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PREFACE TO THE FOURTH EDITION 

The original object in writing this book, namely, to provide in 
concise form the necessary material for an elementary course, has 
been kept in view in the present edition. Hence the length of the 
book has been only slightly increased. 

Some changes have been introduced to bring the material into 
better accord with present practice; others, for the sake of lucidity. 
A few sections have been altered in such a way as to place less 
dependence on the students' prior knowledge. 

The present edition will be found to contain a considerable addi¬ 
tion to the number of problems. The chapter on gears has been 
revised to conform with recent standards. Brief descriptions of 
some mechanisms of kinematic interest and present practical 
importance have been added. 

The author wishes to express his appreciation of many useful 
suggestions made by Professors L. J. Bradford, M. S. Gjesdahl, 
and C. G. Vandegrift of the Pennsylvania State College. 

G. L. Guillet 

May 99,1940 
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KINEMATICS OF MACHINES 

CHAPTER I 

GENERAL CONSIDERATIONS 

1. Elinematics of Machines is that portion of the study of 
machines which deals with the motions of the parts of which they 
are composed. 

In general, the design of a machine must be carried out in four 
stages: first, the purpose for which the machine is to be used 

must be considered and the necessary motions must be studied; 

second, some device must be selected which will produce the re¬ 
quired motions; third, the forces acting in the members must be 

calculated; and finally, a choice of materials must be made and 

the parts properly proportioned to withstand the forces determined 
above. The final form is necessarily influenced by many factors 
whose consideration is outside the province of this book, in which, 

as far as possible, we shall confine our attention to the study of 

motions in machinery. The four stages just mentioned, com¬ 
prising the subject of Machine Design, are, however, interde¬ 

pendent to such an extent that an entirely separate consideration 
of any one of them would be useless from the standpoint of prac¬ 
tical design. Thus, theoretical forms derived from kinematic 
considerations alone must nearly alwa3rB be modified on applica¬ 

tion to real machines, for the reason that account must be taken 
of other factors, such as strength, wearing qualities, ease of 

I»oduction,^etc. 
2. A Madiine is a combination of parts of resistant materials 

having definite motions and capable of transmitting or transform¬ 

ing energy. A machine must always be supplied with energy from 
ftn external source. Its usefulness consists in its ability to alter 

1 ' 



2 GENERAL CONSIDERAiaONS 

the energy supplied so as to render it available for the accomplish¬ 
ment of a desired service. 

A steam engine transforms the pressure energy of the steam 
into mechanical work which is delivered to the crank shaft. This 
machine, therefore, transforms one kind of energy into another. 

A transmission gear may be used to connect two shafts which are 
required to rotate at different rates. Its function will then be to 
alter the mechanical work supplied to it, as regards the speed of 
rotation and twisting moment, the result being to put the energy 
into a form more suitable for some specific purpose. 

Resistant Materials are those that do not easily become dis¬ 
torted or change their physical form when forces are applied. 

3. A Mechanism is a combination of pieces of resistant materials 
whose parts have constrained relative motions. A machine is 
composed of one or more mechanisms. When we speak of a 
mechanism, we think of a device that will produce certain mechan¬ 
ical movements and we set aside the question as to whether it is 
capable of doing useful work. A mechanism may or may not be 
able to transmit an appreciable amount of energy; a machine most 
do so. The latter is, therefore, a practical development of the 
former. 

A working model of any machine, the works of a watch, and the 
moving parts of an engineering instrument are all termed mecha¬ 
nisms because in these cases the energy transmitted is very small, 
just enough to overcome friction, and the motions produced are 
the important consideration. 

A Structure is a combination of pieces of resistant material 
capable of carrying loads or transmitting forces, but having no 
relative motion of its parts. 

A machine frame may be built of several metal parts rigidly 
fastened together so as to allow no movement to take {dace 
between different sections. It is, therefore, a structure. Other 
examples include bridges, buildings, etc. 

4. A Link is a part of a machine or medianism connecting o&n* 
parts which have motion relative to it. A link may serve as a 
‘support, guide other links, transmit motum, or function in all 
tiuw ways. 
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Thus, in a steam engine, the connecting rod, crank, crosshead, 
and frame are links, since each functions in at least one of these 
wa3rs. A single link may be composed of several pieces of material, 
provided that the several portions are so fastened together as to 
move as a unit; the connecting rod consists of the rod, brasses, 
shims, adjusting wedge, bolts, etc., all of which are rigidly con¬ 
nected and make up one link. 

In connection with general mechanical work, the term “ link ” 
is applied to a slotted bar, as shown in Figs. 1-1 and 1-2, or to a 
section of an ordinary chain. In Kinematics it is used in a more 
general way, as noted above. 

Fio. 1-1 
Slider and Straight Guide. 

Fig. 1-2 
Slider and Curved Guide. 

Sigid Links, such as the steam-engme parts just mentioned, are 
capable of transmitting either a thrust or a pull. To this class 
belong most of the metal parts of machines. There are, however, 
many examples of Flexible Links, which in general are so consti¬ 
tuted as to offer resistance in one manner only. Thus, Tension 
Links, such as ropes, belts, and chains, will transmit a pull but not 
a thrust, while Comiiressdon or Pressure Links, such as the water 
in a hydraulic accumulator and pump system, or the oil in a hy¬ 
draulic braking system on a car, axe capable of carrying only a 
thrust. 

Whw a number of links are connected to one another in such a 
way as to allow motion to take place in the combination, it is 
called a Kinematic Chain. A kinematic chain is not necessarily 
a mechanism; it becomes one when so constructed as to allow 
constrained relative motion among its parts. 

6. Pairs of Bements. — Links may make contact witii <me 
another in various ways. Contact may take place over a surface. 
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along a line, or at a point. Those portions of two links making 

contact are known as a pair of elements. Sliding Pairs are those 
in which there is relative motion of the points of contact. (See 
a and 6 in Figs. 1-1 and 1-2.) 

When two bodies are so connected that one is constrained to 
rotate about a fixed axis passing through the other, the contact 
surfaces are known as a Turning Pair. The pin joints of Figs. 
1-3 and 1-4 belong to this class. Turning pairs in practical 
machines generally have sliding contact and it would therefore 
seem that they might be classified as sliding pairs. Theoretically, 
however, a turning pair requires line contact only (i.e., along the 
axis of rotation), so that no sliding action is kinematicaUy necessary. 

Rolling Pairs are those in which there is no relative motion of 
the points of contact. Ball bearings and roller bearings contain 
examples of this kind of pairing. In Fig. 1-11 is shown a section 
of a tapered roller bearing in which rolling pairs are formed by the 
contact points of rollers and races. 

Lower Pairing is obtained when two links are in contact over 
finite surfaces, the two elements of the pair being geometrically 

Fio. 1-3 Fig. 1-4 
Pill Joint. Ditect Acting Engine Medunism. 

similar. A revolving shaft fitted with plain bearings, a threaded 
bolt and nut, an engine crosrfiead and its guides — l^ese will all 
serve as illustrations of lower pairing. (See Figs. 1-3 and 1-4.) 
This is the most common form of pairing in machinery, because it 
has the practical advantage of large wearing surfaces. 

Higgler Pairing exists when two links make contact along a line 
or at a point. Here the contact surfaces are not similar in form. 
Higher pairing is found in gears, tiie teeth making ccmtact at 
points or along lines; also in ball and roller bearings, the rdlen 



HIQHER AND LOWER PAIRINa 5 

and balls making line and point contact, respectively, with the 
races. 

Higher pairs with rolling contact have small friction losses, and 
the wear on the contacts is not severe. 

It should be noted that in practical machines, since the ma¬ 
terials employed possess a little elasticity, some distortion of the 
contact surfaces takes place when pressure is applied. Thus, 
when theoretically line or point contact should occur, actually we 
always have some surface contact. This condition, combined 

Fia. l-6a Fig. 1-56 

Cam Mechanism with Higher Mechanism with Lower Pairing derived 
Pairing. from that of Fig. l-5a. 

Flo. 1-flo Flo. 1—66 
Valve Motion of Steam Pump with Valve Motion Steam Pump with 

H4dier Pairing. Lower Pairing only. 

with the use of lubricants, makes it possible to use sliding pairs 
with line or point contact in cases where the sliding velocity is low. 

Attention from higher to lower pairing can be accomplished 
without any change in the motion of the original linfik. Figure 
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l-5a tdwws a circular cam driving an oscillating follower with 
line contact. Figure 1-56 is an equivalent mechanism with lower 
pairing. The motions of links denoted by the same lettm are 
identical in the two mechanisms. Figure l-6a shows the mech¬ 
anism used to drive the valves of a Duplex Steam Pump, higher 
pairing again being in evidence between one pair of links. Figure 
1-66 shows this mechanism changed to one with lower pairing 
only. 

In both of the cases just mentioned, lower pairing has been 
brought about by the addition of one link. This is the method 
which must usually be adopted. 

6. link Types. — Links forming parts of machines move in 
such a variety of ways that no general classification as regards 

motion is possible. The following 
are three types in common use: 

A Crank is a link in the form of 
a rod or bar, which executes com¬ 
plete rotations about a fixed center. 
(See o. Fig. 1-7.) 

A Lever is a link in the form of 
a rod or bar which oscillates through 
an angle, reversing its sense of rota¬ 
tion at certain intervals. (See c, 
Fig. 1-7.) 

A Slidw is a link in the form of 
a rod, block, or slotted bar, which 
slides over the surface of a second 

, . link. It may move in a strau^t 
Quadno Crank Mecluuusm. as does the crosshead of the 

steam engine of Fig. 1-4, or it may move in a curve, as does tiie 
block in Fig. 1-2. 

7. Motion can be defined as a change of positmn. Motion is 
always a relative term; that is, we cannot ocmceive of any motion 
of a body except by reference to another body. It is usual to 
regard the earth as a fixed body, and we therefore speak of the 
Aksoltite Motion of a body whm we mean its motiim relative to 
the earth. * We apply the term Relative Motfam to the movement 



PARTIAL C50NSTRAINT 7 

of one body relative to another moving body, the earth again being 
considered as stationary. Strictly speaking, we have relative 
motion in both cases, and the above designations are only a con¬ 
ventional means of distinguishing them. 

Constrained Motion. — A body is said to have constrained 
motion when it is so guided by contact with other bodies, or by 
external forces, that any point on it is obliged to move in a definite 
path. Any link in a mechanism has constrained motion. 

Partial Constraint exists when the movement of a body is only 
restrained in certain directions, or so as to take place within 
certain boundaries. 
For example, con¬ 
sidering the kine¬ 
matic chain shown in 
Fig. 1-8, consisting 
of five links with 
turning pairs, it is 
evident that the ' 
links a and b are 
only partially con- Compoimd Mechanism, 
strained, since a 
point, such as A, may move anywhere on a surface whose bound¬ 
aries are fixed by the lengths of the links. If, however, we add 
to the chain another link, such as /, with pin joints, then con¬ 
straint becomes complete, since any point on any link we may 
select will have a definite path of motion. The chain is now a 
mechanism. 

The following common classes of kinematic chains have con^ 
piete constraint, provided that the pairs are so formed as to 
maintain contact: 

(1) Chains containing four links, each link bearing elements of 
two lower pairs. Figures 1-4, l-%, l-€&, and 1-7 illustrate this 
class. ^ 

(2) Chains with three unks, each link containing elements of two 
pain, hi^» pairing bdng used between two links and lower pair¬ 
ing for the other two connections. Figures 1^ and l-6a diow 
two of these mechanisms. 
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These chains are known as Simple Mechanisms. 
There are many mechanisms known as Compound Mechanisms, 

which have more than four links and in which certain of the links 
contain elements of more than two pairs. Figure 1-8, when link 
f has been added, illustrates a mechanism of this ki|^d. A com¬ 
pound mechanism is frequently a combination of two or more 
simple mechanisms. 

laner 
Bed 

<u- 
Fig. 1-9 

Method of Constraining Motion 
of Planer Platen. 

In many mechanisms constraint 
is not effected entirely by the form 
of the links, the action of gravity, 
spring pressure, centrifugal force, 
etc., being utilized. For example, 
the platen of a planer is held in con¬ 
tact and alignment with the bed by 
gravity, which prevents the V- 
shaped guides on its lower side from 
coming out of engagement with the 
corresponding grooves on the top 
of the bed. (See Fig. 1-9.) Also, 

in many cam mechanisms the follower is kept in contact with 
the cam by means of a spring. 

8. Inversion of a Mechanism. — In any mechanism we have 
one link which is fixed i.e., at rest relatively to the earth, or 
to the body on which it is mounted. Exactly the same system of 
links may often be rendered suitable for a different purpose if the 
link originally fixed is allowed to move, while some other link is 
held stationary. Thus, in Fig. 1-4, the ordinary engine mech¬ 
anism, df is the fixed link. By fixing the crank a and allowing d 
to move, we obtain a device which is used as a quick-return motion 
in certain machine tools. The latter mechanism is called an 
Inversdon of the former one. 

It is important to note that the inversion of a mechanism does 
not in any way alter the relative motion of the links which compose 
it. In Fig. 1-4, for example, no matted which link is fixed, the 
motion of a relative to d is that of rotation, and c always slides in 
a stzaigiht line on d. 
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9. Classification of Motions. — Most of the motions which 
occur in mechanisms fall into one of the following classes; 

(a) Plane Motion of a body is obtained when all points in it 
move in parallel or coincident planes. 

When studying plane motion we disregard the thickness of the 
links perpendicular to the plane of motion and speak of the center 
of rotation, instant center, etc., instead of the axis of rotation, 
instant axis, etc., which are the correct terms for the real bodies. 
This somewhat simplifies the treatment and does not detract from 
the value of the information obtained, since all points in any one 
pO'pendicular to the plane of motion move in an identical manner. 
Plane motion is common to all mechanisms shown in Figs. 1-1 
to 1-9. Our diagrams may be sim¬ 
plified by drawing lines to represent 
links, thus obtaining what are called 
“ skeleton diagrams.” In Fig. 1-8 is 
shown the projection of a mechanism, 
also a skeleton diagram. 

Rectilinear Motion is a form of plane 
motion in which all points in the body 
considered move in parallel straight 
lines. (See c, Fig. 1-4.) 

(b) Helical Motion is executed when 
a body rotates about an axis and at 
the same time moves parallel with the 
same axis, the two motions bearing a 
fixed ratio to each other. The motion 
of a nut on a threaded bolt is a very 
common example. Any point on a body 
with this form of motion describes a 
curve called a helix. Figure 1-10 
shows the projection of a helical curve Fig. i-io 
on a plane parallel with the axis of Projection of a Helix, 
rotation. 

The contact surfaces in helical motion are called a Screw Pair. 
(e) Stoical Motion. — A body is said to have spherical motion 

ffbm moving in such a way that any point in it remains at a con- 



10 GENERAL CONSIDERATIONS 

stant distance from a fixed point. Any point on the body, there¬ 
fore, moves on the surface of a sphere. Figure 1-11 sliows a 
cross-section of a tapered roller bearing. Generally the inner 
race X revolves with the shaft Y, and the outer race Z is stationary. 
Any point, such as A, on one of the rollers moves on the surface 

of a sphere ALM, whose 
center is at the point 0; 
hence the rollers have 
spherical motion. Other 
examples are found in 
certain ball bearings, and 
in bevel gears, universal 
joints, etc. 

10. Determination of 
the Motion of a Body. — 
The motion of a body is 
studied by consideration 
of the motion of certain 
points on it. The niunber 
of points to be considered 
depends on whether the 

body can move in any manner, or whether its motion is limited 
to some special type, as, for example, plane motion, helical 
motion, etc. 

In general, to determine the motion of a body completely, we 
must know the motion of three non-collinear points on it. This 
can easQy be demonstrated as follows: If we take any body and 
fix three points on it, it is evident that no motion is possible imbiiiii 
these points lie in a straight line. Likewise, if we move each of the 
tiuee points abng a definite path in space, any other point on tl^ 
body will also follow a definite path, and constraint is complete. 

'V^n a body has Plane Motion, by the same reasoning it will be 
semi that it is only necessary to control the motion of two points 
in order to secure complete constraint. 

When fhe motion is Rectilinear, the motion of one point detrn^ 
mines that of any other in the b^y, sinoe all pmnte it have 
exactly the same motion. 

L 

Fig. 1-11 

An Example of Spherical Motion. 
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QUESTIONS —CHAPTER I 

1. Define the tenns machine ’’ and ** mechanism^” Give one example 
of each. 

2. Distinguish between a structure and a mechanism. 
3. What is a link? What is meant by (a) a rigid link, (6) a fiexible link, 

(c) a pressure link, (d) a tension link? 
4. Define (a) pair of elements, (6) sliding pair, (c) turning pair, (d) rolling 

pair. 
6. Explain why lower pairing is generally more desirable than higher 

pairing with sliding contact. 
6. Distinguii^ between higher and lower pairing and give an example 

of each. 
7. Give an example of how a linkage with higher pairing can be changed 

to one with lower pairing, and point out the nature of the alteration required. 
8. What is a crank, a lever, a slider? Sketch mechanisms containing 

examples of each. 
9. Explain what is meant by partial and complete constraint. To what 

extent is unconstrained motion possible? 
10. Name three classes of kinematic chains in which the motion of the links 

is completely constrained. 
11. What is (a) a simple chain, (6) a compound chain? 
12. What is done when a mechanism is inverted? How does the act of 

inversion affect (a) the relative motion, (6) the absolute motion of the parts? 
18. Define (a) motion, (&) plane motion, (c) rectilinear motion, (d) helical 

motion, (e) spherical motion. Give an example of each of the four varieties 
of motion just mentioned. 

14. In order to determine completely the motion of a body, how many 
points on it must be considered, (a) in general, (6) when it has plane motion, 
(e) when it has rectilinear motion? 

15. Menticm two methods employed for securing closure of a mechanism 
by external forces, and illustrate each one. 



CHAPTER II 

DISPLACEMENT, VELOCITY, AND ACCELERATION 

1. Definitions. — The Displacement of a body is its change of 
position with reference to a fixed point. Both direction and 
distance are necessarily stated in order to define completely the 
displacement of a point or body. 

Velocity is the rate of change of position or displacement of a 
body. A body may change its position by translation through 
space or by angular movement. Thus it may have linear or 
angular velocity. 

Linear Velocity is the rate of linear displacement of a point or 
body along its path of motion. It includes two factors, namely, 
speed and direction of motion. Linear velocity is oft^ measured 
in feet per second, or in miles per hour, though other units are 
found more suitable in special cases. A linear velocity can always 
be .represented graphically by a line, the direction showing the 
direction of movement and the length representing the magnitude 
of the velocity. 

Angular Velocity is the rate of change of angular position of a 
body or line. In order to state it completely, the sense of rotation 
should be given. Angular velocity is commonly measured by the 
angle turned through per unit of time. The angle may be ex¬ 
pressed in radians, degrees, revolutions, etc. Thus, radians 
per minute,^' degrees per second,’^ and ** revolutions per min¬ 
ute are often used as units. 

2. Relation between Angular and Lin¬ 
ear Velocity. — Let By Fig. 2-1, represent a 
point on a body which is rotating about 0. 
0 is therefore a fixed point, and B is 
moving, at the instant considered, in a 
direction perpendicular to the line OR, 
its linear velocity being V feet per second Fio. 2-1 
as indicated on the diagram. 

Assuming .that B continues to move at the same speed, alter 
12 
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aa interval of one second it will have reached the position Bi, 
the arc BB\ having a length equal to V, by definition. The 
angle a turned through by line OB during the same interval is 
measured in radians by 

Arc BBi ^ 

OB r 

Therefore, 
V 

0) — — or V = or, (2-1) 
r 

where « = angular velocity of the body in radians per unit of 
time. We may, thetefore, state the following law: 

The linear velocity of a point on moving a body is equal to the 
angular velocity of the body multiplied by tire distance of the point 
from the center of rotation. 

3. Acceleration is the rate of change of velocity with respect to 
time. Since velocity may be either angular or linear, we likewise 
have both angular and linear acceleration. 

linear Acceleration is the rate of change of linear velocity. If a 
moving body or point has a linear velocity at a certain instant of 
10 ft. per sec., and a second later the velocity has become 18 ft. 
per sec., we have a change of linear velocity of 8 ft. per sec. in the 
one-second interval. Thus, the acceleration for the interval 
considered is 8 ft. per sec. per sec. Note that, as calculated, this 
value is only an average acceleration for the given one-second 
period and does not tell us how the acceleration may have varied 
during the interval. More information would be necessary in 
order to get the accelerqjfcion existing at a particular instant. 
TJnftar acceleration, like linear velocity, can always be represented 
graphically by a line which shows the magnitude and direction. 

Angular Acceleration is the rate of change of the angular velocity. 
When the angular velocity is measured in radians per second, our 
corresponcfing unit of angular acceleration will be " radians per 
second per second or, if in revolutions per minute, it may be 
either “ revolutions per minute per minute ” or “ revolutions per 
minute per recond.” 

For linear motion, the relationships between displacement (s). 
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velocity (p), and acceleration (a) may be expressed mathematically 
as follows: 

V 
do 
dt 

(2-2) 

Here v is the instantaneous velocity or velocity at a certain instant 
and ds/dt expresses the rate of change of the displacement. 
Similarly, a is the instantaneous acceleration and do/dt the corre¬ 
sponding rate of change of velocity. 

When a particle or body starts from rest and is unifoiiiily accd- 
erated to velocity v in time t, 

and 

Therefore 

« = Average velocity X Time 

a 4- 0 vt 
= — X' = 2 

V at. 

8 ** J of*. 

(3-3) 

(2-i) 

(3-5) 

By elimination of f in equations (3-4) and (3-3) we have 

»* = 2 08. (2-6) 

When dealing with angular motioil, if 

d » angular displacement, 
a » angular vdodty, 
a s angular accel^tion, 

then, by definition, 

4. Karmal and Tangratial Aocderation. — The velocity of a 
moving point may change in two ways: (a) its linear speed along 
He path may increase or decrease; or (b) the direction^ its motion 
may change. 
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(o) The rate of change of speed in the direction of motion is the 
Tangential Acceleration, since this involves an acceleration acting 
along the path of motion. 

(b) The change in the direction of the motion is due to the 
Normal or Centripetal Acceleration, which acts in a direction 
normal to the direction of the path of motion. We may there¬ 
fore define these terms as follows: 

The Tangential Acceleration is the linear acceleration in the 
direction of motion at the instant considered, and is measured by 
the rate of change of velocity along its path. 

The Normal or Centripetal Acceleration is that acceleration 
which causes the direction of motion of a body to change. It acts 
along a line perpendicular to the path of motion and toward the 
center of curvature of this path. For example, suppose a point 
A (Fig. 2-2) is traveling along 
the curved path XY. O is the 
center of curvature of XF at the i- 
point A. Assume that the linear 
velocity of A is increasing. Then 
A at the instant considered has a 
tangential acceleration represented 
by the tangent AB to the path of 
motion. The value of this accel¬ 
eration is dVfdt, where V and t 
represent velocity and time, reppectively. A also has a normal 
acceleration acting along AO and represented by a line AC. 
Calculation of the value of the normal acceleration will be 
considered in the next article. The resultant acceleration of 
A is evidently represented by the diagonal AD of the parallelo¬ 
gram ABDC. 

5. Value of tiw Nonnal Acceleratimi. — This acceleration may 
be expressed in terms of the velocity of the point and the radius 
to the colter of curvature of its path. In Fig. 2-3 a point moves 
alcHig a curved path XY. Let A represent the position it occupies 
at a certain instant, its velocity then being equal to V. After a 

short interval aS time At, the point has moved to position Ai 
and its vdtodty k now V + AF. Let lines AB and AiBi tepre* 

Fio. 2-2 
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sent F and F + AF, respectively. These lines are tangents to 
the cTurve XY &t A and A\. The center of curvature of the ama.11 
portion AAi of XF is 0, and the radius of curvature r = 04 * 
OAi. 

The change in velocity is found graphically as follows: Draw 
a velocity triangle abc in which ab is equal and parallel to AB, 
and ac is equal and parallel to AiBi, these two sides thus repre¬ 
senting the initial and final velocities for the small time interval 

e. 

PiQ. 2-3 

At. The third side of the triangle, be, represents the change 
in velocity. Find a point Ci on ac such that aci = ab, represent¬ 
ing F. 

Assuming that 6 has an infinitesimal value, bci becomes sensibly 
parallel to both AO and A'O and represents the change in normal 
velocity, while cic measures the change in tangential velocity. 
The angle baci= 6) u>-dt, where«is the angular velocity about 
the center of curvature. The normal acceleration is calculated 
from l>Ci. From the figure, 

bci = ab • 6 = ab • <a ■ dt — V • u • dt. 

Now, the normal acceleration 
change in normal velocity 

dt 
bci 

dt 
V-a-dt 

dt 
or tfr. C^7) 

For a point revolving about a fixed center, the normal accelera¬ 
tion has the same value in terms of the velocity and radius, be- 
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cause only instantaneous conditions were considered in deriving 
the above formula. 

6. Relation between Tangential Acceleration and Angular 
Acceleration. — These two quantities bear the same relationship to 
each other as do linear velocity and angular velocity. For, since 

V = or, 

by differentiating both sides of the equation and dividing by (ft, 

dv ^ do) 

or 
o * or. ^“8) 

Thus 
The tangential acceleration of a point on a mo^ng body is equal 

to the angular acceleration of the body multiplied by the distance 
from the point to the center of rotation. 

Example. — The flywheel for a metal shearing machine is 4 ft. 
in diameter and rotates at a normal speed of 180 R.P.M. During 
the shearing period, which lasts 2 sec., the flywheel speed is re¬ 
duced to a final value of 150 R.P.M. Assuming constant angular 
deceleration, determine the normal and tangential acceleration of 
a point on the rim at the instant when the speed is 160 R.P.M. 

Solution. — The angular velocity in radians per second corre¬ 
sponding to 160 R.P.M. equals 

160 X 2 T 

60 
16.74. 

The normal acceleration of a point on the rim equals 

o?r = (16.74)* X 2 562 ft. per sec. per sec. 

Since the wheel speed changes from 180 to 150 R.P.M. in 2 sec., 
with constant acceleration, the value of this acceleration is 

(150 - 180) ^ 2 - -15 R.P.M. per sec., 

wHch equals 

16X2*- 

60 
or 1.57 radians per sec. per sec. 
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Hierefore, the tangential acceleration of a point on the rim is 

of «“ —1.57 X 2 = —3.14 ft. per sec. per sec. 

The negative sign indicates a deceleration. 
7. Simple Hamonic Motion. — When a point A (Fig. 2-4) 

moves in a circle with uniform velocity about a fixed point 0, B, 
the projection of A on any diameter such as X F, moves with simple 
harmonic motion. 

Fio. a-5 
Scotch Yoke. 

The Period is the time required for a complete revolution of the 
generating line OA (Fig. 2-4). 

The Amplitude is the distance between the points of reversal 
of motion, or twice the length of the generating radius. 

Tlie Phase is the angular position of the g^erating fine at any 
instant with respect to a reference fine. 

The mechanism shown in Fig. ^5, commonly called a “ Scotch 
Yoke,” gives simple harmonic motion to the link c when the crank 
a rotates with uniform velocity. 

8. Displacement, Velocity, and Acceleration for S.HJd.'— 
Suppose OA (Fig. 2-4) starts from an initial position OX and re¬ 
volves clockwise. Let w equal its constant angular velocity. Then, 
after a pmiod.of time t, the an^e turned throu^ will be'cc • t » 0, 
and the disidacement of B from its mean position at 0 will be 

« a. OB B OA cos d • r cos uf. * 13^) 
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The velocity of B equals 

^ _ d(r cos <d) _ r (sin <d) d(fd) 
dt~ dt dt 

—r«edn(i*f. (2-10) 

The acceleration of B equals 

dv d(—r«sineo<) r(t)(eo3<d)d((d) . ^ “-J,-*-S- 
Simple Harmonic Motion can therefore be defined as a motion in 
which the'acceleration is directly proportional to the displace¬ 
ment, and acts in a direction toward the point of zero displacement. 

Linear Displacement Curve for SJI.M. — In order to con¬ 
struct this curve, we take a base line representing 360“ motion of 
the generating line (Fig. 2-6), and divide it into any number of 
equal spaces representing equal angles. Draw a circle whose radius 
is equal to that of the generating line, with center on the base line 

wo* MO* 

Fio.2-6 
Linear Curve of Displaoement for Body with S.H.M. 

produced. Divide this circle into angles of the same value as the 
base-line intervals. The zero position is at 90“ to the base line, 
as indicated on the diagram. Project horizontally from points 
0,1, 2, etc., to points O', 1', 2', etc. The latter are points on the 
linear curve of (^placement on a base representing the crank an^e, 
for H is evident that the ordinate for any angle 6 is equal to r cos 9. 

linear Velodfy Curve for S.HJif. — (See Fig. 2-7.) The base 
line, as before, is taken to represent 360“ motion of the generating 
line and is divided into equal spaces of a convenient width. A 
drcle is drawn with center on the base line produced, its radius 
r^nesorting the linear velocity at the end of the grareratiag line. 
This circle is divided into equal an^es of the same value as the 
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base-line divisions, starting with zero position along the base line 
as indicated. Taking points 0, 1, 2, etc., project horizontally 
to points O', 1', 2', etc., which are points on the required curve, 
for at any angle 6 the ordinate is equal to —wr sin 6 which is the 
value of the velocity, by equation (2-10). 

Linear Curve of Velocity for Body with S.H.M. 

Linear Acceleration Curve for S.H.M. — A base line is taken to 
represent a complete revolution of the crank (Fig. 2-8). A circle 
is drawn with center on this base line produced, with radius repre¬ 
senting «V. The base and circle are divided into equal angles 
of the same value, the zero position in the circle being at 90° to 
the base line, as for the displacement curve. Project horizontally 
from points 0,1, 2, etc., to points O', 1', 2', etc., which are points 

Fra. 2-8 
linear Curve of Acceleration for Body with S.H.M. 

on iiie required curve. For any angle 6 the ordinate to the curve 
thus obtained is evidently equal to —* r cos 0, the value of the 
acceleration of a point moving with by equation (2-11). 
It will be observed that tiie graphical constructicms for displace¬ 
ment and accderation curves are identical, except for pontive and 
negative signs. 
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9. Polar Curves for S.H.M. — The construction for plotting a 
polar curve for the displacement of a point having S.H.M. is shown 
in Fig. 2-9. Let Z F be the path of motion, its length representing 
the amplitude. Draw a circle with center 0 
and Z F as a diameter. Draw circles with OX 
and OF as diameters. Then these circles 
are polar displacement ounces on an angle ^ 
base as required. This may be proved as 
follows: Take a radius OR in any position, 
making an angle B with ZF. This inter¬ 
cepts one of the small circles at S, Join ZS. Fig. 2-9 

Then the angle XSO = 90®, since it is an S.H.M. —Polar Curve 
angle subtended by a semicircle. Therefore, Displacement. 

OS = OX • cos 0 = r cos B, 

Consequently, the intercept OS is the displacement of the point, 
by equation (2-^. 

The Polar Velocity curve is found as follows: Take a line OX 
representing the linear velocity of the outer end of the generating 

^ line (Fig. 2-10). Describe a circle with 
OX as radius. Draw RS perpendicular to 
ZF. Construct two circles with RO and OS 
as diameters. Then these circles are the re¬ 
quired velocity curves. 

Proof: Take any line OT making an angle B 
with the line ZF, intersecting the small circle 
at V, Join VR, Then angle OVR ~ 90®, 
being the angle in a semicircle. From the 

S.H.M. — Polar Curve figure, 
of Velocity. 

OV = OR * cos (90 — = wr sin B. 

Therefore, the distance OV represents the velocity of the point 
with S.H.M. by equation (2-10), which proves the construction to 
be correct. 

The Polar Acceleration curve of Fig. 2-11 is constructed in the 
same manner as the Displacement curve, except that the radius 
OX now represents cuV. The ordinate OS at an angle B can be 



22 DISPLACEMENT, VELOCITY, AND ACCELERATION 

i^own to have the value wV cos 5, which proves the con¬ 
struction. 

10. Composition d Simple Harmonic Motions of Equal 
Periods. — Machines sometimes contain two or more parts which 
are driven with simple harmonic motions from the same rotating 
member; thus they have equal periods, though they may differ in 
phase and amplitude. This condition is approximately attained 
in certain kinds of valve gears on steam engines. When designing, 
it is necessary to study the relative motion of such parts. 

Fio. 2-11 Pig, 2-12 
S.H.M. — Polar Curve Compodtion of Two Simple 

of Acceleration. Harmonics. 

Suppose that A and B (Fig. 2-12) represent the instantaneous 
positions of two points moving with S.H.M. along a line X Y. The 
generating radii OR and 08 may be unequal and have a phase dif¬ 
ference of p. The relative displacement or distance between the 
points is AB at the instant considered. From 0 draw OT equal 
and parallel to RS. Then OV, the projection of OT on XY, is 
obvioudy equal to AB. It is therefore evident that OT will act 
as a goierating radius producing S.H.M. of the point V whose 
diBfdacem^t from mid-positicm is the relative displacemrat of A 
mdB. 

Urns, two pmnts moving with S.H.M. of equal periods akmg 
the same straight line have a relative motion which is also tdmple 
harmonic, the phase and amplitude of this motion being det^ 
minable by the construction just outlined. 

11. lin^ Vdoctiy-time and Accderathm-time Correa.— 
FVequentiy it is desindile to analyae the motkm d a body, where 
data are arulable as to its potation at cmiain instants, but no data 
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are directly obtainable as to its velocity and acceleration. In¬ 
formation regarding the latter quantities can be obtained if a linear 
displacement-time curve is first plotted and a graphical method is 
then used to derive velocity-time and acceleration-time curves 
from the displacement-time curve. 

In Fig. 2-13 is shown a curve 
obtained by plotting the displace¬ 
ment of a moving body from a 
fixed reference point, on a base 
representing time. Thus at any 
point on the curve, such as A, 
the displacement and time are, 
respectively, s and t At point B, 
after a short interval of time M 
has elapsed, the displacement is 
5 + at time t + A<. Now the 
average velocity during the short 
interval is v where v = As/A< = tan (?. 6 is the angle of slope of 
the line BAD, In the limit where A^ is an infinitesimal, the dis¬ 
tance from A toJB also becomes infinitesimal, and the line BAD is 
then a tangent to the curve. Velocity v becomes the instantaneous 
velocity, that is, the velocity existing during the infinitesimal 
period dt. It follows, therefore, that the instantaneous velocity 
of a body is measured by the tangent of the angle of slope of the 
displacement-time curve at the point considered. 

Since acceleration bears the same relation to velocity as velocity 
bears to displacement, it can be shown in the same manner that the 
instantaneous acceleration of the body is equal to the tangent of 
the angle of slope of the velocity-time curve at the point under 
consideration. 

12. Graphical construction of velocity and acceleration curves 
from a known displacement curve may be carried out as follows: 
Select any convenient number of pomts on the displacement curve 
(Kg. 2-14), as Ai, A*, A*. Construct the triangles AiBiCi, 
AsBsCi, AzBtCt in which the ** AB ** lines are tangents to the curve 
and tiie horizontal BC lines are all of equal length. 

The velocities at Ai, A2, As are proportional to the quantities 
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, gince these are the tangents of the slope angles. 
B\C\ BjtCi BfCi 
By our construction, BiCi — BsCs = BtCt, and therefore it is 

evident that the velocities are 
represented graphically by the 
lengthsiliC'i,j42Cj,.48C». ITiese 
lengths are plotted as ordinates 
on a time base, gimg the Veloc¬ 
ity-time Diagram of Fig. 2-14. 

Since acceleration bears the 
same relationship to velocity 
as velocity bears to displace¬ 
ment, a repetition of the con¬ 
struction just outlined, if ap¬ 
plied to the velocity curve, 
will enable us to draw an 
Acceleration-time Diagram, as 
shown in Fig. 2-14. 

It is somewhat difficult to 
draw accurate tangents to a 
curve of irregular form; hence 
the alternative construction 
which follows, though only an 
approximate one, is often held 
to produce better results. 

We shall assume that the 
following data are available in 
regard to the motion of a car 
in which distances are meas¬ 
ured from a fixed reference 
point at stated time intervals: 

Time (Seconds) 
0 
6 

10 
16 
20 

Distance (Feet) 
0 

11 
67 

188 
298 

•Time (Seconds) 
26 
30 
36 
40 

Distance (Feet) 
412 
472 
501 
511 
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We shall plot our displacement-time diagram, using the fol¬ 
lowing scales: 

Distance 1 in. = 160 ft. 
Time 1 in. = 10 sec. 

For convenience in projection of points, we shall locate our 
curves as shown in the diagram, Fig. 2-15, the base line always 
representing time, and the same instant in time being represented 
by points on the three bases which are in the same vertical line. 
The construction for one point on the velocity curve corresponding 
to the 15-20^ec. interval is as follows. Find the points o and 6 
where the curve crosses the 15-sec. and 20^sec. lines, respectively. 
Draw ac horizontally, thus obtaining a distance 6c (= x). Trans¬ 
fer X to the velocity-time diagram, plotting it opposite the middle 
of the 15-2(>^ec. strip, namely, at 17J sec. Distance x can be 
stepped off 2, 3, or 4 times on this line if desirable, in order to 
increase the height of the velocity curve. In the diagram as 
drawn, it is stepped off twice. 

Then 6' is one point on the velocity-time curve. The proof of 
this is as follows. 

Since ad represents the displacement of the body at the end of 
15 sec., and he the displacement at the end of 20 sec., (6e — ady 
or X represents the displacement during the 5-sec. interval. 

Similar lengths, y, z, will represent in the same way the dis¬ 
placement during the 20-25-sec. and the 25-30-sec. interval, 
respectively. Now the average velocities during equal time in¬ 
tervals are proportional to the displacements which are obtained 
during the corresponding time intervals. Hence x, y, z are pro¬ 
portional to these velocities. If we make thQ assumption that 
the average velocity for each interval is equal to the actual ve¬ 
locity at the middle of the interval, an assumption which is reason¬ 
ably correct if the time intervals are short, we may proceed to 
obtain a velocity curve by plotting x, y, z (or multiples of these 
distances if more convwient) opposite the middle of each interval. 
It will be noted, however, that the error due to the approximation 
decreases as the time intervals are made shorter; hence, for acou- 
nxtf, we must divide up our time base into narrow strips. 
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Since acceleration bears the same relationship to velocity as 
velocity does to displacement, it follows that the acceleration-time 

Hum 

curve is obtained 
from the velocity¬ 
time curve in exactly 
the same manner as 
that in which the 
velocity-time has 
been derived from 
the displacement¬ 
time. This curve is 
shown in the figure, 
the ordinates being 
doubled as before, in 
order to magnify 
variations in the 
shape of the curve. 

A Scale for a dia¬ 
gram is a statement 
of the numerical 
value of the quan¬ 
tity represented by 
unit distance on the 
diagram. Thus the 
velocity scale in Pig. 
2-15 is a statment 
of the numbo’ of 
feet per second 
resented by an or¬ 
dinate one indt long 
on the velocity-time 
diagram. To find 
the numaical value 

Fio. 2-16 of this scale, let ua 
assume that we have 

an ordinate of this length at some point on the curve. Suppose, for 
example, that 5'c' equals 1 in. That is, referring to the vriod^ 
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curve, 
6'c' » 2 ® = 1 in., 

and, returning to the displacement-time diagram, 

6c = a; = i in. 

But our displacement scale is 1 in. = 160 ft. 
Therefore be represents 80 ft. 
Also, 6c is the change in displacement in 5 sec. The average 

velocity during this S-sec. interval is therefore 80 5 = 16 ft. per 
sec. Consequently the 1-in. ordinate on the velocity diagram 
represfflits 16 ft. per sec., or in other words the velocity scale is 

1 in. = .16 ft. per sec. 

A length of 1 in. was assumed for 6'c' simply for ease in calcu¬ 
lation. Any value will give the same scale. 

Similarly, if we assume that any ordinate on the acceleration 
diagram, say that marked “ 2«,” equals 1 in., then the correspond¬ 
ing ordinate s on the velpcity diagram will have a length of i in., 
since the ordinates were doubled. This represents (by the ve¬ 
locity scale just calculated) 16 2 = 8 ft. per sec., which is the 
change in velocity during the 5-sec. period. This is equivalent to 
an average acceleration for the period of 8 -r- 5 = 1.6 ft. per sec. 
per sec. Hence the acceleration scale is 

1 in. = 1.6 ft. per sec. per sec. 

18. Relative Velocities of Three Bodies. —The symbol Vj, 
means the relative linear velocity of point or body a with respect 
to point or body 6. Considering three bodies, we have three 
rdative velocitieB as follows: V^, Vu, V«,. There are also veloc¬ 
ities Vh0, Va, and V„, but these are not independent quantities, 
ednoe 

Va - -Fw; Vtc - -F*; F« - -F„. 

The truth of these statements is self-evidoit if we consider the 
following example. A passenger on an east-boimd train sees 
any landmark receding to Ahe west at the speed of the tnun. 
Tbtis two vectors, representing velocity of passenger relative to 
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earth and of earth relative to passenger, are of equal length but 
have arrows representing directions pointing, respectively, east 
and west, or one velocity is —1 times the other. Again, if the 

passenger walks forward through the 
train it is obvious that his velocity 
relative to the ground is the arithmetic 
sum of his velocity relative to the train 
plus the velocity of the train relative 
to the ground. If, however, he walks 
in another direction, say diagonally 
across the car, then his velocity to the 
ground is found by taking the vec¬ 
torial summation of his velocity rela¬ 

tive to the train (F«») and the velocity of the train relative;, to 
the ground (F^,) or 

F«5 Vic “ Vac. 

The sign -f-> is used to indicate the vectorial rather than the 
arithmetic sum. In Fig. 2-16 is shown the graphical method of 
summing the vectors Va, and F6e, the resultant being equal to the 
dosing line Fw of the triangle. The direction of the arrows in 
this figure should be carefully observed since here errors often 
occur. Where we have a vectorial sum, as for Foj and Vu, the 
arrows point around the figure in the same sense. As a guide to 
correct vectorial summation let us write our vectorial equation 
as follows: 

Va/b-¥* Vh/e = Fo/c. 

If we treat the subscripts afb, hfe as quantities to be multiplied, 
the result is (o/6) X (6/c) = a/c. On the other hand, the sum 
Va/b 4^ Vc/i would equal Vac/if by the same method, and this 
quantity has no significance as a velocity vector. This would 
show that the left-hand side of the equation is wron^y written. 

When two bodies have known velocities with respect to a third, 
the Vdodty Ratio is the quotient obtained by dividing one ve¬ 
locity by the other. Both velocities may be linear, or both may be 
angular. If both are angular the velocity ratio should beu a 
imgative sign whai the two bodies turn in opposite senses. 
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Example. — Find the velocity of the crank pin A (Fig. 2-17) 
on a locomotive driver when the locomotive is moving at the rate 
of 36.1 miles per hour. 

Sohjiion. — The velocity of wheel center B relative to the track 

Cis 
36.1 X 22 

15 
63 ft. per sec. 

The angular velocity of the wheel is ——— = 21.2 radians per 
uU 

second. 
The linear velocity of A relative to B (t; = «r) is 

21.2 X 10 = 212 in. per sec. 
= 17.66 ft. per sec. 

Starting from a point 0, draw vectors OL and LM representing 
Vbc and Vab respectively. The closing line OM of the triangle 
CnLM is the required velocity Vac- By this method OM is found 
to represent a velocity of 63.7 ft. per sec. at an angle of 14® with the 
horizontal. 

QUESTIONS —CHAPTER H 

1* Define (a) displacement, (5) velocity, (c) linear velocity, (d) angular 
velocity. Name a common unit for each. 

2. Define (a) acceleratiou, (h) linear acceleration, (c) angular accderation. 
Name a common unit for each. 

S. What is meant by (a) tangential acceleration, (5) normal accderation, 
of a moving point? Wmt is the normal accderation of a point moving in a 
curved path of radius r feet at a speed of v feet per second? 

4. A train moves at the rate of 45 miles per hour. What is its vdocity 
ip feet per second? An$, 66 ft. per sec. 
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5* The wheel of an automobile is turning at the rate of 350 R.P.M. What 
is the angular velocity of the wheel in radians per second? What is the speed 
of the car in miles per hour? The tire diameter is 30 in. 

6. A piece of cast iron 6 in. in diameter is to be turned in a lathe with a 
cuttlug speed of 90 ft. per min. At what speed must the work be rotated? 

Ana. 57.3R.P.M. 
7. In a shaper the cutting tool has a stroke of 15 in. The cutting stroke 

takes twice the time required for the return stroke. If it is desired to obtain 
an average speed during the cutting stroke of 25 ft per min., what must be 
the R.P.M. of the driving crank? Ana. 13.34 R.P.M. 

8. An automobile is accelerated uniformly from 10 to 30 miles per hour in 
8 sec. Find the value of the acceleration in footHsecond imits. If the wheels 
are 28 in. in diameter, find their angular acceleration in radian-second units. 

9. A flywheel rotates at 250 R.P.M., its radius being 6 ft. Find (a) its 
angular velocity in radian measure, (5) the linear velocity of a point 3 ft. 
from the axis, (r) the normal acceleration of a point on the rim. 

10. A flywheel 4 ft. in diameter is speeded up from 120 to 380 R.P.M. with 
constant angular acceleration in 2 sec. Find the total acceleration of a point 
on the circumference of the wheel when the speed reaches 180 R.P.M. 

Ana. 711 ft. per sec. per sec. 
11. A point on a body moves along a curved path. At a certain instant the 

point has a velocity of 27 ft. per sec., a tangential acceleration of 40 ft. per 
sec. per sec., and a normal acceleration of 54 ft. per sec. per sec. i^nd (a) the 
radius of curvature of the path, (6) the total acceleration of the point, (c) the 
angular velocity and the angular acceleration of the body. 

12. The speed of a flywheel rim is 50 ft. per sec. and the R.P.M. are 200. 
Find (a) the radius of the wheel, (5) the normal acceleration of a point on the 
rim. 

13. A reciprocating steam engine has a stroke of 24 in. and rotates at 
225 R.P.M. Find (a) the linear velocity of the crank pin, (5) the normal 
acceleration of the crank pin. Ana. (a) 23.5 ft. per sec. "ib) 5M ft. per sec. 
per sec. 

14. A revolving body has an angular acceleration of 30 radians per sec. per 
sec. A point on it is distant 12 in. from the axis of revolution. When the 
speed of the body reaches 200 R.P.M., find the normal and tangential accder- 
ation of the point, and show how the total acceleration can be obtained 
graphically. Ana. 30 ft. per sec. pdlr sec. 438 ft. per sec. per sec. 

18* What is meant by ** simple harmonic motion Explain ihe meaning 
of^he terms ** period,” ** phase,” and ** amplitude ” as applied to this form 
of motion. 

14. Show how to draw a linear curve of (o) vdooity, (5) acoeleratkm, for a 
point having S.H.M., given the pexiod axid amplitude. 

17. Show how to draw a polar curve of (a) disiflacement, (8) velocity, lor a 
point haidng S.H.M., given the period amplitude. Prove your eoii<* 
stmeUons. 
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18. A point has S.H.M. of period 2 sec., amplitude 6 in. Find (a) its 
maximum velocity, (6) its maximum acceleration. 

19. A point has simple harmonic motion of period 2 sec., amplitude 6 in. 
Find (a) its dispiaoement, (&) its velocity, when the revolving line is at 30"* 
with the line of motion. Ans. 2.6 in., 0.392 ft. per sec. 

90. In the mechanism shown in Fig. 20P, the 
crank a, 12 in. long, rotates at 100 R.P.M. Find (a) 
the velocity of b, and (b) the acceleration of b, when 
the crank a is at 60° with the line of stroke. 

21. The slotted link in a Scotch yoke is found to at* 
tain a maximum velocity of 6 ft. per sec., the crank 
length being 4 in. At what average speed does the 
slotted link move if the crank rotates uniformly? 
What is the maximum acceleration? 

Ana. 3.86 ft. per sec.; 108 ft. per sec. per sec. 
22. A single-cylinder steam engine has a slide valve driven by an eccentric, 

the eccentric radius being advanced 120° ahead of the engine crank. The 
total movement of the valve is 4 in., and it can be considered as simple har¬ 
monic. Find the displacement, velocity, and acceleration of the valve at the 
instant when the engine crank is on the dead center. The engine turns at 
300 R.P.M. 

28. Given a distance-time curve, show how to obtain graphically a velocity¬ 
time and acceleration-time curve. 

24. n, in Question 23, the distance scale is 1 in. » s ft., the time base is 
divided into intervals representing n sec., and the ordinates are doubled in 
transferring, show that the velocity scale is 

1 in. — ft, per sec. 
2 n 

26. If, in Question 23, the velocity scale is 1 in. » t; ft. per sec., the time 
base is divided into intervals representing n sec., and ordinates are doubled 
in transferring to the acceleration diagram, show that the acceleration scale is 

p 
1 in. * — ft. per sec. per sec. 

2n 

26. A pdar curve for the velocity of a point with S.H.M. is drawn with a 
maximum ordinate of 2 in. (a) If the length of the generating radius is 6 in. 
and its angular vdodty 150 R.P.M,, what is the velocity scale for the polar 
curve? (b) U a polar accderation curve for the same point has a maximum 
ordinate of 2 In. what is the acceleration scale? 

27^ How many different relative motions are thm when three bodies are 
considered? when four bodies are considered? Show graphically how to 
fkad one of the relative velocities when the others are known. 

Fiq. 20P 
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28. A bee enters the open window of an automobile and leaves at the corre> 
spending point on the opposite window, 4i ft away, just } sec. later. If the 
automobile is traveling at the rate of 12 ft. per sec., find the speed and direc¬ 
tion of flight of the bee. Aws. 15.0 ft. per sec., 30° 52' to auto axis. 

29 A locomotive has driving wheels of 62 in. diameter. The tender 
wheels are 36 in. diameter. Find the angular velocity of each and the velocity 
ratio when the locomotive is traveling at the rate of 40 miles per hour. 

Ans, 22.7 rad. per sec., 39.1 rad. per sec. Ratio 1 :1,72. 
30. A locomotive, running at 60 miles per hour has a stroke of 32 in. Find 

the velocity of the crank pm relative to the ground when the crank is in the 
position shown in Fig. 30P. 

Fio. SOP 

81. A locomotive is traveling at the rate of 45 miles per hour. The driving 
wheels are 6 ft. in diameter. Find the speed of a point on the rim of the 
driver when the point occupies the positions Ai, Aa, At, At in Fig, 31P, 

82. A street car with wheels 30 in. in diameter is traveling at the rate of 
35 miles per hour, (o) What is the angular velocity of the wheels? (h) What 
is the linear velocity of the highest point on the tread of a wheel, relative to 
the track? Ans, (a) 41 rad. per sec. (6) 102.5 ft. per sec. 

