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PREFACE 

This book is the outgrowth of the experience of the authors in teach¬ 
ing kinematics to engineering students in the College of Engineering, 
Cornell University. Although the book was written primarily for a 
recitation course of forty-five periods, more subject matter than required 
was intentionally introduced. The purpose of this was to furnish the 
additional kinematics needed for a course in Advanced Kinematics and 
Kinetics. In further justification, it was felt that a work on kinematics 
should, in these days of high speed machinery, emphasize certain aspects 
of cam and gear design and should include a general method of deter¬ 
mining the linear velocity and acceleration of any point in a mechanism 
and the angular velocity and acceleration of any link. 

The principal omissions suggested for a forty-five period recitation 
course are: articles 72 to 83, inclusive; 96 to 99 inclusive; 105; 132 to 
135, inclusive; 144; 146 to 148, inclusive; and 151. To these omis¬ 
sions may be added, as may appear expedient, some or all of the follow¬ 
ing articles: 63; 105; 113; 118; 169; 177; 181 to 184, inclusive; 
198; and 199. These omissions, and others if necessary, can be made 
without interrupting the continuity of treatment of those topics usually 
associated with undergraduate courses in kinematics. It is hoped that 
the necessary omissions for such courses will dispel the notion that 
more kinematics than necessary is required of undergraduates, and it is 
hoped also that, noting the omissions, more students will be encouraged 
to take advanced work in the subject. 

The book presupposes a course in engineering mechanics. Since 
kinematics is primarily an application and graphical extension of the 
laws of motion of a particle, a valuable review of these fundamental 
laws from mechanics is given in the first chapter. An attempt has been 
made throughout to treat each topic thoroughly and at the same time 
concisely. To this end considerable attention has been given to the 
form of mathematical developments, to the convenience of the nota¬ 
tion used, and to the suitability of the illustrations, many of which are 
to scale. 

A number of questions and problems which completely cover the 
subject matter of the text are given at the end of the book. The 
system of numbering is such that each question or problem is readily 

v 
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associated with the particular article or part thereof to which it relates. 
The purpose of these questions and problems is to assist the student in 
preparing each assignment and in reviewing for examinations and also 

to facilitate the conduct of the recitations and the making out of exami¬ 

nations. 
Particular thanks are due Mr. Allen H. Candee of the Gleason 

Works, Rochester, New York, who gave generously of his time and 
expert knowledge in critically reviewing the manuscript of the four 
chapters on gears. As a result of his helpful criticism these chapters 
were quite extensively revised, and his many valuable suggestions 

were incorporated. 
In the preparation of the manuscript, catalogues, bulletins, magazine 

articles, and books on kinematics and related subjects were freely con¬ 
sulted. Direct use of any information from such sources is duly 

acknowledged in the text. A list of general references is given at the 

close of the book. 
One or two half-tone illustrations were kindly furnished by each of 

the following firms: Jones and Lamson Machine Company, Springfield, 

Vermont; Newton Machine Tool Works, Philadelphia, Pennsylvania; 
W. A. Jones Foundry and Machine Company, Chicago, Illinois; Fellows 

Gear Shaper Company, Springfield, Vermont; and the Gleason Works, 
Rochester, New York. 

Ithaca, N. Y. 

May 25, 1931 

C. D. Albert 

F. S. Rogers 
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NOTATION 

Numbers /, 8, 5, etc., have been used throughout the book to desig¬ 
nate the members of a mechanism, the fixed member being marked 0, 
or zero. Numbers also have been used to designate successive positions 
of a point, line, or member. Capital letters, P, B, Q} etc., have been 
used to designate definite points in a mechanism. Small letters have 
been used to designate construction points and the termini of vectors in 
velocity vector diagrams and, when primed to designate the termini 
of vectors in acceleration vector diagrams. 

A Linear acceleration. 
Abc. Linear acceleration of B relative to C. 
AnDo Normal component of linear acceleration of D relative to G. 
A1 do Tangential component of linear acceleration of D relative to (?. 
Axbc X component of linear acceleration of B relative to C. 

Avbc Y component of linear acceleration of B relative to C. 
B Radius of base circle of gears or width of belt. 
D Diameter of pitch circle of gears and sprockets or diameter of 

pulleys, etc. 
E External radius or modulus of elasticity. 
N Number of instant centers, normal force, number of teeth, or 

revolutions per minute. 
0 Fixed member of mechanism. 
Oi3 Instant center of member 1 relative to S, or of S relative to 1. 
P Point, especially contact point of curves and pitch point of gears. 

R Radius of pitch circle of gears and sprockets or radius of pulleys, 

etc. 
V Linear velocity. 

Vbc Linear velocity of B relative to C. 
VnDO Normal component of linear velocity of D relative to G. 
V*do Tangential component of linear velocity of D relative to G. 
Vxbc X component of linear velocity of B relative to C. 
V*bc Y component of linear velocity of B relative to C. 
a Addendum of gear teeth. 
b Backlash of gear teeth or width of face of gear. 
c Clearance of gear teeth. 

XV 



NOTATION xvi 

d Dedendum of gear teeth. 
/ Cam factor or feed of cutting tool. 
g Acceleration of gravity. 
h Total displacement of cam follower or whole depth of gear teeth. 
k Ratio or product. 
ks Space scale. 
kt Time scale. 
kv Velocity scale. 
ka Acceleration scale. 
I Length or lead of screw or gear. 
n Ratio, number of links, speed, or number of threads per inch. 
p Pitch of chain. 
pc Circular pitch; p/} diametral pitch. 
pb Base pitch. 
pn Normal pitch. 
pa Axial pitch. 
r Radius. 
« Linear displacement. 
t Time, tooth thickness, or belt thickness. 
a Angular acceleration, angle of obliquity, pressure angle, etc. 

Angle of action or other angle. 
5 Angle. 
6 Angular displacement, angle between shafts, or other angle. 
X Lead angle. 
p Coefficient of friction, 
p Radius of curvature or radius of gyration. 
4> Helix angle or other angle, 
co Angular velocity. 
coi3 Angular velocity of member 1 relative to 8. 
4» Vector addition. 
—» Vector subtraction. 



KINEMATICS OF MACHINERY 

CHAPTER I 

FUNDAMENTAL CONCEPTIONS 

1. Kinematics. Kinematics may be defined as that branch of 
mechanics which treats of the relative motions of bodies. It is some¬ 
times called the geometry of motion. Kinematics of Machinery treats 

of the relative motions of the parts of mechanisms and machines. The 
fact that the motions of the parts of mechanisms and machines can be 
treated quite apart from the forces acting and quite apart also from the 

exact form and weight of the parts, has made the development of kine¬ 
matics as a separate subject possible, and frees its application from the 
many complex considerations and decisions necessary to the complete 

design of any mechanism or machine. The possibilities and advan¬ 
tages of such a separation are quite apparent and of great importance. 

2. Place of Kinematics in the Design of a Machine. The design 

of any machine may be considered in four steps: 

(a) Determination of the kinematic scheme; 
(b) Determination of the forces acting on each part; 
(c) Proportioning the various parts; 
(id) Specification and drawing. 

(a) Determination of the Kinematic Scheme. By this is meant the 
determination of such a combination of kinematic elements as will 

transmit and transform the motions as required by the source of energy 

and of motion and by the useful work to be done. This may involve 
merely the selection of some known mechanism or combination of 

mechanisms, or the solution may require the invention of a new mechan¬ 

ism or combination. A knowledge of kinematics and of how the 

various kinematic elemefits such as shafts, bearings, pulleys, cams, 

gears, links, etc., have been used in combination, is of great assistance 

in arriving at a solution. Having found a suitable or promising com¬ 

bination, a complete analysis of the motions of the various parts can 

be made. As will be shown, graphical rather than analytical methods 
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are usually employed. By means of skeleton figures and diagrams, 
the displacements, velocities, and accelerations of the moving parts or 
points on the same can be determined. 

(b) Determination of the Forces Acting on Each Part. The magni¬ 
tude and direction of the forces acting on any part of a machine depend 
not only on the energy supplied and the useful work done, but also upon 
the frictional resistances and the inertia of the moving parts. As a 
rule the frictional resistances are small and may often be neglected. 
The effect of the inertia of the moving parts depends upon the mag¬ 
nitudes of the linear and angular accelerations of the parts and upon 
their form, size, and weight, or material. The linear and angular 
accelerations are known from the analysis of the kinematic scheme. 
The form, size, and material for each part must, therefore, be assigned 
before the inertia forces may be calculated, and the magnitude and 
direction of the resulting forces acting on each part determined. 
Hence, for high-speed machinery, the proportions for each part must 
be assigned before the data become available for determining the result¬ 
ing forces acting on each part and before the degree of unbalance of 
the machine can be determined. Where, as in some slow-speed 
machinery, the inertia forces may be neglected, it is not necessary to 
have the form, size, and material of the parts to approximate the mag¬ 
nitude and direction of the forces acting on each part. This informa¬ 
tion may be obtained from the velocities of the parts and the energy 
supplied or useful work done. 

(c) Proportioning the Various Parts. The size and form of each 
part are fixed by the function or functions of the part and the magni¬ 
tude and direction of the forces acting upon it. With this information 
available, the proportioning of the parts becomes a rational application 
of the laws and methods of mechanics and machine design. Each part 
must be sufficiently strong to avoid failure, and sufficiently rigid to 
avoid distortions that would interfere with its functioning properly. 

(d) Specification and Drawing. These are absolutely essential to a 
satisfactory and successful design, and just as essential to the complex 
problems of organizing and directing the building of the machine. 

It is evident from what has been said above that kinematics has a 
very important place in the design of mechanisms and machines. Not 
only is a knowledge of kinematics essential in determining the correct 
geometric form of the parts to transmit and to transform the motions 
properly, but it is also essential to the study and application of 
Kinetics. 

A moving part or body may be considered as made up of particles, 
or material points. Since the study of the motion of bodies is lately 
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a study of the motion of their particles, the fundamental kinematic 
relations between distance, time, velocity, and acceleration will first 
be developed for a particle, or a material point. 

3. Kinds of Quantities* Two kinds of quantities, scalar and vector, 
are dealt with in kinematics. Scalar quantities, as, for example, time, 
distance, volume, etc., possess magnitude only. Vector quantities, as, 
for example, displacement, velocity, acceleration, etc., possess direction 
as well as magnitude. 

4. Vectors. A vector is a straight line of definite length and 
direction. The point where a vector begins is called its origin, and the 
point where it ends is called its terminus. An arrow-head is used to 
indicate which end is the origin and which the terminus. This arrow¬ 
head is usually placed at the terminus and should point away from the 
origin. The length of a vector represents to scale the magnitude of the 
quantity being considered, and the arrow-head indicates the direction 
to be associated with the magnitude. If a vector representing the mag¬ 
nitude and direction of the velocity or acceleration of a point is drawn 
from the point as an origin, it is called a localized vector, and is called a 
free vector if drawn anywhere else in the plane of motion. Likewise, 
a vector representing the magnitude and direction of a force is a local¬ 
ized vector if drawn from the point of application of the force and is a 
free vector if drawn anywhere else in the plane of the force. 

Many problems can be solved more easily and quickly by the use 
of vectors than by algebraic means. By a proper choice of scale the 
degree of accuracy of such graphical solutions may be made almost 
anything desired. Furthermore, the graphical method has the advan¬ 
tage of showing a number of quantities in their true relations and pro¬ 
portions, thus appealing to the mind' through the eye much more effec¬ 
tively .than would merely the numerical values. 

5. Addition and Subtraction of Vectors. When dealing with 
vector quantities the symbol 4* is commonly used to denote addition, 
and the symbol —> to denote subtraction. The sum of vectors A and B 
is expressed thus; A 4* jB: and the subtraction of vector B from A 
thus: A —> B. 

Two vectors, A and 5, are shown in Fig. 1. The addition of these 
vectors is shown in Fig. 2. This is performed by placing the origin of 
B at the terminus of A while retaining the magnitude and direction of 
each. The vector A 44 B will than have its origin coincident with that 

of vector A} and its terminus coincident with that of vector B. If the 
origin of vector A, had been placed at the terminus of vector B, the 
vector sum, B 4* A would have been the same as A 44 B but the lines 
of construction would be differently placed. 
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Fig. 3 shows the construction for the vector difference, A —> B. 
As in algebraic problems, this difference A —»B is equal to the vector 
sum, A -f> (— B). From the terminus of A draw a vector (~B) of the 
same magnitude but opposite in direction to (+£). The vector differ¬ 
ence, or resultant, A —»B, must have its origin coincident with that of 
A and its terminus coincident with that of (—B). The determination 
of the vector difference B —»A is illustrated in Fig. 4. In this case the 
vector (—A) is added to vector B. The procedure is similar to that 
followed for Fig. 3. It is to be noted that the vector differences A B 
and B —> A are the same in magnitude but opposite in direction, which 
relation a little consideration will show is correct. 

FIG. I FIG. 2 FIG. 3 FJG.4- 

6. Composition and Resolution of Vectors. The sum of any number 
of vectors is called their resultant, and the vectors are called components 
of that resultant. The process of finding the resultant of any number 
of vectors is called composition of vectors, and the converse process of 
breaking up a vector into a number of components is called resolution 
of vectors. It should be noted that a group of related vectors can have 
but one resultant, but that a given vector may have any number of 
sets of components. The various components may or may not be con¬ 
fined to one plane. 

Vectors may be resolved or composed by the use of vector triangles, 
as in Art. 5, or by the use of parallelograms. Thus, in Fig. 5, -vector 

FIG. 6 F/G.e 

PV may be resolved into components PVX and PV2, or into any other 
components PV' 1 and PV'2, or vector PV may be regarded as the 

resultant obtained by composing the pair of vectors PV 1 and PV2 or 
the pair PV' 1 and PV'2. 

There are four general cases for the resolution of a given vector into 
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two components: (a) When the direction of each of the components is 
known; (b) when the magnitude of each of the components is known; 
(c) when the magnitude and direction of one component are known; 
(id) when the magnitude of one component and the direction of the other 

are known. 
(a) To resolve a given vector PV, Fig. 6, into two components in the 

known directions PM and PN: Through the terminus V of the given 
vector draw lines parallel respectively to PN and PM. The intersec¬ 
tions Vi and V2 of these lines with PM and PN determine the required 
vector components PV\ and PV<>. 

(b) To resolve a given vector PV, Fig. 7, into two components known 
in magnitude but not in direction: Let M and N be the known magni¬ 
tudes of the components. With 
radius M draw arcs Mi and M2 

from P and V as centers, and then 
with radius N draw arcs N1 and 
N2, using the same centers. Arcs 
AT and M2 intersect at IT and 
V'i, and arcs AT and M1 intersect 
at V2 and FT. Joining these 
intersections with P and V forms 
two parallelograms, PV 1 VV2 and 
PV' 1 VVf2f each having PV as a diagonal, with sides PV 1 and PV2, 
also PV' 1 and PFT, respectively, equal to the required components. 
Hence there are two solutions satisfying the condition that vector 
PV be resolved into two components equal in magnitude to M and N. 

(c) To resolve a given vector PV, Fig. 8, into two components when the 
magnitude and direction of one of the components are known: Let the 

fig. 

vector M represent the magnitude and direction of one of the com¬ 
ponents. From the origin P draw PFi equal and parallel to M, and 
join the termini V\ and V. The intersection V% of a line through P 
parallel to V\V with a line through V parallel to PV 1 determines the 
desired vector PV2 in magnitude and direction. 
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(d) To resolve a given vector PV, Fig, 9, info two components when the 
magnitude of one and the direction of 4he other are known: Let M repre¬ 
sent the magnitude of one component and PN the direction of the other. 
With 7 as a center and M as a radius draw the arc Mi intersecting the 
line PN at V\ and V\. Lines through P parallel, respectively, to VV\ 
and VV'i will intersect a line through V parallel to PV\ at V2 and Vf2, 
thus determining two pairs of vectors, PV 1 and PV2 and PVf 1 and PV*2, 
that fully satisfy the conditions imposed. 

7. Path and Motion of a Point The path of a moving point is 
the locus of the successive positions of the point. The position of a 
moving point at any instant may be specified by stating the rectangular 
coordinates or the polar coordinates of the point. The path may be a 
line of any form whatever located in a plane or in space. If the path of 
a moving point is a straight line, the point is said to have rectilinear 
motion, and is said to have curvilinear motion if the path of the moving 
point is a curved line. A moving point is said to have uniform motion 
if it describes equal distances in equal intervals of time, however small, 
and to have non-uniform, or variable, motion if it describes unequal 
distances in equal intervals of time. 

8. Linear Displacement. The change of position of a moving 
point is called its displacement. Thus, in Fig. 10, the change of position, 
or linear displacement, of the point P as it moves along its path M from 
B to C is the vector As drawn from B to C. This displacement may be 
expressed as the vector sum of its x and y components, Ax and Ay, or, 
as the vector difference of its radius vectors p2 and pi to the two positions 
of the moving point. Thus, 

As = Ax -+■» Ay.(1) 

As * p2 -> pi or P2 = pi +» As.(2) 

It is to be noted that any displacement has both magnitude and 
direction and is, therefore, a vector quantity, and can be combined or 
resolved like other vector quantities. Any convenient unit of length, 
such as the inch, foot, mile, etc., may be used to express the magnitude 
of a displacement. It is also to be noted that one vector equation is 
sufficient to express both the magnitude and direction of a displacement, 
while two algebraic equations are required, one for the magnitude and 
the other for the direction. Thus, 

As = V (Ax)2 + (Ay)2.(3) 
and 

tan <j> — — 
An 

(4) 
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If in Fig. 10 the displacement is decreased indefinitely, C, in the limit, 
will coincide with B, and the chord As will coincide with the tangent to 
the path at B. Hence, the direction of motion of a particle at any point 
in its path is tangent to the path at that point. 

9. Angular Displacement. The change in the angle made by the 
radius vector of the moving point with some fixed reference line is called 
the angular displacement of the point. Thus, in Fig. 10, the angular 
displacement due to the point moving from B to C along its path is, 

Ad ~ 6i — 62 (5) 

The magnitude of an angular displacement may be expressed in any 
convenient unit of angular measure, such as the radian, degree, revolu¬ 
tion, etc. 

10. Relation between Linear and Angular Displacement In 

Fig. 10 the linear displacement As is equal to the vector sum of piA$ 
and Ap, where Ap = p2 — pi; or 

In the limit, 
As « piA0 -f> Ap 

ds = pdO -44 dp.(0) 

When p represents the radius of a circle or the radius of curvature of the 
path of the particle at the instantaneous position of the point, then 
p2 — pi * dp becomes zero, and 

ds = pdB 

Hence, if the path of a moving point is a circle of radius R, as in Fig. 11, 
or, if R is the radius of curvature of the path at the instantaneous posi-r 

tion of the point, then the relation between the linear and angular dis¬ 
placements of the point for an indefinitely small displacement is 

ds sa Rdd (7) 
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11. Linear Speed and Velocity. The linear speed of a moving 
point is the time rate of change of distance, while the linear velocity of 
a moving point is the time rate at which the particle is changing its 
position, or, more briefly, the time rate of change of linear displacement. 
Distance possesses magnitude only and is, therefore, a scalar quantity, 
while displacement possesses both magnitude and direction and is, 
therefore, a vector quantity. Hence speed is a scalar quantity and 
velocity a vector quantity. Speed represents the magnitude of the 
velocity. To definitely define the velocity of a point at any instant it 
is necessary to know its direction as well as its magnitude, or speed, 

at the instant. 
If a moving point traverses a distance As in an interval of time At, 

the average speed for the interval is 

At 

If the point has uniform motion, the speed is constant from instant to 
instant and is given by this expression. The velocity, while constant in 
magnitude from instant to instant, may or may not be constant in direc¬ 
tion. If the point has uniform rectilinear motion, its velocity at any 
instant becomes known as soon as its path is located. If, however, the 
point has uniform curvilinear motion, the velocity, while remaining 
constant in magnitude, changes its direction from instant to instant. 
In accordance with Art. 8, the direction of motion of the particle 
at any point in its path is tangent to the path at the point. 

If the motion of the point is variable, the above expression will not 
give the speed of the point at each instant during the interval, At. It 
can give only the average speed for the interval. Thus, if a train, 
moving at a variable rate, travels 410 feet in 10 seconds, its average 
speed during the 10-second interval is 44 feet per second, or 30 miles 
per hour. Its speed at any instant during the 10 seconds may be 
greater or less than 44 feet per second. If the speed of the train is 
measured for a smaller interval than 10 seconds, say 2 seconds, the 
average speed for the two seconds will undoubtedly be nearer the speed 
at any instant during the 2 seconds than the average speed for the 
10-second interval. If the distance traveled in a still smaller interval, 
including the specified instant, can be measured, a still closer approxi¬ 
mation to the speed at the instant is obtained. Hence, the speed at 
any instant is the average speed for an indefinitely small period of time 

including the specified instant. Expressed mathematically, the speed, 
or magnitude of the velocity, at any instant, is 

y ___ Limit As ds 

At~Q At dt 
(8) 
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Speed, or the magnitude of the velocity, may be expressed in any 
convenient units of distance per unit of time, such as feet per second, 
feet per minute, miles per hour, etc. 

12. Angular Velocity. The angular velocity of a moving point is 
the time rate of angular displacement of its radius vector. For uniform 
angular motion, equal angular displacements in equal intervals of time, 
the angular velocity co is the ratio of any angular displacement A0 to 
the time interval At required for the displacement. Thus, 

a o 

For variable angular motion this expression would give only the 
average angular velocity for the interval. The angular velocity at any 
instant is the average angular velocity for an indefinitely small interval 
of time including the specified instant. Expressed mathematically, 
the angular velocity at any instant of a variable angular motion is, 

Limit AO dO 

At~0 At dt 
(9) 

Angular velocity may be expressed in any convenient units of angular 
displacement per unit of time, such as radians per second, degrees per 
second, revolutions per minute or per second, etc. It is usual to con¬ 
sider the angular velocity as positive if the rotation is counter-clockwise, 
and negative if clockwise. 

