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PREFACE TO THE FOURTH EDITION 

The present edition follows the same general plan as the third 

edition of this work. The material has been thoroughly revised and 

due consideration given to the latest experiments and developments in 

methods of calculation and design. Compared with the third edition, 

some of the more important changes are the following: Revised for¬ 

mulas and diagrams for the design of beams including circular sections 

subjected to bending and compression; adaptation of diagrams to the 

use of any desired value of w; discussion of recent tests on beams and 

columns; amplification of material on flat slabs, including detailed 

treatment of footings; more adequate development of the analysis 

of continuous beams; application of the slope-deflection method to 

building frames, including haunched beams with general results for 

typical cases; application of method of moment distribution to con¬ 

tinuous girders and frames; complete detailed analysis of the arch 

with methods of arriving at tentative designs; torsional stresses in 

beams; and effect of shrinkage and plastic flow on stresses in beams, 

columns, and arches. Much credit is due Professor W. S. Kinne for 

his work in devising and preparing the new diagrams, and for a large 

amount of assistance in many other features of this work. 

Madison, Wisconsin, 

Mayy 1932. 
F. E. Turneauke 

E. R. Mauser. 

FOURTH EDITION, THIRD PRINTING 

The only important item of revision in this printing is the pres¬ 

entation of a more adequate treatment of the imsymmetrically 

reinforced beam subjected to both bending and compression. The 

methods of solution given are general and quite simple and it is 

bdieved they will be foimd useful. Other minor changes have been 

made and typographical errors corrected. 
V 
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REINFORCED-CONCRETE 
CONSTRUCTION 

CHAPTER I 

INTRODUCTORY 

I. Historical Sketch.—^The invention of reinforced concrete is 

usually credited to Joseph Monier, but his first constructions are 

antedated by those of Lambot, who in 1850 constructed a small boat 

of reinforced concrete and in 1855 exhibited the same at the Paris 

Exposition. In this latter year Lambot took out patents on this form 

of construction; it was regarded by him as especially well adapted to 
shipbuilding, reservoir work, etc. 

In 1861, Monier, who was a Parisian gardener, constructed tubs 
and tanks of concrete surrounding a framework or skeleton of wire. 

In the same year Coignet announced his principles for reinforcing 

concrete, and proposed construction of beams, arches, pipes, etc. 
Both he and Monier executed some work in the new material at the 
Paris Exposition of 1867. In this year Monier took out patents on 

his reinforcement. It consists of two sets of parallel bars, one set at 

right angles to and lying upon the other, thus forming a mesh of bars. 

This system, and slight modifications of it, are extensively used at the 
present time, particularly for slab reinforcement. Though even the 

early Monier patents covered principles of wide application, still the 

early work in reinforced concrete was confined to a comparatively 

narrow field. 
In 1884-5 German and American rights of the Monier patents 

fell into the hands of German engineers. One of these, G. A. Wayss, 

together with J. Bauschinger at once began an experimental investiga¬ 

tion of the Monier system, and in 1887 they published their findings. 
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The investigation proved reinforced concrete a valuable means of con¬ 
struction, and furnished some formulas and methods for design. The 
practical application of this new method of construction developed 
first principally in Austria, and for several years the engineers of that 
country made more use of it than those of any other country. Among 
these engineers should be mentioned Melan, who in the early 90^5 
originated a system in which I- or T-beams were the principal element 
of strength, providing compressive as well as tensile strength. In 
Germany the government regulations hindered the application of re¬ 
inforced concrete for a time, but later on a large number of systems 
were developed in that country. 

In France many systems of reinforcement were invented from time 
to time, among which should be mentioned that of Hennebique, who 
was probably the first to use stirrups and bent-up'^ bars, an arrange¬ 
ment now universally employed. 

In England and America the first use of iron or steel with concrete 
arose in the effort to fireproof the former by means of the latter. 
Attempting to utilize also the strength of concrete, Hyatt built beams 
of concrete reinforced with metal in various ways, and with Kirkaldy 
of London performed tests on such beams and published the results of 
the investigation in 1877. The first reinforced-concrete work in the 
United States was done in 1875 by W. E. Ward, who constructed a 
building in New York state in which walls, floor-beams, and roof'were 
made of concrete reinforced with metal to provide tensile strength. 
But the Pacific Coast saw the actual early development of this form 
of construction. P. H. Jackson, G. W. Percy, and E. L, Ransome were 
the pioneer workers. Jackson has been credited with reinforced con¬ 
structions dating as far back as 1877, but Ransome executed the most 
notable early examples. Among these are a warehouse (1884 ^85), 
a factory building a few years later, the building of the California 
Academy of Science (1888 or ^89), and the museum building of Leland 
Stanford Junior University (1892). Percy was the architect of the 
last two. The museum building contains spans of 45 ft. and is rein¬ 
forced throughout. This and the Academy building withstood the 
shocks of the earthquake of 1906 remarkably well—the museum better 
than its two brick aimexes. 

Other pioneer constructors in reinforced concrete in this country 
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were F. von Emperger and Edwin Thacher. The former introduced 

the Melan system (1894) and built the first reinforced arch bridges of 

considerable span. Thacher’s first large reinforced-concrete bridge 

was built in 1896 and was without precedent here or in Europe. 

Reinforced-concrete construction has developed during the past 

thirty years into a standard form of construction to be used whenever 

considerations of economy demand it. Uncertainties of behavior and 

of theory which formerly existed to a considerable extent have been 

largely eliminated, and design in reinforced concrete is carried out on 

rational principles in the same manner as in other materials, although 

in the nature of the case the variation in quality is greater than in such 

material as structural steel. 

2. Use and Advantages of Reinforced Concrete.—A combination of 

steel and concrete constitutes a form of construction possessing to a 

large degree the advantages of both materials without their disadvan¬ 

tages. It will be desirable at the outset to consider briefly these 

advantages in order better to appreciate the field in which this type 

of construction is likely to be most successful. 

Steel is a material especially well suited to resist tensile stresses, 

and for such purposes the most economical form—the solid compact 

bar—is well adapted. To resist compressive stresses, steel must be 

made into more expensive forms, consisting of relatively thin parts 

widely spread, in order to provide the necessary lateral rigidity. A 

serious disadvantage in the use of steel in many locations is its lack of 

durability; and, again, a comparatively low degree of heat destroys its 

strength, thus rendering it necessary to add a protective covering 

where a fire-resisting structure is demanded. 

Concrete is characterized by low tensile strength, relatively high 

compressive strength, and great durability. It is a good fireproof 

material, and therefore serves as a good fireproof covering for ^steel. 

It is also found that steel well covered by concrete is thoroughly pro¬ 

tected from corrosion. 

In the design of structural members these qualities of steel and 

concrete will lead to the use of the two materials about as follows: For 

those structural members carrying purely tensile stresses steel must be 

employed, but it may be surrounded by concrete as a protection against 

corrosion and fire, or merely for the sake of appearance. For those 
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members sustaining purely compressive stresses concrete is funda¬ 

mentally the better and cheaper material. With concrete costing 

40 cents per cubic foot, for example, and steel 4 cents per pound, or 

about $20.00 per cubic foot, and with working stresses of 600 and 

16,000 Ibs./in.®, respectively, the relative cost of the two materials for 

carrying a given load is as 40/600 is to 2000/16,000, or as 64 is to 120. 

For large and compact compressive members plain concrete will there¬ 

fore naturally be used, especially where durability is a factor. For more 

slender members, however, such as long columns, plain concrete, being 

a brittle material, is too much affected by secondary and unknown 

stresses to be satisfactory; and for such members steel alone, or the 

two materials in combination, will preferably be used. Steel may be 

used with concrete in the form of small rods to reinforce the concrete; 

or it may be used in larger sections and simply surrounded and held 

rigidly in place by the concrete, most of the load being carried by the 

steel; or,_ finally, a steel column may be used and merely fireproofed 

by the concrete. As the cost of steel in the form of rods is much less 

than in the form of built members, and as compressive stresses can, in 

general, be carried more cheaply by concrete than by steel, econom¬ 

ical construction will lead to the use of the maximum amount of con¬ 

crete and the minimum amount of steel consistent with safety, although 

this principle will be modified by various practical considerations. 

For those structural forms in which both tension and compression 

exist, that is to say, in all forms of beams, the combination of the two 

materials is particularly advantageous. Here the tensile stresses are 

carried by steel rods embedded in the concrete near the tension side of 

the beam. The steel is thus used in its cheapest form, it is thoroughly 

protected by the concrete, and the compressive stresses are carried by 

the concrete. Concrete alone cannot be used to any appreciable extent 

to carry bending stresses on account of its low and uncertain tenacity, 

but a concrete beam with steel rods embedded in it to carry the f^nailo 

stresses is a strong, economical, and very durable form of structure. 

From these considerations it follows that reinforced-concrete con¬ 

struction is advantageous to varying degrees in different types of 

structures. Some of the most important of these types will here be 

noted, together with the advantages accompanying the use of rein¬ 
forced concrete in their design. 
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3. Buildings.—This type of construction is especially useful for 
floor-slabs and to a somewhat less degree for beams, girders, and 
columns. It is also well adapted for spread footings in foundations. 

4. Culverts and smaU Girder Bridges.—Very satisfactory on acco\mt 
of its simplicity and economy as compared to masonry arches, and 
because of its durability as compared to small steel bridges. 

5. Retaining-walls, Dams, and Abutments.—Often economical for 
such structures as compared to ordinary masonry. Plain masonry 
structures of this kind are designed to resist lateral forces by their 
weight alone, the resulting compressive stresses, except in extremely 
large structures, being very small and much below safe values. By 
the use of reinforced concrete these structures can be designed of a 
more economical type and so arranged as to utilize the concrete in the 
form of beams, thus developing more nearly the full compressive 
strength of the material. The steel reinforcement is fully protected 
from corrosion, a factor which prevents the use of all-steel frames for 
structures of this class. 

6. Arch Bridges.—^In this form of structure reinforced concrete 
possesses less advantage over ordinary masonry than in those forms 
where the compressive stresses are less important. In an arch the 
stresses are principally compressive, and these do not require steel 
reinforcement; it is only to provide for the bending stresses due to 
moving loads, or as a precaution against undesirable cracks, that steel 
is serviceable. For short spans no considerable economy can be ob¬ 
tained by its use, but for long spans the reduction in dead load made 
possible, results in a large economy in many cases. By reason of 
greater simplicity and the less expensive abutments required, a flat- 
top culvert or beam bridge, with abutments of reinforced concrete, is 
more advantageous for short spans than the arch. 

7. Reservoir WaUs, Floors, and Roofs.—Very well adapted as a 
durable material and lending itself to much lighter design than com¬ 
mon masonry. 

8. Conduits and Pipe Lines.—Reinforced concrete can often be 
used to great advantage in a water-conduit or large sewer. It is also 
sometimes used for pipe lines and tanks under pressure, the steel being 
relied upon to resist the tensile stresses, while the concrete serves as a 
protection and as a water-tight covering. The amount of steel may 
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thus be determined by considerations of strength alone, where other¬ 

wise a much larger amount of metal would be needed and in a more 

expensive form. 

Q. Elevated Tanks, Bins, etc.—^Advantageous because of its dura¬ 

bility and its adaptability in the construction of heavy floors and walls 

subjected to lateral pressure. Of especial value for coal-bins, either 

for flooring and lining alone, or for the entire structure. Its use for 

water tanks has not proved very satisfactory on account of the diffi¬ 

culty of securing imperviousness. 

10. Chimneys and Towers.—^Possesses advantages over brick or 

stone masonry in the fact that it forms a structure of monolithic 

character, resulting in greater certainty in the stresses and economy 

in design. 

11. Piles, Railroad Ties, etc.—The use of a moderate amount of 

steel with concrete so as to give to this material a reliable tensile and 

bending resistance has opened the way for its use in a great variety 
of forms, not only as complete structures, or important members of 
structures, but also in many special individual forms. Concrete piles 

are valuable substitutes for piles of wood where the latter would be 

subject to deterioration. Reinforced concrete has obvious advantages 

as a material for railroad ties, but a successful design has not yet been 

developed. This material is also well adapted to many other special 

uses, such, as ience posts, transmission line poles and all similar pur¬ 

poses where the structure is exposed to the action of the elements. 



CHAPTER II 

PROPERTIES OF THE MATERIALS 

12. In a design where two or more materials are combined in the 
same member the stresses in the different materials depend upon the 
elastic properties of the materials as well as upon the superimposed 
loads. Therefore in making such designs a knowledge of these elastic 
properties is quite as necessary as a knowledge of the strength of the 
materials. 

CONCRETE 

13. General Requirements.—The conditions to be met in rein- 
forced-concrete construction require the use, generally, of a concrete 
of relatively high grade. In this type of construction the strength of 
the material is of much greater importance than it is in many forms 

of plain concrete design, as the dimensions of the structures are more 
directly dependent upon strength and less upon weight A com¬ 
paratively strong concrete is therefore found to be economical. 

It is especially important, also, that the concrete be of uniform 
quality and free from voids, as the sections are comparatively small 
and the stability of the structure, to a much greater extent than is the 
case with massive concrete, is dependent upon the integrity of every 
part. Thoroughly sound concrete is also required in order to insure 
good adhesion to the steel reinforcement and adequate protection of 
the steel from corrosion and from fire. For exposed structures, density 
and imperviousness are important qualities. These requirements call 
for great care in the preparation and placing of the material. 

Concrete is subject to great variations in its properties, owing 
to the great variations in the character and proportions of its ingre¬ 
dients and in its preparation. It is therefore difficult to judge from 
results of tests made imder certain conditions as to what may fairly 

7 
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be expected of a concrete prepared under other conditions. For this 

reason it is important that special tests be made with the materials 

actually to be used on the work. Regular and systematic tests should 

also be made during the progress of construction to serve as a check 

on the preliminary tests and to prevent any deterioration of quality 

due to possible changes in materials or in the method of mixing and 
placing. 

14. Cement.—Portland cement only should be used; it should 

meet such standard specifications as those of the American Society 

for Testing Materials. The rapidity of hardening of different cements 

varies considerably and may be an element requiring special attention 

where the structure is to receive its load very early or where such load 

is to be long deferred. 

15. Fine Aggregate.—The sand, or fine aggregate (material less 

than about in. in size), should be clean and preferably of coarse 

grain. A fine sand requires more cement paste to completely surround 

the grains and produce a workable mortar or concrete than a coarse 

sand, and hence for equal strength requires more cement. Or, if the 

same amount of cement is used, more water will be needed, resulting 

in a weaker product. In the case of a very fine sand the difference is 

very marked, so that unless care is taken and special tests made, the 

resulting concrete is likely to be porous and deficient in strength and 

adhesive power. Where the use of fine sand is contemplated, tests of 

strength may show that a considerable extra cost may be justified in 

securing a coarser material. The effect of size of sand is shown in 

Art. 21. 

Where practicable the sand should be of such grade that from 40% 

to 60% will be held on a No. 30 sieve and at least 70% on a No. 50. 

Not less than 10% should pass the No. 50. 

16. Coarse Aggregate.—For the coarse aggregate (material exceed¬ 

ing about in. in size) either broken stone or gravel is satisfactory. 

As in the case of sand, the coarse aggregate should be graded from fine 

to coarse. At least 95% should pass the sieve of maximum size desired, 

40% to 75% should pass the sieve of half this size, and not more than 

10% pass a No. 4 sieve. Pit-run gravel is rarely sufficiently uniform and 

correct in proportions to be safely used without screening and 

remixing. 
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The maximum desirable size of stone or gravel depends upon the 
size of the structural forms and the size and spacing of the reinforce¬ 
ment, it being desirable to use as large a size of aggregate as will admit 
of convenient working. Maximum sizes of stone of ^ in. to “• 
are common, but on heavy work, with rods widely spaced, there is no 
objection to still larger sizes. Generally speaking, for sizes below i in. 
the density and strength of the concrete increases somewhat with size 
of coarse aggregate. 

Gravel concrete of the same proportions as broken stone concrete 
is somewhat more fluid and easier to place so that a greater density is 
likely to be secured. For equal degrees of workability the necessary 

Water Content. Gal. per Sack 

7.6 Gal. per Sack-1.00 by VoL 

Fig. I. 

proportions of water will be somewhat less, resulting in a greater 
strength. A difference of io% to 15% in crushing strength is indicated 
in a series of tests at the Bureau of Standards.* 

17. General Principles of Proportioning.—The economical propor¬ 
tioning of concrete requires special attention to two factors: (i) the 
gradation of the aggregate, and (2) the proportions of water and 
cement in the cement paste used to fill the voids in the aggregate. To 
reduce to a minimum the amount of paste needed, the aggregate should 
be well graded from fine to coarse. With the voids then filled, with 
some surplus to give workability, the strength of the concrete will be 
determined closely by the ratio of cement to voids in the aggregate. 

* Technologic P^>er No. 58. 
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Inasmuch as the cement paste used in filling the voids is a mixture of 
water and cement, the proportionate amount of cement in the voids 
can also be expressed in an inverse manner by the ratio of water to 
cement, or the “water-cement ratio,” a more commonly used basis 
of analysis. 

The relation between compressive strength and water-cement ratio 
has been found to be quite constant for a great variety of proportions 
and consistencies within workable limits. This relation is approxi¬ 
mately shown by Fig. i, representing results from a variety of mixes 
of gravel concrete.* The lower curve is the “Abrams Curve,” devel¬ 
oped by Abrams in 1918 from his studies on this subject. Its equation 
is 5 == 14,000/ 7*, where 5 = compressive strength in 28 days and x = 

water-cement ratio by volume. The tests represented in Fig. i and 
other later tests indicate that somewhat higher strengths can usually 
be obtained by careful proportioning. The Abrams curve may be 
considered as representing conservative values. 

Where no preliminary tests have been made, the specifications of 
the American Concrete Institute, 1928, provide maximum values of 
water-cement ratio, corresponding closely to Abrams’ curve, as 
follows: 

Compressive Strength Water-cement Ratio 
at 28 Days, Lbs/in.^ Gallons per Sack 

1500 SH 
2000 7H 
2500 6H 
3000 6 

The recognition of the significance of the proportions of water and 
cement has led to a general use of the “water-cement ratio” method of 
proportioning. In proceeding according to this method, the proper 
proportions of water and cement are determined which will give the 
strength desired, using Abrams’ curve as a basis, or such information 
as may be available from other tests. Then to a cement paste of these 
proportions, fine and coarse aggregates are added by trial until the 
consistency is as dry as desired. The better graded the aggregate, the 

* Report Director of Research, Portland Cement Association, 193& 
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lower will be the proportion of voids and the greater the amoipp'of 
aggregate that can be added for a given consistency, leading to greater 
economy. Actual tests of the product should be made to check the 
assumptions as to strength, and the proportions then adjusted if neces¬ 
sary. A “lean” mix will be weaker than a “rich” mix for the reason 
that more water in proportion to cement is required in the former 
than in the latter, in order to fill the voids and make a workable prod¬ 
uct. In determining the amoimt of water used, due allowance must be 
made for the free water contained in the aggregates. 

A great advantage of this method of proportioning is that, with a 
fixed amount of water per sack of cement (an easily controlled factor), 
a variation in character of aggregates will be indicated by a change in 
consistency, and may be corrected by modifying the total amoimt of 
aggregate or the proportions of fine and coarse sizes, leaving the water- 
cement ratio, and hence the strength, imdisturbed; whereas the use of 
an arbitrary proportion of cement to aggregate is likely to result in an 
increased use of water to correct any deficiency in workability. The 
important factor is the use of a fixed ratio of water to cement. 

i8. Consistency.—From the period prior to the use of reinforced 
concrete to the present time there have been striking changes in prac¬ 
tice in regard to consistency. The older specifications for mass con¬ 
crete, which required only suflBicient water to be used so that when the 
concrete was placed in relatively thin layers and thoroughly rammed 
the water would just flush to the surface, or so that the material would 
“quake like liver,” produced a superior grade of concrete that has 
proved by years of service to be durable and sound. Then upon the 
development of reinforced work in which it was impossible to use such 
dry concrete, the use of water was greatly increased so that the con¬ 
crete would readily “flow” into place, and tamping and ramming 
were abandoned even for massive work. Such excessive use of water, 
together with inadequate mixing, led to the construction of much 
concrete that has been seriously lacking in durability and strength. 
Although the weakening effect of excess water has long been known, 
much more attention has been paid to this matter in recent years; 
the results of the studies which have been made on the relation 
between strength and cement-voids ratio, or strength and water- 
cement ratio, have been utilized to a large extent in modem sped- 
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fications. The result has been a great improvement in concrete prac¬ 
tice and the placing of the subject on a much more definite and 
rational basis. 

Requirements of strength and consistency will vary according to 
the nature of the structure, and the gradation of available aggregates 
will also vary. The proportions adopted will therefore be different under 
different circiunstances, but by controlling the water-cement ratio and 
the consistency it is not difficult to arrive at the most economical 
proportions in any given case. 

Bearing in mind that the consistency should be as dry as prac¬ 
ticable, it will be necessary to use a considerable wetter consistency for 
reinforced work in thin sections than in massive work and in pave¬ 
ments. In no case should the concrete “flow” into place but should 
require some working with spades, rods, or tampers. 

The following range of consistencies, as determined by the slump 

tests, are suggested m the 1924 specifications of the Joint Committee: 

Maximum 
Type of Concrete Slump, In. 

1. Mass Concrete. 3 

2. Reinforced Concrete: 
(а) Thin vertical sections and columns. 6 
(б) Heavy sections.3 

(c) Thin confined horizontal sections. 8 

3. Roads and Pavements: 
(a) Hand finished.3 
(b) Machine finished. i 

4. Mortar for Floor Finish. 2 

19. Proportions of Aggregates.—The report of the Joint Committee 
contains tables of approximate proportions which will assist in deter¬ 
mining upon a proper mix for the particular job. The necessary varia¬ 
tions in proportions to provide various strengths and consistencies are 
illustrated by the following abstract from the tables of the Joint Com¬ 
mittee, using values for a fine aggregate of size No. o to No. 8, and a 

coarse aggregate from ^ in. to in. 
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Consistency 
Slump, In. 

Proportions of Cement, Sand, and Stone by Volume 

IS 00-lb 
Concrete 

2000-ib. 
Concrete 

25004b. 
Concrete 

3ooo4b. 
Concrete 

H to I I : 3S : 5S I : a.8 : 4.7 I : 2.2 : 4.0 I; 1.7 ; 3.4 

3 to 4 1:31:50 I : 2.4 : 4.1 1 : 1.8 : 3.5 I : 1.4 : 2.9 

6 to 7 112.4:4.2 I : 1.7 : 3.4 I : 1.3 : 2.8 1 : 1.0: 2.2 

8 to 10 I : 1.6 : 3.1 I : t.i : 2.4 I : 0.8 : 1.8 I : o.s : 1.4 

It will be seen that the proportion of cement to maintain a given 
strength increases very rapidly with increased slump, being about 
twice as much for the 8 to 10 in. slump as for 3 to 4 in. The economic 
value of plastic rather than wet consistencies is apparent and shoxild 
be fully considered in the execution of work. A wet mix is not only 
uneconomical but promotes segregation of aggregate, water pockets, 
and bad work. 

20. Mixing of Concrete.—It is essential that the mixing be thor¬ 
oughly done. Machine mixing should be required wherever practicable 
and the time of mixing or number of turns and rate specified. With 
the ordinary types of rotary mixers at least i minute should be re¬ 
quired, and still better results can be obtained with longer periods. 

21. Compressive Strength.—The rating of concrete is indicated 
chiefly by its compressive strength, and compressive tests are usually 
the only ones employed in the control of the product. Although shear¬ 
ing and tensile strength are also important, these properties follow a 
fairly close relation to the compressive strength, and as the latter is 
usually the determining factor in remforced-concrete design, the com¬ 
pressive test is the standard for comparison. The shape of the specimen 
has a considerable effect upon the test results. Formerly the cubical 
specimen was the standard form, but results of the extensive study 
made on concrete in recent years have led to the adoption of the 
cylindrical form, two diameters in height, as the standard, either 6 in. 
by 12 in., or 8 in. by 16 in., depending upon the maximum size of 
aggregate. The standard ages for testing are 7 and 28 days.* 

On large work it is important that the quality be controlled by 

* See American Society for Testing Materials Standards for further details. 
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field tests of representative samples. Although the strength at 28 days 
is usually taken as the standard, the effect of further time on the 
strength is important. In general, long-time tests show that moist 
cured concrete increases in strength considerably up to i year or 
longer, the strength at i year being 50% to 60% greater than at 
28 days, and at 3 months, about 35% greater. Long-time tests at the 
University of Wisconsin of i : 2 : 4 concrete stored in water or in the 
open air showed marked increase in strength up to 4 years but little 
change beyond that time. Specimens stored in a cellar showed prac¬ 
tically no change after 6 months. If adequately supplied with mois¬ 
ture, concrete will thus show increase of strength for a year or longer, 

but otherwise will reach its full 
value in a few months. In very 
dry climates, moisture must be 
supplied after the forms are re¬ 
moved if satisfactory strength is 
to be secured. 

The exhaustive studies by 
Feret on the effect of size of sand 
are well worth noting even though 
the more recent studies on the 
water-cement ratio basis have 
made these of less practical impor¬ 
tance than formerly, although still 
valid. Fig. 2 shows results ob¬ 

tained by him on i : 3 mortar cubes after hardening i year in fresh 
water. The mortars were of plastic consistency. The sand used con¬ 
sisted of mixtures of various proportions of fine (o.c to 0.5 mm.), me¬ 
dium (0.5 to 2 mm.), and coarse (2 to 5 mm.) sand, and in the figure 
the result from any particular mortar is recorded in the triangle at such 
distances from the three baselines as will represent the proportions of 
each size sand used. Lines of equal strength were then drawn in the 
diagram. Thus the strength of the mortar in which only fine sand was 
used was only 1400 Ibs/in.^ The maximum strength of 3500 Ibs/in.^ 
was obtained from a mixture containing about 85% of coarse sand and 
15% of fine, with a very little sand of medium size. This diagram 
shows in a striking manner the effect of size of sand. 

M 
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The explanation of these results on the water-cement ratio basis is 

the fact that the fine sands require much more water for the same 

consistency than the coarse, but the very great effect of size is none the 

less of much significance. 

22. Tensile Strength.—The tensile strength of concrete is quite as 

important as the compressive strength. In fact, the most common 

type of failure of a reinforced-concrete beam is closely related to the 

tensile strength of the concrete. The tensile strength is generally from 

one-eighth to one-twelfth of the compressive strength, but this ratio 

varies considerably. It decreases somewhat with increase in coarse¬ 

ness of materials and with low water-cement ratios. It is also affected 

by the nature of aggregate, being less for granite than for hard 

limestone. 

23. Shearing Strength.—In the discussion of beams, the term 

shearing strength^' is frequently used to designate the strength of a 

beam against failure from inclined tensile stresses which exist in regions 

of heavy shear and which are, at the neutral axis, of equal magnitude 

to the shearing stresses. Such a use of the term is misleading. In this 

work the authors will use the term to denote the strength of the 

material against a sliding failure when tested as a rivet or bolt would 

be tested for shear; or the shearing of metal by punching a hole in a 

plate. This action in reinforced concrete is sometimes called “pimch- 

ing’’ shear. 

Tests made under the direction of Professor C. M. Spofford on 

cylinders 5 in. in diameter with ends securely clamped in cylindrical 

bearings gave results as follows: 

Mixture 
Shearing Strength, 

lbs/in.* 
Compressive Strength, 

lbs/in.* 
Ratio of Shearing to 

Compressive Strength 

1:2:4 1480 2350 0.63 

I : 3 •* S 1180 1330 0.89 

1:3:6 1150 IIIO 1.04 

Tests made at the University of Illinois on rectangular specimens 

tested in a similar manner gave the following average results: 
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Shearing Strength, Compressive Strength, Ratio of Shearing to 
Ibs/in.* lbs/in.* Compressive Strength 

1:2:4 1418 3210 0.44 

1:3-6 1250 2290 0.57 

Tests made by punching through plates gave shearing strengths 

varying from 37% to 86% of the compressive, the value depending 

upon the form of test-piece * 

Tests by Feret on mortar prisms gave results for shearing strength 

equal to about one-half the crushing strength. 

The ordinary crushing failure is really a failure by shearing (com¬ 

bined with compression), and under such conditions the crushing 

stress is, theoretically, twice the shearing-stress, the angle of shear 

being 45®. Results of tests give a somewhat greater inclination than 

45®, so that the crushing stress is somewhat greater than twice the 

actual shearing-stress. 

We may then conclude, both from theory and from tests, that the 

shearing strength of concrete, in the sense here used, is about one-half 

the crushing strength. It is in fact so large that it will need to be 

considered only in exceptional cases. 

24. Elastic Properties of Concrete.—Stress-strain Curve in Com¬ 

pression,—In the design of combination structures, such as those of 

steel and concrete, it is necessary to know the relative stresses under 

like distortions. These will depend upon the moduli of elasticity of 

the two materials. For purposes of safe design we need to know also 

the elastic-limit strength. 

Fig. 3 represents typical stress-strain curves for concrete in com¬ 

pression obtained from tests on cylinder 6 in. in diameter by 18 in. 

high. The concrete was 1:2:4 limestone concrete 30 days old. The 

ultimate strengths ranged from 1500 to 2300 Ibs/in.^ 

Unlike the elastic line for steel, the line for concrete is slightly 

curved almost from the begiiming, the curvature gradually increasing 

towards the end. There is no point of sharp curvature as for ductile 

materials. A release of load at a moderate stress, such as 500 to 

* Bulletin No. 8, Univ. of HI., 1906. 
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600 lbs/in.2, will usually show a small set indicating imperfect elas¬ 

ticity. A second application of the load will, however, give a straighter 

Deformation, per IJnitLenirtb 

Fig. 3.—Stress-strain Diagrams in Compression. 

line than the first and there will be much less permanent set following 

the release of load. After a few repetitions of load there will be no 
further set and the stress-strain 

line wdll become a straight line 

up to the load applied. There 

is a limit of stress, however, 

beyond which repeated appli¬ 

cations of load will continue to 

add to the permanent defor¬ 

mation and the specimen will 

ultimately fail. This limit, 

called the endurance limit, is 

found to be 50% to 55% of 

the ultimate strength as de¬ 

termined by the usual test. 

In a sense this may be taken as the elastic limit of the material. 
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25. Modtdus of Elasticity in Compression.—A. t3rpical stress-strain 

curve for concrete, under progressive loading, is shown in Fig. 4. For 

low stresses the elastic behavior is fairly well represented by the initial 

modulus, the slope of the tangent line 0 T. For larger stresses, such 

as represented by bB, a removal of load will result in some permanent 

set O a, and if the stress 6 5 is not too great, a repetition of the load will 

produce a new curve following approximately the straight line a B. 

The slope of the line a B will then represent the elastic behavior of the 

stressed material for loads below B. But in reinforced-concrete work 

the principal use of the modulus is to determine the relative stresses in 

steel and concrete, and these are dependent upon the total deforma¬ 

tions from the no-load conditions, or in this case upon the total de¬ 

formations O h. Hence for this purpose the slope of the chord O 5 is 

the ratio desired. This is commonly called the “secant modulus” at 

load B. 

In the case of a beam the stresses in the concrete at any section will 

vary from zero at the neutral axis to the value bB, for example, at the 

extreme fibre. At intermediate points the stresses follow approxi¬ 

mately the law of the curve OB. In this case a chord 0 B does not 

exactly represent the facts, but the error is small, and it is the best 

line to use if the rectilinear variation of stress be assumed. If a curvi¬ 

linear law is used, then the modulus should be the slope of the tangent 

at the origin, the “initial modulus.” In neither case is it correct to use 

the slope of the line a B. 

The value of the modulus for concrete varies greatly as determined 

by different experimenters and for different kinds of concrete. As a 

rule the denser and older the concrete the higher the modulus, but this 

relation is considerably affected by the character of the aggregate 

and other conditions, so that the relation to strength varies a great 

deal. 

From a study of about 3500 tests of various concrete mixtures 

Stanton Walker derived the following expression for E:* For the 

initial modulus, E = 33,0005^; and for the tangent modulus at 

25% of the ultimate load, E = 66,000 5^, where S is the ultimate 

strength. The tangent modulus at 25% of the ultimate is approxi- 

* Johnson’s Materials of Construction, p. 478. 
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mately the same as the secant modulus for 50% of the ultimate. The 

values for various strengths, according to these formulas, would be: 

Compressive Strength 
at 2% Days. 

Ibs/in.* 

Initial Modulus, 
Ibs/in.* 

Tangent Modulus 
at 25% of the 

Compressive Strength, 
lbs/in.* 

1500 3,200,000 2,560,000 

2000 3,800,000 2,950,000 

2500 4,400,000 3,300,000 

3000 4,900,000 3,620,000 

3500 5,400,000 3,900,000 

4000 5,900,000 4,180,000 

The Joint Committee of 1924 adopted values as follows: 

Compressive Strength 
at 28 Days, Ibs/in.* 

Modulus of Elasticity, 
Ibs/in.* 

1500 to 2200 

2200 to 2900 

Over 2900 

2,000,000 

2,500,000 

3,000,000 

The specifications of the American Concrete Institute of 1928 use the 

value 1000 S, where S is the crushing strength at 28 days. This gives 

approximately the same values as those of the Joint Committee. A 

fixed ratio to the ultimate strength has some advantages in calculations, 

as will be seen later. 

26. Effect of Time on Deformation. Plastic Flow.—It has been 

observed in various ways that the deformation of concrete continues 

to increase for a long time after the load is first applied, this effect 

being quite distinct from shrinkage due to decrease in moisture content. 

Observations by R. E. and H. E. Davis,* on 4-in. by 14-in. cylin¬ 

ders of I : 5.05 concrete, water-cement ratio = 1.03, loaded at 28 da)^ 

and stored in air at 70% humidity, gave the following deformations 

for the periods noted: 

* Proceedings American Concrete Institute, Vol. 37,1931, p. 837. 
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Load, Ibs/in.* 
Instantaneous 
Deformation, 

Per Cent 

Additional Deformations Due to Plow, I^br Cent 

100 Days 400 Days 800 Days 3^ Years 

300 0.022 0.027 0.030 0.034 

600 0.043 0.054 0.063 0,069 

9cx> mM 0.072 0.090 0.10 0. Ill 

Plain concrete columns of i : 5 mix, water-cement ratio 0.86, when 

stored in air at 50% humidity gave the following deformations due to 

plastic flow when loaded at 800 Ibs/in.^: 100 days, 0.035%, years, 

0.06%. The instantaneous deformation was about 0.02%, correspond¬ 

ing to Ec = 4,000,000 lbs/in.2 Other tests on plastic flow are men¬ 

tioned in Chapter VII. 

The foregoing values indicate the relative magnitude of deforma¬ 

tions due to flow under air storage conditions. Under water storage 

the deformations due to flow are much smaller—about one-third that 

at 70% humidity. Removal of load after various intervals of time 

showed instantaneous recoveries somewhat less than the instantaneous 

deformations, and a further slow plastic recovery of about 0.01% in 

2 months, mostly occurring in a few days. The effect of long-sustained 

load on the modulus of elasticity when later tested in the usual manner 

was to increase it somewhat and to make the stress-strain curve more 

nearly a straight line, or, in other words, to stiffen the concrete. 

Plastic flow is of much significance in the design of structures; it 

is a property which results in a more favorable distribution of stress 

in some cases than the elastic theory calls for. It also greatly modifies 

the relation between the steel and concrete stresses, as it is equivalent 

to a large reduction in the value of E. Thus for a concrete with an 

initial modulus of 3,000,000 and a flow of 0.06% under a load of 

600 lbs/in.2, the total deformation will be 0.02 -|- 0.06 = 0.08%, and 

the new secant modulus or ratio of stress to total deformation will be 

600/0.0008 = 750,000 lbs/in.2 In addition to this effect there is the 

effect of shrinkage for air-exposed concrete which still further modifies 

the relations. For temporary loads, such as the usual live load, the 

concrete retains its elasticity and high value of E. 
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The effect of plastic flow and shrinkage on stresses in beams and 
columns is discussed in later chapters. 

27. Parabola Used for Stress-strain Curve.—For theoretical calcu¬ 
lations involving stresses to the 
ultimate, the linear law cannot 
well be used for the stress-strain 
relation. For this purpose, the 
ordinary second degree parabola 
is generally employed and is 
sufficiently accurate for the pur¬ 
pose. The axis of such parabola 
is taken as vertical with the 
vertex at the point of maximum 
stress. In Fig. 5 the actual 
curves of Fig. 3 are compared 
to parabolas (shown in broken 
lines). 

If / = stress at rupture and 

b ~ ultimate deformation, the equation of the parabola is (Fig. 6): 
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f — y {h — xY 

or 

28. Poisson's Ratio.—When a material is subjected to compressive 
stress a certain amount of lateral expansion takes place. The ratio of 
such lateral expansion to the longitudinal compression is known as 
Poisson's ratio. In concrete this ratio varies generally from one-sixth 
to one-twelfth. Talbot found values from o.i to 0.16 for working 
loads for i 12:4 concrete at 60 days.* * * § Withey found the following 
values for 60-day concrete for loads equal to one-fourth the ultimate: 
for I : 3 : 6 mix, 0.08; for i : 2 : 4 mix, o.ii; for i : i}4 mortar, 0.16.f 

29. Coefficient of Expansion.—Experiments by Professor W. D. 
Pence % on i : 2:4 concrete gave an average value of the coefficient 
of expansion of 0.0000055 per degree Fahrenheit, there being little 
variation among the several tests. Tests made at Columbia University 
on I : 3 : 6 concrete gave values of about 0.0000065. Other experi¬ 
ments have shown about the same results. A value of 0.000006 may 
be assumed. 

30. Contraction and Expansion of Concrete Due to Variations in 
Moisture Content.—Concrete cured under moist conditions will ex¬ 
pand slightly. After hardening it will contract on drying and expand 
again on wetting. The amount of such change increases with the pro¬ 
portion of water and also with the proportion of cement paste in the mix. 
From tests of the Portland Cement Association, Lagaard § has pre¬ 
pared a general diagram representing the shrinkage of various mixtures 
on exposure to air of 50% humidity (a relatively dry air) for 6 months. 
According to this, a concrete of i : 2 : 4 proportions with 6^ gal. of 
water per sack of cement will shrink about 0.07%; a i : 3 : 5 concrete 
with S}/2 sack, about 0.06%. Davis found a shrinkage of the 
columns mentioned in Art. 26 of 0.033% in 100 days and 0.066% in 

• Bull. No. 20 Univ. of Ill. 
t Bull. No. 466 Univ. of Wis. 
t Jour. Western Soc. Eng., 1901, p. 549. 
§ Johnson’s Materials of Construction, 1930, p. 48. 
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years. The humidity was 50%. Under ordinary air conditions 
the contraction will be considerably less, but may easily reach 0.04% 
when the concrete is protected from the weather. This is equivalent 
to a change of temperature of about 60®. 

31. Weight of Concrete.—The weight of concrete of the usual pro¬ 
portions will vary from 140 to 150 Ibs/ft.-'*, depending upon the propor¬ 
tions and the specific gravity of the aggregates. For design purposes 
an average value of 145 Ibs/ft.® may be taken. The addition of rein¬ 
forcing steel in the usual proportions will add from 3 to 5 lbs., so that 
the weight of reinforced concrete may be taken at 150 Ibs/ft.® 

32. Fireproofing Effect of Concrete.—Laboratory tests and ob¬ 
servations of the effects of very hot fires in reinforced-concrete build¬ 
ings show that concrete is a very good fireproofing material. Although 
it loses a large part of its strength at temperatures of 1000° F. or 
above, the heated material is an efficient non-conductor and the heat 
effect penetrates slowly. The principal question is the thickness of 
concrete necessary to protect the reinforcing steel from too high 
temperatures. This depends somewhat upon the character and im¬ 
portance of the member. Such members as main girders and columns, 
where a failure would involve a considerable portion of the building 
and where the steel is concentrated in a few rods, should be more 
thoroughly protected than floor slabs of small span, where a few local 
failures would be of no importance, and where additional covering 
would add largely to the expense. Results of fire tests and experience 
in conflagrations indicate that 2 to 2 in. will offer practically com¬ 
plete protection, and that a minimum of % in. for floor slabs will 
usually be sufficient. Large flat surfaces, such as floor slabs, are less 
exposed than the corners of projecting forms like beams and columns. 

33. Protection of the Steel from Corrosion.—A continuous coating 
of Portland cement is an effective protection of steel against corrqsion, 
and the necessary thickness of concrete for such protection is chiefly 
a matter of the integrity and density of the concrete. Many cases 
have been cited showing complete protection for more than 20 years 
when the steel was embedded an inch or more in the concrete. The 
Joint Committee specifications provide a covering of at least 2 in. 
where exposed to the weather and 3 in. for footings and for concrete 
exposed to sea water. 
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REINTORCINO STEEL 

34. General Requirements.—In general, reinforcing steel must be 
of such form and size as to be readily incorporated into the concrete 

Fig. 7.—Types of Deformed Bars. 

SO as to make a monolithic structure. To provide the necessary bond 
stroigth and to distribute the steel where needed without concentrat* 
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ing the stresses on the concrete too greatly, requires the use of the steel 

in comparatively small sections. This requirement, as well as that of 

economy and convenience, leads to the use of the steel in the form of 

rods or bars. These will vary in size from about to in. for light 

floors up to Ito 2 in. as maximum sizes for heavy beams or columns. 

Under certain conditions a riveted skeleton work is preferred for the 

steel reinforcement, but this is usually where for some reason it is 

desired to have the steelwork self-supporting or where it is to carry 

an unusually large proportion of the load. 

35. Forms of Bars.—Plain round and square bars are largely used, 

the adhesion of the steel and concrete being depended upon to furnish 

the necessary bond strength. Plain flat bars are undesirable unless 

used in connection with riveted reinforcement, as their adhesion to 

the concrete is much less than that of round or square bars. Many 

special forms of ^Meformed” bars have been devised, the principal object 

of which is to furnish a bond with the concrete independent of adhesion 

—a mechanical bond, as it is usually called. Some of the most common 

types of such bars are illustrated in Fig. 7. Wire mesh of cold-drawn 

steel wire is a convenient form of reinforcement in certain cases. 

36. Quality of Steel.—Steel bars used in reinforced work are not 

usually subjected to as severe treatment as those used in ordinary 

structural work. They must be capable of being bent to the desired 

form, but this is the only treatment to which the ordinary bars are 

subjected. In many concrete structures the impact effect is also likely 

to be less than in all-steel structures; consequently it is considered 

that a somewhat less ductile material may safely be used. These 

conditions lead to the use, by many engineers, of high-elastic-limit 

material; others prefer the use of standard structural steel. Bars made 

by rerolling rails are included in the high-elastic-limit class. The gen¬ 

eral requirements of the American Society for Testing Materials 

specifications for the various grades of steel are as follows: 

Grade Ultimate Strength, lbs/in.* Yield Point, lbs/in.* 

I Structural. 55,000 to 70,000 
70,000 to 90,000 

80,000 min. 
80,000 min. 

33,000 min. 
40,000 min. 
50,000 min. 
50,000 min. 

Billet Steel { Intermediate......... 
[ Hard. 

Rerolled Rail Steel. 
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The tendency of practice is towards the use of a single grade of 

billet steel—the intermediate—as being satisfactory and promoting 

economy of stocks and uniformity of practice. 

37. Modulus of Elasticity,—The modulus of elasticity of all grades 

of steel is very nearly the same and will be taken at 30,000,000 Ibs/in.^ 

38. Coefficient of Expansion.—The coefficient of expansion of steel 

may be taken at 0.0000065 per i® F. 

PROPERTIES OF CONCRETE AND STEEL IN COMBINATION 

39. Ratio of Moduli of Elasticity, EJEc = n,—So long as the 

adhesion between steel and concrete is unimpaired the distortion of 

the two materials will be equal. Their stresses will then be propor¬ 

tional to their moduli of elasticity for the load in question, or as the 

ratio of E^ : Ec. Taking E„ at 30,000,000 and Ec at from 2,000,000 to 

4,000,000, the ratio will vary from 15 to 7)^. In practice, various 

values of this ratio are used, depending upon the kind of concrete and 

the judgment of the designer. 

The Joint Committee specifies the following values: 

Compressive Strength, Value of n 
lbs/in.2 

1500 to 2200 15 

2200 to 2900 12 
2900 and over 10 

40, Tensile Strength and Elongation of Concrete when Reinforced, 

—The tensile strength of concrete is ordinarily from 200 to 300 Ibs/in.^, 

and assuming a relatively low value of the total elongation at 

rupture would be 0.0001 to 0.00015 part. The stress in the steel corre¬ 

sponding to this elongation is 3000 to 4500 Ibs/in.^ From these rela¬ 

tions it is evident that, where ordinary working stresses are used in the 

steel, the concrete w’ill crack and be of no assistance in carrying 

stress. 

Some early experiments by Considere on reinforced-concrete beams 

seemed to indicate that concrete on the tension side would elongate 

before cracking much more than in an ordinary tension test, and that 
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it could, therefore, be counted upon to carry a certain amount of ten¬ 

sion under working conditions. Later experiments failed to confirm 

these results but showed the formation of cracks at elongations of 

about 0.0001 to 0.0002, corresponding to a steel stress of 3000 to 

6000 lbs/in.2 However, on account of the presence of the steel, the 

cracks open up very slowly so that they are at first most difficult, to 

detect. 

In some cases, where the stresses in the steel are necessarily very 

low, it may be proper to consider the tensile resistance of the concrete. 

This limit may be placed at about 2000 Ibs/in.^, corresponding to an 

elongation of 0.00006 part and a stress of 150 to 175 Ibs/in.^ in the 

concrete. 

41. Contraction and Expansion of Reinforced Concrete.—The be¬ 

havior of reinforced concrete as regards contraction and expansion, 

and the stresses resulting therefrom, may be considered under two 

conditions: (i) when the structure or part under consideration is not 

restrained by surrounding structures, and is, therefore, free to contract 

and expand as a whole; (2) when the part under consideration is 

restrained so that contraction and expansion are prevented. 

I. When the structure is not restrained, then the only stresses will 

be those resulting from a difference in deformation of the concrete 

and steel. Temperature changes affect the steel and concrete nearly 

alike (Arts. 29 and 38), so that the two materials will be but slightly 

stressed by reason of temperature changes. 

The effect of shrinkage in hardening or drying out is more serious. 

Concrete which is unrestrained either by steel reinforcement or by 

exterior attachment will shrink or swell proportionally and no stresses 

will thereby be developed. If restrained by reinforcing material only, 

a shrinkage will develop tensile stresses in the concrete and compressive 

stresses in the steel. 

If it be assumed that concrete when reinforced tends to shrink the 

same amount as plain concrete, and that such shrinkage is prevented 

only so far as the stresses developed in the steel react upon the con¬ 

crete and cause an opposite movement, then it will be found, using the 

ordinary values of the modulus of elasticity, that the stresses developed 

in both the concrete and the steel will be large. These stresses may be 

estimated as follows: 
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Let m — shrinkage coefficient of the concrete; 

/c = unit stress in concrete (tensile); 

/, = unit stress in steel (compressive); 

p = steel ratio; 

n = E,/Ee. 

Then the net contraction per unit length as measured by the con¬ 

crete will be m — fc/Ec, and as measured by the steel will be f,/E,. 
These values are equal. Also, for equilibrium, fe = Pf- From these 

equations we get 

f, = mE.-^.(i) 
I + np 

and 

.w 
p 

If, for example, m = 0.0003, £« = 2,000,000, n — 1$, p = 1%, then 

/, = 80 lbs/in.2 tension and f, = 8000 Ibs/in.^ compression. li p — 

2%7/e = 140 and f, = 7000 lbs/in.2 

2. When the structure is restrained by outside forces so that it is 

not free to contract or expand, as in the case of a long wall, then the 

resulting stresses are likely to be high, and no amount of reinforcement 

can entirely prevent contraction cracks. The reinforcement can, how¬ 

ever, force such cracks to take place, as they do in a beam, at such 

frequent intervals that the requisite deformation is provided without 

any one crack becoming large. With a coefficient of expansion of 

0.000006, a temperature change of 50° will cause a change of length (if 

free) of 0.0003 part. The effect of shrinkage may be even greater. A 

deformation of 0.0003 part corresponds to a stress of about 600 Ibs/in.^ 

in the concrete, a stress much beyond the ultimate tensile strength. 

Hence temperature changes and shrinkage are quite certain to cause 

cracks; but if the concrete is well reinforced such cracks may be kept 

very small. For example, a deformation of 0.0003 part on the tension 

side of a beam corresponds to a stress of about 9000 Ibs/in.^ in the 

steel, which is much below the usual working stress and which would 

not cause cracks easily detected. The prevention of large cracks by 

means of reinforcement is, then, a matter of using sufficient steel to 
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force the concrete to crack at small intervals. No crack will open up 
far until the steel is stressed beyond its elastic limit, hence we may say 
that the amount of steel should be at least enough to force the concrete 
to crack at a second point before the steel reaches its elastic limit; 
that is to say, the elastic limit strength of the steel should be greater 
than the tensile strength of the concrete. A still larger amount of 
steel will serve to keep the cracks smaller. 

The size and distribution of the cracks will also depend upon the 
bond strength furnished by the rods. If we assume the cracks to 
develop successively, the distance between cracks must be sufficient 
to develop a bond strength equal to the tensile strength of the concrete. 
Hence, in general, the size and spacing of the cracks will vary inversely 
with the bond strength of the reinforcing steel per unit of concrete 
section. 

For reinforcement against shrinkage and temperature stresses, a 

high-elastic-limit steel is desirable, and in order to distribute the de¬ 
formation as much as possible a mechanical bond is advantageous. 

The amount of steel necessary for such reinforcement depends upon the 

thickness and exposure of the structure. For thin walls and exposed 
locations 0.4% to 0.5% is required, and under very favorable condi¬ 
tions as little as 0.1% has been found to be sufficient. The reinforce¬ 

ment for this purpose should be placed close to the exposed faces of 
the concrete. In floor slabs longitudinal bars of in. to in. diam¬ 
eter, spaced about 2 ft. apart, are customary. 



CHAPTER III 

THEORY OF THE FLEXURE OF BEAMS 

42. Kinds of Members.—Structural members are, for convenience, 
usually divided into tension members^ compression members^ and beams, 

according as the forces to be resisted produce in the members simple 

tension, simple compression, or simple bending. Bending moment is 

often accompanied by tension or compression, producing what are 

called combined stresses of bending and tension, or bending and compres- 

sion. Since reinforced concrete is not used for plain tension members 

the analysis will be confined to the beam, both under plain bending 

and under combined stresses, and to the compression member or col¬ 

umn. The ‘^flat slab,^' supported in various ways, will be considered 

in a separate chapter as a special case of beam. In reinforced-concrete 

construction the beam is the most important element and is used 

under a great variety of conditions, 

43. Relation of Stress Intensities in Concrete and Steel.—In the 

following discussion it will be assumed that the concrete and steel 

adhere perfectly and therefore deform equally. Nearly aU reinforced- 

concrete construction is dependent upon this equal action of the two 

materials, although simple adhesion is not always entirely depended 

upon. Several types of deformed bars are used so as to give the steel 

a grip independent of the adhesion, and in other cases bars are bent or 

anchored at the ends, but in all cases it is assumed tliat the materials 

adhere perfectly and therefore deform equally. Many tests show 

that under proper design this is for all practical purposes true. 

Since the modulus of elasticity of a material is the ratio of stress to 

deformation, it follows that for equal deformations the stresses in 

different materials will be as their moduli of elasticity. If 

30 
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/, = unit stress in steel, 

fc = unit stress in surrounding concrete, 

E, = modulus of elasticity of steel, and 

Ec = modulus of elasticity of concrete, 

we have the fixed relation 

/.//. = 
44. Distribution of Stress in a Homogeneous Beam.—To assist in 

forming correct notions of the action of steel reinforcement in a con¬ 

crete beam, it will be desirable to consider, at the outset, the nature of 

Fig. I. 

U— 

(c) 

the stresses due to bending moment in a plain concrete beam or a 

beam of any homogeneous material. 

Considering a vertical section at any point of the beam, Fig. i, 

there will exist in general certain tensile and compressive stresses 

acting normally to the section and certain vertical or shearing-stresses 

acting tangentially thereto. In accordance with the common theory 

of flexure, the normal stress on a vertical section varies in intensity as 

the distance from the neutral axis, and therefore the variation is repre¬ 

sented by the ordinates to a straight line as in Fig. i (a). The intensity 

of this stress (fibre stress) at any point is given by the well-known 

formula 

in which M = bending moment, c = distance of fibre from neutral 

axis, and I « moment of inertia of the section with respect to the 

neutral axis. 
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The shearing-stress intensity is a maximum at the neutral axis and 

is zero at the outer fibres. At any given point in the section it is 

given by the equation 
V = VS/Ib, (2) 

in which V = total vertical shear at the section through the point 

under consideration, b = breadth of the section at the given pwint, 

and S = statical moment of that part of the section above (outside 

of) the point with respect to the neutral axis. For a rectangular beam 

the intensity of shear varies as the ordinates to a parabola, as shown 

in Fig. I (b), the maximum value being 3/2 times the average, or equal 

3 F 
to --. The intensity of the horizontal shearing-stress at any point 

2 bd 

is equal to that of the vertical shearing-stress. 

Fig. 2. 

A determination of the normal stresses (often called the “direct” 

or “bending” stresses) and the shearing-stresses above described 

gives sufficient information for the design of ordinary beams of homo¬ 

geneous material. For purposes of reinforced-concrete design, how¬ 

ever, it is desirable to make a more detailed analysis of the stresses 

acting at any point in a beam. 

Consider an element a at any point of a beam, Fig. 2 (a), of unit 

dimensions, and with horizontal and vertical faces. Fig. 2 (b) is an 

enlarged view of this element. The direct and shearing unit stresses 

may be represented by / and v respectively; their magnitudes will be 

determined by formulas (1) and (2). Let us examine the stress on an 

inclined section A B. Fig. 2 (c) shows the portion on the left of the 

section. The stresses on the face A B may be resolved into a tension 

F' and a shear V'. The shear on CB will be v tan ff. Taking com- 
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ponents normal to A B, we find F' — {f v tan 0) cos 9+ » an e and 

V = V cos e — (/ + t) tan 6) sin d. 

The stresses per unit of area will be 

/' = F' cos 0 = f cos^ 6 -{• 2 V sin 0 cos 0; 

v' — V cos 0 = V (cos^ 0 — sin^ 0) — f sin 0 cos 0. 

For a maximum value of f we find by differentiation, 

and for maximum v' 

tan 2 0 = 
2 V 

T 

tan 20 = 
2 V 

(3) 

(4) 

Substituting these values of 0 in the expressions for f and v', we find 

the maximum values to be respectively 

/'n..x = H/+ Vl^/2 + 1,2.(5) 

.(6) 

These equations show that the maximum tensile stress in a beam 

depends upon both / and v at the point in question. 

At all points in a beam where the shear is zero, the direction of the 

maximum tension is horizontal, as at points of maximum bending 

moment and along the outer fibres of the beam (tan 2 0 = 6). Where- 

ever the horizontal fibre stress / is zero (at the neutral surface and at 

all sections of zero bending moment), the direction of the maximum 

tension is inclined 45° to the horizontal (tan 2 0 = 00), and its intensity 

is equal to the unit shearing 

stress at the same place. 

Above the neutral axis the 

inclination of the maximum 

tension is in general greater 

than 45°, becoming 90° at 

the upper or compressive 

fibre. Fig. 3 illustrates the 

variation in normal stress, 

B Tenaton £ 

Fig. 3.—^Variation in Maximum Tensile Stress. 

shearing-stress, and maximum tensile stress throughout the entire 

depth of a rectangular beam. The outer normal or fibre stress is 



34 THEORY OF THE FLEXURE OF BEAMS 

assumed at 200 Ibs/in.^, and the shearing-stress at the neutral axis at 

150 lbs/in.2 The variation in the fibre stress is shown by the straight 

line D £, and that in the shearing-stress by the parabolic curve AC B, 
By means of eq. (5) the maximum tensile stresses have been com¬ 

puted; these are represented by the line A H C J E. 
The direction of the maximum tension is shown by the arrows 

along the line A B. The direction of the maximum compression is at 

right angles to that of maximum tension. 

Fig. 4 illustrates the general direction of the maximum tensile 

stresses in a rectangular beam. The exact direction at any point 

depends upon the relation between shear and bending moment. Lines 

of maximum compression run at right angles to the lines shown and 

lines of maximum shear at angles of 45® therewith. 

45. Purpose and Arrangement of Steel Reinforcement.—The pur¬ 

pose of steel reinforcement is to carry the principal tensile stresses, the 

concrete being depended upon for the compressive and shearing 

stresses, its resistance to such stresses being large. If no steel were 

present the concrete would tend to rupture on lines perpendicular to 

the direction of maximum tension, as shown in Fig. 4, and hence we 

may conclude that the ideal tension reinforcement would require the 

steel to be distributed in the beam along the lines of maximum tension. 

At the centre of the beam, or section of maximum moment, this direc¬ 

tion is horizontal for the entire depth of the beam, and horizontal rods 

placed near the lower edge of the beam constitute proper and sufficient 

reinforcement. As we approach the ends of the beam, where the 

shear is large, the intensity of the inclined tensile stresses becomes of 

importance, and in many cases these stresses require special attention. 

Horizontal rods at the bottom are still necessary, but do not entirely 

reinforce the concrete against tension, so that special consideration 

must be given to reinforcement in the body of the beam. The arrange¬ 

ment of this reinforcement demands careful consideration. 
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For purposes of discussion, the subject of beams will first be treated 

with reference only to the horizontal reinforcement. The inclined 

tensile stresses will be considered separately under Shear, Chap. IV. 

46. The Common Theory of Flexure and Its Limitations for 

Materials Like Concrete.—The common theory of flexure is based on 

two main assumptions, namely: (i) a plane cross-section of an un¬ 

loaded beam will still be plane after bending (Navier^s hypothesis); 

(2) the material of the beam obeys Hookers law, which is, briefly 

stated, stress is proportional to strain.” From the first assumption 

it follows that—The unit deformations of the fibres at any section of a 

beam are proportional to their distances from the neutral surface. In 

the case of simple bending (all forces at right angles to the beam) the 

neutral axis lies at the centre of gravity of the section; in the case of 

bending combined with direct tension or compression, the neutral 

axis may lie in the section or be merely an imaginary line without the 

section. From the second assumption it follows that—The unit 

stresses in the fibres of any section of a beam also are proportional to the 

distance of the fibres from the mutral surface. This may be called the 

linear law of the distribution of stress. 

While these two assumptions are commonly made in the analysis 

of a beam, they are not in all cases strictly correct, and in some cases 

Hooke's law cannot be used without large error. 

The assumption of plane sections is slightly in error wherever 

shearing-stresses exist, as these tend to distort a plane section into 

one slightly S-shaped in form. The resulting error is, however, small 

and of no practical consequence, especially in concrete, where the 

effect is much less than in steel. 

The assumption that fibre stresses are proportional to deforma¬ 

tions (Hooke's law) is practically correct for wrought iron and steel 

within the elastic limits, and hence the common theory of flexure gives 

correct results for these materials for working conditions; but for 

stresses beyond the elastic limit it does not apply. Other materials 

like timber, stone, cast iron, and concrete do not obey Hooke's law so 

closely as steel and wrought iron, but for working stresses the variation 

is not great, and the common theory may be used with closely approxi¬ 

mate results. If a more exact analysis is desired for such materials 

the linear law must be discarded and the actual stress-strain diagrams 
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in compression and tension must be used up to the limit of the actual 
stresses involved, or some form of mathematical curve approximating 
the true diagram. 

47. Assumptions of Stress Variations Used in Practice.—For use 
in designing under specified working loads it is the universal practice 
to use formulas based on the linear law of stress variation, and to 
neglect any tensile stress in the concrete which may exist below the 
neutral axis. The ultimate extensibility of concrete is not more than 
about 0.02%, which corresponds to a steel stress of 6000 Ibs/in.^ 
Hence under ordinary working stresses the concrete will be cracked 
well up towards the neutral axis. Such cracking may also be increased 
from the effect of shrinkage. Furthermore, whatever tensile stress 
may exist has little effect upon the resisting moment of the beam. It 
is therefore entirely neglected and the tension assumed to be taken 
wholly by the steel. In a study of deflections it is necessary to take 
into account such tensile stresses, as they are of considerable influence 
in portions of the beam where the bending moment is small. 

To calculate ultimate loads and factors of safety with reference to 
concrete stresses, the linear law gives results too greatly in error, and 
for such purposes it is customary to assume a parabolic variation of 
concrete stress, as explained in Art. 63. 

48. Notation.—Fuller explanations of some of these symbols are 
given in subsequent articles where the formulas are derived; see also 

Fig. 5- 
/, = unit fibre stress in steel; 
/c = unit fibre stress in concrete at its compressive face; 
e, = unit elongation of the steel due to/«; 
Cc = unit shortening of the concrete due to fc\ 

= modulus of elasticity of the steel; 
Ec = modulus of the concrete in compression; 
n = ratio EJEc] 
T = total tension in steel at a section of the beam; 
C = total compression in concrete at a section of the beam; 

Mt = resisting moment as determined by steel; 
Me = resisting moment as determined by concrete; 
M « bending moment or resisting moment in general; 

h « breadth of a rectangular beam; 
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d — distance from the compressive face to the plane of the 

steel; 

k = ratio of the depth of the neutral axis of a section below 

the top to d] 
j = ratio of the arm of the resisting couple to d; 

A = area of cross-section of steel; 

p = steel ratio, Ajhd. 

FLEXURE FORMULAS FOR WORKING LOADS 

49. General Relations.—Fig. 5 represents a section .45 of a beam 

subjected to bending moment. The neutral axis is at N. The portion 

(a) (6) 
Fig. s. 

of the beam above iV is in compression whose maximum value is /« 

per unit area, whose average value is /c/2 and whose total value is 

Yijc^kd = C. The unit stress in the steel is/,, and the total steel 

stress is/,.4 = T. For the case of simple bending (all loads and 

reactions transverse to the beam axis), T = C, and the resisting 

moment of the beam is the moment of this couple, = T j d ^ Cj d. 
The value of j evidently depends upon the position of the centroid of 

the compressive stresses which in turn depends upon the position of 

the neutral axis. It will be found, further, that the position of the 

neutral axis depends upon the proportion of steel used and the relative 

moduli of elasticity of steel and concrete. This position having been 

found, and from this the value of /, the resisting moment is readily 

calculated for any given values of stress in concrete or steel, or the 

stress for any given bending moment. 
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$0. Derivation of Formulas.—Neutral Axis and Arm of Resisting 

Couple.—It follows from the assumption of plane sections that the 

unit deformations of the fibres vary as their distances from the neutral 

axis; hence, as shown in Fig. 5 {a) 

es d — k d 

e^ k d 
Also, by definition, 

£? ^ filEl 
fc/Rc n fc 

whence we have the relation of stresses and distances, as shown in 

Fig. 5 Q>), 
f‘ _ d — k d _ i — k 

nfc~ kd k.^ ’ 

(b) 

(c) 

From T = C, we have 

fsA = }4fcbkd. 
or 

fs ^ y2i>kd ^ ybkd ^ 
fc A p b d 2 p ' ' ' 

(j — ^ ^ 

Eliminating /,//, between (a) and (c) gives -r- = —; this, 
k 2 p 

solved for k, gives _ 

k = ^^2 P n {p nY -- pn.(i) 

Note that the ratio fjfcy as shown by eqs. (c) and (i) is dependent 

only upon p and n. That is, for a given quality of concrete and 

amount of steel the ratio of the stresses,/s//c, is fixed; and conversely, 

with definite working stresses and value of n, the steel ratio p is fixed 

for all sizes of beams. 

Solving (a) for k, we have the useful relation 

k = 
I 

I +/«/^/c 
(10) 

This is an important relation between the position of the neutral axis 

and the stresses in steel and concrete. Inasmuch as the value of Ec 

increases with the strength of the concrete, and likewise the value of 

the working stress fc, the quantity n fc is nearly constant, and as the 
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working stress /, is also nearly constant, it follows that the value of 
k varies but little. 

The arm of the resisting couple is 

j d ^ d - }4kd, or y = I - H ^.(2) 

In Fig. 6 (also Diagram i *) are given curves for values of k and j 

for various values of p and n\ also on the left the corresponding values 

of fa/nfc. Taking nfc = 12,000, a common value, the values of j 

are: for /, = 18,000, j = 0.867; and for /, = 20,000, j — 0.875. 

The small range of values ofy indicates that a fixed assumed value of 

0.86 or 0.87 for all cases could well be adopted. A value of is 

sometimes used. 

51. Resisting Moment for Given Working Stresses /« and fc.—The 

safe resisting moment of a given beam may depend upon either the 

strength of the concrete or the strength of the steel, according to the 

amount of steel actually used. In investigating a given beam we may, 

therefore, proceed by calculating the safe resisting moment as depend¬ 

ent upon the allowable stress in the concrete and then the resisting 

moment as dependent upon the allowable stress in the steel and com¬ 

pare results. The smaller of the two values will evidently be the 

value desired. 

The resisting moment in terms of steel stress is 

-jd^f.Ajd^f.pjbd^.(3) 

In terms of concrete stress the resisting moment is 

Mc==c -jd = y^fcbkdjd = y2fckjbdK . (4) 

In examining a given design it will generally happen that the 

values of and Me will differ, for the reason that the beam was not 

designed for the precise values of /« and fc assumed, 

52. Unit Fibre Stresses for a Given Bending Moment,—From eqs. 

(3) and (4) we derive 
ilf __ M 

Ajd^ pjbd‘^ 

iAjkbd^ • • 

(s) 

(6) 

Dividing (5) by (6) gives/,//. = k/2 p, as in eq. (c). 

The Diagrams are given in Chapter XII. 
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53. Amount of Steel and Cross-section of Beam for a Given Bending 

Moment.—In designing a beam it is desirable to use the correct amount 

of steel so that the allowable stresses in both steel and concrete wiU 

be reached under the given load; that is, such an amount as will give 

a balanced design. The correct steel ratio for any given working 

stresses is found by substituting the value of k from (a) in {c) and 

solving for p. Or we may equate eqs. (3) and (4). The result is 

P - (7) 

This shows that, for a given concrete and ratio of working stresses, 

P has the same value for all sizes of beams. The value of p for various 

values of /«,/c, and n can be found from Fig. 6, or Diagrams 1,3, and 4. 

If the correct proportion of steel, as given by (7), is used, then the 

size of the beam, or the value of b d^, can be determined by either of 

eqs. (3) or (4). These give 

bd^ = 
M 

f>P3 

bdP = 

M 

y2fckj 

(8) 

Equations (8) are convenient to use only when diagrams or tables are 

available for obtaining the values of py k, and j. For direct calcula¬ 

tion the value of k andj obtained from eqs. {a) and (i a) may be sub¬ 

stituted in (6), giving 

This gives the required dimensions of the beam in terms of the allow¬ 

able stresses and the value of «, and assumes an amount of steel used 

as given in eq. (7). 
It is to be noted that the application of eqs. (8) or (9) gives the 

value of b d^ only, as is the case in the design of any rectangular beam. 

Having determined b the values of b and d are to be selected so as 



42 THEORY OF THE FLEXURE OF BEAMS 

to give convenient and economical proportions. The larger the 

value of d the smaller is the cross-section required and the less the 

amount of concrete and steel, but the ratio of depth to breadth is 

limited by practical considerations, such as head room, convenience 

in placing the steel, and, as shown later, by the shearing-stresses 

involved. Ordinarily the ratio ol d :b will range from about to 

4, the latter for very large beams only. In the case of continuous 

slabs or floors the width b is, of course, fixed, and the depth only is to 

be determined. A unit width of r ft. is usually assumed in such 

calculations. 

54. Cofficients of Resistance.—From eqs. (3) and (4), Art. 51, it 

is to be seen that 

Mt = pj X b d^ 

= y2f.kj Xb d^, 

in which the quantities /, pj and yfckj are variables dependent 

upon the unit stress, percentage of steel, and value of n; they are 

independent of the size of beam. For convenience these products will 

be called Coefficients of Resistance with respect to the steel and the 

concrete, respectively, and will be denoted by and that is 

= f^Pj\ Rc = y2fckj. 

Then, for given working stresses, 

M.^Rs^bd^ and Ma = Rc^ bd^. . . (10) 

Similarly, for any given beam subjected to a bending moment M, 

Rs == Re ^ M/bd^.(ii) 

For a balanced design i?, must be equal to Re and, as in eq. (8), 

bd^ = M/R.(12) 

where /? = 7?, = i?c. 

Diagrams 3 and 4 give values of R for various values of p and for 

« « 8, 10, 12, and 15. Values of R, are read from the /, curves, and 

Rc from the fc curves. For a balanced design the correct value of p 

is found at the intersection of the given values of /, and 

55. The Transformed Section.—Instead of considering the con¬ 
crete and steel as two different materials in the foregoing analysis, 
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we may ‘^transform’’ the steel into an equivalent amount of concrete 

and apply the general methods for homogeneous beams. This may 

be done by replacing the steel by concrete in the same plane and hav¬ 

ing n times the area of the steel. The resulting imaginary section is 

called the ^‘transformed section,” and its use is quite advantageous 

in certain cases, particularly. in a study of combined bending and 

compression. 

For the case of simple bending, of Art. 50, Fig. 7 shows the trans¬ 

formed section, the steel area A being replaced by the concrete area 

(6) 
Fig. 7. 

« ^ at the same plane as the steel. Then taking moments about the 

top edge of the section we have at once 

- , bkdy.}/2kd-\-nAd 
fz d z=z- 

hkd + nA 

Substituting pb d lor A and solving for k gives 

k = y/2 p n -f (/> ^ w, 
as in eq. (i). 

The moment of inertia of the transformed section may also be 

found and the fibre stresses determined by the usual formula for 

beams, / = Mdl, but in this case the methods given in the preceding 

articles are simpler. 

56. Examples.—Problems of practical analysis and design are of three 
general kinds, namely: (i) Given a beam and the safe working stresses, to 
find the resisting moment of the beam. (2) Given a beam subjected to a 
given bending moment, to find the unit stresses in concrete and steel. 
(3) Given the safe working stresses and the bending moment, to find the 
dimensions of the beam. 

In all the following problems the value of n is taken at 15 and the 
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depth” is understood to be the depth d from the compression face to the 
center of gravity of the steel area. 

I. Calculate the safe resisting moment of a beam where b = lo in., 
d « 14 in., reinforcement consists of four ^-in. roimd bars, allowable 
stresses are /, = 16,000 and fc = 800 Ibs./in.^ 

Solution. The steel area A = 4 X 0.442 = 1.77 sq. in., p = i.77/140 
= 0.0126. Then from eq. (i) k = 0.45; from (2),7 = i — 0.45/3 = 
(See also Fig. 6 for k and j,) Then, as determined by the steel, the safe 
moment is (eq. (3)) 

Mt = 16,000 X 1.77 X 0.85 X 14 = 337,000 in-lbs. 

As determined by the concrete it is (eq. (4)) 

Me = 400 X 0.85 X 0.45 X 10 X 14^ = 300,000 in-lbs. 

The safe moment is the latter value. 
The stress /, for M = 300,000 will be less than the allowable value of 

16,000, being equal to 16,000 X 300/337 = 14,300 Ibs/in.^ Note that 
the ratio of actual stresses is, from eq. (c), at all times equal to k/2p 
= 0.45/0.0252 = 17.9; and since the ratio of allowable values is 
16,000/800 = 20, it is evident that the concrete stress of 800 will control 
and that the steel stress will be equal to 17.9 X 800 = 14,300 Ibs/in.^ 

2. Suppose that the beam of the preceding example is 17 in. deep and 
is subjected to a bending moment of 350,000 in-lbs. Compute the greatest 
unit stresses in the steel and concrete. 

Solution. The steel ratio is 1.768/170 = 0.0104. Then k - 0.42, 
j = 0.86, yd == 0.86 X 17 = 14.6 in., T = 350,000/14.6 = 24,000 lbs., 
ft ^ T/A = 24,000/1.77 = 13,600 lbs/in.2 Also C — T == 24,000 lbs., 
/c = 2 X C/bkd = 2 X 24,000/10 X 0.42 X 17 = 670 Ibs/in.^ We may 
also get from the general relation of eq. (c), /c =/« X 2p/k = 13,600 
X 0.0208/0.42 = 670 Ibs/in.^ 

(3) Design a beam to withstand a bending moment of 400,000 in-lbs., 
the working strength of concrete and steel being taken at 700 and 16,000 
lbs/in.2, respectively. 

Solution. For n = 15 and fjfe = 16,000/700 = 22.9, eq. (7) or Fig. 
6 gives p = 0.0087. Then from Fig. 6, ^ = 0.40 andj = 0.87. Eq. (8) 
now gives 

, „ 400,000 
16,000 X 0.0087 X 0.87 

or 

bd^ ^ 
400,000 

350 X 0.40 X 0.87 
3280. 

Or we may use eq. (9) without getting k andj, 

^ 6 X 400^000 (2^-9 + 15)^ 
15 X 700 (3 X 22.9 + 30) 

3340. 

Many different values of b and d will give the desired value of b <P, If 6 is 
taken at 10 in., then d^ = 3300/10 =* 330, and d = 18.2 in. Ordinarily as 



FORMULAS FOR WORKING LOADS 45 

a matter of economy ^nd practical proportions h ranges from to 
Finally A = 0.0087 X 10 X 18.2 = 1.58 sq. in. 

In practice the dimensions and steel areas as calculated need to be 

modified somewhat to conform to commercial sizes of bars and con¬ 

venient dimensions of beams. If the depth is increased beyond the 

theoretical value, the stress in the steel and hence the required steel 

area will be decreased in nearly the same proportion. The concrete 

stress will also be reduced below the allowable value in about the same 

proportion. If the depth is decreased the amount of steel will need 

to be increased in much greater proportion in order to lower the 

neutral axis so as to avoid increasing the concrete stress. This will 

require a relatively large increase in steel. (For example, with /, 

= 16,000 and fc == 700, a decrease of 2)/^% in depth below the theoreti¬ 

cal will increase the amount of steel nearly 20%.) These variations 

are illustrated in the following article. 

57, Solution of Examples by the Use of Coefficients of Resistance.— 

The problems of Art. 56 which have been solved by formulas will now 

be solved by the use of the diagrams of coefiicients of resistance, 

Diagram 3 or 4. 

(1) The percentage of steel is 1.26. Then on Diagram 4 we follow up 
vertically along the hne for p — 1.26% to the curve for fc = 800 and for /, 
= 16,000. The value of R for fc = 800 is 153, and for fs = 16,000 it is 170. 
Then Me = 153 X b == 300,000, and Ms — 1^0 X b — 333,000 in-lbs. 
It is obvious from the diagram that the stress fc determines the safe moment 
and shows the beam to be over-reinforced. 

(2) Herefrd^ = 10 X 17^ = 2890. R = 350,000/6 = 121. p — 1.04%. 
For these values by interpolation we find fc = 670 and /, = 13,700 Ibs/in.^ 

(3) With /, = 16,000 and fc = 700, we find at the intersection of these 
curves, R = 121 and p = 0.87%. Hence bd^ — M/R = 400,000/121 
= 3300, as before. With 6 = 10 and d = 18.2, p = 0.087 X 182 = 1.58 
sq. in. This area will be secured by using two i-in. round bars. Area 
= 1.57 sq. in. 

If it is desired to make d = in., then the amount of steel may be 
slightly reduced but not sufficiently to change the design. For a depth of 
19 in. a recalculation should be made. In this case 6 == 10 X 19^ = 3610, 
and R = 400,000/3610 = iii. For this value of R, and limiting values of 
/c = 700 and fs = 16,000, the diagram shows that the steel stress controls 
and gives a value of /> = 0.80%. A == 0,0080 X 190 = 1.52 sq. in., only 
slightly less than before. The concrete stress will be about 660 Ibs/in.^ 

It may well be that two large bars will be unsatisfactory on account of 
bond stress or other reasons and that three or four bars will be desirable. 
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Assume four ^-in. round bars giving A = 1,77 sq. ii|., which is more than 
necessary. With this amount of steel the depth may be somewhat reduced, 
perhaps to 18 in. With d = 18 in., dd^ — 3240, R = 400,000/3240 = 123, 
p == 1.77/180 == 0.98%. With = 123 and p == 0.98%, the stresses will 
be about fc = 680 and /, = 14,500 Ibs/in.^ 

58. Effect of Incorrect Assumption of the Value of or n-—^As 
the value of n is subject to considerable uncertainty it will be useful 

to inquire into the effect of an error in its selection. This can readily 

be done by the aid of Diagrams 3 and 4. Suppose the value of n is 

taken at 12 in designing the beam, and the actual value is 10 or 15. 

The assumed working stresses are 1000 and 18,000 Ibs/in.^ respectively. 

From Diagram 4, for w = 12, R = 173*3, P ^ o.oiii. Then, for 

n — p — O.OIII, and R = 173.3, we find /, = 18,600 and fc = 930; 

for n = 10, /, = 17,800 and fc = 1120. Thus if n is taken too low, 

the steel will be slightly over-stressed and the concrete under-stressed; 

if taken too high, the reverse will be the case. The relative effect is 

much greater in the concrete than in the steel. This illustration shows 

that it is preferable to estimate the value of n too low rather than 

too high. 

59. Effect of Shrinkage and Plastic Flow upon the Stresses in 
Beams.—The data given in Art. 26 show that, under ordinary dry 

conditions, the deformation due to shrinkage and plastic flow may 

easily reach two or three times the elastic deformation due to stress. 

The result is to modify very considerably the relations of the stresses 

in concrete and steel. No exact measure of this effect is possible, 

but it will be useful to attempt a general analysis of this problem. 

The two sources of non-elastic deformation, shrinkage and flow, may 

to a certain extent be considered separately. 

60. Shrinkage,—If unresisted by the steel, the shrinkage will cause 

a shortening of the beam throughout. The presence of the steel 

resists the shortening on the tensile side and causes the concrete either 

to crack or to be under tensile stress, the steel being in compression. 

If not actually cracked a loading of the beam will cause cracking earlier 

than if shrinkage were not present, and the final result will be the 

same as if shrinkage cracks were formed. The effect of all this is to 

raise the neutral axis in the same manner as would be done if the steel 

had been elongated by a direct pull and the concrete had been cracked 
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thereby. Neglecting the tensile strength of the concrete, we would 

then expect the shrinkage cracks, in the case of an unloaded beam, to 

extend to the upper or compression surface. 

If now a load is applied, the compressive stress will be concentrated 

on a small area near the top of the section, but this area wiU increase 

as the load is increased. The lower limit of this compression area is 

the actual neutral axis. The position of this neutral axis can be 

found in the same manner as in Art. 50 by adding the shrinkage of 

the concrete to the elongation of the steel from stress. Let m — shrink¬ 

age per unit length. Then by proportionate strains, as in Art. 50, 

fe/Ec _ m -f f,/E, 

k 1 — k ' 
Also, as in Art. 50, 

C = T, or f. A = y2fckbd, or f.p = y2f.k . . (13) 

From these equations we derive the expression 

k2 4. k = 2f>pn 
f,+ mE. f.+ mE; 

from which 

k = \^2 a p n + {a p nY — a pn . . . . (14) 

in which a u 
f,+ m Es 

Note that this is similar to eq. (i), Art. 50, 

and the values of k can be found from the same diagrams referred to 

in that article by using a p for p. From (13) we have, as usual, 

(15) 

Consider, for example, a beam that has been designed for working 

stresses of 18,000 and 800 Ibs/in.^ respectively. Then for n = 15, 

= i-S, and Fig. 6 gives p == 0.009 for a balanced design. If 

the shrinkage coefficient m = 0.04% the stresses may be analyzed as 

follows: For a load such that /, == 6000, a = 6000/(6000 + 12,000) 

— CL p ^ 0.003. Then from Fig. 6, ^ = 0.26, j = 0.91 and from 

(15) fc — 2 X 6000 X 0.009/0.26 = 415 lbs/in.2 For a load such 

that ft = 12,000, a = a ^ = 0.0045, ^ ~ j = 0.90, /c = 720 

lbs/in.2; and for /, = 18,000, a = 0.6, a p ^ 0.0054, k * 0.33, 
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j = 0.89,/c = 980 Ibs/in.^ Without shrinkage the values of /« corre¬ 

sponding to the three assumed values of/, would be X 800 = 270, 

% X 800 == 530, and 800 Ibs/in.^ respectively. However, on account 

of the higher position of the neutral axis caused by shrinkage, resulting 

in an increased value of /, the stresses in steel and concrete under full 

working load will be somewhat less than 18,000 and 980 respectively. 

Without shrinkage, k = 0.40 and/ = 0.867. The actual stresses will 

then be reduced in the proportion 0.867/0.89 or to about 17,500 and 

950 Ibs/in.^ The final result is an increase in concrete stress over the 

design stress of 150 Ibs/in.^, or nearly 20%. The effect of shrinkage 

is therefore to decrease the stress in the steel a relatively small 

amount and to increase the stress in the concrete considerably. 

61. Plastic Flow.—As the plastic flow is roughly proportional to 

the stress, its effects can be studied by using a low value for Ec or a 

high value for w. If the plastic flow is taken at three times the elastic 

deformation for a concrete with E = 3,000,000, then the equivalent 

secant modulus for combined elastic and plastic deformation is 750,000 

and n == 40. Using n = 40 in the foregoing example will give a 

measure of the combined effect of shrinkage and flow. 

For example, for /, = 6000, a = = 0.003. Then for 

n = 40, ^ = 0.39. For /, = 12,000, k = 0.45; and for /, = 18,000, 

k = 0.48. The effect of flow is the reverse of that of shrinkage; it 

lowers the neutral axis, increases slightly the steel stress, and decreases 

the concrete stress. 

Since plastic flow is a matter of long-sustained loads, the live-load 

effect will in many cases be little or nothing, and for this part of the 

load the normal elastic behavior may be expected. The dead-load 

effect is then shown by using a low value of /, in the calculations. In 

the above assumed case, if the dead load is one-third the total design 

load, then/, — about 6000, and k = 0.40. As this is very nearly the 

value of k under the elastic conditions ordinarily assumed, it will be 

changed little by the addition of the live load. For long-continued 

overloading, approaching the ultimate strength of the beam, the 

neutral axis will doubtless continue to fall until the steel begins to 

yield, and then will rise again; but there would seem to be no reason 

why the ultimate strength will be greatly affected. 

The foregoing analysis is intended only to give a general notion of 
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the effect of shrinkage and flow on the stresses in beams. The combined 

effect is not likely to be large. 

62. Approzimate Nature of the Calculations.—Since both shrinkage 

and plastic flow are present in most structures to a greater or less 

degree, it is obvious that any great refinements in the selection of the 

value of n in beam calculations are quite unnecessary and misleading 

in their implication of accuracy. A uniform value of 12 or 15 might 

well be used for all grades of concrete. The lower value is perhaps 

preferable as being favorable to the concrete while having slight effect 

on the steel, as indicated in Art. 58. However, it is very desirable to 

follow adopted standards, and imtil other specific rules have been 

formulated it will be necessary to use the commonly specified values 

Fig. 8. 

of », from 10 to 1$, as given in Art. 39. To meet requirements of 

building codes, designers must arrive at very definite results based on 

definite assumptions, but the precision of the results as regards the 

actual stresses which exist in the structure is very much less than indi¬ 

cated by the precision of the usual formulas and calculations. These 

conditions should be kept in mind and elaborate calculations should 

be avoided where simpler approximate methods are permitted. 

FLEXtmE FORMULAS FOR ULTIMATE LOADS 

63. Conditions of Stress in the Concrete under Progressively 
Increasing Loads.—If AB, Fig. 8 (a), represents the compression stress- 

strain diagram of a concrete whose ultimate strength is 3000 Ibs/in.^ 

then in a beam made of this material the stress in the concrete from 
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the neutral plane to the surface will vary according to the ordinates 

to this curve up to a stress equal to the stress on the extreme fibre. 

For example, if the load is such that the stress on extreme fibre is 

looo lbs/in.2 then the stress variation will be represented by the por¬ 

tion .4C of the curve; if loaded to produce a stress of 2000 Ibs/in., then 

the curve AD represents the law of variation; and if loaded to the 

ultimate, then the entire curve AB represents the variation of stress. 

The three conditions are represented in Figs. (6), (^), and {d), the 

scale used for stresses being different in the different sketches. Under 

working stresses of one-third to two-fifths of the ultimate strength, 

the variation of stress follows so nearly a straight-line law (Fig. (6)) 

that this is assumed in the analysis. Under higher stresses such an 

assumption introduces a considerable error, and if correct results are 

to be obtained a law of stress variation must be assumed which more 

nearly agrees with the facts. 

The case of special importance is where the concrete stress ap¬ 

proaches its ultimate value, as in Fig. (cf), and it is useful to develop 

formulas for this case, as the application of such formulas helps to 

give a better notion of the ultimate strength of beams and the factor 

of safety against failure. As shown in Art. 27, the stress-strain dia¬ 

gram approximates roughly to a parabola, and such a curve will be 

assumed in the following analysis. 

64. General Relations.—In this analysis it is assumed that the 

amount of reinforcement is sufficient to develop the full compressive 

strength of the concrete without 

stressing the steel beyond its yield 

point. That is to say, the ratio of 

stress to deformation in the steel re¬ 

mains constant throughout. The 

stresses and deformations in con¬ 

crete and steel will then be as rep¬ 

resented in Fig. 9. In this figure, 

AE = /c, NA = Ccj and NB = e,. 

In the present connection, the 

two following properties of a parabola like that of Fig. 9 are useful: 

(i) The average abscissa of the parabolic arc equals two-thirds the 

greatest, (2) the distance from the centroid of the parabolic area 

to its top equals three-eighths the total height, k d. 
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65. Derivation of Formulas.—Neutral Axis and Arm of Resisting 

Couple,—The “ initial modulus of elasticity ’’ of the concrete (Art. 25) 

is denoted by Ec in the present article. It is represented by the slope 

of the tangent ND with respect to the deformation axis NA, or is 

equal to AD/NA, For a parabola, vertex at jE, AD = 2AE, and 

since Cc = NA, we have fc = }^Ec Also, /, = £, and from the 

assumption of plane sections it follows that ejec = {d -- k d)/k d. 

Eliminating e^/ec from the above equations, and introducing the 

abbreviation n, gives 

/. _ I - 
2nfc k 

{a) 

Then, from T = Cy 
fspbd = Hfcbkd.(6) 

Eliminating/«//c between eqs. (a) and (b) and introducing the abbre¬ 

viation py gives 3 ^ w = ^^/(i — k)] this, if solved for ky gives 

k = pn + {t,/2 pnf^ — 7,/2 pn, . . . (i) 

The distance of the centroid of the compressive stress from the com¬ 

pressive face of the beam is^k d] therefore, the arm of the resisting 

couple r — C is given by 

j d d - y^kd, or j =- 1 - yk. . . ■ . . (2) 

Fig. 10 gives curves for values of k and j for various values of p 

and n. Corresponding values of f^/nfc are given at the left. 

Comparing these curves with those of Fig. 6, it will be noted that 

the values of k and j are somewhat less, showing that the neutral axis 

is a little lower under the parabolic assumption of stress variation 

than under the straight line assumption. 

66. Ultimate Resisting Moment for a Given Ultimate Strength fc.— 

Remembering the assumption made at the outset in regard to the 

amount of steel (Art. 64), it will be understood that the ultimate 

resisting moment always depends on the concrete; the value is 

Me = C ^jd ^ %fcbkd •jd %j kfcbdK . . (3) 

If /, is the steel stress corresponding to fc we have 

M.^Tjd^f.pjbdK . . 

Placing Af, ~ Me of eq. (3) the value of /, can be found. 

(4) 
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Fig. io. 
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If this calculated value of f, is less than the yield point of the steel, 

then the ultimate resisting moment is correctly given by (3); but if 

it exceeds the yield point, then the beam fails by over-stressing of the 

steel and the formulas of this article do not strictly apply. 

67. Determination of Amount of Steel and Cross-section of Beam for 

a Given Ultimate Bending Moment.—To find the proper amormt of 

steel to correspond to given values of fc and /„ place M, of eq. (4) 

equal to Me of eq. (3) and substitute the value of k as given by equa¬ 

tion (a). Solving for p, there results 

If, in any given case, the steel ratio as given by (5), or a higher 

value, is adopted, then the concrete would crush without straining 

the steel beyond the yield point, and the ultimate resisting moment of 

the beam is given by (3), which value equated to the ultimate bending 

moment, M, to be provided for, giyts% fej kb d^ = M, or 

bd^ = 
M 

VsfJk (6) 

From this, d may be computed for any assumed value of b. 

If the percentage of steel used is less than that given by (5), with 

f, = yield point, then the utlimate resisting moment can be only 

approximately calculated by eq. (4), but as j varies but little, the 

results will be sufiiciently accurate. 

