at that speed for climbing.

%0 /

L—] -

HPy L] ;
200 S :E
§ k] ’
:S /
0 S
Ll
1 .
“0 60 80 100 120 140 160
Spead MPH.

F16. 58. Performance Chart.

At a given speed let this excess horse-power be denoted by
Z, and let V, denote the rate of climb in feet per second. Then

_WwxV,
550
for the weight W is lifted a height V in 1 second,
. __ZXx550
ie. V.= W

Generally the rate of climb is measured in feet per minute ; hence
Rate of climb (ft./min.) = ?13_3@ e

From the figure the maximum value of Z for this particular

aeroplane is read off as 144'4 and occurs at about 83 miles per
hour.

Hence the maximum rate of climb — 1444 X 33000
2950
= 1615 ft./min.,
and the best chmbmg speed is 83 miles per hour.
It is sometimes desirable to find the rate of climb at speeds
other than the best climbing speed, and so obtain a curve show-
ing how the climb varies with forward speed. The curve
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obtained from Fig. 58 is given in Fig. 59. It will be noticed that
the top of the curve is fairly flat, showing that small departures
from the best climbing speed do not appreciably effect the rate
of climb. This is a property common to all acroplanes. Another

-
EISOO ] >
ey
A
E‘.m Vsing
s \
3 500 V.
) 4
0 80 SP«:"OM},’H, 120 140 Vcos8
FiG. 59. Variation of Rate of F1c. 6o.

Climb with Forward Speed.
interesting feature is that the best climbing speed is not far

removed from the speed corresponding to maximum—ﬁ. In

this case, for instance, maximum  oceurs at k; = 0°33 (see

Fig. 55), corresponding to a speed of 74 miles per hour.

Angle of Climb. Suppose the aeroplane is climbing at an
angle 0 to the horizontal. Then, since V' may be resolved
into its components ¥ cos § and V'sin 8 as shown in Fig. 6o,
the angle of climb is given by

V, = Vsiné,
i.e. sinf = %

For the above aeroplane at its best climbing speed of 83 miles
per hour, this equation gives
1613

sinf = — since V = 1217 (ft. per second)

I.
= 02211,
8o that 0 = 12°47.
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Notice the comparatively small value of the climbing angle.
The aeroplane appears to be climbing at a much steeper angle,
since it is inclined at a considerable angle of incidence to the
flight path.

The Equations of Motion. The above method for calculating
the performance of an aeroplane is based on certain approxima-

Fic. 61.

tions which will become apparent on considering the equations
of motion.

Suppose AB in Fig. 61 (a) represents the centre line or thrust
line of an aeroplane flying at a steady forward speed V at an
angle 0 to the horizontal. The forces acting on it are:

(1) the weight W vertically downwards,
(2) the thrust T along the thrust line,
(3) the drag D along the flight path,
and (4) the lift L at right angles to the flight path.

These forces are shown more clearly in (8). There is also a
small force acting on the tail plane, but this is negligible in com-
parison with L.
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Let the angle between the thrust line and the flight path be
denoted by «’. This is the incidence of the aeroplane and is not
the same thing as the wing incidence, for the wings are generally
inclined at an angle of about 2° to 4° to the thrust line (called
the rigging incidence), so that the wing incidence « is slightly
greater than o', Resolve the forces along and perpendicular to
the flight path. Then

Tcosa' = D+Wsinf
and Tsino'+L = Wcos?.

Now o’ is small; hence cos «’ may be replaced by unity and

T'sina’ may be neglected in comparison with L. Hence the
equations become

T = D+Wsiné
and L = Wcos0;
. . T—-D
that 18, sm0 = ——W'—— . . . . . . . (4)

and L = W approximately, since 6 is small for normal climbing
angles.

But V. = Vsin.

Hence, Rate of climb (ft./min.) = T—‘—I;/,—Q xVx6o . . (5)
-which is an alternative equation for the determination of the
rate of climb.

Now the replacement of T cos o’ by T assumes that the air-
screw thrust acts along the flight path, so that the work done by
the thrust may be taken to be TV ft.-lb. per second. Hence the
airscrew efficiency may be written
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Therefore TV =oPss0 . . . . . . (6)
or s =nP'= H.P,
550

(The expression g is sometimes called the thrust horse-power.)

It can now be easily shown that equation (5) is the same as
equation (3). For

=D, yx6o = (TV— DV)x—-
W
_Tv—-DV » 33000
T 550 w
— (H.P,—H.P)x 322
— £x33000
= 233000,

Example 1. The horse-power developed by an engine at a speed
of 9o miles per hour is 200 B.H.P. If the airscrew efficiency at this
speed is 65 per cent., find the value of the thrust in lb.

We have V=132and T = 11%5/-,53.
. T_o-65xzoo><550
T 132
= 542 1b.

Example 2. A twin-engine aeroplane weighs 9,800 Ib. and is
fitted with two 500 H.P. engines. Calculate the rate of climb and
angle of climb at a speed of 65 miles per hour, given that at this
speed each engine develops 470 B.H.P., the airscrew efficiency is 60

L .. i
per cent, and theﬁ ratio is 7'5.
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First method. We have P = 470,71 = 06
S HP, = 2x06x470

Again, % =75
D

Also, V =953 f.ps.

550 550

Hence, rate of climb = = 222"

338 33000
9800
= 1137 ft./min.
Second method. From the equation TV = 5Ps550 we have
T -2 %X 06 X 470 X 550
953
= 3255 Ib.
Also D = 1307 Ib., as before.
. T-D
<. rate of climb = ——— x V' x 60
w
— 1948x95-3 x 60
9800
= 1137 ft./min,
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Again, since V, = V'sin 6, we have, by each method,

sin0=%

g

_&

95
= 01988,
so that the angle of climb 8 is 11° 28’.

Gliding Angle. It is convenient here to deal with the deter-
mination of what is called the best gliding angle. Consider an

113

w

F1G. 62.

aeroplane gliding earthwards with the engine shut off, or
throttled down so that the airscrew is just ‘ticking over’ and

developing no thrust. ‘Then. the equations of motion become
(Fig. 62)

L = Wcos¥
D = Wsin#.
s.tanf = I
or tanf = — .
L/D
Hence tan 6, and therefore 6, is a minimum when £ is a maxi-

D
mum. The minimum angle of glide therefore occurs at the

incidence and speed corresponding to maximum % It is called
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the best angle of gllde, since it gives the pilot the greatest choice
of landing point; it is, in fact, the angle at which all aeroplanes
are flown in to land. Any departure from the appropriate
incidence and speed results in a steeper path as shown in Fig. 63.

Minimum
S//dm

F1G. 63. Gliding Angles and Incidence.

Effect of Change of Weight. It is often required to find the
effect on the performance of an aeroplane of carrying an extra
load. To do this it is necessary to obtain a new H.P, curve.
Obviously the extra weight has no effect on the H.P, curve, for
the horse-power available at any given speed depends only on
the engine and airscrew. The new H.P, curve can, of course, be
easily obtained by calculating the drag over a range of speeds for

the new weight,and so determining the new values of I—)E The

existing H.P, curve can, however, be corrected in a very s1mple
manner without going to so much labour.

For suppose an aeroplane of weight W has its load increased
such that the total weight is W’. Let V, V' be corresponding
speeds at a given angle of incidence, i.e. at a given lift coefficient
k;. Then

kopSV't = W'
and kpSV:=W.
* .Ii,? = W’
vV’ w’
or "V"JTV‘ L@

Now, since the aeroplane is flying at the same angle of inci-
dence and at the same lift coefficient, the drag coefficient &, is

the same in each case.
3729 P
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Let D, D’ be the corresponding drags. Then

D' kppSV™
D~ kppSV?
y'2
7
= —MVI—//, , from equation (7).
. DIVI . ’ua{’ x W—’
DV W w
W\32
("
HP (W3
HCHCC, H_.P = ("W) . (8)

It follows then from equations (7) and (8) that the horse-
power required for a weight W’ at a speed V’ is equal to the
horse-power required for a weight W at a speed ¥ multiplied by

WA where Vand V7 tedby the equation o = [
(P_V) , where Vand "are connected by the equation 7 _»./-W

This rule may be simply expressed in tabular form as under:

Weight W Weight W’
Speed Horse-power required Speed Horse-Power required
w’ W”\3/2
% HP v J % HEx (W)

From the original H.F, curve corresponding values of V' and
H.P, can be read off, and then corresponding values of speed
and horse-power required for the new weight can be obtained
by means of the above table. The method is further illustrated
by the following example.
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Example. Determine the performance of the aeroplar'te of p. 95
when the aeroplane is carrying an extra load of 750 Ib.

W' _ 3700
We have W ;650
= 1-254.

4 4 (7
o JW—Ilzan (—W—) = 1'405.

From the H.F, curve of Fig. 56 or Fig. 58 we read off corre-

" va
/
MRy e ;
Am [N
géo0 LT 2
;:. o /
= ]
HPoaT W 2950
0 ) 80 120 W W0

100
Speed M.PH.

FiG. 64. Effect of Change of Weight.

sponding values of /" and H.P, for W = 2950 and correct for
the new weight as follows:

vV H.P, Vv’ H.P/
(m.p.h.) (fromcurve) (=Vx112) (=H.P,X1°405)
60 68-7 672 96's5
70 709 784 996
8o 815 89:6 114°5
90 978 100°8 137°4
100 118-8 112°0 1669
110 1461 1232 2052
120 1826 134'4 2565

The plotting of the above values of V', H.P, gives the new
curve of horse-power required, and this is shown in Fig. 64.
The original H.P, curve is included for comparison, and the
H.P, curve shown is taken from Fig. 58.
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The top speed at the new weight is seen to be 138 miles per

hour, while the maximum value of Z is 126 and occurs at about
865 miles per hour. Hence
Z X 33000

14
126 X 33000

3700
= 1124 ft./min.

the maximum rate of climb =

A comparative table of the performance of the aeroplane at
the two weights is given below:

TABLE VII
EFFECT OF CHANGE OF WEIGHT ON PERFORMANCE

W = 2950 Ib. W = 3700 0b.
Top Speed 1397 m.p.h. 138 m.p.h.
Max. rate of
climb 1615 ft./min. 1124 ft./min.
Best climbing
speed 83 m.p.h. 86:5 m.p.h.

The general effects of the extra load may be summarized as
follows:

(1) A small reduction of the maximum level speed,
(2) A large reduction of the rate of climb,
and (3) A smallincrease in the best climbing speed.

A further effect is, of course, an increase in the landing or
stalling speed.

The most noticeable feature is the vast difference between the
effects of the extra load on the top speed and rate of climb
respectively, but this can be simply explained. For at high
speeds corresponding to low values of k;, the increase of k,, with
increasing k; is not very great; hence, at a given (high) speed,
the higher value of k; demanded by an extra load does not
involve a large drag increase. It is not therefore to be expected
that any reasonable extra load will result in a big top speed
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reduction. On the other hand, at the slower climbing speeds
correspondmg to high values of %;, the drag coefficient %,
increases rapidly with increasing k; (kp,ock?, for instance),
and so a higher working value of k; means a relatively large drag
increase. This increase of drag, coupled with the extra weight
to be lifted, must result in a large reduction of the rate of climb.

Effect of Height. So far the performance of the aeroplane
has been calculated for ground level only; it remains now to
study the effect of height. As the height increases the density
decreases, and in consequence both the drag and the engine
power at any given speed are different from those at ground
level. Hence both the H.P, and H.P, curves vary with height.

With regard to the horse-power required at any given height,
fresh calculations may easily be carried out using the appropriate
value of the relative density o, as given in Table I. Alternatively,
if the H.P, curve for ground level has been prepared, it may be
corrected for any other height by a method similar to that
used for change of weight.

For let V, V' be the speeds at ground level and the given
height respectively at a given angle of incidence. Then V =
V'«a, since constant incidence means constant indicated air
speed (see p. 27) and ¥V is both the true and indicated air speed
at ground level. But constant indicated air speed means con-
stant drag, for D = kpopSV? = kppSV? and k, is constant.
Hence, if H.P, and H.F, are the corresponding values of the
horse-power required,

HF' DV
HP, DV
_¥
74
=1
T o'
ie. HP' =HPx-X.
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Thus the following table holds:

Zero Height. Relative density = 1. Relative density = o
Speed Horse-Power required Speed Horse-Power required
I I
V HP V— HP —
’ No " No

By means of this table the curve of Fig. 56 has been corrected
for a height of 10,000 ft., at which o0 = 0-738, and the corrected
curve is shown in Fig. 65.

Ground
Level
300 ,/
/
w iGround /
< Level ; —/-Kl.OOOR
£ 200 bt =
i 000R, : 7
;C} 'Q/ ’T—— /
100 e
St
40 &0 8 140 160

0 00 120,
Speed M.PH.
Fic. 65. Effect of Height.

The effect of the reduced density at height on the engine is,
of course, a reduction of the engine power. In the early days of
flying it was thought that the horse-power varied directly as the
density, but it has now been found that the rate of decrease of
power is more rapid than the rate of decrease of density and is
probably more a function of the pressure than the density.
Without going into this involved question more deeply, it
may be stated that for most modern engines the engine power
appears to be very nearly proportional to the relative pressure,
so that at 10,000 ft. the horse-power is about 68-8 per cent.
(see Table I) of its ground level power at the same engine
revolutions.

It is not sufficiently accurate, however, to assume that the
ground level H.P, curve can therefore be corrected for a height
of 10,000 ft. simply by multiplying the horse-power scale by
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0-688. The next chapter will show that it is inaccurate for two
reasons, viz.: '

(1) At a given speed the engine does not develop the same
revolutions at different heights; the equivalent ground
level horse-power is therefore not the same, for the power
is roughly proportional to the revolutions.

(2) Since the engine revolutions are not the same, the air-
screw revolutions are not the same. This results in a
different airscrew efficiency.

The full treatment of these points is left till later, but the
curve of horse-power available for a height of 10,000 ft. is
included in Fig. 65.

From this figure the performance at 10,000 ft. can be esti-
mated. It will be seen that the top speed is 132-5 miles per
hour, while the maximum value of Z is 73:4 and occurs at a

speed of 86-5 miles per hour. The maximum rate of climb is
therefore given by -

Climb = 73'4%33000
2950
= 820 ft./min.

The best climbing speed is slightly greater than that at ground
level. It is usual, however, to express climbing speeds as indi-
cated air speeds. Thus the best climbing speed is 86:5x v0-738
=435 miles per hour (indicated).

Similar calculations have been carried out for a height of
15,000 ft., and the calculated performance at this height is given
in the table below which summarizes the whole performance:

TABLE VIII
CALCULATED SPEED AND CLIMB
Height Top Speed | Max. Rate of Climb | Best Climbing Speed
(feet) (m.p.h.) (ft./min.) (m.p.h. indicated)
o 1397 1615 83 l
10,000 132'§ 820 735
15,000 126'0 475 708
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The table shows that speed, climb, and indicated climbing
speed all decrease as the height increases.

Ceiling. Since the rate of climb decreases continually as the
height increases, there must be a height at which the climb
vanishes. This height, which is the greatest height to which an
aeroplane can climb, is called the absolute ceiling. It can be
found by plotting the climb values of Table VIII as in Fig. 66
and by continuing the curve until
_____ soslute coling it cuts the height axis. Experi-
ongooService ceiling ence has shown that in nearly all
cases the climb curve may be
taken to be a straight line, except
\ at the lower heights, say below

5,000 to 10,000 ft.
N In this case the absolute ceiling

—
J.'

igrt
-

o
=3
S

Stadara ke
5

5000 N is found to be 22,000 ft.
\ The height at which the rate
S S of climb is 100 ft. per minute is
Rate of climb (ft/min) called the Service Ceiling and
Fi1G. 66.Variation of Climb with represents roughly the maximum
Height. practical height at which an aero-

plane can operate. Fig. 66 gives a service ceiling of 20,500 ft.
The vanishing of the climb at the absolute ceiling shows that
the curves of horse-power required and horse-power available
at this height touch one another as in Fig. 67, for at no point
is there any excess horse-power Z. Hence the absolute ceiling
is the height at which there is only one possible speed of
flight. '

Supercharging. In order to resist the decrease of speed and
climb which accompanies increase of height, aero engines are
often supercharged. Supercharging means that the air is
admitted to the cylinders under pressure, so that compensation
is made for the reduction at height of the atmospheric density
and pressure. With some supercharged engines the super-
charger works in such a manner that, from ground level to a
certain pre-determined height, full compensation is made at
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every height for the varying atmospheric conditions, and so the
full ground level power is maintained. Beyond the given height
of course, the supercharger ceases to compensate fully, and the
power begins to fall off. )

The effect of such supercharging on the performance of an

aeroplane is enormous. Up to the given height the H.P, curve
remains approximately the same as the ground level curve, and
therefore the speed and climb both increase with height.
(Actually the H.P, curve is not
quite constant owing to variations
in the engine revolutions and the
airscrew efficiency (p. 111), but as
an approximation in studying the
effect of supercharging the curve N
fnay be t_aker} as constant.) F.Ol' Fic. 67. H.P. Curves at Ceiling.
instance, it will be seen from Fig.
65 that, if the engine is supercharged to maintain its full
ground level power up to a height of 10,000 ft., the top speed
at this height will probably rise from 1325 to 153-5 miles
per hour, while the maximum value of Z will rise from 73-4 to
1485, corresponding to an increase of climb from 820 to 1,660 ft.
per minute.

A Useful Approximation in Top Speed Calculations. When
an aeroplane is flying level the climb is zero and therefore T = D.

150

epower

HFr

=3
>

Hors

HFs

But - TV = 5Ps50,
s.nmPss0 = DV
=kDPSV3'
s . 1P550
Hence 1% FgpS T T (9)

Now, when an aeroplane is flying at its top speed at low
heights, it is working at a low value of the lift coefficient, and at
low values of the lift coefficient (about k; = o-1, say) the change
of ky, with k; is not very great (see p. 92). Hence, if it is desired

to study the effect on top speed of small changes in the horse-
3729 Q
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power available, k, may be taken to be constant. The above
equation then reduces to the approximate form

Vi=kxqP . . . . . .(92)

where k may be taken as constant ( 3 sp S) for any particular
kp

aeroplane.

Example. An aeroplane is capable of a top speed of 120 miles
per hour when fitted with an engine of 400 B.H.P. Find the
probable top speed when a new engine of 450 B.H.P. is fitted,
assuming the weight and efficiency are unaltered and the drag is the
same with both engines.

Let V,, .1, be the new speed in miles per hour. Then

Vinpn = kX7 X450.
Also 120% = k X7 X 400.

[By expressing speeds in m.p.h. instead of f.p.s., k no longer

559
kppS’
is considered constant.]

Hence, by division,

has the value ;=2—;, but it is still constant for the two cases if kj,

Vinpn _ 450
1203 400’
o
o+ Vapn = 120X :/ :—g—o
= 124'8.

Rapid Prediction of Top Speed. In ordet to make a
rapid prediction of the probable top speed of an aeroplane near
the ground without going to the trouble of preparing the H.P,
and H.P, curves, it is often customary to make the followmg
assumptions:

(1) The horse-power and the airscrew efficiency both have
their maximum values at top speed,

and (2) The lift coefficient is that corresponding to minimum

drag, so that the minimum value of overall k, may be taken.

By substituting these values in equation (9) a value can be
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found for the probable speed. Generally not much error is
introduced by this method, but a second approximation can be
made, if desired, by calculating the value of k; appropriate to
the speed obtained, and then using the corresponding value of kj,
(as read from the &, curve)inasecond application of equation (g).

Suppose, however, that an estimate of the probable speed is
required in the course of design before the airscrew efficiency
and the drag have been determined. (This is usually required
before the airscrew can be designed). Equation (9) can be written

P
kp S’

where & ( 53! ) is a constant for all aeroplanes.

V3=k1

If now an average value is assumed for -1, the equation

k )

V=k2:/§. S (1)

where k, = J ky kl and may be taken as constant.
D

becomes

Such an equation is often used by designers to get a rough
and preliminary estimate of the probable top speed. The factor
k is a measure of the aerodynamic efficiency of the aeroplane

D
and, if the actual top speed comes out at a higher figure than
that suggested by equation (10), it means that aerodynamically
the aeroplane is above the average.

To get a value for k,, consider the aeroplane previously dis-
cussed ; in this case P = 400, S = 320and V' = 140, ,,. On
substituting these values in (10) and expressing V' in miles per
hour, the value of k, is found to be 130. Hence, if this aeroplane
may be taken as an average, a rough estimate of the probable
top speed is given by the equation

3

Venph, = 130 3 . (11)
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This equation has been applied to many existing types of
aeroplane, and it is found that the value k; = 130 represents a
fair average figure. It is quite possible, of course, that this value
will need to be amended as aeroplane design improves.

The Importance of Wing Loading and Power Loading.

The power loading of an aeroplane is defined as %/ , while the

wing loading Tgu—, has already been mentioned in a previous

chapter. The values of these loadings throw considerable light
on the probable performance of an aeroplane. Obviously a
low power loading, i.e. a low weight per horse-power, will
always mean a high performance, but the effect of a high
or low wing loading is not so obvious. In point of fact the
demands of top speed and climb in this respect are mutually
antagonistic.

Consider first of all top speed. The approximate equation (11)
may be written

8
_ w|S
Viaph = 130 WP

A high wing loading and a low power loading are therefore
obvious indications of high speed, but it must be remembered
that, as the wing loading increases, so also does the landing
speed. If all aeroplanes had the same landing speed, then,
neglecting the variation in the values of k; ., for different aero-

. . W I
foil sections, 5 would be constant and the criterion of top speed

for average aerodynamic efficiency would be — W P simply.

Consider now the rate of climb ; the climb is given by

Climb (ft./sec.) = I_—I-fwli—li X 550
= 1—’—1—%5—0 —Duf,/,smceHP =nPand H.P, = DV.

550
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The first term shows the importance of a low power loading,
while the second term may be written

DV | 2
W —I—l/—D,smce W=L

J‘—w

_ kLpS

- L/kD

A/W
\/p Rt

Hence, if all aeroplanes had the same lift and drag charac-
teristics and climbed at the same value of &, (say at the value

corresponding to maximum L/D), k—L%é would be constant and

the term Qulj would be proportional to J —Ig . Alow wing loading

is therefore conducive to a high rate of climb.
8/2
The expression k’i‘— may be regarded as a measure of the
D
aerocynamic efficiency at climbing speeds in the same way that
kl is a measure of the efficiency at top speed.

The above results may be summarized by stating that, apart
from considerations of aerodynamic efficiency,

(1) A high wing loading helps top speed,

(2) A low wing loading helps climb.

Also it is obvious that, for a given power loading, a lightly-
loaded aeroplane will take off more quickly than a heavnly-
loaded one.

Rapid Prediction of Ceiling. The importance of a low
wing loading with regard to rate of climb and ceiling has been
further illustrated by several writers, who have shown that for
constant aerodynamic efficiency the ceiling increases as the ratio

W/T’TW?S increases. This brings out more clearly the relative
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importance of the two loadings. For the rapid prediction of
ceiling Bairstow, in his Applied Aerodynamics, suggests an
approximate formula involving this ratio, and the curve of
Fig. 68 has been prepared from a slightly modified form of this
formula. Such a curve is sometimes useful in preliminary per-
formance estimates, but it is not of the same order of accuracy
as equation (11) for the rapid prediction of speed.

z

LN
LN

N

20 \‘\
10.000 15,000 20000 25000 30,000
Absolute ceiling (Feet)

Fic. 68. Ceiling Curve for Rapid Prediction.

Drag Analysis and Application to Design. The foregoing
sections have shown how the performance of an aeroplane
depends upon its loadings, given average aerodynamic efficiency.
The part played by the drag coefficient &, in determining this
efficiency calls for no explanation, but it is important to under-
stand exactly upon what &, depends and the relative importance
of its components.

Now the total drag coefficient kj, consists of the induced drag
coefficient &, the profile drag coefficient kj, and the parasite
drag coefficient kj, , and of these k,, depends principally on the
aspect ratio, kp, on the aerofoil section and kp, on the exterior
form of the aeroplane. All of them, however, vary with &, and,
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in order to study their relative importance in performance, it
is necessary to consider top speed and climb separately. For
this purpose an average aeroplane with an aspect ratio of about
6-5 is taken, and it is supposed that its top speed near the ground
occurs at k; = o-1 and its best climbing speed at k;, = 035.