13. Relation between Linear and Angular Velocities. The mag¬ 
nitude of the linear velocity V and the angular velocity at any instant 
for a moving point, were found in Arts. 11 and 12 to be 

and oj 
dO 

dt 

It was shown in Art. 10 that if the point is moving in a circular path of 
radius R, or is moving in a path whose radius of curvature at the instan¬ 
taneous position of the point is R, then the indefinitely small displace¬ 
ment of the point is 

ds = RdO 

Substituting this value of ds in the equation for V and then substituting 
a>dt for dO, gives 

V - 
RdO 

dt 
Ru) (10) 

The relation just expressed is found very useful in kinematics. If a 
point has a uniform motion in a circular path of radius R feet at the rate 
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of N revolutions per second, it has an angular velocity of 2irN radians, 
or N revolutions, or 3602V degrees per second, and a speed at any instant 
of 2vRN feet per second. Since velocity is a directed speed, the velocity 
of the point at any instant will be tangent to the circle at the instan¬ 

taneous position of the point. 
14. Components of Velocity. For a point moving in a circular path 

of radius R, or moving in a path whose radius of curvature at the instan¬ 
taneous position of the point is R, the relation between the angular 
velocity and the magnitude of the linear velocity has just been shown 

to be 
V « Ru 

If the center of curvature of the path of a moving point is not taken as 
the origin of the radius vector of the point at the instant, then the term 
pdd is one component only of the linear velocity. The linear velocity 
at the instant would be the vector sum of the transverse and radial 

components of velocity, V and Vr, where 

r r - di.(11> 
In a similar manner the velocity of a point at any instant may be con¬ 
sidered as the vector sum of its axial components, Vx and Vv, where 

dx dy r = J and f-.JJ ...... (12) 

15. Linear Acceleration. The time rate at which the linear velocity 
of a moving point is changing at any instant is called its linear accelera¬ 
tion. The linear velocity of a moving point- possesses both direction 
and magnitude, or speed. A change in the velocity of a moving point 
means, therefore, a change in the speed or a change in the direction of 
motion or a simultaneous change in both speed and direction of motion. 
Hence, the linear acceleration of a moving point at any instant may be 
the time rate of change of the velocity due to a change in speed or due 
to a change in the direction of motion or due to a simultaneous change 
in both speed and direction of motion. Where, as in variable rectilinear 
motion, there is a change in speed but not in the direction of motion, 
the linear acceleration is due to a change in speed only. In curvilinear 

motion the linear acceleration is due either to a change in the direction 

of motion or to a change in both the speed and the direction of motion. 
Where, as in uniform curvilinear motion, only the direction of mo¬ 
tion changes, the acceleration is due to the change in the direction of 
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motion. In variable curvilinear motion both the speed and direction 

of motion change, and the acceleration is the vector sum of the compo¬ 
nent accelerations due to the change in speed and in direction of motion. 

If the velocity of a moving point is increasing, its acceleration is 
positive; and it is negative if the velocity is decreasing. 

The magnitude of an acceleration may be expressed in any con¬ 
venient units of magnitude of velocity per unit of time, such as feet per 
second per second (ft./sec.2), miles per hour per second (mi./hr./sec.), 
etc. 

16. Accelerated Rectilinear Motion. For rectilinear motion, as 
stated above, the acceleration of a moving point is due entirely to the 
change in the magnitude of the velocity. If the motion of the point is 
uniformly accelerated, the time rate of change of the velocity is constant, 
and the acceleration of the point at any instant is 

or 

A = II 1
^

 
1 

. . . (13) 

V = Vo -r At. . . • (14) 

where Vo and V are the respective velocities at the beginning and at 
the end of any interval of time At, or simply t. 

The linear displacement s during the interval t is the product of the 
average velocity and the time interval; or, 

s « £(F0 + V)t « \{V0 + F0 + At)t « V0t + |At2 . (15) 

Substituting the value of t from (14) in (15) gives, 

V2 « Fo2 + 2As 

Hence, for uniformly accelerated rectilinear motion, 

F - Fo + At.(16) 

F2 - Fo2 + 2As.(17) 

5 » Fot + \At2.(18) 

s~UVo + V)t.. . (19) 

For non~uniformly accelerated rectilinear motion equation (13) gives 

only, the average acceleration for the interval and not the acceleration 

at any instant. The acceleration at any instant would be the average 
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acceleration for an indefinitely small interval including the specified 

instant; or, mathematically, 

Limit AV dV 

At dt 

Hence, 
dV _ d?s 

dt ~ dt2 

Substituting the value of dt from (21) in (20) gives, 

Ads = VdV 

The above equations express the fundamental relations between 
displacement, velocity, acceleration, and time for non-uriiformly accele¬ 
rated motion of a point in a straight line path. These equations also 
apply to a component of the motion of a point, provided s, V, and A, 
as applying to the displacement, velocity, and acceleration of the com¬ 

ponent, are used in the equations. 
17. Simple Harmonic Motion. Simple harmonic motion is a special 

case of non-uniformly accelerated rectilinear motion of such engineering 
importance as to deserve special notice. A 
point is vSaid to have simple harmonic motion 
if it moves in a straight line with an accelera- 

| \ tion proportional to its distance from a point, 

3l\ fX O \c °r or^n> and directed towards the origin. If 
(pf y* j a point moves in a circular path at constant 

\ C_xL/? COS S sl)ee(^ ^ can s^own that the projection of 
« 7 the point on a diameter of the circle will have 

^—j—simple harmonic motion. 
PIG tg In Fig. 12, let Q be a point moving in a 

circular path of radius B at a constant speed 
V 

VQ or at a constant angular velocity If Q moves from B to 

f/g ia 

Q in an interval of time t, then, 

x = R cos 0 = R cos oot y = R sin 
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Hence, P, the projection of Q, will have a velocity at the instant of, 

VP = 
dx d(R cos cot) 

— —• coR sin wt = ■ 
dt dt 

and the acceleration of P at the instant will be, 

d?x d(— uRsinut) 

ccy 

AP = 
dt2 dt 

- = — w2R cos oit = — cc2x 

(24) 

(25) 

The angular velocity, a>, is a constant, and the minus sign shows AP 
to be directed towards 0. Therefore, the point P has simple harmonic 
motion, since it moves in the line BOC with an acceleration proportional 
to its distance from the origin 0 and is directed towards 0. 

For simple harmonic motion, the amplitude is defined as one-half 
the distance traversed by the point, which, for the above example, 
gives an amplitude equal to the radius R of the circle. The period is 
defined as the time required for one complete oscillation, and the 
frequency as the number of complete oscillations per unit of time. 
Hence, for the above example, the period T is, 

O) 

and the frequency N is, 

s ^. 

A weight, if suspended by a spring and set in motion, will vibrate 
up and down with simple harmonic motion. The higher the ratio of 
the connecting-rod length to the crank length, the more nearly does the 
motion of the cross-head of an engine approach simple harmonic motion. 
The motion of a pendulum approximates closely a simple harmonic 
motion if the arc through which the pendulum swings is small. 

18. Tangential and Normal Acceleration. For a point having vari¬ 
able curvilinear motion, the velocity changes in magnitude and in direc¬ 
tion. A point having such a motion in a circular path of radius R is 

illustrated in Fig. 13. As the point moves from B to C in an interval of 
time At, the velocity changes from Vi to V2. The total change in veloc¬ 
ity, AV, is the vector difference of V\ and F2, as shown in Fig. 14. It 
is also equal to the vector sum of two velocity components, AV and 

AF*f respectively parallel and perpendicular to Fi„ Thus, 

AV - V2 -> Vi - AV -f» AF* 
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Expressed algebraically, 

AF = V (AF*)2 + (AF")2 

By definition the average acceleration for the interval is, 

FIG. 13 F/G. 14 FIG. /& 

The acceleration at the instant is the average acceleration for an indefi¬ 
nitely smail interval of time including the instant; or, 

Limit AF 

A/« 0~At 

As At approaches zero, — approaches the time rate of change of the 
lXv 

dV 
magnitude of the velocity, —, in the direction of Fi, or tangent to the 

at , 
path at the instantaneous position of the point. This component, A*, 
of the acceleration is called the tangential acceleration. Hence, 

The acceleration component, —-, is called the normal acceleration, An, 
dt 

and acts at right angles to the tangential acceleration along the radius, 
R, toward the center of curvature, 0. From Fig. 14, 

AF" = V2 sin A0 

AF” sin Ad 
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As At approaches zero, F2 approaches Fj, or F, the velocity of the point 
a e de 

at the instant; sin A0 approaches Ad; and —- approaches —. 
At at 

Hence, in the limit, 
_ Limit AF” _ ^dd 

~ Ai = 0 At V dt 

But 
de 

dt 
is the angular velocity, «, and F = Ru>; therefore, 

F2 
An = F« = u2R = — • (29) 

Hence, the acceleration of the point at the instant is the vector sum of 
At and An as shown in Fig, 15, or, expressed algebraically, is, 

A = V(A')2 + (A")2 .(30) 

The direction of the acceleration relative to R is, 

tan <p 
A 
An (31) 

The expressions above for A1 and An apply to any curvilinear motion of 
a point where R is the radius of curvature of the path at the instan¬ 
taneous position of the point. As will appear later, most of the graphi¬ 
cal methods for determining accelerations are based on these com¬ 
ponents. 

19. Components of Acceleration. It is sometimes convenient in 
plane motion to refer the motion of a point to X and Y coordinate axes, 
and to use the axial components of acceleration, Ax and Av, instead of 
the components At and An. Thus, 

Ax 
dV£ 

dt 

d?x 

dt2 
and Av 

dVv 

dt 
d2y 

dt2 

Hence, the acceleration of a point at any instant is the vector sum of 
the components A* and Av, or, expressed algebraically, is, 

A = V(A*)2 + (A*)2. 

The direction of the acceleration with reference to the F axis is, 

(32) 
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20. Angular Acceleration. The angular acceleration of a moving 
point is the time rate of change of the angular velocity of the radius 
vector of the point. For a point having a uniformly accelerated motion 
in a circular path, the time rate of change of the angular velocity is 
constant, and the angular acceleration of the point at any instant is, 

or 

a 
A CO CO — coo 

a t ~ ~ 
(34) 

co — coo -{-at (35) 

Where coo and co are the respective angular velocities at the beginning 
and at the end of any interval of time At, or simply t. 

The angular displacement # during the interval t is the product of 
the average angular velocity and the time interval; or 

6 == 'Kcoo + co) t = |(coo + coq + of) l = u0t + \od2 . (36) 

Substituting the value of i from (35) in (36) gives 

co2 = coq2 4~ 2a# 

Hence, for uniformly accelerated motion of a point in a circular path, 

co = coo 4~ ot.(37) 

co2 = coo2 4~ 2a#.(38) 

# = coot 4* lot2.(39) 

# = |(cOQ 4“ u)l.(40) 

For non-uniformly accelerated motion of a point in a circular path, 
equation (34) gives only the average angular acceleration for the interval 
and not the angular acceleration at any instant. The angular accelera¬ 
tion at any instant would be the average angular acceleration for an 
indefinitely small interval including the specified instant; or, mathe¬ 

matically, 
Limit A co __ cico 

A£ = 0 A£ dt 
(41) 

But 

(42) 

Hence, 
dw d?0 
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Substituting the value of dt from (42) in (41) gives 

add ~ Lcdco.(44) 

The above equations express the fundamental relations between angular 
displacement, velocity, acceleration, and time for non-uniformly accele¬ 
rated motion of a point in a circular path. These equations also apply 
to any angular motion of a point whose radius vector at the instant is 
drawn from the center of curvature of the path. 

Angular acceleration may be expressed in any convenient units of 
angular velocity per unit of time, such as radians per second per second 

(rad./sec.2), degrees per second per second (deg./sec.2), revolutions per 
minute per second (rev./min./sec.), etc. , 

21. Relation between Linear and Angular Accelerations. It was 
shown in Art. 13 for a point moving in a circular path of radius R, or for 
a point moving in a path whose radius of curvature at the instantaneous 
position of the point is R, that 

V = Ita> 

Differentiating this expression with respect to time, gives 

dY d co 

dt “ dt 

U V . U iV 

But, by definition, — = A, and — = a; hence, 
at dt 

A‘ = Ita.(45) 
From Art,. 18, 

A" = Fu = w-R = L .... (46) 

Hence, 

A = V (A1)2 + (vl*)- = iiV a- + a,1 .... (47) 

It is thus evident that the magnitude of the linear acceleration of a 
point moving in a circular path of radius R, or in a path whose radius 
of curvature at the instantaneous position of the point is R, is pro¬ 
portional, like the linear velocity of the point, to the rotational radius, 
R, of the point. 

22. Relative Motion. In the preceding discussion the motion of 
a particle, or material point, is defined with reference to a point or a set 
of axes assumed as at absolute rest, or fixed. By absolute motion of a 
point or body is meant the change of position of the point or body with 
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reference to a body at absolute rest. Since nowhere in the universe is 
there a body known to be at absolute rest, it is impossible to know that 
the motion of any point or body is absolute. Hence, all motion is 
relative. It is customary, however, in mechanics and kinematics to 
regard the earth as at rest, and to speak of any motion relative to the 
earth as absolute motion. Hence, the absolute motion of a point or 
body is the motion of the point or body relative to the earth. The 
relative motion of a point or body is the motion of the point or body 
defined with respect to another body. 

The terms absolute and relative may be illustrated by considering 
an express and a freight train running in the same direction on straight 
parallel tracks, say the express train at 50 miles per hour and the freight 
train at 20 miles per hour. Hence, the absolute linear velocities of the 
two trains arc 50 and 20 miles per hour in the same direction. The 
linear velocity of the express train relative to the freight train is 30 miles 
per hour; that is, to an observer riding on the freight train the express 
train seems to be advancing at a rate of 30 miles per hour, because, to 
the observer, the freight train itself appears to be fixed, and in looking 
at the express train only the difference between the velocities of the 
express train and the freight train is apparent. On the other hand, to an 
observer riding on the express train, the freight train appears to be 
backing at a velocity of 30 miles per hour; that is, the linear velocity 
of the freight train relative to the express train is 30 miles per hour 
backwards. This last velocity is negative, because to the reference 
body, the express train in this instance, the body under observation is 
moving in a direction opposed to that which it has relative to the earth. 
Thus it is possible to gain a more complete understanding of the motion 
of a body by referring its motion to different bodies. 

As will be shown, the motion of a rigid body can be defined by the 
motion of one or more points of the body. An understanding, therefore, 
of the relative motion of points is of great importance in the study of 
the relative motion of bodies. 

In Fig. 16 let the two points B and C move parallel to the fixed plane 
O. The velocity of B relative to O at the instant is represented by the 
localized vector Vbo7 and the velocity of C relative to O by the localized 
vector Vco- It is to be noted that Vco is read, the velocity of C rela¬ 
tive to O. In determining the relative velocity Vbc, velocity of B 
relative to C, use will be made of the important principle that the addi¬ 
tion of equal velocities to each particle does not disturb or change the 
relative velocities of the two particles. Thus, if C and B are each given 
a velocity equal and opposite to Vco> the point C ceases to move relative 
to O; B acquires a new velocity component, Vco, relative to O; and 
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the relative velocity Vbc becomes the absolute velocity of B, since C 
is fixed, relative to 0. This is shown by the diagram of free vectors in 
Fig. 17. This shows Vbc as the vector sum of Vbo and —Vco or as 
the vector difference of Vbo and Vco- Hence, 

1 Vbc = T no —> Vco.(48) 

The dotted lines of Fig. 17 show that 

If the relative velocity VCb is desired, B and C would each be given 
a velocity — Vbo. Constructing the corresponding diagram of free 
vectors shown in Fig. 18, gives 

Vcb = Voo-*Vbo.(50) 
or 

Vco — Vbo +> Vcb.(51) 

It is to be noted that Vcb is equal in magnitude but opposite in direc¬ 
tion to that of VBc. 

These same relations hold true whether dealing with displacements, 
velocities, or accelerations. In proving the relation for displacements, 

each point would be given a displacement equal and opposite to the 
displacement of One of the points. In dealing with accelerations each 
of the points would be given a velocity and an acceleration equal and 
opposite to the velocity and acceleration of one of the points. 

There can be no relative translation of the particles of a rigid body, 
since any change of relative position of the particles would mean a 
change of form, which is contrary to the conception of a rigid body. 

Bodies which have no relative motion can, therefore, be joined together 
without affecting any motion they may have relative to other bodies. 
This is true, since, if there is no relative motion between them, there is 
no relative displacement of the particles, and they are as one body. 
It can, therefore, be stated that bodies which have no motion relative to 
each other have the same motion relative to any other body. It is, however, 
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not generally true that bodies which have the same motion relative to 

another body have no motion relative to each other. The front and 

rear wheels of an automobile on a straight road are an example. Each 

wheel has the same motion relative to the frame and relative to the 

ground, but they are not without relative motion, since to rigidly fasten 

them together would arrest all motion. 

In the study of machines we are interested, as a rule, either in the 

motions of the parts of a machine relative to the frame, or in the motion 

of the frame, or machine as a whole, relative to the earth. For these 

reasons it is generally found most convenient to treat the frame of a 

machine as the stationary, or fixed, member, and to relat e the motions 

of the parts to the frame. Where the frame of a machine has no motion 
relative to the earth, this procedure is equivalent to referring the motions 

of the various parts to the earth, since the motions of the parts relative 

to the earth and to the frame would be the same. This, however, 

would not be the case for such machines as automobiles, locomotives, 

and marine engines, where the frames have motion relative to the earth. 

It should now be evident that a machine part can have as many 

relative motions as there are objects with which to compare its change 

of position. Thus, for example, a pair of locomotive driving wheels 

rotate on their axes relative to the frame, they roll relative to the rails 

or to the earth, they rotate about the axes of their pins relative to the 

attached side rods, and they have still different motions relative to the 

pistons, connecting-rods, and other parts. 

The study of a mechanism is at times found to be much simplified 

by referring the motion of one member to some other member in motion 

rather than to the frame. While such related motions will be discussed, 

the word motion when used without qualification is to be understood 

throughout this book to refer to a change of position relative to the 

frame. 

A clear conception of what is meant by relative motion will be found 

essential to an understanding of kinematics. 

23. Free and Constrained Motion. A free body is a body having 

no material connection with other bodies. By free motion is meant the 

motion of a free body. A projectile in flight is an example of a body 

having free motion. The forces determining its path do not act through 

material connections to a fixed body. A body whose path with reference 

to some other body is determined by forces acting through material 

connections to the reference body is said to have constrained motion. 

Thus, in a steam engine, Fig. 19, every point of the crank-pin or crank¬ 

web is constrained by the crank-shaft bearings to move in a circular 

path in a fixed plane, the connecting-rod is constrained to move in a 
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definite path which it repeats for each revolution of the crank, and the 
piston is constrained by the walls of the cylinder and by its connection 
with the crank to move backward and forward in a straight line. The 
parts of the engine just mentioned have constrained motion since they 

move in fixed paths that are fully determined by the material connec¬ 
tions to the reference body, the frame of the engine. There are cases 
whore the constrained motion is not fully determined by the material 
connections. Thus the path of travel of the platen of a planing machine, 
Fig. 20, is determined by the action of gravity in conjunction with the 

3 

material connections or contacts. This is likewise true of some cam 
followers, while in others constrainment is made complete by the use of 
some auxiliary device such as a spring. 

For the combination of members shown in Fig. 21, the motion is 

neither free nor constrained but unconstrained so far as concerns the 
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plane motion of links 1, 2, 8 and 4, relative to the fixed member 0. 
For 1 and 4 in the positions shown, 2 and 3 may be in the positions shown 
or in the positions 2' and S'. Clearly the motions of 1,2, 3, and 4 rela¬ 
tive to 0 will depend on the friction at the joints, the action of gravity, 
and the direction and point of application of other forces that may be 
applied. Since, with one member fixed, each point in the other members 
is not constrained to move in a fixed path, the combination is not a 
mechanism, and the motion is unconstrained. 

24. Cycle, Period, and Phase of Motion. The parts of a machine 
have completed a motion cycle, when, starting from some simultaneous 
set of relative positions, they have passed through all the possible 
positions they could assume and have returned to their original relative 
positions. The time required for a motion cycle is called a 'period. 
The simultaneous relative positions occupied by the parts of a mechan¬ 
ism or machine at any instant during a motion cycle, constitutes a phase. 

In the ordinary steam engine, Fig. 19, the motion cycle corresponds 
to one revolution of the crank-shaft, whatever the time occupied by the 
revolution. In the common type of gas engine, each energy cycle 
requires two revolutions of the crank-shaft or four strokes of the piston; 
a suction stroke, a compression stroke, a working stroke, and an exhaust 
stroke. Hence, for each motion cycle of the valve gear parts, the 
principal parts complete two motion cycles. For the engine as a whole, 
the moving parts return to their initial relative positions only after the 
completion of two revolutions of the crank-shaft or four strokes of the 
piston. Gas engines of this type are, therefore, referred to as jour-stroke 

cycle engines. 
25. Continuous, Intermittent, and Reciprocating Motion. The 

motion of a body is continuous if during each successive cycle it neither 
stops nor reverses. The motion of a body is intermittent if during each 
cycle it stops moving for a finite interval of time and then starts moving 
again. A body has a purely reciprocating motion if during each cycle its 
motion is reversed without dwell. Thus it is possible for a part to have 
a purely reciprocating motion or an intermittent reciprocating motion. 
The crank-shaft of an automobile has a continuous motion, the valve 
tappet rods an intermittent reciprocating motion, and the piston a 
purely reciprocating motion. 

26. Principal Classes of Motions. Of the motions available for 
machinery, a very large proportion are included in three classes com¬ 
paratively simple in nature; plane motion, helical motion, and spherical 
motion. 

27. Plane Motion. A rigid body has plane motion when all its 
points move parallel to a fixed plane. Any point in a body having 
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plane motion may trace any path in the plane of motion, and every 
other point on a line through the first point perpendicular to the plane 
of motion will trace paths of identically the same form. Thus, in 
Figs. 22 and 23, if the sections of the bodies M and AT, shown shaded, lie 
in the plane of motion of point P, the successive positions of a line 
through P perpendicular to the sections will be parallel, and every 
point such as Q or S in this perpendicular will have a path identical with 
that of P. This property of plane motion greatly simplifies the treat¬ 
ment of the plane motion of bodies, since the motion of a point or group 
of points in a section in the plane of motion represents the motion of all 
corresponding points in parallel sections. Hence, the motion of all the 
points in a body having plain motion may be represented by the motion 
of a single plane figure. The motions, for example, of the points P, Q, 

FIG. 23 

and S in Fig. 22 or 23 are in identical paths, and the motion of any one 
of these points may be taken to represent that of the other points. 

Plane motion is the simplest and by far the most common class of 
motion. It is either a rotation, a translation, or a motion that can be 
reduced to a combination of rotation and translation. 