68. Use of the Foregoing Method of Analysis.—In the design and 

examination of structures the general practice is to make use of certain 

specified or assumed safe working stresses so selected as to give a safe 

margin, varying with the circumstances, against failure or undue 

deformation. In the case of reinforced-concrete beams the assigned 

working stress in the concrete is such that the straight-line law of stress 

variation may be assumed and is generally employed. However, if 

we desire to know the ultimate strength as regards concrete failure, 

the formulas of this section are useful and are foimd to give satisfactory 

results. They are also useful in laboratory studies of the relative 

strength of concrete in beams and in compression specimens. 
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69. Example.—i. Find the ultimate strength and factor of safety of 
the beam of Example 3, Art. 56, if the ultimate strength of the concrete 
is 2000 lbs/in.2 and the steel is assumed to have a sufficiently high yield 
point so that it will not be over-stressed. Take n — is, p ~ 0.0087. 
From Fig. 10, k = 0.46 and j = 0.83. Hence Me = % X 2000 X 0.46 
X 0.83 X 3300 {bdr) = 1,680,000 in-lbs., giving a factor of safety of 4.2. 

The steel stress is given by the relation V = 
2nfc 

= 30 X 2000 X = 70,500 lbs/in.2 It is to be noted that, whereas the 

ratio of ultimate strength of the concrete to the working stress is only 
2000/700 = 2.86, the factor of safety against failure due to crushing of the 
concrete is more than 4. This is due to the fact that the extreme fibre 
stress does not increase proportionately to the increase in load. On the 
other hand, the steel stress docs increase very nearly in proportion to the 
load, to be exact, a little faster than the load, owing to the slight decrease in 
the value of/. In this case the ratio of steel stresses is 70,500/16,000 = 4.4. 

Strictly speaking, the value of the tangent modulus Ec used in the formu¬ 
las for ultimate load should be somewhat greater than the secant modulus 
used for working loads, but the difference is unimportant in estimates of 
this character. 

FLEXURE FORMULAS FOR T-BEAMS 

70. Use of T-Beams.—Where a concrete floor slab is constructed 

integrally with the supporting beams so that unity of action is insured, 

Fig. II. 

then the beam, with a portion of the slab above it, constitutes a so- 

called T-beam (Fig. ii). In regions of positive bending moment the 

slab acts as the compression flange, the steel being placed near the 

bottom. The narrow part of the beam is commonly called the web. 

In regions of negative bending moment (near the support in the case 

of continuous beams) the slab is in tension and the lower part of the 
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beam is in compression. If it be assumed that the concrete takes no 

tension, the beam becomes a rectangular beam with tension side upper¬ 

most, and the principal reinforcing steel is placed near the top. Some 

of the steel is also generally continued straight through near the bot¬ 

tom, thus reinforcing the beam in compression. (See Art. 8i.) 

The portion of the slab which may be assumed to act in compres¬ 

sion, or the effective width of the flange, is usually limited to about 

eight times its thickness, but, of course, not exceeding the distance 

centre to centre of beams. 

T-beams are also used occasionally where not constructed in con¬ 

nection with a floor slab. Siiice the concrete in the lower part of a 

beam takes no tension its only duty is to transmit stress from tension 

steel to compression concrete (involving mainly shearing-stress) and 

for this purpose the entire rectangular section is not needed in large 

beams. Economy can thus be secured by omitting a portion of the 

concrete, leaving a T-form of section. 

71. Assumptions and Notation.—The neutral axis of a T-beam 

may lie in the Jlange or below the flange in the web, depending upon 

the relative depth of flange and beam, and amount of steel used. If 

the neutral axis is in the flange then the formulas for rectangular beams 

Fig. 12. 

apply as the concrete below the neutral axis is of no significance. If 

it lies in the web the compression area is of different form from that in 

rectangular beams and different formulas are required. These are 

developed in the following articles. 

Whether or not the neutral axis lies in the flange can readily be 

determined by means of the formulas and diagrams for rectangular 
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beams, especially Diagram 3 or 4. Having given the amount of 

reinforcement, or the values of fc and /„ the value of k is determined 

and compared with the slab thickness. The same information can 

be obtained also by use of the formulas and diagrams for T-beams as 

explained later. 

The following notation is employed in addition to that of Art. 48. 

(See Fig. 12.) 

b = width of flange; 

d = effective depth of beam; 

V = width of web; 

t = thickness of flange; 

z = depth of compression resultant below top of flange; 

P = steel ratio = A/h d. 

72, Case I. Compression in Web Neglected.—The amount of the 

compression in the web is commonly small compared to that in the 

flange and will be neglected in the analysis of this article. The formu¬ 

las are thereby greatly simplified and the resulting error is generally 

very small. To provide for designs in which the web is very large as 

compared to the flange, formulas which take account of web compres¬ 

sion are given in Art. 76. 

73, Neutral Axis and Arm of Resisting Coupleas in Art. 50, 

eq. (a), 

A 
nfc 

I — ^ 

~k~^ 

(a) 

hence we have, in terms of/, and/,. 

nA 

k = --—.-y.(x) 
I +/./w/c 

Note that in terms of the unit stresses 

the position of the neutral axis is the same 

as in rectangular beams. 

To derive the value of k in terms of the 

dimensions of the beam and the steel ratio 

it will be more convenient in this case to make 

use of the transformed section than the method of Art. 50. Fig. 13 

Fig. 13. 
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shows the transformed section. Taking moments about the upper 

edge we have nAd + l/^bt^^ = {nA +bt) kd, whence 

Or in terms of p 

k = 

ft A }/2 b t ' 

n A + b t 

pn + y2(-\ 
k = 

pn + 

(2) 

(3) 

The arm of the resisting couple is d — 2 (see Fig. 12). The distance 

z is equal to the distance of the centroid of the shaded trapezoid from 

the top of the beam, that is, 

z 
3 

(4) 

We also have 
jd — d — 2, (s) 

and, by substitution from (3) and (4) we have, in terms of tjd and 

3 = . . (6) 

When i/d = k, this reduces to eq. (2), Art. 50 and the neutral axis 

will be at the junction of web and flange. 

On Diagram 5 are plotted curves giving values of k and j for 

various values oi pn and of the ratio t/d. This diagram, as well as 

eq. (6), shows thaty is affected very little by changes in the amount of 

steel. The diagram also gives on the left-hand margin the values of 

jjn fc, corresponding to the various values of k as determined from 

eq. (i). The curves for k and / end at points where k — t/d. They 

become horizontal at these points and the values of k are equal to 

those for rectangular beams. (See Fig. 6, Art. 50.) 
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74. Resisting Moment and Working Stresses,—The average unit com¬ 

pressive stress in the flange is 3^ |/c +/c =/c 

and the whole compression is/c^3 
_/ 

2 kd 
bt. 

The total tension isf^A; hence, the resisting moment in terms of 

and/« is given by the formulas 

Ms=^fsA-jd 

lid)*'. 
If fc and fa are merely the permissible values of stress, then the 

calculated values of Me and Ma will not in general be equal; the safe 

value is evidently the smaller. 

The unit stresses, and /c, produced by a certain bending moment 

Af in a given beam can be computed by solving (7) for /, and /c, or 

from 

After fa is calculated, fc can most readily be found from the ratio 

given in Diagram 5. 

75. Approximate Method of Calculating T-beams by Using Full 

Working Stresses for Concrete.—h method of calculation applicable to 

most cases, that is somewhat simpler than the foregoing, is to assume 

full working stresses for the concrete as well as the steel and then 

determine the width of flange which will correspond to this assump¬ 

tion. If this is less than the actual width, the design is considered 

satisfactory. By this method the value of k is dependent only upon 

the ratio fajn fc. The depth of beam and amount of steel are then 

determined as for a balanced design. If the calculated width of 

flange is less than the actual width the resulting value olj will generally 

be slightly less than the correct value, giving a corresponding excess 

of steel area but the error is small. (See Art. 80 for examples.) 
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76. Casell. Compression in Web Not Neglected.—When the web 

is very large compared to the flange and the flange alone is inadequate 

to carry the stress, it is desirable to include the web in the calculations. 

In this case the formulas for the position of neutral axis, arm of resist¬ 

ing couple, and moment of resistance become as follows: 

k d 4 
2ndA + (b — b')t‘^ /n A + {b — b') nA+(b — b')t 

b' 
+ 

b' )- b' 
(9) 

, ^ 2 b(kdy -{b - b') (k b - ty 
z = k d-X-, 

3 b (k — (b — b') {kd — t)'^ 

j d = d - z]. 

M.=f.A-jd 

Me = -4^ [b (k dy - (b - b') (kd - ty]jd 
2 rC (t 

• • (10) 

• • (ii) 

• • (12) 

Equations (12) also give f, and /<, for given values of M. 

77. Method of Calculation Assuming Full Working Stresses.—A 

more expeditious method of arriving at the result in the case here 

Fig. 14. 

considered is by the assumption of full working stresses and proceeding 

as for a balanced design. The beam may then be considered as made 

up of two parts as shown in Fig. 14, namely, a T-beam, Fig. (b) of 

width b — b', and without web; and a rectangular beam. Fig. (c), of 

width b' and depth d. The neutral axis will be at the same elevation 

in both sections and the total resisting moment will be the sum of the 

separate moments. Where a design is to be made for specified work¬ 

ing stresses this method is simple and leads to accurate results; where 
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a given beam is to be reviewed the results will not in general be precise 

but will be accurate enough for all practical purposes. (See Art. 8o 
for examples.) 

78. Diagrams for Use in Designing.—In addition to Diagram 5, 

which gives values of k andy in terms oi pn and t/d^ it is convenient 

to use diagrams to aid in the solution of eq. (7) for moments of resist¬ 

ance. These can be written 

= (JJn) pnj X b 

Let C, p nj and C = (i — 

M. = C. X-bd^ 
n 

Me = C,X fob 
(14) 

The quantities C. and C are functions of ^ » and t/d only (since k 
and j are also functions of these quantities), hence can be readily 

shown on diagrams. Diagrams 6 and 7 have been prepared for this 

purpose. These, together with Diagram 5, facilitate the solution of 

the various problems of T-beam analysis. Note that C, X fjn corre¬ 

sponds to Re, and Cefe to Rc for rectangular beams. The use of these 

diagrams is illustrated in the problems of Art. 80. 

Diagram 8 will prove useful when a balanced design is desired and 

the flange thickness is known. From Fig. 13, Art. 73, the moment of 

the concrete stress about the steel is 

Substituting the value of k from eq. (i), Art. 73 

Me ^febiH 
[(r-0-( ̂ '^nfXsd 2). 

febfiC. (15) 

Values of C are shown on Diagram 8 together with the corresponding 

values oi pn and 
79. Problems of Design.—In practice, various forms of problems 

will arise: (a) The dimensions may be given, to find, the safe resisting 
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moment of the beam or the stresses in the steel and concrete under a 
given load; (b) the dimensions of the flange may be given, together 
with the loading and specified working stresses, to determine suitable 
web dimensions and steel area; (c) the loading and working stresses 
may be given, to determine suitable proportions for the entire beam. 

(a) Where all the dimensions are given, the value of k and j are 
found from eqs. (3) and (6), or from Diagram 5, and thence the values 
of the moment of resistance from eqs. (7); or with the bending moment 
given the fibre stresses are found from (7) or (8) or by Diagrams 6 
and 7. If the value of k is found to be less than t/d^ then the formulas 
for rectangular beams apply. 

{h) Generally the flange has been predetermined as it is usually 
formed by a portion of a floor slab which is already designed. A 
suitable web must then be selected, together with the necessary 
amount of steel. 

In determining the dimensions of the web, consideration must be 
given not only to the bending moment but also to the shearing-stresses, 
space for the necessary bars, and other matters, as fully explained in 
subsequent articles, but for the present the bending moment only will 
be considered. For this purpose, the width of the web is immaterial; 
only the depth is involved. The depth may be made (i) such as to 
give a balanced design, that is, a beam wherein both steel stress and 
concrete stress are equal to the assigned working stresses; or, as is 
frequently the case, (2) the depth may be made greater than this 
minimum on account of the other considerations mentioned above, in 
which case the steel is proportioned for the allowed unit stress and the 
concrete stress will be less than the allowable. 

{c) When all parts of the beam are to be selected on the basis of 
given working stresses it is convenient to first select suitable propor¬ 
tions for the web, as in Case {b). A flange thickness is then assumed 
such as to give satisfactory proportions between t and d. The value 
of t/d is then known and k and7 can be determined from (i), (4), and 
(5) or Diagram 5. The area of steel and the breadth of flange is then 
found from eq. (7). The smaller the value of t the smaller will be the 
flange area required, but too slender proportions are to be avoided, 
as explained in Chap. V. 

The procedures followed in solving the various forms of problems 
are explained in the examples following. 
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8o. Examples.—(i) A T-beam has the following dimensions: b « 48 in., 
/ = 8 in., d = 22 in., 6' = 12 in., and the steel consists of six i-in. round 
bars. If the working stresses are/* = 16,000 and/c = 700 lbs./in. ^ 
what is the safe bending moment for the beam? 

Solution. The area of the steel is 4.71 sq. in. and p = 4.71/48 X 22 == 
0.^6%. pn ^ 0.067. t/d = 8/22 = 0.364. From Diagram 5 (or Fig. 6) 
it is found that k is less than t/d^ hence the neutral axis is in the flange and 
the beam acts as a rectangular beam and is calculated as such. 

(2) Change t in the preceding example to 4 in. and solve. 
Solution. Here t/d == 4/22 = 0.182. From Diagram 5, ^ = 0.33 and 

j = 0.92. Then M, = 16,000 X 4.71 X 0.92 X 22 = 1,520,000 in-lbs. 

From eq. (7), Art. 74, Me = 700 4 X 48 X 0.92 X 22 = 

1,960,000 in-lbs. The safe moment is therefore 1,520,000 in-lbs. An 
examination of Diagram 5 shows that the ratio of fjnfciox the given 
values of t/d and p is about 2.0, hence for /* == 16,000, fc = 533, which 
shows at once that the steel stress determines the strength of the beam. 
As a check, 152/196 X 700 = 540. Diagrams 6 and 7 can also be used 
for the calculations. With pn — 0.067 and t/d = 0.182, Diagram 6 gives 
C, == 0.062 and = 0.062 X fjn Xhd^ — 0.062 X 16,000/15 X 48 X 
22^ = 1,530,000 in-lbs. Diagram 7 gives C. = 0.122 and Me = 0.122 X 
700 X 48 X 222 = 1,980,000 in-lbs. 

The most useful diagram for such problems is No. 5, as the value of j 
is accurately given and the ratio of stresses, f»/nfcy determines at once the 
controlling stress. 

Suppose in the foregoing case that the allowable stresses were 20,000 
and 600 lbs/in.2 respectively. The ratio jjnjc = 20,000/9000 = 2.22, 
which is larger than the ratio 2.0 given in Diagram 5. Hence the concrete 
stress determines and the steel stress /, = 2 X 15 X 600 = 18,000 Ibs/in.® 
The value of M, = 18,000 X 4.71 X 0.92 X 22 = 1,720,000 in-lbs. This 
will also be obtained from Diagram 7, with fe — 600. 

(3) The flange of a T-beam is 40 in. wide and 4 in. thick, and the given 
bending moment is 1,000,000 in-lbs. With /, = 18,000 and /c = 800, 
determine the depth and amount of steel. 

Solutions, (a) It will first be assumed that the depth will be selected 
to give a balanced design—that is, such that both steel and concrete will 
be fully stressed. A direct solution of this problem can be made from 

Diagram 8. /,/«/<, = 7;%^ = i-5- From eq. (15), "" ^ 
1,000,000 

= ii96. 

C = 

800 X 40 X 4^ 
Diagram 8, t/d = 0.288 and pn = 0.122. 

15 X 800 - febt^ 

For these values of C and f^/nfe^ we have from 
4 

= 13-92 Then d = 

Use = 14 in. Hence A = 

0.288 
_ bdpn _ 40 X 14 X 0.122 

m. 

n 
As a check, we 

1,000,000 
have from Diagram 8, j 

4.50 sq. in. 

15 
0.882. 

4-55 

Then A = 

sq. 
M 

f.jd 

in. 

18,000 X 0.882 X 14 
(6) Quite generally the depth of the beam is determined by other 
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considerations and is made greater than that calculated above. Where 
the depth is already known the problem is solved more quickly. Thus 
if the depth is to be 20 in., then tjd = 0.20; and from Diagram 5, 
the value of j is not far from 0.91. Hence T = 1,000,000/(20 X 0.91) 
= 55,000 and A = 55,000/18,000 = 3.06 sq. in. Then for a check, 
p = 3.06/(40 X 20) = 0.00383, pn = 0.057, Diagram 5 gives j = 
0.916; the correct steel area will be 3.04 sq. in. 

The best number and size of rods is a matter involving factors which 
are considered later. Where the depth has been determined in advance, 
as here assumed, it is necessary to check the concrete stress to make certain 
it is within safe limits. Here the ratio of stresses from Diagram 5 is seen 
to be approximately 2.3 X 15 = 35, hence fc = 510 Ibs/in.^ 

(4) Design a T-beam to sustain a bending moment of 600,000 in-lbs., 
all dimensions to be determined, fa = 18,000, fc = 700. Assume a ratio 
//d = 0.25. Then /«/n/c = 1.72; and from Diagram 5, = 0.104. 

From Diagram 6, C, = 0.093 and h (P 
600,000 

0.093 1200 
5400. A depth 

of 16 in. gives a width of 21.2 in.; a depth of 14 in. a width of 27.5 in. In 
the former case, t =0.25 X 16 = 4 in.; in the latter, / = 3.5 in. If the 
actual widths are made in whole inches as 22 or 28, then the steel area 
is best determined directly from the moments. In the first case, 
_600,000_ 

16 X 0.89 X 18,000 
= 2.34 sq. In the second case, A = 

-- = 2.80 sq. in. The actual values of p are —-- j- ■ = 
14 X 0.89 X 18,000 ^ ^ 16X 22 

2 80 
0.0067 ^-Q 0*00715, and pn = 0.100 and 0.107. The actual 

14 X 2o 
concrete stress will be slightly below the specified value. 

With the same thickness of stem, the total concrete section will be 
slightly less in the shallower beam but the steel area greater. 

(5) Solve example (3 b) by the approximate method explained in Art. 75, 
namely, by assuming a width of flange such as to give a balanced design 
and full working stresses in both concrete and steel. 

Solution. The value of f./nfc = 1.72 and t/d = 0.20. From Diagram 
5, pn = 0.085 and p = 0.00567. From Diagram 6, C, = 0.077, hence 

J ^2 = 1,000,000 ^ J ^ 1080/20* = 27 in. This being less 
0.077 1200 

fhan the actual width of 40 in., the concrete stress is much below the allow¬ 
able value. The steel area A — 0.00567 X 27 X 20 = 3.06 sq. in. 

The result is practically the same as obtained by taking the full flange 
width of 40 in. Actually the value oij will be slightly less for a width of 
27 in. and the required steel area slightly greater, but the difference is of no 
practical consequence. The advantage of this method is that the value 
of j depends only upon the ratio/./«/c and t/d and can readily be tabulated 

for any given set of working stresses. , . . 
(6) Consider a case in which the flange is inadequate and it is desired 

to talfP into account the compression area of the web by the method ex¬ 
plained in Art. 77. Assume a T-beam, such as a girder in a building, with 
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/ =» 4 in., J =** 40 in., V *= 12 in., 4 = 24 in., /, = 18,000, fc — 800. We 
have t/d = 0.167, = i-S- Determine the moment of resistance if 
fully reinforced, and the amount of the reinforcement. 

Solution. The beam is considered as made up of two parts, a rectangular 
beam 12 in. by 24 in., and a T-beam with flange 28 in. by 4 in. 

For the rectangular beam. Diagram 4 gives R = 140 and M == 140 X 
12 X 24® = 970,000 in-lbs. For the T-beam, from Diagrams 5 and 6, 
pn = 0.088 and C« = 0.083. Hence M = 0.083 X 1200 X 28 X 24^ = 
1,650,000 in-lbs. Total M = 970,000 + 1,650,000 == 2,620,000 in-lbs. For 

070 000 
the rectangular beam 7 = 0.87 and A = —r—-J- * ■ -—r-== 2.58 sq. in. 

^ ' 0.87 X 24 X 18,000 ^ ^ 

For the T-beam, / = 0.92 and A =-_- = 4 jq sq^ 
0.92 X 24 X 18,000 ^ 

If the web be neglected, C« = 0.083 as before, and M = 0.083 X 12,000 
X 40 X 24^ = 2,300,000 in-lbs., a value 12% less than the more precise one. 

The foregoing represents about the only case for which this exact calcula¬ 
tion would be used, namely, where the resisting moment as calculated 
in the usual way is inadequate and the inclusion of the web may give the 
desired moment. 

If in the above case the given moment is only 2,000,000 in-lbs. and it 
is desired to calculate the requisite steel, we can proceed in the same manner 
but the result will not be exact. As before, the retangular beam will carry 
M = 970,000 in-lbs. and A = 2.58 sq. in. The remaining moment = 
2,000,000 — 970,000 = 1,030,000 in-lbs. Then from Diagram 5 we estimate 

2.62 sq. in., p = 
,1 ^ 1,050,000 ^ , 2.62 

7 = 0.93 and hence ^ - = 2.62sq. m.,/> = -r—— = 

0.39%. The corrected value of 7 is 0.925, which does not change A appre¬ 
ciably. Total A - 2.53 -f- 2.62 = 5.15 sq. in. There is a slight error in 
this analysis, as the position of the neutral axis is not the same in the two 
parts of tJie beams. For the rectangular beam k = 0.40, and for the T-beam 
k — 0.32. Actually it will be between these two values, and 7 for the 
rectangular beam will be slightly greater than 0.87 and for the T-beam 
slightly less than 0.925. If the usual method of calculation is employed 
by neglecting the compression in the web, we have total A = 

-r:—4- = 5-02 sq. in., a slightly less amount than found above, 
0.92 X 24 X 18,000 n 7 o .7 

but sufficiently accurate; and, except for the case first mentioned, the use 
of the precise method is an unnecessary refinement. Where the flange is 
quite thin and the web heavy this condition can be adequately allowed 
for by reducing slightly the value of 7*. A value of 7 = 0.90 would give 
results accurate within 2 or 3% in all cases. 

BEAMS REINFORCED FOR COMPRESSION 

81. Use of Compressive Reinforcement.—Generally speaking, it 

is more economical to carry compressive stresses by concrete than by 
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steel, but, under certain circumstances, it is desirable to reinforce the 

compressive side of a beam so as to be able to use a smaller beam than 

would otherwise be required. The most common case is that of the 

girder continuous over supports and constructed integrally with a 

floor slab. Such a girder, with slab, acts as a T-beam in carrying the 

positive moments, as illustrated in the preceding section. At and 

near the support where the moment is negative, the lower side is in 

compression, and the beam acts as a rectangular beam. If the beam 

has been designed mainly with reference to the positive moments at 

the centre and the shearing-stresses to be carried, the problem at the 

support will be to use this same section and to reinforce it sufficiently 

to carry the negative bending moment present, which is generally 

equal to or greater than the positive moment. The necessary tension 

steel at the top can readily 

be provided but it will usu¬ 

ally be foimd that the lower 

or compression side of the 

beam will also need to be 

reinforced. 

82. Assumptions and No¬ 

tation.—The compression in 

the concrete is assumed to 

follow the linear law and the 

tension in it is neglected; 

the formulas then apply to working conditions only. In addition to 

the notation already adopted let 

= cross-sectional area of the compressive reinforcement; 

= steel ratio for the compressive reinforcement = A'/b d\ 

ft = unit stress in the compressive reinforcement; 

C' = whole stress in the compressive reinforcement; 

d/ = distance from the compressive face of the beam to the 

plane of the compressive reinforcement; 

z == distance from the compressive face to the resultant com¬ 

pression, C + C\ on the section of the beam. 

83. Neutral Axis and Arm of Resisting Couple.—From the stress 

diagram (Fig. 15) it appears that/,/»/« = (d — k d)/k d, or 

Fig. 15. 
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, 1 - 
/. = » —r-/- 

Similarly,///«/, — {kd — d')/kd, or 

k-d'/d, 
f. ---/,. 

(i) 

(2) 

For simple flexure, the whole tension T and whole compression C + C' 

are equal, hence 

f.A =y2f.bkd+f.'A'.(a) 

Inserting the values of f, and/,' from (i) and (2) in (a) gives an equa¬ 

tion which may be written thus: 

+ 2n{p + p')k = 2n{p p'd'/d), ... (3) 

and from this the neutral axis of a given section can be located. 

The arm of the resisting couple is the distance between T (see Fig. 

15) and the resultant of the compressions C and C. It follows from 

the principle of moments and the law of distribution of stress respec¬ 

tively that 

z = 
HkA-d' C'/dC , 

I -h C'/C 

2 p' n (k — d'/d) 
^2 

from which 2 can be computed for any given section, 

arm j d — d — z or 
y = (i - z/d) 

Finally the 

. . . (4) 

Diagrams 9, 10, and ii give values of k andy for various values of 

pn and p'n, and for d'/d of 0.05, o.io, and 0.15 respectively. The 

values of fa/n fc corresponding to the values of k are also given along 

the margin, these values being in accordance with eq. (i). This 

definite relation between k and the ratiofc should be noted; it is 

the same as for singly reinforced beams, as it depends only upon the 

fundamental assumptions of plane sections and proportionality of 

stress and strain. 

In the foregoing analysis the slight reduction in the compression 

area of the concrete caused by the presence of the steel has been 

neglected as is usually done in this problem. To take this into account 

the quantity or -4' in the equations and diagrams should be taken 
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equal to-tunes the actual quantity used since —th part of 
n n 

the steel is needed to make up for the concrete displaced. Conversely, 

in a design problem where p' or A' is determined this should be multi- 

n 
plied by-to get the correct amount to be used. 

n — 1 

84. Resisting Moment and Working Stresses.—In terms of the steel 

stress /„ the resisting moment is 

Ifa = faAjd =^fBpjbd^.(4a) 

And making use of the relation between/« and/c given by eq. (i), 

we get in terms of the concrete stress fc 

Me = fc-r-J .(46) 
k 

The unit stresses in terms of bending moment are 

M 

pj b 

k M 

pn{i — k)j bd'^ 

. . (5) 

It will be noted that in none of these equations (4) or (5), does the 

compression reinforcement p' appear. The influence of this factor is 

contained in the values of k andy. 

In Diagrams 9,10, and ii, the values of R 
pn{i - k)j 

k 
are also 

plotted for various values oi pn and p^ n. Then f, =- and 
Rhd"^ 

M = Rfcbd'^. These diagrams are useful in analyzing a given beam 

for safe moment or finding the stresses due to a given bending 

moment. The relation between /, and fc is given in the diagram 

for k. The value of /', need not be computed as it is always less 

than nfc. 

Example.—Assume a beam with b = 12 in., = 18 in., p = 1.5%, 
p' = 1.0%, d'Id = o.i, n = 15. With working stresses of 18,000 and 
700 Ibs/in.^ what is the safe bending moment? 
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Solution. Using p' = o.oi X 14/15 = 0.0093 we get, from Diagram 10, 
k = 0.418, fg/nfc = 1.40. The value of fa/nfc for the given stresses is 
18,000/10,500 = 1.72, hence it is evident that the allowable concrete stress 
of 700 lb/in.2 will determine the strength of the beam. The stress in the 
steel will be 700 X 1.40 X 15 = 14,700 Ib/in.^ The value of Me from 
the diagram is fcRbd^ = 700 X 0.275 X 12 X 18^ = 750,000 in-lbs. 

The safe moment can also be calculated directly from (4a), using 14,700 
for giving M = 14,700 X 0.015 X 0.875 X 12 X 18^ = 750,000 in-lbs. 

If the steel stress determines the safe moment then this moment is 
given directly by eq. (4a). 

85. Determination of Amount of Reinforcement for a Given Bending 

Moment.—This is the usual problem of design, as stated in Art. 8i, 

The size of beam has already been determined from other considera¬ 

tions, and it now remains to calculate the necessary tensile and com¬ 

pressive reinforcement for given working stresses f, and fc. Two 

general methods of doing this will be described. 

First Method.—Use Diagrams 9, 10, and ii. Assume an approxi¬ 

mate value of j of about 0.87. Calculate the required amount of 

M 
tensile steel by eq. (4 a), ^ =-. Then from the known relation 

f.jbd^ 

f,/nfc, and the calculated value of determine p' from the diagram 

for k values. The relation f,/n/„ fixes the neutral axis or value of k, 

and the value of p' to produce this result is obtained from the diagram. 

It is also given by solving eq, (3) for p', giving 

, ^ (l — — ^V2 M 

k - d'/d ■ . . (6) 

Having the value of p', the value ofy can be accurately determined 

and the calculations revised. 

Example.—Given M = 1,000,000 in-lbs., J = 12 in., d = 20 in., 
d'/d = o.i, « = 15,/, = 18,000,/. = 800; calculate p and p' or A and A'. 

I 000 000 
Solution. Assume j = 0.87. Then p = -r-^ —5 == 

0.0133, pn = 0.20. The ratio /,/w fc = 1.5. Then from Diagram 10 we get 
p' n - 0.13 and p' = 0.0087. The corrected value of j is about 0.877, 
giving p = 0.0132 and p' = 0.0085. A == 3.17 sq. in. ~ 2.04 sq. in. 
The corrected vdue of .A' to allow for reduced concrete area is 2.04 X 15/14 
— 2.10. 
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Second Method.—In this method the beam is considered as made 

up of two parts, an ordinary rectangular beam with the proper amount 

of tension steel Ai to make a balanced design, and a beam consisting 

of the compression steel and the remaining portion of the tension 

steel. (See Fig. 16.) The moment of resistance of the former is the 

same as that of an ordinary rectangular beam for the assigned working 

(a) (6) 
Fio. 16. 

stresses and cross-section; the moment of resistance of the latter is 

equal to the stress in the tensile steel ^2/. multiplied by {d — d'). 

Let Ml and M2 denote these two parts of the total moment of 

resistance. We then have, as in eq. (3) of Art. 51, 

Mi=f.Aijd or y2fcbkd-jd,.(7) 
also 

M2 = f,A2 {d — d') or fsA'{d — d'). ... (8) 

Eq. (7) is identical with eq. (3) for a rectangular beam singly reinforced 

(Art. 51). Also Ml — Rbd^ && in eq. (10), Art. 54. Hence for this 

portion of the design the same formulas and diagrams can be used as 

in Arts. 51 and 54. 

Having a beam of given size we therefore first determine Mi. 

Then M2 = M — Mi, and we proceed to calculate the supplementary 

tension steel A2 and the compression steel A’ to carry the moment 

M2. From eq. (8) 
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Then from Fig. (b), A'U = A2f. and 4 d — kd 

kd- d'^ 
whence 

A' = A2 
1 — k 

(10) 

To take account of the reduction of the concrete area by the com- 

W I 
pression steel area A\ substitute A^-for A' in (10), giving the 

n 
more exact expression 

A' = A2 
I — k 

k - d'/d 

Example.—Solve the preceding example by this method. As an ordi¬ 
nary rectangular beam Diagram 4 gives R = 1^0 and p = 0.009, hence 
Ml = 140 X 12 X 20^ = 672,000 in-lbs., and Ai = 0.009 X 240 = 2.16 
sq. in. The moment M2 — 1,000,000 — 672,000 = 328,000 in-lbs. Then 

At, = = i.oi sq. in. Total A = 2.16 + i.oi = 3.17 sq. in. 

From Diagram i, ^ = 0.40, hence from eq. (ii). A' = i.oi X 0.6/0.3 X 
15/14 = 2.16 sq. in. 

BENDING AND COMPRESSION 

86. General Conditions.—In the problems heretofore analyzed, 

simple bending only was involved, the resultant of external forces 

being perpendicular to the beam axis. In many cases the forces acting 

are such as to produce a direct compression as well as bending moment. 

Common cases are the arch ring, the columns and beams in buildings 

subjected to lateral forces, and beams in rigid frame bridges. In 

arches and in building columns the compression is large and the bend¬ 

ing relatively small, and the critical stress is the maximum stress in 

the concrete; compressive stresses exist over all or a large part of the 

section and the unit stress in the steel will be small. The reinforce¬ 

ment is likely to be symmetrical, and in the analysis of stresses the 

methods developed for symmetrical sections can be used. In beams 

of the other type mentioned the compression is relatively small and 

the bending moment large. The neutral axis will not be greatly 
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shifted by the compression, and the concrete and the tensile steel may 

be stressed to their permissible values. The reinforcement is likely to 

be unsymmetrical, and for these cases the method of Art. 96 is well 
adapted. 

Rectangular Sections 

87. Notation.—In the analysis of beams under combined stresses, 

especially arches, it is convenient to consider the external forces on 

one side of the section combined into a resultant R (Fig. 17) whose 

Fig. 17. 

direction and line of action are known. If O is the centroid of the 

section AB, the distance e from 0 to the point where the resultant R 

cuts the section is the eccentric distance. Resolving R in directions 

Fig. 18. 

normal and parallel to the section gives the component A, which is 

the direct stress or thrust, and F, which is the shear acting on the 

section. The bending moment, M, is equal to R a ox N e. In the case 
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of columns the direct compression N and usually the bending moment 

M are known. The eccentricity is then e = M/N. 

In addition to the notation already adopted, the following will be 

used (Figs, i8 and 19). For convenience, the face of the beam most 

highly stressed is called the ^‘compression face and the opposite face 

is called the “tension face it may be stressed either in tension or 

compression. 

R = resultant force acting on the section; 

iV' = component of R normal to section; 

e = eccentric distance ol R^ ejh = eccentricity; 

M = bending moment = Ne\ 

A' = area of steel near compressive face; 

/ = A^/bh\ 

A = area of steel near tension face; 

p = A/hh) 

d! = distance of compressive steel from face; 

u = distance from compressive face to centroid of transformed 

section; 

h = whole height of section; 

a = distance from steel to centre of section for symmetrical 

reinforcement; 

At = area of transformed section; 

Ic = moment of inertia of concrete about centroidal axis of 

transformed section; 

It = moment of inertia of steel about centroidal axis of trans¬ 

formed section; 

It = moment of inertia of transformed section; 

fc == maximum compressive fibre stress in concrete; 

fc = maximum tensile fibre stress in concrete; 

// = stress in steel near compressive face; 

ft = stress in steel near tension face. 

88. The Transformed Section.—In the analysis of this problem 

the use of the transformed section is in some cases very convenient. 

Where the stresses are wholly compressive or where the tensile stresses 

are so small as to be permissible such a section can be used for purposes 
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of stress analysis in the same manner as for a beam of homogeneous 

material. 

Thus, if Fig. 18 (a) represents an actual section, i8 (6) represents 

the transformed section, the areas of the upper and lower wings being 

respectively n times the areas of the upper and lower reinforcements. 

Referring to Fig. i8 it will readily be seen that 

A,^bh + n(A+A'), I,=L+nI..(i) 

h/2-\-npd-[-np'(i' , 

i+np + np'. 

Ie =“ {h — uY] and I, = A{d — uY A-A'{u —d'Y. (30) 

If the reinforcement is symmetrical, then u — hj 2 and 

le = 1/12 6 A® and l, = 2 A — d'Y.(3A) 

To be strictly correct, the compression steel should be multiplied 

n — I 

by-j and where there is compression across the entire section, 
n 

the equations given here can be corrected by using « — i in place of n. 

^Tiere one side is in tension and the tension in the concrete is neglected 

then the tension steel displaces no useful concrete and n is the proper 

quantity to use for the tension side. For simplicity in the analysis, 

especially where the same amount of steel is used on each side, the 

quantity n is used in all the formulas. The resulting error is of no 

importance. 

89. Cases to be Considered.—If the eccentric distance e is within 

certain limits, then the stress on the section is wholly compressive 

(Figs. 19 and 20), but if it exceeds this limit, there will be tensile stress 

on the section (Fig. 21). If it be assumed that the concrete takes no 

tension then the analysis for these two cases is quite different. 

Whether a given problem will fall under case (i) or (2) depends on 

the eccentricity, the relative amoimts of steel and concrete at the 

section, and on n. 

In practice the problem will usually be to find the maximum fibre 

stress fc for a given design and a given M. In the arch, for example, a 

design is selected by the use of empirical formulas or by comparison 

with previous designs, the moments and thrusts (JWand N), determined, 
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and from these the stresses in the concrete. In the column, with N 

and M known, the total fibre stress is determined and additional rein¬ 

forcement used if necessary. In this analysis, therefore, we are 

principally concerned with the development of formulas from which 

the fibre stress can be determined for a given beam and given values 

of M and N. 

go. Case I. The Fibre Stress is Wholly Compressive.—There are 

two methods of treatment. 

(a) The unit fibre stress in the concrete can be computed just as 

though the beam were homogeneous, but the transformed section 

must be used. The unit stresses in the steel will be n times those in 

the concrete in the planes of the reinforcements respectively. Thus, 

the unit direct stress in the concrete is N/At', the unit flexural stress 

in the concrete on the compression side is Mujlt, that in the concrete 

adjoining the reinforcement on the same side is M {u — and 

that in the concrete adjoining the other reinforcement is M (d — u) It. 

The combined unit stresses are: 

fc 
N , Mu 

X + TT' 
W nM{u-dri 

'”Z + —7.-■ 

^ _ N nM{d-u) 

""a, It 

(4) 

(5) 

(6) 
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These equations—and the stress diagram, Fig. 19—show that /, is 

always less than //, and // is always less than n fc.; hence the unit 

stresses in both steel reinforcements will always be safe if fc is a safe 

value. 

(b) The method employed for simple flexure, suitably modified, 

leads to formulas not involving the transformed section, as will now 

be explained. 

From the stress diagram (Fig. 20) it will be seen that 

// -d'/kh),.(7) 

f, = nf,{i - d/kh),.(8) 
and 

fc' =/«(i - i/k).(9) 

From the condition that the resultant fibre stress equals Ny 

y2(fc+f/)f>h+f/A^ +fsA ^ N;c . . . (10) 

and from the condition that the moment of the total fibre stress about 

the centroidal axis equals My 

From these equations it is possible to compute the unit fibre stresses 

/c/a, and/a' in a given case. 

The foregoing formulas are general and apply to unsymmetrical 

as well as to symmetrical sections. 

91. Symmetrical Reinforcement,—For symmetrical reinforcement 

the equations simplify greatly, giving, from (10) and (ii), 

I + 24 W ^ + 6 (l + 2 W /?) y 
s-W---h ^ 

12 {1 + 2 n p) - 
tl 

and by substituting values of A t and /< in (4) 

in which 

f 
^ bh 

C - + 
I + 2 n p k /a 

i + 24 np{- 

• (13) 

• (14) 
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The value of the eccentricity elh for which // is zero is found by plac¬ 

ing k = I in eq. (12). Solving for elh we get 

e/h = 1/6 • 
z 2n p (15) 

For values of efh less than this, there is compression on the entire 

section; for values greater there is some tension. 

92. Case II. There is Some Tension at the Section.—{a) If the ten¬ 

sion in the concrete is so small as to be permissible, and this tension is 

taken account of in the com¬ 

putations, then the unit fibre 

stresses in the concrete and 

steel, if reinforcement is present, 

may be computed by the method 

and formulas explained under 

Case 1.* The value of k will be 

less than unity, jc will be nega¬ 

tive or tension, and // may or 

Fig. 21. may not be negative. 

(J) Generally the tension in 

the concrete is wholly neglected, in which case a method of analysis 

similar to that used for simple bending is best used rather than one 

based upon the transformed section. 

In Fig. 21,0 denotes a horizontal axis at mid-depth of the beam, 

M the moment sum of all the external forces on one side of the section 

with respect to that axis, and TS!, as before, the algebraic sum of the 

components of those forces perpendicular to the section. From the 

stress diagram, it follows that 

.(.6) 
and 

. 

* It is assumed that the linear law of variations of the unit flexural stresses holds 
for the tension as well as compression. 
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Since the resultant fibre stress equals N, 

Vzfcbkh+f.'A' -f.A = N, 

and since the moment of the fibre stress about the horizontal axis 

through O equals M, 

y^f.bkh(i- - j') +f.A(d--^-M. 

From these four equations fey fay and // can be determined for a 

given section, reinforcement, M, and N, 

gz* Symmetrical Reinforcement.—In this case the equations sim¬ 

plify. The value of k is given by 

+ I2np^k = (>np(^ +. (i8) 

The greatest unit compressive fibre stress is 

in which 

/c = C 
M 

bh'^ 

C = 
12 k 

3 _ 2 ^3 _|_ 24 ^ « {a/hY 

(19) 

(20) 

The steel stresses are given by (16) and (17). 

94. Diagrams for Rectangular Sections with Symmetrical Rein¬ 

forcement.—Diagrams 12 to 22 have been prepared to solve problems 

pertaining to rectangular sections, symmetrically reinforced. To 

provide for various values of n, the quantity ^ m is used as an argu¬ 

ment instead of p. Four ratios of embedment d'/h have been assumed, 

namely, 0.05, o.io, 0.15, and 0.20. Diagram 12 gives the values of 

c/A from eq. (15), denoting the limit between Cases I and II. For 

values of efh less than shown by the curves the case is Case I, no ten¬ 

sion on the section; for values greater, the case is Case II, some tension 

on the section. Diagrams 13 to 16 give the values of C and Jc'/fc 
from eqs. (12) and (9) for Case I, and Diagrams 18 to 21 the values of 

C and k from eqs. (20) and (18) for Case II. Diagrams 17 and 22 

give the steel stresses from eqs. (7), (8), (16), and (17). These are 

not often needed. 
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To take account of the fact that the steel replaces an equal area 

of concrete, proper correction can be made for Case I, by using the 

value {n — i)p instead ol n pm reading the diagram. Case II cannot 

be corrected in this way, as the tension steel replaces no useful con¬ 

crete. In either case the error involved by using n p small (2% or 

3%) compared to other uncertainties in such problems. 

95. Examples.—(i) A reinforced-concrete beam of dimensions shown 
in Fig. 22 is subjected to a direct 
stress of 100,000 lbs. and a bending 
moment of 200,000 in-lbs. Find the 
stresses in concrete and steel, p = 
1%. d'/h ~ o.io. Takew = 15. 

Solution. Eccentric distance = 
e — 200,000/100,000 = 2 in. ejh — 
O.IO. From Diagram 12, we find for 
pn — 0.15 and d'/h ~ o.io, e/h = 

0.20, which is greater than the given 
value. Hence Case I governs. 

Then from Diagram 14, C = 1.15 and jc = 1.15 X = 572 
10 X 20 

lbs/in.2 Also = 0,34/c = 195 Ibs/in.^ From Diagram 17, // = 
15 X 575 X 0.93 = 8000 Ibs/in.^ and /« = 15/c X 0.4 = 3450 Ibs/in.^ 

If a more precise solution is desired, use 14 for w in place of 15, giving 
slighdy greater stresses, 

(2) Same beam as in (i) but direct stress = 50,000 lbs. and bending 
moment = 400,000 in/lbs. Here the value of e = 8 in. and ejh — 0.40. 
From Diagram 12, the case is seen to be Case II. Then from Diagram 19, 
for hje = 2.5, and np — 0.15, C = 6.10 and k = 0.67. Then 

' 
»20| L. 

N =100.000'^ 2-l"D bars T 
h‘ 

2-1'*° bars 
4-„ 

H 
1 r 1_ 

M-200.000 7?^ 

B ' H 
<i“2j 

Fig. 22. 

fc = 6.10 X 
400,000 
10 X 20* 

610 Ibs/in.^ 

/. = 15/c ~ Ibs./in.* 

(3) A common problem is to determine the amount of reinforcement 
required to provide for certain bending moments in a column after a pre¬ 
liminary design has been made based on direct stress alone. Suppose that 
a column has been designed according to the American Concrete Institute 
specifications for columns with lateral ties for a load of 175,000 lbs. using 
a 3000-lb. concrete. The column is 15 in. square and is reinforced by four 
i-in. square bars, embedded 3 in. n = 10, p — 2/225 == 0.0089. The 
allowable load for this columc is P = 675 X 225 (i -[- 9 X 0.0178) = 
176,000 lbs. 

Suppose now the bending moment is 350,000 in-lbs. Then ^ = 2 in., 
e/h = 2/15 = 0.133, and for use in the diagrams = (10 — i) X 0.0089 
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= o.o8, d!jh = 3/15 = 0.20. Case I governs. Then from Diagram 16, 
C = 1.54 and /c = 1.54 X 175,000/225 = 1200 Ibs/in.^ The specifica¬ 
tions allow for combined compression and bending 900 Ibs/in.^ Hence 
the reinforcement must be increased or a larger column used. The required 
reinforcement can be determined by writing 900 = C X 175,000/225, whence 
C — 1.16. Then from the diagram, n p = 0.26 and p = 0.26/9 = 0.029, 
and the total column reinforcement will be 2 X 0.029 = 0.058 = 5.8%. 
This is greater than the specifications allow (max. = 4%), hence a larger 
column will be required. It will be found that a column 16 in. square 
and with the prescribed stress of 900 Ibs/in.^ will require a total of 3.8% 
reinforcement, and a 17-in. column, 2.2%. For further discussion of the 
design of column, see Chap. VII. 

96. Unsymmetrical Reinforcement; Reinforcement on One or 
Both Sides.—{a) Reinforcement on Tension Side Only.—Referring to 

Fig. 23 (a) and (6) the direct compression or thrust is N. For con¬ 

venience we consider the moment about the tension steel instead of 

the central axis. This is Ifi = Nei. Area tension steel = A, 

p = A/bd. 

The following analysis of the relation between /c,/«, and Mi will 

be found useful: 

Ml = TV'S! = yjjtj bd^ .(i) 

N == Vifckhd-f.pbd.(2) 

From (i) and (2) we get 

^ ^ k - 2 pf,/f. 

Cl kj 
(3) 
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Substituting the general value of k 

we derive 

I 

I +/./«/c 
in (3) 

d 

ei 

L 
nfc 

r + I - 2pn^(^+ i\ 
e nfAnfc / 

3 

• . (4) 

Eq. (4) expresses the relation between d/ey, f,/n fc and p n. This 

relation is plotted in Diagram 23. Knowing djcx^ the curves for p n 

give directly the amount of steel corresponding to any particular 

value of fjnfc^ and conversely. 

From Eq. (i) 

^ _ Ml 2 

bd'^ kj ' • • • • • . . (s) 

or in terms of fjn fc 

f 
°bd^. 

... (6) 

in which 

^ 2 . 6 (/./«/. + 1)2 
. . . (7) 

3/«A^/c+2 

We can also write in terms, of /, 

in which 

n ’bd^ 
(8) 

• • (9) 

Values of Cc and C« are plotted in Diagram 23 for various values of 

/s/w/c. The use of this diagram will be explained in the examples 

following. For convenience of reference values of k and j are also 

plotted in terms of fjnfc. 

The problems to be considered are usually similar to the calcu¬ 

lation of the compressive reinforcement in a T-beam at points of 
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negative moment; the general dimensions of the beam have already 

been determined by other conditions and the problem is to calculate 

the amount of steel needed. 

Problem of Design. In all the problems excepting (6), the follow¬ 

ing data will be used. Limiting stress values fc = 800 Ibs/in.^; =* 

18,000Ibs/in.^; = 15; ft = 10 in.; = 20 in.; = 30 in.; d/ei = 0.67. 

It will be instructive first to find the value of N or Mi which wiU 

correspond to the assigned working stresses; that is, which makes a 

balanced design. The value of f^/nfc = 1.5, and from Diagram 23 

the corresponding value of Cc is 5.8, and Mi/bd^ = 800/5.8 = 138 

(the same as Rc for simple bending; Art. 54), and Mi = 138 X 4000 = 

552,000 in-lbs. N = Milei = 18,400 lbs. For smaller values of Mi 

the concrete will be understressed, and for higher values the steel will 

be understressed, or else some compressive steel must be used as 

explained later. Tension steel only will be here considered. 

Examples.—(i) Assume N = 15,000 lbs.; required, A and/c. Mi = 

15,000 X 30 = 450,000 in-lbs., and 
Mr 
bd^ 

112.5. From eq. (8), C, = 

18,000 
“ 10.67. From Diagram 23, referring to the curve for C„ we 

_X 

15 

IS X 112.5 

findfs/nfc = 1.73; and for d/ei = 0.67, pn = 0.047. Then A = —— 

= 0.63 sq. in.,/c = = 694lbs/in.2 
^ ^ 15 X 1.73 

(2) Assume A = 25,000 lbs.; required,^ and/^. Mi = 25,000 X 30 = 
750,000 in-lbs. Mi/bd’^ = 187.5. From eq. (6) Cc = 800/187.5 == 4-27, 

and the diagram gives fs/nfc = 0.7 and pn ~ 0.20; 
, 0.20 

A = - X 200 
IS 

2.67 sq. in.; /, = 0.7 X 15 X 800 = 8400 Ibs/in.^ 
A convenient check is to verify the relation N — C — T (Fig. 23(6)). 

In example (2), k = 0.59 and C = 800 X 34 X 10 X 0.59 X 20 = 47,200 
lbs, T = 2.67 X 8400 = 22,300 lbs. C T — 47,200 — 22,300 =» 
24,900 lbs. compared to 25,000 lbs. assumed. 

Problem of Review of Given Design.—This can be directly 

solved by the use of the diagram. 

(3) Assume a tension steel section of 1.2 sq.in.; calculate safe value of N. 

Value of ^ -- « 0.09, and Diagram 23 gives fjnfc = 1.13. 

The concrete will determine the limit. Cc * 5.1 and Mijbd^ * 800/5.1 « 
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157. Ml — 628,ocx5 in-lbs. N = 20,900 lbs. /, = 15 x 800 X 1.13 = 
13,560 Ibs/in.^ For values of pn that will give a value of fs/nfc greater than 
1.5, the steel will determine and C« should be used to calculate Mi, 

(b) Reinforcement on Both Sides. Problem of Design.—It will 

be assumed that compression reinforcement is to be used sufficient to 

enable the tension steel to be stressed at some designated safe value. 

In this case both/c and/^ are known and the neutral axis is determined 

at once. The necessary compression steel can best be determined by a 

process similar to that explained in Art. 85, second method. 

(4) Same as Example 2 but compression steel to be used. N = 25,000 

lbs. Ml = 750,000 in-lbs. f,/nfc = = i-S; k = 0.4,7 = 0.867; 

H = 8 == 17,33 in. 
With no compression steel, Mifhd'^ ~ 138, and Mi = 552,000 in-lbs. as 

calculated previously. For this moment the value of pn — 0.057 and steel 

area = = 0.057 

15 
X 200 = 0.76 sq. in. The moment yet to be provided 

for = 750,000 — 552,000 = 198,000 in-lbs., and N = 6600 lbs. This is to 
be resisted by the compression steel and additional tension steel, the arm 
being 18 in. Total stress in compression steel = 198,000/18 = 11,000 lbs. 
The unit stress will be 6/8 X 800 X 15 = 9000 Ibs/in.^ Hence A' - 
11,000/9000 X 15/14 = 1.22 X 15/14 == 1.30 sq. in. Taking moments 
about the compression steel we have 6600 X (30 — 18) = Ta X 18. 

Whence T2 = 4400 lbs. and = -7,-= 0.244 sq. in. Total A = 0.76 + 
10,000 

0.244 = 1.004 sq. in. As a check: C = 800 x X 8 X 10 = 32,000; 
C' = 9000 X 1.2 = 10,900; C +C' = 42,900. Ti + r2 = 18,000 X i.oo = 
18,000. C + C' — {TI + T2) = 24,900 lbs. = N. 

Problem of Review of Given Design.—The direct solution of 

this problem is cumbersome and requires the use of rather complicated 

diagrams. The simplest method is solution by trial, only two or three 

successive approximations being necessary. No diagrams are needed. 

In this method the process is: 

1. Determine by trial calculation the value of N for any selected 

value of/c (or/a) and get the corresponding value of /« (or/c). 

2. The stresses under the actual value of A, or the safe value of A, 

can then be determined by proportion, since with a fixed value of ei, 

all stresses are proportional to A. 

The process can best be explained by the solution of problems. 

For notation refer to Fig. 23a. 
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(5) Same dimensions as in previous examples. Let .4 = 1.5 sq. in. 
A' = i.o sq. in. Find safe value of N, Assume fc = 800 Ibs/in.^, and for 
first trial take /« = 18,000 Ibs/in.^ 

Then from Diagram 23, k = 0.4; kd = 8.0 in.,j = 0.867; = ^7-33 
// = 9000 Ibs/in.^ 

C = 800 X 3^ X 10 X 8 = 32,000 lbs., C' = 9000 lbs.; moment of 
compressive stresses about tension steel = 32,000 X 17.33 “h 9000 X 18 = 
716,000 in-lbs. and N == 716,000/30 == 23,900 lbs. Hence T = 32,000 + 

N = C+C-T 

9000 — 23,900 == 17,100 lbs,, giving a unit stress of 17,100/1.5 == 11,400 
Ibs/in.^, compared to 18,000 Ibs/in.^ assumed. The correct value of fs 
will be between 18,000 and 11,400. 

Try fs = 14,000 Ibs/in.^ Then Js/nfc = == 1.17; k = 0.462. 
15 X oOO 

7.24 
kd = 9.24; j = 0.846, jd = 16.92; /«' = —— X 12,000 = 9400 Ibs/in.^ 

9" 24 
C = 800 X X 10 X 9.24 = 37,000 lbs.; C' = 9400 lbs.. Mi = 37,000 X 
16.92 + 9400 X 18 = 795,000 in-lbs. N = 795,000/30 = 26,500 lbs. T = 
37,000 -f 9400 — 26,500 = 19,900 lbs. fs = 19,900/1.5 = 13,300 Ibs/in.^ 

A third trial with /« = 13,500 results in a calculated value of 13,500 
Ibs/in.*, and N - 26,800 lbs., which is the safe value required. 

If the amount of tension steel had been only 0.7 sq. in., the same process 
leads to a value of/*, corresponding to fc = 800, of 21,800 Ibs/in.^, ^d a 
value of A = 21,800 lbs. Safe value of iV = 21,800 X 18,000/21,800 = 
18,000 lbs., and/c = 800 X 18/21.8 = 660 Ibs/in.^ 

(6) Suppose the beam to be an arch ring with 6 = 12 in.; total depth 
A = 22 in. ^ = 1.0 sq. in. = 1.5 sq. in. Thrust = A = 50,000 lbs., and 
eccentricity with respect to central axis = ii in.; depth of embedment = 2 in. 
for each side. Then for this calculation d = 20 in.; ei = ii -j- 9 = 20 in. 

As the eccentricity is only ii in., the neutral axis will be relatively low 
and fs will be low. 

Assume fc = 800, = 9000. Then /,/«/c = 0.75, k = 0.571, j = 0.81, 
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kd = 11.42 m.^jd = 16.28 in.,// = 12,000 X —= 9900 Ib/in.^ 
11.42 

C = 400 X 12 X 11.42 = 55,000 lbs. 
C = 9900 X 1.5 = 14,850 ‘‘ 

Total Compression = 69,850 lbs. 
Moment of C == 55,000 X 16.2 == 891,000 in.-lbs. 

C' = 14,850 X 18 = 267,000 

Total Moment = 1,158,000 in.-lbs. 
N = 1,158,000/20 = 57,900 lbs. 
T = 69,850 - 57,900 = 11,950 ibs. 

/, = 11,950 Ibs/in. 2 

A second trial with/, = 10,500 Ibs/in.^ results in a calculated value of 
10,500 lbs/in.2 as assumed, and N = 55,300 lbs. The actual stresses will then 
be/c = 800 X 50/55-3 = 723 lbs/in.2 and/« = 10,500 X 5o/55-3 = 95oolbs/in.2 

Circular Sections 

97. General Conditions.—Where spirally reinforced columns are 

used the section considered is a circular section with reinforcing bars 

spaced uniformly around the periphery of the spiral or circular rein¬ 

forcement. The concrete outside the spiral is not considered in cal¬ 

culating stresses. 

The analysis of bending stresses in a circular section can be carried 

out in the same manner as for rectangular sections, but on account of 

the fact that the amount of steel in compression or tension for Case 

II depends upon the location of the neutral axis the resulting equations 

for this case become rather complex and cannot be solved directly for 

the unknown. However, a value of k can be assumed, and the values 

of the coefficients determined for various values ol n p\ then another 

value of k, etc. The results can then be plotted, giving diagrams 

similar to those for rectangular sections. In the analysis the steel 

reinforcement is considered as a thin shell of uniform thickness and of 

a diameter equal to that of the column. The embedment ratio d'/A 

is therefore zero in all cases. 

Additional Notation: 

r ~ radius of section, assumed to be equal to the distance of 

reinforcing steel from centre; 

p a= ratio of total steel to total cross-section. 

98. Case I. Compression Over Entire Section.—Fig. 24. The 
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transformed section is used. Neglecting, as before, the reduction of 
concrete area by the steel, we have 

At = icr^ {i n p) 

T . 
It =-(i + 2 np). 

4 

From the general equation (4) we have 

The concrete stress on the opposite side is 

4 1 
■'* ttr^yi+np i-\-2np\ 

Then 

/.' = »/.; /. = «//. 

For the limiting case, = o, and from (29) we have 

e/f = yi 
1 + 2 n p 

i ft p 

(29) 

(30) 

(31) 

99. Case n. There is Some Tension on the Section.—The fimda- 
mental equations will be given but their detailed derivations will be 
omitted. Fig. 25 gives sufficient information to indicate the method 
of integration. 
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Total normal stress on the section due to both concrete and steel 
is N = Nc + N,. By integrating over the area above the neutral 
axis, we have 

Nc ~(2 ^ ~ — 6l) + k— 1) sin di\ + sin® (32) 

in which = cos-^ (2 — i). We may then write 

Nc=fc^r^Ki.(33) 

in which Ki is a function of k. 

Also 
N, = npT r^fc (i — H*).(34) 

Hence total normal stress 

iV = /„ nr® + np (1 - • • (35) 

The total moment of resistance is 

M = Ne = Me+ M,.. (36) 

From Fig. 25 we get by integration 

Me^^ferr^Ks,.(37) 
in which 

K2 = -\ [}yi{ir — Ol) + 1/16 cos 20i sin 2$l + H(2k — i) sin® (38) 
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Also 

M, = /^npT . • • • (39) 

and finally 

M = Ne (k2 + ^ . . • • • (40) 

or 
M I ^ M 

• • • (41) = 3 X ^ ^ 3* • TT f np TT 
K2 H-7 

The tensile steel stress is as usual 

/. -«/, 0 -1) (42) 

We also get, from eqs. (35) and (40), the reciprocal of the eccentric 

ratio 

r/e 
Ki ft p 

(■ 

4 k 

(43) 

In the process of calculation, we can assume a value of k and calculate 

the corresponding values of Ki and K2. Then for various values of 

n p calculate the values of r/e from (43) and fc from (41). Assume 

another value of k and repeat the process, building up a table from 

which a diagram can be plotted. 

100. Diagrams for Circular Sections*—Diagram 12 gives limiting 

values of e/r for the two cases; Diagram 24 values of the coefficient 

iV 
C in/c = C-, eq. (28), also the ratio of j/ to jc\ and Diagram 25 

TT 

M 
the coefficient C mfo — C —eq. (41), and the values of k. The use 

TT 

of these diagrams is precisely the same as those for rectangular sections. 
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TESTS ON BENDING STRENGTH OF BEAMS 

loi. Methods of Failure of a Reiuforced-concrete Beam.—A rein- 
forced-concrete beam tested to destruction will usually fail in one of 
three ways: 

(a) By the yielding of the steel at or near the section of maxi¬ 
mum bending moment. 

(b) By the, crushing of the concrete at the same place. 
(c) By a diagonal tension failure of the concrete at a place 

where the shear is large. 

Methods (a) and (b) may be called “moment” failures. Method (c) 
is sometimes called a shear failure, but this term is somewhat mislead¬ 
ing, as the concrete in such cases does not fail by shearing, but by 
diagonal tension. 

(a) As a beam is progressively loaded and the steel has reached its 
yield point, any further load will rapidly increase the deformation. 
The effect of this is to open up large cracks in the tension side and to 
raise the neutral axis. This causes a rapid increase in the compressive 
stress in the concrete and ultimate failure soon occurs by the concrete 
crushing. Such yielding may also result in final failure by diagonal 
tension if large shear exists near the place of maximum moment. In 
either case the primary cause of failure is the yielding of the steel and 
such failure may properly be called a tension failure. Very rarely can 
the steel be actually broken in a test. The additional load carried 
after the yield point is reached depends on the excess strength of the 
concrete, position of loads and other causes, but it is usually not large 
and cannot be safely considered. The yield point of the steel may 
therefore be considered its ultimate strength for reinforcing purposes. 

(b) If the beam is relatively long and the amount of steel is suffi¬ 
cient so that the crushing strength of the concrete is reached before 
the yield point of the steel, a failure by crushing may result. In this 
case tension cracks may appear, but will not become large. 

(c) Diagonal tension failures are likely to occur whenever large 
shearing-stresses exist together with considerable horizontal or moment 
stresses, and when no special provision is made for such conditions. 
This kind of failure is fully discussed in Chap. IV. 
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Fig. 26 illustrates roughly the appearance of a beam failing in the 
different ways. 

Final failure often results from stresses which are developed after 
initial failure has occurred, and while the cause of final failure is im¬ 
portant from the standpoint of ultimate strength, yet of more im¬ 
portance in design is the initial failure and its cause. Other conditions 
besides those already mentioned may influence final failure so as often 
to mislead the observer as to the cause of the initial failiure. 

102. Minor Causes of Failure.—Slipping of the bars may cause 
failure, but under usual conditions it will not occur; and as it can 
readily and economically be obviated by proper construction, it need 
not be considered as limiting the strength of the beam. Failure by 
the shearing of the concrete near the support is possible where the 
load is very close thereto, but as the shearing strength of concrete is 
about one-half the crushing strength, such failures are exceedingly 
rmlikely and need rarely be considered. The usual so-called “shear” 
failures are in reality diagonal-tension failures. 

103. Action of Beams tmder Progressive Loading.—^^Tien a rein- 
forced-concrete beam is tested to failure the relation of stress and 
deflection to applied load changes greatly during the progress of the 
test, for two reasons: (i) the gradual cracking of the concrete on the 
tension side, and (2) the change in the law of stress variation on the 
compression side. A clear understanding of the general effect of 
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these changes is necessary to a correct interpretation of laboratory 

experiments and in the calculations of factors of safety and deflections. 

104. Position of Neutral Axis.—For low loads under which the 

concrete has not begun to crack, the beam acts as a homogeneous con¬ 

crete beam with the steel replaced by concrete at the same level and 

of a section {n — i) times the steel section (the transformed section). 

The neutral axis (for rectangular sections) will then be somewhat below 

the centre, and the concrete stress can be calculated by the usual 

beam formula fc = Me/It. As the load increases and the concrete 

begins to crack, the neutral axis gradually rises and at loads near the 

ultimate the tensile resistance is of such small influence that the neutral 

axis will be given very closely 

by the formulas of Art. 65 for 

parabolic variation of stress. 

Fig. 27 represents the situa¬ 

tion in detail. A beam is 

assumed with n - (initial 

modulus of concrete = 

3,30o,cxx)) and p = 0.54%. 

The position of the neutral 

axis at the beginning of the 

test is indicated by the line 

a b and at the end by c d, calculated by eq. (i), Art. 65. If the con¬ 

crete had no tensile strength, the neutral axis at the beginning would 

be at e as calculated by eq. (i), Art. 50, and the change in position 

under progressive loading would follow a curve, e d. What actually 

happens is that the neutral axis changes according to some curve 

connecting a and d. The curve shown as a full line represents the 

actual results of a test by Bach with a concrete and steel correspond¬ 

ing to the values assumed above.* For larger values of p and of n 

the shifting of the neutral axis will be less as the final position is lower. 

It is also less in T-beams, as the tension area is of less relative mag¬ 

nitude. These results show that the actual stress in the steel at 

working loads is considerably less than assumed, but at ultimate loads 

the analysis is substantially correct. 

0.0 

0.1 

0.2 
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0.4 
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Fig. 27.—Position of Neutral Axis. 

* Mit. Uber Forsch. a. d. Gebiet des Ing., 1907, 45-47. 
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Fig. 28. 
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105. Deflection and Deformation.—^Numerous tests of beams have 

been made in which extensometers have been used to measure distor¬ 

tions so that the deformation of the steel and of the extreme fibre of 

the concrete could be calculated. Results of such measurements of 

deformations and also of centre deflections are shown in Figs. 28 and 

29 for two typical beams. In Fig. 28 the proportions were such that 

the failure occurred by diagonal tension; neither the steel nor the 

concrete was stressed to the limit of failure. During the first stage 

of the test, up to a load of about 2500 lbs., the deformations in both 

steel and concrete are proportional to the loads. Up to this point the 

tension deformation has not been great enough to begin to rupture the 

concrete, but with increasing loads and deformations the concrete 

begins to fail, as shown by the appearance of minute cracks shown by 

faint “water marks” and indicated on the diagram by the letters W M. 

The deformation at the first “water mark” in this case was about 

0.00018, corresponding to a stress of 360 Ibs/in.^, assuming a modulus 

of elasticity of 2,000,000. The first visible crack appeared at the 

point marked C. 

In Fig. 29 the amount of steel was small and a tension failure 

occurred. This is indicated by the great deformations at the end of 

the test. The curves in the early stages of the test are very similar, 

in general form, to those in Fig. 28. In the case of the beam of Fig. 

28, the steel stress as determined by its deformation at a load of 3000 

lbs. was less than one-third of the value which would be obtained by 

calculations based on the usual formula, neglecting tension in the 

concrete. The deflection was approximately one-third on the same 

basis. The error in calculated values becomes less the greater the 

load. 

106. Relation of Ultimate Strength to Yield-point of Steel.— 

Numerous tests confirm the statement in Art. loi, that the strength 

of a beam with respect to the steel is closely measured by the yield- 

point strength of the steel. 

Fig. 30 represents some results of tests made by the U. S. Bureau 

of Standards, which are typical of tests of this class. The beams were 

8 by 10 in. in cross-section and 12 ft. long between supports. The 

concrete was in one case made of a granite aggregate and in the other 

case of limestone. The yield-point stress of the steel averaged about 
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41,000 lbs/in.2 Failure occurred in all cases by over-stressing of the 

steel. The line drawn on the diagram is the theoretical strength cal¬ 

culated by eq. (3), Art. 51, using n = 10 and/, = 41,060. The values 

of the initial moduli were about 3,800,000 and 4,400,000, respectively, 

Instead of using « = 10, somewhat greater accuracy could be had by 

using » = 8 and the parabolic variation of compressive stress. Calcu¬ 

lated values would be slightly less than those indicated by the line. 

These results indicate that so far as tension failures are concerned the 

Fig. 30.—Tests of Beams giving Steel-tension Failures. 

beam will develop the full yield-point strength of the steel, and also 

that failure will take place at loads but little greater than those corre¬ 

sponding to this yield-point stress. Numerous other tests show 

similar results. 

107. Relation of Ultimate Strength to Strength of Concrete.—^An 

important question relating to proper working stresses is whether the 

ultimate compressive strength of concrete in a beam is the same as 

determined by a direct compression test. The results of various tests 

indicate that when cured under the same conditions the compressive 

strength as determined by standard cylinder tests is a good measure 
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of the strength of the concrete in the beam when the latter is calcu¬ 

lated on the assumption of parabolic variation of stress. A carefully 

made series of tests with respect to this question is that by Slater and 

Lyse.* A series of 36 beams was tested, arranged in 12 groups of 3 

beams each with 12 varieties of depths and qualities of concrete. For 

each group 3 compression cylinders 6 by 12 in. were tested. All speci¬ 

mens were cured in a moist chamber at 70° F. and tested at 28 days. 

Sufficient reinforcement was used to cause compression failures except 

in two cases where the failures were by diagonal tension. These 

values were omitted from the averages. The load was applied at two 

points 21 in. each side of the centre. AU beams were 8 in. wide by 

II ft. long and supported 9 in. from each end. Table No. i gives 

average results of the three tests in each case, with the exception 

noted above. The calculated stresses in columns 6 and 8 are based 

upon the parabolic law. 

TABLE i 

TESTS OF BEAMS GIVING COMPRESSION FAILURES 

(Slater and Lyse) 

Group 

No. 
Depth, 

In. 

Steel 
Ratio, 

P 

Cylinder 
Strength, 
Lbs/in.* 

Value of 
n from 

Cylinder 
Test 

Calculated 

Stress in 
Beam Using 
n from Cyl¬ 
inder Test, 

Lbs/in.* 

Ratio 
Beam 

to 
Cylinder 

n From J. C. 

Specifications 

Stress in 
Beam, 

Lbs/in.2 
Ratios 

I 2 3 4 5 6 Hi S 9 

I 10.2 .021 1390 II. I 2340 2190 1.58 

2 10-3 .028 2790 8.6 3130 2960 1.06 

3 10.3 •037 4070 7 9 4250 1.04 4120 1.01 

4 10.1 .047 4800 71 5050 I.os 4770 •99 

5 10.2 .056 5740 6.4 5680 •99 5280 .92 

6 14.2 .030 2590 8.1 3670 1.42 3360 1-30 

6A 14.1 .039 4130 7.8 4140 ’ 1.00 4110 1.00 

7 12.2 .028 2950 6-7 3550 1.20 3250 1.10 

8 8.0 .031 2760 8.1 3460 I 25 3190 1.16 

9 5-9 .032 2900 9.2 3570 3380 1,17 

10 41 •030 2820 8.5 3080 2890 1.03 

loA 41 .040 3810 7.8 4120 3980 I OS 

•Journal, American Concrete Institute, Jan. 1930, p. 831. 
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The modulus of elasticity was determined from the cylinder tests 

and was taken as the tangent modulus at 500 Ibs/in.^, which would be 

slightly smaller than the initial modulus. 

Inspection of column 7 of the table shows, with two exceptions, a 

very close agreement between beam strength and cylinder strength. 

The large ratio for the weak concrete, Group No. i, appears to be 

characteristic of low-strength concretes. Beams of low-strength con¬ 

crete gave gradual failures, whereas beams of the higher strength 

broke suddenly. If the beam strength is calculated on the basis of 

the straight-line law, the ratios would be increased from about 40% to 

60% above those given in the table. 

As an indication of the difference in results obtained by using 

values of n varying somewhat from the actual values, the results 

obtained by using values of n in accordance with the rules of the 

Joint Committee are given in the last two columns. In general, these 

calculated values of stress are somewhat lower and hence agree more 

nearly with the cylinder test values. 

The tests here quoted and others that have been made indicate 

quite conclusively that the full compressive strength can be realized 

in beams. 



CHAPTER IV 

SHEAR AND BOND STRESS 

THEORY AND GENERAL RELATIONS 

io8. General Relations.—In Art. 44 it was shown that the direc¬ 

tion and intensity of the maximum tensile stress at any point in the 

body of a beam are dependent upon both the shearing and the bending 

stress existing at the point in question, and that where the bond 

stress is small the shearing-stress is the chief factor. The general 

formula for maximum tensile stress is here repeated. It is 

^ .(i) 

and its direction is given by the equation 

tan 20 — 2 v/f,.(2) 

in which / = horizontal fibre stress (due to bending) at the point, 

V — vertical or horizontal shearing-stress, t — maximum tensile stress 

and 6 = inclination of the maximum tension to the horizontal. At 

the neutral plane, for example, the maximum tensile stress is at an 

inclination of 45° and is equal in intensity to the shearing-stress at that 

point. Near the end of a simple beam where the bending moment is 

small, the value of / in eq. (i) is small and the tensile stress t is nearly 

equal to v at all points in a section. 

In order, therefore, to be able to investigate fully the inclined tensile 

stresses in a beam and to provide proper reinforcement at all points, it is 

necessary to consider the distribution of the shearing-stresses through¬ 

out the depth of the beam. 

The stress existing between reiiiforcing steel and concrete tending 

to cause slip, or the bond stress, is also dependent upon the shear; it 

is similar to the action between the flange and the web of a girder 

caused by the horizontal shear. The bond stress is, therefore, con¬ 

veniently discussed in connection with shear. 

92 
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109. Shearing-Stresses in Reixiforced Beams.—In Art. 44 the 

variation in shearing-stress in a homogeneous beam was discussed and 

the general formula given for the intensity of shear at any point (see 

eq. (2)). In a reinforced beam the variation in shear differs from that 

in a homogeneous beam, owing to the concentration of tensile stress in 

the steel. 

no. Rectangular Beams.—In Fig. i (a), is represented a short 

portion AB of beam length d I, with all shearing and bending stresses 

(d) 

Fig. I. 

indicated. The tension in the concrete is neglected. The total ver¬ 

tical shear on each end is V, the increment of load applied between 

A and B being neglected. Considering any horizontal section, r-s, 

below the neutral axis. Fig. (d), the total horizontal shear F* on this 

section is equal to T' — T, and the intensity of the horizontal shearing- 

stress will be 
F* r -T . . 

" bdl bdl.. 

The increment of tensile stress, T' — T, may conveniently be replaced 

by a fxmction of F, from the moment equation, Fig. (a), {T' — T)jd 

<= Fd/, whence T - T = 
jd 

Substituting in (3), we have the 

more convenient expression for intensity of shear, 
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Eq. (4) gives the intensity of the horizontal shearing-stress on any 

plane between the neutral axis and the steel. It is to be noted, also, 

from the general principles given in Art. 44, that the vertical shearing- 

stress per unit area at any point is equal to the horizontal. Above the 

neutral axis the shear decreases according to the parabolic law as in a 

homogeneous rectangular beam. Fig. (c) represents the law of varia¬ 

tion for the case under discussion. 

Using for an approximate value of j (see Art. 50), we have 

appromimately 
8V_ 

Tbd' 
(5) 

that is, the shearing-stress at the neutral axis (equal to the maximum) 

is about one-seventh or 14% more than the average value obtained by 

dividing the total vertical shear by the sectional area. 

III. T-beams.—Applying the same method of analysis as in the 

previous article, it is obvious that the shearing-stress on any section 

Fig. 2. 

r~s (Fig. 2), in the stem below the neutral axis is also given by eq. (4), 

substituting b' for 6. The value of j d is the lever arm of the stress 

couple C-r. Hence, for T-beams, 

V 

b'jd (6) 

The shearing-stresses in a T-beam below the flange are therefore prac¬ 

tically the same as in a rectangular beam having the same depth and 

the same width as the stem of the T. The slab aids in reducing the 

shear only by its effect in increasing slightly the value of7. 
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112. Beams Reinforced for Compression.—In beams reinforced for 

compression, eq. (4) will still apply, the value of 7 d being the distance 

between the tensile steel and the resultant of the compressive stresses 

as shown in Art. 83. 

113. Bond Stress.—The stress on the bond between steel and con¬ 

crete (Fig. I, Art. no) will be equal toT' — T on the length d L 

If U denotes the bond stress per lineal inch, we then have 

whence we derive 

U = 

r - T 
di 

V 
.(i) 

The bond stress per unit area will be equal to U divided by the sum 

of the perimeters of the steel sections. Or, \i 0 — perimeter of one 

bar, = sum of perimeters, and u = bond stress per unit area, we 

have 

The bond stress, therefore, varies directly with the total shear V and 

inversely with the perimeters of the rods. 

114, Bond Stress for Compressive Reinforcement.—The question of 

bond stress for compressive reinforcement will seldom come into con¬ 

sideration. If required it can be calculated most readily by comparing 

it with the bond stress in the tensile steel. Whatever may be the 

amounts and positions of the compressive and tensile steels, the total 

stresses in the two sets of bars will be proportional to their areas and 

distances from the neutral axis. Using the notation in Art. 82 we have, 

^ , C A' {kd- d') 
therefore, — = —;-—. 

T A {d-kd) 
This being true at any section, it 

follows that the increment of stress per lineal inch in the reinforce¬ 

ment (the bond stress) will also be proportional to the same quantities. 

Hence, if C/' =» bond stress per lineal inch along the compressive rein¬ 

forcement, we have 

U' A'{kd-d') 
J7 “ A {d-kd)^ (3) 
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hence, from (i), 

SHEAR AND BOND STRESS 

r;/ = Z. V 
jd’^ A {i-k) ’ 

(4) 

Since the compressive steel will generally be nearer the neutral 

axis than the tensile steel it follows that if the compression bars are no 

larger in diameter than the tension bars, the bond stress in the former 

will be no greater than in the latter. 

115. Diagonal Tension and Shear.—It has been shown in Art. 44 

(Fig. 4) that the direction of the maximum tensile stress at any point 

in the interior of a homogeneous beam is, in general, not horizontal 

but is inclined at some angle to the horizontal. The direction and 

intensity of this tensile stress are functions of the horizontal fibre stress 

and of the shearing-stress at the point in question. At the bottom fibre 

the maximum tension is horizontal; at the neutral axis it is at 45° 

Fig. 3. 

inch'nation, and equal in value to the shearing-stress. At sections of 

zero shear it is horizontal at all points. 

In the reinforced beam the same relation exists between shear, direct 

stress and inclined tension at any given point as given by eq. (5), Art. 

44, as this equation is perfectly general in scope. In the reinforced 

beam, however, the direct stress, /, does not vary in the same manner 

as in the homogeneous beam on account of the concentration of the 

tension in the steel; so that, as a result, the direction of maximum ten¬ 

sion at various depths is somewhat different from that shown in Fig. 4. 

In this case large shearing-stresses exist immediately above the steel, 

hence the maximum tensile stresses become considerably inclined 

just above the steel, the exact direction depending upon the relation 

between the shear and the horizontal tension. 

It will be of assistance in gaining a knowledge of this question to 

consider in some detail the development of stresses in a reinforced- 

concrete beam as it is progressively loaded, and in particular the ten¬ 

dency for the concrete to crack and the direction of such cracks. Con- 
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sider a uniformly loaded beam, Fig. 3, and assume the load to be pro¬ 

gressively applied. Assume, further, that the reinforcement is uniform 

throughout, consisting of horizontal bars only. Fig. 4 shows the form 

of moment and shear curves at all times, the actual values depending, 

of course, upon the load. As the load increases, the tensile stress in 

the steel rods will increase, and when this stress has reached a certain 

value (about 4000-6000 Ibs/in.^), the concrete will begin to crack. 

This will occur first at or near the centre. As the load increases, 

these first cracks will gradually extend towards the neutral axis and 

cracking will begin at points D, E, etc., farther and farther from the 

Fig. 4. 

centre as the stresses in steel and concrete increase. At and near the 

centre where the shear is zero, or very small, the cracks will be vertical, 

as the direction of maximum tension is horizontal. As we pass towards 

the support the shearing-stresses become larger, so that the direction 

of maximum tension just above the rods becomes more and more 

inclined to the horizontal, and the cracks will not be vertical but will 

take an inclined direction, the inclination being greater as the end is 

approached. At point E the crack will be more inclined than at D, 

as the relative shearing-stress will be greater; near the support where 

the moment stresses are nearly zero, the theoretical direction of maxi¬ 

mum tension will be about 45 ° at all depths. The form of the cracks is 

generally somewhat curved, as shown, correspionding roughly to the 
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(a) 

change in direction of maximum tension. The general direction of 

cracks under progressive loading is well shown in Fig. i6, Art. 138. 

116. Failure from Diagonal Tension.—Consider a beam with hori¬ 

zontal reinforcement only. Under ordinary working loads the rein¬ 

forcement at the centre is calculated for a unit stress of about 18,000 

lbs/in.2 It must happen, therefore, that under such loads the con¬ 

crete is actually cracked in the vicinity of maximum moment. As 

shown in the preceding article, these cracks will be vertical, or nearly 

so, and hence at right angles to the reinforcement. So long as this 

condition exists no danger is involved, as the opening of the cracks is 

strictly limited by the deformation of the steel. Where the cracks 

are inclined, however, the reinforcement is not at right angles to the 

cracks and a different action is involved. Suppose, for example, that 

near the end of the beam. 

Fig. 5, a crack a b starts at 

about 45° inclination. As 

the load is increased it 

tends to open up as shown 

in Fig. (Jb). The movement 

of the point c with refer¬ 

ence to d is at 45° inclination, that is to say, the point c tends to move 

downward as well as towards the left with respect to d. The horizon¬ 

tal rod is effective reinforcement against excessive horizontal move¬ 

ment, but it offers very little resistance against vertical motion. A 

very small opening of the inclined crack thus brings a heavy vertical 

load on the bars at c, which is transferred across the crack by the bars 

and causes heavy tensile stress along the line de. A horizontal crack 

then starts at d and the concrete very quickly strips or tears off along 

the line d e and the beam fails. Or the crack may extend further 

upwards, always at right angles to the maximum tensile stress, until 

the concrete crushes at the top or fails by shear. 

It is thus seen that horizontal rods only are not adequate reinforce¬ 

ment against diagonal tension, and innumerable tests show that these 

diagonal tension cracks will develop and lead to failure regardless of 

the horizontal reinforcement, although the amount of the latter affects 

to some extent the maximum load carried. 

117. The Shear as a Measure of Diagonal Tension.—Before a 

Fig. 
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beam begins to crack, the diagonal tensile stress at the neutral axis is a 

maximum at 45° inclination, and is equal in intensity to the shearing 

stress V = V/bj d. Below the neutral axis it will be greater than v on 

account of the effect of the direct stress /, and above it will be less. 

For practical purposes of design it has been found satisfactory to con¬ 

sider the diagonal tension as being a maximum along a 45"" line, and 

having an average value oi d = V/bj d. Tests have shown that diag¬ 

onal tension cracks in the central part of the beam will begin to form 

when the diagonal tension thus calculated is approximately equal to 

the tensile strength of the concrete, and if the beam is not reinforced for 

these stresses it will fail. 

118. Methods of Reinforcement against Diagonal Tension.— 

There are in use many methods of placing steel in a beam so as to rein¬ 

force it against diagonal tension failure. Theoretically, the most 

effective way to reinforce against tension failure in any direction is to 

place reinforcement across the probable lines of rupture, or in the 

direction of the maximum tensile stresses. From these considerations 

the ideal web reinforcement «,{ 
.gj 

would be a system of rods ar- 

ranged somewhat as shown in | 

Fig. 6 attached at their lower 

ends to the horizontal rods, or 

consisting of numerous horizon¬ 

tal rods bent up as indicated, j 

The figure also indicates roughly Fig. 6. 

the manner in which the inclina¬ 

tion of diagonal cracks near the bottom tends to vary from nearly verti¬ 

cal at the centre to a large inclination at the end. The exact conditions 

depend upon the nature of the loading, concentrated loads tending to 

extend the region of large shear to greater distances from the support. 

It is, however, not practicable nor necessary to have the inclination of 

the reinforcing rods exactly the same as the lines of maximum tension, 

and various arrangements will serve to accomplish the purpose. 

The most commonly used methods of arranging shear reinforce¬ 

ment are: (i) bent-up bars, (2) vertical secondary members called 

stirrups, and (3) inclined secondary members. Fig. 7 illustrates these 

various arrangements. 
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Fig. 7.—General Methods of Arranging Beam Rdnforcemcnt. 
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Fig. (c) illustrates a method adapted to relatively small shearing- 

stresses. A part of the horizontal rods are bent up at a small angle. 

For heavier stresses several rods may be bent up as in Fig. (/). Fig. (d) 

shows the use of the vertical stirrup. This device has long been suc¬ 

cessfully used and its design has been well standardized. Figs, (e) 

and {g) show a combination of bent rods and stirrups which is a very 

effective arrangement. Fig. (h) shows inclined stirrups or secondary 

members connected to the horizontal bars. 

In all cases the reinforcement needs to be sufficiently bonded or 

anchored at its upper end to develop its full strength in the upper part 

of the beam. At the bottom, or on the tension side of the beam, it will 

have its maximum stress; it must be thoroughly anchored at this 

point, which is generally accomplished by looping the stirrup around 

the horizontal bars. 

119. Action of Diagonal Tension Reinforcement.—To aid in under¬ 

standing the action of web reinforcement placed in various ways, con¬ 

sider the deformations which occur in the 

body of a beam under increasing loads, and 

in a region of large shearing stress. In 

Fig. 8, c d is a vertical bar or stirrup and 

feis Si diagonal one. Under low loads and 

before any cracking has occurred there will 

be a tensile stress and deformation along 

the line, / e, and a compressive stress and 

deformation along the line a 6, these stresses being approximately 

equal to the vertical shearing-stress v = V/bj d. In a vertical direc¬ 

tion c d there will be no compression or tension and no distortion (ex¬ 

cept in the vicinity of load concentrations). Hence a bar c d will not 

be stressed, and a bar fe will receive a stress proportional to the stress 

in the concrete and the value of n, or approximately n v per square 

inch. At a stress of perhaps 200 Ibs/in.^ the concrete will begin to 

crack along a diagonal line such as a 6, and the stress inf e will be 

perhaps 15 X 200 « 3000 Ibs/in.^, a small value. From this point on, 

as the crack widens there will be a vertical or downward component 

to the movement due to the separation of the concrete along the line 

a by and the bar c d will come into action but its stress will be con¬ 

siderably less than that in the diagonal bar / e. 
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It may therefore be concluded from theoretical grounds that initial 

diagonal cracking is not delayed by vertical reinforcement and that 

such reinforcement receives no appreciable stress until cracking begins; 

that diagonal reinforcement is stressed with the concrete and hence 

acts to delay somewhat the formation of cracks, but as the unit stress 

in the steel when cracking begins is small as compared to its working 

stress, such aid is of little importance; that after cracking begins both 

vertical and diagonal bars will be stressed, but the former less than the 

latter where both are present. 

Tests fully confirm these conclusions. They show also that either 

vertical or diagonal bars are effective reinforcement against diagonal 

tension failures when properly placed and proportioned. When both 

types are present the diagonal bars wiU be stressed higher than the 

vertical ones but the stresses become quickly equalized when the yield 

point is reached in the former. 

120. Calculations of Stresses in Diagonal Tension Reinforcement. 

—It has been shown by tests that beams without diagonal tension rein¬ 

forcement show an ultimate strength in diagonal tension, as measured 

by the shearing-stress, generally of from 6 to io% of the crushing 

strength of the concrete, depending somewhat on the proportions of 

the beam. A safe working value is about 2% of the compressive 

strength. Where a higher stress must be carried, some form of rein¬ 

forcement is required, and a method of estimating the stresses in such 

reinforcement must be applied. As already described, the usual rein¬ 

forcement consists of: (i) vertical stirrups, (2) inclined stirrups, and 

(3) bent-up bars. Owing to the complex nature of the forces acting, it 

is not possible to calculate the stresses in such reinforcement with any 

high degree of accuracy, but a good estimate of the requirements can 

be determined on rational grounds, checked by the results of tests. 

121. Relative Proportion of Diagonal Tension Carried by Concrete and 

Steel.—In calculating the stresses in the reinforcement an important 

question arises as to the mutual action of concrete and steel, and 

whether the concrete can still be counted upon to carry a portion of 

the stress when stressed beyond the safe value for unreinforced beams, 

or whether the steel must be proportioned to carry the entire load. 

Many tests to failure, with strain gage measurements, show conclu¬ 

sively that the concrete does continue to carry a part of the load up to 
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rupture. The amount thus carried by the concrete is variously esti¬ 

mated, appearing to be a fairly constant amount for low loads but 

increasing at high loads, approximately in proportion to the load or 

stress in the reinforcing steel. A formula deduced from tests and 

expressing this relation approximately is (see Art. 139) 

V = 0.00$ fv + rfv.(i) 

where = total shearing-stress per square inch, = Vjbjd; fv = stress 

in steel; and r = steel ratio (ratio of volume of steel to volume of 

concrete) for the diagonal tension reinforcement at the section in ques¬ 

tion. The term 0,005 fv niay be considered to represent the part carried 

by the concrete, and r/^, that by the steel, as calculated in the usual 

way. This empirical formula applies to either vertical or inclined 

reinforcement at 45°, and for concrete of 2100-5400 lbs./in.^ compres¬ 

sive strength. By this formula the amount carried by the concrete 

for a fixed working stress fv is a fixed amount = 0.005/1,. With 

fv = 16,000 lbs/in.2 it becomes 80 Ibs/in.^ The Joint Committee of 

1924 specifies an amount equal to 2% of the compressive strength of the 

concrete, which is the allowed value for beams without diagonal ten¬ 

sion reinforcement and without special anchorage to the horizontal 

bars. The American Concrete Institute, 1928, increased this to 3% 

where special anchorage is used. 

122. Stress in Reinforcement.—Fig. 9 shows three arrangements of 

reinforcement: vertical, inclined at 45°, and inclined at any angle B. 

The shearing-stress is z; = Vjhj d, and this is taken to be the diagonal 

tensile stress along the line a c. The concrete takes a certain part of 

this, as may be assumed, the reinforcement the remainder. Let 1/ rep¬ 

resent the part taken by the steel. 