(@) Top speed. Approximate figures for the three types of drag
at top speed are given below:

Induced drag coefficient k, = o-0015
Profile drag coefficient kp,, = 0-0055
Parasite drag coefficient k, = o-o150.

The following points should be n-ted:
2

(1) kp,cc % and its low value is due to the low value of &;.

Aspect ratio is relatively unimportant as far as top speed is con-
cerned, and little saving in the total drag can be effected by
the use of a high aspect ratio. For instance, an increase of
aspect ratio from 6-5 to 10 merely reduces &k, from o-oors to
65 .
0'0015 X —>, 1.e. 0-001I0.
10

Furthermore a high aspect ratio probably entails a little extra
weight and a little extra parasite resistance (due to the added
external bracing drag), while it is definitely unfavourable to
rapid manceuvre owing to the increase in span.

(2) kp, depends upon the thickness and camber of the centre
line (see Chapter V). Clearly the thickness should be kept down
as much as possible, but its value is generally determined by
structural considerations. In addition it is sometimes possible to
reduce external bracing drag by the use of a thicker wing.

The profile drag can, however, be kept low by a proper choice
of centre line camber. Since the working value of &, is small,
the camber should be small also. Reference to Fig. 46 will show
that, in the neighbourhood of k; = o-1, the section of camber
002 shows a saving in kj, of about 0-0017 over the section of
camber 0-05. A low camber section is thereforc desirable for
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high speed, but it must be remembered that, for a given thick-
ness, k... increases with the centre line camber (p. 76).

(3) kp, forms as much as 70 per cent. of the total k5; hence
high speed depends primarily on good streamlining and the
reduction of frontal area.

(b) Climb. With regard to aerodynamic efficiency at climbing
speeds the problem of wing design is considerably changed,
and the change is revealed by the following points:

(1) at k, = o-35 the induced drag coefficient is 0-0170. If the
comparatively small increase of parasite and profile drag is
neglected, it will be seen that the induced drag is now of greater
importance than the parasite drag. It represents in fact about
50 per cent. of the total drag. The need for a high aspect ratio
is therefore obvious. For instance, an increase of aspect ratio
from 6-5 to 10 means a kj, decrease of 0-0060—a reduction of
16 per cent. of the total drag.

(2) Since the working value of k; is high, a high centre line
camber (about 0-05) is indicated. Fig. 46showsthatatk;, = o35
the high camber section shows a saving of about k;, = o-0o10
over the low camber section.

The above analysis shows that, with regard to the best choice
of aerofoil section and aspect ratio, the requirements of top
speed and climb are to some extent irreconcilable, and the choice
in any particular case must be governed by the relative impor-
tance of speed and climb.

An important point to notice is that what is true for climbing
efficiency is also partly true for high speed at great heights. For,
as the height increases the top speed and density both decrease,
and so the top speed values of k; increase. Hence the rate of
decrease of spe=d with height may be kept down by the use of a
fairly high aspect ratio and a fairly high centre line camber. It
is also desirable to use a fairly thick section, since the profile
drag for thick sections appeats to be more nearly constant than
that for thin sections (Fig. 49.)

The Span?/Weight Ratio. For climb, take-off and speed at
height, i.e. for performance at the higher values of &, it has
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now been shown that two desirable characteristics are a low
wing loading and a high aspect ratio. Instead, however, of
loading and aspect ratio being treated separately, they may
be taken together to form a new characteristic called the
span?/weight ratio.

For simplicity consider a monoplane. The aspect ratio is

2
defined as % ; hence
Aspect Ratio __ 4s%/S _ Span?
Wing Loading ~ W/S = Weight’
A high aspect ratio and a low wing loading are therefore
equivalent to a high span?/weight ratio. The reciprocal of this

w____exag:;t , 1s sometimes called the span loading. This ratio

ratio, i.e.

may be obtained in another manner, which brings out more
clearly its exact significance. Consider a monoplane, as before.
Then the induced drag coefficient is given by

2
le = kaz

28

= k2.
‘rr><4.$2 L

Hence the ratio of the lift to the induced drag is given by

Ry kxmxgs
kp, 28 xk?
X 452

2k, S
48y
25 os12P7

_ m span® Ve
2 weight
Thus, for a given speed, the span®/weight ratio is a measure of

the lift|induced drag ratio.

3729 R
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The same is true for a biplane except that the above expression

ky
for ;-— is slightly modified by the mtroductxon of the factor 140
D,

(0. 60).
[Note. For a biplane (with equal wings) the aspect ratio is

S
S’ ie. 5 where S is the total area; hence

aspect ratio/wing loading = 2 (span)?/weight.]

From what has been said it follows that, apart from con-
siderations of parasite drag, airscrew efficiency and aerofoil
section, the performance of an aeroplane depends upon its
power loading and its span?/weight ratio. A very low power
loading is always indicative of good performance, both in speed
and climb; on the other hand, a high span?/weight ratio helps
to offset a high power loading, and especially is this so as regards
climb, take-off and general performance at height.

TABLE 1X

* Aeroplane Characteristics

X

Type Power Wing | Aspect eight Remarks
Loading | Loading | Ratio Ratio
Racing aeroplane 4 20 s 013 Small span to keep down
overall size and reduce external
bracing. Speed the only con-
Hi peed 6 6 :Slderﬁnon for abo
-8 . 10° 0'29 mal span Ior above reasons
fighting acroplane 5 s and for manceuvrability. The
low power londm‘i:mum a
XOOd climb and
Bombing 85 85 9 0'53 very high upnn'/wclght ratio
aeroplane since climb, ceiling and per-
formance at height are the
. main essenti
Light aeroplane 20 6's 65 0°'50 Owing to the very high power

loading a high span?/weight
ratio is most important, other-
wise the aeroplane would take
2 large run to get off and would
have difficulty in clearing

obstacles.
Passenger- 10° 10° 8 o Characteristics are somcwhat
carrying seroplane 5 s s o similar to those of bomber

Power and wing loadi

md hxrl'tl Eghhemtbye.tohz
and c|

modei rately high span®/weight
ratio.
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Aeroplane Characteristics. Table IX given above describes
the general characteristics of modern aeroplane types and
illustrates the points already discussed, with special reference to
the span?/weight ratio. The aeroplanes are all taken to be

biplanes, and the span?/weight ratio is calculated from the wing
loading and aspect ratio.

EXAMPLES

1. An aeroplane weighs 2,000 Ib. and has been designed for a top

speed near the ground of 100 miles per hour. If the % ratio at this

speed is 6°3, find the horse-power required. Hence determine the
necessary net airscrew efficiency, assuming the engine develops its
maximum horse-power of 120 at this speed.

2. Calculate the probable increase of speed of the above aeroplane
when it is fitted with an engine of 150 H.P., the airscrew efficiency
remaining unaltered.

[Neglect any change of weight and assume constant kp,.]

3. A certain aeroplane is capable of a speed of 130 miles per hour,
the engine developing 350 B.H.P. at this speed and the airscrew being
68 per cent. efficient (net). By gearing the engine so that the airscrew
runs at half the enginespeed, it is estimated that the airscrew efficiency
can be increased to 75 per cent. Find the probable speed with the
geared engine, assuming no change in total weight and neglecting
any loss of power due to the gearing.

4. An aeroplane is flying on a straight course towards an aero-
drome when its engine ‘cuts out’. It is then at a height of 2,000 ft.
and distant 3} miles from the aerodrome. What must be the value of

its maximum % ratio in order that it may just reach the aerodrome ?
5. An aeroplane weighing 6,800 1b. is climbing at 72 miles per

hour. At this speed the horse-power developed is 590, the net air-

screw efficiency 61 per cent. and the% ratio 8-1. Calculate the rate of

climb and the angle of climb.
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6. The measured rates of climb of an aeroplane at various heights
(corrected for density, &c.) are as follows:

Standard 3700 4640 5570 6500 7420 8340 9260 10170
Height (ft.) '
Rate of 755 660 650 600 525 485 440 370

Climb (ft./min.)
11080 11990 12890 13790
325 295 240 180
Assume that the climb curve is a straight line and determine the
service and absolute ceilings.
Find also the rate of climb near the ground and the time taken to
reach a height of 10,000 ft.

7. The calculated values of the horse-power required and the
horse-power available for an aeroplane weighing 1850 Ib. are given
in the following table: ‘

Vimpn, 55 60 65 70 8 9o 100
H.P, 27:2 22-5 280 309 384 502 670
H.P, 46 486 508 530 568 601 622

Draw the curves of H.P, and H.P,, and so find the maximum level

speed, the maximum rate of climb and the best climbing speed.

8. Determine the top speed and climb of the above aeroplane
when it is carrying an overload of 350 Ib.

9. An aeroplane weighing 3,300 Ib. climbs at 400 ft. per minute at
15,000 ft. at an indicated air speed of 70 miles per hour. At this speed
and height the net airscrew efficiency is 65 per cent. and the engine
develops 230 B.H.P.

Calculate the rate of climb if the engine is supercharged so that it
maintains its full ground level power of 420 B.H.P., assuming that the
airscrew efficiency and the drag remain unaltered.

10. From the following data obtain the top speed, the best (indi-
cated) climbing speed and the maximum rate of climb at 10,000 ft.
(W = 45001b.):

Vaph. 60 65 70 75 80 9o 100 110 120
H.P,
(at ground level) 9o 87 89 95 103 123 145 178 217

(at 10,000 ft.) 124 130 135 140 145 155 162 169 175
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THE AIRS W

Description. The airscrew is a power-transmitting medium
which converts the power of the engine into a forward thrust.
Fig. 69 shows a typical two-bladed airscrew and gives the shape
of the airscrew in plan and elevation, together with the shape of
the cross-section of each blade at various points along the blade.
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Fic. 69. Typical Two-Bladed Airscrew.

It will be observed that, although the width and thickness of
the blade vary, the section at any point (except near the hub or
boss) is of aerofoil section with flat undersurface. It will further
be noticed that the blade is so twisted that the pitch angle, i.e.
the angle between the flat pitch face and the plane of rotation,
varies along the blade, the angle decreasing towards the blade
tip.

Airscrews are called tractors or pushers according as they are
placed in front of or behind the engine.

The ratio of the tip radius (i.e. the distance from the centre of
the boss to the blade tip) to the maximum blade width is some-
times called the aspect ratio of the airscrew, and varies in practice
from about 4 to 7.
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An airscrew may rotate in either a clockwise or anti-clockwise
direction, and is said to be a right-hand airscrew if it rotates in
a clockwise direction when viewed from behind.

Engine Power and Engine Torque. Before proceeding to a
discussion of the airscrew it is necessary to know something of
the general characteristics of the engine—particularly with
regard to the power and the torque.

It is shown in books on Applied Mechanics that the B.H.P.
of an engine varies directly as the product of the revolutions per

“I‘OO
r Torque
—
400 f/ 1200
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F1G. 70. Engine Power Curve.

minute (R.P.M.) and the brake mean effective pressure in the
cylinders.. (The brake mean effective pressure or B.M.E.P. is
the actual mean effective pressure multiplied by an efficiency
factor to allow for the loss of power due to the internal resis-
tances of the engine itself.) Hence, if the B.M.E.P. were con-
stant for all values of the R.P.M., the B.H.P. would vary directly
as the R.P.M., and the curve obtained by plotting B.H.P. against
R.P.M. would be a straight line. In practice the B.M.E.P. is not
quite constant, and the curve therefore departs slightly from the
straight line form. Such a curve which shows the variation of
the B.H.P. of an engine with the R.P.M. for full throttle is called
the Power Curve, and Fig. 70 shows a typical power curve of a
400 H.P. engine.

The torque of an engine is the mean turning effort exerted on
the crank-shaft, and is the turning moment available for rotating
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the airscrew. It is connected with the horse-power by a simple

relation. For let Q be the torque in pound-feet, P the horse-
power and N the R.P.M. Then

the work done per revolution = 2#Q ft.-lb.,

so that
the work done per minute = 27NQ ft.-1b.
Hence, _ 2nNO
33000
__33000P
or Q_———an B 69

From this equation it follows that, if the horse-power varied
directly as the R.P.M., the torque Q would
be constant. The small variation which
actually occurs is shown in Fig. 7o.

Airscrew Torque. The torque of an
airscrew is the moment of resistance which
opposes the engine torque.

Consider a rotating airscrew and, for
simplicity, suppose the airscrew has no
translational velocity. Then each blade
experiences a resistance R as shown in
Fig. 71, and these resistances form a couple,
torque or turning moment about the axis
of rotation. Obviously, when the airscrew is rotating at a con-
stant speed, the airscrew torque is just equal to the engine
torque.

For an airscrew working on an aeroplane in flight the value of
the airscrew torque depends, of course, on the rotational speed
and the forward speed ; hence the basis of airscrew design is that
at a given forward speed and at a given rate of rotation, the
airscrew torque shaM equal the engine torque. The general
design condition is that the airscrew shall allow the engine to
develop its maximum R.P.M. at top speed. If then, the air-
screw torque is less than the engine torque at maximum R.P.M,,

——

Fic. 71.
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the airscrew will allow the enginé to race and it will be necessary
to throttle down, while, if the airscrew torque is greater than the
engine torque, the airscrew will prevent the engine from de-
veloping its full revolutions. In either case there will be a waste
of power.

Airscrew Thrust. Since the cross-section of the blade is
everywhere of aerofoil section, the blade must experience lift
forces as well as drag forces, and it is easy to show that the lift
forces provide the thrust of the blade.

anrn

Fic. 72.

Consider, as before, an airscrew rotating with no forward
velocity, and consider the behaviour of a small strip or element
of the blade 44’ as shown in Fig. 72. Then the air passes over
this element with a velocity 2mnr, where 7 is the distance of the
element from the axis of rotation and represents the revolu-
tions per second; for the angular velocity of the blade is 2m,
and so the linear velocity at a distance 7 from the axis of rotation
is 27y, - Also the angle of incidence of the element is its
pitch angle. ‘The element therefore experiences lift and drag
forces L and D as shown, and hence the blade behaves as an
aerofoil except that the velocity and incidence vary over the
blade length. This difference in the conditions under which
each element is working complicates the behaviour of the
blade as an aerofoil, but each small element may be regarded
as supplying its own quota of lift and drag. The summation
of all the lift elements gives, of course, the thrust, while
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the summation of the drag elements gives the resistance of
Fig. 71.

Thrust and Torque Coefficients. Just as it was found con-
venient to represent the lift and drag characteristics of an aero-
foil by the non-dimensional coefficients k; and kp, so it is con-
venient to use non-dimensional coeflicients for the thrust and
torque characteristics of an airscrew.

Now it was pointed out in Chapter VI that any air force
experienced by a body is of the form R = kpl2V'2, where [/ is some
linear dimension of the body. In the case of an aerofoil it was
convenient to replace /2 by the wing area S; in the case of an
airscrew it is more convenient to replace / by the airscrew
diameter D. Again, with the airscrew the velocity ( = 2mnr)
varies along the blade, but it is always directly proportional at
any point to the tip speed nnD, i.e. to nD. The thrust of an
airscrew is therefore generally written

T = kppD?x (nD)?,
or T=kpnD*. . . . . . . (2

Similarly, since the moment of an air force ( = force x dis-
tance) is of the form kpl2l/?x [, the torque Q may be written
Q=kypn?D*. . . . . . (3)
kr and kg are called the thrust and torque coefficients respec-
tively, and are numerical quantities which are constant for
all geometrically similar airscrews rotating at zero speed of
advance.

“Effect of Forward Speed. Suppose now the airscrew has a
forward translational velocity as well as the rotational velocity.
Then the velocity and incidence of each element are changed,
for the velocity is the resultant of the forward velocity ¥V and
the rotational velocity 2mnr (Fig. 73 (a)). It can be shown,
however, that the total thrust and torque may still be expressed
as above, but that the values of &, k; now depend not only on

: . .V
the shape of the airscrew but also on the ratio D

3729 s
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For consider a small element, as before. It will be seen from
Fig. 73 that the resultant velocity is given by

V,cos¢ = 2nnr,
or V,=2mrsecé . . . . . (4)

while the incidence is reduced from the pitch angle 6 to §—¢,
where ¢ is given by

|14
tang=—— . . . . . . (5
2mnr
Also the lift or thrust of the element, measured in the direction
ki
ko V.
. r/}v

errn

fkl cosp-kpsing

|
kpeosp+hysing |
 ——— e

Fic. 73.

of forward motion, is proportional to k; cos ¢—kp, sin ¢ and the
drag, measured in the plane of rotation, to k, sin¢+kj, cos ¢.

Thus the velocity is again proportional to nD, but in this case
it depends on the angle ¢ as well; the lift and drag coefficients

of the element also depend on ¢. But tang = 5—:;-' ,and there-

. L V. .
fore ¢ is known for every element if “his known, for 2mnr is pro-

portional to nD. Hence, for a given value of ;% , the thrust and

torque of the airscrew may again be written T = kppniD? and
Q = kopn®D8, where kr and kg, are constants.
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In other words &1,k and "—Vl—) form asystem of non-dimensional

coefficients for the airscrew ahalogous to the k7, kj, and « system
for the aerofoil.

Again, just as all aerofoils exhibit the same general charac-
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Fi1c. 74. Variatién of kp and kQ with '—?5 .
teristics with regard to the variation of k; and kj, with «, so do
all airscrews with regard to the variation of k4 and kg, with 53 .
The nature of the variation is shown in Fig. 74.
It will be noticed that k7 and kg both decrease as D increases,
and that &k vanishes before k. This can be easily explained by
returning to the consideration of an element. For equation (5)

V. .
shows that as —increases the angle ¢ increases also, and there-

fore the incidence ( = 6—¢) decreases; but k; and kj, both
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decrease as the incidence decreases, and so the thrust of the
element must eventually vanish, for the thrust is proportional
to k; cos¢p—kp sing. Similarly for the torque of the element,
but this cannot vanish until a negative value of k; is reached,
for the torque is- proportional to k; sin$-+k; cos. The same
is true for every element, and therefore kr and %k must both
decrease as D increases, but &, must vanish first.

Variation of Engine Speed with Aeroplane Speed. On p.g7
it was stated that the engine speed varies with the forward speed
of an aeroplane. It will now be shown how this variation depends
upon the kj curve of the airscrew and the power curve of the
engine. For this purpose an airscrew of 9-25 ft. diameter will be
supposed to have the characteristics of Fig. 74 and to be fitted
on the engine of Fig. 70.

The calculations start from a selected range of values of N
(the R.P.M.), and the following table explains the nature of the
calculations and derives the aeroplane speeds corresponding to
the chosen engine speeds at full throttle at ground level.

TABLE X
VARIATION OF ENGINE SPEED WITH AEROPLANE SPEED

P

Q VinD V
N n § orcer ( = ;gg_P) ko (from kg (=fi£,":nb v
(= N/60o)| Curve) 27m ) [(=Q/pn*D*)| curve) x nD) m.p.h.
1680 | 28 400 12§51 000994 | 0800 2072 141°3
1620 | 27 3908 | 1267 | 001083 | 0736 1839 125°3
1560 | 26 3807 | 1281 oo1184 | 0647 1556 106°1
1500 | 2§ 3706 | 1298 | 001294 | 0O'500 1156 788

1470 | 24'S 3656 | 1306 | 001356 | 0365 827 564

The above table shows that the engine speed and aeroplane
speed decrease together. Hence, apart from any considerations
of airscrew efficiency, the horse-power available decreases as
the speed decreases.

Calculation of Thrust. The thrust at any speed may be
calculated by the use of the k; curve. Thus at 141°3 miles per



The Airscrew 133

hour the value of '-l%is 08, and the corresponding value of kr is
read from Fig. 74 as 0:0624. Hence the thrust T'is given by
T = kppn*D?
= 848 Ib., on substituting for p, n and D.

The thrust has been so calculated over the complete range of
speeds of Table X, and the variation of thrust with forward

N

1200

/

Thrust (Lbs)
/

~

=
=
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100
Speed M PH.
FiG. 75. Variation of Thrust with Forward Speed.

speed is shown graphically in Fig. 75. It will be seen that the
thrust decreases as the speed increases, and would eventually

vanish at the speed corresponding to the value of n—VD— at which

kr =o. In practice this speed would correspond to a very steep
dive with the engine full on.

Efficiency. The efficiency of an airscrew is given by
_ Work done by airscrew
Work done on airscrew
17
2mnQ
= fap?D'V.
2mnkgpnD®

i.e. N=—3T—. . . . . . . . (6)



134 " The Airscrew

The efficiency has been calculated by means of this formula

for the airscrew of Fig. 74 and is shown plotted against ;K in

D
Fig. 76.
The figure shows that7 reaches its maximum value at nKD = 08
|4 vV .
and decreases to zero at D=° and H= T (corresponding to

kr = 0.) Again, on comparing this figure with Table X, it will

/ \
/ \
/N |
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nD
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~
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F1c. 76. Airscrew Efficiency.

be seen that the airscrew efficiency attains its maximum value at
a forward speed of 141-3 miles per hour, and for all speeds below
this the efficiency decreases as the speed decreases. For instance,
at a speed of 56-4 miles per hour (corresponding to % = 0-365)
the efficiency has dropped from its maximum of 8o per cent. to
54-5 per cent. Hence the decrease of horse-power available with
decreasing speed is due ‘to decreasing efficiency and decreasing
R.P.M. .
Note. The efficiency curve of Fig. 76 is that for the airscrew
alone and has not been corrected for slipstream effect on
drag. ‘
Pitch. An airscrew resembles an ordinary screw inasmuch as
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it rotates about an axis while moving forward along that axis,
but differs from an ordinary screw inasmuch as its pitch is not
constant. The pitch of a screw is defined as the distance moved

. .. “ V
forward in one revolution, i.e. the pitch is equal to pt and, as has
been shown above, the airscrew may be working at any value of

V . .
e Two terms, however, are used to define the pitch of an air-

screw, viz.:
(a) The Experimental Mean Pitch,
(b) The Geometric Mean Pitch.

The experimental mean pitch is the name given to the ideal
pitch, i.e. the maximum value of the pitch at which the airscrew
can work without developing a negative thrust. Consider the
airscrew already discussed: k; vanishes when D= 1°11, and

D = g-25; hence the experimental mean pitch of this airscrew
=5 XD = 1°11 X925 = 10°27 ft.

Now it is shown in any book on Applied Mechanics that the
pitch of an ordinary screw is 2n7 tan 6, where 8 is the angle
which the thread makes with the axis; and the geometric pitch
of a section of an airscrew is defined as that of the equivalent
screw whose pitch angle is equal to the blade angle of the section.
Hence at a distance 7 from the axis the geometric pitch is
2mr tan 6, where 6 is the blade or pitch angle at that point. It
follows that the geometric pitch is not necessarily constant over
the whole blade, but since 6 diminishes as r increases the varia-
tion is not very great. In practice many airscrews are of constant
geometric pitch, but, if the pitch is not constant, the geometric
mean pitch is defined as the pitch of a section two-thirds the
way along the blade. Hence the geometric pitch

=27 X§Rtanf
= §nwD tan 0
= 21D tan§,
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where 6 is the blade angle at a radius equal to two-thirds of the
tip radius.

The value of the pitch as stamped on all airscrews in this
country is defined as above.

There is no consistent connexion between the experimental
mean pitch and the geometric mean pitch, but experiment
reveals one interesting feature, namely that, if the geometric
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Fi1c. 77. Effect of Pitch.

mean pitch is’ denoted by P, then the maximum efficiency

always appears to occur at a value of ,TVﬁ slightly less than the

value of 1—;) (see Fig. 77).
Effect of Pitch. If experiments are carried out on a series of
airscrews, geometrically similar but of varying g ratios, the

resulting k; and 5 curves will be found to be similar to those of
Fig. 77.

This figure shows that high-pitch airscrews are desirable on

account of their high efficiencies. Unfortunately the airscrew -
designer has not a perfectly free choice of pitch. If an airscrew

is to be designed for maximum airscrew efficiency at a given

forward speed V, and at a given airscrew speed of n revolutions
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per second, then the diameter and pitch must be so chosen that
the airscrew shall give its maximum efficiency at the correct

value of n—VD and also that the airscrew torque shall equal the
engine torque. In practice it is found that these considerations
of efficiency and torque, together with some considerations of
strength, completely determine the choice of pitch and diameter.