28. Rotation. If each point of a rigid body having plane motion 
remains at a constant distance from a fixed straight line which is 
perpendicular to the plane of motion, the body has a motion of rota¬ 
tion. In Fig. 22 is represented a body M having a motion of rotation 
about the fixed straight line, or axis of rotation, A A. The rotation may 
be continuous, intermittent, or reciprocating. The shaded section 
lies in one of the parallel planes of motion. Any point in this section, 
such as P, traces a circular path in the plane of motion; and every 
other point, such as Q, in a line through P perpendicular to the plane 
of motion will trace a path of identically the same form. Hence, 
every point in a rotating body has the same angular displacement, 
angular velocity, and angular acceleration, and to define the motion of 
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one point defines the motion of every other point in the body. Gears, 

pulleys, cranks, and levers rotating about 

fixed axes are examples of bodies having 

plane motion of rotation. 

Fig. 24 represents a portion of a 

pulley having plane motion of rotation 

about the fixed axis O. In accordance 

with Art. 13, the direction of motion 

of P at the instant is represented by a 

line in the plane of motion tangent 

to the path at J\ and, therefore, per¬ 

pendicular to the rotational radius OP. 

The magnitude of the velocity of P at 

the instant relative to the fixed body 0 is 

T PO — p Cj (OP)c 

Likewise for any other point in OP, such, as Q, the magnitude of the 

velocity is 

Hence, 
Too = (0Q)« 

Voo = (OQ)<* ^ °Q 

Vjpo (OP).co OP 

which indicates that OQC and OPB are similar triangles, and that the 

vector termini C and B lie on the same straight line. It is to be noted 

that this triangular relation is true whether or not the points considered 

are on the same rotational radius. It is also to f>e noted that the tangent 

of the angle BOP is proportional to the angular velocity of the body. 

Line OB is call a gauge line since it measures, or gauges, the lengths 

of all vectors which are proportional to their distance from a pole. 

29, Translation. When a rigid body so moves that the position of 

each straight line of the body is parallel to all its other positions, the 

body has a motion of translation. It follows that in any translation of 

a rigid body each point of the body has the same motion, that is, the 

same displacement, velocity, and acceleration at any instant. 

If the translation of a body is such that all points of the body are 

moving in identical paths parallel to a fixed plane, it is called plane trans¬ 

lation. Plane translation may be either rectilinear or curvilinear. It is 

rectilinear if all points of the body move in parallel straight-line paths, 

and curvilinear if the paths of the points are identical curves parallel to 

a fixed plane. 

Rectilinear translation is illustrated in Fig. 23, where, obviously, 

the points of line PS and of all other lines of the body traverse parallel 
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straight-line paths. The carriage of a lathe, the platen of a planer, 

Fig. 20, and the piston and cross-head of an engine, Fig. 19, are examples 

of bodies having rectilinear translation. The side rods of a locomotive 

and the cars of a Ferris wheel are examples of bodies having plane 

curvilinear translation. 

Rectilinear translation may be regarded as a special case of rotation 

in which the distance from the points of the body to the axis of rotation 

is infinite. When the word translation is used without qualification it 

is to be understood to mean rectilinear translation. 

It has been shown that the plane motion of a body is completely 

defined by the motion of any section of the body parallel to the plane 

of motion, that is, by the change of position of a plane figure. Since 

two points suffice to locate a figure in a plane, the plane motion of a body 

is determined by the motion of any two points in a plane of motion or 

by the motion of the lino joining the points. 

30. Rotation and Translation. Any plane motion of a rigid body 

may be reduced to an equivalent rotation and translation. Thus the 

motion of the connecting-rod of a 

steam engine is a combination of 

rotation and translation. Suppose, in 

the plane motion of the body shown 

in Fig. 25, the body changes its posi¬ 

tion from B to BAs before pointed 

out, the plane motion of a, body may 

be represented by the motion of any 

two points in the plane of motion or 

by the motion of a line joining these 

points. Hence, the change of position 

of body B may be looked upon as a 

translation of the line CD to t he position C" Dr and then as a rotation 

from this position to the position C" D", or the line may be looked 

upon as first being rotated and then translated. Since the example 

illustrates a perfectly general case, the same method of reasoning 

applies to all cases of plane motion, no matter how great or how small 

the motion may be. 

31. Helical Motion. A rigid body has helical motion when each 

point of the body has a motion of rotation about a fixed axis combined 

with a simultaneous translation parallel to the axis. If the ratio between 

the angular and translational components is constant, the body is said 

to have a regular helical motion. The motion of a nut on a screw, 

Fig. 26, is an example of regular helical motion. Practically all of the 

helical motions used in machines are of this character. The lead of a 
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helix is the translation along the axis per complete turn, or rotation. 
In a regular helical motion the lead is constant. 

32. Spherical Motion. A rigid body has spherical motion when 
each point of the body has a motion about a fixed point while remaining 
at a constant distance from it. Hence each point moves in the surface 
of a sphere having the fixed point as the center. A ball-and-socket 
joint permits spherical motion. The balls of a fly-ball, or Watt, gov¬ 
ernor, Fig. 27, have spherical motion when the speed of the engine is 
varying. The balls 3 and 4 are pivoted to the rotating shaft 1 atO; 
2 is free to slide up and down on i and is connected to the valve gear 
mechanism of the engine. When the engine is running at a constant 

FlG.£G 

speed, 3 and 4 are held in fixed positions relative to 1 by the centrifugal 
force and the action of gravit}r, and any point in 3 or 4 is thus constrained 
to move in a circular path in a plane perpendicular to 1. If, because of 
a change of load on the engine, the speed of the engine is increased or 
decreased, the centrifugal force will be increased or decreased, and 3 
and 4 will swing about the pivot 0 as they rotate, thus causing any 
point in 3 or 4 to travel in the surface of a sphere having a radius equal 
to the distance of the point from 0. Hence, points in 3 and 4 would 
have spherical motion. 

33. Relation between Plane, Helical, and Spherical Motions. If, 
in a helical motion, the translational component, or lead, is reduced to 
zero, the motion is reduced to a plane motion of rotation. If the angular 
component is reduced to zero or the lead is increased until it is of infinite 
length, the motion is reduced to rectilinear translation. Thus the two 
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limits of a helical motion are plane motions, and either plane rotation 

or plane translation may be treated as a special case of helical motion. 
If, in a spherical motion, the distance from the moving body to the 

fixed point is increased to infinity, the surfaces of the spheres in which 

the points of the body move are reduced to planes, and the motion is 
reduced to plane motion. Hence, plane motion may be treated as a 
special case of spherical motion. 
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TRANSMISSION OF MOTION 

34. Pairs. The parts of a machine may make point or line contact, 

as in a ball or roller bearing, as between meshing gear teeth, between 

friction wheels, or between a cam and its follower; or the parts may 

have surface contact, as between a journal and its bearing, between 

a slide and its guide, between a screw and its nut, or between a piston 

and its cylinder. 

The connections which permit relative motion between the parts of 

a machine are called pairs. Where surface contact is maintained the 

connection is called a lower pair, and is called a higher pair if point or 

line' contact is maintained. The surfaces or forms which work together 

in a pair are called the elements of the pair. Thus the cylindrical surface 

of the crank-shaft of an engine and the inside surfaces of the supporting 

bearings are pairing elements. The surfaces of a cross-head and its 

guide, of a screw and its nut, and of a cam and its follower are other 

examples of pairing (dements. A pair that permits of only relative 

rotation between the parts connected is called a turning pair, and one 

that permits of only relative sliding is called a sliding pair. A screw 

and its nut is called a screw pair, and a ball-and-socket joint a spherical 

pair. A pair which completely constrains the relative motion of the 

parts connected is called a closed pair, and a pair which does not com¬ 

pletely constrain the relative motion of the parts connected or in contact 

is called an unclosed pair. All lower pairs that are complete are closed 

pairs. In general, higher pairs are unclosed pairs. 

Point or line contact usually involves greater wear than surface 

contact, and is generally to l>e avoided if possible. The contact between 

the teeth of gears and that between most cams and their followers is 

necessarily line contact. There are many cases, however, where it is 

perfectly feasible to introduce modifications which will distribute the 

contact over a surface without affecting the related motions. By so 

doing the intensity of pressure, and consequently the wear, are reduced. 

Where line contact cannot be eliminated, it is often possible to improve 

the contact by getting a nearer approach to surface contact. While 
the three forms of the same mechanism shown in Figs. 28, 29, and 30 

28 
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transmit the same motion from driver to follower, the quality of the 

contact for each form is different. The contact between the driver and 

follower in Fig, 29 has been improved over that in Fig. 28 by increasing 

the radius of curvature of the driver contact with the follower, thus 

giving a nearer approach to surface contact. In Fig. 30 the nature of 

the contact has been still further improved over that shown in Fig. 28 

by fitting the driver pin with a sliding block, thus changing the contact 

from line to surface contact. 

Surface contact is only possible between plane surfaces, surfaces of 

revolution, and helicoidal surfaces. Hence, line contact cannot be 

eliminated unless it can be arranged to 

use such surfaces in contact. Jn gear 

teeth, for example, it is impossible to 

avoid line contact. 

It is often found desirable, as in 

cams, to introduce an intermediate piece. 

Thus, in Fig. 31, considerable advantage 

is gained by introducing the roller 2 as 

an intermediate piece between the cam 

/ and the rod, or follower, 3. The cam 

could act directly on the end of the rod, 

3j but this would result in unnecessary 

friction and wear, and the operation 

would not be smooth, especially if the 

form of the cam departed much from 

a surface of revolution having its axis of rotation somewhere near 

its geometric axis. By introducing the roller, much smoother action is 

obtained. Rolling between the roller and cam surface is substituted 

for direct sliding between the cam and rod, and what sliding exists, is 

transferred to the pin carrying the roller where surface contact and a 

much lower speed of rubbing obtain. 

It is interesting to note in connection with the preceding discussion 
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that it is sometimes an advantage to employ point or line contact where 
surface contact could be employed. Ball and roller bearings are 
examples. In ball or roller bearings point or line contact exists, while 
the ordinary bearing has surface contact between the journal and 
bearing shell. The more unfavorable contact in the ball or roller 
bearing is accepted since it is more than offset by the reduction in the 
friction loss due to the substitution of rolling for sliding friction. 

36. Kinematic Links. A kinematic link is a rigid body provided 
with two or more elements of pairs which permit of its being connected 
to at least two other bodies. A body with two elements of pairs is 
called a binary link; one with three (dements is called a ternary link; 
and one with four elements is called a quaternary link. 

One link of the engine shown in Fig. 19 is made up of the parts of 
the cross-head, piston-rod, and piston. The parts of the crank and 
crank-shaft form a link, the parts of the connecting-rod another, and 
the parts of the frame still another. Neglecting the valve gear, the 
engine is seen to be composed of four binary links. The cross-head, 
piston-rod, and piston form a binary link since they provide an element 
of a sliding pair and an element of a turning pair. The sliding element 
pairs with a sliding element of the engine frame, and the turning element 
pairs with a turning element of the connecting-rod. The engine frame, 
neglecting the valve gear, is a binary link since it provides an element of 
a sliding pair and an element of a turning pair. The sliding element 
pairs with the sliding element of the cross-head, piston-rod, and piston; 
and the turning element pairs with the turning element of the crank¬ 
shaft. The crank and connecting-rod are binary links since each con¬ 
tains two elements of turning pairs. One turning element of the crank 
and shaft pairs with the turning element of the frame, and the other 
with a turning element of the connecting-rod. One turning element of 
the connecting-rod pairs with a turning element of the crank, and the 
other with a turning element of the cross-head. To simplify matters, 
these links are not, in kinematics, represented by the actual parts of 
the engine, but are represented diagrammatically. This is possible 
since the motions of the parts of a machine depend entirely on the 
relative positions of the pairs and not at all on the size, shape, and 
weight of the parts. Thus, the sliding element of the cross-head, piston- 
rod, and piston is diagrammatically represented in Fig. 32 by the out¬ 
lines of a rectangular block, and the turning element by a small circle 
at the center of the block. The sliding element of the frame is repre¬ 
sented by a heavy line joined to a small circle representing the turning 
element of the frame. The crank and shaft are represented by a heavy 
line joining two small circles representing the two turning elements of 
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the crank and shaft. The connecting-rod is similarly represented. The 
fact that the engine frame is the fixed, or reference, link may be indicated 
by shading, or edging, as in Fig. 38. A ternary link is represented as 
shown in Fig. 33, and a quaternary link as shown in Fig. 34. 

Each link of the engine mechanism contains two elements of pairs, 
each element belonging to a lower pair. The cam, f, in Fig. 31, illus¬ 
trates a kinematic link containing an element of a higher pair and an 
element of a lower pair. The surface of the cam making line contact 
with the roller constitutes the element of the higher pair, and the surface 
of the shaft which turns the cam constitutes the element of the lower pair. 

FIG. 32 F/G.33 FIG. 34- 

36. Kinematic Chains. Links that are provided with suitable 
pairing elements may be connected by joining the elements. A com¬ 
bination of links that are thus connected, without leaving any elements 
unpaired, is called a chain. If the combination is such as to admit of 
no relative motion of the links, it is called a structure, or locked chain. 
Thus the three-link chain shown in Fig. 35 is a structure, since it does 
not admit of any relative change of position of the pairs and, therefore, 
does not admit of any relative motion of the links. A combination 

which admits of definite relative motion of the pairs or links such that, 
with one of the links fixed, each point in every other link is constrained 
to move in a fixed path, is called a kinematic chain. The chain illus¬ 
trated in Fig. 32 is such a chain. A combination in which, with one 
of the links fixed, each point in every other link is not constrained to 
move in a definite path, is called an unconstrained chain. Such a chain 

is illustrated in Fig. 21. 
Whether or not any ordinary chain is a structure, a kinematic chain, 

or an unconstrained chain, can usually be told by inspection. It be- 
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comes, however, increasingly difficult, as the number and kinds of links 

in a chain are increased, to tell whether the chain is locked, constrained, 

or unconstrained. A criterion of constraint* applying to chains having 

plane motion has been derived in algebraic form. This criterion is 

J + Iff = IN - 2 . . . . . . (52) 

In this equation J represents the number of binary joints in the chain, 

II the number of unclosed pairs, and N the number of links in the chain. 

The term joint is restricted to apply to the connection of two links by a 

closed pair. If three links are joined at the same connection, the joint 

is called a ternary joint; and if four links are joined at the same con¬ 

nection, the joint is called a quaternary joint. An ordinary joint of two 

elements of a closed pair is called a binary 

joint. Evidently a ternary joint is equivalent 

to two binary joints, since one of the 

three links joined could carry the pin for 

the other two links. Similarly, a qua¬ 

ternary joint is equivalent to three binary 

joints. 

The above equation indicates that a 

chain is locked if the right-hand member 

comes out less than the left-hand member. 

If the two members come out equal it 

indicates that the chain is constrained; and 

it indicates that the chain is unconstrained 

if the right-hand member exceeds the left- 

hand member. 

A six-link chain having 3 binary joints 

and 2 ternary joints is represented in Fig. 36. The number of joints 

is, therefore, equivalent to 7 binary joints. Hence, J = 7 and N = 6 

and II == 0, since there are no unclosed pairs. Substituting in equation 

(52) gives 

7 + 0 = |(6) ”2 = 7 

The chain is, therefore, constrained. 

An 8-link chain having 10 binary joints is shown in Fig. 37. Hence 

J = 10 and N — 8 and II = 0, or 

10 + 0 = |(8) - 2 = 10 

indicating that the chain is constrained. 

* See "Kinematics of Machinery,” by A. W. Klein, or "Kinematics and Kinetics 
of Machinery,” by J. A. Dent and A. C. Harper. 
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The chain illustrated by Fig. 21 has 5 links and 5 binary joints. 

Hence N = 5 and J = 5 and II = 0, or 

5 + 0 - |(5) - 2 = 5-J 

indicating that the chain is unconstrained. 

In certain cases equation (52) will indicate that a chain is uncon¬ 

strained when it is actually constrained. This is true of the simple chain 

suggested by Fig. 31, which has 4 links, 3 binary joints, and one unclosed 

pair. However, link 2 is an intermediate piece which could be rigidly 

attached to 8 without affecting the relative motion of 1 and 3. Hence 

/or the equivalent chain N = 3 and J = 2 and II = 1, or 

2 + 1(1) = 1(3) -2 = 2* 

showing that the chain is constrained. 

While the criterion of constraint as stated in equation (52) cannot 

always be applied with certainty, it will, in general, be found very useful 

in connection with chains whose constraint is not obvious. 

The simplest complete kinematic chain is made up of four links. 

Kinematic chains having a greater number of links are called compound 
kinematic chains. There are, however, kinematic chains which have less 

than four links. Most cams acting on direct contact followers have 

only three links. By using a bar with the ends bent and so formed as 

to work in slots a mechanism equivalent to that shown in Fig. 70 is 

obtained which has only two links. Such apparent exceptions to the 

basic four-link chain are classed as incomplete four-link chains. They 

will be found to have links which vary in length, or to have two or more 

links which, kinematically, are of infinite length. 

37. A Mechanism. A mechanism is a kinematic chain with one of 

its links fixed. Hence, from a kinematic, or constrained, chain having 

n links, n mechanisms may be formed by taking in turn each link of the 

chain as the fixed, or reference, link. The various mechanisms that can 

thus be obtained from a given kinematic chain are said to be inversions 

of the chain. 

38. Inversion. As will be evident, many different and useful mech¬ 

anisms may be obtained by the inversion of various kinematic chains. 

Figs. 38, 39, 40, and 41 illustrate the various inversions of the slider 

crank chain shown in Fig. 32. By making the link 0 of Fig. 32 the fixed 

link, or frame, we obtain the ordinary steam-engine mechanism shown in 

Fig. 38. Fig. 39, the inversion obtained by fixing the crank, or link 1, 

illustrates the mechanism of the Gnome type of engine with rota¬ 

ting cylinders. This inversion is also used for the quick return mechan- 
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ism of the Whitworth and other types of metal shapers, Fig. 40, the 
inversion obtained by fixing the connecting-rod, or link 2, illustrates the 
mechanism of the oscillating* cylinder engine, once used as a type of 
marine engine, and now found, because of its simplicity, on toy steam 
engines. It is also used as a shaper mechanism. Fig. 41, the inversion 
obtained by fixing link 3, the slide, or cross-head, of Fig. 32, has been 
used in several varieties of pumps. 

39. A Machine. A machine is a mechanism or a combination of 
mechanisms constructed not only for the purpose of transmitting and 
transforming motion, but also for the purpose of transmitting forces 
and doing useful work. 

While a machine contains one or more mechanisms, a mechanism or a 
group of mechanisms is not necessarily a machine. Many models, 
which are mechanisms or combinations of mechanisms, are not machines 
since they are not built to do useful work but merely to illustrate trans¬ 
formations of motions. The same can be said of instruments, watches, 
governors, etc., since the energy they transmit is only that required to 
overcome their own friction. 

It must be evident that the same mechanism may be used in many 
different machines, and that many different mechanisms may be used 
in a given machine to accomplish the same purpose. The working, or 
moving, parts of a machine may be composed of levers, arms, links, 
screws, nuts, rods, shafts, cams, wheels with teeth or with grooved rims, 
or other rigid members, also flexible members such as belts, ropes, 
chains, and springs, and occasionally a body of confined fluid such as 
water, oil, air, etc. Many combinations and modifications of these are 

used, resulting in an innumerable variety of forms, which* kinematically, 
deduce to a few fundamental classes of mechanisms or combinations of 
the same. It might here be pointed out that it is not always a simple 
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step to successfully apply to a machine an apparently suitable 
mechanism. 

The frames which support the working parts and determine their 
motions are almost as varied in form as the moving parts themselves. 
Kinematically, the frame reduces to a single member for each kinematic 
chain involved. It is usually regarded as the fixed member. However, 
so far as relative motion is concerned, it matters not which member of a 
kinematic chain is taken as the fixed member. 

As pointed out in Art. 23, the complete constrainment of the parts 
of a mechanism may or may not be due entirely to the material connec¬ 
tions. The platen of a planing machine Was cited as an example. A 
crane where the hoisting block and load are raised and lowered by means 
of a chain or cable, is an example where the motion of the block and load 
is constrained entirely by the action of gravity. The slightest horizontal 
force will sway the crane hook and, therefore, change its path from the 
vertical in which it normally moves. This does not, however, affect 
the useful operation of the crane. For all practical purposes the action 
is better than if the hook were rigidly constrained. In fact, a certain 
degree of freedom is sometimes desirable. 

40. Methods of Transmitting Motion. Since the purpose of a 
mechanism is to transmit or to transform motion, or both, a study 
of the laws governing the methods 
by which motion may be trans¬ 
mitted is of prime importance. 
Although the variety of forms of 
mechanisms is almost unlimited, 
there arc only a few classes or 
kinds of mechanisms. As will be 
evident in the following articles, 
this greatly simplifies the study 
of the Laws governing the trans¬ 
mission of motion by mechan¬ 

isms. 
The nature of the transmission is dependent upon the form of con¬ 

nection between the two members, the driver and the follower, as well 
as upon the general type of mechanism. Figs. 42, 43, and 44 illustrate 
some of the possible ways of transmitting motion. In each of the 
figures the shaft of 1 has a given angular motion, oscillation. Because 
of the nature of the connection between them, 1 transmits angular 
motion to 3. Within a limited range each of the three ways of trans¬ 
mitting motion could give the same angular velocity change between 

the shaft of 1 and the shaft of 3. 
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In Fig. 42, motion is imparted to 1 by its shaft, to which it is rigidly 
attached. The cam by direct contact with its follower S, transmits 
motion to 3 and hence to its shaft. The motion which 1 gives to 3 

depends upon the shape of each and the distance between their shaft 
centers Oi and (h. The mechanism of Fig. 42 could be so designed as 
to transmit the same angular motion from the driver to the driven shaft 
as the mechanism shown in Fig. 43 or 44. 

In Fig. 43, the motion of member 1 is transmitted to member 3 by 
the intermediate rigid link 2. In this mechanism the lengths of the 
links and angular relations can be changed to produce considerable 
variation in the related motions of the driver and driven shafts. 

In Fig. 44, the motion of member 1 is transmitted to member 3 by 
the intermediate member 2} a flexible band. In this mechanism also 
the related motions between the driver and driven shafts may be greatly 
varied by changing the size and shape of the band lobes and the distance 
between their centers of rotation. This is transmission of motion by a 
flexible connector. 

Motion transmitted from one body to another without any material 

connection between them, constitutes a fourth method of transmitting 
motion. This method is illustrated by the action of gravity and by the 
action on bodies of a magnetic or electric field. 