(a) Vertical Stirrups.—Fig. 9 (a). The vertical stirrups, spaced 

a distance 5 apart, are assumed to carry the vertical component Of the 

diagonal tension z;' along the line a c, and the horizontal bars the hori¬ 

zontal component. The diagonal tension over the distance centre to 

b s 
centre of stirrups on line a c is- (width of beam = b) and its 

cos 45° 

vertical component = v' b s. Hence if P = stress on each stirrup then 

P “ & 5.{2^ 
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(b) Inclined Stirrups at 45°.—Fig. 9 (J). The distance along ac^ 

centre to centre of stirrups, is s cos 45°, and the diagonal tension on this 

area is ft 5 cos 45 Its vertical component is z;' ft ^ cos^ 45 = ft 5, 
which is the vertical component of P. Hence 

Mz;^ ft 5 

cos 45° 
0.7 v' ft 5, (3) 

{c) Inclined Bars or Stirrups at Angle 6 with the Horizontal,—Fig. 

9 {c). The distance I along the diagonal ac is / == 

5 sin B 

m 

cos (45° - B) 

s sin B 
and m == 5 sin Hence I — . „ . — , ... 

cos (45 — B) cos 45 (cos B + sin B) 

The vertical component of stress on length I is zj'ft/cos 45° = 

/ 1 ^ sin B rrsi ••11 •I ri 
If--—^ yjjjg jg oiso the vertical component of the stress P, 

cos ^ + sm ^ ^ 

or P sin ft. Hence 
b s 

(4) 
cos + sin 

Eq. (4) is general and reduces to fa) and (3) for $ = 90° and 45 
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respectively. For angles between 45“ and 90° the simpler formula 

P = v' J 5 sin is commonly used and is sufl&ciently exact. 

123. Steel Ratio for Diagonal Tension Reinforcement.—Assuming 
the stirrups extending the full depth of the beam, the total amount 

P h s 
of steel for a length 5 of beam, in case (a) is>jd = —— X d, and the 

fv fv 

ratio r of volume of steel to volume of beam = - ^ ^ /b d$ = j. 
Jv / fv 

In case (b) the length of each bar = 1.41 d, and the volume of steel 

•1 i. ^ j j v' b s d . 
in length 5 = y X 1.41 d = 0.7 —— X 1.41 d = —7—, the same as 

Jv Jv fv 

for vertical stirrups, and r = —. For case (c) the length of bar is 
Jv* 

d , , 1 * , b s , 
—, and the steel ratio becomes r = 7--;-:—- X 7— / b ds 

sin 6 fv (cos 6 + smd) sin 6/ 
v' 

== —77-TT”":—77* For angles less than 45° this is larger than 
fv sin 6 (cos d + Sind) ^ 

the values for the other cases. The minimum value of r is for 9 = 

v' 
67^^°, giving r = 0.825 This value of 9 is the theoretical angle for 

Jv 
maximum efficiency of the steel reinforcement for equal spacing of 

bars. This is of little practical importance, as the reinforcement con¬ 

sists generally of vertical stirrups or bent rods or both. But the 

foregoing analysis is an indication that very flat angles should not be 

used for heavy stresses. The 

steel ratio r — - gives v' = r /., 
/. V 

which shows more clearly the 

meaning of eq. (i), /. = 0.005 T-^.- 

/» + r/p. The part r /»is seen 

here to be the portion v' carried 

by the steel. Fio. 10. 
124. Diagonal Compression. 

—It will clarify the problem and be of interest to consider what hap¬ 

pens to the web stresses carried by the steel. The web of a beam may 

be considered analogous to a lattice truss, the steel carrying tension 

(\(v( 
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and the concrete compression. Assuming cracks at 45®, the compres¬ 

sive stress in the concrete will have to be carried from top to bottom 

along a 45® line. With vertical bars, Fig. 10, each carrying a stress 

P and spaced a distance s apart, the vertical component of the com¬ 

pressive stress in each diagonal block of concrete will be P, and the 

P 
stress itself is-. The cross-section is 65 cos 45°. Hence the 

cos 45® 

2P 

bs' 
Then from (2) P = unit compressive stress =- 

b s cos^ 45 

b s. Hence the unit compressive stress in the concrete = 2 v\ or 

twice the diagonal tension 

For inclined rods at 45®, Fig. ii, the stress in each concrete block 

will equal the tension in a bar = P, and the stress itself =-. 
cos 45® 

From (3) P = 0.7 7;' b 5, hence in this case the compressive stress in 

, v'b s , 
the concrete = - = v, or 

bs 
one-half its value for vertical 

stirrups. This shows that di¬ 

agonal reinforcement results 

in less stress and strain than 

vertical reinforcement; it is 

another way of showing that 

diagonal reinforcement is more in harmony with the nature of the dis¬ 

tortions of a solid beam. With the limiting values of v' allowed in prac¬ 

tice the diagonal compression is generally of no practical importance, 

though it may be in special cases. 

125. Limiting Value of Shearing or Diagonal Tensile Stresses.— 

With well-designed and carefully placed reinforcement it is pos¬ 

sible to develop a total shearing-strength (diagonal tension) of about 

30 to 35% of the compressive strength of the material. To 

accomplish this in practice with certainty, considering the nature 

of the details involved (closely spaced rods, careful anchorage, etc.) 

requires an amount of inspecton and skill of workmanship quite 

beyond the ordinary, and is impracticable. It is also unnecessary, 

as the proportions of beams determined from bending moment 
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and other considerations are usually such as to bring the shearing- 
stresses to values much below those above mentioned. To promote 
safe construction in this respect the maximum allowable values of 
shearing-stresses are specified. The 1916 Joint Committee specified a 
maximum shearing-stress of 5% of the compressive strength. Im¬ 
provements in practice in web reinforcement led the Joint Committee 
of 1924 to allow a maximum of 12%. This high value is not generally 
followed. The American Concrete Institute specifications, 1928, 
permit 12% only under very special suspervision, otherwise 9%. All 
these values are based on well-designed reinforcement. 

126. Spacing and Other Details.—In arranging the details of 
diagonal tension reinforcement of large beams, it is generally conve¬ 
nient to select a certain size of stirrup and then calculate the necessary 

Fig. 12. 

spacing at various points along the beam. Frequently, the maximum 
allowable spacing of bent bars must also be determined. Both of these 
problems are simple, and require merely the use of eqs. (2), (3), or (4), 
solved for s. 

To be reasonably effective the reinforcement should be so spaced 
that at least one rod will intersect any 45° line of rupture below the 
centre of the beam. As shown by the sketch. Fig. 12, this requires a 
spacing of vertical reinforcement not greater than d/2, and for diagonal 
rods, a horizontal spacing not greater than d. Considerable gain in 
strength is obtained by rods spaced somewhat further apart, but tests 
show little value from vertical rods spaced a distance apart equal to d. 

45 d 
The Joint Committee recommends a spacing nqt exceeding s = —. 

This gives, for d = 90°, s = 0.45 d; and for 6 = 4$°, s = 0.82 d. 
For shearing-stresses exceeding 6% of the compressive strength the 
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xnaximuin spacing is made two-thirds of the above values. The Amer¬ 

ican Concrete Institute specifies, for a shearing-stress not exceeding 6% 

of the compressive strength, a spacing measured at right angles to the 

direction of the stirrup of ^ d, and for greater shearing-stresses, of 

% d. For 6 == 45® this gives a horizontal spacing of i.o6 d and 0.53 

d respectively. 

The bond strength of the reinforcement must be carefully guarded, 

especially in the case of large bent-up bars. This strength should be 

provided in the upper portion of the beam above the neutral axis, 

(within 0.3 d of the compression face is required by the Joint Com¬ 

mittee). Plain and bent-up bars often lack sufficient bond strength to 

render them fully effective, in which case the ends of the bars should be 

bent into hooks. 

127. Calculation of Spacing or Vertical Stirrups along a Beam.— 

For any given size of stirrup the spacing at any point is given by the 

formula s = P/v'b, where is the shearing-stress to be carried by the 

reinforcement at the point in question. The spacing will vary from 

point to point, but in practice it is convenient to use but a few differ¬ 

ent values. No great accuracy is required or has any justification, as 

the calculations are at best only approximate. 

The most common problem of stirrup spacing is for a beam sup¬ 

porting a uniform dead load and a uniform live load. In this case it is 

customary, and sufficiently exact, to assume the shear to vary uni¬ 

formly from end to centre, the centre shear being equal to one-fourth 

the end live load shear. The conditions are illustrated in Fig. 13. 

Ordinates to the line d f represent the shearing-stress intensity along 

the beam. The concrete is assumed to carry a portion of the shear 

represented by the ordinates to the line g A, and the remainder of the 

shear, from gh to dh^ must be carried by the steel. The area gdh, 

multiplied by the width of beam b, will be the total shear in pounds car¬ 

ried by all the web steel. 

The spacing of vertical stirrups at any point will be ^ = P/y ft, 

where P = strength of stirrup. The total number required will be 

area d g h X b 

P 
If a considerable number are required, the proper 

spacing may be calculated at several points, a curve sketched in as 

shown in the figure, and convenient values laid off as indicated. Or a 
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general table may be made up for determining the relative spacing for 

any triangular shear area as follows: 

The problem is to divide up the shear triangle dgh, Fig. 13 (c), into 

a given number of equal areas and then place the stirrups approxi¬ 

mately at the centres of gravity of the several strips, adjusting the 

actual spaces to convenient dimensions. Take the length gh as 100 

units, and assume 10 stirrups required. The value of xi is determined 



no SHEAR AND BOND STRESS 

from the proportion-= i/io, whence= loov^ =31.8; like- 
lOO^ 

X2^ /_ 
wise-- = 2/10 and X2 = 100 v 0.2; etc. The several values of x for 

lOO^ 

the 10 divisions are given below; then by subtraction we get the widths 

of the several strips for equal areas, beginning at the right end. These 

values may be taken as the stirrup spacing required. 

No. of Strip. ... I 2 3 4 5 6 7 8 9 10 

X. 31-8 

31.8 

00 
0

 

54-8 

10.0 
63-4 

! 8.6 
70.7 

7-3 

77 5 
6.8 

83.8 

6.3 

89.6 

5-8 

95° 

S4 

100 

5 0 Width of Strip. . 

For any other number less than 10, the widths may be determined by 

proportion, using the proper value of x for the basis. Thus if 7 stirrups 

are required over a length of 60 in., then the widths will be found by 

multiplying the first 7 values above given by the ratio 60/83 • To 

provide for a larger number of stirrups a table for 20 divisions can be 

made up and used in the same manner. 

Example.—Suppose shearing-stresses at end and centre are respec¬ 
tively 160 and 30 lbs/in.2, and that the concrete is good for 75 Ibs/in.* 
Half span length = 180 in.; b — 12 in. The length g h in Fig. 13 (a), in 

Jjt _ 
180 

which the shear is greater than 75, is found by the proportion 

whence g h = iiS in. Total shear over this length = 
160 — 30 

^ ^ X 12 = 60,000 lbs. Use J^-in. square bars. Area of 

double bar = sq. in. Allowable stress = 3^ X 16,000 = 8000 lbs. 
Number required = 60/8 = 8. 

For 8 stirrups X9 = 89.6. Hence the required widths are obtained by 
multiplying the first 8 values of the table by 118/89.6. They are as follows: 

42, 17, 13, 11.4, 9.6, 9.0, 8.3, 7.6. Total 117.9 in. 

These values are then rounded off, using a maximum spacing in accordance 
with specifications. 

TESTS ON BOND STRENGTH 

128. Nature of Bond Resistance.—^When slipping takes place be¬ 

tween a plain, smooth bar and the surrounding concrete under a 
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gradually increasing force, the progressive action appears to be as fol¬ 

lows: Until the load reaches a value sufficient to produce a bond stress 

of 200 to 300 lbs/in.2 (depending upon conditions) there is no measure- 

able movement; the adhesion between cement and steel appears to 

hold the two materials firmly together. As the load increases, slipping 

begins, bringing into action the frictional resistance. This resistance 

increases as the slip increases and reaches a maximum for a slip of 

about o.oi in. After this point the resistance gradually falls off. The 

resistance to slip depends upon the smoothness of the rods, and the 

character and age of concrete. In the case of bars having corrugations 

or ribs, the initial action is about the same as for plain bars, but the 

resistance continues to increase with increase of slip until failure occurs 

by the splitting of the concrete or the shearing through of the rods at a 

relatively high value. 

129. Methods of Testing.—Tests of bond are generally made by 

embedding the rod in a block of concrete and pulling it therefrom, the 

rod being stressed in tension and the concrete in compression. Tests 

have also been made by pushing the rods through the block. Neither 

of these methods of testing is entirely satisfactory for use in beam 

analysis, as they do not altogether simulate the action in a beam where 

both the rod and the concrete are in tension. Various experimenters 

have, accordingly, made efforts to determine the bond strength by 

tests on beams. 

130. Results of Tests in Direct Tension.—Table 2 contains in 

condensed form the results of some of the most important tests made 

by direct tension. 

The variation of bond resistance during a test is illustrated in 

Fig. 14, the solid line being the average load-slip curve for the third 

group of tests of Table 2. It is seen that the maximum resistance 

occurs at a slip of about 0,01 in., after which the resistance gradually 

falls off. Generally the slip begins at a load of from 60 to 80% of the 

maximum. After a slip of o.io in. occurs, the frictional resistance is 

still about two-thirds of the maximum resistance. In these tests the 

slip was measured at the free end. 

In general, the stronger the concrete the greater the bond strength, 

whether the difference is due to age or richness of mixture, the bond 

strength being approximately proportional to the strength of the con- 
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TABLE 2 

BOND TESTS BY DIRECT TENSION, PLAIN BARS 

All Concrete 1:2:4; 60-90 Days Old 

Stkel Bars Bond Resistance 

Depth 

Embedded. Authority 

Kind 
Size, Inches At End At End 

Inches Slip of Slip of Maximum 

o.ooos in. 0.001 in. 

(i) Round i 
6 400 
8 1 310 

(2) Round 1 Pi to ipi 
\i to iM 

25 diam. 
40 diam. 

410 

390 . 

Vi 8 323 339 381 
8 266 29s 40s 

(3) Round Va, 8 275 303 387 
I 8 247 281 38s 
iM 8 269 296 397 

(3) Flat 1 

X
 X

 

6 
4 

359 

239 

395 
263 

459 
293 

I C 149 

137 

152 
160 (3) 

Polished ^ 
Round 

0 

5 146 

% 6 170 192 255 

(1) Withey; Btdl., Univ. of Wis., No. 175, 1907. 

(2) Van Ornum; Eng. News, Vol. LIX, 1908, p. 142. 

(3) Abrams; Bull. No. 71. Univ. of III. Eng. Exp. Sta., I9I3- 

Crete. The results of Abrams’ tests show a value for the maximum 

bond resistance of about one-fourth the compressive strength of 6-in. 

cubes, and the resistance at a slip of 0.0005 about one-sixth of this 

compressive strength. Tests indicate little difference due to size of 

rod. The bond strength of flat bars is considerably less than round 

bars, and that of polished or smooth bars very much less than ordinary 

bars. Rusted bars show considerably higher bond resistance than 

bars with the ordinary mill scale, such as usually tested. 

131. Bond Strength of Deformed Bars.—The initial action of 
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deformed bars is very similar to that of plain bars. When the adhesion 

is broken a small slip takes place imder increasing load at about the 

same rate at first as for plain bars. After reaching a movement of 

about o.oi in., however, the resistance continues to increase as the 

projections begin to bear hard against the concrete. If splitting of the 

concrete does not take place, the resistance continues to rise to a high 

value, but conditions are not usually such as to make available this 

higher value of the bond resistance. Either the concrete splits or the 

slip is so great as to cause failure of the beam in other ways. 

Important tests on deformed bars are reported in the bulletin of 

Abrams already referred to. Fig. 14 shows typical curves of load- 

slip relations of a corrugated roxmd bar as compared to plain round. 

It is to be noted that the action is practically the same up to a slip of 

O.OI in., beyond which the resistance of the deformed bar continues to 

increase, but at a decreasing rate. 

132. Results of Bond Tests on Beams.—In a series of tests by 

Mr. Withey * at the University of Wisconsin, test beams were arranged 

* Engineering Record, 1908, LVII, p. 798. 
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TABLE 3 

BOND TESTS ON BEAMS 

University of Wisconsin, 1907 

Concrete i : 2:4; Age 60 Days 

No. of Tests 
Diam. of Rod, 

Inches 
Bond Strength, 

Lbs/in.2 
Average of 
Group (A), 

Lbs/in.2 

Average 
Bond Strength 

by Direct 
Tension (B) 

Lbs/in.2 

Ratio B : A 

38 345 ' 

39 H i 298 j 278 394 1.42 

40 190 J 

41 361 1 
42 H i 312 286 455 1-54 

43 186 

7 1 362 

8 264 

9 K ■ 201 272 467 I-75 
36 254 

37 278 

44 207 

45 M ■ 289 264 502 1.90 

46 295 . 

47 136 

48 I 174 163 487 2.99 

49 180 

as shown in Fig. 15. The stresses in the exposed rods were determined 

by means of extensometers. The conditions were similar in many 

respects to those obtaining in an ordinary beam, but the beam was 

Fig. 15. 

prevented from failing by the upper auxiliary rods. Table 3 gives the 

principal results of these tests. The table also contains results of com¬ 

parative tests made at the same time by the usual direct tension 
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method. The last column gives the ratio of the two results. The 

rods were of ordinary mild steel and were free from rust. The beams 

were $ by 5 in. in section and 5 ft. 6 in. long. 

These tests indicate that the bond was not affected by size of rod 

except in the case of the i-in. size. This difference is undoubtedly due 

to other factors not explained. Excepting the tests on this size the 

results are quite uniform, the average of all being 275 Ib/in.^, with 

maximum variations of 32% below and 32% above the average. The 

results obtained by direct tension are much higher, averaging about 

475 lbs./in.2, or 75% greater. 

It has been observed in beam tests that the maximum resistance is 

reached for a very small end slip, about 0.001 in., whereas in the tension 

tests the corresponding slip is about o.oi in. This appears to be due 

to the progressive slipping action in the beam from centre or load points 

towards end, so that the average slip was a considerable amount when 

the end slip began. Some slip of bar necessarily occurs even under 

safe loads on account of the necessary stretch of bar to which the 

concrete adjusts itself by slight cracks at intervals, accompanied by 

more or less slipping. A very small end slip, therefore, indicates that 

the maximum bond resistance has been nearly reached. 

133. Bond Stress in Beams with Bent Rods.—Table 4 gives 

results of tests by Bach on beams showing the effect of bending up 

some of the rods for shear reinforcement. The results with straight 

rods in the rectangular beams are about the same as previously given. 

In the T-beams with straight rods only they are rather low. The im¬ 

portant results are those where four of the rods are bent leaving only 

one straight. Calculating the bond stress at the end of the beam by the 

usual formula, and taking into account only the one rod at the bottom 

of the beam, gives the values shown in the table, the average being 

493 lb/in.2 This is about 2)^ times the value for straight rods and 

stirrups. The same general result is shown in Table 8, Art. 137, 

where with some of the rods bent, a bond strength calculated for the 

straight rods, of over 600 Ibs/in.^ was obtained. Inasmuch as the 

actual bond strength in these cases must have been practically the 

same as in other tests, these results show that where some of the bars 

are bent up so as to reinforce the web of the beam the bond stress on 

the remaining straight bars near the end of the beam is much less 
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TABLE 4 

BOND TESTS ON BEAMS WITH BENT BARS 

(Bach) 

Concrete 1:4; Age 6 Months; Beams Loaded at Quarter Points 

Calculated 

No. Kind of Beam Reinforcement Bond Stress at 
beginning of Slip, 

Lbs/in. 2 

2 312 

3 Rectangular Straight rods only 
300 

4 Beams 
271 

S 281 

161 1 
j 

Straight rods and 
stirrups 330* 

162 Straight rods only 15S 

163 1 Straight rods and 1 182 

164 j stirrups J 208 

16s ' T-Beams 
I straight, 4 bent 408 

166 I straight, 4 bent, 498 
with stirrups 

167 I straight, 4 bent, 545 
with stirrups 

168 I straight, 4 bent 522 

Average for 
Group, Lbs/in.* 

291 

330 

158 

195 

493 

* Average of three. 

than the theoretical values obtained by the usual formula. Where 

such an arrangement of rods is used it is evident that the allowable 

bond stress on the straight rods may be very considerably increased. 

The Joint Committee permits bent-up bars to be included in the 

calculations that are within a distance of d from the horizontal rein¬ 

forcing. 

134. Hooked and Anchored Ends.—It is a common practice, 

where increased bond resistance is required beyond that readily secured 

by increasing the straight length of the bar, to bend the ends of the 

rods into short hooks. Tests show that initial slip is not delayed by 

bending the bar, but that the ultimate strength is much increased. 

Circular bends of full i8o° are the most effective form, and should be of 

a diameter not less than 4 bar diameters, preferably 6 or 8 diameters. 
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Tests by Mylrae, using round bars, with bends of 180° of 

various diameters, embedded in blocks 9 in. square, gave the following 

relations between slip and bond stress: 

TABLE 5 

TESTS ON HOOKS 

(Mylrae *) 

Diam. of 
Hook in 
Bar Di¬ 
ameters 

Strength of 
Concrete, 
Lbs/in.2 

Bond Stress 
at Slip of 
O.OI in., 
Lbs/in.2 

Bond Stress 
at Slip of 
o.i in., 
Lbs/in.2 

Bond Stress 
at Failure, 
Lbs/in.2 

Slip at 
Failure, 

In. 

3d 1970 280 710 928 0.157 

6d 1970 190 705 0.098 
6d 2700 1 470 670 692 0.139 
8d 2130 1 260 760 804 0. no 
8d 4CXX3 460 740 i 809 0.196 

12 d 1620 320 
i 

540 0.143 

♦ Proc. Am. Concr. Inst. 1928, p. 240. 

The length of embedment was the full bend of i8o° plus in. of 

straight bar at the end of the hook and 3 in. at the other. Ultimate 

failure occurred by splitting of the concrete, the steel stress being from 

51,000 to 64,000 lbs/in.2 The yield point was about 70,000 Ibs/in.* 

In other tests where the concrete was prevented from splitting by the 

use of small spiral reinforcement around the hooks, the yield-point 

strength of the steel was developed in a 2200-lb. concrete for bends of 

6- and 8-bar diameters. In these tests the slip as recorded was meas¬ 

ured at the point of maximum stress instead of at the free end, as in 

some of the other tests. This accounts for the relatively low values 

of bond stress at a slip of o.oi in. 

From these tests it appears that the behavior of hooked bars is quite 

similar to that of deformed bars; the initial slip occurs for about the 

same stress as for straight bars but the resistance continues to increase 

with the slip. 

The chief value of hooks is to secure greater bond strength in a 

limited space and to increase the margin of safety against ultimate 

failure. They are of special value in web reinforcement and at the 
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ends of simply supported beams where they provide added bond 

strength at a point of maximum bond stress. 

The Joint Committee allows the same value for bond stress around 

a circular hook as for the same length of straight rods. A diameter not 

less than 4 is required. 

The use of bolted anchor plates is convenient in special cases where 

the full strength must be developed in a very short distance. Such 

anchorage acts like other types; it does not delay formation of first 

cracks but increases ultimate strength. 

TESTS RELATING TO DIAGONAL TENSILE STRENGTH OF BEAMS 

135. Importance of Tests.—A large number of laboratory tests 

have been made to determine the strength of beams in diagonal tension 

having various arrangements of web reinforcement. In the early 

period of development of reinforced concrete the problem was to deter¬ 

mine the necessary amount of web reinforcement that would be suf¬ 

ficient to cause tension or moment failures in beams of usual propor¬ 

tions, so that a large proportion of the tests do not show the actual 

strength of the web reinforcement. Inadequate bond strength also, 

in many cases, led to failures in diagonal tension where the web rein¬ 

forcement would otherwise have been adequate. The important fea¬ 

tures of design which needed to be determined by tests were (i) the 

strength of beams in diagonal tension having no web reinforcement 

(reinforced with straight bars only); and (2) the amount and arrange¬ 

ment of web reinforcement necessary to develop the full bending 

strength of beams of ordinary proportions, and, conversely, the 

limiting shearing-stresses permissible with the designs in common 

use. In the later tests attention has been given to a more exact 

study of stresses in web reinforcement, the development of cracks 

in the concrete, and correct methods of design, in an effort to place the 

design of web reinforcement on a basis comparable to that used in the 

design of reinforcement for bending stresses. 

As the mathematical analysis of this problem is at best very approx¬ 

imate, it is necessary to rely to a considerable extent on the results of 

tests, especially in fixing the limitations of practical design. 

136. Tests on Beams without Web Reinforcement.—In Table 6 

are given the results of a large number of tests on rectangular beams 
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which were reinforced with straight rods only and which failed by 

diagonal tension failures. The shearing-stress given in the table is 

the stress at failure calculated by the formula v = V/bj d. 

Taking into consideration the difference in strength between the 

cube and standard cylinder it is seen that the ratio of shearing-stress 

at failure to the compressive strength as determined by cylinder tests 

has a minimum value of about o.o6, most values being above 0.07. 

In general, the greater the ratio of depth to span length the greater the 

relative shearing-stress at failure. 

137. Tests on Beams with Web Reinforcement of Ordinary Propor¬ 

tions.—Tables 7 and 8 give results of tests on T-beams which illustrate 

several features pertaining to the strength in diagonal tension of web 

reinforcement. Referring to Table 7 the yield-point strength of 

the corrugated bars was about 48,000 Ibs/in.^; that of the ^dn. 

round bars 41,000 Ibs/in,^; and of the J^-in. round material, 

47,000 lbs/in.2 These limits correspond closely to the stresses in the 

horizontal steel at failure, excepting in the case of beams Gi and G2 

which failed by diagonal tension. The table contains results of value 

with respect to shearing-stresses and the use of stirrups and bent rods 

for shear reinforcement. In the progress of the tests the occurrence of 

the first diagonal crack was carefully noted, and the maximum shearing- 

stress at this load is calculated and given in the table. It will be noted 

that there is a fairly close agreement between this value and the tensile 

strength of the concrete as given in the next column. The average 

value for the maximum shearing-stress is 179 Ibs/in.^ whereas the 

average tensile strength is 187 Ibs/in.^ This would indicate that in 

spite of stirrups the concrete will crack at a diagonal tensile stress 

about equal to its tensile strength. The table also gives the maximum 

shearing-stress at ultimate load, the amount of web reinforcement 

including the bent-up bars, and the calculated stress in web steel 

assuming all shear to be carried by it. Inasmuch as the yield point of 

this material, with the exception of the wire mesh of beams Fi and -F2, 

was about 47,000 Ibs/in.^, it is evident that a considerable amount of 

the shear was carried by the concrete. In beams Gi and G2, which 

failed by breaking of the stirrups, if we assiune a yield-point strength 

of 47,000 lbs/in.2, the amount carried by the concrete would be 150 

Ibs/in.^, a value about equal to its tensile strength. In all other 
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cases the web reinforcement was ample and hence no conclusions can 

be drawn as to relative value of the different kinds of reinforcement. 

Table 8 gives results of tests by Bach in which a variety of forms of 

reinforcement was used. Comparing beams Nos. i and 3 it appears 

that the bond strength was sufficient without the hooks and the results 

are about equal. In No. 2 the bond strength was insufficient but was 

made adequate by the use of hooks as in No. 4. The stresses in the 

web reinforcement were calculated on two assumptions: (i) assuming 

the steel to carry all the shear, and (2) assuming the concrete to carry 

the amount of 250 Ib/in.^, this being the strength shown in group No. i. 

By the former method the steel is greatly over-stressed; by the latter 

method the steel is stressed to its yield point in three groups, two of 

which failed in diagonal tension. These results indicate the substan¬ 

tial correctness of the second method of calculation. 

Considering straight bars only, the calculated bond stress, where 

several bars are bent up, is greatly in excess of the probable bond 

strength, showing the value of bent bars in reducing the actual bond 

stress. 

138. Development of Cracks during Tests.—An important question 

pertaining to the use of various kinds of shear reinforcement is the 

manner of development of cracks when tested to destruction. Accord¬ 

ing to the analysis of Art. 119 vertical stirrups are not in a position to 

be stressed in tension until the concrete begins to deform more in ten¬ 

sion than in compression, and they cannot take much stress until 

cracks begin to form. Inclined web members, bent bars or stirrups, 

can, on the other hand, take some stress before the concrete begins to 

crack, but the amount of such stress is not large. On this subject the 

tests of Bach are very instructive, as the development of cracks in 

each beam is shown at several stages of the tests. In Fig. 16 is shown 

the behavior of four of the beams tested. The kind of reinforcement is 

indicated and the total load given in kilograms. 

Comparing A and B the results are seen to be about the same. 

More important are the results shown in C and D. In C there are 

vertical stirrups only; in D the beam is very thoroughly reinforced 

by both stirrups and bent rods. Notwithstandng this difference the 

development of cracks is nearly the same in both cases, but D is 

stronger than C. At a load of 12,000 kg. all beams show considerable 
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cracking and about as much in those fully reinforced as in and B. 

This load corresponds to a stress of about 12,000 Ibs/in.^ in the steel. 

It may be said, therefore, that no kind of web reinforcement will 

prevent incipient cracking. What web reinforcement accomplishes 

is to prevent diagonal cracks from opening up to a dangerous extent 
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and greatly to increase the ultimate strength of the beam. In this 

respect the vertical stirrup appears from these tests to be about as 

effective as bent rods. 

139. Tests on Beams with Heavily Reinforced Webs.—Tests by 

Slater, Lord, and Zipprodt showed the possibility of developing very 

high shearing-stresses by the use of sufficient web steel. The beams 

tested were mostly of plate-girder form, with thin webs and wide 

flanges, both top and bottom, heavily reinforced in tension and most of 

them in compression. Flanges were from 12 in. to 17}^ in. wide, and 

webs 2 in. to 12 in. thick. The concrete was of very high strength. 

Table 9 gives significant data from those tests having large amounts 

of web reinforcement and for web thickness from 3 to in. The 

span length was 9 ft. 6 in., and depth 36 in. The yield point of the 

web steel was about 60,000 Ibs/in.^ All beams listed in the table failed 

by diagonal tension. 

Group I had no web reinforcement. These failed at shearing 

values of 7% to 12% of the compressive strength, about the same 

values as shown by other tests. Group 2 had vertical web reinforce¬ 

ment spaced 4 in. apart, well hooked around the horizontal bars at 

top and bottom. Shearing-stresses were developed of 1000 to 1800 

lbs/in,2, lower values being determined by the yield point of the 

web steel. For those where the yield point was not reached, the shear¬ 

ing-stresses were from 24% to 32% of the compressive strength. Shear¬ 

ing-stresses corresponding to 0.01-in. cracks were from 400 to 600 

lbs/in.2, Qj. about the same as the stress at failure for unreinforced 

beams. In Group (3) diagonal bars at 45®, also spaced 4 in. apart, 

were used, with results markedly better than those indicated for 

vertical bars. Only one beam was sufficiently reinforced to prevent 

failure by over-stressing of the steel, and this gave a shearing strength 

of 45% of the compressive strength. Others gave values of about one- 

third of the compressive strength. The effect of diagonal bars in 

reducing the size of cracks is indicated by the high shearing-stresses of 

1200 to 1600 lbs/in.2 prevailing for an average crack width of o.oi in. 

The tests indicated that a shearing-stress of 25% of the compressive 

strength can readily be developed by well-placed vertical bars. With 

diagonal bars this proportion can be increased to one-third or more. 

The authors deduced from the tests the formula v = (0.005 -f r) /* 



126 SHEAR AND BOND STRESS 

TABLE 9 

TESTS ON BEAMS OF I-BEAM FORM 

(Slater, Lord, and Zipprodt *) 

Group No. 
Flange 
Width. 

In. 

Web 
Thick¬ 
ness, 
In. 

Web 
Reinforce¬ 

ment, 
Per Cent 

Shearing- 
stress at 
Failure. 
Lbs/in.2 

Measured 
Stress 

in Web 
Steel, 

Lbs/in.2 

Shearing- 
stress for 
o.oi-in. 
Cracks, 
Av. of s 
Largest 

Com¬ 
pressive 
Strength 

of Cylinders, 
Lbs/in.* 

109 17-5 8-5 0 460 6050 

no 17 S 8.5 0 390 5500 

I III 175 8.5 0 470 4060 

107 150 6.0 0 630 1 . 6180 

108 15 0 6.0 0 590 3650 

Vertical Bars 

13 17 s 8.S 1-3 1030 y. p. 420 5970 

14 175 8.5 1.33 1050 710 5780 
18 175 8.S 13 970 y. p. 450 3SI0 
12 iS-o 6.0 1.88 1250 y. p. 540 534° 

17 150 6.0 1.86 950 43,000 410 4000 

II 12.0 4.0 2.48 1340 46,000 870 5400 

5 12.0 30 3 35 1750 42,500 520 5940 
22 12.0 30 2-51 i8oo 59,500 670 5700 

34 12.0 30 1-55 1550 y- p- 620 5550 

Diagonal Bars 

67 12.0 30 3-54 2320 5120 

68 12.0 30 3-5 2150 5530 
69 12.0 30 2.38 i860 1550 5500 

70 12.0 30 2.52 1840 1630 5310 

72 12.0 30 1.58 1790 
y* p* 

1200 5400 

73 12.0 3.0 1.49 1730 1360 5190 

74 12.0 4.0 1.16 1220 , 1000 4380 

Web bars spaced 4 in. apart and hooked about the horizontal bars. All failures by 
diagonal tension. 

* Technologic Paper, Bureau of Standards, No. 314, 1936. 
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as representing approximately the relation between the total shearing- 

stress V per square inch, the ratio of web reinforcement r, and the 

actual stress fv in the web steel (See Art. 121.) 

140. Conclusions Regarding Strength in Diagonal Tension.— 

From the foregoing data it would appear that the ultimate diagonal 

tensile strength, as measured by shearing-stress, of beams with no 

web reinforcement is from 6% to 10% of the compressive strength of 

the concrete; that for beams of ordinary strength concrete a diagonal 

tensile strength of 20% of the compressive strength can readily be 

developed, using from 1% to 1.25% of web steel; that a maximum of 

about 30% of the compressive strength can be developed by careful 

design, which for high-strength concrete requires an unusually large 

amount of web steel. Such high values are required only where thin 

webs are necessary. Diagonal bars are especially advantageous where 

high stresses are to be carried, but for ordinary cases vertical bars are 

about as effective. 



CHAPTER V 

DESIGN OF BEAMS 

141. Working Stresses and Factors of Safety.—In the design of 

steel structures it has come to be the practice to make use of definite 

working stresses rather than factors of safety. These working stresses 

are based, for the most part, on the elastic-limit strength of the 

material, although the margin of safety between the elastic-limit and 

the ultimate strength (indicated by strength and ductility) receives 

consideration. The working stresses are made sufficiently below the 

elastic limit to provide for: 

(a) Variations and imperfections in material, design, and work¬ 

manship. 

(b) Uncalculated deformation stresses, such as secondary 

stresses, stresses due to unequal settlement, and, usu¬ 

ally, those due to temperature changes. 

(c) Dynamic effect of live load if not provided for by an allow¬ 

ance for impact. 

(d) Possible increase in live load over that assumed, or rare 

applications of excessive loads. 

(e) Deterioration of the structure. 

The more accurately the various elements are determined in any case 

the closer may the working stress approach the elastic limit. Where 

the dynamic effect of the live load does not enter, or is otherwise fully 

provided for, and where items (d) and (e) are of small moment, working 

stresses for steel structures will vary from about one-half to two- 

thirds the elastic-limit strength of the material. Were it certain that 

the elastic limit of the material would never be exceeded, the working 

stresses could be placed still higher and the margin of strength between 

the elastic limit and the ultimate strength would be of no importance. 

This is, however, not the case, and the fact that the ultimate strength 

is, in most materials, much higher than the elastic limit constitutes an 

128 
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important element of safety. The ductility of the material, or its 

possible deformation beyond the elastic limit, is also of great impor¬ 

tance, especially by reason of its effect on deformation stresses such as 

mentioned in item (b). 

In reinforced-concrete design the problem is complicated by the 

use of two unlike materials whose stress-deformation relations are 

quite unlike, as pointed out in Chap. II. The time effect is also of 

importance as having a large influence on the deformation of the 

concrete. 

142. Relative Effect of Dead and Live Loads.—The tendency of 

practice in the treatment of live-load stresses is to reduce them to 

equivalent dead-load stresses by the application of some sort of impact 

formula or by other means of estimation. The resulting stresses are 

then considered on the same basis as the usual dead-load stresses and 

a single set of working stresses applied. The question of impact coeffi¬ 

cients, or the relation between live- and dead-load working stresses, 

requires little special attention in connection with reinforced-concrete 

structures, but is of great importance in the case of railway bridges 

and in floor members of highway bridges. The proper coefficient to 

use, or the relation between live- and dead-load working stresses, varies 

much under different conditions and must be left to the judgment of 

the designer, or to formulas or rules prepared especially for the pur¬ 

pose. Further discussion of this question will not be undertaken here. 

In case of buildings the question of impact is of minor importance. 

When a building is fuUy loaded, the portionof the load which is inmotion 

and capable of producing a dynamic effect is generally but a very small 

percentage of the total live load. In most cases, therefore, in building 

construction it is not necessary to treat the live-load stresses differently 

from the dead-load stresses, and the design is based on a single set of 

working stresses. Special cases will arise, however, where the djmamic 

effect of the live load requires consideration, as, for example, in the 

case of floors supporting moving machinery. 

Whatever the effect of live load may be, it can more readily be 

taken account of by adding to the resulting live-load stresses a per¬ 

centage which, in the judgment of the engineer, will reduce them to 

their dead-load equivalent, and then apply a single set of working 

stresses, or factor of safety, to the sum of the stresses. The discussion 
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of working stresses in the following articles will relate to the proper 

basal working stress for dead load, or for live load,suitably increased 

for impact. 

Allowance is commonly made in the design of large girders and 

columns which receive their load from large areas for the fact that such 

large areas, especially if on two or more floors, are seldom or never 

loaded to the extent assumed for smaller areas. This allowance varies 

with different conditions, but relates solely to the selection of the 

amount of live load rather than to its effect. 

143. Working Stresses in Tension and Compression.—The 

strength of a beam is limited usually by: 

(a) The compressive strength of the concrete, 

(b) The elastic-limit strength of the horizontal steel, or 

(c) The strength of the beam in diagonal tension. 

In this article the first two elements only will be considered. 

As shown in Chap. II, the permanent elastic limit of concrete is 

about 60% of its ultimate strength. Plastic flow will occur under 

lower stresses, but such flow does not appear to impair the elasticity 

of the concrete under live-load variations or reduce its ultimate 

strength. A working stress of 40% of the compressive strength at 

28 days is commonly used. As regards the ultimate strength of beams 

with respect to the concrete stress it has been shown (Art. 69) that, 

because of the curved form of the stress-deformation diagram of con¬ 

crete, the stress in the concrete does not increase in proportion to the 

load, and that the factor of safety is larger than the ratio of the com¬ 

pressive strength to the working stress. Thus for a working stress of 

one-third of the ultimate, the factor of safety is about 4.3 and a working 

stress of 40% gives a factor of safety of about 3.6. 

With respect to the steel the ultimate beam strength is closely 

determined by the yield point, which ranges from 33,000 to 40,000 

lbs/in.2 for structural grade to about 50,000 Ibs/in.® for rail steel. 

For the structural grade the Joint Committee in 1924 specified a 

working stress of 16,000 Ib/in.^, but 18,000 Ib/in.^ is used in the 

American Concrete Institute Specifications. The latter value is in 

general use in structural-steel design and is quite as applicable to 

reinforced concrete. It gives a factor of safety of about 2. For the 
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harder grades of steel the Joint Committee uses 18,000 Ibs/in.^, and 

the American Concrete Institute Specifications 20,000 Ibs/in.^ Com¬ 

pared to the elastic limit of the harder grades of steel the value of 

20,000 gives a larger factor of safety than 2, but higher stresses than 

this are objectionable on account of the lesser ductility of the harder 

steels and the increased deformations involved, resulting in a greater 

degree of cracking of the concrete. 

Comparing the steel and concrete stresses, it is seen that, with a 

concrete working stress of 40% of its compressive strength, the ultimate 

strength of the beam will depend upon the steel, although its elastic 

limit will probably be determined by the concrete. The Joint Com¬ 

mittee in 1916 specified a concrete stress of 32}/^% of the strength of 

the concrete; but on the basis of further experience and consideration 

of the question the Committee in 1924 raised this to 40%. This value 

is used in the American Concrete Institute Specifications. 

144, Working Stresses in Shear (Diagonal Tension).— 

JOINT COMMITTEE, 1924 

(a) Beams without web reinforcement. 0.02 fc 

ijb) Beams without web reinforcement but with 
special anchorage for longitudinal bars. 0.03 fc 

{c) Beams with web reinforcement.0.06 ff 

{d) Beams with web reinforcement and special 
anchorage for longitudinal bars.0,12 ff 

ff — compressive strength at 28 days. 

From the results given in Arts. 136 and 137, the ultimate strength 

in diagonal tension has a minimum value of about 0.06/c'. A working 

stress of 0.02 fj therefore gives a minimum factor of safety of about 

3. Inasmuch as failures due to high shearing-stresses are apt to 

come without warning, a relatively high safety factor is desirable. 

The value of 0.03 fj for case (b) is based upon the greater certainty of 

bond strength here provided for. In view of the results referred to, 

it does not appear that such a value would insure a factor of more than 

2 in all cases, especially for high-strength concrete and low ratio of 

depth to span, as would occur for concentrated loads. For beams of 

the usual proportions and for uniform loads the value of 0.03// is 

fairly conservative. 

For beams with web reinforcement, the value of 0.12 ff presupposes 
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a high degree of excellence in web steel design and placement and 
appears to be too high for the usual quality of workmanship encoun¬ 
tered in building construction. The later specifications of the Ameri¬ 
can Concrete Institute of 1928 use a value of o.ogf/, for ordinary 
practice, but permit 0.12 // under special provision for design and 
inspection. Under such circumstances a factor of safety of at least 2 
can readily be secured. 

145. Working Bond Stresses and Anchorage.—^Joint Committee, 
1924: also American Concrete Institute, 1928. 

(a) Plain bars, 0.04 //. 
(b) Deformed bars, 0.05 f/. 
(c) Bent-up bars within a distance of d from the tension 

reinforcement may be included in computing 2 o. 

Double the above values are allowed where special anchorage is 
provided. 

From the data of Arts. 130-133 the bond strength of plain bars is 
about o.iofc' to 0.12 fc', which indicates a factor of safety of about 
2)^ with respect to bond. 

For deformed bars the working stress may be somewhat greater 
than for plain bars, but as the initial slip occurs at about the same 
load, the increase in working stress should not be large. 

Since adequate bond strength can be provided for at small expense 
it is obviously imeconomical to limit the strength of a beam by its 
bond strength, and the factor of safety should be ample. 

The “special anchorage” referred to here and also in Art. 144 is 
provided by extending the bars beyond the critical section sufficiently 
to take care of the deficiency of bond strength. In the case of a simply 
supported beam the critical section is at the face of the support, and 
in a continuous beam, the point of inflection. This extension of bars 
in effect distributes the bond stress somewhat differently from the 
results of the theoretical formula u = 11 ft/2 o, but gives adequate 
total strength. Hooks may be used of a diameter not less than four 
bar diameters with a bond stress the same as for straight bars. 

146. Size, Length, and Spacing of Horizontal Bars.—Size of Bars.— 
The total required sectional area is determined by the moment. The 
number and size are determined by convenience in placing, necessary 
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space between bars, the use of part of the bars for web reinforcement, 
and the bond strength required. For equal total sectional areas, the 
larger the bars the greater the bond stress. The size may therefore 
be limited by the bond stress. If a portion of the bars are bent up, 
then the size and number of the straight bars must still meet the bond 
stress requirements. 

A convenient expression for the minimum sum total of bar perim¬ 
eters, in terms of shear and bond stress, can be derived as follows: 

The shearing-stress is z) =-and the bond stress is 
V bj d 

V 
u = - 

i d s 0 

from which 
V b 

u = — ..... 
22 0 

.... (la) 

and 
V b 

2:0 = —. 
u 

.... (lb) 

In (a), u is the bond stress for a given value of So, and in (6), So is 
the necessary total bar perimeter for a given bond stress «. For 
instance, if = 160 and u — 80, then So must be at least 2 X b. If 
this is not readily secured then an alternative is to provide some of 
the bond strength by hooks or straight extension of the bars termed 
“special anchorage” in the specifications. 

147. Lengths of Bent-up Bars.—The minimiun lengths of the 
several horizontal bars are determined by the bending moments to be 
carried. In determining these lengths the same methods, either 
analytical or graphical, may be employed as in the design of plate 
girder flanges. If the moment is due to a uniform load, the parabolic 
formula may be used. The lengths of the several rods are given by 
the equation 

Xn = ^^01-1-02 + . . . -|- On, . . . . (l) 

in which Xn = length of the «th rod in order of length 
coimting the shortest one as number one; 

I *= length of span; 
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A == total Steel area at centre; 

ai + a2 + * . . + an — sum of areas of all rods up to the one in 
question (the wth rod). 

If the amount of steel actually used is considerably greater than 
required, then the formula may be modified by making A = required 
area and deducting the excess from the area of the first rods. Thus, 

I 
Xn y— ai 

VJr 
{An — At) + <12 + . . . + ^n, (2) 

in which Ar = area lequired; 
= area used. 

For unsymmetrical or concentrated loading the actual moment 
curve must be determined and the length of bars determined there- 
' *om as in plate girder design. 

The required theoretical lengths having been found the rods may 
be bent up at these points or at any desired place between these points 
and the supports. Or, if not bent up, they may be discontinued a few 
inches beyond the theoretical points and the ends bent into hooks for 
better bond. 

148. Spacing of Bars,—The requirement in general as to spacing 
is that the bars must be spaced sufficiently far apart to readily admit 
the concrete between and beneath them and to give sufficient section 
along the plane of the rods to prevent failure by tension or shear. A 
common requirement is a clear spacing of i bar diameters (diagonal 
width for square bars) but not less than i in. nor less than 1}/^ times 
the maximum size of the coarse aggregate. 

149. Proportioning of Rectangular Beams.—General Design,—The 
size of a rectangular beam must meet two conditions. To resist the 
bending moment, we have from Art. 54, eq. (12), 

bd? ^ 
M 

(i) 

and from Art. no the size necessary to resist the shear is 
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where v is the allowable maximum shearing-stress and V = maximum 

total vertical (end) shear. With the value of b (P determined from 

(i), corresponding values of b and d are selected to give convenient 

and economical proportions. For any given value of b the value 

oi b d will decrease as d increases. Hence the deeper the beam the 

less the required cross-section b d. Therefore, until the value of b d 

becomes as small as determined by (2), the deeper the beam the less 

the cross-section and the less the amount of concrete. 

In general, then, we may say that for rectangular beams the ratio 

of depth to breadth should be made as great as consistent with con¬ 

venience of proportions, space for bars, head room, cost of forms, and 

similar practical requirements. Generally speaking the convenient 

ratio of depth to breadth will vary from a minimum of about 13^ to i 

for small beams up to 3 or 4 to i for very large beams. Ample width 

for placing of bars is an important factor. 

150. Ratio of Length to Depth for Equal Strength in Shear and 

Moment,—It is instructive to consider the relation between the pro¬ 

portions of a beam (length-depth ratio) and the maximum moment 

and shearing-stresses therein. 

For a uniform load we have M and V ^ w //2. Also 

from (8), Art. 53, b d"^ =Mlfspj] and from (2) Art. 149, bd = 

V/vj. Substituting the values of M and V above, and dividing, we 

find that 

L ^ 
d V (3) 

For a single concentrated load a similar analysis gives 

L = 
d V (4) 

For /, = 18,000 and fc = looo (/' = 2500), p = o.oiii. We then 

have 

For V — 50, no web reinforcement. 

For uniform load .... l/d = 16.0 

For a concentrated load l/d = 8.0 
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For V = 22$^ full web reinforcement. 

For uniform load .... l/d = 3.55 

For a concentrated load l/d = 1.77 

For larger ratios of l/d than the above values the strength in shear 

will be greater than that in bending. From these ratios it will be easy 

to judge quickly whether or not the shear is likely to be the determining 

factor in any case. It is evident that only in relatively deep beams or 

for special cases of concentrated load will the shearing strength come 

into question or will it be necessary to use the higher values of allow¬ 

able stress. It is only in T-beams that shearing-stresses become 

troublesome. 

151. Design of a Rectangular Beam.—(Fig. i.) Design a rectangu¬ 

lar beam 16 ft. long to support a live load of 4000 lb. per ft. Use a 

concrete of 2500-lb. strength and the 1924 Joint Committee specifica¬ 

tions with certain exceptions as noted. The following are the working 

stresses and certain constants: 

/, = 18,000 lbs/in.2 
fc = 1000 Ibs/in.^ 
/pfor web reinforcement = 16,000 Ibs/in.^ 

V =0.03/^ = 75 lbs/in.2 without web reinforcement, bars to have 
special anchorage. 

V = 0,06 fc = 150 Ibs/in.^ with web reinforcement. 
V = 0.09 /c = 225 lbs/in,2 with web reinforcement and special 

anchorage. 
» = 12; ^ = 0.4;/ = 0.87; p = o.ooiii; R = 173. 
u — 100 lbs/in.2; or 200 Ibs/in.^ with special anchorage. 
Assume weight of beam = 400 lbs. per ft. 

Bending Moment. 

M - X 4400 X 16^ X 12 = 1,690,000 in-lbs. 

If = 9750. This value of b d^ can be obtained as 
173 

follows: 

30 in. X II in., bd^ - 9900, b d — 330 sq. in. 
28 in. X 123^ in., b d^ = 9800, bd = 350 sq. in. 
26 in. X 14^^ in., b d^ = 9800, bd - 377 sq. in. 

The deeper the beam the smaller the cross-section required, and with no 
limitation of head room the 30-in. beam might be used if the shearing- 
stresses are not exceeded; but these proportions are rather extreme and the 
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space for bars quite small. We will therefore adopt 28 in. X 12^^ in. 
Steel area = 0.001 ii x 350 = 3.88 sq. in. 

Use five J^-in. round bars = 3.00 sq. in. 
two %-in. round bars = 0.88 sq. in. 

3.88 sq, in. 

I l-Tg bar 2^h bars 

Theoretical 
Turn up Points 

fur Bars—^ 

BEAM WITH BENT BARS 

-gf^O"- 

H ° stirrups 

I lo'Tio^rio" 

BEAM WITH STIRRUPS 

/ 
-16 0 c. to c. SupiK>rts - 

■-<-1 2^ 

u 

2-34"° rods 

C-V'® rods 

"lii? 

'^stirrupi 

Shear Carried By 
Bent Bars or Stirrups 

Shear Carried By Concrete 

THEORETICAL SHEAR DIAGRAM 

Fig. I. 

Place in two layers as shown in Fig. i. Total depth of beam = 31 in., 
making the depth to centroid of tension area slightly over 28 in. Check 

for weight. Weight per foot == = 402 Ibs/ft. 

Sheanng-stresses, 

At end, V « 4400 X 8 = 35,200 lbs. j d ^ 0.87 X 28 = 24.4 in. 

' - 1:^7^. - Ibs/to-* 24.4 X 12.5 
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At centre, live load shear = = 3000 lbs, 
4 

^ -=-- = 26 lbs/in.2 
24.4 X 12.5 

Assume maximum shear varies uniformly from centre to end. 
Distance from centre for = 75 is found by the proportion 

^ = 75 ~ 26 
8 116 — 26 

49 
90* 

a; = 4.33 ft. = 4 ft. 4 in. 

From this point to the end, a distance of 44 in., web reinforcement must be 
used. The shear diagram is shown in Fig. i. At the end the shearing- 
stress to be carried by the steel is 41 Ibs/in.^ 

Bond Stresses, 

For special anchorage at least one-half of the reinforcement must extend 
to the end. This requires four bars. For four J^-in. bars, 2 (? = 4 X 2.75 

= ii.o sq. in., u = At end u = = 132 Ibs/in.^ Special 132 lbs/in.2 Special 

anchorage requires the four bars to extend beyond the face of the support 
a sufficient distance to develop one-third the working stress at a bond 
stress of 100 Ibs/in.^ 

The length of embedment for full working stress is found by the relation 
18,000 X 3^ TT = 100 X TT D /, whence I — 45 Z>, where I = length of 
embedment and D = diameter of bar. For one-third working stress the 
embedment is 15 diameters = 15 X = 13 in. This will be supplied 
by hooks as shown. Diameter of hook to be not less than 4 bar diameters. 

Web Reinforcement. 

Try bent-up bars at 45®. Three bars can be bent up. Maximum 

spacing by Joint Committee specifications = —^— d = 0.82 d/ = 23 in. 
10 -f 45 

Length of beam needing reinforcement = 44 in. It will then be sufficient 
to bend up the bars at two points only. The arrangement shown in Fig. i 
will be adopted. A spacing of 22 in. is used, and it is assumed that each 
diagonal group is effective over a horizontal distance of 22 in. spaced 
symmetrically with respect to the points where the reinforcement crosses 
the beam centre. 

The stresses in the bent-up bars will now be checked. Taking the 
theoretical end shearing-stress at v' = 41 Ibs/in.^, the total stress in the 
end two bars will be P = 0.7 X 41 X 12.5 X 22 = 7900 lbs., a stress of 
only 9000 Ibs/in.^ In the J/^-in. bar it will be less. 

The length of embedment in the upper half of the beam must be suf¬ 
ficient to develop the stress in the bars at a bond stress of 100 Ibs/in.^ For 
the ^-in. bars this length = 3950/100 X 2.35 ■= 17 in. 
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Necessary Length of Bars for MomenL 

Total sectional area at centre = 3.88 sq. in. 
Area J^-in. bar = 0.60 sq. in. 
Area ^-in. bar == 0.44 sq. in. 

Hence if the ^-in. bar is the first to be bent up its necessary half length 
is given by the proportion 

CC^ I A 8 
For the two ^-in. bars, ^ x = 5.0 ft., or 3 ft. from end. These 

o 3.05 

requirements are met in the design. 

Use of Stirrups for Web Reinforcement. 

Suppose vertical stirrups are used instead of bent-up bars. Use a 
stirrup made of ^-in. round material. Working stress per stirrup = 

16,000 X 2 X o.ii = 3520 lbs. Spacing at end for z;' = 41 is j = 3520 

= 6.9 in. At I ft. from end v' = 30 and 5 = 3520 

41 X 12.5 

= 9.4 in. At 2 ft. 

from end z;' = 19 and s = 3520 

30 X 12.5 

= 14.8 in. Maximum allowable spac- 
19 X 12.5 

ing = 0.45 d = 12.6 in. To meet the requirements of maximum spacing 
four stirrups will be needed. They may be spaced as shown in Fig. i. 

If the reaction be considered as wholly applied at the centre of bearing 
and the theoretical end shear of 41 Ibs/in.^ be used, the first stirrup should 
be placed about 43^ in. from the centre of bearing, which would bring it 
within the area of the support. This is unnecessary as the actual shearing- 
stresses fall off rapidly from the edge of support towards the centre. If 
the first stirrup is placed about 3^ s from the face of the support, the diag¬ 
onal tensile stresses at this point will be adequately taken care of. In 
the case of continuous beams the.face of the support is generally considered 
as the critical section for shear and bond and the first stirrup placed s 
from that point. 

152. Proportioning of T-Beams.—General Design.—T-beams occur 

in practice generally where a floor-slab and beam are built as a mono¬ 

lithic structure, as in floor construction. Occasionally, also, where 

heavy girders are required it is expedient to design the beam in the 

form of a T. Inasmuch as the only purpose of the concrete below the 

neutral axis is to bind together the tension and compression flanges, its 

section is determined by the shearing-stresses involved and space 
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required for bars, and a considerable saving can thus often be effected 
over the rectangular form. Where the flange is a part of a slab its 
thickness is determined in the design of the floor, but the width of slab 
which can be taken as effective flange width must be estimated. A 
common rule of practice is to count a width of slab not greater than 
one-fourth of the span length, but this should in fact depend also 
upon thickness of slab and of the stem of the T. Tests on T-beams 

with very wide flanges show that the com¬ 
pressive stresses are quite uniformly distributed 
over the entire width. A still more even distri¬ 
bution of stress is to be expected in a series of 
T-beams in a continuous floor structure. If, 
however, the slab or flange is made too wide and 
thin the shearing-stresses along the line aa' and 
cc', Fig. 2, will be excessive. The Joint Com¬ 

mittee specifies a maximum width of overhang a? of 8 times the thick¬ 
ness. For isolated T-beams the total width h to be not greater than 4/. 

Where a T-beam is not connected with a floor system, the size of 
flange may be selected to meet the conditions at hand. In this case 
the stem of the beam should first be determined approximately, on the 
basis of thesh earing-stresses to be carried. A suitable flange can then 
be selected by a few trials, as explained in Art. 79. The deeper the 
beam the less the amount of steel required for constant cross-section. 
But T-beams should not be made too deep in proportion to width, as 
such forms are relatively weak at the junction of stem and flange. All 
re-entrant angles in rigid material such as concrete are points of weak¬ 
ness and such angles should therefore be modified by curved lines or by 
a beveled fillet. A width of beam sufficient to carry the shear and to 
give plenty of space for the bars is usually ample. The maximum 
desirable ratio of depth to width may be taken at about two for small 
beams up to three or four for very large and massive work. Depths are 
often determined by available head room. Beams of excessive depths 
are objectionable as being more difficult and troublesome to reinforce 
properly; the cost of web reinforcement also becomes relatively greater. 
The flanges should be thoroughly bonded to the web by means of web 
reinforcement running well up into the flange and, where the flange is 
wide, by additional cross-reinforcement in the plane of the flange. 

Fig. 2. 
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153. Economical Proportions.—^Where a floor-slab forms the 
flange of a T-beam, the economical proportions of the stem may be con¬ 
sidered. Here the slab forms practically all the compressive area and 
its cost is not affected by the proportions of the stem. The required 
steel area is given by the formula M/f,j d. Then let C = cost of beam 
per unit length, c = cost of concrete per unit volume, and r = ratio of 
cost of steel to cost of concrete per unit volume. The total cost of the 
stem per unit length will then be (cost of stirrups and variation in cost 
of forms neglected), 

C = .(i) 

In this expression o is the distance from center of steel to bottom 
face of beam, assumed as constant. 

From this expression it is evident that with a fixed value of b'd 
to meet shear requirements the cost decreases with decreased width 
b' and increased depth d. The width b' must, however, be made 
sufficient to accommodate the bars conveniently. If b' is assumed 
constant we find, by differentiating (i), the value of d for minimum 
cost will be 

If this value is less than required for shear then the shear governs, but 
in case b' is taken relatively large, the economical value of d may be 
greater than required for shear. 

The depth of stem is also frequently influenced by the question of 
head room required and other architectural considerations. 

154. Design of a T-Beam.—(Fig. 3.)—beam and slab floor 
(beams one way only), spans an opening of 24 ft. centre to centre. The 
slab is 5 in. thick, the beams are 10 ft. on centres, and the live load is 
250 Ibs/ft.® The beams are simply supported and are to be reinforced 
against diagonal tension by means of bent-up bars and stirrups. 
Assume a 2500-lb. concrete and the same specifications as in the prob¬ 
lem of Art. 151. Live load= 2500 lbs. per lineal foot. The 5-in. 
slab 10 ft. wide weighs 625 Ibs/ft. 



142 DESIGN OF BEAMS 

Assume weight of stem of beam = 275 Ibs/ft. 
Slab == 625 Ibs/ft. 
Live load = 2500 Ibs/ft. 

Total = 3400 Ibs/ft. 

Dimensions of Stem and Steel Area. 

If = 3^ X 3400 X 242 X 12 = 2,950,000 in-lbs. 

The relation of depth to width will be investigated by the use of eq. (2), 
Art. 153. The width should probably be sufficient to give space for 4 or 5 

large bars, say 12 in. 

per cu. yd. Then 

eq. (2), Art. 153, 

Assume cost of steel = 4jzf per lb. and concrete 
0.04 X 490 . . 

r = —10/27 " ~ Assume j = 0.9. Then 

53 X 2,950,000 
18,000 X 12 X 0.90 

28.3 in. 

$10 

by 

With bars in two layers the total depth would be about 3 in. greater or 
about 313^ in., and the stem below the slab 313^ — 5 = 2^ in. K 
V were made ii in., then d = 28.3 X y/12/11 = 29.6 in. 

The true economical depth will be somewhat less than the calculated 
value, and in this case the depth of stem below the slab will be assumed 
at 24 in. With 3 in. from lower face to center of steel area the value of d 
will be 5 + 24 — 3 = 26 in. 
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Then iji = 0.19, and from Diagram 5,7 may be taken at 0.92,7 i 
0.92 X 26 = 24.0 in. 

c- 1 2,950,000 . _ 
Steel area = —-- == 6.8c sq. m. 

Use three i-in. square bars = 3.00 sq. in. 
five i-in. round bars =3.92 sq. in. 

Total = 6.92 sq. in. 

Placing the five round bars in one layer will require a minimum width 
of II in., which will be used. 

Check weight of stem, ^ X ^ 52 -275 Ibs/ft. 
144 

Check value of j. Assume width of flange = 34^ of span = 72 in.; 
J J = 72 X 26 = 1870; p = 6.92/1870 = 0.0037. From Diagram 5 with 
ifd = 0.19 diTi&pn = 12 X 0.0037 = 0.0444,7 == 0.92 + as assumed. Hence 
the calculated stress in steel is correct. The stress in the concrete will be 
small. Diagram 5 gives fjn fc = 2.75, whence fc - 540 Ibs/in.^ 

(If the calculations are made by the method given in Art. 77, assuming 

full concrete stress of 1000 Ibs/in.^, we have fe/nfc — = 1.5^ and 
12,000 

Diagram 5 gives pn = 0.095 and a value of 7 slightly less than before, 
but the difference is immaterial. The width of flange which corresponds 
to this assumption is found from As = p b dy oi 6.85 = 0.093 Xb X 26/12; 
when ^ = 34 in.) 

Shearing-stresses and Web Reinj or cement. 

At end, V == 3400 X 12 == 40,800 lbs. 
At centre, V = 2500 X 12 X = 7500 lbs. 

40,800 ,, ,. 2 
Z'end = -r;- = 155 lbs/m.2 

II X 24 

^ Coo 
Centre = - = 28.5 lbs/in.“ 

II X 24 

For point of 7S-lb. shearing-stress 

— := 12-z. = 0.365; X == 4.38 ft. from centre. 
12 155-29 

Distance from end = 12 — 4.38 = 7.62 ft. = 92 in. 
(iCC *“ 7c) X 02 

Area of shear triangle = —^-— X ii = 40,500 lbs. 

Bending of Bars. 

Not more than one-half the tension reinforcement may be bent up. 
For this purpose the three square bars will be used. 
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Points of bend. Total area = 6.92. Each bar = i sq. in. Then 
distance from centre must be at least, for 

First bar: ^ *1 = 4.45 ft. 

Second bar: 

12-“ 6.92* 

12^ 6.92 
, X2 = 5.9 ft. 

Third bar: 
12* 6.92 

, Xi = 7.9 ft. 

The end shear to be carried by web steel == iSS — 75 = 8o Ibs/in.® 
Since total shearing-stress is greater than o.o6 //, the spacing of web 
reinforcement must be two-thirds the value given by the formula 

^ ^ ^ 3®/SS^ = ^4*2 hi. As it is 

difficult to secure this spacing for bent bars at the end of a beam of this 
depth, one or two stirrups will be used in this region. 

For stirrups, try J^-in. round steel. Allowable stress = P = 2 X 0.196 
X 16,000 = 6300 lbs. 

6300 

80 X II 
7.1 in. 

For a 5^-in. stirrup, P = 2 Xo.ii X 16,000 = 3520 lbs. 

^ ^ 3520 

80 X II 
4.1 in. 

Use two ^-in. stirrups at 4-in. spacing, placing the first one i in. from 
support. 

Using a bent bar next, the total shear is now less than the limiting 
value of 150 lbs/in.2, so that a 21-in. spacing may be used. The centre 
of this space is about 24 in. from centre of support. Shear = = 70/92 X 
80 = 59. Stress in bar = 0.7 X 59 X ii X 21 = 9800 lbs., a low stress 
for a i-in. square bar. Using two more 21-in. spaces brings us 77 in. from 
the centre of support, or 15 in. from the point where no reinforcement is 
required. It is unnecessary to calculate the shear in this region. Use two 
stirrups spaced 10 in. apart as shown. 

The arrangement of bent bars adopted meets the requirements of length 
for moment. 

Bond, 

At the end there are five i-in. round bars, 2 o = 13.35 in. 

Shear = 155. Bond stress = — - ^= 128 Ibs/in.^, 
13*35 

requiring special anchorage. The bars must extend beyond the face suf- 
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fidently to develop a stress of 6000 Ibs/in.* This will require 15 diameters 
or IS in. Use a hook of 4-in. diameter as shown. 

In the case of bar a the stress is 9800 lbs. 2 o = 4 in. Length of 

embedment above centre of beam = = 24.5 in., requiring a 
4 X 100 

horizontal extension of at least 10 in. including the hook. Stresses in the 
others are less but it is well to extend them in the same manner. The 
^-in. stirrups require an embedment of 45 diameters for full strength == 
45 X = 17 in. above the centre of the beam. The necessary length is 
secured by using hooks as shown. 

End Bearing, 

This may be calculated on the basis of an allowable bearing pressure of 
0.25//= 625 Ibs/in.^ if the wall or pedestal is of the same strength as the 
beam. This will require a bearing area of 40,800/625 = 65 sq. in., which 
is more than provided for in the assumed length of bearing of 12 in. 

Efect of Using Theoretical Depth. 

It will be interesting to determine the effect it would have in cost, 
under the conditions previously assumed, if the theoretical depth of 29.6 in. 
be used with the width b' the same as before. 

Depth of stem = 27.6 in. 

Required steel area = -r-—---- = 6.08 sq. m. 
^ 18,000 X 0.91 X 29.6 ^ 

Cost of steel = 6.08 X 10/3 X 4 = 8i.if!f per ft. 

276 X 11 
Concrete in stem = —- = 2.11 cu. ft. per ft. 

144 

. r 2.II X 1000 p . 
Cost of concrete =- = 78.1^ per ft. 

27 

Total cost = 81.1 + 78.1 = i59.2ff per ft. 

For the design as made we have 

Cost of steel = 6.92 X 10/3 X 4 = 92.3^^ per ft. 

Cost of concrete =-3-== 67.90 P^r ft. 
144 X 27 

Total cost = 92.3-1- 67.9 = 160.2^ per ft. 

The difference is trifling and is about balanced by the extra length of web 
reinforcement required in the deeper beam. This calculation shows, 
however, that, as is always the case, a considerable variation of dimensions 
on either side of the theoretical values for a minimum will affect the result 
but little. 
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155. Design of Continuous Beams.—In steel work, when several 

successive beam spans are constructed, connected to a series of columns, 

each is usually designed as a simple beam, the end details being un¬ 

suited to carry the negative bending moments which would result from 

continuity of action. In reinforced concrete, on the other hand, it is 

desirable to construct the beams as a continuous or monolithic piece of 

work rather than as disconnected, simply supported beams. This 

method of design has been a gradual development. At first the struc¬ 

ture was merely tied together by overlapping some of the lower rein¬ 

forcing bars at the support; then to prevent cracks on the upper sur¬ 

face over or near the support, some reinforcement was placed in the 

Mibw iilillSI 
■■■"111 

Shear 

.^iiiiil' 

Fig. 4. 

upper part of the beam. These conditions led to the design and con¬ 

struction of such beams as true continuous girders, proportioning the 

reinforcement over the supports to carry the negative moments 

involved. 

Fig. 4 represents the general variation in moment and shear in a 

continuous beam uniformly loaded. The negative moment is a maxi¬ 

mum over the support, and is larger than the positive moment between 

supports. It decreases rapidly from the support. The point of 

inflecton is about 0.2 / from the support. The shear is about the same 

as in a simple beam; it changes sign suddenly at the supports. 

Owing to action of live load the moments and shears will vary con¬ 

siderably from those represented in the diagram, and the points of 
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inflection will shift more or less. Each span must be designed for its 
maximum positive moment at or near centre, and maximum negative 
moment at the support. The necessary length of positive and negative 
reinforcement must be determined by locating the points of inflection. 
This information also enables the points for bending up of the several 
rods to be determined. Calculation of these quantities is a problem 
involving the theory of continuous girders and rigid frames and, as it 
most commonly arises in connection with building construction, its dis¬ 
cussion is reserved mainly to that chapter. Some general features of 
design only will be mentioned here. 

156. Arrangement of Reinforcement.—Various arrangements of 
reinforcement may be used. Generally, some of the lower bars are 
bent up and extended over the support to furnish part of the upper 
reinforcement. Some of the lower reinforcement should extend well 
into the column or over the support and preferably overlap so as to 
provide good anchorage and bind the structure thoroughly together 
against contraction cracks. Fig. 5 illustrates a common arrangement 
of reinforcement for a continuous beam. A portion of the lower bars 
are extended straight through, and a portion are bent up and extended 
across the top to furnish part of the negative reinforcement. Fig. {b) 

shows a scheme of arrangement in detail. Additional short top bars 
are often used to make up the necessary xeinforcement for negative 
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moment, and may be bent down at their ends to furnish additional 
shear reinforcement. In this type of beam the maximum moment 
occurs at the same point as the maximum shear which gives condi¬ 
tions more unfavorable as regards diagonal cracks than in the case of 
the simple beam. Special attention must therefore be given to the 
shear reinforcement. 

Diagonal tension cracks tend to form first near the support, the 
shear being a maximum at this place; and they tend to open up at the 
top of the beam, this being the tension face. Fig. 7 illustrates the 
general form of such cracks in this case. It is important to take due 
account of these conditions in the arrangement of web reinforcement. 
Stirrups must be thoroughly anchored at their upper ends preferably 
by hooking them around some of the upper bars. Inadequate shear 
reinforcement in continuous beams is not imcommon, due mainly to the 
overlooking of the necessary relation of such reinforcement to the ten¬ 
sion side of the beam. 

157. Bond Stress.—As the bond stress is a linear function of the 
shear, it follows that it changes sign suddenly at the support. This 
condition gives rise to a sudden change in the direction of bond stress. 
Thus, in Fig, 6, on the left of the support, the concrete pulls towards the 
left on the upper rod, and on the right it pulls towards the right, as 

shown by the small arrows. Any slipping 
increases the deformation of the concrete at 
once, and hence increases the tension in the 
concrete at the centre. Likewise, at the 
bottom, any slip tends to increase the 
compressive stress in the concrete. It fol¬ 
lows, therefore, that where rods continue 
over the support in continuous beams, the 
bond stress should be well provided for each 
side of the centre, otherwise the defor¬ 
mations and stresses in the concrete will be 
excessive. As a matter of fact, the exact 

theoretical conditions can hardly be realized, and the variation in 
bond stress must follow more nearly a rounded curve such as shown 
by the dotted line in Fig. 6. 

158. r- beams as Continuous Beams.—In floor construction a 

Fig. 6. 
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T-beam designed for positive moments becomes a rectangular beam 
over the supports where the moments are negative (see Fig. 7). The 
tension side is uppermost, and, neglecting the tension in the concrete, 
the flange of the T is of no value in resisting this negative moment. 
From the moment diagram of Fig. 4 it is seen that the negative 
moments are larger than the positive moments, and hence it will gener¬ 
ally be found that a continuous T-beam designed for positive moments 
will funush inadequate compressive area at the support for the nega- 

t.. --T-- -—-r- "L.- 1 
1_ / r .rrXT]_/ 

wKSHBmwm MM 
1 ....- n 

(0) 

Compreealon 
|j^ Reinforcement 

SECTION NEAR COLUMN 

Fig. 7. 

tive moment. This condition is met by the use of compressive rein¬ 
forcement, and, generally, to some extent, by allowing somewhat 
greater unit stress at this point than elsewhere. Fig. 4 shows that the 
negative moment falls off very rapidly from the theoretical Tnaximum 

over the support so that within a few inches from the support the 
moment will be much below the maximum. In view of this condition, 
the allowable unit stress may reasonably be increased slightly. Increas¬ 
ing the depth of the beam near the support as indicated in Fig. 7 (a) 

or increasing the width of the beam are also common methods of pro¬ 
viding for the increased negative moment. 



CHAPTER VI 

DEFLECTIONS OF BEAMS 

159. General Theory; Live Loads Only.—Deflection formiflas 
for homogeneous beams can be interpreted semi-rationally to make 
them applicable to reinforced-concrete beams. So interpreted, they 
yield results in fair agreement with measured deflections due to live 
load. For deflection due to long-continued dead load, see Art. 164. 

The common deflection formulas pertain to a beam, the cross- 
sections of which have equal moments of inertia. This condition is 
not fulfilled in most reinforced-concrete beams, because of the presence 
of bent-up bars and stirrups. Still, the amounts of steel in, and hence 
the moments of inertia of, sections in the middle third or middle half 
are commonly constant. And since the middle half contributes nearly 
85% of the maximum deflection in the case of a simple beam constant 
in section and uniformly loaded, and 82% when the beam is loaded 
at the two outer quarter points, it must be that a small change in the 
moments of inertia of end sections of a simple beam produces a much 
smaller change in the maximum deflection. 

More definitely, consider for example the deflections of two simple 
beams of equal span with equal uniform loads W. Suppose that 
in one beam all cross-sections have a moment of inertia 7i, and 
that in the other beam, cross-sections in the middle half and in 
the outer quarters have moments of inertia equal to 7i and I2 respec¬ 
tively. Suppose also that 12 — 0.7571; then the deflections of these 
beams respectively are as i to 1.06. That ife to say, a reduction of 
25% in the moment of inertia of the cross-sections of the outer quarters 
of the first beam changes the deflection only 6%. 

The common deflection formulas imply that the material of the 
beam obeys Hooke’s law {“ stress is proportional to strain ”), up to 
working stresses at least, and that the moduli of elasticity of the 
material for tension and compression are equal. Although it is true 

ISO 
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that concrete does not obey the law strictly, still its stress-strain 
relation for compression is nearly linear up to working stresses. But 
the stress-strain relation for tension is far from linear, and the assump¬ 
tion that it is, herein made for simplicity in formulas, must be regarded 
as a rough approximation. It is true that the “ initial moduli ” of 
concrete for compression and tension are nearly equal, but the deflec¬ 
tion of a beam depends on the elongations and shortenings of all the 
fibres, and hence not upon initial modulus but on some sort of a mean 
value. This is not the modulus corresponding to the mean unit fibre 
stress, but certainly the average or secant modulus is more nearly 
correct than the initial modulus, or that at the maximum unit stress. 

In view of the foregoing and indications of test data, we have 
chosen the following basal deflection formula for a concrete beam. 

wherein W 

I 

£c 

lo 

Cl 

D = Cl 
Wl^ 

EJo' (i) 

total load’ 
span; 
secant modulus of elasticity of concrete for working 

stress in compression; 
moment of inertia of middle cross-sections more fully 

described below, and 
a coefiicient depending on manner of support and 

loading (see Table 10). 

Before using eq. (i), one must decide on how to calculate /o. 
Thus the question is raised whether to neglect the tensile fibre stress 
in the concrete or not. As already fully explained (Art. 47), a rein- 
forced-concrete beam under full working load contains one or more 
cracks at or near the section of maximum bending moment or else the 
condition there is near the cracking stage; and to compute the maxi¬ 
mum unit fibre stresses at such section, engineers rightly assume the 
presence of a tension crack, and that it has extended, in effect, to the 
neutral surface. But deflection depends on stress at ail sections, and 
cracking does increase deflection. Ordinarily cracks are not n\imerous, 
and besides they do not affect deflection nearly so much as fibre stress. 
These effects are entirely different in order of magnitude. The first 
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TABLE lo 

Cl Ca c 

H = 0-333 I H = 0-333 

H = O.I2S H =0.50 = 0.250 

3^3 = 0.02o8 = 0.25 

d 11 

Ha* = 00130 H = 0.125 = 0.104 

2?^296 = 0.0177 H = 0.167 2%i6 = O.Io6 

1 
^Mee =* 0.0144 M = 0.125 = 0.II5 

Vfiio = 0.0093 ^6 = 0.187 Vhs = 0.050 

Hss = O.OOS4 M = 0.125 ?f85 = 0.043 

H92 = 0.0052 - 0.125 0.0416 

^84 = 0.0026 H2 “ 0.083 ^2“ 0.0312 

is not noticeable at aJl in careful measurements on deflections due to 
increasing loads, whereas the latter certainly would be if fair measure¬ 
ments of fibre stress at a section of a beam were possible. For these 
reasons and indications of certain test data, we shall, for the calcula- 
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tion of Jo in eq. (i), regard the concrete from the tensile steel to the 
compression face as intact, the concrete taking its share of tension; 
the concrete from the centre of the tensile steel to the tension face is 
neglected. 

It is possible to express the deflections—as in the case of homo¬ 
geneous beams—in terms of maximum bending moment M or fibre 
stresses/,, and/,. Thus, since 

M = C2Wl 

wherein C2 is a coefiicient like Ci depending on kind of load and manner 
of support of beam (see Table 10), therefore 

Cl MP MP 

C2 Eclo~ ^ EJo’ (2) 

C being an abbreviation for C1/C2 (see Table 10). 
Now, as explained in Art. 47, maximum fibre stresses in concrete 

and steel, at the cross-section of maximum bending moment, are 
universally calculated on the basis of a cracked section, or negligible 
tension in concrete. So that if I' denotes the moment of inertia of 
cross-section (cracked or tensile value of concrete neglected), then 

M =fc r/k d = (f./n) /7(i - k)d. 

Combining these two equations with (2) appropriately (eliminating 
M and k) gives 

P I'f. +f./n 

P r nf.+f. 

dio E. ' (3) 

Eqs. (i), (2), and (3) will be applied and illustrated in articles following. 
160. Rectangular Cross-Section Beam; Tension Bars Only.— 

The notation used here is like that of Art. 48. It is represented in 
Fig. i; the cross hatching suggests that “ full ” tension is ascribed 
to concrete in calculation for Iq. As a first step in this calculation, 
it is necessary to locate the neutral axis of the cross-hatched (concrete- 
steel) section. This is done in the manner employed in Art. 50 or 55; 
but there any tension in concrete was neglected. Using the trans- 
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formed section as in Art. 55, taking moments about the upper edge, 
we get 

id X + npbd X d = (id + npbd) kd; 

hence 
I 2 pn 

2 (i + />«) (i) 

The moment of inertia of the equivalent steel area about the neutral 
axis is practically 

npbd(i - kyd^ = pn(i - k)n d^ 

The moments of inertia of the tensile and compressive concrete areas 
respectively are }4 b(j — k)^ d^ (nearly) and }4b d^-, hence, 

lo = H W + (i — + 3 » (i — kY] b d^. 

Expanding the binomials in this equation, inserting the value of k 
from eq. (i), and then reducing, gives 

/o -rV”‘,bd? 
12 [1 + p n) (2) 

Substituting this in eq. (i) of Art. 159, we get 

i2{i+pn) Wl^ Wl^ 

^ x+Apn Ecbd^ • . (3) 

where a stands for 12(1 + pn) -i- (i + 4pn). Value of a for any 
particular case (of p n) may be taken from the graph in Fig. 2. 

Probable deflection due to a proposed or design live load may be 
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computed more readily by means of eq. (5), below, which may be 

deduced as follows; From eq. (2) of Art. 159 and eq. (3) above 

CaMP 

Ecb<P ' (4) 

From Art. 54, -W = Rb d^-, hence, 

P R 
D == Ca- — dE, is) 

See diagrams 3 and 4 for values of R. 

0 0.1 0.2 0.3 o.< 
Values of pn 

Fig. 2. 

Example.—i. A concrete beam rests on end supports i6 ft. centre to 
centre; the breadth of its section is lo in., the depth (to the steel) is 15 in., 
the reinforcement consists of four %-in. rods extending along the whole 
length (and stirrups). What is its probable deflection when sustaining a 
uniform load of 10,000 lbs., including its own weight? 

The value of Ci is 5/384 (see Table 10). The amount of steel is 1.767 in.^; 
hence p = 1.767 -r- 150 = 0.012. If /> = 8, np ^ 0.096 and a = 9.5 
(see Fig. 2). Therefore, eq. (3) becomes 

5 10,000 (16 X 12)_ 

384^*^ (30,000,000 8) 10 X 15^ ~ ^ 

Example.—2. The deflection of the beam described in the preceding 
example is desired, (i) when it is loaded so that the working compressive 
fibre stress is 500 Ibs/in.^, and {ii) when the working stress in the steel is 
14,000 Ibs/in.* 
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(t) The value of C is 5/48 (see Table 10). For » = 8, p — 0.012 
(as in example i), and fe = 800, diagram 3 gives R = 123. Therefore, 
eq. (5) becomes 

D = -i- q.c (16 X 12)^123 
48 IS (30,000 000 -r- 8) 

= 0.083 in. 

iii) For n ^ Sy p = 0.012, and/* = 14,000, diagram 3 gives R == 148* 
Therefore, eq. (5) becomes 

D = -5 Q.c (16 X 12)^148 
48 15 (30,000,000 -i- 8) 

o.io in. 

T 

161. Rectangular Cross-Section Beam with Compression Bars.— 

The notation used here is 

/I [ A I like that of Art. 82. It is 

represented in Fig. 3. The 

tensile and compressive 

steel areas respectively are 

pb d and p' b d; the corre¬ 

sponding steel unit stresses 

are /, and It should 

be plain from Fig. 3 that 

/. = nfc ■ and /.' = »/, 
I - d'/d 

Proceeding as in the preceding article, allowing full value of tensile 

concrete, we get 

k = ^ + + <i'/^ ( >. 
2 {1 -k- pn + p' n). 

The moments of inertia of the “ weighted ” tensile and compressive 

steel areas respectively are practically, 

npbd{i-kyd^ and n p'b d {k - d'/d/)"^ d^ 

The moments of inertia of the tensile and compressive concrete areas 

respectively are nearly 

yib{i — kY d^ and }4b(kd)^; 
hence, 

/o = [M (i-kY+P n (i-kY+p' n {k-d’/mb d*. (2) 
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Substitution for k in eq. (2) from eq. (i), as in Art. 160, is not practical; 
but we may write as in Art. 159 

Wl^ 
.« 

where /3 stands for the reciprocal of the (bracketed) coefficient of h (P 
in eq. (2). The numerical value of for any ordinary case (value of 
p n, p' n, and d'/d) may be taken from the curves in Fig. 4. 

Ill-; 1-: 1-1 1 I-■. 1 1 1 1 1 I ;  1 1 1 1 

.o'.'ds ■ ■ V’ i.=■ d'.i'p ■" Vl.d.Ts'■ 

SSS8S 

0^ 0.3 0.1 0^ 0.3 

Values of pri 

Fig. 4. 

0.2 0^ 

For a proposed or design live load the probable deflection may be 
computed from eq. (4) below, which may be deduced from eq. (2) of 
Art. 159, and M —feRbd^ from Art. 83. Combining these two 
equations so as to eliminate M, we find 

-‘m,.>■> 
The value of R for any given case may be taken from diagrams 8, 9, 

or 10. 
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Example.—i. A 12 by 20 in. beam rests on end supports 16 ft. centre to 
centre. It has 1% compressive steel 2 in. from the top, and 2j/^% tensile 
steel 2 in. from the bottom. How much deflection would be caused by a 
live load of 2250 lbs/ft.? 

Solution: From Table 10, Ci = s/384. If » = 12, pn — 0.025 X 
12 = 0.3, and p' n = o.oi X 12 = 0.12; d'/d = 2/18 = o.iii. From 
Fig. 4, 

with d'/d = o.io, P = 5.9; 
with d'/d = 0.15, p = 6,1; 

and so for d'/d = o.ii, we take P = 5.9. Hence (see eq. (3)) 

^ 5 (2250 X 16) X (16 X 12)® D = q Q -^— = O.II in. 
384 (30,000,000 12) 12 X 18® 

Example.—2. Suppose that the foregoing beam is to support a centre 
live load so as to produce stresses /c = 750 and /« = 18,000 Ibs/in.^ The 
probable deflection due to this load is desired. 

Solution: With n = i2,/«/m/c = 2; d'/d == 2/18 = o.ii. Entering 
diagram 9 at/,/w/c = 2, we may pick out various values of p and p'. 
Choosing p = 1% say, then np — 0.12; note intersection of horizontal line 
at fs/nfc = 2 and curve np = o.i2. This intersection corresponds to 
p' = 0.85 p (or p' = 0.85%). From this intersection trace down to R curve 

= 0.12, in lower part of diagram, and read 0.21 (about). From 
Fig. 4, with d^/d = 0.1, pn — 0.12 and p' n = 0.85, note that /3 = 8 
(about). From Table 10, C = 1/12. Hence eq. (4) becomes 

± X ° ^ 750 X 0.21 
12 18 2,500,000 

0.09 in. 

162. Deflection of T-Beams.—The notation used here is like that 

of Art. 71. It is represented in Fig. 5. 

Allowing for full value of the tensile concrete, we get, as in Art. 73 

k = 

V h' (tV . //VI . 

J~b\d) + W J + 

[b' b't t 

IF” j + d + 

• • (i) 

The moment of inertia of the transformed concrete section, the steel 

weighted w-fold, is given by 

lo - H[k‘ - (i - f)(s - 

+ - (i - + 3 /> n (i -k)^] bd^. (2) 
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The deflection formula (i) of Art. 159 becomes 

WP 
(3) 

where 7 stands for the reciprocal of the coefficient of b in eq. (2). 

Because there are so many variables {n p, Vjb and //J) in eqs. (i) and 

(2), graphical representa¬ 

tion of 7 is not practical. 

Because the flanges of 

T-beams are generally 

parts of a floor slab, the 

concrete in the flanges is 

generally subjected not 

only to longitudinal but 

also to transverse fibre 

stress. These latter in¬ 

fluence deflection but are not taken into account in eq. (3), which is 

not so reliable as formulas for beams rectangular in cross-section. 

Example.—K T-beam rests on end supports 10 ft. apart, and sustains 
loads of 5000 lbs. at its third points. The dimensions of the section are 
6 = 16 in., 5' = 8 in., d = 10 in., and t = ffi*; Q'^d the reinforcement 
consists of three M'in. square bars. What is the probable deflection due 
to the load? 

Solution. The steel ratio is o.oii; and with n = 8, eq. (i) gives 
k = 0.485; hence y = 11.3. Now for loads at third points, Ci = 23/1296 
(see Table 10); hence, 

^ 23 II.3 X 10,000 X 120^ _ 
IJ == -7-——7—-r = 0.00 m. 

1296 3,750,000 X 16 X 10® 

163. Experiments on Deflection of Beams; Comparisons with 

Formulas.—(i) The first selection of test data is from an extmsive 

investigation by Bach * on about 50 rectangular and 20 T-beams. 

The rectangular beams were 2 m. long, 30 cm. deep, and 15, 20, or 30 cm. 

wide. They were reinforced with a single straight bar, several straight 

bars, straight bars with stirrups, or several bars, some bent up; the 

percentages varied from about 0.4 to 1.35. The T-beams were 3 m. 

* Mitteilungen uber Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Heft 

39. 4S. 46, 47 (1907)- 
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Deflection Scale. 1 Division 0.1 mm. 

lioad-deflection Gmilis for Four Groups of Beams. 

Fig. 6. 

long, 45 cm. wide, 48 cm. deep, flange 10 and web 20 cm. thick. They 

were reinforced with straight bars, with or without stirrups, or bars, 
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some bent up, with or without stirrups; the percentage of steel was 
about 0.8 in all of them. 

Beams were made in sets of three as nearly alike as possible. 
They were tested on end supports, and loaded at third or quarter 
points. Deflections were measured at five or seven points along the 
beam, to the nearest 0.004 niin. 

Fig. 6 shows the load-deflection curves for four sets of beams. 
Groups (i) and (2) relate to rectangular beams; in (i) the beams were 
15 cm. wide, reinforced with 0.5% of steel in 3 rods, 2 bent up at each 
end; in (2) the beams were 20 cm. wide and reinforced with 1.35% 
of steel in three rods, two bent up at each end. Groups (3) and (4) 
relate to T-beams; in the beams of (3) there were three straight rods 
(0.8%) and 24 stirrups; and in those of (4) there were five rods, four 
bent up at each end (0.77%), and 24 stirrups. Only a part of each 
curve is given. The dot on each corresponds to one-quarter ultimate 
load; dots on extensions of group (4) would be a trifle higher than in 
group (3). 

The dashed lines marked A are graphs of the deflection formulas 
corresponding to the various beams. The deflection formula 
agrees as well with other sets in Bach’s tests except in a few cases 
in which the reinforcement consisted of a single straight rod and 
stirrups. 