As a particular illustration, suppose the characteristics of
Fig. 77 all refer to airscrews of the same diameter, and suppose
an airscrew of the series is required for an aeroplane in which
the engine is to develop a given speed n (revolutions per second)
at a given forward speed V. Then the condition of design is

that at a given value of — the torque coefficient must be such

nD
that the airscrew torque shall equal the enginc torque. In other
Q 55
words k, must be equal to poryy 3 ie D where P is the

power of the engine at n revolutions per second The value of

kg is therefore fixed, and so the % ratio is fixed. (For instance,

. vV .
if ky must equal 0-0075 at H=95 the P/D ratio must be 0-7.)

The obvious way, however, of obtaining high airscrew
efficiency is to use an engine with a reduction gear, so that the
airscrew runs at a slower rate than the engine. High working

vV ..
values of P follow at once, and this is one of the reasons why so

many modern engines are now geared.

Fig. 77 also shows the advantage which might be gained by
the use of a variable-pitch airscrew. If it were possible to reduce
the pitch as the forward speed decreased, then the values of &,
would be reduced and it would be possible to prevent the R.P.M.
from dropping (for Q = kgpnD5, so that a reduction in the
value of R, must be accompanied by an increase in the value of

n). In addition the efficiencies at the lower values of 2D’ ie. at

3729 ™
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the lower speeds, would be increased. Hence a variable-pitch
airscrew would give an increase of horse-power available at the
slower speeds, and so the rate of climb would be increased.

Effect of Height. At height two factors arise to modify the
performance of an airscrew, namely, the loss of engine power
and the effect of the reduced density on the air forces experienced
by the airscrew. With regard to the engine power, the factor
for the loss of power with height, generally denoted by f(k),
varies from one type of engine to another, but in the absence of
data for any particular engine f(h) may be taken with fair accuracy
to be equal to the relative pressure p. (This assumes, of course,
‘that perfect carburation is obtained at all heights by means of
some form of altitude control.) Thus the power Pand the torque
Q at any height can be obtained from the ground level figures at
the same value of the R.P.M. by multiplying by p; the torque
coefficient can then be obtained by dividing the torque by
pn®D3. Notice that since p = opy, the torque coefficient k, may
be written

ko = apeniD?

— QoxJ(h)

py) if Q, is the torque at ground level,

if kg, is the torque coefficient at ground level.
Hence the torque coefficient can be obtained from the ground

1)
g

The performance of the airscrew of Table X is now calculated
in this manner for a height of 10,000 ft., at which f(k) = p =
0°688 and o = 0-738, and is compared with the ground level
performance in Table XI.

level figure by multiplying by



The Airscrew 139
TABLE XI
AIRSCREW PERFORMANCE AT G.L. AND AT 10,000 FT.

G.L.
¥
N P kQ ﬂD V,...,.A, n

1680 400 000994 | ©-800 141°3 o800

1620 390'8 | 001083 | 0736 125°3 0794

1560 3807 | 001184 | 0647 106°1 0771

1500 3706 | 001294 | o'500 78-8 0°686

1470 3656 | 001356 | o-365 564 0546

10,000 ft.
| l/_ i
N P kQ nD Vm.,.h. ‘ n

1680 2752 000927 o840 1484 0795
1620 268-9 0°01009 0790 1345 0798
1560 2619 0'01104 0720 1180 | 0792
1500 2550 001206 0622 981 | o762
1470 251'5 001263 0'556 85-8 l 0728

N and 7 are plotted against ¥ in Fig. 78, and it will be seen

|7 08
o= /’, v m
1600r—— —~ c‘lé
2 -1
o N e
1500t < 06
7V’,"’ ——Ground Level|
--"l0,0(|)0f\.
80 100 120 L
Speed MPH.

Fic. 78. Effect of Height on N and 7.

that  the effect of height at any given speed is to reduce the
R.P.M., but slightly to increase the efficiency.

Effect of Supercharging. Suppose now the engine in the
above is supercharged. Then there is still the same power at,
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say, 10,000 ft. as there is at ground level, and therefore the
engine drives the airscrew at a much higher rate at this height
than it did when unsupercharged. The extra power is so great,
however, that it more than compensates for the normal drop in
R.P.M. at height, as shown in Fig. 78; the engine will therefore
race unless it is throttled down, whence some of the advantage
of the supercharging is lost. Conversely, if the airscrew is
designed to absorb the full power at 10,000 ft. (as is usually the
case), then there will be a large drop in R.P.M. at ground level.
Obviously, the greater the height to which the engine is
supercharged, the greater the loss of R.P.M. near the ground,
and if the loss is very great the aeroplane may experience some
difficulty in taking-off. Moreover it is undesirable to run an
engine at full throttle at very low R.P.M. '

Various means have been devised for overcoming this
difficulty, but once again the obvious solution is the variable-
pitch airscrew.

Effect of Body Behind an Airscrew. When an airscrew is
working in front of a fuselage or engine nacelle, the body modi-
fies to some extent the airflow through the airscrew, and this
‘interference’ has its effect on the airscrew characteristics.
Generally it is found that the presence of the body slightly
increases the values of kg, and

7, and the type of curves ob-
tained with a body present are
08 e [ wi 008 . . .
Dr01] "I _, shown in Fig. 79. It will be
¢ R\ Aé noticed that the maximum
o N g efficiency occurs at a slightly
2 ke g
Sos N an§  greater value of ) when the
& \ .
= \ body is present, and so the
K3 00
—Airscrew alone vV .
i i value of — for is brought
%‘Jéﬁc{j‘w with nD 7 max g
07 T 8d o6 08 W ) P,
F1G. 79. Effect of Body. still nearer the value of D

Effect of Tip Speed. A much more important factor which
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affects the behaviour of an airscrew is the actual linear speed of
the sections of the blade near the tips. So far it has always been
assumed that model wind channel results at low speeds may be
applied to the full-scale aeroplane at high speeds by the use of
non-dimensional coefficients. When, however, the full-scale
speed becomes very high, this assumption ceases to be valid—
owing to the fact that, if the speed approaches or exceeds the
speed of sound (about 1,120 ft. per second), the type of flow is
quite changed. At normal aeroplane speeds the air may be
regarded as flowing past the aeroplane without suffering any
compression, but when speeds in the neighbourhood of the
speed of sound are approached compressibility effects become
important. In an airscrew the speeds of the sections near the
tips are often very high; for instance, an airscrew of 10 ft.
diameter running at 1,800 R.P.M. has a tip speed ( = #nD) of
943 ft. per second.

Now experiments on aerofoils at high speeds show that,
beyond a speed of about 06 times the speed of sound, the non-
dimensional coefficients k; and kj, begin to change, k; decreas-
ing and kj, increasing as the speed increases. Hence, since the
thrust of an airscrew depends principally on the lift of its ele-
ments, and the torque on their drag, it follows that the thrust
decreases and the torque increases as the speed of rotation
increases; and this has been borne out by special experiments
on model airscrews running at very high tip speeds.

Up to a tip speed of about 850 ft. per second these com-
pressibility effects are not very important, but at a speed of
about 1,100 ft. per second it is quite possible to get a loss of
efficiency of some 20 per cent. or even more. This forms
another big argument in favour of gearing.

Effect of Slipstream on Body Drag. Since the fuselage (or
engine nacelle) is in the slipstream, its drag is greater with
the airscrew running than it is at the same forward speed in
free air.

Let the drag at a speed V in free air be R, and the drag at the
same speed with airscrew running R. Also let the thrust of the
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airscrew be T. Then experiment shows that in all cases there is
a relationship of the form

R T

E—a+bm N )]
where a, b are constants for any particular airscrew-body com-
bination. :

Ilj is called the slipstream factor and is the factor by which the

o
free air drag must be multiplied to allow for the ingreased
velocxty of the slipstream.

It is found that g always has a value very close to umty This
is only to be expected, for, if the thrust is regarded as being
equal to the rate of change of momentum of the slipstream, the
added slipstream velocity is zero when T' = o, and so R = R,.
Sometimes the value of a is about 0-85, and this can be explained
by supposing that the airscrew ‘shields’ the body when there is
no thrust. The value of b appears to vary from about 2 to 10 for
different airscrew-body combinations. If the body is of very
good streamline form the value of b is high, since a rotating
mass of air like the slipstream is bound to have a greater effect
on a good streamline body than on one with a high free air drag.
It must not be thought from this that the slipstream always
counteracts the effect of streamlining. Although the value of
b is high for a good streamline body, the saving in the free air
drag more than compensates for the extra slipstream effect. In
practice the constant b rarely exceeds a value of 6, and for normal
airscrew-body combinations is more likely to lie between 2-5
and 4.

In order to study the effect of the slipstream, take average
values @ = 1,b = 3, so that the slipstream factor may be written

Now let &, be that part of the parasite drag coefficient due to
the body alone. Then the added drag due to the slipstream
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, T
= kppSVix Ao,
_ 3kp'ST
T oD

Hence, if the added drag is regarded as equivalent to a loss of
thrust (see p. 95), the net thrust 7" is given by

, k,'ST
= T(I — 31;’)’2‘9)

It follows from this that, since k,,’, S and D? are constant for
any particular aeroplane, the effect of the slipstream is always
to reduce the thrust, and therefore the efficiency, by a constant

. 3kpy'S . .
percentage. The expression 31[)’2 - can be evaluated in any given
case, and so the airscrew efficiency corrected to give the net

. kp'S .
efficiency. Generally the value of 3-5%— is of the order of o'1;
hence the net airscrew efficiency is about go per cent. of the
actual efficiency.
Notice that, if interference effects are present so that k'
varies with incidence, the effect of the slipstream cannot be

allowed for by a simple efficiency reduction factor, for the

éxpression l%’éig

necessary to apply a correction at every angle of incidence.

~ is no longer constant. In such a caseit becomes

EXAMPLES

1. The top speed of an aeroplane near the ground is 120 miles per
hour. At this speed the engine runs at 1680 R.P.M. and develops
360 H.P. If the diameter of the airscrew is g ft. 6 in., find the values

V .
of D and kj at this speed.

If the corresponding value of ky is 0:0598, calculate the efficiency.
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2. The thrust and torque coefficients of an 8 ft. diameter airscrew
are given in the following table:
V
D o4 o5 Y] o7 o8 09
kr 0'1041 00956 00853 0'0731 0'0591 0'0431
ke 0'0I1231 0°0IIQI ©0°0II29 0°0I043 000930 ©0°00784
1’0 18 ¢

00252 00056
000602 ©0'00379

Draw the &, curve and determine the experimental mean pitch.
vV
Calculate the efficiency for each value of D and draw the efficiency
curve. Hence obtain the value of the maximum efficiency and the
vV
value of — at which it occurs.
nD
3. The airscrew of the above example is fitted on an engine which
develops 200 H.P. at 1750 R.P.M. Obtain the aircraft speed corre-
sponding to this engine speed. (Draw the kj curve.)

4. An aeroplane is fitted with an engine whose normal H.P. is
500 at 2,000 R.P.M. Find the engine torque.

If the engine is fitted with a reduction gear so that the airscrew
speed is half the engine speed, find the R.P.M. of the engine at full
throttle when the aeroplane is stationary on the ground, given that
the airscrew is 12 ft. in diameter and the estimated value of kj at
- = © is 000go. The engine torque at full throttle may be
assumed constant.

. . 4
5. Show that for a given airscrew at a given value of D the power

D
absorbed varies as 7%, where n is the revolutions per second.

An aeroplane is fitted in turn with two engines of the same type.
With the first engine the standing R.P.M. at full throttle are 1530;
with the second engine they are 1560. If the horse-power of the first
engine at 1530 R.P.M. is 380, find the horse-power of the second
engine at this speed, assuming that the horse-power is directly pro-
portional to the R.P.M.
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6. The following data refer to a light aeroplane:

Engine: N 1800 1920 1980 2040 2100 2160
14 76 776 8o's 833 860 880

. . v )
?13“:%‘&.) 7D o4 045 o500 o55 o060 065
kq 000794 ©0°00777 0'00751 0°00722 000681 0'00625
7 0653 0698 0732 0759 o775 0780

070 075
000559 0'00478
0765 0734

Draw the kg and 7 curves, and so find the values of V,, , 1, and nP
corresponding to the given values of N. Hence construct the curve
of horse-power available, and read off the horse-power available at
the climbing speed of 60 miles per hour and at the top speed of 105
miles per hour.

7. An aeroplane is fitted with a supercharged engine which main-
tains its full ground level power up to a height of 10,000 ft. The
airscrew is g ft. 6 in. in diameter and was designed for top speed at
this height at the maximum permissible engine speed. From the
power curve the maximum permissible R.P.M. are found to be 1800,
the ground level power then being 450 B.H.P.

Find the estimated speed on which the airscrew was designed,
given that the airscrew torque coefficient is as follows:

n—-I; 03 0’4 o5 o6 o7 o8
kg 00143 ©00I41 ©00I37 ©0I30 ©00OII7 00095

Show also that at ground level the engine is unable to develop its
normal speed of 1620 R.P.M. below a speed of about 138 miles per
hour. (Assume constant torque.)

8. From wind channel experiments on an airscrew-fuselage com-

. R .
bination it is found that the slipstream factor —- can be written

R T Fo
= = R P
R, T papn
If the diameter of the full-scale airscrew is 8 ft. and the estimated
drag of the fuselage only in free air is 45 Ib. at 100 ft. per second, find
the equivalent percentage reduction of airscrew thrust due to the
added slipstream drag of the fuselage.

3729 u



IX
THE EQUILIBRIUM OF THE AEROPLANE

The General Problem. When a number of co-planar forces
act on a body, the conditions of equilibrium, or of steady motion,
are obtained as follows:

(1) Resolve the forces in two directions at right angles,
(2) Equate to zero the algebraic sum of the resolved parts
in each direction,
and (3) Equate to zero the algebraic sum of the moments of the
forces about any convenient point in their plane.

For the aeroplane the equations obtained by resolution have

been given in Chapter VII, and these constitute two of the

Fi1c. 8o.

equations of motion. The third equation is obtained by taking
moments about the centre of gravity, and for the aeroplane to be
in balance the algebraic sum of the moments of the forces about
the C.G. must be zero.

Consider now an aeroplane flying horizontally, and, for
simplicity, suppose that the thrust and drag pass through the
C.G.,so that they do not enter into the moment equation. Then,
unless the centre of pressure is vertically above the C.G., the
lift will produce a moment tending to rotate the aeroplane, and
this turning moment will be positive or negative (i.e. clockwise
or anti-clockwise) according as the C.P. is in front of or behind
the C.G. (Fig. 80). It is the function of the tail plane to con-
tribute the necessary righting or balancing moment by giving
2 small tail plane lift. Obviously, if the C.P. is in front of the
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C.G., the lift on the tail plane will be upwards or positive, while
if the C.P. is behind the C.G., the tail plane lift will be down-
wards or negative.

Now the C.P. is not fixed, but has a different position for
every angle of incidence; sometimes it may be in front of the
C.G. and sometimes behind. Hence the tail plane lift may be
sometimes positive and sometimes negative.

In practice the horizontal distance between the C.G. and the
C.P. is always small (in normal flight it rarely exceeds a value of
about 0-35¢, where ¢ is the chord length), while the distance
between the C.G. and the centre of pressure of the tail plane is
generally of the order of 2:5¢ or 3-oc. The tail plane lift is there-
fore always small in comparison with the main plane lift.

It is the purpose of this chapter to describe in some detail the
operation of the tail plane in producing equilibrium.

Determination of the C.G. The position of the C.G. of an
aeroplane is determined in two ways, viz.:

(1) By calculation in the course of design,
(2) By weighing the actual completed machine.

By calculation. In the first method the weight of each com-
ponent (i.e. the wings, the fore part of fuselage, the rear frame,
the engine, load, &c.) is estimated together with the position of
its centre of gravity referred to some convenient axes. Any axes
may be chosen—a common practice is to take vertical and hori-
zontal axes through the leading edge of the lower wing. Then,
if w,, wy, wy . . . are the weights of the components and (x,, y,),
(%2, ¥2), (%3, ¥3) . . . the coordinates of their centres of gravity
referred to the chosen axes, the coordinates of the C.G. of the
complete aeroplane are given by:

WXy +WeXg+WeXg+ . . o

X = W
and 5= w1y1+waya;;wsys+ e

where W( = w;+wy+wy+ . . .) is the total weight of the aero-
plane.
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This is a well-known theorem in ordinary mechanics.

By weighing. The aeroplane is weighed in two positions,
generally called ‘tail up’ and ‘tail down’, and measurements are
recorded in each case at the wheels and tail skid. In the ‘tail up’
position (Fig. 81 (a) ), let W,, W, be the weights at the wheels
and skid respectively. Then the C.G. must lie on the vertical

line XY which divides the line

]

4 X ¥z AB in the ratio of W,: W,.
< Similarly, if W', W, refer to
\ 7 the weights in the ‘tail down’
) position, the C.G. must lie on the
vertical line X'Y’ which divides

AT = 8 A'B intheratioof W, : W, .
Hence, if the two lines XY,

x’ " X'Y" are inserted on the same
diagram as in Fig. 81 (c), their
intersection gives the position of
the C.G.

! - The Mean Chord. In problems
Ay w B of equilibrium and stability it is
XX convenient to replace the two

e wings of a biplane by a single

i equivalent wing.

Suppose 4,B,, A,B, represent
the chords of the two wings of a
AW . biplane and, first of all, consider

.. the case of a biplane with equal
Fic. 81. C. G. Determination. wings (Flg. 82 (a) )' Then, if AB
is midway between 4,B;, 4,B, and if the difference in load
intensity between the two wings is neglected (see p. 64), the
two wings may clearly be replaced by a single wing AB of
double the area of a single wing. The line 4B is called the
mean chord.
Suppose now the wings are unequal, both in span and chord.
Then the mean chord 4B is the line which divides the distance
between the two wings A,B,, A,B, in the inverse ratio of
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their areas. Thus, if the upper wing is of twice the area of

the lower,
4,4

44,
A, \\ \B,
\ A — 8,
\ \ ) ]
\ \ \ !
\ \ Avr———————8
AX \B \\ ]
\ \ \ [
\ \ ]
\ \\ Arooo 15,
As\ \B,
ta £ gua/ wings by Unequa/ wirngs

Fi1c. 82. Mean Chord of Biplane,

Coordinates of the C.G. Let AB (Fig. 83) represent the
mean chord of an aeroplane, G the centre of gravity, and let

Fic. 83. C. G. Coordinates.

GM be the perpendicular from G on AB. Then the C.G. is
always referred to by its coordinates (k, k) defined by

_AM _GM
T AB’" T 4B’

or AM = hc, GM = ke, where c is the length of the mean chord.
Note that if the C.G. falls below the mean chord, k is negative.
Wing Moment about the C.G. In order to find the
moment of the wing forces about the C.G., the forces may be
replaced by &, pSV'2, kppSV? acting at P, the centre of pressure
of the mean chord 4B, as in Fig. 84 (). Hence, if the lift and
drag are known, the wing moment may be easily determined.

h
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It is desirable, however, to work in non-dimensional coefficients
so that the wing moment for any combination of aerofoil and
C.G. position may be expressed non-dimensionally without any
reference to the actual weight and wing area of any particular

aeroplane.
'kl psv?
A > kposv?

k sina

Fic. 84. ®)

The lift and drag forces may be resolved along and per-
pendicular to the mean chord as in Fig. 84 (8). (Compare Fig. 13,
Chapter I1.)

The moment about G of the forces at right angles to the mean
chord is

(kycos a+kpsin a)pSV23x PM

= (kycos a+kpsina)(AM—AP)pSV?
= (kpcos a+kpsina)pSV2x AM
— (kycos a+kpsin a)pSV2EX AP.
But —(k; cosa+kpsina)pSV2x AP is the moment about the
leading edge and is therefore equal to k,cpSV2 (see p. 29).
Also kjy cos «+kpsin « may be replaced by &, since « is small.

Hence the moment becomes (k;pSV?2 X hc)+k,cpSV3, since
AM = he, :

i.e. (ky+hky)cpSV3.
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The moment of the forces along the mean chord is
(kysina—kpcos a)pSVEX MG = k,pSV2X ke,
writing &, for k; sina—kpcos o,
= kk.cpSV2.
The total moment is therefore given by
M, = (k,,+hk,+kk,)cpSV?

or My, =FkeSVE . . . . . . . )
where k, =k, +hk,+kk, . . . . . (2)
and k, =k sina—kpcosa. . . . . (3)

Biplane Effect on k,. In the previous chapters it has been
shown that the moment and lift coefficients for an aerofoil are
connected by an equation of the form

k= —bky +hp,

where k&, is the value of k,, at k; = o and the value of b is always
very close to 0-25.

A similar relation holds for a biplane, where the moment is
measured about the leading edge of the mean chord, but the
aerofoil theory shows that the value of 4 is decreased numerically
owing to the curvature of the streamlines (see p. 63). The
correction factor to be applied for biplane effect is found to be
I— %(%)a, where ¢ is the chord and 4 is the gap. Thus, for a
gap/chord ratio of 1 which is an average figure, the factor is
0-875, and the value of b falls from o-25 for a monoplane to

~0-22 for a biplane. There is no correction to be applied to %,,.

Calculation of Wing Moment. The moment coefficient %,
is calculated for the aeroplane of Chapter VII in Table XII
below. The wings are of R.A.F. section of aspect ratio 6, and
the lift and drag characteristics are taken from Example 2, p. 91,
and reproduced below. For R.A.F. 15 aerofoil the moment
coefficient is given by (p. 30)

k, = —o0-24k; —0'0175.
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" Hence, by assuming the gap/chord ratio of the aeroplane to be
1, the equation for the biplane becomes

k

w = —0'21k; —0-0175.

The C.G. of the aeroplane is taken to be at
h =o031,k = —o025,

so that

km+hkL

—o-21k; —0'0175+0°31k, = o'1k; —0°0175.

TABLE XII

CALCULATION OF THE WING MOMENT COEFFICIENT k&,

; km+hkyg ky -
' (= o1tky— (=kpsina—! m

a ok kp o0175)  kpcosa) | KRRz (= km+thkptRRy)
—2 . 0003 00076 —o00172 —o00070 00018 | —o0154
0 0070 . 000066 —o00105 —o00066 ! 00017 | — 00088
2 0132 00082 —00043 - 00036 0'0009 | —o0'0034
4 o199 o0119 00024 -}0'0020 E — 00005 | 400019
6 0262 | 00175 00087 0°0099 . — 0'002§ ! o'0062
8 0327 i 00247 00152 0'0210 | — 0°0053 0'0c99
10 . 0390 | 00330 c'0215 00352 ; — 0-0088 00127
12 | 0'450 ' 00428 | 00275 o057 | —oo129 00146
14 ' 0°'§02 | 0'0§50 | 0°0327 00680 | —o-0170 00157
16 0°530 ; 0'0740 0'0355 0'0750 | — 00188 00167

The curve of k,, against a is given in Fig. 85.
This figure shows that the wing moment is negative at low
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Fic. 85. Wing.Moment Curve.

incidence and positive at all angles
of incidence above 3-3°. Hence for
equilibrium the tail plane must give
a negative lift at the higher speeds
and a positive at the lower, the
dividing line being 101-5 miles per
hour (corresponding to a = 3-3°),
at which speed no tail plane lift is
required at all.

Thrust and Body Moments. So
far the wing moment only has been

considered. There may be a further moment due to the
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fuselage, landing gear, &c., but this is generally small and
may be neglected. Hence, so far as gliding flight is concerned,
the total moment may be taken to be equal to that of the wings
alone. If, of course, wind channel data are available for the body
moment, a correction can easily be applied.

Again, when the airscrew is developing a thrust, a thrust
moment may arise if the thrust line does not pass through the
C.G., and this must always be taken into account. Especially
is this important in the case of a flying boat in which the engines
are necessarily well above the C.G. (see Fig. 86).

As an introduction, how-
ever, to the behaviour of the
tail plane, attention will be
confined to gliding flight.