88. The pair of friction wheels a and b shown in 
Fig. 33P are respectively 8 and 6 in. in diameter. 
They roll together without slipping, a turning at 210 

^ R.P,M, Show how to find i^aphically the relative 
velocities of point L to point M, of point L to point 
N, and of point M to point N, 

34. An airplane has a landing speed of 50 miles per 
hour. Find the velocity of the end of the propeller 
blade relative to the ground, at the instant when the 

blade is in a horizontal position when landing. The propeller is 7 ft. in 
diameter and is turning at 550 R.P.M. 

86. Two points lying on a revolving disc in the same radial straight line 
have a relative velocity of 60 ft. per sec. If the disc turns at 420 R.P.M., whiat 
is the distance between the points? 

86. The hour hand of a clock is 3 in. long and the minute hand 5 in. l<H:ig, 
What is the rdative velocity, in inches per minute, of points at the ends of 
the hands at nine o’clock? 
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87. A pilot flies a straight course from city A due north to city 400 miles 
distant. His plane has an air speed of 180 miles per hour. A cross wind blows 
due east at 60 miles per hour. In what direction must the plane be headed, 
and how long will the trip take? Ans. N 19^^ 30' W, 2 hr. 21 min. 

38« A boatman heads his boat across a river 1 mile in width. He can 

propel the boat at the rate of 4 miles per hour. The current in the river flows 
at 5 miles per hour. How long does it take him to reach the opposite bank? 

What is his velocity I’elative to the shore in direction and magnitude? How 
far downstream does he land? 

89. An airplane takes off from city A to fly to city B, due west and distant 
600 miles. The wind is estimated to be blowing at 50 miles per hour in a 

direction £ 30° S and the plane's course is set on this basis. If the wind 
actually blows at 30 miles per hour in the direction given, how far from the 
starting point will the plane be at the time it should have landed at its des¬ 
tination? Obtain by vector diagram the distance of the plane from its objec¬ 

tive at that time. The plane has a cruising speed of 200 miles per hour. 



CHAPTER in 

INSTANT CENTERS 

1. General — Parts of machines with plane motion may be 
divided into three groups: (a) those with angular rotation about 
a fixed axis; (h) those with angular movement but not about a 
fixed axis; and (c) those with linear but not angular motion. 
All these motions may be studied by the use of Instant Centers. 

For kmematic purposes, as pointed out in Chapter I, we shall 
disregard the thickness of the bodies perpendicular to the plane of 
motion, and deal with the projections of the bodies on this plane. 

Let c, Fig. 3-1, represent a body having plane motion relative 
to a second body d. A point A on c lies in the position Ai at a 
certain instant, and point R is at Bi at the same instant. An 
instant later A has moved to A: and B to Since A and B are 
points on the same body, AiRi and 
AjRj are of equal length. If we bisect 
AiA; and BiBt at right angles by 
KL and MN, respectively, and find 
the intersection of these two lines at 
0, then it is evident that the move¬ 
ment of A from Ai to Aj and of B 
from Bi to B2 could be accomplished 
by rotation of the body e about 0. If 
distances AiAi and BiBt are infinitely Fio. S-1 
small, then 0 becomes the Instant 
Center for tiie relative motion, and is called Oa, meaning the 
instant center for the motion of c with respect to d.” Ott can 
be regarded as the position of a pair of sapeiimpoBed points, one 
on each body, the two points having for the instant no motion 
with respect to one another. The instant ooater may therefore 
be defined in either of the following ways: 

34 
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(а) When two bodies have plane relative motion, the instant. 
center is a point on one body about which the other rotates at the 
instant considered. 

(б) When two bodies have plane relative motion, the instant 
center is the point at which the bodies are relatively at rest at the 
instant considered. 

2. Locating Instant Centers. — Instant centers are extremely 
useful in finding the velocities of links in mechanisms. Their 
use sometimes enables us to substitute for a given mechanism 
another which produces equal motions and which is mechanically 
more serviceable. The methods of locating the instant centers 
are therefore of great importance. When a body has constrained 
motion, any point on it traces out a point path in space. When the 
motion is plane, the point path is a plane figure of some sort. 
Very frequently we can easily find the point paths corresponding 
to the motions of two points on a body. When this is the case 

_ the instant center is found as follows: 
In Fig. 3-2 body c has plane motion 
relative to d. Curves RS and TV are 
respectively the paths traced out on d 
by two points A and B on c. The in¬ 
stantaneous motions of the two points 
must be along tangents v and vi to the 
paths of motion, and the instant center 
must be so placed as to give motions 
in these directions. To cause A to 
move in direction v, the body must be 

swung about a center somewhere on the line KL perpendicular 
to p. Likewise, to cause B to move along vi, the center must 
be somewhere along M N. The intersection of these lines at 0^ 
is the only point which will satisfy both requirements, and this 
p(wt is therefore the instant center. 

3. Special Cases. — (a) When two links in a mechanism are 
connected by a pin joint, as for example c and d. Fig. 3-3, it is 
evidmt that the pivot point is the instant center for all possible 
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positions of the two bodies, and is therefore a permanent center 
as well as an instant center. 

(b) When a body has rectilinear motion with respect to a second 
bod:., as in Fig. 3-4 where block c slides between the flat guides d, 
the instant center is at infinity. This must be the case, since if we 

K M 

take any two points, such as A and B, on c and draw KL and M N 
perpendicular to the directions of motion, these lines are parallel 
and meet at infinity. 
v(c) Where two bodies slide on one another, maintaining contact 

at all times, as c and d, Fig. 3-5, the instant center must lie along 
the perpendicular to the common 
tangent. This follows, since the 
relative motion of contact point 
Oi on c to contact point Os on d 
is along the common tangent 
XY; otherwise the two surfaces 
would either separate or cut into 
one another. Relative motion 
along the common tangent can Pig. a-6 

be effected only by swinging about a center somewhere along the 
perpendicular KL; hence the instant center is on this line. 

(d) Where one body rolls on the surface of a second, as in Kg. 
3-6, where c rolls on d, the instant center is then the point of 
contact, since at this point the bodies have no relative motioa. 
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4. Approximate Construction for Locating Instant Centers. — 
When the instant center must be obtained from point paths that 
are not either circles or straight lines, the following approximate 
method can often be profitably substituted for that described in 
Art. 2. It avoids the difficulty of drawing normals to the curves. 
In Fig. 3-7, RS and TV are respectively the paths traced out by 
two points A and 5 on a body c having plane motion with respect 
to another body d. Ai and Bi are positions reached by A and B 
at a certain instant. After a short time interval, A moves to At 

and B to Bt. Evidently, AiBi equals AtBt, since A and B are 
points on the same body a fixed distance apart. To find the 
approximate position of the instant center corresponding to the 
short time interval while this movement takes place, we bisect 
AiAt at 90® by KL, and B^Bt at 90® hy MN. The two perpen¬ 
diculars meet at 0^, the required point. This construction is 
exact only when AiAt and BiBt are circular arcs with as a 
common center, or when AiAt and BiBs are infinitesimals. The 
error in other cases is not great if AiAt and BiBt arc small. 

5. Eeimedy’s Theorem. — This theorem states that the in¬ 
stant centers for any three bodies having plane motion lie along 
the same straight line. It is proved as follows: 

Let a, b, c (see,Fig. 3-8) be any three bodies having plane motion 
with respect to one another. Let Oa, (he, 0^ be the three instant 
centers. 

is a p6int on either a or b, because it is an instantaneous 
lavot about which one body swings with reference to the other. 
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First consider Oab as a point on a. Then it is moving relatively 
to c about the instant center Oac, and its direction of motion is per¬ 
pendicular to the line Oac—Ooft- Next consider as a point on b. 
It is now moving relatively to c 
about the instant center Obc, and 
its direction of motion is perpen¬ 
dicular to the line Oi^—Oab- But 
the point Oah cannot have two dif¬ 
ferent motions relative to c at the 
same instant. Therefore, the per¬ 
pendiculars to the lines 0^—Ogb 
and Ohc—Oab must coincide. Con¬ 
sequently, Oac—Oah—Ohc is a 
straight line. 

Fig. 3-S 

Kennedy's Theorem is very useful in locating instant centers in 
mechanisms in cases where two instant centers for three links 
are known and the third has to be found. Examples given later 
in the chapter illustrate its application for this purpose. 

6. Number of Instant Centers. — In any mechanism having 
plane motion, there is one instant center for each pair of links. 
The number of instant centers is therefore equal to the number of 
pairs of links. With n links, the number of instant centers is 
equal to the number of combinations of n objects taken two at a 

time, namely, —. 

7. Quadric-crank Mechanism. — (Fig. 3-9.) This consists 
of four links connected by turning pairs at Jf, L, M, N. The 

number of instant 
centers is, by Art. 6, 

4X3 6. Four of 
2 

these oeuters are 
found at the pivot 
points, by Art. 3(a}. 
These are 0^, (hn 

and0|.. 'niere> 
tnaining two, namely 0„ and 0», may be located (a) by ii» point* 

N.OmI 
Fig. 3-9 

•iObs 
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path method of Art, 2, or (6) by the use of Kennedy's Theorem. 
Both methods will now be described. 

(a) In appl3dng the point-path method to find the instant 
center of two bodies, it is convenient to consider one of the bodies 
as being fixed and then to note the direction of motion of two points 
on the other. Thus, to find Ooc, we regard c as a fixed link and 
observe the direction of movement of points K and L. Point K 
is moving about a center at JV* in a direction normal to KN. 
Likewise, L is moving about ilf in a direction normal to LM, 
The intersection KN and LM is, therefore, Oacy by Art. 2. 

In a similar way, by regarding b as fixed, we can find Odb at the 
intersection of KL and M N. 

(b) In using Kennedy's Theorem to find Oac, we select two groups 
of bodies, each group consisting of the two bodies a, c, plus a third. 
The instant centers for each group must lie in one straight line, 
by the theorem. Taking a, c, b as one group, Oac must lie on a 
straight line with 0^—Taking o, c, d as the other group, 
Oac must lie along Oja—Ocd- Therefore, Oac is at the intersection of 
the lines —0^ and Oda—0«|. The instant center Odb is found in 
the same manner. 

8. Instant Centers for the Slider-crank Mechanism. — It is 
important that the student be able to recognize the Slider-crank 

Mechanism in any of its 
many forms since it is ap¬ 
plied to a large variety of 
practical uses. 
described as a lour-uim 
chain in which one pair of 
links have rectilinear mo¬ 
tion with respect to each 
other, while the relative 
motion of any other pair 
of adjacent links is that 
of rotation about a per¬ 
manent center. The mech¬ 
anism,' therefore, contains 

Hmm taming pairs and one sliding pair. 
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Figures 3-10, 3-11, and 3-12 illustrate three forms of the Slider- 
crank Mechanism, corresponding 
links bearing the same letter. 
There are six instant centers, 
three of them, Oad, Oabf Oi^, being 
located at the pivot points. One, 
Ocd, is at infinity, because the 
relative motion of c and d is 
rectilinear. The two remaining 
centers, Oac and Ow, may be found 
as follows: For Om, d is re¬ 
garded as fixed; then the point 
Obe moves along XY and the 
point Oab moves perpendicularly 
to the center line of the link a. 
As these are two points on link &, 
the instant center Otd is at the in¬ 
tersection of the perpendiculars 

Pio. 8-12 

to the directions of motiop of 
these points. (See figures.) 
Similarly, for 0^, if c is fixed, 
Oad is constrained to move 
parallel to XF, and point Oab 

y perpendicularly to the center 
line of b. The normals to 
these directions of motion 
meet at 0«.. It is possible to 
state a general rule, for find¬ 
ing the two centers for oppo¬ 
site links (Oae and Om)i which 
will apply to any form of the 
chain. Draw perpendiculars 
to the line of slide (XY) at 
the pivot points of the two 
links containing elements of 
the sliding pair. The two 
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tersections of these lines with the center lines of the other links 

(which have pivot elements only) will be the required centers. 
9. Circle Diagram. — A diagram of the form shown in Fig. 

3-14 is useful when finding instant centers since it gives a visual 
indication of the order in which the centers can be located by 
means of Kennedy’s Theorem and also, at any stage in the process, 
it shows what centers remain to be found. The circle diagram 
will be used for finding the centers in the six-link mechanism of 

Crusher Mechanism. 

Fig. 3-13. We note (by Art. 6) that the number of instant centers 
is fifteen. The following procedure is used to locate them:' 

(a) Draw a circle, as in Fig. 3-14, and mark points, a, b, c, d, e,f, 
around the circumference, representing the six links in the mech¬ 
anism. As the instant centers are located, draw lines connecting 

the points with corresponding letters on this diagram. Ihus ab 
is drawn when the instant center Oob is found. The figure will have 
lines connecting all pairs cS points when all instant centers have 
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been detennined; five lines will radiate from each point on the 
circumference. Numbers on the lines, indicating the sequence in 
which they are drawn, facilitate checking. 

(i>) Pivot points are instant centers for the links connected at 
these points. Therefore, locate 0,^, O^j, Ohe, Oa, 0*, Ou, 0^, and 
draw lines 1-7 in figure. 

(c) When the relative motion is rectilinear, the instant centers 
are at infinity. Thus 0^ is at infinity. Draw line 8 on the 
diagram. 

(d) Links ctfe/ form a slider-crank mechanism. Therefore, 0# 
and Oc, are located as in Art. 8 and lines 9 and 10 are drawn. 

(e) Kennedy’s Theorem will be used to locate the rest of the 
instant centers, though in this particular case two more could be 

i ii I 
i m I 

Pig. 3-15 

found by considering the Quadric-crank Mechanism aJxf. From 
inspection of our diagram, now in the condition shown in Fig. 
3-14, we note that by joining fb we complete two triangles 
and ibf. Since this is the case, we locate the instant center Oy at 
the intersection of 0«j—0^ and —(?«. Had we drawn co in¬ 
stead, only one triangle, namely eqf, would have been formed; 
hmoe the center 0„ could not be found by the theorem at this 
stage, though it can be after Ood (line 12) is placed. The lineeais 
tiierefore taken as number 13. The procedure is the same for the 
remaining points, which by inspection are seen to be Om aod 

If each line is first drawn as a broken line, while the center is 
being located, and made solid as soon as the center is found, errors 
are less likely to occur. Figure 3-13 shows the locaticm of all the 
instant omtm, and Fig. 3-15 the completed diagram. 



CBNTRODES 43 

10. Centrodes. — The locus of the instant center of a moving 
body is known as a centrode. Referring to Fig. 3-16, A and B, 
two points on a moving body c, trace out point paths RS and TV 

on a fixed body d. Ai, 
Ai, At are instantaneous 
positions of point A, and 
Bi, Bt, Bi are correspond¬ 
ing positions of point B 
at the same instants in 
time. Erecting perpen¬ 
diculars to the point paths 
at ill and Bi, we find the 
instant center Oi at the 
intersection. Ot and Ot 
are found in similar fashion 
by mtersections of perpen¬ 
diculars at At, Bt, and 
At, Bt, respectively. Oi, 

Ot, Ot are points on the centrode for the relative motion as 
drawn on the fixed body d. 

Since the instant center is a point on either body, we can find 
a second centrode traced out by the instant centers on the surface 
of c. iThat is, we now consider 0 as a point attached to and moving 
with c. To construct this centrode we must choose a " reference ” 
position of the points A and B, say at AiBi, and refer the instant 
centers Oj and Ot back to it. Oi then becomes a common point on 
both centrodes, and the points Ot and Ot are found by sliding 
back the triangles AtB/)i and AtBtOt so that the “ AB " sides 
omcide with AiBi. Thus, triangle AiBiOt is made equal to 
AtB/)t, and triangle AiBiOt equals AtB^. A curve drawn 
throui^ OiOiOt is the centrode attached to c. 

An alternative method of drawing the secmid centrode attached 
to tile moving link is to invert the mechanism, making this link 
the fixed one. By this method, c in the figure would become the 
fixed link and d would be allowed to move. This construction 
beomnes difficult when the point paths have an irr^;ular shape. 
A case suitaMe for this method will be considered in the next article. 
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11. Properties of Centrodes. — When one body has constrained 
motion relative to another, it will be observed that, for any relative 
position of the two bodies, the two centrodes are in contact at a 
point, this point being the instant center for that position. As 
relative motion continues, it follows that the two centrodes will 
roll on one another. Consequently, it is possible to substitute 
for a given mechanism an equivalent mechanism containing two 
rolling surfaces which will produce the same motion of a selected 
link as it had in the original. An example of this will now be 
shown. 

In Fig. 3-17 is illustrated one form of the Double Slider-crank 
Mechanism, consisting of a bar link a pivoted to blocks b and c, 
the latter sliding in guides on a frame d. Points A and B on a 
have straight-line motion along XY and XZ, respectively. In 

the initial position Ai, Bi (Fig. 3-18), the instant center is at 
Oi, the intersection of perpendiculars to XY and XZ at Ai and 
Bi, respectively. The centrode attached to the frame d is drawn 
through points Oi, O2, etc., the latter being found in the same way 
as Oi. This is the curve MO1O2N. 

Two methods may be used to find the centrode attached to a. 
(a) In Fig. 3-18 is shown the same construction as was used in 

Art. 10. For the reference position, A.S is taken as coincident 
withXF. Triangle XFOi' is made equal to AiBiOi; XYOt* 
equals AsBiOi, etc. The curve MOiOt'P is the centrode attached 
to a. 

(b) In Fig. 3-19 link a is held fixed and d is moved around it. 
As the frame, represented by the lines XF and XZ, is moved aroimd 
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the body a, represented by the line AB, XY must always pass 
through A and XZ must pass through B. The angle YXZ being 
constant, the apex X will trace out a circular arc AX^XiB. When 
X is in position Xj, the instant center is at Oi, a point found by the 
intersection of perpendiculars to Xi Fi and XiZ\ through A and B, 
respectively. Similarly, Oi corresponds to position Xj. The 
centrode attached to a is the curve MOiOtP. 

We can now construct a mechanism as shown in Fig. 3-20 in 
which we have replaced the sliding blocks b, c and their guides 

(Fig. 3-17) by two surfaces whose profiles are the two centrodes, 
one surface being attached to a and the other to d. The motion of 
a relative to d in Fig. 3-20, obtained by rolling together the 
centrode surfaces, is the same as for the corresponding links of 
Fig. 3-17. 

Figure 3-20 is an example of the substitution of higher pairing 
with .rolling contact for lower pairing with sliding contact. This 
principle has been employed in the valve gears of certain gss 
engines of German manufacture. 
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QUESTIONS —CHAPTER HI 

1. Define instant axis/’ What convention do we use, for simplicity, 
when referring to the instant axis of a body having plane motion? 

2. Show how to find the instant center for the motion of a body when the 
directions of motion of two points on it are known. 

3. Show how to find one position of the instant center of a moving body 
when the paths of two points on it are known. 

4. Prove that when three bodies have plane relative motion the instant 
centers must lie in one straight line. 

5. Prove that the number of instant centers for n bodies equals 

n(n — 1) 
2 

6. Locate all the instant centers in the mechanisms shown in Figs. 6A 
to 6H. In each case explain the methods employed. 
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7. In the compound mechanisms shown in Figs. 7A to 7G (a) determine 
the number of instant centers, (5) locate all the instant centers. 

9. What is the valuable property of oentrodes as regards their application 
to the design of meohaaistns? 

10. IBui^te the manner in whidi a mechanism can be altered so as to use 
ndbig eentrodes instead of turning and sliding pairs. 





CHAPTER IV 

VELOCITY AND ACCELERATION IN PLANE MOTION 

1. Velocities from lastant Centers. Points on One Linlr.— 

When a body revolves about a fixed center, as c (Fig. 4-1), which 
is pin-connected to the fixed frame d, any point on the moving 
body has a velocity which varies directly as its distance from the 
center of rotation. The velocity of a point P on c is F/> =» 
aa • rp‘ Similarly, any other point Q on the same body c, has a 
velocity Fq = • tq. 

Dividing the two equations, 

^ = or Fo=FpX^- (4-1) 
Fp Tp Tp 

As P and Q are any two points on the body c, it follows that if 
the velocity of one point on a moving body and the location of the 
pivot point are known, the veloc¬ 
ity of any other point can be 
found. A simple graphical con¬ 
struction is often found conven¬ 
ient. A vector Fp (Fig. 4-1) is 
drawn perpendicular to rp, rep¬ 
resenting the known velocity of 
P. With 0 as center and radius 
OP, a circle is drawn intersecting 
OQ, produced if necessary, at S. 
Since jS and P are the same dis¬ 
tance from the center of rotation, 
their velocities are equal in mag¬ 
nitude but differ in direction. The vector ST is drawn perpen¬ 
dicular to OS to represent Fp. Line QW, drawn parallel to ST, 

Fio. 4-1 

forms a triangle OQW, similar to OST. 

QW OQ rg Vq 
ST “ 08rp^^ Vp 

Therefore, 

from equation (4-1). 

49 
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Hence, if ST represents Fp, then QW represents Vq to the same 
scale. As instantaneous conditions only have been considered, 
this graphical construction applies whether the point about which 
the body rotates is an instant center or a pennanent center. 

Sometimes the instant center is inaccessible and the above 
graphical construction becomes impossible. In this case the fol¬ 
lowing alternative is useful: 

Let P and Q (Fig. 4-2) represent two points on a body c, in 
motion with reference to .a second body d. The known velocity 

of P is represented in magnitude 
and direction by the vector Fp. 
The instant center is at some inac¬ 
cessible point Orf which is located 
at the intersection of perpendicu¬ 
lars to Fpand Vq. 

With P as center, arc 1 is swung 
through 90°, locating the point A 
on the line P—the normal to 
the direction of motion of P. 

From A the line 2 is drawn parallel to PQ meeting Q—0*4 at B. 
With center Q and radius QB, arc 3 is described, subtending 90° 
at Q. Then it can be shown that vector Vq represents the velocity 
of Q. The proof follows. 

Since AB is parallel to PQ, triangles OcdAB and OaPQ are 
similar. As a imilt. 

0*4-0 _ BQ 
O^P~ AP- 

But, by equation (4-1), 

Hence, 

Ig_O«r-0 
Fp“^=P- 

Is? 
Vj> 

Fp is represented in magnitude by AP, then BQ repreamts Fq 
tibe same velocity scale. 
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2. Velocities from Instant Centers. Points on Different 
Links. — Very frequently it is necessary to find the velocity of a 
point on a certain link of a mechanism from the known velocity 
of another point located on a different link. Several methods are 
usually available, each having advantages for particular cases. 
A discussion .of these methods follows. 

(a) Direct Method. — In applying this method, we first find the 
instant center for two links, one containing the point of known 
velocity and the other containing the point whose velocity is to be 
determined. Regarding this instant center as a point where the 
links in question have a common velocity, we can work through 
it from one link to the other. For example, in Fig. 4-3 is shown 
a quadric-crank mecha¬ 
nism in which link d is 
fixed. We shall assume 
that the velocity of a point 
P on link a is known and 
that we require the veloc¬ 
ity of a point Q on c. Our 
first step is to find the in¬ 
stant center Oae. 

Considering the two 
points P and Om: these 
are points on link a, and 
since the velocity of P is known, the velocity of 0„ (Vo) can be 
found graphically by the method of Art. 1. Thus link a pivots 
about Oai and the triangle (1) is drawn, one side representing Fp. 
Triangle (2) similar to (1) will have a side representing the velocity 
of Oac Fo) as indicated. As a point in link c, 0^ has the same 
velocity Fo; hence we now know the velocity of one point on c 
and can find the velocity of any other point, such as Q. Since 
link e pivots about Otj, we construct the triangle (3) and then 
draw the similar tyiangle (4). The latter has a side representing 
Fq. This length is set off perpendicular to Q—Oa and represents 
the velocity of Q in magnitude and direction. 

The construction can be applied to any form of mechanism, 
provided that tiie instant cmiter for the two links on which the 
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points are located is accessible. When it is not accessible (as for 
example when it is located at infinity), some other method must 
te used. ' 

(6) Connecting-link Method. — This is a step-by-step method 
whereby we start with the link on which is located the point of 
known velocity, and work through its instant center with respect 
to a connecting link, then along the connecting link to its instant 
center with respect to the next link. Continuing in this manner, 
we finally reach the link containing the point whose velocity is 
required. In general, it is necessary to begin by locating all 
instant centers with respect to the fixed link and the instant cen¬ 
ters of each link with respect to its adjacent link. 

For comparison with the direct method, we shall use the same 
mechanism (Fig. 4-4) as was shown in Fig. 4-3, namely, a quadric- 

crank mechanism, in which 
the velocity of P on link a 
is known and the velocity 
of Q on c is required. In 
this example links a and c 
are connected by link 6, and 
we work through the latter 
from a to c. 

ood locate Oa, 
Fiq. 4^ Ohc, Otd, as shown in the 

figure. The vector Vp, at 
90® to P—0«i, represents the known velocity of P, Considering 
the two points P and Oa» as points on a, we make the construction 
(by Art. 1) shown by the similar triangl^ (1) and (2) to find the 
velocity vector Vo^ for the point Oat. 

Next, taking the points 0^ and Ofc (two points on b), we con¬ 
struct arc 3, draw line 4 parallel to b, and swing arc 5 through 90® 
(by Art. 1), obtaining vector as the velocity of Oj(. Otc and 
Q are both points on c which pivots about Oai. Drawing the 
similar Angles (6) and (7), we find vector representing the 
required velocity. 

In this example, pin joints connect the three links o, h, and e. 
Hie connection between these links may, howeyw, take any f<Hm 
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and the method can be applied to any mechanism, provided that 
the needed instant centers are accessible. 

The direct method may require the use of instant centers, the 
location of which requires much labor. For this reason the 
connecting-link method is sometimes preferable. 

3. Linear Velocities by Resolution. — Knowing the magnitude 
and direction of motion of one point on a moving body, and the 
direction of motion of a second point on the same body, the magni¬ 
tude of the velocity of the latter point can be found by resolution. 
This method depends on the fact that the distance between the 
two points is constant, if the body is rigid. 

Let P and Q (Fig. 4-5) be two points on a body c in motion with 
respect to body d. The velocity of P is indicated in magnitude 
and direction by the vector Vj> 
at the instant considered. The 
point Q has motion in the direc¬ 
tion QA at the same instant. 
The distance PQ is constant, 
and so the components of the 
velocities in a direction parallel 
to PQ must be the same; other¬ 
wise the distance between them 
would increase or decrease. By 
drawing triangle (1) we find the vector Fo, the component parallel 
to PQ. Triangle (2) can now be drawn, since the vector Vo', repre¬ 
senting the component of Q’s velocity parallel to PQ, is equal to Fo; 

also one side is perpendicular to PQ and the third lies along QA. 
The Bide last mentioned is Vq and represents the velocity of Q. 

By working from point to point throu^ connecting links, the 
method of resolution can be used in many cases to find the velocity 
of any point on a mechanism when iiie velocity of one point, 
not nececearily on the same link, is known. 

Example 1. — In Fig. 4-6 is illustrated a compound mechanism 
oftoa used in shapers as a means of driving the ram which carries 
tire cutting tool. The slope of Unk d has been emggerated in order 
to illustrate the construction more dearly. 

We shall suppose that the velocity of ^ point P on the driving 

—A 

Fig. 4“6 
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crank a is known and that the velocity of the point Q on the ram e 
is required. 

P(mt P on link a and a coincident point P' on link c must have 
the same vdocity normal to the line of slide of 6 on c. If this 
were not the case, P 
would move off the line 
E—0^; this is an im¬ 
possibility, owing to the 
constraining effect of 
the sliding pair. If Vp 
is resolved into two 
components parallel 
and normal to R—0^ 
by drawing triangle (1), 
then the normal com¬ 
ponent represents Vp’, 
the velocity of point P' 
on c. 

P' and R are two 
points on the link c ^ 
pivoting about 0^. By use of the graphical construction given 
in Art. 1 and shown by triangles (2) and (3), we find vector 

. representing the velocity 
Owjrta of R. The resolution 

f ^ ' method cannot be used 
here, because Vp> has a 
zero component along 
R—Orf. 

Finally, R and Q are 
points on the link d and 
therdore have equal ve¬ 
locity components along 
d. The resdution inedi- 

od, requiring the construction of triani^ (4) aqd (5), fixes tile 
lei^tii of the vector Vq which r^reeents the velocity of Q. 

Bsample 2. — In Fig. 4-7 is iOustrated a cam mechanism with 
rofiing contact between links a and h. Constraint is eflNtod 
by the qning L which keeps these two links in ooiriaot, tiio^ 
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instead this could be provided for by causing b to move in a groove' 
cut on the face of a. Kinematically, the mechanism is the same 
in either case. 

We shall assume that the velocity of any point Q on c is required 
for the position of the mechanism shown in the figure, when the 
angular velocity of a relative to the fixed frame d is known. 

Links a and b make contact at a point P which is evidently the 
instant center Oat, because at this point the two links have no 
relative motion. 

In order to use tibe Direct Instant-center Method of Art. 2(a) 
we require the location of 0„. Centers Ou, Oa are at pivot 
points; 0^ is at infinity. 0« is found by applying Kennedy’s 
Theorem after locating the other centers. 

The linear velocities of Q and O^c are the same, since c has rec¬ 
tilinear motion. Also, 0„ is a point on a. Therefore, 

Velocity ofQ = Velocity of Oae = <>>adX (P„—Oorf). 

Uai being known, the velocity of Q can be calculated, and the only 
graphical construction needed is that involved in the location of 
Oat- 

The Connecting-link Method of Art. 2Q)) is carried out graphi¬ 
cally as illustrated in Fig. 4-7. Center On is first located by 
use of Kennedy’s Theorem. Point P(Oai) has a linear velocity 
equal to UatiOai—O^j), which we represent by the vector Vp per¬ 
pendicular to the line Oab—Oad- Now, considering points On and 
P as two points on b, which pivots about On, the graphical con¬ 
struction ^own by triangles (1) and (2) provides a means of 
finding the velocity of the former point. This point (0^) has 
the same velocity as Q, both being represented by the vector Vq 
in tile figure. 

Bsampls 3. — Figure 4-8 shows a mechanism used on the pres¬ 
sure riveter. Link a is the air-cylinder piston which drives the 
riveting die e through intermediate links b, c, d. We make the 
assumption that the velocity of a point JS on e is required when ti>e 
velocity of P on a is ^own. 

The ComMctintHink Method will be foimd most suitable; the 
(^teot method would require the use of 0^, which is not easily 
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located. The instant centers of b and d with respect to the fixed 
link / are found by noting the directions of motion of two points 

on each of these links. 
Their positions are 
shown in Fig. 4-8. 

Taking a vector Vp 
to represent the linear 
velocity of P and using 
the two points P and Q 
on b, we construct simi¬ 
lar triangles (1) and (2) 
with common apex at 
Obf. Thus the vector 
Vq is found. 

Points Q and R are 
points on links c. Similar triangles (3) and (4) with common apex 
at O^f are therefore drawn, determining the vector Vp, which rep¬ 
resents the required velocity of R, 

4. Angular Velocities. — When two bodies are in motion it 
can be shown that their instan¬ 
taneous angular velocities with 
respect to a third body are inversely 
as the distances from their instant 
center to the instant centers about 
which they are pivoting on the 
third body. Thus, in Fig, 4-9, a 
and b are two bodies in motion 
with respect to c. The three in¬ 
stant centers 0«, Oo*, Ou are as¬ 
sumed to be located as shown in the figure, l3H[ng in one straight 
line in accordance with Kennedy's Theorem. 

is a point common to a and 5. As a point in a, its instan¬ 
taneous linear velocity is (aaeiOeb—Oqc)- As a point in Ogi is 
moving with a linear velocity Therefore, 

<%(04i6—0«) *= 0*f), 
or 0^—Qftc (4M) 
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When one of these angular velocities is known the other can be 
determined graphically. The construction is indicated in Fig. 
4-9. Suppose Uae is known and wje is to be determined. Draw 
Oic—L perpendicular to Ou—of a length representing 
Join L—Oai and produce this line to meet 0«,—M, parallel to 
(Ofc—L). From similar triangles, 

Oge—M _ Ogi—Oac ^ tilfc 

Ou-•i' Ogi-Otc Uge 

Hence, Oge—M represents uu to the same scale as Oje—L repre¬ 
sents Uge. 

When Ojj falls between Oge and Ofc, the bodies a and h turn in 
opposite senses; but when 0^ is on Oge—Oje produced, the bodies 
a and h turn in the same sense. 

Example. — Figures 4-10 and 4-11 show the same slider-crank 
mechanism in two positions. In each case, assuming that the 
angular velocity of the crank a {wab) is known, show how to find 
graphically the angular velocity of link d (uat). 

Construction. — Find the three instant centers for linka o, d, 
and h (the fixed link). These centers lie on one straight line by 

Kennedy’s Theorem. Draw the triani^e L—Oa—Ogi in which 
Ott,—L, perpendicular to On—Ogi, represents the known angular 
vdodty mgi' Draw Oa*—M, parallel to On—L, meeting L—Oa, 
produ(^ if necessary, at M. Then On—M represents the de¬ 
sired angular velocity an- 
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6. The Image Method. — A graphical method of determining 
^'elocitics and accelerations of points in mechanisms which has 
proved to have wide application and very considerable practical 
importance will now be considered. This is generally Imown as 
the “ Image Method.” It is given by Professor Burmester in his 
“Kinematik.” The construction of the acceleration diagram 
often requires the prior determination of certain velocities, hence 
the latter problem will be taken up first. 

6. The Velocity linage. — If there are two points A and B on 
a body in plane motion, then the absolute velocity of B is equal 
to the vectorial sum of (1) the relative velocity of B with respect 
to A and (2) the absolute velocity of A. The Velocity-Image 
method is based on this statement. 

Suppose in Fig. 4-12 A and B represent two points on the same 
body. Assume that the absolute velocity Vji of A and the 

angular velocity a of the body are known. The instant center 
P of the body with respect to a fixed plane can be easily located 
since it lies on line PA perpendicular to the direction of motion 
of point A, and the length PA is equal to Va -r a. If we now 
require the velocity of B, we find its direction at 90° to PB and 
its magnitude is u • PB. 

Instead of finding Vb through use of the instant center, we may 
draw a Velodty-Image diagram as shown in Fig. 4-13. From a 
point or “ pole ” p, the line pa is drawn at 90° to PA, representing 
Va (eqxtal to u • PA) to any convenient velocity scale. The rda- 
tive velocity of B to A (Vba) Is equal to a • AB in a direetkm at 
90° to AB. Tliis must be true since AB is a fiimd kng^ aiu3 « 
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the angular velodty of the body. Therefore to find the vectorial 
sum of Va and Vba, from point c in Fig. 4-13, lay off a distance 
ab at 90° to AB, representing a ■ AB to the selected velocity scale. 
Join pb. Then pib wiU represent Vb to the same scale as chosen 
above, since by construction the velocity triangle pab is similar to 
the body triangle PAB, and hence if pa <= w • AP then pb = 
« • - Vb. 

If we take a third point C on the same body (Fig. 4-12) then 
since the relative velocity of C to jB must be in a direction at right 
angles to CB and the relative velocity of C to il lies at right angles 
to CA, point c on the velocity diagram is found by drawing be at 
90“ to BC and ac at 90“ to AC. The intersection c is joined to 
point p. It is evident from the similarity of the Figs. 4-12 and 
4-13 that pc = a • PC = Vc- 

It will be noted that the velocity triangle abc has^ides ab, ac, be 
respectively perpendicular to the corresponding sides AB, AC, 
BC of the body triangle. The velocity triangle is in fact the body 
triangle drawn to another scale and turned through 90“ in the 
sense of rotation of the body. Hence the name “ Velocity Image.” 

Example. — In the Quadric-crank Mechanism of Fig. 4-14, 
link AB rotates with a constant angular velocity u. It is required 

to find the absolute velocities of points B, C, and E on the ad)a- 
ecort link. 

Considering the link BC, the velocity of B can be calculated: 
it is equal to a • AB in a direction at 90“ to AB. Also, we know 
that point C has absolute motion in a direction at 90“ to CD, and 
that Hie rdative motion of C with respect to £ is at 90“ to BC. 
Httioe fnnn pole p, Fig. 4-15, draw pb » to a convmiient 
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scale, peipendicular to AB. Next find point c at the intersection 
of lines pc and 6c respectively perpendicular to CD and BC. 
Then pe is the absolute velocity of C. 

To find Vb, on 6c as a base construct the triangle hce similar to 
BCE. It is possible to construct two such triangles, but bee 
correctly drawn should occupy a position at 90“ to BCE in the 
sense of rotation of BC. Inspection of the mechanism shows 
that when AB turns clockwise, BC turns counter-clockwise, and 
therefore e is located as shown, to the left of 6c. If points p and 
e be joined, pe is equal to the absolute velocity of E. If desired, the 
angular velocity «i of BC can now be calculated, since be — 
ui • BC or wj = 6c 4- BC, where 6c is measured in velocity units 
and BC is full size. The numbers on the lines of the velocity dia¬ 
gram indicate the order in which the lines are drawn. 

7. The Acceleration-Image Method. — This is based on a 
principle concerning accelerations similar to that underlying 
the Velocity-Image construction, which may be stated as 
follows: 

For two points on a body in plane motion, the absolute accel¬ 
eration of the second is equal to the vectorial sum of the accelerar 

tion of the second relative to the first and 

Fio. 4-16 

the absolute acceleration of the first. 
As pointed out in Chapter II a point A 

(Fig. 4-16) on a body moving about an in¬ 
stant center 0 is subject to a tangential 
acceleration t acting in the direction of 
motion, and a normal acceleration n acting 
toward the center of rotation, where 

ai^ 
< s= « • OA 

n a* «* -• OA 

It and a being respectively the angular velocity and the angular 
aeoeleratum of the body. Distance AB representing the total 
accelffl'atioD is equal to the vectorial sum of t and n. 

The assumption that 0 is the instant center with respect to 
motkm over a fixed surface means that 0 is a fixed point, and hence 
AB UI the absolute acceleration of A. If, cm the contrary, A and 
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0 are both in motion then AB is the relative acceleration of A 
with respect to 0. 

In Fig. 4^17 A, B, C are three points on the same body which 
has a known angular velocity a> and angular acceleration a. As¬ 
suming that the velocity Va of one point A is also known, we may 

proceed to find the absolute accelerations of all three points. The 
construction is made as follows: 

Locate the instant center P by drawing AP in a direction per¬ 
pendicular to the direction of motion of A, of length equal to Va 
-i- <0. Calculate the value of a • AP, the tangential acceleration 
of A, and draw from a pole p' a line p'oi at 90® to AP representing 
a • AP to a convenient acceleration scale. 

Calculate the value of w* • AP, the normal acceleration of A, and 
from oi draw a line oio', parallel to AP, to represent this accelera¬ 
tion. Joinp'o'. Then p'o'represents the absolute acceleration of 
A. The relative acceleration of B to A is next determined. This 
requires the calculation of a ■ AB and w* • AB. Starting from o' 
lines o'&i and bib' are drawn respectively perpendicular and parallel 
to BA. Point 6' is joined to p' and the Me p'h' represents the 
absolute acceleration of B. 

Similarly by calculation of a • BC and w* • BC and by drawing 
lines b'ci and cic' to represent these quantities c' is located. 
Joining p' to c' we obtain a length representing the absolute 
acceleration of C. 

From the geometry of the figure it can easUy be shown that the 
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triangle a'b'c' is the body figure ABC altered in scale and rotated 

through an angle j^90 + tan~> ^ j in the same sense as the angu¬ 

lar velocity. Hence the name “ Acceleration Image.” 
In constructing the acceleration diagram, care should be exer¬ 

cised to insure that the normal acceleration vector for each point 
is drawn in a direction toward and not away from the other point 
to which the acceleration is referred. The tangential acceleration 
line must be drawn in the direction opposite to that of the velocity 
of the point if the angular acceleration is native in character, 
that is, when the angular velocity is decreasing. Thus, in Fig. 
4-17, if a were negative or opposite in sense 
to «, then p'ai must be drawn in the reverse 
direction to that shown in the figure. 

8. Graphical Calculation of the Normal 
Acceleration. — When the velocity of a point 
relative to a second point on the same body 
is known, also its distance from the other 
point, then the relative normal acceleration 
may be found graphically. In Fig. 4-18, let 
AO represent the distance (S) between 
points A and 0 to a scale of 1” = k feet. 
Also let AB at 90° to AO represent the velocity (Vao), to a scale 
1" == m feet per second. Thus S = /fc • AO feet and Vao = m • AB 
feet per second, where AO and AB are in inch units. 

Now the relative normal acceleration of A to 0 is 

(Vao^ _ (m • AB)* _ m* (AB)* 
8 ~ k-AO k ' AO ‘ 

In Fig. 4-18 draw BC perpendicular to BO, meeting OA produced 
at C. From the similarity of triangles CAB and BAO 

CA AB (AB)* 
AB-AO " 

The normal acceleration of A is th^fore equal to 

nf 
T •CA. 
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In other words, CA represents the acceleration to a scale of 1" 

= n feet per second per second where ra = ^ or to = Vk • n. 

The example which follows will indicate the method of using this 
graphical construction in drawing an acceleration diagram. 

Example 1. — In the Slider-crank Mechanism of Fig. 4-19, the 
angular velocity of the 
crank AB is constant 
and equal to u. Find 
the accelerations of 
three points B, C, and D 
on the connecting rod. 

The velocity diagram 
will be considered first, 
since it is needed in con¬ 
structing the accelera¬ 
tion diagram. 

To make it possible 
to find the normal accel¬ 
erations by the graphi¬ 
cal method just out¬ 
lined, the scale for the 
velocity curve must be 
1" = Vk • n velocity 
units. Generally it is 

best to fix upon suitable values for the displacement and accelera¬ 
tion scales and then calculate the velocity scale. 

Point B is moving in a direction at 90° to AB with a velocity 
u ■ AB which must be calculated. C has absolute velocity along 
CA, and velocity relative to B in a direction normal to BC. With 
these data we draw the triangle pbc. The velocity image of DBC 
is the dmilar triangle dbc, advanced 90° in the sense of rotation 
of BC. Inspection of the figure will show that BC is turning 
oounterndocWise when AB turns clockwise. The velocity figure 
is oomi^ied by drawing the straight line pd. 

Polo is the starting point for the acceleration diagram. 
Point B has no tangential acceleration, its total accelmition being 
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equal to «* • AB acting toward A. The value of this quantity is 
found graphically by drawing AM normal io AB and equal to 
and then completing the right angled triangle BMN from which 
the length AN, equal to (p6)* -s- AB or • AB, is determined. 
On the acceleration diagram we draw p'5' equal to AN in a direc¬ 
tion parallel to BA. 

The normal acceleration of C relative to B is next found by 
means of the right angled triangle CKL in which- BK » he. 
Distance BL is equal to (6c)* -j- BC. Hence 6'ci equal to BL is 
drawn on the acceleration diagram. 

Point C has straight line motion along CA and therefore in re¬ 
gard to the fixed link its only acceleration is a tangential one along 
CA. Point C has, however, a tangential acceleration relative to 
B acting normal to BC. Hence from p' draw a line parallel to 
CA and from ci a line perpendicular to BC. The intersection 
locates the point c'. The diagram is completed by drawing the 
triangle b'c'd' similar to BCD and joining p'd'. For the position 
of the mechanism in Fig. 4-19, the angular acceleration of the 
connecting rod is such as to reduce its angular velocity, hence a 
has a negative rign. By reference to the expression for the angu¬ 
lar relationship given in Art. 7 it follows that b'c'd' occupies an 
angular position corresponding to the rotation of body BCD 
through an angle somewhat greater than 180°, in a sense the same 
as the angular velocity of that body. 

The absolute accelerations of points B, C, D are represented by 
the dotted lines p'b', p'c', p'd'. 

Example 2. — Fig. 4-20 shows a cam mechanism with a pivoted 
roller follower. The cam profile is in the form of a circular arc 
with center at B. It is required to find the angular velocity and 
angular acceleration of the follower, assuming a constant angular 
vdooity of the cam. 

The distance BC from center of curvature of the cam profile to 
ooater of the roller is constant. Hence the equivalent mechanism 
is a Quadric-crank Mechanism with links AJS, BC, CD and DA 
(fixed). 

Tlie velocity triani^e pbc has sides respectively perpendicular to 
AS, BC and CD. Length p6 is equtd to u • AB whnre w is the 
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angular velocity of the cam. Length pc represents the velocity 
of C. The angular velocity of the follower is equal to pc -i- CD 

when pc is expressed in velocity 
units and CD is the real lengtir 
of the arm. 

For the acceleration dia¬ 
gram, the lines are drawn in 
the order shown by figures on 
the diagram starting from 
pole p'. 

The three normal accelera¬ 
tions •p'h', h'ci and p'c* may be 
either calculated or found 
graphically. In the latter case 
the scales of displacement, ve¬ 
locity and acceleration must 
bear to one another the rela¬ 
tionship stated in Art. 8. Line 
p'b' is drawn parallel to BA, 
b'ci parallel to CB and p'ct 
parallel to CD. Point o' is 
found by drawing line cic^ at 
90° to CD and csc' at 90° to CD. 

The required angular acceleration of the follower is equal to the 
tangential acceleration of C, namely C2C', divided by the length CD. 

The Acceleration Image method can be applied to all cam 
mechanisms which have Quadric-crank or Slider-crank mechar 
niams as their kinematic equivalent. Thus it can be used for cir¬ 
cular arc cams with both pivoted and reciprocating followers. 

Example 8. — Fig. 4-21 represents the linkage for two <^lin- 
ders of a nine cylinder radial engine employing articulated con¬ 
necting rods. AB is the master connecting rod and ACD one of 
the articulated rods, the point C representii^; a pin joint where 
CD is attached to the master rod. The crank is assumed to rotate 
dookwise with uniform angular velocity, and the Image Diagrams 
will be used to find the velocities and adorations of the pistons 
at B and D. 
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Velocity Diagram. — Line -pa has a length equal to w-OA to 
the scale selected. Its direction is perpendicular to OA. Vector 

pb, parallel to OB, and ab 
perpendicular to AB com¬ 
plete the triangle pba. 
Triangle dbc, similar to 
ABC, turned 90® in the 
sense of rotation of AB, is 
next constructed. Line 
cd at 90® to CD and pd 
parallel to DO intersect at 
d. Then the velocities of 
the pistons at B and D are 
equal respectively to pb 
and pd to scale. 

Acceleration Diagram. 
— Line p'a' parallel to AO 
is equal to the normal ac¬ 
celeration of A about 0, 
of value (po)*-5-OA. Its 
length may either be calcu¬ 
lated or obtained graphi¬ 
cally as described in Art. 8. 
In the latter case the scale 
relationship must be as 

specified in that article. Line a'bi of length {ab)* -f- AB, calcu¬ 
lated or graphically determined, is next drawn, f^rom bt draw 
bjb' at 90® to AB and from p', p'b' parallel to OB. The intersec¬ 
tion is b'. Join a'b' wd using this line as a base, construct a 
triani^e a'b'e*, the acceleration image of ABC. Calculate or find 
graphically the relative normal acceleration oS D to C, eq\i^ to 
(od)* + CDi and draw c'di. The tangential aoo^oution oi Dio 
C acts at 90® to CD, and D has absolute total acceleration akmg 
DO. Hence pmnt d* is found by the intmeection of a line from 
di pevpmdicular to CD and a line from p' paraM to DO. 

Tfte accelerations of pistons at ff and D are respectively eqod 
to p*b* and p'd' to scale. 
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QUESTIONS —CHAPTER IV 

1. State the relationship between the linear velocities of two points on a 
moving link whose instant center is known. 

2. Two points are located on different links of the same mechanism, the 
instant center of the links being known. When we know the velocity of one 
point, what property of the instant center is used in finding the velocity of the 
second point? 

8. Show how to find by the resolution method the velocity of a point B 
which moves in a known direction, it being assunted that the velocity of a 
second point A on the same body is known both in magnitude and direction. 

4. WTien two bodies are so connected as to have relative rectilinear motion, 
what components of their linear velocities with respect to a third body have 
equal value? 

6. In Figs. 5A to 50, assume a known velocity for the point A and show 
how to find graphically the velocities of points B, C. Mark the positions of 
aU instant centers used in the constructions you employ. 

S. In Figs. 5A, 5C, 5D, 5F and 50 assume a known angular velocity for 
link a and find the angular velocity of Unk 6. 
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7* (a) In Figs. A to D, assume a known linear velocity for point P, and 
show how to find graphically the velocities of points Q and R. 

(b) In Figs. A to D, assume a known angular velocity for link a, and show 
how to obtain graphically the angular velocities of links b and c. 

8. In Big; 5A, assume that link a rotates at a known angular velocity in a 
doekwise sense. By use of the Image method, show how to find graphically 
(1) the linear vdodty and (2) the linear acceleration of the point B. 

8. XJdng Fig. 5D, find by the Image method the finear velocity and linear 
accderation of the point B, assuming that the liz^ a has a known angular 
velocity m a counterdookwise sense. 



CHAPTER V 

SLIDER-CRANE MECHANISMS 

1. General. —- The uses of the slider-crank mechanism in its 
various forms are so many and important that it merits careful con¬ 
sideration. It can be described as a simple four-link mechanism 
with plane relative motion among its parts, three pairs of con¬ 
straining surfaces being pin joints and the fourth a slider and guide 
allowing relative rectilinear movement of a pair of adjacent links. 

Figures 5-1, 5-2, and 5-3 show a process of development of the 
slider-crank mechanism from a quadric-crank mechanism. Figure 
5-1 illustrates a quadric-crank 
mechanism; Fig. 5-2 shows a 
device derived from it by alter¬ 
ing the form of the constrain¬ 
ing surfaces. 

The pin joint between links 
c and d in Fig. 5-1 has been 
altered to a block and circular 
slotted guide in Fig. 5-2. If, however, the mean radius of the 
slot in d is made^equal to the length of c in the former mechanism, 

the movements of corre¬ 
sponding links in both are 
identical. The material 
pin at Oei, about which c 
moves with respect to d in 
the quadric mechanism, is 
replaced by an imaginary 
pivot Od in the latter. 

If the linkage is further altered by giving the slot in d an 
mfitute radius, so that Oa moves out to infinity, it becomes 
a common form of the slider-crank mechanism as illustrated in 
Fig. 

Fig. 5-1 
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The slider orank having four links, any one of which may be 
fixed, four inversions are possible. These inversions will be taken 
up in detail in the paragraphs which follow. 

2. First Inversion. Sliding Block Linkage. — In this mech¬ 
anism, shown in Fig. 6-3, link d becomes the stationary member. 

As applied to reciprocating 
engine, d is the frame, a the 
crank, and h the connecting 
rod. Link c is the piston in 
some engines having no 
crosshead; in others it con¬ 
sists of the crosshead, piston 
rod, and piston, since these 

parts move as a single rigid piece of material. 
The mechanism is said to be “ offset ” when (as in Fig. 5-3) the 

straight line XY, which is the path of motion of the point B, does 
not pass through point A. 

The crank, in practical engines employing this mechanism, 
generally rotates with an angular velocity which is approximately 
constant. For purposes of design it is necessary to analyze the 
velocity and acceleration of the piston. The analysis is commonly 
made under the assumption that the crank velocity is exactly 
constant, the error involved being of small proportions. 