(it) The second selection pertains to some tests made by Talbot * 
(see Fig. 7). Groups (i) and (2) relate to two sets of T-beams, 
12 in. deep (over all), flange 3)4 and web 8 in. thick; the span was 
10 ft., and loads at third points. The three in group (i) were 16 in. 
wide, reinforced with straight bars (about 1%) and stirrups; the three 
in group (2) were 24 in. wide, reinforced as others except that some 
rods were bent up. Graph 3 is for a very large rectangular beam; its 
breadth was 25 in., depth to steel 30.5 in., span 23.5 ft., and percentage 
of steel 1.25. Only a portion of each graph is shown; the dot on each 
corresponds to one-fourth the ultimate applied load. The dashed 
lines marked A are the graphs of formulas for the corresponding 
beams. 

• Biilletin Univ. of Ill. Eng. Exp. Station, No. la (1907); Eng. News, Vol. LX, p. 145 
(1908). 
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Deflection Scale. For (1) and (2), 1 Division *= 0.025 in. 
For (3) 1 Division 0.05 in. 

Load-deflection Graphs for Three Groups of Beasos^ 

Fig. 7. 
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(Hi) Fig. 8 ajBfords still other comparisons of test deflections *** 

and formulas. The hatched area at the left is the field of four load- 

deflection graphs for four beams with 1.47% steel; that at the right 

is the field for graphs for five beams with 0.74% steel. All beams 

were 8 by ii in. in cross-section, 12 ft. long; they were tested on end 

supports, loads at third 

points. Lines marked „ 

A are graphs of the § 

deflection formulas for g 

the beams respectively. T 
g 

Note: Professor G. | 
A. Maney has proposed t g 
the following formula ^ 
for deflection of beams: ^ 

D = C^(eo + e.). (i) I 

where Cc and denote 
unit deformation in ex¬ 
treme fibres of concrete 
and of (tensile) steel at 
the place of maximum 
bending moment. In the paper referred to, he shows very close agreements 
between deflections measured in tests of ii beams, and deflections computed 
from the formula, he having substituted measured (test) values of Cc 
and e,. 

For design, such values of Cc and e, being unavailable, Maney rewrites 
the formula, in other publications, thus: 

/ 
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Deflection Scale, 1 Division 0.05 inch 

Load-deflection Graphs for Two Groups of Beams 

Fig. 8. 

r^l^nfc+fs 

^ d E ' 

In the case of a design load, fc and /, are working stresses, it being assumed 
that the designed cross-section will be consistent with both fc and /,. In 
the case of a constructed beam under load,/c and /* denote stresses ^due to 
that load. In either case, the calculations (for cross-section or for stresses) 
are to be made by standard methods or formulas. 

It may be noted that eq. (3) of Art. 159 is like eq. (2) above except for 
the factor /'//o, where /' and /o respectively denote moments of inertia of 
cross-section, including allowance for steel, without and with tensile con- 

* From U. S. Bureau of Standards Technologic Paper No. 2 (1911), by R. L. Humphrey 
and L. H. Losse. 

t Proc. A.S.T.M., Vol. XIV (1914), p. 310. 
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Crete. Eq, (2) gives larger deflections than eq. (3) in the ratio /o//'. 
Thus for rectangular cross-sections, 

when pn = 0,1 0.2 0.3 0.4, 
then ratio = 1.85 1.40 1.23 1.12. 

For further comparison, Maney’s formula is shown and marked B in Figs. 
6, 7, and 8. 

Stirrups and Bent-up Rods do not affect the stiffness of beams 

materially for working loads; but they do increase the ultimate 

deflection as well as the strength. Bach’s tests clearly show this to 

be true, for example: 

(i) Column a of the following table gives the average deflections 

for three beams (numbers 7, 13, and 14) corresponding to the loads 

tabulated; the beams were reinforced with a single straight rod 

(p about 0.9%). Column b gives the average deflections for another 

set of 3 (29, 32, and 37); these were reinforced like the first set but 

with sixteen stirrups added. The fourth column gives the percentage 

differences between the deflections of the two sets of beams up to 

4CXD0 kg. The average ultimate deflections of the two sets were 1.78 

and 2.3 mm., and the ultimate loads 18,900 and 23,250 kg. respectively. 

DEFLECTIONS OF RECTANGULAR BEAMS 

Loads 
Deflection (Millimeters) 

(Kilos) 

a b Diff. A B DiflF. 

500 0.052 0.052 0% 0.048 0.050 4" 4 0% 
IOCX> .110 .107 -2.7 . 107 .110 ■f 2.8 

1500 • 175 .165 -5.7 . 167 173 + 3.6 
2000 .245 .232 -4 9 .232 . 248 + 6.8 

2500 .307 -4.6 .308 •330 + 6.9 
3000 .417 — 2.6 .403 .403 + 6.7 
3500 .580 -4.6 .538 .585 + 8.7 
4000 n .767 -3.3 •775 .902 +14.0 

(2) Column A of the same table gives the average deflections for 

a set of beams (40, 43, and 45) which were reinforced with three 

straight rods {p = 0.55%); and B the average deflections for a set 

(49, 51, and 53) reinforced like the first, but two of the rods were bent 
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up at each end. The last column gives the percentage differences 

between the average deflections of the two sets of beams. The 

average ultimate deflection of sets A and B were 3.38 and 3.45 mm. 

and their average ultimate loads 8250 and 8600 kg. respectively. 

(3) The numbered columns in the following table give the average 

deflections of six sets of T-beams, three in each set, for the loads tabu- 

DEFLECTIONS OF T-BEAMS 

lated. The beams were alike except as to reinforcement. Beams 

of set I were reinforced with three straight rods (p — 0.8%); set 2 

like I and 24 stirrups; set 3 like i and 48 stirrups; set 4 with five 

rods (p = 0.87%), four bent up at each end; set 5 like 4 and 24 stir¬ 

rups; and set 6 like 5 except that a hook was formed at each end of 

the fifth rod. The horizontal lines in the table are drawn to cor¬ 

respond to one-quarter ultimate loads. The last column of the table 

gives the greatest percentage difference for the various working loads. 

The average ultimate deflections were 2.4, 3.2, 3.8, 6.0, 5.8, and 

9.4 mm.; the average ultimate loads 23,000, 30,500, 37,800, 33,300, 

41,000, 46,000 kg. respectively. All average ultimate deflections are 

not reliable. 

164. Deflection Due to Shrinkage and Plastic Flow.—Shrinkage.— 

For a beam singly reinforced, shrinkage of the concrete will force the 

beam into a curved form, the radius of curvature depending upon the 

amotmt of shrinkage, amoimt of steel, and depth of beam. The 

solution of the problem may be arrived at as follows: 

It will be asssmned first that the concrete is not cracked in the 

process, but it will be stressed in tension on the side containing the 

steel, and the steel will be stressed in compression. On the unrein- 



i66 DEFLECTIONS OF BEAMS 

forced side the concrete will be in compression. There will be an 

axis of zero stress in the concrete (neutral axis) the position of which 

will first be determined. To simplify the problem the concrete 

below the steel will be ignored. The stresses in concrete and steel 

are in equilibrium. 

Let /, = stress in steel after shrinkage has taken place, and 

/g and fc = extreme fibre stresses in the concrete on the tension and 

compressive faces respectively. Let P = total compression in steel. 

This acts as an eccentric force on the concrete of the beam, producing 

d 
a direct tensile stress of P/b d and a bending moment of P -. The 

total fibre stress in the concrete on the tension side is ^ 

d d 

r .. f I f I f 
bd^ bd ^bd' 

— b d^ 
12 

And on the compression side it is 

bd bd bd' 

Hence, /« = fi/2, which places the neutral axis ]/z d from the top, or 

k = yz.(i) 

Let m = coefficient of shrinkage. This will represent the actual 

shrinkage at the neutral plane. At the bottom fibre it will be 

m — fjEc, and the stress /, will be equal to {m — fl/Ec) E, = 

mE, —As the total compression must equal total tension, 

we have, noting that k = and/c = Hfc 

f.pbd + Hf:xy3bd = y2f:x^bd 
from which 

fc = 4Pf>.(2) 

(3) 

(4) 
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The deflection will now be considered. Assuming a circular curve 

the centre deflection for a simply supported span is 

D = 
I 

8 ^ y' 
(S) 

where b == unit deformation of a fibre distant y from the neutral 

plane and I = span length. Consider the bottom fibre for the calcu¬ 

lation. The value of 5 is 

K^Apf,^ ApfnE, _ Arpn 2 
Eo Ec (i + 4 />«) 1 + Apn ’ 3 " 

Hence 

D= 3 Apn 

16 I + 4 /> « 
(6) 

Example.—Assume m = 0.0002, p = 0.008, « = 15; / = 16 ft, 
d = 16 in. 

0.0002 
From eq. (3) /« = —-- X 30,000,000 = 4050 Ibs/in.^ compression; 

I -r 0,40 
/c = 4 X 0,008 X 4050 = 130 Ibs/in.^ tension; fc = 65 Ibs/in.* com¬ 
pression. 

% 0.48 P n • 
D == --^ X 0.0002 X -3 = 0.0000122 -3 = 0.028 m. 

10 1.48 a a 

Applying the same shrinkage coefficient to the beam of example i of Art. 160 
gives a deflection of 0.025 which is about one-third that due to load. 

For continuous beams, if we neglect the effect of any reinforce¬ 

ment on the compression side, the deflection due to shrinkage will be 

about one-half that of a simply supported beam of the same 

span. 

The effect of compressive reinforcement is to decrease the effect 

of shrinkage as it reduces the ratio b/y in eq. (5). In fact, the neutral 

plane may be entirely above the beam if the compressive reinforce¬ 

ment is large. 

If the concrete be assumed as cracked throughout, due to shrinkage 

and loading, the deflection due to shrinkage will be greater than 

calculated above. In this case there is no stress in the concrete or 
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Steel and the neutral plane may be considered to be at the top. The 

unit deformation d will now be equal to m, and y — d. 
Hence 

T. l P r V 

.® 
p 

For m = 0.0002, D — 0.000025 —. 
d 

For the particular value of />« = 0.12 of the foregoing example, 

this deflection is twice the value on the “ no cracked ” assumption. 

As the deflection depends upon the behavior of the concrete 

throughout its entire volume, the true value will probably lie closer 

to the result given by eq. (6) than eq. (7). 

The foregoing gives a means of making a fair estimate of the 

effect of shrinkage on deflection. With larger shrinkage coefficients 

such as 0.0006, which is quite likely to occur, the shrinkage deflection 

is likely to be as large as that due to load. The effect of cracking will 

also be of more influence. 

Plastic Flow.—^As indicated elsewhere this effect may be taken 

account of by using a low value of Ec or high value of n, such as 40 or 

45. The formulas and diagrams of the preceding articles may be 

used. It will be found that the deflection is greatly increased but 

not in proportion to the increase in n. For example, comparing the 

deflection for Ec = 2,000,000 with that for Ec = 750,000, correspond¬ 

ing to « = 40, the ratios are 4.35 : 7.3. 

Considering the effects of both shrinkage and plastic flow, it is 

apparent from the foregoing analysis that the effect of long-sustained 

loads applied to beams under relatively dry conditions will cause 

deflections of as much as 3 or 4 times the elastic deflection at the 

beginning. Several tests that have been reported show values cor¬ 

responding to these estimates.* 

* See summary of published data in Proc. Am. Conor. Inst, Vol. 27, 1931, p. 886. 



CHAPTER VII 

COLUMNS 

163. The Relative Length of Concrete Columns.—Short columns 

or piers of a length up to 4 or 5 diameters may be built without rein¬ 

forcement but for greater lengths some reinforcement should be used 

to provide for bending stresses that are likely to occur. In ordinary 

construction the ratio of unsupported length to least width will seldom 

exceed 12 or 15, and results of tests indicate little or no eflfect of length 

up to ratios as high as 20 or 25. Hence the reinforced column can 

usually be designed as a “ short column.” For columns with a slender¬ 

ness ratio greater than about 40 (ratio of length to diameter about 12) 

a long-column formula should be used. 

166. Kinds of Reinforced Columns.—There are three general types 

of reinforced columns in use: 

(1) Columns reinforced by longitudinal rods. 

(2) Columns reinforced by longitudinal rods and circumfer¬ 

ential or hoop reinforcement, consisting usually of spirally 

wound wire closely spaced. 

(3) Columns composed of structural-steel or cast-iron cores 

surrounded by concrete with hoop reinforcement. 

Longitudinal reinforcement aids the concrete by carr3dng a part of 

the load directly, the stresses in the two materials being proportional 

to their moduli of elasticity. Hoops and bands support the concrete 

laterally, preventing lateral expansion to a greater or less degree, and 

thus strengthem’ng the concrete. Although the use of circumferential 

reinforcement alone increases the ultimate strength of a column and 

renders it capable of sustaining increased deformations, it is not con¬ 

venient to use such reinforcement without some longitudinal bars to 

hold it in place, resulting in a column of type 2. 

169 
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THEORY AND GENERAL RELATIONS 

167. Columns with Longitudinal Reinforcement.—So long as the 

steel and concrete adhere, the relative intensities of stress in the two 

materials will be proportional to their moduli of elasticity, using the 

secant modulus as explained in Art. 24. 

Let A = total cross-section of column; 

Ac = cross-section of concrete; 

As = cross-section of steel; 

p = ratio of steel area to total area = A si A; 

fo = unit stress in concrete; 

fs = unit stress in steel; 

/ = average unit stress in entire section; 

n = ratio of moduli of steel and concrete at the given stress 

/o ~ Es/Ec) 
P = total strength of a reinforced column for the stress 

Then 

P — fc Ac ft As — fe (A — p A) fcfl p Ay 

whence 

p = /<■ ^ [i + («-1) .(i) 

The average unit stress will be 

/ = PM =/.[i + (n-i)/>].(2) 

The relative increase in strength caused by the steel is shown by the 

term (« — i)p. Thus Up = 2% and » = 15, the relative increase in 

strength due to the steel is 14 X 0.02 = 28%. 

The unit stress/, in the steel is always equal to nfe and for the usual 

working values allowed in the concrete will always be relatively low. 

The stronger the concrete and the higher the value of /«, the smaller 

is n and the product nfei = /,) remains about constant, about 7000 to 

10,000 lbs/in.2 This is an uneconomical stress for steeel, but it is 

unavoidable. In fact, at ordinary prices it is cheaper to carry com¬ 

pressive stresses by concrete than by steel, and the use of steel is justi¬ 

fied only because of other factors of the problem, such as bending stress, 

increased reliability, increase in allowable working stress in the con¬ 

crete, and reduction in space required. Steel costs in place from 40 to 

50 times the same volume of concrete, exclusive of form work, while the 



THEORY AND GENERAL RELATIONS I71 

ratio of,unit stresses (value of ») is from 10 to 15, thus indicating that, 

neglecting indirect advantages, steel is four or five times as expensive 

as concrete. The general conclusion which may be stated is that the 

use of a larger amount of steel than is necessary to secure the in¬ 

direct advantages heretofore listed is uneconomical. 

168. Columns with Hoop Reinforcement.—Whenever a material 

which is subjected to compression in one direction is restrained laterally, 

then lateral compressive stresses are developed which tend to neutralize 

the effect of the principal compressive stresses and thus to increase the 

resistance to rupture. Were the compressive stresses equal in all 

directions there would be no rupture, and the tendency to rupture may 

be measured by the amount by which the longitudinal stress exceeds 

the lateral, that is, by the amount of the unbalanced longitudinal stress. 

Within limits of elasticity of both the concrete and the surrounding 

steel, it is possible to deduce a theoretical relation between the lateral 

and the longitudinal stresses, and thence the portion of the longitudinal 

stress remaining unbalanced. This relation depends upon the relation 

between the lateral and longitudinal deformations of concrete under a 

compressive force acting in one direction only. This is Poisson’s 

ratio, and its value for concrete has been determined by various experi¬ 

menters to be from 1/6 to i/i2 for ordinary working stresses. 

Let M = Poisson’s ratio, fc = unbalanced or excess of longitudinal 

over lateral compressive unit stress, / = total longitudinal unit stress, 

/, = unit tensile stress in steel, p = steel ratio = ratio of volume of 

steel to volume of concrete. 

We find approximately 

/-/.(.+ .(3) 
and 

/. = M nfc*.. (4) 

* Demonstration. Let n — Poisson^s ratio; p = steel ratio considered as a thin 
cylinder of equivalent area surrounding the concrete; = cross-section of this steel 
cylinder; r = radius. Then 

A, pirr^ and thickness of cylinder 
pirr^ r 
--P-. 
2 T r 2 

With no steel banding the stress / would cause a proportionate lateral swelling of ^ m- 
Ee 

If the actual stress in the steel is /« then the compression per sq. in. developed in the 
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Taking Poisson’s ratio at eq- (3) becomes/ =» /c (i + « ^/i6), 
and eq. (4),/, = 1/9 «/c. As the term « ^/i6 is not more than 2 per 

cent it is apparent that within the limits of elasticity the hoop rein¬ 

forcement is of little aid in strengthening the column, much less than 

longitudinal steel, as shown in eq. (2), Art. i67. The steel stress of 

nfc is very small. 

Although it is thus evident that hoop reinforcement can have little 

effect upon the concrete stress within the elastic limit, such reinforce¬ 

ment is qmte effective in increasing the ultimate strength of a colmnn 

and its ability to withstand deformations without rupture. (See 

results of tests described in Art. 173.) 

r faP 
concrete by the steel reinforcement = fs p- -i- r =-. This compression caused by the 

2 2 
banding is equal in all horizontal directions, and has the same effect on distortion as two 

pairs of equal compressive forces acting on two sets of faces of a cube. The resultant 

fa P 
lateral compression due to these horizontal forces is equal to- (i — /x). Combining 

2 Ec 

this compression with the lateral swelling caused by / we have the net lateral deformation 

f fa P 
equal to —m-— (i — n). This net deformation must equal the actual deformation 

Eq 2 Eg 

in the steel under the stress/«, which is or Hence we have 
Eg n Ec 

f fa P f X fa 

faP 
A part of f may be considered to be balanced by the lateral compression of —; it is 

2 
the unbalanced portion only which is significant. Call this unbalanced portion fc', then 

fa P 
/ ~ /c H-• Then eliminating /, from these two equations we find for fc the value 

2 

y-/.(.+ V- ).(,) 
\ n/>(i - 2/u) + 2/ 

We also have 

.(b) 
n/>(i 2^) -f 2 

For ordinary values of p eqs. (o) and (6) are reduced approximately to 

.W 

.(2) 
and 

/« « /i nft 
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169. Columns with Both Longitudinal and Hoop Reinforcement.— 

From the theoretical considerations of the preceding article it would 

appear that the addition of bands or hoops to columns having longi¬ 

tudinal reinforcement would not have much effect upon the deforma¬ 

tion of such columns until the ordinary elastic-limit strength of the 

concrete has been passed. The effect of such hooping would be to 

maintain the integrity of the concrete beyond the usual limit of defor¬ 

mation and so enable the longitudinal steel to be stressed to a higher 

value. As an effective and reliable structural unit this t)^e of column 

is superior to either of the others. 

170. Concrete Columns as Long Columns.—Columns whose 

slenderness ratio exceeds about 40 should have their working stress 

reduced by application of a long-column formula. Such a formula can 

be derived from the theoretical form of the Rankine formula, which is, 

for pivoted ends 

P' = 
P 

I + 
/ 

7r2£ 

(S) 

in which P is the strength of a short column, / and E are the ultimate 

strength and the modulus of elasticity of the concrete, I = length, and 

r = least radius of gyration. This formula gives results materially 

too low when applied to steel columns, but it is believed that it is not 

too conservative for material like concrete. The value oif/E may be 

taken at i/iooo, giving finally the formula 

P' = 
P 

I 

I H- 
10,000 

(6) 

For the usual fixed-end conditions the constant in the denominator 

may be made 1/20,000 giving 

It may be observed that if formulas be derived from the Rankine- 

Gordon formulas for steel columns, by taking account of the difference 
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in ultimate strength and modulus of elasticity of the materials, the re~ 

suiting formulas would contain constants of very nearly the same value 

as for steel, namely, i/18,000 and 1/36,000. The higher values above 

given represent a larger degree of safety, which is to be desired. For a 

value of l/r of 100, or a length of about 30 diameters, the formula for 

fixed ends gives an ultimate strength of two-thirds that of the short 

column. Because of the fact that it is difficult to secure thoroughly 

homogeneous concrete, and that variations in quality will affect the 

strength of long columns more seriously than any other structural form, 

long columns should generally be avoided. 

Formula (7) is practically the same as that suggested by Bach, as 

the result of tests on columns up to values of //r of about 100.* 

The Joint Committee, 1924, specifies the straight-line formula 

^ - ITo • 0.® 
for columns having a value of Ijr greater than 40. This gives some¬ 

what higher results than formula (7) for values of Ijr from 40 to 55, and 

lower results for higher values. 

The American Concrete Institute Specifications of 1928 use formula 

(8) for columns reinforced by longitudinal steel only (“tied columns”)? 

but for spirally reinforced or composite columns allow 

. 

for value of //r greater than 50. The results are the same for //r = 100. 

The unsupported length I is to be taken as the clear length between 

built-in slabs or beams which support the column in all directions. 

TESTS OF COLUMNS 

171. Tests of Plain Concrete Columns.—^Although imreinforced 

concrete is not used for columns beyond a length of about 4 diameters 

it will be useful to consider some results of tests on plain concrete 

columns, especially with reference to the compressive strength as 

determined on short specimens. These results show in general con- 

Zdt. Ver. Deutsch. Ing., 1913, p. 1969. 
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siderably less strength per square inch than the same concrete in the 

short cylindrical specimen. This is due not so much to the effect of 

flexibility, as such a column is very rigid, but rather to the increased 

effect of the non-homogeneous character of the material and to various 

unavoidable imperfections and irregularities giving rise to small bend¬ 

ing moments. 

Table 11 gives results of tests made at the University of Illinois. 

TABLE II 

UNIVERSITY OF ILLINOIS, I907 * 

All Columns were 12 in. in Diameter by 10 ft. Long 

Crushing Strength, 

Group 
No. of Kind of 

Lbs. Per Sq. In. 
Age 

Columns Concrete in Days 

Average Minimum Maximum 

I 2 I : : 3 2300 2120 2480 62-66 

2 7 1:2:4 1740 1165 2210 58-72 

3 2 1:3-6 1030 955 mo 61-62 

4 2 

0
0

 575 575 575 63 

5 6 1:2:4 2025 1770 2680 181-203 

6 2 1:2:3^ 2710 2650 2770 
f 12 mo. 

1 16 mo. 

* From Bulletin No, 20, Eng. Exp. Sta., University of Illinois. 

In general, it was found that the richer mixtures tended to fail 

by true shear failures, whereas the poorer mixtures generally failed 

by gradual crushing. The very superior results obtained on the 

1 : 13^ : 3 mixture as compared with the 1:2:4 mixture, or poorer, 

should be noted. It shows the value of the use of rich mixtures for 

columns, the increase in strength over the 1:2:4 concrete being about 

32% while the increase in cost would not be over 10 or 15%. The 

great variation in individual tests in Table lo should be noted, the 

results for group 2 varying from 33% below to 27% above the average. 

Results of comparative tests on short cylinders of 1 : 2 :4 concrete, 

stored in damp sand for 9 to 11 months, gave an average crushing 

strength of 2650 Ibs/in.^; tests on 12-in. cubes stored in air at age of 60 
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days gave an average value of about 1950 Ibs/in.^, and at age of about 

200 days, of 2350 Ibs/in.^ 

Tests made at the University of Wisconsin in 1908 gave an average 

value of about 2000 Ibs/in.^ in 60 days on i : 2 : 4 concrete, the results 

there obtained being very uniform. This was about 85% of the cylin¬ 

der strength. Other tests of plain concrete columns noted in Art. 173 

showed values of from 80 to 85% of the strength of cylinder specimen. 

172. Tests of Reinforced Columns.—General Behavior of Columns. 

—The phenomenon of “flow” of concrete under sustained loads has 

been noted in a general way for many years and has been confirmed by 

various tests on beams and observations on beams and columns in 

service. This action of concrete, together with the considerable 

amount of shrinkage which takes place under ordinary inside condi¬ 

tions, should be kept in mind in studying the results of column tests 

that have heretofore been made in the usual short-time operation. 

The subjects of shrinkage and flow are discussed in detail in Art. 174. 

Columns with longitudinal reinforcement only exhibit about the 

same characteristics in a test as columns of plain concrete. When the 

stress on the concrete has reached its ordinary ultimate strength, the 

concrete fails on shearing planes, the rods bending or buckling at 

the same time. 

It is important to note that in this type of column the steel gives 

very little aid in preventing the concrete shearing out; it merely serves 

to carry part of the load until the concrete is over-loaded. W'ith 

ordinary materials the deformation reached at the ultimate strength 

of the concrete brings the stress in the steel up to about its elastic 

limit and sometimes beyond. For example, if the ultimate strength 

of the concrete is 3000 Ibs/in.®, and Ec at rupture = 2,000,000, the 

stress in the steel corresponding to the ultimate strength of the concrete 

is 3000 X 15 = 45,000 lbs/in.2, which may exceed its elastic limit. 

Inasmuch as the steel rapidly deforms as soon as the )deld point is 

reached, this limit may be taken as the maximum possible stress in 

the steel. 

The ultimate strength of such a column is thus approximately equal 

to the strength of the concrete plus the yield-point strength of the 

steel. For high-elastic-limit steel the ultimate strength of the concrete 

is likely to be reached first, and in that case would determine the 
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Strength of the column. Here the influence of shrinkage and flow 

would act to increase the ratio of steel to concrete stress and so to 

utilize the higher elastic limit of the steel. 

In Fig. I curves C and D are typical stress-strain diagrams of a 

plain concrete column and of a column reinforced with longitudinal 

Deformation per Unit Length 

Fig. I. 

rods. The ordinates represent the average stress per square inch on 

the entire column. The effect of the steel in D is to carry part of the 

load, giving less strain for the same total load. The ultimate deforma¬ 

tions are not greatly different, that of the reinforced column generally 

being a little the greater. In both cases the failure is sudden and the 

total deformation small. The curves are similar in form to the ordinary 

compression curve for concrete. 
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Columns with hoop reinforcement, with or without longitudinal 

steel, are likely to show a much greater deformation before rupture 

than those without hoops, although this effect appears to be dependent 

upon the strength of the concrete and amount of reinforcement. High- 

strength concrete shows less effect than low-strength material. As 

shown in Art. i68, the steel cannot receive any appreciable effect until 

the load approaches the ultimate strength of the concrete. 

Curves A and B show a comparison between a plain concrete column 

and a hooped column. The deformation is practically the same up to 

the crushing point of the plain concrete. Beyond this the hooped 

column undergoes a greatly increased deformation before rupture 

takes place. Curves C, D, and E represent a plain concrete column, 

a column with 2% longitudinal reinforcement only, and a column with 

1.85% longitudinal and 0.94% spiral or hoop reinforcement. Note 

the effect of the spiral reinforcement in increasing the deformation and 

the ultimate strength but not the behavior of the column within the 

elastic strength. 

In these tests the elastic limit of the longitudinal steel was 

about 36,cxx) Ibs/in.^, which stress would be reached at a deforma¬ 

tion of 0.0012. From this diagram it is evident that in all the 

hooped columns the longitudinal steel passed far beyond its elastic 

limit. 

In the following articles the results of some of the more important 

tests are given. These serve to illustrate the effects of various condi¬ 

tions and give reliable data as a basis for establishing suitable working 

stresses. The tests are grouped as follows: 

A, Tests of columns with longitudinal reinforcement only. 

J5. Tests of columns with hoop reinforcement only. 

C. Tests of columns, University of Wisconsin Series. 

Z?. Tests of columns of the American Concrete Institute. 

173. Results of Tests.—A. Tests of Columns with Longitudinal Rein¬ 

forcement Only.—The following is a summary of results of tests made 

by Professor A. N. Talbot on columns of 1:2:3% concrete rein¬ 

forced with longitudinal steel of an elastic limit of about 40,000 lbs. per 

sq. in. Age of columns 59 to 71 days. Length of columns 6 ft. to 

12 ft. 
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TABLE 12 

TESTS ON COLXBtNS WITH LONGITUDINAL REINFORCEMENT 

University op Illinois, 1906 * 

No. of Columns 
Cross-section, 

Inches 

Amount of 
Longitudinal j 

Reinforcement, 
Per Cent 

Crushing Strength, 
Lbs. Per Sq. In. 

Average Minimum Maximum 

4 12 X 12 1.2 1809 1587 1936 

7 9X9 1-5 1710 1280 2335 

6 / 9x91 

\ 12 X 12 J 
0 1550 1079 2206 

* Bulletin No. lO, Eng. Exp. Sta. 1907. 

Comparing the reinforced with the plain concrete, the average 

strength of the 12 by 12 in. columns with 1.2% reinforcement is about 

1.17 times as great, and the 9 by 9 in. columns with 1.5% reinforcement 

is about 1.10 times as great. These tests indicate less effect of rein¬ 

forcement than theory would indicate. Strain measurements indicated 

that the steel stress was close to the elastic limit and that the low values 

for ultimate strength of the reinforced columns appeared to be due to a 

lower actual crushing strength of the concrete in these columns than in 

the plain columns. This condition has been observed in other tests 

and is probably due to the interference of the reinforcing bars in the 

placing of the concrete. 

Tests made by the Bureau of Standards for the American Concrete 

Institute gave the following average results for i : i3^ : 3 concrete.* 

Amount of Reinforce¬ 
ment, Per Cent 

Strength, 

Lbs/in.* 
Increase of Strength 

per I % of Reinforcement 

0 274s 

1.00 37SO 1050 

2.03 3690 470 

4.07 4S3S 450 

The columns were 9 ft. 4 in. long by 20 in. in diameter. The elastic 

limit of the steel was about 36,000 Ibs/in.^ In this case the steel 

Proc. American Concrete Institute, 1915, vol. 3, p. 424. 
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evidendy was fidly effective up to its elastic limit as such limit would 

supply a strength of but 360 Ibs/in.^ per 1% steel. 

B. Columns with Hoop Reinforcement.—The effect of hoop rein¬ 

forcement alone is well shown by the results given in Table 13. Two 

forms of hooping were used, electrically welded bands i in. wide and 

of various gage thickness, and spirally wound wire at a pitch of i in. 

The columns were 10 ft. long by 12 in. in diameter. A thin film of 

mortar covered the hooping. Taking the elastic-limit strength as a 

basis, the effect of the hooping is, on the average, somewhat more than 

would be expected of longitudinal steel. 

TABLE 13 

TESTS OF HOOPED COLUMNS 

Ukiversity of Ilunois, 1907 

Concrete, 1:2:4; Age, 56-69 Days; Length, 10 ft.; Diam., 12 in. 

Reinforcement 
Average 
Strength, 
Lbs/in.* 

Excess Over Elastic 

No. of Plain Concrete Limit of 
Columns 

Kind Per Cent 

per 1% of 
Steel 

Steel, 
Lbs/in.* 

7 0 1740 

3 1.07 2239 560 

3 Electric 2.09 2877 540 

3 Welded 3 21 3202 458 48,000 

I Bands 1.39 2735 710 

2 1.02 2226 480 

2 

3 

High 
Carbon 

Wire 

0.8s 

1.69 
2505 

3437 

920 

1000 

60,000 

115,000 

3 
‘Mild 

Steel 

Wire 

0.84 2168 510 38,500 

3 1.65 2736 600 54,000 

C. Tests of Columns, University of Wisconsin Series.—The results 

of an extensive series of tests of reinforced columns made by Mr. 

M. O. Withey at the University of Wisconsin are given in Table 13 and 

in Figs. 2 and 3. Columns W were unreinforced; E were reinforced 

by longitudinal bars only with wire ties widely spaced; B were rein- 

* Bui. No. 466, Univ. of Wis., 191X. 
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forced by latticed angles forming a square 8 by 8 in. in section; the 

remaining columns by spiral wire and varying proportions of longi¬ 

tudinal reinforcement wired to the spirals on the inner side. The 

diameter of the columns was made equal to the outside diameter of the 

spirals, but the calculations have been made with reference to the 

inside diameter of lo in. The yield point of the steel reinforcement 

was 38,000 to 45,000 lbs/in.2 for the longitudinal steel and 80,000 to 

105,000 Ibs/in.^ for the spiral steel. The columns were sprinkled once 

a week. 

The characteristics of the various columns are well brought out in 

Fig. 2. Column IFa is of plain concrete and £3 is reinforced with 

longitudinal reinforcement only. The behavior of the two columns is 

about the same. Comparing and J2, the “ toughem'ng” effect of 

the hooping is well shown, also the effect of longitudinal reinforcement 

in giving added strength. 

Columns reinforced both longitudinally and spirally showed a 

fairly sharp change in curvature of the stress-strain curve, as at a in 
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TABLE 14 

TESTS OF REINFORCED COLUMNS 

University of Wisconsin 

Length of Columns, A . . . C = 120 in.; H . . .U = 100 in.; Age, 2 Months 

Reinforcement Concrete 
Average Strength 

OF Columns, 
Lbs/IN.2 

sec- 
No 

Per Per 
Com- tion, 

pressive Sq. in. At At No. 

Kind Mix Strength Yield Max. of 

al 
of Cyl., Point Load Tests 
Lbs/in.2 

W None. 0 0 1:2:4 2420 86.6 2600 3 
E gH" rods with ties, i 

ft. c. to c. 2.3s 0. n 1:2:4 2300 118 2470 3 
B 4 a"X2"X3/i6" latticed 

angles. 4.5 1:2:4 2200 64 3740 2 
C i" spiral, i" pitch. 0 2.0 1:2:4 2180 78.5 2380 4030 4 
D 9 rods and spiral, 

i" pitch. 3 50 2.00 1:2:4 2250 78.5 3580 4750 4 
H No. 7 wire spiral, 2" pitch 0 0.50 I : 2 : 3H 1750 78.5 1850 2230 2 
G 8 W' rods and No. 7 wire 

spiral, a" pitch. 2.0 0.50 i : 2 : 3H 1760 78 5 2710 3300 2 

I 8 11/16" rods and No. 7 
wire spiral, 2" pitch. 3.78 0.50 I : 2 : 3H 2180 78.5 3470 4160 2 

J 8 rods and No. 7 wire 
spiral, 2” pitch. 6. II 0.50 I : 2 : 3 H 

0
 0 78.5 4240 5120 2 

L No. 7 wire spiral, 1" pitch 0 1.00 I : 2 : 3M 1770 78.5 1370 2640 2 

K 8 rods and No. 7 wire 
spiral, 1" pitch. 2.0 1.00 I -'2 : 3H 2000 78.5 2610 3900 2 

N 8 ir/i6" rods and No. 7 
wire spiral, 1" pitch. 3.78 1.00 1:2:3^ 1800 78.5 3370 4190 2 

M 8 rods and No. 7 wire 
spiral, 1" pitch. 6. II 1.00 I : 2 : 3H 1680 78.5 3760 4680 2 

P 8 i" rods and No. 7 wire 
spiral, i" pitch. 8.0 1.00 1:2:4 2360 78.5 5666 6920 2 

0 8 "H" rods and spiral. 
i" pitch. 6. II 1.96 1:2:4 2480 78.S 4430 6580 2 

R 8 1" rods and spiral. 
i" pitch. 8.0 1,96 1:2:4 2380 78.s 5190 6960 2 

Q 8 I rods and H" spiral. 
l" pitch. 10.12 1.96 1:2:4 2300 78.5 5760 7090 2 

S No. 7 wire spiral, i" pitch 0 1.00 1:1:2 4070 78.5 4050 5850 2 

T 8 rods and No. 7 wire 
spiral, I "pitch. 6. II 1.00 1:1:2 4400 78.s 5760 7290 2 

V No. 7 wire spiral, i" pitch 0 1.00 I ’iH 4870 78.s 3570 5340 2 

U 8 rods and No. 7 wire 
spiral, 1" pitch. 6. II 1.00 I 4SS0 78.5 S9S0 8150 2 
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Fig. 2 for columns h and J2. This point, which may be called the 
yield point of the column, was found to be at a deformation corre¬ 
sponding to the yield point of the longitudinal steel, and the load then 
carried was closely equal to the compressive strength of the concrete 
plus the yield-point strength of the steel, or 

Pi — fc A. (1 — p) -\-f,Ap 

where Pi = yield point, f/ = ultimate strength of a plain concrete 
column,/, = yield-point strength of steel, and p = steel ratio of longi¬ 

tudinal steel. The ultimate strength varied with the amount of spiral 
reinforcement, the excess over the yield point increasing with the 
amoxmt of spiral reinforcement and equal to from 500 to 1000 Ibs/in.^ 
for each 1% spiral reinforcement. In every case the total deformation 
was from double to several times the deformation corresponding to the 
yield point of the longitudinal steel, showing that the steel was stressed 
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beyond that point. Removal of load after stressing far beyond the 
yield point and reloading showed a higher yield point as in the testing 
of steel. 

Fig. 3 shows individual tests plotted with reference to amoimt of 
reinforcement, with lines drawn representing fair average values of 
ultimate strength and yield point. These diagrams show the small 
effect of spiral steel upon yield point and the relatively large effect on 
ultimate. The effect of longitudinal steel on both yield point and ulti¬ 
mate is closely proportional to amount of steel used. 

D. Tests of Columns of the American Concrete Institute.—^An impor¬ 
tant series of column tests is that being conducted (1931-32) at Lehigh 
University and the University of Illinois under the supervision of a 
committee of the American Concrete Institute.* Some interesting 
results already published will be noted. 

The columns were 8 in. in diameter and 60 in. long. Reinforce¬ 
ment was about 1% spiral and from 1.5% to 6% longitudinal, the 
latter steel being of three grades, structural, intermediate, and rail 
steel, with yield points from 42,000 to 68,000 Ibs/in.^ Plain concrete 
columns were also tested. The cylinder strength of the concrete 
ranged from about 2200 to 7300 Ibs/in.^ at 56 days. 

Effect of End Conditions.—Three types of end arrangements were 
investigated: (a) reinforcing bars bearing directly upon the plates of 
the testing machine; (b) columns provided with enlarged heads or 
capitals 18 in. long and 14 in. diameter, with rods stopped 3 in. short 
of the end; (c) rods stopped 3 in. short and spliced by dowel rods 
lapped 20 and 30 diameters and bearing against the plates. The 
highest results were obtained from type (o). Results from type (b) 
were from 2% to 4% lower. Results from type (c) were from 5% to 
15% lower than (a). The longitudinal reinforcement in these columns 
was 4%. 

Plain Concrete Columns.—The ratio of strength of columns to 
cylinders was about 85% at Lehigh and 80% at Illinois. 

Reinforced Columns.—The results of these tests showed that in 
general the longitudinal steel was stressed to its yield point before 
failure for all grades of steel, the deformations at rupture being equal 

• Proc. American Concrete Institute, Vol. 27-1931, pp. 677 to 835. 
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to and in many cases much greater than the deformation corresponding 
to the yield point of the steel; and by comparing the results for different 
steel ratios and yield points they indicate that the effect of the longi¬ 
tudinal reinforcement was to contribute a strength equal to the yield- 
point strength of the steel. Assmning the strength of the concrete 
to be the same as that of a plain concrete column, the effect of the spiral 
steel could then be estimated. A group of the tests at Lehigh indicated 
that the increase of strength due to 1.2% of spiral steel was from 400 
to 570 lbs/in.2 for various amounts of longitudinal steel. In the Illi¬ 
nois tests the effect of the spiral steel appeared to be greater. 

Tests made by slow loading during the latter part of the run, allow¬ 
ing 4 hours between each increment of load, showed little effect on 
ultimate strength, but the deformations were in general greatly 
increased for the last one or two increments in the case of the rein¬ 
forced columns. For plain concrete the effect was small. 

Columns of the higher grade of concrete, tested at the usual speed 
of loading,failed suddenly,but for concrete of 2000-to 3500-lb. strength, 
the failure was gradual. Generally speaking, the deformations of 
these columns were less than in most of the tests on hooped columns 
heretofore made, owing in part to the relatively high strength concrete 
used and, possibly, to the small amount of spiral reinforcement com¬ 
pared to the strength of the concrete. 

174. Effect of Shrinkage and Flow on Reinforced Columns.— 
Observations on the columns of buildings have shown deformations 
over a period of four to six years, due to shrinkage and flow, of 0.03% 
to 0.15%, corresponding to steel stresses of 9000 and 45,000 Ibs/in.^, 
assuming the yield point not exceeded. The larger the amount of 
reinforcement, the smaller the effect.* Lateral shrinkage has also 
been observed corresponding to a steel stress of 11,000 to 15,000 Ibts/in.* 

Tests by R. E. and H. E. Davis f on plain and reinforced short 
prisms, 10 in. by 20 in., subjected to sustained load for years, gave 
results as follows: 

Plain Concrete.—^Load of 800 Ibs/in.^ Initial deformation 0.02%, 
giving a value of £ = 4,000,000 Ibs/in.® The deformations due to 
shrinkage and flow were: 

* Proc., American Concrete Institute, 1921, p 150. 
t Proc., American Concrete Institute, 1931, p. 837. 
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xoo Days I H Years 

Shrinkage, per cent. 0.033 
0.03s 

0.066 

0.060 Flow, per cent. 

Reinforced Concrete.—^Longitudinal reinforcement 1.91%, hoop 
reinforcement 1.3%. Load of 880 Ibs/in.^ Initial deformation 
0.019%._ 

100 Days I y2 Years 

Shrinkage, per cent. 0.023 

0.022 

0.044 

0.038 Flow, per cent. 

The amount of flow under different loads was roughly proportional to 
the load applied. The rate of change decreased greatly with age 
(compare roo days with years). At years the steel stress 
might be calculated as follows: 

Initial stress. 5)700 Ibs/in.^ 
Stress due to shrinkage. 13,200 Ibs/in.® 
Stress due to flow. 11,400 Ibs/in.^ 

Total. 30,300 lbs/in.2 

The stress in the concrete changed from 775 initially to a final stress of 
300 lbs/in.2 The lateral shrinkage corresponded to a compressive 
stress in the spiral steel of 13,800 Ibs/in.^ 

The concrete used in these tests was a i : 2.64 : 2.32 mix with 
water-cement ratio of 0.86 by volume. The specimens were stored in 
air at 50% humidity. 

The column tests of the American Concrete Institute Committee 
mentioned in Art. 173 included also tests on the effect of sustained 
loads, and results of observations for 20 weeks have been given. 
After curing in the moist room for 56 days, the colximns were removed 
and loaded with loads calculated by the design formula of the American 
Concrete Institute, except in a few cases, where the New York Building 
Code was used. The deformations due to shrinkage and flow (not 
including initial deformation) amounted generally to from 0.035% to 
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0-07%, corresponding to a steel stress of 10,000 to 20,000 Ibs/in.* 
Under moist storage the deformations were very much less, generally 
from 0.01% to 0.02%. 

The general effect of shrinkage and flow is to reduce the stress 
intensity in the concrete and increase that in the steel as compared 
to the initial or design values. Under increasing loads, in a long-time 
test, the steel will reach its yield point at an earlier load than otherwise, 
but if the ultimate strength of the column is measured by the ultimate 
strength of the concrete plus the yield-point strength of the steel it 
will not be changed. As compared to the usual short-time test the 
deformations will be greatly increased. 

The relations can best be understood by a rough general analysis of 
the problem. 

Let m = shrinkage coefficient of plain concrete; 
Ef = ratio of stress to flow, which increases with age but which, 

with certain limits, is approximately constant for 
various stresses; 

Ec — usual modulus of elasticity of concrete under short-time 
loading. 

Then Mfc = actual stress in the concrete, the total unit deformation in 
concrete is 

A I /c , /C 

The unit deformation of the longitudinal steel is 

A 
* e; 

Placing these equal and solving, we have as the ratio of stresses 

fjt 
fc 

tnE. , ^ ^ 

/. ^ Ef^ e; (i) 

Assume for illustration values as follows: 

m = 0.06%; 
Ef = 1,000,000 for usual working loads = 0.06% for a load of 

600 lbs/in.2; 

Ec = 3,000,000 for a 3000-lb. concrete; 
E, *= 30,000,000. 
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The tests and observations previously referred to indicate that these 
values are not unreasonable. Inserting the numerical quantities in 
(i), we have: 

f. 18,000 

~T~ 
+ 30 +10 = 

18,000 

~T~ 
+ 40- . . (2) 

This expression replaces the value of » in the usual relation/,//, = n. 
The term 18,000//, represents shrinkage, and 30 represents flow, and 
these, taken together, are several times as large as the term lo, the 
value of n for elastic stresses. 

The total load on the column is 

P = A(x -p)f. + A pf, 

= A [/,(i — P) 18,000 /> + 40 /»/,]. 

The average stress is (neglecting //,) 

and 

/ = J = /c (l + 40 /») + 18,000 p . (3) 

/« = 
/ — 18,000 p 

1 + 40 p 

/, = 18,000 + 40/,. 

(4) 

(5) 

It will be instructive to estimate from these relations the actual 
stresses in concrete and steel in columns designed by a working formula 
such as that of the American Concrete Institute. This is 

/ = J = /«[i + (» - i) />] 

where /, = 300 + (0.10 + 4 />)/,'. 
Assuming/,' = 3000 Ibs/in.^, we have the various design values of 

/„/„ and/given in cols. 2,3, and 4 of Table 15. If we then assume the 
entire load to be permanent and to cause flow we get from eqs. (4) and 
(5) the probable actual values of /, and /, shown in the second group, 
cols. 5 and 6. 

In building columns only a portion of the load is sufficiently per¬ 
manent to cause flow, mainly the dead load. If the live load is twice 
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the dead load, a not uncommon ratio, and only 50% of the live load is 
considered in column design, then one-half of the column load will be 
dead load and one-half live load. The dead load will cause flow, the 
live load little or none, and the live-load stresses may therefore be dis¬ 
tributed according to the usual value of n {n = 10). Values calcu¬ 
lated on this assumption are given in the last group, cols. 7 and 8. 

TABLE IS 

EFFECT OF SHRINKAGE AND PLASTIC FLOW ON STRESSES 

Steel 
Ratio 

1 

Stresses by Desisrn 

Formula (« ■= lo) 

Stresses after 

Shrinkage and 
Flow under 

Full Load 

Stresses under One-half Load as Permanent 

Dead Load and One-half Load as Temporary 
Live Load not Producing Flow 

1 
Dead Load | j Live Load Total 

P fc 

1 

u / Sc U fc /* fc /. fc U 

(I) (a) (3) (4) (S) i (6) (7) (8) (9) (10) (11) (12) 

O.OI 720 7,200 780 430 35,200 ISO 24,000 360 3600 510 27,600 

0.02 840 8,400 990 350 32,000 80 21,200 420 4200 500 25,400 

0.03 960 9,600 1220 310 30,400 30 19,200 480 4800 510 24,000 

0.04 1080 10,800 1470 290 29,600 10 18,400 540 5400 550 23,800 

0.06 1320 13,200 2030 280 29,300 — 20 17,200 660 6600 640 

i 

23,800 

The figures in the table show the great effect of shrinkage and flow 
m reducing the concrete stresses and increasing those in the steel. 
The smaller the percentage of steel the higher the stresses with the 
design formula employed here. With half live load the stresses are 
more nearly uniform in both steel and concrete. 

A comparison of the values in cols. 5 and 6 with the results of the 
tests of the American Concrete Institute referred to in Art. 173, shows 
that values approximating these were obtained in 5 months. 

175, Factor of Safety.—The relative factor of safety with respect 
to the ultimate strength of a column cannot readily be judged from 
the values of stresses such as given in the foregoing analysis. This 
is because of the effect of the amount of steel and the fact that its 
strength is limited by its yield point. Assuming the column strength 
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to be equal to the compressive strength of the concrete (85% of 3000 
lbs. = 2550 lbs/m.2) plus the yield point of the steel (taken at 45,000 
lbs/in.2), have the following relations: 

Steel Ratio 

P 

Working Value of 

/ 

Assumed Ultimate 

Strength 3550 (i ~ 
-f 4S.000 p 

Factor of Safety 

O.OI 780 297s 3.8 

0.02 990 3-4 
0.03 1220 31 
0.04 1470 2.9 

0.06 2030 Sioo 2-5 

It will be seen that whereas the actual unit stresses shown in Table 15 
are highest for the lowest percentage of reinforcement, the factor of 
safety is the highest for such columns. Considering that the concrete 
is a more variable material than the steel, and that a larger propor¬ 
tion of the strength is contributed by the concrete for the lower steel 
ratios, it would seem proper that the factor of safety be somewhat 
higher for such columns. The difference is, however, greater than 
would appear reasonable, and the allowable value of /„ in the formula 
increases rather too rapidly with increased value of p. 

176. Tests of Composite Columns.—Tests of this type of column 
are not nmnerous. Results show the same general effect as for the 
other type of column with longitudinal reinforcement. With properly 
designed hooping the strength of such coliunns is approximately equal 
to the combined strength of reinforcement and concrete. As the mod¬ 
ulus of elasticity of cast iron used for such purposes is only about 
12,000,000 Ibs/in.® the ratio of stress in the iron to that in the concrete 
will be only about 40% as much as for steel, but the effect of shrinkage 
and flow will generally bring the cast iron into full action. 

177. Conclusions Regarding Strength of Columns.—Summarizing 
the results of tests discussed in the foregoing paragraphs, the following 
general conclusions may be drawn: 

The strength of plain concrete in columns is equal to from 80% to 
85% of tlio strength in cylinder specimens. 

The strength of columns rdnforced with longitudinal bars only 
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(“tied” columns) is greater than that of plain concrete, the excess 
being in some cases equal to the theoretical, in other cases less. The 
results appear to be more uncertain than those of the hooped type. 

Columns with longitudinal and hoop reinforcement have a strength 
somewhat in excess of the sum of the crushing strength of the concrete 
and the yield point of the steel, the excess depending upon the amount 
of spiral reinforcement. Deformations increase rapidly when the 
yield point is reached. 

The effect of shrinkage and plastic flow under sustained loads is 
greatly to increase the stress in the longitudinal steel and to reduce 
the stress in the concrete. This effect probably is such as to utilize 
the yield point of the steel in the tied column in the same manner 
as in the hooped columns. Its effect on the influence of the spiral 
steel on ultimate strength is problematical and awaits determi¬ 
nation. 

178. Working Stresses for Columns.—The working stresses usually 
specified distinguish between the two general types of columns. The 
hooped column is considered to be a more reliable structural unit than 
the tied column, and a higher working stress is allowed. The unit 
stresses allowed on the concrete by the American Concrete Institute 
Specifications are: 

For the tied column fc = 0.225 fj 
For the hooped column/, = 300 4- (o.io + 4 p) fj 

where/c' is the cylinder strength of the concrete. The Joint Committee 
allows only 0.20// for the tied column. 

In the hooped or spirally reinforced column the area considered 
effective is that within the outer surface of the spiral reinforcement, and 
the fireproofing layer of i in. or more is neglected. Because of the 
closely spaced spiral steel this outer layer is not well bonded to the 
interior, and for loads approaching the ultimate it breaks away and is 
ineffective. In the tied column the entire section is taken into account, 
as there is full continuity of the concrete throughout. This difference 
in treatment leads to the somewhat anomalous result that in certain 
cases the total cross-section of the spiral column will need to be greater 
than the tied coliunn. This is difficult to avoid as the characteristics 
mentioned are well established. In both types of columns after the 
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value of fe has been determined the column section is calculated by 
the same general formula 

P/A =/,[! + («- i) p]. 

For composite columns the core and concrete are assumed to act 
practically independently and each allowed its own working stress, 
the concrete, as specified by the American Concrete Institute at 25% 
of the crushing strength. 

179. Column Details.—^Details of design and construction involve 
the hoop or spiral reinforcement, securing of bars in place, splicing 
of bars, and fireproofing of steel by a sufficient thickness of concrete. 
These details are described in the specifications. Splices are made by 
lapping the bars, the specifications requiring a lap of 30 diameters for 
plain bars and 24 diameters for deformed bars. Some of the tests 
mentioned in Art. 173 indicate that this is not quite adequate for full 
strength. Splices are made by extending the bars of the lower column 
into the base of the upper. At the foundation the column bars must 
rest on a foundation plate or dowel bars be constructed in the footing 
and extended up into the column to provide a proper splice. 

Spiral reinforcement is made of cold drawn wire of to in. in 
diameter. Vertical spacing, or pitch, must not exceed one-sixth the 
core diameter nor exceed 3 in. As the spiral steel is not generally 
directly allowed for in the imit stresses, it is used only to the extent 
sufficient to secure the general effect of hooping. From the tests 
quoted it wovild appear that this should be from to i per cent. The 
American Concrete Institute Specifications require an amount equal 
to one-fourth the longitudinal steel. Some building codes allow directly 
for the spiral steel. For example, the New York code specifies 

P/A =/c j^i + (» - i) /> + 

in which 
p' = ratio of spiral steel; 
/, = working stress in spiral steel. 

The value of /, is taken as a constant, depending upon the concrete 
strength. 
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In view of the uncertain eflFect of spiral steel on ultimate strength 
beyond the load determined by the action of the concrete and longi¬ 
tudinal steel, it would seem undesirable to take it directly into account 
in this way. 

180. Bending Stresses in Columns.—The bending moments in 
columns caused by the action of floor and wind loads are often of con¬ 
siderable amount. The resulting bending stresses, when combined 
with the axial stresses, are allowed to exceed the usual working axial 
stresses by a certain amount. The American Concrete Institute Spec¬ 
ifications allow a fixed excess stress of 0.15/,' for hooped columns and 
0.075/c' fo*" tied columns. The latter is one-third the working stress. 



CHAPTER VIII 

ANALYSIS OF FLAT SLABS 

i8i. General Conditions.—In the preceding chapters, we have 
dealt with beams on the assumption that they were individual units 
carrying definite loads, and that the stresses on any transverse section 
were uniformly distributed in a lateral direction,—that is, were of 
equal intensity at all points equidistant from the neutral axis. This 
treatment holds good, of course, for beams or slabs of indefinite 
width, supported along lines transverse to the axis, provided the 
loading is uniformly distributed over the entire width of the beam. 
In such a case it is convenient and satisfactory to analyze a strip of 
beam i ft. wide. But there are many cases, both in building and in 
bridge construction, of broad beams or slabs in which conditions of 
support or loading are such that they cannot be analyzed by this 
method. The important cases of this kind are the following: 

A, Broad beams or slabs, supported along two sides only, but 
loaded with concentrated loads, such as bridge floors 
supporting concentrated loads. 

B, Rectangular slabs supported on four sides. 
C, Footings, in which a flat slab supports one or more columns. 
jD. Floor slabs supported directly on columns, this arrangement 

constituting the so-called flat-slab ” construction. 

In all these cases the structure is a statically indeterminate one, 
that is to say, the stresses cannot be determined in detail from the 
principle of statics alone; relative deflections or deformations must be 
considered. Various investigators have quite fully analyzed some of 
these cases, but the process is too complex to be applied in practice to 
specific problems. The results obtained, however, give valuable 
information regarding the distribution of stresses which can be used 
to supplement the information obtained by the application of the 
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principles of statics and so enable safe and economical designs to be 

made. The several cases mentioned above will be considered in the 
order given. 

A. SLAB BEAMS SUPPORTED ALONG TWO SIDES 

182. The Problem of Analyses.—^Where concentrated loads are 

applied to beams of great width, it is necessary to determine approx¬ 

imately the manner in which such loads are distributed laterally over 

the beam. A common example is a bridge floor consisting of a con¬ 

crete slab resting on steel or concrete beams, the beams running either 

parallel or transverse to the axis of the roadway. In either case the 

stresses caused by concentrated loads, such as the wheels of a truck, 

involve a determination of the extent to which such a concentration 

is distributed laterally over the beam. The problem may be con¬ 

sidered in two parts, (i) the lateral distribution of load over a beam 

of given width, and (2) the determination of the “ effective ” width 

of a beam of indefinite or very great width. Only a rough theoretical 

treatment of this problem can be given, but the results of analysis 

may serve as a basis for reasonable rules of practice, and for a rational 

interpretation of experimental data. 

183. Lateral Distribution of Concentrated Loads on Slab Beams.— 
Fig. I represents a plan view 

of a slab beam of length I and 

width b, simply supported at ^. ^_1® 

A A' and B B'. The principal j jj 

reinforcement is longitudinal, | ji Lo*dW 
but the beam is also generally « -zrrr.i-rzzrt--— 

reinforced laterally to some rf 

extent. A concentrated load ^ j lie I c 
W is applied at the centre. 1 ^ 'V ^ [ 

The problem is to determine i- 

the relative proportion of this ^ 

load carried by a central ele¬ 

ment a a and by any other element dd or cc. 
In general, the relative loads carried by the various longitudinal 

elements will be proportional to their deflections, and it is evident 

that the point e once will not deflect as far as the point C under the 
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load. The difference in these deflections will be measured by the 
upward deflection of point e with respect to C, due to the lateral 
transfer of load. This upward deflection will now be estimated and 
compared to the downward deflection of the entire beam along the 
line e e. 

It is obvious that the lateral transfer of load from C toward the 
edges of the beam is not accomplished entirely by a narrow strip e e 
under the load, but to a variable extent throughout the entire length 
of the beam. For a certain length V, it may be assumed that the 
lateral transfer of load will be practically uniform, and it will be 
sufficiently exact for our purpose to assume the transfer of load to be 
concentrated over this length This length may safely be taken at 

or of the length 1. It will then be assumed that ^ the load W 
is transferred lateraUy in each direction over a length of /' = 1. It 
will also be assumed that the transverse strips e e, etc., are so rigid 
that they transfer the load equally to each longitudinal strip cc, dd, 
etc. Each half of the beam D ED' E' acts, then, as a cantilever 
beam loaded with a load W at the centre and a uniform upward load 
equal to W(2 on each half, causing a small upward deflection of the 
edges D E and D' E' with reference to the centre C. The downward 
deflection of the entire beam on the line e e will be a maximum at C 
and a minimum at e] its average value will be about the same as if the 
load W were uniformly distributed along the line e e. It will be so 
calculated. 

Let A = downward deflection of beam centre, assuming the load W 
uniformly distributed along the line e e; 

A' = upward deflection of point e relative to C; 
I = moment of inertia of a longitudinal strip of beam, a a, one 

unit wide. 

It will be sufficiently accurate for present purposes to assume that 
the moment of inertia of a transverse imit strip e e is the same as that 
of a longitudinal strip. There will be differences in the amount of 
steel, but the concrete will be the same, and, under working conditions, 
the differences in steel will have little effect on deflections. Hence, 
the total moment of inertia of the longitudinal beam will he b I 
and of the transverse beam D E D' E' will be I' I. 
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Under the above assumptions, the deflections will be as follows; 

A = 

A' = 

Wl^ 
. . . (0 48 £ / 6’ 

W (b\^ 
tU _ Wb^ 

... (2) 
2.EI v 32Eir • • • 

Comparing A' with A, we have 

That is, the ratio of deflections is approximately proportional to the 
fourth power of the ratio hjl. 

If, for example, hjl = then A'/A = 1.5/81 = 0.02; that is to 
say, the edges of such a beam will be deflected upwards with respect 
to the centre only about 2% as much as the average downward deflec¬ 
tion, or about 3% as much as the maximum. The load W is therefore 
distributed transversely practically uniformly on a beam of such 
proportions. 

184. Effective Width of Beams of Indefinite Width.—To solve this 
problem we will first estimate the width of a beam over which the 
distribution may be considered practically uniform. For such a beam, 
it would be reasonable to place a limit of variation of deflection at, 
say, 20% from the average. Then placing A'/A = 0.2, we have, 

^ = — 

7-5’ 
from which 

b — 0.61.(4) 

If the length V be assumed at //3, instead of as would appear reason¬ 
able from the results obtained above, the result would be 
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and for A'/A = 0.2, 
b = 0.651. 

Applying this information to a beam of indefinite width it should 
be noted that in the latter case the edges of the strip of width b are 
not free to bend up as cantilever beams, but are restrained by the 
portion outside the width considered, hence the ratio of A' to A for 
the width b is considerably less than here assumed. 

From this analysis, it would appear that it is reasonable to assume 
an even distribution of load over a width of two-thirds the length 
of the beam. This may be called the “ effective width ” of the beam 
for concentrated loads. Where the concentrated load itself is dis¬ 
tributed over a considerable width, such width may be added to the 
width b as above determined. 

185. Transverse Bending Moments in Slab Beams.—The average 
bending moment in a longitudinal strip one unit wide will be 

M = 
Wl 

46' 
(i) 

The bending moment Af' in a transverse strip one unit wide, assuming 
V = //3, and acting as assumed in Art. 183, will be 

2 1 4 

jWb 

8 I ' 
(2) 

Making b = 0.61 gives the following values: 

M = o.42W,  .(3) 

M' = 0.22 W.(4) 

Equations (3) and (4) indicate that the transverse bending moment, 
under the conditions assumed, is approximately one-half the longi¬ 
tudinal moment. Tests of slabs appear to show that under working 
loads the transverse moment is considerably less than this, good 
results being obtained on beams with little or no transverse reinforce¬ 
ment. An amoimt of transverse reinforcement equal to 3^ to M the 
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longitudinal is ample in any case. For loads approaching the ultimate, 
the transverse moments will become relatively greater, as the deflec¬ 
tion will depend more and more on the steel, and less on the concrete. 
Final failure from concentrated loads generally occurs by the load 
pimching through the slab, a combination of punching shear and 
diagonal tension. 

i86. Tests of Slab Beams.—Tests have been made by Professor 
C. T. Morris * on slabs 4 in. and 7 in. thick, spans from 3?^ to 7 ft. 
and widths from i ft. to 7 ft. The longitudinal reinforcement 
amounted to 1.04% and the transverse reinforcement 0.2% to 0.78%. 
His general conclusions were as follows; 

1. The effective width is affected very little by the percentage of 
transverse reinforcement. 

2. The effective width decreases somewhat as the load in¬ 
creases. 

3. The effective width in percentage of the span decreases as the 
span increases. 

4. The following formula wiU give a safe value of effective width 
where the total width of slab is greater than 1.35 / -1- 4 ft. 

t = 0.6 ^ -f- 1.7, 

where b = effective width in feet, and 
I — span-length in feet. 

The Office of Public Roads, U. S. Department of Agriculture, con¬ 
ducted a series of tests on a slab beam 12 in. thick of i6-ft. span 
length, and a width of 32 ft. For a single concentrated load the effect¬ 
ive width was found to be about ii ft., for loads producing concrete 
stresses about equal to ordinary working stresses. The slab had 
0.75% longitudinal reinforcement, but no transverse reinforcement. 
This value of the effective width is about 0.7/.! The specifications 
for Highway Bridges of the American Association of Highway Officials 
specify an effective width of 0.7 / -1- W, where W = width of area over 

• Bulletin No. 28, Highway Department, Ohio, 1915. 
t Engineering Record, Vol. 71,1915, p. 26. 
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which the load is applied; but the effective width is not to exceed 
7 ft. 

187. Distribution of Load from Continuous Slabs to Supporting 
Joists.—^Where a continuous slab is supported by several beams or 
joists, it becomes necessary to estimate the maximum load on any 
one joist caused by a concentrated load on the slab. It is a problem 

depending upon the relative flexibility of 
the slab and the supporting beams. It will 
be advantageous to derive certain theoretical 
formulas covering two simple cases. These 
will indicate the probable range of values 
and the effects of the various elements of the 
problem. 

We will assume, first, a slab of width b 
resting upon three longitudinal supporting 
beams, Fig. 2, and supporting a concentrated 
load W placed at the centre. The problem 

is to determine the proportion of the load W carried by the centre 
beam, or the values of the reactions Ri and R2^ 

Fig. 2. 

Let E = modulus of elasticity of slab; 
I = moment of inertia of slab = 1 /12 bh^\ 

K = coefficient of flexibility of supporting beam == deflection 
in inches for a load of i lb. applied where the slab is 
placed. This can readily be computed for any given 
length and section of beam; 

d = spacing of beams in inches; 
a = a constant = K E I/d^. 

Then, by placing the deflection of the slab at the centre, equal to the 
difference in deflection of the centre and outside beams, we can solve 
for the value of i?i, obtaining 

Then 

Ri i±_3f XfT. 
1 + 9® 

(i) 

R2 
W -Ri 

2 
(2) 
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If five supports are assumed instead of three, a similar analysis gives 
the following results (Fig. 3): 

_ 7 + 108 o + 36 
I I o o i * 7 + 204 a + 180 

R,. (w - R,). ■ . . 

R, = 

16 + 24 a 

W - Ri- 2 R2 

(3) 

(4)^^rm 
Rt R« Ri Ri 

(5) 
Fig. 3. 

To show how the values of Ri vary with values of the constant a, 
the curves of this fimction for values of a from 0.05 to 3.0 are plotted 
in Fig. 4. It will be seen that for values of a less than i.o, the value 
of Ri is about the same, whether three supports or five supports are 
used. Small values of a correspond to rigid or widely spaced supports 

VmlaeB of a 

Fig, 4. 

and thin or flexible slabs; large values of a, to stiff slabs and flexible 
supports. 

Ordinary values of the constant a may be estimated as follows: 
For the usual case of a wide slab resting upon joists, the effective 

width 6 may be taken at least as great as d. The value of / is then 
equal to 1/12 d ffi. Assume E = 3,000,000. The quantity K is the 
deflection of the supporting beam for a i-lb. load distributed over the 
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X Wl^ 
length h. For a centre load, the deflection is — -.and for a nni- 

40 i 6 

<; WP 
formly distributed load it is where W = total load on beam, 

384 Kb lb 
and I, Eb, and h refer to the beam. As the load is only partially dis¬ 
tributed, the value of K or the deflection for a load of i lb. may be 

I 
taken at about — ..1-. 

60 Eb Ib 
Assuming a beam of steel, Eb = 30,000,000. Then if 6 = d, we 

have 

a = 
KEI P 

60 Eb Ib 
X 

E-xlxi dip 

The value of 

approximately 

Pd 

7200 /j 

Pd IP 
-T X 1^- 
7200/5 d^ 

(6) 

will ordinarily range from 150 to 300, hence, 

a = (150 to 300) 
#• (7) 

We have, then, for a very thin slab such that h/d = i/io, a = 0.15 to 
0.30, and from Fig. 4, Ri = from 0.5 W to 0.55 W. For k/d = 1/7, 
a = 0.45 to 0.9, and Ri = 0.45 IV to 0.50 W, and for A/d = i/5, 
a = 1.2 to 2.4, and Ri = 0.32 W to 0.38 W. 

As the ratio of thickness to stringer spacing will generally range 
from 1/5 to 1/7, the value of Ri may, ordinarily, be taken at about 
0.40 W. 

The tests by Professor C. T. Morris for the Ohio State Highway 
Department already mentioned included tests on the distribution of 
load to several beams. Slabs, 6, 7, and 8 in. thick, supported on 
three lo-in., 25-lb. I-beams, gave a load on the centre beam from 
32% to 48% of the total load. The value of a was in this case about 
130 IP/d^ and h/d ranged from 1/5 to 1/7. The corresponding values 
of Ri from Fig. 4 are about 0.4 to 0.5. The specifications for Highway 
Bridges of the American Association of Highway Officials use the 
formula Ri/W = d/6 for concrete floors, where d is stringer spacing 
in feet. 
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188. Bending Moment in Slabs Supported on Several Beams. 
—The bending moment in a slab resting on several supports will 

depend upon the relative values of the several reactions and the 

spacing of the beams. For three supports and Ri = 0.4 PF, ilf = 
0.3 W d. For five supports and Ri = 0.4 Wy M = 0.36 W d, and 

for Ri = 0.35 W, M = 0.40 W d. For four supports, load placed at 

the centre, the value of M ranges from 0.35 IF J for a = 0.5 to 
0.44 W d for a = 2, 

The above values relate to the effect of a load concentrated along 

a narrow line along the centre parallel to the beams. Considering the 

fact that any heavy load is distributed over a considerable width, 

it would appear that a value of If = 0.35 IF would be ample, as 

representing the total moment in the portion of the slab considered. 

For heavy loads, distributed laterally over a considerable distance, 

such as loads from road rollers, etc., the moment as above found may 

be divided by the number of stringers over which the load extends. 

Or, if c == width of load, then M = 0.35 Wd "t—. If c = (/, then 
/ d 

M = 0.35 Wd/2y etc. 

The bending moment per foot of width of beam will be equal 

to the total moment as above determined, divided by the effective 

width. Taking this as equal to d, we find the moment per foot of 

width to be equal to 0.35 W or 0.35 W 
'c d 

d ^ 

as the case may be. 

Thus, the moment per foot, in the case of a narrow, concentrated load, 

is independent of the stringer spacing. It would follow that for such 

a case, the thickness of slab (neglecting effect of dead load) is also 

independent of stringer spacing. This appears to be an unreasonable 

result but, considering the greater distribution of load in a longitudinal 

direction which results from a wide stringer spacing, it can be seen 

that within reasonable limits the stringer spacing will have little 

effect on the bending moment per foot of slab for a concentrated load. 

B. RECTANGULAR SLABS SUPPORTED ON FOUR SIDES 

189. General Conditions.—^Assuming the slab to be a plate of 

homogeneous material and the supports rigid, various investigators 

have analyzed the stresses in square and rectangular slabs for both 
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free and restrained edges, and also when continuous over supports. 
From the results of these investigations, suggested coefficients for a 
great variety of conditions are contained in a paper by Westergaard,* 
to which the student is referred for more detailed information. No 
attempt can be made here to consider this subject at length, but it will 
be instructive to discuss briefly certain elements of the problem, 
in order to assist in the selection of coefficients or in the use of approx¬ 
imate solutions by the simple methods of statics. 

190. The Square Slab (Fig. 5).—It will be assumed to be simply 
supported at the edges. Consider the bending moment along the 
central line a b. From considerations of possible deflections, this 
moment is obviously not uniform, being a maximum at the centre 

1 [< 1 1 

A B 

_a -A- 

C D 

Fig. s. 

a b 

w 
8 

c 

at 
8 

0 

Flo. 6. 

and zero at the edges. The pressure along the edges is likewise not 
uniform, being a maximum at the centres and very small or nothing 
at the comers. If we then consider the half slab. Fig. 6, cut along a b 
and supported along the margin a—C—Z>—b, we will attempt to 
determine the total moment on a 6 by a moment equation about this 
axis. The external forces are the half load W/2, and the reactions 
JF/4 and W/2,. The only xmcertainty is the locations of the centroids 
of pressure along the sides a C and b D. Assuming the pressure to 
vary as a parabola, the points of application of the reactions W/& 
are 3/161 from a b. Then we derive at once: 

W I /W % 
ilf«6 = — X i + 2(— X/ 

4 2 \ 8 16 ) 
w 
2 

Proc. Am. Concr. Inst., 1926, Vol. 22, p. 26. Contains bibliography. 
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whence 

Mah = 3/64 W I = 0.047 Wl.. (l) 

This is 54 the value of i/ibW I found by assuming uniform pressure 
all aroimd, and may be considered as a reasonably close approximate 
value. The average moment per unit width = 3/64 W. 

Comparison with the more exact analyses given by Westergaard 
indicates that this value is still too high. He gives theoretical values 
of about 0.042 W at centre and 0.032 W at quarter pwint, assuming 
Poisson’s ratio at 54- Hencky suggests 0.6 X 1/16IV = 0.037 IP. 
The A.C.I. specifications provide for 54 of the full half, giving 3/64 W 
as foxmd in eq. (i). Westergaard suggests a working coefiicient of 
1/30 or 0.033 basing this on a reduction of the theoretical values 
of about 28%, similar to the reduction made in the coefficients for 
“ flat slab ” floor design as noted in Art. 216. 

191. Oblong Slabs.—For oblong slabs the proportion of the load 
carried by the longitudinal system decreases rapidly with increasing 
ratio of length to breadth. A good notion of the relative distribution 
of load in the two directions can be obtained from a consideration of 
relative deflections. 

Fig. 7 represents an oblong slab of length I and breadth ft. Con¬ 
sider a central strip i ft. wide along the 
line a o' and also along the line mm'. 
Assume equal moments of inertia which is 
sufficiently accurate for deflection calcula¬ 
tions. Let Wl = load per foot on the 
strip mm' and W2 = load per foot on 
a o'. The deflection of a beam uniformly 
loaded is proportional to wl*; hence, since the deflections of the two 
beams are equal, we have wi I* = W2 b* or wi :W2 = b* : I*. That is 
the amount of the load carried (per square foot) by the two systems 
is inversely proportional to the fourth power of the respective dimen¬ 
sions. For points near the ends of the slab the proportion carried 
by the longitudinal system will be greater, and for points near the 
sides it will be smaller. 

In accordance with this theory the proportions of the total load 
carried by the two systems for various ratios oi I :b are as follows; 

Fig. 7. 
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Katio 1 \ h. B B B B B BB Ml mm 
Proportion of load carried by transverse 

system. . 0.50 0 59 0.67 0.75 0.80 0.83 

Proportion of load carried by longitudinal 

system. 0.50 0.41 0-33 0.25 0. 20 0.17 

More exact theoretical analyses indicate that these values are 
about right for the relative proportions of load carried by the two 
systems, but that for calculating the actual moments the coefficients 
should be considerably reduced, as in the case of the square panel, the 
reduction being greatest for the square panel and decreasing as the 
ratio of length to width becomes larger. Obviously, for a very long 
panel the slab would need to be designed for practically ioo% to be 
carried by the transverse system. 

For panels of a length of 1.5 or more times the width, the longi¬ 
tudinal reinforcement, besides being small in amount, is also very 
inefficient, as its unit stresses are limited by the limited deflections. 
For equal deflections and different span lengths the unit fibre stresses 
are inversely proportional to P) hence, for a ratio of l/b = 1.5, the 
unit stresses in the transverse steel in the central portion will be 
1.52 = 2.25, times those in the longitudinal steel. Therefore for 
ratios of 1.5 or higher the load in the central portion of the beam is 
carried almost wholly transversely, but there will always be a con¬ 
siderable part of the load in the areas near the ends that will be 
carried to the adjacent beams by the longitudinal reinforcement. 

192. Working Coefficients.—The specifications of the A.C.I. 
provide that the proportion of load to be carried by the transverse 
system shall be determined by the formula R = Ijh — where 
R = proportion of total load, I = length, and h = width of panel. 
The remainder is assigned to the longitudinal system. Furthermore, 
in the outer quarters of the slab the number of bars may be reduced 
50% below that called for by this rule. This in effect gives a total 
bending moment across the slab of % of that called for by the load 
prescribed. For //6 = 1.5, the entire load is to be assigned to the 
transverse system. In Table 16 are given the resulting coefficients 
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to be applied to the total load to get the total moment across the slab 
by the usual formula HW I, where I = span length in the direction 
considered. There are also given similar coefficients suggested by 
Westergaard, obtained by a reduction of about 28% from the theoret¬ 
ical values, and a third proposed set of values deduced as described 
below. 

TABLE 16 

COEFFICIENTS C FOR RECTANGULAR SLABS SIMPLY SUPPORTED ON 

ALL SIDES 

Total Moment ~ C X }/iW I 

Ratio l/b. I I. I 1.2 13 1-4 i-S 

.1 Longitudinal. 
0.375 0.45 0-525 0.60 0.67s 0.75 

■375 • 30 .225 •15 •07s .00 

, f Transverse. 
WestergaardJ v j- 1 [ Longitudinal. 

. 267 

. 267 
•33 
. 21 

•38 

•17 

• 44 
.14 

•50 
.12 

•54 
.10 

, f Transverse. 
ropose .... 1 LQi^gitu^iinal. 

•30 

•30 
•39 
.24 00

 
00

 

•57 
.12 

.66 

.045 
•75 
.00 

[A. Cl. •75 .75 •75 •75 -75 •75 
Totals.1 Westergaard. .525 •54 •55 .58 .62 .64 

[Proposed. .60 .63 .66 .69 •705 •75 

It would seem that in view of current practice in regard to flat-slab 
floors the coefiicients specified in the A. C. I. Specifications are high, 
but that the general relation between the load on transverse and 
longitudinal systems is satisfactory. As a compromise proposition 
it is suggested that the coefiicients for the square slab be reduced 
20% below those values and that this reduction be gradually dimin¬ 
ished to nothing for a ratio l/b — 1.5. The formula for the propor¬ 
tions carried by the two systems would then be as follows: 

For the transverse system R =1.2 l/b-0.8 . . 
... (2) 

For the longitudinal system R = i.2-0.8 l/b 

Then as in the A. C. I. Specifications, the number of bars in the outer 
quarters are to be reduced 50%, giving a total bending moment equal 
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to % that found by application of the loads of eq. (2). Thus for a 

slab 12 ft. X 10 ft., Fig. 8, supported on all sides and cariying a load 

of 150 lbs/ft.2, W == 150 X 120 = 18,000 lbs., l/h = 1.2. The pro¬ 

portions of load used for moment calculations would be, for the 

transverse system in m', R = 64%, and 

for the longitudinal system a a', R — 
24%. Then for the transverse system 

the moment per foot of width for the 

central half == X 18,000 X 10/12 X 

0.64 = 1200 ft-lbs., and for the outer 

quarters one-half this value. For the 

longitudinal system, for the central half, 

M = }/g X 18,000 X 12/10 X 0.24 = 

648 ft-lbs. per ft. of width, and for the 

outer quarters one-half as much. For 

slabs longer than 1.5 6 it is suggested that the number of bars in the 

end portions for a length of 3^ 6 be reduced 50%. 

193. Coefficients for Continuous Panels.—The A. C. I. Specifica¬ 

tions provide that the same coeflicients are to be used for rectangular 

slabs of several panels as for other forms of continuous beams, varying 

from 3^ to 1/16, according to the conditions. A study of the coeffi¬ 

cients suggested by Westergaard leads to the conclusion that the 

coefficients of the A. C. I. Specifications for negative moments are 

satisfactory but that for positive moments they are relatively high, 

as in the case of the single panel. A fairly consistent set of values can 

therefore be obtained by applying the proposed set of coefficients of 

Table 16 for all positive moments, using 3^, 1/12, or 1/16, according 

to circumstances of continuity, and the A. C. I. coefficients for the 

negative moments. 

194. Distribution of Slab Loads to Supporting Beams.—^Where the 

floor-slab is reinforced in one direction only the load will practically 

all be transmitted to the corresponding beams, but at the ends of the 

panels a small part will be transferred directly to the girder. This 

may be neglected in the calculations. In the case of reinforcement 

in two directions, for square or oblong panels, the loads on the beams 

will not be uniformly distributed but will be considerably greater at 

the centre than at the ends. The moments in the supporting beams 
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will therefore be increased somewhat as compared to the results for a 

uniform load. The difference will, however, not be as great as if the 

load were concentrated at the centre, and it is shown in Art. 235 

that for such a case the moment coefficients for girders of two or more 

spans are not increased more than 8 or 10%. In general, therefore, 

the usual coefficients may be used for the supporting beams. 

If desired, the correct value in any case can be determined by con¬ 

sidering that the beams, together with the slab, must sustain the 

entire bending moment across the several panels, the value of which 

can be found by considering the structure as a whole. The moment 

in the beams will then equal the total moment, less the amount 

taken by the slabs. This will be illustrated by the case of the single 

panel supported on four beams. 

Consider the problem of Art. 192. In accordance with the slab 

analysis there given, the total slab moment on section a b, Fig. 8, is 

^ X 18,000 X 10 X 0.48 X = 8100 ft-lbs. The total bending 

moment on o 6 must be equal to H X 18,000 X 10 = 22,500 ft-lbs. 

T., , . , , A ^ 22,500 — 8100 
Hence the moment m each beam AC and =-•-= 7200 

2 

ft-lbs. In a similar manner the moment in each of the beams A B 
and C D is found to be 23,350/2 = 11,675 ft-lbs. 

C. CIRCULAR SLABS SUPPORTED AT THE CENTRE; FLAT-SLAB FOOTINGS 

195. In this type of structure it is possible to determine certain 

facts regarding bending moments by statics alone, but to arrive at 

a satisfactory estimate of the variation in moments along a section 

it is desirable to consider the results of a theoretical analysis under 

certain assumed conditions. These ‘ theoretical results will also be 

helpful in a study of the flat slab floor later on. 

196. Circumferential and Radial Bending Moments.—^Let A B, 
Fig. 9, represent a circular plate loaded on the upper surface and 

supported over a certain area C at the centre by means of a column 

or pier. The plate will be subjected to bending stresses which will 

deflect it into a sort of umbrella-shaped figure. Any element a will 

be subjected to moment stresses in both directions F G and D E, 
each producing tension in the upper part and compression in the 
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lower part. The bending moment producing the stresses in the 

direction -F G at a is called a cirQumferential moment, and that in the 

direction Z> £ is called a radial moment. By assuming certain 

definite conditions regarding the distribution of the pressure over the 

area C, it is possible to determine the 

values of these moments at any point 

in the plate. Such calculations cannot 

represent the facts very exactly, as the 

assumed conditions cannot be realized 

in practice but they are useful in de¬ 

termining the probable distribution of 

moments along a section. 

The results of such an analysis are 

given in Figs. lo and ii for two 

assumed conditions of support.* In 

Fig. lo, it is assumed that the plate 

and support are rigidly joined so that 

the plate is fixed at the edge of sup¬ 

port, similar to a fixed end beam; in 

Fig. II, the reaction of the support is 

assumed to be uniformly distributed over the area. The full lines in 

each case give the coeflScients for radial moments and the dotted 

lines for circumferential moments. The values of the moments per 

unit width are then 

Mr-^CrW 
.(i) 

Me ^ CcW \ 

in which Mr and Me are, respectively, the radial and circumferential 

bending moments in foot-pounds per foot of width, or inch-pounds 

per inch, and Cr and Cc are the corresponding coefficients given by the 

full and dotted lines respectively. Ratios of radius R of the plate 

to radius r of the support, have been taken at values from 3 to 7. 

A noteworthy characteristic in Fig. 10 is the very high radial 

moments at the support and the very great reduction a short distance 

therefrom. The conditions here assumed cannot exist in practice 

* Dr. H. T. Eddy, Year Booky Univ. of Min.y 1899, or Morley’s Strength of Materialsy 

Chapter XIIl. Poisson’s ratio assumed at i/io. 
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as the support cannot be perfectly rigid as assumed, and its com¬ 

pressibility would have a large effect in reducing the high radial 

moments at the edge. Furthermore, the deformations of reinforcing 

Values of x/r 

Fig. io.—Moment Coefficients for Circular Slabs. 

Values of x/t 

Fig. II.—Moment Coefficients for Circular Slabs^ 

bars in the area over the support would result in a very considerable 

angular moment at and near the edge of support, seriously vitiating 

the assumption of fixity and reducing the radial moments at this point. 

For relatively small supports the moment distribution will follow 
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more closely the curves of Fig. 11; for large supports, or small ratios 

Rjr, more nearly those of Fig. lo, but with the radial moments near 

the support decreased and the circumferential moments increased. 

197. Total Bending Moment on a Central Section and its 

Distribution.—Consider the two cases represented in Fig. 12. Fig. (a) 

represents a plate fixed over the area B C Z), as in Fig. 10; Fig. (i), 

one with uniformly distributed upward reaction, as in Fig. ii. The 

critical section for bending moments in (a) is the section A B C D E, 
and for {b) the section A B. The total bending moments on these 

(a) (6) 
Fig. 12. 

sections can be determined by statics. In (a) the moment of the 

W / a. R^-r^ 
load on the half disk A BC D EF about axis A E is — (-i- 

2 V3iri?2l-r2 

and the moment of the shears along BCD, about the same axis, is 

W'j2 X 2 r/jT. Hence total moment is 

Ml = — -2-.(2) 
2 \3x R^ — v j 

in which W' is the total load on the plate outside of the area directly 
W' R2 - y2 

above the support. If PF is the total load then — = ———. 
rr 

In ip) the moment of the load on the half plate about axis A B = 
W A W A 
— X — y. R and the moment of the upward forces = — X — X r. 
2 S*" as*" 
The total bending moment = 

M2^^X^{R-r).(3) 
2 3T 
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Example.—Determine the total bending moment and its distribution 
by the two different assumptions as to support, for = 6 ft., r = 2 ft., 
ze; = 500 lbs/ft.2 

Total Moment, Case I.—Refer to Fig. 12. The half load on the entire 
plate — 500 = 28,300 lbs. The load on the half ring A BC D EF 

= 28,300 X —■ - ^ = 25,200 lbs. Ml = 25,200 ^ £ X 2^ = 
30 . UTT 36 - 4 ^ / 

25,200 X 1.48 = 37,500 ft-lbs. This is an average moment of 37,500/12 ~ 
3220 ft-lbs. per ft. 

Case II.—M2 = 28,300 X 4/3 TT X 4 = 28,300 X 1.70 = 48,000 ft-lbs. 
= 4000 ft-lbs. per ft. on the average. 

Distribution of Moment,—Case I.— From the diagram of Fig. 10, the 
coefficient for radial moment for R/r = 3 is about 0.115. The radial 

moment aroimd the half circle BCD will then be 0.115 X 56,600 = 6500 
ft-lbs. per ft. 

If die radial moments along C D be resolved into components normal 
and parallel to A E, the normal components will be equivalent to a uniform 
bending moment along the projection D of an intensity equal to that at C, 
or 6500 ft-lbs. per ft. 

The circumferential moments from D to £ will vary in accordance with 
the dotted curve for R/r = 3 in Fig. 10. The theoretical distribution along 
the entire section is shown in Fig. 13. Owing to the factors already men¬ 
tioned there is no such sudden change at the margin of the support as 
indicated in the figure, and the actual curve will be some such curve as 
shown by the dotted Une; but the total and average moment to be resisted 
on the given section will be unchanged. 

Case II.—^Here the moment distribution along the axis ^ JS is shown 
by the dotted curve of Fig. ii for R/r = 3. The moment per foot at 
C “ 9.11 X 56,600 = 6230 ft-lbs. per ft., and Fig. 14 shows the distribution* 
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Remarks.—From the foregoing study it is seen that the total and 

average moment across the central section is somewhat greater where 

the supporting forces are considered uniformly distributed over the 

area, Case II, than where the support is assumed as rigid. Case I. 

Also, from Figs. lo and ii, it is to be noted that, the larger the plate 

in proportion to the support {R/r), the greater the variation in bending 

moment across the section. 

Column Footings 

198. General Conditions.—The circular plate analysis here given 

may be applied in general to column footings. Single footings are 

commonly made square in form, and the column load is applied either 

directly, or through an intermediate pier or pedestal of larger section 

than the column. 

To transmit the load from the longitudinal reinforcing bars into 

the pedestal or footing, either dowel bars are used, extending upward 

into the column and downward into the pedestal or footing a suf¬ 

ficient length to transmit the stresses involved through bond resistance, 

or a base plate is used upon which the column reinforcing bars bear 

directly. The former arrangement is more economical and is com¬ 

monly employed. Where a composite column with structural steel 

or cast-iron core is used, a base plate is necessary. Where the footing 

is relatively large as compared to the column, an intermediate pedestal 

of a width of about that of the footing is commonly employed, as 

it reduces the necessary thickness of the footing and results in a much 

more uniform distribution of bending moment than would otherwise 

be the case, as pointed out in Art. 197. 

The area of the footing is determined by the bearing pressure 

allowed on the soil, or, in case of a pile foundation, on the necessary 

number and spacing of piles. 

199. Bending Stresses.—^Assume a square footing supporting a 

square column or pedestal. Fig. 15. The position of the critical 

section for bending moment depends upon the rigidity of connection 

between column base and slab and also upon the shape of column 

base. Where a base plate is used, it is customary to assume the load 

on the footing to be uniformly distributed over the area of the plate, 
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giving conditions corresponding to Case II, Art. 196; but where con¬ 
crete is built on concrete, the connection is assumed rigid, as in Case I. 
In the first case, the bending moment will ____ 
be a maximum on section AD; in the 
second case, a maximum on a section ^ ^ ^ ct , i 

along the face of the column FG. Fur- |-1 
thermore, with a relatively large area of a-----o 
contact, the square form and the effect of ^ 7'-<^7-” 
the torsional resisting moments along the | 1 
sides 5 F and G C are likely to promote ^ / yj „ 
failure along the straight line EH rather ,, ^ "7,*^ 
than along the irregular line A B FG C D ' 
as might be assumed. Results of tests * ' 
show failures occurring some times along one section and sometimes 
along the other. 

Assuming the critical section to be along E H, the total bending 
moment is readily found. If = net upward pressure per square 
foot = soil pressure less weight of concrete, the total moment on section 

EH — w X ^ ~ Mtwbib — 0)2. The distribution of 

this moment will follow roughly the curve of Fig. 13, about one-half the 
moment being concentrated in the centre 35% to 40% of the width. 
In practice, such footings are usually reinforced by two sets of bars 
placed parallel to the sides of the square and spaced uniformly. With 
this arrangement the stresses will not be uniform, but for footings of 
ordinary proportions the variation will not be serious. 