Downwash. Fig. 85 shows
then the pitching moment
which must be counteracted
by the tail plane, but, before
the operation of the tail plane can be discussed more fully,
it is necessary to study the effect of what is called down-
wash. As the air passes over the wings of an aeroplane it
is deflected downwards from its original direction, and the
incidence of the tail plane is therefore decreased. The angle
through which the air is turned is called the angle of downwash,
and its value at the tail is denoted by the Greek letter € (epsilon).
Clearly, at a great distance behind the wings the downwash has
been dissipated, but in the region of the tail the downwash is
considerable and of great importance.

In terms of the aerofoil theory the downwash is the effect of
the induced velocity behind the wings of the system of trailing
vortices. Now the downward deflexion at the wings is propor-

tional to % (see p. 52); it is therefore only to be expected that at

a given distance behind the wings it must still be proportional

2

to7. Clearly it must also vary with the distance, and it is found,

3729 X



154 The Equilibrium of the Aeroplane

in fact, that a governing factor is the ratio of the distance behind
the wings to the span. For normal aeroplanes, however, the
ratio of the distance of the tail behind the wings to the span does
not vary much, and experiment shows that good average values
for the downwash are given by

70k,

<=~ (for a monoplane) . . . . (4)
and €= nsz (for a biplane). . . . . (5)

—*@
x

Fi1c. 87. Downwash.

These equations may be modified in certain cases by the
interference of the fuselage on the flow near the tail and by the
cutting-away of the upper wing at the centre to improve the
pilot’s view, but no allowances can be made for any such effects
without wind channel data.

Tail Setting. If the chord of the tail plane is parallel to the
chord of the main planes, the downwash reduces the angle of
incidence of the tail plane from the main plane incidence « to

2 (]

______

Fic. 88. Tail Setting.

a—e. Generally the tail plane is not parallel to the main planes,
and the angle between them is called the tail setting and denoted
by «,; it is considered positive if the rigging incidence of the
tail plane is greater than that of the main planes. Hence the
angle of incidence o’ of the tail plane is given by

o =a—etoy . . . . . . (6)
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[The angle «, is sometimes called the longitudinal dihedral angle,
the name tail setting being reserved for the angle between the
tail plane chord and the thrust or centre line of the aeroplane.]

By means of this equation o’ may be calculated for any speed

of flight if «, is known. If then the lift and drag characteristics
of the tail plane are known, the moment of the forces on the tail
plane can be calculated in a similar manner to that used in
obtaining the moment of the wing forces, but it is sufficient
always to make the following approximations:

(1) The moment of the longitudinal force k;’sin o’ —kp’ cos o'
(see p. 151), where k;" and k' are the lift and drag coeffi-
cients of the tail plane at an incidence «’, may be
neglected altogether.

(2) The normal force k' cosa’+kp' sina’ may be replaced
by k.

(3) The variation in the position of the centre of pressure of
the tail plane may be neglected for it is very small com-
pared with the distance of the centre of pressure from
the C.G.

(4) The length of the moment arm may therefore be con-
sidered constant and is usually taken to be the distance of
the C.G. from the point on the tail plane chord ¢’ situated
at 0-3¢’ from the leading edge.

Hence the moment of the tail plane forces is given by

4 M, = —k,'pS'VixI
ie. M,= —k/BSVE . . . . . (7

where /is the length of the moment arm and S’ is the area of the
tail plane. (The negative sign is included since a positive lift
gives a negative moment.)

The Tail Plane as an Aerofoil. Itis necessary now to study
the behaviour of the tail plane as an aerofoil in order to deter-
mine the lift coefficient k;’ at an angle of incidence a’. In the
first place mention must be made of the elevators, which are the
hinged movable portions at the rear of the tail plane. These
elevators are under the control of the pilot who, by fore and aft
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movement of the control column, is able to depress or raise the
elevators and so vary the shape of the tail plane section. In this
way the piiot can vary the tail moment and thus obtain control
over the fore and aft or pitching movement of the aeroplane.
For the present, however, the elevators will be supposed to be
held always in the neutral position so that the tail plane may be
regarded as an ordinary rigid aerofoil.

Now the tail plane is generally of a thin symmetrical aerofoil
section, and therefore, if the elevators are in the neutral position,
the angle of no-lift is zero. Hence the lift coefficient may be
written

k' = ad’,
where a is a constant dependmg primarily on the aspect ratio
of the tail plane.

The aspect ratio is generally of the order of 3, and the
corresponding value of a is 0-03.

This value for the slope a refers to the tail plane when it is
acting alone. When it is in position on the aeroplane, the inter-
ference of the fuselage and the rest of the aeroplane, together
with the presence of the hinges, results in a considerable reduc-
tion of the value of a. The ratio of the value of @ when the tail
plane is in position to its value when the tail plane is operating
as a simple aerofoil on its own is called the tail plane efficiency,
and in practice the efficiency is generally about 06 or o-7.

For the aeroplane under discussion a will be taken to have the
net value of 0-019, so that the lift coefficient of the tail plane is
given by

k' =o019a" . . . . (8)

Calculation of the Moment for Given Tail Setting Sup-
pose the tail plane has a fixed tail setting of —1°. The tail
moments for this setting are now calculated in Table XIII. The
data on which the calculations are based are as follows:

Tail moment = —k,'plS'V?,
S’ =40
= 2-5¢, where c is the length of the mean chord.
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.. tail moment coefficient

__Tail Moment

= 5 in order to be comparable with &,

k' X2:5cx40 .
- 7!‘7‘;3%6_4“ , since S = 320,

= —o0'3125k;’
= —0°3125 X 00192, since k', = 0-019’,
= —0'00594a’.

Also o' = a—e-+a,, from equation (6)

= a—e—1I, since a, = —1I;
I IOkL .
and €= Ve from equation (5)
= 18-33k,, since A = 6.
TABLE XIII
CALCULATION OF TAIL MOMENT
i Tail Moment
« ky € af Coefficient
(from Table XII)) ( = 18:33kz) | ( =x—e—1) | ( = — 0'00594%’)

-2 0'003 o1 —31 o'0184
o 0'070 13 —23 0'0137
2 0132 2°4 —1'4 0-0083
4 0'199 36 — 06 00036
6 0262 48 +o2 — 0'0012
8 0'327 60 10 — 0'0059
10 0°390 71 19 —o'or13
12 0'450 82 28 — 00166
14 0'§02 92 38 —0'0226
16 0’530 97 53 — 00315

The total moment coefficient of the whole aeroplane is the
sum of the last columns of Table XII and Table XIII. If, then,
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this total coefficient is plotted against incidence, the point at
which the curve cuts the incidence axis gives the incidence at
which the aeroplane is in balance or trim with a tail setting of
—1° and the elevators neutral. Alternatively, if the tail moment
is reversed in sign and plotted against incidence, the inter-
section of the wing moment and the tail moment curves gives
the incidence at which the aeroplane trims. This is illustrated
in Fig. 89, and it will be seen that the aeroplane trims at an angle

of incidence of 11°.
% When the aeroplane is said to be
in trim in this sense it does not

necessarily follow that the pilot
need not exert any force on the

//€°" control column, for, if the control

[=3

. Moment coef| r‘:c:gwt
2
E3
AN

00 7 column is left free, the elevators

é will not necessarily trail in the

L L . + neutral position. Generally, how-

Angle of uncidence ever, the force required to bring

Fic. 89. Wing and Tail the elevators into the neutral posi-
Moments. tion would be small.

Calculation of Tail Setting to Trim. Fig. 89 shows that at
any angle of incidence other than 11° the aeroplane would not
trim with a tail setting of —1°, and it would therefore be neces-
sary for the pilot to use the elevators.

To avoid this and to allow the pilot to fly ‘hands off’ it is
customary to provide some tail adjusting gear, by means of
which the tail plane as a whole may be adjusted to give the
correct setting for trim at all speeds.

The ‘tail setting to trim’ for any angle of incidence may easily
be obtained. Since the tail moment must be equal and opposite
to the wing moment, the equation for equilibrium is

kcpSVE=Fk,/pS'V2. - . . . (9
, k.S
or k' = 75

Now for any angle of incidence £,, is known (Table XII), and
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so k;' may be determined. Equation (8) then gives o, and the
tail setting follows from equation (6) since € is known.

For the particular aeroplane equation (9) gives
,  kncx320

= ——2— = 32k,
2.5CX 40

The calculations are given in Table XIV below ; the first two

columns are taken from Table XIIT and the third from Table XII.

L

TABLE XIV
CALCULATION OF TAIL SETTING TO TRIM
- k' _ a’ i o

o € ko (=32k)) | (=k/oo1g) | (= a'—ate)
—2 | o1 | —0'0154 | — 00493 —26 —o5
o 1'3 | — 00088 - 00282 —15 1 —o2
2 2°4 — 0'0034 - 00109 — 06 ! — 02
4 36 +o-0019 ~+0-0061 +o03 ] — o1
6 | 48 00062 00198 10 | —o02
8, 60 0'0099 00317 17 ! — 03
10 71 00127 0'0406 21 i — o8
12 | 82 00146 00467 25 [ O
14 | 92 00157 00502 26 | —22
16 | 97 00167 00534 2-8 i —3'5

The above table shows that for gliding flight at normal flight
speeds the necessary tail setting range is from about 0° to —3-5°.

The Elevators. In practice the tail adjusting gear is naturally
rather slow in operation, and it is only used when it is required
to fly at a constant speed for some length of time. Otherwise the
tail setting is kept constant, and fore and aft trim is maintained
by means of the elevators. This is explained more fully in the
next chapter on controls.

Effect of Thrust on Tail Setting to Trim. When the air-
screw is developing a thrust, the tail setting required at any
given speed is different from the tail setting on the glide owing to

(1) the moment of the thrust about the C.G.,
and (2) the effect of the slipstream on the tail plane.
For instance, suppose the thrust line is o-12¢ below the C.G.
Then the moment coefficient due to the thrust is positive and
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Txo'12¢ o12T
eql;al to SV = oSV and this must be added to the value
of

e
In order to allow for the increased velocity over the tail plane,
an effective tail plane area is obtained as follows:
Let S,’, S,’ be the areas outside and inside the slipstream
respectively. Then the air forces on S,’ must be multiplied by

the slipstream factor R, (see p. 142), and so the tail plane lift is
given by

L' = k,'pS,'V2+k,pSy V"I—? '
0

Hence the effective area of the taxl plane is S +S, 1? , Where
. 0
T
Ro is determined from the equation — R, =a+t+b— V2 192
In this case suppose S, = 10, S,' = 30 and the slipstream
f b R 3T
actor is given by —- R, = 1+ oVDE

To save labour one value of « only is considered, namely,
a = 2° At this incidence k;, = 0-132 and the corresponding
speed (from W = 2950, S = 320) is 171-7 ft. per second or
117 miles per hour. From Fig. 57 the value of 5P at this speed
7P550

is obtained as 267, so that T = 7

= 855. Hence the thrust

012 X855
pSV?
= 0'0046.

moment coefficient =

Therefore the total moment coefficient
= k,+00046
= —00034+0°0046, for k, = —0-0034 (Table XII)
= 400012,
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. R 8
Agaln’ 5 =I1+3 Png)z
= 1°43, taking D = ¢-25.

o8 = 104(30X1°43) = 53.
by = FmeS
k=
_ 00012 X 320

25X 53

from equation (9),

, since = 2-5¢,

= 0'0029.

o kS _oo029
0019 0019
Hence, a, =o' —ate

=o02—2+2+4

= 0-6, as against —o-2 on the glide.

But for gliding flight the necessary tail setting range was found
to be from o° to —3-5°; hence in this case the range would have
to be extended to cover power flight.

Tail Plane Drag. Reference may conveniently be made at
this point to the effect on the tail plane drag of the slipstream
and the downwash. In Chapter VI it was stated that an approxi-
mate figure for the drag of the tail plane might be obtained by
assuming a constant drag coefficient of o-0070. Table XIV
shows that the assumption of constant k' is justified, for the
values of k;’ are so small that the induced drag of the tail plane
is negligible, and the profile drag cannot vary greatly over the
small range of incidence encountered. Owing to the slipstream,
however, the area of the tail plane should be taken to be the

. . R .
effective area corrected for the slipstream factor R In esti-
)
mating the amount of the tail plane area in the slipstream
allowance should be made for the contraction of the slipstream
which occurs at some distance behind the airscrew. Generally
3120 Y
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the slipstream is assumed to contract to a diameter 0-8D, where
D is the diameter of the airscrew.

The effect of the downwash is also of interest. Since the air
is deflected downwards a certain portion of the tail plane lift
becomes drag in exactly the same way as a portion of the lift of
an aerofoil becomes (induced) drag due to the induced velocity.
Thus the true drag along the flight path is D’ cose+L’sine or
D’ +L’sine, since cose is always nearly unity (compare p- 51,
Chapter IV). Hence the effect of the downwash is to reduce
the drag if the tail lift is negative and to increase it if the tail
lift is positive. In Table XV below, the true drag coefficient
(= kp'+k;'sine) is obtained, taking k,’ = 0-0070; the values
of € and k;' are taken from Table XIV.

TABLE XV
TRUE T.P. DRAG DUE TO DOWNWASH

a € k. sin € ky' sine kp'+kyg sin e

o 13 — 00282 | 00227 | —o0'0006 00064

2 24 — 0'0109 0'0419 — 0°0005% 00065

4 36 + 00061 00628 + 00004 0'0074

6 48 00198 | 00837 00017 00087

8 60 0'0317 0'1045 0'0033 0’0103
10 71 00406 01236 00050 0'0120
12 82 00467 | 0'1426 00067 00137

This table shows that, if the downwash is taken into account,
the true drag coefficient is far from constant and increases fairly
rapidly with incidence.

Again, since the thrust increases as the speed decreases (see

Fig. 75), the value of R increases and therefore the effective

area increases. Hence at high angles of incidence the drag of
the tail plane may be considerably underestimated by neglecting
the slipstream and downwash. -The effect on performance,
however, is not very great.
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EXAMPLES

"1. The top wing of a biplane is 30 ft. by 6 ft., the bottom wing
20 ft. by 3°5 ft., the gap 4 ft. and the angle between the gap and the
line joining the leading edges of the two wings is 20° 33’. Find the
length and position of the mean chord.

If the C.G. is 72 in. behind the leading edge of the lower wing and
20 in. above it, these distances being measured along and perpen-
dicular to the chord respectively, find the C.G. coordinates % and k.

2. In a light aeroplane the wing chord ¢ is 5 ft. and the wing area
310 sq. ft. Calculate the lift on the tail plane when the aeroplane is
travelling at its top speed of go miles per hour at ground level, given
that the wing moment coefficient &, is —o0014, [ = 2*7¢ and the
moments due to fuselage, thrust, &c. may be neglected.

3. The lift and drag characteristics of the wings of a biplane are
given in the following table:

o -3 o 3 6 9 12 15

k;, 0036 o140 0244 0348 0450 0549 0626

kp 00076 00086 o00127 00205 00313 00453 00650

Construct the curve of %, against &;, given that the moment co-
efficient of the wings about the leading edge is k, = —o-215k,
—o-025 and the C.G. coordinates are i = 0-305, K = —o°195.

If the aeroplane has a wing loading of 85, at what speed will the
aeroplane be in trim with no lift on the tail plane ?

4. Use the calculated %, values of the previous example to deter-
mine the tail setting to trim at angles of incidence of o°, 6° and 12°.
The slope of the tail lift curve is 0026, the tail plane efficiency 65 per
cent., the aspect ratio of the wings 8:6, the moment arm / = 2:gc

and-S—,=9.

5. In order to make a rapid prediction of the performance of an
aeroplane it was assumed that the tail plane was always working at a
constant drag coeflicient, and this assumption led to a figure for the
tail plane drag of 12 Ib. at 100 ft. per second. Find the drag at 60
miles per hour, and compare this with the more probable figure
obtained by taking into account the lift component of drag due to
downwash.

The aeroplane is a biplane of aspect ratio 6, and at 60 miles per
hour &, = o042 and k" = 0'078.
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CONTROL AND MANGEUVRE

Axes of Reference. In order to deal with questions relating
to control, manceuvre and stability, it is convenient to refer the
motion of an aeroplane to a system of mutually perpendicular
axes through the C.G. The standard axes used in this country
are as shown in Fig. go. The longitudinal axis is GX forwards,

12
]
Yawing axis

FiG. go. Axes of Reference.

the lateral axis GY to starboard (i.e. to the right as viewed from
behind) and the normal axis is GZ vertically downwards and at
right angles to the other two.

A rotation about the longitudinal axis is called rolling, about
the lateral axis pitching and about the normal axis yawing. The
axes are therefore sometimes referred to as the rolling, pitching
and yawing axes respectively. Rotations are considered positive
if they are in the directions shown by the arrows.

Control Surfaces. The control surfaces. consist of the ele-
vators, ailerons and rudder. The principle of working is the
same in each case and is described below.

Consider an aerofoil with the rear portion hinged and capable
of motion about the line of hinges (see Fig. 91). When the
hinged portion is depressed, the angle of incidence is increased
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and the effective centre line camber is increased ; the lift is there-
fore increased. Similarly, when the hinged portion is raised,
the lift is reduced.

F1G. o1.

The Elevators. The elevators form the rear part of the tail
plane, and control the motion of the aeroplane about the lateral

¢
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1

Fic. 92. Elevators.

or pitching axis. They are operated by means of cables attached
to the control column in the pilot’s cockpit, a forward movement
of the column depressing the elevators and a backward move-
ment raising them. If the elevators are depressed when the
aeroplane is in trim, the lift on the tail plane is increased and the
moment of the tail plane lift about the C.G. is greater than the
wing moment. There is thus set up a moment tending to depress
the nose of the aeroplane. Hence a forward movement of the
control column pushes the nose down; similarly a backward
movement pulls the nose up.
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Notice (Fig. 92) that the elevators must be cut away to allow
rudder movement.

The Ailerons (or wing flaps) are the outer rear portions of the
main planes and control the motion about the longitudinal or
rolling axis. They are operated in a similar manner to the ele-
vators, except that ailerons on opposite wings work in opposite
directions. A movement of the control column to the right

le

[
1
l
!
|
——I ' I_____
t
]
F1G. 93. Ailerons.

depresses the aileron on the port or left-hand wing and raises the
aileron on the starboard or right-hand wing. Hence the lift on
the port wing is increased, and that on the starboard wing is
decreased ; a positive rolling moment is therefore set up tending
to roll the aeroplane to starboard.

The rudder. The rudder is the vertical hinged surface which
R

—

F16. 94. Fin and Rudder.

controls the motion about the normal or yawing axis, and acts
in a similar manner to an ordinary boat rudder. The fixed
portion of the vertical surface is called the fin and is a stabilizing
surface which will be discussed in the next chapter. Unlike the
clevators and the ailerons, the rudder is not operated from the
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control column but from a rudder bar at the pilot’s feet. If the
pilot presses on the rudder bar with his right foot, say, the
rudder is moved as shown in Fig. 95, and air forces are set up on

N

Il

Fi1G. 9s.

the fin and rudder which provide a yawing moment tending to
turn the nose of the aeroplane to starboard.

Balanced Controls. Consider a horizontal control surface
depressed as in Fig. g6. Then the resultant air force R on the

Fi1G. 96.

control surface tends to rotate it upwards about the hinge ; hence
the control can be kept in position only by the pilot exerting a
load on the control column such that the moment about the
hinge of the tension set up in the control cable just balances the
moment of R, called the hinge moment. At large angular dis-
placements of a control surface, or even at small ones on a large
aeroplane, the hinge moments may be so large that the loads at
the pilot’s hands and feet become excessive, and it is necessary
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to reduce these loads by some form of ‘balancing’. In a balanced
control a portion of the control surface lies in front of the line of
hinges, so that the moment of the air forces on the front part
helps to relieve the pilot (Fig. 97). Ir other words the resultant
air force R on the control surface acts nearer to the hinge, and
so the hinge moment is reduced.

Fi1G. 97. Balanced Control.

Some typical forms of balance are shown in Fig. ¢8.

Types (@) and (b) are called horn balances, the relieving
moments being obtained from the air forces on the horns only.
In type (c), called an inset balance, the hinge is set back behind
the leading edge of the control surface, and the balancing is
carried throughout the whole length.

]

1a) Horn balance by Morn balance ¢y Inset balance
F1G. 98. Types of Balanced Control.

In all cases, of course, partial balancing only is required; no
attempt is made to reduce the hinge moment to zero at all
angular displacements, for it is always desirable to have some
‘feel’ to the controls. Furthermore, if the balanced area is too
large it is quite possible that (1) large vibrations of the surface
may occur, and (2) although the balancing is effective at large
displacements, the surface may be overbalanced at the smaller
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ones; this means that the resultant force acts in front of the line
of hinges, so that the hinge moment is negative and the surface
‘takes charge.’

The Elevators. When a tail plane is workingat an incidence o’
with the elevators neutral, the lift coefficientis given by 2, = ad’,
where a is the slope of the lift-incidence curve and depends
upon the aspect ratio and efficiency of the tail plane. Suppose
now the elevators are moved through an angle 5. (This angle is
called the elevator angle and is considered positive when the
elevators are depressed.) Then it is found by experiment that,
over a large range of elevator angles, the lift coefficient is in-
creased (or decreased) by an amount b, where b is a constant
depending upon the ratio of the elevator chord to the total tail
plane chord. This is true over the normal range of tail plane
incidence encountered, and so the lift coefficient may be written

k' =ad+bn. . . . . . (1)
Obviously the value of b increases as the ratio of the elevator
chord to the tail plane chord increases, but the rate of increase
of b is not so great as the rate of increase of the hinge moment.
Small elevators are therefore in general more efficient than large
ones, but the extent to which the elevators may be cut down is
determined by the question of maximum control. For 40 per
cent. elevators an average value of b is 0-0130; the lift coefficient
of the tail plane of the previous chapter may therefore be written
(assuming 4o per cent. elevators)
k;' = o019a’400137. . . . . (2)
The term o-o137n gives the extra lift coefficient (positive
or negative) due to elevator movement, and the extra lift is
00137 XpS'V?, so that the control moment generated is
00137 X pS’' V2 x [, where [ is the moment arm of the tail plane.
Equation (2) may also be used to determine the elevator angles
to trim at various speeds when the tail plane is fixed at one
particular setting. Calculations for the aeroplane of the previous
chapter are given in Table XVI below. A fixed tail setting of

—1° has been taken, and the first three columns of the table—
3729 z
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which give the downwash angle and the tail plane lift coefficient
required for trim at various angles of incidence—are repro-

duced from Table XIV.
TABLE XVI

ELEVATOR ANGLES TO TRIM WITH FIXED TAIL
SETTING (¢ = —1°)

.’ 001

« € hL" (= agc-—x) oorg9a’ (= kL""?g’W") 7
—2, o1 —0'0493 —31 —0'0589 0'0096 o7
o| 13 — 0'0282 —23 — 0°0437 0'0155 12
2| 24 — 0'0109 — 14 —0'0266 o'o157 12
4! 36 -+ 00061 —o0'6 — 00114 0'017§ 13
6 48 0'0198 +o2 +0°0038 o'o160 12
8| 60 00317 10 0'0190 00127 10
10 71 0-0406 19 0'0361 0°'0045 03
12 | 82 0'0467 2-8 0'0532 — 0'0065 —o0's
14| 92 0'0502 38 0'0722 — 0'0220 —17
16 1 97 0'0534 53 0°1007 —0'0473 —36

The Ailerons. With normal ailerons the angular displace-
ment, or aileron angle, for a given movement of the control
column is the same on both the port and starboard wings, and it
is found that the rolling moment generated is approximately
proportional to the aileron angle. As the wing incidence is
increased, however, the turbulence which exists over the upper
surface of the wings reduces to some extent the effectiveness of
the ailerons, and so the rolling moment for a given aileron angle
falls off as the wing incidence is increased (Fig. 99).