3. Piston Vdocity. Graidiical Method. — The Direct Instant 
Center method as described in Art. 2, Chapter IV, may be used to 
find the piston velocity when the crank-pin velocity is known. How¬ 
ever, the alternative method shown in fig. 6-4 is shorter and gener¬ 
ally more convenioit. The construction in this figure is as follows; 

The center line of the connecting rod h is produced to meet at D 
a line AD drawn in a direction perpendicular to the line of stroke. 
It can be shown that the distance AD represents the pistmi velocity 
to the same scale as the crank line AC represents the crank-pin 
vdodty. Hus statement is proved as follows: 

Produce AC to meet at a line BE drawn perpendicular to the 
path B. Then E is Otii end hence 

Linear vdocity of B EB ^ 
linear vdodty of C EC 
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’ 77i (from similarity of triangles BEC and CDA). 
EB 

Therefore, 

Now Vc is the crank-pin velocity, which is constant when the 
crank rotates at a uniform speed. AC, also, is a fixed length. 

Consequently, we may write 

Piston velocity == Pb = a constant X AD. 

y 
When AD has a length of 1 in., Vb = -77; X 1; that is, 1 in. 

represoits 
Vc 
AC 

units of velocity. As an ea^ way of remembering 

the scale we may note that tiie piston velocity is represented by 
the lengdi AD to the same scale as the crank lengtii AC an. oar 
drawing represents the crank-pin velocity. 

A Polar Carve of piston velocity on a crank-angle base is shown 
at (1) in Fig. 5-4. Point Di on this curve is found by making 
the Iwgth ADi equal to AD. 

A Vetodty-tU^lacement Carve is also drawn at (2) in Fig. 5-4. 
Pdnt D' on this curve corresponds to the initial position the 



72 SLIDER-CRANE MECHANISMS 

mechanism and is found by erecting an ordinate BD' equal 
ioAD. 

A Velocity-time Curve (Fig. 5-5) is constructed by plotting the 
same velocity ordinates on a base on which equal crank angles 

are represented by equal 
spaces; time and angular 

J / J crank displacement are pro- 
-1--^ portional to each other and, 

I ^S, ' crank velocity being 
S ^ ^constant, the same base will 

o’ eo’ 120° 180° aAo’Tao’ sm serve for both. Thus, dis- 
Crank Angle or Time tance x in Fig. 5-5 is made 

Fia. 6-6 equal to the length similarly 
marked in Fig. 5-4. 

4. Characteristics of Piston Motion. — Figure 5-6 shows the 
Velocity-displacement Curve for the piston motion in an engine 
with no offset. It will be observed that the maximum velocity 
is attained somewhat before mid-stroke, when the piston is moving 
away from the out dead center, the curve being unsymmetrical 
about a vertical line at half stroke but symmetrical about the 

Crank Angle or Time 

Fia. 6-6 

horizontal axis. When 
offset exists, as in Fig. 
5-4, it is unsymmetrical 
in both ways. Point F 
(F*. 5-6), the projection 
of the crank-pin center 
on the line of stroke, has 
simple harmonic motion 
when the crank rotates 
with uniform velocity. 

Fio. 6-6 

The curve (a circle) drawn in broken lines represents the velocity 
of F (see Art. 9, Chapter 11). This curve (Mers somewhat frmn 
the piston-velocity curve. If the connecting rod always made a 
(Kmstant an^e with the line of stroke, its projectkm BF on that 
line would have a constant length. That is, pdnts B and F would 
have equal velocity at ail times; the piston would move with wmpitt 
harmonic motion. Since this is not the case, B cannot move witii 
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simple harmonic motion. The larger the angular movement of 
the connecting rod, the greater the variation from simple har¬ 
monic motion becomes. By increasing the length of the connecting 
rod in proportion to the crank length we decrease the angular 
displacement of the former, and the piston motion tends to ap¬ 
proach simple harmonic. If the connecting rod were of infinite 
length this condition would be exactly attained. 

This distortion of the piston motion from simple harmonic has 
been aptly termed the “ connecting-rod effect.” The design of 
valve gears and the balancing of engines would be much simplified 
if it did not exist. By reference to Fig. 5-6 it will be seen that it 
tends to increase the piston velocity during periods before and after 
the crank passes the out dead center and has the opposite effect 
during the other portions of the stroke. Maximum piston velocity 
is attuned somewhat be¬ 
fore half stroke. 

6. Piston Acceleration. 
Graphical Method. — A 
line whose length repre¬ 
sents the piston accelera¬ 
tion may be obtained as 
shown in Fig. 6-7. Points 
D and E are, respectively, 
the instant centers Oae 
and Ou and these are 
first located. From A, the crank pivot, a line AG is drawn paral¬ 
lel to DE. At G & line OH, perpendicular to the connecting rod, 
is erected. This meets AH paraUel to the line of stroke of the 
piston at H. It can be shown that the distance AH represents 
the piston acceleration to the same scale as the distance AC rep¬ 
resents the normal acceleration of the crank-pin center. Tliat is, 

/Raton acceleration AH 
Crank-pin acceleration AC 

or 

AH 
AC 

f Piston acceleraticm 
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r being the crank length. If our diagram is drawn full size, 
r »= AC and the piston acceleration is equal to 

X = «» X AH, 

where w = angular velocity of the crank. Proof of these state¬ 
ments will be found in the next article. 

6. Proof for Graphical Piston-acceleration Construction.^ — 
Point D (Fig. 5-7), for any position of the mechanism, lies along 
the straight line BC. Considering C and D as two points on link 
b, which pivots for the instant pbout E, 

Vo ~ EC 

and, since triangles EDC and AGC are similar, 

EC ~ AC* 

Therefore, 

Px> VeX 
AO 
AC* 

(5-2) 

It was shown in Art. 3 that the piston velocity is equal to Fo X 
AD 

• The piston acceleration, or rate of change of piston velocity, 
A. G 

AD 
is equal to the rate of change of the quantity Vo X 77;* But 

A G 

because Vo and AC are constant, we may write 

Vo 
I^ton acceleration •» ■— X (rate of change of AD). ■ 

The distance AD changes only throu^ motion of the point Z> in a 
direction perpendicular to the line of stroke, i.e., along AD. The 
rate of change of length AD is consequently equal to the rate d 

‘ Tlw following method pnxrf is taken from “Kinematics of M«i<h<iw •' 
by B. J. Dudey. 
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movement or velocity of 2) in this direction, provided that our 
figure is drawn full size. Taking a vector Vd at 90® to ED, 
representing the velocity of D as a point on link b, and drawing 
the velocity triangle as indicated in the figure, in which com¬ 
ponent Fi is perpendicular to the line of stroke and F* lies along 
BC, the former (Fi) is the rate of change of length AD. We can 
therefore write 

Piston acceleration 
AC 

X F,. (&-3) 

In the triangle of velocities just mentioned, the three sides are 
respectively perpendicular to the three sides of the triangle AHG, 
whence 

Zi ^ 
Vd^ AG 

or Fi = Fz> X 
Alf 
AG ’ (6^) 

Substituting in equation (5-4) the value of Vd from equation 

V - V 

Taking equation (5-3) and writing in this value of Vi, 

Piston acceleration •= ^ X Fc X 
AC AC 

* (^* X 42? = «* X AH, (5-5) 

where a » angular velocity of the crank. 
Tliese results are obtained on the assumption that the dingram 

is full size. This being the case, the acceleration scale is 1 in. »= 
<11* in. per sec. per sec., where AH is measured in inches and a 
u in radians per second. When the diagram is drawn to a distance 
scale 1 in. » n in. the acceleration scale must be n times as large, 

i.e., 1 in. » (0* • n in. per sec. per sec., or 1| in. » ^ ft. per sec. 
IdS 

per sec. 
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7. Klein’s Construction. — Instant centers required for the 
construction given in Art. 5 are sometimes inaccessible, and some 
other method must then be used. 

From the geometry of Fig. 6-7 it will be seal that the point G 
on the connecting rod is so located that 

CG :CD ^ CA :CE = CD : CB 

or (CDy-^CO-CB. (6-6) 

Any construction for finding G that will give this relationship is 
satisfactory. The well-known Klein’s Construction, shown in 
Fig. 6-8, is one of the best for this purpose. 

In Fig. 5-8 point D is found, as in Fig. 5-7, by producing BC 
to meet AD perpendicular to the line of stroke of the piston. A 

semicircle CLB is then drawn, with CB as a diameter. This is 
intersected at B by an arc drawn with C as center and CD 
as radius. Ftoiq E a line EGH papendicular to BC is drawn, 
meeting at B a line AH parallel to the line of stroke. Then 0 
and H are the same points as found by l^e construction of Hg. 
5-7. lliis must be the case, mnce whm CE and EB are jdned 
two wmilar faiangles CEO and CEB are f(mned and 

CO :CE - CE :CB. 
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But 
CE = CD. 

Therefore, 
(CDy = CO>CB. 

Hence the Kston Acceleration is equal to w* X AH as in Fig. 5-7. 
8. Piston Velocity and Acceleration. Analytical Method.—' 

Although the graphical method of analysis is usually to be pre¬ 
ferred, there are cases where an anal3rticai method is necessary. 
The case of a mechanism 
with no offset will be con- 
sid^ed. In Fig. 5-9, let r 
be the crank length and 
nr be the connecting-rod 
length, n being the ratio 
of coimecting-rod length 
to crank length. Suppose 5^ 
the crank to be at any 
angle $ with the line of stroke, and 4> the corresponding inclina¬ 
tion of the connecting rod. x is the distance from the center of 
the crossbead pin to the center of the crank shaft. At mid-stroke, 
evidently, x = nr. At any crank angle 9 the piston displacement 
from mid-position «= * — nr. 

From Fig. 5-9, 
X => rcosS + nrcoB4> 

and the piston displacement -sx — nr»rcostf + nrcos^ — nr 
-> r(co8 d -b n cos ^ — n). (5-7) 

Also, 

smdK- and sm*^*—• 
r nr 

By divimon, 

. . Bind 
sm^ •* — 

Now, 

008^ 
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Substituting this value of cos 0 in (6-7), 

Piston displacement = r(cos d + Vn* — sin* ^ — n). (6-8) 

Thus we have the piston displacement in terms of the crank angle. 
If the piston moved with simple harmonic motion its displace¬ 

ment at crank anj^e 6 would be r cos 6, The “ connecting-rod 
effect,’^ due to the obliquity of this member with the line of stroke, 
is represented by the term r(\/n* — sin*^ — n). 

The Piston Velocity is equal to -j- where « is the piston displace- 
di 

ment. Substituting the value of s from equation (6-8), 

Piston velocity « ^|^r(cos 6 + Vn* — sin* ^ — n)J 

r • ^ I 1 / » • d(n* —sin*tf)l 
= r —sm^*~ + i (n* —sm*^) * X-^-I 

—r • wj^si 

sintf + 
2 sin 0 • cos osg ~l 

in*gj 2\/n* — sin* 

. ^ , sin2g 1 
sin g + 1-.j" ..■= ' 

2V n* — sin* gj 
(5-9) 

since -r » w » (angulax velocity of the crank). 
at 

An approximate form of this equation is obtained by neglecting 
sin* g in the denominator. The error involved is not very large, 
the value of n in engine design being seldom less than 4, and dn* $ 
being equal to 1 as a maximum. Equation (5-9) then reduces to 
the following form: 

Piston velocity =< — r» (sin $ + • (5-10) 

llie minus sign has no special significance and may be omitted. 
dv 

The Pistim Aeceterntfam is equal Taking title exact 

ydodty equation (5-9), differentiating and dividing by <ff, it can 
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be shown that 

Piston acceleration = r<o* cos + 
cos* g + cos 2 g(n* — 1) 

(n* - sin* 0)* } (&-11) 

Treating the approximate equation (5-10) in the same manner, 

dr I sin 2 
Piston acceleration = — r«I sin H—-— 

<hL \ 2n 

= r«* 1 cos e H--— y (5-12) 

Equation (5-12) is so much simpler than (5-11) that it is generally 
used where extreme accuracy is not required.* 

When n is equal to 4 the approximate equation shows a maximum 
error of about 0.6 per cent of the greatest acceleration. 

9. Qoick-retum Motion. — The Sliding-block Mechanism can 
be used as a quick-return motion when offset as shown in Fig. 
5-10. That is, the piston link c executes its strokes to right and 
left in unequal periods of time. The mechanism is shown by 
brok^ lines in the two positions where the piston link has reached 
the end of its travel to right and left, respectively. At these 
positions the crank and connecting-rod links lie along the same 
straight line. With the crank turning clockwise, the piston 
stroke to the left takes place while the crank rotates through the 
an^e 0i and the return stroke requires a crank movement of 0^. 
Assuming a constant crank velocity, the time ratio of the two 
strokes is equal to 0i/9t. This ratio is unity when the offset is 
aero and'increases with the offset. 

10. Second Inversion. Swinging-block linkage. — In this 
mechanism, shown in Fig. 5-11, the link b, corresponding to the 
connecting rod in the direct-acting migine mechanism, is the fixed 
link, figure 5-12 illustrates the applicatum to an oscillating 

*TablM and eurm for diqdaoemeat, velodty and acc^ration, derived by 
OH of the exaot fannolae, wi& be found In an artiele by J. L. Bogert in Marint 
BnfkiMriHt, Deennber, 1020. 
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steam engine, link c taking the form of a cylinder pivoted so as to 
oscillate about trunnions at 5. Link d becomes the piston and 
piston rod. 

Fig. 5-10 Fig. 5-11 Fig. 5-12 

Figure 5-13 shows the Crank-shaper Quick-return Motioni 
another application of the second inversion. Link a is the driving 
crank, attached to which is the block d. The latter slides between 

Pi 

Fig* 5-13 Fig* 5-14 

guides formed on lever e, driving ram / through rod e* As applied 
to the shaper, ram/carries the cutting tool* This has a redprocat** 
ing motion, the return stroke bemg performed at a Mg^ speed 
than the cutting stroke* Supposing, for example, that the mok 
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turns clockwise; the lever c will reach its extreme position to the 
left when the crank is at AiC (Fig. 5-14) perpendicular to BAiDi. 
Likewise, c will reach the other extreme position when the crank 
is in position A^. The crank meanwhile turns through an angle 
^1. The return stroke takes place during a crank movement 6t. 
Consequently, assuming constant crank velocity, the ratio of 
times of cutting to return strokes is equal to 81/63. This ratio 
can be given any required Value by proper choice of ratio 
Length AC 
Length BC 

11. Third Inversion. Turning-block Linkage. — This is illus¬ 
trated in Fig. 5-15, link a, corresponding to the crank in the direct- 
acting engine mechanism, being 
the fixed link. Figure 5-16 shows 
the Whitworth Quick-return 
Motion, a well-knowm applica¬ 
tion often employed in machine 
tools and in other cases where 
it is desired to produce a 
reciprocating motion with a rapid 
return stroke. 

In Fig. 5-16, b is the driving crank rotating with constant 
velocity and driving the slotted link d by means of block c. Link 
d revolves with variable velocity,' and a connecting link e may be 
attached to drive a reciprocating member if required. 

Referring to Fig. 5-15, link d turns clockwise from a horizontal 
position ABi through 180° to position AB3, while the driving crank 
is turning through angle 61. It executes the next half revolution 
while the driving crank moves through an angle 63. The time 
ratio is therefore 61/83. 

Reduction of the length of link a without altering that of b will 
cause the ratio 81/63 to decrease, its value becoming unity in the 
limit when a has zero length. 

Fourtli Inversion. Fixed-block linkage. — The remaining 
inversion of the Slider-crank Chain is obtained by fixing the 
Uock c (Fig. 5-17). The mo^ common application of this linkage 
is found in hand-operated water pumps. It is also used in certain 



82 BLIDER-CRANK MECHANISMS 

direct-driven reciprocating steam pumps. In the hand-pump 
application, c becomes the pump barrel and d the pump rod, to 

the lower end of which the plunger is attached. The dotted 
extension of a forms the pump handle. 

QUESTIONS — CHAPTER V 

1. Draw skeleton diagrams of the four inversions of the slider-omnk 
mechanism. Name a practical application of each. 

2. Show how to draw a polar curve of piston velocity on a crank-angle 
base for the slidmg^Dlock mechanism. 

8. Show how to find graphically the velocity of the piston in the direct- 
acting steam-engine mechanism. Prove your construction to be correct. 

4. I^ow how to draw velocity and acceleration curves for the crosshead 
of a direct-acting engine on a base representing the crosshead position. How 
is the scale for the diagram obtained? 

5. Sketch and explain Klein’s construction for finding the acceleration 
of the iHston in the direct-acting steam-engine mechanism. If the diagram is 
drawn to a scale of 1 in. » n in., what is the acceleration scale when the 
ordinates are measured in inches and w is in radians per second? 

B* Prove that the velocity of the piston in the direct-acting steam engine 
is not simple harmonic. How can the motion be made to approach simple 
haimmuc? 

7. A steam engine has a stroke of 12 in. and the connecting rod is 24 in. 
long. Show how to find graphically the piston vdoeity and acodemtion 
wbm the crank makes an angle of (a) 45*" and (b) 90^ and (c) 120'' with the 
line of stroke. Also determine the velocity and aocdmtlon scales in foot- 
second units if the drawing of the mechanictm is cme^ourih full sise and the 
eim^ rotates at 240 ItP.M. Ans. 1 In. « 8.38 ft. per sec., 1 in. » 210.8 ft. 
per see. per sec. 
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8. A steam engine, 8-in. bore and 10-in. stroke, runs at 300 R.P.M. 
Assuming a constant angular velocity of the crank, calculate the piston 
velocity and acceleration corresponding to the following crank angles: 0^, 
46®, 90®, 135®, 180®. The connecting rod is 25 in. long. Ans, At 46®, 
Vel. « 10.56 ft. per sec. Acc. « 290.5 ft. per sec. per sec. 

9. If the average piston speed of an internal-combustion engine, 3i-in. 
bore and 5-in. stroke, with a connecting rod 11 in. long, is 3000 ft. per min., 
at what speed does the engine run? Find, also, the maximum piston velocity 
and maximum piston acceleration. At what angles are these maximum values 
obtained? 

10. In a four-cylinder gasoline engine with a stroke of 4^ in. and a con¬ 
necting rod 9 in. long, two cranks are on the top dead center when the other 
two are on the bottom dead center. Compare the piston accelerations for 
this position of the cranks if the R.P.M. is 3600. What is the average piston 
velocity? 

11. Compare the calculated piston accelerations of problem 10 with those 
obtained under the assumption that the pistons have S.H.M. Express the 
differences as a percentage. 

12. Sketch the crank-shaper quick-return motion. How is the time ratio 
of advance to return obtained graphically? How is the stroke of the shaper 
altered? Does this affect the time ratio of the strokes? 

18. Sketch the Whitworth quick-return motion. Show how to find the 
time ratio of advance and return strokes. What alteration would be required 
in order to increase this ratio? 

14. Sketch an inversion of the slider-crank mechanism used in hand pumps, 
and name and indicate the essential parts in this application. 

15. A crank-shaper quick-return motion has a driving crank 4 in. long. 
Find the distance between the pivot points of driving crank and swinging link 
if the time ratio of advance to return stroke is 3 :1. What is the new time 
ratio obtained when the crank length is reduced to 2 in.? 

li. Find graphically the time ratio of advance to return for the driven 
Uodc e in the mechanamis shown in Figs. A to C, assuming that the driving 
mask a rotates with constant angular velocity. 



CHAPTER VI 

CAM MECHANISMS 

1. Cam mechanisms are extensively used in machinery because 
of the ease with which the design can be carried out to produce 
any desired motion. The motions needed in machine parts are 
often of such a nature that it would be difficult to obtain them by 
any other mechanism of equal simplicity and practicability. 
Thus cam mechanisms are commonly used for operating valves 
in automobile, stationary, and marine internal-combustion 
engines, in printing machinery, shoe-making machinery, auto¬ 
matic screw machines, stamp mills, clocks, locks, etc. It is 
difficult to find a machine of the type which we term “ automatic ” 
which does not employ one or more cam mechanisms. 

All cam mechanisms are composed of at least three links: (a) 
the Cam, which has a contact surface either curved or straight; 

C]^ixider Cam. — (See Fig. 6-2.) In this mechanism the profile 
which acts on the follower is formed on the surface dl the cylinder, 
so as to move the follower in a plane parallel to the axis about 
which the cam rotates or oscillate, 

l^anslathm Cam. — Here the cam profile is out on one side of a 
* S4 
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block of metal or other material and the cam has reciprocating 
motion along a flat surface. (See Fig. 6-3.) 

All cams may be regarded as wedges having surfaces of uniform 
or variable slope, more frequently the latter. When the wedge is 

caused to slide badk and forth on a flat surface we call it a Trans¬ 
lation Cam (Fig. 6-3). When the wedge is wrapped around the 
circumference of a circular disc (Fig. 6-4) it becomes a Disc Cam. 

Fio. 64 

When th^ wedge is bent to form a ring and applied to the flat 
end of a cylinder (Fig. 6-5) a Cylinder Cam results. 

3. Constraint of Follower. — In the mechanians shown in 
6-3, 6-4, and 6-5 it will be noted that the form of the cam 

is such tiiat it does not completely constrain tiie motion of the 
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follower, as no means of maintaining contact between cam and 
follower is indicated. Continuous contact is usually effected by 
utilizing either the forces of gravity or spring pressure. 

4. A Positive-motion 
Mechanism (Fig. 6-6) is 
one in which the follower 
is compelled to move in 
a definite path by con¬ 
straining surfaces and 
without the application 
of external forces. Fail¬ 
ure to do so can be due 
only to breakage of some 
part. Methods of ac¬ 
complishing this result will be taken up in detail in a later 
article. * 

DISPLACEMENT DUOKAMS 

6. Profile Design. — The design of a cam profile is governed 
by the requirements in regard to the motion of the follower, 
lliese requirements depend on the function which the mechanism 
performs in the machine to which it is applied. The cycle of 
events for the follower, determined by such considerations, may 
call for certain “ rest ” periods diudng which no follower motion 
occurs, and certain periods of motion of a specified nature. It 
is generally found convenient to start on the cam-design problem 
by first making a graphical representation of the follower move¬ 
ment, which we call a Displacement Diagram^ This is a linear 
curve in which abscissae represent cam displax^ents and ordi¬ 
nates represent follower displacements. Since both members 
may have either linear or angular motion, these displacements 
may be either linear or angular, depending on the particular form 
of mechanism under consideration. linear follower displacement 
is -often referred to as the “ lift,” even though the movement 
may not be in a vertical direction. 

Followers in practical apiiieations frequently move exactly or 
iqi^HOximately in aooord with one of the fdDowing ctHoditimm: 
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(a) Motion at Constant Velocity; 
(b) Motion with Constant Acceleration or Deceleration; 
(c) Simple Harmonic Motion. 

The Displacement Diagrams corresponding to these three cases, 
together with certain modifications, will next be considered. 

The cam shaft, where the cam has angular motion, is assumed to 
rotate at a constant speed. The discussion which follows is 
based on this assumption. Here the Displacement Curve is 
one in which the base represents Time as well as Cam Displace¬ 
ment, the two quantities being proportional to each other. 

6. Constant Velocity. — In Fig. 6-7 is shown a displacement 
diagram for a cam mechanism in which the follower rises 2 in. 

When a body moves with constant velocity, its displacement is 
directly proportional to the elapsed time. Assuming a constant 
cam velocity, the follower displacement is consequently propor¬ 
tional to the cam displacement. The curve AB for the first 90*^ 
must therefore be a straight line. During the second 90° period a 
horizontal straight line BC represents the rest period. The drop 
period during the next 90° of cam motion is indicated by another 
straight line CD, since here again we have constant velocity. DE 
is drawn horizontally for the final period. 

For a practical application the diagram would probably be 
modified to the form shown by the broken lines, unless the cam 
turns very slowly. This is done to avoid sudden changes of 
motion when the lift begins and ends, and substitutes a gradual 
change of velocity which eliminates shock and noise. Further 
reference to this matter will be made later. 

7. Constant Acceleration. — For any moving body with oon- 
stant aeoeleration, wh^ s is the displacemrat, a the 
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acceleration, and t the time interval. The distance moved is 
therefore proportional to the square of the time. Taking time 
intervals of 1, 2, 3, 4, etc., time units, the displacements of the 
body at the ends of these intervals will be relatively proportional 
to the quantities P, 2*, 3®, etc., or 1, 4, 9, etc. This principle is 
applied in the case of the displacement diagram shown in Fig. 
6~8. Here the requirement is that the follower shall move a 
distance AC during a cam displace- c 
ment AB, The construction is as 
follows: 

AB is divided into any number | g 
of equal spaces; in the figure these 
are four in number. Each of these 
spaces represents an equal time in- ^ p 
terval under the assumption that Displacement 

the cam has uniform velocity. The 
follower displacements up to the ends of these intervals are pro¬ 
portional to the numbers 1, 4, 9, 16. But i4C is the displacement 
at the end of the fourth interval. Therefore, we divide AC into 
sixteen equal parts and project from the first, fourth, ninth, and 
sixteenth division, as shown in the figure, thus locating points on 
the required curve. 

8. Constantly Accelerated and Decelerated Motion. — Accel¬ 
eration lasting to the end of the follower travel would result in 
maximum velocity being attained just before the follower comes to 
rest, and this would cause a shock unless the cam speed were very 
slow. Consequently, the acceleration period should last only 
part of the lift interval and be succeeded by a “ deceleration,** 
which will bring the follower to rest gradually. Giving these 
quantities constant values will often result in smooth cam action. 
The constant acceleration may or may not be equal to the con¬ 
stant deceleration; a cam profile can be designed to give any 
desired ratio of acceleration to deceleration. The displacement 
diagram for such a case will next be considered. 

Let ai be the constant acceleration during the first part of the 
follower motion, si and h being the corresponding displacement 
and time. Let Os be the deceleration during the latter part of the 
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motion, 82 and <* being the displacement and time for the same 

interval. The ratio — is the given acceleration-deceleration ratio. 
€^2 

Now S = 81 + 82, where S is the total follower movement. 
If 8 *= the velocity at the end of the acceleration period, 

Also, 

ti* = 2 ffliSi = 2 02S2 or 5= ^. 
02 4fl 

V ~ Oi^i = 02^2 
0*2 ^1 

That is, the displacements and time intervals are to each other 
inversely as the acceleration-deceleration ratio. 

Example. — Draw the displace^^ient diagram for a cam mech¬ 
anism in which the follower moves 2 in. during 180° of cam dis¬ 
placement, acceleration and deceleration being constant and 
having the ratio of 3 to 1. 

From the above discussion it will be evident that the displace¬ 
ments and times corresponding to the two intervals are in the 

ratio of 1 to 3. For the 
acceleration period the 
displacement is therefore 
one fourth of the total 
displacement and the 
period lasts for one fourth 
of the total time, ending 
at 45° cam displacement 
(Fig. 6-9). This fixes 
the position of the point 
B on the 45° line, the or¬ 
dinate being i in. The 

construction for other points on the Acceleration Curve is the 
same as that used in Fig. 6-8. Points on the Deceleration Curve 
BC are found in the same way by working from C toward the left. 

9, Practical Modification of the Constant«*veiocity Diagram. — 
As noted in Art. 6, the displacement diagram for the constan;t- 
velodity cam is modified somewhat from tine theoretical form in 
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practical applications^ for the purpose of avoiding sudden changes 
of velocity at the beginning and end of the lift period. 

This modification can best be made by using a short period of 
constant acceleration at the beginning of lift, lasting until a suit¬ 
able velocity has been attained. The follower then moves with 
constant velocity until near the end of the lift period, when a 
constant deceleration is applied, and the follower is brought to 
rest without shock. 

The construction of the lift diagram for such a case will now be 
considered. 

Suppose it is specified that the follower is to lift during 150® 
of cam motion, the displacements being those due to constant 
acceleration for 30®, constant velocity for 90®, and constant 
deceleration for the remaining 80®. 

When a body is accelerated uniformly from rest to a velocity v 
in t units of time, it is evident that the average velocity for the 
period is v/2 and the distance 
moved is vt/2. If, instead, 
the body has a constant veloc¬ 
ity V, it will move the same 
dktance vt/2 in time 1/2. Con¬ 
sequently, the follower in 
question will move the same 
distance during the first 30®, 
where it has constant accelera¬ 
tion, as it does in subsequent 
15® intervals with constant velocity. The total lift can therefore 
be regarded as composed of eight equal increments, the first being 
executed in the first 30® period, the next six in the succeeding 
six 15® intervals, and the last in the final 30® peridd* We there* 
fore ^vide the total lift (Fig. 0-10) into eight equal parts, ob¬ 
taining the points 1,2,3, etc., and project from 1 to 2 to 2', 
etc. Connecting 1^ 2^, 3^ by a smooth curve completes ike dia¬ 
gram. Intermediate points on the aocelemiton and deceleration 
curves may be found as in Fig. 5-^. 

10. Simple Hamonic Motion. — The ccmstrueticm 6f the dis- - 
plaoament diagram for harmonic motim of the fioBoirer is the 
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same as that described in Art. 8, Chapter II, for drawing a linear- 
displacement curve of a point with harmonic motion. Figure 6-11 
illustrates a case in which the follower lifts 2 in. during 180® of 
cam motion, then 
rests for 90°, falls to 
initial position in 90°, 
and rests for the bal¬ 
ance of the cycle. 

A semicircle is 
drawn as shown, the 
lift being used as a 
diameter. The cam angle for the lift period, 180°, is divided into 
any convenient number of equal parts; in the figure each of these 
represents 30°. The semicircle is divided into the same number 
of equal arcs, and thus points 1,2,3,4, etc., are found. Horizontal 
projection then locates points 1', 2', 3', etc., on the required curve. 
For the “ drop ” period, projection from the same points, 1, 2, 3, 
may be made if the cam angle corresponding to this period is 
divided into the same number of parts as the semicircle. 

CAM frofub construction 

11. General Methods. — So far we have only discussed the 
method of drawing displacement diagrams for required follower 
motions. The next step to be considered is that of finding the 
cam profiles necessary to produce these movements. The con¬ 
struction is altered in detail with different types of followers, but 
we may map out a general method which is applicable to all ca8e& 
irrespective of the form of the displacement curve or the variety 
of follower in use. It can be applied to disc cams, cylinder cams, 
and translation cams, and comprises the following steps: 

(a) The cam is considered as bring the fixed link in the mri^ha. 
nism instep of the frame which carries the cam shaft and foUowei 
guides. lihat is, we deri witii an inversion of the acturi mecha¬ 
nism. As noted in Art. 3, Chapter I, the relative motion of any 
pair of links remains unaltered when the mechanism is inverted. 
Tlwrefote, the cam and frikmer will have the same relative 



92 CAM MECHANISMS 

motion whether the frame or the cam is considered as the fixed 
member. 

(6) The portion of the follower that acts on the cam is then 
drawn in various positions which it will occupy at different in¬ 
stants during its cycle of motion relative to the stationary cam. 
The contact surface of the follower may consist of the surface of a 
roller, a knife edge, a flat, convex, or concave sliding face, etc. 
In Fig. 6-13, in broken lines, is shown the position of the follower 
corresponding to angular displacements of 30°, 60°, 90°, etc., 
from an arbitrary zero radius. The choice of the angular intervals 
depends on the number of points which it is desirable to locate 
on the cam profile. 

(c) The cam profile is found by drawing a smooth curve tan¬ 
gent to the follower contact surface in all of its various positions. 

The contact surface of the follower is located as required in (6) 
by first finding the position of some selected point on the follower. 
The point chosen, which we shall call the “ reference point,’’ 
should be one that is easily located from data furnished by the 
displacement curve and also one from which the working face 
of the follower can be conveniently drawn. For example, where a 
roller is used, the roller center is the best point for the purpose; 
where the follower is flat-faced, the point where the follower axis 
intersects the codtact face is satisfactory. 

It will be noted that the constructions which are described in 
the following articles differ from one another only because of 
variations in the form of follower employed and differences in the 
way in which it is constrained to move with reference to the frame 
and cam. 

DISC CAMS ■ 

12. Xnife-edge Fdlower. — In this mechanism, the follower 
has contact with the cam along a line represented by the point A 
in Fig. ff-13, in all positions. This style of follower is suitable only 
for very light service because the edge cannot be effectively lubri¬ 
cated, pressure is concentrated on this portion and wear is likely 
to be excesrive. 

Assuming that data are givmi wlmretiy the die^lac^iient (tia* 
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gram (Fig. 6-12) can be plotted by methods already outlined, we 
shall proceed to discuss the method of drawing the cam profile. 

The diameter of the 
base circle is taken as 
2 in. and the lift 1 in. 
Distances x, y, z, etc., 
in Fig. 6-12, represent 
the follower displace¬ 
ments after 30®, 60®, 
90®, etc., of cam move¬ 
ment. Any other con¬ 
venient angles may, of 
course, be used- The 
base circle is first 
drawn (Fig. 6-13) and 
a zero radius is chosen 
as a reference line repn 
resenting the initial 
position of the follower 
axis. In the initial 
position, shown in solid 
lines, the knife edge of 
the follower touches 

*the base circle. 
In accordance with the general plan outlined in Art. 11, we 

consider the cam as the fixed link and move the follower abound it. 
Point A is the most convenient reference point, and its suc¬ 
cessive positions are first located. To find the position of A after 
30® of cam movement, we set off the distance x from A outwardly 
along lha path of motion of this point; thus point 1 is determined. 
Next, with 0 as center and 0-1 as radius, we swing an arc 1-1' 
in a sense opposite to that of the cam movement, and subtending 
an angle of 30® at the point 0. Then 1' will be the new position 
of A corresponding to 30® angular motion. Using y, s, etc., as 
displacements, we find points 2', 3', etc., in the same way. As the 

always touches the follower at A we complete the construc¬ 
ts by drawing a smooth curve throui^ A, 1', 2', S', etc. 

oj 60” 120' 24Qr 300* 860* 

Fiq. 6-12 
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The follower edge does not always move in a straight path 
passing through the cam axis; Fig. 6-14 shows the case where the 
follower is offset, that is, 
A moves along a line 
passing to one side of the 
cam center. The descrip¬ 
tion of the construction re¬ 
quired to obtain the cam 
profile in Fig. 6-13 will 
apply without change to 
Fig. 6-14, 

13. Roller Follower.— 
The follower is usually 
either guided so as to move 
with rectilinear motion, or 
it is pivoted so as to swing 
about a fixed point. The 
general method outlined in 
Art. 11 applies in either 
case. The center of the Fia. 6-14 
roller is used as a reference 
point whose path is first determined, and from which the follower 
contact surface, namely the circumference of the roller, is located 
in various positions. 

(a) Roller Follower with Rectilinear Motion. — The displace¬ 
ment diagram. Fig. 6-16, is assumed to specify the motion re¬ 
quirements. The base circle (Fig. 6—16) is first drawn and the 
roller located in its initial position touching this circle. The 
path of the roller center, A-A', is drawn. A zero radius, for 
convenience, parallel lo A-A', is next located, and angular in¬ 
tervals of are laid off from it about 0. Keeping the cam 
stationary, we then find the position of the roller center A, after 
30^ displacement of the follower. The displacement diagram 
indicates a displacement x at 30^; this distance is set off along 
A-A', giving point 1. With center 0 and radius 0-*l, an are 1-1' 
is described in a sense opposite to that of the cam movement, and 
of such length as to sub^d an ci 30^ at 0. Point 1' ean 
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most easily be located by making chord 1-1' equal to chord L-M 
or 1-1/ equal to V-M. 

Points 2', 3', 4', etc., are found in a similar way. Using these 
points as centers and the roller radius, corresponding positions of 
the follower contact surface are drawn. The required cam pro- 

120* 240* 

Fia e-16 
300* 

Pio. 6-16 

file is evidmi^ a ourve drawn tangent to each of these circles. 
This curve is made as smooth as possible, 

la Fig. 6-16, the Une AA' does not pass through the cam axis, 
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hence the follower is said to be “ offset.” An offset is sometimes 
provided to reduce side thrust during the lift period. 

Figure 6-17 illustrates the cam obtained when the follower has 
no offset, that is, when A-A' passes through 0. Points 1', 2', 3' 
then fall, respectively, on the 30°, 60°, 90° radii. 

9* 

Fig. 6-17 

(6) Pivoted Roller Follower. — Here the ai^^ilar motion of the 
follower is assumed to be specified, the total displacement being 
0°. A displacement diagram drawn for the angular motion of 
the follower wUl also serve as a linear-displacement diagram for 
the motion of the roller center A, since the two quantities are 
directly proportional to each other (y or). This consideration 
is the basis for the construction which follows. It is assumed that 
the base circle, roller diameter, length of follows, and position of 
pivot are known. In Fig. 6-19 the mechanism is first dmwn with 
the rdler touching the base circle. An arc A-A', with center 
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B and radius BA, of such a length as to subtend an angle of 5“ 
at B, is the path of motion of the roller center. 

The displacement diagram, Fig. 6-18, is next drawn, the recti¬ 
fied length of A-A' being used to represent the angle 6. The 

Fiq. 6-19 

method of doing this is exactly the same whether the follower dis¬ 
placements are linear or angular. (See Art. 5.) From this 
point on^ the construction is identical with that used for Fig. 

Distance x, representing the displacement at 30^, is set 
off along the arc ^ving point 1. With 0 as center and 
radius 0-1 an arc is constructed; and a chord 1-1^ is laid off on it, 
of length equal to chord Zr-Jlf (or 1-L » 1-M). Points 2\ 3', etc., 
are found in the same way. Roller circles are drawn with 2% 3' 
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as centers, and finally the cam profile is formed so as to touch all 
these circles. 

14. Follower with Convex Sliding Face. — (See Fig. 6-20.) 
Such followers usually have contact surfaces formed by circular 
arcs. If we take a roller follower and fasten 
the roller so that it cannot rotate on the follow¬ 
er, the motion of the latter remains imchanged. 
A sliding follower is therefoise equivalent kine¬ 
matically to a roller follower having a Contact 
face of the same shape, as far as the follower 
motion is concerned. The reference point used 
(with a roller follower) in constructing the cam 
profile is the roller center. If the center of cur¬ 
vature {Ay Fig. 6-20) for the sliding follower is 
used as the reference point, the construction as 
outlined in Art. 13 may be applied without 
change. 

16. Flat-faced Follower. — Here two cases will be considered; 
(a) the case where the follower has rectilinear motion, and (b) 
the case where the follower has angular movement about a pivot. 

(a) Flat-faced Follower with Rectilinear Motion. — Figure 
6-22 illustrates this case. Assuming that the displacement dia¬ 
gram has been obtained and is of the form shown in Fig. 6-21, we 
proceed as follows: 

Draw the base circle for the cam and divide it into convenient 
angular divisions. Draw the follower in its initial position BC, 
tangent to the base circle. Point A where the cam touches the 
base circle in this position is chosen as the reference point. Set 
off distances x, Zy etc., obtained from the displacement diagram, 
along the path of motion of A, obtaining points 1,2,3, etc. With 
0 as center and 0-1 as radius, ^ring an arc l-l^ Point P is the 
position of A after 30^ displacement. Points 2^ 3^ etc., are found 
in the same way from displacements y, z, etc. Throu|^ draw 
a line pei^ndieular to the radius 0-1'; this represmits the Id* 
lower face for 30^ displacement. Draw similar lines through 2^, 3', 
etc., each perpendicular.to the corresponding ladhis. The ma 
profile is found by drawing a curve to toudi each of these ihm 

Fia. 6-20 
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It will.be noted that the intersections of these lines form triangles, • 
shown by the cross-hatched surfaces in* the figure. tThe drawing 

of the cam profile will 
be facilitated if it is 
remembered that the 
required curve touches 
the bases of each of the 
triangles at about their 
mid-point. 

The construction 
just given may in 
some cases result in 
the condition shown in 
Fig. 6-23 where it is 
impossible to draw a 
curve to touch all lines, 
such as 1-1', 2-2', 3-3', 
etc. The cause is too 
rapid acceleration or 
deceleration of the fol¬ 
lower, and the remedy 
is to increase the 
base-circle diameter. 
When the base circle 
is enlarged a certain 

amount, three of the lines will meet at a 
point; then Ihe profile will have a sharp 
oomer whidi is liable to wear away rapidly. 
Further increase in the base-drole diameter 
will cause this oomer to disappear. 

The necessary length of follower face BC o 
in Fig. 6-22 can readily be determined by 
inspection of the figure. The face is usu¬ 
ally a circular disc, txa to rotate about 
the follower axis. The point of contact is 

4m the axis in “ rest" positions and 
ttoyeB out toward B or C as the follower velocity increases. The 

2 
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distances AB and AC must be great enough so that the contact 
point never passes B or C. By inspection of the diagram, the 
lei^h of the longest tangent S can be foimd; AB 
and AC should be at least equal to 8, and prefer¬ 
ably slightly greater. 

By offsetting the follower slightly, as shown in 
Fig. 6-24, a slow rotation of this member is in¬ 
duced. This tends to cause even wear on the con¬ 
tact face. 

(6) Pivoted Flat-faced Follower. — Figure 6-25 -t-jKOfbet 
illustrates this mechanism, the follower turning ^24 

about a fixed pivot at B. To construct the cam 
profile, any point, such as C, on the follower face is selected as a 
reference point. Arc C-C', with center B, is the path of motion 

Fia. 6-25 

of C, assurnfag that the follower k to have ft total ditgtbiBeii^ 
0°. Hie diqtlaoeiiimit diagram, Fig. 6-26, is diswa in the usaai 
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manner, the rectified length of C-C' (a) being used to represent 
follower displacement. The form of the curve depends on the 
motion specifications. The construction for a point on the cam 
profile at 30** cam displacement is indicated in the figure. ^Dis¬ 
tance X represents the angular displacenlent of the follower at this 
instant; &ub distance is set off along the arc C-C', thus giving 

M 

point F. The follower is next rotated 30® in a sense opposite to 
that of the cam movement, which causes F to move to F' and B to 
B'. F' is easily located, since the angle BAB' = 30® and BF = 
B'F'. By drawing, with B' as center, a circle of radius BG, the 
tangent F'Q' will represent the new position of the follower face. 
Bepetition of this construction for other cam angles gives the 
series of lines shown in the figure, to which the cam profile must 
be tangent. 

16. Primary and Secondary Follower. — The mechanism of 
Fig. 6-28 has a pivoted follower, on the back of which a second 
follower with rectilinear motion makes contact. We shall refer 
to these, respectively, as the “ primary ” and “ secondary ” 
followers. The advantages of such an arrangement are, (a) that 
the secondary follower is relieved of most of the side thrust, and 
(6) a large movement is obtainable with a small cam. Further¬ 
more, the axis of the secondary follower may be offset a consider¬ 
able amount from the cam axis. 

It will be assumed that the motion of the secondary follower 
is definitely specified, so that a displacement diagmm (as in 
Fig. 6-27) can be drawn; also, that sufficient data are given to 
enable tiw Tn«>cbii.niMn to be drawn in the position shown by the 
full lines of 1%. 6-28 with the roller in contact with the base 
einle. 
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Roller center E evidently moves in an arc EF with center at 
the pivot point D, The straight line -4 F is the path of point A 
on the secondary follower; this point we shall use as our reference 
point in tracing the fol¬ 
lower motion* The 
construction for the 
roller position corre¬ 
sponding to 60® dis¬ 
placement from initial 0® eo** 120"* leo® 24o“ SOoT 8d0* 
position is shown in the Angle 
figure. The displace- 
ment diagram shows a 
follower displacement 
of X at this instant. 
This distance is set off 
along A 7, thus giving 
the point A\ The fol¬ 
lower end in its new po¬ 
sition is drawn as shown, 
in broken lines, A' being 
used to locate the arc 
forming the contact 
surface. We next draw 
B'C' touching this arc, 
representing the new 
position of the top face 
of the primary follower. 
B'C' crosses the arc EF 
at J\ If J'B', equal 
to JEf is set off along 
EFf evidently E^ is the 

Fig. 6-28 

new location of the roller cmter* Our next step is to rotate the 
primary follower 60® in a sense opposite to tibat of the motion of 
the cam* Point E^ moves in an are with 0 as center to the point 
Mf the arc E'M subtending an angle of 60^ at 0* If an 
arbitrary sero radius, is drawn, and migles of 80% 60% 90% etc*, 
laid off from it, then point M is earily obtained by making dmrd 
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LM equal to KE'. The cam profile is tangent to the roller circle 
with M as center. 

17. Positive-motion Cam Mechanisms. — This variety was 
mentioned in Art. 4 as being one in which provision is made for 
controlling the motion of the follower in both directions by the 
use of two contact surfaces. For disc cams this is accomplished 
in the following ways. 

(а) By the use of a grooved disc and roller follower, as in Fig. 
6-6. 

(б) By providing two contact surfaces on the follower, located 
on opposite sides of the cam axis, both bearing on the same cam. 
(See Fig. 6-29.) 

(c) By using two contact surfaces on the follower as in T3rpe 2, 
but causing each to bear on a separate cam. (See Fig. 6-31.) 
A brief discussion of each type follows. 

Type (a). — In Fig. 6-6, a and 6 are the two contact surfaces. 
The inner one, a, is constructed just as though the cam were of 
the ordinary non-positive kind. Then circles of diameter equal 

to that of the roller are drawn at convenient 
angular intervals, touching the surface a. A 
curve drawn to touch each of these circles on 
the outside will outline the surface b. A certain 
amount of clearance is necessary, the groove 
being made slightly wider than the roller. 

It will be observed that when the roller rolls 
against a and slides on b it turns counter-clock¬ 
wise, whereas when rolling against b it turns 
clockwise. Each of these conditions exists at 
least once during a revolution, hence the roller 
must reverse its angular movement at least twice 

per revolution. This is bound to cause slippage, which may pro¬ 
duce eKoessive wear at some points on the contact surfaces. 

(*»)• — When a flat-faced follower with reciprocating 
motion is used and the mechanism has the form shown in Fig. 
6-29, the mechanism can be designed to g^ve any required motion 
for 180”, subject only to limitations which ap|dy to any cam with 
» fi»Mc^ fcdlower. The motion during the <^h^ half of the 

PiQ. 6—29 
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revolution, however, will be the same as that obtained during 
the first half, since it is caused by contact between the same 
cam profile and a follower face of the same shape, the only differ¬ 
ence being that the direction is reversed. This tjrpe is not suit¬ 
able, therefore, for an application in which the follower motion 
must be different on the lift and return strokes. 

Where the follower has angular motion about a pivot, the motion 
can be specified for 180° plus the angular displacement of the fol¬ 
lower. 

In Fig. 6-30 is shown an assumed lift diagram for 180° of motion 
and the details of construction for a cam mechanism as in Fig. 
6-29. The half cam surface ABC is found by the construction 

Eio. 6-30 

of Art. 15. The lines 0-0,1-1, 2-2, etc., show the positions Oi^ 
cujned by the upper face at the ends of equal angular intervals of 
30°. The necessary distance 8 from the upper to the lower face 
of tite follower is evidently equal to 

Base-drole Diameter -f lift. 

To find the profile dl tire portion CD A of the cam, draw liiise 
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O'-O', l^“l^ 2'-2', etc., respectively parallel to and at distance 
S from 0-0, 1-1, 2-2, etc. Curve CDA is then drawn tangent to 
these lines. Clearance is provided by making the distance be¬ 
tween the follower faces somewhat larger than S. 

The preceding construction produces a figure such that the 
distance between any pair of parallel tangents is constant. 

Type (c). — This consists of two disc cams, mounted on the 
same shaft, acting on a follower with two contact faces or rollers 
placed on opposite sides of the cam shaft, each bearing on one 
of the cams. (See Fig. &-31.) In designing the cam profiles, 
the first or “ motion ” cam is drawn in the same manner as a non- 
positive cam bearing on one of the rolled or faces. Tife second 
or " return ” cam is then drawn so that its profile will maintain 
contact with the other roller or face of the follower. It is usually 

Eiq. 6-31 Fia. 6-82 

most convenient to make both the base circles of the same sue. 
In this case the distance S, in Fig. 6-32, from center to center of 
rollers is equal to 2 X Roller Radius -t- Base-circle Diameter -f* 
lift. 

B%ure 6-^ shows the construction. The roller circles drawn in 
broken lines, to which the profile of the return cam is tangent, are 
located diametrically opposite the drcles in solid lines, tangent to 
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the motion cam, the distances between the centers of each pair 
on the same diameter being equal to S. 

While more complicated and expensive to make, this type im> 
poses no limitations on the motion as does Type b with single disc. 
Ndther does it have the imdesirable reversal of roller rotation 
which occurs in Type a. 

CYLINDER CAMS 

18. Types. — These may have a follower guided so as to move 
in a straight line along an element of the cylinder (Fig. 6-33) or a 

follower pivoted so as to move about an 
axis perpendicular to the cam axis (Fig. 
6-35). The roller, if cylindrical, cannot 
have pure rolling contact because of the 
difference in the surface speed at top and 
bottom of the groove. Consequently it 
is sometimes made in the form of the 
frustiun of a cone (Fig. 6-34) with the 
apex on the axis of revolution of the 
cam. While this promotes pure rolling 
action, it also introduces an imdesirable 
thrust, tending to move the roller away 
from the cam. 

18. Cylinder Cam with Rectilinear 
Motion of Follower. — Figure 6-36 shows the construction of a 
qrlinder cfim which meets the following specifications: 

Cylinder Diameter.6 in. 
Boiler Diameter.  li in. 
Groove Depth.H in. 

The roller is cylindrical. The follower moves in a staraii^t line 
along a cgdindar dement, ridng'from initial podtion with oomrtiBOt 
aocelerathm for 45% with constant velocity for 60% with constant 
deceleration for 45° to top position. It then rests for 30° and 
iduiDS with the same motkm as on the lift. The total lift is 4 m. 

A cam angie>diQfiaoanent diagram is first drawn (Fig. 6-86), the 
base being taken of such length that it repreaeote the 
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circumference (6^ in.) to a convenient scale. Taking centers 
at a number of points along the curve, and with roller radius, draw 
circles as indicated in the figure. Draw curves tangent to these 
circles above and below; they will be the developed outline of 
the groove on the cylinder surface. If a templet of this form is 
made and wrapped around the cylinder, the required profile can 
be marked on the latter. The development of the root cylinder, 
of length 4f *• in., is also shown in the figure. For strictly accurate 
results this is needed for drawing the elevation of the root lines. 
The shorter method adopted in Fig. 6-36, using only the outer 
cylinder development, is approximately correct for the root lines. 

20. Pivoted-follower Cylinder Cam. — Figure 6-37 shows the 
construction of a cam of the type illustrated in Fig. 6-35. The 
arm, from fixed point to roller center, is 4^ in. long. The motion 
specifications must in this case call for certain angular displace¬ 
ments of the follower at given cam angles. For comparison, the 
total angular displacement of the follower has been taken as 0, 
corresponding to a vertical displacement of the roller center of 4 
in., the same as in the mechanism of Fig. 6-36. Also, the speci- 
ficatkms for angular motion have been taken the same as those for 
linear displacment in the preceding problem. Tlxe displacement 
curve will therefore have the same form. 