The various ways of transmitting motion from one body to another 
give rise to the following classification: 

(а) Transmission of motion by direct contact, as in toothed 

wheels, friction wheels, cams without rollers, etc. 
(б) Transmission of motion through intermediate rigid con¬ 

nectors, such as links, rollers, shoes, etc. 
(c) Transmission of motion through intermediate flexible con¬ 

nectors, such as belts, ropes, chains, springs, fluids, etc. 
(d) Transmission of motion without material connection, as in 

electrical machinery. 
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41. Driver and Follower. That part of a mechanism which causes 
motion is called the driver, and that part to which motion is transmitted 
is called the follower. In each of Figs. 42, 43, and 44, illustrating the 
three principal modes of transmitting motion, member 1 is the driver, 
rotating in a counter-clockwise direction, and member 3 is the follower. 
Each of these three mechanisms is taken as a representative of its class, 
illustrating transmission of motion by direct contact, by a rigid con¬ 
nector, and by a flexible connector. The following analysis of a repre¬ 
sentative of each class will coverall but a few special cases of each class, 
and the fundamental principles deduced will cover all but a few special 

cases without reference to class. 
42. Line of Transmission. In a mechanism the velocities of the 

points of connection between the driver and the follower may be re¬ 
solved into components by which the driver causes the follower to 

move, and into components which apply only to the relative motions 
of the driver and follower, as the sliding of one on the other. The line 

of transmission is that line along which motion of the driver must act 

in order to cause motion of the follower. If the direction of motion at 
the point of connection of the driver is such that it has no component 
along the line of transmission, it will not drive its follower; and, if the 
possible direction of motion at the point of connection of the follower 
is such that it has no component along the line of transmission, it will 
not be driven. 

Brief study will disclose that in a mechanism transmitting motion 
by direct contact, the line of transmission is the common normal to the 
two surfaces in contact. In a mechanism transmitting motion by a 

link, the line of transmission is along the link, while in a flexibly con¬ 
nected mechanism it is along the line of the wrapping connector. 

43. Angular Velocity Ratio. The three mechanisms shown in Figs. 
42, 43, and 44 illustrate the three common methods of transmitting 
motion. The velocity relations of these three mechanisms are shown 
in Figs. 45, 46, and 47. In each of these figures corresponding points 
and lines are represented by the same letters. 

In Fig. 45, the contact, point P as a point in the driver 1 rotates 
about the center 0\. Its velocity vector PMi is, therefore, perpendicular 

to the rotational radius ()\P. PT and NN' are lines through P} re¬ 
spectively tangent and normal to the contact surfaces, and PTi and 
PS are, respectively, the tangent and normal components of the velocity 
vector PM i. The contact point P as a point in 3 rotates about the 

center O3. The normal component of its velocity must be equal to PS} 

since, if it were larger, 3 would leave contact with Jf, and, if it were 

smaller, 1 and 3 would be mutually deformed. This would be contrary 
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to the assumption that 1 and 3 are rigid bodies. The direction of motion 
of P as a point in 3 is perpendicular to its rotational radius 03P. Having 
its direction of motion and the normal component of its velocity, the 
velocity PMs of P as a point in 8, likewise its tangential component 
PTsy can be found by composition and resolution. Since the linear 
velocities and the rotational radii of the point P as a point in both 1 

and 3 are known, the angular velocities ouo and o)3o of 1 and 8 relative 
to 0 are 

Hence, 

0)10 = 

0)10 _ 

0)30 

V PM 1 

R ~ OiP 
and 

PM i O3P 
OiP X PMd 

__ PMs 

~ ChP 

(53) 

Line OiF\f perpendicular to the line of transmission NN'f forms a triangle 

F\0\P similar to triangle SPM1, and line O3F3, perpendicular to NN 

forms a triangle F3O3P similar to triangle SPM3. Hence, 

PMi PS PM:3 PaS 

OiP ~ O1P1 “ 03P “ O3P3 * ‘ 

Dividing (54) by (55) gives 

PMX <hP _ PS O3P3 

OiP X PM3 O1P1 X PaS 

Hence, by substituting (56) in (53), 

0)10 0^F^ 

O3P3 

0^ 

(54) and (55) 

. (56) 

0)30 OlPl 
(57) 
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But triangles F\0\L and F3O3L are similar, and 

OJh = O3L 
0\F\ 0\L ’ * * 

Hence, from (57) and (58), 

^10 __ O3L 

C030 0\L 

FIG. 46 

(58) 

(59) 

It will be evident by inspection that similar treatment applied to the 
mechanisms shown in Figs. 46 and 47 will yield the same results as 
expressed in equations (57) and (59). Hence, the relations expressed by 
these equations for the three common methods of transmitting motation 
may be stated as follows: The angular velocities of driver and follower are 

Os Ot 

FIG. 47 
\ 

inversely as the perpendiculars let fall from their fixed centers upon the line 
of transmission; or inversely as the segments into which the line of trans¬ 
mission cuts the line of centers. 

It is possible to further clarify the angular velocity relations just 
stated by considering the points Fi and F-s, in Fig. 45, as respective points 

in 1 and 3, which could be so extended as to actually include Fi and F3. 

The linear velocities of Fi and P as points in 1 are as their rotational 
radii, or, from similar triangles, as PS is to PMi. Hence, the total 
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velocity of F\ is PS equal to the normal component of PMSince the 
normal component of the velocity of P as a point in 3 must be equal to 
PS, the total velocity of If\ as a, point in 3 is, by the same reasoning, 
equal to PS, and, therefore, equal to the total velocity of Fj. Since the 
linear velocities of I<\ and F$ as points in 1 and 3 are equal, their angular 
velocities are inversely proportional to their rotational radii, OiF\ and 
O3F3, which are the perpendiculars from the fixed centers to the line of 
transmission. In a similar manner, the relation is also evident for 
Figs. 40 and 47. 

44. Constant Angular Velocity Ratio. It has just been shown, for 
the three common methods of transmitting motion, that 

a'10 0\\h 

<030 0\L 

If the angular velocity ratio is to be constant, /, must be a fixed point on 
the line of centers. Ilnur, for constant angular velocity ratio, the line, of 

transmission must always cut the line of centers at a fixed point. 

This requirement is fulfilled by many pairs of curves which may be 
used as the outlines for the acting faces of direct-contact members. As 
will appear later, it is a requirement of fundamental importance in 
treating the theory of gear tooth outlines. 

Constant angular velocity ratio is secured in link transmission when 
the driving and driven arms are equal and the length of the connecting 
link is equal to the distance between the fixed centers, as in the side rods 
connecting locomotive driving wheels. 

Constant angular velocity ratio is secured in the case of wrapping 
connectors when the driver and follower are circular cylinders rotating 
about their geometric axes, as do belted wheels. 

45. Directional Relation. In Figs. 45, 46, and 47, the rotation of 
the follower is in the same direction 
as the driver. It is to be noted that 
for each one of these three common 
methods of transmitting motion, the 
centers Oi and O3 lie on the same 
side of the line of transmission NN\ 

In Fig. 48 is illustrated a direct-con¬ 
tact mechanism in which the direc- 

FIG 48 tion of rotation of the follower is 
evidently the opposite to that of the 

driver. It is also evident that the centers of rotation 0i and O3 are on 
opposite sides of the line of transmission NN'. This can easily be 

shown to be true for the two other methods of transmitting motion. 
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Hence, for any of the three common methods of transmitting motion, the 

directions of rotation of driver ami follower arc the same if the centers of 

rotation lie on the same side of the line of transmission, and. the directions of 

rotation are opposite if these centers lie on opposite sides of the line of 

transmission,. 

46. Nature of Rolling and Sliding. The action between two mem¬ 
bers in direct contact may be pure rolling, pure sliding, or a combination 
of rolling and sliding. Two members acting by direct contact are shown 
in Fig. 49. For the phase shown they are in contact at P. Let R and S 

be any two points that meet and become coincident, contact points as 
the action continues. For pun; rolling action between 1 and 2 the arcs 
PR and PS must lx; equal. If for 
any increment of motion the corre¬ 
sponding arcs of action are not 
equal, the rolling must lx; accom¬ 
panied by some sliding. For pun1 
rolling action no single point on 
either member comes in contact 
with two successive points of the 

other. When; a point on one body, 
within the limits of its path, coines 
in contact with all the successive points on the acting surface of another 
body, the action is pure sliding. The action between a cross-head and 
its guide; is an example of pure sliding The action between gear teeth 
and between many cams and followers is mixed rolling and sliding. 

47. Velocity of Sliding in a Direct-Contact Mechanism. Since, as 
was shown in Art. 4d, two rigid bodies in direct contact must have the 
same component of velocity along the common normal through the point 
of contact, and, hence, have no rehitive velocity along this common 
normal, or line of transmission, all motion of the contact points relative 
to each other must be along the common tangent. The tangential com¬ 
ponents may have any values, either in the same or in opposite direc¬ 
tions. If, as is usually the case, the velocities of the contact points rela¬ 
tive to the frame of the mechanism are known or can be determined, the 
relative sliding between the driver and the follower may be found by 
subtracting the tangential velocity components of the contact points. 
Hence, in direct-contact mechanismsy the velocity of sliding is the vector 

difference of the tangential components of the velocities of the points of con¬ 

tact. Since these components lie in the same line, the algebraic differ¬ 
ence is the same as the vector difference. 

Fig. 50 illustrates the graphical determination of the velocity of 
sliding between two direct-contact members 1 and 8 in the phase shown. 
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Let 1 drive 3, and suppose 1 to be driven by another member acting at Q 

giving Q a known velocity VQ0 relative to the frame 0. Q' is a position 
of Q revolved so that it lies 
on the radius of P. The 
vector PMi, representing the 
velocity of P as a point in 1, 

is perpendicular to radius 
OiP, and its magnitude is- 
determined by the dotted 
gauge line drawn through the 
extremity of the vector Vq>o, 

since the velocities of points 
in a rotating body are pro¬ 
portional to their rotational 
radii. The vector PM\ is now 
resolved into its components 

PS along the common normal NNf, and PT\ along the common tan¬ 
gent at the point of contact. 

The contact point P as a point in S rotates about the center O3. 
The normal component of its velocity must be equal to PS, since, if 
larger, 3 would leave contact with 1, and, if smaller, 1 and 3 would be 
mutually deformed. The direction of motion of P as a point in 3 is per¬ 
pendicular to its rotational radius O3P. The next step is to compose a 
resultant velocity PM3, knowing its direction and the magnitude and 
direction of its normal component PS. The line MiS, parallel to the 
common tangent which determined the magnitude of the normal com¬ 
ponent PS, will .also determine by its intersection, M3, the magnitude 
of the resultant vector PM3. This velocity vector PM3 will have also 
the tangential component PT& along the common tangent. The 
velocity of sliding is the vector difference of the tangential components. 
Hence 

PTi -* PT3 = T3Tx.(60) 

or, since PT\ and PT$ are in the same line, T3T1 may be obtained, 
algebraically; 

PTi - (+PT&) = T3T1.(61) 

Since velocity vectors PM\ and PM3 must have the same normal 
component PS, it is to be noted that vector subtraction of PM 1 and PM3 

must be the same as T3T1; that is, velocity vector M$M\ equals T3T1, 

the velocity of sliding of the driver 1 with respect to the follower S. 
Hence, in a direct-contact mechanism, if the velocities of the contact 
point as a point in the driver and as a point in the follower are known, 
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the velocity of sliding is equal to the vector difference of these velocities, 
as shown in Fig. 51. 

It is also evident that if in some phase, for the mechanism shown in 
Fig. 50, PT% and PT\, were to come out equal and in the same direction, 
PMz and PMi would coincide, and at the instant there would be pure 
rolling and no sliding between 1 and 3. 

48. Condition of Pure Rolling. As was pointed out immediately 
above, if one member is to transmit motion to another without relative 
sliding, that is, with pure rolling, the velocity of the point of contact of 
one member must coincide with the velocity of the point of contact of 
the other member. In Figs. 52 and 53, P, as a point in 1, moves at right 
angles to 0\P; and, as a point in 3, it moves at right angles to 0;*P. 
Hence, when PM 1 and PM3 coincide, radii 0\P and O3P are perpendicu¬ 

lar to the same line at the same point, and must, therefore, he in the 
same straight line. This means that P must lie on the line of centers. 
Hence, the condition of 'pure rolling is that the point of contact shall always 

lie on the line of centers. Conversely, if the point of contact does not 
lie on the line of centers, there will be relative sliding between the two 
members in contact. There are many sets of curves which may be 
employed to thus transmit motion by direct contact with pure rolling 
action, among which may be mentioned: tangent circles or circular 
arcs rotating about their centers; pairs of equal ellipses, Fig. 52, each 
rotating about one of its foci with a distance between the fixed centers 
equal to the common major axis; and pairs of similar logarithmic spirals, 

Fig. 53, rotating about their foci. 
For two direct-contact members it was shown in Art. 43 that the 

angular velocity ratio of the members is inversely as the perpendiculars 
let fall from the fixed centers to the common normal, or inversely as the 
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segments into which the line of centers is divided by the common normal, 
or line of transmission. Since- for pure rolling-the intersection of the 
line of transmission with the line of centers is the point of contact, it 
follows that in pare rolling action the angular velocity ratio is inversely 

as the contact radii. Hence, in Figs. 52 and 53, 

coio (hP O'jFu 

= OlV ~ OXl. 

If in Figs. 52 and 53 the perpendiculars OiT\ and O3T3 be dropped 
from the fixed centers 0\ and (k, upon the common tangent TT'} two 
similar triangles, PO1T1 and PO/I3, are formed. Hence, 

«io = (hP = 0/r, 
w:>,u OJ} 0,75 

For direct-contact members having pure rolling action, it may therefore 

N* 

FIG. 54 

N1 

be stated that the angular velocity ratio is inversely as the contact radii 

or inversely as the perpendiculars let fall from the fixed centers to the com¬ 

mon tangent or to the common normal. 

It is to be noted that the circular forms shown in Figs. 54 and 55 

fulfil the geometric requirements for pure rolling action. It is also to be 
noted that the perpendiculars from the fixed centers to the common 

tangent coincide with the contact radii, or, more simply stated, the 
common tangent is normal to the line of centers. This means that for 
pure rolling action the friction of contact must be sufficient to drive 
without slipping. 
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49. Constant Angular Velocity Ratio Combined with Pure Rolling. As 
stated in the preceding articles, there are many pairs of curves which will 
satisfy either the condition of constant angular velocity ratio or the con¬ 
dition of pure rolling action. Circles and circular arcs rotating about 
their geometric axes are, however, the only class of curves which can 
have pure rolling action combined with constant angular velocity ratio. 
For constant angular velocity ratio, the common normal must cut or 
pass through a fixed point in the line of centers; and for pure rolling, 
the contact point through which the normal passes must lie on the line 
of centers. If both of these -requirements are to be met, the contact 
point must be a fixed point in the line of centers. Hence, the contact 
radii cannot vary in length, and the curves must be circles or circular arcs. 

50. Positive Driving. In order to have pure rolling action between 
the right cylinders shown in Figs. 54 and 55, the friction of contact 
must be sufficient to assure driving without slipping. In the absence 
of friction the motion of one cylinder would not cause any motion of 
the other, resulting in relative sliding without -any rolling action. With 
friction, the motion of one cylinder would cause motion of the other, 
but there would be no positive assurance that a certain amount of 
slipping or sliding did not take place. If there is to be pure rolling 
action between the cylinders, one must positively drive the other. To 
secure this the cylinders must be supplied with teeth whose outlines 
will be such that; the line of transmission will always cut the line of 
centers in a fixed point, the requirement deduced in Art. 44. 

For such direct-contact mechanisms as arc shown in Figs. 48 to 53, 
inclusive, one member will positively 
drive the other so long as the con¬ 
tact radius of the driver is increas¬ 
ing as action proceeds. I'll is condi¬ 
tion for positive driving is not, how¬ 
ever, true for all drivers and fol¬ 
lowers, as shown by the example 
illustrated in Fig. 5G. Here the con¬ 
tact radius of the driver remains 
practically constant, decreasing or 
increasing only slightly as action pro¬ 
ceeds. It is evident, however, that 
1 will positively drive 2, the follower, throughout each revolution. This 
is likewise true of the driver and follower shown in Fig. 30. For the 
mechanism shown in Fig. 56, either member may be the driver for 
either clockwise or counter-clockwise rotation. For the mechanism 

shown in Fig. 29, while 1 may be the driver for either clockwise or 
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counter-clockwise rotation, member 2 will not act so satisfactorily as 
the driver. A better statement of one of the conditions for positive 
driving applying to all drivers and followers is that the motion of the 
point of contact of the driver must have a component directed towards 
the follower. Thus, in Fig. 52, the motion of the point of contact of 1 
the driver, has, for the phase shown, a normal component directed toward 
the follower. This continues to be true until Ci and Ca become coincident 
contact points, at which instant positive driving would cease since the 
motion of the point of contact of the driver would be directed along the 
common tangent and, therefore, would have no normal component. 
Hence, for the rolling ellipses of Fig. 52, 1 may positively drive S or 3 
may positively drive 1 for one-half revolution only. 

It has been brought out immediately above that it is only the normal 
component of the motion of the contact point of the driver that can 
possibly cause any motion of the follower. Positive driving ceases when 
this component becomes zero, or when it is directed away from the 
follower, or, if directed toward the follower, when it passes through the 
fixed center of the follower. When the normal component of the motion 
for the contact point of the driver is zero, it means that it is directed 
along the common tangent, and that the common normal, or line of 
transmission, passes through the fixed center of the driver. When the 
normal component is directed through the fixed center of the follower, 
it means that the pressure of the driver on the follower can exert no 
turning moment on the follower. 

The criterion for positive driving can, therefore, be stated as follows: 
For positive driving the common normal, or line of transmission, shall not 

pass through the fixed center of either the driver or the follower, and the 
normal component of the motion of the contact point of the driver must be 
directed toward the follower. 



CHAPTER III 

ANALYSIS OF PLANE MOTION 

51. Plane Motion, This chapter will deal with the analysis of the 
plane motion of bodies and with the methods of determining the velocities 
and tangential accelerations of any point in a mechanism whose parts 
move parallel to a fixed plane. In this chapter the following deductions 
of Arts. 13, 27, 28, and 29 will be applied: 

(a) Any plane motion of a body may be fully represented by the 
motion of a single plane figure parallel to the plane of motion. Hence, 
in dealing with the plane motion of a body having appreciable depth, 
the body may be fully represented by a plane figure outlined on the 
surface of a sheet of paper. 

(ib) The plane motion of a body is determined by the motion of 
any two of its points not in the same perpendicular to the plane of 
motion, or by the motion of the line joining the two points. 

(c) Rectilinear translation may be regarded as a special case of 
plane rotation in which the rotational radii of the points of the body 
are infinitely long and hence are parallel. 

(d) For a body having a motion of plane rotation, the velocity or 
direction of motion of any point in the body is perpendicular to the 
rotational radius of the point at the instant. The direction of motion 
is usually represented by a vector. 

(e) The linear speeds of any two points of a body having a mo¬ 
tion of plane rotation are proportional to the respective rotational 
radii of the points. 

62. Instant Center. At any instant the velocity relations of a body 
having plane motion are the same as they would be if the body were 
rotating, at the instant, about a certain axis. 

In Fig. 57, let 0 be a rigid body considered as fixed, and let 1 be a 
rigid body having plane motion relative to 0. The instantaneous motion 
of 1 relative to 0 is represented by the velocities, Vp0 and Vr0, of the 
two respective points, P and R. Since these two points are in a rigid 
body their instantaneous velocities must always be such that their 
components, V and F', along the line joining the points, shall be equal 
and in the same direction. From P and R draw perpendiculars to Vpo 
and Vbo intersecting at Oio. Draw OwM perpendicular to the line PR. 

1 47. ' " 
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The triangles PNQ and 0\oMP are similar, as are also the triangles 
RN'S and 0\qMR, having their respective sides perpendicular to each 
other. From these pairs of similar triangles, 

Yro = (h0_P Vro = OwR 

r “ ()w-M aiK r 0WM 

whence, since V = V, 

= (>w-.(64) 
1 RO OlvH 

Since the velocities .of P and R are at right angles to 0[oP and Oio/£, 
and are proportional, respectively, to these distances, the rigid body / 
appears at the instant to be rotating about the point Oio. Therefore, 

Oio is the instantaneous center of 
the velocities of the points in the 
rigid body J relative to the fixed 
body 0. The point 0io has no 
motion relative to 1 or 0, and may 
be considered as a point common 
to both bodies at the instant. It 
should be noted that the above 
relation applies only to the relative 
mot ion of the two bodies, / and 0, 
and that one of the bodies was con¬ 
sidered as fixed for the sole pur¬ 
pose of clarifying the relations and 
of making the velocities definite. 
Both 1 and 0 might have motion 
relative to other bodies, and, there¬ 

fore, have other instant centers relative to those bodies. It should be 
noted also that the instant center Oio applies only to the instantaneous 
velocities and not to the accelerations. Throughout this text the term 
instant center will be used in this customary sense. It is to be understood 
to be an abridgment of the longer expression, instantaneous center of 
velocity, and does not refer or apply to the center of acceleration, 
which will be dealt with in the next chapter. 

The body 1 really rotates relative to 0 about an instant axis. Since 
the axis of rotation of a body is always perpendicular to the plane of 
rotation and pierces every section of the body parallel to the plane of 
motion at its center of rotation, the point Oio is the projection of the 
instant axis on the working plane, in this case the plane of the paper. 
This conclusion is in accordance with the deductions stated in Art. 51. 

FIG. 57 
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For greater simplicity in dealing with plane motion, it is customary to 
refer to instant centers rather than to the corresponding instant axes 
which they represent. 

For plane motion the instant center of two bodies is the point about 
which one body may be considered to rotate at any instant relative to 
the other body. It is the point at which they have no relative velocity, 
and, hence, at which they have the same velocity. It is, for the instant, 
the only point common to both bodies. The use of instant centers will 
be found to be of great assistance in the analysis of complex motions 
and in the determination of the relations of the linear and angular 
velocities. 

53. Permanent and Fixed Centers. For two bodies having plane 
motion, the instant center may be a fixed center, a permanent center, or 
a center that is neither fixed nor permanent. When one body is materi¬ 
ally connected to another body by a turning pair, the instant center of 
one body relative to the other is either a fixed or a permanent center. 
Thus the crank of an engine is connected to the connecting-rod by means 
of a pin. The geomet ric center of the pin and its bearing is the permanent 

instant center of the two bodies. While a permanent center, it is not 
a fixed center, since it moves relative to the frame, the fixed member of 
the mechanism. The geometric center of the crank-shaft and its bearings 
is the instant center of the crank and frame. This center is not only 
the permanent center of these two members, but is also their fixed center 
since it has no motion relative to the frame. The instant center of the 
connecting-rod relative to the frame is neither a fixed nor a permanent 

center. 
64. Notation. The instant center of the plane relative motion of 

two bodies 1 and 2 will be indicated by the symbol 0\2. This symbol 
when used indicates the instant center of the plane motion of body 1 

relative to body 2> and also of body 2 relative to body 1. Hence, 
whether 2 or 1 is regarded as the fixed body, the symbol for their instant 
center may be written 0j2 or O21. 