Another undesirable feature of all normal aeroplanes is that,
when the ailerons are moved, a yawing moment is set up due to
the difference in drag of the opposite wings. Since the lift on
the downward moving aileron is increased, the induced drag on
that side must also be increased ; similarly the induced drag on
the side of the upward-moving aileron is decreased. This drag
difference generates a yawing moment which, for a given aileron
angle, clearly increases as the incidence (and therefore the lift
coefficient) increases. With regard to the profile drag, it is
probable that the change of aerofoil shape results in an increase
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on both sides, so that little yawing moment is set up by any
profile drag difference. )

The high values of the yawing moment at the higher angles
of incidence may be a serious matter, for the yaw operates against
the roll and may render the ailerons ineffective. Suppose, for
instance, the pilot wishes to roll to starboard. The port side
aileron is depressed and the starboard side aileron raised, so
that the yawing moment generated starts to turn the aeroplane
to port. The starboard wing
is then moving forward at a
greater speed than the port
wing. Hence the lift on the
starboard wing is increased
and that on the port wing
decreased, so that the effect
of the yawing moment is to
generate a roll to port. Thus,
although the movement of the
ailerons starts the required
roll to starboard, it is almost AiLerort)‘anth :
immediately opposed by a roll ~ Fic. 99. Effect of Incidence on
to port due to the induced Aileron Rolling Moment.
yawing moment. If, then, the increase of yawing moment
with incidence is large, the aileron control gradually falls
away as the incidence is increased, although the loss of direct
aileron rolling moment may be quite small (Fig. 99). This loss
of aileron control is quite noticeable on most machines fitted
with normal ailerons, the ailerons appearing to become ‘sloppy’
at the higher angles of incidence. In point of fact the sloppiness
is often regarded as a warning of the near approach of the stall.
(Some of the sloppiness is due, of course, to the falling speed.)

The yawing moment may be reduced in some measure by
shaping the nose of the aileron as shown in Fig. 100. The
shaping is such that the downward-moving aileron is screened
by the wing proper, while the upward-moving aileron protrudes
well below the wing. In this way the profile drag of the upward-

T °
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moving aileron is increased, the increase tending to counteract
the increased induced drag of the downward-moving aileron.

A large reduction in the yawing moment can be effected by
the use of differential ailerons. In this scheme the angular dis-
placements of the ailerons on opposite wings are unequal, the
downward-moving aileron having a small displacement and
the upward-moving one a very large displacement. In this way
the drag of the upward-moving aileron is considerably increased,
the aileron acting more as a wind brake.

A further scheme, called the slot-cum-aileron scheme, is
described on a later page (p. 182).

N

Fi1G. 100.

The Rudder. The rudder, like the ailerons, is subject to an
incidence effect. At the higher angles of incidence the yawing
moment provided by the rudder is decreased owing to the partial
screening and interference of the rest of the aeroplane. The loss
of rudder yawing moment, however, is generally greater than
the loss of aileron rolling moment, and this loss is of great
importance at slow speeds in the neighbourhood of the critical
angle, for the rudder is the only means whereby any adverse
aileron yawing moment may be overcome. Unless the rudder is
sufficiently powerful to overcome the aileron yaw, it may happen
that aileron control is completely lost at the minimum flying
speed. Thus the need for adequate control at slow speeds is
probably a more important factor in determining the area of the
fin and rudder than considerations of normal control and
manceuvre.

Taxi-ing conditions are also important in the fixing of rudder
area; for the air speed when taxi-ing is low, and so the forces on
the rudder are small.

Another important point in rudder design arises in the case
of a twin-engine aeroplane in which the engines are mounted on
or between the wings on either side of the fuselage. The rudder
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must be sufficiently powerful to overcome the thrust yawing
moment which occurs when one engine fails and the other is
kept running; otherwise it would be impossible to keep the
aeroplane on a straight course.

The Controls in Manceuvre. A complete study of the action
of the controls in manceuvring and of the air forces called into
play is quite beyond the scope of this book, but the com-
paratively simple problems of turning and looping may easily
be studied. The general nature of the spin may also be easily
explained.

Turning in a Horizontal Circle. In order to make a correct
turn it is necessary to apply both rudder and ailerons. When an
aeroplane is turning there must be a centripetal force acting on
the aeroplane, i.e. a force towards the centre of the turning.circle
(equal and opposite to the centrifugal force). This force can be
obtained only by using the ailerons to bank the aeroplane, if an
outward sideslip is to be avoided. Suppose, for instance, the
pilot wishes to make a turn to the right. By pressing on the
rudder bar with his right foot, he throws the rudder over and
an air force is set up on the rudder as shown in Fig. 95. This
force tends to move the aeroplane outwards to the left, at the
same time rotating the aeroplane about its C.G., but there is no
inward centripetal force making the aeroplane turn. Very
quickly, however, the action of the force on the rudder results
in the aeroplane acquiring a sideways velocity (i.e. an outward
sideslip), and a lateral air force arises on the outside of the aero-
plane, thus enabling the aeroplane to turn.

To avoid this sideslip in a turn the aeroplane is banked so
that the horizontal component of the main plane lift provides
the necessary centripetal force, and it will be shown that there
is a correct angle of bank for any given speed and radius of turn.

Suppose Fig. 101 represents an aeroplane turning without
sideslip in a circle of radius r at a speed ¥ and at an angle of

bank ¢. Then, if the centrifugal force F (= %If) is added, the

three forces L, W and F are in equilibrium.
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wy?

Hence, Lsing =F =

ence sin ¢ o (3)

and Leos¢=W. . . . . . . . (4)
. %

By division, tan ¢ = A (5)

an equation giving the required angle of bank.

If the angle of bank is less than that given by this equation,
the horizontal component of
the lift L will not be large
enough to balance the centri-
fugal force, and the aeroplane
will sideslip outwards; simi-
larly, if the angle is greater,
the aeroplane will sideslip in-
wards. In a sideslip the pilot
feels the wind blowing on the
side of his face; he can there-
fore tell if he is over- or
under-banking.

A point to notice is that,
when an aeroplane is turning
steadily, the outer wing is
moving faster than the inner
and therefore has a greater lift.
Thus there is a tendency for
the aeroplane to overbank
owing to the rolling moment introduced by the unequal lift
on the two wings. Hence, when the turn has been established,
it becomes necessary for the pilot to reverse the ailerons; this
is known as ‘holding off’ the bank. .

Again, if the bank is at all steep, the elevators and rudder have
partially interchanged their functions. Thus in the extreme case
of a vertical bank the elevators act as the rudder, and vice versa.

Speed in Turning. Since only a portion of the wing lift,
namely Lcosdé, is available for supporting the aeroplane, it

~

FiG. 101. Forces in a Banked Turn.
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follows that for a given angle of incidence the speed in a turn is
greater than that in straight flight.

Let V, V' be corresponding speeds at the same angle of
incidence in straight and circling flight respectively, and let ¢
be the angle of bank appropriate to the speed V. Then

W = Lcos¢
= k;pSV’2 cos ¢, for circling flight,
and W = k;pSV?, for straight flight.
Hence, V'2cosgp = V2
. vV
i.e. V= . .
Vcos¢

In the particular case when the angle of incidence is the critical

angle, the speeds become the stalling speeds; hence the stalling

speed is increased in a steady horizontal turn and is given by
I/:-, = I../.:: -

Ycos ¢

where V, is the stalling speed in straight flight.

Loading in a Turn. In normal straight flight the lift on the
wings is approximately equal to the
weight of the aeroplane, and this J
condition is referred to as unit wing /
loading. In a turn equation (4) /

(6)

shows that L = —— ,and the load- 3
cos¢

ing is therefore increased.
The ratio of the actual loading
in any manceuvre to the unit wing

n

Load Factor

loading, i.e.%, is called the load

T o

factor, and in a turn the load factor 2 e oF bank *

.1 ,
is cosd’ Thus, at an angle of bank  Fic. 102. Loads in a Turn.

of 60° where cos¢ = }, the load factor is 2. Fig. 102 ex-
presses graphically the relation between the load factor and
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angle of bank and shows the large loads which may be thrown
on the wings if an attempt is made to keep the aeroplane turning
horizontally at a steady speed, without sideslip, at a large angle
of bank.

Vertically-Banked Turns. So far only steady continuous
turns in which the speed is constant and the aeroplane is turning
in a horizontal plane have been considered. In a very sharp and
rapid turn an aeroplane may become vertically banked, but,
since there is then no wing lift component to support the weight,
the bank cannot be maintained continuously without loss of
height. On such a turn the speed is varying also, and so the
condition of flight is not one of steady motion, and the study
of the behaviour of the aeroplane becomes a complicated
matter.

It is possible, however, to obtain some idea of the loads im-
posed upon the wings.

Consider an aeroplane turning with a vertical bank. Then,
neglecting sideslip, the lift is equal to the centrifugal force and
therefore

L=k, pSV? = E;.Z

Hence for a given speed the load is a maximum when 7 is a
minimum.

Now from the conditions of normal straight flight
W = Ry maxpSV;E.
The combination of these two equations leads to
k V3 &

kLmlx V:z E;

’

. ng kLmax

1.€. r = > X ===
4 ky,

which shows that the radius is a minimum when &, = k; ...

Hence the minimum radius is obtained by pulling back the
control column so that the angle of incidence of the wings is the

’
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2
critical angle. The turning radius is then I%‘ ,.while the load

factor is given by

Suppose, for instance, an aeroplane whose stalling speed is

60 miles per hour turns on a vertical bank of minimum radius
2

at 120 miles per hour. Then the load factor = %2.% =4

Looping. A loop is a turn in a vertical plane, and the motion
therefore has something in common with the ordinary turn. It
differs from the steady turn in that the speed and the radius of
turn are not constant. The variation in the speed is obvious; on
the upward climbing part of the loop the speed is gradually
dissipated ; it is then regained on the downward diving part.

In looping some aeroplanes they must first be put into a mild
dive in order to acquire sufficient energy to carry them over the
top of the loop ; with the faster types a loop can be made straight
off from the level. The entry into a loop should be gradual,
otherwise the load thrown on the wings may be excessive. For
instance, suppose that at the bottom of a loop the control column
is pulled hard back and the aeroplane attains the incidence
corresponding to the maximum lift coefficient before the speed
has time to fall appreciably. Then, if V is the speed at which
the loop is commenced and V the stalling speed,

L = kymuxpSV?
and W = Ry maxpSV 3,

. .
so that the load factor is ;—2 , as in the case of a vertically banked

turn with the wings at th:e critical angle. Thus, if an aeroplane
whose stalling speed is 50 miles per hour, entered a loop at 150
miles per hour, the control column being pulled hard back, the
load imposed on the wings would be g times normal. In many

aeroplane types this would be sufficient to tear off the wings.
3729 Al
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Similarly, in the recovery from the dive on the second part of
the loop, the aeroplane should be pulled out gradually. It follows
that the path followed by an aeroplane in a loop is never a circle,
but more elliptical in shape as shown in Fig. 103. The radius at
the entry to the loop and in the recovery from the dive is large.
The figure also shows the nature of the variation of the load

(o]

30
1-0

FiG. 103. Path and Load Factor in a Loop.

factor. At the top of the loop the factor is small, showing that at
this point the weight of the aeroplane itself is almost sufficient
to supply the necessary centripetal force. The vanishing of the
load factor at this point would indicate that the pilot is just about
to leave his seat.

It is interesting to see what approximate load would come on
the wings at the bottom of the loop if the path were truly circular.
Suppose the radius of the path is 7, and let V;, V, be the speeds
at the bottom and top of the loop respectively. Let L,, F; be the
lift and centrifugal force at the bottom, and L,, F, the corre-
sponding quantities at the top (Fig. 104). Then



Control and Manceuvre 179

L1= W+_I'KZL2= W(1+V_12)
I 14 &r

and L, = s —W = W(K”—12 —1).
& &
Suppose now that the thrust of the airscrew always just
T’? (%)

balances the drag of the aeroplane. Then the energy lost in the
upward climb is %T—;—I (Vi2—V,?), and the work done is Wx2r.

Hence, 2—2—, (V2= Vy?) = Wxar

i.e. V-V, = 4gr.
If it be further assumed that the load is just zero at the top of
the loop, then L, = oand so V2 = gr. Hence
Vi = 4gr+ V3

= 48787
= 5gr.
V 2
Then L= W(x + ——1—)
14
= 6W.

Hence the load factor at the bottom is 6.
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Load Factors in Design. The maximum load factor for
which the wings are designed depends upon the type of aero-
plane. For a heavy bombing or passenger-carrying aeroplane
in which rapid manceuvre is impossible, it is probably sufficient
to design for a load factor of about 5, while for a high-speed
highly-manceuvrable aeroplane the necessary figure may be as
high as 10. Whatever the design factor, however, the wings
could probably be torn off by mishandling.

" Spinning. Spinning is another common form of manceuvre,

but it is also a condition of flight into which an aeroplane may

easily fall as a result of an

v involuntary stall, and is one

” of the most frequent causes of

accident. Before the nature

. Fic. 105. of the spin can be discussed,

Increased Incidence of Falling Wing. it is necessary to understand
the conditions of the phenomenon known as autorotation.

Suppose a model is mounted in a wind channel in such a
manner that it is free to rotate about the longitudinal or rolling
axis. Suppose further that the angle of incidence is less than the
critical angle and that the model receives a slight disturbance
depressing one wing. Then the rolling motion results in the
angle of incidence of this wing being increased (Fig. 105), while
that of the other wing is decreased. Hence, since the lift co-
efficient increases with the angle of incidence (below the stalling
angle), the lift on the falling wing is greater than that on the
rising wing, and so a rolling moment is set up opposing the
original roll. Thus the rolling disturbance is automatically
stopped or ‘damped’. This state of affairs only occurs, however,
so long as the critical angle is not exceeded.

For suppose now that the original angle of incidence is greater
than the critical angle and the aeroplane receives a disturbance
depressing one wing as before. Again the incidence of the falling
wing is increased and that of the rising wing decreased, but in
this case the lift of the falling wing is less than that of the rising
wing, as shown by the points B, B’ of Fig. 106, and so a rolling
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moment is set up increasing the original roll. Thus the model
is subject to an angular acceleration in roll, but it is found that
the rate of roll quickly reaches a constant value. Hence, if the
critical angle is exceeded, any disturbance generating a roll
results in the model rotating continuously of its own accord.
This motion is called autorotation and forms the basis of the
spin.

Consider now an aeroplane in flight, and suppose that it is
suddenly stalled. If it suffers no lateral disturbance it will
immediately commence a steep
straight dive, but, if a distur- | L]
bance occurs to generate a roll, /
autorotation will set in at the 4
same time as the nose drops, / '
and the aeroplane will therefore 4 2
start a spinning nose dive or | :
spin. The motion of the spin F1G. 106.
is actually a combination of
rotation about all the axes, and the aeroplane spins earthwards
in a steep helical path. The longitudinal axis is inclined at a
large angle to the horizontal, usually about 70° or so, but the
speed is comparatively low and varies with normal types of
aeroplanes from about 50 to 75 miles per hour. The angle of
incidence obviously varies over the span of the wings, but the
average angle may be as high as 30°, so that the aeroplane is
well stalled.

When an aeroplane is spinning with the nose pointing earth-
wards, it might at first sight be thought that to recover from the
spin the nose should first be pulled up. Since, however, the
aeroplane is in the stalled state, a backward movement of the
control column does not bring up the nose as in normal flight
but, if anything, holds the aeroplane more firmly in the spin.
Hence the first thing to do for recovery is to get the aeroplane out
of the stalled state by easing the control column forward. If at
the same time the rudder and ailerons are centralized, the
average aeroplane will go into a steep normal dive from which it

A

T3aibis 7

LIFT
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may be gradually pulled out. With some aeroplanes it is neces-
sary to use the rudder against the spin, as well as putting the
control column forward.

It is clear from the above that considerable height is lost in
recovering from a spin, and herein lies the danger if an involun-
tary spin occurs near the ground.

The involuntary spin. Suppose an aeroplane is suddenly
stalled and at the same time the starboard wing is depressed.
The pilot instinctively uses the ailerons to correct the lateral
disturbance, but the restoring aileron rolling moment is almost
immediately neutralized by the aileron yawing moment which
is very large at angles of incidence above the critical angle. This
yawing moment acts against the ailerons and tends to turn the
aeroplane to starboard, so that, unless the rudder is sufficiently
powerful to overcome the yaw, the port wing moves faster than
the starboard wing, and therefore an additional roll is set up of
the same sign as the original disturbing roll, and the aeroplane
falls into a spin. It is possible that for a fraction of a second the
restoring aileron moment may stop the original roll, but there
is then no restoring moment available to stop the roll generated
by the yaw.

The likelihood of an involuntary spin may obviously be
reduced by the use of (1) a very large and powerful rudder or
(2) powerful ailerons which do not give any yaw. Large rudders
are undesirable owing to structural and weight considerations
and to the fact that a heavily-ruddered aeroplane may be un-
comfortable to fly at normal angles of incidence owing to a
tendency to swing, although many aeroplanes have been de-
signed with rudders which seem to be sufficiently powerful at
the stall and to have no undesirable characteristics in normal
flight. The most successful scheme, however, appears to be the
slot-cum-aileron device. In this scheme the leading edge of
the wing in front of the ailerons is slotted, and the aileron and
the slotted portion are interconnected so that the amount of slot
opening varies with the aileron movement. When an aileron is
in the neutral position or raised, the slot remains closed, but
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when the aileron is depressed the slot opens. Hence, when an
aileron is depressed, the wing on that side behaves as a slotted
wing, and the value of the critical angle is raised. It can be
shown that in this way the aileron yaw is reduced, the aileron
rolling moment increased and the chances of autorotation
minimized. In the first place, the large increase of the yaw which
occurs when the critical angle is exceeded must be due in great
part to the profile drag. Now the slot on the side of the upward-
moving aileron slightly in-

creases the profile drag due to g

a certain amount of spoiling i

of the aerofoil section, while T Ne
the action of the slot on the & / A
downward-moving aileron isto 3 4

smooth out the turbulence and /

Y

so reduce the drag. Hence the

aileron yawing moment is /
reduced. Consider now the

above case of an aeroplane in

which the starboard wing falls on stalling. The use of the
ailerons to restore the aeroplane to an even keel results in
the aileron of the starboard wing being depressed. If then the
aeroplane is fitted with the slot-cum-aileron device, it follows
that, apart altogether from any lift difference on the wings due
to the aileron movement, the action of the slot has replaced the
point B’ of Fig. 106 by the point B” of Fig. 107. Hence the
condition for autorotation is not realized ; in addition the aileron
rolling moment is greatly increased.

The spin as a manceuvre. In order to put an aeroplane into a
spin, the control column is pulled back until the aeroplane is
stalled, and the rudder is then kicked over. The rudder starts
a yaw which, in turn, generates a rolling moment due to the
extra speed of the outer wing, and the aeroplane commences to
spin. Itis not often that the ailerons are used to start a roll in the
same direction as the yaw induced by the rudder, owing to the
large aileron yawing moment which would operate against the

FiG. 107.



184 Control and Manceuvre

rudder. In fact with normal conventional ailerons itis customary
to apply opposite aileron in order to utilize the aileron yaw to
help the rudder yaw.

The efficacy of the slot-cum-aileron device in reducing the
possibility of an involuntary spin may be gauged from the fact
that some aeroplanes which spin quite easily when fitted with
conventional ailerons have become quite difficult to spin with
the slot control.

EXAMPLES

1. An aeroplane weighing 1,800 Ib. is turning without sideslip in a
horizontal circle of 360 ft. radius at 75 miles per hour. Find the angle
of bank and the lift on the main planes.

2. An aeroplane whose stalling speed in straight flight is 52 miles
per hour is making a horizontal turn of 60° bank. If the aeroplane
is on the point of stalling, find the radius of the turn.

3. An aeroplane weighing 3,500 lb. has a wing area of 360 sq. ft.
If the maximum lift coefficient is 0-62, find the stalling speed and so
determine the load factor when the aeroplane is suddenly pulled up
to stalling incidence when flying at 120 miles per hour.

4. Anaeroplane weighing 2,400 Ib. executes two loops in succession.
At the top of the first loop it is travelling horizontally at 45 miles per
hour along a path of radius 120 ft. At the bottom of the first loop it
is again moving horizontally at 100 miles per hour along a path of
radius 300 ft. Find the load factor in each case.

5. Find the minimum speed at which the aeroplane described
below can maintain a straight course in the event of one engine
‘cutting out’.

Type of aeroplane . . . Twin-engine. Engines on
lower plane. :
Distance between engine centres 18 ft.
Maximum rudder yawing
moment . . . . N = 1-08V%, where N is the
yawing moment in lb.-ft,
H.P, for each engine as follows:

Vm.p.h. 60 7° 8 90
HP, 203 222 239 254

[Plot thrust moment and rudder moment against speed.]



XI
STABILITY

Definitions. An aeroplane is said to be stable if, after re-
ceiving some small disturbance from a position of equilibrium
in steady flight, it eventually returns to its original flying position
and speed without any aid from the pilot; conversely, if it fails
to return, it is said to be unstable.

Stability is sometimes further sub-divided into static stability
and dynamic stability. An aeroplane is said to be statically stable

S~

a1 Subsidence by Damped oscillation
() Divergence 1d Undamped oscillation

Fi1G. 108. Disturbed Motion.

if, after receiving a small disturbance, restoring forces and
moments are called into play tending to bring the aeroplane back
towards its condition of steady flight. These forces and moments
may, however, cause the aeroplane to oscillate about the equi-
librium position, and the aeroplane is said to be dynamically
stable only if the oscillations gradually decrease so that the
original steady flight is resumed.

Consider an aeroplane flying at a steady speed on a straight
course, and suppose it receives a disturbance—due to a gust,
‘say—deflecting it from this course. Then a stable aeroplane will
return of its own accord to its original steady flight conditions
either by way of a subsidence as in Fig. 108 (a) or a damped
oscillation as in (b); an unstable aeroplane will depart from the
steady flight conditions either by way of a divergence as in (c) or

3729 Bb
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an undamped oscillation as in (d). It will be realized that
(d) illustrates a case of static stability but dynamic instability.

Longitudinal and Lateral Stability. It is convenient to study
the longitudinal and lateral stability of an aeroplane separately.
The problem of longitudinal stability deals with the disturbed
motion in the pitching plane or plane of symmetry, while the
lateral stability covers the motion in the rolling and yawing

c
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F1G. 109. Uncontrolled Motion of a Stable Aeroplane.

planes. The longitudinal stability is more easily dealt with, for
the motion in the pitching plane does not affect the motion in
either of the other two planes; for instance, a disturbance which
alters the forward velocity or starts the aeroplane pitching
cannot cause any sideslipping, rolling or yawing. On the other
hand the motions in the rolling and yawing planes are inter-
connected ; for instance, a disturbing yaw generates a roll.

The full mathematical treatment of the problem of stability
involves such complicated mathematics that it cannot be in-
cluded in a book of this type. It is possible, however, to put a
great deal of the subject into simple language and show the main
characteristics of an aeroplane which make for stability.

SECTION A. LONGITUDINAL STABILITY

Motion of a Stable Aeroplane. Fig. 109 illustrates the un-
controlled motion of a stable aeroplane and shows how the
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aeroplane behaves after it has suffered a disturbance. The
record was actually obtained by locking the control column at
62 miles per hour in a position which gave equilibrium at 73
miles per hour, and then leaving the aeroplane to take care of
itself. It will be seen that the incidence, speed and path are
changing all the time in the disturbed motion, but the oscilla-
tions are gradually dying down showing that the aeroplane will
eventually settle down to its steady equilibrium speed of 73
miles per hour.

An uncontrolled unstable aeroplane would eventually stall
and possibly go into a spin, or acquire

a very steep dive and possibly turnon &
its back. 3000

Longitudinal Static Stability. Since & N
static stability is the first essential to § o N
complete stability, this will be treated \
first. Suppose an aeroplane is flying g_ow
at a steady speed and the tail plane is Tail, plang set 1o \
set to trim so that the tail moment [rimat i incdenc
balances the moments of the wings, S o
fuselage, &c. Then any departure from Fic. 110. Total Moment
the condition of steady flight means that Curve:

these moments have changed so that the total moment is not
zero. The condition for static stability is that the unbalanced
moment at any instant shall always be such as to tend to restore
the aeroplane to its original incidence.

Consider the aeroplane of Chapter IX and take the case of
a, = —1°. Fig. 89 shows that with this tail sciting the aero-
plane is in trim at an angle of incidence of 11°. If, however, the
wing moment and tail moment for this particular setting are
added together as explained on p. 158, a curve can be drawn
showing how the total moment varies with incidence. This
curve has been drawn in Fig. 110, the wing moment being taken
from Table XII and the tail moment from Table XIII.