Condruction: Draw plm and elevation of the cam cylinder. 
Locate the pivot point e so that the roller center will move as 
neax^ as possible along an element .of the cylinder. This means 
that at midHStroke the arm must be at ri^t angles to the element 
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pq, also that the arc ab, which is the path of the roller center, must 
be so placed as to extend equal distances on both sides of pq. 

The rectified length of arc oh (s) is next obtained, and a dis¬ 
placement diagram is drawn, s being used as the total displace¬ 
ment. Draw a rectangle of length fir in. to represent the de¬ 
velopment of the cylinder surface. Draw, on the development, 
arcs, as dfm, spaced at equal distances, and of radii equal to the 
arm length oc. On the diagram the arcs are spaced so as to repre¬ 
sent 30° intervals. From the displacement diagram at a fi0° 
cam angle, it will be seen that the follower displacement is an 
amount x. Transfer x to the development, marking off the arc 
length (not a chord length) de = x. With e as center and radius 
of the roller, construct a circle. Repeat this operation for each 
of the other angular positions. Draw a curve above and below, 
tangent to ail the rdUer circles. The resulting diagram is a de¬ 
velopment of the groove on the cylinder surface. 

A development of the groove form having been obtained, the 
elevation of the cam, shown at the lower left of Fig. &-37, is next 
drawn by ordinary projection methods, using the development in 
combination with the end view of the cam cylinder shown at the 
upper left of the figure. Projection lines are shown in the figure 
for points on the fi0° element. It should be noted that projection 
is made from the points where the groove curves cross the cylinder 
element Jd and not from points on the arc <(fm. 

The roller is assumed to be conical, the diameter at the large 
end being in. By drawing a diagram of the roller as shown at 
the lower left of the figure, we may obtain the diameter at the 
small ^d. With this diameter, and with centers at e wd similar 
points, draw circles on the cam development Curves tang^t to 
these circles, shown in brdcen lines m the figure, though not true 
devdopments of the root lines, may be used with fair accoraqy to 
draw the elevation of such lilies. A more exact method would 
necessitate drawing an accurate development of the root cylin- 
dw, on a base line of loigth equal to the root cylinder circum¬ 
ference, similar to that shown m F%. fi-3fi. Generally this refine- 
Oient is unnecessary, and we may draw our elevation as shown in 
the drawing. Projection lines are drawn for the 60° dement in 
tldsfipire. 
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CIRCULAR-ARC CAMS 

21. OeneraL — Many cams have profiles formed by circular 
arcs. There are three reasons for using such outlines in preference 
to other curves: (1) the drawing office specifications are more 
easily made for the use of the shop; (2) the process of manufacture 
is cheaper; (3) the completed cam can be checked more easily 
and with greater accuracy. Valve cams used in automobile and 
other internal-combustion engines, as well as many others, are 
usually of this class. 

By proper choice of the radii and centers of the arcs, theoretical 
requirements as to follower movements can be approximated very 
closely. The process of design can be carried out by first drawing 
a displacement diagram of the desired motion to a large scale 
and from it laying out the cam. Then, by trial, arcs and radii 
are chosen which will approximate the true form. Finally, the 
resulting cam is checked by working back to a displacement 
diagram which is compared with the original one. If the revision 
of the cam is found to have altered the displacement curve to an 
unsatisfactory form, a further revision may be necessary. 

For h^-speed cams it is necessary to draw an acceleration 
curve for the follower, since the spring pressure needed in the non¬ 
positive type is dependent to a large extent on the weight of the 
follower and attached parts, and on the acceleration. Starting 
with the displacement diagram and treating it as a displacement- 
time curve, by the metiiod of Art 13, Chapter II, we may construct 
a velocity-time and an acceleration-time curve, the latter giving 
the desired information for calculation of the spring. The Ve- 
lodiy Image method of Chapter IV can also be used. See Arts. 5 
to 8 and Example 2 in this (^pter. Other methods of arriving at 
the velocity az^ acceleration of the follower are described in the 
artides ediidi follow. These the author has found to give accurate 
results with little labor. 

82. <2ri»laxHurc Cams wHh Flat-faced Foltoww. —In Fig. fi-38 
is dioym a shnide form ci cam of this type, consisting of a circular 
disc rotating about a pdnt 0 other tium its geometric coater A. 
The distance r hmn the centw A to the face of the foUowK* is 
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evidently constant for any position of the cam. Therefore, the 
vertical motions of point A and the follower are the same. The 
vertical motion of A is simple har¬ 
monic when the cam rotates at 
constant angular velocity, since it 
is then moving in a circle about O 
at constant speed. It will be ob¬ 
served that B, the point of con¬ 
tact, is at the foot of a perpendic¬ 
ular from A on the cam face. If 
a perpendicular OC is drawn from 
0 Xo ABf the following relation¬ 
ships hold, by Art. 8, Chapter II. 

Follower Velocity == Vertical 
Velocity of A « « • OC, 

Follower Acceleration = Vertical 
Acceleration of A = • AC, where 
« * angular velocity of the cam. 

Plotting the lengths OC and AC on a base representing cam 
angles will therefore determine points on the velocity and accelera¬ 

tion curves for the follow¬ 
er motion, as shown in 
Fig. &-39. These are evi¬ 
dently sine and cosine 
curves. 

The same construction 
may be used for a cam 
whose profile is made up 
of several circular curves; 
the follower motion will 

then be composed of corresponding sections of harmonics varying 
in amplitude and phase in accordance with the locations of the 
center of curvature. 

'Figure &-40 illustrates the application to a portion of a cam 
outline composed of a circular arc Kh with center at A', and LM 
with center at A« Here the cam is kept stationary and tiie fol* 
lower is moved around it, as in previous cam ecmstructions. 

Pig. fi-39 
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When the angular displacement is B from a reference position, the 
follower face lies along X.F and touches the cam at the point B 

at the foot of the perpendicular AB, 
OC is drawn from 0 perpendicular to 
AB, From the above discussion it 
is evident that OC (= v) and AC a) 
represent graphically the velocity and 
acceleration of the follower at cam 
displacement B, These distances are 
therefore transferred to the velocity 
and acceleration diagrams of Figs. 
6-41 and 6-42 and plotted as ordi¬ 
nates at angle B, Other points on 
the curves are obtained in a similar 
maimer. The follower begins con¬ 
tact with the arc LM at cam angle a 
and terminates contact at angle 

when the cam is assumed to have counter-clockwise rotation. 
In this event the acceleration represented by AC is positive and 
has consequently been plotted above the base line. If C should 
fall on AB produced, the sign would be the opposite. 

Fio. 6-41 Fio. 6-42 

Assuming that the earn turns at 900 R.P.M. and that the cam is 
drawn twice full size, the velocity and acceleration scales can be 
found as follows; 
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The angular velocity of the cam («) »= 2jr X — = 94.2 
• 60 

radians per second. 
The follower velocity 

= « X CO where CO is actual size 

CO 
» « X — where CO is twice fuU size 

2 

= —^ X CO in, per sec. where CO is in inches 
2 

= 3.92 X CO ft. per sec. 

For the velocity curve, therefore, 1 in, = 3.92 ft. per sec. Similarly, 
CO* 

for the acceleration curve, 1 in. = -—^ = 369 ft. per sec. per sec. 
2 X 12 

23. Circular-arc Cams with Roller Follower. — As pointed out 
by Goodman in his book “ Mechanics Applied to Engineering,” 
the motion of the follower in this mechanism is 
the same as the motion of the piston in a direct- 
acting engine of proper proportions. The cam 
mechanism is shown in solid lines in Fig. 6-43; 
the equivalent mechanism is indicated in broken 
lines in the same figure. The crank length R is 
equal to the distance from the center of curva¬ 
ture of the cam surface to the center of rotation 
of the cam. The connecting rod has a length 
equal to the sum of the radius of the cam sur¬ 
face plus the roller radius. Keeping this anal- 
ogy in mind, it is evident that the follower ve¬ 
locity and acceleration may be determined by 
the same formula or by the same graphical con¬ 
struction which we apply in finding the piston velocity and accel¬ 
eration in the direct-acting engine. 

Figures 6-440^ 45a, 46a, and 47a show graphical velocity and 
acceleration constructions for different cases as follows; 

Figures 44a and 46a deal with the toe of the cam. In the forma:, 
L, the connecting-rod length, is greater than R, the crank lengthy 
while in the latter is less tW R. 
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Figures 45a and 47o deal with “ flank ” arcs. In the former L 
is greater than R] in the latter L is less than R. 

The method of obtaining a length representing the follower 
velocity is the same in all the above cases and is that described in 
Art, 3, Chapter V. A line OC is drawn perpendicular to the “ line 
of stroke ” OE to meet the “ connecting rod ” EA, produced if neces¬ 
sary, at C. The distance OC {= v) represents the follower ve¬ 

locity to a scale of 1 in. = ^ ft. per sec., where w is in radians per 

second and the diagram is actual size. The corresponding ve¬ 
locity curves shown in Figs. 6-446, 456, 466, and 476 are fovmd by 
plotting OC and lengths obtained in similar fashion for other cam 
angles on a base representing the cam angles. In Fig. 6-44o, OC 
represents the velocity at a cam displacement of 75° from the 
arbitrary zero position, 

Klein’s Construction (Art. 7, Chapter V) is next applied to 
find the acceleration in the cases shown in Figs. 6-44a and 6-45a, 
where R is not greater than L. With A as a center and radius 
equal to AC, an arc is drawn to meet a semicircle which has AE 
as its diameter. From the intersection at B, BF is next drawn 
perpendicular to EA, meeting the line OE at D. In Art. 7, 
Chapter V, it was shown that 

Follower Acceleration = w* X OD. 

OD, therefore, represents this acceleration to a scale of 1 in. = 
w* 

ft. per sec. per sec. when the diagram is full size. Points on the 

acceleration curves of I%s. 6-446 and 6-456 are therefore found 
by {dotting distances such as OD, as ordinates at the correspond¬ 
ing ang^. 

Where R is greater than L, as in Figs. 6-46a and &-47a, Klein’s 
Construction becomes impossible since no intersection of the arcs 
takes place. This coiustruction is, however, just a means of 
locating the point F on the line EA such that AF • AE => (AC)*.* 
In Figs. 6-46a and 6-47a this point is found as follows; 

At E erect a perpendicular to AE. This intenmts at £ an 
arc drawn with A as center and radius AC. At B draw BF per- 

*aMOa|>.V,Axt.7. 
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pendicular AB, meeting AE produced at F. Evidently, from 
the two similar triangles AEB and ABF, 

EA :AB = AB : AF 

or 

AF-AE-^ (-45)* - (AC)*. 

Therefore F is the required point, and if FD is drawn perpendicular 
to AE, then 

Follower Acceleration = to* X OD. 

OD is therefore plotted as an ordinate to obtain 
a pomt on the acceleration curve. (See liffi. 
Q-ASb and 6^76.) 

The ratio oi L to B governs the shape of the 
acceleration curve. By choosing a proper value 

of ^ the acceleration can be maintained practi* 

eally constant for a limited cam displacement. 

Fra. 6-466 

Thus, a ratio of 

^ m 8,s, if tuted in the mechanisms of 6-44a and 6-46a, would 
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give an acceleration of approximately constant value for cam 
displacements of 45° on either side of the dead>center position 

of the equivalent mechanism. Similarly, if the ratio — 

were used in Pigs. &-46o and 6-47a, the follower acceleration would 

Fick 6-47a FIm, 9-47b 

be about ocmstant for 25° of cam duplacement freon tike dead* 
center position. 

The flat^Kirfaced or " tangent ” cam has not yet been contid* 
oed. Piguie &<48 ilhuttates tins case. The vitiodfy is lound 
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by drawing EC perpendicular to the cam face, to meet OC per¬ 
pendicular to OE. The velocity is w X OC and this distance is 
used to determine a point on the velocity curve, Fig. 6-49. As 
regards the acceleration, neither of the constructions used for the 
circular-arc profiles can be applied. If the triangle OFC be drawn, 
in which OF is parallel to the cam face and FC parallel to OE, then 

Fio. 6-48 PlO. 6-49 

it can be shown that the acceleration is equal to u*(PE -h 2 CF). 
The proof for these statements is as follows: " 
The follower displacement from zero velocity position at cam 

displacement 6, from the figure, is equal to 

■n» iPdodiy w . § X ton » 

« w X Off X tan « « X OC. 

t/n 1 N A + 2 tan* 
- .j- 
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This may be written in the form 

d B ~h >*) 1 2 w^{R -h f) tan^ ff ^ 
™ COB ^ cos (? ’ 

and, since 

0£ 
H + r 
costf ’ 

OC = OF tan tf and CF = OC X tan 0 = OE X tan* $, 

we may write 
o = 6>\0E + 2 CF). 

The distance (OE + 2 CF) is plotted as an ordinate on the accel¬ 

eration diagram of Fig. 6-49. As before, the scale is 1 in. = ^ 

ft. per sec. per sec. for a diagram drawn full size. 
It should be observed that the circular-arc cam constructions 

given in Arts. 22 and 23 only apply where the follower has recti¬ 
linear motion, though similar graphical constructions are available 
for pivoted followers.* 

24. Automobile Engine Valve Cams. — The Intake Valve Cam 
used in the Auburn car engine is shown in Fig. 6-50; the Exhaust 
Valve Cam of the same 
motor is illustrated on 
page 264. 

These cams are of the 
droular arc variety and 
are designed to operate 
with a flat-faced follower. 
The half-cam profile is 
composed of four sec¬ 
tions eatibi fulfilling a 
definite function in rite 
movement of the valve 
lifter, as follows: 

(a) The valve is dosed 

* For additional information, see paper by H. Sduwok on " Kinematios of 
Oanu " in the Dwuaetioru of the AH.M.B., 1920; also artiob by O. L. 
Chiille* on "Onqptdod Analytie <ff Orcolar Are ChmA” in the dmtrkm 
UaOMtt, Oct. 21 and 28,1926, and June 18,1087. 

Fra* 6410 
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when the follower makes contact with the base circle portion a~6. 
(6) The cam profile is a regular curve for portion 6~c, subtending 

an angle of 36^, during which the radial ^stances to the profile 
increase uniformly at the rate of 0.00033 in. per degree. The 
total lift of the follower during this period is thus equal to 0,012 
in. for the whole interval. This slow lift at nearly constant ve¬ 
locity closes up the clearance between the follower and the valve 
stem without noise. 

(c) The portion of the cam profile c-d, which is a circular arc 
with center along L-M and radius as indicated, produces a high 
acceleration of follower and valve, resulting in rapid lift. 

(d) The toe portion of the cam d-c, a circular arc of small 
radius, produces a comparatively low deceleration of the follower 
at the end of which the valve velocity is decreased to zero at 
the top of its travel. 

The cam is symmetrical about e-a. The acceleration during 
c~d is usually from three to four times the deceleration during d-e. 
The valve spring keeps the follower in contact with the cam during 
the latter period, and by designing for a low deceleration it is 
possible to avoid the use of a heavy spring. 

QUESTIONS —CHAPTER VI 

1. Plot displacement diagrams for the follower motions as specified in 
A to E. Show in each case sufficient construction lines, points, and notation 
to indicate the methods employed. 

A. 

B. 

C. 

D. 

B. 

A follower lifts with constant velocity to hkhest position during 120^ of 
cam displacement, rests for 60% and falls with simple harmonic mo¬ 
tion during 45*^ to initial position, where it remains for the balance of 
the revolution. 

A follower lifts with constant and eaual acceleration and deceleration 
to the top of its travel during 180^ of cam movement, rests for 30% 
returns to its initial position with constant velocity during 120% and 
rests for the balance of the revolution. 

The follower moticm is the same as for IB, except that during the lift 
period the acceleration is twice as great as the deceleration. 

A pivoted follower moves through a total angle of 20^. Its outwaH 
motion is accomplished with constant acceleration during a cam diet 
placement of 45% then at constant velocity for 90"*, and finally with 
constant deceleration for 45° to the end of its travd. 

A pivoted follower, starting from the extreme outward position, moves 
m with constant and equal acceleration and deceleration to the other 
end of its travel, die total dtolacement being 25° during a cam move¬ 
ment of 90°. It then rests for 45° and returns to its initial position 
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during 60® with motion of the same character as on the other stroke. 
A rest period makes up the balance of the revolution. 

2. Why is it impracticable to use an unmodified constant-velocity cam at 
high speeds? How should it be modified in order to obtain best results? 

3. A follower lifts i in. during a cam displacement of 90® at constant 
velocity, the cam rotating at a constant speed of 120 R.P.M. (a) Find the 
velocity of the follower, (h) If the follower lifts with constant and equal 
acceleration and deceleration, find the value of the acceleration and the nuud- 
mum velocity attained. Ans. (a) 4 in. per sec. (6) 128 in. per sec. per sec., 
8 in. per sec. 

4. A follower lifts J in. during a half-revolution of the cam, the latter 
rotating at a constant speed of 480 R.P.M. The constant acceleration for 
the first part of the lift period is three times as great as the constant decelera¬ 
tion during the latter part of this period. Find the value of the acceleration 
and the cam displacement during which it takes place. 

6. Calculate the maximum velocity and acceleration of a follower which 
moves through a distance of 1 in. with simple harmonic motion during 120® 
of cam displacement, the cam rotating at 200 R.P.M. Ans. 16.7 in. per sec. 
492 in. per sec. per sec. 

6. In each of the following cases, A to I, assume a displacement diagram 
to be given and show how to plot the cam profile which will give the required 
motion to the follower. Show sufficient construction lines and notation to 
indicate the method employed in each case. 

A. Disc cam rotating clockwise, with knife-edge follower, the edge moving 
in a straight line passing through the cam axis. 

B. Disc cam rotating clockwise, with knife-edge follower moving in a 
straight line passing to the left of the cam axis. 

€• Disc cam rotating counter-clockwise with roller follower having rec¬ 
tilinear motion, the roller center moving in a straight Me which 
intersects the cam axis. 

D* Disc cam rotating counter-clockwise with roller follower having rec¬ 
tilinear motion, the roller center moving along a straight line passing 
somewhat to the right of the cam axis. 

£• Disc cam rotating clockwise with roller follower pivoted to the left and 
somewhat above the cam axis. 

F. Disc cam turning clockwise with follower having convex sliding face. 
Follower moves without angular displacement, its axis passing 
through the cam axis. 

6. Dise cam, turning counter-clockwise, having fiat-faced follower with 
rectUinear motion. How is the necessary breadth of the follower 
face detmnined in this case? 

H* Disc cam. turning counter-clockwise, with fiat-faced follower pivoted to 
the right and somewhat above the cam axis. 

h Disc cam with roller-type, {uvoted primary follower anid eonvex-faeed 
secondary follower having rectilinear moti<m. 

f. Sketch and explain the action In the three types of positive-motldii 
Mtm mechankma. 
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8. (a) Where a positive-motion cam mechanism hae a single cam acting 
on two faces of a yoke follower, what limitation is imposed on the motion of 
the follower? (6) What is the main objection to the use of positive-motion 
cam mechanisms with a single roller acting on two cam faces? 

9. Assuming that the form of the displacement curve is known, show 
how to find the cam profiles in each of the following positive-motion cam 
mechanisms. 

A. Single-disc cam turning clockwise with yoke-type follower having two 
parallel, fiat contact faces. Follower has rectilinear motion. 

B. Single-disc cam turning clockwise with yoke-type follower carrying two 
rollers. Roller centers move in a straight line passing throui^ the 
cam axis. 

C. Single-disc cam turning clockwise with yoke-type follower carrying two 
rollers. Follower pivots about a point on the right side of the cam 
axis. 

D. Slotted disc cam with two contact faces acting on a roller-type follower. 
The follower reciprocates along a straight line passing through the 
cam axis. 

£• Mechanism with motion and- return cams each bearing on one of two 
parallel flat faces of yoke follower with rectilinear motion. 

10. State one advantage and one disadvantage of using a conical roller in a 
cylinder-cam mechanism as compared with the use of a cylindrical roller. 

11. Show how to draw a development of the profile of a cylinder cam when 
the form of the displacement curve is known. Show the construction for 
obtaining the elevation of the cam. Assume that the follower has rectilinear 
motion along an element of the cam cylinder and that the roller is cylindrical. 

18. State three practical advantages in using circular-arc profiles instead 
of curves of other kinds. 

18. Show how to find graphically the velocity and acceleration of the 
follower under conditions stated in A to E. State the velocity and accelera¬ 
tion scales in each case. 

A. Follower has a flat face, moves with rectilinear motion, and makes 
contact with a circular-arc profile of a disc cam, the cam dimensions 
and speed being known. 

B* Roller-type follower with rectilinear motion and no offset is in contact 
with a circular-arc cam toe. The latter has a profile such that L 
is greater than in the equivalent direct-acting engine mechanic. 

C. Roller-type follower with rectilinear motion and no offset is in contact 
with a circular-arc cam toe. The latter has a profile such that L is 

< less than R in the equivalent direct-acting engine med^ism. 
D. Same as Question B except that the follower is in contact with the cam 

flank. 
B. Same as Question C except that the foQower is in contact with the cam 

flmik. 
Boiler-type follower with rectilinear motion and no offset is in contact 

with a flat surface on the cam. 
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14. A cam for a four-cycle internal-combustion engine exhaust valve is 
designed to have a period of valve opening which lasts for 110® of crank-shaft 
rotation. As is usual, the cam rotates at one-half crank-shaft speed. If the 
cam is designed for constant acceleration and deceleration with an acceleration- 
deceleration ratio of 3:1, find (a) the maximum velocity of the valve during 
the opening period and (b) the maximum acceleration of the valve. The 
engine speed is 3600 R.P.M., and the valve lift } in. 

16. How would you alter a cam mechanism in order to overcome the fol¬ 
lowing difficulties? (a) Too much side thrust on the follower. (6) Inability 
to secure sufficiently rapid lift with a flat-faced follower. How would you 
avoid (c) the necessity of using a spring, (d) difficulties in specifying the form 
of cam profile? 



CHAPTER VII 

ROLLING CONTACT 

1. Conditions for Rolling Contact. — When two bodies in 
contact move with respect to each other in such a way that there 
is no relative motion at the point of contact, the bodies are said 
to have Pure Rolling Contact. It follows that the points in con¬ 
tact have, for the instant, the same velocity relative to a third 
body. Moreover, by Art. 1, Chapter III, the instant center of 
the two bodies is located at the contact point. 

When two bodies with pure rolling contact turn about instant 
or permanent centers on a third body, the point of contact must 
always lie on the straight line joining 
these centers. This may be proved by 
reference to Fig. 7-1, in which a and h 
have rolling contact and turn respec¬ 
tively about centers Oac and P 
is the point of contact at the instant 
and, since at this point no relative 
motion exists, P is the instant center 
Oflj. By Kennedy's Theorem (Art. 5, 
Chapter III), 0«, Oje, and 0^ lie in one straight line. 

It just been shown that the point of contact of a pair of 
rolling bodies is on the line joining their instantaneous centers or 
pivots. We shall consider the case where two bodies with pure 
rolling contact turn about fixed pivots; in Fig. 7-1, Oac and Otc 
now become permanent centers as well as instant centers. If we 
select any point Q on the profile of body a, measure the length of 
the profile from P to Q, and lay off an equal length PQ* along the 
profile of b, then evidently when the bodies rotate, at some time 
Q and Q' will coincide; otherwise slippage will have taken place. 

Since Q aifil Q' meet on the line Oac— 

(Oaa—Q) + {Q'--Ohc) = (Oac—P) + (P-^be) * D, (7-1) 
125 
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where D is the distance between the permanent centers. Thus, 
bodies of any form may have pure rol^g contact; but they will 
have a fixed distance between their centers of rotation, and will 
therefore be capable of turning about permanent centers on a 
third body, only w hen the condition stated by equation (7-1) holds 
true. This condition is that the sum of the radiants to any pair of 
points which pure rolling will bring in contact must be constant. 

2. Profile Construction. — The following approximate con¬ 
struction may be used to find the profile of a body which is required 
to have pure rolling contact with a second body of known form, 
both bodies being assumed to rotate about permanent centers. 

The construction is based on the properties of rolling bodies 
discussed in Art. 1, Chapter VII. Let a (Pig. 7-2) be the body of 

known form rotatmg alx)Ut 
0, and suppose it is re¬ 
quired to find the profile of 
a second body rotating 
about O' which will roll 
with the first. By joining 
0 and O' we find P, which 
must be the contact point 
in the position of the mecha¬ 
nism shown in the figure. 
A convenient nmnber of 

points 1, 2,3, etc., are selected on the profile of a. To find a point 
on b which will come in contact with 1 as the bodies roll together, 
we use 0 as center, radius equal to 01, and draw an arc intersecting 
00' at A. We next use P as center and radius PI, constructing 
a second arc. Finally, with 0' as center and radius O'A, we strike 
an arc intersecting the latter at 1'. Now the sum of the distances 
01 and O'!' equals 00', by construction. Since the distances PI 
and PI' are equal, if the profiles of the bodies between these points 
are sensibly similar, the lengths of these profiles will also be ap¬ 
proximately equal, and hence 1 and 1' will coindde daring rotation. 
Point 1' may thereftore be taken as a poini; on tiie gpofile of b. 
Point 2' is found in similar manner by making ihe distance 1'2' 
equal to 12, and 0'2' equal to 00' minus 02. Finally a smootit 
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curve is drawn through P, 1', 2', etc. This construction be¬ 
comes exact when the points 1, 2, 3, are an infinitesimal distance 
apart. 

3. Angular Velocity Ratio. — In Fig. 7-3 two bodies in rolling 
contact make contact for the instant at a point P. li Vp is the 
linear velocity of the common point and we consider P as a point 

on a, Vp = ci’bc X (OP). 
Regarding P as a point on b, 

Fp = wte X (O'P). 

Thus, 

Woe X (OP) = X (O'P) 

or 
WIk _ OP 

(7-2) 

In the case considered it is obvious that the bodies a and h 
rotate in opposite senses. If the two rotations are considered as 
positive and negative, respectively, the velocity ratio should bear 
a negative sign. 

Instantaneous conditions only were considered; consequently, 
points 0 and O' in Fig. 7-3 need only be instant pivots and not 
necessarily fixed pivots. 

The above equation, stated in words, means that the velocity 
ratio of a pair of bodies in rolling contact is inversely proportion^ 
to die distance from their point of contact to their respective pivots. 
When the point of contact falls between their pivots, they must 
rotate in opposite senses. When it falls to one side of both pivots, 

the reverse is true. 
For constant velocity ratio, OP and O'P must have a constant 

ratio, which is true only when P occupies a fixed position on the 
line of centers. A pair of circles are the only curves that fulfill 
this condition; consequently, bodies that roll together with 
ccmstant velocity ratio must have circular sections perpendicular 
to their axes of revolution, and such bodies will have velocities 
inversely proportional to their radii. 

4. Veloctty. Ratio of Rolling Cones. — Figure 7-4 shows two 
oones used to connect diafts meeting at an angle 9. The distances 
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BC and CD are the radii of the circular bases. At C the cones 
have a conunon velocity Vc- Then, 

Vc ^ oSacX BC = U)tcX CD, 
or 

(»>bc _ BC 
0)ac CD 

The velocities are therefore inversely proportional to the radii or 
diameters of the bases. 

Let a and p be the angles of the cones. 
From the figure, 

sm a = 

sin jS = 

BC 
AC 

CD 
AC' 

But 

Therefore, 

or 

or 

tan 
sin $ 

— + cos 9 

(1) 

(2) 

sin a _ ^ _ W6£^ 
sin p CD ojac 

a ^ e- p. 

sin {$ — P) _ ojfe 
sin jS Wae^ 

sin g * cos jg — cos $• sin p _ 
sin /3 (tfoe' 

Di\dding numerator and denominator by cos p, 

sin g A 
2-s — COS g * —> 
tan p o)qc 
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In the same way it can be proved that 

tan a - 
• “f* cos 6 

For rolling cones with internal contact (see Fig. 7-5) it may be 
proved in a similar manner that: 

^ac 
-cos 0 

Fig. 7-6 
These formute enable us to calculate 
the cone angles when the angle between shafts and the velocity 
ratio are known. 

6« Rolling Cones. Graphical Method.—As an alternative 
to the calculation of the angles of rolling cones, a graphical solu¬ 
tion can easily be made. 

OA and OB (Fig. 7-6), represent the axes of intersecting shafts 
to be connected by rolling cones with a speed ratio of 5 to 2. 

These may have either external or 
^ \ ^ _ internal contact; the former will be 

{—%—^considered first. 
^ distance of five units is laid off 

Nv -^ along OA, thus locating the point 
Nw C, Similarly, point D on OB is 

found by maliig OD equal two 
units. From C, CE is drawn par- 

/ / allel to AO. The intersection E is 
a point on the contact line of cones 
wMch give the desired speed ratio. 

Join OE and drop perpendiculars EF and EO to the axes 
AO and OB. From the geometry of the figure, it can be shown 

Fig. 7-6 
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that 

EF .EG = OD :OC -^2 :5. 

Furthermore, a pair of perpendiculars drawn from any point on 
OE on the two axes will have the same ratio of lengths. At x 
and y (Fig. 7-6), are shown two cone frustums drawn with a pair 
of these perpendiculars as base radii. The speed ratio is 

<i)y ' Ujf = EF r EG = 2 ; 5. 

The cone angles to give the speed ratio specified are AGE and 
EOB. 

Figure 7-7 illustrates the case where cones with internal contact 
ate dedred with the same speed ratio as before. The construction 

differs from that of Fig. 7-6 
only to the extent that OD is 
laid off along BO produced. It 
should be noted that the use of 
internal instead of external con¬ 
tact reverses the sense of rota¬ 
tion of the driven member. 

6. Rolling Ellipses. — Two 
equal ellipses, initially placed 
as in Fig. 7-8, with all foci lying 
along the same straif^t line, and 

each turning about one of its foci, can be shown to have pure rolling 
contact. If 0 and O' denote the foci that are the centers of rota¬ 
tion, the distance between these points is obviously equal to the 

^o. 7—8 

major axis of either ellipse. It must be shown t^t the sum of 
the radii to any pair of points that the rolling of the curves will 
htu^ into contact is constant. (See Art 1, Chapter VII.) 

Using the initial point of contact P as cento and any naHto, 
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we strike an arc cutting the curves at 1 and 1'. Since chords PI 
and PI' are equal, from the S3mimetiy of the figure it will be 
evident that the elliptical arcs PI and PI' are of the same length. 
Therefore, pure rolling will bring 1 and 1' together. We must 
show that 01 + O'!' equals 00'. li R,R' axe the other two foci, 
from the properties of the ellipse we know that 01 + IP equals 
the major axis. But, since the ellipses are equal in all respects, 
IP = O'l'. Therefore, 

01 + O'l' = 01 + IP = Major Axis = 00'. 

Thus the requirement of equation (7-1) is complied with. 
The angular velocity ratio oa ws of the ellipses in the rela¬ 

tive position shown in Fig. 7-8 is equal to OP -5- O'P, by Art. 3, 
Chapter VII. When ellipse a has rotated 180®, S and S' will 
come in contact, and at that instant the velocity ratio will be 
OS ■¥ 0'S' = O'P OP. These are, respectively, Tninifnnm and 
maximtim values of the velocity ratio, the latter being the recip¬ 
rocal of the former. During each half-revolution of the ellipses, 
the ratio changes from one value to the other. 

7. Ellipses for Desired Velocity Ratios. —It is possible to 
construct ellipses which will give any desired variation in velocity 
ratio. Figure 7-9 illustrates 
the construction for a case 
where the driven ellipse is to 
have, as a maximum, three 
times the angular velocity of 
the driver. It follows that Pig, 7.9 

the Tnitiimiim velocity of the 
driven member is one-third that of the driver. The distance 
00', between the centers of rotation, is assumed to he known. 

In Fig. 7-9, 00' is first divided into two parts OP and PO', 
such that OP + O'P = 3 1. If 08, equal to O'P, isiaid off 
atong 00' produced, then PS will be the major axis of one ellipse. 
PS' equal to PP is the major axis of the second ellipse. The foci 
P and B' are located by making PP and R'S' equal to PO'. 
S^DOwing the fod and major axes, we may draw the ellipses by 
any of the usual metiiods. 
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8. Friction Drives may be defined as being those in which power 
is transmitted by the rolling contact of driving and driven mem¬ 
bers, friction at the contact surfaces being depended upon to avoid 
appreciable slippage. They are practical applications of mecha¬ 
nisms having rolling contact. Cylindrical wheels with internal or 
external contact are commonly employed to connect parallel 
shafts. Wheels taking the form of fhistums of cones are used for 
connecting intersecting shafts. These may have external contact 
(as in Fig. 7-4) or internal contact (as in Fig. 7-5). The frustums . 
must be those of cones having a common apex in order that pure 
rolling conditions may be approached. 

Practically, a certain amount of slippage is bound to take place 
in a friction drive when power is being transmitted. This type 
of drive is most serviceable for light duty. A heavy contact 
pressure is necessary when transmitting a large amount of power; 
this tends to cause friction losses and wear on the bearings of the 
wheel axles as well as on the contact surfaces. 

For the purpose of increasing the power which may be trans¬ 
mitted by friction wheels for a given contact pressure, the wheels 
are sometimes provided with V-shaped circumferential grooves. 
It can easily be shown, however, that such construction renders 
pure rolling contact impossible, and therefore tends toward in¬ 
creased wear and friction losses. 

9. Brush Wheel and Plate. — A friction drive of the form shown 
in Fig. 7-10 is sometimes used where it is desired to obtain a speed 

Pig. 7-10 

ratio which can be varied at will. The Brush 
Wheel a is usually the driver, making frictional 
contact with the driven plate b. Wheel a is 
mounted so that it may he shifted in an axial 
direction, thus moving in a line parallel to 
the surface of the plate. The speed ratio of 
driven and driving wheels depends on its po« 
sition. Reversal of the sense of rotation is 

effected by moving a to the opposite side of the disc axis. A 
depression at the center of the disc causes the two members to 
break dcmtact when a is in mid^position^ giving a neutral ** 

point in which no drive is obtained. 
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Pure rolling takes place only when a has no sensible thickness 
and consequently makes point contact. Such a condition in the 
practical machine could be approached if the power transmitted 
were very small. A wide brush wheel with line contact will have 
pure rolling contact at or near its center point, with increasing 
sliding velocity as the edges are approached. 
This tends to cause rapid wear at the sides. 

If P (Fig. 7-11) is the point at which 
pure rolling takes place, then Vp is the 
same when calculated from the angular ve¬ 
locity of either body. Therefore, 

Fp = a?o X ra = 0)6 X n 
or 

5!® = ^ 

When ojtf is constant, m will have its max¬ 
imum value when is least and its minimum value when n is 
largest. These radii may be selected to give the desired range of 
speeds. P, the point of pure rolling, is generally assumed to be 
located at the middle of the face of the wheel a. 
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QUESTIONS —CHAPTER VH 

1. (a) What is meant by pure rolling contact? (6) When any two bodies 
have pure rolling contact, what can be said regarding the location of the 
contact point? (c) When two bodies turn about fixed pivots and have pure 
rolling contact with one another, what condition must be satisfied in regard 
to their profiles? Prove this statement. 

2. In Figs. 2A to 20, show how to find the profile of a body rotating about 
fixed pivot B which will have pure rolling contact with the body turning about 
a fixed pivot at A. Calculate the angular velocity ratios when the contact 
point is at P and at Q. 

8. Prove that a pair of equal ellipses rotating about fixed centeis at their 
fod may have pure rolling contact. 

4. Two parallel shafts are at a distance of 15 in. center to center. Thqy 
are to be connected by rolling ellipses so as to obtain a maximum velocity 
ratio of 4: 1. (a) Find ihe lengths of thdr major axes and the distances 
between their foci. (6) What is the minimum velocity ratio of the diafts? 

ft. Rolling cones with external contact are required to connect two shafts 
at fiO*’, the vdocity ratio to be 3 :2. Show how to find graphically the cone 

5. BdDUng cooM with miemal contact an nquind to eoanaet two diafto 
at SO*, tha vdoidty ntio to be 3:1. Show how to Hod Stortdea% the ooMt 
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7. Two shafts intersecting at an angle of 60^ are connected by means of 
rolling cones with external contact. One cone has a center angle of 20^^ and 
rotates at 300 R.P.M. Find the center angle of the other cone and its R.P.M. 

Ana. 40"; 160 R.P.M. 
8. A rolling cone with a center angle of 15" turning at 240 R.P.M. makes 

external contact with a second cone which tum% at 360 R.P.M. Find the 
angle between the shafts and the apex angle of the second cone, 

9. Rolling cones with internal contact are to be used to secure a speed 
ratio of 4:1. The smaller cone has a center angle of 10". What is the center 
angle of the huger cone, and what is the angle between the shafts? 

10. A pair of equal roUmg ellipses have a distance between their foci of 
4in. The major axes are 7 in. long. Find the maximum and minimum speed 

ratios. Ana. 1:3.67, 3.67:1. 
11. A large bucket elevator has a head sprocket with six teeth, the arrange¬ 

ment requiring a speed variation of the sprocket from a minimum of 10 
R.P.M. to a maximum of 11} R.P.M. in order to secure a uniform bucket 
speed. This variation in the sprocket speed is obtained by means of a pair 
of non-circular gears with elliptical pitch surfaces. If the oenter-to-center 
distance of the gears is 30 in., find the length of the major axes and the dis¬ 
tance between the foci. 

12. What is a friction drive? Sketch a form of friction drive which permits 
alteration of the velocity ratio when in service. How can it be arranged to 
reverse the direction of motion of the driven member? Why is pure rolling 
impossible in this device? 

18. A brush-wheel-and-plate friction drive are required to connect two 
shafts, the driver turning at 300 R.P.M., and the driven plate to turn at a 
maximum speed of 100 R.P.M. and a minimum of 25 R.P.M. The driving 
wheel is 5 in. in diameter and 1 in. wide. Find the maximum and minimum 
diameter required for the plate. 

14. What maximum and minimum speeds are obtainable at the driven shaft 
in a brush-wheel-and-disc friction drive in which the wheel, 8 in. in diameter 
and 1} in. wide, rotates at 400 R.P.M. and in which the disc has a maximum 
diameter on the contact surface of 26 in., the minimum diameter being 14 in.? 
AQow 3 per oent for dippage. 



CHAPTER VIII 

TOOTHED GEARING 

i 1. Toothed Gears are commonly employed for transmitting 
power from one revolving shaft to another. In comparison with 
other forms of drives, they are especially adapted for cases where 
a constant velocity ratio is required, or where driving and driven 
members must have definite phase relationships. ^ 

Since the interlocking action of the teeth makes the drive 
positive, and friction is not depended upon to avoid slippage, the 
pressure required to keep the gears in contact when power is 
being transmitted is much less than in an equivalent friction drive. 
This results in lower bearing pressures, less wear on the bearing 
surfaces, and greater efficiency. 

Pitch Stufaces.'—The pitch surface of a gear wheel may be 
defined as an imaginary surface on which the tooth construction 

is based. For any gear 
the form and dimensions 
of the pitch surface must 
be known before the teeth 
can be properly designed. 
Figure 8-1 shows the cy¬ 
lindrical pitch surface for 
a spur gear. 

Tooth Element — A 
gear tooth may be regarded. 

as a surface swept up by a line moving through space. The line 
is not always straight or even of constant shape. This profile 
generator in any one of its consecutive positions is known as a 
tooth element. Tooth elements always connect correspcmding 
points on tooth sections taken perpendicular to the pitch surfaces. 
In Fig. 8-1 are shown tooth elements for a spur gear, which are 
straii^t lines parallel to one another, 

136 
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Pitch Surfaces of mating gears may have either (o) Pure Rolling 
Contact or (6) Sliding Contact. This matter is of importance, since 
it determines whether or not the teeth have relative sliding along 
the tooth elements. When this kind of sliding action occurs it 
places certain limitations on the form of the elements. 

Gear wheels are illustrations of Higher Pairing, because line or 
point contact only is obtained. 

Fio. 8-4 
E^nir Gear Fitch Surfaces. 

When the pitch surfaces of gear wheels have line contact, the gear 
teeth likewise have line contact. When the pitch surfaces have 
pcmt contact so also have the gear teeth, the only common excep- 
tkm being found in some worm gears. 
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2. Gear Classificatioii. — Gears may be classified according 
to the relative position of the axes of revolution. The axes may 
be (o) parallel, (6) intersecting, (c) neither parallel nor intersecting. 
We shall first make a brief survey of the common forms, and later 
discuss each in more detail. 

(a) Gears for Connecting Parallel Shafts. — Here we may 
employ the Common Spur Gears as shown in Fig. 8-2 or the 
Twisted-tooth Spur Gears of Fig. 8-3. In both, the pitch sur¬ 
faces are cylindrical with pure rolling contact as illustrated in 

Fig. 8-4. Tooth elements in the former are straight lines parallel 
with the axis of the gear, while in the latter these elements are 
helicra. The twisted-tooth gear generally operates more quietly 
tiuin the other type, the difference in this respect being particu¬ 
larly noticeable at high speed. The main disadvantage of the 
twisted-tooth type lies in ^e end thrust produced when the gear 
is transmitting power. 

In the Heningbone Gear of Fig. 8-5 the ead tiurust set up by 
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one aide is balanced by an equal and opposite thrust due to the 
action on the other side. This gear can ^ regarded as composed 
of two twisted gears of similar dimensions, one having a right- 
handed and the other a left-handed helix. 

(b) Gears for Intersecting Shafts. — In tMs case the Plain 
Bevel Gear, as in Fig. 8-6, or the Spiral Bevel shown in Fig. 8-7, 

is employed. In both cases the pitch surfaces are cones having 
a common apex as shown in Fig. 8-8. In the Plain Bevel the tooth 
elements are straight lines, while in the Spiral Bevel they are 
conical helices. 

The Spiral-bevel Gear has a decided advantage over the Flain- 
bevd Gear as regturds quietness of operation. 

(c) Gears to Connecting Shafts neitiier Intosecting nor 
PaiaBel. Hero Helical Gears or Skew Bevds are suitable. 

Hdical 'Gears (Btg. S-9) axe used to cmmect parallel as well 
as noniparaUd shdts. In the former case they are sometimes 
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called twisted-tooth spur gears. Their pitch surfaces (Fig. 8-10) 
are cylindrical and the tooth elements are helices. Where the 

Fig. 8-9 

Helical Gears. 

shafts are non-parallel,* the pitch sur¬ 
faces touch at a point and have slid¬ 
ing contact; here the teeth also make 
point contact and slide along the ele¬ 
ments. 

The Worm Gear shown in Fig. 8-11 
is a special form of helical gear, the two 

Pig. 8-10 

Pitch Cylinders for Helical Gears. 

members being known as the Worm and the Worm WheeL The 
Worm, as compared with that which we commonly call a helical 
gear, has a small helix angle in proportion to its face width, with 
the result that each tooth extends a long distance around the 
circumference. It is customary to speak of worm teeth as 
“ threads ” on account of the resemblance which the worm bears 
to a threaded bolt. Hence we refer to a “ single-threaded worm," 
a “ double-threaded worm," etc., depending upon the number of 
teeth formed on the cylin^cal surface. The Worm Wheel gra- 
mtlly has the tooth surface concaved as shown in Fig. 8-11, for 
the purpose of obtaining line instead of point contact of the teeth. 

Skew Bevels somewhat resemble other Bevel Gears in gmeral 
appearance. Their pitch surfaces are not cones, however, but 
h3rperboloid8 of revolution, i.e., figures swept out by the revohitiion 

* In this oBse they are often mis-called "Sidrel Qean." 
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of a generating line about the non-parallel axes of the gears. 
Contact between the two pitch surfaces thus formed takes place 

Fig. 8-11 Fig. 8-12 
Worm Gear. Worm Gear Pitch Surfaces. 

along this line in its position common to the two rotations. Figure 
8-13 shows two such hyperboloids in contact along the line A—J9. 
The portions of the pitch 
surfaces usedfor SkewBev- 
els are frustums of the fig¬ 
ures remote from the small¬ 
est sections as indicated 
by X and Y in the figure. 

Evidently, pure rolling 
between the pitch surfaces 
is not possible, and sliding 
takBB place along the ele- Ge^Pi^ Surfaces, 
ments. 

Such gears are difficult to produce and are seldom used. Stand¬ 
ard gears of this form are not obtainable. 

3. Velocily Ratio. — A general rule for pairs of toothed gears is 
that the angular velocity ratio is inversely proportional to the 
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numbers of teeth. This law applies to all common classes of 
gears, such as spur, bevel, and helical gears. 

When two gears are in motion it is evident that equal niunbers 
of teeth on each gear pass any fixed point in a definite time interval, 
since the teeth on one gear mesh in consecutive order with the 
tooth spaces on the other gear. A gear having teeth makes 
one turn while Na teeth pass the fixed point. A meshing g&r 

N 
with teeth will therefore make ^ turns during the same 

interval. 
If (Oa and wj are, respectively, the angular velocities of the two 

gears, then a,. _ 1 _ 
N,-hNt~N.’ 

which proves the above rule. 

SPUR GEARS 

4. Gear Terms. — Figure 8-14 illustrates many of the defini- ftipns which follow. 
Pitch Diameter.-The.ii- 

ameter of the cylinder which 
is the pitch surface of a spur 
gear is known as the pitch di¬ 
ameter. Since the pitch cylin¬ 
ders of two spur gears roll 
together^ the ai^ular-velocity 

' ratio is the inverse ratio of &e 
pitch diameters, by Art. 3, 
Chapter VII. A pair of mat¬ 
ing t^Hir gears have numbers 
of teeth proportkmal to thdr 
I»tdi dreumferenoes, because 
both must have tite same spao- 

j. .. ing of the teeth in order to 
obtam pure rouing of the 

pitch circles. Urus, for two such gears, « and 6, 

-^Addendum 
.-7DedeBduiii 

Backlash'! 

Fig. 8-14 
Spur Gear Notation. 
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where N, D, and w represent, respectively, number of teeth, 
pitch diameter, and angular velocity. 

Pitch Point — That point on the line joining the centers of two 
ge^ at which the pitch circles touch is called the pitch point. 
'^dendum. — The distance from the pitch circle to the outer 

ei^ of the tooth,-measured radially, is known as the addendum. 
Clearance. — The clearance is the amount by which the points 

of the teeth on one gear clear the roots of the teeth on the mat¬ 
ing gear. This is measured along the line of centers. 

Dedendum.^ — The radial distance from the pitch circle to the 
foot circle is called the dedendum. 

^he Whole Depth is the sum of the addendum and dedendum. 
The Working Depdi is the whole depth minus the clearance. 
The Face of the tooth is that portion of the profile between the 

pitch circle and outer end of the tooth. 
4/The Flank of the tooth is that portion of the profile between the 
pjtch circle and the root circle. 

Backlash. — The minimum distance between the non-Klriving 
side of a tooth and the adjacent side of the mating tooth is called 
t^ backlash.* 

Gear and Pinion. — When two gears mesh with each other, the 
larger is commonly referred to as “ the gear " and the smaller as 
“ the pinion.” 

PiQ. 8-14o 
Back and Pinion. 

Sack. — Whm teeth are cut along the side of a straight bar it is 
known as a rack. Figure 8-14a shows a pinkm and rack. The 
pitch surface of the latter k a plane. 

*:As definad hjr the A.Q.M.A. and A.S.MJ!. code. By other aath(»itifls 
the dedendum does not indiude tiie cleanmoe. 
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Angle and Arc of Action. — The angle turned through by the 
driver for the period during which one of its teeth remains in con¬ 
tact with a mating tooth on the driven wheel is known as the 
Angle of Action of the driver. The angle turned through by the 
driven wheel in the same period is the Anj^e of Action of the driven 
wheel. The corresponding arcs on the pitch circle are called the 
Arcs of Action. 

Evidently, the arc of action must be greater than the cir¬ 
cular pitch; otherwise contact between one pair of teeth would 
cease before the next pair made contact. In general, the longer 
the teeth the greater the arc of action. This consideration 
has been an important factor in fixing the length of standard 
teeth. 

The Angle of Approach is the angle turned through by the gear 
from the instant a pair of teeth make contact to the instant at 
which they are in contact at the pitch point. 

The Angle of Recess is the angle turned through by the gear 
from the instant a pair of teeth are in contact at the pitch 
point to the instant when contact between the same teeth 
ceases. 

The Anile of Action is equal to the sum of the angles of approach 
and recess. 

The Width of Face of a gear is measured on the pitch surface in 
a plane containing the axis of revolution. Face of Tooth should 
not be confused with Face of Gear for the two are entirely 
different. 

6. Pitch. — The pitch of a gear is a measure of the size of the 
teeth; all tooth dimensions in standard systems are based on the 
pitch. Gears that are intended to run with each other must have 
the same pitch, as well as tooth profiles of proper form. Two 
common methods of stating gear pitches are as follows: 

The Circular Pitch is the distance between corresponding points 
on adjacent teeth, this distance being measured abng the dr- 
oumferenoe of the pitch circle. When p denotes the oiroular 
IHtch, 
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The Diametral Pitch* is the result obtained by dividing the 
number of teeth by the pitch diameter. Stated otherwise, it is 
the number of teeth per inch of pitch diameter. Where P is this 
pitch, 

(8-4) 

It should be observed that the Circular Pitch is a linear dimen¬ 
sion, ordinarily expressed as so many inches. The Diametral 
Pitch, on the other hand, is just a ratio. 

Relation between Circular and Diametral Pitch. — Multiplying 
equation (8-3) by equation (8-4), we have 

pP = IT. (8-5) 

The Circular-pitch method of specifying tooth sizes is the older 
one, but the Diametral-pitch method has advantages which have 
resulted in very general use, especially for small teeth. One 
advantage is shown as follows: A gear with 19 teeth of 2 D.P. 
has a pitch diameter of 19 -5- 2 = 9| in., by equation (8-4). A 
gear with 19 teeth of 2-in. circular pitch has a pitch diameter of 
19 X 2 
-= 12.095 + in., by equation (8-3). The calculation is 

•K 

easier in the former case, and the result is always a rational num¬ 
ber. 

Gear teeth of 1 D.P. or smaller are commonly on the diametral- 
pitch system; those of 3-in. circular pitch or larger are on the 
circular-pitch S3rstem. 

6. Gears are generally of circular section and give a constant 
angular velocity ratio of the coimected shafts, though non- 
circular gears are employed where a variable-speed ratio is desired. 
Whether circular or non-circular, the teeth should be so diaped 
as to produce pure roUix^ contact fA the pitch surfaces. The 
pitch surfaces, therefore, comply with the laws governing bodies 
having pure rolling contact as discussed in Chapter VIl. Thus 

* The term " module ” is sometimes used to define the pitch. The module 
is the pitch diameter divided by the number of teeth, or the reciprocal of the. 
diame^ pitch. 
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the point of contact of two pitch surfaces, known as the Pitch 
Point) is the conunon instant center for the two gears. 