It is to be noted that the instant center O12 is a double point, since 
it is a point in 2 as well as a point in 1. The velocity of any point in 1 

relative to 2 is perpendicular to the radius from Ovi to the point, and 
the velocity of any point in 2 relative to 1 is perpendicular to the radius 
from O12 to the point in 2. 

Throughout this book the links of mechanisms will be designated 
by numbers, and, in general, the frame, or fixed member, will be marked 
0, zero. While Fig. 57 does not represent a mechanism, it is to be noted 
that the bodies in this figure have been numbered in accordance with 
this scheme, the body regarded as fixed being marked 0. 
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55. Location of Instant Centers. It is quite apparent from the 
discussion in Art. 52 that the location of the instant center of the plane 
motion of one rigid body relative to another depends only on the direc¬ 
tions of motion of two points in one body relative to the other. Thus, 
in Fig. 58, let PQ and RS represent the respective directions of motion 

at the instant 'of points P and R of body l 

relative to body 0. Since PQ represents 
the direction of motion of point P, the 
point may be considered at the instant as 
rotating about any point in a line through 
P perpendicular to PQ. Likewise, point 
R at the instant may be considered as 
rotating about any point in a line through 
R perpendicular to RS. Where these two 
lines, PL and RK} intersect at Oio is the 
only point about which both points, and 
therefore, body 1, may be considered to 
rotate relative to body 0 at the instant. 
Hence, Oj o is the instant center of body 1 

as brought out in Art. 52, the velocities 
of the respective points must be related in magnitude, only the direc¬ 
tions of motion of the points are necessary to locate the instant center 

unless the vectors are parallel. 
If the velocities of any two points in a rigid body are both equal 

and parallel, the body has a motion of rectilinear translation. This is 
shown in Fig. 59. Since VP0 and VR0 are both equal and parallel, lines 
drawn through points P and R perpendicular to these velocity vectors 

would be parallel, and would, therefore, intersect at infinity. Hence, 

all rotational radii are of infinite length, and the body has a motion of 
rectilinear translation. 
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It is to be noted that the instantaneous velocities of two points m a 
rigid body cannot be parallel and unequal unless the line joining the points 
is perpendicular to the velocity vectors. Brief reflection will show that 
this limitation is necessary to satisfy the assumption of rigidity. P and R 
in Fig. 60 are two such points in 1 having motion relative to the fixed 
body 0. Since the linear speeds of points in a rigid body are propor¬ 
tional to their distances from the center of rotation, the location of the 
instant center Oio can be found by the construction of two right tri¬ 
angles based on this proportionality. VPO and VRO are the velocities of 
the two points of body 1 relative to 0. Through the extremities of these 
vectors draw the line QS to intersect the line PR at Oio* In the similar 
right triangles, OioRS and OioPQj thus formed, 

Vro 0\oR 

v7o = o™p (65) 

P Vpo 

FiG. 6/ 

This is merely a statement of the above proportionality, and shows that 
body 1 is at the instant rotating about Oio relative to body 0 considered 
as fixed. 

Figs. 61, 62, and 63 illustrate three interesting practical examples of 
instant center location from the known velocities of certain points. Let 1 

be one of the driving wheels of a locomotive which runs on the hori¬ 
zontal track 0. In Fig. 61 it is assumed that the driving wheel 1 has a 
motion of pure rolling on the track 0. Since pure rolling means an 
absence of slip, the point of contact Oio between the wheel and the track 
is the only point of 1 that has no motion relative to 0. It is, therefore, 
the instant center about which each moves relative to the other. Hence, 
if the wheel center Q is moving to the right with a velocity F00, the 
highest point P of the wheel, having an instant radius twice that of 
Q, will move withtwice the velocity of Q. 

In Fig. 62 it is assumed that the load of the train is so great that the 

locomotive driving wheels turn without starting the train from rest* 
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Hence the driving wheel 1 slips or slides but does not roll upon the track. 
Since there is no rolling of the wheel 1 on t he truck 0, the wheel center Q 

can have no motion relative to the track, and is, therefore, the instant 

center Ow about which each moves relative to the other. Points P and 
M, having equal rotational radii, will have equal peripheral velocities, 
which velocity is also the velocity of sliding of / on (). 

In Fig. 63 it is assumed that the load of the train is such that in 
starting the locomotive driving wheels both roll and slide. Suppose 
that when the peripheral velocity of the driving wheels relative to the 
locomotive frame is ML, the velocity of the train, and, therefore, of the 
wheel center Q, is observed to be VQC). If there were no movement of Q 

the velocity of sliding between 1 and 0 would be ML. Since, however, 
the forward velocity of Q is VQ(h the velocity of sliding of 1 on 0 is the 

FIG. 64 FIG. 65 

vector sum of ML and VQ0, or equal to VMG. Hence we have the velocities 
of the two points Q and M in 1 relative to the track 0, the velocities 
being parallel and unequal and normal to the lint) joining the points. 
This enables us to determine the instant center Oio and the velocity VP0 

of point P relative to 0 by drawing the gauge line mqp. It is to be noted 
that the velocity of P relative to 0 is equal to the vector difference of 
twice the velocity of the train and the velocity of sliding. Thus, 

\ po = 2 VQO > V MO 

66. Instant Centers of Four-Link Chains. Two common types of 
four-link chains are illustrated in Figs. 64, 65, 66, and 67. The relative 
motions of the adjacent links of mechanisms are usually quite simple, 
being, as a rule, rotation, oscillation, or rectilinear translation. 

In Fig. 64 link 0 has been taken as the fixed, or reference, member. 
Evidently 1 and 8 rotate relative to 0 about the respective instant 

centers Oio and Ozo- Since 0 is fixed Oio and O30 are also fixed centers. 
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The motion of 1 relative to 2 and of 2 relative to 3 are about the respec¬ 
tive instant centers On and 023. It is to be noted that these last two 
centers are permanent but not fixed centers. The remaining instant 

centers O20 and On are neither fixed nor permanent centers. 
With link 0 fixed, as in Fig. 64, the instant center O20 for the motion of 

2 relative to 0 can be found. Since 1 rotates about the fixed center 

O10, the direction of motion of all points in the line O12O10 is perpen¬ 
dicular to OviOj 0. Hence, at the instant, the point 0] 2, which is common 
to both 1 and 2, may be considered as rotating about some point in the 
line O12O10 or its extension. For the same reason, the point 022, as a 
point common to both 2 and 5, may be considered as rotating at the 
instant about some point in the line 023030- The intersection O20 

of lines O12O10 and 023030 extended, is the only point common to both 
lines, and is, therefore, the only point about which points 0j2 and O23 
can rotate at the instant. Since points 012 and O23 are points in 2 as 
well as respective points in 1 and 3, O20 is the instant center of 2 with 
respect to 0. 

If link 3 is fixed, as in Fig. 65, the same reasoning as applied in the 
preceding paragraph will locate the instant center O13 at the intersection 
of the lines 023012 and 0aoOio extended. 

Fig. 66 illustrates the slider crank chain. As in Fig. 64, the fixed 
center O10 and the permanent centers 0\2 and O23 are determined by in¬ 
spection. The location of the fixed center O30 is not so evident. Since 3 
has a motion of rectilinear translation, the velocities of all points in 3 
are equal and parallel. Hence, the rotational radius of each point is of 

infinite length, and the instant center O30 for any point such as O23, 
common to both 2 and 3, is located at infinity on a line through O23 
perpendicular to the path of 3. Center 023 as a point in 3 may be con¬ 
sidered, at the instant, as rotating about some point in the line O23O30; 
and 0i2 as a point in 1 may be considered, at the instant, as rotating 
about some point in the line O10O12. Hence, the intersection O20 of 
0io0i2 and 023030 extended, is the only point about which both points 
023 and 0i2 can rotate at the instant. Since these points are also points 
in 2 and since the motion of two points in a member determines the 
motion of the member, 020 is the instant center of 2 relative to 0. 

If, as in Fig. 67, member 3 is considered as fixed, member 0 would 
have a motion of rectilinear translation, and the instant center of all 
points in 0 would be at infinity. Hence, 0io as a point in 0 is moving 
relative to 3 about a center 03o located at infinity on a line through Oio 
perpendicular to the path of 0. At the instant Ow may be considered 
to rotate about some point in the line 0io03o, and 0i2 may be con¬ 
sidered to rotate at the instant about some point in the line 023012- 
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Hence, the intersection O13 of lines O10O30 and O23O12 is the only point 
about which points Oio and O12 can rotate at the instant. Since these 
points are also points in 7, and since the motion of two points in a 
member determines the motion of the member, Ox3 is the instant center 
of 1 relative to 3. 

The instant center O13 may also be located by the use of Fig. 66, 
where 0 is the fixed member, by imagining 3 extended to include Oio 
as a coincident point at the instant. As a point in 3 it may be con¬ 
sidered at the instant to rotate about some point in a fine through 
Oio parallel to O23O30, and O23 may be considered at the instant to rotate 
about some point in line O23O12. The intersection of these two lines is 
obviously the instant center Oj3. It must not be forgotten that O30 is 
the instant center of 0 with respect to 3 as well as of 3 with respect to 0. 

57. Number of Instant Centers. Kinematic chains composed of 
four links were considered in Art. 56. Since an instant center governs 
the relative motion of two links, six instant centers, corresponding to the 
possible number of pairs for four links, were found for each four-link 
chain. The number of instant centers N for any kinematic chain com¬ 
posed of n links is the number of possible combinations of the links into 
pairs, that is, the number of combinations of n objects taken two at a 
time. Hence, 

N = 
n(n — 1) 

2 
(66) 

A method of locating the instant centers of kinematic chains 'from 
the possible motions of the links was demonstrated in Art. 56. It is 
obvious that this method, which was found to be quite complicated for 
four-link chains, would be much more complicated for kinematic chains 
of six, seven, eight, or more links. The following articles describe a 
much simpler and more practical method of locating instant centers. 
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58. Kennedy’s Theorem. The application of* this important 
theorem is very helpful in locating the instant centers of any kinematic 
chain and will be found .to save much time. The statement of the the¬ 
orem as given by Professor Kennedy is: “ If any three bodies 0, I, and 3 
have plane motion, their virtual {instant) centers 0\o, O30, and O13, are three 
points upon one straight line” This theorem applies to any three bodies 
having plane motion. With two of the centers known, it can be shown 
that no point lying outside of the line through the known centejs can 
be the required center. The third center must, therefore, lie on a line 
through the other two points as stated in the theorem. 

In Fig. 68 let 0, /, and 3 be any three bodies moving parallel to a 
fixed plane. Suppose, at a given instant, that 1 moves relative to 0 
about the center O10, and that 3 moves relative to 0 about the center 
O30. Center 010 is a point common to 1 and 0, and center O30 is a point 

common to 3 and 0. Assume any point off the line through 010 and 
O30, such as O', to be the instant center of the relative motion between 
1 and 5, thus making 0' a point common to 1 and 5. All points in 1 
must rotate relative to 0 about O10 and all points in 3 must rotate rela¬ 
tive to 0 about O30. Center 0' as a point in 1 must move relative to 0 
in a direction O'a perpendicular to the instant radius O10O', while as a 
point in 3 it must move relative to 0 in a dfrectioA O'b perpendicular to 
the instant radius O30O'. Since, at a given instant, a point can have but 
one direction of motion relative to a given body, the perpendiculars O'a 
and O'b should coincide. This is possible only when O10O' and O30O' 
are in one straight line, that is, in a line through the given centers O10 

and 030. It is thus evident that O' cannot be the center required, and 

that 0i3, the center required, must be on a line through the cehters 0\0 

and 030. Just where on this line 0i3 is located is not indicated by the 
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theorem. This is* to be expected, since the relative motion of 1 and 3 

is not definitely constrained. Hence, to definitely locate 013, the mem¬ 
bers 1 and 3 must be definitely constrained by being connected by 

a fourth member. 
In Fig. 69 members 1 and 3 have been given definite, relative con¬ 

strained motion by the introduction of a fourth member 2. Member 2 

is connected to / at On and to 3 at O23. According to the theorem On 

is not only on the line of centers of the bodies 0, 1, and 3, but is also on 
the line of centers of the bodies 7, 2) and 3. Hence, 0ia is at the inter¬ 
section of a line through (ho anti 0w with a line through O211 and Oi2. 
It is to be noted that the system of notation makes it evident by inspec¬ 
tion what third center is to be found on a line passings through any 
two known centers. Thus, a line passing through On and O10 must 
contain the center O20, 2 and 0 being the numbers not common to the 
two known centers. This same center, 020, is likewise on a line through 

O23 and (ho, which fact definitely locates (ho. 

69. Application of Kennedy’s Theorem. Fig. 70 will be used to 
demonstrate the method of procedure in locating instant centers by 

means of Kennedy’s theorem. 
The figure illustrates a unique 
but not uncommon four-link 
chain. Link 7 sliding horizontally 
on 0 is connected by link 2 to 
link 3 which slides vertically on 
0. Link 2 is pivoted to 7 and 3 

at the respective permanent cen¬ 
ters 012 and () >3. Since 1 and 3 

have a motion of rectilinear 
translation relative to 0, their 
instant centers, On and O30, are 
at infinity. Instant centers___0j0 

for point On in 1 is at infinity on a line through On perpendicular to 
the path of I, and instant center 03o for point 023 in 3 is at infinity on 
a line through O23 perpendicular to the path of 3. For the three links 
h 2, and 0, Kennedy’s theorem states that their three instant centers 

Oio, 012, and 02o lie on one straight line. The known centers On and 
0i2 locate this line which contains the unknown center 020. Similarly 

for links 2, 3, and 0, the instant center 020 is on the line through the 

centers 030 and O23. Since 020 is on both lines, their intersection 
definitely determines the location of the instant center 02o. 

The three centers 0J2, 023, and 0i3, for links 7, 2, and 3, lie on a line 
through the known centers 0i2 and 023. Likewise, the instant center 

41! 0/O^roo 

I 
1 
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013 lies on a line through the centers Oio and O30. Since Oio and O30 
are at infinity, a line through them would intersect a fine through 
O12 and O23 at infinity. Hence, the instant center O13 is at infinity on a 
line through O12 and O23. 

The number of links of a chain which are of infinite length is indicated 
by the instant centers which are located at infinity. Since each instant 
center is a point common to two links, an instant center at infinity means 
that there are two links of infinite length. It is, therefore, impossible 
to have a single link of infinite length. Hence a four-link chain may 
have four finite links, two finite and two infinite links, one finite and three 
infinite links, or four infinite links. The four-link chain of Fig. 70 may 
be taken as an illustration. This chain is called the double slider-crank 
chain, and is found in the Scotch yoke, in the Oldham coupling, and in 
instruments for drawing ellipses. It has already been shown that the 
instant centers Oio, O30, and O13 are located at infinity, and that the 
other instant centers are in finite locations. Hence, links 0, /, and S 

must be infinitely long to include their instant centers, and link & must 
be of finite length. The 
chain is, therefore, com¬ 

posed of one finite and 
three infinite links. 

60. Instant Centers 
of Incomplete Four-Link 
Chains. Fig. 71 illus¬ 
trates an incomplete 
four-link chain made up 
of a frame 0, a cam 1 

and a flat-faced follower 
2. The instant centers 

Ow and O20 of the 
respective motions of 1 and 2 relative to 0 are fixed centers, and their 
locations are obvious. The only remaining center is O12, which, by 
Kennedy’s theorem, must be somewhere on the line through Oio and O20. 
But, there being only three links, the theorem does not yield any other 
line to definitely determine the location of the center. Information 
may be obtained, however, from the motions of the various members. 

The instant center O12 has to do with the relative motion of 1 and 2. 

It was demonstrated in Art. 43 that P as a point in 1 can have no motion 

relative to 2 along the common normal through P, and that the only 
motion that P as a point in 1 can have relative to 2 is along the common 
tangent through P. Hence, it is known that P as a point in 1 can have 
a direction of motion relative to 2 only along the common tangent, or 
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perpendicular to the common normal. The instant center 0\2 0 6 
motion of 1 relative to 2 must, therefore, be on the common normal 
and hence at the intersection of this normal with the line through O20 

and 010- This, or some similar method of reasoning, must be used in the 
analysis of incomplete four-link chains. 

61. Effect of Inversion on Instant Centers. It was explained in 
Art. 37 that a mechanism is a kinematic chain with one of its links fixed. 
As many mechanisms can therefore be obtained from a given kinematic 
chain as there are links in the chain. It was explained also that this 
process of obtaining different mechanisms from the same kinematic 
chain is known as inversion. Thus Figs. 38, 39, 40, and 41 illustrate 
mechanisms that are inversions of the same kinematic chain, the slider- 
crank chain. It is to be noted that the determination of the location 
of the instant centers is unaffected by the inversion, or, in other words, 
is unaffected by the particular link of the chain that is fixed to obtain 
the mechanism. Hence, the instant centers of a kinematic chain in some 
phase*can be located, and all of the possible mechanisms that can be 
obtained by inversion can be studied without changing or adding any 
line to the original figure. 

As the subject is pursued it will be discovered that there are only a 
few elementary kinematic chains, and that the apparent multiplicity of 
mechanisms is due to changes in these chains by inversion or by changing 
the proportions of the links or by the addition of other links or chains. 

62. Instant Centers of Compound Kinematic Chains. The use of 
Kennedy’s theorem in determining the instant centers of a simple four- 
link chain was explained in Art. 59. While the same general method 
is applicable to compound chains, it is found necessary in addition to 
analyze the chain and to keep a record of the known and unknown 
centers. 

Almost any compound chain may be considered from the standpoint 
of having in its composition at least one simple chain to which have 
been added extra links or even extra kinematic chains. Therefore, a 

• compound chain should be analyzed and the instant centers of the four- 
link chains located before the added links are considered. In Figs. 73 
and 74 are illustrated two forms of charts which are considered to be the 
most useful of the many schemes for the purpose of recording the analysis 
of compound chains. 

The Whitworth shaper mechanism, illustrated in Fig. 72, has been 
chosen for analysis. In this mechanism, as crank 1 rotates, the block 2, 
to which it is pivoted, slides on 3 and causes 3 to rotate. The rotation 
of 5, through the connecting-rod 4> causes the block 8 to reciprocate. 
In an actual shaper 5 is the reciprocating ram which carries the cutting 
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tool. The length of the stroke of the ram i& changed by shortening or 
lengthening that part of 3 which constitutes the crank member of the 
common slider-crank mechanism made up of links 3, 4, 5, and 0, illus¬ 
trated in Fig. 38. The links 1, 2, 3, and 0 constitute the fixed-crank 
inversion of the slider-crank chain illustrated in Fig. 39. Let the four- 
link chain made up of 3, 4> and 0 be designated as simple chain a, 

( 2 3 4 5 

0 b b ab a a 

/ 1 b b 

_2 i i b n n H a a 

1 I SL 

FIG. 72 FIG. 73 

and the four-link chain made up of 1, 2, 3, and 0 be designated as simple 
chain b. 

The compound linkage illustrated in Fig. 72 is composed of 6 links. 

From equation (66) it is known that it has —— ~or 15 instant centers. 

These centers, some of which are known, are represented by the un¬ 
shaded squares of the chart shown in Fig. 73. Chain a has 6 instant 

FIG. 74 

centers. The letter a has been entered in the proper squares of the 
chart to represent these centers. Likewise chain b alone has 6 instant 
centers. The letter b has been entered in the squares of the chart to 
represent these centers. It is to be noted that since links 3 and 0 are 
common to chains a and 6, the instant center O30 is common to each, 
and is so shown in the chart by the letters a and b falling in the same 
square. Hence, the location of 11 of the 15 instant centers of the com¬ 
pound linkage is obvious. The location of the 4 unknown centers 
O14, O15, O24, and O25 of the compound linkage, indicated by the blank 
squares of Fig. 73, are yet to be determined. From Kennedy’s theorem 
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it is known that distant center 014 is on a line through Ow and O40/ 

or through 0,2 and 024, or through On and 034, or through 0,5 and 045. 

These facts are represented by the first chart to the left in Fig. 74, and 

similar charts are shown for the remaining unknown centers 015, 024, 
and 02r>. By recording the known centers in these charts, it is at once 
apparent whether there is sufficient information at hand to determine 
the location of the unknown instant centers. The first chart to the 

left in Fig. 74 shows that we have instant centers O10 and 04o, also 013 

and 034. The intersection of the two lines through these pairs of 
centers determines the location of instant center 0m. Having 0i4 adds 
one more center to two of the remaining charts in case it is needed to 
determine one or all of the remaining centers. 

Locating the instant centers of compound kinematic chains consists 
largely in adhering to a consistent notation and of applying a well- 
devised scheme for recording the centers found by Kennedy’s theorem. 
The compound chain should be analyzed for what simple chains it con¬ 
tains, and then the centers for each simple chain should be located and 
recorded. The information thus gained enables the remaining centers 
of the compound linkage to be located. When all the centers have 
been located for a six-link chain, each center will be found to be located 
at the intersection of four lines, the lines indicated by the individual 
charts constructed for each center to be located. The location of a 
center on so many lines makes checking convenient, although some of 
these lines may coincide or may be unknown because their locating 
centers are not on the paper. 

63. Centrodes and Axodes. With one link of a kinematic chain 
fixed, all the instant centers except the fixed centers will trace paths 
on the fixed link or an extension of it. The paths so traced are called 
fixed centrodes. The path traced by an instant center on a moving link, 
or an extension of it, is called a moving centrode. The surfaces generated 
by the instant axes are called axodes. Hence, an axode is a surface 
perpendicular to the plane of motion, and a centrode is the intersection 
of an axode with the plane of motion or with a parallel plane. 