The figure reveals the magnitude and sign of the total moment
when the incidence is changed from the trimming incidence of
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11°, (It has been tacitly assumed that the elevators are always at
0°, i.e. the control column is locked to give equilibrium at 11°
incidence. If the elevators are allowed to remain free, further
complications are introduced, but these are not found to affect
the general conclusions drawn.) It will be seen at once that at
the speed corresponding to 11° incidence the aeroplane is
statically stable, for if the incidence is slightly increased due to
any disturbance the total moment is negative and therefore tends
to reduce the incidence, while if the incidence is decreased the
moment is positive and tends to increase
the incidence. It follows that a condition
Z for static stability is that the total moment
curve shall have a negative slope. It is also
a necessary condition for stability that the
curve shall not cut the incidence axis at
more than one point. For consider the
imaginary moment curve of Fig. 111. This curve cuts the axis
in two points and therefore shows that the aeroplane is in trim
at two different angles of incidence with the same tail setting.
At the lower incidence the slope of the curve is positive and
the aeroplane is definitely unstable, while at the higher incidence
the aeroplane is stable for small disturbances but may be
unstable for large ones. The positive slope is often a feature
of the moment curve at very low angles of incidence but seldom
at high angles; in other words static instability is more likely
to occur at high speeds (generally diving speeds) than at low.

(Static stability is often called weathercock stability, since a
statically stable aeroplane will always turn its nose into the wind
in the same way as a weathercock. Suppose, for instance, an
aeroplane receives a vertically upward gust. Then the incidence
is increased and a negative moment arises forcing the nose of the
aeroplane into the gust.)

Now the total moment is the sum of the moments due to the
wings, tail, fuselage, &c., but only the wing moment and the tail
moment are being considered here, for these are quite the most
important. For the aeroplane chosen the wing moment curve

Moment about C.G

Incidence

Fic. 111.
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itself has a positive slope, while the tail moment curve has a
negativeslope. (See Fig. 112, which is produced from the data of
Tables XII and XIII.) Thisis in general true for all aeroplanes,
and therefore static stability can be achieved either by decreasing
the positive slope of the wing moment curve or by increasing

the negative slope of the tail moment curve. These two curves
will now be more fully discussed.

\”"/“"/

-02

E'm lail

&

X

o 0 A\

‘c' 0

g

; / \
-0 \

LN

5 10
Incidence &
FiG. 112. Wing and Tail Moments,

15

The Wing Moment Curve. The wing moment coefficient is
given by
km = k,,+hk,+kE,.
If, as an approximation, the small term kk, is neglected (see
Table XII for magnitude of kk,), the equation becomes

k, = k,+hk,

=(—bky+kn,)+hky

= (h—b)k,+k,p
where the value of b is about o-25 for a monoplane and o-22
for a biplane. This equation shows that for any wing arrange-~
ment the slope of the curve of k,, against k; is always h—b. But
over a considerable range of incidence k; increases uniformly
with a, and so the slope of the curve of &, against « must also be
approximately proportional to h—b. It follows that the slope of
this curve will always be positive provided that % is greater than
0-25 (for a monoplane) or 022 (for a biplane), but that its value
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decreases as & decreases. Hence a forward position of the Centre
of Gravity is desirable for static stability, and in practice the value
of h is generally in the neighbourhood of o-3, the extreme range
in modern aeroplanes probably being from about o025 to o-40.
If the term &k, is taken into account and allowance is made
for the departure of the lift-incidence curve from a straight line
at the higher angles of incidence,
the value for the slope will change
slightly and will not remain con-
stant at h—b for all angles of
incidence. This is illustrated in
Fig. 113; but the fact remains that
the slope of the wing moment
/ curve depends primarily on the
4 value of k. Fig. 113 does show,
however, that a low C.G. slightly
helps stability, for the true full
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incicence @ ! curve.whxch takes into account
Fic. 113. the distance of the C.G. below

the mean chord is of less slope
than the dotted curve which assumes that the C.G. lies on the
mean chord (i.e. £ = o).
The Tail Moment Curve. The moment due to the tail plane is
given by
M, = —Ixk,'pS'V?

= —laapS'V?,

since k;’ = ao’ where a is the slope of the tail lift-incidence
curve multiplied by the tail plane efficiency.
Therefore the tail moment coefficient

Hence for any given wing area and wing chord the tailmoment
coefficient is proportional to lad’S’, i.e. to laS'(a—e—a,). Now
e is directly proportional to &, (p. 154) and therefore approxi-
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mately proportional to «. It follows that for a given tail setting
the slope of the curve of tail moment coefficient against « is
approximately proportional to /aS’. Hence the slope can be
increased (numerically) and the stability-improved by increasing
any or all of the values of /, @ and S’. Remember that, apart
from the tail plane efficiency, the value of a depends upon the
aspect ratio of the tail plane.
The above results may be summarized by stating that the
features of an aeroplane which are especially favourable to
stability are as follows:
(1) forward position of the C.G., i.e. a low value of A,
(2) large tail leverage /,
(3) large tail plane area .S’,

and (4) high tail plane aspect ratio.

Longitudinal Dynamic Stability. 1f an aeroplane is statically
unstable, that is to say, if the uncontrolled motior after a dis-
turbance is a divergence, the question of dynamic stability
cannot arise. An aeroplane may, however, be statically stable
but dynamically unstable, the instability in this case appearing
in the form of an increasing oscillation. This is not a serious type
of instability.

It is not possible here to deal in simple language with all the
factors governing dynamic stability,
but mention may be made of what

oo %= is known as ‘damping due to pitch’.

N Now when an aeroplane is oscillat-
ing as shown in Fig. 109, the aero-

. plane is pitching aboutits C.G.,and
4'{% oneimportantcondition for dynamic
FIG. 114. stabilityis that any pitching moment

shall be heavily damped. Consider
an aeroplane having a positive angular velocity in pitch q. Then
the centre of pressure of the tail plane has a downward velocity
¢ql,and so the incidence of the tail plane is increased (Fig. 114).
This increase of incidence results in a positive increment of tail
plane lift. But a positive tail lift means a negative moment;
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hence there is an added negative moment, and this opposes
or tends to damp out the pitching motion. Therefore what is
true for the tail plane with regard to static stability is true also
with regard to dynamic stability.

The damping due to the wings cannot be very great, for one
part of the wing has a downward velocity due to the pitch, while
the other part has an upward velocity. Moreover the centre of
pressure of the wings is very close to the C.G., and there is no
long leverage arm as in the case of the tail plane. There may,
however, be a small amount of damping due to the fuselage, &c.

General Remarks. Stability is unfortunately bound up to
some extent with controllability, a highly stable aeroplane being
probably rather heavy and stiff in responding to the controls.
For fighting aeroplanes it is not therefore desirable to aim at
too high a degree of stability; on the other hand, for bombing
and passenger-carrying aeroplanes which are flown for long
distances at a steady speed, a considerable degree of stability is
essential in order that the pilot shall not be continually called
upon to correct for small disturbances.

Static stability may, however, be carried to excess in any
aeroplane. If the stability is very great, it will mean that the
restoring moment is always so powerful that the oscillations in
any disturbed motion will be of a very rapid period. The motion
will not therefore be so comfortable as one in which the period
is longer, even if the actual displacement or amplitude of each
oscillation is greater. (Compare the oscillations of two springs,
one of which is much stiffer than the other; the stiff spring is
analogous to the highly stable aeroplane.)

SECTION B. LATERAL STABILITY

Lateral stability may be divided into yawing or directional
stability and rolling stability, although these subdivisions cannot
be strictly treated separately, since any lateral disturbance must
give rise to three-dimensional motion, as already explained. For
this reason lateral stability can be treated here only in broad
outline,
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Directional Stability. Directional or yawing stability is
stability in the yawing plane, and is that characteristic of an
aeroplane which enables it to return to its straight course after
it has suffered some disturbance deflecting it from that coyrse.
Suppose an aeroplane receives a side gust tending to move the
aeroplane to the left as shown in Fig. 115 (a). Then the effect
of the side wind v, say, is to put the aeroplane in a yawed attitude
with regard to the relative wind as shown in (). The effect of
this change of attitude is very marked in the case of the fin and
“fuselage. If the fin is regarded as a small aerofoil, it will be seen

| :

An’life’

(a) Fic. 115. ®)

that, due to the yaw, the fin is now operating at a definite angle
of incidence and therefore experiences a ‘lift’ in the direction
shown. This ‘lift’ provides a restoring moment tending to turn
the nose into the gust; hence the action of the fin in lateral
motion is similar to that of the tail plane in longitudinal motion
in producing weathercock stability. With regard to the fuselage,
the effect of the yaw is clearly to bring the centre of pressure of
the fuselage away from the nose. It is found, however, that the
centre of pressure is invariably still in front of the C.G., so that
there is a body moment of opposite sign to the fin moment. The
analogy between directional stability and longitudinal stability
is therefore very close. In the one case the body is unstable and
the stability is obtained from the fin; in the other case the wings
are unstable (for normal values of A>>0-25) and the stability is
obtained from the tail plane. Hence what holds true for the tail
plane is equally true for the fin; that is to say, a large fin of high

aspect ratio is favourable to directional stability. Again the
3729 ' cc
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damping in any yawing oscillations is provided by the fin in
exactly the same way as the damping in pitch is provided by the
tail plane.

Unfortunately an aeroplane which has & very large fin may be
unstable in another way as will be shown later.

Rolling Stability. It has already been shown in a previous
chapter that the wings of an aeroplane are stable in roll; that is to
say, if a small disturbance generates a roll, an opposing moment
is immediately called in play owing to the difference in the angles
of incidence of the falling and rising wings. This stability,
however, is present only so long as the critical ‘angle is not
exceeded ; otherwise a disturbance in roll will lead to autorota-
tion and spinning. Of course stability, as it is being considered
here, is confined to normal flight.

Owing to the difference of the angles of incidence mentioned
above, any roll must be accompanied by a yaw due to the drag
difference, but mathematical analysis shows that, for small
disturbances in roll, the roll is automatically stopped before the
yaw becomes important.

Rolling Stability in Sideslip. Suppose, through some dis-
turbance, an aeroplane is flying with one wing down. Then the
aeroplane will commence to sideslip towards the lower wing,
and it is obviously a condition of stability that a restoring rolling
moment shall be called into play to lift the lower wing. This

~ type of stability is achieved by the use of a dihedral angle.
Most aeroplanes have their wing tips raised as in Fig. 116, the
angle I" being termed the dihedral angle and varying in practice
from about 2° to 6°. The action of the dihedral angle in a side-
slip is as follows:

Fi1G. 116. Dihedral Angle.

Suppose an aeroplane has a sideslip velocity to the right as
shown in Fig. 117. Then, due to the sideslip, the air meets the
aeroplane with a sideways velocity v, say. This velocity can be
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resolved into its components along and perpendicular to the
inner and outer wings as shown. Thus the inner wing has its
incidence increased by an amount 4a«, while the outer wing has
its incidence decreased by the same amount. The lift on the
inner wing is therefore greater than that on the outer wing, and
so a rolling moment is generated lifting the inner wing.

It must be noted that the dihedral angle comes into operation
only when the aeroplane has acquired a sideslip velocity; it has

Tt o>
Lirectoon of sigesiip

vsinl

F1G. 117. Action of Dihedral Angle.

no tendency to stop a roll in which there is no sideslip. Thus an
aeroplane with a dihedral angle can make a correctly banked
turn as easily as one without a dihedral.

Spiral Stability. It has already been mentioned that an aero-
plane with a very large fin and rudder, and therefore with a very
high degree of directional stability, may be lacking in stability of
another form.

Suppose an aeroplane suffers some disturbance which results
in the aeroplane having an angular yawing velocity (Fig. 118).
Then the outer wing is travelling faster than the inner and con-
sequently has a greater lift, so that a rolling moment is generated
tending to roll the aeroplane in the direction of the turn. Thus
the aeroplane acquires an angle of bank and sideslips inwards.
The dihedral angle immediately comes into operation and tries
to lift the inner wing, but the action on the fin of the side wind
due to the sideslip is to call into play a moment tending to force
the nose into the side wind, i.e. a moment tending to increase
the turn. If then the directional stability is so great that the
effect of the fin is more powerful than that of the dihedral angle,
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the original rate of turn will be increased. This increase of
turning velocity will increase the roll; the roll will still further
increase the turn, and so on. At the same time the aeroplane
will be losing height due to the bank. Hence it will descend in a
spiral path of continually decreasing radius. This type of
instability is called spiral instability.

Fi1c. 118,



XII
SCALE EFFECT

Scale Effect. So far it has always been assumed that any
air force experienced by a body can be written in the form
R = kpl2V?, where / is some linear dimension of the body, defin-
ing the scale, and k is a constant, depending only on the shape of
the body and its attitude to the relative wind. By this means it
has been possible to apply model data obtained 2t low values of /
and V to the full-scale aeroplane in which the values of /and V'
are much higher. Strictly speaking, however, this pl2V® law
is incomplete, and the true law is given by the Theory of Dimen-
sions. It is not proposed to enter into a discussion of this theory
here; it will be sufficient to state that, on theoretical grounds,
the correct form for an air force is

R= pl’V’X-f(e-g—I),

where p is the coefficient of viscosity of air.
Now p is sensibly independent of pressure and temperature,
and therefore, if air of a given density (say standard G.L. den-

sity) is considered, 5 is constantand the expression for R becomes

R = pBV2x f(VI). Thus the constant k should be replaced by
some function of V/, and there is nothing in the theory to say
whether this function is constant. Hence the simple pl21’2 law
can be used to correct from model to full-scale only if the value
of Vlis the same in each case. This is an unfortunate law, for it
means that if, say, a model of ¢ scale is to be tested in order to
obtain the forces on the full-scale aeroplane at 100 miles per
hour, the correct wind channel speed should be 1,000 miles per
hour, and the forces on the model would then be exactly the
same as on the full-scale aeroplane. This is.manifestly im-
possible, and so it becomes necessary to study the manner in
which the value of k varies with the value of /. Any such
variation is called scale effect, and considerable wind channel
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and full-scale research have been undertaken to determine its
nature.

In dealing with scale effect on aeroplanes it is customary to
take the chord length as /; thus a model of 6 in. chord tested at
60 ft. per second is said to be tested at ¥’/ = 30. In wind channel
practice the working values of VI vary from about 10 to 100,
whereas the full-scale value of Vis of the order of 1,000.

A method often employed to determine the scale effect on the
resistance coefficient & of any part of an aeroplane is to carry out
a series of tests in the wind channel
at various V! values, and then to

000608 see if the value of k tends to
K N approach some limiting value. If
o it does, this value is taken to be

appropriate to the full-scale, al-

N S S— though there is no real justification

w for assuming that, because %k ap-

FiG. 119. Typical Scale Effect  pears to approach a constant value

on kp. in the neighbourhood of VI = 100,

say, this value still holds at V'/ = 1,000. An illustration of the

method is afforded by Fig. 119, which shows the drag coefficient

at o° incidence of a thin symmetrical section R.A.F. 277 obtained

experimentally at different V7 values. It will be seen that over

the whole VI range k;, decreases continually as V1 increases
but appears to be approaching a constant value. .

In some experiments on scale effect the variation of k is found
to be irregular, and there is no indication of % acquiring a con-
stant value; in other cases it has been proved that the assumption
of an apparent limiting value is definitely erroneous. In any case
it is clear that, whatever the variation of %k over the model V/
range, the value of % even at the highest VI value cannot be
confidently applied to the full-scale aeroplane without some
further justification, or without possibly some further VI correc-
tion. For this reason there have been carried out in this country
a large number of full-scale experiments, in which measure-
ments have been made on actual aeroplanes in flight. In America
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the problem has been dealt with by the use of a variable-density
wind channel, the operation of which is described below. Data
obtained by these different methods are now available for the
more important resistance coefficients, and a certain amount of
generalization seems to be possible.

The Variable-Density Wind Channel. In the expression
for R, given by the dimensional theory, it is usual to write v for

¥ 5o that the expression becomes R = pl2V2 x f(%l} Kvl is called

the Reynolds’ number, and so, if viscosity and density are taken
into account, the condition for the application of the simple
pl2V2 law is that the Reynolds’ number should be constant. It
follows that the low model V/ values can be counteracted by
using air with a low value of v (called the kinematic coefficient
of viscosity). In America there is a special wind channel in
which the air can be compressed ; thus, since the density p varies
as the pressure while p is practically independent of the pressure,
the value of v can be reduced, and it is possible, even at low
channel speeds on small scale models, to work at full-scale
values of the Reynolds’ number.

It may be noted that for air at standard density the value of
v is about 000016, so that a full scale V1 value of 1,000 corre-
sponds to a Reynolds’ number of a little over 6 X 108.

Scale Effect on Aerofoil Lift. This is studied by comparing

the lift-incidence curves obtained at different V] (or KVI) values,

and the first point of importance

is that with some aerofoils model °°

results at very low Vi, say VI = 10, o //?
are unreliable owing to the falling- 4 /

away of the curve from its straight ¢ ys

line form at small angles of in- °°[ . ] %/

cidence. Fig. 120 shows the lift- | AV

incidence curves for an aerofoilof -5 o s 10

. . Incidence @
R.A'F. 15 section of aspect ratio 6 Fic. 120. Scale Effecton kz at

at three different VI values. Very Low VI.



200 Scale Effect

The curves for VI = 30 and VI = 40 are practically indis-
tinguishable, but the falling-away of the curve for VI = 10 is
very noticeable. Allmodeltests carried outat the higher Vivalues
(VI = 25 and upwards) have full-scale corroboration in showing
that the scale effect on the slope of the curve and on the no-lift
angle is negligible; and this is generally true for all aerofoils.
Fig. 121 shows the excellent agreement between model and
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Fi1G. 121. Model and Full-Scale Lift Curves (R.A.F. 15 Wings).

full-scale for the lift curve of a complete aeroplane fitted with
R.AF. 15 wings. It will be noticed that for this aeroplane there
is no appreciable scale effect at all. Generally, however, there is
always some scale effect on the maximum lift coefficient, and the
nature of the scale effect varies considerably with thickness and
centre line camber.

For thin aerofoils of about the thickness of R.A.F. 1 5 (¢/c ratio
= 0-063) it appears that the value of k&; ,,, never decreases with
increasing V1, but generally increases slightly. The magnitude
of the scale effect is illustrated in Fig. 122, which refers to a thin
aerofoil R.A.F. 28.

There are no full-scale data available for this aerofoil, but
experiments in the variable-density wind channel on other thin
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sections would seem to- confirm the conclusion which might be
drawn from Fig. 122, namely that the.scale effect is small but on
the right side.
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(a) R.AF. 28. Scale Effect on Lift. (d) R.A.F. 28. Scale Effect on kimax.

07
Lo
Full
RAE32 —
06 P //;:-"}a/e
ML C g
305 e
*t\‘ /
04—
RAAK.!'D
| 2 3
Log,o VL

FIG. 123. Scale Effect with Varying Centre Line Camber.

For aerofoils of about twice the thickness of R.A.F. 15 &, ..
again increases with increasing VI, but the rate of increase
depends a lot on centre line camber. Model and full-scale
experiments have been carried out on an aeroplane fitted in turn
with three sets of wings, the wings being all of the same thickness
but of different centre line camber. The sections were R.AF. 30
of zero camber, R.A.F. 31 of camber 002 and R.A.F. 32 of
camber o-05 (see Fig. 8). The results of the experiments are
shown in Fig. 123, where k., is plotted against log,, V1. (V1
is plotted on a logarithmic scale to keep the figure to a reasonable

729 D d
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size.) The most noticeable feature is the very large increase of
Ry max for the symmetrical section of the series.

Lastly, for very thick aerofoils or for aerofoils of very high
camber, &, ., generally decreases with increasing V/, although
at times the variation may be irregular. The scale effect on a
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F1G. 124. Scale Effect on Thick Aerofoil.

very thick aerofoil is illustrated in Fig. 124, which is quite typical

. . t . .
of sections having a _ratio of o-2 or over. The behaviour of such

sections at full-scale %I values has been studied in the variable-

density wind channel, and the results go to show that it is always
unlikely that the high values of %; .., obtained at normal channel
speeds will be reproduced full-scale. There is also a little full-
scale evidence in support of this.

Another type of ‘high-lift’ wing section is one of medium
thickness but extravagant camber. Such a wing is R.A.F. 19,
which gives a very high value for &, .. in the wind channel, but
falls a long way short of this value on the full-scale aeroplane.
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With this aerofoil there also appears to be a reduction of the
slope of the lift curve, but this is unusual. The model lift curve
and the full-scale points are given in Fig. 125.
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F1G. 125. Model and Full-Scale Lift Curve (R.A.F. 19 Wings).

Scale Effect on Aerofoil Drag. Experiment shows that the
drag coefficient k;, of all aerofoils generally decreases as VI
increases. The magnitude of the decrease for normal channel VI
values is shown in Fig. 126, which gives the drag curves for the
thin aerofoil R.A.F. 28 and the medium size aerofoil R.A.F. 31.

The scale effect is better illustrated perhaps in Fig. 127,
where minimum &, is shown plotted against VI, It will be seen
that in each case kj, appears to be approaching a limiting value.
This is roughly true for all aerofoils, and experiments in the
variable-density channel show that this limiting value is prob-
ably the full-scale value. For very thick aerofoils the scale effect
on kp is similar in character but much more marked.
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Unfortunately there is no full-scale corroboration of this scale
effect on kp, for it is almost impossible to measure the drag of
the wings alone. From full-scale observations the drag of the
complete aeroplane may be deduced, but any scale effect thus
revealed includes the scale effect on the parasite drag.
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F1G. 126. Scale Effect on Aerofoil Drag.
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Scale Effect on Moment and Centre of Pressure. Scale
effect on k,, and k¢ p_ is not very large and may be neglected.
Some full-scale experiments show that the slope of the curve of
total k,, against &, as obtained in the channel, is substantially
correct, but they do reveal some scale effect on the value of &,
at zero lift; and this means, of course, a scale effect on kg p.
Since, however, there is very good agreement between model
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and full-scale on %;, and also on some pressure distribution
diagrams, it seems likely that some of the apparent scale effect
may be due to scale effect on body moments, &c.

Scale Effect on Parasite Drag. On p. 198 it was stated that
the variation of the resistance coefficient k2 may often be very
irregular. Generally speaking, the irregularity increases as the
streamline nature of the body decreases. This is due to the fact
that, for bodies of high drag which are inevitably associated with
turbulent flow, the flow may be unstable, and big changes in the
flow pattern may occur as the Reynolds’ number changes. On
the other hand, for good streamline bodies (e.g. airship enve-
lopes) the scale effect is more of the nature of the scale effect on
aerofoils, the drag generally decreasing with increasing V1. -

Struts. These are good streamline bodies of thick sym-
metrical aerofoil section, and the scale effect is similar to that of
thick aerofoils. Since the ‘chord’ of a strut is small compared
with the wing chord, it is possible to work at full-scale ¥ values
in the ordinary wind channel, and Fig. 128 shows the scale effect
obtained. It will be seen that at full-scale V1 the drag is about

1 Ib. per square foot at 100 ft. per second, and this is the figure
given in Chapter VI.
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F1G. 128. Scale Effect on Strut Drag.

The wire drag figures given in that chapter are full-scale
figures estimated in a similar manner.

Fuselages. 1f a fuselage is of a very good streamline form, it
is probable that the drag decreases as Vincreases; on the other
hand, if it is a poor shape aerodynamically, the variation' in the
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drag may be irregular, and the full-scale drag may possibly be
greater than the model drag. Fuselages vary so much, however,
that generalization is almost impossible. What little evidence
there is goes to show that the scale effect is probably small and
in most cases, on the right side. Some idea of the possible scale
effect may be obtained from the full-scale experiments given
below.

Undercarriages. An undercarriage is a collection of struts,
wires and wheels, and, like a fuselage, its scale effect is difficult
to estimate.