An important series of tests by Professor Talbot * gave valuable 
information on the various elements of this problem. Tests on foot¬ 
ings 5 ft. square with the column section i ft. square showed that the 
stresses in the bars were fairly uniform over a width somewhat greater 
than the width of the column, and that the stresses in these central 
bars were about times the average of all. These results were 
obtained on the assumption that the yield point of the steel measured 
the strength in bending where tension failures occurred. From the 
results of these tests Talbot proposed (i) that the critical section be 
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taken on a line at the face of the column, as EH, Fig. 15; (2) that 

in calculating the bending moment the area of pressure be taken as 

the trapezoid IFGK, and that the centres of pressure on the tri¬ 

angles IF M and N G K he taken at 6/10 of the width of the pro¬ 

jection F M from the face; and (3) that, for footings having two-way 

reinforcement spaced uniformly over the footing, the width of footing 

over which the bars are effective may be taken equal to the width of 

pier plus twice the depth of footing plus one-half the remaining 

distance to the edge of footing. The moment thus calculated is 

expressed by the formula 

w , 
M = — {a + X.2 c) c^,.(4) 

2 

where c — width of projection from column to edge of footing, 

= (6 — a)/2. For bja = ^, the result is 30% less than the theoretical 

total value previously given. For smaller ratios the difference is 

less and for larger ratios it is greater. Considering the limitation 

proposed regarding the effective width of reinforcement, these rules 

appear to be reasonable and have been adopted by the Joint Com¬ 

mittee. Although the resulting stresses in the centrally located bars 

may be somewhat high, any over-stressing of these bars results in a 

more even distribution. In the specifications of the A. C. I. the 

same rules are used without limitation of width of effective reinforce¬ 

ment, the entire width being assumed as effective. For large ratios 

of 6/a this results in relatively high stresses in the central bars, but 

other limitations regarding shearing-stresses preclude the use of very 

large ratios of b/a. 
200. Shearing-Stresses.—^As a measure of diagonal tensile stress 

the tests already mentioned indicated that the critical section may 

be taken at a distance from the face of the pier about equal to the 

thickness of the footing. As diagonal tension cracks are approxi¬ 

mately at a slope of 45°, it may be expected that true diagonal tensile 

stresses are not fiiUy effective on sections much nearer the face of the 

pier than the depth of the footing. The critical section for shear is 

therefore taken along the four sides of a square having a width equal 

to the width of pier or column, plus twice the thickness of the footing. 

The total shearing force is equal to the net upward pressure upon the 
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area outside this square, equal to the soil pressure less weight of 

concrete. 

201. Thickness of Square Footing as Determined by Shearing- 

Stress.—^Assuming the critical section as above explained, a definite 

relation exists between the ratio of depth of footing to breadth, the 

soil pressure, and the allowable shearing-stress; and as the shearing- 

stress generally determines the thickness of footing, a general formula 

for thickness will be useful. 

Let k = ratio of width of pier or column to width of footing = afb\ 
w = net upward pressure per square foot; 

d = depth of footing in feet. 

Then the total shear area in the footing is that on the four sides of a 

square of width — a + 2d — kb + 2d. The total shearing force 

= w [6^ — (k b + 2 d)^], and the shearing force per foot of width = 

wib^ — (kb + 2 dy\ „ i_i 1 . 
V =-77-—;-7-. If Vc = allowable shearing unit stress, 

4 0 ■+• 2 a) 

V V 
then Vc =-r-;-. Taking j = we get d = —;—. Sub- 

stituting the value of V, we have 

w b"^ — (k b 2 dY 
a == - • - 

504 Vc kb 2 d 

or, more conveniently, and with sufficient accuracy, 

i/j. _s_. .(5) 
' 500 kY^dlb .... Vi; 

djb = 

The quantity- for any given problem is a constant. Let this 
500 Vc 

be represented by C. Then solving (5) we get finally 

d/b = 
2C + 4C^ + M)fe"-^^(i+40 

2 + 4 C 
. (6) 

in which C =- and k = a/b. Note that w is in Ibs/ft.^ and 
500 

Vc is in lbs/in.2 

For sloped footings the requirements for thickness are the same with 

respect to the section at a distance from the pier equal to the depth 
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of the footing at the pier. Stirrups in footings are difficult to place 

and impracticable, and hence the allowable shearing-stresses are those 

for beams without web reinforcement, usually 3% of the concrete 

strength, and special anchorage is required. 

202. Bond Stress.—Bond stress in footings is very important as it 

is likely to limit the size of bars that may be used. The critical 

section for bond stress is considered to be at the face of the pier, and 

the shearing-stresses will be much greater than those previously con¬ 

sidered. Total upward pressure, or shearing force, V, = wc = 

w (6^ — 

4 
If = sum of perimeters of all bars effective for 

moment, then 

V _ w (b^ - a^) 

uj d 4.uj d ' (7) 

A definite value for bar diameter can be obtained from the relation 

between total steel area required for moment and the total perimeter 

w 
sum required for bond. From Art. 199, M = — {a + 1.2 c) and 

2 

steel area = A = 
M w (a + 1.2 c) 

fsjd 

_ _ 4 X area 
square bar = D = —;- 

perimeter 

ues of A and owe get 

2f.jd 
.±A 
~ 

. The diameter of a round or 

Substituting the foregoing val- 

(1.2 b + 0.8 a)(b — a) 

/. {b + o) 
X u. (8) 

For a = 0.25 b, a common value, and/, = 18,000, eq. (8) becomes D = 

0.000047 bu,xa. which b and D are in like units, and m is in Ibs/in.^ 

For a 2000-lb. concrete, for example, and « = 120, D = 0.00566. 

A footing 90 in. wide would thus permit a maximum diameter of bars 

of H in. 

It will be noted by reference to the specifications that the allowable 

bond stress in two-way footings is smaller than in ordinary beams and 

one-way footings. This is due to the influence which the tensile 
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stresses and strains at right angles to the bars in question may have 

in causing incipient cracks and reducing bond resistance. 

All bars should be hooked at the ends to secure adequate bond 

strength. 

203. Pile Footings.—When the footing is placed on piles, the 

concentration of the load on the individual piles should be used in 

determining the actual pressures upon the portion of the footing 

under consideration. 

204. The Pier or Pedestal.—To reduce the stresses in the footing 

it is usually economical to enlarge the area of pressure upon the foot¬ 

ing by supporting the column upon a low pier or pedestal of a width of 

about one-quarter that of the footing. The pier, if unreinforced, can 

carry a load proportioned for plain concrete, and the allowable unit 

pressure on its top is dependent upon the ratio of its area to the area 

of the column. According to the A. C. I. Specifications this allowable 

pressure increases with increased area by the relation p — fc ^A (A\ 
where A = area of footing or pedestal. A' = area of columm, fc = 

allowable compressive stress for plain concrete, and p == allowable 

pressure. The pedestal itself may be spirally reinforced, in which 

case the allowable stress fc can be correspondingly increased. 

205. Examples.—i. Design a flat top footing to support a column load 
of 1,000,000 lbs., the column being 36 in. in diameter or 1020 sq. in. in cross- 
section. Allowable soil pressure = 4000 Ibs/ft.^ Use a 3000-lb. concrete; 
/, = 18,000 Ibs/in.^, Vc = 90 lbs/in.2, u = 180 Ibs/in.^ Use a pedestal of 
width one-quarter that of the footing. A.C.I. Specifications. 

Solution.—Estimating the depth of footing to be about 2 ft., its weight 
will be 300 lbs/ft.2 and the upward net pressure producing bending and 
shearing-stresses in the concrete will be 4000 — 300 = 3700 Ibs/ft.^ 
Required area == 1,000,000/3700 = 270 sq. ft., requiring a footing 16 ft. 
6 in. square. Then in eq. (6) iox d/b,C = 3700/45,000 = 0.082; k = 0.25; 

and ^ ° ° X ■■33 . Hence dq,U. 
b 2.33 

= 0.124 X 16.5 = 2.05 ft. = 25 in. Allowing 4 in, from centre of steel to 
lower surface, the total depth will be 29 in. and weight per square foot 
= 360 lbs. Correcting the values, it wiU be found that the width should 
be made 16 ft. 8 in. The depth will not be changed. Width of pedestal = 
4 ft. 2 in., width of projection c = 6 ft. 3 in. 

Total bending moment = 3640 {4.18 + 1.2 X 6.2s)(6.2s)2 == 835,000 

ft-lbs. Total steel area, using j = 25.4 sq. in. 
18,000 X >8 X 25 ^ ^ 

The bar diameter D must not exceed 0.0000467 bu., = 0.0000467 X 200 X 



220 ANALYSIS OF FLAT SLABS 

i8o = 1.68 in. We may use twenty-six i-in. square bars or twenty ij^in. 

square bars. The latter will be preferable. The steel ratio is-—— = 
25 X 200 

0.0051, which indicates that the compressive stress in the concrete is low, 
about 600 lbs/in.2 It will be observed that the depth was determined by 
the shearing stresses. 

If the pedestal is 4 ft. 2 in. square, its area = 17.5 sq. ft. The allowable 
bearing pressure on the pedestal = -^17.5/8.5 = 1.25 times the usual work¬ 
ing stress, which for plain concrete is one-quarter the ultimate strength. The 
actual pressure is 1,000,000/1020 = 980 Ibs/in.^ and 980/1.25 = 79olbs/in.^ 
If plain concrete is used it must therefore have a strength of 4 X 790 = 
3160 Ibs/in.^, which can readily be supplied; otherwise the pedestal would 
need to be spirally reinforced. The pedestal will project a distance equal 

to ^ ■ = 7 in. from the column, and according to the specification 

its height must be at least twice this projection = 14 in. 
2. Change the width of pedestal to one-third the width of footing and 

determine the effect. 
Solution.—Assuming again a weight of footing of 300 Ibs/ft.^, the 

value of C in eg. (4) = 0.082 as before, ^ == ^ = 16 ft. 6 in. Then 

^ . V0..64 +0.0^7+ o.°»8 - 0..67 X 1.33 . „ j . 
b 2.33 
0.116 X 16.5 = 1.91 ft. = 22 in. Total depth = 26 in. Weight per 
square foot = 325 lbs. Recalculation shows that the dimension of 16 ft. 
6 in. will be correct. The width of pedestal will be 5 ft. 6 in. Width of 
projection c = 5 ft. 6 in. 

Total bending moment = 3675/2 (5.5 + 1.2 X 5.s)(5*5)* = 670,000 ft- 

lbs. Steel area = ——■yy -"— = 23.3 sq. m., requirmg nmeteen 

ij^in. bars. _ 
The pedestal area = 30.2 sq. in. and the allowable pressure = -^30.2/8.5 

= 1.52 times normal value. Actual pressure == 980 Ibs/in.^ and 980/1.52 = 
650. A plain concrete of ultimate strength of 4 X 650 = 2600 Ibs/in.* 

is required. The pedestal will project = 15 in. from the column, 

and according to the specifications its height must be at least twice this 
value or 30 in. 

Comparing the two designs, we have the following quantities: 
No. I. Pedestal = 20.3cu.ft. 

Footing = 670 

Total concrete = 690 cu. ft. 
Using twenty i J^in. bars the weight of steel = 3140 lbs. 

No. 2, Pedestal = 75.5 cu. ft 
Footing — 590.0 

Total * 665.5 cu. ft. 
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Using nineteen bars the weight of steel = 2940 lbs. 
The saving in material for No. 2 may or may not be overcome by the 

extra excavation required, depending upon circumstances. 

206. Combined Footings.—Where it is not possible to place the 

column over the centre of the footing, as is frequently the case with 

exterior columns, it is necessary to combine two or more footings in 

order to maintain a reasonably uniform earth pressure. The object 

to be attained is to bring the centre of gravity of the bearing area of 

the footing to coincide closely with the centre of gravity of the load. 

In accomplishing this the dead load should be given principal con¬ 

sideration, as settlement of foundation is dependent mainly upon the 

steady load and but little upon ordinary live loads. This is of con¬ 

siderable importance where exterior walls and tower loads are to be 

combined with loads from interior columns. The stresses in the foot¬ 

ings themselves must be determined on the basis of the maximum 

loads assumed for the columns resting thereon. 

Combined footings may be considered as of two types: (i) a con¬ 

tinuous broad slab footing supporting the columns; (2) essentially 

separate footings connected by a concrete beam to resist the moment 

due to eccentricity. These types will be analyzed by an example 

treated in different ways. 

Examples.—Design a combined footing for an exterior and an interior 
column with column loads of 300,000 and 450,000 lbs. respectively. The 
columns are 22 in. and 28 in. square in section and spaced 20 ft. apart. 
Use a 2500-lb. concrete with fc = looolbs/in.^,/, = 18,000 Ibs/in.^, shearing- 
stress without diagonal tension reinforcement Vc = 7Sy with such 
reinforcement, 150 Ibs/in.^ Bond stress without special anchorage = 90, 
and with special anchorage = 180 Ibs/in.^, » = 12. Allowable earth pres¬ 
sure = 6000 lbs/ft.2 

I. Rectangular Slab Design (Fig. 16).—The centre of gravity of the loads 

is at a distance from A equal to ^ - = 12 ft. This should be made 
750 

the center of the footing area. The length of the slab will then be 2 X 12 -|- 
2 X 11/12 = 25 ft. 10 in. Assume the slab weight to be 500 Ibs/ft.^ 
The net value of bearing pressure to support the colunms = 6000 — 500 « 
5500 Ibs/ft.* Required area = 750,000/5500 = 137 sq. ft. Required 
width = 137/25-83 = 5-3 ft. or 5 ft. 4 in. 

Bending Moments.—In a footing of this kind the bending moment will 
usually determine the section and will be calculated first. The line of zero 
shear, D-D, is at a distance from the left end determined by the equation 
300,000 = 5500 X 5.3 X X, whence x == 10.3 ft. M = 300,000 X 9.4 
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SSOo X 5.3 X (10.3) V2 = ly2^o,ooo ft-lbs. == 240,000 ft-Ibs. per ft. of slab. 
For the given unit stresses the coefficient of resistance i? = 174, hence 

== 240,000/174 = 1380 and d == S7 The total depth should be 
4 in. more or 41 in. The assumed weight is sufiiciently exact. 

For the units assumed the steel ratio p — o.oiii and the steel area per 
foot of width = O.OIII X 12 X 37 — 4.93 sq. in. requiring i3^in. bars 
spaced about 3 in. apart. In the vicinity of Column B there will be a line 
of zero moment, E-E, which is found to be 1.4 ft. from the column centre. 
The reinforcing bars may then be stopped off between D-D and E-E in 
accordance with the moment requirement, extending a part of the bars 
beyond the line of the column as in a continuous beam. At the other end 
the bars should be treated as the positive reinforcement of a simply supported 
beam. 

Between E-E and the right end the moment is positive and the bottom 
bars are determined by the moment at the right face of the column as in an 

ordinary footing. Transverse bars are calculated in a similar manner. 
With the depth of slab used the transverse bars are hardly needed as the 
projection beyond the column is only about one-half the depth of the slab. 
The theoretical steel area along the section C-C,for Column B, may be figured 
for a width of slab of 28 in. + 2 X 3 ft. = 8.3 ft. Upward pressure = 
SSOO X 8.3 X 1.6 = 64,000 lb. Moment = 64,000 X 1.6/2 = 51,200 ft.- 

Ibs. Steel area == — = 1.0 sq. in. Use 3^-in. round bars 
18,000 xHx 37 ^ 

spaced 12 in. apart for a width of 8 ft.; also the same for a width of about 
S ft. opposite Column A. They may be omitted in the intermediate section. 

Shear and Bond Stress.—^The maximum shearing-stress will occur on 
section F-F adjacent to Column A. Inasmuch as the top of the beam is in 
tension and a diagonal crack will tend to start at the top, the critical section 
is adjacent to the column instead of at a distance therefrom equal to the 
depth of footing, as in the ordinary footing problem. The shear on section 
F-F is 300,000 — 5500 X 5.3 X 1.83 ~ 247,000 lbs. Shearing-stress v = 

2^7 000 
————7- ,. — = 120 Ibs/in.* This value will require the use of 
12 X 5-3 X X 37 ^ 
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stirrups calculated as in an ordinary simply supported beam (inverted). 
Such stirrups must be looped about or hooked over the bars at the top. 

The required bond area for top bars at section F-F is equal to = 
I20 X 12 
- = 16 sq. in. per ft. of slab, or with special anchorage 8 sq. in. 

90 
Using the latter value, about one-half the bars will need to be extended 
to the end and provided with long hooks. The bars so extended should be 
concentrated mainly in the central portion of the slab. 

The shearing-stress near Column B may be calculated on a section to 
the left of the column a distance equal to the depth of 37 in. This stress 
will be 450,000 — 5500 X 5.3 X 10.33 = 150,000 lbs. Shearing-stress = 

-- = 71 lbs/in.2 which requires no stirrups. 
12 X 5.3 X K X 37 ^ . . 

2. Separate Footings with Beam Connection.—Since the foregoing calcu¬ 

lations show that the bending moment is the determining factor in the dimen¬ 
sions of the combined footing it may be concluded that a more economical 
design can be made by using a narrow and deep beam along the centre and 
spread out the footings under the columns. This will have the effect of 
concentrating the upward pressure near the ends of the beam and so reduc¬ 
ing the bending moment. 

The same total area of footing will be required as before, ntoely, 
135 sq. ft. Also, as before, the centre of gravity of the footing area should 
coincide with the centre of gravity of the column loads, namely, about 
12 ft. from Column A. Assuming a connecting beam 3 ft. wide, trial calcula¬ 
tions lead to the dimensions shown in Fig. 17. This gives a total area of 
140 sq. ft. and a centre of gravity 12.0 ft. from A. The average earth pres¬ 
sure, exclusive of weight of footings, == 750,000/140 = 5350 Ibs/ft.^ 

Bending Moment.—^The point of zero shear, section D-D, is 5.35 ft. 
from the face of the A footing. The bending moment = 300,000 X 9.45 — 
40 X S3SO X (2.5 -f 5.35) - 5350 X 5.35 X 3 X 5-35/2 = 926,000 ft-lbs. 
= 309,000 ft-lbs. per ft. of beam width. Then * 309,000/173.3 = 1780 
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and d ~ 42 in. Total depth = 46 in. Steel area == o.oiii X 12 X 42 « 
5.6 sq. in. per ft. of width. 

As this thickness is greater than required for type i, it is obvious that no 
material will be saved if the entire footing is made of uniform thickness. 
Two methods of reducing the amount of concrete may be considered: (a) de¬ 
sign the slabs under A and J3 in the same manner as ordinary footings and 
run the connecting beam into the slabs only so far as necessary to make a 
proper connection; (d) extend the beam through the footing or nearly so 
and design the footings as projections from the beam in the form of flanges 
of a T-beam. Both methods will be considered. 

(a) As Column B is centrally placed, the required thickness of its footing 
will be less than for Column A. The shear in the footing slab is that due 
to the net earth pressure of 5350 Ibs/ft.^ By eq. (6), Art. 201, with v = 
75 Ibs/in.^, the ratio d/b = 0.155. Hence d == 0.155 X 8.0 = 1.24 ft. = 
I ft. 3 in. Make total depth i ft. 7 in. It is then necessary to investigate 
the bending moment on section E-E to determine the necessary depth of 
beam at that point. Upward pressure on footing = 5350 Ibs/ft.^ Hence 
M == 450,000 X 4 — 5350 X 64 X 4 = 428,000 ft-lbs. = 142,700 ft-lbs. per 
ft. of beam. Then d'^ = 142,700/174 = 820, d = 28.7 in., which is thicker 
than the slab. Sufficient depth will be secured by making the beam the 
full depth of 46 in. for a distance of 4 or 5 ft. and then sloping it in a straight 
line to the slab depth at the right face of the column. The remaining part 
of the footing under this column may then be designed for moment as an 
ordinary square footing with upward pressure of 5350 Ibs/ft.^ and thickness 
of I ft. 7 in. 

At Column A the footing may also be reduced in thickness as for Column 
B, The same depth of i ft. 7 in. may be used 
and the beam tapered in the same manner. The 

^'4" slab here should be reinforced by bars at right 
— angles to the beam as in {b) below. 

Shearing-Stress in Beam.—The maximum will 
be on section E-E and will be found to be about 

SecUon F-F 94 Ibs/in.^, requiring a few stirrups. 
Fig. 18. (^) In this arrangement the beam is extended 

nearly through the B footing. The section 
through F-F will be as shown in Fig. 18. The beam will be 3 ft. X 3 ft. 
10 in. as before. The flanges are subjected to an upward pressure of 5350 
lbs/ft.2 

The section for shear calculation may be taken a distance d from the 
beam. This will result in a depth of about 0.9 ft. Use d = 12 in. and a 
total thickness of 16 in. For d = 12 in. the shearing-stress at 12 in. from 
the beam will be 65 Ibs/in^. For bending moment A, = 1.27 sq. in. per ft. 
of width, and the bond stress, calculated for the edge of the beam, will 
require a total X ooi 7.07 sq. in. Use three ^-in. round bars per ft., giving 
A ^ 1.33 sq. in. and 2 ^ ~ 7.1 in. The compressive stress in the concrete 
will be about 870 Ibs/in.^ The same dimensions are required for the 
A footing. The thickness required for moment will be less. The main 
beam may be made of uniform depth, or tapered somewhat as in (a). It 
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may also be stopped somewhat short of the extreme edge of the B footing 
and the overhanging portion reinforced by bars parallel to the beam. 
This type of footing is substantially the same as (a) but the reinforcement 
is somewhat simpler and the calculations more direct and definite. 

Comparing the rectangular flat-slab type I and type II (b) with the 
reduced thickness of footings, the volume of concrete is as follows: 

Type I. Flat slab. 472 cu. ft. 
Type II. Beam 23 ft. long of uniform depth, with flanges, 360 cu. ft. 

For light loads or small areas the plain slab of type I is likely to be the more 
economical. 

207. Combined Footings on Piles.—Where the footings rest on 

piles the connecting beam is not subjected to upward pressure between 

the separate pile foundations. This condition brings the line of 

maximum moment in the beam to the edge of the pile foundation 

for the exterior column, and makes the arrangement described under 

(a) more advantageous. 

208. Trapezoidal Footings.—Where both coliunns must be placed 

at the edge of the footing 

and carry imequal loads, a 

trapezoidal form must be 

used in order to have the 

centre of area in the proper 

place. In Fig. 19, if di = 

distance from one side to 

the centre of gravity and 

A = required area, then the dimensions of the footing are given by 

the equations 

b (i) 

a . w 

D. FLAT-SLAB FLOORS 

209. General Description.—The “flat-slab floor” is the name given 
to a type of floor and column design in which the floor is built in the 
form of a continuous flat slab of uniform, or nearly uniform, thickness, 
and supported directly upon the colmnns, the floor and columns 
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being built monolithically. In supporting the load, the floor acts as a 

continuous plate rather than a combination of beams and slabs, 

and the reinforcement must be arranged accordingly. Fig. 20 illus¬ 

trates two common arrangements of columns, slab, and reinforcement: 

the two-way system and the four-way system. Various combinations 

of straight and bent-up bars are used to secure the necessary steel 

area. A three-way system is sometimes employed in which the 

columns are placed at the apices of a system of equilateral triangles. 

Another system employs a combination of circular and straight bar 

reinforcement, concentric rings being used above the columns and 

also at panel centres, and radial bars over the columns. 

In order to extend the area of support and reduce the stresses 

in the slab, the columns are usually enlarged at their top, forming 

column capitals. The stresses in the slab may also be further reduced 

by thickening a portion of the slab over and near the column, forming 

what is commonly called 

a “dropped panel.” (See 

Fig. 27.) 

The flat-slab type of 

floor is especially advan¬ 

tageous for relatively 

heavy loads, large areas 

with few openings, and a 

uniform column spacing. 

210. Nature of Stresses 

Involved. — Let Fig. 21 

represent a portion of a 

flat-slab floor, including 

four colunm supports, 

assumedasequallyspaced. 

Assume a uniformly dis¬ 

tributed load. The column 

heads underneath the slab are represented by full circles. Considering 

thenature of thebending moments and deformations at different points, 

it is plain that if we draw radial lines, A B, A C, A D, from a colrunn 

centre A, the curvature of the slab along such lines will be convex 

upwards for a certain distance from the centre, then concave upwards, 
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then again convex upwards in the vicinity of the other support. That 

is to say, there will be points of inflection along these lines where the 

radial moment changes sign. If we connect these points of inflection 

arotmd the column heads, we will get “ lines ” of inflection, as shown 

by the dotted lines, in Fig. 21, which may be considered roughly as 

circles. The areas of the slab within these lines of inflection are 

stressed in a manner similar to a circular slab supported at the centre 

as described in Art. 196. The bending moments along all radial lines 

are negative, and are a maximum at the edge of the column head. 

Considering the nature of the bending moments in other than 

radial directions, we will be aided in our conception if we note that 

the lowest point of the deflected panel is at the centre E, and that the 

intermediate points, F, G, etc., are higher than E, but lower than 

the supports. Therefore, if we consider the bending moments along 

the line F H, we will find negative moments at F and H, and a positive 

moment at E. Likewise along the line K M there will be negative 

moments at K and M and a positive moment at L. Expressed in 

another way, there will exist ridges along the lines AB,BC, etc., with 

low points, or “ saddles ” at the centre points. The moments trans¬ 

verse to these ridges are negative at all 

points. The negative moments transverse 

to a radial line, as A K, correspond to the 

“ circumferential ” moments discussed in 

Art. 196. 

Consider now a single panel. Fig. 22, 

separated from its supports and the sur- 

rotmding panels. The total load = W. 
The reactions around the panel consist of 

shears along the edges of the column 

heads, EF, GH, etc., and negative 

bending moments. around the entire 

periphery. Assuming that this panel is surrounded by exactly equal 

panels, similarly stressed, there will be no shear along the Unes 

FG, H I, etc., and the total shear at each column head will be W/4, 
which may be assumed as uniformly distributed over the quarter 

perimeter. The negative bending moments around the column heads 

act in a radial direction, and may be assumed as imifoimly distributed. 

B U M 

w 

h_ 
A £ —f 

Fio. as. 



FLAT-SLAB FLOORS 229 

The negative moments along the lines FG, HI, etc., cannot be 

assumed as uniform; they are evidently a maximum near the columns, 

and a minimum at the centre. The bending moments transverse 

to a centre line M N are all positive and somewhat greater at M 
and N than at the centre. 

A theoretical analysis of the moments at various sections can be 

made under certain assumptions, as in the case of the circular slab, 

but such analysis is useful mainly in estimating the distribution of 

certain total moments that can be readily determined by the principles 

of the statics. 

211. The Total Bending Moment.—^Let Fig. 23 represent one-half 

of a panel. In addition to the forces I 

already noted, there will be positive j | | | | | 11 . 

bending moments along the line / /, but - ^ 

no shear (by reason of symmetry). The 

half panel load will act at its centre of 

gravity 0, and the shear reactions R, 
along the column head, may be con¬ 

sidered as acting at their centroids, a 

distance b from the centre line A B. 
Assuming a uniform shear, it can be 

shown that b = c/tt, where c = diameter 

of column capital. 

Considering the moments transverse 

to the axis A B, the external moment is 

Wa/2, This is resisted by the positive 

moments along IJ and the negative 

moments along EG F E, The negative 

moments along H I and E J have no components transverse to A B. 
The radial moments along H G and F E may be resolved into com¬ 

ponents transverse and parallel to A B. Assuming the radial mo¬ 

ments as uniform, it will be found that the transverse components 

will also be uniform in amount per foot of projection on the axis A B. 
We may therefore say that the sum of the positive moments along 

IJ and the negative moments along A B (including the resolved radial 

moments aroxmd the column capital) is equal to the external moment 

W al2. Taking accoimt of the portion of the load supported directly 

Fig. 23. 
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by the column, and considering the usual size of column capital, the 

value of the total moment W a/2 given very closely by the equation; 

M ^yiWl{i .(i) 

where Af = numerical sum of negative and positive moments; 

W = total load on panel — wP\ 
w = load per unit area, assumed as uniform; 

I = distance centre to centre of columns; 

c = diameter of column capital. 

212. Ohlong Panels,—The above analysis 

holds true for oblong panels as well as 

square panels, providing there are a number 

of consecutive panels of the same size, so 

that the shears along the centre lines may be 

taken at zero. Referring to Fig. 24, the equa¬ 

tions for the sums of the negative and positive 

moments in the two directions are: 

M. = ywh 

where h and I2 are the dimensions of the panel centre to centre and 

Mz and My the sums of the moments on sections parallel to h and h 
respectively. 

213. Distribution of the Bending Moment.—The analysis, up to 

this point, has been based on statics alone, and gives correct values 

for total bending moments under the conditions assumed. The dis¬ 

tribution of these moments cannot be so readily determined; it 

depends upon the relative rigidity of the different parts of the structure. 

Considering first the relative amounts of bending moment carried 

along the line EFGH (negative). Fig. 23, and the line IJ (positive) 

the slab is similar to a beam fixed at the ends, although on account 

Fig. 24. 



FIAT-SLAB FLOORS 231 

of the short length of the fixed support it will be less rigidly fixed 

than such a beam. We may then expect the total negative moment 

to be less and the total positive moment greater than the proportions 

of 2 to I for a fixed-end beam, but the negative moment will still be 

somewhat greater than the positive. 

Again consider the distribution of the negative and positive 

moments across the panel. For this purpose, it will be helpful to 

consider the slab in two parts (Fig. 25): a strip a, to include the 

column head, and a central strip 6. The strip a is evidently more 

rigid than b, and the proportion of the moments carried by a will 
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therefore be greater than that carried by h. Furthermore the varia¬ 

tion in negative moment along the side A B will be greater than that 

in the positive moment along the centre line / J. 
Results of detailed analysis by Westergaard and Slater* give 

valuable information regarding moment distribution. Fig. 26 gives 

their results for a value of c = 0.25 1. The sum of the shaded areas 

is closely equal to the total moment as given by the equation M = 

(I — % c)2. The rectangular area above the column represents 

the component of the radial stresses taken perpendicular to the edge 

B C. In this analysis the slab at the edge of the column capital is 

Proc. A. C. I., 1921, Vol. 17, p. 415. 
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assumed to be rigidly fixed in a horizontal position, corresponding to 
the assumption in Fig. lo of Art. 196. This results in very high 
radial stresses at the edge of the column, as indicated in the figure, 
with zero circumferential stresses at that point. In the actual struc¬ 
ture these radial stresses will be much less and the negative moments 
much more uniform, but not as uniform as the positive. 

For various ratios of c//. Table 17, from the paper by Westergaard 
and Slater, gives the percentages of the total moment carried as 
negative or positive moment in the two halves of the slab. 

TABLE 17 

CALCULATED PERCENTAGES OF TOTAL MOMENT RESISTED AT EACH 

SECTION OF A FLAT SLAB 

ch 

0.1$ 0.30 0.25 0.30 Average 

Column section. 48.3 48.4 48.3 48.4 48 

Negative moments ^ Mid-section. 17.0 16.7 16.6 16.3 17 

Total negative. 6s 3 65.1 64.9 64.7 6s 

[ Column section. 20.9 20.9 20.8 20.7 21 

Positive moments • Mid-section. 13.8 14.0 14.3 14.6 14 

Total positive. 34.7 34.9 35 I 35-3 35 

214. Effect of a Drop Panel (Fig. 27).—The effect of the drop panel 
is to stiffen considerably the column-head section of the slab and 
therefore to cause a somewhat greater proportion of the bending 
moment to be carried by this part and less by the central section. 
Furthermore, the negative moments will be somewhat increased and 
the positive moments decreased. 

215. Tests of Flat-Slab Floors.—On account of the difficulty of 
making theoretical analyses, experimental results have been more 
relied upon in the design of flat slabs than in most types of construc¬ 
tion. A considerable number of such tests have been made where the 
test load has been from 2^ to 4 times the design load and the stresses 
in the reinforcement determined by strain gage measurement. In a 
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few cases the loading was carried practically to the ultimate. Hie 

results of a number of such tests are summarized by Westergaard and 

Slater * and factors of safety estimated in each case from the behavior 

of the slab under its maximum load. Assuming the design load to 

be based on a steel stress of 16,000 Ibs/in.^ for a total moment given 

by the formula M = }^w I {I — % c)*, and the ultimate load to be 

determined on the basis of a yield point of 40,000 Ibs/in.^, the factor 

of safety was found to range from 2.67 to 

5.57, averaging 3.8. In those tested to failure 

or nearly so, the factor was 4 or more. The 

theoretical factor is 40,000/16,000 = 2.5. 

With a test load of 2 to 2j^ times the design 

live load the measured stresses in the reinforce¬ 

ment were much below the theoretical values. 

In addition to the high safety factors 

shown in such tests, consideration should also 

be given to the fact that this type of struc¬ 

ture is exceedingly reliable and capable of 

heavy over-load without danger of sudden 

failure. The shearing-stresses are generally 

low, and the danger of shear failures which 

exist in ordinary beam construction hardly 

exists. From all these considerations it seems proper and admissible 

that higher unit stresses should be used in this type of design, or 

that some reduction be made in the theoretical moment coefficients. 

The latter is the usual method of modification. 

The foregoing discussion relates primarily to the stresses in the 

steel; the compressive stresses in the concrete must correspond to the 

full theoretical bending moment. 

216. Working Coefficients for Moments.—The results of such 

tests as noted in the preceding paragraph and experience for many 

years with existing structures led the Joint Committee of 1924 to 

adopt a value for total moment for an interior panel, for calculating 

stresses in the steel given by the formula 

Mo = 0.09 Wl{\ — % cjt)^.(3) 

Ro. 27. 

* Proc. A. C. I., 1921, p. 509. 
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thus using a coefficient of 0.09 instead of the theoretical value, a 
reduction of 28%. The corresponding factor of safety as determined 
by the tests referred to averages about 2.7 with a few tests at about 
2.0. Although this is somewhat less than is customary in rectangular 
beams for the same working stresses, the nature of the structure 
fully warrants some distinction in this respect. 

The proportions of total moment assumed as carried by the various 
sections as specified by the Joint Committee are as follows: 

PERCENTAGES OF TOTAL MOMENT Ma OF EQ. (l) AT EACH SECTION 

OF A FLAT SLAB PANEL (jOINT COMMITTEE) 

(For all values of c/l) 

Strip 

Slabs without Dropped Panels Slabs with Dropped Panels 

Negative Positive Negative Positive 

Slabs with 2-way Reinforcement 

Column. 46 22 50 20 

Middle. 16 16 15 15 

Total. 62 38 6s 35 

Slabs with 4-Way Reinforcement 

Column. 50 20 54 19 
Middle. 10 20 8 19 

Total. 60 40 62 38 

For exterior or wall panels the positive moments will be greater 
and the negative moments at the wall or marginal beam will be less 
than those for an interior panel, the actual values depending upon the 
relative rigidity of the marginal support. Empirical rules for these 
moments are given in general specifications. See also Art. 264 
on Torsion. 

The column strip width is taken as one-half the width of the panel, 
occupying the two quarter panel areas outside the middle strip. 
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217. Thickness of Slab.—The thickness of the slab is usually 
fixed by a definite formula in the specifications in terms of load, 
dimensions of the panel, size of column capital, and strength of con¬ 
crete. Such a formula may be arrived at as follows; 

The full bending is, from eq. (i), M = 0.125 (i ~ 
If the amoimt carried as negative moment in the column strip be 
taken at 50% of the total, then the negative moment in foot-pounds 
per foot of width is 0.125 w (i — % c)®. For a 2000-lb. concrete we 
may take fe = 0.45 X 2000 = 900 Ibs/in.^; also let /, = 18,000 
lbs/in.2 If the steel is calculated by the use of a coeflScient of 0.09 
instead of 0.125 the theoretical stress for full moment will be 
18,000 X 0.125/0.09 = 25,000 lbs/in.2 The thickness should then be 
such as to make a balanced design for /c = 900 and f, = 25,000 
Ibs/in.® For these values, from Diagram 4, i? = 140 and p = 0.64%. 
Then from the relation M — Rbd^ we have 

0.125 W/2 (l - %c//)2 
a" —----- 

R 
whence 

d = 0.03 / (i — % c/f) y/w..(4) 

To this value is added i ]4, in. to get total thickness. 
The formula of the Joint Committee for a 2000-lb. concrete is 

t = 0.038 (i - 1.44 c/l) iVw + .(5) 

This gives the same value as (4) for c/l = 0.225; tor smaller values of 
c/l, somewhat greater, and for larger values somewhat less, which is a 
desirable provision. 

218. Calculation of Reinforcement.—In calculating stresses in the 
reinforcement, all bars crossing the sections in question may be 
counted, provided adequate provision is made for bond strength. 
Rods crossing diagonally may be considered to have a value deter¬ 
mined by multiplying their area by the sine of the angle which they 
make with the side of the panel considered. Thus, a diagonal bar 
on line A C (at 45°), Fig. 25, would be counted for negative moment 
online^ D and positive moment on line MN ai 0.707 of its full 
area. 
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219. Shear and Diagonal Tension.—The conditions regarding 
diagonal tensile stresses are similar to those in the case of footings 
discussed in Art. 200. The line of critical shear may be taken as a 
circle around the column capital at a distance therefrom equal to the 
effective depth of the slab, or slab and dropped panel, usually assumed 
at in, less than the total thickness. Where a dropped panel is 
used a similar critical section surroimding the dropped panel should 
be investigated. The shearing-stresses are usually limited to values 
not requiring diagonal tension reinforcement. The bending moments 
generally determine the thickness. 



CHAPTER IX 

BUILDING CONSTRUCTION 

220. The foregoing chapters have dealt with the analysis of 
various elements of construction without much reference to the 
structure as a whole. The use of these elements in many forms of 
construction is simple and direct and requires no further discussion; 
but in other cases, when these elements are combined into whole 
structures, certain problems of stress determination arise which 
differ somewhat from those involved in similax structures of steel or 
timber. In the present chapter the use of reinforced concrete will 
be considered with especial reference to building construction. 

221. The Building Frame.—Based on the type of framework used, 
buildings may consist of: 

1. A steel framework of columns, girders, 2ind beams with rein¬ 
forced concrete used for floor slabs only. In this case the framework 
is designed as a steel structure, and it is only the concrete floor that 
concerns us here. 

2. A complete framework of reinforced concrete consisting of 
columns and floor members designed and built to act as an integral 
structure. The columns in this case may consist of one of the usual 
types of reinforced-concrete columns, or may consist of structural 
steel surrmmded by concrete to which the concrete floor is adequately 
connected. In either case the monolithic character of the construction 
involves the calculation of stresses in continuous girders, and of open 
frames composed of floor members and columns; and as such calcula¬ 
tions are inseparably connected with reinforced-concrete building 
design, suitable methods of analysis will be explained in this chapter. 
For buildings of only two or three stories in height, bearing walls may 
be used in part to support the floors, but for higher buildings, a com¬ 
plete skeleton of columns and floor members will be more economical, 

*37 
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the external walls being made relatively thin and resting on floor 
members at each story. 

222. Arrangement of Columns.—The spacing and arrangement of 
columns is a matter largely of convenience and architectural con¬ 
siderations. Where not otherwise controlled, the economical spacing 
is not far from 20 ft., with somewhat less for exterior panels. A con¬ 
siderable variation in span wiU affect total cost but little. Exterior 
colunms are for convenience usually made rectangular or square in 
form; interior columns square for beam and girder floors, and round 
or octagonal for the flat-slab type. Except where governed by con¬ 
siderations of space, high percentages of reinforcement are not econom¬ 

ical, as the load can be carried more cheaply by concrete than by steel. 
The most economical type of column will depend largely upon the 
requirements of the building code for the locality. As in all cases 
of numerous units, uniformity of size is a factor of importance in 
securing maximiun economy and to a certain extent will justify 
the use of excess material for some of the units. 

223. Types of Concrete Floors.—Concrete floors may be divided 
into four types: 

1. Floors of reinforced concrete placed on a steel frame of girders 
and beams. 

2. The beam and girder type in which the slabs are built integrally 
with a framework of beams and girders, the girders being built into 
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the columns. This type is especially advantageous where the span 
lengths vary considerably and where there are many openings. 
Fig. I shows various arrangements: in (a) girders and beams with 
oblong slabs reinforced transversely; (6) square panels with two-way 
reinforcement; (c) beams in one direction only, suitable for small 
span lengths. 

Fig. 2. 

3. The girderless floor, or flat-slab t3^e. Especially suited to 
large continuous areas with uniform spacing of columns. 

4. The Joist Type of construction for relatively light loads. This 
is essentially a beam and girder type in which the beams are small 
and closely spaced and the slab is relatively thin. Fig. 2 illustrates 
two standard methods of construction. In (a), hollow clay tile are 
used between the beams. In (b), a metal form or tile is used which 
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may be made quite thin and left in place, or relatively thick and 
removed and used repeatedly. 

224. Loads on Buildings.—The dead load is the weight of all 
parts of the structure and is estimated in detail from unit weights 
of the various materials used. These are readily found in various 
structural handbooks. The weight of ordinary reinforced concrete 
is taken at 150 Ibs/ft.^ The live load is the extraneous load placed 
upon the structure. It varies greatly in amount and character, 
depending upon the use to which the building is put. Usually the 
live load is specified and treated as a uniformly distributed load over 
a portion or all the area of a floor, depending upon the effect produced. 
Occasionally, as in the case of floors supporting heavy machinery 
or loaded trucks or cars, the live load may be specified as concentrated 
loads. Where the live load includes heavy moving parts, as in the 
case of some machinery, elevators, etc., some account must be taken 
of the dynamic effect. Whatever this may be, it is usually added as 
a percentage to the actual static live load. The wind load is the 
horizontal pressure due to the maximum wind velocity anticipated 
and is specified at from 20 to 30 Ibs/ft.^ for the exposed surface of the 
building. This is of much importance in high and narrow buildings. 

The live load on columns in the lower stories of a many-storied 
building is reduced somewhat below the value found by assuming all 
floors to be fully loaded. The amount of this reduction varies in 
different building codes, but for general purpose buildings it is about 
5% per story to a maximum of 50%. For warehouses a smaller 
reduction is made 

Some of the commonly specified live loads are as follows: 

Lbs/ft.« 

Assembly halls. 100 
Office buildings. 75 
Residences. 50 
Class rooms. 50 
Corridors and stairs. 100 
Garages. 100 
Storage purposes. 100 to 250 
Roofs. 30 to 40 

For exact values the building code for the city or state in question 
must be consulted. 
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225. Problems of Analysis.—In the design of the beams, girders, 
and columns of a building there must be determined with a satisfactory 
degree of accuracy the maximum bending moments, both positive and 
negative, in the beams and girders, the shearing-stresses therein, and 
the bending moments and compressive stresses in the columns. This 
determination includes the analysis of continuous girders and of 
open quadrangular frames. Exact analysis of such structures can 
in most cases be made only on the basis of an assumed design, as the 
relative rigidity of the various parts must be known. Then from 
the results of such analysis the design must be corrected. 

In practice, a design closely meeting requirements can usually be 
made on the basis of assumed or standard coefficients determined 
from experience or by a generalized treatment so that the necessary 
corrections are not difficult to make. This analytical discussion will 
be divided into two parts: (i) the analysis of continuous beams with 
especial reference to the determination of working coefficients for 
ordinary cases; (2) general methods of analysis of quadrangular 
frames and beams of differing moments of inertia and span lengths. 

ANALYSIS or CONTINUOUS BEAMS 

226. General Conditions.—Where continuous beams rest upon 
walls or are framed into other beams, as in the beam and girder 
arrangement, the restraint offered at the supports is usually so small 
that in calculating bending moments such beams are assumed as 
acting as freely supported continuous girders and calculated as such. 
In the design, provision is then made for small negative moments at 
the end supports.* 

The exact determination of the maximum bending moments at all 
sections of a beam continuous over several spans is a tedious and time- 
consuming problem. For several reasons such a complete solution is 
generally unnecessary and of little value. In the ordinary case the 
beams in question (especially floor slabs), are continuous over several 
spans, and the loading required to produce the theoretical maximum 
stresses involves unreasonable assumptions as to position of live load. 
It would be necessary, in general, not only to load alternate panels 
completely, leaving intermediate panels entirely unloaded, but it 

* See Art. 364 for discussion of torsional resistance of girders. 
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would be necessary also to have such load conditions extend over 
a very considerable width transversely of the beams in question, 
as the monolithic character of a concrete floor produces a wide 
lateral distribution of concentrated loads. Where the span lengths 
are equal a sufficiently exact analysis may be arrived at by con¬ 
sidering certain simple cases of continuous beams. Where span 
lengths are unequal, and in other special cases, a more exact analysis 
should be made. 

227. The Theorem of Three Moments.—The calculation of mo¬ 
ments, shears, and reactions for continuous beams is based on the 
theorem of three moments, which expresses the relation between the 

fig. 3. 

bending moments at any three consecutive supports and the loads on 
the two included spans. Referring to Fig. 3, let supports i, 2, and 
3 be any three consecutive supports of a continuous girder of any 
number of spans; h and h the included span lengths, and I\ and 12 
the respective moments of inertia, and Mi, M2, and Ms the bending 
moments at the respective supports. In (o) the load consists of 
uniform loads of wi and wz per unit length on the two spans, and in 
(J) the load consists of any number of concentrated loads represented 
by Pi and P2, respectively, and distant ki h and kz h, respectively, 
from the supports on the left 

Let I/I = K, in general. Then assuming uniform modulus of 
elasticity: 
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+ 
K2 

For uniform loads * 

Ml -.r I ^ ^ \ 

For concentrated loads * 

+ 2 M2 ^ J + 

I Wi 

4~^ 

IIV2 

4~^’ 
(la) 

S [Pi h (ki - /fei3)] 

Ki 

'2[P2h{2k2-2,k2^ + k2^)] 

K2 
(ib) 

By the use of these equations the bending moments at all supports 

can be determined, and thence the shears and reactions. For example, 

a two-span girder supported at the ends is solved at once by applying 

the equation to the moments at the three supports, the values of 

Ml and M3 being zero. In a three-span girder the theorem is applied 

to the first and second spans and to the second and third spans, 

placing Ml and M4 = zero. Two equations are thus formed with 

two unknown moments M2 and Ms, and these moments determined. 

In a similar manner three equations are written for a four-span girder, 

etc. If the ends are fixed so that the end moments are not zero, two 

additional equations are obtained by assuming two additional end 

spans, each of zero length, and then considering the structure as 

supported at the ends, making the end moments zero. Such an 

assumption is equivalent to fixing the direction of the end tangent 

to the curved beam axis. 

Having determined the moments at supports, the moments and 

shears may be determined at any desired point. 

228. The Moment of Inertia of a Beam.—The moment of inertia 

of a reinforced-concrete beam is somewhat uncertain. Where this 

property is used in problems relating to strength, as in the application 

of the transformed section, the moment of inertia should be calculated 

for the compression area of the concrete and the total area of the steel, 

^he area of concrete in tension should be omitted. It is a question 

of strength. 

In the present series of problems we are attempting to determine 

the relative proportion of load carried by the several supports; and 

* See text books on mechanics for derivation of these equations. 
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in the case of the open frames discussed later on, the relative moments 

carried by the various members meeting at a joint. In this class of 

problems, it is a question of the relative rigidities of the various 

beams concerned, a measure of which is the ratio of the moment of 

inertia divided by the length of the member. Now the deflection 

of a reinforced-concrete beam is due to the strains in every part 

of the beam, and, for a considerable portion of the entire volume 

below the neutral axis, tensile stresses in the concrete exist and exert 

a large influence on the deflection. No very exact method can be 

devised, but in Chap. VI it is shown that satisfactory results for 

deflection are obtained by taking account of the concrete to the 

centre of the steel and using the amount of steel at mid-section. 

Ordinarily about the same result will be obtained by using the gross 

. section of concrete and omit- t| ting the steel; this method of 

c 1 ,, B calculation is recommended and 

Ml" I_ ~| ^ * M» will be used in the examples 

T y " following. 

■*-1->■ * For columns, the calcula- 

FiG. 4. tion of moment of inertia 

should include the steel, as 

there is usually compression over the entire section, and both steel 

and concrete are fully effective. Three or four per cent of steel 

will add largely to the moment of inertia of a column. 

229. Unit for Values of I/I or K.—Since the quantity K appears 

to the first power in all terms it is immaterial what unit is used in its 

calculation provided it is the same for aU. Any convenient imit 

may therefore be chosen. It is only the relative values of K that are 

significant. 

230. Shears and Moments in Any Span.—In Fig. 4 the end mo¬ 

ments Ml and M2 are known. They are represented as negative 

moments, the usual case. The beam is also loaded in any manner. 

It is required to determine the shears Vi and V2 and the moment 

Mg at any point C. Let V'l, V'2, and M'g represent the shears and 

moment due to the vertical loads alone, considering the beam as 
simply supported. The effect of Mi and M2 can then be calculated 

separately and added. We thus find readily, taking moments about B. 
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Vi = V'l + 
V 

M2 — Ml 
~l ’ 

V2 = F'a + 

(2) 

(3) 

Mx = Vix — P a — Ml 

= V'lX Pa +{Ml- M2)- - Ml 
V 

= M'x- 

For the centre point 

Me = M'e - 

Ml + {M2 - Ml) 

Ml -1- M2 

1]- (4) 

(5) 

V. 

rM, 

Va 

That is, the centre moment is eqiial to the centre moment in a simply 

supported beam minus the average of the two end moments. * 

Fig. 5 illustrates 

the case for a uniform *'*»- 

load. Ml and M2 are 

the end moments and 

the curve DEF is a 

parabola plotted from 

the axis D E, with 

centre ordinate = 3^ 

w P. The ordinates 

from the axis D E to 

the curve represent values of M', the moment in a simple beam. The 

resultant moment, represented by the ordinates from .4 .B to the 

curve, is equal to M' minus the ordinate from A B to D E, which 

is equal to Mi + {M2 — Mi) x/l, as given in eq. (4). At the centre 

this is as in eq. (5). For concentrated loads the moment 
2 

diagram for M' will be plotted from the axis D Eva. the same marmer, 

the total or resultant moment being represented by the ordinates 

from A B. 

* The numerical values of the moments are here of most significance, as the negative 
end moments and the positive centre moment act together to resist the external forces. 
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Fig. 6 shows the shear diagram corresponding to the moment 

diagram. The value of the shear at -4 is F'l + —- or }/^wl — 
§> 

Fig. 6. 

Af2 Ml 

T 
, and the shear throughout the beam is equal to the shear 

in a simple beam reduced by the quantity as shown. For 

concentrated loads the shear diagram can be constructed in the same 

manner. 

Example.—Calculate the moments and shears in the beam shown in 
Fig. 7 (a). It is fixed at the left 
and simply supported at the right. 

Solution.—In Fig. 7 {b) there 
is shown an imaginary span 1-2 
of zero length, and the spans are 
numbered to include this. Then 
applying eq. (la) to spans i and 
2, we have, Mi being zero, and 
Ki = GO, 

14;=1000 lb. per ft. 

1__ 1 
\ 1-6000 in.^ - 

^ . ttr ^ 

‘ 1 = 10.000 in.^ 

< ■ " ■ It/ > < zu.. ^ 
(a) 

H Wl =-66,260 

t K*27.8 f K“41.7 f 

1 
Span #2 I Si>an #8 1 

(6) 
Fig. 7. 

2 M2 , Mz 

27.8 27.8 
56,250 

27.8 
(a) 

Applying eq. (la) to spaces 2 and 
3, Ml being zero, 

Simplifying 

Ms 
27 

[1 + 2 M. (— + —^ = - ^^’^50 _ 
.8 \27.8 41.7/ 27.8 

100,000 

41.7 

Solving, we get finally 

2 M2 + Mz = — 56,250 

M2 + 3-33 Mz ==- 122,950 

M2 = — 11,500 ft-lbs. 

Mz ^ — 33^300 ft-lbs. 
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The shear at 2 is equal to l^wh — ■33>30p 11,500 _ ^ 

6050 lbs. On the left of 3 it is 7500 + 1450 = 8950 lbs. On the right of 

3 it IS - y^wU-— = 10,000 + 1660 = 11,660 lbs. At 4 it is 
^ 20 
10,000 — 1660 = 8340 lbs. 

Fig. 8 shows the moment and shear diagrams. The centre moment for 

span 2-3 is }/swh'^ — -33>3?^ - 28,120 — 22,400 = 5720 ft-lbs., 

and for 3-4 is Y^wh^ — 33,300/2 = 50,000 — 16,600 == 33,400 ft-lbs. 

Parabolas drawn as shown, with centre ordinates of Ys^^^ span, 
will give the complete moment diagram. 

Beams of Equal Span Lengths and Equal Moments of Inertia 

231. Where the lengths and moments of inertia of the various 

spans of a continuous girder are equal or nearly so, specifications 

usually permit the moments to be calculated by the use of certain 

general coefficients, which, although not very exact, are sufficiently 

accurate for most purposes. It will therefore be desirable to con¬ 

sider in some detail the analysis of the girder of equal spans and 

uniform moment of inertia with especial reference to the detennina- 
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tion of suitable coefficients for general use. The following cases will 
be discussed separately: 

1. Beams of two and three equal spans. 
2. Beams of numerous spans. 
As a general rule, it is necessary to calculate the maximum mo¬ 

ments at centres of spans and at supports only. 
232. Beams of Two and Three Equal Spans.—Inasmuch as the 

Fig. 9.—Moment CoefiScients for a Two-span Beam. 

conditions for a theoretical maximum are more likely to occur in 
beams of two or three spans than where the number of spans is large, 
an exact analysis will be made of maximum moments at all points for 
the beam of two spans and for the beam of three spans. The spans 
will be assumed equal and the beam considered as continuous but 
freely supported at all points. Assume the dead load to be a uni¬ 
formly dktributed load, = w per lineal foot, and the live load to be 
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also a uniform load, = p per lineal foot, but distributed over such 
portions of the beam as to cause a maximum moment at the given 
section. The live-load moments have been calculated for such posi¬ 
tion of the load as to cause the maximum moment at all points. The 
results are shown in Figs. 9 and 10. Dead-load moments are given 
by the dotted lines, live load by full lines. The ordinates as plotted 
are the coefficients of the quantities w P and p P. 

The coefficients of wP and pP for the maximum positive and 
negative moments for the two beams are as follows: 

1 
Maximum Near 

Centre of Span (-f) 
Maximum at 
Support 

Beams of two spans (Fig. 9): 

Dead load... 0.070 

•09s 

.080 

.02$ 

. 100 

.075 

0.125 

.125 

.100 

.117 

Live load. 
Beams of three spans (Fig. 10): 

, , f ist span. 
Dead load 2d span. 
_. , , ist span. 
Live load * 

2d span. 

If the dead and live loads are combined into a single imit for the 
purposes of calculation, the proper coefficient for {w -f p) will depend 
on the relation of dead and live load. If, for example, the dead load 
is one-third the live load, then there results: 

Beam of two spans: 

Maximum positive moment = 0.089 (w' + P) 

Maximvun negative moment = 0.125 (w -f />) P. 

Beam of three spans: 

Maximiun positive moment 

Maximum negative moment 

end span = 0.095 (®' + P) 
centre span = 0.062 {w -f- p) P. 

= 0.113 {w -I- p) P. 

In Figs. II and 12 the curves show the maximum and minimum 
moments throughout the beam for the case where p - iw, expressed 
as coefficient of the siun of dead and live load {w + p). These curves 
are particularly useful in showing the relative distances from the 
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supports over which positive and negative moments may occur. 
(See Art. 236.) 

In the two-span beam, with p — $w, Figs. 11 and 12 show negative 
moments occurring for about 55% of the length of the span; and for 
the three-span beam, they occur throughout the middle span. This is 
of considerable significance as three-span girders are very common 
m certain types of buildings, and in many cases the central span is 

Fig. II. 

Fig. 12. 

relatively short, resulting in heavy negative moments throughout the 
span. 

233. Beams of Numerous Spans.—Position of Loads for Maxi¬ 

mum Moments and Shears.—^To assist in getting a clear xmderstand- 
ing of the effect of loads in various spans upon moments and shears 
at particular points, several influence lines are shown in Fig. 13 
for a six-span girder.* Figs, (b) and (c) are the influence lines for 

• Influence lines may be drawn by calculating the value of the moment or shear in 
question due to a load of unity placed at various points along the beam. 
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moment at (a) and (6), the centres of the first and third spans. 

Figs, (d) and (e) for moment at supports 2 and 4 and Figs. (/) and 

(g) for shears at (a) and (b). A maximum positive moment at or 

near the centre of a span requires each alternate span to be loaded, 

Feg. 13. 

and a maximmn negative moment at the support requires the two 
adjacent spans to be loaded and then each alternate span. The 
small effect of loads on remote spans is to be noted. For metximum 
shears the general rule of loads in alternate spans is seen to hold true as 
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for moments, but the effect of remote loads upon the maximum 

shears is relatively less than in the case of moments. 

If the load is a uniform one^on any span, the shaded area below 

the influence line represents to scale the actual moment or shear due 

to this load. In special cases of heavy concentrated loads influence 

lines may be drawn, the actual moments calculated therefrom, and 
the maximum value determined by trial. 

234. Moment Coefficients for Uniform Loads.—In ordinary con¬ 

struction of equal or nearly equal spans, exact bending moments 

are seldom calculated but are determined by appl)dng specified coeffi¬ 

cients which have been standardized by various engineering and code 

committees. A study of the moments in several cases will show the 

basis for these coefficients. 

In the case of several spans it will be practically correct in calculat¬ 

ing maximum positive moments to consider that the maximum mo¬ 

ment at the centre of the span is the maximum desired. (Strictly 

the maximum is cenerallv not 

quite at the centre.) The fTn, r % at the centre.) The 
g. w^mm. loading required for maximum 
'' h T» ta U Ts Ta It live-load moments is illustrated 

pjQ in Fig. 14, which shows in (a) 

the loading for maximum posi¬ 

tive moment in spans 2-3, 4-5, and 6-7, and in (b) the loading for 

maximum negative moment at support No. 3. For the former case 

each alternate span is loaded, and for the latter, the two adjoining 

spans are loaded and then each alternate span. Calculations of 

maximum positive and negative moments have been made for each 

span and each support for girders of four, five, six, and seven spans, 

and the significant results are given in Table 17. Included also are 

the results for two and three spans previously determined. It is 

found in general that, for all spans and supports, except the end span 

and support adjacent thereto, the maximum positive and negative 

moments do not vary greatly for the different spans, but for these 

end spans and supports they are considerably larger than for inter¬ 

mediate spans. The results are, accordingly, arranged in two groups 

in the table. For the intermediate spans the greatest value for the 

several spans is given. 
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TABLE 17 

COEFFICIENTS OF wP P P FOR MAXIMUM MOMENTS IN CONTINUOUS 

BEAMS 

Intermediate Spans and Supports Ene Span and 2d Support 

Number of 
Spans At Centre ( -j-) At Support ( —) At Centre (-f) At Support ( — ) 

Dead Live Dead Live Dead Live Dead Live 

Two. 
Three. 0.025 0.075 

0
 

0
 

6
 0.095 

. 100 

0.125 

.100 

0.125 

.117 

Four. .036 .081 .071 0.107 .071 .098 . 107 .120 

(iiS) 

Five. .046 .086 .079 .III 

(.106) 

.072 .099 .105 .120 

(.116) 

Six. •043 .084 .086 .116 

(.106) 

.072 .099 . 106 .120 

(.116) 

Seven. .044 .084 .085 .114 

(.106) 

.072 .099 . 106 .120 

(.n6) 

The quantities in parentheses are the coefficients for live-load 

moments over supports where the two adjoining spans only are loaded. 

The effect of loading each alternate span in addition to these two 

spans is seen to be small; and considering that such a loading would 

be extremely improbable, and also the fact that a comparatively small 

amount of load on the other spans would neutralize this effect, it is 

apparent that the quantities in parentheses may be taken as reasonable 

maximum values. The two-span beam should preferably be treated 

as a special case. 

Finally, leaving out of account the two-span beam, the following 

values may be taken as reasonable maximum values of the coefficients 

for beams of any number of spans: 
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Further simplification is made by combining the dead and live 

loads and appl5dng a single coefficient to the sum. Taking the above 

values as a basis, the combined coefficients for various ratios of live 

to dead load are shown below. Thus for a ratio of 3 to i, the com¬ 

bined coefficient would be, for centre moment in intermediate spans, 

3 X 0.085 + I X 0.045 _ 

Ratio of Live 
to Dead Load 

Intermediate Spans End Spans 

At Centre At Support At Centre At Support 

2 : I 0.072 0.098 0.092 0.112 

3 : I •07s .100 .094 .112 

4 : I .077 .101 •09s .113 

5 .078 .102 .096 .113 

It will be seen from this table that for ordinary proportions a single 

coeflicient may well be used for both dead and live loads. 

In adopting final values consideration should be given to certain 

modifying influences. The beams and slabs are not freely supported 

as assumed, but are, to a considerable extent, fixed at the supports. 

This tends to reduce the maximum moments, especially in the end 

span. Furthermore, the negative moments decrease very rapidly 

from the support towards the centre, so that any slight excess of stress 

would extend but a few inches at most. In the case of slabs it is also 

convenient to use the same amount of steel for positive as for negative 

reinforcement. The supports, also, are of considerable width, so 

that if the span lengths be taken centre to centre, the negative moment 

at the edge of the support is considerably less than the calculated 

maximum. 

The coefficients adopted by the Joint Committee of 1924 and by 

the American Concrete Institute, 1928, applicable to both dead- and 

live-loads, are as follows: 
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Joint Committee, 
1924 i 

A. C. I., 
1928 

Two-span beams: 

Positive moment. Ho Ho 

Negative moment at centre support. Vs H 
Beams of more than two spans: 1 

Intermediate spans: 

Positive moment. H2 H2 

Negative moment. H2 H2 

End spans: 

Positive moment. Ho Ho 

Negative moment. Ho Ho 

Negative moment at end support. H4 Ho 

A negative moment is assumed at the end, owing to some restraint 

from walls or longitudinal beams or girders. 

235. Effect of Applying Loads at Panel Points.—Where beams 

frame into girders at one or more panel points, the load on the girder 

consists of equal concentrated loads, an arrangement which modifies 

somewhat the moments in the girder. The effect is not great, but in 

general the moment is made more nearly equal at centre and support 

and in the three-panel arrangement is reduced about 10%. 

236. Position of Point of Inflection.—In determining the length 

of rods required for 

reinforcement, and in 

calculating bond 

stress, it is necessary 

to ascertain approxi¬ 

mately the variation of 

bending moment along ^ 

the beam under the 

assumed load condi¬ 

tions. For positive 

moment the span in 
question is fully loaded Fig. 15. 

and the adjacent spans not loaded. 

If the centre moment is taken dX 1! 12 wP the point of zero moment 

will be 0.09 / from the end, as shown in Fig. 15 (a). For an end span 
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the points of zero moment will be at the free end and about o,i / from 
the first interior support. Between points of inflection the beam 
acts precisely as a simply supported beam. 

For maximum negative moments, the point of zero moments will 
be about 0.2 / from the support, as in Fig. 15(b). 

Negative moments may also exist throughout the entire length 
of a span (when adjacent spans are loaded), as shown in Fig. 12. 
Where the spans are of equal length these negative moments through 
the central part of the beam are small and may generally be neglected, 
but where the spans are of unequal length they may be important and 
must be provided for. (See Art. 241 for illustration.) 

237. Shears in Continuous Beams.—^As shown by eq. (2), Art. 230, 
and as illustrated by the numerical example given, the end shear in a 
continuous beam is equal to the end shear of a simply supported beam 
plus the difference between the end moments divided by span length. 
Such shear is therefore a maximum when the span is fully loaded 
and other loads so placed as to cause a maximum moment difference 
at the two ends. As shown by the influence lines of Art. 233 this is 
the same loading as for maximum negative moment. 

The span having the maximum shear will be the end span, since the 
moment at one end of this span is zero. And the shear will be}^wP+ 
Mi/l, where M2 is the moment at the second support. From Table 17 
this shear can be readily computed for beams of various numbers of 
spans. For the two-span-girder the moment at the second support is 
0.125 wP, hence shear at this support = (0.5 -f- 0.125) ^ = 0-625 iv 1. 
For a three-span beam, the dead-load shear = (0.5-f o.i) wi = 
0.6 w I, and the live-load shear = 0.617 wl, etc. 

For intermediate spans the dead-load shears are practically 0.5 w I, 
actually 0.5036 wlas a. maximum in the four-span beam. The live- 
load shears are a little greater, being practically 0.60 w I for the second 
span and less for the others. It is common practice to assiune the 
shears to be the same as for simple beams, but for end spans this 
value should be increased by 20% or to 0.6 w 1. 

Beams of Unequal Span Lengths and Moments of Inertia 

238. Where span lengths or moments of inertia differ considerably, 
it is not pennissible to use the general coefficients for moments, but 
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the maximum values must be determined by more exact methods. 

The most expeditious way of accomplishing this is to calculate first 

the moments at all supports for each span loaded in turn. Then 

from these results the maximum combinations can be found. 

239. General Formulas for Moments for Load in a Single Span.— 

General formulas will first be developed for a girder of several spans 

for a uniform load in a single span. These formulas will then be 

simplified for the special but common cases of the two>span and the 

three-span girder. 

Fig. 16 represents a girder of several spans. In general, let 

K ^ I/I for any span. 

A == — 34 for the loaded span. (See eq. (la), Art. 227.) 

Ki Ka K3 K4 K5 Kb 

Fig. 16. 

We will first determine the relation between moments at successive 

supports along the unloaded portions of the beam. Suppose span 5 

or 6 to be loaded and consider the moments on the left. Assuming 

the moment Mi to be zero (or any definite value), it will be found 

possible to express the moment at any support up to the loaded span 

in terms of the moment at the next support towards the load, thus 

M2 =— M3a2, Ms =— M4 as, etc., where a2, as, etc., are coeffi¬ 

cients to be determined and depend only upon the quantities K, 
Beginning with spans i and 2 and applying the theorem of three 

moments we have (assuming Mi = o) 

whence 

M2—-“Ms—7^—, = — Ms as or as 
2 (A:i + Ks) 

Ki 

2 {Ki + KsY 

Then for spans 2 and 3 

Ms 

Ks Ks 
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Substituting the value —Mz az for Mz, and solving for Mz gives 

=-^4-7r—--=-Miaz 
2 {K2 + — a2 Ks 

or 

= ^2 
2 {Kz + Kz) -az Kz 

Proceeding further it will be found that the general expression for the 
coeflBicient for any support on the left of the load is 

_ _Kn-l_Kn-l/Kn_ , . 
“ 2{K^.y + ii:„)-a„_i~ 2 (i + K^.x/k:) 

in which n = number of support or span from the left end. 
It is sufficiently exact in most cases to assume a„_i = ^ except 

for ai which will be zero when Mi = o. 

For 

a«-l = 34, ffln = 
I 

2 + 1.75 K„/Kn-1 ' . . (la) 

Beginning at the end, it is therefore a simple process to calculate 
the numerical values of a for successive supports, up to the last 
support but two on the right and these values will hold good for all 
supports on the left of any loaded span. 

If the beam is assumed as fixed at i then ikfi = 34 ^2, or ai = 0.5, 
and 02 is given by the general formula, eq. (i). If partially fixed. 
Ml may be taken at 34 ^2 and ai = 0.25. 

Likewise for moments on the right of the loaded span similar 
coefficients may be calculated, beginning at the right end. These 
coefficients are indicated as b, and the general formula is 

_^__KJKn.l 
• 2 (/s:„ + Kr^-i) - 6„+i Kr^.i 2 (i + KJKn-i) - 6„+i' ’ 

The approximate expression is 

, ^_I_ 
" 2 + i.75K„.i/Kn 

(20) 

These coefficients a and b having been calculated, it is possible to 
derive workable formulas for the moments at the left and right sup¬ 
ports of any loaded span, all other spans being unloaded. Having 
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these values, then the moments at other supp>orts for this loading are 

obtained by using the coefficients already calculated. It will be 

simplest to take a particular span in deriving these formulas. 

Fig. 17. 

Assume span 3-4, Fig. 17, to be loaded with a uniform load and 

that the coefficients 02 and h are already calculated. Then applying 

the 3-moment equation to spans 2 and 3 and to 3 and 4, and bearing 

in mind that M2 = — ^2M3, Ms = — 65Mi, and = A\ 

02 Mz 

K2 
->r 2 Mz 

Kz Kz 

-h 2 Mi i— h 
Kz ' ' Kij Ki Kz 

Solving these equations for Mz and M4, we have 

K2 [2 {K^ + Kz) - bs Kz] ~ K2 

[2 (A^4 + Kz) - h Kz] [2 {K2 + Kz) - a2 A3] - A2 A4 ^ 

^_A4 [2 (A2 + A3) g2 A3] K2 A4_ A ( \ 

[2 (A4 + A3) — 65 A3] [2 (A2 + A3) -- a2 A3] — A2 A4 ^ ^ 

Sufficiently accurate results will be obtained by assuming all 

values of a and b = 0.25. They will vary somewhat from this, but 

as the terms containing these quantities are combined with terms 

about sixteen times as large, any error arising from this assumption 

will be very small. However, as the coefficients, or their approximate 

equivalent, are required in any event, it will be found that the exact 

process is about as expeditious as an approximate one. 

240. The Two-Span Beam.—^Application of the general formulas 

(3) and (4) of Art. 239 gives the fol¬ 

lowing abbreviated expressions: 

For the first span loaded 

j (x!+ Ki) ^ 

Fig. 18. 

(5) 
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and for the second span loaded 

M2=- 
2 

Ki 

(Ki + K2) 
■A (6) 

Fig. 19. 

Live Load. 

Example.—Spans 20 and 12 ft. 
Uniform moment of inertia. The 
values of K will be in the proportion 
12 to 20 as indicated. Live load = 
2000 Ibs/ft. Dead load = 1000 Ibs/ft. 
Calculate maximum positive and 
negative moments throughout. 

AI = — = "“34 X 2000 X 20^ = — 200,000 ft-lbs. 
^2 = — — J4 X 2000 X 12^ = 72,000 ft-lbs. 

First span loaded 

M2 = — 200,000 X 20/64 = ■“ 62,500 ft-lbs. 

Second span loaded 

if 2 = - 72,000 X 12/64 = — 13,500 ft-lbs. 

Both spans loaded 

if 2 = — 62,500 — 13,500 = — 76,000 ft-lbs. 

Dead Load. 
if 2 = - X 76,000 = - 38,000 ft-lbs. 

Figs. 20 (a), (b), and (c) show live-load moment diagrams for the three 
conditions of loading, and (d) the dead-load diagram. The moments are 
given in thousands of foot-pounds. The curved portions are parabolas 
with centre ordinates = Adding the dead-load diagram to {a) and 
(6) gives maximum positive moments in spans i and 2 and minimum positive 
or maximum negative moments in spans 2 and i, except near the centre 
support. These curves are shown in Fig. (e). The curves ahc and dej 
give maximum positive, and aV d and ce'f the minimum. For both spans 
loaded the moment at 2 = — 76 — 38 = — 114, shown at g, ancf, for a 
short distance from 2, partial loading of both spans will give negative 
moments somewhat greater than shown by the curves ab^d and ce'f. 
These values can be found sufficiently well by sketching curves from g 
tangent to the others at about the 2/10 pomt, shown by dotted lines. The 
least moment at 2 is the dead-load moment of —38.0, and the diagram can 
be completed for maximum and minimum by the dotted lines from A to 
the upper curves, although this is of no particular value. The shaded 
area ^ows the range of values at all points. 

The maximum positive moments at the centres of the spans are 

First span 68,750 -f 31,000 = 99,750 ft-lbs. 
Second span 29,250 — 1000 =» 28,250 ft-lbs. 
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Minimum centre moments are 

First span —6750 + 31,000 = + 24,250 ft-lbs. 
Second span —31,250 — 1000 = — 32,250 ft-lbs. 

Uve Load on Left Span Live Load on Both Spans 

Fig. 20. 

Maximum moment at centre support = —76,000 — 38,000 == —114,000 
ft-lbs. 

241. The Three-Span Beam.—The coefficients a and h are 

a, ^ K, K. K, 

2 (isTi + Ki) 

2 (K3 + j^2) 

First Span Loaded,—The value of M2 is obtained from eq. (4) 

Fig, 21. 
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for Mi by reducing subscripts by 2. JiTo = o, = o. This 

gives 

_K2{2Kr) 

^ [2{K2+ Kl) -hKl]2Kl^' 

Substituting the value of bz, we get 

^_2 Kz {Kj + ^ 

" ” 4 {Kz + Kz) {Kz + Ki)-KiKz. 

Then 

Centre Span Loaded.—^Applying the general formula, we get, after 

reducing, 

= 2 Ki {K2 + Kz) - Ki Kz ^ ^ ^ 

" ^{K2 + K^){K2 + Ki) - KiKz .. 

M 2 (K2 + Ki) - Ki Ks ^ ^ 

4 {K2 + Kz) (K2 + Ki)^KiKz^. 

Note that all equations for M2 and Mz have the same denominator. 

For the third span loaded, use eqs. (7) and (8) with change of sub¬ 

scripts. 

Example.—^Live load = 2000 Ibs/ft., dead load = 1000 Ibs/ft. Spans 
and relative values of K as 
shown. All calculations will be 

hi 2 a 3a , ^ made in kips and kip-feet. 
< 20 ^ First Span Loaded.—A = 

Fig. 22. K X 2 X 20^ = — 200. From 
eq- (7), 

° ~ rif X 9^- 16 X 200 = - ^3 X 200 = - 58.4. Fromeq. (7), 

“ 58.4 Xj^=+13.0. 

Second Span Loaded.—A = — JiX2Xi6*= — 128. Then from (9), 
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mum moments at and near supports, Fig. {d) for maximum negative at 2, 
and Fig. {b) for maximum positive at 3. Combining with dead load gives 
Fig. (/), with shaded area showing range of moments. Note the large 
negative moments throughout the centre span. 

242. Beam of Several Spans.—This case will be worked out by the 

direct application of the general formulas of Art. 239 to a numerical 

problem. Span lengths and relative values of K as shown in Fig. 24. 

Values of K shown in circles. Live load = 3000 Ibs/ft.; dead load = 

Span 1 Span 2 Span 3 Span 4 Span 5 

Ml @ 2, 
^ @ ' r . 0 ' F © e-' 

^ > < 12 ► 20 <—^12—> 20- > 

Fig. 24. 

1000 Ibs/ft. For the long spans, for live load, A = — 300; for the 

short spans, A = — 108. 

Coefficients a and b: From eq. (i), 

<i2 = 5/18 = 0.278 

az 
4 

18 — 0.28 X 5 
0.241 

a^ 5 
18 — 0.24 X 4 

0.293 

&6 = «2 = 0.278; bi = as = 0.241; ba = at = 0.293. 

Span I Loaded: From eq. (4), 

M2 
4X2X5 

Then 
(2 X 9 - 0.293 X 5) X 2 X 5 

X 300 = — 72.6. 

Mz =+ 72.6 X 0.293 =+ 21.3 

Mi = — 21.2 X 0.241 = — 5.1 

Mz =+ 5.1 X 0.278 =+ 1.4. 

Span 2 Loaded: From eq. (3), 

„ S (2 X 9 - 0.241 X 4) - S X 5 __ 85.2 - 25 
12 2 = ;-TT-- X lOo-—- 

(2 X 9 - 241 X 4) (2 X 9) - s X 5 366.6 - 25 

X 108 ~ - 23.1, 



ANALYSIS OF CONTINUOUS BEAMS 265 

Then from (4), 

5 (2 X 9 - o) - 25 

306.6 - 25 
X 108 = — 24.9 

Mi = + 24.9 X 241 = + 6.0 

Mb = — 6.0 X 0.278 = — 1.7. 

Span 1 Span 2 Span 8 Span 4 Span 6 

a 21 ^3 4, <5 6; 

-72. 6 +21. 3 -6. 1 +1. 4 

-28. 1 -24. 9 +6. 0 -1. 7 

+ 16. 2 -58. 2 -58. 2 +16. 2 

-1. 7 +6. 0 -24. 9 -23. 1 

+ 1. 4 -6. 1 +21. 3 -72. 6 

-79. 

-26. 

8 -60. 

6 -20. 

9 -60. 

3 -20. 

9 -79. 
i 
3 -26. 

6 

6 

-97. -88. 2 -88. 2 -97. 

8 

4 

(1.2. 4) (2,3, [6) (4,3, 1) (6,4, 2) 

All Spans 

Dead Load 

Live Load 
KLoaded Spans) 

Fig. 25. 

span 3 Loaded: From eq. (3), 

_4 (2 X 9 - 0.278 X 5) - 4 X 4 
Ms = 

(2 X 9 - 0.278 X 5) (2 X 9 - 0.278 X s) - 4 X 4 

66.4 — 16 

X 300 

276 — 16 
X 300 = - 58.2 

Mi = Ma — S^’2 

Ma =+ 58.2 X 0.278 =+ 16.2 

Mb = Ma =+ 16.2. 
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The results are assembled in Fig. 25, together with the moments 

for all spans loaded, the dead load moments of one-third these values, 

and the maximum live-load moments. 

Fig. 26 gives a summary of maximum values at span centres and at 

supports. Complete diagrams as illustrated in Art. 241 may readily 

Maximum positive moment on 
Ions: spans and negrative 
moment on short spans. 

Maximum positive moment on 
short spans and negrative 
moment on long: spans. 

Dead Load 
Long: spans; J tol * “ BO 

Short spans; 

Maximum and minimum 
moment at span centers. 
Maximum moments at supports. 

Fig. 26. 

be prepared from the data given. Note the large negative moments 

throughout the short spans. 

It will be instructive to compare the foregoing values with those 

obtained by the use of coefficients, such as specified for equal spans. 

Combining dead and live load we have for the long spans i/i6 wP = 

100; i/i2wP = i/iowP = 160. For the short spans 

1/16 wP = 36; ili2wP — 48; if 10 wP = 57.6. It would be dif- 
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ficult to select from these coefficients values that could be relied 

upon to give satisfactory results in the foregoing problem. 

243. Formulas for Concentrated Loads.—In special cases of heavy 

concentrated live loads it will not be satisfactory to use an approximate 

equivalent uniform load. In this case, referring to eq. (i J), Art. 227, 

let 

Bi =-:LPsh (k-k^) 

B2 =-2:P3/3(2^-3)fe2 + i3). 

Then equations of Art. 239, for the relations between If3 and Af4, 

become 

—a2 Mz 

K2 
+ 2 Afs ^ ~ 

\A2 A3/ A2 A3 

+ 2 M4 
As 

65 M4 _ Bi 

~k7 " Yz 
(12) 

These are best solved after substituting numerical values for K and B, 

The values of a and h are the same as in Art. 239. 

GENERAL METHODS OF ANALYSIS OF FRAMES AND BEAMS 

244. Stress Calculation in Frames.—In the usual skeleton type of 

reinforced-concrete construction, the girders together with the col¬ 

umns constitute a structural frame rigidly connected at the joints. 

In this case the beams cannot be calculated as simply supported con¬ 

tinuous girders, but the effect of the columns must be considered. 

For a complete general treatment of such frames reference is made 

to other works,* but the fundamental equations will be explained 

and some of the simpler cases analyzed. 

A load placed in any panel of a rigid frame will cause moments 

and deflections in all members, and a rigid analysis requires the 

inclusion of all members in the equations. But as in the case of the 

continuous girder of several spans, the effect of any particular load 

rapidly diminishes with distance, so that it is necessary to consider 

only a few spans or panels adjacent to the one in question. Fig. 27 

illustrates the character of bending that takes place in a frame due 

♦ See Modern Framed Structures,” Part II. 
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to a load in a single span. Each beam and column is bent more or 

less and each joint is twisted through a small angle. The analysis of 

this problem is based on the relation between the bending moments 

at the ends of the members, the angles of twist at the joints, and the 

external loads on the structure. If there is lateral pressure, such as 

wind load, the joints are also displaced laterally, and this introduces 

another factor in the problem. It is also true that imsymmetrical 

vertical loads will cause a slight lateral displacement, but this is very 

small compared to other movements and will be neglected. 

24s. General Slope-Deflection Equations.—A beam 1-2, Fig. 28, 

is subjected to the end moments Mi and M2, bending it as shown. 

Fig. (b) represents the moment diagram. By the principle of area- 

moments, the deflection y, measured from the tangent at i, is equal to 

i/E I times the moment of the moment-area about point 2. This is 

equal to the moment of the area 1-4-2, minus the moment of the 

area 3-4-2-5. Or 

The angle 

y 
1 [Ml + M2 

¥1 [ i • / • — - M2I • -1 
3 2j 

/ 

6EI 

. . (i) 

Likewise T2 = (2 M2 - Ml) 
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These equations may be solved for Mi and lf2, giving 

Ml = —(2 n + T2) 

M2 = -(2 T2 + Tl) 

(2) 

If the beam is also rotated through an angle a, due to displace¬ 

ment of the joints, as shown in Fig. 

29, the deflection angles ti and t2 are 

now equal to — a and 62 — ^ \ JM2 

respectively, where Bi and 62 are the fMi| 

angles through which the tangents at ^ ^ 

I and 2 have turned, that is, the twist Fig. 29. 

angles. Substituting, we have 

1 

2 El 
Ml = —^— (2 ^1 + ^2 — 3 a) 

__ 2 El , . . 
M2 = —^— (2 ^2 + — 3 a) 

. . (3) 

Eqs. (3) are the fundamental slope-deflection equations, expressing 

the values of the end moments in a restrained beam in terms of the 

angles of end slope, or twist, e, and the deflection angle, a. 

If the beam supports intermediate loads, the equations become 

2 El 
Ml — —— (2 $1 + $2 — s a) Cl 

2 El 
M2 = —^— (2 ^2 + — 3 a) — C2 

• (4) 

where Ci and C2 are the numerical values of end bending moments 

at I and 2 due to the applied loads, considering the beam as fixed at 

the ends. 
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If the beam is hinged at 2, then M2 = o, and 

Ml = ^ {di - a)+Di 

If hinged at i, .(s) 
xEI 

M2 = (<?2 -a) -D2 

in which Z?i = Ci + C2/2 and D2 = C2 + C1/2. 

246. Signs of the Moments.—In dealing with general problems 

involving several members meeting at a point at various angles, it is 

convenient to adopt a rule for sign of moment related to the direction 

Fig. 30. Fig. 31. 

of rotation of the bending forces with respect to the joint centre, and 

not, as in horizontal beams, a sign depending upon the nature of the 

fibre stress on one side of the beam. The direction of bending which 

will be taken as positive is shown in Fig. 30, and the angle 0 through 

which the joint has turned is also positive. Thus positive bending 

is for right-handed bending of. the beam with respect to the joint, 

and positive twist is for left-handed turning of the joint. The angle a 

is also positive when denoting a left-handed rotation about the joint. 

247. Equilibrium of Moments at a Joint.—In Fig. 31 are repre¬ 

sented four members radiating from the joint i. Each joint is 

twisted through an angle 9 but no displacement of joints 2, 3, etc., is 

here assumed. Let K = I/I for any member. 

For equilibrium of moments at joint i we must have 

Mi-2 + Mi-i -f Mi-4 + Mi-s *= o, 
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TABLE i8 

VALUES OF Cl AND Cj IN EQ. (4), ART. 245. 

or in detail from eq. (4), a being zero, 

2 E Ki-2 (2 0i + 62) + 2 £ £1-3 (2 01 + 62) 

+ 2 £ £1-4 (2 0t + di) + 2 £ £ i_6 (2 01 + 06) = o. 

Collecting terms, 

4 £ (£i_2 + £1-3 + £1-4 + £1-5) ^1 + 2 £ £1-2 02 

-f- 2 £ K\—z 0z 2 E £i—4 0i 2 E £1—6 ^6 “ o. 

And if any member supports a load, a term Ci or C2 must be added, 
depending on the circumstances. 

Expressed in general terms, the equation may be written as follows: 

4£S£«i + 2£S£tf2...6 + SC = o . . (6) 

248. Use of Eq. (6) in the Solution of Problems.—In the solution 
of problems in which the answer depends upon the relative rigidity 
of the various members, a preliminary design must first be made, or 
some assumption regarding the relative values of I for the various 
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members. The values ol K = I/I for each member can then be 
computed. As noted in Art. 228, the value of I for beams may be 
calculated by taking the gross section of the concrete and omitting 
the steel. For columns the steel should be included at» — 1 times its 
section. No great accuracy is possible or necessary in such problems. 
(The effect of distortion due to direct stress may be neglected in deal¬ 
ing with embraced frames, as this is relatively small compared to the 
effect of bending.) 

Having the values of K, eq. (6) can be written out for each joint 
giving as many equations as values of 0. Where displacement of 
joints takes place, as for wind pressures, the value of a enters for the 
columns, and additional equations are needed. An exact solution 
of this problem is too complex to be discussed here, but approximate 
methods will be mentioned later.* 

If the far end of any member in Fig. 31 is hinged, as at joint 2, 
then the term for that member in eq. (6) is 3 £ £ in place of 4 £ £ fl, 
and 02-1 drops out of the equation [see eq. (5)], and the value of C 

becomes Ci -1- C2/2. If the far end is fixed then $2-1 = o. Having 
the values of 6 (and a if present), then the moments are calculated 
from eq. (4). 

249. Use of Quantities E and I/l.—Where the value of £ is 
constant throughout, it may, in most problems, be omitted from the 
equations. Likewise the values of I/l — K may be expressed in 
relative terms only, in any convenient unit. The result of these 
changes will be that the calculated values of 9 and a will be in terms 
of units involving the value of £ and the units used for I/l. But on 
substituting the values of 9 and a back in the equations for moments, 
the results will be correct and in the s£une imits as used in calculating 
Cl and C2. If the values of 9 and a are desired in terms of radians, 
or if one or more of these quantities are used in terms of radians, 
then the actual values of £ and I/l must be used. This will not be 
the case in the common problems of moment determination, and 
the omission of £ and the use of I/l as above suggested result in 
magnitudes for 9 and a much more convenient to handle. 

* See Modem Framed Structures/’ Part II, for detailed treatment. 
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250. Example.—Fig. 32 shows a frame of columns and beams hinged at 
3, 4, 5, and 6, and fixed at 7 and 8. Spans loaded as shown. Required 
the bending moments at 2 in beams and columns. Suppose the value of K 
for the columns is twice that of the 
beams. Then these quantities can be 
represented as 2 and i, respectively, 
as shown in circles. For beam 1-2, 
the numerical values of Ci and C2 = 
1! 12 = 100 X 400 = 40,000 ft-lbs. 
For beam 2-6, hinged at the end, the 
value of jOi = Cl + C2/2 = 40,000 
+ 20,000 = 60,000. It is convenient 
to write these moments along the 
members as shown, with signs as they 
will appear in eq. (6). For the fixed 
ends 7 and 8, ^ = o. Equations like 
(6), omitting the quantity E, will now be written out for joints i and 2. 

Joint I 

[4 X (i + 2) + 3 X (i + 2)] + 2 X I X 02 -h 40 = o. 

Joint 2 

[4 X (i + 2) + 3 X (i + 2)] 02 + 2 X I X 01 + 60 - 40 =0, 

or 
21 01 + 2 02 = — 40 

and 
21 02 + 2 01 = — 20. 

Solving, we get 
01 = - 1.83; 02 = - 0.78. 

Then 

3/2-6 = 3XiX02 + 6o= + 57.7 = + 57>7oo ft-lbs. 

3/2-6 = 3 X 2 X 02 = ~ 4.7 = — 4700 ft-lbs. 

3/2-1 = 4X1 X 02+ 2X1 X01— 40= — 46,800 ft-lbs. 

3/2-7 = 4 X 2 X 02 = — 6.2 == — 6200 ft-lbs. 

The sum of these moments is zero. The direction of bending with reference 
to the joint is indicated by the sign, plus indicating right-handed rotation, 
and minus, left-handed rotation. The beam 2-6 therefore has a moment 
of 57,700 ft-lbs. at 2, bending to the right, or producing tension in the top 
fibres. Beam 2-1 has a moment of 46,800 ft-lbs. bending to the left, also 
producing tension in the top fibres. The columns 2-5 and 2-7 have rela¬ 
tively small bending moments as shown. 

Note that in this problem, with hinges at 3, 4, 5, and 6 and fixed ends 
at 7 and 8, there are but two unknowns to be determined. 
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Approximate Calculation of Maximum Moments in Beams and 

Columns for Uniform Live Loads 

251. The exact theoretical calculation of maximum moments in a 
building frame consistmg of several stories and panels is a long, 
tedious operation, as the number of equations to be solved in each 
problem will be very large. However, as already pointed out in 
Art. 244, the accuracy of such a solution is more apparent than real, 
and equally satisfactory results can be obtained by making certain 
assumptions that will greatly simplify the process. The stresses in 
any particular beam or column are but little affected by loads and 
conditions of structure in remote panels, and hence closely approxi¬ 
mate results may be reached by limiting the structure under considera¬ 
tion to one or two panels in all directions from the member in question, 
assuming the beams and columns at these limits to be definitely 
fixed or hinged. This method of analysis will be illustrated by the 
various problems which follow. In these calculations, a certain 
degree of imiformity as to values of K is assumed for beams and 
columns, as indicated. Where the actual values of K differ con¬ 
siderably from the assumed relations, the more general method of 
analysis must be used as indicated in Art. 247. 