If gear teeth are so designed as to give pure rolling of the pitch 
surfaces then the following law of gear teeth will result: 

The conunon normal to the tooth surfaces at the point of con¬ 
tact must always pass tiuough the pitch point 

This law is proved as fol¬ 
lows: Figure 8-15 shows 
two gears making contact at 
C. The pitch point is at P. 
It is required to show that 
the common normal to the 
tooth profiles at C will pass 
through P. Proof is made 
by two statements: 

(a) The mating gears.are 
two bodies in sliding con¬ 
tact at C; hence the relative 
motion at the contact point is 
along the common tangent 
LM, otherwise the teeth 
would tend to either overlap 
or break contact. Therefore 
the instant center Oa> must 

lie along the common normal XY. 
(5) The pitch surfaces have pure rolling contact at P. Hence 

P is the instant center 0^. 
Therefore the common normal at C passes through P. 
For rolling bodies, as shown in Chapter Vll, Art. 3, 

(i>ae BP 
IZ’^AP' 

U the i»tch surfaces are of circular section, P will occupy a fixed 
positioin on the line joinmg A and B. Hence BP/AP will be of 
constant value, and the angular velocity ratio oi the gears will be 
constant. 

If the pitch surfaces are non-circular, the value of the vasyiag 
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speed ratio can be calculated at any instant by means of the above 
equation, if the position of P is known. 

7. SUding Action of Teeth. — When a pair of teeth touch at 
the pitch point, they have, for the instant, pure rolling contact, 
since the point of contact is then the instant center for the gears. 
It follows that in any other position they must slide on one an¬ 
other, for then they meet at a point other than the instant center. 
The velocity of slide is directly proportional to the distance from 
the instant center to the point of contact at the instant considered. 
Maximum sliding velocity occurs when the teeth are just beginning 
or ending contact, the contact point being then most remqte from 
the pitch point. 

The magnitude of the sliding velocity at any instant can be 
determined graphically: 

In Fig. S-16 is illustrated a pair of conjugate teeth in contact 
at point C. The conunon normal at C is the line XY passing 

Fio. 8-16 

through the pitch point 0. The linear velodty of C, con^ered 
as a point on gear a, is represented by the vector CE perpendicular 
to the radius CA. The velocity of C, conmdered as a point on 
gear b, is represented by the vector CD, perpmidicuiar to CB. 
Vectors CE and CD may be resolved into componmts pandlel 
and perpendicular to the normal XY. The components of each 
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parallel to ZF must be the same normal velocity F,, as the teeth 
maintain contact and yet do not cut into one another. The 
algebraic difference of the velocity components perpendicular to 
XY, namely, DE = FD — FE, represents the rate of slide of 
one surface on the other, or the sliding velocity. Inspection of 
the figure will show that this velocity decreases as the contact 
point moves toward point 0 and increases when it moves in the 
reverse direction. 

8. Tooth Profiles. — In general, it is possible to select teeth 
of any shape for a spur gear, and then proceed to form teeth on a 
second ^ear which will be conjugate to the first, satisfying the 
law of constant velocity ratio. The process whereby the teeth are 
formed on the second gear might be carried out as follows: Sup¬ 
pose the blank to be made of a plastic material. The gear and 
blank are mounted on shafts and run together so that the pitch 
surfaces have the same linear velocity. Teeth are thus “ rolled 
in ” the surface of the soft blank. These teeth will have the correct 
outline. “ Generating ” processes of gear cutting, often used in 
commercial production, are carried out along similar lines. For 
example, in the Fellows gear shaper, the cutting tool takes the 
form of a gear wheel and is reciprocated across the blank. Be¬ 
tween strokes the cutter and blank are both rotated slightly, the 
relative motion being equivalent to the rolling of the pitch sur¬ 
faces. The resulting teeth will have the same form as obtained 
by the* “ rolling-in ” process described above, without requiring 
the use of a plastic blank. 

If a tooth shape is selected at random, and a conjugate tooth 
of theoretically correct shape is formed, it does not necessarily 
foUow that the use of such teeth would be practical. Strength and 
wearing qualitidg must also be taken into account. In engineer- 
ing practice we find that only two curves are in common use for 
proves, namely, the Cydold and the Involute. 

CTCLOIDAL TEETH 

9. The Cydtdd, as used in circular gears, is a curve described by 
a pmnt on a circle which rolls internally or externally on another 

' The rolling circle is known as the describing dcde« and ht 
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forming a gear-tooth outline it is rolled internally and externally 
on the pitch circle. Internal rolling forms the flank of the tooth; 
external rolling forms the face. In Fig. 8-17, a and b are the pitch 
circles of the gears. Circle c is rolled internally on cr, the point 0 
on c describing the curve OS, which forms the flank of the tooth 
on the upper wheel. Circle c is then rolled externally on 6, point 
0 on c now tracing out the curve OC which is the face of the tooth 
on the lower gear. Likewise, curves OD and OE are obtained by 
rolling circle d internally on 
b and externally on a. These 
curves form, respectively, the 
flank of the lower and the face 
of the upper gears. The two 
describing circles, c and d, need 
not be the same size, but the 
same circle must belis^ For 
the face of one gear and the 
flank of the other which works 
wilETTl. In practice, to secure 
ififerchangeable gears, the 
same radius of describing 
circles is used throughout a 
series. 

When the diameter of the 
describing circle is one-half 
the pitch diameter of the 
gear, the flank of the tooth becomes a radial straight line 
(see OB, Fig. 8-17) and the tooth is somewhat narrow at the 
root. If the ^describing circle is made larger, the tooth be¬ 
comes still narrower at the root and lacks strength; also, if 
the describing circle is made large enough, it may be impossible 
to cut the gear teeth by use of a milling cutter, because the space 
between the teeth widens out from the pitch circle toward the 
root. In the Brown and Sharpe standard system, the diameter 
of the describing circle is made equal to one-half the pitch diam¬ 
eter of a gear with fifteen teeth. This renders it possible to cut 
a twelve-tooth pinion with a milling cutter, this pinion being the 
smallest generally used. 
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10. C^rdoid Coostraction. — In Fig. 8-18, LM is a portion of a 
pitch circle, and a describing circle of radius r is rolled on it inter¬ 
nally, as required for the flank portion of a tooth. Point 0 on the 
describing circle traces out the cycloid which we wish to construct 
when this circle is rolled in a clockwise sense. The construction 
is indicated in the figure for points P, Q, R on the required 
curve. 

When the describing circle has rolled so as to make any point 
such as 1 the contact point, the 
center of the describing circle will 
lie at Cl, on the line 1^1, and its 
circumference is shown at m. 
The new position of 0 at P is 
found by making the rectified 
length of the arc IP equal to the 
rectified length of the arc 01. 
These arcs must be equal on 
account of the pure rolling action 
between describing and pitch 
circles. For contact at points 
2, 3, etc., corresponding points 

Q, R, etc., are found on the cycloid by the same method, the 
curve bdng continued until it can be rounded into the root circle 
by a fillet arc. 

Ihe construction for finding the curve when the describing 
circle rolls externally is shown in Fig. 8-19. The method and 
description just given will apply without any alteration. The 
resulting curve can be used as the profile of a tooth face and is 
extended to its intersection with the addendum cimle. 

11. Proof of the Essential Property. — In order to show that 
circloids may be used for gear teeth, it is necessary to prove 
that the normal at the point of contact of a pair of these 
curves, generated by the same describing circle, will always pass 
throuf^ the pitch point, in accordance with the law of Art. 6, 
Chapter Vin. 

In Fig. 8^20, a and h are the {ntdi circles for a pair of spur 
gears, and 0 is the ifitdi pmnt. 
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Cycloid PM, attached to b, is traced out by a point on describing 
circle c when it rolls externally on b. 

Cycloid PL, attached to a, is described by a point on c as the 
latter circle rolls internally on a. 

The two cycloids are in contact at P for the position of the 
gears shown in the figure. Point 0, where a, b, and c are in con¬ 

tact^ is the common instant center for relative motions of these 
bodies, since at this point they have no relative motion. There¬ 
fore, P, as a point on c, has motion relative to both a and b in a 
direction at right angles to ()P. Consequently, OP must be the 
common normal to the ciurves PL and PM. 

These statements are true for any position of the gears, and 0 
is a fixed point; therefore, the cycloids have the required property 
for gear-tooth profiles, as expressed by the law of Art. 6. 

12. Path of Contact — In Fig. 8-21 a pair of mating tooth 
profiles of the cycloidal t3q)e are shown in three positions, namely, 
Oibi, when just making contact; aj>i, whoi in contact at the pitch 
point; and otbi, when about to break contact. The path of the 
pdnt ol o(Hitact must be the curve COD, which is composed of 
pmrtkms the cirraunferooce of the two generating drdies with 
floiteis at L and M. 
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Point C where contact begins is located at the intersection of 
the upper describing circle with the addendum circle of the gear, 

Fta. S-21 

while D is found at the intersection of the lower describing circle 
with the addendtim circle of the piiucm. Lengthoung the teeth 
evidently moves the points C and D fosther apart and increases 
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the period of contact. By joining CO and drawing OE perpen¬ 
dicular to the line of centers ABj we find the pressure angle COE 
for that position of the gears in which C is the contact point. 
This angle diminishes to zero as the point of contact approaches 
0 and thereafter increases to another maximum at D. The 
cycloidal form of tooth is therefore characterized by a variable 
pressure angle, which is zero when the teeth make contact at the 
pitch point. 

13. Angles of Approach and Recess. — Referring once more 
to Fig. 8~21, since ai, a2, and as represent three positions of the 
same tooth on the pinion, Oi, 0, and Os are three positions of one 
point on the tooth, and the 
angles OiAO and OAO^ show 
the corresponding angular 
movements of the pinion. 
These angles are, respec¬ 
tively, the approach and re¬ 
cess angles for the pinion. 
From points QiOQs the an¬ 
gle QiBO, of approach, and 
OBQzf of recess, for the gear 
are found. 

The arcs of action are the 
same for both gear and pin¬ 
ion and are equal to either 
OiOs or QiQz. 

Cycloidal Rack. — A rack 
may be regarded asa portion 
of a gear wheel with an infinitely large pitch diameter, the pitch cir¬ 
cumference being a straight line. The generating circles for 
rack teeth, as a and &, Fig. 8-22, are rolled along a pitch line c in 
order to form the addendum and dedendum portions of the teeth. 

To draw the cycloid, select any number of points 1, 2, 3, etc., 
al<mg the pitch line. The rolling circle a, initially in contact at 
Of will reach the new position m when 1 is the contact point. 
Its ^ter is then at Ci, where ICi is perpendicular to the pitch 
fine. IBiy lasdng off an iHrc IP whose rectified length is equal to 
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01, we find the point P which lies on the required cpire. Points 
Q, R, etc., are found in a similar manner. 

The curves are continued until the addendum and root lines 
ate reached. The re-entrant angle where the tooth flank joins 
the root line is rounded off by a circular fillet to increase the 
strength of the tooth. 

INVOLUTE TEETH 

14. Involutes. — In general, if we take a curve of any form and 
roll on it a strai^t line, a point in this line will describe a path 
known as an involute of the curve. For nearly all gears with 
involute teeth, the involute is formed by rolling the straight line 
on a circle. The only exceptions to this are gears of non-cir¬ 
cular section. When we speak of involutes in connection with 
gears, without further definition, the involute of a circle is 
meant. This circle is commonly called the Base Circle of the 
Involute. 

16. Mechanical Development of Involute Ctures. — A device 
shown in Fig. 8-23 illustrates a method of development of con¬ 
jugate involute curves. A cord CD, CD' is wrapped aroimd two 
circular discs a and h. Disc a has a transparent disc m attached 
to its face, and b has a similar disc n fastened to it. If a is rotated, 
the cord, acting as a belt, will drive b in the opposite sense. A 
point P on the cord will then triuje out on the disc m an involute 
KL, and on the disc n an involute MN. 

By keeping a and b in fixed position and then cutting the cord 
at P, the same curves may be traced out by the two ends whoi the 
loose porticms are wound on and imwound from the discs to which 
th^ are attached. 

Gomddering the above methods for obtuning the curves, two 
facts axe evident: (a) that the point of contact always lies akmg 
the line of the cord, namely idong CD; (b) that since the tangent 
portKm of the cord is always swinging with refnenoe to » dise 
about its pcnnt of tang^cy with the disc in questkm, the Miative 
motion is always perpendicular to the tmgent line. CD is tiwre- 
fa» diie eonunon nmmal to the two curves at all times and it 
emeses the line ol ceotem at a fined poh^ 0. llownrat^ 



GRAPHICAL CONSTRUCTION 156 

pressure angle is constant and equal to DOQ where OQ is a normal 
to the line of centers of the discs. 

To summarize, it has been shown that involute profiles: 

(o) Have the essential property for correct gear-tooth forms. 
(6) Have a straight-line path of contact. 
(c) Have a constant pressure angle. 

Pio. 8—23 

Point 0 (Pig. 8-23) where the line CD intersects the line of 
centers is the instant center of wheels a and h. Hence the angular 

vdocity ratio — is equal to —»and 0 is therefore the pitch point, 
Uh AO 

by Art. 6, Chapter VIII. 
When the pitch point 0 and the pressure angle are known, 

the base circles may be found, since they are tangent to the line 
CD, whose positum is fixed by these data. 

16k Graphical Conatnicticm. — As already pointed out, the 
involute can be thought of as the path traced out by the end of a 
string which is unwound from a cylinder, the motion bang, of 
ootnse, in a plane perpendicular to the cylinder axis. The length 
of the unwound or tai^ent portkm ol the string is, in any position, 
equal to the baigth Of the arc on the base drcle from wMch it was 
unwtaiqped. Putting it anotbor way, the tangoit-to the base circle 
ftnosa any fwint on an iuvdute is equal in l^igth to the are from 
the iMlot of tari^<7 to Ihe starting pdnt of the curve. Wemake 
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use of this property in constructing the curve. In Fig. 8~24 we 
shall suppose that a is the base circle and that we wish to draw an 
involute to pass through a given point A, 

From A draw ABj tangent to circle a. Obtain an arc BC equal 
in length to AB, This can be done approximately in the drafting 
room by dividing AB into any number of equal parts, four being 

used in the diagram. Taking one of 
these equal lengths on our dividers, 
we step ofif four divisions, starting 
from B around the arc, thus locating 
C. The point C is the inner end of the 
involute curve. To obtain a point be¬ 
tween A and C, take point D on the 
arc at the second division, draw DF 
tangent at D and step off on it two 
lengths with the same divider setting 
as before, obtaining E; a third point on 
the involute. Other points are found 

in a similar manner. A smooth curve is finally drawn through the 
points and this forms the required involute. The curve is con¬ 
tinued outward until the addendum circle is reached. 

In completing the tooth flank, the curve must be extended 
inside the base circle to allow space for the mating tooth, plus a 
clearance. As the involute cannot penetrate the base circle, a 
different form is necessary for this portion. Generally we use a 
radial straight line CG, terminating in a small circular arc GH at 
the function with the root circle. Contact does not take place 
on CG: its outline is determined by considerations of strength 
and ease of production. The purpose of the arc GH is to 
strengthen the tooth at the root, and it should be of as large radius 
as possible without causing interference with the teeth on the 
mating gear. 

17« Other Properties of the Involute. — Involute curves hAve 
m outstanding advantage over cycloidal or other curves which 
m%ht be employed for working profiles in circular gears^ ha^dy, 
that Hbm center«*to<enter disteutee can be changed wllhout 
deatmybig conlugate tooth actioii or the ie3ocif|r 
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ratio. That is, a pair of these curves will comply with the geaiv 
tooth law no matter what the center-to-center distance may be. 
Proof of this statement can be seen by reference to Fig. 8-25. 
When the gear centers A and B are moved farther apart, the com¬ 
mon tangent CD to the base circles will incline at a greater angle 
with the vertical, hence increasing the pressure angle. As be¬ 
fore, the common tangent will cross the line of centers at the 
same point because we are still dealing with contact of the same 
involutes. The pitch radii AP and BP become larger, but the 
ratio of BP to AP renxains unchanged and hence the speed ratio 
is unaltered. For by reference to the figure 

AP = AC cos a and BP = BD -5- cos a. 

<0, BP BD ^ AC BD 

(1)6 AP cos a cos a AC 

But BBjAC is independent of the center-to-center distance. The 
speed ratio is in consequence dependent only on the relative diam¬ 
eters of the base circles and does not change when the center-to- 
center distance is varied. 

A second deduction that can be made from Fig. 8-25 is that an 
involute profile has neither pitch circle nor pressure angle peculiar 
to itself, but obtains both 
of these by virtue of its 
location in regard to a 
second involute. Thus 
a gear which meshes 
with two others mayhave 
two pitch circles of dif¬ 
ferent diameters, each 
corresponding to one 
(xmtaot. Improved tooth 
forms are sometimes 
made possible by taking advantage of this property. 

A ttdrd deduction easily made from the geometry of Fig. 8-25 
hi that the diaoa^er (tf tiie base circle is equal to the diametm* of 

ifitch dreifi multiplied by the cosine trf the pressure anjde. 

Fig. 8-26 
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A pressure angle of 14^° was early adopted for involute gear 
teeth. The sine of this angle is approximately .25, which simpli¬ 
fies the work of laying out the teeth. The same pressure angle is 
still extensively used since it usually results in satisfactory tooth 
forms. Larger angles, up to 23°, are not uncommon, particulariy 
where small tooth numbers are required. 

Practical advantages resulting from the use of involute profiles 
may be summarized as follows: 

(a) Involute gears may be mounted with small initial inaccu¬ 
racies in the center-to-center distance, or this distance may change 
as the result of bearing wear, tooth contact still complying with 
the fundamental gear-tooth law. 

(5) Involute gears may be used for applications such as driving 
rolls in steel mills, where the center-to-center distance constantly 
varies. 

(c) The working surface of the involute rack is of the simplest 
possible form, a plane. This reduces to a minimum the difficulty 
of producing accurate conjugate teeth — a manufacturing advan¬ 
tage. 

(d) Where the teeth are cut by formed milling cutters, the 
niunber of cutters needed in covering the range from the smallest 
pinion to rack is less than would be necessary for cycloidal profiles. 
'Htis is due to the slow change in tooth curvature as the tooth 
numbers are increased. 

The miun disadvantage of involute teeth lies in the fact* that 
intmference is obtained with pinions having small tooth rmmbers. 
No interference difficxilty is ^countered in cycloidal teeth. 

Involute teeth never have concave faces or flanks exc^t in 
internal gears. On the other hand, cycloidal gears with more 
than fifteen teeth have concave flanks. Hence in the <7c}oidal 
fcoin a concave flank normally mates with a (xmvex face and sur¬ 
face contact is more neatly approximated than when using involute 
profiles. From this standpoint the cycloidal systmn wcadd apiiear 
to be somewhat better adapted to canyin|g heavy loads. 

In isoaent aag^eering inactice, the invdktte form of tootib has 
so eenqdete^ <fiq4aced its rhnd, much used hi eaiher yeats^ as to 
raoder tifKii cydcAial fiam peaeticalBy obacdete. LMer, 
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will be made to a composite form of tooth which uses a profile 
composed of both involute and cycloidal curves. 

18. Toodi Action. — In Fig. 8-26 is shown a pair of involute 
gear profiles in three positions. We shall assume that the gears 
rotate as indicated by the arrows on the diagram. At Oi, bi the 
teeth are just beginning to make contact; at at, bt the teeth are 
in cmitact at the pitch point; and at at, bt contact is just about to 
cease. 

To gear Center 

Hm patii of contact must lie at all times on the straight line CD, 
tliis line being the common tai^^ent to the base circles. Contact 
bei^ at F and mda at 0. Pi, Pa, Pt on the pitch circle the 
(^)ar gear axe omnesponding positums of one point on this gear, 

Qu Pa, Qt are dmilai^ the three positions occupied by one 
point (m Ute lower gear, ^ce the latch drdee have pure rolling 
oontoet, axes PiPaPt and QiP^t are of equal lengtii. Also, hr 
deil^ltion, PiPa Is the are approach and P«P| the arc of recess 
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for the upper gear, while arcs QiPt and P^Qs have the same values 
for the lower gear. The angles of approach and recess for the 
former are foimd by joining Pi and Pi to the center of the upper 
gear as indicated on the figure. A similar construction locates 
the angles of approach and recess for the lower gear. The pressure 
angle is noted in the figure. 

It will be observed that points F and G, where contact begins 
and ends, are found at the intersections of the addendum circles 
with the pressure line CD. F and G are located between points 
C and D in this figure, but with other tooth proportions and num¬ 
bers of teeth on the gears it may happen that either F or G 
or both F and G fall on line CD produced. This leads to Inter¬ 
ference. 

19. Interference. — Gear teeth are said to interfere when they 
tend to overlap or cut into the mating teeth. Under certain 
conditions interference will take place when the teeth have true 
involute profiles. Such a situation is illustrated in Fig. 8-27. 
Here point G, the intersection of the addendum circle of the lower 
gear with the contact line CD, falls on CD produced. This con¬ 
ation is always accompanied by interference, as may be seen from 
the following discussion. 

Considering the two gears in Fig. 8-27 to turn in the sense 
indicated by the arrows, and observing a pair of teeth, a, b initially 
in contact at F, we note that the contact point traces out the line 
FD as the gears revolve. Contact does not cease at D, but 
thereafter it must take place between the involute portion LM 
of the tooth on the lower gear and the flank QR, inside the base 
circle of the upper gear. This flank is not of involute form, since 
the involute cannot be extended inside the base circle. If QR is a 
radial fiat surface, overlapping or “ interference ” will tfdce place. 
Modification of the tooth forms is then necessary. The following 
methods are possible; 

(fl) The hei^t of the teeth may be reduced. 
(6) The pressure ai^e may be increased. 
(c) The radial flank of the pinion may be cut l>a<^ Th» v 

tecbnmally known as “ undaeutting ” wImhi any material Is 
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removed inside a radial line from the junction point of the involute 
and its base circle. (See Fig. 8-30.) 

(d) The face of the gear tooth may be relieved. 

Methods (o) and (b) are employed in conjunction with each 
other in what are known as jtub-tooth gears, to which reference 
will be made later. 

Method (c) is often undesirable for two reasons: first that it 
weakens the pinion tooth, and second that it may result in ra 
short arc of action, since excessive undercutting may remove the 
inner portion of the involute as well as the straight part of the tooth 
bdow the bfuse circle. 

Method (d) is satisfactory where manufacturing methods per^ 
mit of its use. 

In the “ cmnposite ” type of tooth, interference is avoided by 
use of (^doidal corves for those portions ctf the profile which 
wwild interfere if made of involute form. 

90, Saditis of Addendum C^e without Inter- 
leniiee. It is evident that the interference encountered in the 
iseii of Fig, 8-27 could be eliminated if tite teeth on the low^ gear 
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were shortened by cutting off the portion which is shown cross- 
hatched. This tooth would then ^ve its marimnxn addendum 
wiffiout interference. In Fig. 8-28, gears with centers at A and B 
have pressure angle a and base circle radii AC and BD. The nuud- 
mum addenda radii that can be used for the gears without intro¬ 
ducing interference are respectively AD and CB, the drcles th^ 
passing through the interference points C and D. 

Since AC and BD are perpendicular to CD, we may complete a 
rectangle ACDF. From the geometry of the figure 

CZ) = AF« ABsina. 

AD = V(AC)* + (CD)* = V(ACy + (AB)* X sin* a. 

BC = V(BD)* + {CD)^ = V(BZ))* + (AB)* X sin* a. 

Hence the maximum addendum radius without interference is 

equal toV(Base circle radius)* -|- (C.-to-C. distance)^ X sin* a. 
Example. — Find the maximum addendum radius of two equal 

gears having 23 teeth of 1 diametral pitch, the pressure angle 
being 14J®. 

Solvtion. — Pitch radius of gear = 11.5 in. 
Base circle radius 11.5 X cos 14^'*. 

- 11.5 X .968 » 11.13. 
Center-to-center distance » 23 in. 

Hence 

Maximum addendum radius 

V(11.13)* -f (23)» X (.26W)» - 12.5 in. 

Therefore the maximum addoidum » 12.5 — 11.6 ■■ 1.0 in. If 
the gears are made with full-depth piopcHrtvms, tlm addendum is 
1/P >» 1 in. This indicates that two equal gears having 23 teeth 
of standard 14^** involute form vilt not intofere, but are just at 
the limit (A addordum length. Gears with fewer teeth will show 
iuterfoence. 

9L C0n«ctModifiGatioafwhDtBifennee.--*Wheiotliei^^ 
fioUion for interfmitM consists in euttinc baefc the pioi^ 
the tooth face im the rath or laifnr gear, the raiitt^ atnltwe 
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should be of a form conjugate to the flat radial surface inside the 
base circle of the pinion. A straight line is a cycloid generated by 
a rolling circle half the diameter of the directing circle. Hence 
the conjugate curve on the larger gear should be a cycloid generated 
by a rolling circle half the diameter of the pinion pitch circle when 
rolled externally on the pitch circle of the former Thus in Fig. 
8-27 the profile LM should be a cycloid formed by rolling a circle 
of diameter OP externally on the pitch circle of gear b. This 
curve is conjugate to the straight line QR on pinion a. 

22. Involute Rack Teetii. — Since a rack can be regarded as a 
portion of a gear wheel with infinite pitch radius, the base circle 

for the rack involute is also of infinite radius, and the involute it¬ 
self is a straight line. Rack teeth on the involute system there¬ 
fore have straight working surfaces, except where mo^cation be- 
econas necessary to avoid interference. ligure8-29(a) illustrates a 
rack tooth tiris land. The ai^e between the side of a tooth 
and the perpendicular to the pitch line is equal to the pressure 
an|^ or airc^ of obliquity, lire amount of modification on the 
face of tbe tooth which is really required to eliminate interfer¬ 
ence depends on the sise pinion with which the rack is to 
mnrihi For the 14|° system George B. Grant recommends round- 

off the half of the face by an arc radiw equal to 
iSL diametral pitch, 0.67 in. X circular pitch. See 
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Fig. 8-29(6). This gives a satisfactoiy approxiinate form for 
cast teeth. 

23. A simple device which will draw a gear tooth of proper form 
to work with a rack tooth of any selected shape is shown in Fig. 
8-30. This also serves to illustrate the principle of operation of 
spur-gear-tooth generators which use a rack-tooth cutter. A 
frame A has a slot on its upper side in which the rack B slides. 

Hie frame also has a vertical bar in the rear, not viable, which 
carries a pivot about which the pitch-surface sector C switigs. 
Farts B and C are connected by means a flexible steel strip 2) 
so as to cause B to have reeling contact with C. The tooth is gen¬ 
erated on a paper sector E which is pinned to the faceof C. The 
rack tooth F is preferably made of celluloid or other transparent 
materiaL The tooth form is determined by moving the rack akng 
by nnall displacemmts and in each poeitidn drae^ng the outline 
of tilK radc tooth on the paper sectw. The tooth profile & the 
tangent mrve or envriope of the taek-tex^ outliiies. 
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The tooth form shown in the figure is that for a twelve-tooth 
pinion of 14|“ full-depth involute type. The standard rack tooth 
has been lengthened by an amount 0.157 -r- P, in order to provide 
clearance at the root of the pinion tooth. Considerable under¬ 
cutting is noticeable, part of the involute between base and pitch 
circle being removed as well as the material lower on the fiank. 
This gives a short arc of action which is characteristic of the 14§° 
involute full-depth tooth when the tooth numbers are small. 

24. Tooth-form Requirements. — Aside from the fact that the 
working faces of gear teeth must comply with fundamental law of 
Art. 6, there are several other requirements which have influenced 
the choice of standard gear-tooth forms and proportions. 

(а) The teeth must be capable of accurate production at low 

cost. 
(б) The tooth form should have good wearing qualities. Low 

rubbing speeds and close approach to surface contact are both 
favorable. The latter condition is secured when mating teeth 
both have large radii of curvature. Tooth pressures are distrib¬ 
uted over a wider strip of surface when large radii are used. The 
result is a lower intensity of pressure and less wear. 

(c) The tooth form must result in good “ beam strength.” In 
service, forces act on the tooth side tending to bend it like a beam. 
Beam strength is greatest in a short tooth with a wide section 

across the root. 
(d) The arc of contact must be at least equal to the circular 

pitch; otherwise there would not be continuous contact between 
gears. An arc of action greater than 1.4 times the circular pitch 
is generally held to be good design. Below this limit, noisy action 
of the gears is likely unless they are very accurately cut. 

(e) Interchangeability of a'series of gears of the same pitch is 
gmwally dedrable, although it is unnecessary with many gears 
which are of the *' special purpose ” type. 

2i. Standard Tootii Forms.In view of the requirements for 
gear-toe^ f<mns, four types of te^h have been standardized 

tiie American Gear Manufacture Association. These are 

limtnmas: 
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(a) The 14J® Composite System. 

(b) The 14^° FuU-depth Involute Ssnstem. 

(e) The 20® Full-depth Involute Ssrstem. 

(d) The 20® Stub Involute System. 

Tooth proportions are given in Table 1. 

TABLE 1 

Pboportions of Standabd Teetb 

^ ..- 

14i® 
Composite 

14i® 
Full-depth 
Involute 

20® Full- 
depbh 

Involute 

20® 
Stub 

Involute 

1 
1 1 1 0.8 

Addendum. P P P p 
1.157 1.157 1.167 1 

Minimum dedendum. P P ,P P 
Wliole depth =* addendum 2 157 2.157 1.8 
and dedendum. P P T “F 

0.157 0.157 0.2 
Clearance. P P p P 

P diametral intch. 

It will be noted that the composite, the 14|® full-depth, and the 
20® full-depth ^tems all have teeth <d the same proportions. 
Tbese proportions are exactly the same as those used in the earlier 
“ Brown and Sharpe Standard ” sjrstem. 

Elach of the four standard systems has gear teeth which are 
conjugate to a “ basic rack.” The basic rack is therefore the 
standard or reference form in cutting teeth on gears of any sise. 

The 14}® Composite System. — The basic rack (i^proximate 
form) is shown in Fig. 8-31. It Tcill be observed t^t ^ rack- 
tooth sides are composed of circular arcs at the ti^ and bottmn 
of the tooth connected by a straight porUon. There is alsb a 
fillet arc where the tooth dde jdns the root chde. The stthii^ 
portion, comisrising about the nuddle third, is the imrdiute nedioB. 
The ehtnUar arcs forming the outer portwn pf tine fpee and iensr 
pmlnm d the flank are selected .to approgmaate cydoicUi 4»umPf 

This iqnstem was ea% developed fim the eydb^ tpoth lataiB 
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which were at one time in almost universal use. While possessing 
some of the advantages of the straight involute system, it avoids 
the interference and undercutting of small pinions, which are char¬ 
acteristic of that system. It is the common form of tooth cut 

in the small shop where the formed milling-cutter method is 
employed. It is suitable for gears with twelve or more teeth, and 
this range of gear sizes can be produced by means of a set of 
fifteen standard cutters. (See Fig. S-32.) Each cutt» can be 
used over a range of tooth numbers as shown in Table 2. Each 
is correct for the smallest number in the range and somewhat 
in error for the higher numbers. However, errors in¬ 
troduced in this way can at least be partially cor¬ 
rected by slightly varying the depth of cut in the 
blank. Standard tables, approved by the Gear 
Manufacturers Association, are available* which 
show the depth oS cut required for best results with 
various sizes of gears. 

While the basic rack is not so simple in form as 
that for pure involute teeth, the composite system 
gives a sufidently huge arc of contact and a tooth 
form otherwise quite satisfactory for the range of 
tooth'fiumbers mentioned above. As it is difficult to 
attain hig^ standards of aocunu^ in teeth cut formed cutters, 
tiib type is most satisfactoiy when loads and spe^ are moderate. 

]4|‘*fiilb4epaiXnvohite. — IMs system has a basic rack with 
aama too^ addendum and dedendum as the composite 

gyrtem. The ta^ tooth is stnughtHsided as shown in Fig. 8-33 
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TABLE 2 

CoMFOBiTEi Tooth Mhxino Cottbrs 

STANDARD UJ® SYSTEM 

Cutter 
Number 

Tooth 
Numbers 

Cutter 
Number 

Tooth 
Numbers 

1 135 to rack 41 23 to 25 
li 80 to 134 5 21 to 22 
2 55 to 79 61 19 to 20 
2i 42 to 64 6 17 to 18 
3 35 to 41 61 16 to 16 

30to 34 7 14 
4 26to 29 71 13 

8 12 

except for a fillet arc at the root to strengthen the tooth. This 
system is used for generated teeth. 

Interference occurs when the tooth number of equal pinions is less 
than twenty-three or when a rack engages a gear with less than 

thirty-two teeth. Undercutting is therefore necessary with small 
tooth numbers, and as a result the arc of action then becomes unsat¬ 
isfactory. For example, with two twelve-toothed {unions the arc 
of contact is 0.(^ times the circular pitch, an unusable value. 
The desired are of action, namely, 1.4 times the circular {fitch, is 
cfifitunable with gears having twenty, twenty-one, or tw^ty-two 
teeth, tbe exact value depending on the tooth number of the 
mating gear, llfis type of tooth is very saiasfaototy, however, 
tdien tooth numbers are large. 

90^ FuU-depfii Znv^ute ^ateia. Hie bai^ ladE (Hg. 8h6iA) 
» tfiw same as tibat for the 14|° qnrtem except for tibe preanm 



20* STUB INVOLUTE SYSTEM 169 

angle. The use of a larger pressure angle leads to better tooth 
action when the tooth numbers are small. For example, an arc 
of action equal to 1.4 times the circular pitch is'obtainable with 
equal gears of fourteen teeth. In this respect, this type of tooth gives 

the best results of any of the four standard types with low tooth 
numbers. It is used for generated teeth. 

20® Stub Involute System. — The basic rack (Fig. S-35) has a 
tooth about 18 per cent shorter than that of the fullnlepth systems. 
Interference difficulties are much reduced as compared with the 
other standard involute teeth. Thus a stub tooth rack will mesh 

with a seventeen-tooth pinion without interference. A pair of 
twelve-tooth pinions pves an arc of action equal to 1.19 times the 
circular pitch. This is a usable value. However, the arc of action 
does not increase rapidly with the increase in tooth numbers, a 
27-% combination having a value only 1.35 times the circular 
I^t(^. On ibsi account accuracy of cutting is especially important 
if ndi^ action is to be avoided. 

Slgom 8% shows a graiffiical comparison of 20** stubjand 14}® 
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full-depth teeth of the same pitch for gears of equal size. The 
short tooth with wide root, characteristic of the former, gives 

high beam strength and accounts for its 
suitability for use where subject to heavy 
shocks. 

The 20° stub tooth was designed primarily 
for use in automobile transmissions, and it is 
also employed-for heavy mill gearing. The 
teeth are cut by generating processes. 

26. Approximate Gear Tootii Profiles. — 
When gear teeth are cast instead of being 

cut on the gear blank, circular-arc profiles are often substituted 
for the theoretically correct involute or eycloidal curves. This 
lowers the cost of both drawings and patterns, because the tooth 
forms can be specified more easily by the drafting room and laid 
out more rapidly by the pattern maker. The errors introduced by 
this approximation are generally small if the centers and radii are 
properly chosen. In any event, cast teeth are likely to be dis¬ 
torted on cooling, the surfaces ore somewhat rou^, and extreme 
accuracy in mitking the patterns is not justified. 

To save time, gear teeth are often drawn by the circular-arc 
method even though the teeth are to be cut to true involute form. 

Many methods for the laying out of circular-arc teeth have been 
used. Am<mg the better Imown are the Grant Odontogtaph and 
the Brown and Sharpe methods. 

27. Aiqpiwdmate Involute Teeth: Grant Odontogia^ — The 
Grant Method of constructing approximate tooth outlines is one 
ci the best known and most u^ul. Table 3 contains the in¬ 
formation for teeth of 15° pressure angle and staiulard ptopo^ 
tioDS, the true invcdute bdng {q}proxunately by two drcular ares. 
The cadhiB the arc to Am face of a required tooth is found by 

the figures in the “ Face Badius ” column ooneqxmding to 
the number of teeth <m the gear. These fiiptes are either divided 

the diametral intch at mul%lied J>y the cirealar |dtdi, and the 
naoH i* fhe required radius. Therathusof tbeAmkaxeistoiDd 
fton the data k the “ Flank Raditwedunm by the same aSethbd. 
The eeutoa from which the aroe are drawn are boated on the base 
cinde of tim tine kvbkde. Imhb the bam eiteb the tooth 

Fig. 8“^6 

CompariBon of Stub 
Tooth and Standard 
14}® Tooth, 
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TABLE 3 

Grant Iitvolxitb Ooontogbafb 

No. 

Divide by 
Diam. Pitch 

Multiply by 
Circular Pitch 

of 
Te^ Face Flank Face Flank 

Radiue» in. Kadius, in. Radius, in. Radius, in. 

10 2.28 0.69 0.73 0.22 
11 2.40 0.76 0.27 
12 2.51 0.31 
13 2.62 0.83 0.34 
14 2.72 1.22 0.87 0.39 
15 2.82 1.34 0.43 
16 2.92 1.46 0.93 0.47 
17 3.02 1.58 0.96 
18 3.12 1.69 0.99 0.54 
19 3.22 1.79 0.57 
20 3.32 1.89 
21 3.41 1.98 0.63 
22 3.49 2.06 1.11 0.66 
23 3.67 2.15 1.13 0.69 
24 3.64 2.24 1.16 0.71 
26 * 3.71 2.33 1.18 0.74 
26 3.78 2.42 0.77 
27 3.85 2.50 1.23 
28 3.92 2.59 1.25 0.82 
22 3.99 2.67 1.27 0.85 
30 2.76 1.29 0.88 
31 4.13 2.85 1.31 0.91 
32 4.20 2.93 1.34 0.93 
33 4.27 3.01 1.36 0.96 
34 4.33 1.38 0.99 
35 4.39 8.16 1.39 
38 4.45 3.23 1.41 

37-^ 4.20 1.34 
41-46 4.63 1.48 
46-41 6.06 1.61 
62-60 5.74 1.88 
61-70 6.62 2.07 
71-60 7.72 2.46 
91-120 . 9.78 8.11 

121-480 18.38 4.26 
181-660 21.62 6.88 
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is extended along a radial line and rounded into the root circle by 
a fillet arc. Face and fiank arcs coincide with the true involute 
at three points; hence this method is sometimes referred to as a 
Three-point Odontograph. 

Figure 8-37 illustrates the application to a gear having fourteen 
teeth of 2 diametral pitch. In the table, opposite “ 14 teeth,” the 
face-radius column shows the value 2.72, and the flank-radius col¬ 
umn 1.22. Dividing these numbers by the diametral pitch, we 
obtain 1.36 in. and 0.61 in. The former radius is used to draw an 
arc OB extending from the pitch to the addendum circle. The 
latter is the radius of the arc OC extending from the pitch circle 

inward to the base circle. A radial 
straight line CD and a fillet arc DE 
complete the tooth profile. 

28. Other Tooth Forms. — A system 
of involute teeth known as the Long- 
and-Short-Addendum system has of 
late found manyindustrial applications. 
In this system the pinion tooth, gener¬ 
ally of standard length, is constructed 
so that it projects further outside the 
pitch circle than the standard tooth, 
resulting in a long addendum and ashort 

ded^dum. The conjugate tooth on the gear must of necessity 
have a short addendum and a long dedendum. Reference to Hg. 
8-38 indicates the resulting form of the teeth in comparison with 
the standard involute teeth. The pinion tooth becomes wider 
and strcmger at the root section where the greatest bending mmnent 
will act. The gear tooth is but slightly stronger than the standard 
tooth, but this is of no importance »nce both forms are stronger 
than the pinkm tooth. Furthermore, int^erence is eliminated 
over the ordinary range of tooth numbers. 'Hie usual pressure 
angle is about 20*’. The gears made by the Gen^ Electric Co. 
for railway and industrial haulage, and the Westingbouse-Nuttali 
gsaniy are of this type. 

In the Ifaag syst^ d gear cutting, a straifljbtHsided radc is used 
in a siteeial machine to produce a tiw invdute todli by a sstnemr 
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tion method, a process which lends itself to accurate production. 
The depth of the teeth and the pressure angle are not the same 
for all tooth numbers. Teeth of standard depth and low pressure 
angle are used for gears with large tooth numbers, while short 

COMPARISON OF TOOTH FORMS 

This Portion of Gear_ 
Tooth Profilo Rellovetf 
to Avoid Interference 

Comparative Lengths 
' True Involute Profiles 

^Pltch Linos Commoi. 
to Both Tooth Forms 

. 
This Portion of Pinion' 

Tooth profile is a Radial 
Lino to Avoid Undercutting 

COMPARISON OF INVOLVtE LENGTHS 

Full Lines—Long'Snd Short>8ddendum Tooth Formt 
Brokon Linos—B & S Tooth Forms 

Fia. 8-38 
(General Electrio Co.) 

teeth and large pressure angle (up to 23°) are used for small 
tooth niimhers. Between the two extremes the tooth h^ghts and 
pressure an^es are graded, the object bdng to obtain the most 
suitable oombination for each particular case. By this method it 
is possible to avoid interference and have strong teeth even when 
the tooth number is very small This is accomplished, however, 
by the sacrifioe of interchaageability. Figure 8-32 shows stand- 
ard and Maag gears with eight and sixteen teeth. The standard 

involute teeth at the left of the ^ure are evidently of much 
weaker form than the shorter Maiu; teeth which have a larger 
pressure angde* The Idaag system also incorporates the long-and- 
«d»»t*ftddsndum principle as huhcsted by examination of the 
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29. The Variable Center Distance System takes advantage of 
the fact that the involute curve has no inherent pitch circle. The 
objective is to obtain better tooth action where tooth numbers 
are small. It incorporates the following features: 

(1) The same standard rack cutters are employed as for the 
standard 144° involute system. 

(2) Pinions with small tooth numbers have tooth heights less 
than standard, but center-to-center distances are larger. 

(3) Each size of gear has a fixed root-circle diameter: it is inde¬ 
pendent of mating-gear diameter. 

STAHDARD TECTH 
MAA6 TEETtf 

Fig. Sr-SQ 

(Nitot*Bain«Dt-Poiid Co.) 

(4) Tooth hd^ts depeod on the combination, becoming smaller 
as tooth numben are decreased. 

The net result is to increase beam strength and the arc ci 
action in unall pinions. Tooth hdghts and center-to-oenter di»> 
tances become standard for the larger gears. 

Complete detafls will be found in the “ Manual at Gear Design 
1^ Earl Buokir^^MBn. Comparative data for a 18"14 teoth eom- 
txnatioa ol 1DJP. is as follows; 

1 Tooth Cei!iter^to**oniter A»«f Aetfan 
in. Dtstiaoe, in. IggSbiiMl 

gtaadsid 14}*. 2.157 18 
!:18; VaiMibanteriSitaikee... 1.8851 18.8808 
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30. Problem. — We shall take the following specifications for 
a gear and pinion, and proceed to draw the teeth. 

Gear Pinion 
Number of teeth 24 12 
Diametral pitch 2 2 
Bore 2 in. li in. 
Diameter of hub 3}ixL 21 in. 
Full depth, 141® involute teeth. 

From the above data we make the following calculations: 

Inches 
Pitch diameter of gear 12 
Fitch diameter of pinion 6 
Addendum « 1/P - 0.5 
Diameter of addendum circle of gear « 12 + 2 X 0.6 * 13 
Clearance « 0.1671 -i- 2 « 0.0786 
Diameter of root circle of gear » 12 • - 2 (0.6 + 0.0786) - 10.843 
Distance between centers (12 + 6) 4* 2 « 9 
Diameter oi addendum drde of pinion +2 X0.6 «7 
Diameter of root circle of pinion » 6 - 2 (0.6 + 0.0786) - 4.843 

Con^ruetUm. — Locate two centers A and B, 9 in. apart. (See 
Fig.»-40.) 

Draw intch circles touching at pitch point 0. 
Draw addendum and dedendum circles. 
Draw OP perpendicular to AB. 
Lay off 141*’ angles from OP, ^us obtaining QZ and YZ. 
With centers A and B, draw' circles tangent to QX and YZ. 

Ibese are the base circles for the Involutes. 
Starting from tiie intch point 0, divide the pitch circumference 

ci the gear.into 24 equal parts. Ibis can be done by calculating 
tibe angles subtoided at ^e center by the jntch arcs and then 
Isgring off the arcs from the angles. ^ the case of the gear, the 

360® 
pitch arc subtends an angle of » 15®. Points 1,2,3, etc., are 

thus found. Ibe pitdi drcumference of the innion is dmilaily 
iHvided into 12 eqnid parts, and we thus obtain pmnts 1', 2', 3etc. 

We mm have ibe base tareles for tlw involutes and one pdnt 
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on each involute wh^ it crosses the pitch circle. Selecting any 
one of the points on the gear pitch circle, we next draw an involute 
or approximate involute curve by one of the methods already 
outlined. We duplicate this curve through each of the other 
points 1, 2, 3, etc., taking care that each of these curves has the 
HRiwp. angular relationship to a radius through its starting point. 

If the gear is to have cut teeth, no backladi need be provided for, 
and we bisect the distances 0-1,1-2,2-3, etc. Through the points 
of bisection we draw the involute curve already obtained but in 
the reversed portion, so as to form the other sides of the teeth. 
The same construction is miployed for the pinion. 

The tooth flanks may be completed by & radud line and fillet 
are. 

Modificatim of the tooth points is neosssaiy to avdd 
ftMxme. To determine the interfering portion of the teeth> iie 
find ioeate pdnt € where fine YZ hi tangent to tbeHbaee ehede. 
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With A as center and radius AC, describe an arc. The cross- 
hatched portion of the gear tooth (Fig. 8-40) lying outside this 
arc must be modified. The teeth on the pinion do not mterfere, 
since the interference point D falls outside the adj^endum circle 
of the pinion. 

31. Intmial or Annular Gears. — One of these gears is illus¬ 
trated in Fig. 8-41, the teeth being cut internally on a hollow 
cylinder or ring. Except for the clearances, an internal gear and 
an external gear of the same pitch, pitch diameter, and tooth 
proportions have the same profile, the tooth spaces on one corre¬ 
sponding exactly to the teeth on the other 

Internal gears are required when dnving and dnven members 
must rotate m the same sense. The drive is more compact than 
when external gears with the 
same velocity ratio are used 

32. Twisted-tooth Spur 
Gears.— (Fig. 8-3.) A 
plain spur gear may in 
theory be converted into a 
twisted-tooth spur gear by 
first cutting it into an infi¬ 
nite number of thin sections, 
by passing through it planes 
perpendicular to the axis of 
revolution, and then rotat¬ 
ing these sections so that' 
each is somewhat in advance 
of the adjacent one. By 
making the increments of 
angular advance of equal 
value, dements of the emn- 
Inned teeth become true 
helices. This is usually 
donn {(xr ease in manufacture, though a helical form is not essen- 
tialy dnee no sliding takes place along the tooth elements these may 
have any dedred diape, provided that the mating gear teeth are 
fotmed with emtespenuHng curves of the etoents. 

{Stepkma^AtUxnmn Mjg co) 

Fig 8-41 
Internal Gear 
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When made with true helical tooth elements, the twisted-tooth 
spur gear and the helical gear of the same diameter, pitch, and 
helix angle used for connecting non-parallel shafts do not differ in 
form. Both are commonly called helical gears The same method 
of designing the teeth applies to both. This method is discussed 
later. 

The superiority of the twisted-tooth spur gear as regards quiet 
action has already been pointed out. Noise in gear operation is 
due to the impact of the teeth as they come into contact. In the 
plain spur gear, contact takes place along the whole length of a 
tooth at the same instant, whereas in the twisted-tooth gear 
contact begins at one end of the tooth and progresses to the other 
during an appreciable time interval. The latter action produces 
little noise. 

The Ang^e of Cut is the angle between the helical pitch element 
and the parallel to the axis of revolution. The angle of cut is 
usually made so large that there is always one pair of teeth in 
contact at the pitch point. This means that the heUx must ad¬ 
vance at least one pitch in the width of the gear. Too large an 
angle causes excessive end thrust. In practice the angle ranges 
from 15® to 30®. 

HEUCAL GEARS 

38. Tootii Action. Sliding Velocity. — Gears of this kind are 
used to connect non-intersecting shafts at any angle (see Fig. 
8-9). Tlie cylindrical pitch suifacdh of the helical gears touch 
along a line only when the axes of the cylinders are parallel, in 
which case they are often called “twisted-tooth spur gears." 
Otherwise the pitch surfaces touch at a point, and consequently 
the teeth also have point contact. Two cylinders cannot have 
pure i>blling contact unless their axes are pandld. Thus, hi hdioal 
gears connecting non-parallel shafts, the teeth slide on one another 
akmg the tooth elements. The sliding action is provided for by 
wwkiTig the teeth of uniform croeaoeclmn and the tooth dbuRtts 
tniehdiees. 

In 8-^, a and h represent the {atdi qylinclm a |Mk el 
heltoal gean ctmneeting two i^ts whose ams are iJB and 
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at an angle $. The pitch cylinders make contact at a point P, 
and the line LM is the common tangent to the helical tooth ele¬ 
ments through P. 

Point P, regarded as a point on a, has a velocity represented by 
a vector PQ (= Va) perpendicular to AB. Point P considered 
as a point on b has a velocity represented by a vector PR (*= Fj) 
at 90® to CD. Vectors 
PQ and PR must have 
a common compo¬ 
nent PS i= F«) in a 
direction normat* to 
the common tangent A— 

ML. If this were not 
true the teeth would 
either come out of 
contact or interfere. 
The algebraic differ¬ 
ence of the compo¬ 
nents of PQ and PR 
in a direction parallel 
to ML, namely, QS plus SR, represents the sliding velocity at the 
pitch surface along the tooth elements. 

34. AngiilflT Velocity Ratio. — The Angle of Cut or HeUz An^e 
of the teeth is the angle between a tang^t to the helix at a point 
on the pitch surface and a line parallel to the gear axis. In Fig. 

a is the angle of cut for the gear a, and jS for the gear b. 
Ehdd^tly, from the figure, 

« + /J “ ff. 

Also, by construction, 

the ang^e SPQ * a, the angle SPR * 

and therefore 

Va COS 0 
F.-cob«*-5P* Ffcoe^ or 

Vi COB a 

Nwr, 
tta ^ F* + r* and «»■* 
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Therefore, the angular velocity ratio is 

Wo Vg • Tb r6 • cos |8 
wj Ft • r* fo • cos a 

(8-6) 

It will be noted that the velocity ratio depends not on^y on the 
pitch diameters but also on the angles of cut of the teeth. With 
unchanged diameters a different speed ratio can be obtained from 
a pair of these gears by altering the angles of cut. 

36. Graphical Construction for Helical Gears. — Figure 8-43 
illustrates a graphical method of finding the angles of cut a and 
/3 for a pair of helical gears when the angle between shafts 0, the 
diameters of the gears da and d», and the velocities Wa and wj 
are known. 

Construction: 
Draw two lines OX and OF at an angle 0. 
Set off distances from 0 representing da, dh, Ua, ut, to any con¬ 

venient scales, as in the 
figure. 

Join AB and draw 
CD parallel to it. 

On OF find a length 
OE equal to OD. Join 
EF. 

Draw 00 perpendic¬ 
ular to EF. 

The required an^es 
of cut are the angles a 
and as indicated in 
the fi^re. 