Full-Scale Drag of Complete Aeroplane. Full-scale research
“has provided some interesting data with regard to the scale effect
on the drag of a complete aeroplane. Fig. 129 refers to two

LV:ars l
10 0
o ° ]/
-08 4 -
LVig09 °
kD °
°
<06 [P0 "V
& o
\1(‘ %o ?\
037 0% o «°
“04 /t/' 5° Jv/ M
@™
o, qd °
— 'ﬁ > ¢ F——-—“L/V(
° Model curves
‘02 g full-
scale points
-0

0 ol 02 03 04 05 06
Aeroplane A kL 0 01 02 03 04 05 06
Aeroplane Bk,

FiG. 129. Model and Full-Scale Drag Curves (R.A.F. 15 Wings).

different aeroplanes, both fitted with wings of R.A.F. 15 section.
It will be seen that for aeroplane 4 the full-scale drag is slightly
lower than the model drag, while for aeroplane B model and
full-scale are in good agreement. Since the wing section is the
same in each case, it would seem that the discrepancy must be
attributed to a difference in scale effect on fuselage, under-
carriage, &c., or possibly on interference.
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With some aeroplanes having R.A.F. 15 wingsection, the scale
effect on total drag seems to be slightly adverse, and the full-
scale drag is slightly higher than the model drag. On the whole,

however, the agreement between model and full-scale must be
considered reasonably good.

Fig. 129 may also be compared with Fig. 130, which refers to
aeroplane A when fitted with wings of R.A.F. 31 section.
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XIII
AIRSCREW THEORY

(In this chapter the theory of the airscrew is described more fully than in
Chapter VIII. Paragraphs marked with an asterisk must be omitted unless
the reader has a knowledge of the calculus.)

Introduction. Until the vortex theory of aerofoils was estab-
lished, the basis of airscrew design consisted of what is known
as the Simple Blade Element Theory and the Simple Momentum
Theory, and the combination of these two theories led to fairly
successful airscrew design. Modern airscrew theory is an
extension of the aerofoil theory to the airscrew, and, while it
follows more or less the general lines of the older theories, rests
on a sounder physical basis.

The Simple Blade Element Theory. This theory hasalready
been mentioned in Chapter VIII. Each portion of the blade is
regarded as behaving like an aerofoil so that, if the blade is con-
sidered to be split up into small strips or elements, the behaviour
of each element can be calculated, and so the behaviour of the
whole airscrew determined. Modern airscrew theory also con-
siders the behaviour of the elements of the blade, but not before
the actual type of flow occurring at the airscrew has been studied
in more detail. The simple theory forms, however, a good
introduction to any strip or element theory and throws con-
siderable light on the behaviour of an airscrew.

Consider a small strip of the blade A4’ at a radial distance r
(see Figs. 72 and 73). Let the chord be ¢ and the width or ‘span’
of the element 4r. (dr is the notation of the calculus and simply
means a small increment of 7; it is considered so small that the
chord, pitch angle and cross-section may be considered constant
over the strip.)

Let V be the forward speed and n the revolutions per second.
Then, as on p. 130, the following equations hold:

Incidence a=0-¢ . . . . . . (1)
V,=2mnrsecé . . . . . (2)
and tang = v B )

2mnr
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Also, since the area of the element is ¢ X 4, the lift measured in
the direction of forward motionis (k; cos ¢ —kp, sin ¢)pcV,2 x Ar,

and the drag measured in the plane of rotation is (k, sin ¢+
kp cos ¢)pcV 2 x dr.

Hence the thrust of the element (= 4T, representing a small
fraction of the total thrust T)is given by

= (k cosdp—kpsind)pcV 2xdr. . . (4)

and the torque (i.e. the moment of the drag about the axis of
rotation) by

40 = (kysing+kpcosd)perVixdr. . . (5)

Therefore the thrust per unit run at AA’ (= a1 is

dr
. . 40
(kz, cos ¢ —Fkpsin $)pcV 2, and the torque per unit run (= 2
is (k, sind+kp cos )pcrV 2.
Hence, if (k; cosd—Fkpsind)pcV 2, ie. %_::: , is calculated for

several points along the blade and is then plotted against the
radial distance 7, the area bounded by the curve so obtained and
the r-axis gives the total thrust of the blade. Similarly for the

torque. [If %l; were constant at all points of the blade, the total

thrust would be % X R (where R is the tip radius), i.e. thrust

per unit run multiplied by the blade length. The thrust could
therefore be represented by the area of a rectangle, of which one
side is the thrust per unit run and the other the blade length.

Obviously 7 is not constant owing to the fact that each section

of the blade is of a different aerofoil shape and is working under
its own conditions of velocity and incidence, but the area under

the curve obtained by plotting 21—3‘ against 7 still gives the total

thrust. Similarly for the torque.
3729 Ee
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Compare a velocity-time diagram in which the velocity is
varying, or a work diagram in which the force varies.)
Readers having a knowledge of the calculus will prefer to use

the more usual notation tf]T ‘ZQ instead of %I jQ
who have no such knowledge it is sufficient to remember that
dT dQ
dr’ dr
ventxonal symbols representing the thrust and torque per unit
run, and their values vary along the blade.

The equations for the thrust and torque per unit run at any

radial distance now become

For those

are not ordinary algebraic fractions, but are simply con-

_‘ﬂ‘ = (kg cos p—kp sin d)pcl2
and dQ = (k. sin$+kpcos $)perV,2.
But V, = 2mnrsec ¢, from equation (2); hence
‘fi—z‘ = pc(k, cosp—kpsin ) 4m’n®r2sectd . . (6)
and édg = pc(kysind+kp cos d)gnn®isec’d . . (7)
Thrust and Torque Grading Curves. By means of the

above equations the values of ‘;T ‘fIQ

can be calculated for any combination of ¥ and n. For, if I/ and
n are known, the angle ¢ of the section can be obtained from
equation (3); the angle of incidence is then given by equation (1),
and hence, if the aerofoil characteristics of the section are
known, the values of &, and kj, are known.

at any pointalong the blade

The type of curve obtained by plotting the values of -‘:—Z‘ for

various points along the blade against 7 is shown in Fig. 131 (a);
such a curve is called a thrust grading curve and shows how the

thrust is distributed along the blade. The area above the dotted
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portion represents the drag of the boss and must be subtracted
from the big area above the r-axis in order to obtain the net
thrust. A typical torque grading curve is shown in (3).

Tnrustlbs) per upit run
&
-
Torquei tbs-Ft) perunit run,
g9

4 /ade length
N Blade( g:vgch 8 ter 19

Fi1G. 131. Thrust and Torque Grading Curves.

It will be seen that the maximum thrust and torque per unit
run are both obtained from the section at a radial distance of
about three-quarters the tip radius.

Efficiency of an Element. The efficiency of an airscrew is

2-rmVQ (see p. 133); hence the efficiency of any element is given by
_ A4TxV
1= 2 x40
_ (kpcos¢p—kpsing)pcV 2 xdr xV
(k. sin ¢ +kp cos d)perV,2 x Ar X 27’
from equations (4) and (5),
__ (kpcosp—kpsing)V
(kzsin ¢ +kp cos dp)2mnr”
vV . '
But by tan ¢, from equation (3); hence
kpcosp—kpsing
ky sin¢+kpcosd
ke
kp

fﬂsin¢+cos¢
kp

n =tan¢ X

cos $—sin¢
= tan¢ X
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k——tan</>

= tan¢ X 32  Sm—

Ltang+1
kp

on dividing both numerator and denominator by cos ¢,

. __tan¢(d—tan¢)
Le. = Stang+1 °’

putting % = §, for simplicity.
D

If now a particular value is assigned to 8, the efficiency of the -

o8 /’/—7 B
02

o

10 20 30 40 H 60
# (Degrees)

Fic. 132. Effect of Pitch on Efficiency.

element can be calculated for different values of ¢, and so a
curve obtained showing how 7 varies with ¢. Such a curve is
given in Fig. 132, 8 having been given the arbitrary value of 15.
It will be seen that the efficiency increases as ¢ increases up to
$ = 45°. .

Now a given value of 3, i.e. of ;—I-‘ , means a given value of the

D

incidence «, and therefore increasing values of ¢ correspond to
increasing values of 8, for ¢ = 6—a. Hence the figure shows
that the efficiency of any element increases as 6 increases, that is
as the pitch increases. (See Chapter VIII, p. 136, and Fig. 77.)

- Calculation of ‘flr and ‘ZQ If, for simplicity, u, and pu, are



Airscrew Theory 213

written for (k; cos ¢ —kpsin ¢) sec?s and (k. sin ¢ +kpcos ) secq
respectively, equations (6) and (77) become

dT _ 2
v i mpcqgmnm® . . . . . (8)
and d-zg- = popcqgmn®d. . . . . . (9)
Also tan¢ = v .
2mnr

These equations completely determine the thrust and torque
per unit run of any element of an airscrew at any given transla-
tional velocity ¥ and rotational velocity 2.

Note that the efficiency of the element may be written

n=tangx 2 . . . . (10)
2

Example. A 10 ft. diameter airscrew runs at 1,560 R.P.M. at
120 miles per hour. Show that, under these conditions of working,
the incidence of the section at r = o-75R s about o-5°, given that
the pitch angle of the section is 16° 30'.

If the lift and drag characteristics at this incidence are
k; = 0185 and kp = 00120, find the thrust and torque per unit
run and determine also the efficiency. The chord length of the section
15 0722 ft.

We have V =176, n = 26, r = 3-75.

4
tang = Pyl
= 0-287.
‘. ¢ = 16° approx.
Hence, o = 0—¢=0-5°.
Again, py = (kpcosp—Ekpsing)sec?d

= (0'178 —-003) X 1-082
= 0189,
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and pg = (krsind+kpcosd)sec?
= (0-05104-0-0115) X 1082
= 0-0676.

Hence, ‘%‘ = u, pc4minr?

= 0-189 X 0°00237 X 0-722 X (612°5)?,
for 2mnr = 6125,

= 121 lb.
and ‘-f% — papcgirints®
= 0'0676 X 0-00237 X 0722 X (612°5)* X 375
= 163 Ib.-ft.
Also, n = tangx &2
]
= 0-802.

If similar calculations to the above are carried out for other

sections of the blade (sections at LIS 030, 0°45, 0-60, 0-75 and

R
o-go are often taken), the values of ‘;T ‘ZQ can be plotted to give

the thrust and torque grading curves; and so the total thrust and
torque may be obtained. From these values of total thrust T'and
total torque Q the efficiency of the whole airscrew and the horse-
power absorbed by the airscrew can be calculated.” T and Q may
also be reduced to coefficient form by means of the equations
T = kppn®D* and Q = kypn®D®. Hence, if a range of arbitrary
simultaneous values of V, n are taken, the values of kr, k, may

be determined for a range of values of I;, and so the usual kg,

»

kg, curves may be drawn.

*Calculation of &, and k;. A more convenient method of
determining the values of k7, kg, for any given value of '% is
described below.

r
Consider an element at a radial distance 7, and let - = x.

x
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Then r = Rx ; and therefore tan¢$ = ;K—

21§

(11)

wnr
4
" 2nRxn
V i .
=5 since 2R = D,
. V
i.e. D= mxtan .
Again, T = kppn*D?
». dT = pn*D* x dky.
Also, since r = Rx,
dr = Rdx

AT _pnDt iy
I T R N dx

= 2pnD3 X %Z .
Hence, if B is the number of blades,
2pn2D3 X % = B X p, pcgnin®r?,

for ‘—1—7-‘ = w, pcqm*n®r? for one blade.

dr
dkr _ 2Bcu,n*r?
Therefore, T = pr
2
Similarly, %7 = 3—8%3 .

“These equations are generally putinto another form as follows :

dky _ 2Bcpyn®r?

dx 8R3

Be r\3
= m(7)
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It is also usual to write o for the non-dimensional quantity

2—2_—‘; . Then the equation for (ﬁ? becomes

dx
dk
*Exz‘ = [.Ll"fsxs . . . . . . (12)
Similarly it may be shown that
dk
-d—f =joput. . . . . . (13).
Equations (11) (12) and (13), together with the expressions for
M1, p3 and o, enable _3;7‘ , 7.3 to be calculated at once for any
. vV - odky dRg .
given value of D If then the values of o dx for the various

sections are plotted against x, the values of ks, k; may be ob-
tained.

Remarks on the Theory. So far nothing has been said about
the aerofoil characteristics to be used for the different sections.
The aerofoil shape of each section is known, but the shape of the
cross-section of an aerofoil does not determine its characteristics
unless the aspect ratio is known. The question immediately
arises, what aspect ratio characteristics should be used? Each
element has a negligible ‘span’ in the ordinary sense, but at the
same time it forms a part of a twisted aerofoil, viz. the blade.
In the simple theory no true answer can be found to this question,
and the most that can be said is that, if characteristics for an
aspect ratio of about 6 are used, the maximum efficiency can be
predicted fairly accurately, although the calculated values of
kg, or the horse-power absorbed may be considerably in error.

Again, the theory neglects to take into account the loss of
energy due to the axial and rotational velocities imparted to the
slipstream, and considers only the loss of efficiency due to the
drag of the blades. Now the Simple Momentum Theory, which
is discussed in the following paragraph, shows that the axial
velocity of the slipstream alone involves a considerable loss of
efficiency, and therefore the agreement between the observed
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values of the efficiency and those calculated by means of the
simple blade element theory must be regarded as fortuitous and
due to counteracting errors.

The Simple Momentum Theory. This theory treats the
problem from a quite different standpoint by considering the
momentum and energy of the system. Since the airscrew
develops a forward thrust, there must be an equal and opposite
force driving the air backwards. Thus the air which passes

Orrection of stream v
——————————

Po
Vireal — /(14 b)

Fic. 133. Actuator Disk.

through the airscrew disk is discharged backwards at a velocity
greater than that of the free airstream. This added velocity in
the slipstream is sometimes called the outflow velocity. 'The whole
of this added velocity does not, however, occur behind the
airscrew, for there must be some acceleration of the air in front
to take the place of the air driven backwards. Hence the air
immediately in front of the airscrew also has an added velocity,
and this is called the inflow velocity.

Now, in the simple momentum theory, the thrust is supposed
to be uniformly distributed over the airscrew blades, and the
airscrew is regarded as an ‘actuator disk’ which imparts a sudden
increase of pressure to the air passing through it, so that the
thrust is equal to the area of the disk multiplied by the pressure
increment. Apart from this discontinuity of pressure, the flow
is regarded as streamline in the sense that Bernoulli’s equation
still holds.

Consider now an actuator disk in an airstream moving with a
velocity V' and of pressure p,. Then the flow diagram is as
shown in Fig. 133.

3720 Ff
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Just in front of the disk the velocity rises to V(1+-a), where
a is the ratio of the inflow velocity to the free velocity V, and
therefore the pressure falls from p, to p, say. As the air passes
through the disk the velocity remains constant, but immediately
behind the disk the pressure is suddenly increased to p+p’,
where p’ is the increment of pressure imparted by the disk. At
some distance behind the disk the velocity has risen to V(1+5),
where b is the ratio of the outflow velocity to V, and the pressure
has resumed its original value p,,.

(Note. The contraction of the stream shown in the figure is
due to the fact that, in a given time, a constant volume of air
passes through every cross-sectional area, so that increased
velocity means reduced cross-sectional area).

Bernoulli’s equation is now applied to the flow in front of
the disk and to the flow behind.
For the flow in front,

potipV? = p+ipV1 +a),
and for the flow behind,
(p+2)+1pV(1+a)? = po+-1pV?(1+-b)"
Hence, by subtraction,
[(p+2")+3pV¥(1+0)] - [P+%PV’(I+0)’]
= [Po+3pV3(1+8)] —[po+1pV?].
b = RV +bp—}pV?
= }pV*(1+b)*—1]
= 1pVab+59,
i, o =pV2(I-I—g) b ... (1)
Now the mass of air passing through the disk per second

= pxXAxV(1+a),

if A is the area of the disk. Also the effect of the disk is to
increase the velocity from V to V' (1+b). Therefore
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the thrust = the rate of change of momentum

= pAV(1+4a) x bV
ie. T =pAV¥1+a)h. . . . . . . . (15)
But T=p'xd4-= pAV’(I+g) b, from equation (14).
Therefore pAV¥1+a)b = pA W(x +-§)b
SoI4a = 1+§
i.e. : a=g. N 6 ()]

Hence the inflow is half the outflow, and equations (15) and (16)
give
T =2p4V¥1+a)a. . . . . (17)
An expression can now be found for the efficiency, for

the efficiency — Useful work done on the air
Y = "Fotal work done on the air

TxV
" Energy imparted to the stream per second’

and, if the rotation of the slipstream is ignored, the energy
imparted is the difference between the kinetic energy in front
and the kinetic energy behind.

Now the mass of air flowing through the disk per second
= pAV(1+a).

.. energy in front = $pAV(1+a) x I3,

and energy behind = $pAV(1+a) X V¥(1+b)2.
Hence,  energy imparted = 3pAV(1+a)x V¥[(1+b)2—1]
' = }pAV3(1+a)(2b+b?)
= pAx +a)(1 + g)b

= 2pAV3(1+a)?a, since b = 2a.
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TV
Therefore n—m
__ 2pAV¥(1+a)a .
= AV T2’ from equation (17),
ie. 1,—_-;.%1..........(:3)

The efliciency may be obtained in a different way, by con-
sidering the disk to be moving forward with velocity V' and the
stream at rest. Then

Useful work

" Useful work +-energy lost in the slipstream
_ TV

T TV +3pAV(1+a) x b2

o

=

as before, on substituting for T from equation (17).

This is called the ideal efficiency and can never be realized in
practice, since it is the efficiency obtained on neglecting the loss
of energy due to the drag of the blades and to the rotation of the
slipstream. In order to arrive at some idea of the value of this
ideal efficiency, it is necessary to put equation (18) into another
form.

n

Now TV = nPss50; hence equation (17) gives
2pAV3(1+a)a = nPs50.

1 I
But e thereforea=7-7—1.
Also A="—.
nD? 1/1
.2 x—'—xV“’x—(——l): Psso
P 4 2\ L5585

. ympVPD2x %}’-’ = nPss0.
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I—7 _ 1100 P

Hence p~ — xpVaDz' .. . . (19)

This relation between » and ’—JV—}:D—zjs illustrated graphically

in Fig. 134.

By means of this figure the ideal efficiency may be determined
for any speed, provided the horse-power absorbed at this speed
is known.

Consider the case of the airscrew of Chapter VII and Chap-
ter VIII; it is of g-25 ft. diameter and is designed to absorb

10
30 9
'Y
Ay
r\“ \\
S 08
0 0002 0004 , 0006 0008 000(0
pViD?
FiG. 134.

400 horse-power at 1,680 R.P.M. at 140 miles per hour. The:

corresponding value of is 0000228, and the ideal efficiency

P
pV3D?
is read from the curve as ¢3-5 per cent. Actually the true
efficiency of this airscrew is about 8o per cent., so that the
true efficiency would appear to be about 85 per cent. of the
ideal efficiency.

The Modified Blade Element Theory. Since the simple blade
element theory neglects the energy lost in the slipstream, and
the simple momentum theory neglects the drag of the blades,
it follows that a better approximation to the true operation of an
airscrew can be obtained by incorporating the idea of inflow
into the simple blade element theory. In this combined theory
the value of the inflow factor a is not, of course, constant over
the whole blade, but its value at any section can be determined
by using the condition that the inflow is half the outflow. Itis
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also possible to allow for the rotation of the slipstream by the
introduction of a rotational factor @’. The actual equations
determining the behaviour of an element are not given here, as
they are of the same form as those given in the following para-
graph on the vortex theory of airscrews.

This combined theory has been used in airscrew design with
a fair measure of success, but it has been found that, if aerofoil
characteristics for aspect ratio 6 are used, it is necessary to
reduce the theoretical value for the ratio of inflow to outflow
from } to about 4, in order that calculated values may agree with
observed values. This discrepancy is cleared up, however, by
the vortex theory.

*The Vortex Theory of Airscrews. This theory is set forth
by H. Glauert in his Aerofoil and Airscrew Theory. In it he
considers the behaviour of an element as an aerofoil and assumes,
as in the aerofoil theory, that the lift of each element is associated
with a circulation round it, and that trailing vortices spring from
the trailing edge of the blade and pass down-stream in helical
paths. The effect of these vortices on the flow near the airscrew
is analogous to that of the trailing vortices of an ordinary aero-
foil, so that, before the characteristics of any element can be
determined, it is necessary to study the manner in which the
vortices affect the flow. v

It is found that the interference on the two-dimensional flow
can be represented by an axial interference velocity and a rota-
tional interference velocity. Further analysis also leads to the
result that, if the axial interference velocity is denoted by aV,
then the velocity in the wake is 24V; and this is in agreement
with the momentum theory. Also, if the rotational interference
velocity is denoted by a'2, where {2 is the angular velocity of
the airscrew, then the rotational velocity in the wake is 2a'Q2.
Now the interference velocities aV, a’2 represent the total
interference experienced by each element, and therefore, if they
are fully taken into account, the correct aerofoil characteristics to
be used for each element are those for two-dimensional motion, i.e.
for infinite aspect ratio. Thus the vortex theory is similar to the
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modified blade element theory, except that, by exactly defining
the aerofoil characteristics, it calls for no empirical correction
to the inflow factor }.

The true behaviour of an elementis now illustrated in Fig. 135.
The axial velocity is V(1 +a) and the velocity due to the rotation
7(1—a’) = 2mnr(1—a’). Notice that the rotational interference
velocity must be subtracted, since it is clearly in the same direc-

JKpcosp -kpsing ‘

|
|
|
|
ky sing+kpcos ¢ ==
g Vii+al

‘?nnr{/-a')
Fiac. 135.
tion as the rotation of the airscrew and therefore reduces the
relative angular velocity.
V 1+4a
Hence tang = —— 20
’ ¢ 2mnr 1—a’’ (20)
Compare this with equation (3); it will be seen that, for a

given value of % , the angle ¢ is modified by the introduction of

the interference factors a, a'.

Again, % = (kcosd—kpsined)pcl,?
dQ .
and 5= (kLsing+kpcosd)perV 2,

exactly as on p. 210, except that k; and k, now refer to infinite
aspect ratio.

Also V, is given by
V, = 2mnr(1—a’) sec¢ or V(1+a) cosec .
It will be found convenient later on to use both these forms

for V,.
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Now, in order to obtain equations giving a, @', it is necessary
to return to considerations of momentum. Instead, however,
of considering the air flowing through the whole airscrew disk,
it is necessary to consider the amount flowing through a small

3
:L
Y

r+Ar )

Fic. 136.
annulus, as shown in Fig. 136. The area of the annulus is
2mr X dr, and so equation (17) becomes
AT = 2p X2nrdr X V¥(1+a)a,
on substituting 4T for T and 2nrdr for A.
AZ? or 2;2; = gnrpV¥(1+4a)a.
Therefore, if B is the number of blades,
4mrpV¥1+4-a)a = B(kcos—kpsing)pcl,?
= B(kcos d—kpsind)pc X V(14 a)? cosec? §.
_a _ Bckcosp—kpsing
1+a  4mr sin%¢

Hence,

o k;cosd—kpsin cos? .
= g hycosd 2 % x .2¢,puttmg—~»—=o,

2 cos?¢ sin?¢ 2nr
. a Oy )
ie. N 3

1+a 2tan?¢’ (21)
an equation giving a4 in terms of ¢.
Bc  Bcdr

[The quantity ¢ (= —

= is the ratio of the area of
2mr  2mrdr
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the blade elements at radial distance r to the area of the annulus;
it is sometimes called the solidity of the element.]

Again the element of torque AQ is equal to the rate of change
of angular momentum. Hence, if I is the moment of inertia of
the air flowing through the annulus per second, 4Q = I x24'Q2,
since the angular velocity of the air in front of the airscrew is
zero and behind 2a’Q2.

Now I = mr?, if m is the mass of air ﬂowmg through the
annulus per second

= pX2mrdr x V(1+4a) x r2.