The following cases will be discussed and approximate formulas 
and coefiicients deduced: 

A, Positive Moment in an Interior Beam 
B, Negative Moment in an Interior Beam 
C, Moment in an Interior Column 
D, Moment in an Exterior Beam 
E, Moment in an Exterior Column 

252. A. Positive Moment in an Interior Beam.—Load on One 

Panel Only.—In Fig. 33, panel 1-2 is loaded. Required the moment 
at the centre. It will be assiimed that the beams are all alike as to 
values of K and that the columns in each story are aU alike, and 
that the building extends in each direction a sufficient distance to 
give substantially symmetrical conditions about the centre. To solve 
this problem approximately, various assumptions may be made as 
to the extent of the surrounding structure to be considered. 
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e a 

b B 

V/M/mM' 

D k 

a A 

d 

10 2 

C 

F 

E 

3 

i 

f h 

Fig. 33. 

(a) The structure extending for two panels each way from joints 
I and 2 may be taken, and the members assumed as fixed at the 
limits, a, &, d, etc. This will give rise to four equations for the 
four joints at ly A, B, 
and C. Results on this 
assumption will be 
quite accurate, as the 
effect of the structure 
beyond these assumed 
limits will be very 
small. 

(b) The structure 
considered may be 
limited to one-panel 
length from joints i 
and 2, and the mem¬ 
bers assumed as fixed at .4, By C, etc., giving only one equation, that 
for joint i. 

(c) The same extent of structure as in (b) but ends assumed as 
hinged dX Ay By C, etc. 

Comparing first the assumptions (a) and (6), it has been found* 
^ ^ that the difference in results 

amounts to less than 1.5% for 

as wide range in ratios of K for 

columns to K for beams as from 

-F 3^ to 2, and hence only {b) and 
(c) will be considered here. 

(b) Members Assumed as 

Fixed at Far EndSy A, B,Cy etc,, 

Fig. 34. Values of K as shown. 
Cl = \l\2wl? By symmetry, 

Fig. 34. 

whence 

The moment equation for joint i is then 

6 Kh ^1+4 (-^1 + ^2)^1 + Cl = o 

01 
Ci 

6 Kh + 4 -^1 “b 4 

♦ Modern Framed Structures,” Part II, p. 535. 
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Then 
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(- 

Me ^ ^ Mi-2 = Cl 0.5 + 

Ml—2 ~ 2 Kh Bi + Cl = Cl 

Centre moment 

K, 

^ Kh + 2 Ki + 2 K2/ 

Kh 

2,Kh + 2Ki-\-2K2 ]■« 
{c) Members Assumed as Hinged at Far Ends, A, B, C, etc.—For 

hinged ends, the restraint coefficient for these members will be 3 
instead of 4, giving for joint i, 

5 iiTb 01 + 3 {Ki + K2) 01 + Cl == o. 

SKh + 2>Ki+2>K2 
and 

Me = Cl 1^0. s + 
2Kh 

5 Xb + 3 + 3 ^2. 
. . (2) 

Comparison of Values of Me for Various Proportions of Beams and 

Columns.—Calculated values of the coefficients of Ci from eqs. (i) 
and (2) for various ratios of values of K for beams and columns are 
given below. Kc == the average of Ki and 7^2. The values of Me 

are also given in terms of coefficients oi wP in. order to compare 
with the coefficients prescribed in specifications. 

CENTRE MOMENTS IN BEAM Me 

Ratio KhIKc 

Coefficient of Ci — Haw/* Coefficients of w /* 

Ends Fixed 
Case (6) 

Ends Hinged 
Case (c) 

Ends Fixed 
Case (b) 

Ends Hinged 
Case (c) 

0 0.0417 

Ho .0442 

H .0474 

H •591 .0501 

I •643 .0568 

2 .700 •0583 .0625 

3 730 .78s .0608 .0654 

4 .750 .807 .0625 .0672 

6 •773 •833 .0644 .0694 

xo • 795 .858 .0662 .0715 

a .833 .900 .0694 .0750 
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The maximum difference in the two sets of values is for the last 
ratio, namely, for columns of no stiffness, or for a continuous girder 
freely supported, and is about 8%. For usual proportions the dif¬ 
ference is not more than 7%. Compare these results with the coeffi¬ 
cient of ili6wP or 0.062^ wP commonly specified. 

The corresponding moments in the columns at joint i are as 
follows: 

MOMENTS IN COLUMNS 

Ratio 
KbIKc 

Coefficients of Ci « Maw/* 

Ends Fixed 
Case (6) 

Ends Hinged 
Case (c) 

H 0.461 0.420 

Yt .364 •324 
I .285 .274 

2 .200 .187 

3 .154 .143 

4 .125 . ii6 

253. Effect of Loads in Other Panels.—In the foregoing analysis 
a single span only was 
loaded. For a theoret¬ 
ical maximum, other 
spans should be loaded 
as shown in Fig. 35. 
Such a loading will 
never occur, but its 
effect can be studied to 
advantage. With such 
conditions we have, 
from symmetry, re¬ 
ferring to Fig. 34, 

— ^1, and can also 

wyyyymyy/yA 

teZZ 

wyymv/M\ 

Fig. 35. 

assume 6b — Od — — ^1, hence the equation for joint i becomes 

{4 Kb + 2 Ki + 2 K2) + Cl = o 
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or 

and 

Cl 

4 Kh + 2 K\ + 2 K2 

Me = Cl 
K, \ 

2 Kh + jfiTi + K2) (3) 

Assuming Kc = average of Ki and K2 we have for various ratios 

Kh to Kc 

Ratio 

Kh/Kc 
Centre Moments in Beam Me 

V2 0.667 Cl “ 0.056 zr/* 
I . 750 Cl — .062 w /* 

2 •833 Cl = .o6gwP 

4 .900 Cl = .075 w 

These values are about 10% higher than those for Case (c) of 

Art. 252. Considering the extreme assumptions here made it would 

» ( 

K2 

Cl C2 

t ( 

Kz 

Cl C2 

K2 

I 1 

® Kj 3 

< 

K, 

> 1 

1 

Kl 

> ( 

2 Kj ® 

K, 

Fio. 36. 

appear that it is sufficiently accurate to calculate positive moments 

by the assumptions of Case (^), namely: that one span only be loaded 

and that the joints at the Jar ends of adjacent members be considered as 

hinged. 

The value of the moment is given by eq. (2). 

254. B. Maximum Negative Moment in an Interior Beam.—For 

maximum negative moment at the left end of beam 1-2, span 3-1 

and i~2 are loaded as shown in Fig. 36. Assume hinged ends as 

shown. As in Art. 252 the results will be larger than from the assump- 
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tion of fixed ends. Due to symmetry di = o, C2 = Ci = if 12 wl^. 

Hence for joint 2 

[(4 + 3) + 3 (Ki + K2)] 02 - Cl =0 

yKb + sKi + 2K2 

Mi-2 = Cl 
2Ki 

J Kb + 3K1 + 3 ^2 )■ . . (4) 

Assuming Kc = average of Ki and K2y as before, we have, for various 

ratios Kt,/Kc 

Ratio 

KbIKc 
End Moments in Beam Mi-% 

Vi 1.07 Cl — 0.089 ^ 

1.105 Cl = .092 W 

I 1.154 Cl = .096 W 

2 I . 200 Cl = . 100 W 

4 I . 235 Cl = . 103 W /2 

The coefficient of w P usually specified is 1/12 = 0.0833, a rather low 

value. 

Fig. 37 shows the theoretical loading in several surrounding 
panels for maximum moment 

at I. Analysis of the effect 

of the loads outside of the 

panels A and B shows that 

their effect is to add about 

5 to 8% to the moment due 

to the loads in A and B as 

calculated in the preceding 

analysis. Considering the 

unlikelihood of such loading 

and its small relative effect, 

the foregoing method of analysis appears to be sufficiently precise. 

255. C. Moment in an Interior Column.—The critical loading for 

columns is that which will give a large bending stress simultaneously 

mwM 

B 
ymm 

YMm/A 

Fig. 37. 
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with a large direct compression. Fig. 38 shows a loading giving a 

large bending moment in 1-3 with the load on the column equal to 

the full vertical load less 3^ panel load. Fig. 39 shows a loading 

giving full vertical load on column 1-3 but a somewhat smaller moment 

at I. Which condition gives the greater total stress depends upon 

the relative amounts of moment and direct stress. 

Referring to Fig. 38, with alternate spans loaded as shown, we 

may assume == — ^1, ^2 = — ^1, and ^3 == ^1. Assume also fixed 

ends at c and and all beams alike and all columns alike, 
for joint i 

(4 Ki, + 10 jfiTc) == — Cl] 61 
-Cl 

4 Kb + 10 Kc 

Then 

ikfi—3 = 6 Kc 0i = — Cl 
6Kc 

4 Kb + 10 Kc 

Omitting the alternate loading to the left of a and b as being very 

unlikely, and assuming hinged ends at a and 6, gives for joint i 

and 
(5 Kb + 10 Kc) di == — Cl 

Jlf 1^3 = - Cl 
6Kc 

5 Kb + 10 Kc (5) 

which may be taken as a fair value for the moment. 

Then in Fig. 39, alternate loads as shown, fixed end at 3, (?» = — ffi, 
62 =‘ — 9i, fld = — 01. 

For joint i 
i4Ki + 6K,)0i>=-Ci 
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and 
Afi-3 = — Cl 

Omitting the alternate loading on the lower floor and assuming a 
hinge at d gives 

Mi^ = — Cl 
4 Kh + 7 

(6) 

a more likely value. 

Comparing (5) and (6) it will be seen that (5) gives somewhat the 

larger value but the direct stress will be panel load less. 

For various ratios of KhfKcy eq. (5) gives the following coeflicients: 

Ratio 
KblKc 

Moments in Column Mi-i 

H 0-53 = 0.044 

y2 .48 Cl = .040 w 
I .4oCi= .osswl^ 
2 30 Cl = .025 w 

4 . 20 Cl = .017 w 

It will be noted that the moment decreases rapidly with increased 

ratio of KhIKc. 
256. D. Moments in an Exterior- 

Beam (Fig. 40).—Here the restraint at 

the end of the beam is less than at an_ 

interior support and hence the end 

moment at 2 will be somewhat less and 
the end moment at i and the centre - ^ 

moment somewhat greater than for an 

interior beam. i y 

Positive Moment at the Centre, — 

Hinged joints as shown in Fig. 40. There- 

will be two unknowns, ^1 and ^2, and the _ 
' Fig. 40. 

two equations are: 

Joint 1: Kh + (> Kc) di + 2 Kb 62 + Cl = o 

Joint 2: (4 Kh + 6 Kc) ^2 + 2 Kt 6% — Ci = o. 

A solution of these equations gives the following results for various 

ratios Kb/ Kc. 

Fig. 40. 
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Ratio 

KbfK^ 
Center Moments Me in Beam 

H 0-57 Cl = 0.048 W /* 

. 63 Cl = .052 w 
I ■ 71 Cl ^ .059 w 
2 .82 c, = .068 w 1* 

3 .88 C, = .073 w /* 

4 .92 Cl = .077 w 1* 

These values are not greatly different from those for the interior 

panel. If the outer column is considerably smaller than the interior 

ones, the average value of Kc may be used in the equations. 

. 

mmassaanm mmsmmA 
u 1 

_1 
^_ 
■ 9 
9 r 

Fig. 41. Fig. 42. 

Negative Moment at Interior Support,—Hinged ends as in Fig. 41. 

These moments will be about 7 to 8% larger than for an interior 

panel as given in Art. 254. They are as follows: 

Ratio 

KbiKr 
End Moments in Beam at Interior 

Support, Mi~a 

H 1.07 Cl = 0.089 ^ 

H 1,12 Cl = .093 w/* 

I 1.19 Cl = ,100 wl* 

2 1.26 Cl =» . 105 W1* 

3 1.29 Cl = . 107 W /* 

4 1.31 Cl =* .iiowl^ 
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Note the specified coefficients in Art. 234 of i/io to i/i2wP for 

positive moment and i/iowP for negative moment at i. 

Negative Moment at Exterior Support. Fig. 42.—Loading as shown. 
Assume = ^5 = ^3; $2 Oq = 64- 

Equations: 

Joint i: (7 Kt, + 12 Kc} ^1 + 2 Kb ^2 4" C*i = o 

Joint 2: (4 Kb + 12 Kc) 4“ 2 Kb 61 — Ci = o 

The results are: 

257. E. Moment in Exterior Column. 
—^Loading and structure as shown in 

Fig. 43, The moment in question is 

Jf2-4. Assume $i - 6s] 62 ^ 64- 

Equations: 

Joint I: 

(7 Kb 4” 9 4" 2 Kb ^2 4” Cl = o 

Joint 2: 

(4 Kb 4" 9 Kc) ^2 4" 2 Kb ^1 ~ Cl = o 

The results are: Fig. 43. 

Rjitio Kft/Kf Moment in Column, M's-4 

o,6i Cl ^ c >.051 w/* 

I •53^1 = . 044 w /* 

2 •43 Cl » .036 w/* 

3 .36 c. = .030 w/* 

4 .31 Cl = .026 w /* 
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Specification requirements for an end panel are ili2wP, 

= 0.083 w P, for the beam, and 1/24 w P, =0.041 w P^ for the column 

Values of 

0 0.5 1.0 1.6 2.0 2.6 8.0 B.B 4.0 

"M in Beam 

+ M in Beam 

M in Col. 

~ M in Beam, Interior Support 

H- M in Beam 

— M in Beam, Exterior Support 

M in Exterior Col» 

0 0.6 1.0 1.6 2.0 2.6 3.0 8.6 4.0 
Values of 

Fig. 44. 

(assuming equal columns above and below) for values of Kb/ Kc less 

than 4, and i/i6wP, =0,062^ w I for the beam, and 0.0^12 wP 

for the column for larger ratios. 

258. Recapitulation. — Following in 

Table 19 is a summary of recommended 

equations for maximum live-load moments 

in beams and columns. Value of I/I for 

all beams = Kb- Value of I/I for columns 

= Ko- Average of K for the columns of 

two stories may be used for Kc- 

In Fig. 44 are given the values of the 

coefficient of wP calculated from these 

equations for various ratios Kb/ Kc. For 

the interior column the curve shown is 

for condition No. 3, Table 19. 

259. Dead-Load Moments.—The dead load is usually so nearly 

uniform that for interior panels the moments may be taken as in a 
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fixed end beam, namely: ili2wP for negative end moments and 

1724^/2 for positive centre moments. For an end panel the end 

moment at inside support is somewhat greater, at end support some¬ 

what less, and the centre moment is somewhat greater than these 

values. 

The following analysis shows the approximate values for beam 

and column moments in end panels. Consider beam 1-2 and column 

2-6 in Fig. 45. Assume 03 = 65 = 0i = 64 = fle = 02, beam fixed at 7. 
Equations: 

Joint i: (8 Kt, -f- 12 0i -I- 2 Ki, 62 — 0 

Joint 2: (4 Kb “h 12 Kc) 02 "b 24 Kb 0i — Ci = o 

The resulting moments are as follows: 

Ratio 

Kb/Kc 
End Moment 

End Moment 

3/2-1 

Coefficients of tt* 

tZentre Moment 
in Beam, Me 

Column Moment 

Vi 0.089 0.072 0.044 0.036 

I .092 .063 .047 .032 

2 .096 •051 .051 .026 

3 .098 •043 •05s .022 

4 . 100 .036 •057 .018 

260. Shears in Beams.—The end shearing-stress is a maximum for 

a fully loaded beam and vmder conditions where the difference between 

end moments is a maximum. For an interior panel loaded as in 

Fig. 36, Art. 254, the shear at the left end of 1-2 is from 0.53 to 

0.56 w 1. 

For an exterior panel, as in Fig. 41, the shear ranges from 0.56 

to 0.58 wl. In general, the shear may be taken at about 10% in 

excess of the end shear for a simple beam. 

261. Beams and Coliunns Having Unequal Values of K.—For the 

general case of unequal values of K, the foregoing assumptions may 

be made as to loading and limitation of structure by assuming hinged 

or fixed ends at the boundaries. A slope-deflection equation is then 

written out for each joint within the structure so limited, generally 
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TABLE 19 

FORMULAS FOR APPROXIMATE MAXIMUM LIVE-LOAD BENDING MOMENTS 

IN BEAMS AND COLUMNS 

Kb = I/I for beams; Kc = I/I for columns; C\ =» 

Assumed Structure 
No. and Loading Moment Required 

Positive moment 
in interior beam. 

Negative moment 

in interior beam. 

Moment ip interior 

column, max. 

vert, loading. 

Negative moment 

in exterior beam. 

Inside end. 

Negative moment 
in exterior beam. 

Outside end. 

Moment in ex¬ 

terior column 

For Me 
Equations for ^1 and 0i 
1. (7 ATft -f 6 Kc) 9\ 2 Kb Ot ^ Cl 
2. UKb-^6Kc) et+2Kbe, = Cl 

Me — 0.5 Cl -p Kb (^2 — ^1) 

For Mi-i 

Equations for ^s, 0i, and 9t 
1. (8 Kb "h 6 Xc) 61 2 Kb "P 2 Kb 02=0 
2. (4 Xfc -p 6 Kc) 02 -p 2 Xb 01 = Cl 

3. (7 Xb -p 6 Kc) 0» -p 2 Xb 01 = — Cl 
i/i-f «(4^i-P2 0,)Ab~C, 

For Mt^i 

Equations for 0i and 02 
1. (7Xb + l2Xc)01-P2Xb02=~Cl 

2. (4 Kb -p 12 Xc) 02 -p 2 Xb 01 = Cl 

Jlf 2-1 = (4 "P 2 0i) Kb — Cl 

For Mt-i 

Equation for 0i and 02 

1. (7Kb + 9Ke)9i‘j-2Kb0t-‘-Ci 

2. (4 Xb -p 9 Kc) 02 -p 2 Xb 01 *= Cl 

Mi^i « (4 04 + * ^*) 
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but two or three such equations being required. On substitution of 

numerical quantities for the several values of K the equations are 

readily solved for the values of B and the desired moments then found. 

The method of moment distribution explained later is also a useful 
method for such a case. 

262. Beams with Concentrated Loads.—In the case of heavy con¬ 

centrated loads the use of an assumed equivalent uniform load is 

likely to be unsatisfactory. Calculations should be made by using the 

correct value of Ci and C2, Art. 245, for the actual load in each beam. 

For such loading no generalizations are possible, and each case will 

need to be worked out independently. 

263. Beams with Haunches.'^—Economy is often secured by 

increasing the depth or breadth of a beam near the ends, thus increas- 

Fig. 46. 

ing the stiffness in that region. This serves to reduce the central 

moment and increase the end moments. Where a beam has haunches 

(Fig. 46), the general slope deflection equations for xmiform loads 

become 

JWi - A £ Y [5 -k C O2 - 3 a] -I- CCi ; ...(.) 
M2 = A £ [B O2 + C - 3 a] - C Cl 

¥ 

in which A, B, and C are coefiicients depending upon the proportions 

of the haunch and Ci = 1/12 w/*, as usual. Table 20 gives values 

of the coefficients A, B, and C for various proportions as represented 

by the ratio q of length of haunch to length of beam, and the ratio 

n of Tninimiinn to maximum moment of inertia, /2//1. In the beam 

without haxmches, A = 2, B = 2, and C = i, as in the usual slope- 

deflection equation. 

* For design methods for Beams with Haunches^ see Example z. Art. 336. 
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For the right end hinged 

For the left end hinged 

For concentrated loads the term Ci in eqs. (i) and (2) is replaced 

by S Z?i -P / and X D2 PI for the formulas for Mi and M2, respectively, 

Di and D2 being coefficients depending upon the position of the con¬ 

centrated load P, These coefficients are given in Table 21. 

Fig. 47. 

Example.—Find the centre moment in beam 1-2, Fig, 47. Assume 
q = 0.25, /2//1 = n = 0.5; also Ki, = h/l = Kc = - ^1; beams 
hinged at 3 and 6. 

From Table 21, = 2.84, *= i.9i,C = 1.09. The moments at joint i 
are: from eqs. (i) and (2), omitting £, 

M 1^2 A {B C) 61 C Cl = 2.33 + 1.09 Cl 

= 3 ^i; ikfi-s = 3 

Adding and placing equal to zero we find Bi =» 0.091 Ci. 
Then 

Mi-t = [(2.33 X 0.091) + 1.09] Cl = 0.88 Cl 

Me = (1.5 — 0.88) Cl = 0.62 Cl. 

For a beam without haunches the results are 

Afi-i “ 0.82Ci; Me = 0.68C1. 
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Torsional Stresses in Marginal Beams 

264. General Formulas.—Torsional stresses in marginal beams 

due to the deflection of adjacent loaded panels is a matter deserving 

of consideration, although suitable methods of analysis of such stresses 

or of design of members have not as yet been provided for in general 

specifications or rules of 

practice. Here again any 

exact analysis is difficult, 

but certain simplified 

cases can be worked out 

which will serve to indi¬ 

cate the conditions under 

which such stresses will be 
large and also their probable magnitude. Fig. 48 represents a beam 

and girder design in which B is the marginal girder or beam and A 

is the cross-beam framed into B at some point between the supporting 

columns. A load on A produces a deflection and an angular twist 

on beam B with resulting torsional stresses. The resisting moment at 

M] 

M, 

the point of connection depends upon the relative bending flexibility 

of beam A, the torsional flexibility of beam 5, and the angular move¬ 

ment of the columns to which beam B is attached. This problem 

will be analyzed on two different assumptions as represented in 

Fig. 49 (a) and (6). In (a) the beam A will be assumed as simply 

supported at 2 and fixed at 3; in (6) it will be assumed as fixed at 2. 

The actual conditions will be somewhere between these two extremes. 

Fig. 49, 

Fig. 48. 
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Notation: 

h = length of beam A; 

h = length of beam B-, 

h and h = dimensions of beam B‘, 

h = moment of inertia of beam A; 

E, = shearing modulus of elasticity of concrete; 

T = torsional torque or moment; 

K = ZiA; 
Qi = angular movement at i, the point of connection; 

Oc — angular movement of columns to which B is attached. 

The angle of twist di at joint i will be determined first in terms of 

the moment Mi and dimension of beam A, and then in terms of the 

torsional rigidity of beam B and the column movement Oc. Equating 

these values will enable the value Mi to be determined in terms of 

load, the dimensions of beams A and B and of the column twist dc. 

Referring to Fig. 49 (a) we have, from the slope deflection equa¬ 

tions, joint 2, 

%EK02-\-2EKdi-\- Cl = o 

in which Ci = 1/12 ?ei /i^, w being the load per lineal foot on beam A. 

Also 

—Ml ~ ^ E K 61 2 E K 02 Cl 

{Ml is shown as a negative moment.) From these we get 

SC1-4M1 

*■- ,4EK. 

From Fig. 49 (b) we have at once —Mi — 4 E K di — Ci, whence 

Cl - Ml 
4EK. 

The angle of torsional twist for rectangular sections is given by the 

formula 
3.33*r/ 

. 

where I — length of beam subjected to a uniform torque T. 

* See Maurer and Withey^s “Strength of Materials.” Some authorities give some¬ 
what higher values. Professor Young in his investigations uses the factor 3.57. 
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The relation between T and Mi, and the value of / in eq. (3), 

depends upon the number of beams in a panel. For a single beam 

at the centre ol B, T = Mi and f for two intermediate 

beams, T — Mi and / = ^2; for a larger number of beams; T may 

be taken equal to Mi and I equal to the spacing of cross-beams, 

although this does not exactly represent the conditions. 
E 

The value of E, is theoretically equal to —-r where E = usual 
2 (i -h a; 

compression modulus and X = Poisson’s ratio, equal to about i/io. 

It will be sufficiently accurate for our purposes to take E, = 0.42 E 

to 0.4s E * and to write eq. (3) 

&TI 62 + ^2 

~ E ■ (4) 

The total angular movement of beam B will be ft -|- 6c, which is 

equal to 0i of eq. (i) or (2). Using eq. (i) and solving for Mi, we get 

For a single beam at centre of B, 

Ml = 
5 Cl — i^EK Be 

h 
4 + 28j2/i 

n 

62 + h^' (S) 

For two beams (three panels), 

Ml 
U Xk. I 

4 + 37f/i 
n 

62 -f 62’ 

63 63 

(6) 

From eq. (2), for a fixed condition at the interior end of beam A, 

For a single beam at centre of B, 

Cl — E K dc 
Ml = 

h 
I +8'j^/i 

h 

62 -t- 62- 

63 63 

For two beams (3 panels), 

Cl- ^EKdc 
Ml 12 52 + ]^2^ 

• • (7) 

. . (8) 

♦ Professor Young determined E, for i : a : 4 concrete to be about 1,500,000 Ibs/in.* 
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For a flat-slab construction the problem is less fleflnite. Some 

useful estimate may be made by considering the central portion of 

the slab, say one-third of the width, and treating this as a single beam. 

The condition as to fixity represented by eq. (i) will be more 

accurate than that represented by (2). Using eq. (i), and assuming 

I = /2/3,we derive for the value of Mi 

Ml = 
5 Cl — i/^EK 9c 
^ ^ h, b±±ff 

4 + 18.7 11 ^3 ^3 
(9) 

In this case the value of w in the formula Ci = i/i2wP is the load 

per foot assumed as carried by the portion of the flat slab considered. 

This will be not more than about one-half the average load on the 

panel. 

The analysis here given is obviously far from exact. In particular 

it ignores the horizontal rigidity of the floor system which prevents 

the beam B from deflecting horizontally at the top, which is assumed 

in calculating torsional twist. Its deflection must be wholly at the 

bottom. There is, however, little resistance to this action, so that 

the final results are probably not greatly affected. It is useful to 

note that in eqs. (5) to (9) the second term in the numerator represents 

the effect of column twist, and the second term in the denominator 

represents the effect of the torsional flexibility of beam B. Omitting 

both these terms gives the value of Mi for a fixed-end condition. 

265. Value of Column Deflection 6c.—In Art. 256 an analysis is 

made of end moments in a beam connected to an exterior column. 

The value of angular twist (62 in Art. 256) is obtained by the elimina¬ 

tion of 9i in the two joint equations. We get from this 

a 
Vc 

S+4Kc/K,_^ 

£ iC J8 -t- 44 Kc/Kt + 48 {Kc/Ki,y\ 
(10) 

(For present purposes the quantity £, which had been omitted in the 

analysis of Art. 256, must be restored.) In eq. (10), Kb refers to the 

beam and £„ to the column. Ci = 1/12 w^, where w = load per foot 

on the beam connected to the column. It may or may not be the 

same value as used in eqs. (5) to (9). 
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The influence of the relative rigidities of beam and column on 6c 

is large. For example, 

For Kt> = y2 Kc, Oc = 0.038 ^ 

Kb = Kc, Be = 0.07 

Cl 
Kb = 2Kc, 0c = 0.119 Trlr' 

xi Ab 

In calculating dc, in a beam and girder type of construction, it is 

evident that the loads on the intermediate beams will have some effect 

on the column deflection, but much less than the load on the beam 

coimected directly to the column. A fair estimate can be made by 

assuming one-half of the panel as rigidly attached to the column 

and the load per lineal foot and the value of Kb taken accordingly. 

For the flat-slab type the column strip is relatively rigid and a 

width of two-thirds of the panel width may be taken as controlling the 

column deflection. 

266. Stress Due to Torsional Moments.—The maximum shearing 

stress in a rectangular section, due to torsion, is 

V 
1.86 -f 3 A 

(ii) 

The value of T is equal to M, or M as already indicated. The 

maximum stress occurs at the centre of the long side of a rectangular 

section. 

267. Examples, i. Beam and girder design; three panels. Spans 
h — h — 18 ft. Floor slab = 4 in., beam^ below slab = 10 in. by 14 in., 
beam B below slab = 12 in. by 20 in., w = 300 Ibs/ft.^ = 1800 Ibs/ft. on 
beam A, Columns are 20 in, by 20 in. with 1.5% reinforcement. Use 
cq. (6). 

Solution. Calculate first do, eq. (lo). The value of I for one beam 
and 6 ft. of floor slab = 10,700 in.^ For one-half the panel, it is X 
10,700 =16,000 in.* The value of I for the column is also about 16,000 
in.* If the length of column = 12 ft., then Kc = 1.5 Kb and eq. (10) 
gives 6c — 0.05 Ci/E Kb- 

In ^s equation Ci and Kb pertain to a half panel, and their ratio will 
be the S2une as the ratio Ci/Kb for a single beam so that the value of 6» 
can be inserted directly in eq. (6). 
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^2 I L2 
In eq. (6) the quantity -^-3 ^3 

Then we have 

I 

33,000’ 

Ml - 
(5 - 0.7) Cl 

4 + 37 X 

10,700 

33>ooo 

4.3 Cl 
4 + 12 

0.27 Cl 

Hence 
Cl = 1/12 X 300 X 6 X X 12 = 584,000 in-lbs. 

Ml == 157,000 in-lbs. 

Then from eq. (ii) 

and 
T = Ml 

V = 157,000 X 
72 + 21.6 

12^ X 242 
177 Ibs/in.^ 

Note the effect of column deflection is to reduce the moment 7/50 or about 
14%. The flexibility of beam B has a large effect as indicated by the 
term 12 in the denominator. 

If eq. (8) be used, If 1 = 0.18 Ci and v = 117 Ibs/in.^ 
2. Flat slab. 9 in. thick; same load as in (i). Also assume same 

column as in example i. 
For calculating 6c use % of panel. Ih = 8800 in.'* and Kc/Kj, = 2.7. 

6c = 0.029 Ci/£ Kby a very small value. In this case the load per square 
foot assumed in calculating Ci is twice that in Ci of eq. (9), hence in applying 
eq. (9) we get 

Ml = 
(5 - 14 X 2 X 0.029) Cl 

4 -f 18.7 X 
4400 

33,000 

(5 - 0.81) Cl 

4 + 2.5 
= 0.64 Cl. 

rru 1 in 150 X 6 X l82 X 12 . „ , - 
The value of Ci = -= 292,000 m-lbs. and Mi = 

12 
187,000 in-lbs. Shearing-stress v = 210 Ibs/in.^ Note the effect of the 
flexibility of the flat slab in increasing the value of Mi in terms of the 
load on the slab. 

268. Effect of Form and Size of Marginal Beam.—Suppose in 

example i that h == 12 in., 6 = 12 in. The value of the term ——- 

4*3 
becomes 1/10,400 and Mi — ; ;.Ci = 0.105 Ci “ 61,000 m-lbs. 
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V = 166 lbs/in.2 The decrease in depth decreases the torque greatly, 

but the actual shearing stress only about 7%. If the area b h remain 

constant and 6 = h = i7in., the value of Mi 4-3 

4 + 37 X 
10,700 

42,000 

Cl = 

4" 3 4 ^ 
—7-Cl = 0.32 Cl = 187,000 in-lbs. V = 187,000 X = 183 
4 + 9.4 17’^ 

Ibs/in^. Changing proportions, but retaining the same total section, 

changes maximum stress comparatively little. 

269. Character of Shearing-Stresses Due to Torsion.—The shear¬ 

ing-stresses due to torsion act in a manner similar to those due to 

vertical load. At the centres of the sides, where these stresses are 

a maximum, the accompanying diagonal tensile and compressive 

stresses are a maximum at 45° and are of equal intensity to the shear¬ 

ing-stresses. Tension failures would occur in a spiral direction around 

the member, and reinforcement for these stresses would naturally 

consist of spirally arranged wire wrapped around the member and 

placed near the surfaces. On the inner surface of the marginal beam, 

these diagonal stresses act in the same direction as those due to 

vertical shear, and the reinforcement for the vertical shear is also of 

aid against torsional stresses. On the outside surface the two sets 

of diagonal stresses act in opposite directions and tend to neutralize 

each other. 

270. Tests of Torsional Strength of Concrete.—Tests conducted by 

Messrs. Young, Sagar, and Hughes * * gave an average shearing strength 

of rectangular beams 5 in. by 5 in., 5 in. by 7J^ in., and 5 in. by 10 in., 

all 5 ft. long, 1:2:4 concrete (crushing strength 1700 Ibs/in.^) as 

follows: 

Maximum Shearing-Stress 

No reinforcement. 
Longitudinal reinforcement only. 
Longitudinal and 4 spirals in a 5-ft. length 
Longitudinal and 8 spirals in a 5<ft. length 

Lbs/in.*, Average 

536 

541 

64s 
789 

• Bul. No. 3, 1922, Univ. of Toronto, School of Engineering Research. 
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Tests made for the Deutscher Ausschuss fiir Eisenbeton quoted in 

the same bulletin gave values of about 500 Ibs/in.^ for rectangular 

beams with no spiral reinforcement and 1160 Ibs/in.^ for rectangular 

beams with 0.5% spiralling. This was 1:2:3 concrete of a com¬ 

pressive strength of 3530 Ibs/in.^ 

From these tests it would appear that the torsional strength of 

unreinforced concrete, as measured by the maximum shearing-stress, 

is at least double the strength shown by beams under transverse shear. 

271. Conclusions.—In drawing conclusions from the foregoing 

analysis it should be borne in mind that the calculated stresses are 

based upon the assumption of elastic behavior, and the resulting 

stresses are primarily a function of distortion. They are deforma¬ 

tion ’’ stresses, similar to the secondary stresses in steel trusses, and 

are strictly limited by the deformations of the surrounding structure. 

Under these circumstances a stress of 40% of the ultimate is not to 

be feared. The chief objection to such stresses is their effect upon 

the safety of the beam against diagonal tension failures due to vertical 

load. On this account it would appear advisable to use relatively 

low shearing unit stresses in marginal beams and to place ample 

reinforcement near the inside surface of such beams. Such reinforce¬ 

ment is most effective if placed at 45° to the horizontal axis. Special 

cases where long beams frame into girders a short distance from 

columns should be given special consideration, and the portion of 

girder between beam and column should be well reinforced, preferably 

by diagonally placed reinforcement. 

Analysis of Frames by Method of Moment Distribution 

272, The Principle of Moment Distribution.—A method of reach¬ 

ing results by successive approximations, called the method of moment 

distribution, developed largely by Professor Hardy Cross,* has certain 

advantages over the method of algebraic elimination previously 

described. It is easy to remember, requires no writing out or manipu¬ 

lation of formulas, and deals with numerical values of moments 

throughout. Its development and use will be explained. 

• Proc. Am. So. C. E., May, 1930. 
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Fig. 50 represents four (any other number may be taken) members 

connected together rigidly at i and fixed at their far ends. Imagine 

an external moment M applied at the joint i. This will cause certain 

Fig. so. 

bending moments in all the members at each 

end, which can be determined by use of the 

equations developed in Art. 245. In this 

case, for equilibrium, the sum of the bending 

moments in all the members at joint i must 

balance the moment M. From this condition 

the twist angle 0i at i can be determined. 

Since all members are assumed as fixed at 

the far ends the twist angles $ are zero 

at these points. Hence for joint i we 

have from eq. (6), Art. 245: 

whence 

Then 

The Sinn of the four moments is equal to —M. 
From an inspection of these several values it is seen that they are 

proportional to the values of K for the several members. Hence the 

general relation that with the far ends fixed the applied moment M 
is distributed among the several members in proportion to the values 
of K, or in proportion to the rdative rigidities of the members. 

If one of the members is hinged at the far end, as at 2, then, from 

Art. 243, it is seen that the multiplier of K2 in eq. (6) will be 3 and not 

4. This may be taken into account most readily by iising three-fourths 

of the value of K for any hinged-end member in applying the fore¬ 

going rule of distribution. 
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273. Unbalanced Moment Due to Loads.—Fig. 51 shows one 

member loaded. From Art. 247 the equation for joint i will be 

4 (-^2 + K.Z + Ki + 61 Cl = o, where Ci is the moment in 
1-2 at 1, considering the beam as fixed at the ends. 

Then 

__£1_ 
' 4{K2 + K3 + Ki + KB). 

M 1_2 =4^1 "^2 + Ci=Ci-“Ci-: 
K2 + 

Afi~3 = — Cl 
K2 + Kz + i^4 + Ks 

Mi-4 = — Cl 
K2 + Kz + K4, + 

Mi_6 *= — Cl 
K2 + Kz + K^ + Ks 

Comparing these results with those obtained for the external 

moment M, it is seen that the moment Ci 

can be treated exactly as an external moment. 

For the loaded member the total moment is 

found by adding the value so obtained to the 

moment Ci. 
If other members are loaded then the 

algebraic sum of all the moments Ci or C2 at 

I is the quantity to be distributed. 

Example.—Fig. 52. Beams 1-2 and 1-4 are 
loaded as shown, hinge at 2. Relative values of K shown in circles. 

For 1-2, Cl = ili2wP = 80,000 ft-lbs., and, the end being hinged, 
the moment to be considered is iJ^Ci = 120,000 ft-lbs. For 1--4, C2 = 
40,000 ft-lbs. Fig. (b) shows the moments in thousands of foot-pounds, 
with the proper signs for convenient use in balancing moments. 

The sum of the moments at i is -h 80, which is the moment to be balanced 
and distributed. Using for 1--2, the value of = ii, hence the 
distributed moments are as follows; 

1-2 = — 80 X 3/11 * — 21.8 
1-4 = — 80 X 4/11 « — 29.1 
1-3 “ i-S * - ^ X 2/11 « - 14.5. 
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Writing these values along the members and adding, the final moments 
are 

Mi_2 = + 120 — 21.8 = + 98.2 

Mi-i = — 40 — 29.1 = — 69.1 

Mi-z = — 14.5 

Mi-6 = - I4-S 

Total = +0.1 

274. Moments at the Far Ends of the Members.—When the 

moment M of Art. 272 or the moment of + 80 of the foregoing example 

is distributed among the members at joint i, there will result certain 

bending moments at the far ends of the members, except where 

hinged. Where fixed, these far end moments will be one-half the dis¬ 

tributed moments at the central joint, as readily shown by the 

moment equations for any member. Thus for 1-3, Fig. 52, = o, 

and hence 

hence 

Mis — ^ E K 61 and Mz—i — 2 E K 61 

Mz-i = Mis 

A useful conception of the process above described is to imagine the 

joint I held fast at first, making the beams 1-2 and 1-4 truly fixed 

at I and hence carrying the moments of -f 120 and —40 as shown. 

Then imagine this joint released and allowed to twist until the bending 

moments are equalized. This action results in “ distributing ” the 

unbalanced moment of 80 among the members in proportion to the 

values of K (or JC when hinged at the far end). To the moments so 
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distributed are added the original moments of +120 and —40 in 

the members 1-2 and 1-4. The release of joint i at the same time 

causes moments at the far ends, where fixed, of one-half the dis¬ 

tributed moments at the joint i. 

275. Structure of Several Joints.—Fig. 53 shows a part of a 

building frame loaded to give approximately the maximum moment 

at I in beam 1-2. The structure is limited by assiuning hinged joints 

as shown. Assume relative values of K as shown in Fig. 54 by the 

figures in circles. Load on spans 1-2 and 1-3 = 2000 Ibs/ft. The 

moments at joint i will be calculated by both the slope-deflection and 

the moment-distribution methods. 

Slope-Deflection Method.—There are three interior joints, i, 2, 

6 6 7 

4 

1 
3 1 2 

<-^20-^ 

8 
<—10—► 

9 

<-20—^ 

lOi 

Fig. 53. Fig. 54. 

and 3, for which the twist angles 9 are to be determined. For span 

1-2, Cl = C2 = 1/12 X 2000 X 20^ = 66,700 ft-lbs.; for span 3-1, 

Cl = C2 = 16,700 ft-lbs. Use the thousand foot-pound units 66.7 

and 16.7. The equations are: 

Joint I: (8 -f- 3 -I- 12 -f- 3) ■F 4 ^2 + 4 ^3 + 66.7 — 16.7 = o 

or 26 ffi -1- 4 ^2 + 4 ^3 = — so.(a) 

Joint 2: (3 -F 3 + 8) ^2 + 4 - 66.7 = o 

or 14 -f 4 01 = 66.7.(6) 

Joint 3: (12 -(- 3 + 6 -f 3) 03 + 6 01 -I- 16.7 = o 

or 24 03 4- 6 01 = — 16.7.(c) 

Although these three equations are readily solved directly for the 
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unknowns, it will be instructive to use the method of successive 

approximations. Then for the first approximation we have from (a), 

assuming $2 and ^3 = 0 (fixed ends); 

— 1.92. 
26 

Likewise from (6) and (c) 

. 66.7 
62 = — = + 4-75 

14 

— 16.7 
O3 =- = — 0.69. 

24 

These are the first approximate values. 

In the second approximation substitute these values of 62 and 03 

in (a) getting 

Likewise 

-50 - 4 X 4-75 + 4 X 0.69 
*■-^3-^■54. 

^ 66.7 + 4 X 1.92 , 
^2 =-—- = + 5-32 

14 

— 16.7 + 6 X 1.92 

24 
= — 0.21 

Repeating the process we get for the third approximations 

01 = - 2.70; 02 =+ 5.49; 03 = - 0.07 

and for the fourth 

01 =- 2.75; 02 =+ 5.53; 03 = O 

(Values found by direct elimination are —2.78; +5.55; and o.) 

The third approximations are quite accurate enough, and using 

these values for the moments in 1-2 we have 

Mi~2 = 8 01 + 4 ^2 + 66.7 = — 21.6 + 21.9 + 66-7 ~ + 66.4 

= + 66,400 ft-lbs. 

Afi-s = 12 01 + 6 03 — 16.7 = — 32.4 — 0.4 — 16.7 = — 49.5 

= —49,500 ft-lbs. 
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The bending moments in columns 1-6 and 1-9 are 

Afi_6 = Afi_9 = — 8100 ft-Ibs. 

Checking totals at i, +66.4 — 49.5 — 8.1 — 8.1 = + 0.7. As 

this total should be zero, the degree of approximation is indicated. 

Moment-Distribution Method.—Fig. 55 shows the frame with the 

values of Ci and C2 written adjacent to the members 3-1 and 1-2, 

using signs in accordance with the direction of bending. These would 

be the actual moments if all joints were rigidly held from turning. 

Let joint i be now released so it will turn until the moments are 

balanced. The unbalanced moment is 66.7 — 16.7 =+ 50.0, and 

the moment of —50 will be distributed to the four members in pro¬ 

portion to their rigidities, measured by the value of K for 1-2 and 1-3 

and hy ^ K for the columns. Distributing this moment in the 

proportions 2, 3 and we get the values —15.4, —5.75, —23.1, 

and —5.75, which are conveniently written below or above the 

respective member for horizontal members, and on the right and left 

for vertical members. 

Then release joint 2, distributing the imbalanced moment of 

— 66.7, giving the values +38.1, -1-14.3, and -1-14.3 as shown; also 

then joint 3. Finally there must be written down the moments at 

the far ends of the members arising from the release of each joint, the 

“carry over” moment. These moments are one-half of those produced 

at the joint in question. Thus for the members radiating from joint i, 
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the moment of —15.4 in 1-2 will result in a moment of —7.7 at 2; 

the moment of —23.1 in 1-3 will result in a moment of —i 1.6 in 3-1; 

the moment of +38.1 in 2-1 results in a moment of +19.0 in 1-2, 

and the moment of —8.3 in 3-1 results in a moment of —4.2 in 1-3. 

All these far end moments are written down in Fig. 55 to the nearest 

tenth. This completes one approximation, and for clearness a line 

is drawn below or above the last figures thus obtained. 

The total values of moments now shown are the same as would 

be found by using the first approximations of d obtained in Art. 275. 

ThusAfi_2 = 66.7 + 8 ^1 + 4 ^2 = 66.7 — 15.4 + 19.0 = 70.3; Mi-q 

= 3 == - 5-76; ^1-3 = - 16.7 + 12 + 6 03 = - 16.7 - 23.1 - 
4.2 = — 44.0. The several quantities are identical. 

An inspection of Fig. 55 shows that the total moments at the 

joints are now unbalanced. The unbalanced moment at joint i is 

2000 IbB. per ft. 
1 ^ 2 

_^2000 lbs. per ft.—^ 
8 4 ^ 5 

©
 

©
 

< 12' tU 
Span 1 Span 2 Span S 

Fig. 56. 

^ ■"'—’iO ....1....,.,^ 

Span 4 

equal to +19.0 — 4.20 =+ 14.8; at 2 it is —7.7; and at 3 it is —11.6, 

these being the half moments or “ carry over ” moments caused by 

releasing joints surrounding the one in question. 

The second approximation is now obtained by distributing these 

unbalanced moments in the same manner as in the first process. 

The total moment of M1-2 is now 70.3 — 4.6 + 2.2 = — 67.9. The 

second approximations by the slope-deflection method give M1-2 = 

— 66.7 — 8 X 2.54 -f 4 X 5.32 = — 67.7. For the third approxima¬ 

tion the moment M1-.2 = + 66.9 and -I-66.4 by the two methods. 

Further distribution results in successive values of Afi_2 of —66.8 

and —66.7. The number of successive distributions required for the 

desired accuracy depends upon the proportion of the structure and 

load distribution. This can easily be determined by noting the 

dianges as the work progresses. 

276. The Continuous Girder.—This is but a special case of the 

general one already treated. For purposes of comparison an example 
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will be solved by three methods: (a) by the three-moment equations, 
(b) by the slope-deflection equations, and (c) by moment distribution. 

Fig. 56 shows a beam of four spans loaded for maximum moment 
at 4. Hinged at i and 5. Values of K as shown. 

(a) Method of Three-Moment Equation, eq. (i), Art. 227.—For 
spans I and 3, }4:WP = 72,000 ft-lbs.; for span 4, 34= 162,000 
ft/lbs. Applying the equation to spans i and 2, 

2 M2 (34 + 34) + 34 Mz = — 72/3. 

To spans 2 and 3, 

34 Af2 -f- 2 3/3 (34 + 34) + 34 -^4 = — 72/4. 

To spans 3 and 4, 

34 .W’a + 2 3/4 (34 + 34) = — 72/4 — 162/2. 

1 span 1 2 Span 2 3 Span 3 4 Span 4 5 

-36. 

(D 0 “ 

+24. -24. +81. 1 
Fig. 57. 

Simplifying, these equations become 

4 M2 + Mz = — 72 

4 M2 + 14 Mz -|- 3 Mi = — 216 

Mz + 6 Mi = — 396. 

Solving, we get Mi — — 66,700 ft-lbs. Also Mz =-f 4300 ft-lbs., 
M2 —— 19,100 ft-lbs. In this analysis a minus sign indicates a 
negative bending moment or tension in top fibres. 

{b) Slope-Deflection Method.—For spans i and 3, Ci = C2 = 1/12 
X 2000 X 12^ = 24,000; for span 4, Ci = 54,000. Fig. 57 shows 
the proper values written on the members, taking account of the 
hinged ends at i and 5. 

The equations are: 

Joint 2: (12 -f 9) ^2 + 6 ^3 — 36 = o 

Joint 3: (12 -f- 16) ^3 + 6 fc + 8 54 + 24 = o 

Joint 4: (16 -f 6) ^4 + 8 03 + 81 — 24 = o 
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or 21 ^2 + 6 ^3 = 36 

6 ^2 "f" 28 ^3 -f- 8 S4 = — 24 

803 + 22 04 = — 57- 

The solution gives: 

04 = - 2.37 

03 = - 0.59 

62 — 1.89. 

Then Jl/4-6 = 6 04 + 81 = — 14.22 + 81 = + 66.8 or 66,800 ft-lbs. 

As a check: 

3/4-3 = 16 04 + 8 03 — 24 = — 37.9 — 4.8 — 24 = — 66.7. 

1 Span 1 2 Span 2 S Span 8 4 Span 4 6 

-86.0 
+16.4 +20.6 

“6.1 

-10.8 

+10.3 

@ 

+24.0 -24. 

-13.7 “41.6 

-20.7 -6.8 

+81.0 
-16.6 

+ 2.2 + 2.9 +4.4 + 6.0 +4.9 +1.9 
+ 2.2 +1.4 +2.4 - 

-0.9 -1^ -1.6 -2.2 -2.2 -0.8 

-19.3 i-4.2| 1 

Fig. 58. 

+66.6 Total 
Momenta 

Also il/2-3 = + 19,100 ft-lbs., Mz^ = — 4400 ft-lbs. Here a plus 

sign indicates right-handed bending around the joint and hence for 

a moment bn the right of the joint it indicates tension on top fibres. 

(c) Moment-Distribution Method.—The work is fully given in 

Fig. 58 up to the third distribution. Total moments are also shown 

which are seen to be very nearly correct. In other cases the same 

degree of precision might require a further distribution. 

377. The Moment Distribution Method Applied to Beams with 

Haunches.—Referring to eq. (i), Art. 263, and assuming the right 

end fixed, we have, in general, omitting E, 

Mx.2^ A KBBi^CCt.(S) 

where A, B, and C are coefficients given in Table 20. If several 

members meet at joint i and are fixed at the far ends, there would be 
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an equation like (5) for each member. The sum of the moments at 

I would be zero, hence we may write 

S^ii:jSX^i + 2CCi=o 

or 

l^A KB 
and any moment M1-2 is 

Mi-2 a kb + CCi . ... (6) 
A K B 

Considering 2 C Ci as the total applied moment, it is seen that the 

amount taken by member 1-2 is in proportion to ^ K Bj'Z A KB, 
and that the total moment on 1-2 is equal to this distributed moment 

plus the end moment C Ci on this beam. (Compare with the equa¬ 

tions in Art. 272.) Hence for beams with haunches, each value of 

K = /2// is to be first multiplied hy A B for that member, then the 

applied moments 2 C Ci distributed in proportion to this modified 

value of K. For members without haunches the multiplier is 4 for 

fixed-end and 3 for hinged-end members. As can be seen from 

eq. (6), the quantity C Ci is the end moment considering the beam 

fixed at both ends. 

Having distributed the moments at joint i, the resulting moments 

at the far ends of the members are found by multiplying the distributed 

moments for the several members by the quantity C/B for that 

member in place of the usual (This relation is obtained from 

eq. (i). Art. 263, by placing fe and Ci = o.) 

If the far end of any member is hinged, multiply K for that member 

by A (.B -f- C)(B — C)fB in place of A B. 
278. Exact Method of Moment Distribution for Continuous Girders. 

—By applying suitable coefficients to the values of K it is possible to 

obtain correct results from the first distribution. This method is 

especially advantageous in solving the general problem of the con¬ 

tinuous girder of several spans where it is desired to determine the 

moments at each support for a load in each span separately. This 

method will now be explained. 

Fig. 59 shows a beam of 6 spans with an external moment M 
applied at 3. Calculate first the coefficients a and b for each support 
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as described in Art. 239. Their values are given by the following 

general formulas: 

2 (i + A'„_i/A'„) - 

_An/An-1_ 
2 (l “h An/An—1) bn—1 

They represent the ratios of two successive bending moments to the 

left and right respectively of the loaded portion of the beam. Follow¬ 

ing the sign convention used in the slope-deflection equations we 

thus have il/4-3 = + ^4 and M2-Z = (I2 Af3-2- 
From the slope-deflection equations for span 3-4, we have, neglect¬ 

ing £, 

Mz-a == 4 A3 ^3 + 2 A3 04.{a) 

-J/4_3 == 4 A3 04+2 As 03.(b) 
Ms 

Span 1 _ Span 2 Snan S Snan 4 Scan 5 Snan 6 

Fig. 59. 

From {h) we have 2 A3 04 
Af4-3 

2 
— As 03, and substituting in (a) 

M3-4 = 3 ^'3 03 + = 3 A^3 03 + -M3-4 
2 2 

from which 

i/3-4 

In a similar manner we get 

if 3-2 

whence the ratio 

i/3-4 

i/3-2 

3 As ^3 

I - — 
2 

3 A2 Ss 
Cl'2 
2 

M--?) 

(7) 
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We also have 

Af3-4 + M3-2 = — M.(8) 

From the relations shown in (7) and (8) it is observed that the applied 

moment M is distributed between the members 3-4 and 3-2 in pro¬ 

portion to the quantities K2/{i — 64/2) and K2/{i — ^2/2), that 

is, the moments on the right and left of joint 3 are proportional to 

the values of K for these spans when modified by dividing them by 

the quantities i — J4/2 and i — ^2/2, respectively. As these divisors 

are independent of what particular span is loaded, the adjusted or 

modified values of K can be calculated once for all and used in the 

distribution of the moment applied at any joint. 

The general formulas for the adjusted K values are 

From left to right 

From right to left 

where n = number of span or support from the left end. Having 

the moments 3-4 and 3-2 calculated, the moments at other supports 

are determined by applying the coefficients a and b as already illus¬ 

trated in Art. 239. 

279. Example.—The problem of Art. 242 will be solved by this method. 
Fig. 60. Live load per foot = 3000 lbs. Values of a, h, and adjusted values 
AT' are shown in Fig. (b). 

Span I Loaded.—C\ = 1/12 XwP — 100. The applied moment at 
2 is —150. This is to be distributed on the left and right in the ratip of 
5/4.68 giving -f 77.5 and -f 72.5 as shown. Then Ms-a = — 72.5 X 63^ = 
— 21.3; Mi-b = 21.3 X 0.242 = + 5.2 and = — 5.2 X 0.278 = 
— 1.4 as shown in Fig. (c). 

Span 2 Loaded.—Fig. (d). Ci == 36. Two operations are required 
here, as the applied moments at 2 and 3 are distributed separately until 
the total moments M%-i and If 3-4 are determined. At 2 the moment 36 
is distributed left and right in the ratio 5.0/4.68, giving --18.6 and —17.4 
as shown. At 3 the ratio is 4.64/5.70, giving + 16.2 and -|- 19.8. Then 
the moment of —17.4 at 2 gives rise to a moment of + 17.4 X ^3 = + 17.4 X 
0.293 =+ 5.1 at 3, which is to be added to -f 19.8, giving a total of -f 24.9. 
Then 3/4-6 = — 24.9 X 0.242 = — 6.0 and 3/e-e = + 6.0 X 0.278 = ■+■ 1.7. 

A^n 

an 
I — 

A'n = 

2 

Kn 

I ~ 
bn+1 

... (9) 
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Similarly on the left, the moment of + 16.2 in 3-2 produces a moment of 
— 16.2 X 0.278 = — 4.5 in 2-1, making a total of — 23.1. 

Note that the signs used here follow the convention used in the slope- 
deflection analysis, hence a plus sign for the moment on the right of a 
support indicates right-hand rotation and hence a curvature convex upwards 

or a negative bending moment at the support in the ordinary sense. To 
show the character of the moments in this sense, therefore, change signs 
when on the right of the support. Signs on the left are correct. 

Span 3 Loaded.—Ci = 100. All the work is indicated in Fig. 60 (e). 

280. Example of Beam and Girder Design.— 

Data: 

Interior panel 20 ft. square c. to c. of columns. 
Columns 24 in. square. 
Live load 300 Ibs/ft.^ 
Use 2500-lb. concrete, n = 12. 

Unit Stresses: 
/, =« 18,000 Ibs/in.®; for stirrups 16,000 Ibs/in.* 

- f 1000 Ibs/in.* in general. 
“ 11125 lbs/in.2 adjacent to supports. 
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$0 Ibs/in.® without web reinforcement or special anchor¬ 
age. 

75 lbs/in.2 without web reinforcement but with special 
anchorage. 

150 Ibs/in.* with web reinforcement but without special 
anchorage. 

225 lbs/in.2 with web reinforcement and with special 
anchorage. 

f 100 lbs/in.2 without special anchorage. 
\ 200 lbs/in.2 with special anchorage. 

Constants: 
For fc = 1000 Ibs/in.^ 

k = 0.4. 
j = 0.867. 
p = O.OIII. 

R = 173. 

For fc = 1125 Ibs/in.* 
k = 0.429. 
j = 0.857. 
p = 0.0134. 

R = 207. 

Design of Floor Slab,— 

The panel will be divided into three bays as shown in Fig. 61. A pre¬ 
liminary design indicates that the beams will be 10 in. wide. Clear span 
of slab = 5 ft. 10 in. 

Load per foot of width 
Live load = 300 lbs. 
Assume dead load = 50 lbs. 

Total 350 lbs. 

Center moment = = 8930 in-lbs. 
End moment = K2 ^ = 11,900 in-lbs. 
From the relation R = M/h we have 

for center d = 
/ 8,930 > 

= 2.09 in. 
\l2 X 1 

for end d* = 
/ 11.900 ^ 

= 2.19 in, 
\I2 X 207y 1 

/ 11,900 ' 
= 2.40 in. Ul Cl' —- 

\I2 X I73y 1 

• The allowable value of/c = 1125 lbs/in.* for compressive stress adjacent to supports 

is intended primarily for beams, but there is no valid reason for not using it for slabs if 

advantageous to do so. 
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Make total slab thickness 3.5 in. with d = 2.5 in., giving a covering of 
about in. (Building codes may require a minimum slab thickness of 
4 in.) 

Check weight, w - 44. Ibs/ft.^ 
Steel Area. 

For negative moment As = or —5- == 0.308 sq. in/ft. 
^ 0.86 X 2.50 X 18,000 ^ 

PLAN 

d 
^Columns 24*square P 

^^Slab 

y. /xV. -//z/y/. ////,/////. ////. \'/y. . 

.1 1 1 i Beams ^ Girder 1 
SECTION A-A. L 

Fig. 61. 

For positive moment A, - s—5- == 0.228 sq. in/ft. 
^ 0.87 X 2.50 X 18,000 ^ 

Use %An. bars spaced 6 in. apart for positive reinforcement, giving 0.22 
sq. in/ft. For negative reinforcement use 5^-in. bars spaced 4 in. apart giving 
0.33 sq. in/ft. 

(The use of the values of p in calculating steel area will give larger areas 
than necessary, as the slab is thicker than theoretically required.) Note 
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that the negative reinforcement is provided by additional bars placed near 
the top of the slab. For slabs of greater thickness than about 5 in., negative 
reinforcement is generally provided by bars bent up from the positive 
reinforcement. 

Shearing Stress: 

At end F = H X 344 X 5.83 = 1000 lbs. 

V = 
1000 

xaXo.86X..S -^^orcement: 
= 39 Ibs/in. a safe value without rein- 

Bond Stress: 

At face of support, bars spaced 4.0 in.; 

12 1000 
So = 1.18 X — = 3.54 in. « = 

4.0 ^ 3.54 X 0.86 X 2.5 
= 132 Ibs/in.* 

iz. 
-1 8- 

c.; 

<-6-> 

ZVz 

0.21 = l'2' 

Point of Inflection 

<-I'd--> 

Beam 

IP 

F— Symmetrical 
about Center Line 

—5 10 Clear Span— 

6 8 c. to c. Beams 

Fig. 62. 

Beam 

This is allowable with special anchorage, which requires at least one-third 
of the tension reinforcement to extend a sufficient distance beyond point 
of inflection to develop one-third of the working stress at a bond stress of 
100 Ibs/in.^ For a working stress of 18,000, this requires an embedment of 
15 diameters, or 6 in. for a J^-in. bar. The point of inflection is taken 2/101 
from the end. Fig. 62 shows the arrangement. 

For positive moment the critical point for bond is the point of inflection. 
V = 344 X 0.3 X 5.83 = 600 lbs. 

2o = 2.36 and u = —■ - ^ ;- = 118 Ibs/in.* 
2.36 X 0.87 X 2.5 ^ 

This also requires special anchorage which is secured by extending one-third 
of the bars 6 in. beyond the face of the support. See Fig. 62. 

Design of Beam: 

Assume width of girder at 15 in. Clear span of beam = 18 ft. 9 in, 
Fig. 66. 
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Load. 
Live load = 300 X 6.67 = 2000 Ibs/ft. 
Slab weight = 44 X 6.67 == 294 Ibs/ft. 
Assume beam to be 10 in. by 16 in., weight = 166 Ibs/ft. 

Total = 2460 Ibs/ft. 
End Shear = 2460 X = 23,100 lbs. 

2 

Using V = 150, the necessary value of bj d = 23,100/150 = 154. 
At end of beamj = 0.857, hence hd = 154/0.857 = 180 sq. in. 
This area may be secured by using 10 in. by 18 in. or 12 in. by 15 in. The 
former will be the more economical of steel and will be used, assuming head 
room not in question. 

Centre moment = ^ ze; ^ X 2460 X 18.75^ X 12 = 861,000 in-lbs.* 

The beam is a T-beam and t/d = 3.5/18 = 0.194. From Diagram 5 

the value of / may be taken at about 0.91. Hence o- 
^ 0.91 X 18 X 18,000 

= 2.92 sq. in. Use three i-in. square bars. ^4 = 3 sq. in. Check con¬ 
crete stress by determining necessary width of flange to make /c = 1000. 
For t/d = 0.194 and fjnjc = 18,000/12,000 = 1.5, Diagram 5 gives 
pn = 0.095 P ^ 0.008. Then for a balanced design hd^ 3.00/0.008 
= 375, and h = 375/18 = 20.8 in. This requires a width of flange of only 
5.4 in. each side of stem, hence the concrete is much under-stressed. The 
usable width of flange is determined either by spacing c. to c. of beams, 

X S ^ ^ 
= 6.67 ft., or by one-fourth the span length, = —— =4.7 ft., or by the 

4 
imitation of overhanging width of 8 times the thickness, « 2 X 8 X 3.5 + 10 
* 66 in. The allowable width is therefore 4.7 ft. Then the actual value 
of p is 0.0030 and from Diagram 5 we find/,/«fe = 3.2 and/c = 470 Ibs/in.* 

End Moment ^ - 861,000 in-lbs. 

* Assumed to come under paragraph 107 of the specifications. At the columns the 
beam will be well restrained; at the girders it would be partially restrained. 
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Here the beam is a rectangular beam and will need to be reinforced for 
compression. 

Moment carried by rectangular beam without compressive reinforce¬ 
ment is 

M\ ^ Rh = 207 X 10 X 18* = 670,000 in-lbs. 

Ax — p h d — 0.0134 X 10 X 18 = 2.41 sq. in. 

Moment to be carried by additional steel top and bottom is 

Afj = 861,000 — 670,000 = 191,000 in-lb. 

Lever arm for steel = 16 in. as shown in Fig. 63. Hence 

. 191,000 
^ - == o 55 sq. in. 

i6 X 18,000 ^ 

Total tension steel = 2.41 -1- 0.66 = 3.07 sq. in. 

Fig. 64 

The amount of compressive steel A' is found from ^42 by proportion (see 
eq. (ii). Art. 85) and is 

A' = 0.66 X ^ X —— = 0.66 X X “ = 1.28 sq. in. 
k — 2/18 n ~ I 0.32 II ^ 

The required steel area is furnished by four i-in. bars at top, giving ^4 = 4 
sq. in., and by two bars at bottom, giving .4' = 2 sq. in. This requires 
bending up two of the three bars and lapping all bars at the end both at top 
and bottom, as shown in Fig. 66. 

Bond Stress and Length of Bars: 
2 x 100 

End shear = 23,100 lbs. t; = —-— = isolbs/in.® Maximum 

center shear, assumed equal to one-fourth end live load shear = 4700 lbs. 
4700 

0.86 X 18 X 10 
30 Ibs/in.* 

Shear at point of inflection, two-tenths point, = 30 + (150 — 30) X 0.6 
102 Ibs/in.* 

V 
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Bond stress at end, top bars. Four bars give 

Xo = 4 X 4.0 = 16.0 in. 

u 
150 10 

16.0 
= 93.8 Ibs/in.^ 

Special anchorage is not required 
Bond stress at point of inflection, bottom bars. Stress per lineal inch 

= 102 X 10 = 1020 lbs., requiring a value of Xo of 1020/100 = 10.2 in., 
without special anchorage, or with special anchorage, 5.1 in. Three bars 
are sufficient at the lower value of w, and two bars are sufficient at the higher 
value. Hence one bar may be bent up where not needed for moment and 
the second bar bent up at the point of inflection, or the two-tenths point, 
extending one bar to the end for at least 15 diameters or 15 in. beyond the 
face of the support. Here these bars*serve also as compressive reinforce¬ 
ment and hence must be extended through into the opposite beam sufficiently 

to take care of bond stress for the compressive stress therein. The unit 
, , , k — 2/18 0.22 

stress in the steel = 1125 X-r- X n = 1125 X —^ X 12 = 10,000 
^ 0.43 

Ibs/in.^ At the value of w = 100, the required length for bond is 

10,000 X i.o 
100 X 4.0 

= 25.0 in. 

The negative bending moment falls off very rapidly from the support, and 
assuming it to become zero at the two-tenths point, it will be found that the 
moment drops from 861,000 to 670,000 (the amount the beam can resist 
without compressive reinforcement) in a distance of about 10 in. Hence 
an extension of 2 ft. o in. beyond the support is sufficient. 

The bars for negative moment are four in number. Two of these must 
extend 15 in. beyond the two-tenths point to provide the special anchorage 
required. 

The point of bending of the first lower bar is found from the assumption 
of parabolic moment curve crossing the axis at the point of inflection. 

From Fig. 64, we have the proportion 
(0.3 ly iM or * = 0.173 I = 3-2S 
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ft, from center. The second bar may be bent up at the point of inflection 
or 5.625 ft. from the center. In the design it is found convenient to bend 
up the first bar 4 ft. 6 in. from the center, as it is more effective for web 
reinforcement. 

Diagonal Tension Reinforcement. The point at which the shearing 

stress becomes 50 is found from Fig. 65 to be—-— = - . x — 1.56 ft. 
50 — 30 150 — 30 ^ 

Web reinforcement will be required from this point to the end. Using 
stirrups of ^-in. round steel, the allowable stress per stirrup 

= 16,000 X 2 X o.ii = 3520 lbs. 

For vertical stirrups, spacing = s = — = where v' is the 
V b 10 X V v' 

shear to be carried by the reinforcement, the concrete carrying 50 lbs. 

Fig. 66. 

The requisite spacing is shown in Fig. 66. Maximum allowable spacing 
= % X 18 = 13.5 in. Adopt spacing as shown, omitting stirrups where 
the bars are bent. Stress in the bar is jP = 0.7 z;' X 10 X 16. For the 
two bars this is respectively equal to 5100 and 5700 lbs. The allowable 
stress is 16,000 X i.o = 16,000 lbs. Hence no stirrups are required to 
supplement the bars. The complete details are shown in Fig. 66. 

The beams connecting to the columns will be only 18 ft. clear span and 
the steel can be reduced slightly if found practicable. 

Design of Girder.—Clear span = 18 ft. See Fig. 68. 
Load from beams at each point = 2 X 23,100 = 46,200 lbs. 
Load directly on girder of assumed width of 15 in. is 

Live load = 300 X = 375 Ibs/ft. 
Assume stem of 15 in. X 28 in., total depth 31 in., 

weight = 430 Ibs/ft. 
Slab on girder = 44 X i34 =55 Ibs/ft. 

Total = 860 Ibs/ft. 
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End shear * 46,200 + K X 860 X 18 =* 53,940 lbs. 
Required value of V jd = 53,940/150 = 360 sq. in. Assuming j = 

oMyb'd = 360/0.86 = 4i8sq. in. Provide area = 15 X 28 = 42osq. in. 
Use IS in. by 28 in. beam. Then i/d = 0.125; j = 0.93. 
Moments. As shown in Art. 235, with a 3-panel arrangement the bend¬ 

ing moments will be about 10% less than for continuous loading, and the 
moments might logically be reduced by this amount from the values specified 
for continuous loading. However, the table of coefiicients of Art. 234 
indicate that the values of and ^^e small enough. They will therefore 
be used and the entire load treated as uniformly distributed. 

Load from the two long beams = 46,200 X 2 = 92,400 lbs. 
Load directly on girder = 860 X 18 = 15,500 lbs. 
Load on short beam joined to column = 44,000 lbs. 

Total panel load = 151,900 lbs. 

Center moment = He X 151,900 X 18 X 12 = 2,050,000 in-lbs. 
End moment = K2 X 151,900 X 18 X 12 = 2,730,000 in-lbs. 
T- X X -I 2,050,000 
For center moment A = -——r-= 4,37 sq. m. 

0.93 X 28 X 18,000 ^ 

A check of concrete stress shows that the necessary width of flange is but 
26 in. 

At support the moment carried by the rectangular beam is 
Ml = 207 X 15 X 28^ = 2,440,000 in-lb. 
Ai = 0.0134 X 15 X 28 = 5.63 sq. in. 
Mt 2,730,000 — 2,440,000 = 290,000 in-lb. 

Additional top steel — A^ — — = 0.65 sq. in. 
^ 18,000 X 25 ^ ^ 

Total top steel = A — 5.63 + 0.65 = 6.28 sq. in. 

0.57 12 
Compression steel required = .4' = 0.65 X X — 

The following bars will be used. 
Six i-in. round bars for positive reinforcement 

1.3 sq. in. 

^ = 6 X 0.785 = 4.71 sq. in. 

Bend up four each way giving eight bars for top at end: 

il « 8 X 0.785 = 6.28 sq. in. 

Extend two straight through giving two bars for compression rein¬ 
forcement which is sufficient. 

Bond Stress. Fig. 67 represents approximately the moment diagram 
for positive moments. The point of inflection is about 2.83 ft. from the end. 
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Stirrups. These will be needed from the beam to the first bent bar and 
also from the column to the second bent bar. Shear i ft. from beam 

=40,800 lbs. V  -~ 127 Ibs/in.^ Concrete carries 50 

lbs.; stirrups 77 lbs. Use 3^-in. round material giving allowable stress 

P = 2 X 0.196 X 16,000 = 6260 lbs. Spacing = P/vb = ^ 5*4® 

in. Use 5-in. spacing. At the column, shear = 53,940 lbs. 

^^,940 ,1 /. o o • 6260 
y =-- o = 149 lbs/m.2 Spacing =--— = 4.20 in. 

15 X 0.86 X 28 ^ ^ ^ 99 X 15 

The stirrups must have a length in the upper or lower half of the beam 
for proper anchorage at a bond stress of 100 Ibs/in.^ For a J^-in. stirrup 

3.14 X 100 
Use a hook of the necessary length. 

Fig. 68 shows the arrangement adopted. 
Between the column and the beam the average shear is 51,435 lbs. 

V =-5^->435 — _ j-2 Ibs/in.^ The bent bars, spaced at 22 in., are 
2o 

stressed at P = 0.7 6 v' 5 = 0.7 X (132 — 50) X 15 X 22 = 18,900 lbs. 
Allowable stress = 2 X 0.785 X 16,000 = 25,000 lbs. 

LongiiKdinal Reinforcement in Floor Slab. Not less than 0.25% required. 
Use J^-in. bars spaced at 18 in. This also meets the requirements for 
transverse reinforcement in the girder flange. 

Moment in Columns, Assume equal size of columns above and below 
and a story height of 12 ft. 

From Art. 255 the bending moment at the top of a column may 
aK 

be taken at Jf = -=—,X C; where Ki, = I/I for beam, and 
4^fc I 7“^* 
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Kc=^ Ijl for columns below and above the floor. For uniform loads, 
C = yi2Wl 

M =__C 
6K, + SKc 

Moment of inertia of floor. Inasmuch as the use of the value of moment 
of inertia is to express the relative rigidities of floor and column it will be 
proper to include a considerable width of slab as part of the floor member. 
Just how much is very difficult to say, but the specified limit of one-fourth 
the span length for T-beam design is undoubtedly small enough and on the 
conservative side as increased stiffness of beam reduces column moment. 
A width of one-third the span would probably represent the rigidity of the 
floor better than one-fourth. A width of one-fourth will, however, be 
assumed. On this basis the value of moment of inertia is found to be 

59,200 in.* and Kb= Ijl = = 247. 

Moment of Inertia of Column. Assume the column to be made up as 
shown (Fig. 69), reinforced with eight 

square bars. The sectional area 
of 3 bars is 4.69 sq. in. Then 

/ = K2 X 24 X 24* + 4.69 X 2 X 10^ X 
(w — i) = 27,600 -f 9400 = 37,000 in.* 

and Kc = Ijl = 37,000/144 = 256. In 
this case the values of Kh and Kc are 
so nearly alike that they may be assumed 
as equal. 

The column moment is therefore 

^ = ^1 X K2 ^ = Ms ^ = 0,03 WI 

For live load alone, W = 300 X 20 X 20 = 120,000 lbs., and 
M = 0.03 X 120,000 X 18 X 12 = 778,000 in-lbs. 

778 000 X 12 
The bending stress = / = ~ ~ — = 252lbs/in.“ Provision must 

be made for this stress in the design of the column so that the total stress 
shall not exceed the value allowed for combined compression and bending. 

If the entire floor width had been considered in calculating the value of 
I for the beam the value of h - 93,000, Ki, = 390, M = 0.025 ^ ^ 
stress = 210 Ibs/in.* 

For an exterior column the specifications give a value of ^ for ffic 
end of the girder, this moment being resisted by the columns above and 
below. One-half of this is = 0.04wP as compared to 0.03 WI 
above calculated. 
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281. Example of Flat Slab Design. 

Typical Interior Panel 
Data 

Four-way flat slab with drop panels and capitals. 
Specifications: 1924 Joint Committee Report, except as noted. 
Live Load: 250 lbs /ft.- 
Panel: 20 ft. square center to center of columns. 
Unit Stresses: /, = 18,000 Ibs/in.^; f/ = 2500 Ibs/in.^; 

fc — 1000 lbs/in.2; 

z; = 75 Ibs/in.^ or as given in Art. 131, J.C.R.; 
n = 12. 

Loads 

Live load = 25olbs/ft,2 
Dead load = 100 Ibs/ft.^ (assumed). 

Total load = 350 Ibs/ft.^ 

Thickness of Mam Slab 
h = o,02ly/w + i. Eq. (38), J.C.R. 

/2 = 0.02 X 20 X\/$S^ + I = 8.48 in. 

Minimum allowable ^2 = — = = 7^^ in. 
32 32 

(See Art. 145, J.C.R.) 
Use 8J^-in. slab. 

Check Weight of Slab 

Weight = y = 106 Ibs/ft.* 

Size of Column Capital 
Minimum c = 0.225/ = 0.225 X 20 = 4.5 ft. 

Use a 4.s-ft. capital. 

Size of Drop Panel 
Minimum b = l/^ ^ 20/3 = 6.67 ft. 
Maximum J = //a = 20/2 = lo.o ft. 

Use a 7.S-ft. drop. 

Thickness of Drop Panel 

Maximum h ^ 1,5 X /2 = 1.5 X 8.5 = 12.75 

Minimum h = 0.038 (1-1.44 clV)lyJRw'h/bx + ij^. Eq. (37), 
J.C.R. 

/i « 0.038(1-1.44 X 4.5/20)20 X Vo.54 X 356 X 20/7.5 
=« 12.05 in. 

Use h = 12.5 in. for drop panel thickness. 
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In designing flat slab floors for light loadings, it will often be found that 
minimum /i, as determined from Eq. (37), J.C.R., exceeds the maximum h 
determined from slab thickness conditions. Such a result indicates that 
the drop panel conditions govern the slab thickness instead of Eq. (38), J.C.R. 
The slab thickness must then be revised, subject to the condition that 
h = 

Moments 

Mo = o.ogw{i - j \ Eq. (36), J.C.R. 

W = 356 X 20 X 20 = 142,400 lbs. 
2c/^l = 9.0/60 =0.15 

Afo = 0.09 X 142,400 X 0.852 X 20 = 185,190 ft-lbs. 
= 2,222,300 in-lbs. 

Moments in Principal Moment Strips, Table VI, J.C.R. 
Two Column Strips: Ifs of Fig. 70 

Negative moment = 0.54M0 = — 1,200,000 in-lbs. 
Positive moment = o,igMQ = + 422,250 in-lbs. 

Middle Strip: Af4 of Fig. 70 
Negative moment = o.o8Afo = — 177,800 in-lbs. 
Positive moment = o.i9Afo = + 422,250 in-lbs. 

Design of Principal Moment Strips 

Positive Moment Steel in Two Column Strips 

M = + 422,250 in.-lbs. Moment to be carried by one layer of steel 
near bottom of slab, Band Ai as shown in Fig. 70. Steel to have i in. 
of cover. Assume H-in. round rods, placed in. from bottom of slab; 
J = 8.5 — 1.25 = 7.25 in. Assume j = 0.86. 

A. = 

M_422,250_ 
ftjd 18,000 X 0.86 X 7.25 

= 3.76 sq. in. 

Use 20 — H in. 4* rods. As = 20 X 0.196 = 3.92 sq. in. 
Check compressive stress in concrete. Eq. (41), J.C.R. 

/« "■ 
6RM0 

o.ej^pnhd^’ 
3-92 

RMo — 422,250 in.-lbs. 

= 0.00452; pn = 0.00452 X 12 = 0.0542; 
10 X 12 X 7.25 

= 0.379; h = 20 ft. = 240 in.; d = 7.25 in. 

fc 
_6 X 422,2SO_ 
0.67 X 0.379 X 240 X 52.6 

Allowable = 1000 Ibs/in.* 

790 Ibs/in.* 
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Positive Moment Steel in Middle Strip 

M = + 422,250 in-lbs. Moment to be carried by two bands of 
diagonal steel near bottom of slab, Bands Bi, Fig. 70. Steel to have 
I in. of cover. Average = 8.5 — 1.5 = 7.0 in. Assume j — 0.86. 

A, M __ 422,250 

faj d 18,000 X 0.86 X 7.0 
3.90 sq. in. 

Since there are two diagonal bands of steel, one-half the required 
area, or 1.95 sq. in., must be provided by each band. Diagonal bands 
make an angle of 45° with the direction of moment. See Fig. 70. 
Hence effective area of band = cross-section area times cosine 45®. 

Area required per band = = 2.76 sq. in. 

Use 14 — 3^ in. 0 rods in each band. 
2I4 = 14 X 0.196 = 2.74 sq. in. 
Check compressive stress in concrete. 

Eq. (41), J.C.R. RMq = 422,250 in-lbs. 

2.74 X 2 X 0.707 

10 X 12 X 7.0 
0.00463; pn = 0.0556. 

\/^n = 0.382; h = 20 ft. 240 in; d - 7.0 in. 

/o = 
_6 X 422,250_ 
0.67 X 0.382 X 240 X 49 

== 842 Ibs/in.^ 

Allowable 1000 Ibs/in.^ 

Shearing-stresses in Slab. See Art. 131 (6), J.C.R. 
Shearing-stress in slab to be taken on a section /2 — 1.5 =8.5 — 1.5 
= 7.0 in. from edge of drop panel. Section shown on Fig. 70. 

Load causing shear 

Shear area 

= 356^20 X 20 - ^7.5 + ] 

== 356(400 — 67) = 118,700 lbs. 

= K(/2 - I.S)4[^ + 2{h - 1.5)] 
= X 7 X 4(7*5 X 12 + 2 X 7) = 2400 sq. in. 

V 

Shear area 
118,700 

2400 
49.4 Ibs/in.* 

Allowable shear == o.o2/c'(i + r) but not to exceed 75 Ibs/in.* 
Eq. (33), J.C.R. 

From Art. 131 (i), J.C.R., r shall be assumed as the proportional 
amount of the negative reinforcement, within the column strip, crossing 
entirely over the drop panel. Assuming the reinforcement to cover the 
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entire strip r = 0.75 and allowable shear = 0.02 X 2500 X 1.75 = 
87.5 lbs/in.2 Shearing-stress satisfactory. 

Since the compressive and shearing-stresses in the slab are within 
allowable limits, the assumed slab is satisfactory. If in any case the 
allowable values are exceeded, the slab thickness must be revised. 

Negative Moment Steel in Middle Strip 

M — — 177,800 in-lbs. Moment to be carried by one layer of steel 
near top of slab. Band Ci, Fig. 70. d - 8.$ — 1.25 = 7.25 in. 
Assume y = 0.86. 

A. = 

M 

fjd 

Use 15 — ^ 

177,800 
18,000 X 0.86 X 7.25 

in. <t) rods. = 15 X o.ii 

= 1.58 sq. in. 

1.65 sq. in. 

Fig. 71. 

On substituting in eq. (41), T.C.R., it is found that the compressive 
stress in the concrete is 455 Ibs/in.^ 

Negative Moment Steel in Two Column Strips 

M = 1,200,000 in-lbs. Moment to be carried by steel bent up from 
diagonal Band Bi and direct Band Ai, Fig. 70. There will be four 
layers of steel near the stop of the slab at the drop panel, = 12.5 — 
2.0 = 10.5 in. Assume y = 0.86. 

A. M 

fjd 
_1,200,000_ 

18,000 X 0.86 X 10.5 
7.38 sq. in. 

This steel is to be provided from steel in place in the positive moment 
strips, subject to the conditions of Art. 153, J.C.R. Many arrangements 
of steel are possible. Fig. 71 shows the arrangement adopted. 

The area provided on the section of if 5, Fig. 71, is as follows: 
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From Direct Band 
24 — in. <f> rods, 24 X 0.196 = 4.70 sq. in. 

From Two Diagonal Bands 
2 bands of 14 — in. <j> rods 

2 X 14 X 0.196 X 0.707 = 3.88 sq. in. 

Total area provided 8.58 sq. in. 

This area is slightly larger than required, but on checking concrete 
stresses later, it will be found that this steel area must be used in order 
to keep the concrete stresses within allowable limits. 

In Art. 142, J.C.R., it is stated that the ratio of reinforcement for 
negative moment steel in the column strip shall not exceed o.oi. For 

8 tc8 
the adopted arrangement, p =-- = 0.00908, which is 

7.5 X 12 X 10.5 
within allowable limits. 

Check compressive stress in concrete, Column Section. Use eq. (40), 
J.C.R. 

fc = ——(1 — 1.2"^ RMo = 1,200,000 in-lbs.; 

^pn = -v^o.00908 X 12 = o.477;6i = 7.5ft. = 9oin.;d = io.5in. 

- 1.2 = (i - 1.2 X 4-5/20) = 0.73. 

f „ 3-5 X 1,200,000 X 0.73 
” 0.67 X 0.477 X 90 X 10.52 

968 lbs/in.2 

Allowable = 1000 Ibs/in.^ 

Shearing-stresses in Drop Panel, Art. 131 (a), J.C.R. 
Shear area shown on Fig. 70. 

V = load causing shear = 356 |2o2 ~ + 2(/i — 

With2(/i - DA) = 2(12.5 — i-S) = 22 in. = 1.83 ft., and c = 4*5 ft 

V = 356[4oo - 0.785(4.5 + 1.83)2] = 131,200 lbs. 

Shear area = K(/i — DA)t^{c + 2(/i — lA)] 

r 

= X II X 3.1416 X 76 = 2300 sq. in. 

V 

Shear area 
131,200 

2300 
57.0 lbs/in.2 

From Art. 131 (a), allowable shear == 0.02 X 2500 (i-j-r), where 
« proportional amount of negative reinforcement within the column 
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strip, crossing the column capital. From Fig. 70, r = 4.5/7.S = 0.6 
and allowable shearing-stress = 0.02 X 2500 X 1.6 = 80 Ibs/in.^, but 
not to exceed 75 Ibs/in.^ Shearing-stress satisfactory. 

The design of the interior panel is therefore satisfactory. Figs. 70 
and 71 show the arrangement of steel and dimensions of the several 
parts. 

Typical Exterior Panel 

The J.C.R. does not make a definite recommendation regarding the 
moments to be used in exterior panels. An increase in moment over that 
required for interior panels is recommended for the negative moment at the 
column head section at the first interior row of columns and for the positive 
moment section between these columns and the edge of the panel. How¬ 
ever, the moment to be provided for at the discontinuous edge of the panel 
is left to the judgment of the designer. Many designers assume that the 
moments at the discontinuous edge of the panel are 80% of those at an 
interior line of columns. 

The Specifications of the American Concrete Institute make a definite 
recommendation regarding the moments to be used in an exterior panel. 
No increase in moments is recommended for moment sections on the first 
interior row of columns. Moments in the section half-way between this 
line of columns and the discontinuous edge of the panel are to be increased 
25% over similar normal interior sections. At the wall, or discontinuous 
edge of the panel, it is recommended that the negative moment in the 
column strip be taken as not less than 90% and in the middle strip not less 
than 623^% of the corresponding moments for a normal interior panel. 
This recommendation will be adopted in the design under consideration. 

In the design of a typical exterior panel which follows, it will be assumed 
that the column capitals and the drop panels are so arranged that the value 
of c in moment equation (36), J.C.R., will remain the same as for an interior 
panel. Fig. 70 shows the adopted arrangement. In case any marked 
change is made in the size and shape of the exterior column capital and the 
drop panel, this must be taken into account and the true value of c used in 
the calculation of the value of the moment if 0. 

Based on the A.C.I. Specifications, the moments in the several moment 
strips, as determined from the corresponding moments in a typical interior 
panel, are as follows: 

Two Column Strips 

Negative Moment at Wall, M1 of Fig. 70 
= 0.903/5 = o.9o( —1,200,000) = — 1,080,000 in-lbs. 

Positive Moment 3/2, Fig. 70 
= 1.253/4 = i.25(-f-422,25o) =-f- 527,810 in-lbs. 

Middle Strip 

Negative Moment at Wall, Mi of Fig. 70 
=0.6253/5 = o.62s( —177,800) =— 111,000 in-lbs. 
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Positive Moment, Af 2 of Fig. 70 

= i.25Af4 = 1.25(4-422,250) = 527,810 in-lbs. 

Note that the moments at the first line of interior columns, Afa of Fig. 
70, remain unchanged. 

Design of the Principal Moments Strips 

Positive Moment Af2 in the Middle Strip. From the calculations 
given for the typical interior panel, it can be seen that this moment will 
determine the slab thickness required for the exterior panel. 

Af2 = 527,810 in-lbs. Moment to be carried by two diagonal 
Bands of Fig. 70. Assume same slab as for interior panel. Slab 
83^ in. thick. Steel 1J/2 in. above bottom of slab, d = 7.0 in. Assume 
j = 0.86. 

M _ 527,810 
fajd 18,000 X 0.86 X 7.0 

4.87 sq. in. 

I ^ 3^ 
Area required for each band = ~ X —== 3.44 sq. in. ^ 2 0.707 o ^ ^ 

Use 183^ in. <t> rods in each band, = 18 X 0.196 = 3.53 sq. in. 
Checking the compressive stress in the concrete, using eq. (41), J.C.R., 
we find fc = 968 lbs/in.2 Allowable 1000 Ibs/in.^ 

If the concrete stress had exceeded the allowable value, the slab 
thickness would have to be increased. This would require a different 
slab thickness for interior and exterior panels. Some designers prefer 
to use a common slab thickness throughout the floor. In this case the 
slab thickness should be determined for the conditions in an exterior 
panel. Using this slab thickness the calculations can then be carried 
out as in a typical interior panel. 

Positive Moment M2 in a Column Strip 

M2 = 527,810 in-lbs. Moment to be carried by direct steel in 
Band ^2 of Fig. 70. Since the conditions are similar to those for the 
design of Band A1, we can find the steel required for Band .4 2 by increas¬ 
ing the steel for Band A1 by 25%. Hence, use 20 X 1.25 = 25 — in. 

rods. A check on the compressive stress in the concrete shows that 
the allowable limit has not been exceeded. 

Shearing-stress in Slab, Exterior Panel 

Since the exterior slab and its loading are the same as for the interior 
panel, it can be readily seen that the shearing-stresses in the exterior 
panel slab are the same as those for the interior panel. In case the drop 
panel at the exterior column is not the same as for an interior panel, the 
shearing-stress must be determined for the true conditions. 

Negative Moment M1 in the Middle Strip 

Afi == 0.625 Afs = 111,000 in-lbs. Moment carried by Band 
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Fig. 70. Since the conditions are similar to those for Band Ci, the steel 
area required is 0.625 X 15 = 10 — ^ in. 0 rods. 

Negative Moment Mi in Two Column Strips 
Ml = 0.90 Ms *= 1,080,000 in-lbs. Since it has been assumed that 

the exterior drop panel is similar to the interior drop panels, the steel 
area required can be determined by ratio from the calculations given for 
an interior panel. Steel area required == 0.90 X 7.38 = 6.64 sq. in. 
Steel to be provided by bending up bars from Direct Band and 
Diagonal Bands ^2, Fig. 70. Adopting the arrangement at section Mi, 
Fig. 71, the steel area provided is as follows: 

From Direct Band A 2 

17 ~ in. <t) rods, A = 17 X 0.196 = 3.33 sq. in. 

From Two Diagonal Bands B2 

12 — H in ^ rods in each band 

A = 2 X 0.707 X 12 X 0.196 = 3.33 sq. in. 

Total area = 6.66 sq. in. 

Check compressive stress in concrete, using eq. (40), J.C.R. 

6.66 
P = = 0.0074; 

90 X 10.5 

3.5 X 1,080,000 X 0.73 
0.67 X 0.439 X 90 X 10.52 

Allowable = looolbs/in.^ Satisfactory. 