Proof: 
From the geometry 

of the figure, 

Mtcosg ta> cos g 
OFtmot «aC08a 

Fra. 8-43 

^ oe 
dt’’ OD 

Tberrfore, 

<a> 
OB 

w» 
OH -h cosg 

Wa <4 COB g 
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Hence a and /S are the required angles of cut, from equation (8-6). 
When the numbers of teeth (Na and Ni,) are knovm, instead of 

the velocity ratio, since NJNb = W6/«o, we may alter the diagram 
by taking OF to represent Nb and OC to represent Na- 

36. Normal Pitch. — A helix, such as AB, Fig. 8-44] drawn on 
the pitch surface, normal to the tooth elements, is known as the 
normal helix. The circular pitches of a mating pair of helical 
gears must be equal when these pitches are measured along the 
normal helix. This pitch we call the Normal Circular Pitch. 
The Normal Diametral Pitch is found by dividing the normal 
circular pitch into ir, diametral and circular pitch therefore 
bearing the same relationship to one another as in common spur 
gears. 

The normal pitch is the pitch of the cutter that must be used to 
produce the teeth. Thus a heli¬ 
cal gear of 10 normal diametral 
pitch and a plain spur gear of 10 
diametral pitch are both pro¬ 
duced by the use of 10 D.P. cut¬ 
ters. It will be shown later that 
the,same shape of cutter cannot 
be used in both cases if the two 
gears referred to have equal num¬ 
bers of teeth. This is due to the 
fact that the profiles on the nor¬ 
mal plane are differ^t. 

We shall next proceed to ex¬ 
press the relationship between 
normal i»tch, pitch diameter, 
and numbers a! teeth for the hetical gear. In Fig. 8-44, let 

p» » normal circular pitch, 
p « circular pitch measured in the plane of revolution (known 

as the circumferential pitch). 
Pa ■■ normal diametral pitch (>■ w -»■ pn), 
N ■■ number of teeth, 
d |dtoh diametar, 
a » aag^ oi eut. 



182 TOOTHED GEARING 

From the figure, 
Pn 

cos a 

The pitch circumference = a-d » piV' 
PnAT 
cos a 

or 

d = 
N 

P» cos a 

(8-7) 

irN 

P.cos a 

(8-8) 

37. Velocity Ratio in Terms of the Number ot Teeth.— 
Equation (8-6) expresses the angular velocity ratio of helical gears 
in terms of the pitch diameters and angles of cut. For two gears 
a and b, 

^ _ (fe cos 

COb daOOBa 

where a and /3 are the angles of cut. 
By equation (8-8), 

Pn’COB 0 
and da 

Na 

Pn • cos a 

Substituting these values of dt and da in the above, 

— as —. 

«* Na 

In helled as in spur gears, therefore, the angular velocities are 
inversely proportional to the numbers of teeth. 

88. Tootii Fwms. — In forming the teeth on a helical gear the 
cutter moves along the tootii elements, and sections at angles 
to tiie path of movement will have the same profile as the cutter 
unless the teeth are generated. A study of such sections is tiiere> 
fore of inqiortance. 

In Fig. 8-44 is fllustrated a pitch cylinder for a befical gear« the 
curve AB being the normal helix. A itoe CBf taa|^ to AB" 
at a pdnt P, will intosect a tooth in a dhet^on nomal to its 
ekmeots. The tooth aetkm may be regarded as that doe to 
rolling two pitdi surfaces in a |dane CN iduB a doling aotion 11^^ 
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lei to the tooth elements. The latter motion has no influence on 
the normal tooth section. This section can therefore be made the 
same as required for a spur gear of pitch equal to the normal pitch 
of the helical gear and of pitch radius equal to the radius of curva¬ 
ture of the normal helix. 

This radius is equal to the radius of curvature at P of the ellipse 
formed by the intersection of plane CE with the pitch cylinder. 
This ellipse has a minor axis of length d and major axis d cos a, 
where a is the angle of cut. The radius of curvature of any 
dlipse at the end of its minor axis is equal to 

(J major axis)* 
§ minor axis 

or, in the case considered, it is 

(id-i-eosa)^ ^ d ^ 

\d 2 cos* a 

This is the pitch radius of a spur gear having teeth of tiie same 
form. If iV = number of teeth on the helical gear, vd/N » cir¬ 
cular pitch in a plane perpendicular to the gear axis. The normal 
circular pitch is therefore vd cos a/N, by equation (8-7). The 
number of teeth on the equivalent spur gear having a pitch radius 
equal to the radius of curvature of the normal helix is the pitch 
circumference divided by the circular pitch, or 

/ \ a 

^ \2 cos* «/ ’ N 

N 

cos* a 
(8-10) 

The condusion is that a helical gear of N teeth requires &e same 

dupe of teetii as a spur gear of teetii. 

When udng milling cutters for tooth production, the space wUl 
not have the same cross-section as the cutter. For this reason the 
chtter used thould be one which is suitable for a spur gear having 

l>«iB the ^Bamder of the eqtter at the middle of the profile. 
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WORM GEARING 

39. Properties and Uses. — The properties of the worm gear 
are such as to render it suitable for many uses. Though common 
for connecting non-intersecting shafts at 90°, it is sometimes used 
for other shaft angles. When properly constructed it will operate 
with little noise and show good efficiency. For large speed reduc¬ 
tions it is more compact than other types of gear drive. Under 
certain conditions the drive is “ irreversible that is, the com- 

(a) (6) (c) 
Fio. S-46 ^ 

Types of Wonn Wheeb. 

) 
(Foote Broe. Gear Co.) 

Fig. 8H16 
Multiple-threaded Worm and Wheel. 

bination of worm and wheel can be driven only from the worm 
end. For this reason it has been employed in hoists, steering 
gears for automobiles, etc., where reversibility is not desired. 

A simple form of worm wheel, illustrated at a, Fig. 8-40, is just 
an ordinmy helical gear. The pitch surfaces are cylindrical, and 
the teeth have point contact only. 

lone contact, with a consequent improvement in wearing quali¬ 
ties and load-canying capacity, is secured in tlie gear shown at 6, 
F%. 8-45. Here the worm-wheel surface is concaved so as to 
cfHifom with the worm outline, and the active section hi not ecm- 
ined to the centnri idane. This is the style goieraUy used. 

At e, Hg. 8-45, is shown a third form of worm wheel. This 
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presents a fairly smooth outer surface, an advantage when the 
wheel is sometimes turned by hand. 

Figure 8-46 shows a variety of worm gear with multiple- 
threaded worm, used for rear-axle drives in automobiles. 

In a special type of worm developed in England, known as the 
Hindley Worm, the axial section of the pitch surface is curved to 
fit the pitch arc of the worm wheel. A large number of teeth are 
thus brought into a simultaneous contact. Proper action requires 
that accurate endwise adjustment of the worm be maintained. 

40. Worm-gear Terms. — Figure 8-47 illustrates the way in 
which worm-gear dimensions are indicated. 

Wonn-goar Dimensions. 

The Pitch of the Worm is the distance from a point on one 
thread or tooth to the corresponding point on the next tooth, 
measured in a direction parallel to the axis of revolution. Some 
authorities call this the Axial Pitoh. The Pitch of the Worm 
Wheel is the distance from a point on one tooth to a similar point 
on the next tooth, measured on the pitch surface in the plane of 
revolution. 

The Lead is the amount the worm helix advances al(mg the 
axis per turn. When a worm is “ single threaded,” the pitch and 
lead are equal to one another; when “ double threaded,” the lead 
is twice the pitch. In general, where the worm has n threads, the 
lead is n times the pitch. 

Hie Face Angle is measured as indicated in Mg. 8~47. This 
unially has a value between 60** and 90^ 
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41. Velocity Ratio. — When the worm has a single thread, the 
worm wheel is advanced one tooth per turn of the worm; hence 
if the worm wheel has N teeth the worm must make N revolutions 
per turn of the worm wheel. The Velocity Ratio of wheel to worm 
is therefore equal to 1/A^. When the worm is double threaded 
the worm wheel is advanced two teeth per turn of the worm, and 
the velocity ratio becomes 2/Ar. The general expression is n/N, 
where n equals the number of threads on the worm. Worm gears, 
therefore, comply with the ordinary law for tooth gears. 

The velocity ratio of a worm gear can be found directly from the 
lead and worm-wheel pitch diameter. Per turn of the worm, a 

Pig. 8-48 

point on the pitch circumference of the wheel is advanced a dis¬ 
tance equal to the lead. The angular movement of the worm 
wheel, in revolutions, for one turn of the worm, is therefore equal to 

Lead of worm thread 

Worm-wheel circumference (8-11) 

This quantity is the angular vdodty ratio of wheel to worm. 
^ Tooth Action. — Ck>nmdering the worm and whed shown 

m section in Pig. 8-48, it will be observed that the nd>eel can be 
rotated by imparting ^her of the following motioDs to the worm: 
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(o) sliding it along its axis without rotation, 
(6) rotating it about its axis without endwise motion. 

The action of the teeth on one another is the same in both (a) 
and (6), except that in (b) the teeth have relative sliding along the 
tooth elements. Both motions require teeth of the same shape. 
We may therefore regard the worm as a rack and the worm wheel 
as a special form of gear meshing with it. 

The conditions for constant velocity ratio are satisfied when 
section a, Fig. 8-48, found by passing a plane A-B through the 
worm axis, has the form of a spur rack, and section b of the worm 
wheel in the same plane has the form of a conjugate spur-gear 
tooth. 

In the figure, an involute rack section with straight sides has 
been employed for a. To correspond, section 6 is that of an in¬ 
volute spur gear of the same pitch and diameter as the worm wheel. 
The cross-sections on any other par¬ 
allel plane, such as C-D, must be 
conjugate tooth forms. The worm 
section on plane C-D is different 
from a, the former showing teeth 
with curved sides and unsymmetrical 
form. The conjugate tooth section 
of the wheel must vary correspond¬ 
ingly. Generally, the method of 
producing worm gears makes it un- 
neoessaiy to determine any of the 
wonn-wheel sections, since these are generated by means of a cutter 
shaped like the worm. One of these is shown in Fig. 8-49. This 
cutter is first turned to the shape of the worm selected ; it is then 
slotted or “ gashed ” to form cutting edges, and finally hardened 
and ground for clearance back of the cutting edges. The cutter 
and worm-wheel blank are then moimted on arbors and driven so 
that their relative motion is the same as that of the finished worm 
and wheel. Generated teeth of the correct shape are thus cut on 
the blank. The only tooth section that must be specified for 
the whole process is that for the worm in a plane containing its 
asm. 

Fio. 8-49 
Worm-wheel Hob. 
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BEVEL GEARS 

43. General. — Bevel gears may be used to connect intersecting 
shafts Trialling any angle with one another. The pitch cones of 
conjugate bevel gears of the ordinary type have a common apex; 
this results in pure rolling contact of the pitch cones along their 

elements. The use of 
pitch cones not having 
a common apex would 
increase the difficulties 
of design and production 
and the tooth forms 
would be less service¬ 
able. Referring to Fig. 
8-50, which shows a sec¬ 
tion through a pair of 
bevel gears, it will be 
noted that all tooth ele¬ 
ments are straight and 
radiate from a common 

apex. This results in similar tooth forms at all points along the 
cone elements. 

Bevel gears may be classified according to the size of the pitch 

cone angle. Hiose having a center angle less than 00^ are known 
as Bxtemal Bevels (Fig. 8~50). In a Crown Gear (Fig. 8-*61) the 
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center angle is 90° and the cone becomes a plane surface. Internal 
Bevels (Fig. 8-52) have a center angle greater than 90°, the cone 

Fio. 
Bevel-f^ Notation. 

being inverted. Equal bevel gears connecting shafts at 90° are 
known as Miter Gears. 

44. Bev^ear Terms. — Figure 8-53 indicates the mean¬ 
ings of the terms Cutting An^, Center Angle, Edge Ang^e, 
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An^e Inclement, Pitch Diameter, etc., as applied to bevel gears. 
Pitch. — The Circular Pitch of the teeth in a bevel gear dimin¬ 

ishes as we pass along the surface toward the apex of the pitch 
cone. Strictly speaking, a statement regarding the pitch of a 

gear of this kind should be supplemented by information as to 
where it is measured. In accordance with common usage, how¬ 
ever, the circular pitch, unless otherwise specified, means the 

pitch measured at the outer ends of the teeth. The same state¬ 
ment applies to the pitch diameter, diametral pitch, addendum, 
dedendum, etc. 

46. The Velocity Ratio of bevel gears follows the usual law for 
toothed gearing, the angular velocity ratio of a pair being inversely 
proportional to the numbers of teeth. For a given pitch, the 

numbers of teeth vary directly as the pitch diameters, that is, 
as the diameters of the bases of the pitch cones. Diameters are 
dependent on the cone angles. When the angle between the gear 
axes and the velocity ratio are known, the proper pitch cone angles 
may be determined by the method of Art. 4, Chapter VII, which 
applies to rolling pitch cones. 

In view of the fact that different speed ratios require different 
cone angles, bevel gears must be designed in pairs for a particular 

ratio, and interchangeability does not exist to the same extent as 
in spur gears. 

46. Tooth Action. — Bevel gears have relative Spherical Motion, 

since all points remain at fixed distances from the common apex 
of the pitch cones. The teeth should in consequence be laid out 
on spherical surfaces for the same reason that spur-gear teeth are 
laid out on plane surfaces. It is convenient to consider a bevel 
gear to be composed of a large number of thin laminae, each having 

the form of a portion of a thin, hollow sphere as shown in Fig. 8-54. 
Each of these laminae makes contact with a corresponding lamina 
on the mating gear, the tooth form of one member being conjugate 

to that of the other. 
Figure 8-55 shows the formation of a pair of bevds from a 

q>here which is intersected by two planes EC and CD, tohehing 

one another at C. The pair of drculax intersections, xepre- 
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seated by lines EC and CD, may be used as the bases of pitch cones 
OEC and OCD for the bevel gears. These gears will revolve 
about axes OB and OA, touching one another along cone elements 
The surfaces of sections EMC and CND may be regarded as the 
exteriors of a pair of mating spherical laminae referred to above. 
Instead of attempting to find the proper forms of the teeth on 
these spherical surfaces, which is somewhat difficult, we resort to 
a simplified method known as Tredgold’s Approximation. By 
this method we find two cones EBC and ACD, tangent to the 
sphere along the circumferences of the circles represented by lines 
CD and CE. These are known as the Normal Cones, because 
each has elements which are 
normal to intersecting elements 
on the corresponding pitch 
cones. We observe that these 
cones very nearly coincide with 
the spherical surface near their 
points of tangency around the 
circles CD and CE. Teeth laid 
out on the conical surfaces, 
using CD and CE as pitch 
circles, will closely resemble in 
their action the teeth of ordi¬ 
nary spur gears. Hence the pro¬ 
files on the normal cones may 
be made the same as those of spur gears of the same circular pitch, 
little error being introduced in so doing. 

To draw the tooth sections on the normal cones, we first develop 
the cone surfaces and thus reduce the problem to one of drawing 
spuivgear teeth of known pitch. We use the outer circular edges 
of the developed surfaces as pitch circles. In Fig. 8-65, FGHI 
is the development of normal cone EBC, and JKML that of 
cone ACD, Assuming the gear whose pitch cone is OCD to have 
N teetti, the circular pitch is viCD)/N. Around the arc KML, 
whose length is ir(CD), we shall have ^ teeth. The complete 
dzde of which KML is a part has a 'drcumferoice equal to 
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2 t(JK) 2 v(AC), and it will contain 

iVl = ^•X 
2 ir(AC) 

(DC) 

= NX 
Slant height of nonnal cone 
Pitch radius of bevel gear 

(8-12) 

The tooth forms we require are therefore those of a spur gear with 
N' teeth and of the same circular pitch as the bevel gear teeth. 

l^ample. — In Fig. 8-56 is shown the tooth development by 
Tredgold’s method for a standard involute gear of twenty*four 
teeth, 5 diametral pitch, meshing with an eighte^*tooth pinion, 
for connecting two shafts at 90°. The construction is as follows: 

Ilie axes OA and OB are drawn making an an^ AOB equal to 
90°. 

Hie pitch diameter of the gear « 24 4- 5 4.8 in. 
The {Htch diameter of the pinion >> 18 ^ 6 <- 3.6 in. 



Development of Bevel Gear Teeth on the Normal CSones. 
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Draw OC «* (3.6 2) in., and set off CD = (4.8 2) in. par¬ 
allel to OB. D is a point on the pitch cones. Connect OD, 

The addendum of the teeth = ^ = 0.2 in. 
The clearance = 0.1571 -?■ 5 » 0.0314 in. 

Draw DE at 90® to OD = 0.2 in. 
Draw DF at 90® to OD — 0.2 in. -f 0.0314 in. * 0.2314 in. 
Join OE and OF. These are the addendum and root lines of 

the gear tooth. 
Produce DFE to A and B. 
Then A is the apex of the normal cone for the gear. 
With center A and radius AD, draw arc DM. 
With center A and radii AF and AE, draw arcs defining points 

and roots of teeth on the normal cone. 
The circular pitch of the teeth = ir/5 = 0.628 in. 
Lay off distances DG, GH, HM on the pitch arc, equal to 

0.628 in. 
Draw involute tooth profiles through G, H, M, etc., as for a 

spur gear of pitch radius AD and 5 D.P. 
Bisect DG, GH, HM, obtaining points P, Q, B. Draw in¬ 

volute profiles through these points as before, to form the other 
sides of the teeth. 

To draw the tooth development on the normal cone at the 
inside of the gear, use A as center once more, A 'D' as radius, and 
draw the arc DiGiMi. 

Join MA and RA. These lines intersect the arc at Mi and Ri. 
Space off distances aroimd the arc equal to MiBi, obtaining 
points Pi, Gi, Qi, etc. 

Draw circles with A as center and radii A 'E' and A 'F\ These, 
define the addenda and roots of the teeth. 

Construct involute tooth profiles passing throu^ Di, Pi, Gi, Qi, 
etc., as for a spur gear of pitch radius A'D' and circular pitch DjSi. 

We have now obtained the shape of the teeth as they appear 
on the development of the normal cones at the outside uid inidde 
oi the gear. It will be noted that the tooth fmms are rimflar 
figoiea at the two seclJons. 

The construction for the pinion teeth is carried out in tibe same 
nuauun'. 
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Interference of teeth can be investigated from the normal cone 
developments, as for the spur gear, and modifications of the tooth 
faces may be made if necessary. 

47. Hypoid Gears. — These gears, illustrated in Fig. 5-57, 
possess certain of the characteristics of both the hyperboloidal 
and the spiral bevel gears. Like the former, they connect non¬ 
intersecting shafts. As in the latter, the tooth elements are of 
spiral shape so as to 
^ve the progressive, 
contact which leads to 
quiet operation. 

Instead of using the 
hyperboloidal pitch sur¬ 
faces of the true hyper¬ 
boloidal gear as shown 
in Fig. 8-13, cones 
which approximate 
these surfaces are sub¬ 
stituted. This decreases 
the difficulties of pro¬ 
duction. Inspection of 
Fig. 8-57 will indicate 
that the teeth slide on one another along the tooth elments. 
This dictates the use of curves of a particular form for these 
elements; in this respect also, the hypoid gear differs from the hy¬ 
perboloidal, which has sensibly strai^t tooth dements. 

The hypoid gear, developed by the Gleason Gear Company, has 
found an important use in the automobile drive, though the fact 
that the shafts are offset and may be extended past one another 
has led to other industrial applications. The advantages for 
automotive use are as follows: 

(a) Hre pinion axis can be placed below the gear aris, rendering 
poBsiUe a lower body design for the car. 

(5) Tire circumferuatial pitch of the teeth on the pinion is 
greater than that of the teeth on the gear, owing to the difference 
in the fad^ angltw which axe used for the two members. This 
results in a pinion which is larger and'strcmger than that in a 

Fig. 8-67 
Hypoid Gear. 
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spiral bevel drive with the same speed ratio and the same size of 
gear. 

(c) Surface contact is more nearly attained, thus permitting 
higher tooth pressures to be carried.^ 

A considerable amount of slidii^^ along the tooth elements is 
present in hypoid gearing. On this account the rubbing velocity 
of the teeth is higher than in other bevel gears, and hence inac¬ 
curacy in mounting or lack of rigidity in mounting is more likely 
to result in failure of the teeth by scoring.* To offset this tendency, 
special lubricants are generally recommended for hypoids. Never¬ 
theless, the fact that this form of gearing has been adopted for 
truck drives by some of the larger manufacturers indicates that it 
is dependable and durable under heavy service. 

QUESTIONS —CHAPTER Vm 

1. What are the advantages of a gear drive as compared with a friction- 
wheel drive? 

Z Explain the meaning of the following terms as applied to gear wheels: 
(a) pitch circle, (b) circular pitch, (c) diametral pitch, (d) pitch point. 

8. Derive an expression for the relationship between the circular and 
diametral pitch of a spur gear. 

4. Define the following terms as applied to gears: (a) addendum, (6) 
dedendum, (c) face of tooth, (d) fiank of tooth, (e) face of gear, (f) backlash. 

6. What are conjugate gears? What is the fundamental law governing 
the shape of conjugate teeth? 

6. What are (a) the clearance of gear teeth, (b) the arc of action, (c) the 
an^e of approach, (d) the angle of recess? How is the arc of action affected 
by lengthening the teeth? 

7. What are the forms of the pitch surfaces in the following varieties of 
gears: (a) helical, (b) plain spur, (c) bevel, (d) worm? 

8. What three common kimlB of gears are used for oonneoting parallel 
shafts? Sketch. 

9. When shafts intersect, what two kinds of gears are used to connect 
them? Sketch. 

10. What two kinds of gears are used to cooneot edbafts that are neitl^er 
parallel nor intersecting? 

11. Sketch (a) a plain spur gear, (5) a helioal spur gear, (e) a bevel gear, 
(d) ^ spiral bevel gear. 

1^ Sketch (a) a herringbone gear, (h) a worn gear, (c) a skew gear. 

* For additional information see paper by A L. Stewart and & Wildhaber 
Jin the SAX Journal, June, 1928. 
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13. What are the geometrical forms of pitch surfaces for (a) a spur gear, (6) 
a herringbone gear, (c) a plain bevel gear, (d) a spiral bevel gear, (e) a worm 
gear? 

14. Why is it necessary that the teeth on mating gears be so formed that 
a constant velocity ratio is obtained? What must be true of the tooth profiles 
to produce this result? 

16. Prove that in conjugate gears the normal to the surfaces at the point of 
contact must pass through the pitch point. 

16. Why are cycloids and involutes used for tooth profiles in gear wheels? 
Can other curves be used? 

17. What is the ** describing circle in a cycloidal gear? What is a cycloid, 
and how are the flanks and faces of a cycloidal gear formed? 

18. In standard cycloidal gears, what is the size of the describing circle? 
Why is this size used instead of a larger one? 

19. What is an involute? Show how to draw an involute when one point 
on it and the diameter of the base circle are given. 

20. What are the proportions of the standard full-depth involute teeth? 
21. What is the path of contact of a pair of involute gears? What is meant 

by interference of gear teeth? Show by sketch how a pair of gear teeth may 
be examined for interference. 

22. What four modifications may be made in involute gear teeth of stand¬ 
ard proportions to avoid interference? What method is commonly em¬ 
ployed? 

23. Under what conditions is interference obtained in two equal gears with 
standard 14 J® involute teeth? With a rack and pinion? 

24. Why is it impossible to modify an involute rack for interference so that 
it will have a profile of theoretically correct form to work with more than one 
size of pinion? 

26. By the Grant Odontograph method, wliat form is given to the working 
profile of the involute tooth? 

26. What two considerations fix the size of the fillet arc at the root of a 
spur-gear tooth? 

27. What is a stub tooth? What are its advantages and disadvantages 
as compared with standard teeth, and for what kind of service is it used? 

28* What is the pressure angle of a pair of involute gears? Does it change 
during the period of contact of a pair of mating teeth? What values are used 
(a) for standard involute gears, (b) for stub-tooth gears? What is the effect 
on the shape of tooth when the pressure angle is increased? On the bearing 
pressure? 

29. What are the practical advantages of involute as compared with 
cycloidal gears? How are the pressure angle and backlash in involute gears 
affected by using a greater oenter-to-center distance than standard? 

>^30. A gear with standard 14}® involute teeth has a pitdi diameter of 6 in. 
and a diametral pitch of 4. Calculate the following: (a) number of teeth, 
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(&) addeodnm, (c) working depth, (d) deanunoe, (e) root diameter, (f) outside 
diameter, (g) base-cirde diameter. 
' 81. Same as Problem 30 but teeth are of standard A.G.M.A. stub-tooth 

form. 
82. Same as Problem 30 except that gear diameter is 4 in. and diametral 

pitch is 5. 
''88. A gear has 20 teeth of 2-in. circular pitch, the teeth being of standard 

14J® involute form. Calculate (a) the pitch diameter, (6) the addendum, 
(c) the clearance, (d) the working depth, (e) the root diameter, (f) the outside 
diameter, (g) the base-circle diameter. 
' 84. Two shafts 10 in. apart are to be connected by spur gears with external 
teeth, one shaft running at 400 R.P.M., and the other at 600 R.P.M. Find 
the pitch diameters of the gears and the number of teeth if the diametral pitch 
is 4. What is the value of the circular pitch? 

Ana, 12 in., 8 in., 48, 32, 0.7854 in. 
^85. A and B are two mating spur gears. A has 30 teeth of 3 diametral 

pitch and B has a pitch diameter of 15 in. The teeth are of standard 14}^ 
involute form. Find: (a) number of teeth on B; (6) center-to-center dis¬ 
tance of shafts; (c) circular pitch; (d) addendum; (e) dedendum; (f) root 
diameter of A; (g) outside diameter of A; (h) diameter of base circle of A; 
(t) speed ratio of A to B. 

V 86. Spur gear A has 20 teeth of 2-in. circular pitch and meshes with gear 
B having 28 teeth. Find the center-to-center distance of the shafts and the 
Cfpeed ratio. Ana. 15.27 in., 1.4. 
^ 87. Shaft A carries a spur gear with internal teeth. Its pitch diameter is 
20 in. and the diametral pitch is 3. Shaft B carries a mating gear with 
12 teeth. Find the center-to-center distance and the speed ratio of the shafts* 

88. A pair of gears having teeth of 20'’ stub involute form, make internal 
contact. The shafts are 10 in. jrom center to center, and the angular velocity 
ratio is 3 :1. The diametral pitch is 4. Find: (a) pitch diameters of the 
gears; (b) number of teeth on each gear; (c) addendum for each gear; (d) 
dedendum for each gear; (e) diameter of base circle for the pinion. 

89. What is an annular gear? What relationship exists between the teeth 
of a spur gear and those of an annular gear of an equal pitch and diameter? • 

40. A pair of Eg>ur gears a and b have internal contact on 5. The number 
of teeth on a is 20, and the angular velocity ratio of a to 6 is 5 :2. The 
oenter-to-center distance is 7} in. Teeth are 14}^ invohzte form. Find: (a) 
number of teeth on b; (b) pitch diameter of a and 5; (c) diametml pitch; (d) 
outside diameter of a; (e) height of teetL 

41. How do the tooth actions of pairs of helical gears differ from one in- 
oth^: (a) when the shafts are parallel, (b) when th^ shafts are not paralM? 

4iL Show in a pair of hAiiftoi gears a and 5 

Wa d^ ooefi^ 

ddCOBa 
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where <>)« and tab are the angular velocities, da and (& the' i^toh diameters, 
and a and the angles of cut. 

44. A helical gear of 6-in. pitch diameter has an angle of cut of 25** and there 
are 24 teeth. Find the values of the circular and diametral pitches measured 
both circumferentially and normal to the teeth. 

Ans. P ^ 4f p ^ 0.7864 in., P' » 4.42, p' 0,712 in. 
4B» A helical gear of 10-in. pitch diameter has a normal diametral pitch of 4. 

The apgle of cut is 20'’. Find the normal circular pitch, also the diametral 
and circular pitches measured circumferentially. 

46. If it be desired to cut a helical gear with 18 teeth of 6 diametral pitch 
and angle of cut of 15°, how would a spur-gear cutter be selected for the work? 

47. A helical gear of IQ-in. pitch diameter has an angle of cut of 30°, and 
there are 30 teeth. Find values of the circular and diametral pitches meas¬ 
ured both circumferentially and normal to the teeth. Also give specifica¬ 
tions for spur-gear cutter suitable for the helical gear. 

48. A helical gear with 26 teeth, pitch diameter 6 in. has a nonnal dia¬ 
metral pitch of 5. Find the angle of cut. 

49. A helical gear of 8-in. pitch diameter has 47 teeth, the an^^e of cut 
being 21°, Find the normal circular pitch. 

60. A pair of helical gears are used to connect two shafts at 60°. One gear 
has a pitch diameter of 8 in. and an angle of cut of 35°. Its angular velocity 
is 1.1 times that of the other. Find for the second gear (a) angle of cut, (b) 
pitch diameter. Ans. (a) 25°, (b) 7.94 in. 

61. A pair of helical gears connect two shafts at an an^e of 45°. The pitch 
diameters are, respectively, 8 in. and 12 in., and the speed ratio 4 :3. Find 
graphically the angles of cut of the teeth. Ans. 14°, 31°. 

62. Two helical gears having 21 teeth and 63 teeth, respectively, are used to 
connect a pair of shafts at an angle of 60°. The pitch diameters of the gears 
are 7 in, and 14 in. Find graphically the angles of cut of the teeth. 

68* A pair of helical gears a and b connect shafts located at 90°. Gear 
a has an angle of cut of 30° and a pitch diameter of 10 in. Gear a rotates 
at 1200 R.P.M. and b at 800 R.P.M. Determine the pitch diameter of b. 

64. Helical gears of 6-in. and 8-in. pitch diameters, respectively, have a 
speed ratio of 3 :2. The shafts meet at an angle of 60°. Show how to find 
graphically the angles of cut of the teeth. 

66. Two helical gears a and b are mounted on shafts intersecting at an 
angle of 75^. Gear a has a pitch diameter of 8 in., and b of 12 in. Gear a 
has an ang^ out of 30°. ^d the speed ratio of the gears. 

68. l%ow d:etch the meaning of the following terms: pitch, lead, and 
heHx ang^ of a worm. How would you calculate the helix ang^ when the 
pEcb diameter and lead are known? 

67. Indicate by sketch the genml form of three types of worm wheels. 
Which is most commonly used, and why? 

66. Whidi Is the^imtnie of an axial section of a worn Of a wonn wheel? 
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69. A quadruple-threaded worm has two threads per inch. When it is 
mated with a certain worm wheel the angular velocity ratio is 20 :1. Deter¬ 
mine the pitch diameter and number of teeth on the worm wheel. 

60. A worm gear consists of a worm with triple thread driving a worm 
wheel with 48 teeth, to which is attached a 24-in. pulley. The worm is driven 
at 900 R.P.M. Find the linear speed at the pulley face. 

Ana. 353 ft. per min. 
61. A worm has a lead of i in. and meshes with a worm wheel of 8-in. pitch 

diameter. Determine the number of turns required on the worm shaft to 
revolve the worm wheel one turn. 

62. A worm has a pitch diameter of 2 in. and is triple threaded. It meshes 
with a worm wheel of 12-in. pitch diameter and the speed ratio is 30 :1. 
What is the axial pitch of the worm? 

63. A double threaded worm has an axial pitch of i in. and meshes with a 
worm wheel with a pitch diameter of 6 in. Find the speed ratio. 

64. In a worm-gear drive the worm wheel is 12.73-in. pitch diameter and 
is driven by a worm which is double threaded. The axial pitch of the^worm 
is } in. If the worm rotates at 800 R.P.M. what is the speed of the worm 
wheel? 

66. Explain the meaning of the following terms as applied to a bevel gear: 
(a) pitch diameter, (6) face of gear, (c) addendum, (d) dedendum. 

66. Explain the meaning of the following terms as applied to bevel gears: 
(a) cutting angle, (6) center angle, (c) edge angle, (d) face angle. 

67. Explain why the diametral pitch is different at the inside and outside 
of the teeth in a bevel gear. 

68. What do we mean by the normal cone ^7 For what is it used? 
69. What is Tredgold's Approximation as applied to bevel gears? 
70. A pair of bevel gears connecting two shafts at 90^ have a speed ratio 

df 3 to 2. Find the center angle for both. If the larger wheel has 30 teeth 
of 4 diametral pitch, find the pitch diameter and the number of teeth on the 
smaller gear. Ana. 33®.40', ^®.20', 6 in., 20. 

71. A bevel gear of 8-in. diameter, 6 diametral pitch, has a pitch cone angle 
of 60**. Find the number of teeth on the spur gear whose tooth form is the 
same as that of the bevel gear on the normal cone development. Ana. 96. 

72. A bevel gear, with a center angle of 30°, has 32 teeth of 4 diametral 
pitch. What is the number of teeth on a spur gear with teeth of the same 
form? 

78. A bevel gear with 50 teeth and 5 diametral pitch has a center ani^e of 
60°. Determine the number of teeth on the corresponding spur gear. 

74. A pair of bevel gears used to ccmnect shafts at 90° have a speed ratio 
of 4.5 to 1. The smaller gear has a 24n. pitch diameter, and the teeth have 
a diametral pitch of 5. The teeth are of standard stub involute form. Find 
the pitch diameter and number of teeth on the larger gear, also the i^ter 
angles of both gears. What are the values of the addendum and whole 
depth of the teeth? 
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76. A pair of bevel gears having shafts intersecting at 75® give a velocity 
ratio of 2 :1. The larger gear has a diameter of 14 in. The diametral pitch 
of the teeth is 5. Find the center angles. Determine the number of teeth 
on the spur gear whose tooth form is the same as that of the smaller gear. 

76. A pair of bevel gears connect two shafts at 60® and have a speed ratio 
of 3:5. If the larger gear has 45 teeth of 5 diametral pitch, find the pitch 
diameter and number of teeth on the smaller gear. Also, find the center angles. 



CHAPTER IX 

GEAR TRAINS 

1. Train Value. — A mechanism which transmits motion from 
a driving to a driven shaft by use of two or more gear wheels is 
called a Gear Train. Problems involving the calculation of the 
velocity ratios of such trains will be considered in this chapter. 

The Train Value we shall define as the ratio 

Angular Velocity of the Last Wheel (Driven) 
Angular Velocity of the First Wheel (Driver) 

These velocities are measured in the ordinary gear train with 
reference to the fixed frame which supports the gear shafts. 

A positive sign for the train value indicates that the first and 
last wheels turn in the same sense, while a negative sign is used to 
indicate rotation in the opposite sense. 

In Art. 3, Chapter VIII, it was shown that the same general law 
for the velocity ratio applies to any pair of toothed gears, whether 
spur, helical, or bevel,, etc. This law states that the velocity ratio 
of a pair of gears is the inverse ratio of the numbers of teeth. 
Hence the method of finding the train value in terms of the numbers 
of teeth is the same for all gear trains, no matter what variety or 
varieties of gears they contain; 

2. A Simple Gear Train is one in which no two wheels are 
rigidly fastened to the same shaft so as to rotate at the same 
velocity. Figure 9-1 shows a train of this kind. Here motion is 
transmitted from a to d through intermediate wheels b and e. 

By definition, the train value is —. The pitch drdes of the 

gears idl together without slipping; therefore the intdi-liim 
velocity is the same for all. It follows that wheel d, throu^ 
contact with c, will turn at the same rate as timugh it medied witibt 
a. The sises of intermediate wheels b and c, or the numbers cS 

202 * 
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teeth they contain, evidently have no effect on the train value. 
For this reason, h and c are usually termed idlers. This is some- 

45 what of a misnomer, since these 
wheels transmit power as well as 
a and d. 

If wheel c were removed from 
the train and d then driven from 
b, d would still have the same 
speed but in the reverse sense. 

Thus the number of idlers controls the sign of the train value. 
In view of the foregoing it is evident that the train value for 

a simple gear train is equal to the inverse ratio of the numbers of 
teeth on the first and last wheels. For the train of Fig. 9-1, 

^de __   ^a 

0>ae 
(9-1) 

where Na and are the numbers of teeth. 
By inspection, wheels a and d are observed to rotate in opposite 

senses, which accounts for the negative sign. Substituting the 
numbers of teeth indicated in the figure. 

Ude _ 30 
COae 45 

mtemal geaXi driving an idler h which in turn drives wheef c. 
The train ratio is 
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We use the minus sign, since the driving wheel turns clockwise 
when the driven wheel turns anti-clockwise. 

3. A Compound Gear Train is one in which at least one pair of 
wheels are rigidly attached to the same shaft so that both revolve 
at the same angular speed. One of these trains is shown in Fig. 
9-3. In this train the drive is through o, b, c, d, in order, and 
wheels b and c are keyed to the same shaft. To find the train 
ratio we njay proceed as follows: 

Considering wheels a and b, 

^* 
o)„ Nt‘ 

Also, considering wheels c and d, 

^de _ ^c 

«« Nd‘ 

Multipl3dng (1) and (2), 

But, 

^bt y ^d* _ Ng y(. N f 
«*» «« iVj X Ni 

£0J = 

(1) 

(2) 

since these wheels are keyed to the same shaft. 

Udt _ Ng X Nc 

<l)gt Nt X Ni 

Therefore, 

(9-2) 

Calling the first wheel in each pair of meshing gears a driver 
and the second a driven wheel, we may write 

m • Tr I _ . Product of Nos. of Teeth on Drivers 
. ^ Product of Nos. of Teeth on Driven ‘ 

The sign, as before, depends on whether rotation at the driven 
end of the train is the same or opposite to that at the driving end. 
Compound trains are often used where the speed reduction is 
large. In such oases a simple train with the same speed ratio 
m^t require the use of one very large gear. 

4. Reverted Gear Trains. — A gear train is said to be reverted 
when the first and last gears turn about the same ana. The gear 
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trains in an automobile transmission which are in use on “ low/^ 
intermediate or reverse ” are of this type. The first and last 

wheels are co-axial, so that they can be 
coupled together when the car is in 
** high.’’ The back gears of the lathe 
form part of a reverted train. In Fig. 
9-4 is shown a reverted train of four 
spur gears, b and c being keyed to the 
same shaft. The distance from center 
to center of the shafts is 

fia + -Rft = + Rd- 

If all wheels have teeth of the same 
pitch, the numbers of teeth are pro¬ 

portional to the pitch radii. Hence, if 

then 
X Ni, 

Ra^CX Na, 

R,^ C X Nc, Rd^C X Ndy 

where C is a constant. Substituting these values in the above 
equation, we have 

Na+ Nc+ Ni. (9-3) 

Example. — A reverted gear train of four gears, arranged as 
shown in Fig. 9-4, has a train value of J. Wheel a has 20 teeth, 
wheel h 40 teeth. Find the number of teeth for c and d, assum¬ 
ing that the pitch of the teeth is the same for all wheels. 

The train value is 

<ad4 1 
«4I# 6 

Therefore, 
iV, 1 

Also, bom oquation (9-3), 

iv, + iv» - + Ni 

20 + 40 - + ATrf. 

N,X Nc_20X Nc 
" tfl X 40 X 

or (1) 

(2) 
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Equations (1) and (2) may be solved for iV* and N^. We thus 
find Ne = 15, Ni — 45. 

6. Sliding-gear Automobile Transmission. — Figure 9-5 illus¬ 
trates a common form of automobile transmission which provides 

Flo. 9-6 
Skling-gear Automobile Tnmiiminliinn 

time ejMeds fiffwud, neutral, and reverse. The mora important 
members ccmsist of driving ihaft A and eo*ariial drivmi iduft B, 
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sliding gears D and E which turn with B, and gears F,G,H,L, 
rigidly connected together and rotating on a lay shaft. The 
illustration shows the transmission in neutral position. Gears 
C and F are always in mesh, so that unit F, G, H, I is always in 
motion. 

The gear system is controlled by lever M which slides gears D 
or to right or left as desired. The transmission operates as 
follows: 

(o) Third Speed {direct drive). — Gear D is moved to the left, 
the internal teeth on D engaging with C. Shafts A and B now 
rotate at the same speed. 

(6) Second Speed. — Gear D is shifted to the right, engaging 
gear G. The reverted gear train C, F, G, D causes B to rotate in 
the same sense as A but at a reduced speed. 

(c) First Speed. — Gear E is moved to the left, engaging H. 
The gear train C, F, H, E drives B in the same sense as A with 
a speed reduction of larger value than in the second speed position 
on account of the decrease in the ratio of tooth numbers, Nb : Ne 
as compared with No : No- 

(d) Reverse. — Gear E is moved to the right, engaging an idler 
located behind the plane of section and meshing with L. This idler 
is not shown in the figure. Motion is now transmitted through 
C, F, L to the idler and through it to E. The addition of the 
idler causes B to rotate in a sense opposite to that of A. 

In the Buick transmisedon shown in Fig. 9-5a, helical gears are 
^ployed to insure quiet operation. To avoid clashing of gears 
during the engagement of high and intermediate speeds, the trans¬ 
mission is provided with a as'nchroniaing device which insures 'that 
shafts to be connected are rotating at the same speed. This device 
cmudsts of two cone dutches, one for use when changii^ into high 
ami the odier when changing into intermediate speeds. One of 
these dutdies is engaged by the primary movement of the control 
lever, the further motion of the lever afterward connecting a posi¬ 
tive dutdi whidh takes the form of a toothed gear mating with an 
internal gear. 

The speed ntioe obtainable and the gears used for each are as 
follows: 
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High gear: direct connection of driving shaft A with driven 
shaft B is made by locking the positive clutch L. 

Intermediaie gear: the drive is through gears C, D, E, and F. 
Gear F is obliged to rotate with driven shaft B only when positive 
clutch M, Ml IB engaged; otherwise this gear turns freely on a 
bronze bush mounted on shaft B. 

Low gear: here the drive is through C, D, G, and H. H ia a. 
sliding gear mounted on splines to rotate with B. 

Reverse: in this case the gear train consists of C, D, I, thence 
to an idler mounted on a shaft behind the plane of section and 
then to H. 

The figure shows the transmission in neutral. Movement of 
shifter shaft N to the right engages low speed by bringing sliding 
gear H in mesh with (?. Movement of shifter shaft N to the left 
engages the reverse speed by bringing H in contact with the idler 
mentioned above. 

When the second shifter shaft 0 is moved to the right, clutch 
L, Li is engaged and ^fts A and B rotate together. Movement 
of 0 to the left engages clutch M,Mi which connects gear F to shaft 
B and provides the intermediate speed. 
' The synchronizing portion of the mechanism consists essentially 
of positive clutch members L and M mounted on splines so as to 
rotate with B, cam sleeve P, and shifter sleeve Q. Clutch member 
L, M has arms which pass through dots in the cam deeve and 
rigidly connect the former member to the shifter deeve on the 
outdde. The cam deeve carries at its ends the cone clutch mem¬ 
bers R and S. The clutch member, cam deeve, and shifter deeve 
rotate as a unit with shaft B. 

Assuming that the car is moving and that it is dedied to engage 
the intermediate speed, the shifter shaft 0 is moved to the left, 
carrying with it cam deeve P and clutch member L, M. The 
cone clutch 8 first engages and thus brings gear P to ihe same'speed 
as shaft B. Resistance to further axial motion of the Mtn deeve 
causes balls T to spring out of a droumferenlial groove in the 
deeve and allows the clutch mernb^ to continue motion to the left 
until positive clutch M and Mi is engaged. The function of the 
slots in tbs' cam sleeve, and the “ cam ” which projects through 
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them, is to cause a slight angular movement of the two clutch 
members M and Mi during engagement. This avoids jamming 
of the teeth. 

A similar action takes place when “ high ” is engaged. In this 
case, cone clutch R is used to synchronize the speed of shaft A 
with that of B before positive clutch L, Li is engaged. 

6. Spur*geared Hoisting Blodc. — Figure 0-6 shows an applica¬ 
tion of a compound reverted gear train to a hoisting block. The 

device is operated by a hand chain on the 
right, which runs on a sprocket of compara¬ 
tively large diameter. This sprocket is con¬ 
nected to a shaft which transmits motion to 
the gear train on the left. This train is an 
epicyclic with fixed internal gear, having as a 
driven member a cage supporting the small 
revolving pinions. This cage is keyed to a 
sleeve which also carries the hoisting chain 
sprocket at the middle of the block. An 
automatic clutch in the right-hand side of the 

(Y«ie an^TowB^f*. Co.) holds the load until the hand chain is 

Spur^SIed Hoisting PuHed in the lowering direction. 
Block. proper choice of the sprocket diame¬ 

ters and gear sizes the device is designed for 
any desired speed ratio of hoisting chain to hand chain. Neglect¬ 
ing friction losses, the ratio of the load-chain pull to the hand- 
chain pull is the reciprocal of their speed 
ratio, dnce the work done by both is the 
same. 

7. Epicjrclic or Planetaiy Gear Trains. — 
In .the ordinary gear trains already discussed, 
the wheels revolve about fixed axes, the frame ^ 
supporting the wheels being the fixed link in 
the mechanism. In an epioyclio gear train, 
on the other hand, the axes of certain of 
the wheels are in motkm and one of the gears becomes the 
fixed link. An ordinary gear train may be converted into an 
epicyclic train by fixing one of the wheels and causing the frame 

b 
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canying the wheel axles to revolve. The epicyclic train of Fig, 
9-7 has a stationary wheel a, and frame c revolves about the pin 
at A with the result that b rolls around on a. 

What we often want to know about an epicyclic is the ratio of 
the angular velocity of the driven wheel to the angular velocity 

of the frame carrying the wheel axles. In Fig. 9-7 this is—, both 
<i)ca 

velocities being measured with respect to the fixed wheel. This 
quantity we may call the Epicyclic Value and we will consider two 
methods of calculating it. 

8. First Method. — The evaluation of the Epicyclic Value may 
be made by applying two fundamental principles concerning the 
motion of any three bodies. 

(1) If we have three moving bodies, the angular velocity of the 
third relative to the first is equal to the angular velocity of the 
second relative to the first plus the angular velocity of the third 
relative to the second. (See Art. 13, Chapter II.) Thus if 
c, c, 5, in Fig. 9-7, are the three bodies, then 

Uba = Uea + Wfc. (A) 

(2) If we have two bodies, the angular velocity of the first 
relative to the second is equal numerically to the angular velocity 
of the second relative to the first, but of opposite sign. Hence, 

tOca = Ucc- (•®) 

Referring to Fig. 9-7, the epicyclic value equals 

by Equation (A), 
iaca^ea 

= l+ ^*l_"»£,by Equation (R). 
««* «« 

But — is the train value when the frame c is the fixed link. Call- 
.«« 

ing this train value T, 
Spi<7cUc Value «> 1 - 7*. (9^) 

This formula can be applied to any ei^dio gear train. Care 
must be exercised in two direotiona: (o) in obtaining the proper 
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sign for T and (b) in calculating its value. The denominator in the 
fraction expressing the train value is the angular velocity of the 
wheel which becomes the fixed link in the epicyclic. 

Example 1. — Suppose c, Fig. 9-7, makes one turn clockwise; 
find the number of turns made by 6. Wheel a has 30 teeth and 
wheel b 40 teeth. 

The train value {T) = 
0)be 

<aae 40* 
The minus sign is re¬ 

quired, since a and b rotate in opposite senses. 

By equation (9-4), the epicyclic value — ~1—r=l — (—J) 
Wco 

== +lf- 
While c makes 4-1 turn, b makes 4- If turns. 

• Example 2. — An epicyclic gear (Fig. 9-8) has a stationary 
wheel a. Arm e turns at 50 R.P.M. clockwise. Find the speed 
and direction of rotation of d. 

Wheels b and c are evidently idlers. 
mL i • 1 130 
The tram value — =4- -rr • 

<00. 40 
1 

The epicyclic value —=1 — 7=1 —— = —2i. 
<0M 40 

If e makes 50 revolutions clockwise, d makes 50 X (—21) = 
-112.5 R.P.M. 

The minus sign indicates anti-clock^dse rotation. 

Ifoanfle 8. — figure 9-9 represents an ^cyclic gear train in 
winch a is fixed, find the number cd turns made by d while e 
makes one turn dockwise. 
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The train value (T) equals 

_ _ 86 X 50 
<aa,~ 16 X 20 

Using the epicyclic formula, 

13.4. 

-22 = 1 _ r = 1 + 13.4 = 14.4. 

Hence, if e makes one tiun clockvvise, d makes 14.4 turns clockwise. 
Example 4. — Figure 9-10 shows a q 

reverted epicyclic train arranged to give 
a large speed reduction from the driving 
shaft A to the driven shaft C. Shaft A 
drives an arm e which supports B to 
which are keyed gear wheels b and c. 
Wheel a is fixed. Rotation of A there¬ 
fore causes b to roll around on a, c mean¬ 
while driving d, which is keyed to driven 
shaft C. We shall suppose that the 
numbers of teeth on the wheels are as 
follows: a — 60 teeth, b — 61 teeth, 
c — 60 teeth, d — 61 teeth. Shaft A turns at 100 R.P.M. 
the speed of C. 

The train value (T), 

Find 

ui, _NaXNe _ .60 X 60__ , 3600 
XAr<“ ■*'61 X61 “ 

For the epieyclio, 

<»m 

3600 121 
3721 “SM* 

If A makes 100 R.P.M., C makes 100 X « 3.26 R.p.M. 

Tltis case illustrates the method by whi<di a large speed reduo- 
Wm can be obtained by msaas of an epiqyclio, using wheels which 
are all about the same rise. The gear train ean thus be made in 
a contact form. 
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9. Second Method. — As an alternative to the metliod alread^r 
explained, the following procedure is useful in calculating the 
velocity ratio of epicyclic trains. It consists of two steps: 

(1) The epicyclic train is converted into an ordinary train by 
locking the epicyclic arm on which certain gears are mounted and 
^ the same time releasing the fixed gear. The gear formerly 
fixed is now rotated one turn clockwise and the number of turns 
made by other members is recorded. 
• (2) The gears are locked so that they can have no relative motion 

and the whole mechanism is rotated one turn counter-clockwise. 
As a result each member of the train will make one turn counter¬ 
clockwise. 

The initial and final positions of the fixed ** gear are the same, 
hence the angular displacement of the other gears is the same as 

Fig. 9-11 

though the train had remained an epicyclic. 
From these angular displacements the ve¬ 
locity ratio of the train can be calculated. 

Appl3nng the above method to the epi¬ 
cyclic train of Fig. 9~11. 

(1) arm d is locked and gear c rotated 
one turn in a positive direction and then (2) 
the gears are locked and the whole mecha¬ 

nism rotated one turn in a negative sense. The results may be 
tabulated as follows: 

Thus, while d makes —1 turn, a nudees -^5 turns and the ratio ^ 

equals +& 
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In Fig. 9-12 is illustrated a compound epicyclic in which the 
epicyclic arm / carrying gears b and c is neither the driver nor 
driven link. Driver a engages gear 6 which in turn meshes with 
stationary annular wheel e. Gears b and c are keyed to a shaft 
supported by arm /, which is free to turn on shaft A. Gear c 
engages annular gear d which is keyed to driven shaft B. 