Therefore, 40 = px2mPdr x V(1+a) x 2a'2

ie. A:TQ or —Q = 4mpVQ(1+a)a’.
V(1+a .
But 2 =2mn = i —Ea )ta)n g from equation (20),
aQ V(1+a)
T 4mpV(1-+a)a’x r(1 —a')tang
= 4mr2 V2 2 a
= 4mrpVH1+a) (1—a)tang

Hence,

I

4mr pV’(l +a)? (1 =a) tand = B x(k sind+kp cos $)pcrV,?
= B x(k singd+kp, cosp)pcr X V¥(1+a)? cosec?,

’

RAVT (I_:———m = Bc(k, sin ¢+ kp, cos $) cosecid

’

a Bc kysing+kpcosd smdx
1—a 41rr sin®¢ cosqS
o k;sing+kpcosé
. T2 sin¢ cos¢

o ky sing+kpcosd cos¢

T2 cos®¢ sm¢
. a )
i.e. .I-—_—;,=2——-—t£:¢ P (22)
an equation giving a’ in terms of .
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Again, on putting V, = 2mnr(1—a’)sec ¢, it can easily be
T 49
seen that the equations for — = 7, e the same as equations

(8) and (9), except for the introduction of the factor (r—a’)2.
Hence,

%‘ = pc4mn¥r¥(1—a’)® . . . . (23)
and ' ‘ig = pgpc 4mn¥ri(1—a'B. . . . . (24) |
Similarly equations (12) and (13) now become

d—k— = }ou,mx%(1—a )’ N €13
and ‘ZL = lou,Pxt(1—a')? . | R 1))

Also, corresponding to equation (11), the following equation
holds

%4 1—a
;;T) = X m tan ¢- . . . s e (27)

Summary of Results and Typical Calculation. The full

dky dk
~ equations for the determination of —7, —£ are summarized

dx’ dx
below :
¢ =0—a
;’KD = 7x II+(:1 tand
a_ _ _om
1+a 2tan?é
a Oty

k

1—a 2tan¢

% = bmmrP(1—a)?

ﬁ" = Jopsi(—a ),

%
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where
v — Bc __kpcosd szqu __ kysing+kpcosd
T 17T cos?¢$ Ha = cos?¢

and k;, k, are the lift and drag charactenstxcs at incidence «
for infinite aspect ratio.
Unfortunately the above equations cannot be used to deter-

. dky dkg \ .V
mine the values of T’ d at a given value of D’ except by a

dx
method of trial and error. It is necessary to take « as the inde-
V  dkp dky
pendent variable and determine the values of — D I’ dx

corresponding to different values of «. The method is illustrated
in Table XVII, the calculations referring to the section of the
example on p. 213. The first three columns give the aerofoil
characteristics of this section for infinite aspect ratio, and were
obtained from wind channel data on a model aerofoil of aspect
ratio 6, corrected to infinite aspect ratio by means of the equa-
tions of Chapter IV. The airscrew is supposed to be a two-

blader.

TABLE XVII

CALCULATION OF ‘ﬁl ‘i":

0 =16°30, 0= '3;'.“ 0'0613, mx = 2:356

@ kL kp ¢ sing | cosd | tang kpcos¢g | kpsing kD cosd

—4 | 0021 |00192 |20°30" | 0:350 | 093 0'374 | 0020 |‘00974 | o0-0180
—2 | 0137 {00099 | 18°30° | 0'317 0-943 0335 | o130 | o gz 0°009.
o | 0228 | 00069 | 16°30" | 0-284 | o9 0296 | o219 43 0006

2 | 0323 | 00062 | 14°30’ | 0'250 | o 0259 | 0313 00807 | 00060

z 0°'430 | 0°0061 | 12° 30’ | 0216 | 0'976 | 0222 | ©0'420 | 0'0929 | 00060

0'524 | 00070 | 10°30' | 0182 | 0'983 | 0185 | o'515 | 00953 | 0-0069

_a_ | _d v dhr | dkq
kpsing | py | 1+a | 1=d a |.a nD r dx

©0'007 | o015 | 00289 | 0:003 | 0’0012 | 0'003 | 00012 | 0878 0°000 ooa
0003 | 0141 | 0'088 0039 | 00120 | 0'041 | 0012 0749~ ] o'0ss 0'0086
0002 | 0236 | 0'077 0083 o 0244 0'090 | 0'023 o624 0090 ooI1k
0'002 | 0332 | 0'092 0'152 80 0179 | 00378 | 0'497 0'123, | 00128
0'001 | 0'440 |©0°1038 | 027 7 | 0378 | 00572 | o35 o'1§ 00138
0001 | 0'532 |0'1088 | 0'47! o 0881 0908 | 00810 | o0-2 0’177 | 00132
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If thc last two columns are plotted against —

dk, de
T’ de for any given value of —=

1) , the values of

2D ™Y easily be read from the

resulting curves.
*Efficiency of an Element. The efficiency of the element is
given by
_ VxdT
" 27nxdQ

V. 1 from equations (23) and (24),

I—

— 1
= tan ¢ from equation (20).

1 _ tang(d—tang)
But tan¢ - = “Stangtr
This can be written in a simpler form by putting tany =

(= i) or
gt grisb(::—fz _tan ¢)

tany
_ tang(1—tangtany)
tan¢-+tany
_tané
T an(g+y)
1—a’ tan
1Ta ta—-n(¢i'y) B 1))

Thus it can be seen that the efficiency of the element is com-
posed of 3 partial efficiencies, viz.

, as on p. 212.

Hence, 7=
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(1) my = ; I 2 which is the ideal efficiency and shows the
loss due to the axial velocity of the slipstream,

(2) 7y = tannz:f- )or 1 tan ¢, which shows the loss due to

the profile drag of the blades,

(3) 3 = 1—a’, which shows the loss due to the rotational
velocity of the shpstream.

Table XVIII below is a continuation of Table XVII, and~
shows the relative importance of the three sources of energy loss.

TABLE XVIII
CALCULATION OF THE EFFICIENCY OF AN ELEMENT

. m 7 t )

T =L - ! 73 : n

nD ( X+a) ' ( tanwna) (=1-a) | (=mX5ygXny)
0878 0'997 0194 ©'999 1 0'193
0749 0'961 o-8cs 0987 ! 0763
0624 0917 0'900 0976 : o-80s
0'497 0-848 0'930 0'961 ! 0758
0357 0-726 0'941 0939 | 0642
0208 o524 | 0930 0912 ; 0444

This table shows that at top speed (given in this case by
nl/ﬁ = 0-677, corresponding to V = 176, n = 26 and D = ¢-25)

the loss due to the profile drag of the blades is the most
important, while at the slower climbing speeds the greatest loss
is due to the axial velocity imparted to the slipstream, the loss
due to the rotation of the slipstream being very small over the
whole vorking range.

Effect of Pitch and Diameter on Efficiency. On referring
to Fig. 134, it will be seen that, for a given speed and power, the
ideal efficiency of an airscrew increases as the diameter increases ;
in other words, the inflow factor a decreases as the diameter
increases. The same is true, of course, for an element, and
therefore the form of the partial efficiency 5, shows that a large
diameter is desirable. Also the form of 7, shows that a high
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pitch is desirable (see p. 112 and Fig. 132). Unfortunately a
limit to the maximum diameter and pitch is imposed by struc-
tural considerations. An airscrew is designed to absorb a given
horse-power at a given speed of rotation, and so an increase of
pitch or diameter must be counteracted by a reduction of blade
width, in order that the airscrew may allow the engine to develop
its full revolutions. But a reduction in blade width involves a
reduction of the strength available to withstand the stresses
imposed by the air forces and centrifugal forces, and so the
blade width is more or less fixed.



APPENDIX
THEORY OF AEROFOILS—CALCULATION OF B AND &,

FoR the general case in which the centre line is not a circular arc the
following method is used: Let OA4 be the chord and OPA the centre
line. Take axes as shown and suppose the ordinates and abscissae of

yl

p‘

0 - x > X
F1G. 137. Axes of Reference for Centre Line.

the centre line are expressed as fractions of the chord. Then the
equations giving B and k,, are found to be

(e
A= fow(x—x)Vx(l—x) SRR
and Fm, = —Ep+y., N )
where " he = :%dx T €))

I 1—2x%
and
(1 —x)Vx(1—x) Vx(1—x)
f1(x) and f,(x) respectively.
If the equation of the centre line is known, the values of 8 and &,
can be obtained at once from equations (1) (2) and (3) by direct

integration. A particular and important illustration is afforded by
the centre line equation :

y = hx(1—x)a—x)

Generally the expressions are written
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where h and a are constants. This equation gives a centre line with a
reflex curvature towards the trailing edge when x lies between } and 1.

The expressions for 8 and p, can be immediately integrated by the
use of the substitution x = sin? 6, with the result that

B = th(4a—3)
and Fy, = (—:;h(7-—8a).
Hence k,, will be zero and the centre of pressure will be stationary if
a= % This result has been checked by wind channel experiments on

an aerofoil known as R.A.F. 33 which was designed by giving the

Ho=A-Ay
N
I\
4 \\
Chord \\‘2

FiG. 138. Calculation of y,.

basic symmetrical section (R'A.F. 30) of R.A.F. 32 a centre line
defined by the above equation with the particular values h = 0-413,
a = 0'875. The value for / was so chosen in order that the maximum
centre line camber might be 005, the same as for R.AF. 32, the
reason for this being that a comparison of the model results for
R.AF. 32 and R.A'F. 33 would then furnish data on the probable
effect on lift and drag of reflex curvature. The experiments show
that the C.P. is brought to rest at the expense of a small decrease in
the maximum lift coefficient (from 0°66 to 0-62) and a small increase
in the minimum profile drag coefficient (from 0-0058 to 0-0064).

If the equation of the centre line is unknown the expressions for
B and p, must be integrated graphically. To do this it is necessary
to take a range of .values of x between o and 1 and determine the
corresponding values of yf;(x) and yfy(x). If then these values
are plotted against x the areas between the resulting curves and the
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x-axis give the values of § and %, . The type of curve obtained for
the determination of u, is as shown in Fig. 138, the value of u, being

the difference between the areas above and below the axis. The type
of curve which gives B tends to run to infinity at x = 1 since f,(x) =

PrAr29y’

yfim)
\
<

7

hora

Fi1G. 139. Calculation of .

atthat point (Fig. 139). Itistherefore usualto integrate betweenx = o
and x = 095 and to calculate the remaining portion of the area
between x = 0'95 and x = 1 by assuming that this portion of the
centre line is a straight line. It can be shown that on this assumption
the remaining portion is equal approximately to 2:9y’, where y' is the
ordinate at x = 0-g5. _

This method of calculating 8 and k., has been applied to a few
well-known aerofoils and the results obtained have been in very good
agreement with experimental results.

3729 Hh
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INDEX

Actuator disk, 217.

Aerofoil, definitions, 18 sq.

— distribution of pressure over sec-
tion of, 41.

—— distribution of pressure over span
of, 48.

— flow past section of, 39.

— forces on; lift and drag, 18.

— moment and centre of pressure
of, 27.

— slotted, 40, 182.

Aerofoil characteristics, diagrams of,
20, 26, 30.

— effect of aspect ratio on, 52 sq.

— effect of biplane interference,

59 sq.

-— effect of centre line camber, 74 sq.

— effect of thickness, 79.

— scale effect on, 197 sq.

Aeroplane, description of parts, 5.

— overall drag of, go.

— performance of, 94 sq.

Ailerons, 166.

— differential, 172.

— reversal of, on turn, 174.

— rolling moment of, 170.

— slot and; action in reducing yaw-
ing moment, 182.

— yawing moment of, 170, 182.

Airflow, past flat plate, 37 sq.

— round aerofoil section, 39.

— across aerofoil span, 48.

Airscrew, effect of body behind, 140.

— efficiency, definition, 94.

— efficiency, expressions for, 102,
133.

— efficiency, ideal, 220; of element,
211, 228; and forward speed, 134.

— non-dimensional characteristics
of, 129 sq.

— pitch, definitions, 134; its effect
on efficiency and torque, 136; on
efficiency of element, 212.

— theory, blade element, 208; sim-
ple momentum, 217; vortex, 222.

— thrust and torque of, 127 sq.

— tip speed, 140.

— variable pitch, 137, 140.

Air speed, 5.

— indicated, 10, 27.

— indicator, 8.

Altimeter, 11,

Altitude, and aeroplane perform-
ance, 109 8q.

— and atmospheric conditions, 13.

— and engine performance, 110,138.

Aneroid, 11.

Angle, of bank, 173.

— of climb, g9.

— critical, 21.

— dihedral, action of, in sideslip,
194; longitudinal, 155.

— of downwash, 153; its effect on
tail plane drag, 161.

— gliding, 104.

— of incidence, definition, 17; varia-
tion of aerofoil characteristics
with, 19.

— of no-lift, definition, 20; and
centre line camber, 74, 75.

— pitch, of airscrew, 125; see also
Airscrew.

— of stagger, 62.

— stalling, 24.

— tail setting, 154 sq.

Aspect ratio:

— corrections for, 56.

— and induced drag, 53.

— and performance, 118 sq.

— of non-rectangular wings, 58.

Atmosphere, standard, 13.

Autorotation, 181.

Axes of reference, 164.

Balanced control surfaces, 167.

Bank, angle of, 173.

Bernoulli’s equation, 8, 43, 71, 218.

Biplane, lift distribution between
wings of, 64.

— and curvature of streamlines, 63,
18I,

— induced drag of, 59 sq.

— stagger, 62.

Blade element theory, 208.

Body, behind airscrew, effect of, 140.

— fineness ratio of, 83.

— pitching moment of, 152.

Boundary layer, 69, 72.

Cables, drag of, 88.
Ceiling, service and absolute, 112.
— rapid prediction of, 117.
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Centre line camber, 74 sq.

Centre of gravity, coordinates of,
149.

— determination of, 147.

— and stability, 190.

Centre of pressure, 27.

— and centre line camber, 78.

Channel walls, constraint of, 6s.

Channel, wind, description of, 6;
variable-density, 199.

Chord, definition, 10.

— mean, 148.

Circulation, 46, 71.

Climb, aerodynamic efficiency on,
117.

— angle of, 99.

— calculation of rate of, ¢8, 101.

— effect of change of weight on,

105 sq.

— effect of height, 109 sq.

— effect of plan form and aerofoil
section, 120.

— effect of supercharging, 112.

— efgect of wing and power loadings,
116.

Control surfaces, action of, 164.

— balanced, 167.

Critica: angle, 21.

Curvature of streamlines, its effect
on lift curve, 63; on moment
curve, 151.

Cylinder, non-viscous flow round,
71,

- Damping, in pitch, 191.

— in roll, 180, 194.

Density, 8, 9.

— relative, 10, 13.

— standard, 9.

Differential ailerons, 172.

Dihedral angle, action of, in sideslip,

104.

— longitudinal, 155.

Directional stability, 193.

Distribution, of pressure over aerofoil
section, 41.

— of lift across aerofoil span, 48.

— of lift between biplane wings, 64.

— of parasite drag, go.

Divergence, 185.

Downwash, angle of, 153.

— its effect on tail plane drag, 161.

Drag, of airship models, 87.

— of cables, 88.

Index

Drag, of flat plate, 15 sq.

— form, 38; of fuseiage, 8s.

— induced, of monoplane, 53 8q.; of
biplane, 59 sq.

— interference, 89.

— overall coefficient, g1.

— parasite, 81; coefficient, go.

— profile, 53 sq., 70; and centre line
camber, 77; and thickness of aero-
foil, 79.

— scale effect on, 198 sq.

— of struts, 84, 205.

— of undercarriage, §8.

— of wires, 8s.

Duplex Wind Channel, 7.

Dynamic Stability, 185, 191.

Edge, leading and trailing, 19.

Efhciency, aerodynamic, on climb,
117.

— at top speed, 115.

Efficiency, of airscrew, see Airscrew.

— of tail plane, 156.

Elevators, s, 159, 165.

— characteristics of, 169.

Engines, 94.

— power and torque of, 126, 138.

Engine speed, and aeroplane speed,
132.

Equations of motion, 100.

Experimental mean pitch, 135.

Fairing, 39.

Fin, stabilizing action of, 193.
— drag of, 88

Fineness ratio, 83.

Flat plate, flow past, 37 sq.
— forces on, 15 sq.

Flow, see Airflow.

Fluid, viscosity, 37, 69.
Flying boat, 153.

Form drag, 38.

Friction, skin, 18, 37.
‘Full-scale, 197 sq.

Fur clage, description of, 85.
— drag of, 8s.

— slipstream effect on, 95, 141.

Gap of biplane, 59.
Gap/chord ratio, 63.
Gap/span ratio, 60.
Geometric mean pitch, 135.
Glide, angle of, 104,



Index

Head, total pressure, 44.

Height, its effect on aeroplane per-
formance, 109 s8q.
— its effect on airscrew performance,
138 sq.

— vasrmtlon of horse-powerwith, 110,
1

Horn balance, 168.

Horse-power, available, 97.

— requlred, 95.

— variation with helght 110, 138.

— variation with engine speed, 126.

Hydrodynamics, 69.

Incidence, angle of, 17 sq.
— variation with speed, 23, 24.
— rigging, 101.

Indicated air speed, 10, 27.
Indicator, air speed, 8
Induced velocity, 50 sq.
— drag, 53 sq.

Inflow, 217, 219.

Inset balance, 168.
Instability, spiral, 196.
Interference drag, 89.

Landing speed, 25.
Lateral stability, 192 sq.
Leading edge, 19.
Lift, 17.
— distribution across span, 48.
~— distribution  between  biplane
wings, 64.

— origin of, 46, 70.
Lift-drag ratio, 26.
— of complete aeroplane, 92.
Load factor, in turn, 175.
— in loop, 177.
Loading, power, 116 sq.
— wing, 25, 116 sq.
Longerons, 8s.
Longitudinal dihedral, 155.
Longitudinal stabnhty, 186 sq.

_ Looping, 177.

Mean chord, 148.
Moment, of body and thrust, 152,

159.

— of tail plane, 155 sq., 187 sq.

Moment of wing forces, 27 sq., 74.

— effect of centre line camber on,
' 758q.

— eﬁect of curvature of streamlines,

-— and stability, 187 sq.

239

Origin of lift, 46, 7o.
Oscillation, 18s.
Overall drag coefficient, g1.

Parasite drag, 81.

Perfect fluid, 69.

Performance, aeroplane, 94 sq.
Pitch of airscrew, see Airscrew.
Pitching axis, 164.

Pitching moment, see Moment.
Pitot tube, 7, 44.

Plate, flat, flow past, 37 sq.

— forces on, 15 sq.

Power loading, 116 sq.
Pressure, atmospheric, 9, 13.
— and engine power, 110, 138.
Pressure, centre of, 27, 78.
Pressure distribution over aerofotl

Proﬁle drag, 53 sq., 70.
— and centre line camber, 77.
— and thickness of aerofoil, 79.

Rate of climb, see Climb.

Relative density, 10, 13.

Reynolds’s number, 199.

Rigging incidence, 101.

Roll, damping in, 180, 194.

Rolling axis, 164.

Rolling moment of ailerons, 170,

183.
Rudder, 6, 166.
— yawing moment of, 17z2.

Scale effect, 197 sq.
Sideslip in turning, 173.
— stability in, 194.
Skid, tail, 6.
Skin friction, 18, 37.
Shpstresm, 8s, 04.
— its effect on drag, 141; on tanl
plane, 160. :
Slipstream factor, 142.
Slot-cum-aileron control, 182.
Slotted wing, 40, 182.
Span, definition, 19.
— lift distribution across, 48.
Span’/welght ratio, 120 sq.
Speed, mdlcated 10, 27.
— maximum level 97, 108, 111,
113 8q.
— rapid predxcnon of, 114.
— stalling, 24.
Spin, 8o
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Spiral stability, 195.

Stability, longitudinal, 186.

— lateral, 192.

Stagger, 62 sq.

Stall, 24.

Stalling speed, 24.

‘— in turn, 175.

Standard atmosphere, 13.

Standard density, 9.

Static stability, 185 sq.

Streamlines, 36.

— curvature of, 63, 151

Streamlining, 82.

Struts, drag of, 84.

— and scale effect, 205.

Subsidence, 185.

Supercharging and aeroplane per-
formance, 112.

— and airscrew performance, 139.

Tail plane, s.

— characteristics of, 155, 169.
— drag of, 88, 161.

— efficiency, 156.

— moment, 155 sq., 187 sq.
Tail setting, 154 sq.

— to trim, 158.

Tapered wings, 58.

Thrust, airscrew, 100 sq., 128.
— grading curve, 211.

— moment, 152, 159.

— variation with speed, 133.
Tip speed, 140.

Index

Torque, 126 sq.

— grading curve, 211.
Total pressure head, 44.
Trailing edge, 19.
Trailing vortices, 49.
Turbulence, 36 sq.

— ring, 86.

Turning, 173 sq.

Undercarriage, 6.
— drag of, 88.

Variable-density wind channel, 199,
Variable pitch airscrew, 137, 140.
Viscosity, 37, 69 sq.

— kinematic coefficient of, 199.
Vortices, trailing, 49.

Weight and performance, 10§ sq.
Weight-lift equation, 22.
Wheels, drag of, 88.

© Wind channel, variable-density, 199.

. — walls, constraint of, 6s.

Wing, slotted, 40, 182.

— tapered, 58.

Wing loading, 25.

— and performance, 116 sq.

. Wires, drag of, 8s.

. Yawing axis, 164.
* Yawing moment, of ailerons, 170,

182.
— of rudder, 172.



ANSWERS TO EXAMPLES

CHAPTER I, p.' 14: (1) 000149 slugs. (2) 0-629; 15,000 ft. (3) 000206
slugs; 4,750 ft. (5) 679, 71°1, 74'4, 781 m.p.h. (6) 14,500 ft.

Cuaprer 11, p. 32: (1) 12 Ib. (2) 0126, (4) 55'1 m.p.h. (5) 2:6 m.p.h.
(6) 0'651. (7)59m.p.h. (8) a = 7:3°,3-2";kp = 0'0206,0-0095; D = 1231b.,
torlb.  (9) 1351b.; 16:2 per cent. (10) By = 0'16,0°302; Vi pn = 1047,
76:2. (11) 4501b.; 540 1b. (12) 0-273; 0'420. (13) —0-0252.

CHaPTER 1V, p. 67: (1) 0'0104. (2) kpy = 0'106k,%. (3) 245 Ib.; 109 b,
(4) kp, = 0-0884k,*; 0°0070; 0'0175. (5) 6:34; kp, = 0'1k,*; About 196
at by = 0-255. (6) da = — 0-865ky (degress); dkp = — 00151k, *; 0-0262;
55° (7 oo1s3.  (8) dkp = oo131ki?; 172, 15°6, 13°9.

CHAPTER VI, p. 03: (1) 61:9 Ib. (2) 043 Ib. (3) 016 Ib. (4) 164°4 1b.
L
(5) 0'0144. (6)0-0146. (7) kp, = 0'145k;,';Max5 = g'0§.
CHaPTER VII, p. 123: (1) 84'7; 76-6 per cent. (2) 77 m.p.h. (3) 134'3
m.p.h. (4) 8-58. (5) 964 ft./min.; 8°45’. (6) 15,400 ft.; 17,200 ft.; 940 ft./
min.; 16 mins. (7) 97'5 m.p.h.; 410 ft./min. at 63 m.p.h. (8) 96 m.p.h.;

260 ft./min. at 68 m.p.h. (9) 1635 ft./min. (10) 118 m.p.h.; 315 ft./min. at
71 m.p.h. (indicated).

CHAPTER VIII, p. 143: (1) 0°662; o~oo783; 0-805. (2) 9 ft.; 7 may. = 081
at about%) =o0-815. (3)130m.p.h. (4) 1313 Ib.-ft.; 1890. (5) 395.

(6)  Vamgn 635 703 822 913 993 1069 o
7P 533 566 615 647 671 684’

(7) 145 m.p.h. (8) 8:3 per cent.
CuapTER IX, p. 163: (1) 53 ft. at 2-88 ft. above lower wing; k = 0317,
k = — 0-229. (2) — 66°41b. (3)k = —0 0199,-—0 0108, — o oo3o, + 00032,

00078, 0'0108, 0-0120; 76'5 m.p.h. (4) —o0-2°; —09°; —3°. (5) 9'3 lb.;
231 lb.

CHAPTER X, p. 184: (1) 46° 14'; 2602 Ib. (2) 208 ft. (3) 4°68. (4) 0'13;
3-23. (5) 68 m.p.h.
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