= 945 Ibs/in.* 

Marginal Beams 

Marginal beams are of two types: {a) marginal beams of greater depth 
than the drop panel, {h) marginal beams equal in depth to the drop panel. 

Art. 148, J.C.R., recommends that the loadings for these beams be taken 
as follows: 

(a) Marginal beams deeper than the drop panel shall carry, in addition 
to the wall load, at least one-fourth of the distributed load in the adjoining 
panel, and the column strip parallel to the beam shall be designed to resist 
a moment at least one-half as great as that specified for an interior column 
strip. 

(i) Marginal beams in which the depth does not exceed the depth of the 
drop panel shall be designed to carry at least the load superimposed directly 
on it, exclusive of the panel load. 

In the design under consideration, the depth of the marginal beam will 
be made equal to the depth of the drop panel. Fig. 70 shows the dimensions 
of the beam. 
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As shown in Fig. 70, the marginal beam carries a 12-in. curtain wall 
3 ft. high. The superimposed load on the beam is: wall load, 3-ft. waU at 
125 Ibs/ft. = 375 lbs.; sash load, 30 Ibs/ft.; beam load, 150 Ibs/ft.; total 
load 555 Ibs/ft. This beam is designed as a fixed beam of a span equal to 
the clear distance between faces of columns, which is 18 ft. (see Fig. 70). 
End and center moments are taken as i/i2wP. This design contains no 
new features; the calculations will not be given. 

Since it has been assumed that a negative moment of 111,000 in-lbs. is 
brought to the middle strip Mi section of Fig. 70, the marginal beam will be 
investigated for torsional stresses set up in the beam by the above moment. 

From eq. (ii), Art. 266 

j, = T ^ 

in which v = torsional shearing-stress at the center of the longer side of the 
beam; h = width and h — depth of marginal beam, and T = torsional 
moment. For the given conditions, T = 34 X 111,000 == 55,500 in-lbs., 
and from Fig. 70, 6 = 12 in. and A = 12.5 in. 

Then v = 55,500 
1.8 X 12 -h 3 X 12.5 

12^ X 12.5^ 
146 lbs/in.2 

This shear is to be added to the shear in the beam due to vertical loading. 
Since the drop panel increases the shear area near the column, it will be 
assumed that the maximum combined shear-stress occurs at the edge of the 
drop panel. From Fig. 70, the shear at the edge of the drop panel is 
555(9 3-75) = 2910 lbs. The unit shear is 

V __2910_ 

bjd 12 X 0.86 X 11 
25.6 lbs/in.2 

Hence the total shear is 146 -|- 25.6 = 171.6 Ibs/in.^ This shearing-stress 
is large, but it can be carried by carefully designed shear reinforcement of 
the type recommended in Art. 269. 

Concluding Remarks. The above discussion has considered in detail 
the principal points in the design of typical interior and exterior panels. 
Fig. 70 shows the general details of the reinforcement of a flat slab floor. 
To simplify the reinforcement plan, only a portion of the steel has been 
shown. To complete the reinforcement, direct bands, similar to ^ 1, should 
be placed perpendicular to the direct bands shown. There should also be 
placed parallel to the marginal beam a direct band equal in width to one- 
half an .41 band. 



CHAPTER X 

ARCHES 

282. Introduction and Definitions.—The present chapter deals 
with the analysis of the straight arch without hinges and supported 
on abutments that may be considered as rigid. This is the most 
common problem encountered in reinforced-concrete arch design. 
For the analysis of the skew arch and of structures consisting of two or 
more arches supported on piers whose deformations must be consid» 
ered, reference must be made to more complete works on arches. 

Roadway 

Figs. I and 2 illustrate the significance of the various common 
terms used in arch nomenclature, most of which are self-explanatory. 

Arch Ring. Used when the arch is continuous transversely. 
Arch Rib, Used when the arch consists of two or more separate 

rings of limited width transversely. 

Springing. Jimction of arch and abutment. Well defined in 
the old type of masonry arches where a relatively narrow ring rested 
on massive abutments. Less well defined where the arch ring grad¬ 
ually widens out into the abutment. Must in such cases be somewhat 

334 
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arbitrarily assumed as the section beyond which the deformation of 
the structure may be neglected. 

Crown, Highest point. 
Haunch, A somewhat indefinite section at about the quarter- 

point. 
Arch Axis, Line through centre of arch ring. 
Extrados, Upper surface of arch ring. 
Intrados, Lower surface of arch ring. 

Section a-a 

spandrel. Space between roadway and arch ring on either side 
of the centre. 

Spandrel Filled Arch. Spandrel filled with earth to support road¬ 
way. Economical for short spans. 

Open Spandrel Arch. Roadway supported by beams and columns 
or by small arches and piers. Economical for long spans. 

283. Advantages of the Reinforced-Concrete Arch.—If all the 
loads on an arch were fixed loads, it would be possible in any case to 
construct an arch ring so that the resultant pressure at all sections 
would be at the centre of gravity of the section. The compressive 
stress at any section would then be uniformly distributed over the 
section, and the arch would be proportioned only for this uniform 
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compression. The ‘‘line of pressure’’ would lie at the axis of the arch 

throughout. If, however, the arch ring is not made to fit the ‘^line 

of pressure,” or if part of the load is a live load, then the resultant 

pressure will not in general coincide with the axis of the arch. There 

will exist both bending and direct compression. 

In ordinary masonry and concrete arches tensile stresses are not 

permissible. The arch ring must therefore be designed so that the 

line of pressure will not pass outside the middle third. In reinforced- 

concrete arches this limitation does not exist. The arch ring is a beam, 

and if properly reinforced may carry heavy bending moments involv¬ 

ing tensile stresses in the steel. 

Theoretically the gain in economy by the use of steel in a concrete 

arch is not great. If the pressure line does not depart from the middle 

third, the steel reinforces only in compression and in this respect is not 

as economical as concrete. If the line of pressure deviates farther 

from the centre, resulting in tensile stresses on the section, the condi¬ 

tions are such that those stresses must be provided for by the use of 

the steel at very low working values. That is to say, the direct com¬ 

pression in the arch is so large a factor that the limiting stresses in the 

concrete will always result in relatively small unit tensile stresses in 

the steel where any tension exists at all. 

Practically the value of reinforcement is very considerable. It 

renders an arch a much more secure and reliable structure, it greatly 

aids in preventing cracks due to any slight settlement, and by furnish¬ 

ing a form of construction of greater reliability makes possible the use 

of working stresses in the concrete considerably higher than are usual 

in plain masonry. Consequently, in long-span arches where the dead 

load constitutes by far the larger part of the load, the possible increase 

in average working stress counts greatly toward economy. It affects 

not only the arch but also the abutments and foundations. 

When a structure is desired which readily lends itself to artistic 

treatment, the arch has many advantages over any other type of 

structure. Its graceful curves blend into the landscape, and being 

a deck structure, a clear unobstructed view of the surrounding scenery 

may be secured from the roadway. In many cases artistic consider¬ 

ations may lead to the choice of an arch structure even though greater 

economy may be secured by the use of beam type of structure. 
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284. Reinforcement of Arches.—The most common type of rein¬ 

forcement consists of longitudinal bars placed near extrados and 

intrados with a few transverse bars to prevent longitudinal cracks 

and to equalize the load on the arch. The outer and inner bars are 

connected by ties as in a '‘tied’’ column. The total amount of longi¬ 

tudinal steel at the crown section is usually about 1%, and a common 

practice is to use this same number and spacing of bars throughout, 

giving a reduced steel ratio at the springing section. This arrange¬ 

ment requires, for equal stresses at crown and springing, a relatively 

large ratio of depth at springing to depth at crown, usually from 2 to 

2.5. If a smaller ratio is desired, the reinforcement may be increased 

towards the springing, a practice more commonly used for long spans. 

The same amount of steel is generally used in the two layers, giving a 

symmetrical section, but here again special conditions may make a 

different arrangement desirable. 

DEVELOPMENT OF GENERAL FORMULAS FOR STRESS ANALYSIS 

285. General Method of Procedure.—The method of analysis 

presented here is based on the elastic theory and is of general appli¬ 

cation to arches of variable moment of inertia and loaded in any man¬ 

ner. It is mainly an algebraic method, although, if desired, certain 

simple graphical aids may be used advantageously. It necessarily 

assumes that a preliminary design has been made by the aid of approx¬ 

imate or empirical rules or by reference to the proportions of existing 

arches. This arch is then exactly analyzed and the results used in 

correcting the design; the corrected design may then in turn be 

analyzed if it departs too greatly from the one first assumed. A dis¬ 

cussion of the methods used in determining the preliminary arch is 

given in Art. 318. 

The analysis of an arch consists in the determination of the forces 

acting at any section, usually expressed as the thrust^ bending moment^ 

and shear at such section. The thrust is the component of the result¬ 

ant force parallel to the axis of the arch at the given point; the bending 

moment is the moment of the resultant forces about the gravity axis 

of the section; and the shear is the component of the thrust at right 

angles to the arch axis. The thrust and bending moment constitute 

a case of combined bending and compression, and the resulting stresses 
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at the section are determined as explained in Chap. III. The shear 

causes stresses similar to those produced by the vertical shear in a 

simple beam. Shearing-stresses in an arch are generally very small 

and are usually neglected. The important stresses are those due to 

bending moment and thrust. In the arch analysis the arch axis is 

taken as the centre line which, for symmetrical reinforcement, is also 

the gravity axis. For uns3Tnmetrical reinforcement the gravity axis 

will deviate somewhat from the centre line, but such deviation may 

usually be neglected in the arch analyses. In getting fibre stress, 

however, the actual section must be considered. 

The method of procedure in the analysis of an arch will be to 

determine, first, the thrust, bending moment, and shear at the crown. 

These being known, the values of similar quantities for any other 

section can readily be determined. Fig. 3(0) shows a symmetrical 
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arch loaded in any manner with loads Pi, P2, etc., and assumed as 

fixed at the abutments A and B. In Fig. (b) the arch is shown cut at 

the crown, each half forming a cantilever beam acted upon by the 

applied loads and the unknown forces at the crown, represented 

as He, Vc, and Me, the same on each side but opposite in direction. 

The three equations necessary to determine the values of these un¬ 

knowns are established by applying to each half the laws pertaining to 

the deflection of curved beams and the condition that the deflection 

of the point C on one side must correspond exactly with the deflection 

of this point on the other.* 

286. Notation.—(See Fig. 3.) 

He = thrust at the crown; 

Ve = shear at the crown; 

Me = bending moment at the crown; 

Tx, Vx, and Mx = thrust, shear, and moment at any other section; 

ds = length of a division of the arch ring measured along 

the arch axis; 

dsi = length of division at the crown; 

N = number of divisions in one-half of the arch; 

A = area of cross-section, = Ac + fiAi\ 

I = moment of inertia of any section = /c + w 

h = moment of inertia at the crown; 

P = any load on the arch; 

rr, y = coordinates of any point on the arch axis referred to 

the crown as origin, and all to be considered as 

positive in sign; 

yi = vertical ordinate of any point on the axis referred 

to an X-axis through the elastic centre; 

yo = distance from crown to elastic centre; 

m = bending moment at any point in the cantilever due 

to the external loads P; these moments are nega¬ 

tive; 

a = inclination of arch axis at any point; 

p == radius of curvature of arch axis at any point; 

/ = average compressive fibre stress in the arch at any 

section, — TIA\ 

* The same equations may be derived by the method of least work. 
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w s= coefficient of expansion; 

t = change of temperature; 

q = ratio oi d s/I for any small division d s oi the arch 

to the quantity d Si/h at the crown; 

I = span length; 

5 = length of arch axis; 

h = rise. 

287. Deflection of Curved Beams.—Let AB^ Fig. 4, represent any 

curved beam fixed at A 

and free at B. It is 

acted upon by various 

forces and changes of 

temperature, produc¬ 

ing, in general, direct 

stress or thrust, shear, 

and bending moment 

at all sections, as a re¬ 

sult of which the beam 

is deflected to the new 

position AB', Let A*, 

Ay be respectively the 
horizontal and vertical components of the movement BB\ and A^ the 

change in direction of the tangent at B, or the amount of rotation of a 

right section. The positive directions of motion are as shown. The 

origin is at J5. 

From mechanics the following relations are known to exist: * 

\Mds 

Ja L EI 
+ 
fdi 

Ep. 
(a) 

A, 

A, 

Mxds , fdy 

"TT + rr 
M yds f dx 

EI 

f xds 

Ep 

/yds _ 

E p 

— w / yj (b) 

0) / d ac;l . (c) 

(i) 

* Modem Framed Structures, Vol. II, p. 131. 
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In the foregoing expressions the terms containing M represent the 

effect of bending moments, those containing / the effect of the direct 

compression, called rib shortening, and those containing <■> the effect 

of temperature changes. 

288. Condition Equation for Determination of Thrust, Shear, and 

Moment at the Crown, Hc^ Kc, and Me—Referring again to Fig. 3, 

the two parts of the arch are in static and elastic equilibrium and any 

movement or rotation of the crown section on the one side of the arch 

corresponds exactly with the movements on the other side. We may 

then write the condition equations, paying due attention to sign: 

Ayx, = Ays.(^4) 

ii-XL = — Axs.(5) 

A^x, = — A4>*.(C) 

• • (2) 

in which the subscripts L and R refer to the left and right halves of the 

arch. 

These are the three needed condition equations for solving the 

problem, and it remains now to express the quantities in terms of the 

unknowns, Me, He, and Ve, and other quantities derived from the given 

loads and dimensions. 

289. Forces Acting at Any Section of the Arch Rib.—From Fig. 

3(6) the moment, thrust, and shear at any section of the arch, ex¬ 

pressed in terms of these values at the crown and the applied loading, 

are: 

For the left side 
M*= Me -f- Hey VeX PIl. 

For the right side 

Mx = Me + Hey — VeX + PtR. 

If the applied loads are vertical, we have also, for the left side 

Tx = He cos a -i- (S^, P — Fc) sin o 

Vx = He sin a — (2c H ~ Ve) cos a 

For the right side 

Tx = Hc COS a + (llcP - Ve) sin a 

Vx — — He sin a -h (2^ P — V^ cos a 

For other than vertical loads the thrust and shear are the components 

(3«) 

(3*) 

(40) 

(4&) 
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of the resultant force at the section taken parallel and perpendicular 

to the arch axis. They are readily found by means of a force diagram 

or algebraically. 

290. Equations for the Crown Stresses, He Vc and Me for S]rm- 

metrical Arches.—The required equations are obtained by applying 

the conditions represented in eq. (2) to eq. (i) and substituting values 

of M obtained from (3). Inasmuch as the terms containing f are 

relatively small, we can assume in general that Z"* = He', hence 

f = He!A. Furthermore, referring to eq. (i), it will be found that 

the terms / ^ ^- and / ^ ^^ are very small and may be neglected. 
J E p j E p 

,fljy The term does not appear in the final equations. Hence, the 

/f d oc 

E 

of eq. i{c). Thensince dx = d s cos a, we haveJ'f dx — J"f cos ads 

= SeJ'^ f. For dead load alone a more precise expression 

is H /t- 
With these modifications the various substitutions may be made 

and the resulting equations solved for Me, He, and Ve. In general, 

however, the equations representing the shape of the arch axis and 

the variation in the moment of inertia of the arch are of such form that 

direct integration is not practicable and the method of summation 

must be used. 

For this purpose the arch rib is divided into short sections d s in 

length over which the moment of inertia and the bending moment may 

be assumed as uniform. Referring to eq. (1), it will be noted that 

(excluding terms containing p) the quantity d s always appears with I 

as the ratio d s/I. The lengths d s may be of any small magnitude, 

equal or unequal, but they are usually made either equal or of such 

value that the ratios d s/I are equal. In general, it will be convenient 

to express the quantity ds/I as qdsi/h, where dsi/h is the value 

at the crown. (If equal d j’s are used, then g is a variable. If d s/I 

is made constant then q = \.) 
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Proceeding with the substitutions, we have from condition A, 

eq. (2), 

0) t E dy 0) t E dy, 

Substituting M from (3), and noting that the terms involving co for 

the two sides are equal, and that the terms involving Me and He are 

also equal, we have 

rriLxq 
d Si 

~h 
Q 

d Si 

17 

From which 

d Si 
niRxq — 

Vc 

— Ml) X q 

(5) 

In this expression pir — niL is the difference in moments due to the 

applied load at corresponding points of the two halves of the arch, 

and the summation is for the half arch. 

From condition C, eq. (2), we get, by similar process, neglecting 

1 /d 5 
the term-, 

Ep 

Me =- 

2^ (mu + mL)q + 2 yq 

(6) 

From condition £, neglecting the term-^ ^—, we get an equation 
E p 

containing Me and He, from which by substitution from (6) we derive 

Er- 

{(2:0(2 dSi^A 

^ ds cos 

-“)-(2:«)i 
.(7) 
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291, Transfer of X-axis to the Elastic Centre; Simplified Formulas 
for Crown Stresses.—If the X-axis be shifted a certain distance 

below the crown it will be found that the equations for Me and He 

will be considerably simplified. In Fig. 5 the proposed centre of 

coordinates is at 0, a dis- 

jc tance yo from C, this dis- 

"I I tance to be determined. 

Let yi be the vertical 

ordinate of any point on 

the arch axis to the new 

axis. Then y == yi + yo, 

and eqs. (6) and (7) will 

be adjusted to the new 

axis by substituting yi + 

yo for y. The desired 

value of yo is such that 

will make 2 yi = o. Then the quantity 2 y 9 which appears in 

(6) and (7) becomes yo 2 q. The desired value of yo is found from 

the stated relation, 2yg = 2yig + yo2j = o + yo2g', whence 

yo = 2 y §'/2 g. This value is calculated at the outset and all ordi¬ 

nates yi measured from the new axis. When d s/I is made constant, 

the quantity yo is simply the average value of y. 

Substituting yi + yo for y in eqs. (6) and (7), we get the simplified 

equations 

Fig. s. 

Me =- 

^ {niR + thl) q 
— A_ 

— He yo (6a) 

He = 

tlE 

dsx/h 

2 
c cos a] 

+ 
• • (7«) 

The equation for Ve, eq. (5), will not be changed, as y does not enter. 
The point O is called the “ elastic centre”; it will be found from 

eq. (la) that a horizontal force applied to the arch at this elevation 
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will cause no change in angle at the crown; the plus and minus mo¬ 
ments just balance. 

The simplified formulas (6a) and (7a) will be used in the example 
which follows. 

In all the foregoing equations the summations are for one-half the 

arch only. Where iur and iul are involved, the values at corre¬ 

sponding points on the two sides are first combined and then the 

summation taken for one-half the arch. 

Note that all terms of the denominators are functions of the 

dimensions of the arch only. The effect of applied loads is included 

in the terms containing w, and that of temperature in the term con¬ 

taining the coefficient w. The effect of rib shortening is in the term 

containing cos a, and its relative importance can readily be observed 

in any particular case. 

292. Temperature Stresses.—It is sometimes desirable to have 

separate expressions for crown stresses due to temperature changes. 

These may be had from eqs. (5), (6a), and (7a) by placing niL and 

the terms representing the applied load, equal to zero. If Aft, and 

Ht represent respectively the crown shear, moment, and thrust due 

to a rise in temperature, we have 

Ft = o 

Mt = Htjo 

Ft = 

CO t 
IE 

dsx/h 
. (8) 

293. Deflection of the Crown.—The deflection of the crown can 

be determined from eq. {ib) of Art. 287. Omitting the third term as 

before and denoting the deflection by Dc, we have 

Substituting for M, its value as given by eq. (30), we have finally 
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A = - 
d Si 

Th I {Me + He yo) * q 

+ Vc q + ffiLxq^ — 03 th . . 

A minus sign indicates an upward movement. The term 

d si/h 2 c dy 

a~A 

. (9) 

represents the effect of rib shortening. Since dyfd s 

written 

^ sin (X _ 

dsi/h^A A 

and if 5 is constant it is 

^ sin a 

A A 

sin a, it may be 

For ordinary ratios of rise to span this term is too small to be con¬ 

sidered. It can readily be calculated if desired.* 

294. Determination of d 5 Divisions.—^As stated in Art. 290, the 

arch rib is divided into short sections over which the moment of inertia 

and the bending moment may be considered as uniform. Generally 

these d s divisions should not be less than about 8 in number for each 

half, nor exceed about 4 ft. in length. In fixing the length of the ele¬ 

ment d Sj there are two general methods of procedure. The d s sec¬ 

tions may be made of uniform length, or the lengths may be so taken 

that d s/I for all sections is a constant. 

When the d s sections are made constant in length, the ratio d s/I 

for the several sections will vary. This method of division is fully 

illustrated by the problem which follows. 

When the ratio d s/I is made constant for all sections, the formulas 

for crown stresses are much simplified, as the ratio q becomes unity. 

A disadvantage, noticeable particularly in arches in which the ratio 

of springing to crown thickness is large, say greater than 2.0, is that 

the d s sections near the springing are very long. This tends to intro- 

* Rib shorcening eHect is also included in the value of He» 
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duce considerable error into the calculations because the assumption 

that the bending moment is constant for the entire length of a section 

is not realized. 

295. Division of an Arch Ring into Sections with d s/I Constant.— 
The value of d s/I to adopt so that there will be no fractional d s 

division may be determined as follows: 

Let i = i/I. 

Also, let ia = mean value of i; 

s/2 ~ half length of the arch ring measured along the arch axis; 

N = desired number of divisions in one-half of the arch. 

Calculate first the mean value of i for the half arch ring by determining 

several values at equal intervals along the arch. Then the desired 

value old s/I is 

To illustrate the application of the method described above, the half¬ 

span of the arch shown in Fig. 7 will be divided into 10 divisions for 

which d$/I is a constant. Fig. 6 shows the /-curve plotted for 
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values calculated in Table A of Art. 302. For the values of / shown, 

it will be found that ia = 6.135. From Art. 304, 

s/2 = 38.97 ft. 

Then from eq. (10), with N = 10, we have 

ds (38.97)(6.i35)_ 
_ --23.80. 

Fig. 6 shows a graphical method by means of which the 10 

ds/I divisions can be determined. It consists of constructing 10 

similar isosceles triangles between the /-curve and the base line such 

that the ratio of base to altitude is the desired value of d s/I — 23.8. 

The necessary slopes of the sides of these triangles can be found by 

assuming any value of d s, say 10 ft., and lay it off as A a, Fig. 12. 

Then at mid-point c, erect a perpendicular c h equal to 10/23.8 = 0.420 

in height. Then A b and b a give the required slopes of the sides of the 

several triangles. 

To complete the diagram, produce .4 J to an intersection with the 

/-curve at C. At C, draw C B parallel to b a. Continue the con¬ 

struction for 10 divisions, which should bring it to the centre point E. 

Any deficiency or overrun can be corrected by proportionate distribu¬ 

tion of the error. In this case the first d s length next to the springing 

line would be more than twice the length of a d 5 division if made of 

uniform length. 

296. Formulas for ds/I a Constant.—In this case the ratio q is 

unity; and if iV = number of divisions for each half of the arch, 

Jj q = N, and eqs. (5), (6a), and (7a) become 
2^ 

(ntB — Ml) X 
_A_ 

Jf. =- 
^ (wje mi) 

A_ 
2N 

- Ecyo 

(ii) 

(12) 

- 2) j tlE 

dsi/I 

+ 2 ^ h 
cos a-r 

A A1 

(13) 
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The equations for temperature stresses and deflection are similarly 

simplified. 

297. Shrinkage and Plastic Row.—The foregoing formulas have 

been developed on the basis of the elastic theory, namely, that concrete 

acts as a perfectly elastic material. In two important respects this is 

incorrect. As pointed out in Chap. II and other chapters, the effect 

of shrinkage and plastic flow act to modify considerably the results 

obtained by the elastic theory. A consideration of these factors is 

especially important in the case of the arch where the stresses are a 

fimction of distortion as well as of load.* 

Shrinkage.—The effect of shrinkage may be considered as both 

direct and indirect. Its direct effect is like that in columns, as dis¬ 

cussed in Chap. VII. It acts to increase the stress in the steel and 

decrease that in the concrete. The result on total distortion is a 

shortening of the column. This shortening effect in the case of the 

arch ring also produces bending and direct stress throughout the arch 

in a manner similar to a change of temperature. 

The direct effect can readily be analyzed as in the case of the 

column. Assume the arch ring free from the abutments. 

Let m — shrinkage coefficient of the concrete; 

m' = actual net unit contraction of the reinforced rib. 

Under the shrinkage action the steel will be imder compression and the 

concrete under tension. 

Then the relation of stresses and distortions will be as follows: 

/. 
e; 

Also, since total steel stress equals total concrete stress, we have, 

where 2 ^ = total steel ratio. 

• See progress report on Arches by C. S. Whitney, Joum. Am. Concrete Inst, Iklarch, 

193a. P- 479- 
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From these relations, we derive 

(14) 

(is) 

(16) 

The total change in span length will be and the indirect effect 

will be found by substituting m'l for w / / in eq. (8) for H. This effect is 

exactly similar to that caused by a reduction of temperature. 

The shrinkage coefficient m will depend upon the design of the arch 

and the manner of its construction. For a spandrel-filled arch it will 

be less than for an open spandrel arch. Shrinkage may be reduced by 

pouring the rib in sections and allowing considerable shrinkage to 

occur before the closing section is poured. In the construction of some 

long-span arches in France, Freyssinet * has made use of jacks to 

introduce initial compression before closing and thus reduce the effect 

of shrinkage and rib shortening. However, as pointed out later, 

the effect of plastic flow is such that the benefit secured by such a 

process cannot be very great. 

As stated in Chap, II, the shrinkage of concrete when thoroughly 

dried out is likely to be as much as 0.04%. Probably a value of 0.02% 

for m would represent average arch conditions sufficiently well. Before 

attempting, however, to evaluate eqs. (15) and (16) it is necessary to 

consider the influence of plastic flow. 

Plastic Flow,—For long-continued stresses, concrete will compress 

an amount much greater than represented by the value of Ec as 

usually determined. This compression is roughly proportional to 

stress, so that in the analysis of the effects of permanent loads it may 

be added to the usual elastic distortion. The coefficient of plastic 

flow may be taken at about 0.000001 (Chap. II) and if the elastic 

distortion is 0.0000005, corresponding to Ec = 2,000,000, the total 

*Eng. News-Record, Sept, 18, 1924. 
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distortion will be 0.0000015, and the ratio of stress to total distortion 
. I 
jg - _ 667,000 Ibs/in.^ Inasmuch as the effect of shrinkagj 

0.0000015 ^ 

is largely a permanent one and the dead-load compressive stresses are 

certain to be greater than the tensile shrinkage stress fc of eq. (15), 

we may arrive at approximate results by using the modified value 

of Ec = 667,000, or a similar value, in the foregoing equations. For 

an elastic value of Ee = 3,000,000, the modified value to take account 

of plastic flow will be 750,000. The value of n will be modified 

accordingly, being equal to 45 and 40 respectively for the two values 

here suggested (equal to 15 + 30 and 10 + 30). 

For illustration, let m = 0.0002, p = 0.005, ^ = 4S; then from 
0,0002 

the foregoing equations we get w' = —^- = 0.000138; fc = 
I + 0.45 

667,000 X 0.000062 = 41.4 lbs/in.2 tension; /, = 0.000138 X 30,000,- 

000 = 4140 lbs/in.2 compression. The net shrinkage coefficient of 

0.000138 is equivalent to a temperature change of 23°, using w = 

0.000006. 

The foregoing gives some notion of the direct effect of shrinkage; 

it places a considerable initial compression in the steel and tension in 

the concrete. These stresses may be added to those determined from 

other causes. 

The indirect effect of shrinkage is found by substituting the 

coefficient 0.000138 for co t in eq. (8) and using for E in that equation 

the value of 667,000 so as to include plastic flow. It will be found that 

the value of H will be quite small under these assumed conditions. 

In the problem analyzed later on, it is only 410 lbs., producing a crown 

moment of 410 X 1.78 = 730.0 ft-lbs. This is in contrast to a crown 

thrust and moment due to combined dead and live loads of 34,000 

lbs. and 7400 ft-lbs. respectively. The same general result is obtained 

from temperature effects that are long continued, such as those due to 

cooling of the concrete after pouring. Seasonal changes of temperature 

act too quickly to get much benefit from plastic flow, and for such 

changes the value of E in eq. (8) must be taken more nearly equal to 

the usual elastic value. 

From the foregoing it is seen that the effect of plastic flow is greatly 

to minimize the effect of arch shortening due to shrinkage or slow and 
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permanent changes of temperature. The effect of plastic flow upon 

dead- and live-load stresses remains to be considered. 

Referring to the equations for thrust and moment, it will be noted 

that the value of E does not appear except in the quantity n in calcu¬ 

lating / (omitting the temperature term). It will be further noted 

that, if the values of / for the entire arch are increased or decreased 

proportionately, the values of q wiU not be changed and the values of 

H and M will remain the same. We may then conclude that small 

proportionate changes in /, such as would be caused by a change in «, 

would not affect the values of H and M appreciably. Hence the dead¬ 

load moments and thrusts may be taken as correct when determined 

by using the ordinary value of w of 8 to 15. In getting fibre stresses 

from the moments and thrusts the correct value oi pn (including 

plastic flow) should be used in reading values from the diagrams. In 

the case of live-load stresses, plastic flow is of little consequence, and 

the usual values of Ec and n should be employed. 

But unless we can assume that Case I of bending and compression 

(compression over the entire section) prevails, we cannot determine 

total stresses by calculating dead-load and live-load stresses separately 

and adding. The total stress must be determined for the total load. 

This difi&culty can be met satisfactorily in the following manner: 

Calculate first the stresses due to dead load, using a value of n to include 

plastic flow. Then recalculate stresses for elastic conditions, using a 

corresponding value of n. The difference between these two sets of 

stresses will represent the effect of plastic flow; the steel stresses will 

be compressive and the concrete stresses tensile. Then with the usual 

value of Ee and n (elastic values), the stresses due to combined live 

and dead load (and seasonal temperature changes if desired) are 

calculated. The total stresses will then be equal to those due to dead 

and live load (and temperature), plus those due to plastic flow. To 

these the shrinkage stresses may be added if desired. 

The foregoing method of considering the effect of plastic flow 

may be visualized by considering the application of dead and live load 

to take place as follows: First, the application of dead load until the 

plastic flow has taken place. Second, a removal of dead load for a, 

short time, leaving the permanent deformation in steel and concrete. 

Third, reapplication of dead load with the live load and temperature 
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effect under the assumption of elastic behavior. Although this 

method is not strictly correct for Case II, it gives results which repre¬ 

sent the facts fairly well and as closely as the conditions of the problems 

warrant. 

For application of this process to a particular case, see Art. 313. 

Conclusion,—The direct effect of shrinkage is to increase steel 

stresses and reduce concrete stresses. The indirect effect from short¬ 

ening of the arch is small. 

The effect of plastic flow is to minimize greatly the effect of slow 

changes of temperature. Its effect on dead-load stresses is to increase 

steel stresses and reduce concrete stresses. The total effect on fibre 

stresses is marked. 

298. General Observations.—The method of analysis here given 

is simple in theory, and easily followed in the numerical work. It will 

be noted that the loads and their points of application have been con¬ 

sidered apart from the division of the arch ring into d s sections, as 

the two things are in no wise related. Where spandrel filled arches 

are used and the entire load is applied continuously along the arch 

ring, the load is generally divided into concentrations equally spaced 

along the horizontal. Where open spandrel arches are used, the live 

load and a large part of the dead load will be applied at the centres of 

the columns which support the floor system. The weight of the main 

arch ring may also be considered as concentrated at these same points. 

However, if the arch ring is very heavy, more accurate results will be 

secured by dividing the arch ring into short sections as in the spandrel 

filled arch. 

If calculations are to be made for more than one loading condition, 

it will be noted that the denominators for values of Hey Mcy and Ve 

do not change, being dependent upon the form and shape of the arch 

ring and not upon the loadings. The quantities involving m, the 

moment due to loadings, are the only ones requiring recalculation. 

If the load on but one-half of the arch is changed, then the values of m 

for that half only need be recalculated. In the case of a symmetrical 

loading, or a load on one-half of the arch, the calculation of m is 

also necessary for one-half of the arch only. For symmetrical loads 

F.-o. 

In view of the uncertainty regarding the allowance to be made for 



354 ARCHES 

shrinkage, plastic flow, and temperature stresses in arches, no great 

refinement in the calculations is warranted. It will be found, however, 

that in the calculation of crown stresses the formulas involve differ¬ 

ences between two quantities. Hence, in determining these values, a 

sufficient number of significant figures must be used so that these dif¬ 

ferences will have the desired precision. 

299. The Unsymmetrical Arch.—When the arch is unsymmetrical, 

explicit formulas for the crown stresses Hey Me, and Ve are very cum¬ 

bersome. It will be found best to carry the solution in general form 

only as far as the development of three simultaneous equations involv¬ 

ing the unknowns He, Me, and Fc. These can readily be written out 

from the fundamental equations, (i), (2), and (3), keeping in mind the 

fact that the two sides of the arch are unlike. For a given arch sub¬ 

jected to stated loading conditions, the numerical values of the 

coefficients of the unknowns can be found, and a solution of the result¬ 

ing simultaneous equations will yield the values of the unknowns. 

THE INVESTIGATION OF AN ARCH 

300. Methods of Procedure.—^In the application of the foregoing 

formulas to the analysis of an arch there are two general methods of 

procedure. The influence-line method and the direct-load method. 

By the influence-line method the values of moment and thrust at 

the crown and other critical sections are determined for a unit load 

placed at successive intervals along the arch and sufficiently near 

together to give the desired accuracy. From these values the effect 

of dead load and any arrangement of live load can be calculated and 

the maximum stresses determined. Plotted influence lines can also be 

used to advantage in deriving general rules for placement of live load 

in the direct-load method. 

By the direct-load method close approximations to the maximum 

stresses can be obtained by loading the arch in accordance with general 

rules determined by experience and the study of influence lines. The 

accuracy is not so great as obtained by the influence-line method but 

the process is somewhat briefer and is sufficiently exact for moderate 

span lengths and ordinary proportions. 

If a critical investigation of an arch is to be made, the influence¬ 

line method wiH give the desired results with the least amoimt of work. 
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If stresses are desired for a single set of loads, as for example, the dead 

load, the direct-load method is more expeditious. 

On examining the general formulas for crown stresses given in 

Art. 290, it will be noted that, in all equations, the denominators con¬ 

sist of terms whose values depend only upon the form of the arch. 

This is true also of certain factors in the numerators. It will then be 

found convenient in analyzing a given arch to determine first those 

terms which depend upon the form of the arch. Simplified formulas 

for crown stresses can then be written which are functions of load only. 

These formulas can then be used in subsequent calculations by either 

the influence-line or the direct-load method. In the articles which 

follow, such simplified formulas for a given arch will first be calculated, 

after which the effect of loads will be considered. 

301. Dimensions of the Arch to be Investigated.—Fig. 7 shows the 

principal dimensions of the arch to be analyzed. The span of the arch 

is 72 ft. and the rise 12 ft. At the crown there is an earth fill 6 in. deep 

which is covered by an 8-in. concrete roadway slab. The arch ring 

thickness at the crown is r ft.; at the springing line, 2J4 ft.; and at 

the quarter point i .09 ft. 

The arch rib is reinforced by K-in. round bars placed in. from 

extrados and intrados and 12 in. apart. A length of arch ring of i ft 

will be considered. £« = 2,000,000 Ibs/in.^ 0 
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302. Properties of the Arch Ring.—In the calculations which fol¬ 

low, each half of the arch ring has been divided into 10 equal d s sec¬ 

tions. From measurements made on a large-scale layout of the arch 

ring, or from calculations which can readily be made from the informa¬ 

tion given on Fig. 7, the half-length of the arch axis is found to be 

38.97 ft. Each ds section then has a length of 3.897 ft. Fig. 7 

shows the half arch ring divided as indicated and the several sections 

numbered from crown towards springing. 

Table A gives the calculations of the quantities I, A, q, and 

cos a/A. The values of I are calculated for the entire section. While 

imder certain conditions of loading the bending moment is such that 

there will be tension on one side, giving rise to Case II of bending and 

compression in which the tensile stress in the concrete is ignored, 

the moment of inertia of the entire cross-section will best represent 

the facts as regards deformations. (See discussion in Chap. VI.) 

The quantities in columns 2 to 8 relate to the ends of each division; 

in columns 9 to 14 they relate to the d s centres, or are averages of 

values given for the ends of the divisions. 

Table B gives the various needed functions of x, y, yi, and q. 

Values of * and y were scaled from a layout of the arch ring, then 

2 y g calculated and yo found from the equation yo = S y j/S g = 

11.047/6.212 = 1.78. Then yi = y — yo. Columns ii to 15 of this 

table contain summations of the respective functions from the springing 

line, or tenth division, to the division in question. These quantities 

are used in eqs. (7) and (8) of Art. 304. 

303. Formulas for Crown Stresses.—On substituting values of the 

several smnmations given in Tables A and B in the general formulas 

for crown stresses as given by eqs. (5), (60), and (7a) Arts. 290 and 291, 

neglecting the temperature terms which will be evaluated separately, 

we have 

^ {niR - vfiL) X q 

3153 
(i) 

M, (titn 4* tnz,) 

I.jSHe . (2) 
1242 
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and 

He = 

^ c 
/ . {niR + Wi) yi q 

A_ 
60.8 (3) 

These simplified formulas will be further evaluated in the articles, 

which follow on the influence-line and the direct-load methods. 

The denominator of eq. (3) in general form, as given by eq. (7a) is 

yi^q + I 

Substituting the values from Tables A and B, this becomes equal 

to 2 [29.73 + o.ioi X 6.916] = 60.8. 

Note that in this calculation the effect of rib shortening is included 

in the term containing and appears in the numerical quantity 

O.IOI X 6.916 = 0.70, which affects the final value of He about 2.3%. 

This produces considerable dead-load moment at the crown and spring¬ 

ing but has little relative effect on live-load moments. For thicker or 

flatter arches the effect would be greater. 

The crown stresses due to temperature changes are given by eq. 

(8), Art. 292. For this particular case they reduce to 

^33 
0
0

 

M
 

1 II . . . . (4) 

0) 11E 

„ dsi/h 
tic fr Q .... 

60.8 
• . . . (s) 

Calculation of Stresses by the Influence-Line Method 

(a?-a) 
304. Values of Crown Stresses iHh. 

for a Unit Load at Any Point 

on the Arch Rib.—Fig. 8 shows 

an arch rib with a unit load 

placed at any point D on the 

left, at a distance a from the 

crown C. For such a load we 

have, for points between A and 

Z?, wl * — {x — a) \ for points between D and C, wl 

p 
1 C 

'Wn ' 

_! 
'h 

Left Riffht B 
^ _ 
< V2 ^ < V2 ^ 

1-► 

Fig. 8. 

and 
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for the right half mn = o. Substituting these values in eq. (i) of 
Art. 303, we have 

F. = 

Likewise from eq. (2) 
3153 

(6) 

Me = 

Also from eq. (3) 

E. = 
2> 

12.42 

yi 9 - a V y, g 
A • A 

60.8 

-i.ySHo . . (7) 

(8) 

In these equations the several summations 2° are summations of the 
quantities indicated, taken from the left end of the arch rib at A to the 
load point D. These summations are given in Table B. 

305. Influence Lines for and the Moment, Thrust, and 
Shear at the Crown.—The necessary values of Me, He, and are 
obtained by applying unit load successively at closely spaced intervals 
along the arch, and calculating the resulting crown stresses by the use 
of the equations of Art. 304. In this case the spacing between load 
points will be taken as Ho the half span, the first load point being 
Ho X 36 = 1.8 ft. from the crown. The positions of the load points 
with reference to the d s centres are shown on the sketch accompanying 
Table C. Such a sketch is useful in showing the number of d s divi¬ 
sions to be included in the several summations 2$ appearing in the 
equations. (It will be noted that a strictly precise calculation would 
involve fractional values of d 5 in these summations, but the error 
involved in using whole imits in each case is negligible.) 

Table C contains all the calculations for the values of He, Me, and 
Ve for unit loads as described. Fig. 9 shows the influence linds drawn 
from these values. The totals of the -\-Me and —Me areas are indi¬ 
cated on the moment influence line. On the thrust influence line, the 
areas corresponding to load positions for -fAf« and —Me are also 
indicated. 
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In Fig. 9 the influence line for shear is given to complete the analy¬ 
sis. It will be found, however, that the shearing-stresses are so small 
that they may be neglected. In this case, for example, the total 

Fig. 9. 

shearing-stress at crown for the half span loaded is about 1120 lbs., or an 
average shearing-stress on the section of 7.8 Ibs/in.^ This is about 3.5% 
of the fibre stress due to bending, which indicates its small magnitude. 
For the other cases discussed the shear will be neglected. 
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The final result desired in these stress calculations is the maximum 

fibre stress at various sections along the arch. Such fibre stress is a 

function of both bending moment and thrust, and hence the maximum 

fibre stress will not in general occur for the particular position of 

loading giving maximum moment. For a true maximum the loading 
should extend somewhat be¬ 

yond the limits indicated by 

the moment line, but the in¬ 

creased effect is very small, so 

that the position for maximum 

moment can safely be used for 

fibre stress. In this particular 

problem, for example, it was 

found that, for maximum fibre 

stress at the crown, the load 

should extend about 2 ft. 

farther each way than for maxi¬ 

mum moment, but the effect 

of such additional load was to 

add less than 1% to the live- 

load stress, an amount of no Fig. 10. 

consequence. 

306. Influence Lines for Moment and Thrust at the Quarter Point.— 

Fig. 10 shows the conditions at the quarter point. For a load between 

the crown and the quarter point we have 

= Me + 2.07 He + 18 Fc — (18 — a) 

= He cos + (i — Fc) sin 

When the load is between A and the quarter point or on the right side 

of the arch: 
= Me + 2.07 He + 18 Fc 

= He cos — Fc sin 
(10) 

For a load on the right half, F. will be negative. In Table D, all 

calculations are given for moments and thrusts at the quarter point. 

Fig. II shows the influence lines plotted from the values given in 

Table D. 
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307. Influence Lines for Moment and Thrust at the Left Springing 
Section.—Referring to Fig. 12, we have, for a load on the left: 

M. = -f- 12 He -1- 36 Fc - (36 - o) 1 
f • (ii) 

T, — He cos a, -t- (i — F«) sin a, I 

Fig. II. 

For a load on the right: 

M. = Me+ 12 He + 36 Ve 

T, = He cos a, — Ve sin a. 
(12) 

The calculations are given in Table E, and the influence lines in 
Fig. 13. 

308. Dead-Load Stresses.—The dead load on a spandrel filled 
arch is represented by the weight of the roadway slab, if any; the 
earth fill above the arch rib; and the weight of the arch rib. As this 
is a variable load, it is best represented by a series of closely spaced 
concentrated loads. For this purpose the half span of the arch will be 
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divided into lo equal parts, measured along a horizontal line, and the 

weight of all material in each of these lo sections estimated. This is a 

convenient division, as it corre- 

(b) 
Fig. 12. 

equivalent slab depth is 8/12 

spends to the divisions used in 

calculating the influence lines, 

but this arrangement is not 
necessary. 

Table F gives the calcula¬ 

tions of the dead-load concen¬ 

trations. Fig. 14(a) shows the 

general dimensions of the arch 

under consideration, and Fig. 

14(6) shows the half span of the 

arch divided into 10 equal hori¬ 

zontal sections 3.6 ft. long. To 

simplify the determination of 

the load due to slab and fill, the 

slab is reduced to an equivalent 

earth depth. Assuming the earth 

fill to weigh 120 Ibs/ft.^, the 

150/120 = 0.83 ft. Hence the total 
fill at the crown is 0.50 + 0.83 = 1.33 ft., as shown in Fig. 14(6). 

Fig. 13. 
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All other depths are scaled from Fig. 14(6), using the equivalent fill 

level as a base. Vertical depths of the arch ring, as given in column 

4 of Table F, are also scaled from Fig. 14(6). After the average 

depths of concrete have been calculated, the corresponding load is 

equal to the average depth times the weight of concrete per foot of 

depth, which is 3.6 X 150 = 540 lbs. These loads are given in col¬ 

umn 7 of the table. 

TABLE F 

DEAD-LOAD CONCENTRATIONS 

Section 

Depth of 

Fill 
in Feet 

Depth of Fill 

in Terms of 
Concrete 

Depth of 
Arch Ring 

in Feet 

Total Depth 
in Terms of 
Concrete 

Average 
Depth 
in Feet 

Load in 
Pounds 

Load 

in Feet in Feet 

(I) (2) (3) (4) (5) (6) (7) (8) 

Spring 

9 
8 

7 
6 

5 

4 
3 
2 

i 

Crown 

12.2 

950 

7-35 
5.62 

4.28 

332 

2.60 

2.00 

1.61 

I-3S 

1-33 

9-75 
7.60 

S-88 

4 50 

3-42 
2.66 

2.08 

1.60 

1.29 

1.10 

1.06 

3-55 
2.52 

1.85 

150 
I -25 

1.12 

1.08 

loS 

1.02 

1.01 

1.00 

13 30 

10.12 

7-73 
6.00 

4.67 

3.78 
3 16 

2.65 

2.31 

2. II 

2.06 

II . 71 

8-93 
6.86 

S-33 
4.22 

3-47 
2,90 

2.48 

2.21 

2.08 

6,320 

4,830 

3,710 

2,880 

2,280 

1,870 

1,570 

1,340 

1,190 

1,120 

Pio 

p. 

p. 

Pr 
P. 
P. 
P. 
P. 
P. 
Pi 

1 
1 

S P sw 27,110 lbs. 
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To determine stresses by influence-line methods, each of these dead 

loads must be multiplied by the corresponding influence-line ordinate. 

The sum of all such values will represent the total moment or thrust 

desired. In this case, the influence-line ordinates have been calculated 

for points which coincide with the load positions. If this condition 

did not exist, the desired influence-line ordinates could be scaled 

from the influence lines of Figs. 9, ii, and 13, or calculated by inter¬ 

polation. 

Table G gives in convenient form all calculations for the determina¬ 

tion of dead-load moment and thrust at the crown, the quarter point, 

and the left springing section. Since crown values are symmetrical 

about the centre line, the total is twice the summation for one-half of 

the arch. 

If the arch axis follows exactly the dead-load equilibrium polygon, 

there would be no dead-load moments except for rib shortening, and 

these could be calculated from the ratio of the second term in the 

denominator of eq. (7a), Art. 291, to the entire denominator. From 

Art. 303 this ratio is 2.3%, hence the value of He for dead load will 

be decreased 2.3%, or by 630 lbs., resulting in moment of 630 X 

1.78 = +1220 ft-lbs. at the crown and 630 X (12 — 1.78) = —6400 

ft-lbs. at springing. Compare these with the values given in Table G. 

309. Live-Load Stresses.—Most specifications for arches state 

that they shall be designed for a uniform load of from 80 to 120 Ibs/ft.^ 

of roadway, or for a truck weighing from 15 to 18 tons. For spandrel 

filled arches, the roadway slab and the earth fill tend to distribute 

these concentrated truck loads so that they may be assumed to reach 

the arch rib as a uniformly distributed load over the length covered. 

Assuming that the arch is to be designed for an 18-ton truck, which 

occupies a roadway area 10 ft. by 30 ft., this will give an equivalent 

uniform load of 36,000/300 = 120 Ibs/ft.^ Generally from H to K 

of the total load is carried on the rear axles. Assuming this load dis¬ 

tribution and adding about 25% for impact, the uniform load under 

the rear axles may be as much as 200 Ibs/ft.^ In the calculations 

which follow, a uniform live load of 200 Ibs/ft.^ will be assumed. 

The live-load moments and thrusts for uniform loading can be 

obtained by multiplying the influence line area by the load per square 

foot. Such areas for maximum positive and negative moments, 
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together with the corresponding area for simultaneous thrust, are 

shown on the influence lines of Figs. 9, ii, and 13. Table H contains 

all information necessary for the calculation of live-load moments and 

the simultaneous thrusts at the crown, quarter point, and the spring¬ 

ing sections. 

310. Temperature Stresses.—Considerable uncertainty exists 

regarding the exact nature of temperature changes in an arch and 

their relation to external temperature conditions. In spandrel 

filled arches only the lower surface of the arch ring is directly exposed 

to full temperature effect. Temperature changes in the concrete 

naturally lag behind atmospheric changes. It has been observed that 

the temperature changes in an arch ring will be equal to about yi 

of the annual variation between the seasonal maximum and 

minimum. Thus in the North Central states, where the varia¬ 

tion from maximiun summer to minimum winter temperature is 

about 120° F., the arch ring is subjected to about an 80° F. change. 

TABLE H 

LIVE-LOAD MOMENTS AND THRUSTS 

Influence-Line Method 

w = 200 Ibs/ft. 

Section 

Maximum 

Moments 

Thrusts Corresponding 

TO Maximum Moments 

Influence- 

Line Area 

Moment, 

Ft-lbs. 

Influence- 

Line Area 

Thrust, 

Lbs. 

Crown. 
+ 32.0 4- 6,400 36.0 7,200 

— 12.8 - 2,560 24.8 4,960 

Quarter Point. 
+ 24.6 4* 4,920 12.6 2,520 

“ 41-3 — 8,260 50.0 10,000 

Left springing. 
4-211.0 4-42,200 42.2 8,440 

— III.3 
1 

— 22,260 25.75 5,150 

It is generally assumed that this temperature change in the arch 

ring takes place as a 40° F. plus or minus change from an assumed 
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TABLE I 

COMBINED MOMENTS AND THRUSTS 

Dead Load, Live Load and Temperature 

Moments in foot-pounds; thrusts in pounds 

Dead 

Load 

Live 

Load 

Temper¬ 

ature 

Condition 

Temper¬ 

ature 

Effect 

Total 

Positive 

moment Tc 

-f- 1,010 1 

26,860 

-j- 6,400 

7,200 
Fall 

+ 3,800 

- 2,130 

+ 11,200 

31,900 

Negative 

moment 

-Me 

Tc 

-f- 1,010 

26,860 

- 2,560 

4,960 
Rise 

— 3,800 

+ 2,130 
- 5,350 

33,900 

Quarter point.. 

Positive 

moment 

+My, 

Th 

- 390 
27,740 

+ 4,920 

2,520 
Rise 

+ 610 

-f- 2,080 
+ 5,140 

32,300 

Negative 

moment 

-Mii 

Tm 

- 390 
27,740 

— 8,260 

10,000 
Fall 

— 610 

— 2,080 

— 9,260 

35,700 

Positive 

moment T, 

- 5,240 

38,160 

-t-42,200 

8,440 
Rise 

-+-21,800 

■f 1,520 

+58,800 

48,100 

Springing. 

Negative 

moment 

-M. 

T, 

- 5,240 

38,160 

— 22,260 

5,150 
Fall 

— 21,800 

- 1,520 

-49,300 

41,800 

normal condition at which the arch was closed. This ignores the tem¬ 
perature condition prevailing at the time of closing of the arch, which 
is likely to be considerably above the normal. However, as pointed 
out in Art. 297, the effect of a permanent change in temperature is 
small, and hence only the seasonal changes need be considered. A 
40® F. plus or minus change will therefore be assumed in this problem. 

The value of w, the coefficient of linear expansion per degree 
Fahrenheit, depends upon the density of the concrete, varying from 
0.000005 0.000006. In the calculations which follow, we will assume 
w = 0.000006. Then from eqs. (4) and (5), for a rise of 40®, 

“ 53*3^ ” 2130 lbs., compression. 

*« — i.78i?« « —38ooft-lb8. 
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Quarter Point Values 

~ ”3800 + (2132)2.07 = +610 ft-lbs. 

= 2132 X 0.974 = 2080 lb., compression. 

Springing Values 

M, = —3800 + (2132)12 = +21,800 ft-lbs. 

T, = 2132 X 0.712 = 1520 lb., compression. 

For a fall in temperature, all values have opposite signs. 
311. Total Moments and Thrusts.—Table I gives the total stresses 

at the crown, quarter point, and springing sections of the arch rib, due 
to dead load, live load, and temperature. In making the several com¬ 
binations, the temperature conditions, rise or fall, are so chosen as to 
increase the moment values. 

312. Fibre Stresses in the Arch Rib.—Maximum fibre stresses at 
the crown, quarter point, and springing sections due to the moments 
and thrusts recorded in Table I can be determined by the methods 
given in Chap. Ill on Bending and Direct Stress. 

Table J presents all necessary calculations, making use of diagrams 
12 to 22. 

TABLE J 

MAXIMUM FIBRE STRESSES 

Dead Load, Live Load, and Temperature 

Section 
Moment, 

Ft-lbs. 

Thrust 
Lbs. 

e h e/h h/e P 

or 

P 
(n-i) 

dVA Case C 
/c 

Lbs. 
/in.* 

/• 
Lbs. 
/in.* 

Crown -HAf ■f 11,200 31.900 0.351 1.0 ..... 2.85 0.0042 0.063 0. 125 II 8.4 654 3,500 
-Af - 5.350 33,900 0.158 1.0 0.158 0.0042 0.0S9 0.125 I 1.72 40s 

Quarter -fM 4- 5.140 32.300 0.159 1.09 0.146 0.0038 0.053 0. IIS I 1.64 337 

Point -Af -- 9,260 35.700 0.2S9 1.09 4.23 0.0038 0.057 0. IIS II 9.0 486 200 

Spring¬ 4-58,800 1 48,100 1.223 2.5 2.04 0.0017 0.025 0.05O' II 10.0 652 12,200 

ing -Af “49.300 41,800 1.179 2.5 2.12 0.0017 0.025 0
 

0
 

cn
 

0
 

II 9.8 535 8,800 

It will be noted that the maximum compressive stresses in the con¬ 
crete at the crown and springing are practically equal, while the quarter 
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point stresses are relatively low. The steel stresses are also relatively 

low, except at the springing section. 

If in any case the fibre stresses at any section are somewhat above 

the allowable values, these stresses may be reduced by changing the 

steel reinforcement. Any small change in the reinforcement will not 

greatly affect the moments and thrusts, as these values are a function 

of the deformation of the arch as a whole, which is not greatly affected 

by local changes in the reinforcement. Hence the reinforcement can 

be revised considerably without the necessity of recalculation. 

313. Effect of Shrinkage and Plastic Flow on Fibre Stresses.— 

Calculations will be made for the crown section in accordance with the 

method of Art. 297. 

The following value will be assumed: 

Shrinkage coefficient m = 0.0002; 

Coefficient of plastic flow = 0.000001; 

Corresponding value of — 30; 

n — 15 for elastic deformations; 

w = 45 for both plastic and elastic 

deformations; 

p = 0.0042. 

Ejffect of Shrinkage,—Referring to Art. 297, eqs. (14) to (16), we have 

, 0.0002 
w =- = 0.00014s; 

I + 45 X 0.0084 

fc == 667,000 X 0,0000555 = 37 lbs/in.2 tension; 

17 
/, =--— = 4400 lbs/in.2 compression. 

0.0084 

This is the direct effect. Substituting the coefficient of 0.000145 for « 

in eq. (5), Art. 30,3, gives a value oiH = —430 lbs., producing a crown 
moment of 430 X 1.78 = 770 ft-lbs., a positive moment. This can 
be added to the dead-load moment as it is of a permanent nature. 

Efect of Plastic Flow.—Referring to Table I, the dead-load 
crown moment is -t-ioio and thrust 26,860. Combining these with 
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shrinkage effect gives Me - + 1780, Tc - 26,430. Then, using a value 

oi n =45, p n == 0.19, we proceed to find the fibre stresses in the usual 

way. The results are: 

/c = 180; fc = 88; /', = 7600; /, = 4500, all compression. 

Then with the same moments and thrusts, using ^ = 15, ^ ^ = 0.063, 

recalculate the stress values, getting 

Jc = 223; fc = 103; /', = 3120; and/, = 1700. 

Taking the differences between these values gives the following stresses, 

which may be considered as the combined effect of shrinkage and 

plastic flow. 

Concrete fc = — 37 + 180 — 223 = —80 (tension); 

fc = —37 + 88 — 103 = —52 (tension). 

Steel f» = 4400 + 7600 — 3100 = + 8900 (compression); 

/, = 4400 + 4500 — 1800 = + 7ICMD (compression). 

The stresses due to dead and live load and temperature are as given 

in Table J, namely: fc = 654 compression and fc = 3500 tension. 

The concrete stress will be reduced about 80 Ibs/in.^, as above noted. 

The total steel stress /, will be about 7100 — 3500 = 3600 Ibs/in.^ 

compression. The value of/', (not shown in Table J) is, from dead and 

live load, 7800; and the total value will be 8900 + 7800 = i6,7cx) 

lbs/in.2 compression. 

314. Influence-Line Methods Applied to the Open Spandrel 
Arch.—In the open spandrel type of arch, the floor loads, such as the 

dead load from the roadway and the live load applied to the roadway, 

are brought to the arch rib as concentrations. In calculating stresses 

for such arches, the concentrations at each column should be deter¬ 

mined and the stress then found by multiplying each concentration 

by the corresponding influence-line ordinate, or by the value calcu¬ 

lated by interpolation from the values given in the tables. In calcu¬ 

lating dead-load stresses due to the arch rib, it will be best to divide 

the arch rib into short sections, and proceed as in Art. 308. The posi¬ 

tion of live load for maximum stresses may be taken from the influence 

lines. 
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Calculation of Stresses by the Direct-Load Method 

315. General Method of Procedure.—^As stated in Art. 300, in the 
direct-load method the applied loads are placed in position on the 
arch rib and the crown stresses determined from the equations of 
Arts. 290 and 291. 

In calculating dead-load stresses by this method, the concentra- 

MOMENT AT THE CROWN SECTION 

Live Load 

Positive Moment at the Crown 

(O) 
MOMENT AT THE SPRINGING SECTION 

Left Sprinfiring Section 
ic) 

^Live Lc >ad 

\Z a 7 J 
igini r^ectioi^'^^ 

5 7_1 

Negative Moment at * 

MOMENT AT THE 
QUARTER POINT SECTION 

Left Springing Section 

(d) 

Positive Moment at the Quarter Point Negative Moment at the Quarter Point 

(e) if) 
Fig. is. 

tions due to dead load must be determined, as in Table F of Art. 308. 
Values of ml and tns must then be calculated and substituted in the 
general equations. 

For accurate results the live-load stresses must be determined by 
cut-and-try methods, using several trial positions and comparing 
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results for maxiinum values. If influence lines are available, the cor¬ 
rect live-load positions can readily be determined. In most cases, 
the live-load stresses can be foimd with sufficient accuracy from 
approximate load positions which represent average conditions for the 
several centres. Fig. 15 shows such load positions for the crown, 
springing, and quarter-point sections. Compare these with the exact 
positions as shown by the influence lines. 

TABLE K 

VALUES OF mi_ FOR DEAD LOAD 

Direct-Load Method 

Point 

Distance x 
from 

Crown 

Load 

at 

Point 

Sum 

of 

Loads 

Distance 

between 

Points 

Increment 

of 

Moment 

Total 

Moment, 

triL 
Point 

Crown 0 Crown 

Pi 1.80 1,120 1,120 1.80 Pi 

I 1-95 1,120 0.15 170 170 I 

P2 5-40 1,190 2,310 3-45 3.870 4,040 Pt 

2 5.88 2,310 0.48 I,no 5,150 2 

Pt 9.00 1,340 3,630 312 7,210 12,360 Pi 

3 9-75 3,650 0.75 2,740 15,100 3 

Pi 12.60 i>57o 5,220 2.85 10,400 25,500 Pi 
4 13-58 5,220 0.98 5,120 30,620 4 

Ps 16.20 1,870 7,090 2.62 13,680 44,300 Pi 

5 17.40 7,090 1.20 8,500 52,800 5 
MPt. 18.00 7,090 0.60 4,250 57,050 Pt. 

Pe 19.80 2,280 9,370 1.80 12,750 69,800 Pe 
6 

00 
M

 9,370 1.38 12,930 82,730 6 

Pt 23.40 2,880 12,250 2.22 20,800 103,530 Pt 

7 24.79 . 12,250 1-39 17,030 120,560 7 

Pa 27.00 3.710 15,960 2.21 27,100 147,660 Pa 
8 28.28 15,960 1.28 20,430 168,090 8 

Pa 30.60 4,830 20,790 2,32 37,000 205,090 Pa 

9 31-56 20,790 0.96 20,000 225,090 9 

Pio 34.20 6,320 27,110 2.64 54,900 279,990 Pio 

10 34.60 27,110 0.40 10,850 290,840 10 

Spring 36.00 27,110 1.40 38,000 328,840 Spring 

316. Dead-Load Stresses.—In Table K are given the dead-load 
concentrations (from Table F) and the calculation of the values of niL 
for the left half. Table L gives the calculation of the terms required 
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in the equations for He and and the final values of these quantities. 

Compare these values with those given in Table G. The discrepancy 

between the values for Me is of no significance as the moments are 

small. 

317. Live-Load Stresses.—^As an example of the calculation of 

live-load stresses by the direct-load method, the maximum live-load 

positive moment and the corresponding thrust at the left springing 

section will be determined. Fig. 16 shows the assumed live-load posi- 

TABLE L 

VALUES OF Me AND He FOR DEAD LOAD 

Direct-Load Method 

Point, 

d s Center 
Q yi Q 

2 mi - 
(m« -f nil) 

(mjt mi) q (mji -f mi) yi q 

I 1.000 -1.77 - 340 - 340 + 600 

2 0.972 -1-53 — 10,300 — 10,000 + 15,900 

3 0.944 -113 — 30,200 — 28,500 + 34,100 

4 0.890 -0.53 — 61,240 - 54,500 + 32,500 

5 0.798 +0.11 — 105,600 — 84,300 — 11,600 

6 0.64s +0.74 — 165,460 —106,800 — 122,500 

7 0.448 +1.14 — 241,120 — 108,000 — 275,000 

8 0.269 +1.17 —336,180 - 90,500 -393,000 

9 0.157 + i .01 — 450,180 — 70,700 -454,000 

10 0.089 +0.79 — 581,680 — 51,800 — 460,000 

Totals. -605,440 -1,633,000 

+ 1,633,000 
= 26,900 lbs. 

__ 26,900 X 1.78 =+ 940 ft-lbs. 
12.42 
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tion as in Fig. 15(c), and formulas for m for various positions of the 

arch. 

Tables M and N give the calculations of the necessary functions 

of m and the resulting values of He, and Vc- Then for the spring¬ 

ing point 

M, = 4960 -f 9100 X 12 — 427 X 36 — 200 X 9 X 31.5 

= d- 42,000 ft-lbs. 

T, = 9100 cos a, + (1800 -1- 427) sin <x, = 8040 lbs. 

TABLE M 

VALUES OF tnt AND ms FOR MAXIMUM LIVE-LOAD MOMENT AT LEFT 

SPRINGING 

Direct-Load Method 

w — 200 Ibs/ft. 

For a; = o to 9 ft., niL — 200 X 

For a: == 9 to 36 ft., mi, - 200 X 9 X (x — 4.5) 

Mr = 200 X x^ 

Point X (x - 4.5) rriR Point 

I 1-95 3 80 - 380 — 380 I 

2 5.88 34.60 3,460 - 3,460 2 

3 9-7S 950 5.25 - 9,450 - 9,500 3 

4 13-58 184.4 9.08 — 16,340 - 18,440 4 

S 17.40 303 12.90 — 23,200 - 30,300 5 
6 21,18 449 16.68 — 30,000 - 44,900 6 

7 24.79 615 20. 29 -36,500 — 61,500 7 
8 28.28 800 23 78 — 42,800 — 80,000 8 

9 31-56 996 27.06 — 48,700 — 99,600 9 
10 34.60 1200 30-10 -54,200 — 120,000 10 
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TABLE N 

VALUES OF Me, B.e, AND Ve FOR MAXIMXDa LIVE-LOAD MOMENT AT UEFT 

SPRINGING 

Direct-Load Moment 

The Design of an Arch 

318. The Problem of Design.—General Conditions.—^The foregoing 
articles have presented a method of analysis of an arch the dimensions 
of which have been assumed. There remains to be considered the 
question of the selection of a tentative design andThe manner of making 
modifications in proportions which the stress analysis shows to be 
necessary or desirable. A common method of procedure is to select 
an arch ring whose dimensions are obtained by comparison with exist¬ 
ing arches of similar span and loading conditions. This arch is then 
analyzed, and if the stresses are found to be within the allowable 
limits the design is considered satisfactory. If the stresses are too 
high or too low, changes are made imtil finally a design is obtained in 
which the stresses are satisfactory. 
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Owing to the general nature of the problem and the many variables 
involved, it is impracticable to formulate definite rules for the deter¬ 
mination of the proper dimensions of the arch ring and its reinforce¬ 
ment. In the process of arriving at a tentative design much assistance 
may be obtained from the elaborate papers by Cochrane and Whit- 
ney.f In each of these papers are given formulas and tables relating 
to the form of arch axis and influence lines for moment and thrust 
and temperature effects for a wide variety of proportions. In the 
former the arches are classified according to ratio of rise to span and 
ratio of depth at springing to depth at crown, and also as to whether 
the arch is of open spandrel or filled spandrel type; in the latter the 
classification is based on relative position of arch axis at quarter point 
and the ratio of moment of inertia at crown to moment of inertia at 
springing multiplied by cosine of slope at springing. The work of Mr. 
Cochrane is the better adapted to the type of arch in which a constant 
amoimt of reinforcement is used throughout with a relatively thick 
arch at springing; Mr. Whitney’s, to the type where there is less 
variation in thickness and the reinforcement is increased towards the 
end. His curves do not cover a very wide range of depth ratios 
between crown and springing. For designs corresponding to the types 
assumed, the diagrams and formulas of these papers can be used to 
arrive at a final design without going through the detailed process of 
analysis, but for the purposes of this chapter, a brief table of coefli- 
cients (Table 25) from Cochrane’s work will be used only for the pur¬ 
pose of tentative design. For more detailed use the complete papers 
must be referred to. 

319. Order of Procedure.—^The various factors involved can best 
be discussed by taking up the problem of a tentative design in its nat¬ 
ural order, and the arch already analyzed will be used for purposes of 
illustration. The order of procedure will be as follows, assiuning span, 
rise and character of loading to be already determined. 

(o) Estimate of dead load per foot at crown and springing. 
(b) Form of arch axis. 
(c) Dead-load thrust at crown and springing. 

* Proc, £ngr. Soc, W«st. Penn., Vol. 32, 1916. 
t Trans. Am. Soc. C.E., Vol, 88, 1925. 
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(d) Assumption of relative depth at crown and springing. 
(e) Approximate calculation of live load and temperature 

moment and thrust at crown and springing for the 
assumed arch proportions. 

(f) Calculation of necessary section at crown for the thrusts 
and moments thus found and for the allowable unit 
stresses. Check stresses at springing. If the stresses at 
crown or springing are out of balance, as is likely, then 

(g) Change ratio of depths at springing to crown to bring 
stresses more nearly in balance. 

(h) Recompute dead load from the information now available 
relative to weight of arch ring and revise dead-load 
thrusts. 

(*) Recalculate live-load and temperature effects and repeat 
(/) and (g) if necessary. 

These operations are quickly performed and will result in a tentative 
design that will not need to be greatly modified after a detailed analysis. 

The reinforcement may be varied according to the ideas of the 
designer. For very long spans the dead load is of such great influence 
that a high grade of concrete and relatively large amount of reinforce¬ 
ment will be desirable. For spans of short or moderate length a rela¬ 
tively small amoimt of reinforcement will produce an economical 
structure. 

An examination of the formulas for moment and thrust due to 
applied loads will show that so far as the moment of inertia of the arch 
rib is concerned these quantities depend not upon the actual value of 
the moment of inertia at any point but upon the relative values along 
the rib, that is, upon the variation in the ratio q. And if the variation 
of I from crown to springing is made to follow a certain law, then the 
moment and thrust will vary with the ratio of the values of I at crown 
and springing. This principle is used by Mr. Whitney in his calcula¬ 
tions. In Mr. Cochrane’s work the ratio of depths is used instead. 
This method gives results not precisely comparable on account of the 
influence of the reinforcement on the values of I. For small amoimts 
of steel the error is negligible, but for large amoimts the actual values 
of I at crown and springing should be calculated and the equivalent 
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depth of an unreinforced section determined by the formula I = H2bd^. 
The ratio of these modified depths should then be used in selecting 

coefficients from the table. 

320. Dead Load at Crown and Springing.—An approximate estimate 

must be made of the dead load per foot at crown and springing. This 

will include the weight of the arch rib itself, as yet unknown, but 

reasonably close values for this purpose can be obtained from existing 

designs. 

In the arch analyzed in this chapter the final values are, from 

Fig. 17. 

Table F, ze;,, = 2.06 X 150 = 309 Ibs/ft.; w, = 13.30 X 150 = 2000 

Ibs/ft. 

321. The Form of the Arch.—^Experience has shown that in the 

ordinary case the best form for the arch axis is such that the dead-load 

line of pressure follows the axis, thus making the dead-load moment 

zero at all sections. The axis will be the equilibrium polygon for dead 

load. For arches of relatively large rise, say one-fourth the span 
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length or more, more satisfactory results are secured if one-half the 

live load be added to the dead load. 

In Fig. 17, suppose the dead load to be represented by the ordinates 

to the line D E. The line D E will generally vary somewhat from a 

straight line, but assuming it to be such the dead load per foot at any 

distance x from C will be 

W'x = w. -f (g - i) 

where g = w.Jwc. Substituting this value of in the general dif¬ 

ferential equation for the linear arch, which is d^y/d x^ = Wx/h, and 

differentiating, we have finally 

y = 7—-—r(cosh cz — i).(i) 
(g - i) 

which is the equation of the arch axis.* In this equation, 

y = ordinate to arch axis; 

X — distance from crown; 

h = rise of arch axis; 

c = cosh'^g where g = w.lwe', 
z = proportionate distance from crown to ordi¬ 

nate y in terms of the half span h. 

Eq. (i) may also be used for open spandrel arches. In this case the 

several concentrations should be reduced to equivalent loads per foot. 

A curve can then be drawn similar to Fig. 17 and the desired values of 

w, and Wc scaled from the diagram. 

Mr. Cochrane has derived somewhat similar formulas which do not 

contain hyperbolic functions. These equations are as follows: 

For spandrel filled arches 

y z^h 
fi -f Ho (g - i) 
L I + Ho (g - i) . 

(2) 

* See Strassner, Neuere Methoden zur Statik der Rahmentragwerke, Band 1I| BerUii^ 
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For open spandrel arches 

y 
I + H (g — 1) 

I + H (g - i) . 
(3) 

Values of y given by eqs. (1) and (2) agree closely. 
In the foregoing equations the values of w, and Wc can be closely 

estimated after the selection of tentative values for depth of arch ring 
under (324) below. Table 22 gives values of ^4 = y/k for various 
values of g. The arch axis actually used in the example was a three- 
centred arch with the ordinate (2.07) at the quarter point taken from 
this table. The other ordinates vary slightly from the tabular values. 

TABLE 22 

ORDINATES TO ARCH AXIS SPANDREL FILLED ARCHES 

(After Cochrane) 

y zsz hz^ 
I + tV (g- 

I + iV (g - 1) . 
= Ah 

Values of A 

Value of z 

i 
0 

Crown o.z 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
I.O 

Spring 

I 0 O.OI 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 I.O 

2 0 0.00910 0.0364 0.0821 0.1464 0.2301 0.3343 0
 

os
 

0
 

0.6116 0.7900 I.O 

3 0 0.00847 00339 0.0754 0.1350 0.2136 0.3129 0.4364 0.5880 0.7734 I.O 

4 0 0.00771 0.0308 0.0698 0.1254 O.I99S 0.2949 0.4157 0.5679 0.7594 I.O 

5 0 0.00717 0.0286 0.0651 0.1172 0.1875 0.2793 0.3980 0.5508 0.7472 I.O 

6 0 0.00669 0.0277 0.0608 0.IIOI 0.1771 0.2660 0.3827 0.5359 0.7368 I.O 

7 0 0.00628 0.0251 0.0572 0.1038 0.1680 0.2542 0.3693 0.5229^ 0.7277 I.O 

8 0 0.00592 0.0237 0.0539 0.0983 0.1598 0.2438 0.3S75 0.51T2 0.7196 1.0 

9 0 0.00559 0.0224 O.O5II 0.0934 0.1528 0.2346' 0.3469 0.5012 0.7124 I.O 

10 0 0.00530 0.0212 0.0485 0.0891 0.1464 0.2263 0.3375 0.4920 o.7o60j I.O 

322. Dead-Load Thrust.—Referring to Fig. 16, and considering the 
arch as hinged at A (no bending moment at this point), the dead-load 
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crown thrust can be obtained by taking moments about A, after the 
curve A C has been fixed upon. A closely approximate formula is 

P 
He = [Hwc + 0.015 (ze^, - Wc)] “.(4) 

A more exact value can be had later on, if desired, by dividing the 
dead load into short sections and calculating the moment in detail. 

In the example used we have 

■&C = + 0.015(1693) = 27,500 lbs. 

Using the exact moments given in Table K we would have 

= 328,840 

12 
27,400. 

The thrust at the springing section will be 

cos a. 
27,500 

0.712 
38,600 lbs. 

The effect of rib shortening is not included here. 
323. Relative Depth at Springing and Crown.—Experience will 

indicate approximately what this should be. In the given arch it 
is 2.5, but for purposes of illustration a ratio of 2.0 will first be 
assumed. 

324. Calculation of Moments and Thrusts from Live Load, Tem¬ 
perature, and Rib Shortening.—Determination of Sections.—Table 23 
gives coefficients for approximate values for a wide range of rise-span 
ratios and ratios d,/dc. In the arch under consideration h/l — 0.167 
and d,/dc — 2.0. Then from the table we get for a live load of 200 
Ibs/ft., the following crown stresses; positive moment = 0.0065 X200 
X 72* = 6600 ft-lbs., thrust = 0.48 X 200 X 72 = 6900 ibs. 

To determine temperature and rib-shortening effects a crown sec¬ 
tion must be assumed. Try a depth of 10 in. = 0.833 Then, 
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neglecting reinforcement, Ic = 0.051 ft> The temperature coefficient 
is 29, and for positive moment 

„ 0.000006 X 40 X 2,000,000 X 144 
He 2g X-;- X 0.051 

12^ 

= — 29 X 480 X 0.051 = — 700 lbs. 

700 X 12 ^ „ 
Afc = — 20 X- = 1700 ft-lbs. 

100 

Total dead-load, live-load, and temperature thrust = 27,500 + 

6900 — 700 = 33,700 lbs. 

Rib-shortening thrust, 

^^,700 
Hr 0.93 X /--X 700 = 0.55 X 700 = 380 lbs. 

0.83 X 69,000 

Rib-shortening moment == 0.55 X 1700 = 930 ft-lbs. 

Total positive moment = 6600 + 1700 -f- 930 = 9230 ft-lbs. 

Total thrust = 33,700 — 380 = 33,300 lbs. 

Assuming p = 0.005, we find/c == 1100 Ibs/in.^, an excessive value. 

Try a depth of 12 in. as actually used, with p = 0.0042, = 1.12, 

/c = o.i. Temperature thrust = — 29 X 480 X o.i = —1400 lbs. 

Total thrust = 33,000 lbs. 

Temperature moment 

1400 X 12 
= 20 X-= 3350 ft-lbs. 

100 

Rib-shortening thrust 

^•^.ooo 
= Hh 0.93 X--X 1400 

1.12 X 69,000 

= — 0.40 X 1400 = — 560 lbs. 

Rib shortening moment = 0.40 X 3350 = +1340 ft-lbs. Total positive 
moment = 6600 3350 -t- 1340 = 11,290 ft-lbs. Total thrust = 
33,000 — 560 = 32,440 lbs. With these values we find /, = 660 
Ibs/in.2 

For the springing section, live-load positive moment = 0.036 X 
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TABLE 23 

COEFFICIENTS FOR MOMENTS AND THRUSTS 

Live Load and Temperature 

{After Cochrane) 

h 

r 
ds 

dc 

Open Spandrel Arches Spandrel Pilled Arches 

Rib 
Short, 
D. L. 

Live Load 
Temper¬ 

ature 

Live Load 
Temper¬ 

ature Crown Springing Crown Springing 

+M,. Tc Ts Me Tc +Mc Tc Ts Me Te 

0.10 

1.5 

3.0 

2.5 

3.0 

0,0051 

.0045 

.0041 

.0030 

0.65 

0.023 

.027 

.030 

.032 

0.90 

26 

22 

15 

16 

18 

26 

35 

43 

0.0055 

.0049 

.0044 

0.72 
0.034 

.037 

.040 

1.10 1 [ 
0.94 

.90 

.86 

.82 

.15 

1.5 
2.0 

2.5 

3.0 

.0054 

.0048 

. 0044 

.0041 

.43 

.023 

.027 

.030 

.032 

.60 

27 

22 

19 

17 

17 

25 

33 

40 

.0062 

.0056 

.0051 

.52 
.036 

.040 

.043 

.68 

23 

20 

17 

IS 

19 
29 

38 

47 

.96 

.92 

.88 

.84 

.30 

1.5 

3.0 

2.5 

3.0 

.0058 

.0052 

.0047 

.0044 

.33 

.023 

.027 

.030 

.032 

.42 

27 

23 

19 

17 1 .0070 

.0064 

.0058 

.41 H .50 

23 

20 

17 

IS 

18 

27 

35 

43 

1.01 

.96 

.91 

.87 

.as 

1.5 

2.0 

3.5 

3.0 

. 0062 

.0055 

. 0050 

.0047 

.27 

. 023 

. 027 

.030 

.032 

.38 

28 

23 
20 

18 

IS 
22 

28 

34 

.0079 

.0073 

.0067 

.35 
.037 

.041 

.045 

.39 

23 

20 

17 

IS 

16 

24 

31 

38 

1.06 

i.oi 

.96 

.91 

.30 

1-5 
2.0 

2.5 

3.0 

.0066 

.0059 

.0054 

.C050 

1 

.23 

.023 

. 027 

.030 

.032 

31 

29 

24 

20 

18 

14 
20 

26 

31 

. 0089 

.0083 

.0077 

.30 
.037 
.041 

.044 

.32 

23 

20 

17 

IS 

14 
20 

26 

33 

Z. 12 

1.06 

I.OI 

.96 

.35 

1.5 
Sa,o 

3.5 

3.0 

.0070 

.0063 

.0058 

.0054 

. 20 

.023 

.028 

.031 

.033 

.29 1 1 . 0100 

• 0094 

.0087 

.26 

m 

. 26 

23 

20 

17 
IS 

12 

17 

22 

26 

1.20 

I. 14 

Z.O8 

1.02 

h ■» rise 
I "> span 

dt » depth of arch ring at springing 
dc ** depth of arch ring at crown 

Rib-shortening. Crown thrust Hr for any 
given crown thrust H is 

Rij « - coef. X —- X He (temp.) 
AcOitH 

Live load 
{Moment »» coef. X P 

Thrust «■ coef. X pl 

Temperatures 

I Afa- 

Q3tEl\ 

hh 
ZOO 

Me-hTck 

Tc ** coef. X 

Afc ~ coef. X 
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200 X 72^ == 38,000 ft-lbs.; live-load thrust = 0.62 X 200 X 72 =» 

6400 lbs. Temperature crown thrust for positive moment = -f 1400, 

and M, — 1400 X 12 — 3350 = 13,500 ft-lbs. Thrust at springing 

= 1400 X cos a = 1400 X 0.712 = 1000 lbs. Rib-shortening eflFect 

= 40% of temperature effect as above calculated, giving a moment 

(negative) of 7400 ft-lbs. and a thrust of —400 lbs. Total -f moment 

= 38,000 13,500 — 5400 = 46,100 ft-lbs. Total thrust = 38,600 

+ 6400 -f 1000 — 400 = 45,600 lbs. For these values, and p = 

0.0021, pn = 0.031, we find, using diagram 17,/„ = 780 Ibs/in.^ 

Thus at crown = 660 and at springing = 780, an unbalanced 

condition. To increase the depth at springing will increase the 

moments at that point somewhat and reduce those at the crown; but 

the fibre stress at springing will be reduced. For like moments the 

fibre stress is nearly inversely proportional to d^, while the moments 

increase comparatively little. From Table 23 it is noted that for an 

increase in depth from 2.0 to 2.5 ft. the live-load moment is increased 

about 11%; at the crown it is reduced about 10%. 

Adopting a ratio of d./d^, of 2.5 as actually used, recalculation 

from Table 23 gives the following results; 

At crown 

Live-load moment 

Live-load thrust 

Temperature thrust 

Temperature moment 

Dead-load thrust 

Rib shortening 

Thrust 

Moment 

= 6100 ft-lbs. 

= 6900 lbs. 

= —1780 lbs. 

= 3600 ft.-lbs. 

= 27,500 lbs. 

= 38% of temperature effect. 

= —670 lbs. ' 

= -f 1370 ft-lbs. 

Total thrust = 31,900 lbs,, total moment = 11,100 ft-lbs. These 

values are almost identical with those resulting from the detailed 

analysis given in Table I, The value oifc will be 650 Ibs/in.^ 

At springing 

live-load moment 

Live-load thrust 

Temperature thrust 

= 42,000 ft-lbs. 

= 6,400 lbs. 

= 1,270 lbs. 
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Temperature moment = 17,800 ft-lbs. 
Dead load thrust = 38,600 lbs. 
Rib shortening = 38% of temperature efifect. 

Thrust = —480 lbs. 
Moment = —6800 ft-lbs. 

Total thrust = 45,800 lbs., total moment = 53,000 ft-lbs., /„ = 585 
lbs/in.2 These values differ from those obtained in the detailed 
analysis chiefly in the temperature moment, which appears to be too 
small. 

Note that in these calculations the dead-load moments are con¬ 
sidered to be zero, except for rib-shortening effect. The results com¬ 
pare closely with those shown in Table G. 

325. Variation in Thickness of Arch between Crown and Springing. 
—^Table 24, after Cochrane, gives recommended variations in thickness 
of the arch rib from crown to springing for ratios of springing to Crown 
thickness from 1.5 to 3.25. 

TABLE 24 

PROPORTIONATE THICKNESS OF TYPICAL ARCHES 

{After Cochrane) 

Proportionate 
Distance 
along the 
Arch Axis 

from Crown. 

0.05 
015 

0.25 
0.3s 

0.45 
0.55 

0.6$ 

0.7s 
0.8s 
0.95 
x.oo 

Ratio of Crown to Springing Thickness 

I.s I.7S 

1.00 1.00 
1.007 1.006 
I .021 1.018 
1.035 1.030 
1.049 1.042 
1.063 1.054 
1.077 1.072 
1095 1.125 
I. 145 1.223 
1.245 1-393 
1.406 1.621 
1.500 1.750 

2.0 2.25 

I.00 I.00 

1.005 I. CXD4 

1.015 1.012 

1.025 1.020 

1.035 1.028 

I.048 I.048 

1.085 1.105 

1.168 1.215 

I.311 1.403 

1.547 1.700 

1-837 2.055 

2.250 

2.50 1 2.75 

M
 

8
 1.00 

1.003 1.002 
1.009 1.006 
I.015 I .010 
1.023 I .021 
I-057 1.070 
1.133 1.165 
1.269 1.328 
1.508 1.625 
1.862 2.025 
2.277 2-495 
2.500 2.750 

3.0 3.2s 

1.00 1.00 
1.001 1.000 
1.003 1.000 
1.005 1.000 
1.023 1.030 
1.083 I. lOI 
I-193 1.231 
1-385 1.455 
1.737 1.865 
2.185 2.355 
2.709 2.932 
3.00 3.250 2.00 
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The arch rib thicknesses given in Table 24 are measured on sections 

normal to the arch axis. To determine the angle which a normal 

section makes with the vertical, differentiate eqs. (i) and (2) of Art. 321. 

For spandrel filled arches, 

tan a = 
4hz 1 + H (g— i) 

1 + Ko (g- i) . 

and for open spandrel arches 

tan a = 
4hz [i + H — 

L I+K (g — i) J 
where a is the angle between the normal section and the vertical. 

On comparing the arch rib thicknesses given in Table 24 with 

those obtained from the Strassner formulas and used by Mr. Whitney 

it will be found that arches determined by Strassner’s formulas are 

somewhat thicker than those given by Cochrane. Also, Strassner 

seems to prefer an arch rib in which the crown to springing thickness 

varies from about 1.5 to 2.0, whereas Cochrane allows a much wider 

range. 

Fibre stresses calculated at critical sections of Strassner and Coch¬ 

rane arches in whidi the crown and springing thickness ratios and the 

reinforcement are identical give a means of comparing the two types 

of arches. It will be found that the fibre stresses at the crown and 

springing sections in the Strassner arch due to applied loads are less 

than those in the Cochrane arch. At the haunch the stresses in the 

Cochrane arch are the smaller. On account of temperature, the 

stresses in the Cochrane arch are less than those in the Strassner arch. 

This is due to the fact that the Cochrane arch, being thinner in the 

haunch, is more flexible than the Strasner arch, and therefore tempera¬ 

ture stresses are somewhat smaller. 

However, the total, or combined dead-load, live-load, and tempera¬ 

ture stresses in the Strassner arch are slightly less than those in the 

Cochrane arch. 

326. Concrete Stresses in Arches.—The arch rib is a compression 

member subjected to bending stresses. It acts in a sense like a colmnn 

but is well supported against buckling action by the earth fill or the 

spandrel construction, so that long column action need not be con- 
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sidered. Between expansion joints the spandrel construction affords a 

very considerable amount of support to the arch ring, as the entire 

structure acts as a unit. The allowable stresses may then be taken 

about the same as for the tied column, or about three-tenths the ulti¬ 

mate strength for combined stresses due to load and temperature. 

Stresses somewhat above this value are commonly allowed when full 

temperature effect is included. Considering the reduction in concrete 

stress due to plastic flow this is perhaps admissible, but the same effect 

is present in columns, and until more is known concerning the effect on 

ultimate strength a conservative practice should be followed. 

327, Arch Details.—The various details of spandrel construction, 

either of retaining walls or of open spandrel construction, are carried 

out on the same principles as in other forms of reinforced work. 

Special consideration must be given to expansion joints. The rise and 

fall of the arch ring due to temperature changes is marked, and to 

avoid damage to the superstructure ample expansion joints must be 

provided in spandrel walls or the floor of the open spandrel construc¬ 

tion. These should be provided at points above the abutments and, 

where the rise is large, at about the quarter points also. Spandrel 

columns should be thoroughly attached to the arch rib so as to resist 

the bending stresses due to temperature deformations. 

328. Abutments.—The design of abutments and foundations for 

arches requires great care. A concrete arch is a relatively rigid struc¬ 

ture where stresses will be greatly changed by small settlements of 

fotmdations. Pressures on foundations must take into account the 

most imfavorable direction and amount of thrust at springing together 

with minimum pressure of back fill. The resultant pressure should be 

nearly f)erpendicular to the foundation surface and inclined piling iised 

if necessary to take care of the horizontal component of the abutment 

pressure. 



CHAPTER XI 

RETAINING-WALLS 

329. Advantages of Reinforced Concrete.—Retaining-walls, dams, 

bridge abutments, and the like constitute a class of structures in 

which the outside forces acting are mainly horizontal, and in which, 

therefore, the question of stability is largely a question of safety 

against overturning. Where ordinary masonry is used in these struc¬ 

tures the weight of the material must be depended upon to balance 

the overturning forces, for though the structure be anchored to the 

foundation no tensile stresses can be allowed in the masonry. As a 

consequence of these limitations the maximum compressive stresses 

in such structures are not high, except in extreme cases, so that 

generally the dimensions are determined by the weight of the material. 

The application of reinforced concrete in such cases enables the 

design to be so modified as to utilize the 

weight of the material to be retained as part 

of the resisting weight and to calculate the 

sections to develop more nearly the full 

strength of the concrete. A very consider¬ 

able gain in economy therefore results. 

330. Form of Reinforced-Concrete Retain- 

ing-Wall.—Fig. i illustrates the usual form of 

reinforced-concrete wall. It consists of a ver¬ 

tical waU A B connected to a floor C D. For 

low walls the upright part, A B, and the two 

sections of the floor, C B and B D, are each 

designed as cantilever beams. For high walls 

it is economical to connect the waU A B to the floor B D sA intervals 

by means of back stays of reinforcing bars embedded in concrete cross 

waUs and thoroughly attached to A B and B D. These transverse 

waUs with their reinforcement are caUed “ counterforts,” although their 

393 
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action is quite unlike the typical counterfort in masonry. The toe 

C B may likewise be supported at intervals by small buttress walls 

joining the toe to the vertical wall. This general arrangement changes 

the action of the several parts of the wall from simple cantilevers to 

continuous slabs, each panel of which is supported on three sides. The 

principal reinforcement will be horizontal and parallel to the axis of 

the wall, but some transverse reinforcement should be used near the 

junction of wall and floor to take the negative moments along this line. 