The first step in finding the train ratio is to lock the arm / and 
rotate e one turn in a positive sense. The second step is to lock 

the gears and rotate the whole mechanism one turn in a negative 
sense, so as to return e to its initial position. The tabulation is as 
follows: 

Step 
Turns 

a h c d e / 

1 -H +ti +fiXil o
 > V
 

2 -1 ws -1 . -i 

Total gn ■ -* 0 -1 

Thiis while o makes turns, d makes —^ turns. 

The q)eed ratio — » (—A) + (—V) * +A’* Hence while a u, 
makes twenty turns d midces one tonuin the same sense. 
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Obviously this method can be applied to solve any of the prob¬ 
lems on epicyclic trains in this chapter. 

10. Speed Reducers. — Where a reduction in the rate of revolu¬ 

tion must be made between the prime mover and the driven 

machine, as for example where an electric motor is used to drive 

a slow-speed machine, a speed reducer of the geared t}^ shown in 

Kg. 0-13 is often employed as a substitute for belts, chains, or 

exposed gears. 

The casing gives rigid support for the gears, protects them from 

dirt, and permits them to be operated in an oil bath. The drive 

Fio. 9-13 
Speed Reducer with Epicyclic Gear Train, Speed Ratio 1: 5.1. 

is compact and efficient and requires little attention. The gear 

train may be composed of spur, helical, or worm gears arranged 

in several different ways, the design depending on the service and 

the ratio of reduction required. The speed reducer illustrated 

contains an epicyeUc train, an annular gear being the fixed 

member. 
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QUESTIONS —CHAPTER DC 

1. Define the following terms as applied to gear trains: (a) train value, 
(6) simple gear train, (c) compound gear train, (d) reverted gear train. 

2. A gear train consists of an internal or annular spur gear a and a gear b 
meshing with it. The two wheels revolve about fixed centers 6 in. apart. 
Wheel a turns at 30 R.P.M. and b at 120 R.P.M. Find (a) the pitch diam¬ 
eters of both gears, (b) the number of teeth on each if the diametral pitch is 4. 

Ana, (a) 16 in., 4 in. (6)64,16. 
3. Find the train value in the following train of gears: 

15 teeth, 
30 teeth, 
20 teeth, 
45 teeth. 

4. Find the train value in the following train: 

30 teeth, 
75 teeth — 10-in. pitch diameter, 

12-in. pitch diameter — 50 teeth, 
60 teeth. Ana, A* 

6. Find the train value in the following gear train: 

10-tooth spur gear, 
30-tooth spur gear — 40-tooth spur gear, 

120-tooth spur gear — single-threaded worm, 
40-tooth worm wheel. 

Ana, rh. 

6. A compound reverted spur-gear train with four wheels, a, 6, c, d, has a 
train value of 1 :4}, all gear teeth having the same pitch, a has 40 teeth, 
6 has 60 teeth. Find the number of teeth in c mid d. If the diametral pitch 
is 3, find the distance between shaft centers. 

Ana, No«25,Nd-75. 16.667 in. 
7. Tlie back gear train of a lathe is made up as follows: Wheel a on the 

cone pulley with 16 teeth drives 6 with 72 teeth. Wheel c is rigidly connected 
to 6 and drives d, connected to the live spindle of the machine. The train 
value is 1 :13}. Find the numbers of teei^ on c and d. 

B. When an auto is in intermediate gear, the gear train in use Is composed 
of the following gears, the first one being directly conneeted to the engtne: 

24 teeth, 
41 teeth —34 teeth, 

31 teeth — 114ooth bevri f^alon, 
664oothbevdieir. 
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(a) Find the ratio of the rear-axle speed to the engine speed. 
(&) If the tires are 30 in. in diameter, find the engine speed corresponding 

to a oar speed of 20 miles per hour. Ans, (a) 1 :7.93. (b) 1775 R.P.M. 
9. In the automobile transmission shown in Fig. 9~5, calculate the four 

possible speed ratios of shaft B to shaft A when the numbers of teeth on the 
gears are as follows: 

C — 22, F — 39, (7 — 32, D — 29, ^ — 38, — 23, L —18. 

10* What is an epicyclic gear train? How may an ordinary gear train be 
converted into an epicyclic? 

11. An epicyclic train consists of a simple train of three wheels a, 5, and c, 
carried on a frame e. Wheel a is fixed and e turns clockwise at 75 R.P.M. 
Wheel a has 60 teeth, 6 — 20 teeth, c — 30 teeth. Find the speed and sense 
of the motion of c. Ans. 75 R.P.M. counter-clockwise. 

12. An epicyclic gear consists of a simple gear train of two wheels a and 5, 
carried on a frame e. Wheel a is fixed, h turns counter-clockwise at 100 
R.P.M. Wheel a has 40 teeth, b — 50 teeth. Find the speed and direction 
of motion of e. Ans. 65.56 R.P.M. counter-clockwise. 

13. In a reverted epicyclic train the gears in order are a, 5, c, d. Arm e 
pivots about the center of a and carries the wheels b and c, keyed together at 
its outer end. Wheel a has 30 teeth, b — 50, c — 20, d — 60. The arm e is 
driven at 150 R.P.M. Find the speed of d when a is fixed. 

Ans. 120R.P.M. 
14. An epicyclic train is composed of a fixed annular wheel a, with 150 

teeth. Meshing with a is a wheel h which drives wheel d through an idler c, 
d being concentric with a. Wheels b and c are carried on an arm which 
revolves dockwise at 100 R.P.M. Wheel b has 25 teeth, c — 30 teeth, d — 40 
teeth. Find the speed and sense of rotation of d. 

19. An epioydic train contains a fixed 
annular wheel a, with 200 teeth. Meshing 
with a is whed h with 90 teeth, which drives 
c with 20 teeth. Whed c is concentric 
with 0. Whed b is carried on an arm e 
which revolves about the axis of o. Whed 
c is the driver, and it rotates at 100 R.F.M. i>.s5t 
dookinse* ^d the speed of arm s. 

19. The ^icydic train used in a hoist¬ 
ing block is shown diagrammadcahy in the 
figure. The hand chain sprocket is 12 in. a-i5t 
in diametar and the load chain sprocket is 
6 in. in diameter. Gear a is keyed to the 
hand«ohain sprocket shaft. Gears 5,6 are 
pivoted on aims attached to the load chain 
sprocket. Annular gear e Is ststionaiy. 
The mimbers ci teeth are as indicated in the figure. Find (a) ratio of the 

Sprocket 

Chain 
Sprocket 
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chain speeds, (6) the load which can be lifted by a pull of 100 lb. on the hand 
chain (friction neglected). Ans, (o) 1 :13i. (6) 1333 lb. 

17. Make the calculation for the speed ratio of the epicyclic train shown in 
Fig. 0-13. 

13. Find the speed ratio obtained by use of the gear train shown in Fig, P-18, 

Fig. P-18 Fig. P-19 

19. Determine the rate at which the weight W is raised by use of the gear 
train shown in Fig. P-19, 

20. In the epicyclic gear train shown in Fig. P-20, shaft A is rotated at 
350 R.P.M. in a clockwise sense. Gear 5 has 20 teeth, c has 28 teeth, and 
d, 35 teeth. Gears b and c are attached to arm e. Find the number of teeth 
on the fixed gear a and the speed and sense of rotation of shaft B* 

Flo. P-20 Fig. P.21 

21. Jn the epicyclic train shown in Fig* P-21, gears 5 and c am Iceyed to a 
shaft carried on revolving arm e. Arm e toms about the axis of geara a and 
d. (a) If all Ihe gear teeth have the same i^tch, find the number of teeth 
on d, (b) If d rotates at fiOO R.P.M. clockwise, find the angular yrioelty and 
sense of rotatkm dt arm s. A.nt. 18863 E.P.M, olodbite. 

tL la Fig. P-22, a is a fibced internal gear. Shafts A and S are qoaadal. 
A»/ii k^ned to A and earries at Its outer end gearg 6, e, d. Qmb has dO 
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teeth; c, 18; of, 20; e, 50. (a) If all gears have the same pitch, find the num¬ 
ber of teeth on a. (b) If shaft A rotates at 200 R.P.M. clockwise, find the 
speed and sense of rotation of shaft B. 

a 

Fig. P-22 Fig. P-23 

23. In the epicyclic shown in Fig. P-23 all gears have the same pitch. 
Gear a has 80 teeth, and 6, 40 teeth. Shaft A with arm e rotates at 100 
R,P.M. clockwise, and shaft B rotates at 180 R.P.M. counter-clockwise. 
Determine the number of teeth on gears c and li. 

Fig. P-24 

24. Gear a, Fig. P-24, is rotated at a speed of 200 R.P.M. Find the speed 
at which weight W is raised. 



CHAPTER X 

FLEXIBLE CONNECTORS 

1. Belts, Ropes, and Chains are the important members of 
the class of links which we term non-rigid or flexible, since their 
form changes while in motion. They are adapted for trans¬ 
mitting a pull, but are incapable of carrying a thrust. 

Ropes and belts do not give a positive drive, because their 
ability to transmit power depends on friction between the band 
and pulleys. Thus they must be given an initial tension, which 
causes a pressure on the bearings much higher than in equivalent 
chain or gear drives. 

BELT DBIVES 

2. Belts are the most suitable for cases where high speeds are 
necessary. They run with greatest economy at 3000 to 5000 feet 
per minute, hence they are often used in connection with high¬ 
speed machinery. Their operation is affected by exposure to the 
weather and by the presence of water, oil, grease, etc., which alter 
the frictional forces at the contact siu*faces. 

The drive not being positive, a definite phase relationship can¬ 
not be maintained between driver and driven unit. This pre¬ 
cludes the use of belts for many purposes, as, for example, for the 
operation of cam shafts and timing devices in internal-combustion 
motors, for driving the lead screw in lathes when thread cutting, 
and for connectii^ moving sections of many automatic machines. 

3. ^leed Ratio in Belt Drives. — We shall assume that no 
slippage takes place and that the material is inextensible. Neitiber 
of these assumptions is cprrect in practice and therefore our 
calculated iheoreticai speed must be modified to take care of 
these factors. 

In Fig. 10~I we have a belt drive in whidi r., are the radii of 
the driving and driven puUqys, leqpectavsljr, and < is tibe bidt 

' m 
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thickness. Evidently, when the belt is bent round a pulley the 
outside fibers will stretch and the inside fibers contract. There 
will be a neutral sur¬ 
face about the middle 
of the belt at which 
neither expansion nor 
contraction will take 
place. The speed ra¬ 
tio of the drive will, 
therefore, be equal to 
that of a pairof pulleys 
of radius fa + </2 and 
Th + </2 connected by a belt of infinitesimal thickness. 

Let V = belt speed = linear velocity at the neutral surface. 
Then, 

Fig. 10-1 
Open Belt Drive. 

Therefore, 

f5 
Wa 

(10-1) 

(10-2) 

Usually t is small in comparison with r* and r^. Therefore 
we may write as a close approximation, 

^ as , 

Wa n 

Wb^ the speed of a driven shaft is calculated from that of the 
driver by one of the above equations, the result is known as the 
thaoretlcai upetd. The actmd speed of the driven shaft will 
always be somewhat less, the difference being due to ^^slip,’’ 
which in practice amounts to 2 to 4 per cent of the theoretical 
i|Md. Thus 

Aetusl » Titieoretical —^ • 
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A belt of given size will transmit maximum power if run at a 
linear speed of 4000 to 5000 ft. per min. It is therefore desirable 
to design the drive so as to keep within this range, unless the 
R.P.M. of the driver is low, in which event a lower belt speed may 
be necessary in order to avoid the use of large and expensive 

pulleys. 
Exact speeds may be unobtainable if stock pulleys are to be 

used because such pulleys are made only in certain sizes, usually 
of even-inch diameters. A close approximation is secured by 
proper selection. 

Example. — A line shaft is to be driven at 500 R.P.M. from an 
electric motor turning at 1750 R.P.M. The belt speed should be 
about 4000 ft. per min. Provide for a slip of 4 per cent. Find 
suitable diameters of stock pulleys, which are obtainable in even- 
inch diameters. 

Solution. 

Belt speed == a-Do Nat 

\\here D« =* driver diameter, and JV« = R.P.M. 

4000 X 12 = wDa X 1750, 

or 
^ 4000 X 12 „ . 
Da = —. '.-T" = 8.75 m. 

Also, 

Theoretical R.P.M. 

JT X 1750 

Actual R.P.M. 500 

1 - SUp 1 -0.04 

or Db ■= Da X 3.36. 

8 9 10 in. 

26.8 30.2 33.6 in. 
(27) (30) (34) 

521. 

Hence, by equation (10-2), 

Da 521 . 

Db “ 1760’ 

If D, - 7 

tfatm Db 23.5 

Final choice m^ht be influotoed by relative coet of puUeya, ktt, 
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considering desired belt and driven pulley speeds, the values 
Do « 8 in. and Db = 27 in. should be selected as giving closest 
approximation to requirements. 

4* Grossed and Open Belt Drives. — The drive of Fig. 10-1, 
in which both pulleys turn in the same sense, is known as an open 
belt drive. In Fig. 10-2 is 
shown the crossed belt drive; 
here the pulleys turn in 
opposite senses. 

Both forms give satisfac¬ 
tory service, though the ^ • 
crossed dnve tends to wear 
out sooner on account of the rubbing action where the belt crosses 
itself. This is more pronounced when the belt is wide and the 

drive a short one. The larger arcs 
of contact between belt and pulleys 
in the crossed drive are advanta¬ 
geous. 

A combination consisting of one 
open and one crossed belt in con¬ 
junction with loose pulleys (see 
Fig. 10-3) is used as a means of 
driving a machine in either direc¬ 
tion, or of stopping its motion. The 

3 belts are moved sidewise by means 
of a belt shifter, 5. The belts run 
on loose pulleys a and c when the 
shifter is in its mid-position; then 
the driven shaft is stationary. Mov¬ 
ing the shifter to the right throws 
the open belt on the fast pulley &, 
whereas moving it to the left brings 

the crossed belt on the pulley 5. The motion of the driven shaft 
may, therefore, be clockwise or counter-clockwise, depending on 
the position of the shifter. The shifter should act on the slack 
side the belt, near the driven pulley. This drive is quite com¬ 
mon in connection with machine tools. 

Dnvcr 

« b 0 
Driven 

Fio. 10-3 
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6. Cxowned and Flat Pulleys. — A Crowned Pulley has a larger 
diameter at the middle of the face than at the ends, whereas a 
Flat Pulley has the same diameter throughout. When flat pulleys 
are used, a very slight misalignment of the shafts or a small defect 
in the form of the belt will cause the belt to run off the pulleys. 
This can be avoided by means of a belt guide which has arms to 
hold the belt in the required position, by flanging the pulleys, or by 
using crowned pulleys. Guides and flanges cause wear on the 
edges of the belt; hence crowned pulleys are preferable. 

The reason why the crown pulley eauses the 
belt to run centrally may be seen by reference to 
Fig. 10-4. Here the belt is shown in a position 
at one side of the pulley. The belt tends to 

^ stretch more on the side BD than on the side 
AC) it therefore assumes a curved form. As 
the pulley rotates, section AB will move along 
the paths indicated by the broken lines AE and 
BF. The belt therefore runs toward the central 
plane of the pulley and takes up a position where 
its center line coincides with the ridge of the 
crowned surface. 

The taper on a crown pulley varies from about f in.- (on the 
diameter) per foot width of face on narrow pulleys to J in. per foot 
of width on wide ones. The taper may be uniform as shown in 

Fiq. 10-6 Fio. 10-6 

the rim section of Fig. l(V-5, or the profile may be a drcular are as 
in Fig. 10-6. 

The face of the pulley is usually a little wider than the belt in 
order to prevent overhang if the belt is not running eacactly oentral. 

6. Non*-parallel Shaft Dtireg. Quarter-twist DxiveflL — Bdts 
are most commonly employed for connecting paralbl shafts^ but 
they may be used to c<mnect non-^paxaUel shafts as well. In any 
bdt drive the following oonditions must be observed in regard to 
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the location of the pulleys in order to keep the belt from run¬ 
ning off. 

The belt must^eave each pulley in the central plane of the 
pulley face toward which it moves. 

A drive connecting two shafts at 90° is known as a Quarter- 
twist belt drive. One form is shown in Fig. 10-7. The pulleys 
are located to conform to the law p. 
just stated. Note the plan view , 
of the drive, in which the pulleys #== ==W 
intersect at A, the mid-point of ,V=j=ar 

both faces. C / \ 3 
Evidently the belt can be run M 

only in the direotion indicated by 
the arrows. The point X, where /' \ yl 
the belt leaves the upper pulley; -G-r3r- 
is in the plane XF passing through V | ^ / f 
the middle of the lower pulley, v\( / n 
also, point R, where the belt \\ / / 
leaves the lower pulley, is in the \\ / ^ j 
plane RS passing through the \\ //ll 
middle of the upper pulley. This \ \ / / It 
form of drive can also be used for // II 
connecting shafts at any angle u' //I 
between 0° and 180°. When the \ " // I! 
angle is 0° we have an ordinary ' jr n| 
open bdt drive; at the other ex- —£ /—O-— 
treme it becomes a crossed belt 

drive. ”. Elevatimu 
Analtemativevarietyof quarter- 

twist drive is shown in Pig. 10-8. Quarter-t!Li Belt Drive. 
Itiis has a guide pulley, or Mule 
Pnllqr, on the slack side of the drive. The mule pulley inciden¬ 
tally increases the arc of contact of the driving pulley; its main 
object is to bring the belt leaving this pulley into the plane pass¬ 
ing thrdui^ the middle of the driven pulley face. In this drive, 
a tmiform tension is obtained across the belt sectbn on the tijdit 
ride, since the center of the brit is always in the plane passing 
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through the middle of the driven pulley. This is not true of the 
drive of Fig. 10-7. By tilting the forward end of the mule-pulley 
shaft upward to the proper angle, the tension^an be made uni¬ 
form across the section on the slack side also. This drive is 
suitable for rotation in one direction only, because reversal would 
put the guide pulley on the tight side of the belt. 

Quarter-twist belts should be avoided wherever possible, as the 
wear on such belts is excessive. They give fairly good service 
with narrow belts on long drives. 

7. Calculation of Belt Length. — Knowing the center-to-center 
distance L and the pulley radii Ba and Ut, we can calculate the 

tiieoretical belt length. (See Figs. 10-^ and 10-10.) In both 
%ures we draw DE parallel with AB, meeting CA at E. The 
total length ofbelt-fK?-fD(7 + 8mj PHD are CM. 
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Now, 

FG +DC = 2 {DC) = 2 \/{DE)^ - {CE)^ (Angle DCS = 90°) 

= 2 \/L> - (22, d= Ri)K (10-3) 

The positive sign is used for crossed belts, and the negative 
for open belts. 

Let $ be the angle made by the straight portion of the belt with 
the line of centers. 

(a) Open Belts. — From Fig. 10~9, where the angles are ex¬ 
pressed in radians, 

arc CJG = (tt + 2 6)Ra and arc FHD = (ir — 2 d)Rb. 

The total length of the open belt 

FG + DC + arc CJG + arc FHD 

is therefore equal to 

CR^-RbY + v{Ra + Ri) + 20(Sa - Rb) 

« 2 -vA* - (i2- - + ir(/?a + Ri) 

+ 2 (iJa - Ri) sin-> • (10-4) 

This formula is somewhat unwieldy, and for ordinary use a 
simpler approximate form, known as Rankine’s Equation, is 
satisfactory. This is derived from equation (ICM) as follows: 

(1) The first term can be put in the form 2L(1 — x)^ where 

X This expression is expanded, and terms con¬ 

taining x^ and higher powers of x are neglected. This is permissible 
since x is a small fraction. 

(2) The angle 6 is small, and little error results in writing 
$ m (S^ Rb)/L, Making these approximations and substitut¬ 
ing pulley diameters for radii, we have 

Belt length « 2X + ^ (i). -I- A) + > (10-6) 

D« and A aie the pull^ dlameten. 
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According to Carl G. Barth {American Machinist^ March 12, 
1903) this formula has a maximum error of about 2 per cent. It 
is exact when the pulleys are the same size, and the error increases 
as B increases. 

(fe) Crossed Belts. — It can be shown by Fig. 10-10 that the 
exact length of these belts is given by the expression 

2 \/L® — {Ra + RhY + + Rh) + 2 B{Ra + iZi) 

= 2 - {R> + + {Ra + Ri) [t + 2 sin-* 

(10-6) 

The value of this expression is constant as long as (£« + Rt) and 
L are constant. We reach the important conclusion that the 
length of a crossed belt is constant when the center-to-center 
distance and sum of the radii of the pulleys are constant. 

8. Stepped-cone Pulleys. — A pair of pulleys, as shown in 
Fig. 10-11, is frequently used where a variable speed is required 

on the driven shaft, a different speed ratio 
being obtained with each pair of steps. These 
pulleys must be so designed that the same 
length of belt is required for any pair of steps. 

When using a crossed brit this conditmn is 
satisfied by having pulley radii such that 

(Ra + Rt) “ (Re + Rd) “ CB« + R/), etc. 

(See Fig. 10-11.) 
For an open belt the determinatioQ of tiie 

pulley sizes is more difficult, and to avmd 
tedious calculation several gra|ffiical methods 
have been devised. One the most satisfac¬ 
tory of these is that due to Burmester, iriiich is 
illustrated in F%. 10-12. 
C<mstntction. — Cone puU^ for qpm bdts 

must be designed to suit a definite center-to-centffl* dktaaoe of 
shafts, whereas for crossed belts the same puUeys can be used for 
any center*to*oenter distanoe, rinee tiien oofy lequirenieQt is 

a 

ir: 

Fig. 10-11 
Ocme PuUeyB. 

9. Bunnester’s 
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that the sum of the radii or diameters of each pair of steps shall be 
the same. 

The speed of the driving shaft, the desired speeds of the driven 
shaft, and the center-to-center distance usually form part of the 
specifications of the drive. Knowing these quantities, we can 
find the radii of one pair of pulleys by consideration of the desired 
belt speed or the allowable diameter of the largest step. We shall 
suppose, therefore, that we are designing a pair of pulleys similar 
to that shown in Fig. ^ 
19-11 for an open 
belt, the distance L 
from center to center 
of shafts and the radii 
Ra and Rb for one 
pair of steps being 
known. The quanti¬ 
ties to be determined 
are the radii of the 
other steps. The 
Burmester method of 
finding these graphi¬ 
cally is as shown in 
Kg. 10-12. The con¬ 
struction of this dia¬ 
gram is as follows: 

Draw a line AB of ^ 
length equal to L, 
making an angle of „ Fig. 10-12 

46* with the horison- Burmester Construction. 

tal. From B draw BC, equal to i L, perpendicular to AB. With 
ooitOT A and radius AC, ^aw an arc CDD\ 

Calculate the length Ra — Rt, and by trial find the position of a 
point D <m the arc CDD' such that the vertical distance DE to AB 
is equal to A. — ^ 

Prodooe DE to F, making EF equal to Rt. 
Fram F draw a horiaontal line meeting AB at 0. 
Umo; FO R* (tinoe the an^ EOF «■ 45"). Also 

DF - 
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It will be noted that 

tan DOF = ^2 = - • 
Hb Ua 

If we then take any point, such as D', on the arc and draw from it 
a vertical line to meet OF produced at F\ from the essential 
property of the diagram, the distances D'F' and OF' are the radii 
of a pair of steps which may be used for the cone pulley, giving 
a speed ratio equal to OF'JD'F'. 

Thus, to obtain the radii Re and Ri, for example, make B an 
angle whose tangent is wj/coc. The distances D'F' and OF' will 
then be equal to Re and Rd, respectively. Other radii are found in 
the same manner. 

Though not exact, this construction will generally give results 
sufficiently accurate for practical purposes. 

'Pia. 10-13 
Variablenipeed Belt Drive. 

10. Reeves Drive. — (See Fig. 10-13.) This device makes it 
possible to vaiy at will the speed ratio of the driving and driven 
shafts. TlieBe riiafts are parallei, and each carries a pair of cone- 
ebaped discs mounted with the aiuces facing one another. Earih 
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pair forms a pulley over which runs a V-shaped belt. The four 
discs are keyed to the shafts on which they are mounted but are 
free to slide axially. They are held in position by two levers 
interconnected in such a way that when one pair of discs is brought 
closer together the other pair is moved farther apart. This move¬ 
ment increases the diameter of the circle at which the belt runs on 
one pair, and decreases the diameter on the other pair, hence 
causing a change in the speed ratio of the shafts. The position of 
the levers and discs is controlled by a hand wheel mounted on a 
threaded shaft. 

The Reeves Drive has been used in connection with paper-mak¬ 
ing and textile machinery, conveyors, etc., where variable speeds 
are required. 

ROPE DRIVES 

11. Ropes are run on grooved pulles^. The groove acts as a 
guide for the ropes, and the wedging action in the groove makes it 
possible to transmit power with less initial tension than would be 
required with flat pulleys. Drives with several turns of rope 
running side by side on the same pulleys are quite common. In 
the English S3r8tem each loop is a separate piece of rope; in the 
American system the rope is continuous. The American sjrstem 
possesses the advantages of more uniform distribution of tension 
over the different turns and permits of the use of one tightener for 
the drive. On the other hand, in the English system, breakage of 
one turn does not put the whole drive out of commission, but much 
splicing of ends is necessary and no convenient way of properly 
taking up the stretch is possible. 

Rope drives are practically always used in preference to other 
mechanical drives for long-distance transmission of power, on 
the ground of both cost and suitability. However, the general 
adoption of electric power, accompanied by the practice of driving 
each machine or group of machines by a separate motor, has 
rendered the rope drive almost obsolete. 

The calculation of the speed ratio for a rope drive differs in no 
my from that a bdt drive. Kinematical^, the two drives are 
identieid. 
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COROSS 

Fia 10-14 

V-BELTS 

12. Belts of trapezoidal section, known as V-belts, have become 
a popular form of mechanical drive during the past few years, and 
for some purposes they have entu^ly replaced the older type of 
flat belt. 

The V-belt is almost always of the endless type constructed of 
canvas, cotton cords, and rubber, the whole being molded and 

COTTON FABRIC^ vulcanized together. Figure 10-14 shows a 
typical section. The sides of the belt are 
^ghtly concave and the included angle is 
usually 42°. The belts run in grooved pulleys, 

RoeacR^^^ the angle of the groove being about 36° in 
Fig 10-14 smaller-diameter pulleys and 38° to 40° 

in larger pulleys. Pulley-groove angles are 
made less than belt angles, which become smaller when the belt is 
bent around the pulley. 

V-bdts possess two valuable characteristics. First, they may be 
operated very satisfactorily - 
with a short center-to-center 
distance. This distance need 
not be greater than the 
diameter of the larger pulley. 
Second, they require little 
adjustment to compensate 
for wear or stretch, since, 
owing to the wedging action 
in the groove, this style of 
belt will transmit a consider¬ 
able amount of power with¬ 
out excessive slip even when 
the initial tension is prac¬ 
tically nU. 

It is usual for a V-belt 
drive to consist <rf several _ 
bdte run in paralld grooves 
(see Elg. 10-15) where the power to be tranoniftoii exoMds the 
ospadty dt a belt. The bdts should then be *' matobecb’* 

UtaHiJOk^eiO 

Fto. lO-lS, V-BcHlMve. 
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particularly as to length; otherwise the load will not be equally 
distributed among the belts and uneven wear will result. For 
.similar reasons it has not been found satisfactoiy to attempt to 
run old and new belts in parallel. 

CHAIN DRIVES 

13. Chains are made of a series of jointed metal links in a variety 
of forms. They may be classified in accordance with their uses 
as (a) hoisting and hauling chains, (6) elevator and convq^or 
chains, and (c) power-transmission chains. 

The Coil Chain (Fig. 10-16) is the usual form of hoisting chain. 
It is made of iron of circular section bent to the proper form and 
welded at the joint. The Sprocket Wheels for this chain are shown 
in Figs. 10-17 and 10-18. The plain Grooved Sheave is suitable 
only as a guide and not as a means of transmitting energy to or 
from the chain. The Pocket Sheave (Fig. 10-18) has a central 
groove and depressions which conform to the profile of the links, 
a liberal clearance being allowed at the end of these depressions to 
provide for stretching of the chain or irregularities in the pitch. 

>> ✓ 
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PiQ. 10-18 

Convoyor Chains. — Tire Ewart Chain (1%. 10-19), which has 
easily detachable links, and the Pintle Chain (Fig. 10-20) are two 
of a hage class of chains employed in mills, mines, and factories 
for devaton and conveyors handling a variety cS materials. For 
sudt puipoees, buckets, fii^ts, etc., are connected to the chains by 
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various kinds of attachment links. These chains are generally of 
malleable iron and are run on cast sprockets. This construction 
is suitable for rough service and slow speeds. These chains are 
operated at about 100 ft. per min. 

Power-transmission Chains. — These are generally of stronger 
materials and more accurately made than the classes of chains de- 

Fig. 10-19 Fio. 10-20 
Ewart Chain. Pintle Chain. 

scribed above. Wearing surfaces are of steel, hardened and ground, 
and the chains are run on sprockets with cut teeth. Consequently, 
they are more costly but may be operated at higher speeds. 

The Roller Chain, illustrated in Fig. 10-21, is used mainly as 
a power-transmission chain. The construction at the joints is such. 

as to obtain as large bearing 
surfaces as possible. The pin 
connecting two sections is 
either riveted to the outer 
pair of links or fastoied in 
such a way that it cannot 

Fro. 10-21 
BoUw Chain. 

turn relatively to them. The 
bushing throt^ whidi this 

pm passes is riveted to the inner pair of links. When the 
chain bends in pasdng on <» off a sprocket, the pin and bundling 
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form a turning pair and their contact surfaces slide on one another. 
Here the area is large, extending nearly the full width of the chain. 
The area of contact of pin and links is small, and if they had 
relative motion rapid wear would result. Outside the bushing is 
a hardened-steel roller which makes contact with the sprocket 
teeth. 

Silent Chains (Fig. 10-26) are used entirely for power trans¬ 
mission. These will be considered later. 

14. Sprocket Profiles. — Two practical diflSculties are encoun¬ 
tered in designing sprockets for chain drives. The first is that the 
chain pitch varies somewhat because of inaccuracies in manufac¬ 
ture. This applies more particularly to the rougher forms of chain, 
though it is true to a minor extent in the high-grade power-trans¬ 
mission chains. The second is that wear at the joints causes the 
chain to elongate, an old chain having a greater pitch than it had 
when new. Wear does not increase the sprocket pitch; con¬ 
sequently, if the pitches of chain and sprocket were originally the 
same, after service they will differ somewhat. For both the 
reasons just given, the design must be such as to permit of satis¬ 
factory operation when the pitches are not equal. 

Let us first consider the form of sprocket tooth for roller chains 
which we might use if no pitch difference existed. The profile of 
such a tooth is shown by the solid lines in Fig. 10-22. The 
portion AB of the space between teeth is a circular arc of Iradius 
equal to that of the pin 
or roller which fits into 
it. The portion BC, ex¬ 
tending to the adden¬ 
dum of the tooth, is a 
circular arc with center 
at the axis D of the adjacent roller. This form catises the roller 
to maintain contact with the tooth when leaving the sprocket. 
Such a tooth would be satisfactory only so long as the chain pitch 
remained equal to that of the sprocket. Elongation of the chain 
would cause the roller to strike bard on the tooth ride. 

Modification of the theoretical tooth form to allow for a differ¬ 
ence in {Htch <A chain and sprocket is made in two ways. One of 
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these, now used only on the slow-speed (conveyor) type of chain, 
is illustrated by the broken lines of Fig. 10-22. The tooth is 
made narrower in order to obtain “ pitch-line " clearance; also 
the addendum is rounded off to reduce the friction as the rollers 
move m and out of contact. Figures 10-23 and 10-24 illustrate 
in an exaggerated form the effect of these modifications on the 
chain action. Figure 10-23 shows the engagement of a new chain 
and sprocket, the chain pitch being somewhat shorter than that 
of the sprocket. It is evident that roller A, just about to leave 
the driving sprocket, is carrying all the load. Boiler B, which 

has just come into engagement, barely clears the back of the tooth 
C. When A goes out of engagement it rolls up the side of the tooth 
and allows the chain to slip back slightly on the sprocket so that 
roller D will take the load. At a certain point in the life of the 
chain, when its intch has increased to that of the ^rocket, all the 
rollers will bear equally against the mating teeth if the wear is 
unif(mn. Later, when it has worn so that its jntoh is greater than 
that of the sprocket, conditions will be as illus^ted in Fig. 10-24. 
Here the roller A, which is the last to engage the sprocket, is 
carrying aU the load which it picked up as it rdUed down the side 
of the tooth. During this period the whole chain would slide 
ahead smnewhat on the sprocket. Therdbre, wheth^theintrixff 
the chain is larger or smaller than that of riie sprocket, the load is 
carried by one tooth at a time. The ihfimrii{)page leads to 
and ribration at high <kain speeds. 
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The above method of shaping the sprocket teeth to allow for 
chiun elongation was formerly used for power-chain sprockets. 
It has been superseded by oth» forms which have been found 
superior for high-speed chains. The latter were developed by 
Hans Renold in England and the Diamond Chain Company in 
the United States. The sprocket tooth adopted as standard for 
roller chains by the American Society of Mechanical Engineers 
and other engineering bodies is essentially the same in its action, 
though the tooth shape is not the same as that of either the Renold 
or the Diamond sprocket.' 

16. Standard A.S.M.B. Roller-chain Sprocket. — The standard 
tooth is illustrated in Fig. 10-25. The tooth profile is composed 
of three circular arcs 
AB, BC, DE, and a 
straight line CD. 

Arc AB has a rar 
dius equal to that of 
the roller plus a small 
clearance. This arc 
terminates on a line 
BO, making an angle 

of ^35 + with 

XY. T equals the 
number of teeth on 
the sprocket. Line 
BO is produced to P, 
making OP » 0.8 X 

roller diameter. Line 
PC is nfflrt drawn by 
makmg the an^ 

Alc JBC is drawn with 
P as center, line CM is drawn perpeidicular to PC. OS, the 

* Ear detaRi of thsM toedi, see "Medbanioeof Ma(Ain«ty/'byR.C. Heck. 

Fto. 10-25 

Standard Toodi for Rdtor^diaia l^irooket. 
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crater line of the link, makes an angle of (ISO/r)" with XY. 
Point Q is located on this line by making OQ equal to 1.24 X 
roller diameter. Taking Q as center, arc DE is drawn tangent 

to line CM.* 
No pitch-line clearance is provided, because it is not required. 

Ehctension of the chain due to wear is taken care of automatically. 
When its pitch becomes larger it rides nearer the tooth points and 
thus travels in a pitch polygon with larger sides. This result is 
obtained by the use of a suitable pressure angle BOS. It will 
be observed that this is the angle between the normal at the point 
of contact and the pitch line of the chain link. 

Considering the roller with center at 0 (Fig. 10-25), the pressure 
between the tooth and roller acts along OB and hence the pull on 
the chain along OS tends to move the roller outward until it is 
stopped by a pull along OV. The pull along OV in turn moves 
the next roller outward, and so the action continues around the 
sprocket until each tooth carries a share of the load. The load 
is not equally divided among the teeth, since the first tooth carries 
about half of the total; neither do the chain pins move in a perfect 
circle. Nevertheless, the chain runs more smoothly than with 
the older type of tooth having pitch-line clearance. 

Roller chains are manufactured in double, triple, and quad¬ 
ruple widths to meet large power requirements. 

16. Silent Chains. — This t3q)e, illustrated in Fig. 10-26, is 
used for power transmission. Its construction is such that it can 
very eaoly be made in any width to suit the load to be carried. 
Consequently it is suitable for transmission of large amounts of 
power. The characteristic feature is the hooked form of link,- 
made of stampings from sheet steel. 

This chain was invented by Renold in England. The Morse 
Silent Chain and that made by the Link-Belt Engineering Com¬ 
pany are two well-known varieties manufactured in the United 
States. Both of these have constructions at the joint differing 
somewhat from the ori^al Renold chain, the .object bdng to 
improve the wearing qualities. 

' For farther details see “ Madihie Design," NiHinan, Aolt, and Zatobrior; 
see also American Gear Maanfoctorere AseodatioD data sheets. 
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The sprocket teeth are straight on the sides and make surface 
contact with the straight portions AB and CD (Fig. 10-27) of the 
links. The angle between AB and CD is from 65° to 60°. When 
the chain pitch increases through wear the chain rides nearer the 
points of the teeth, the action being the same as that of the roller 
chain with the standard sprocket. The comparative absence of 
noise can be attributed to three factors • (a) automatic adjustment 
of position on the sprockets to compensate for wear, (6) large 

A 

Co) 

Fig. 10-26 Fio 10-27 
Silent Chain. i>ink for Silent Chain 

surface contact with sprockets, and (c) sliding action during con¬ 
tact, due to the oblique direction of relative motion of the surfaces 
at the instant preceding contact. 

Figures 10-26 and 10-27 show a joint construction consisting 
of a round pin fitted into a bushing made in two segments each of 
which is keyed to one row of links, with the result that sliding 
motion, due to bending of the chain, takes place between the pin 
and segments. This construction has two advantages over a plain 
pin-and-hole method of connecting the links: first, it practically 
doubles the bearing surface; and second, it improves the lubrica¬ 
tion on accoimt of the long unbroken bearing surface on each 
segment. 

In the form of chain, extensively used, illustrated in Fig. 10-28, 
the pin itself is made in two segments each keyed to a row of links. 
The segments are so shaped as to approximate rolling contact wdth 
each other, the sliding action being very slight. This tends to 
diminate friction losses and results in an improvement in dura- 
bihty and efiSdency in the transmission of power. 

17. ^>eed Vaxiation in Chain Drives. — Wh^ a chain passes 
arwmd a sprodrat, it takes the form of a po]b^>^ whose sides have 
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a length equal to the chain pitch. Suppose that the driving 
sprocket is rotating at uniform speed; the chain will then have a 
linear velocity which varies somewhat on account of the polygonal 
form in which it moves. This variation is small in sprockets with 
many teeth, and becomes of importance only in chain-driven 
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velocity of the sprocket. After the sprocket has revolved 30° 
the condition is that of Fig. 10-30, and the chain velocity is « X 
AC. The former expression evidently fixes the value of the 
minimum chain velocity; the latter gives the maximum chain 
velocity. 

The ratio 

Maximum chain speed AC 1 , 
Minimum chain speed AB cos 30° 

for the six-tooth sprocket. 
With an eight-tooth sprocket this ratio is 1.082; with a ten- 

tooth, 1.051; and diminishing values are obtained as the munber 
of teeth is further increased. 

The variation in chain speed may in a measure account for noise 
produced in some chain drives. In bucket elevators it has on 
occasion led to the installation of compensating devices in the 
drive, which cause the driving-sprocket speed to vary in order to 
obtain a constant speed of the chain. In this case, however, the 
object is not to reduce noise but to avoid irregular motion of the 
elevator. Such devices are never required when the sprocket 
has more than eight teeth. 

When transmitting power from one shaft to another, it is ob¬ 
vious that if the driving sprocket is the same size as the driven 
sprocket and both have at any instant the same angular position 
of the teeth with reference to the tight side of the chain, then the 
speed variation due to the action of the chain on the driving 
sprocket will be neutralized by an opposite action taking place at 
the driven sprocket. Hence, under these conditions, the driving 
and driven shafts will have a constant velocity ratio. 

Where the sprockets are not of the same size a partial compensa¬ 
tion can still be made by so adjusting the center distance that the 
teeth are in the same phase. With respect to noise, rapidity 
wear, and efficiency, a noticeable improvement can be made by 

SQch an adjustment. 
18. Pmriflve Infinitely Variable Transmission; — An interesting 

form of chain drive which has an unusual ctnnlnnarion of proper- 
ries, namely, posirive drive and an infinite number di speed ratios, 
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is shown in Fig. 10-31. The device consists essentially of two 
sprocket wheels and a chain of special type. The sprockets are 
composed of two sliding discs with fluted, conical working surfaces. 
The chain contains pockets filled with flat steel plates which are 
free to move in a direction at right angles to the length of the chain. 

Fiq. 10-31. Positive Vanable-Speed Tnmsmiaaion. 

When the chain engages the fluted sides of the sprocket, the 
plates are pushed over by the ridges on one side of the sprocket 
and enter the hollows on the opposite side (tf the ^roeket. ''In 
effect the sprockets continuously form mating teeth on the chain 
as it makes contact, and thus a positive drive is secured. The 
sprocket (ndes are adjusted by a hand whed and lever mounting 
in such a way that one pair move toward each other as tihe c^aem 
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move apart, the result being to change the pitch diameters at 
which the chain operates, and hence alter the speed ratio. 

In the usual design, the speed of the driven shaft at maximum 
setting of the transmission is from two to six times its minimum 
speed. 

QUESTIONS — CHAPTER X 

1. Under what conditions are belts a suitable form of drive? In what 
cases is it impossible to use a belt drive? 

2. What is the relationship between the speed ratio and the pulley diam- 
eters in a belt drive? How can the exact formula be modified when the belt 
thickness is small compared with the pulley radius? 

3. Find the pulley diameters which must be used on motors turning at 
the following revolutions per minute if the belt speeds are to be 3200 ft. per 
min.: (o) 3600 R.P.M.; (6) 1750 R.P.M.; (c) 900 R.P.M.; (d) 600 R.P.M. 

4. Split steel pulleys are available in stock sizes varying by inch increments. 
What diameters should be selected for a grinder turning at 4000 R.P.M. if 
the motor runs at 1750 R.P.M. and 4 per cent slip is estimated? The belt 
speed is to be approximately 3300 ft. per min. 

5. A multiple V-belt drive using C section belt is employed to connect a 
Diesel engine running at 1600 R.P.M. to a line shaft nmning at 600 R.P.M. 
The manufacturer recommends a belt speed not higher than 5000 ft. per min. 
and pulley diameters not less than 9 in. Select stock pulleys (no fractional 
inch sizes), idlowing for 3 per cent slip. 

6. A belt drive is to connect a motor running at 900 R.P.M. to a line shaft 
which is to turn approximately at 500 R.P.M. The belt speed is not to exceed 
3850 ft. per min. Standard pulleys are obtainable in even-inch diameters. 
Select pulley diameters (a) ne^ecting belt thickness and slip, (6) allowing foi 
belt thickness of i in., (c) allowing also for slippage of 5 per cent. 

Ans, (a) 15 in., 27 in. (b) 16 in., 29 in. (c) 15 in., 26 in. 
7. A machine which should run at 200 R.P.M. is to be belt^lriven through 

one countershaft running about 600 R.P.M. by a motor running at 1800 
R.P.M. The belt speed is not to be higher than 4000 ft. per mjn. The 
largest pulley in the drive must not be over 36 in. in diameter. Select suitable 
pulley of stock sizes (even-inch diameters) for the drive, allowing for a total 
^ip of 8 per cent. 

8. What are crossed ” and open ” belt drives? Show by sketch how a 
pair of belts can be used in conjunction with tight and loose pulleys to produce 
a reversible drive. Name a common use for an arrangement of this sort. 

9* What three methods are used to prevent a belt from running off the 
pulleys? Explain why crowning the puUey tends to cause the belt to run 
centrally. What two forms are used for the pulley profile? 

10. ^w two methods of ccoinecting shafts at 90*^ by means of a belt drive. 
Where a mule pulley is employed^on which side of the belt should it act? 
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11. What is the law, regarding the location of the pulleys in any belt drive, 
which must be observed in order to keep the belt from running off the pulleys? 

12. Calculate the belt length in an open belt drive connecting two shafts 
10 ft. apart, the pulleys being respectively 12 in. and 24 in. in diameter. 

Am. 24 ft. 8} in. 
13. A V-belt drive has pulleys respectively 6 in. and 18 in. in diiuueter. 

The center-to-center distance should not be less than the diameter of the 
laziger pulley. Find a satisfactory belt length for shortest drive. Stock 
belts are available in lengths varying by 2«in. increments. 

14. Explain the Burmester construction for obtaining the diameters of the 
steps in a drive using an open belt on stepped-<:one pulleys. Are the results 
exact? 

16. Two shafts are to be connected by stepped-cone pulleys with three 
pairs of steps, for a crossed belt. The driving shaft turns at 400 R.P.M. The 
driven shaft is to turn at 200, 400, and 600 R.P.M. The largest step on the 
driving pulley is 18 in. in diameter. Find the diameters of the other steps. 

Am. Driving —18, 15, 10 in. Driven — 12, 15, 20 in. 
16. Two shafts are connected by stepped-cone pulleys with four pairs of 

steps for a crossed belt. The first pair of steps are, respectively, for the driver 
24 in. and for the driven 12 in. The speed ratios of the driven to the driver 
for the other steps are, respectively, 3 :2, 1 :1, 1 :3. Find the diameters of 
all steps. 

17. A stepped-cone pulley for a lathe is to give spindle speeds of 150, 280^ 
540, and 1000 R.P.M. when driving from a line shaft rotating at 400 R.P.M. 
A crossed belt is used. The largest step on the driver is 11 in. in diameter. 
Find the diameters of all other steps on the pulleys to the nearest even 
Ain. 

18. Take the data of Problem 17 with the exception that the cone pulleys 
are to be used for an open belt, the center-to-center distance being 34 in. 
Find the pulley diameters by the Burmester method. 

19. Name two reasons for using grooved pulleys in rope drives. What are 
the American and English systems of rope driving? Point out the advantages 
and disadvantages of each. 

20. Under what conditions are V-beR drives to be preferred to other forms 
of mechanical drives? 

81. Sketch four common types of chains. State the kind of service for 
which each is best adapted. 

22. What methods are employed in the derign of sprocket teeth to take care 
of variarion in chain pitch, in the case of conv^or and similar sloWHiped 
chains? 

23. What two forms of chains are eepedBJJy adapted for powi^ tmns- 
mis8i<m? What features of constnictioii make them suitable for operation at 
high speeds? 

24. Whatfmmof tooth would be suitable fora chain if the irttehv^ 
perfectly uniform and the delegation due to wear coidd be negleetedf 
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25. In designing sprocket teeth for slownspeed conveyor chains, by what 
means can we provide for a small difference of pitch between chain and 
sprocket? 

26. How is the elongation of the chain due to wear taken care of in the 
standard type of sprocket for roller chains? What form of tooth is used in 
this sprocket? 

27* Sketch the link used in the silent chain. What part of the link bears 
against the sprocket, and what is the shape of the contact surface? 

28. When a silent chain bends, what surfaces form the turning pair? Why 
has the original form of silent chain been altered, as regards the construction 
at the joints? 

29. To what factors can the quiet operation of the silent chain be attributed? 
30. Explain why a variation in the speed ratio is obtained in a chain drive 

during each revolution when the sprockets are of unequal size? How is^this 
variation affected by the number of teeth on the sprockets? When the 
sprockets are of equal size, how must they be arranged in order to obtain a 
constant speed ratio? 

81. A silent chain with |-in. pitch is used to connect an engine turning at 
1500 R.P.M. to a machine rotating at approximately 350 R.P.M. The chain 
speed is to be not more than 1800. The sprockets should not have less than 
18 teeth nor more than 105,teeth, (a) Find suitable tooth numbers for both 
sprockets, (b) What length of chain is required for a center-to-center distance 

of about 28 in.? 
82. A chain of i-m. pitch is driven from an 18-tooth sprocket turning at 

2000 R.P.M. Calculate the maximum and minimum linear velocity of the 
chain. 

88. In a chain drive the smaller sprocket has 12 teeth. By proper arrange* 
ment of the phase position of the larger sprocket it is possible to secure a 50 
per cent compensation of the speed variation due to the smaller sprocket. 
Will the drive be satisfactory if the speed variation must be kept below 1 per 

cent? 



CHAPTER XI 

MISCELLANEOUS MECHANISMS 

1. Ratchets. — A ratchet mechanism in its most common form 
consists of a device whereby two members capable of rotation are 
connected so that one will rotate the other in a certain sense, but 
not in the opposite sense. 

Its use, however, is not limited to members having rotational 
motion. Often the driver has a reciprocating straight-line motion 
and compels linear motion of the driven member in one direction 
only. 

The ratchet wheel b of Fig. 11-1 is turned in a clockwise sense by 
the action of pawl c when driver a turns clockwise. When a turns 

counter-clockwise, b re¬ 
mains stationary. A 
second pawl, d, pivoted 
on the frame of the 
mechanism, is some¬ 
times used to prevent 
the ratchet wheel from 
running backward. 

Two points should be 
noted in regard to the 
teeth on the ratchet 
wheel. 

(a) The normal AB 
to the face of the tooth 

Fiq. 11-1 eontaet 
Toothed Ratchet. 

centers 0 and P. Otherwise the pawl tends to slip out of contact 
when the driving force is applied. 

(b) A certain amount of lost motion ” may occur if the point 
at the pawl is not a^unst a tooth face at the instant whmi the 

340 
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driver begins to move in the driving direction. This lost motion 
may vary from zero to the tooth pitch as a maximum, depending 
on conditions. A small pitch, therefore, insures a small amount 
of lost motion. By the addition of another pawl, e, of different 
length (see Fig. 11-1), the possible lost motion may be reduced 
to one-half its former value. 

Figure 11-2 shows the mechanism of a lifting jack in which the 
driven link is given rectilinear motion when the handle is oscillated. 

Figure 11-3 shows a form of silent ratchet. Rollers a, a are 
placed in slots which taper. Rotation of the driver 6 in a clock¬ 
wise sense causes the rollers to move toward the narrow ends of 
the slots where they wedge tightly and thus lock together driver b 
and driven member c. This mechanism can be arranged to allow 
little lost motion, and the noisy action of the pawl-and-tooth type 
is avoided. Positive action is lacking, since friction alone is re¬ 
sponsible for the transmission of motion to the driven member. 

Figure 11-4 illustrates another form of silent ratchet with 
friction pawls whose action is assisted by the use of springs. 

3. Oldham’s Coupling. — (Fig. 11-5.) This is used to connect 
shafts which are parallel, but not co-axial. It is a four-link 
mechanism, derived from Ihe slider crank by the substitution of a 
slujing pair for one of the turning pairs, link c has the form of a 

with a bar or key on each face, the keys being located at 90° 
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with one another. These form sliding pairs with slots put in the 
faces of discs h and d. 

The connections between h, c, and d are evidently such that all 
three members must turn through equal angles during the same 

Fig. 11-6 

Elliptical Trammeb. 

tune interval. Hence the velocity ratio of h to d is constant and 
equal to unity. 

8. ffillptical Thumndta. (Fig. 11--6.) This device is swioe* 
able in drawing eQipaea. In a form somewbat diffeitent fMm that 
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shown in the figure, it has been employed as aji Elliptical Chuck 
for machining parts of elliptical section. Like the Oldham 
Coupling, it is a four-link mechanism containing two sliding and 
two turning pairs. The fixed link c has in this case elements of 
two sliding pairs. Any point A on arm a can be shown to trace 
out an elliptical path on c. This is proved as follows: 

Let X and y represent the coordinates of point A for any position 
of the mechanism. From the figure, 

2/ “ m sin 
X = I cos 6. 