The kinematic chain shown in Fig. 75 writh link 0 fixed, may be used 
as an illustration. Instant centers O10 and O30 are fixed centers, and 
O12 and O23 are permanent centers. The permanent center 0i2 will 
trace a fixed centrode in the form of a circular arc with O10 as a center 
and the length of link I as a radius. The permanent center O23 will 
trace a similar path on the fixed link. Hence, so far as the constrainment 
of link 2 is concerned, two slots in the form of circular arcs could be cut 
in the fixed member in lieu of links 1 and 3. For the phase shown, 
link 2 at the instant is rotating about the center O20. Since this instant 
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center is neither fixed nor permanent, its location changes with the 
relative motion of 2 and 0. As 1 is rotated clockwise until it coincides 

with 0 extended, this center traces the path O20O30 on the fixed member, 

and traces the path O20O10 as link 3 is rotated counter-clockwise until 

it coincides with 0 extended. Hence, O10O20O30 is a portion of the 
fixed centrode for the motion of 2 relative to 0. Since O20 is a point 
common to 2 and 0, it likewise traces a path on link 2 as motion pro¬ 
gresses. This path is the moving centrode for the motion of 2 relative to 0. 
Now O20 is the center about which 0 rotates at the instant relative to 2 

as well as being the center about which 2 rotates relative to 0. The 
fixed centrode traced by O20 with 2 as the fixed link is, therefore, the 
same as the moving centrode traced on 2 by O20 with 0 as the fixed link. 
With 2 fixed, O20 traces the curve 
020023 on link 2 as 1 is rotated 
clockwise until it coincides with 
2, and traces the curve O20O12 as 
3 is rotated counter-clockwise 
until it coincides with 2. Hence, 

O12O20O23 is a * portion of the 
moving centrode for the motion 
of 2 relative to 0. It is to be 
noted that the moving centrode 
M is tangent to the fixed cen¬ 
trode F at the instant center O20 

for the phase considered. No 
slipping can occur at O20, since it 
is a point common to 2 and 0 and FIG. 73 

is instantaneously at rest relative 
to both. It follows, therefore, that there is no slipping between these 
centrodes as motion continues, and that the pure rolling of M on F in 
the absence of links 1 and 3 would result in identically the same 
motion of 2 relative to 0 as given by the original four-link chain. 
Using F as the moving and M as the fixed centrode would give the 
same motion of 0 relative to 2 as given by the original four-link chain 

with link 2 fixed. 
To make a practical mechanism by using only the two links M and 

F to secure the given motion of 2 relative to 0 would require that the 
centrodes M and F be fitted with suitably mating teeth in order that 
they could be rolled together without slipping. As in the present ex¬ 
ample, this is often possible for only a portion of the motion of one 
link relative to another as given by the original linkage. Even where 
the rolling centrodes are of such form as to be readily supplied with 
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teeth, it is not always easy or possible to secure complete, co^^nment. 

If, in the present example, M and ^usedas £*«•£ 

toksTld s'"1'While theoretically the .notion of anyJink relative to 
J1 , , i I Tn„v ive shown to be equivalent to some other link regarded as fixed may De snowa ** 
a pair of rolling centrodes, the practical application of this fact may be 

attended with unsurmountable difficulties. 

For the mechanism shown in Fig. 76 the instant center O20 as a 
point in 0 is always at the intersection of two lines through O12 and 
O23 at right angles to the guide slots in 0. Since these slots are at 

right angles, the distance from C to 
O20 is always equal to 012023. Hence, 
the fixed centrode, F, for the motion of 
2 relative to 0, is a circle having its 
center at C and a radius equal to 

012023. The moving centrode for the 
motion of 2 relative to 0 may be found 

Fig. .77. 

by making 2 the fixed link. With 2 fixed, it is evident that the instant 
center 020 is always the apex of a right-angled triangle formed on 
012023 as an hypotenuse. Hence, the locus of 020, or the moving 
centrode, M, is a circle on 012023 as a diameter. These centrodes 
may be used as the pitch circles of mating gears. If the moving cen¬ 
trode gear is carried on a crank having its shaft center at C and a 

radius equal to one-half of 012023, any point on the pitch circle of the 
moving gear will travel in a straight line as illustrated by the straight- 

line motion shown in Fig. 77. 
In Fig. 78 ik shown a right cylinder 2 rolling on a fixed track 0. For 

pure rolling action, the instant center 020 is always at the point of 
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contact between the wheel and the track. Hence, the track is the fixed 
centrode, and the circumference of the wheel is the moving centrode. 
When supplied with teeth, this combination becomes the familiar rack 
and pinion. 

Actual mechanisms were used above to show that the motion of 
one body relative to another is equivalent to the rolling of a pair of 
centrodes. It can be shown that if the motion of one body relative to 
another is known, the rolling centrodes to produce the desired motion 
can be determined without having in mind an actual mechanism for 
the purpose. In Fig. 79 the desired plane motion of one body relative 

tq another body 0, regarded as fixed, is represented by the motion of 
two points B and C of the body. The initial position of the points B 

FIG. 78 

B 

FIG. 73 

and C of the moving body is represented by the line BC, and the suc¬ 
cessive positions of the body by the lines BiCi, U2C2, etc. Obviously, 
the intersection of the perpendiculars drawn from the mid-points of the 
lines BB\ and CC\ locates the center 0 about which the moving body 
may be considered to rotate relative to the fixed body 0 as the moving 
body is displaced from BC to B\C\. During this displacement the 
moving body has rotated through an angle 0. In a similar manner 
the centers Oi, 02, etc., and the angles 0i, 02, etc., may be found. The 
centers 0, Oi, 02, etc., are points on the fixed centrode. Corresponding 
points on the moving centrode may now be found. Point 0'i, corres¬ 
ponding to Oi, is found by drawing line OO'i equal to and at an angle 0 

with line OOi. When O'i is in contact with Oi, line 0'i0f2 must make 
an angle 0i with O1O2 That this may be true, angle a must be de¬ 
termined. Obviously angle a is the aiigle made by the extension of OOi 
with a line drawn from Ox at an angle 0i with O1O2. Point 0'2 is then 
determined by making 0\0f2 equal to O1O2 and at an angle a with the 
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extension of 00'i. Other points on the moving centrode, such as 0% 

are found in a similar manner. Practical rolling ccntrodes may be 

obtained by drawing smooth curves through each series of points found. 
The greater the number of points obtained between the initial and final 
positions the more nearly will these curves approach the true centrodes. 

64. Linear Velocities by the Use of Instant Centers. In deter¬ 
mining the linear velocity of any point in a mechanism by the use of 
instant centers, the following principles are applied: 

(a) If one rigid body is moving relative to another, the direction of 
motion of any point in the first body relative to the second is perpen¬ 
dicular to the radius of the point from the instant center of motion, and 
the magnitude of the velocity is proportional to the length of the instant 
radius of the point. 

FIG. 80 

(6) The instant center of the relative motion of two bodies is the 
point at which they have no relative motion and hence at which they 
have the same motion relative to a third body. 

The general method of determining the linear velocities of points 
in a mechanism by the use of instant centers will first be developed 
before applying the method to an actual mechanism. In Figs. 80 and 
81, the three rigid bodies 0, 1, and 3 have relative plane motion. To 
gain in simplicity, the necessary connection between 1 and 3 to give 
them definite relative constrained motion is omitted. The instant 
centers Oio and O30 govern the motions of all of the respective points 
of 1 and 3 relative to the reference member 0. These centers will be 
called pivot point.s*. By Kennedy’s theorem the instant center O13 is 
on the line through Oio and O30, its exact location depending uppn the 

nature of .the connection between 1 and 3. The assumed location of 
O13 is shown in Figs. 80 and 81. 

If, in Fig. 80, the velocity VP0 of a point P in 1 is knpwn, the cor¬ 
responding velocity VQ0 of any point such as Q in 3 can be found by 
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gojng step by step through the mechanism from point P in 1 to point 
Q in 8. Since, however, the instant center O13 is a point in both 1 and 
3, it may be used as a transfer 'point, and the velocity of Q may be found 
by transferring directly from / to 3. The velocities of P and 0]3, or C, 

are proportional to their distances from their center of rotation, O10. 
Hence, 

Vco _ O10 C 

Vpo 0\qP 

Evidently the velocity of O1.3, or C, as a point in 1 may be determined 
graphically by employing two similar right triangles with their vertices 
at the pivot point O10. Thus V co has been determined in Fig. 80 by 
constructing the right triangle OiqCD similar to the known right triangle 

0\qPB. Since 013 is a point in 3 as well as in 1 and since the speeds 
of all the points in 3 are proportional to the distances of the points from 
the center of rotation O30, it follows that 

Vqo _ OaoO 
Vco “ O30C 

The velocity of Q may be determined by employing, as before, two 
similar right triangles. Thus, since Vco is known, the required velocity 
Vqo is found by constructing the triangle O30QE similar to the known 
right triangle O30CD. 

Since any point in 1 at the same distance from O10 as P will have 
the same speed as P, and since any point in 3 at the same distance from 
O30 as Q will have the same speed as Q, the graphical construction for 

determining Vqo may be considerably simplified over that shown in Fig. 
80 by employing the construction shown in Fig. 81. Point P and its 
known velocity vector are first rotated about 010 into the position P'B'. 

The intersection of a gauge line through O10 and B' with a line through 
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O13 parallel to P'B', determines the velocity vector VCo- Having Vco 

the velocity of Q is readily determined. Point Q is first revolved to Q. 
Where a gauge line through O30 and D intersects a line through Qf 

parallel to CD determines F^0, which may be revolved to its true 
position at Q. 

66. Application of the Instant Center Method of Determining 
Velocities. For the four-linked mechanism in Fig. 82, it is required 
to find the linear velocity of R relative to the fixed member 0 having 
given the linear velocity of P relative to the fixed member. The known 
velocity is that of a point in 1, and, as this velocity is with reference 
to 0, the pivot point of the known velocity is O10. The unknown 

FIG. Q2 

, velocity is that of Rf a point in 2y and, as this velocity is with reference 
to 0, the pivot point of the unknown velocity is O20. Since the velocities 
are being transferred from 1 to 2, the direct transfer point is O12. The 
solution is concerned with 0, 1, and 2 only, and the natural base line is 
the line on which are found the three centers O10, O20, and O12. 

Rotate P and its vector about its pivot O10 to the position P' on 
the base line, and draw the gauge line OiqD'. The intersection of this 
gauge line with a perpendicular to the base line through O12 determines 
the velocity vector VBO- Since O12 is a point in 2 as well as in ly the 
velocity of one point in 2 is known. By drawing a gauge line from the 

pivot point O20 through the terminus of vector Vbo the velocity of any 
other point of 2 may be found. Revolve R about its pivot point O20 
to the position R' in the base line. The intersection of the gauge line 
from O20 with a perpendicular to the base line through R' determines 
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the length of the velocity vector Vw0. This vector when rotated back 
to R represents the desired velocity, VK0. 

The method of determining the velocity of Q by the use of the transfer 

point 0\3 has already been covered in Art. 64. In finding above the 

velocity of R, a gauge line was drawn which makes it possible to find the 
velocity of any other point in 2 in the same manner as the velocity of R 

was found. Hence, the velocity of 023, or 0, a point common to both 2 
and 3, can be found. By drawing a gauge line from the pivot O30 to 
the terminus of vector Vco the velocity of Q may be determined. 

Occasionally the velocity 
relations of some member as 
2 in Fig. 83 are wanted rela¬ 
tive to a member O, and the 

pivot point 020 is so far re¬ 
moved as not to be available 
for use. In such a situation, 
the construction shown in Fig. 
83 will be found convenient. 
Suppose that the velocity of 
B relative to 0 is known and* 
that the velocity of C relative 
to 0 is desired. On O\0B 
extended lay off BM equal to 
the length of vector VB0, and 
draw MN parallel to BC, 
cutting O30C extended at N. 
The intercept CN will be equal 
in length to the desired vector 

Too, which vector in its true 
position is perpendicular to its rotational radius O30C at C. The proof 
of this construction rests upon the fact that triangles BCO20 and 
MNO20 are similar. By drawing BN' parallel to CN, we may write 

BM _ O20B 

BN' ~ O20C 

But the velocities Vbo and Vco are respectively proportional to their 
rotational radii, or 

VBO _ O20B 

Vco O20C 
Hence, 

Vbo BM 

FIG. 83 
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Since BM was made equal in length to vector Vbo, it follows that 
BN' = CN must be equal in length to the desired velocity vector VCo. 
The velocity of R in Fig. 82 could have been found in a similar manner. 

Fig. 84 shows how the 'parallel line construction outlined above may 
be applied to determine the velocity of the cross-head, or point C, and 
the velocities of points P and Q on the connecting-rod of a slider-crank 
mechanism, when the velocity, VBOi of the crank-pin is given. Pivot 
point O20, being at the intersection of a line through O10 and O12 with 

a line through O23 normal 
to O23O10, is not available 
for use. As shown, Bb is 
made equal to the length 
of the known vector VBOy 

and line be is drawn paral¬ 
lel to BC. In accordance 
with the proof above, Cc 

represents the length of 
the desired vector Vc0 to 
the same scale that VBO 

represents the known ve¬ 
locity of B, Hence, veotor Vco is equal in length to Cc, and is per¬ 
pendicular to Cc at C. The point q in line cb is located from the pro¬ 
portionality 

cq= CQ 

cb CB 

Obviously a line through Q and q will pass through the pivot point 
O20, and Qq will represent the length of the desired vector VQO which 
is perpendicular to Qq at Q. Lines through b and c parallel, respectively, 
to BP and CP will intersect at p, and the line joining P and p will rep¬ 
resent the length of the desired vector v PO which is perpendicular 
to Pp at P. 

Even where the required instant centers are available, the so-called 
parallel line construction demonstrated above in connection with Figs. 
83 and 84 will frequently be found more convenient to apply in deter¬ 
mining the velocities of points in a mechanism than the triangular 
construction demonstrated in connection with Figs. 81 and 82. 

The instant center method of finding the magnitude and direction 
of the velocity of any point in a mechanism will, in general, be found 
more convenient to apply and more certain and accurate in its results. 
than the determination of velocities by the method of resolution. 
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66. Linear Velocities by Resolution. Fig. 85 shows a construction 
for determining, by the method of resolution, the linear velocity VDO 

of the cross-head, link 5, for a given velocity VBO of point B common 
to links 1, 2, and 3. That component of the velocity of B which is 
perpendicular to the direction of motion of 2 relative to 3, imparts to 3 

a motion of rotation about O30. This component, V'BO, is the velocity 
of point B as a point in 8. 

The velocity of C as a 
point in 3 relative to 0 is 
perpendicular to (hoC. 

Hence, the length of the 
velocity vector V CO is 
determined by the inter¬ 
section of a gauge line 
from the terminus of V'no FIG. 85 

through O30 with a line 
from C perpendicular to O30C. The component of Vco along CD is 
V'co. Since link 4 is rigid, the velocity component, V'DOf of D relative 
to 0 is equal to V'co. The intersection of a perpendicular through the 
terminus of V'DO with a line through D, in the known direction of its 
motion, determines the desired velocity vector VDO, 

In velocity determinations it may happen that the point whose 
velocity is desired is not a permanent center conveniently located as 
in the previous example. Thus in Fig. 86 let it be required to find the 
velocity of P in link 2, having given the velocity VB0 of point B. The 

construction shown 
treats this velocity as 
composed of a transla¬ 
tional and a rotational 
component. Link 2 may 
be regarded at the 
instant as being trans¬ 
lated parallel to BC 

while being simultane¬ 
ously rotated about some point in BC. Accordingly V'B0 and V"BO 

become the ‘translational and rotational components of B as a point 
in link 2. Since link 2 is rigid, the respective translational components, 
V'co an(3 V'p0j of C and P must be equal and parallel to V'B0. The 
direction of motion of C being known, Vco and the rotational com¬ 
ponent V"co are readily found as shown. The intersection D of line 
BC with a gauge line drawn through the termini of V"co and V"B0\ is 
the center about which 2 is rotating. Hence, the rotational com- 
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poneat of P is normal to DP and must have a length in accordance 

with the proportionality 
V"ro = DP 

v"B0 DB 

The desired velocity VPO of P relative to 0 is the resultant of the trans¬ 

lational and rotational components, V'P0 and V"P0. 

In the determination of the motion of a point by resolution, its 
velocity is regarded as the resultant of two components. Each of these 
components must be determined in magnitude and direction. The 
instant center method of determining velocities rests upon the fact 
that each point of a body may be considered as rotating about the 
instant center of the body. From this it follows that the direction of 
motion of any point is perpendicular to its instant radius, and the 
magnitude of its velocity is proportional to the length of the instant 
radius. The magnitude and direction of the velocity of a point are, 
therefore, determined with more assurance and certainty by the method 
of instant centers than by the method of resolution. Because of this 
and also because of the danger of confusing the resolution of forces 
with the resolution of velocities, the instant center method is to be 
preferred for general use to the method of resolution. 

67. Angular Velocity Theorem. In many kinematic problems it is 
necessary to determine the ratio of the angular velocities of two members 
of a mechanism with respect to a third member which may be either 
stationary or in motion. For such determinations the following theorem 
is valuable for its simplicity and generality. 

Let 0, 1, and 8, in Fig. 87 represent any three bodies having plane 
motion. It will be assumed that 0 is the reference body. The instant 

centers Oio and O30 are the pivot points 
about which bodies 1 and 8 rotate 
relative to the reference body. In 
accordance with Kennedy’s theorem, 
the instant center O13, a point corn- 
mon to 1 and 3, must be on the same 
straight line as Oio and O30. In the 
absence of any definite connection 
between 1 and 3, the location of this 
instant center, or transfer point, has 
been arbitrarily assumed. Since, as 

before stated, the transfer point O13 is a point common to 1 and 3, it 
has, as a point in 3} the same linear velocity V relative to 0 that it has 
as a point in 1. Also, since 0\3 must be in the same straight line as Oio 
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and O30, its linear velocity V is perpendicular to thjs line. Considering 
the transfer point, O13, as a point in 1, the angular velocity of 1 relative 
to 0 must be 

uio 
V 

O10O13 

(67) 

Considering Oi3 as a point in 8, the angular velocity of 8 relative to 0 

must be 

Dividing (67) by (68) gives 
“3° OsoOja ' • ' ' 

.... (68) 

win O30O13 
.... (69) 

^30 O10O13 

Equation (69) is the angular velocity theorem expressed algebraically. 
The theorem may be stated as follows: The angular velocities of any 

two bodies with respect to a third body are inversely as the distances of the 

pivot points of the two bodies from their transfer point. 

In the two mechanisms illustrated in Figs. 88 and 89 the angular 
velocities under scrutiny are those of the moving members 1 and 8 

each referred to the fixed member 0, In each case the $ivot points 
are the fixed centers O10 and O30, while the transfer point for 1 and 8 

must be O13. In each case the angular velocity ratio is 

_ O30O13 

C030 O10O13 

Figs. 88 and 89 are typical mechanisms quite similar to those of 
Figs. 45 and 46. It is to be noted that the point where the line of trans¬ 
mission, Arts. 42 and 43, cuts the line of centers is the transfer point 
in these simple mechanisms; that the angular velocity theorem just 
stated is in agreement with the statements of Art. 43; and that the 
directional relation of Art. 45 may be stated in the following terms: 
If the two pivot points lie on opposite sides of the transfer point, as in 
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Fig. 88; the angular motions of the corresponding members are opposite 

in direction, while, if the pivot points lie on the same side of the transfer 
point, as in Fig. 89, the angular motions are the same in direction. 

68. Graphical Determination of Angular Velocities. Since angular 
velocities are inversely proportional to certain distances or lengths, 
they are readily determined graphically by the use of homologous lines 
of similar triangles. The construction, however, differs from that given 
for linear velocities in Art. 65 in that inverse ratios are used and the 
distances involved have a different significance. 

Fig. 90 shows a construction for determining the angular velocity 
«3o of 8 relative to 0, having given the angular velocity o>io of 1 relative 
to 0. This is the cam mechanism of Fig. 88. The angular velocity 
co]o may be represented by a vector drawn in any convenient direction 

from the pivot point O30 of 3. A gauge line through the terminus of 
vector wio and the transfer point O13 will intersect a line through the 
pivot point O10 parallel to coio at C. From the two similar triangles 
thus formed with the line of centers, 

«3° _ O10O13 

Wjo 030013 

Since this is in accordance with the angular velocity theorem, equa¬ 
tion (69), line O10C represents the angular velocity <030 to the same 
scale that O30B represents auo. 

In order to indicate direction and to distinguish between linear and 
angular velocity vectors, a special kind of arrow-head may be used for 
angular velocity vectors, an arrow-head of the kind used for electric 
current vectors. By Art. 67, the pivot points O10 and O30 being on 
opposite sides of the transfer point O13, the directions of the angular 
motion of 1 and 3 are opposite. This is verified in Fig. 90 by the two 
vectors coio and C030 extending in opposite directions from the base line. 
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It is easily possible by the angular velocity theorem to change from 
one member to another as the reference member. For the mechanism 
shown in Fig. 90, the angular velocity cow of 1 relative to 0 was given. 

If 1 is taken as the reference member, the known angular velocity be¬ 

comes woi, equal and opposite in direction to, coio, that is, mi = — coio. 
If the angular velocity 0531 of 3 with respect to 1 is desired, an application 
of the angular velocity theorem, equation (69), would give 

W31 __ 0()]Oo3 

«oi (hiOm 
(70) 

Since instant centers 0\0, O30, and Oy,\ mean the same as O01 O03, and 
O31, it is not necessary in Fig. 91 or in equation (70) to write the instant 
centers differently than in Fig. 90. Hence, equation (70) can be written 

m>l __ OjoOhO 

o>()1 Ol\l(ho 
(71) 

It should, however, not be overlooked that cooi and 0131 are opposite 
in direction though equal in magnitude to c*>io and 0)13. 

The graphical determination of m\ from the proportionality of (71) 
is represented in Fig. 91. Centers O10 and O13 are the pivot points, 
and center O30 the transfer point. Since a>oi is. opposite in direction to 
co 10, it is drawn from the pivot point O13 downward from the line of 
centers. The intersection of a line from the pivot point 010 parallel to 
mi with a gauge line through the transfer point O30 and the terminus 
of vector mn forms two similar triangles with the line of centers in 
accordance with the proportionality stated in (71), and determines the 
length of the desired vector mi. 

The angular velocity mi, Fig. 91, can also be obtained by the addition 
or subtraction of vectors. Angular motions arc either clockwise or 
counter-clockwise, and angular velocities may, therefore, be represented 
by parallel vectors in the same or in opposite directions, as the case 
may be. Hence, relative angular velocities can be obtained by the 
addition or subtraction of vectors. Vector mi is, therefore, either the 
vector sum of mo and cooi or the vector difference of o>30 and cow- 

mi = mo 4> woi or w3i = mo + woi . . . (72) 
and 

mi ~ mo —> 6uo or co3i = mo ~~ uio * . • (73) 

These additions and subtractions are made clear in Figs. 90 and 91 by 
drawing a line through O13 parallel to OsqBC in Fig. 91. In such vector 
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additions it, is evident that the directions of rotation must be known 

and utilized. 
In the graphical method outlined above for determining angular 

velocities by the use of instant centers, the question of directions is, 
however, automatically taken care of. This method i$ very simple 
and direct, and will be found to have many applications in the study 
of different mechanisms. 