The forces acting on the wall are the earth pressure P on the wall 

A Bj the weight of the wall TFi, the weight of the earth W2 on the 

floor B Dy and the reactions Rv and Rh of the foundation. The 

horizontal force Rh may be supplied wholly by frictional resistance 

or in part by the horizontal earth pressure in front of the wall, in¬ 

creased if necessary by the use of a vertical projection (as B E) 
extending into the foundation material. 

331. Stability of the Retaining-WalL—The first problem to be 

solved in the design of a retaining-wall is to determine such proportions 

that the pressure imder the toe C will not be excessive and that there 

will be no danger of sliding on the foundation. Inasmuch as the 

provision against sliding can readily be made in the manner sug¬ 

gested, this question will not be further considered here. The pro¬ 

visions against undue pressure at the toe, giving rise to unequal 

settlement and undesirable or dangerous tipping of the wall, is the 

main problem. Where the foundation material is relatively hard 

the wall is generally designed so as to bring the resultant pressure 

on the foundation at about the edge of the middle third, thus giving 

a maximum unit pressure of twice the average, with zero pressure 

at the heel D. If such a large variation in pressure is likely to cause 

undesirable settlement then the floor C D must be made wider to 

equalize more nearly the pressures at toe and heel. For relatively 

soft foundations these pressures should be nearly equal and the centre 

of pressure brought approximately to the centre of foundation. 

332. The Earth Pressure,—Many factors affect earth pressure, 

and no theoretical analysis can be expected to take into account 

some of the most important, such as variation in cohesiveness of the 

material, effect of moisture conditions and of frost action. Not¬ 

withstanding the inadequacy of theoretical analyses the Rankine 
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theory of earth pressure, based on the assumption of dry granular 

material, is of considerable value in giving a measure of relative 

pressures for different materials and establishing certain general 

relations between pressure and other variables. Theory can, how¬ 

ever, serve as only a rough guide, as the successful design of retaining 

walls depends largely upon experience with 

materials of a character similar to those 

under consideration. 

According to the Rankine theory, the 

unit pressure px upon a vertical plane 

A Bj Fig. 2, at a distance x below the 

surface is 
px = C wx . . . (i) 

where w = unit weight of earth and C is 

a coefficient depending upon the slope 8 
of the surface, and the friction angle \l/ 
for the material, or the angle of maximum 

slope at which the material will stand. The value of C is 

^ cos 8 — Vcos^T'^^~cos^ , . 
C ~ cos 8 -—.... (2) 

cos 8 -f-V cos^ 8 — cos^ ip 

Since by (i) the value of p increases with x, the total pressure P 
on the plane A B will be, per unit length of wall. 

P = 
C w 

2 (3) 

and its point of application will be A/3 above the base. According 

to the theory, also, the direction of P is parallel to the surface. 

Table 25 gives values of C for various values of 8 and p. For 

8 = 0 the values of C multiplied by w give the equivalent weight 

of a fluid producing the same pressures as the earth. 

333. Width of Base.—Consider the forces acting upon the body 

A BC D, Fig. 3. The earth pressure from the right is P, the weight 

of the earth 1^2, and the weight of wall Wi, all per foot of length. 

The force P is given by eq. (3) and Table 25; it acts at a slope 6. 

Its horizontal component P cos 8 is the overturning force; the vertical 

component P sin 5 will aid in resisting this overturning. Sub- 
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TABLE 25 

VALtJES OF C IN FORMULA /»* = CwX 

Angle 
Slope with the Horizontal 

of 
Internal 

I : I r : I ; 2 1 I : 3 I : 4 Level 

Friction 
Corresponding Slope Angle 

0 45® 

0
 

1 0
 

26®-34' 2I®-SO' i8°-3o' i4®-o' 0 4 

55° 0. r8 0.13 0.12 0. II 0. II 0.10 0.10 0.57 

50° 0.29 0.18 0.16 o.iS 0.14 0.14 0.13 0,64 

45° 0.26 C. 22 0.20 0.19 0.18 0.17 0.71 

0
 0

 0.36 0. 29 0.26 0.24 0. 22 0.22 0.77 

35° 0.58 0.38 0.33 0.31 0.29 0.27 0.82 

30® 0.54 0.44 0.40 0.37 0.33 0.87 

25° 0.60 0 52 : 0.46 0.40 0.91 

20° 0.72 
j 

0.58 0.49 0.94 

Angles of Repose and Weight ©f Materials 

Angle of Repose Weight, lbs/ft.* 
Dry sand. 30® 100 
Moist sand. 40® no 
Ordinary earth. 40® 100 
Gravel. 45® 120 
Gravel, sand and clay. 30® 1x0 

stantially correct results, and quite as accurate as is warranted by 

the theory, will be obtained if the value of P be calculated for the 

height h and then the vertical component P sin 5 be ignored. 

Fig. 4 shows the simplified conditions. The necessary width of 

Fig. 3. Fig. 4. 
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base I will be calculated under the assumptions: (a) that the resultant 

pressure on the foundation cuts the edge of the middle third; (6) that 

the resultant pressure cuts the centre of the base; and (c) a width / 

which will result in a given unit pressure at the toe. 

(o) Resultant Pressure to Cut the Edge of the Middle Third.—The 

weight of the wall itself will be neglected. Its effect will be small 

on the present problem unless the length of toe C £ is relatively small. 

By the assumed relation we have 

Substituting value of P from (3) and letting x = k I, we derive the 

equation 

For a minimum value oi I, k = or x = y^l. 

(b) Resultant Pressure to Cut Centre of Base.—Equating moments 

about the centre of the base we derive in a similar manner 

For a irdnimum value of for a: = /. 

(c) Width of Base Determined by Allowable Pressure on Foundation. 

—If the resultant pressure cuts the edge of the middle third, the max¬ 

imum rniit pressure at the toe will be twice the average and the pres¬ 

sure at the heel will be zero. If the allowable pressure is less than the 

toe pressure found in this way, but greater than the average pressure, 

the necessary width of base will be somewhere between the values 

calculated under assumptions (a) and (i), and the pressure area on 

the base will be trapezoidal in form. If e = distance from centre 

of base to point where the resultant pressure cuts the base 

{e/l *■ eccentricity) then the equation of moments gives 

P cos 6 X ^ + e - (^^)] = ^^2 (c + 
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The maximum pressure at toe for an eccentricity e will be 

^-TV+yy 
whence 

\ 
^ 6 W2 /■ 

Substituting as before we derive the expression 

/ = A-\f C cos 5 

' p/w A — 1+4^ — 3 

in which p = allowable pressure per square foot. 

(6) 

For 

P = 

2W2 2 1V h (I — x) 

I I 

this reduces to case (a), and for 

w h (I — x) 
P = 

it reduces to case (6). 
I 

For a fixed value of p the value of Hs a minimum for A = %. 

Table 26 gives values of l/h for cases (a) and {b) for various values 

B_c of C cos S and for various values of k. 

334. Effect of Surcharge.—The effect of 

any given load above the level of the wall is 

taken account of by adding an equivalent 

depth of filling a h, Fig. 5, and considering 

the pressure on the wall .4 £ to be repre¬ 

sented by the trapezoid A D EG, the 

pressure at any point being proportional to 

the distance below B C. The moment of 

this pressure about the base is equal to the 

moment of triangle BEF, minus moment 

of triangle A B D. The moment of tri¬ 

angle BEF = y^Cwl^. Area B A D = 
Fio. j. 

}^Cw{a A)2. Moment of area about base = }^Cw{a}if {h — %a h). 

Total moment about base = 

JIf = . (7) 
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TABLE 26 

VALUES OF llh, CASES (a) AND (b) 

Case (a); 
I I C coi 

' h ^ \(i ~ k)(i 

C cos 5 I C cos 5 

(.i-kXi + sk)' ’k \3k(i-ky 
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Note that the moment }4Cw]^ is the moment on a wall of the full 

height h. In the case of the surcharged wall this is reduced by 

C w {i — % a)]. The proportionate reduction is equal to 

(i — (3 — 2 a). Thus if the height of wall is 

20 ft., surcharge = 5 ft., then a = 0.2 and the proportionate reduc¬ 

tion in overturning moment below that for a wall 25 ft. high is 

0.04 (3 — 0.4) = 0.104, or 10.4%. The proportionate reduction in 

width of base will be about 5%. 

335. Comparison of the Stability of Plain Masonry and Reinforced 

Concrete Walls.—Retaining-walls of masonry or plain concrete have 

commonly been designed in accordance with certain rules of practice 

of long standing which represent the experience of engineers extending 

over many years. These rules are not expressed In terms of earth 

pressure but give the ratio of width of base to height for certain 

standard forms and for various conditions of earth fill, surcharge, 

etc. It will be of some value to compare the stability of a standard 

form of wall of plain masonry, proportioned according to such rules, 

with the reinforced type discussed in the 

preceding articles. 

The most common type of ordinary 

masonry wall is shown in Fig. 6. The 

batter of the front face will be taken at 

I : 12 and the top width at of the 

bottom width. The weight of masonry 

will be assumed at 150 and that of the 

earth filling at 100 Ibs/ft.^ As in Art. 

333, the horizontal pressure P acting in 

the vertical plane E D will be C A^/2 

and will be applied a distance of /f/3 

above the base. Calculating the stability 

by equating moments about the edge 

of the middle third, we get / = 0.934 hy/C. For a reinforced- 

concrete wall, eq. (4), with ^ 3^ and 5 == o, gives I = 0.865 hy/C. 

The reinforced wall of the same stability as the type of solid wall 

shown in Fig. 6 will therefore have a base width of =“93% 
0.934 

of the width of the solid wall. To adapt various rules of practice 
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for base widths established for the solid wall, as shown in Fig. 6, 

the width of the reinforced wall will be about 93% of the indicated 

width of the solid wall. 

336. Examples.—The various problems arising in the design will be 
illustrated by examples. 

I. Cantilever Retaining-wall.—A reinforced-concrete retaining-wall will 
be designed to support a bank of earth 16 ft. high. Top of bank level 
with no surcharge loading. Angle of internal friction of earth will be taken 
as3S^ 

The limiting stresses are: 

fa = 16,000 Ibs/in.^; fc = 800 Ibs/in.^; w = 15; «> = 40 Ibs/in.*; 
w = 80 lbs. 

Allowable soil pressure 10,000 Ibs/ft.^ 
Weight of earth 100 Ibs/ft.®; weight of concrete 150 Ibs/ft.®; coefficient 

of friction against sliding 0.4. 

To allow for frost action, the bottom of the footing will be placed 4 ft. 
below the surface of the 
ground. Over-all height of 
wall = 16 + 4 = 20 ft. 

General Method of Pro¬ 
cedure.—h. trial section is 
assumed and tested to 
make certain that the 
foundation pressure is com¬ 
pression across the full 
width of the base. Certain 
rules of practice and the 
general relations estab¬ 
lished in the preceding arti¬ 
cles are used in making up 
the trial section. 

Thickness of Base Slao. 
—Assume a base section 
whose thickness is equal 
to one-tenth of the total 
height of wall. Hence base 
section is i/io X 20 = 2 ft. 
thick. The vertical canti¬ 
lever wall will then be 18 
ft. high, as shown in Fig. 7. 

Thickness of Vertical 
Cantilever Wall.—Assume 
top thickness of wall as i ft. Since the moment and shear at the bottom 
of the vertical wall can be calculated as soon as the height of the wall is 
known, the thickness of this wall will be determined for the existing 
moments and shears. 
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Moment at base of wall = Af = P- = %Cwh^ft-lbs. = 2Cwh^in-lb. 
3 

From Table 25 for <t> =35°, surface of ground level, C = 0.27. With 
w ~ 100 Ibs/ft.^ and h = iS ft., M - 2 X 0.27 X 100 X 18^ = 315,000 
in-lbs. 

From Diagram 4, n = 15, /, = 16,000, fc = 800, R = 147. Then 
- IM 1315,000 
- Vo - 
Shear at base of vertical wall = F — 0.27 X 100 X 

i82 = 4370 lbs. Then d = ^^ = 10.6 in. 
vbj 40 X 12 X 0.86 

Moment conditions determine the thickness of the wall. Adding 
2 in. for imbedment of steel, total thickness of wall at base == 13.5 -|- 2 = 
15.5 in. = I ft. 3}^ in. 

Length of Base,—Since the foundation conditions are very good, as 
indicated by the high allowable soil pressure, the base width will be deter¬ 
mined on the assumption that the resultant force cuts the base at the 
edge of the middle third. Use Case (a). Art. 333, and Table 26. For 
C = 0.27 and <t> = l/h = 0.45. Bottom width of base = 0.45 X 20 = 
9.0 ft. 

Position of Vertical Wall.—It is shown in Art. 333 that for minimum 
base width for Case (a) the vertical wall should be placed with its back 
at a distance from the toe equal to one-third of the base width. Place 
back of wall 9/3=3 ft. from toe. Fig. 7 shows the adopted arrange¬ 
ment. 

Position of Resultant Pressure on Base.—Before proceeding to the 
design of reinforcement it is necessary to make certain that the resultant 
pressure on the base falls inside or near the edge of the middle third of the 
base. This can be done by taking moments about the heel of the wall, 
point H of Fig. 7. 

CALCULATIONS FOR POSITION OF RESULTANT 

Load Arm Moment at H 

I X 18 X 150 == 2,7oolbs. 6.5 ft. 17,800 ft-lbs. 

0.3X18X3^X50= 135 S-9 795 
9X2X150= 2,700 4.5 12,150 

6 X 18 X 100 = 10,800 3.0 32,400 

Vertical load = 16,335 Ihs. 

Horizontal load P 
« C w X 0.27 X 100 X 20* = 5,400lbs. 6.67 36,000 

Total moment about H = 98,845 ft-lbs. 
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Note that by considering the concrete of area 2 to weigh 50 Ibs/ft.® 
area 4 can be considered as a rectangle with a 6-ft. base width, and a weight 
of 100 Ibs/ft.® 

Distance from H to resultant on base = - = 6.04 ft. Distance 
16,335 

from H to far edge of middle third = 6.0 ft. Hence the resultant falls 
slightly outside the middle third. However, since the soil conditions are 
excellent, we can assume that the resultant falls at the edge of the middle 
third. 

Where the soil conditions are not favorable, the dimensions of the wall 
should be changed so that the resultant will fall inside the middle third 
of the base. It will be found that changing the position of the vertical 
wall has very little effect on the position of the resultant. Changing the 
width of the base, keeping the vertical wall at the same distance from the 
heel, will be found to be the most effective means of bringing the resultant 
inside the middle third of the base. 

Soil Pressure on Base,—Assuming that the resultant pressure on the 
base cuts the edge of the middle third, the soil pressure diagram is a triangle, 
as shown in Fig. 7. Hence the toe pressure is twice the average base pres- 

16 
sure and the heel pressure is zero. Toe pressure = 2 X —= 3630 

lbs/ft.2 jg fjLj. below the allowable value. Fig. 7 shows the soil pres¬ 
sure diagram. Values of soil pressure at the front and back of the vertical 
wall are also shown. 

Design of Beam Sections with Faces which Are Not Parallel,—It will 
be noted in Figs. 7 to 9 that reinforced-concrete retaining-walls contain 
beam sections in which the two faces are not parallel. An exact analysis 
of such sections is very complex. The best available material is given by 
Professor Cain.* For the case under consideration and for the haunched 
beam of Art. 263, an approximate method of analysis, based on a modifica¬ 
tion of values obtained for ordinary rectangular sections, will be found 
to give satisfactory values. 

When the angle between the two faces of the beam section is not greater 
than 15°, the formulas for ordinary sections can be used without modifica¬ 
tion. When the angle between the two faces varies from 15° to 30®, the 
fibre stress values determined for normal sections are to be modified as 
follows: 

Steel parallel to sloping face of section, as in Figs. 8 and 9: 

Concrete stress fe = same as for normal sections. 
Steel stress /, = /, (normal) sec where = angle between faces of section. 

Steel parallel to vertical face of section in Figs. 8 and 9: 

Steel stress fa = same as for normal section. 
Concrete stress fc = fc (normal) SCC^ 

♦ Earth Pressure, Retaining Walls and Bins. Wiley & Sons, New York. 
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Results obtained by this approximate method are somewhat smaller than 
those given by the method of Professor Cain. 

Design of Toe Slab.—The toe slab must be designed to resist the upward 
soil pressure and the downward load due to the weight of the base slab. 
It is usual to neglect the effect of the earth load above the toe slab. From 
Fig. 7, the moment and shear at the front edge of the vertical wall are as 
follows: 

Direction Load 
i 

Arm Moment 

Upward. 3630 X 2 X H ^ 3630 lbs. 2 X % ft. 4,840 ft-lbs. 

Upward. 2820 X 2 X = 2820 1,880 

6450 lbs. 6,720 ft-lbs. 

Downward... 2 X 2 X 150 = 600 I 600 

Total shear = 5850 lbs. . Total moment = 6,120 ft-lbs. 

= 73»500 in-lbs. 

Steel to be placed near bottom of slab with 3-in. cover. Art. 67, J. C. R. 
Place steel in. above bottom of slab, d = 24 — 3J4 = 20.5 in. Assume 
j = 0,86. 

A. 
M 

fjd 
73^500 

16,000 X 0.86 X 20.*; 
0.261 inVft. 

V ^ 5850 

ujd 80 X 0.86 X 20.5 
4.15 in/ft. 

From Table 28, Chap. XII, <j> rods at 4H-in. centres provide A, « 
0.52 inVft., and So = 4.19 in/ft. Note that the bond stress conditions 
determine the required steel area. To develop the full strength of the 

f 16 000 
rods, they must be extended — == = 50 diameters or 50 X H - 

4 w 4 X oo 
25 in. beyond the point of maximum stress, as shown in Fig. 8. 

The shearing-stress in the base slab at the edge of the vertical wall is 

1; sa ar-I-= 21,6 Ibs/iu.® Allowablc shearing-stress « 
bjd 12 X 0.86 X 20.5 * ' ^ 

40 Ibs/in.* 
Design of the Heel Slab,—^The heel slab is to be designed for the upward 

load due to the soil pressure and the downward loads due to the weight 
of the slab and the earth fill. From Fig. 7, the moment and shear at the 
back edge of the vertical wall are as follows: 
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Direction Load Arm Moment 

Downward 300X5.7- 1,710 lbs. 

18 X 100 X 5-7 = 10,250 X
 
X

 

4,870 ft-lbs. 

29,200 

11,960 lbs. 

2300 X 5-7 X = 6,560 

34,070 ft-lbs. 

12,480 Upward... H X 5-7 

Total shear = 5,400 lbs. 

i 

. Total moment = 21,590 ft-lbs. 

259,000 in-lbs. 

Moment to be carried by steel placed 33^ in. from top of slab, 
d == 24 — 3,5 = 20.5 in. Assume/ = 0.86. 

A ^ 259,000 . 2 

* ftj d 16,000 X 0.86 X 20.5 ^ 

SV ^400 

0 uj d 80 X 0.86 X 20.5 

From Table 28, Chap. XII, ^-in, <t> rods at sH-ln. centres provide -4, » 
0.96 inVft and So = 5.14 in/ft. of slab. Imbedment required for full 
strength — 50 diameters = 50 X M = 37-S Rods must extend com¬ 
pletely across the footing slab, as shown in Fig. 8. 

V 5400 
Shearing stress in footing slab = ~ ^S*S 

® ® bj d 12 X 0.86 X 20.5 
Ibs/in.* Allowable shearing stress « 40 Ibs/in.® 
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Design of Vertical Wall.—As determined in the early part of this design, 
M = 315,000in-lbs.; V = 4370 lbs.; and = 13.5 in. for a balanced design. 

Then M ^ 315^000 

/,y d 16,000 X 0.86 X 13.5 
1.70 inyft. 

and V ^ 4370 

uj d 80 X 0.86 X 13.5 
4.70 in/ft. 

From Table 28, i-in. <j> rods at sM-in. centres provide Aa = 1.71 inVft. and 
So = 6.85 in/ft. 

These rods are required for only a short distance above the base slab. 
Fig. 8 shows the bending moment curve due to earth pressure against the 
wall. The curve is plotted from the equation M ^ 2C w where C == 0.27, 
w == 100 Ibs/ft.^; and x — distance in feet from top of wall. To deter¬ 
mine where one of the i-in. 0 rods can be cut off, calculate the moment of 
resistance for a i-in. rod at ii-in. spacing for sections at the top and bottom 
of the wall. Plot this line in Fig. 8 and locate its intersection with the 
moment diagram. A i-in. <t> rod at ii-in. spacing furnishes 0.855 inV^t. 
At the bottom of the wall Mr = Aafaj d = 0.855 X 16,000 X 0.86 X 13.5 

= 159,000 in-lbs. At the top of the wall Mr = 159,000 X = 117,800 

in-lbs. Fig. 8 shows the required length of rod. 
In order to save steel, the top portion of the reinforcement will be 

supplied by small rods. Assume H-in. square rods spaced ii in. centres 
so as to match the lower rods. From Table 28, J^-in. square rods at ii-in. 
centres furnish 0.275 At the base of the wall, Mr = Asfsj d - 
0.275 X 16,000 X 0.86 X 13.5 = 51,200 in-lbs., and at the top of the wall 

Mr = 51,200 X = 38,000 in-lbs. Fig. 8 shows the arrangement of 

rods selected to meet the moment requirements. 
Proper anchorage in the base slab must be provided for the main 

reinforcement. The necessary imbedment for full strength of the steel 
is 50 diameters or 50 X i = 50 in. Since the required imbedment is 
greater than the depth of the base slab, a projecting lug i ft. deep will be 
placed on the under side of the base slab, as shown in Fig. 8. By placing 
a hook at the end of the rod, the required anchorage is provided. 

Stability of Retaining-wall against Horizontal Sliding,—As shown in the 
preceding calculations, the total horizontal force acting on the wall is 
5400 lbs., and the total vertical force is 16,335 ^t)S. The coefficient of 
friction between the base slab and the earth is 0.4. Hence, resistance to 
sliding is 16,335 X 0.4 = 6534 lbs. Since the force tending to cause sliding, 
5400 lbs., is less than the resisting force, there is no danger that the retaining- 
wall will slide along the base. 

Longitudinal Reinforcement.—^Art. 184 Qi) J. C. R. requires not less than 
0.25 sq. in. of horizontal reinforcement in order to prevent temperature and 
shrinkage cracks. Place J^in. square rods at 12-in. centres on the front 
face of the vertical wall. TOs steel is not shown in Fig. 8. 
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Expansion Joints,—^Art. 184 (i) J. C. R. requires that grooved lock joints 
be placed not over 60 ft. apart to care for temperature. This detail is not 
shown on Fig. 8. 

2. Counterforted Retaining-wall.—Counterforted retaining-walls of the 
general type shown in Fig. 9 are used for walls of a total height greater than 
about 25 ft. This type of wall differs from the one shown in Fig. 8 in that 
the vertical wall is supported at intervals by triangular-shaped braces 
called counterforts. The spacing of counterforts depends upon the loads 
to be supported, being so spaced as to allow the use of front and base slabs 
of reasonable thickness. Generally, the adopted spacing varies from about 
7 ft. for heavy loads to about 10 or 12 ft. for lighter loadings. Comparative 
designs are generally required before the most economical arrangement 

can be secured. In the discussion which follows, no attempt will be made to 
design a definite structure. General methods of procedure will be stated 
and a design for any given case will be left for the student. 

The width of base is determined by the same method as used in Example 
I. In testing the section in order to determine the position of the resultant 
force on the base with respect to the middle third, a section of wall equal in 
length to the counterfort spacing should be used. As before, the resultant 
should fall inside the middle third of the base. 

In designing the front slab, it is assumed to act as a series of horizontal 
continuous beams supported by the counterforts. Moment values are as 
recommended in the J. C. R. for continuous slabs. It is assumed that the 
slab carries the horizontal earth pressure, which acts outward on the front 
slab. Since the earth pressure is a maximum at the base of the front slab, 
balanced design conditions are generally assumed in calculating the lower 
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i-ft. section of the slab. This same thickness is then used throughout the 
slab, varying the steel to meet the moment conditions. Fig. 9 shows a 
gradual increase in rod spacing of the bars lettered A, 

The toe section is designed by the same methods as used for the canti¬ 
lever wall. Bars C provide the necessary reinforcement. 

In designing the counterfort portions of the wall, it is assumed that the 
counterfort stem and the front wall form a T-beam. It is assumed that the 
front wall forms the flange of the T-beam and that it carries all the com¬ 
pression, the concrete stress being very small. The steel in the back of 
the counterfort, furnished by bars D, is assumed to take all the tension. 
It is assumed that the lever arm of the steel, corresponding to j d of T-beam 
formulas, is given by the distance d in Fig. 9, measured from the centre A 
of the front slab to the centre of the steel. The moment to be carried by 
bars D is taken as the bending moment due to earth pressure above the top 
of the base slab. Bars D are cut off and hooked where no longer needed. 

The rear portion of the base slab is designed as a continuous beam sup¬ 
ported by the counterforts. These beams carry the downward load due 
to the earth and slab load minus the upward soil pressure on the base. 
Since the resultant load is a maximum at the heel of the slab, the design 
should be made for this section of the slab. Bars B carry this moment. 

Bars E and F serve to tie the front and base slabs to the counterforts. 
These bars are designed by the same methods as used for stirrups. Since 
the pressure on the front and base slabs are outward, bars E and F are in 
tension. 

It is to be noted that the design methods outlined above are approximate 
in nature, for it is assumed that each part of the structure is an independent 
unit. In reality, the parts act together. For example, the bottom part 
of the front slab is rigidly connected to the base slab so that the front slab 
and base form a slab supported on three sides. Also, this same slab may 
be considered as a horizontal beam between counterforts. Hence, the 
distribution of loads between the two possible systems is indeterminate. 
However, the general methods outlined above will yield a structure which 
is safe and can be depended upon to carry the earth loads safely. 
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TABLE 27 

Areas, summations of perimeters and weights of bars 

SA = Total Area of Bars in Square Inches 

2^0 = Total Perimeter of Bars in Inches 

Bar 

Size 

Weight 

Lbs./Ft. 

Number OF Bars 

I 2 3 4 5 6 7 8 9 10 

H" 0.376 2A 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.10 

Round Zo 1.18 2.36 3.53 4.71 589 7.07 8.25 9.42 10.60 11.78 

W' 0.668 ZA 0.20 0.39 0.59 0.79 0.98 1.18 1.38 1-57 1.77 1.96 

Round Zo X.S7 3.14 4-71 6.28 7.85 9-42 10.99 12.57 14.14 15.71 

H" 0.850 ZA 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 

Square Zo 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 

H" 1.043 ZA 0.31 0.61 0.92 1.23 I. S3 1.84 2.15 2.45 2,76 3.07 

Round Zo 1.96 3 93 5-89 7.85 9.82 11.78 13-74 15-71 17.67 19.64 

H" 1.502 ZA 0.44 0.88 1.33 1.77 2.21 2.65 3.09 3-53 3.98 4-42 

Round 1 Zo \ 2.36 4.71 7.07 9.42 II. 78 14.14 16.49 18.8s 21.21 23.56 

2.044 ZA 0.60 r. 20 1.80 2.41 3.01 3.61 4.21 4.81 5.41 6.01 

Round Zo 2.75 5-50 8.25 II .00 13.74 16.49 19-24 21.99 24.74 27.49 

1" 2.670 ZA 0.79 1.57 2.36 3.14 3.93 4.71 5-50 6.28 7-07 7.85 

Round Zo 3.14 6.28 9.42 12.57 IS.71 18.85 21.99 25.13 28.27 31.42 

i" 3.400 ZA 1.00 2.00 300 4.00 500 6.00 7.00 8.00 9.00 10.00 

Square Zo 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 

iH" 4.303 ZA 1.27 2.53 3.80 5.06 6.33 7.59 8.86 10.12 11.39 12.66 

Square Zo 4.50 9,00 13.50 18.00 22.50 27.00 31-50 36.00 40.00 45 00 

iM" S.313 ZA 1.56 3.12 4.69 6.25 7.81 9.38 10.94 12.50 14.06 15.62 

Square \ Zo 5.00 10.00 1500 20.00 25.00 30.00 i 35-00 40.00 45-00 50.00 
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TABLE 28 

AREAS AND SUMMATIONS OF PERIMETERS OF BARS 

FOR VARIOUS SPACINGS 

Areas 2A given in Square Inches per Foot of Slab Width 

Perimeters Zo given in Inches per Foot of Slab Width 

Bar 

Size 

Spacing of Bars IN Inches 

2 2H 3 3H 4 4H 5 SH 6 7 8 9 10 12 

ZA 0.29 0.24 0,20 0,17 0.15 0.13 0.12 0.11 0.10 0.08 0.07 0.07 0.06 0.05 

Round Zo 4.71 3.77 3.14 2.69 2.36 2.09 1.88 1.71 1-57 1-35 1.18 1.05 0.94 0.79 

H" SA 0.66 0.53 0.44 0.38 0.33 0.29 0.26 0.24 0.22 0. 19 0.17 0.15 0.13 0. II 

Round Zo 7.07 S.66 4.71 4.04 3.53 3.14 2.83 2.57 2.36 2.04 r .78 1.57 1.41 1.18 

H" ZA 1.18 0.94 0.78 0.67 0-59 0.52 0.47 0.43 0.39 0.34 0.29 0.26 0.24 0.20 

Round Zo 942 7-54 6.28 538 4.71 4.19 3-77 3-43 3-14 2.69 2.36 2.09 1.88 1-57 

ZA I.so 1.20 1.00 0.86 0.7s 0.67 0.60 0.55 0.50 0.43 0.37 0.33 0.30 0.2s 

Square Zo 12.00 9.60 8.00 6.86 6.00 5.33 4.80 4.36 4.00 3-43 3.00 2.67 2.40 2.00 

H" ZA 1.84 1.47 1.23 1.05 0.92 0.82 0.74 0.67 0.61 0.53 0.46 0.41 0.37 0.31 

Round Zo 11.78 9.42 7.8s 6.73 5.89 5.23 4.71 4.28 3.92 3.36 2.94 2.62 2.35 1.96 

h" ZA 2.65 2.12 1.77 1.51 1.32 1.18 1.06 0.96 0.88 0.76 0.66 0.59 0.53 0.44 
Round Zo 14.13 11.30 942 8.08 7.06 6.28 5.65 5-14 4.71 4.04 3-53 3.14 2.83 2.36 

h" ZA 3-6i 2.88 2.40 2.06 1.80 1.60 1.44 1.31 1.20 1.03 0.90 0.80 0.72 0.60 

Round Zo 16.49 13.18 10.98 9.42 8.24 7-32 6.59 6.00 5.50 4.71 4.12 3.66 3-30 2.75 

i" ZA 3.77 3.14 2.69 2.36 2.09 1.88 I.71 1-57 r .35 i. 18 1.05 0.94 0.78 

Round Zo 15.07 12.56 10.76 9.42 8.38 7.54' 6.85 6.28 7.38 4.71 4.19 3-77 3.14 

i" ZA 4.80 4.00 3.43 300 2.67 2.40 2.18 2,00 1.71 I. SO 1.33 i. 20 1.00 

Square Zo 19.20 16.00 13.71 12.00 10.67 9.60 8.73 8.00 6.86 6.00 5.33 4.80 4.00 

iH" ZA S.06 4.34 3.80 3.37 3.04 2.76 2.53 2.17 1.89 1.69 1.52 1.27 

Square Zo 18.00 15.43 13.50 12.00 10.80 9.82 9.00 7.72 6.85 6.00 5.40 4.50 

ZA 6.25 5.36 4.69 4.17 3.75 3-41 3-12 2.68 2.34 2.08 1.87 1.56 

Square Zo 20,00 17.14 15.00 13.33 12.00 10.91 10.00 8.57 7.50 6.67 6.00 S.oo 
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Diagsau 3.—Coefficients of Resistance of Rectangular Beams. M Rbd* 



TABLES AND DIAGRAMS 415 

Diagram 4.—Coefficients of Resistance of Rectangular Beams. M ^ Rhd* 
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Diagram s*—^Values of k andj for T-Beams. 
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Diagram 7.—CoeflSicienta of Resistance of T-Beams with Respect to the Concrete. 
Me » Cefe b dK 
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Diagram 8.—Coefladents of Resistance of T-Beams for a Balanced Design, 
M « Cfcbt^ 
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Diagram 9.—^Rectangular Beams Reinforced for Compression, M •»foRbdK 
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Diagram 10.—^Rectangular Beams Reinforced for Compression. Af ^ fcRb d\ 
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Diaosak II.—^Rectangular Beams Reinforced for Compression. M “fpRbd*. 
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Diagram 12.—Bending and Direct Stress; Limiting Conditions for Cases I and II. 
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Diacsah x%.—Sending and Direct Stress. Case I. Rectangular Sections. 
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XHasum 14.—Bending and Direct Stress. Case I. Rectangular Sections. 
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Diagram is.—Bending and Direct Stress. Case I- Rectangular Sections. 
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Diaokau 16.—Bending and Direct Stress. Case I. Rectangular Sections. 
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Diagram 17.—^Bending and Direct Stress. Steel Stresses, Case I. 
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18.—Bending and Direct Stress. Case H. Rectangular Sections. 
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Diagram 19.—Bending and Direct Stress. Case II. Rectangular Sections. 
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Diagram 2o.-Bending and Direct Stress. Case II. Rectangular Sections. 
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Diagram 21.—^Bending and Direct Stress. Case 11. Rectangular Sections. 
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Diaokam 23.—^Bending and Direct Stress. Steel Stresses, Case 11. 
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Diagram 23.—Bending and Direct Stress. Reinforcement on Tension Face Only. 
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APPENDIX 

Report of Joint Committee on Standard Specifications for 

Concrete and Reinforced Concrete, 1924 

CHAPTER XI. DESIGN 

A. General Assumptions 

103. General Assumptions.—The design of reinforced-concrete members 
under these specifications shall be based on the following assumptions: 

{a) Calculations are made with reference to working stresses and safe 
loads rather than with reference to ultimate strength and ultimate loads. 

{b) A plane section before bending remains plane after bending, shearing 
distortions being neglected. 

(c) The modulus of elasticity of concrete in compression is constant 
within the limits of working stresses, and the distribution of compressive 
stress in beams is rectilinear. 

{d) The moduli of elasticity of concrete in computations for the position 
of the neutral axis, for the resisting moment of beams, and for compression 
of concrete in columns, are as follows: * 

(1) Ks that of steel, when the compressive strength of the concrete 
at 28 days exceeds 1,500 and does not exceed 2,200 Ibs/in.*; 

(2) K2 that of steel, when the compressive strength of the concrete 
at 28 days exceeds 2,200 and does not exceed 2,900 Ibs/in.®; 

(3) Ho that of steel, when the compressive strength of the concrete 
at 28 days is greater than 2,900 Ibs/in.^ 

(e) In calculating the moment of resistance of reinforced-concrete 
beams and slabs the tensile resistance of the concrete is neglected. 

(/) The bond between the concrete and the metal reinforcement remains 
unbroken throughout the range of working stresses. Under compression 
the two materials are therefore stressed in proportion of their moduli of 
elasticity. 

(g) Initial stress in the reinforcement due to contraction or expansion 
of the concrete is neglected, except in the design of reinforced-concrete 
columns. 

•A.C.I. Specifications: n - 3o,ooo//'c, where /'« ultimate strength of concrete 
at days. 

437 
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5. Flexure of Rectangular Reinforced-concrete Beams and Slabs 

104. Flexure Formulas.—Standard formulas as in Chapter III. 
105. Notation.—Standard notation as in Chapter III. 
106. Span Length.—^The span length, I, of freely supported beams and 

slabs, shall be the distance between centres of the supports, but shall not 
exceed the clear span plus the depth of beam or slab. The span length 
for continuous or restrained beams built to act integrally with supports 
shall be the clear distance between faces of supports. Where brackets 
having a width not less than the width of the beam and making an angle of 
45 deg. or more with the horizontal axis of a restrained beam are built to act 
integrally with the beam and support, the span shall be measured from the 
section where the combined depth of the beam and bracket is at least one- 
third more than the depth of the beam, but no portion of such a bracket 
shall be considered as adding to the effective depth of the beam. Maximum 
negative moments are to be considered as existing at the ends of the span, 
as defined above. 

107. Slightly Restrained Beams of Equal Span.—Beams and slabs of 
equal spans built to act integrally with beams, girders, or other slightly 
restraining supports and carrying uniformly distributed loads shall be 
designed for the following moments at critical sections: 

(a) Beams and slabs of one span. 
Maximum positive moment near centre, 

M = 
wF 

8 
(12) 

(b) Beams and slabs continuous for two spans only, 
(1) Maximum positive moment near centre, 

^ = ^. 
(2) Negative moment over interior support, 

M = -Y.(14) 

{c) Beams and slabs continuous for more than two spans, 
(1) Maximum positive moment near centre and negative moment 

at support of interior spans, 

M =..(15) 

(2) Maximum positive moment near centres of end spans and 
negative moment at first interior support, 

wP 
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{d) Negative moment at end supports for cases (a), (ft), (c) of this section, 

M = not less than .(i6a) 

io8. Beams Built into Brick or Masonry Walls.—Beams and slabs built 
into brick or masonry walls in a manner which develops partial end restraint 
shall be designed for a negative moment at the support of 

Jlf * = not less than .(17) 

109. Freely Supported Beams of Equal Span.—Beams and slabs of 
equal spans freely supported and assumed to carry uniformly distributed 
loads shall be designed for the moments specified in Section 107, except that 
no reinforcement for negative moment need be provided at end supports 
where effective measures are taken to prevent end restraint. The span 
shall be taken as defined in Section 106 for freely supported beams. 

no. Restrained Beams of Equal Span.—Beams and slabs of equal 
span built to act integrally with columns, walls, or other restraining sup¬ 
ports and assumed to carry uniformly distributed loads, shall (except as 
provided in Section 107) be designed for the following moments at critical 
sections: 

(a) Interior spans: 
(i) Negative moment at interior supports except the first, 

M = 
w P 
12 * (18) 

(2) Maximum positive moment near centres of interior spans. 

M = 
w P 
16 * (19) 

(ft) End spans of continuous beams and beams of one span in which 
///is less than twice the sum of the values of I/h for the exterior 
columns above and below which are built into the beams: 
(i) Maximum positive moment near centre of span and negative 

moment at first interior supports, 

M = 
w P 
12 ’ 

(20) 

(2) Negative moment at exterior supports, 

M = 
12 ' 

(21) 

•A.C.I. Specifications: M = not less than 
wP 

24* 
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{c) End spans of continuous beams, and beams of one span, in which 
I/I is equal to or greater than twice the sum of the values of I Jh 
for the exterior column above and below which are built into the 
beams: 
(1) Maximum positive moment near centre of span and negative 

moment at first interior support, 

M = .(22) 
10 

(2) Negative moment at exterior support. 

M = 
w 
16 * (23) 

111. Continuous Beams of Unequal Spans or with Non-uniform 
Loading.—Continuous beams with unequal spans, or with other than 
uniformly distributed loading, whether freely supported or restrained, 
shall be designed for the actual moments under the conditions of loading 
and restraint. 

Provision shall be made where necessary for negative moment near the 
centre of short spans which are adjacent to long spans, and for the negative 
moment at the end supports, if restrained. 

112. Unsupported Flange Length.—^The distance between lateral sup¬ 
ports of the compression area of a beam shall not exceed 24* times the least 
width of compression flange. 

C. Flexure of Reinforced-concrete T-Beams 

X13. Flexure Formulas.—Standard formulas as in Chapter III. 
114. Notation.—Standard notation as in Chapter III. 
115. Flange Width.—Effective and adequate bond and shear resistance 

shall be provided in beam-and-slab construction at the junction of the beam 
and slab; the slab shall be built and considered an integral part of the beam; 
the effective flange width to be used in the design of symmetrical T-beams 
shall not exceed one-fourth of the span length of the beam, and its over¬ 
hanging width on either side of the web shall not exceed 8 times the thickness 
of the slab nor one-half the clear distance to the next beam. 

For beams having a flange on one side only, the effective flange width to 
be used in design shall not exceed one-tenth of the span length of the beam, 
and its overhanging width from the face of the web shall not exceed 6 times 
the thickness of the slab nor one-half the clear distance to the next beam. 

116. Transverse Reinforcement.—Where the principal slab reinforce¬ 
ment is parallel to the beam, transverse reinforcement, not less in amount 
than 0.3% of the sectional area of the slab, shall be provided in the top of 
the slab and shall extend across the beam and into the slab not less than 

*A.C.L Sp>ecifications: 3 a times. 
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two-thirds of the width of the effective flange overhang. The spacing of 
the bars shall not exceed 18 in. 

117. Compressive Stress at Supports.—Provision shall be made for the 
compressive stress at the support in continuous T-beam construction. 

118. Shear.—^The flange of the beam shall not be considered as effective 
in computing the shear and diagonal tension resistance of T-beams, 

119. Isolated Beams.—Isolated beams in which the T-form is used only 
for the purpose of providing additional compression area shall have a flange 
thickness not less than one-half the width of the web and a total flange 
width not more than 4 times the web thickness. 

D. Diagonal Tension and Shear 

120. Notation.—Standard notation as in Chapter IV and the following: 
« total area of web reinforcement in tension within a distance Sj 

that is ^1, 52, 53, . . . 5„, or the total area of all bars bent up in 
any one plane; 

fc = ultimate compressive strength of concrete at age of 28 days; 
fv = tensile unit stress in web reinforcement; 
f = ratio of cross-sectional area of negative reinforcement which crosses 

entirely over the column capital of a fiat slab or over the dropped 
panel, to the total cross-sectional area of the negative reinforce¬ 
ment in the two column strips; 

h « thickness of flat slab without dropped panels or thickness of a 
dropped panel; 

h = thickness of flat slab with dropped panels at points away from the 
dropped panel; 

a = angle between web bars and longitudinal bars. 

Z2X. Formula for Shear.—^The shearing unit stress, v, in reinforced- 
concrete beams shall be taken as not less than that computed by Formula 29. 

V = 

V 
bjd' (29) 

122. Variation of Shear in Beams with Uniform Load.—For purpose of 
design of beams carrying uniform loads, not less than one-fourth of the total 
shearing resistance required at either end of span shall be provided at the 
section where the computed shearing-stress is zero; from that section to the 
ends of span the required shearing resistance shall be assumed to vary 
Uniformly. 

123. Width of Beams in Shear Computations.—^The shearing unit stress 
sh^ be computed on the minimum width of rectangular beams and on the 
minimum thickness of the web in beams of I or T-section. 

124. Shear in Beam-and-Tile Construction.—^The width of the effective 
section for shear as governing diagonal tension shall be assumed as the thick¬ 
ness of the concrete web plus one-half the thickness of the vertical webs of 
the concrete or clay tile in contact with the beam. 
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12$. Types and Spacing of Web Reinforcement.—Web reinforcement 
may consist of : 

{a) Vertical stirrups or web reinforcing bars; 
{h) Inclined stirrups or web reinforcing bars forming an angle of 30 deg. 

or more with the longitudinal bars; 
(c) Longitudinal bars bent up at an angle of 15 deg. or more with the 

direction of the longitudinal bars. 

Stirrups or bent-up bars which are not anchored at both ends, according 
to the provisions of Section 141, shall not be considered effective as web 
reinforcement. When the shearing-stress is not greater than 0.06/'c, the 
distance s measured in the direction of the axis of the beam between two 
successive stirrups, or between two successive points of bending up of bars, 
or from the point of bending up of a bar to the edge of the support, shall not 
be greater than 

j = 45 
a + 10 (30) 

where the angle a is in degrees. 
When the shearing-stress is greater than 0.06/'r, the distance s shall not 

be greater than two-thirds of the values given by Formula 30. 
126. Anchorage of Web Reinforcement.—See Section 141. 
127. Beams without Special Anchorage of Longitudinal Reinforcement. 

—^The shearing unit stress computed by Formula 29 in beams in which the 
longitudinal reinforcement is without special anchorage shall not exceed 
the values given by Formulas 31 and 32 and in no case shall it exceed 0.06 /'«. 

When a is between 45 and 90 deg., 

V* = 0.02 fc + 

When a is less than 45 deg., 

V* = 0.02 fc + 

fvA V 

b s sin a 

(sin a + cos a) 
0 s 

(31) 

(32) 

128. Beams with Special Anchorage of Longitudinal Reinforcement.— 
The shearing unit stress computed by Formula 29 in beams in which longi¬ 
tudinal reinforcement is anchored by means of hooked ends or otherwise, 
as specified in Section 140, shall not exceed the value given by Formulas 31 
and 32, when 0.03 fc is substituted for 0.02 /'c in those formulas; in no case 
shall the shearing unit stress exceed 0.12 /'«.* 

129. Beams with Bars Bent up at a Single Point.—Where the web rein¬ 
forcement consists of bars bent up at a single point, the point of bending 
shall be at a distance s from the edge of the support, not greater than that 

* These formulas assume the concrete to cany a shearing-stress equal to 0.02/'o, the 
reinforcement the remainder. 

*A.C.l. Specifications limit the total shearing unit stress to o.ogfet except that 0.13/0 
may be used under special conditions of design and supervision. 
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given in Section 125, and the value of the quantity 
fv Af, 

bs 
(sin a + cos a) 

used in the design shall not exceed 75 Ibs/in.^ 
130. Combined Web Reinforcement.—^Where two or more types of web 

reinforcement are used in conjunction, the total shearing resistance of the 
beam shall be assumed as the sum of the shearing resistances computed for 
the various types separately. In such computations the shearing resist¬ 
ance of the concrete (the term 0.02 f'c or 0.03/'c in Formulas 31 and 32) 
shall be included only once. In no case shall the maximum shearing- 
stresses be greater than the limiting values given in Sections 127 and 128. 

131. Shearing-stress in Flat Slabs.—^The shearing unit stress in flat 
slabs shall not exceed the value of v as given by Formula 33, 

V » 0.02/'e(i +r) (33) 

and shall not in any case exceed 0.03 /'^ 
The shearing unit stress shall be computed on: 
(a) A vertical section which has a depth in inches of % (^1 — i and 

which lies at a distance in inches of /i — from the edge of the column 
capital; and 

(b) A vertical section which has a depth in inches of (^2 — ij^) and 
which lies at a distance in inches of ^ from the edge of the dropped 
panel. 

In no case shall r be less than 0.25. Where the shearing-stress computed 
as in (a) is being considered, r shall be assumed as the proportional amount 
of the negative reinforcement, within the column strip, crossing the column 
capital. Where the shearing-stress computed as in (b) is being considered, 
r shall be assumed as the proportional amount of the negative reinforcement, 
within the column strip, crossing entirely over the dropped panel.* 

132. Shear and Diagonal Tension in Footings.—^The shearing-stress 
shall be taken as not less than that computed by Formula 29. The stress 
on the critical section shall not exceed 0,02 for footings with straight 
reinforcement bars, nor 0.03 /'c for footings in which the reinforcement bars 
are anchored at both ends by adequate hooks or otherwise as specified in 
Section 140. 

133. Critical Section for Soil Footings.—^The critical section for diagonal 
tension in footings on soil shall be computed on a vertical section through 
the perimeter of the lower base of a frustum of a cone or pyramid which has 
a base angle of 45 deg., and which has for its top the base of the column or 
pedestal and for its lower base the plane at the centroid of longitudinal 
reinforcement. 

134. Critical Section fofCPile Footings.—^The critical section for diagonal 
tension in footings on piles shall be computed on a vertical section at the 
inner edge of the first row of piles entirely outside a section midway between 
the face of the column or pedestal and the section described in Section 133 

* In special cases, where supported by satisfacto^ engineering analysis, diagonal 
tension reinforcement may be used and increased shearing-stresses aflowed in accordance 
with Sections 127 to 130. 
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for soil footings, but in no case outside of the section described in Section 
133. The critical section for piles not arranged in rows shall be taken mid¬ 
way between the face of the column and the perimeter of the base of the 
frustum described in Section 133. 

£. Bond and Anchorage 

135. Bond Stresses by Beam Action.—Where bar reinforcement is used 
to resist tensile stresses developed by beam action, the bond stress shall be 
taken as not less than that computed by Formula 34, 

V 
“ ^ojd: (34) 

For continuous or restrained members, the critical section for bond for 
the positive reinforcement shall be assumed to be at the point of inflection; 
that for the negative reinforcement shall be assumed to be at the face of the 
support, and at the point of inflection. For simple beams or freely sup¬ 
ported end spans of continuous beams, the critical section for bond shall be 
assumed to be at the face of the support. 

Bent-up longitudinal bars whidh, at the critical section, are within a 

distance ~ from horizontal reinforcement under consideration, may be 

included with the straight bars in computing S 0, 
In footings only the bars specified in Section 177 as effective in resisting 

bending moment shall be considered as resisting bond stresses. Special 
investigation shall be made of bond stresses in footings with stepped or 
sloping upper surface, as maximum bond stresses may occur at the vertical 
plane of the steps or near the edges of the footing. 

136. Bond Stress for Ordinary Anchorage.—In beams where the ordi¬ 
nary anchorage .described in Section 139 is provided, the bond stress com¬ 
puted by Formula 34 at any section shall not exceed the following values: 

For plain bars.u ^ 0.04/'c 
For deformed bars meeting the requirements of Section 23. w ~ 0.05 fe 

Z37. Bond Stresses for Special Anchorage.—In beams where special 
anchorage of the bars is provided as specified in Section 140, bond stresses 
exceeding those specified in Section 136 may be used, provided the total 
tensile stress at a point of abrupt change in stress, or at the point of maxi¬ 
mum stress, does not exceed the value of P given by Formula 35, 

F ^QuXoy+uhox ..(35) 
where F « total tension in the bar; 

2 0 » the perimeter of the bar under consideration; 
Q « ratio of the average to the maximum bond stress computed 

by Formula 34 within the distance y; 
u « permissible bond stress » 0,04/'c for plain and 0.05/% fw 

deformed bars meeting the requirements of Secticm 23; 
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a? * the length of bar added for anchorage, including the hook, 
if any; 

y =» distance from the point at which the tension is computed to 
the point of beginning of anchorage. 

The length of bar added for anchorage may be either straight or bent. 
The radius of bend shall not be less than 4 bar diameters.* 

138. Bond Stress for Reinforcement in Two or More Directions.— 
The permissible bond stress for footings and similar members in which rein¬ 
forcement is placed in more than one direction shall not exceed 75% of the 
values in Sections 136 and 137. 

139. Ordinary Anchorage Requirements.—In continuous, restrained, or 
cantilever beams, anchorage of the tensile negative reinforcement beyond 
the face of the support shall provide for the full maximum tension with bond 
stresses not greater than those specified in Section 136. Such anchorage 
shall provide a length of bar not less than the depth of the beam. In the 
case of end supports which have a width less than three-fourths of the depth 
of the beam, the bars shall be bent down toward the support a distance not 
less than the effective depth of the beam. The portion of the bar so bent 
down shall be as near to liie end of the beam as protective covering permits. 
In continuous or restrained beams, negative reinforcement shall be carried 
to or beyond the point of inflection. Not less than one-fourth of the area 
of the positive reinforcement shall extend into the support to provide an 
embedment of 10 or more bar diameters. 

In simple beams or freely supported end spans of continuous beams, at 
least one-fourth of the area of the tensile reinforcement shall extend along 
the tension side of the beam and beyond the face of the support to provide 
an embedment of 10 or more bar diameters. 

140. Special Anchorage Requirements.—Where increased shearing- 
stresses are used as provided in Sections 128 and 132 or increased bond 
stresses as provided in Sfection 137, special anchorage of all reinforcement in 
addition to that required in Section 139 shall be provided as follows; 

(a) In continuous and restrained beams, anchorage beyond points of 
inflection of one-third the area of the negative reinforcement, and beyond 
the face of the support of one-third the area of the positive reinforcement, 
shall be provided to develop one-third of the maximum working stress in 
tension, with bond stresses not greater than those specified in Section 136. 

(b) At the edges of footings, anchorage for all the bars for one-third the 
maximum working stress in tension shall be provided within a region where 
the tension in the concrete, computed as an unreinforced beam, does not 
exceed 40 Ibs/in.* 

(c) In simple beams or freely supported end spans of continuous beams, 
at least one-half of the tensile reinforcement shall extend along the tension 
side of the beam .to provide an anchorage beyond the face of the support for 
one-third of the maximum working stress in tension. 

•A.C J. ^>ecifications allow double bond stress values where special anchorage is used. 
This a somewhat more uniform distribution of bond stress along the bar than 
Section tS7, 
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141. Anchorage of Web Reinforcement.—Web bars shall be anchored 
at both ends by: 

(a) providing continuity with the longitudinal reinforcement; or 
(b) bending around the longitudinal bar; or 
(c) a semi-circular hook which has a radius not less than 4 times the 

diameter of the web bar. 
Stirrup anchorage shall be so provided in the compression and tension 

regions of a beam as to permit the development of safe working tensile 
stress in the stirrup at a point 0.3 d from either face.* 

The end anchorage of a web member not in bearing on the longitudinal 
reinforcement shall be such as to engage an amount of concrete sufficient 
to prevent the bar from pulling out. In all cases the stirrups shall be 
carried as close to the upper and lower surfaces as fireproofing requirements 
permit. 

F, Flat Slabs 

{Two-way and Four-way Systems with Rectangular Panels) 

142. Moments in Interior Panels.—^The moment coefficients, moment 
distribution, and slab thicknesses specified herein are for slabs which have 
three or more rows of panels in each direction, and in which the panels are 
approximately uniform in size. Slabs with paneled ceiling or with depressed 
paneling in the floor shall be considered as coming under the requirements 
herein given. The symbols used in Formulas 36 to 41 are defined in Section 
105 except as indicated in Sections 142, 145, and 155. 

In flat slabs in which the ratio of reinforcement for negative moment in 
the column strip is not greater than o.oi, the numerical sum of the positive 
and negative moments in the direction of either side of the panel for which 
tension reinforcement must be provided, shall be assumed as not less than 
that given by Formula 36, 

Mq = 0.09 W l^i - :.(36) 

where Mo = sum of positive and negative bending moments in either rect¬ 
angular direction at the principal design sections of a panel 
of a flat slab; 

c = base diameter of the largest right circular cone, which lies 
entirely within the column (including the capital) whose 
vertex angle is 90 deg. and whose base is in. below the 
bottom of the slab or the bottom of the dropped panel; 

/ =» span length of flat slab, centre to centre of colunms in the 
rectangular direction in which moments are considered; 

h “ span length of flat slab, centre to centre of columns perpen¬ 
dicular to the rectangular direction in which moments are 
considered; and 

W = total dead and live load uniformly distributed over a single 
panel area. 

^ Generally a properly anchored stirrup whose diameter does not exceed Ho of the 
d^th of the beam wul meet these requirements. 
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TABLE VI 

Moments to be Used in Design oe Flat Slabs 

Strip 

Flat Slabs without 
Dropped Panels 

Flat Slabs with 
Dropped Panels 

Negative Positive Negative Positive 

Slabs with 2-way Reinforcement 

Column strip. 
2 Column strips. 
Middle strip. 

0.23 Mq 

0.46 Ifo 

0.16 Mq 

0. II Mo 

0.22 Mo 

0. i6 Mo 

0.25 Mo 

0.50 Mo 

0.15 Mo 

0.10 Mo 

0.20 Mo 

0.15 Mo 

Slabs with 4-way Reinforcement 

Column strip. 
2 Column strips. 
Middle strip. 

0.25 Mo 

0.50 Mo 

0.10 Mo 

0.10 Mo 

0.20 Mo 

0.20 Mo 

0.27 Mo 

0.54 Mo 

0.08 Mo 

O.OQS Mo 

0. IQO Mo 

0.190 Mo 

143. Principal Design Sections.—In computing the critical moments in 
flat slabs subjected to uniform load the following principal design sections 
shall be used: 

(a) Section for Negative Moment in Middle Strip: The section begin¬ 
ning at a point on the edge of the panel /1/4 from the column centre and 
extending in a rectangular direction a distance /1/2 toward the centre of 
the adjacent column on the same panel edge. 

(J) Section for Negative Moment in Column Strip: * The section begin¬ 
ning at a point on the edge of the panel /1/4 from the centre of a column 
and extending in a rectangular direction toward the column to a point cj2 
therefrom and thence along a one-quarter circumference about the column 
centre to the adjacent edge of the panel. 

{c) Section for Positive Moment in Middle Strip: The section of a length 
I1/2 extending in a rectangular direction across the centre of the middle 
strip. 

{d) Section for Positive Moment in Column Strip: The section of length 
/1/4 extending in a rectangular direction across the centre of the column 
strip. 

144. Moments in Principal Design Sections.—The moments in the 
principal design sections shall be those given in Table VI, except as follows: 

(a) The sum of the maximum negative moments in the two column 
strips may be greater or less than the values given in Table VI by not more 
than 0.03 Mq, 

♦A.C.I. Specifications: Width of two columns strips taken equal to width of dropped 
panel where used, or one-half width of whole panel where not usra. 
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(i) The maximum negative moment and the maximum positive moments 
in the middle strip and Sie sum of the maximum positive moments in the 
two column strips may each be greater or less than the values given in Table 
VI by not more than o.oi Afo. 

145. Thickness of Flat Slabs and Dropped Panels.—^The total thickness, 
/i, of the dropped panel in inches, or of the slab if a dropped panel is not used, 
shall be not less than: 

h* = 0.038^1 - 1.44 . (37) 

where jR = ratio of negative moment in the two column strips to ikfo; 
w' ~ uniformly distributed dead and live load per unit of area of 

floor; and 
== dimension of the dropped panel in the direction parallel to /i. 

For slabs with dropped panels the total thickness in inches at points 
beyond the dropped panel shall be not less than 

/2 = 0.02 1\/ZC/ + I.(38) 

The slab thickness Si or S2 shall in no case be less than l/s2 for floor slabs, 
and not less than I/40 for roof slabs. In determining minimum thickness 
by Formulas 37 and 38, the value of I shall be the panel length centre to 
centre of the columns on long side of panel, li shall be the panel length on 
the short side of the panel, and bi shall be the width or diameter of dropped 
panel in the direction of /i, except that in a slab without dropped panel 

shall be 0.5 li. 
146. Minimum Dimensions of Dropped Panels.—^The dropped panel 

shall have a length or diameter in each rectangular direction of not less than 
one-third the panel length in that direction, and a thickness not greater than 
i.S h- 

147. Wall and Other Irregular Panels.—In wall panels and other panels 
in which the slab is discontinuous at the edge of the panel, the maximum 
negative moment one panel length away from the discontinuous edge and 
the maximum positive moment between shall be increased as follows: 

(a) Column strip perpendicular to the wall or discontinuous edge, 15% 
greater than that given in Table VI; 

(b) Middle strip perpendicular to wall or discontinuous edge, 30% 
greater than that given in Table VI. 

In these strips the bars used for positive moments perpendicular to the 
discontinuous edge shall extend to the edge of the panel at which the slab 
is discontinuous. 

*A.C.I. Specifications: Si =* o.03S^x — i.44 0/\/«? H- Also where concrete 

of a higher ultimate strength than 2000 Ibs/in.' is used the thickness may be reduced by 
3/^000 

multiplying by the factor 
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X48. Panels with Marginal Beams.—In panels having a marginal beam 
on one edge or on each of two adjacent edges, the beam shall be designed to 
carry at least the load superimposed directly upon it, exclusive of the panel 
load. A beam which has a depth greater than the thickness of the dropped 
panel into which it frames shall be designed to carry, in addition to the load 
superimposed upon it, at least one-fourth of the distributed load for which 
the adjacent panel or panels are designed, and each column strip adjacent 
to and parallel with the beam shall be designed to resist a moment at least 
one-half as great as that specified in Table VI for a column strip.* 

Each column strip adjacent to and parallel with a marginal beam which 
has a depth less than the thickness of the dropped panel into which it frames 
shall be designed to resist the moments specified in Table VI for a column 
strip. Marginal beams on opposite edges of a panel and the slab between 
them shall be designed for the entire load and the panels shall be designed 
as simple beams. 

149. Discontinuous Panels.—^The negative moments on sections at and 
parallel to the wall, or discontinuous edge of an interior panel, shall be 
determined by the conditions of restraint, f 

150. Flat Slabs on Bearing Walls.—Where there is a beam or a bearing 
wall on the centre line of columns in the interior portion of a continuous 
flat slab, the negative moment at the beam or wall line in the middle strip 
perpendicular to the beam or wall shall be taken as 30% greater than the 
moment specified in Table VI for a middle strip. The column strip adjacent 
to and lying on either side of the beam or wall shall be designed to resist a 
moment at least one-half of that specified in Table VI for a column strip. 

151. Point of Inflection.—^The point of inflection in any line parallel to 
a panel edge in interior panels of symmetrical slabs without dropped panels 
shall be assumed to be at a distance from the centre of the span equal to 
three-tenths of the distance between the two sections of critical negative 
moment at opposite ends of the line; for slabs having dropped panels, the 
coefficient shall be 0.25. 

152. Reinforcement.—The reinforcement bars which cross any section 
and which fulfil the requirements given in Section 153 may be considered 
as effective in resisting the moment at the section. The sectional area of a 
bar multiplied by the cosine of the angle between the direction of the axis of 
the bar and any other direction may be considered effective as reinfprcement 
in that direction. 

153. Arrangement of Reinforcement.—The design shall include ade¬ 
quate provision for securing the reinforcement in place so as to take not 
only the critical moments but the moments at intermediate sections. Pro*^ 
vision shall be made for possible shifting of the point of inflection by carry¬ 
ing all bars in rectangular or diagonal directions, each side of a section of 
critical moment, either positive or negative, to points at least 20 diameters 
beyond the point of inflection as specified in Section 151. Lapped splices 

* In wall columns, brackets are sometimes substituted for capitals or other chafes arc 
made in the design of the capital. Attention is directed to the necessity for taking into 
aeoount the change in the value of c in the moment formula for such cases. 

t The is not prepared to make a more definite recommendation at this time. 
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shall not be permitted at or near regions of maximum stress except as 
described above. At least four-tenths of all bars in each direction shall be 
of such length and shall be so placed as to provide reinforcement at two 
sections of critical negative moment and at the intermediate section of 
critical positive moment. Not less than one-third of the bars used for 
positive reinforcement in the column strip shall extend into the dropped 
panel not less than 20 diameters of the bar, or in case no dropped panel is 
used, shall extend to a point not less than one-eighth of the span length from 
the centre line of the column or the support. 

155. Tensile Stress in Reinforcement.—The tensile stress in the rein¬ 
forcement in flat slabs shall be taken as not less than that computed by 
Formula 39, 

AJd (39) 

where R Mo = moment specified in Section 144 for two column strips or 
for one middle strip; and 

At = effective cross-sectional area of the reinforcement which 
crosses any of the principal design sections and which 
meets the requirements of Section 153. 

The stress so computed shall not at any of the principal design sections 
exceed the values specified in Section 194. 

156. Compressive Stress in Concrete.—^The compressive stress in the 
concrete in flat slabs shall be taken as not less than that computed by 
Formulas 40 and 41, but the stress so computed shall not exceed o.4/'c. 

Compression due to negative moment, R Mo, in the two column strips. 

3.5 R Mo / _ c\ 

o.6t^pn bid\ V 
(40) 

where bi is as specified in Section 145. 
Compression due to positive moment, R Mo, in the two column strips, 

or negative or positive moment in the middle strip, 

6 R Mo* 

o,6j^p nil 
(41) 

In special cases where supported by satisfactory engineering analysis, 
approved by the engineer, compression reinforcement may be used to 
increase the resistance to compression in accordance with other provisions 
of these specifications. 

157. Shearing-stress.—See Section 131. 
158. Unusual Panels.—For structures having a width of one or two 

panels, and also for slabs having panels of markedly different sizes, an 
analysis shall be made of the moments developed in both slab and columns, 
and the values given in Sections 142 to 157 modified accordingly. 

159. Bending Moments in Columns.—See Section 171. 

* For all ordinaxy values of ^ » the value of kj is veiy closely given by 0.67^^ n. 
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G. Reinforced-concrete Columns 

160. Limiting Dimensions.—^The following sections on reinforced- 
concrete columns are based on the assumption of a short column. Where 
the unsupported length is greater than 40 times the least radius of gyration 
(40 R), the safe load shall be determined by Formula 47. Principal columns 
in buildings shall have a minimum diameter or thickness of 12 in. Posts 
that are not continuous from story to story shall have a minimum diameter 
or thickness of 6 in. 

161. Unsupported Length.—^The unsupported length of reinforced- 
concrete columns shall be taken as: 

(a) In flat slab construction the clear distance between the floor and 
under side of the capital. 

{h) In beam-and-slab construction, the clear distance between the floor 
and the under side of the shallowest beam framing into the column at the 
next higher floor level; 

(c) In floor construction with beams in one direction only, the clear 
distance between floor slabs; 

(d) In columns supported laterally by struts or beams only, the clear 
distance between consecutive pairs (or groups) of struts or beams, provided 
that to be considered an adequate support, two such struts or beams shall 
meet the column at approximately the same level and the angle between 
the two planes formed by the axis of the column and the axis of each strut 
respectively is not less than 75 deg. nor more than 105 deg. 

When haunches are used at the junction of beams or struts with columns, 
the clear distance between supports may be considered as reduced by two- 
thirds of the depth of the haunch. 

162. Safe Load on Spiral Columns.—^The safe axial load on columns 
reinforced with longitudinal bars and closely spaced spirals enclosing a 
circular core shall be not greater than that determined by Formula 42, 

The symbols used in Formulas 42 to 49 are defined in Section 105, 
except as indicated in Sections 162, 165, 168, 170, 176, and 182. 

P = Acfc + nfcp A.(42) 

where P = total safe axial load on column whose h/R is less than 40; 
A = area of the concrete core enclosed within the spiral; the diam¬ 

eter of the core (or of the spiral) shall be taken as the distance 
centre to centre of the spiral wire; 

p = ratio of effective area of longitudinal reinforcement to area of 
the concrete core; 

Ac ^ A {1 — p) = net area of concrete core; and 
fc *= permissible compressive stress in concrete = 

3CX5 + (o.io + A P)f'c.(43) 

The longitudinal reinforcement shall consist of at least six bars of minimum 
diameter of }4 iii-» ifs effective cross-sectional area shall not be less than 
1% nor more than 6% of that of the core. 
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163. Spiral Reinforcement.—^The spiral reinforcement shall be not less 
than one-foixrth the volume of the longitudinal reinforcement. It shall 
consist of evenly spaced continuous spirals held firmly in place and true to 
line by at least three vertical spacer bars. The spacing of the spirals shall 
be not greater than one-sixth of the diameter of the core and in no case more 
than 3 in. The spiral reinforcement shall meet the requirements of the 
Tentative Specifications for Cold-Drawn Steel Wire for Concrete Rein¬ 
forcement. 

164. Protection of Spirally Reinforced Column.—Reinforcement shall 
be protected everywhere by a covering of concrete cast monolithic with the 
core, which shall have a minimum thickness of in. in sqxiare colunms 
and 2 in. in round or octagonal columns. 

165. Safe Load on Columns with Lateral Ties.—^The safe axial load on 
columns reinforced with longitudinal bars and separate lateral ties shall be 
not greater than that determined by Formula 44, 

P =^(A'e + A.n)fc.(44) 

where A'c ^ net area of concrete in the column (total column area minus 
area of reinforcement); 

At ^ effective cross-sectional area of longitudinal reinforcement; 
and 

fc « permissible compressive stress in concrete and shall not exceed 
0.20 fc 

The amount of longitudinal reinforcement considered in the calculations 
shall be not more than 2% nor less than 0.5% of the total area of the column. 
The longitudinal reinforcement shall consist of not less than four bars of 
minimum diameter of in., placed with clear distance from the face of the 
column not less than 2 in. 

166. Lateral Ties.—^Lateral ties shall be not less than in. in diameter, 
spaced not more than 8 in. apart. 

167. Bending in Columns.—Reinforced-concrete columns subject to 
bending stresses shall be treated as follows: 

(d) With Spiral Reinforcement.—^The compressive unit stress on the 
concrete within the core area under combined axial load and bending shall 
not exceed by more than 20% the value given for axial load by Formula 43. 

{b) With Lateral Ties.—^Additional longitudinal reinforcement may be 
used if required, and the compressive unit stress on the concrete under 
combined axial load and bending may be increased to 0.30 fc. The total 
amount of reinforcement considered in the computations shall be not more 
than 4% of the total area of the column. 

Tension in the longitudinal reinforcement due to bending of the column 
shall not exceed 16,000 Ibs/in.® 

168. Composite Columns.—^The safe load on composite columns in 
which a structural steel or cast-iron column is thoroughly encased in a cir¬ 
cumferentially reinforced concrete core shall be based on a certain unit stress 
for the steel or cast-iron core plus a unit stress of 0.25 ft on the area within 
the spiral core. 
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The unit compressive stress on the steel section shall be not greater than 
that determined by Formula 45, 

fr = 18,000 ~ 70 h/R.(45) 

but shall not exceed 16,000 Ibs/in.^ 
The unit stress on the cast-iron section shall be not greater than that 

determined by Formula 46, 

fr ~ 12,000 — 60 h/R.(46) 

but shall not exceed 10,000 Ibs/in.* 
In Formulas 45 and 46, 

fr =* compressive unit stress in metal core, and 
R = least radius of gyration of the steel or cast-iron section. 

The diameter of the cast-iron section shall not exceed one-half of the 
diameter of the core within the spiral. The spiral reinforcement shall be 
not less than 0.5% of the volume of the core within the spiral and shall 
conform in quality, spacing, and other requirements to the provisions for 
spirals in Section 163. 

Ample section of concrete and continuity of reinforcement shall be 
provided at the junction with beams or girders. The area of the concrete 
between the spiral and the metal core shall be not less than that required 
to carry the total floor load of the story above on the basis of a stress in the 
concrete of 0.35/'c, unless special brackets are arranged on the metal core 
to receive directly the beam or slab load. 

169, Structural Steel Columns.—^The safe load on a structural steel 
column of a section which fully encases an area of concrete, and which is 
protected by an outside shell of concrete at least 3 in. thick, shall be com¬ 
puted in the same manner as for composite columns in Section 168, allowing 
0.25/'c on the area of the concrete enclosed by the steel section. The out¬ 
side shell shall be reinforced by wire mesh, ties, or spiral hoops weighing 
not less than 0.2 Ib/ft.^ at the surface of the mesh and with a maximum 
spacing of 6 in. between strands or hoops. Special brackets shall be used 
to receive the entire floor load at each story. The safe load in steel columns 
calculated by Formula 45 shall not exceed 16,000 Ibs/in.^ 

170. Long Columns.—The permissible working load on the core in 
axially loaded columns which have a length greater than 40 times the least 
radius of gyration of the column core (40 R) shall be not greater than that 
determine by Formula 47, 

jP' h 
P “ 120 R (47) 

where P' total safe axial load on long column; 
P « total safe axial load oh column of the same section whose h/R 

is less than 40, determined as in Sections 162 and 165; and 
R « least radius of gyration of column core. 
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171* Bending Moments in Columns.—^The bending moments in interior 
and exterior columns shall be determined on the basis of loading conditions 
and end restraint, and shall be provided for in the design. The recognized 
methods shall be followed in calculating the stresses due to combined axial 
load and bending. In spiral columns the area to be considered as resisting 
the stress is the area within the spiral. 

H, Footings 

172. General.—^The requirements for tension, compression, shear, and 
bond in Sections 103 and 141, inclusive, shall govern the design of footings, 
except as hereinafter provided. 

173. Soil Footings.—The load per unit of area on soil footings shall be 
computed by dividing the column load by the area of base of the footing. 

174. Pile Footings.—Footings on piles shall be treated in the same 
manner as footings on soil, except that the load shall be considered as con¬ 
centrated at the pile centres. 

175. Sloped or Stepped Footings.—^Footings in which the thickness has 
been determined by the requirements for shear as specified in Sections 133 
and 134 may be sloped or stepped between the critical section and the edge 
of the footing, provided that the shear on no section outside the critical 
section exceeds the value specified, and provided further that the thickness 
of the footing above the reinforcement at the edge shall not be less than 6 in. 
for footings on soil nor less than 12 in. for footings on piles. Sloped or 
stepped footings shall be cast as a unit. 

176. Critical Section for Bending.—^The critical section for bending in a 
concrete footing which supports a concrete column or pedestal shall be con¬ 
sidered to be at the face of the column or pedestal. Where steel or cast-iron 
column bases are used, the moment in the footing shall be computed at the 
middle and at the edge of the base; the load shall be considered as uniformly 
distributed over the column or pedestal base. 

The bending moment at the critical section in a square footing support¬ 
ing a concentric square column shall be computed from the load on the 
trapezoid bounded by one face of the column, the corresponding outside 
edge of the footing, and the portions of the two diagonals. The load on the 
two corner triangles of this trapezoid shall be considered as applied at a 
distance from the face equal to six-tenths of the projection of the footing 
from the face of the column. The load on the rectangular portion of the 
trapezoid shall be considered as applied at its centre of gravity. The bend¬ 
ing moment is expressed by Formula 48, 

if « ^ (a -f- 1.2 c)c^.(48) 

where if « bending moment at critical section of footing; 
a = width of face of column or pedestal; 
c « projection of footing from face of column; and 

w » upward reaction per unit of area of base of footing. 

For a round or octagonal column, the distance a shall be taken as equal 
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to the side of a square of an area equal to the area enclosed within the 
perimeter of the column. 

177. Reinforcement.—The reinforcement in each direction in the foot¬ 
ing shall be determined as for a reinforced-concrete beam; the effective 
depth shall be the distance from the top of the footing to the plane of the 
reinforcement. The sectional area of reinforcement shall be distributed 
uniformly across the footing unless the width is greater than the side of the 
column or pedestal plus twice the effective depth of the footing, in which 
case the width over which the reinforcement is spread may be increased to 
include one-half the remaining width of the footing. In order that no con¬ 
siderable area of the footing shall remain unreinforced, additional rein¬ 
forcement shall be placed outside of the width specified, but such reinforce¬ 
ment shall not be considered as effective in resisting the calculated bending 
moment. For the extra reinforcement a spacing double that within the 
effective belt may be used. 

178. Concrete Stress.—^The extreme fibre stress in compression in the 
concrete shall be kept within the hmits specified in Section 189. The 
extreme fibre stress in sloped or stepped footings shall be based on the exact 
shape of the section for a width not greater than that assumed effective for 
reinforcement. 

179. Irregular Footings.—A rectangular or irregularly shaped footing 
shall be computed by dividing it into rectangles or trapezoids tributary to 
the sides of the column, using the distance to the centre of gravity of the 
area as the moment arm of the upward forces. Outstanding portions of 
combined footings shall be treated in the same manner. Other portions of 
combined footings shall be designed as beams or slabs. 

180. Shearing-stresses.—See Sections 132 to 134. 
181. Bond Stress.—See Sections 135 to 141. 
182. Transfer of Stress at Base of Column.—^The compressive stress in 

longitudinal reinforcement at the base of a column shall be transferred to 
the pedestal or footing by either dowels or distributing bases. When dowels 
are used, there shall be at least one for each column bar, and the total sec¬ 
tional area of the dowels shall be not less than the sectional area of the 
longitudinal reinforcement in the column. The dowels shall extend into 
the column and into the pedestal or footing not less than 50 diameters of the 
dowel bars for plain bars, or 40 diameters for deformed bars. 

When metal distributing bases are used, they shall have sufficient area 
and thickness to transmit safely the load from the longitudinal reinforce¬ 
ment in compression and bending. The permissible compressive unit stress 
on top of the pedestal or footing directly under the column shall be not 
greater than that determined by Formula 49, 

where r® ** permissible working stress over the loaded area; 
A » total area at the top of the pedestal or footing; 
i4' « loaded area at the column base; 
fc « ultimate compressive strength of concrete. (See Section 120.) 
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In sloped or stepped footings A may be taken as the area of the top 
horizontal surface of the footing or as the area of the lower base of the largest 
frustum of a pyramid or cone contained wholly within the footing and having 
for its upper base the loaded area A', and having side slopes of i vertical 
to 2 horizontal. 

183. Pedestals without Reinforcement.—^The allowable compressive 
unit stress on the gross area of a concentrically loaded pedestal or on the 
minimum area of a pedestal footing shall not exceed 0.25/'c, unless rein¬ 
forcement is provided and the member designed as a reiiiforced-concrete 
column. 

The depth of a pedestal or pedestal footing shall be not greater than 3 
times its least width, and the projection on any side from the face of the 
supported member shall be not greater than one-half the depth. The depth 
of a pedestal whose sides are sloped or stepped shall not exceed 3 times the 
least width or diameter of the section midway between the top and bottom. 
A pedestal footing supported directly on piles shall have a mat of reinforcing 
bars having a cross-sectional area of not less than 0.20 inVft. in each direc¬ 
tion, placed 3 in. above the top of the piles. 

/, Reinforced-concrete Retaining Walls 

184. Loads and Unit Stresses.—Reinforced-concrete retaining walls 
shall be so designed that the permissible unit stresses specified in Sections 
186 to 197 are not exceeded. The heels of cantilever, counterforted, and 
buttressed retaining walls shall be proportional for maximum resultant 
vertical loads, but when the foundation reaction is neglected the permissible 
unit stresses shall not be more than 50% greater than the normal permissible 
stresses. 

185. Details of Design.—^The following principles shall be followed in 
the design of reinforced-concrete retaining walls: 

{d) The supported toe and heel of the base slabs shall be considered as 
cantilever beams fixed at the edge of the support. 

(J) The vertical section of a cantilever wall shall be considered as a 
cantilever beam fixed at the top of the base. 

(c) The vertical sections of counterforted and buttressed walls and 
parts of base slabs supported by the counterforts or buttresses shall be 
designed in accordance with the requirements for a continuous slab in 
Section no. 

(d) The exposed faces of walls without buttresses shall preferably be 
given a batter of not less than in/ft. 

(e) Counterforts shall be designed in accordance with the requirements 
for T-beams in Sections 113 to 115, Stirrups shall be provided in the 
counterforts to take the reaction when the tension reinforcement of the face 
walls and heels of bases is designed to span between the counterforts. 
Sitrrups shall be anchored as near the exposed face of the lonmtudinal wall 
and as dose to the lower face of the base as the requirements for protective 
covering permit. 
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(/) Buttresses shall be designed in accordance with the requirements 
specified for rectangular beams. 

(g) The shearing-stress at the junction of the base with counterforts or 
buttresses shall not exceed the values specified in Sections 120 to 130. 

(A) Horizontal metal reinforcement shall be of such form and so dis¬ 
tributed as to develop the required bond. To prevent temperature and 
shrinkage cracks in exposed surface not less than 0.25 in.^ of horizontal 
metal reinforcement per foot of height shall be provided. 

(i) Grooved lock joints shall be placed not over 60 ft. apart to care for 
temperature changes. 

(j) Counterforts and buttresses shall be located under all points of 
concentrated loading, and at intermediate points, as may be required by 
the design. 

(A) The walls shall be cast as a unit between expansion joints, unless 
construction joints formed in accordance with Sections 69 and 73 are 
provided. 

(/) Drains or “ weep holes ” not less than 4 in. in diameter and not 
more than 10 ft. apart, shall be provided. At least one drain shall be 
provided for each pocket formed by counterforts. 

/. Summary of Working Stresses * 

186. General—^The following working stresses shall be used: 

where /'« — ultimate compressive strength of concrete at age of 28 days. 

Direct Stress in Concrete 

187. Direct Compression.—{a) Columns whose length does not 
exceed 40 R\ 

(1) With spirals . . . varies with amount of longitudi¬ 
nal reinforcement. (See Section 162.) 

(2) Longitudinal reinforcement and lateral ties, 
(See Section 165.) 

(5) Long columns. (See Section 170.) 
(c) Piers and pedestals. 0.25/0 

(See Section 183.) 

i88« Compression in Extreme Fibre.—(a) Extreme fibre stress in 
flexure. 0.40/0 

(A) Extreme fibre stress in flexure adjacent to supports of 
continuous beams. 0.45 fc 

xSp* Tension.—In concrete members. None 

* For wind loads the A.C.I. Specifications allow an increase of 50% of the specified 
wofldng stresses for combined dead load, live load, and wind stresses. 
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Shearing Stresses in Concrete 

190. Longitudinal Bars without Special Anchorage.—(a) Beams 
without web reinforcement.0.02 fc 

(b) Beams with stirrups or bent-up bars or combination of 
the two... 0.06 fe 

191. Longitudinal Bars Having Special Anchorage.—(a) Beams 
without web reinforcement.0.03 /'<, 

(b) Beams with stirrups or bent-up bars or a combination 
of the two. 0.12 fc 

192. Flat Slabs.—(a) Shear at distance d from capital or dropped 
panel. 0.03/'« 

(b) Other limiting cases in flat slabs. (See Section 131.) 
193. Footings.—(a) Longitudinal bars without special anchorage.. 0.02/'^ 

(6) Longitudinal bars having special anchorage.0.03 

Stresses in Reinforcement * 

194. Tension in Steel.—(a)Billet-steel bars: 
(1) Structural steel grade. 16,000 Ibs/in.* 
(2) Intermediate grade. 18,000 ‘‘ 
(3) Hard grade. 18,000 

{b) Bail-steel bars. 18,000 
{c) Structural steel. 16,000 
{d) Cold-drawn steel wire 

(1) Spirals. (Stress not calculated.) 
(2) Elsewhere. 18,000 

195. Compression in Steel.—{a) Bars. (Same as Section 
194 {a) and (i).) 

{b) Structural steel core of composite column. 16,000 ‘‘ 
Reduced for slenderness ratio. (See Section 168.) 

(c) Structural steel colunm. 16,000 “ 
Reduced for slenderness ratio. (See Section 169.) 

196. Compression in Cast Iron.—Composite cast-iron 
column. 10,000 
Reduced for slenderness ratio. (See Section 168.) 

197. Bond between Concrete and Reinforcement.—(a) Beams and 
slabs, plain bars. 0.04 /'<, 

(J) Beams and slabs, deformed bars. 0.05 fc 
{c) Footings, plain bars, one-way. 0.04/'<, 
id) Footings, deformed bars, one-way. 0.05 
{e) Footings, bars two-ways .. . (c) or (d) reduced by 25% 

A.C.I. Specifications; Structural grade, 18,000 Ibs/in.*; intermediate and hard grade 
billet steel and rail steel, 20,000 Ibs/in.* 
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A 
Anchored bars, ii6 

Arches, abutments, 392 

advantages of reinforced, 335 

analysis of, 334, 354 
approximate live-load positions, 376 

dead-load stresses, 365, 377, 385 

deflection of, 345 

design of, 380 

direct-load method, 376 
form of, 383 

influence line method, 359, 375 

investigation of, 354 

live-load stresses, 370, 378, 386 

methods of reinforcing, 337 

plastic flow stresses, 349, 374 

reinforcement of, 337, 382 

rib-shortening stresses, 345, 359, 386 

shearing stresses, 338, 362 

shrinkage stresses, 349, 374 

temperature stresses, 345, 371, 386 

thickness of arch ring, 390 

uns3mimetrical, 354 

working stresses, 391 

B 

Beams, advantages of reinforced concrete, 

approximate nature of calculations, 49 

arrangement of reinforcement, 34 

compressive reinforcement for, 64 

compressive stresses in, 90 

continuous, 146, 241 

cracks in, 123 

deflection of, 150 

design of, 128, 312 

diagrams for design of, 409 

factors of safety for, 54 

flexure and direct stress, 70 

formulas for, 37, 49, S4 

haunched, 287, 308 

Beams, kinds of failure, 84 

marginal, 292 

neutral axis, position of, 86 

plastic flow, 48 

. proportioning of rectangular, 134, 136 

proportion of T-bcams, 139 
shearing strength of, 127 

shrinkage, 46 

stresses in homogeneous, 30, 35 

T-beams (see T-beams) 

tests of, 84, no, 118 

torsional stresses in, 292 

working stresses for, 128, 130, 131, 132 

Bond stress, continuous beams, 148 

deformed bars, 112 
design for, 32, 138, 144 

footings, 148 

formulas for, 95 

tests of, no 

working stresses for, 132 

Bridge floors, 195 

Broken stone (see Coarse aggregate) 

Building construction, 237 

Building frames, analysis by moment* 

distribution method, 299 

analysis by slope-deflection method, 268 

loadings for, 240 

moments, exterior beams, 281, 286 
interior beams, 274, 278, 286 

exterior columns, 283, 286 

interior columns, 279, 286 

shears in beams, 285 

C 

Cement for reinforced concrete, 8 

Circular slabs, 209 

Coarse aggregate, 8 

Columns, advantages of reinforced, 4 

bending stresses, 193 

details of, 192 
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Columns, economy of, 170 
factor of safety, 189 

formulas for, 170, 173 

hooped, 171, 180 
length of, 169, 174 

long columns, 173 

moments in, 279, 283 

moment of inertia of, 243 

pedestal design, 219 

plastic flow stresses in, 185 

reinforcement of, 169 

shrinkage stresses, 185 

summary of tests, 190 

tests of, 176-185 
working stresses for, 191 

Concrete, coefficient of expansion, 22 

compressive strength of, 13 

consistency of, ii 
contraction and expansion of, 22, 27 

elastic limit of, 17 

elastic properties of, x6 

elongation of, 26 

fireproofing properties of, 23 

general requirements of, 7 

mixing, 13 

modulus of elasticity of, 18 

plastic flow, 19 

Poisson’s ratio, 22 

proportioning, general principles, 9 

shearing strength, 15 

shrinkage, 22, 28 

stress'strain diagram, 17, 21 

tensile strength of, 15 

water-cement ratio, 10 

weight of, 23 

Conduits, use of reinforced concrete, 5 
Continuous beams, analysis of, 241,307,309 

coefficients for, 249, 253, 255 

design of, 146, 311 

moment of inertia of, 243 

shears in, 256 

theorem of three momentSi 242 
Culverts, advantages of reinforced con¬ 

crete, s 

D 
Dams, advantages of reinfotced concrete, 5 
Defle<^n of beams, 150 

Deflection of beams, experiments on, 159 
rectangular sections, 153 
shrinkage and plastic flow, effect of, 165 
T-beams, 158 

Diagrams for compressive reinforcement, 
420^422 

flexure and direct stress, 424-436 

simple beams, 40, 52 

T-beams, 416-419 

Diagonal tension, 96 

failures from, 98 

reinforcement for, 99 

F 
Fine aggregate for reinforced concrete, 8 
Flat slabs, analysis of, 194 

circular, 209 

coefficients for moments in, 233 

rectangular, 207 

coefficients for continuous, 208 

design of, 324 

distribution of load on, 195 
drop panel, 233 

effective width of, 197 
floor slabs, 226 

footings, 209 

moments in, 209, 229, 232 

reinforcement of, 235 

shear and diagonal tension in, 236 

square slabs, 204 

tests of, 199 

thickness of, 235 

Flexure and direct stress, 70 
diagrams for, 426-436 

Floor slabs, details of, 238, 239 

tile and concrete, 239 

Floors, design of, 311, 324 

general arrangement of, 238 

Footings, combined, 221 

depth required for allowable shear, 217 
design of, 219 

flat slab, 214 

maximum bar diameter for flexure and 
bond, 2x8 

moments in, 216 
pier or pedestal, 2x9 
pile, 2x9 
strap, 223 



INDEX 461 

Footings, tests by Talbot, 215 
trapezoidal, 225 

G 

Gravel (see Coarse aggregate) 

H 

Haunched beams, 287, 308 

History, i 

Hooked ends, 116 

J 
Joint Committee R^rt, 437 

M 

Melan system, 2 

Modulus of elasticity of concrete, 18 

steel, 26 

Monier 83rstem, i 

P 

Piles, use of reinforced, 6 

Plastic flow, arches, 349, 374 

beams, 48 

columns, 185 

concrete, 19 

deflection due to, 165 

Poisson’s ratio, 22 

R 

Reinforced concrete, advantages of, 3 

fireproofing value of, 23 

history of, i 

Reservoirs, advantages of reinforced con¬ 

crete, s 
Retaining walls, advantages of reinforced 

concrete, s 

design of, 401 

earth pressure, 394 

proportions of, 395 

Retaining walls, stability of, 394,400 

types of, 393 

S 
Shearing stresses, 92 

reinforcement for, 99 

relation to diagonal tension, 96, 98 
torsional, 296 

Shrinkage, arches, 349, 374 

beams, 46 

columns, 185 
concrete, 22, 28 

deflection due to, 165 

Steel, coefl&cient of expansion, 26 
corrosion of, 23 

forms of bars, 24 

modulus of elasticity, 26 

quality of, 25 

working stresses for, 128, 131 

T 

Tables for areas, weights and circumfei 
ences of bars, 410, 411 

T-beams, continuous, 148 

deflection of, 158 

design of, 141 

diagrams for, 416-419 

economical proportions for, 141 

formulas for, 54 

tests of, 122 
use of, 54 

Torsion in marginal beams, 292 

tests on strength of concrete, 298 

W 

Water-cement ratio, 10 

Working stresses for arches, 391 

beams, 128, 130, 132 

bond, 132 

concrete, 130 

[ steel, 130 