Hence, 

^ + sin^ 6 + cos^ ^ = 1. 

This is the equation for an ellipse with major axis equal to 21 
and minor axis equal to 2 m. 

4. Straight-line Motions. — Where a link is required to have 
rectilinear motion, constraint is generally effected by the use of a 
“ slide and guide ” with plane 
surfaces in contact. Eecti- 
linear motion can be obtained, 
howevOT, by several mecha¬ 
nisms containing turning pairs 
only. These are generally 
termed “ straight-line mo¬ 
tions.” Such motions can be 
divided into two classes: (a) 
approximate straight-line mo¬ 
tions, and (t) accurate straight- 
line motions. - 

The Watt straight-line mo- 
Hon is of historical interest only, being little used nowadays. 
Watt emidoyed it in his engines as a substitute for the present-day 
croeehead and guide, for the reason that in his time it was difficult 
to farm accurate plane surfaces in metal. The device consists of 
a qtauirioHiaank mechadism, a, b, e, d, as in 1%. 11-7. A point 

OB 6 traces out the dotted path diown in the figure. This wiU 

Fio. 11-7 
Watt Straight-line Motion. 
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be observed to have a portion xy which is approximately straight, 
provided that point P is so selected that 

PQ : PR = c :a, 

Crosby Indicator Motion. — A mechanism shown in Fig. 11-8, 
composed of links con¬ 
nected by turning 
pairs, is used to con¬ 
nect the indicator pis¬ 
ton rod with the re¬ 
cording pencil on the 
Crosby Engine Indica¬ 
tor. The pin A, con¬ 
nected to the end of 
the piston rod, is con¬ 
strained to move in a 
vertical straight line. 
The pencil point at P 
traces out the indica¬ 
tor card on the drum 
b. In order that the 
instrument may pre- 

x ggnt accurate reo- 
Crosby Indicator. 

changes in the engine cylinder, it is necessary that the linkage 
connecting the piston rod and recording point fulfill the following 
requirements: 

(a) It should cause the point P to move in a straight line parallel 
to the direction of motion of the indicator piston. 

(b) It should magnify the piston motion in order to draw an 
indicator card of reasonable size, the ratio of magnification being 
constant for all positions of the mechanism. 

Neither of these objects is accomplished with mathematioBl 
ac<mracy by the Crosby motion, but the errors involved are so 
small as to be negligible for practical uses. 

The Peauceltier sixaight-lbe motion (Fig. 11-d) belongs to toe 
dasB <d aocimte strdc^l-line motions, jsinoe it oan be ttoown thal 
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Fio. 11-0 
PeaucelUer Straight-line Motion. 

point C moves in a straight-line path CZ), perpendicular to the 
center line of the fixed link/. The lengths of the links must have 
the following relative values: 

0/ c dj 
e «/, 
g ^ h. 

This mechanism has too many 
joints to be of great practical 
importance. 

6. The Pantagraph is gener¬ 
ally used as a means of repro¬ 
ducing drawings or maps to a 
smaller or larger scale. It has 
al^ been employed as a reduc¬ 
ing motion in connection with 
engine indicators. Two forms are shown in Figs. 11-10 and 
11-11, In both figures the length OA equals BC] also OC equals 
AB. The figure OABC is therefore a parallellogram, 0 being tho 
fixed point or pole. 

If we place the mechanism in any position, select any point P 
on BC, and then find a point Q on AB such that 0, Q, P fall in the 

same straight line, it can 
be proved that points P 
and Q will trace out simi¬ 
lar figures. In the prac¬ 
tical form of the panta¬ 
graph, P forms the tracer 
point, which is run around 
a map or figure, and a 
copying point at Q will re¬ 
produce the diagram to a 
smaller scale. 

To prove the essential 
property of the pantar 

graph, it is necessary to show (1) that Q remains on the straight 
line OP for any position of the mechanism, and (2) that OQ : OP 
is oonstanl The figures traced out by P and Q will then be sim- 
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ilar, the linear dimensions being proportional to lengths OP and 
OQ. 

In the initial position of the mechanism, in which Q lies on the 
straight line OP, we have simi¬ 
lar trianglesQfiP and OCP and 

QB : BP ^OC : CP. 
This holds true for any posi¬ 
tion, since QB, BP, OC, CP 
are fixed lengths. Also QB 
and OC are always parallel. 
Therefore, triangles QBP and 
OCP are always similar. It 
follows that Q always lies on 
the straight line OP and that 

OQ : OP ^ BC : CP 
= a constant. 

Driven 

6. Hooke’s Joint.—This mechanism, shown in Fig. 11-12, is often 
called a Universal Coupling. It is used to connect two shafts which 
intersect, but which are not necessarily in the same straight line. 
A device of this kind is essential 
for connecting a driving and driven 
shaft where the angle between them 
changes in service. Such a condi¬ 
tion is encountered in the transmis¬ 

sion of power to the rear axle of a FioH-12 
motor car. Here the drive shaft Univ^ J^t. 
connecting the engine to the rear 
axle does not make a fixed angle with the axis of rotation of the 
ei^ne crank shaft, because of the action of the car springs. 

It can be shown that a sin^e coupling does not tranonit motion 
with a constant angular velocity ratio, except when the shafts 
are in line with each other. 

The velodtj ratio at any instant is equal to 

_COB# 

^ “ l-sm»tfshi*(a + 90®)'' 
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where $ ®* angle between the shafts, 
a •= angular displacement of the driving shaft from the 

position where the pins on the drive shaft yoke lie in 
the plane of the two shafts, 

(oi » angular velocity of the driving shaft, 
Ui =* angular velocity of driven shaft. 

The angular velocity ratio (ws «i) varies from maximum to 
minimum value during an angular displacement of 90°. The 
maximum and minimum 
values of this ratio are shown 
by the curves of Fig. 11-13. 
It will be observed that the 
speed variation increases 
rapidly with the shaft angle. 

Constant-speed Universal 
Joints. — In order to avoid 
trouble due to the speed vari¬ 
ation of the Hooke’s Joint, 
other forms of coupling 
having a constant angular 
velocity ratio have been developed. One of the best of these is 
the Bendix-Weiss “ rolling ball ” universal joint shown in Hg. 

11-14. This is com¬ 
posed of two yokes 
on which curved 
grooves ate cut, 
forming races on 
which roll four large 
balls. A fifth and 
smaller “guide” 
bfdl, centrally lo¬ 
cated, serves as a 
locking device to 
keep the assembly 
in podtion. 

11-14. (>w*iat-apeed Uiriversd Tl» geometric te- 
to seoore a eoastanl augular vdocitgr ratio is that the 

Ctotow of afl four bafis ritafl lie in a t^ane whkli laseets the ande 

Ro. 11-13 
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between the shafts. This requirement is met by proper design of 
the grooves. ' 

A common use for this joint is in the “ front-drive ” automobile. 
Here the power must be transmitted to the front wheels, which 
must at the same time be capable of swinging through a large angle 
in order to steer the car. In this application of the universal joint, 
a non-constant angular velocity ratio would be very unsatisfactory. 

Constant Velocity Ratio by Use of Two Universals. — Two 
shafts lying in any relative position may be connected by a pair 
of universal joints and an intermediate shaft so that they will 
have the same angular velocity at any instant. To accomplish 
this result, the connecting shaft is located so as to make equal 
angles with the main shafts, and the driving pins on the yokes 
attached to the connecting shaft are placed at such an angle that 
each lies in the plane of the adjacent shafts at the same instant. 
Under these conditions, a reduction or increase of the speed of 
the intermediate shaft, as compared with that of one of the main 
shafts, caused by the interposed coupling, will be exactly neutral¬ 
ized by an equal but opposite change of speed of the other main 
shaft as compared with that of the intermediate shaft, due to the 
second coupling. The net result is that both main shafts will 
have the same speed at any instant. The compensating action of 

Ro. 11-16 
OmoiMiuated Drive whig TVo 

Univeraal Jcrints. 

the couplings is due to their 
B3nnmetrical arrangement with 
regard to the two planes con¬ 
taining the adjacent shafts. 

A drive for connecting paral¬ 
lel shafts, compensated in file 
manner just described, is 
shown in Fig. 11-15. Since 
tbe idanes containing the axes 
of adjacent shafts are here 
coinddent, the driving pins <m 
the cminecUng shaft yokes are 

parallel. The cdnpensating effect of the two couplihgB undei 
these particular drcumstances will be clear from inspection of 
tbefigure. If the connecting shaft is cut by a transverse |^e and 
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one-half of the arrangement is rotated about the axis of this shaft, 
the main shafts may be brought to any desired non-parallel posi¬ 
tion. When the ends of the connecting shaft are rejoined, com¬ 
pensation is evidently still maintained, and the relative position 
of the couplings is that already specified as being necessary. 

7. Geneva Stop. — In certain automatic machinery the Geneva 
Stop is used when it is desired to obtain alternate periods of rest 
and angular motion for a driven member, when the driver rotates 
continuously in the same sense. 

We find examples of it in watches, motion-picture machines, 
can-making machinery, and indexing devices employed in the 
machine shop. 

It is suitable for movements of the driven link not exceeding 
90® for each revolution of the driver. In Fig. 11-16 the driver a 
consists of a circular disc to which is attached a driving pin P and 
a seocmd disc EBFG. The pin P engages for a certain portion of 
each awoIuti(m with radial slots in the drivaa member b which it 
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carries forward through an angle When pin P passes out of a 
slot the surface EBF engages one of the geometrically similar 
surfaces LM on the driven member and holds it stationary until P 
enters the next slot. 

In order that the driven member may be started and stopped 
without shock, it is necessary that the mechanism be designed in 
such a way that in the position illustrated the lines OX, OY are 
tangent to the circle PCH through the axis of the driving pin. 

Thus, in laying out the mechanism, an angle 6/2 is measured on 
each side of the line OHy where $ is the desired angular movement 
of the driven shaft. 

Any circle, as PCHy tangent to OX and OF, may be used as the 
path of the driving-pin axis. The radius of this circle is the crank 
length for the driving pin, and its center locates the axis of the 
driving disc. The arc EOF is chosen so that the surface will clear 
the points of the driven disc. The angle EAF (^) must be made 
equal to the angle PAC in order that the driven member may be 
alternately locked in position and released at the proper instants. 

QUESTIONS — CHAPTER XI 
1. For what purpose is a ratchet mechanism employed? Sketch one foim 

(a) of ratchet with toothed wheel, (6) of silent ratchet. 
2. Show by sketch the working parts of the ordinary lifting jack. 
8. What two methods may be used to reduce the lost motion in a ratchet 

mechanism? 
4. In a ratchet wheel, how must the teeth be shaped so that the pawl will 

not tend to slip out of contact? 
5. Sketch the Oldham coupling. For what purpose is this device used? 
8. Sketch the elliptical trammel and prove its essential property. 
7. Sketch one form of the pantagraph mechanism. Prove that the 

copying and tra er points describe similar figures. 
8. What two requirements must the link motion of an engine indicator 

fulfill? Sketch the linkage of the Crosby indicator. 
9. Show by sketch the arrangement, and note the native lengtha of the 

links, in a Peauoellier straight^ine motion. 
10* Under what conditionB is a Hooke’s Joint a suitable iiMtbod of cdnaedr 

lag two shafts? Show by sketch how you would arrange two aueh Jdlnti to 
maintain a constant velocity ratio. 

11. Sketdi and eq^dain the action of the Oeneva stop. 
iSL In laying out i^Gmvastc^, the drde, which is the fMdh of 

pin osnter, is taogmt to fibe o^kler lines of adjacent slots on the idriven tbio 
for one position of the mechanism. Why is this necessary? 
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The drawings are to be made on a 12 X 18 in. sheet with a 
border 1} in. wide on the left-hand side and } in. wdde on the other 
three sides. A space 2 X 6 in. is provided for the title in the lower 
right-hand comer. 

In the illustrations, the dimensions shown in circles, thus (2^, 

are distances measured from the border line. These dimensions 
are atwa]rs to be taken full size, regardless of what scale is speci¬ 
fied for the drawing. 

The author wishes to acknowledge the valuable assistance of Pntfessor 
J. L dower in the original compilation of many of these problems. 
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PROBLEM 1 

CROSBY INDICATOR STRAIGHT-LINE MOTION 

The diagram below shows the straight-line motion mechanism 
used in the Crosby indicator for magnif3dng the motion of the 
indicator piston. 

Plot the mechanism four times full size in the position shown. 
Then move the piston C upward in steps of in. each for a total 
distance of | in. and plot the path of the pointer P, 

Determine and note on your drawing the ratio of magnification 
of the motion of point P to C. 

Data: 

A—B = If in. 
B—D = f in. 
B—P = 3f in. 

C—E — m» 
E—F = f f in. 
Z)—E = in. 

Lines A—B and D—C are parallel and vertical in the position 
shown. 

Tuam 1 
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PROBLEM 2 

TABOR INDICATOR MECHANISM 

1. Hot the linkage, four times fuU size, with BP horizontal as 
shown. Move the pencil point P upward, i in. at a time, in a 
vertical line for a total travel of 2 in., starting 1 in. below the 
initial position. Locate the corresponding positions of points 
C, D, and E. 

2. Determine and note on your drawing the ratio of magnifica¬ 
tion of the motion of point P to D. 

3. Determine and indicate on the drawing the radius and center 
of the circular arc which most closely approximates the path of 
point E. Draw the outline of the slot which is required to guide 
the roller. 

Data: 

A—B = li in. C—E = f in. 
B—C = f in. C—D = 1 in. 
B—P = in. Diameter of roller = ^ in. 

Plats 2 
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PROBLEM 8 

DISPLACEMENT, VELOaTY, AND ACCELERATION CURVES 

1. Draw the Scotch Yoke shown in Plate 3, to a scale of 3 in. » 
1ft. 

2. Calculate the nonnal and tangential acceleration of the 
crank pm at an instant when the crank velocity is 120 R.P.M. 
and the crank, acceleration is 180 radians per sec. per sec. Find 
graphically the total acceleration of the crank pin, using a scale 
of 1 in. = 50 ft. per sec. per sec. 

3. Assuming that the crank rotates at a uniform rate of 300 
R.P.M., plot polar and linear curves for the displacement, velocity, 
and acceleration of the slotted link. For each curve make the 
maximum ordinate 1| in. long. Determine and record the scale 
for each curve. 

4. With the same assumption as in 3, calculate by formulae 
the displacement, velocity, and acceleration of the slotted link at 
crank angles of 0“, 30®, 60®, 90®, 120°, 150®, and 180®. Tabulate 
these values. 
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PROBLEM 4 

DISPLACEMENT, VELOCITY, AND ACCELERATION CURVES 

Refer to Plate 3 and data of Problem 3 except that the crank 
length for the Scotch Yoke Mechanism is to be made 7 in. long. 

PROBLEM 5 

DISPLACEMENT, VELOCITY, AND ACCELERATION CURVES 

1. Draw the Scotch Yoke Mechanism as shown in Plate 3, to a 
scale of 3 in. = 1 ft. 

2. Calculate the normal and tangential acceleration of the crank 
pin at an instant when the crank is at an angle of 45° with the 
horizontal, the crank velocity 100 R.P.M., and the angular ac¬ 
celeration of the crank 420 R.P.M. per sec. Find graphically the 
total acceleration of the crank pin, using a scale of 1 in. - 40 ft. 
per sec. per sec. 

3. Assuming that the crank rotates at a uniform rate of 500 
R.P.M., plot polar and linear curves for the displacement, velocity, 
and acceleration of the slotted link. For all curves, make the 
maximum ordinate If in. long. Determine and record the scale 
for each curve. 

4. With the same assumptions as in 3, calculate by formulae the 
displacement, velocity, and acceleration of the slotted link at 
crank angles of 0°, 30°, 60°, 90°, 120°, 150°, and 180°. Tabulate 
these values. 
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PROBLEM 6 

DISPLACEMENT, VELOCITY, AND ACCELERATION-TIME CURVES 

The foUowing data relate to a moving body: 

Time Distance Time Distance 

0 sec. Oft. 6 sec. 40.00 ft. 
1 13.75 7 42.20 
2 22.20 8 43.80 
8 28.50 9 44.80 
4 33.50 10 45.15 
5 37.10 

Plot: (a) Using the above data, a Distance-time Curve on a 
base line located as shown on the sketch below. Scales: Dis¬ 
tance — 1 in. = 6 ft. Time — 1 in. = 1 sec. 

(b) A Velocity-time Curve. — Obtain points for each 1-sec. 
interval. Double the ordinates. 

(c) An Acceleration-time Curve. — Obtain points at intervals 
of 1 sec. Double the ordinates. Use A — B as base line for this 
curve. Calculate velocity and acceleration scales, expressing 
them in foot-second units. Construct graphical scales. 

PLAsa 4 
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PROBLEM 7 

DISPLACEMENT, VELOCITY, AND ACCELERATION-TIME CURVES 

Refer to Plate 4. 

The following data relate to a moving body: 

Time Distance Time Distance Time Distance 

Oflec. 0 ft. 3} sec. 9.8 ft. 7 sec. 36 ft. 
i 0.2 4 12.8 71 39.67 

1 0.8 4i 16.2 8 42.67 
u 1.8 6 20 8§ 45 
2 3.2 5i 24 9 46.67 
2i 5.0 6 28 9J 47.67 
3 7.2 6J 32 10 48 

Plot: (a) From above data, a Distance-time Curve on a base 

located as shown in Plate 4. Scales: Distance—1 in. = 6 ft. 

Time — 1 in. = 1 sec. 

(6) A Velocity-time Curve. — Obtain points for each i-sec. in¬ 

terval. Multiply ordinates by 4. 

(c) An Acceleration-time Curve.—Obtain points at intervals of 

J sec. Use as base a horizontal line 4 in. below A—B. Multiply 

the ordinates by 6. 

Calculate velocity and acceleration scales, expressing them in 

foot^cond units. Construct graphical scales. 
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PROBLEM 8 
INSTANT CENTERS 

1. Draw the four mechanisms illustrated in Plate 5 to full scale. 
2. Locate all the instant centers. 
3. In Figs. A and B, assume that point P has a velocity of 12 ft. 

per sec. il^present this velocity by a vector 1§ in. long and find 
graphically the instantaneous velocities of points Q and R. 

4. In C and D, assume that the link a is rotating at a rate 
of 75 R.P.M. and find graphically the instantaneous angular 
velocity of links b and c in both mechanisms, in R.P.M. Repre¬ 
sent the angular velocity of link o by a vector IJ in. long. In¬ 
dicate the sense of rotation of b and c. 

Plats 6 

PROBLEM 8A 
INSTANT CENTERS 

1. Draw the four mechanisms illustrated in Plate BA to full 
scale. 

2. Locate all the instant centers. 
3. In figs. A, B, C, and D, assume that point L has a veloei^ at 

15 ft. pet sec. Represent this velocity Ijsf a vector 1| in. long, and 
find graphically the instantaneous velocitieB of points M wd iV. 

4. In Fups. A, Jl^ and C, assume tiie link a is rotating at 
the rate (A 76 R.P.M., and find graxhieBl]^ instantanMus 
angular velooitaeB of linim b and o in aiil ntecnaniMns. Bcpresent 
the angular vdodty of link o by a vector 1| in. kmg. ladieate 
the sense at rotation of 5 and c. 
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PROBLEM 9 

INSTANT CENTERS, LINEAR AND ANOX7LAR VELOCITIES 

Refer to Plate 6. 

The skeleton drawing represents a six-link quick-return mecha¬ 
nism. Lay out the mechanism according to the dimensions shown 
on the drawing. 

1. Locate all the instant centers. 
2. Determine graphically the linear velocities of points P, Q, 

R, and S, for the position of the mechanism shown in the figure 
when the driving link a makes 15 R.P.M. in a counter-clockwise 
direction. Tabulate the numerical values on the drawing. Ve¬ 
locity Scale: 1 in. = 20 ft. per min. 

3. Representing the angular velocity of o by a line 1 in. long, 
determine graphically the corresponding angular velocities of 
links b, c, and d. Tabulate the numerical values on the drawing. 

Scale: 4 in. = 1 ft. 

PjUATDd 
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PROBLEM 10 

DIAGRAMS FOR SLIDER-CRANK MECHANISM 

Illustrated in Plate 7 is a skeleton diagram of the Slider-crank 
Mechanism used to transform rectilinear motion into rotary 
motion. The crosshead c has a stroke of 24 in. The connecting 
rod 6 is 5 times as long as the crank a. The crank turns at a 
constant speed of 160 R.P.M. in a clockwise direction. 

Construct the following diagrams for a complete revolution of 
the crank a; obtain points at 15° intervals. 

1. Polar Velocity Dia^m showing crosshead velocities on 
corresponding crank positions. 

2. Velocity-displacement Diagram showing crosshead velocities 
on positions of the crosshead pin. 

3. Velocity-time Curve, on a base line 9 in. long, located as 
shown, representing the time of one revolution of the crank a. 

4. Acceleration-displacement Diagram, using same base line as 2. 
6. Acceleration-time Diagram, base line same as 3. 
Label all diagrams, using notation above. Calculate and con¬ 

struct graphical scales for velocity and acceleration. Show the 
computations on the drawing. 

S^e: 2 in. = 1 ft. 

Puts? 



268 DRAFTING-ROOM PROBLEMS 

PROBLEM 11 

PISTON VELOCITY AND ACCELERATION 

A six-cylinder gasoline engine has a bore of 3^ in. and a stroke 
of 4J in. It develops maximum power at a speed of 3600 R.P.M. 
The connecting rod is 8 in. long. 

Locate the crank-shaft center as shown in Plate 7 and construct 
the following diagrams, obtaining points at intervals of 15°, 
and assuming the engine to be turning at the speed for maximum 
power. 

1. Polar Velocity Diagram, showing piston velocities on corre¬ 
sponding crank positions. 

2. Velocity-displacement Diagram, showing piston velocities on 
a base representing wrist-pin positions. 

3. Velocity-time Diagram, on a base 9 in. long, located as in 
Plate 7, representing the time of one revolution of the crank. 

4. Acceleration-displacement Diagram, using the same base as 
in 2. 

4. Acceleraiioxr-time Diagram, on the same base as for 3. Cal¬ 
culate and construct graphical scales for velocity and acceleration. 
Assuming that the reciprocating parts weigh 1.25 lb. per cylinder, 
construct for the acceleration curve a graphical scale of the 
accelerating (orshaking ”) force. 

Show all computations on the drawing. 
Scale: Full size. 
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PROBLEM 12 

WHITVORTH QmCK-RETURN MOTION MECHANISM 

Make a skeleton drawing of the mechanism according to the 
dimensions, Plate 8, using the following information: Length of 
connecting rod = 32 in.; length of A—C = 11J in.; B—T) = 7| 
in.; A—B — 7| in.; and B—C = 5 in. 

1. Find the stroke of the ram. 
2. Construct a full-stroke velocity diagram for the ram, taking 

as a base the line of travel of the point at which the connecting 
rod is attached to the ram. For the construction of this diagram, 
let the velocity of point C be represented by a velocity vector 1| in. 
long. 

3. Calculate the velocity scale when crank A—C turns 80 R.P.M. 
Construct a graphical scale as indicated on the sketch. Show 
calculations on drawing. 

4. Locate all the instant centers for the position shown. 
6. Determine the time ratio of the cutting stroke to the return 

stroke. Note this ratio on your drawing. 
Scale: 3 in. = 1 ft. 

PtAxaS 
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PROBLEM 13 

CRANK-DRIVEN QUICK-RETURN MOTION 

Draw the quick-return motion shown in Plate 9. The driving 
crank o has a length of 3f in. and rotates clcwkwise at 240 R.P.M. 
The driven slider e is to have a stroke of 16 in., and the time ratio 
of advance to return is to be 2 :1. 

1. Draw the mechanism as shown, with the block e at the left 
end of its stroke. Find the length of lever c necessary to give the 
proper stroke and time ratio. 

2. Draw a skeleton diagram of the mechanism as indicated by 
the dotted lines in the figure, with crank a at 45® with the vertical 
position. 

3. Locate all instant centers for the mechanism in the position 
specified in paragraph 2. 

4. By use of instant center Oae, determine the instantaneous 
velocity of e. Represent the velocity of pin M on the driving 
crank by a line 2 in. long. 

6. By use of instant centers Oar and Ort, determine graphically 
the velocity of e and see that it checks with the value obtained in 
paragraph 4. 

Scale: ^ in. = 1 in. 

Plats 9 
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PROBLEM 14 

VELOCITY CURVE FOR QUICK-RETURN MOTION 

1. Refer to Plate 9 and proceed as directed in paragraph 1 of 
Problem 13. 

2. Divide the stroke of point N into four equal parts. 
3. Determine the velocity of iV in the three intermediate po¬ 

sitions thus obtained, for both advance and return strokes. 
4. Plot a velocity curve for sliding block e. 
The following method may be employed for determination of the 

velocity of e: 
Represent the constant velocity of crank pin Af by a line IJ in. 

long. Find Oc/. The absolute velocity of Af on a is known, and 
the coincident point A/ on c has a movement relative to the former 
point in a direction along the line of slide oUb on c. Furthamore, 
Af on c has an absolute velocity about the center Q/ which can 
therefore be found graphically. From this point proc^ to N. 

B. Draw a graphical scale of velocity for N. 
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PROBLEM 16 

DKC CAMS WITH ROLLER AND FLAT-FACED FOLLOWERS 

See Plate 10. 

Design two disc cams, each imparting the same motion to its 
follower. Locate follower axes as shown, or offset th^ to the 
left as instructed. One follower is flat-faced; the other is pro¬ 
vided with a roller. The outward motion takes place during a 
cam displacement of 135®. The foUower then rests for 46® and 
returns during the next half-revolution. For the outward motion 
the velocity is constant except for periods at the beginning and 
end, each occupying one-twelfth of a revolution, during which 
acceleration and deceleration are uniform. The return motion is 
to be simple harmonic. The cams rotate clockwise. 

Determine points on the profiles at intervals of 15®. 
Data: 

Diameter of cam shafts 1^ in. Diameter of base circles 2f in. 
Diameter of cam hubs 2f in. Diameter of roller IJ in. 
Keyways i X i in. Follower Displacement If in. 
Scale: Full size. 

Pus* 10 
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PROBLEM 16 

CISC CAM WITH PIVOTED ROLLER FOLLOWER 

A pivoted roller follower as illustrated in Plate 11 turns through 
an angle of 30°. The outward motion is accomplished with con¬ 
stant velocity during 180° of cam displacement, except for 30° 
periods at the beginm'ng and end of the movement where the ac¬ 
celeration and deceleration are constant. Two rest periods of 
equal length are provided in the extreme positions. During the 
return motion which requires a cam displacement of 120°, the 
follower is uniformly accelerated and decelerated, the acceleration- 
deceleration ratio being 1 : 2. The cam turns clockwise. Obtain 
points on the cam profile at 15° intervals. Determine the form of 
the follower arm necessary to clear the cam^ 

Data: 

Cam shaft diameter 1A in. Follower shaft diameter 1J in. 
Cam hub diameter 2f in. Follower hub diameter 2^ in. 
Keyways { X i in. Roller pin diameter f in. 
Roller diameter If in. 

Scale: FuUsize. 

11 . 
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PROBLEM 17 

DISC CAM WITH PIVOTED FLAT-FACED FOLLOWER 

See Plate 12. 

The follower has an angular displacement of 30°. It moves 
outward during 12 of the 24 equal time periods required for one 
revolution of the cam and returns to the initial position during 
the following 8 time periods. Both motions are simple harmonic. 
The cam rotates clockwise. The follower face when produced is 
tangent to the hub. 

Obtain points on the cam profile at 15° intervals fmd determine 
tiie necessary length of the contact surface of the follower. 

Data: 

Cam shaft diameter 1^ in. Base circle diameter 2f in. 
Cam hub diameter 2f in. Follower shaft diameter 1^ in. 
Keyways J X i in. Follower hub diameter 2| in. 

Scale: Full size. 

PtAia 12 
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PROBLEM 18 

DISC CAM WITH PRIBIARY AFTD SECONDARY FOLLOWER 

In the cam mechanism shown in Plate 13 the secondary follower 
has a movement of 2} in. Starting from the lowest position, this 
follower rises vertically with simple harmoai'; motion during 12 
of the 24 equal time periods required for one revolution of the cam. 
It then rests for 6 time periods and falls with uniformly accelerated 
and decelerated motion during the remaining 6 time periods. The 
cam rotates clockwise. Find points on the cam profile at intervals 
of 15“. 

Data: 

Cam shaft diameter 1| in. Base circle diameter 3 in. 
Cam hub diameter 2| in. Roller diameter 1| in. 

Scale: FuU size. 

PlatbIS 
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PROBLEM 19 

POSrriVE-RETURR CAM MECHARISM 

See Plate 14. 

Design a cam mechanism with two disc cams located on the 
same shafts and arranged for positive return of the follower. 
Starting from its lowest position, the follower rises with simple 
harmonic motion during a cam displacement of 180®. It then 
returns with uniform acceleration and deceleration to the initial 
position while the cam rotates 120®, and rests during the final 60®. 

Data: 

Diameter of cam shaft If in. Diameter of rollers If in. 
Diameter of cam hub 2f in. Diameter of roller pins f in. 
Diameter of base circles 3 in. Ke3rway f X i in. 

Lift 2 in. 
The cams rotate counter-clockwise. 
Obtain points on the profiles at intervals of 15®. 

Scale: Full size. 

Pu3» 14 
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PROBLEM 20 

DOUBLE-DISC POSITIVE-RETDRN CAM MECHANISM 

This mechanism is illustrated in Plate 15. 
1. Draw the first or motion cam and the follower by use of the 

given data. 
2. Determine the profile of the second or return cam, obtaining 

points at 15° intervals. 
3. On a base line 6 in. long, representing a displacement of 90° 

of the cam, plot the displacement diagram for the follower. Ob¬ 
tain points at 15° intervals and double the ordinates. 

4. On the same base, plot a velocity curve for the follower. 
Divide the base line into 7J° intervals and obtain twelve points. 
Quadruple the ordinates. 

6. Construct displacement and velocity scales. 
Data: 
Diameter of rollers 2 in. Diameter of roller pins | in. 
Diameter of cam shaft li in. Keyway J X i in. 
Diameter of cam hub 2| in. A—B is a straight line. 

R.P.M. of cam 180 
Scale: Full size. 

Pum 16 
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PROBLEM 21 

CninDSR CAM WITH RECIFROCATmO FOLLOWER 

See Plate 16. 

Design a cylinder cam imparting motion to its roller follower 
which moves in a straight line parallel to the cam axis: 

The upward motion is accomplished while the cam rotates 
through 180® with constant velocity except during the first and 
last 30® where it has uniformly accelerated and decelerated motion. 
The follower rests at the top position while the cam rotates through 
45®. The return motion, taking place in 135®, is uniformly 
accelerated and decelerated during equal time periods. 

Data: 
Follower displacement 2J in. Length of cam hub 4i in. 
Diameter of cam hub 1J in. Keyway J X f in. 
Bore of hub in. Depth of groove | in. 
Outside diameter of cam 3-^ in. Diameter of roller f in. 

Obtain points at intervals of 15® and draw (o) a displacement 
diagram and development of the cam surface, (6) a plan view and 
elevation of the cam. Completed cam to be of form shown in Fig. 
6-33, allowing thickness of metal for walls of groove. 

Scale: Full size. 

• PLAra 16 
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PROBLEM 22 

CYLINDER-CAM MECHANISM 

See Plate 17. 

A (^Under-cam mechanism is reqiiired to move a pivoted 
follower through an angle of 40° (20° on each side of the horizontal 
position). The upward motion of the follower is accomplished 
di^g one-half revolution of the cam. Tbus motion takes place 
mth constant velocity except during the first and last 45° of cam 
displacement when the acceleration and deceleration are constant 
ana of equal value. The follower then rests for a cam displace¬ 
ment of 30°. The return motion is accomplished with constant 
acceleration and deceleration during equal periods while the cam 
rotates the remaining 150°. The cam rotates clockwise. The 
follower is provided with a conical roller. 

Draw (a) a displacement diagram, (6) a development of the 
cylinder, (c) plan and elevation of the cam. 

Data: 
Diameter of cam shaft li^ in. Diameter of cam hub 2| in. 
Maximum roller diam. | in. Keyway f X ^ in. 
Depth of groove | in. Length of cam hub 4| in. 
Radius of follower arm 3| in. Diameter of cam 3)^ in. 
Scale: Full size. 

PtAISI 17 
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PROBL^ 23 

AUTOMOBUG ENGINE VALVE CAM 

An automobile engine has an exhaust-valve cam as shown in 
Plate 18, designed for use with a flat-faced follower. 

1. Plot the half cam threeiimes full size. 
2. On a base line 9 in. long, representing 90° motion of the cam, 

located as shown, plot a displacement diagram. Obtain points 
at 5° intervals. Quadruple the ordinates in plotting this curve. 

3. On the same base, plot a velocity curve, using the method of 
Art. 22, Chapter VI, and doubling the ordinates. 

4. On a base line 6 in. above the lower border line, plot an 
acceleration curve. Use the method mentioned above. Halve 
the ordinates. 

6. Calculate the displacement, velocity, and acceleration scales, 
expressing them as 1 in. —-in. (displacement); 1 in. -- 
ft. per sec. (velocity); 1 in. ='-ft. ^r sec. per sec. (accelera¬ 
tion). Assume a motor speed of 3000 R.P.M. 

6. Construct graphical scales and determine the maximum 
values of the acceleration, both positive and negative, and the 
maximiun velocity. Indicate these values on the drawing. 

Pun 18 
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PROBLEM 24 

ABTOMOBILB ENGINB VALVE CAM 
t 

Substitute the Engine Exhaust Valve cam shown in Plate 19 
for the cam shown in Plate 18. Proceed to plot displacement, 
velocity, and acceleration curves, etc., for Hit* follower motion as 
directed in Pix)blem 23. The follower is of the flat-faced type. 

Plnd also the required diameter of the follower face. 
The cam profile is composed of circular arcs as fdiown in the 

figure. Radii for arcs oh, he, de are given. Center of arc cd is to 
be located so that this arc will be tangent to the adjacent arcs be 
and de. 

PjjAtb 19 
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PROBLEM 26 

INVOLUTB GEARS 

See Plate 20. 

Draw a pair of involute gears and a rack having teeth of 2 
diametral pitch, zero backlash, and standard involute pro¬ 
portions to meet the following requirements: 

Gew. — Pitch diam. 12 in. Keyway i X J in. Bore of hub 2^ in. 
Pinion. — Pitch diam. 6 m. Keyway | X A in. Bore of hub U4 in. 
Rack.—20 teeth. 

1. Use the Grant Odontograph method for drawing the tooth 
profiles. 

2. Construct the exact involute for one tooth of each gear as a 
check on the accuracy of the Odontograph method. 

3. Examine the tooth profiles for interference and, by cross- 
hatching, indicate the interfering portions. 

4. Indicate the centers and r^ii used in laying out the teeth. 
6. Determine the angle of action, angle of approach, and an^^e 

of recess for each gear, giving numerical values on drawing. 
6. Indicate the path of the point of contact. 
Scale: Full size. 
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PROBLEM 26 

imrOLIJTE GEARS 

Same data as for Problem 25 except that teeth are of standard 
A.G.M.A. stub-tooth form. Draw one true involute tooth profile 
for each gear and reproduce as required for other teeth by means 
of a template. Obtain other data as directed in Problem 25, 
items 3,4, 5, and 6. 

PROBLEM 27 

INVOLUTE GEARS 

See Plate 20. 

Draw a pair of involute gears and a rack having teeth of 2§ 
diametral pitch, zero backlash, and standard 14|® involute pro¬ 
portions to meet the Mowing requirements: 

Gear. — 28 teeth. Keyway J X i in. Bore of hub 2^ in. 
Pinion. —16 teeth. Keyway | X A iii* of hub IH in. 

Proceed as indicated in items 1-6 of Problem 25. 
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PROBLEM 28 

CYCLOIDAL GEARS 

Draw a gear, pinion, and rack to meet the following require¬ 
ments: 

Gear. — 24 teeth. Diameter of hub 4 in. Bore of hub 2^ in. 
Pinion. —12 teeth. Diameter of hub in. Bore of hub l|| in. 
Rack. —18 teeth. Keyseats § in. by J in. 

The diametral pitch ia 2 and the tooth proportions are standard 
full depth. Allow no backlash. The width of face is three times 
the circular pitch. 

For comparison, draw the exact profile of one tooth on each 
wheel. 

Indicate the centers and radii used in constructing the tooth 
profiles, also the path of the point of contact, the angle of approach 
and recess, and the maximum pressure angle. 

Place on the drawing the following dimensions: width of face, 
pitch diameters, outside diameters, bore and outside diameters 
of hub, width and depth of keyseate, length of rack, and height 
of teeth. 

Scale: Full size. 

PU9> 31 
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PROBLEM 29 

INVOLUTE BEVEL GEARS 

Make a drawing in section of a pair of involute bevel gears as 
illustrated-below. The diametral pitch is 2. The teeth have 
standard 14|® involute proportions with no backlash. 

Show the tooth forms on the developments cf the normal cones 
aVthe large and small ends of the teeth by use of the Grant Odonto- 
graph method. 

Dimension the drawing and tabulate the following information; 
pitch diameter, edge angle, number of teeth, diameters of blanks, 
angle between shafts, diametral pitch, and face angle. 

Determine the interfering portion of the tooth and indicate it 
by cross-hatching. 

Data: 

Angular velocity ratio 10 :7 Bore of pinion hub 1| in. 
Ktch diameter of gear 10 in. Keyways I X Ain. 
Bore of gear hub in. 

Scale: Full size. 
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PROBLEM SO 

involute bevel gears 

Same as Problem 29, except use a speed ratio of 10:6. 

PROBLEM 31 

INVOLUTE BEVEL GEARS 

Same as Problem 29, except teeth are of standard A.G.M.A. 
stub-tooth form. 
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PROBLEM 32 

CROWN GEAR AND PINION 

Make a dra^niig of a crown gear and pinion in section, as illus¬ 
trated in Plate 23. The involute teeth have standard 14J'’ invo¬ 
lute proportions, no backlash being provided. The diametral 
pitch is 2. 

Show the tooth forms on the developments of normal cones at 
both ends of the teeth, constructing the profiles by the Grant 
Odontograph method. 

Tabulate pitch diameters, numbers of teeth, diametral pitch, 
circular pitch, angle between shaf+" face angles, edge angles, and 
diameters of blanks. 

Data: 

Angular velocity ratio 6 :10 Bore of pinion bub in. 
Pitch diameter of gear 10 in. Keyways f X ^ in. 
Bore of gear hub lyV in. 

Scale: Full size. 

Flax;: 23 
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PROBLEM 83 

CROWN GEAR AND PINION 

Same as Problem 32, except that angular velocity ratio is 7 :10. 
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' PROBLEM 34 

WORM AITO WORM WHEEL 

Make a drawing of a worm and worm wheel with involute teeth, 
for a velocity ratio of 26 to 1. 

Data: 

TTom —Steel, caee-hardened, 14|® involute proportions, 
single right-hand thread, outside diameter 2f in., ^re in., 
keyway i X i in. 

Tform Whed —Bronze, face angle 60®, bore 1^ in., circular 
pitch 0.8125 in., keyway | X in. 

Dimension drawing fully, u^g decimals for the distance be¬ 
tween centers, the throat diameter, the throat radius of the wheel, 
and the root diameter of the worm wheel. 

Scale: Full size. 

Fi4iia24 
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PROBLEM 36 

COBB PULLEYS 

By the Bunnester method, design a ptdr of cone puliejns, each 
with four steps, to connect, by means of an open belt, parallel 
shafts 30 in. center to center. The driver turns at 255 R.P.M., 
and the speed ratios of driver to driven are 3 :1, 2 :1, 1:1, and 
1: 2.5. The mfl^imnnn belt speed is 1200 ft. per min. Each step 
is 2i in. wide with crown. The rim thickness is ^ in. and 
the shafts are lif-in. diameter with keyways f X A hi. The 
cones are attached to the hubs by four ribs each } in. thick. 
The hubs are 5 in. long and 3f in. outside diameter, located 
centrally along the length of the cone pulley. 

The pulley diameters found by the Burmester construction are 
to be rounded off to the nearest even | in. 

Calculate the length of belt for each pair of steps by using 
formula (10-5) in the text. Tabulate these lengths on the drawing. 

Scale: 3 in. = 1 ft. 

Biua9i26 
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PROBLEM 36 

com PULLETS 

Refer to Plate 26 and follow the instructions given in Problem 
35, but substitute for the data given in this problem the following: 

The driver turns at 360 R.P.M. and the speed ratios of driver to 
driven shaft are 1:3, 1:1.5, 1:1, 2:1. The marimum belt 
speeds is 1700 ft. per min. 

All other data as in Problem 35. 
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PROBLEM 87 

GBREVA STOP MOTION 

Design a Geneva Motion to give the driven member one<sixth 
of a revolution per revolution of the driving member, as shown in 
Plate 27. 

The driving pin at C is 1 in. in diameter and the distance BC 
is 4 in. The driving shaft at iS is in. in diameter, and the 
driven shaft at A is If in. in diameter. The disc carrying the 
drivii^ pin is | in. thick and has a diameter of 9} in. The slotted 
member is f in. thick. 

Assume that the driving shaft rotates at a constant speed of 
200 R.P.M. and plot an Angular Velocity-time Curve of the driven 
member in radians per second. Obtain the requi^ angular 
vdocities graphically for each 15° of motion of the driver usmg a 
vector 4 in. long to represent the angular velocity of this memo^. 

Construct a graphical velocity s^e on the velocity diagram, 
recording all calculations. 

Scale: 6 in. « 1 ft. 

ntarnm 
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PROBLEM 38 

THE PAITTAORAPH 

1. Draw the two fonos of the pantagraph shown in Plate 28. 
2. In the upper figure, move the tracing point P to other 

positions Q, R, S, T, U, located at uniform intervals around the 
circumference of a circle 1| in. in diameter. Find the corre¬ 
sponding positions of the copying point V. 

3. In the lower figure, move the tracing point A to points B, C, 
D, E, F, located on a triangle of the form shown in the plate. 
Find the corresponding positions of the copying point G. 

4. For both pantagraphs, find the ratio of magnification. 

Scale: Full size. 

Pura28 



294 DRAFTINCS-BOOM PROBLEMS 

PROBLEM 39 
POSmVB-MOTION CAM MBCHARISM 

A yoke-'t3rpe positive-motion cam mechanism of the form shown 
in Plate 29 has a pivoted follower which swings through a total 
angle of 30°. The an^lar motion of the follower during its 
clockwise displacement is composed of constant acceleration and 
deceleration, the acceleration-deceleration ratio being 5:2, the 
complete movement taking place in 210° of clo<^wise cam dis¬ 
placement. 

The mechanism has the following dimensions: 
Diameter of cam shaft 1 in. 
Cam hub diameter 2 in. 
Follower shaft diameter } in. 
Follower hub diameter If in. 
Base circle diameter 3 in. 

1. Find the width of the follower 3roke. 
2. Plot the displacement diagram from 0° to 210°. 
3. Plot the cam profile. 
4. Find the length of the arms on yoke and length of contact 

surface. ' 
6. Plot the remainder of the displacement curve. 
Scale: Full size. 

Puss 39 
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PROBLEM 40 

DRAG LINK COUPUNO 

A drag-link coupling shown on Plate 3Q is used to produce vari¬ 
able speed on a driven shaft. The driving shaft turns at a uniform 
speed of 20 R.P.M. in a counter-clockwise sense. Crank a is 
keyed to the driving shaft and crank c to the driven shaft, the two 
being connected by drag link b, 

1. Using the angular-velocity theorem of Article 4, Chapter IV, 
plot a curve showing the angular velocity of the driven shaft on 
a time base. Use an angular velocity scale of 1 in. = 8 E.P.M. 

2. Find the driving crank angles at which the driven shaft has 
maximum and minimum speeds of rotation, also the angles at 
which its speed is equal to that of the driving shaft. 

Scale: 6 in. » 1 ft. 

P1.AT18O 
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A 

Absolute motion, 6 
Acceleration, 13, 

angular, 14 
diagrams, 23, 24, 26, 66-66 

linear, 13 

normal, 13 
tangential, 13 

Addendum, 143 
Angle, of action, 144 

of approach, 144, 152, 159 
of obliquity or pressure, 155, 157, 

159 
of recess, 144, 152, 159 

Annular gears, 177 

Approximate tooth profiles, 176*171 

Arc of action, 144 

B 

Backlash of gears, 143 

Belt drives, 220 
crossed and open, 223 

location of pullej^ in, 225 
non-parallel, 224 

quarter-twist, 224 

Belts, 226*230 

length of, 226-228 

slip, 221 
theoretieal speed, 221 

Bevel gears, 186*194 

notatbii, 189-190 
Ikedgold’s method for drawing, 

196*194 

types, 188 
Brown and IStarpe Standard tooth 

propOFtioiis, 166 
Brush wM and plate, 132 

ccxns^ruction, 228-230 

C 

Cam followers, 84 

constraint of, bo 
convex sliding surface, 98 

displacement diagram of, 86-91 
fiat-faced, 98, 99, 100 
knife-edged, 92 
offset, 94, 95 

pivoted, 96, 100 

primary and secondary, 101, 102 
roller, 94, 96 

Cams, automobile valve, 120 

circular arc, 64, 111--121 

constant acceleration, 87 
constant velocity, 87 

cylinder, 106-110 

disc, 92 
positive motion, 86, 103-106 

simple harmonic motion, 90 

tangent, 118-119 

translation, 84, 85 

types, 84, 85 
Centrodes, 44, 45 

Chain drives, 233 

speed variation, 239 
Chdn sprockets, 235, 237 

Diamond, 237 

standard roller, 237 
Chains, coil, 233 

conveyor, 233 

Ewart, 233 

kinetnatic, 3 

link belt, 239 

Morse, 240 

pintle, 233 

power transmission, 234 

Hendd, 238 
roller, 234 

sUent, 238 
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Circular cams, 64, 111-121 
with flat-faced follower. 111 
with roller follower, 114 

Circular pitch, 144 
Crank, 6 
Cranknshaper motion, 80 
Crosby Indicator, 250 
Cycloids, 148-153 

D 

Dedendum, 143 
Diametral pitch, 145 
Displacement, 12 
Double slider-crank mechanism, 44, 

248 

E 

Elements, pairs of, 3, 4 
Elliptical trammels, 248 
Epicyclic gear trains, 209 
Epicyclic value, 210 

P 

Face of tooth, 143 
Flank of toothy 143 
flexible links, 3, 220 
Friction drives, 132,133 

G 

Gear trains, 202 
compound, 204 
^icyclic, 209 
reverted, 204 
simple, ^ 
value of, 202 

Gears, 136 
annular, 177 
bevel, 188-194 
daasifleatioiii, 138 
Goomon ^ur; 138,142 
compoMte to^, 166 
helioal, 139,17^-183 

herringbone, 138 
hyperboloids!, 140 
hypoid, 195 
idler, 202 
internal, 177 
14J° involute, 167 
20® involute, 168 
20® stub involute, 169 
long-andnshort addendum, 172 
Maag, 173 
notation for spur, 142 
planetary, 209 
skew bevel, 141 
spiral bevel, 139 
stub tooth, 169 
twisted-tooth spur, 138, 177 
velocity ratio of, 141, 182 
worm, 140, 184-187 

Gear-tooth elements, 136 
Gear-tooth law, 145, 146 
Geneva stop, 255 
Grant involute odontograph, 170 
Guide pulleys, 225 

H 

Helical gears, 139,178-183 
graphical construction for, 180 
normal pitch of, 181 
tooth forms for, 183 

Helix, 9 
Hindley worms, 185 
Hoisting block, 209 
Hooke’s jomt, 252 

I 

Instant centers, 34 
drole diagram for, 41 
for compound mechaniame, 41 
in dider-orank mechaniiun, 39 
in <}oi^t0H(arahk gg 
Bwthod lor kMotiiaf, SO, 
SUDdIxraf, 88 

Interfara&Mofaear tMtti, US, UO 
XntamalKaani, 177 
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Inversion of a mechanism, 8 
Involute, 155,156 

construction of an, 156 

K 

Kennedy’s theorem, 37 
Klein’s construction, 76 

L 

Links, 2 
compression, 3 
flexible, 3 
pressure, 3 
tension, 3 

M 

Maag gear teeth, 173 
Machine, 1, 2 
Mechanism, 2 

compound, 8 
simple, 8 

Motion, 6 
absolute, 6 
constrained, 7 
helical, 9 
plane, 9 
relative, 6 
spherical, 9,10 

N 

Normal cones, 191 
Ncsnnal helix, 182 
Normal pitch, 181 

0 

Oldham’s ooupHng, 248 

P 

Psifs, ^ 

sliding, 4 
turning, 4 

Pantagraph, 251 
Path of contact, 151 
Peaucellier motion, 250 
Phase, 19 
Piston acceleration, 73-77 
Piston velocity, 70, 77 
Pitch, 144 

circular, 144 
diametral, 145 

Pitch diameter, 142 
Pitch point, 143 
Pitch surfaces, 138-141 
Planetary gear trains, 200 
Positive-motion cams, 86, 103-106 
Positive variable-speed transmission, 

242 
Pressure angle, 155, 157, 159 
Proportions of gear teeth, 166 
Pulleys, 221, 222, 224 

crowned, 224 
stepped cone, 228 

Q 
Quarter-twist belts, 225 
Quick-return motion, 79, 80 

R 

Rack, 153,163,166-169 
Rankin’s equation, 227 
Ratchets, 247, 248 
Reeve’s drive, 230 
Rolling contact, 125 

constnicrion of profiles, 126 
instant centers, 4,125 
rolling cones, 127-129 
rolling eUipses, 130hld2 

Rope drives, 231 

S 

Scotch yoke, 19 
hannonic motkm, 18 

acoderatlon curves, 21,23 



300 INBEX 

eompofi^ion of two, 22 
displacement ctarves, 19, 21 
velocity curves, 19, 21 

Slider-crank mechanism, 69 
fbced block inversion, 81 
mstant centers, 34 
shding block inversion, 70 
swinging block inversion, 79 
turning block inversion, 81 

Sliding action of gear teeth, 147 
Sliding gear transmission, 206, 208 
Speed reducer, geared, 215 
Sprockets, 239-241 
Standard gear teeth, 165 
Straight-line motions, 250-252 
Structure, 2 
Stub teeth, 169 
Synchromesh transmission, 208 

T 

Tooth elements, 136 
Toothed gearing, 136 
TYedgold’a approximation, 190 

U 

Universal coupling, 252 
constant speed, 253 
Hooke’s joint, 252 
rolling ball, 253 

V 

V-belts, 232 
Velocities, 12 

by Image Method, 60-67 
by instant centers, 49-56 
by resolution, 53 
curves, 21, 23, 25 
of points in mechanisms, 40-56, 

60-67 
linear and angular, 12 
ratio, 28 
ratio of angular, 57 

W 

Watt’s straight-line motion, 249 
Whitworth quick-return motion, 81 