69. Graphs. A graph is a curve drawn with respect to a pole 
point or with respect to rectangular coordinate axes where the coor¬ 
dinates of any point on the curve represent the simultaneous values 
of the magnitudes of the variables employed. The numerical mag¬ 
nitudes of such quantities as displacement, velocity, acceleration, force, 
volume, cost, etc., may be plotted against such quantities as time, 
space, etc. The first four quantities named involve both magnitude 
and direction, and are, therefore, vector quantities. The magnitude of 
velocity is called speed. Hence, where magnitudes of velocity are 
plotted, the resulting curves are frequently called speed graphs. There 
are, however, no corresponding terms for the magnitudes of displace¬ 
ment, acceleration, and force. Where such magnitudes are plotted, 
the curves are called displacement-time graphs, acceleration-time or 
acceleration-space graphs, etc. In such graphs it is understood that 
it is the magnitudes of the vector quantities that are plotted. In the 
articles to follow the same understanding will be assumed with respect 
to velocity. Graphs resulting from plotting magnitudes of velocity will, 
therefore, be referred to as velocity graphs instead of speed graphs. ' 

70. Velocity Graphs. In the four-link mechanism shown in Fig. 92, 
the rotation of the driving arm, or crank, 1> imparts an oscillatory 
motion to arm 3. As crank 1 rotates counter-clockwise from position 
Bo to position B8, arm 3 moves from its extreme right position at Eo 

to its extreme left position at E8, and returns to position Eo as crank 1 

completes its rotation from B8 to Bo. In constructing the velocity 
graph od8 for point I) on its curved path as a base, the path, for con¬ 
venience, was first divided into eight equal parts, and the corresponding 
positions of the driving point C in its circular path were found. The 
figure shows the construction for determining one point on the velocity 

graph of D. Length Cc, laid off on BC extended, represents the known 
speed of point C for the phase shown. Then, in accordance with Art. 65, 
length Dd on ED extended, determined by a line through c parallel 

to CD} represents the magnitude of the velocity of D to the same scale 
that Cc represents the magnitude of the velocity of C. By finding 
other points in a similar manner, the velocity graph od8 was drawn. 
Since, for each phase, the length representing the magnitude of the 
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velocity of D was laid off on an extension of the radial position of link S} 

the curve od8 is called a radial velocity-space graph. For a constant 
angular velocity of the driving crank, point C would move at a uniform 
velocity, and its radial velocity graph would be a circle concentric with 
the path of C as shown. It is to be noted, however, that the construction 
for determining the velocity graph of D remains the same whether 
the known velocity of C is constant or variable. 

A velocity-space graph with rectangular coordinates may be con¬ 
structed from the radial velocity-space graph just found by rectifying 
the path of D and erecting at the various points parallel ordinates 
corresponding in length to those already determined. This derived 

velocity-sjmce graph is shown in Fig. 93. 
Fig. 94 illustrates the mechanism of the ordinary reciprocating 

engine. Because this mechanism is employed so frequently, its study 
is of considerable value. In Fig. 94 instant center Oj2 is a point common 
to links 1 and #, and instant center O13 is a point common to links 1 
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and 8; hence, at the instant, points 012 and O13 are common to link 1. 
As points in link 1, they are rotating; at the instant about O10 relative 
to 0, Hence, 

Fo13 
Vol2 0u)0]2 

or, since O13 has been designated B and O12 has been designated P, 

Vn° = O10P 

Vro O10P 

If the crank is assumed to rotate at a uniform rate, then the linear 
velocity Vpo will be constant and may be represented by the fixed 
length 0\qP; in which event, OwB would represent the linear velocity 
Vno to the same scale that O10P represents the constant linear velocity 
Vp0. Since 0\3 is a point in 3 as well as in 1, VJi0 is equal to the linear 
velocity VCo of the cross-head. 

The theory outlined immediately above was applied in Fig. 94 to 
determine graphically the velocity of the cross-head for each position of 
the crank. The polar velocity graphs and the velocity-space graphs for 
the cross-head for one revolution of the crank are shown in Fig. 94. For 
each crank position such as OioP, the magnitude of the cross-head ve¬ 
locity Vco was laid off from Oio on the crank to determine a point b on 
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the polar velocity graph for the cross-head. Also, for each position of the 
crank, the magnitude of the velocity Vco of the cross-head was laid off 
on a line through the corresponding cross-head position and perpend¬ 
icular to its path to determine a point c on the velocity-space graph 
for the cross-head. Since the crank is rotating at a uniform rate, equal 
crank spaces represent equal time intervals. Hence the magnitudes 
of the cross-head velocities may be used as ordinates and time as ab¬ 
scissae, resulting in the velocity-time graph shown in Fig. 95. In the 
velocity-space and in the velocity-time graphs, the magnitude of the 
velocity of the cross-head when traveling to the right was laid off 
upwards, and laid off downwards when traveling to the left. 

To make these velocity graphs of any use in a quantitative way, 
it is necessary to determine the scales to which they were drawn. For 
the mechanism shown in Fig. 94, the crank was assumed to rotate in a 
clockwise direction at a uniform rate at 126 revolutions per minute. 
The stroke is 24 inches, and the connecting-rod length is 60 inches. The 
space scale of Fig. 94 is \ in. = 12 in. or 1 in. = ka = 2 ft. The crank is, 
therefore, represented by a length of \ in. The velocity or speed scale 
was fixed when the length of the crank was taken to represent the 
constant linear velocity of the crank-pin P, which is 

Vpo = trD(lt.P.S.) = ir(!5)-W = 13.2 ft./sec. 

Hence the velocity or speed scale of Figs. 94 and 95 is 

V, 13.2 
1 in. = kv = ~~~ = —— = 26.4 ft./sec. 

O10P 0.50 

In Fig. 95, the time for one revolution, or 60/126 of a second, is rep¬ 
resented by a line 3 in. long. Hence, the time scale is 

1 in. = kt = ii-ffo) = 0.159 sec. 

In any distance-time graph, the speed, or magnitude of the velocity, 
for any point on the curve, is proportional to the slope of the tangent 
to the curve at that point. This statement corresponds to equation (8) 
Art. 11, and to the definition of the speed of a point as the time rate of 
change of distance. In Fig. 96 let OPQ be any space-time curve, and 
let P be any point on the curve for which BP is the ordinate and PE 

the tangent. Draw PD of some convenient length parallel to the axis 
of abscissae, and erect DE parallel to the axis of ordinates. In the 
slope triangle PDE1 PD represents an infinitesimal increment of time dt, 

and DE the corresponding increment of distance ds. The distance, or 
space, scale is such that one inch represents ka feet, and the time scale is 
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such that one inch represents kt seconds. In Fig. 96 the increment of 
distance at the instant is ds = (DE)ks, and the increment of time is 
dt = (.PD)kt. Hence, the speed, or magnitude of the velocity, at the 
instant, is 

= ds = (DE)k. 

dt (PD)kt ' 
. . (74) 

If the same length of line is used for PD for each point on the distance¬ 
time graph, then DE would represent the speed, or magnitude of the 
velocity, for each point, to a scale of 

1 in. = kv = 
k. 

(.PD)kt 
(75) 

TIME 

F/G. 36 

71. Acceleration Graphs. Owing to the desire or necessity for more 
rapid transportation or for more power per unit weight or for more 

production per capita, machinery speeds 
have been increasing, especially in the 
past twenty-five years. This is particu¬ 
larly true of engines and other machines 
utilizing the slider-crank mechanism. As 
speeds have increased, the unbalanced 
inertia forces and moments in machines 
have become more serious. Hence, a study 
of the acceleratiQns which accompany 
inertia forces, and moments, and of the 
problem of balancing such forces and 
moments, has become of increasing im¬ 
portance. 

It is possible to derive acceleration graphs from velocity graphs. 
It is important to note that such methods give only the accelerations 
which are due to the change in the magnitude of the velocity. They 
are applicable, therefore, only to total accelerations for rectilinear motion, 
or to tangential accelerations for curvilinear motion. Since an engine 
cross-head has rectilinear motion, its tangential acceleration A* is its 
total acceleration, and can, therefore, be found from its velocity graphs. 

It will now be shown that in any velocity-space graph the subnormal 
to the curve at any point is proportional to the corresponding tangential 
acceleration. Let OPQ, Fig. 97, be any velocity-space curve, and P 

be any point on the curve. Lines BP> PE} and PC, are, respectively, 
the ordinate, tangent, and normal to the curve at the point. Let PD 

be drawn parallel to the axis of abscissae and of some convenient length, 
and let DE be erected at D parallel to the axis of ordinates. In the 
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slope triangle PDE, PD represents to scale an infinitesmal increment cf 
distance ds, and DE the corresponding increment dV of the magnitude 
of the velocity. The velocity ordinates have been laid off to a scale 
such that 1 inch represents kv feet per second, and the abscissae such 
that 1 inch represents k8 feet. From equation (23) Art. 16, the tan¬ 
gential component of acceleration is 

A* = 
VdV 

ds 
(76) 

FIG. 37 FIG. 33 

In Fig. 97 the magnitude of the velocity at the instant is V = (BP)kv, 
the increment of velocity is dV = (DE)kv, and the increment of space 
is ds = (PD)ks. Substituting these values in equation (76) gives 

A* = 
(.BP)(DE)k;2 

(PD)h 
(77) 

But triangles PBC and PDE, since their sides are perpendicular, are 

similar, and 
BC DE (BP) (DE) 

liP ~ PD °r PD 

Hence (77) may be written 

A‘ (79) 

Equation (79) states that for any point on a velocity-space graph, the 
tangential acceleration A' is equal to the product of the subnormal BC 
and the square of the velocity scale divided by the space scale. Hence, 
if the tangential accelerations are represented by ordinates equal in 
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length to the subnormals, the acceleration scale of the resulting accel¬ 
eration-space graph is 

k ~ 
1 in. = ka = y~ ft./sec./sec.(80) 

kg 

In Fig. 97 the subnormal BC representing the tangential acceleration 
of point P at the instant is laid off as Bit on the ordinate for I\ The 
acceleration-space graph shown in Fig. 94 was obtained from the velocity- 
space graph by this subnormal construction. The acceleration scale 

of the graph is 1 in. = 
Av (26.4)- 

= 348.5 ft./sec./sec. 

In any velocity-time graph the tangential acceleration at any point 
on the curve is proportional to the slope of the tangent to the curve at 
that point. This statement corresponds to equation (28) Art. 18, and 
to the definition of the tangential component of acceleration as the 
time rate of change of the magnitude of the velocity. In Fig. 98 let 
OPQ be any velocity-time curve, and let P be any point on the curve 
for which FP is the ordinate and PJ the tangent. Draw PII of some 
convenient length parallel to the axis of abscissae, and erect IIJ parallel 
to the axis of ordinates. In the slope triangle PHJ, PII represents an 
infinitesimal increment of time dt, and IIJ the corresponding increment 
of velocity dV. The velocity scale is such that 1 inch represents kv 

feet per second, and the time scale is such that 1 inch represents kt 

seconds. From equation (28) Art. 18, the tangential component of 
acceleration is 

A1 = 
dV 

dt 
(81) 

In Fig. 98 the increment of velocity at the instant is dV = (IIJ)kv, 
and the increment of time is dt = (.PII)kt. Substituting these values 
in (81) gives 

(HJJk,, 

(PU)kt 
(82) 

If the same length of line is used for PH for each point on the velocity¬ 
time graph, then HJ would represent the acceleration for each point 
to a scale of 

1 in. kg, - 
kv 

(PH)kt 
(83) 

This plan was followed in Fig. 95 in deriving the acceleration-time 

graph from the velocity-time graph. In this graph the ordinates are 
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equally spaced fV in. apart. For each point two such spaces or a length 

of $■ in. was used for PH. Hence the acceleration scale for the accel¬ 
eration-time graph in Fig. 95 is 

1 in. = ka 
kv 

(PH)kt 

26.4 

(1)0.159 
443.5 ft./sec./sec. 

The accuracy of the results obtained by the application of the 
graphical methods just described will depend upon the accuracy and 
smoothness of the velocity graphs and upon how accurately the tangents 
and normals are drawn at each point of the velocity graphs. A degree 
of accuracy sufficient for general engineering work is, however, possible 
after a little practice. A square reflecting bar, a logarithmic spiral curve, 
or the use of the center of 
curvature of the curve at 
the point under considera¬ 
tion are of considerable 
assistance in drawing tan¬ 
gents and normals to the 
curves. 

There are several special 
constructions for accurately 
determining the acceleration 

of the cross-head of an en¬ 
gine. The one most used is 
probably the Klein construction shown in Fig. 99. This construction 
is only applicable when the crank rotates at a uniform rate, and assumes 
that the constant linear velocity of the crank-pin center P is represented 
by the length of the crank, 0\oP. A circle is first described with P as a 
center and PB as a radius. With E as a center and a radius equal to 
one-half the length of the connecting-rod, an arc is then drawn through 
P intersecting the circle at C and J. A line through C and J cuts the 
connecting-rod at D and the line of centers HO\o at G. The acceleration 
of the cross-head is proportional to the length GO\o. The acceleration 

scale is 1 in. ka 
kl 
K 

ft./sec./sec., where ks is the space scale and kv 

the velocity scale. The velocity scale, kv, is the constant linear velocity 
of P in feet per second divided by the length OioP in inches. The proof 
of this construction will be found in Art. 80. 

72. Analytical Determination of Velocities and Accelerations. The 
graphical methods of determining the velocity or acceleration of any 
point in a mechanism that have thus far been developed and that are 
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developed in the next chapter, are, in general, as easy to apply to one 
mechanism as to another. This will not be found to be true for any 
analytical method of attack. While analytical methods of attack are gen¬ 
eral in principle, the difficulty of applying any given method will be found 
to vary with the mechanism. Where a mathematical analysis is possible, 
the equations developed are often complicated and inconvenient to use. 

The mathematical analysis of the slider-crank mechanism shown 
(in Fig. 100 will be used as an illustration. The velocity, likewise the 
acceleration, of a point will be treated as the vector sum of its axial 
components. To make the analysis more general, a point P on the 

Y 

connecting-rod will be used. For convenience the lengths and distances 
in Fig. 100 will be considered as measured in feet, and the angular 

velocity a> of the crank as expressed in radians per second. Let n = 

BP b 
and c = —— = Then, for any point P on the connecting-rod, 

BD l 

l 
It’ 

BM = R sin 6 — l sin <!> = nR sin <j> 

Hence, 
sin 8 

sm <j> =- . . . 
n 

and 

cos <t> = V1 — sin2 4> = -Vn2 — sin2 6 = -in 
n n\ 

(84) 

sin2 

2 n / 
nearly. 

The average error throughout a revolution as a result of taking 

Vn? — sin2 0 equal to [n — is less than one-quarter of one per 
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cent for a value of n « 4, and rapidly decreases with an increase in the 
value of n. 

x ~ R cos 0 + 6 cos <t> = /£^cos 0 + cyn-~—JJ 

y ~ (l — b) sin $ = 72(1 — c) sin 0 

Differentiating x and y with respect to time yields the velocity com¬ 
ponents parallel, respectively, to OX and OY: 

Vpo = ~~ * — 72(sin 0 sin 20= — cj/q sin 6 + ~ sin 20). (85) 
at \ 2 n / dt \ 2 n / 

n* * 72(1 — r) cos 6 - = co72(l — c) cos 0 
dt 

Differentiating and with respect to time yields the acceleration 
components parallel, respectively, to OX and OY: 

a* -dlk 
&PO ~ j. 

. (87) 72( sin 6 + — sin 20 )— — R[ cos 0 + - cos 20 

fi(l - 0 cos 0~ - fid - c) sin »(|)' 

In these expressions for APO and Avr represents the square of the 

angular velocity of the crank and — the rate of change of the angular 
(XL 

velocity, or the angular acceleration, at the instant. If the angular 
velocity of the crank is not constant, its angular acceleration in terms 
of 0 and t must be known in order to use equations (87) and (88). In 
many cases where this mechanism is used, especially in engines, the 
crank may be assumed to rotate at a uniform rate. This is accomplished 
by fitting the engine with a flywheel of proper size and weight. So far 
as balance is concerned, an engine that is in balance for a uniform rate 
of rotation of the crank is in balance for a non-uniform rate of rotation. 

dd . d~6 
If the angular velocity of the crank 7-, or co} is assumed constant, — 

dt dt~ 
becomes zero, and the components of acceleration, AXP0 and APOf of P 

become 

Axpo “ — oAR^cos 0 + ~ cos 20^).(89) 

AP0 te — o)2R( 1 — c) sin 0.(90) 
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The axial components of velocity and acceleration for any point P in 
the connecting-rod are given by equations (85), (86), (87), and (88) for 
a non-uniform rotation of the crank, and by equations (85), (86), (89), 
and (90) for a uniform rotation of the crank. 

The connecting-rod has a varying angular velocity and, therefore, 
an angular acceleration, which may be obtained from its angular dis¬ 
placement. From equation (84) the angular displacement of the rod 

at any instant is 

<t> = sin”1 (91) 

The angular velocity of the rod at any instant is obtained by differen¬ 
tiating </> with respect to time. Assuming the crank rotating at a uniform 
angular velocity co, the angular velocity of the rod at any instant for any 
displacement 6 of the crank is 

O>20 

d4>_<*> cos_0_ 

dt y/ri2 — sin2 6 
(92) 

and the corresponding angular acceleration of the rod is 

do)20 cl>2(1 — nr) sin 6 

dt (n2 — sin2 0)H 
(93) 

When b = l point P is at D and the value of c becomes unity. By 
substituting the value of unity for c in equations (89) and (90) expressions 
are obtained for AXD0 and AVD0 for the cross-head pin center 1) for uniform 
rotation of the crank. Hence, for the cross-head, 

AxDO = ~ u2r(cos 6 + .(94) 

Avdo = zero 

When b = zero, point P is at B and the value of c is zero. By sub¬ 
stituting zero for c in equations (89) and (90), expressions are obtained 
for A%0 and AvBO for the crank-pin center B for uniform rotation of 
the crank. Hence, for point B, 

Axbo = - cc2R cos 6.. (95) 

Abo = ~ u2R sin 0.(96) 

It is to be noted that A%0 and AVB0 are merely the vector components of 
the normal acceleration of a point moving in a circular path. Their 

vector sum is equal to co2R in accordance with equation (29), Art. 18. 
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The mechanism shown in Fig. 101 is equivalent to a slider-crank 
chain having a connecting-rod of infinite length. Point D is any point 
on the reciprocating slotted cross-head, or Scotch yoke, as it is frequently 
called. The velocity and acceleration components for points B and D 
for this mechanism can be obtained as for the similarly designated 
points of the mechanism in Fig. 100. The length of the connecting-rod 

i 

FIG. 101 

being infinite, n = is infinite, and c for point D would equal unity. 
xt 

Substituting the value of c in equation (86) gives VvDO = zero, and sub¬ 
stituting the values of n and c in equations (85) and (94) gives 

and 

Vdo = — coR sin 6 = — uR sin U . . . . (97) 

A do = ~~ o)2R cos 6 = — urR cos a>t ... . (98) 

It is to be noted that these equations are the same as equations (24) 
and (25) of Art. 17. Therefore, the slotted cross-head of Fig. 101 has 
simple harmonic motion if the driving crank rotates at a uniform speed. 



CHAPTER IV 

VELOCITY AND ACCELERATION VECTOR DIAGRAMS . 

73. Velocity and Acceleration. Methods of determining relative 
linear and angular velocities have already been shown to be of im¬ 
portance in analyzing the relative motions of the parts of mechanisms 
and machines. In Art. 71 it was shown that the variation of the tan¬ 
gential acceleration or the variation of the acceleration of a part having 
rectilinear motion can be determined from the velocity-time or the 
velocity-space graph. In order to determine the linear acceleration of 
any point or the angular acceleration of any link in a mechanism, it is 
first necessary to determine the relative velocities. Methods of deter¬ 
mining relative velocities are, therefore, of great importance in making 

a complete analysis of the motions of the parts of a machine. Two 
methods have thus far been given. In this chapter a third method will 
be given before taking up the methods of determining accelerations. 

The magnitude and direction of the forces acting on the moving 
parts of a machine at any instant are affected by friction and the inertia 
of the parts. As a rule the frictional resistances are small compared 
to the forces to be transmitted, and have little effect on the magnitude 
and direction of the resulting forces. The effect of the inertia of the 
parts depends upon the linear and angular accelerations of the moving 
parts or masses. For high-speed machinery the effects, of the inertia 
of the parts piay be very considerable. For slow-speed machinery the 
friction and inertia of the parts may have very little effect on the mag¬ 
nitude and direction of the resulting forces. Where these two factors 
may be neglected, the product of the absolute velocity and the force 
acting in its direction at one point in a machine will be equal to the 
product of the absolute velocity and the force acting in its direction at 

any other point in the machine. Application of this law of the con¬ 
servation of energy makes it possible to approximate the magnitude 

and direction of the forces acting on the parts of slow-speed machinery. 

If only friction can be neglected, the magnitude and direction of the 

forces acting on the parts of a machine will be affected by the size, 
form, and mass of the parts and their linear and angular accelerations. 

Thus the force available for transmission at the cross-head of an engine 
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during the first part of the stroke is less than the net steam pressure on 
the piston by an amount equal to the-product of the acceleration and 
the mass of the piston, piston-rod, and cross-head. Also, because of 
the rectilinear acceleration of the reciprocating parts, the linear and 
angular acceleration of the connecting-rod, and the normal acceleration 
of the crank, assumed to rotate at a uniform rate, the reactions at the 
crank-shaft bearings will be less at the instant than would correspond 
to the net steam pressure on the piston. As a result, the steam pressures 
on the cylinder heads of the engine are not balanced by the forces on 
the cross-head guides and at the crank-shaft bearings, and the engine 
would tend to rock and to vibrate on its foundation because of the 
unbalanced forces and moments; It is thus evident that to calculate 
inertia forces and moments and to find and to correct the unbalance 
tif machines, it is necessary to determine the accelerations of the parts. 
Just how to determine the magnitude, direction, and line of action of 
the inertia force, the force necessary to accelerate a part at the rate it is 
being accelerated at the instant, is best shown by examples. 

HG tO£ r/G. f03 

Suppose the rod of mass M, shown in Fig. 102, is found, as a part 
of a machine, to have linear but no angular acceleration, and that the 

linear acceleration of the center of gravity C of the rod is Ac feet per 
second per second in the direction shown. Obviously the force F neces¬ 
sary to overcome the inertia of the rod is 

F = MAC .(99) 

If the center of gravity C of the rod is midway between D and B, and 
the forces actually acting on the rod are applied at D and B, then the 
forces Fd and FB necessary to overcome the inertia of the rod would 
act through D and B parallel to Ac, and 

Fd = F/j and Fd ~t~ Fs = F = MAc . . . (100) 

Suppose, however, that in addition to C having a linear acceleration of 
Ac, the rod had an angular acceleration of a in a clockwise direction. 

Then, instead of the resultant force F acting through C, it would act 
parallel to and at a distance h to the right of Ac as shown in Fig. 103. 
Obviously, two opposing forces, equal and parallel to F, may be sub- 
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stituted at C without disturbing the system. Hence, the rod may be 
considered to be acted on by a force F through C producing linear 
acceleration, and a couple Fh producing angular acceleration. The 
turning moment Fh to produce an angular acceleration a of a part 
having a moment of inertia of mass 1 about its center of gravity is 

Hence, 

s 
a 

II 

Mp2a (> a 

. . (101) 

MAC ~ P Ac ' ' ’ 
. . (102) 

where p is the radius of gyration of the mass about its center of gravity. 
If the actuating forces causing the motion of the rod are applied at B 
and Dy the forces will be parallel to F, and their magnitudes can be 
found by the summation of forces and moments. 

It is evident from the above illustrations that it is necessary to be 
able to determine linear and angular accelerations in order to solve 
problems in kinetics. 

74. Velocity Vector Diagram. The use of velocity vector diagrams 
was first fully discussed by Professor R. H. Smith in the Proceedings 

of the Royal Society of Edinburgh in January, 1885. By this method 
of solution, a complete velocity vector diagram of a mechanism may be 
constructed and the velocity of any point relative to any other point 
determined by inspection. 

In the construction of velocity vector diagrams capital letters will 
be used to represent the points whose velocities are known or are to be 
determined, and small letters will be used in the diagrams to designate 
the velocity vectors. 

Consider first Fig. 104, where points B and C have the linear velocities 
VB0 and Vco relative to body 0. As was shown in Art. 5 and as illus¬ 
trated in Fig. 105, 

VcB — VCO VBO 0r> Vco *= VBO 44“ VCB . . (103) 
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Because of its usefulness in this form of construction, vectors will be 
indicated as in Fig. 106. The line ob, parallel and equal to VB0 of 

Fig. 104, represents the velocity of point B relative to 0, or the line bo 
represents the velocity of 0 relative to B. In the same manner the 
line oc represents VC0) being parallel and equal to it. Drawing the 
line be makes the two triangles, obc and VBOVCBVCOy equal by con¬ 
struction, and the line be will represent the velocity of C relative to By 
and cb that of B relative to C. The vector diagram obc indicates the 
relative velocities of points B and C. It should be noted that in Fig. 105 
the velocity vector representing the velocity of C relative to B is marked 
V CBl the direction being indicated by an arrow-head, while in Fig. 106 
the velocity vector representing the velocity of C relative to B is 6c, 

FIG. 107 FIG. /OB 

the direction being from b to c. Similarly, the velocity vector repre¬ 
senting the velocity of B relative to C is c6, the direction being from c 
to 6. Hence the diagram of Fig. 106 is more generally useful than that 

of Fig. 105. 
In Fig. 107, let VPO and VQO represent the known velocities of the 

two points P and Q of the moving body 1 referred to body 0. Fig. 108 
is the velocity vector diagram in which op and oq are drawn parallel 
and equal to Vpo and VQO, respectively, and in which pq represents 
the velocity of Q relative to P. Point 12, being a part of body I, cannot 

move toward or away from P along the line PR and, hence, can move 
relative to P only in a direction perpendicular to PR. By the same 
reasoning, R can move relative to Q only in a direction perpendicular 
to QR. In other words, the motion of one point relative to any other point 
in the same rigid body must be at right angles to the line joining the two 
points. This obvious relation is the key to the construction of velocity vector 
diagrams. Hence, in the vector diagram, Fig. 108, vector pr is drawn 
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perpendicular to its rotational radius PR in Fig. 107, and the vector 
qr perpendicular to QR. The intersection of these two lines locates r 
and determines the velocity vectors pr and qr and enables or to be 
drawn. Since point S lies on the line PQ} its velocities relative to P 
and Q must be perpendicular to the line PQ and proportional to the 
distances of S from P and Q. Hence 5 divides pq in the same proportion 
as S divides PQ. The point s could also have been located by remem¬ 
bering that S and R are both points on 1> and that the velocity vector 
of S relative to R must be perpendicular to RS. Hence, where a line 
from r perpendicular to RS intersects pq locates $. The figure prqs is 
termed the velocity image of PRQS, P,/?,Q, and 8 being selected points 
of body 1. Figure prqs was constructed similar to the figure PRQS of 
the configuration diagram but at right angles to it and of a size de¬ 
pendent upon the velocity scale used. Knowing this similarity between 
the image and the configuration diagram makes it possible easily to 
determine the velocity vectors of other points in a member such as 1. 

It is to be noted by reference to Figs. 107 and 108 that the con¬ 
figuration diagram, and therefore the velocity image, may be extended 
to include other points. If the velocity image is extended to include the 
pole o, the corresponding point in body 1 extended is a point Oio which 
has no linear velocity relative to 0. Such a point is, by definition, 
the instant center of the velocity relations between bodies i and O. This 
may be verified by the methods of Arts. 55 and 56. In connection with 
the study of the velocity vector diagrams of Figs. 110 and 113 it should 
be noted that each link has its velocity image, and that the location of 
the instant center of any link corresponds to the pole point o of the 
velocity image of the link. 

Angular velocities are also obtainable from the information furnished 
by these velocity vector diagrams. Since 1 in Fig. 107 is a rigid body, 
the point Q can have only a motion of rotation relative to P. Hence, 
the velocity of Q relative to P is a measure of the angular velocity of 
PQ relative to 0. The velocity of Q relative to P is represented to a 

definite scale in Fig. 108 by the line pq. Hence, from the fundamental 
V 

relation w = —, the angular velocity of the line PQ relative to 0 is 
R 

proportional to —, direction counter-clockwise. If the velocity scale of 
i Q 

Fig. 108 is 1 in. = kv feet per second and the space scale of Fig. 107 is 
1 in. a* k, feet, then, since the two figures are similar, 

(pq\kv '( pr\kv / sr\kv 

" “ \PQ/k. ~ \PR/k, XSR/k, CtC' ' ‘ (1°4) 
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These equalities simply state that all the lines in a rigid body having 
plane motion relative to another body, have the same angular velocity. 

78. Applications of the Velocity Vector Diagram, (a) Four-Link 
Mechanism. The four-link mechanism of Fig. 109 is that of Fig. 82. 
The articulations have been named Oio, B, C, and O30. The linear 
velocity vector of point P relative to 0 being known, the velocities of 
R and Q are to be determined. This will be done by first finding the 
velocity of H, then C, then R7 and finally Q, by means of a velocity 
vector diagram. Starting with the pole o, Fig. 110, draw op parallel 
and equal to the known vector Vp0. As before pointed out, B can have 
only a motion of rotation relative to any other point in the same rigid 
body. Hence, B must move perpendicular to PB relative to P and 

perpendicular to O10B relative to 0, and lines from p and 0 perpendicular 
to PB and O10B will intersect at b and determine the velocity vectors 
pb and ob. In a like manner lines from b and 0 perpendicular to BC 
and O30C intersect at c determining velocity vectors oc and be. Lines 
from b and c perpendicular to BR and CR intersect at r and determine 
the velocity vectors br and cr, the desired velocity of R relative to 0 
being determined by drawing the velocity vector or. Lines from 0 and 
c perpendicular to OsoQ and CQ intersect at q and determine the desired 
vector oq} representing the velocity of Q relative to 0. The velocity 
vectors or and oq may now be drawn from R and Q in Fig. 109 if desired. 

It is to be noted that by the use of O20 the intersection r could have 
been determined as the intersection of lines from 0 and b or from 0 and c 
instead of from b and c. Also, since the triangles bre and BRC are 
similar, r could have been located on a line from 0, 6, or c by proportion. 

As before pointed out, the velocity images /, 3, and 3, Fig. 110, are 
similar to links I, 3, and 3, Fig. 109, but are at right angles to them. 
If the scale of the vector diagram, Fig. 110, were such that vector op 
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representing the velocity VP0 was equal to 0\qP, then the vector diagram, 
Fig. 110, could be revolved through 90 degrees and superimposed on the 
configuration diagram. Then, as shown in Fig. Ill, image 1 would 
coincide with link I, and the other images would take the positions 
shown. Since vectors or, oc, and oq radiate from Oio and represent in 
magnitude the velocities of points R, C, and Q to the same scale that 
op> or OiqP, represents the velocity of P, the points r, c, and q) Fig. Ill, 
may be considered as points in link 1 extended which have the same 
velocities as points /?, C, and Q of the linkage. A diagram so constructed 
on the driving link of a mechanism is called a phorograph. It has the 
advantage over the ordinary vector diagram of being formed by lines 
parallel instead of perpendicular to the lines of the linkage, but has the 
disadvantage of representing the velocity directions revolved through 
90 degrees. It is to be noted that the velocity scale of the phorograph 
is always equal to the known velocity of a point in the driving link 
divided by the rotational radius of the point. If, in Fig. Ill, the velocity 
Vpo is the same for all positions of link /, then the velocity scale of the 

Vro 
phorograph is the same for all phases of the linkage and equal to ——. 

Owl 
If, however, driving link 1 rotates at a variable angular velocity, the 
velocity scale of the phorograph will vary from position to position of 
link 1 according to the variation of the angular velocity. The advantages 
of the phorograph may be realized in constructing velocity vector dia¬ 
grams to any scale desired by considering all velocity directions dis¬ 
placed 90 degrees and using parallel instead of perpendicular lines. 
Where velocities are to be determined for various phases of a mechanism, 
this construction can be used without confusion, if, for the first phase, 
the ordinary velocity vector diagram is constructed. 

By reference to Fig. 82 it will be found that the solution of the 
above problem by the method of instant centers is more direct and more 
easily followed than the solution just made by applying the velocity 
vector diagram. The reverse of this would be true had the points P, 
R, and Q been located on the lines joining the centers Oio, B, C, and 030. 
The method to be preferred depends upon the character of the problem. 
Where accelerations are to be found, the vector diagram method of 
determining the velocities is always to be preferred. In the following 
application to a complex mechanism, solution by means of the velocity 
vector diagram is simpler than by the method of instant centers. 

(b) Marshall1s Valve Gear. Fig. 112 is a diagrammatic representation 
of Marshall's valve gear for steam engines. The frame of the engine is 
0, H is the center of the cross-head pin, P the center of the crank-pin, 
Oio the center of the crank-shaft, E the center of the eccentric, and G 
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the center of the pin connecting the rod I)G to the stem of the slide valve. 
To reverse the engine center C is moved to the right. The power of 
the engine, whether going forward or backward, is controlled by the 
position of C, which is under the control of the operating engineer. 
Since for any given condition of running C is fixed with respect to the 
frame, it may be designated O50. 

The interest in making a velocity analysis of a valve gear may be 
to find the corresponding velocities of the valve and cross-head or 
piston for various positions of the crank-pin which rotates at a known 
uniform rate, or, more to the purpose, such an analysis may be used as 
the basis for determining the accelerations of the parts of the gear. The 

given velocity op of the crank-pin center P is laid off from 0 in Fig. 113 
perpendicular to the crank O10P. Since the motion of H relative to 0 
is vertical, and the motion of H relative to P is perpendicular to 
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oh is vertical and ph is perpendicular to PII. Since E is on the center- 
line OioPj e is in a position on op corresponding to the proportion 
06 OioE 
— = ~Point B moves perpendicular to EB relative to E and 
op OxqP 

perpendicular to O50B relative to O50. Hence, b is the intersection of 
lines through e and 0 respectively perpendicular to EB and O50B. Since 
D is on EB, d is in a position on eb corresponding to the proportion 

— as - The motion of G with respect to the frame 0 is vertical 
eb EB 
and is perpendicular to DG with respect to D. Hence, g is the inter¬ 
section of a vertical through 0 and a line through d perpendicular to DG. 
The velocity vector diagram indicates, for the position of the crank 
shown, that the cross-head or piston is moving vertically downward at 
a velocity oh, while the valve stem or valve is moving vertically upward 
at a relatively small velocity og. 

For any given condition of operation the mechanism consists of eight 
links for which there are 28 instant centers. For the above velocity 
relations, the direct transfer point between the cross-head and the 
valve is located at infinity, and several steps would be required to obtain 
the transfer point between crank and valve. A solution by the method 
of instant centers would, therefore, have proved more difficult than the 
solution above by means of the velocity vector diagram. 

(c) Direct Contact Mechanism. In the direct contact mechanism 
shown in Fig. 114, link 2 is driven by link 1. At the instant, point P\ 
of link 1 is in contact with point P2 of linlv#. From the angular velocity 
of the driver, link 1, the linear velocity Vpl0 of point Pi can be found. 

The problem is to find the velocity VP2o. Now 

VPl0=Vw*>VPlPi.(105) 

VPl0 and VPl0 are known to be perpendicular, respectively, to O10P 
and O20P. To draw the vector diagram, Fig. 115, we must know the 
direction of motion of Pi relative to P2. Since links 1 and 2 are rigid 
bodies, Pi can move relative to P2 only along the common tangent T, 

as there can be no relative motion of the contact points along the com¬ 
mon normal N. Hence, opi is drawn perpendicular to O10P1, and p% is 
the intersection of a line through 0 perpendicular to O20P2 with a line 
through pi parallel to T. 

See Art. 83 for a demonstration of the three line construction for the 
determination of velocities, 

76. Acceleration Vector Diagram. Acceleration vectors may be 
used to form acceleration vector diagrams in a manner similar to the 
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use of velocity vectors in forming velocity vector diagrams. Since 
information from a velocity vector diagram is needed to construct an 
acceleration vector diagram, the notation for the latter should be con¬ 
sistent with that used for the former. Accordingly a line ob parallel 
to Vbo of Fig. 104 having been used in Fig. 106 to represent the velocity 
of point B relative to 0, a vector o'b' will be used to represent the total 
linear acceleration Abo of point B relative to 0. This total acceleration 
is usefully considered as the vector sum of its normal and tangential 
components, AnB0 and A#0. The fact that the normal and tangential comr 
ponents of an acceleration are at right angles is the key to the construction 
of acceleration vector diagrams. The point of intersection of the vectors 
representing the normal and tangential components of an acceleration 
such as Abo will be designated (bo). Thus the normal and tangential 
components AnB0 and Alm) of this acceleration would be represented by 

the component vectors o'(bo) and (bo)bf. The normal and tangential 
acceleration components A*B and Al0B of acceleration AGb would be 
represented by the vectors b'(ob) and (ob)o'. An example will make 
clear the notation tp be used and the method of constructing acceleration 

vector diagrams. 
In Figs. 116, 117, and 118, the configuration, velocity vector, and 

acceleration vector diagrams for an ordinary slider-crank chain are 

respectively represented. For this particular slider-crank chain, the 
crank rotates in a clockwise direction at a uniform rate at 126 revolutions 

per minute. The stroke is 24 inches, and the connecting-rod length is 
60 inches. The space scale of Fig. 116 is $ in. = 12 in. or 1 in. = 2 feet, 
the velocity scale of Fig. 117 is 1 in. « 10 feet per second, and the 
acceleration scale of Fig. 118 is 1 in. » 120 feet per second per second. 

In order to determine the relative accelerations, it is first necessary 
to determine the relative velocities. Since the linear velocity of the 
crank-pin center P can be computed, a velocity vector diagram giving 
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the Relative velocities of P and // can be constructed by the methods 
of Art. 74. The linear velocity of P relative to the frame 0 is 

Vro = ttD(R.P.S.) = tt(U)W = 13.2 ft./sec. 

The direction of motion of P at the instant is tangent to the crank-pin 
circle or perpendicular to OwP. Hence, the linear velocity of P is fully 
represented in the velocity vector diagram, Fig. 117, by a line op per¬ 

pendicular to OiqP having a length of 
13.2 

10 
1.32 inches. The direction 

of motion of H is horizontal relative to the frame 0 and is perpendicular 

to HP relative to P. Hence, the intersection h of a horizontal line 
through the pole o with a line through p perpendicular to HP completes 
the velocity vector diagram, Fig. 117, for the points P and H. The 
velocity VnP of H relative to P is represented by the vector ph, and the 
velocity Vho of H relative to the frame 0 by the vector oh to the scale 
of 1 in. = 10 feet per second. Measuring these vectors gives 

Vhp = 9.45 ft./sec., and Vho = 10.6 ft./sec. 

In constructing the acceleration vector diagram for P and H, Fig. 118, 
use is made of the fact that the normal and tangential components of 
the acceleration of a point are at right angles. Since the crank is rotating 
at a uniform rate, the acceleration of P has a normal but no tangential 
component. The normal acceleration component of P may be found by 
multiplying the velocity of P relative to 0 by the angular velocity of 
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OioP, or by dividing the square of the velocity of P by the rotational 
radius OioP. Hence, 

(F/.q)2 = (13.2)2 

OioP n 174.24 ft./sec.2 

Using the scale given above, Ap0 would be represented by a vector 
174.24 

having a length of ——— = 1.45 in. Since the acceleration of P acts 
I zu 

from P towards 010 along POiq, the acceleration vector o'p' for point P 
in the diagram, Fig. 118, is drawn from the pole o' parallel to POio to 
a length of 1.45 in. The normal acceleration component of II relative 
to P acts along IIP, and is 

(Vnr)2 

IIP 

(9.45)2 

60 12 
17.86 ft./sec.2 

Hence, p'(hp), representing this acceleration component in the diagram, 

is drawn from p' parallel to IIP to a length of = 0.149 in. The 

tangential acceleration component of II relative to P is at right angles 
to the line p'Qip). Since II has horizontal rectilinear motion relative 
to 0, its acceleration acts along a horizontal line. Hence, the intersection 
h! of a horizontal line through o' with a line through (hp) perpendicular 
to p'{hp) determines the vector o'h' representing the acceleration of II 
relative to 0 and the vector (,hp)h' representing the tangential accel¬ 
eration component of II relative to P. The line p'h' joining pf and h' 
represents the acceleration of II relative to P in both magnitude and 
direction being from p' towards h'. Measuring these vectors to the 
scale of 1 in. = 120 feet per second per second gives 

A%ttP = 121.2 ft./sec.2 

Ahp = 123.0 ft./sec.2 

Aho = 123.6 ft./sec.2 

As ph is the velocity image of HP, so p'h' is the acceleration image 
of HP. The velocity and acceleration for any point D on HP are rep¬ 
resented by the rays drawn from the respective poles o and o' to points 
d and d' on ph and p'h', such that 

pd = PD p'd' PD 

ph ~ PH} and p'h' ~ PH 
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The angular velocity a?2o of link 2, the connecting-rod, relative to the 
frame 0 is equal to the velocity of H relative to P divided by the rota¬ 
tional radius PH. Hence, 

co2° = ~~~ = = 1.89 radians/sec. (counter-clockwise) 

This angular velocity could, of course, be obtained by dividing the 
velocity of any point in PH relative to any other point in PH by the 

proper rotational radius. 
The angular acceleration a of link 2 relative to the frame 0 is equal 

to the tangential acceleration of H relative to P divided by the rota¬ 

tional radius PH. Hence, 

Ot 20 
A‘f/P 121.2 

PH ~ 60/12 
= 24.24 radians/sec.2 (clockwise) 

It is to be noted that while the connecting-rod is rotating counter-clock¬ 
wise, the acceleration is clockwise; that is, the angular velocity of the 
rod at the instant is decreasing, not increasing. 

An arbitrary choice of scales in the above problem made it necessary 
to calculate the value of each velocity and its corresponding normal 

acceleration component to be used in con¬ 
structing the acceleration vector diagram. By 

q properly relating the scales it is only necessary 

to calculate the initial values for a point on the 

driving link. However, whether the scales are 
arbitrarily chosen, or related as outlined in the 
article to follow, the given and calculated data 
should for convenience be neatly tabulated. 

77. Scale Relations. It is convenient in 
determining relative accelerations graphically 
to use a space scale of 1 in. = ka feet, a velocity 
scale of 1 in. — kv feet per second, and an 

acceleration scale of 1 in. — ka feet per second per second. It can be 
shown that if these scales are properly related a complete graphical 
treatment is made possible, and the time and inconvenience of making 
intermediate calculations is saved. 

In Fig. 119 let the space scale be 1 in. « k9 feet, and let the velocity 
of point P at the instant along its path ST be represented by the vector 
PQ in inches to a scale of 1 in. = kv feet per second. The radius of 
curvature R of the path at point P is represented to the space scale by 
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OP in inches, 
the instant is 

Hence, the normal acceleration component of point P at 

A» , Z! , _ W y kJL 
po R k.(OP) OP X Ic, 

If Ap0 is represented by x inches to a scale of 1. in. = ka feet per second 
per second, then 

A” 
■n-PO — xka — 

PQ2 

OP 
X 

kP 
k. 

If the three scales are so chosen that ka — then 
k, 

P(f = PQ 

OP’ °r PQ OP 
(106) 

This means that if ka is to equal —the length of the velocity vector 
k8 

PQ must be a mean proportional between x and OP, in which case x, 
or PN, would be determined by drawing QN perpendicular to QO. 
The length PN in inches would then represent the magnitude of the 

normal acceleration component AnP0 
kv2 

to a scale of 1 in. = ka = ~ feet 
ks 

per second per second. Since the normal acceleration is directed towards 
0, it can only be represented in direction as well as magnitude by PN', 
which is equal and opposite to PN. Hence, in determining relative 
accelerations graphically, the calculation of the normal accelerations 
and their vector lengths is eliminated by arbitrarily choosing k8 and kv 
and making the acceleration scale 

1 in. = ka 
k2 

K 
(107) 

or by arbitrarily choosing ks and ka and making the velocity scale 

1 in. = kv = Vkjca .(108) 

If, for the case of a point P rotating about a fixed center at a uniform 
rate, the constant velocity of the point is represented by the length of 
the rotational radius, it is evident that angle OQP would be 45 degrees, 
likewise the angle PQN, and the uniform normal acceleration of the 



78. Acceleration Vector Diagram, Complete Graphical Method. 
The configuration, velocity vector, and acceleration vector diagrams 
for a four-link chain are represented in Figs. 120, 121, and 122. The 
lengths in inches are, OioB = 1|, BC = 7J-, (hoC = 4|, OiqOm) = 4J, 
BD = 4J, etc. For simplicity, the driving link 1 is assumed to rotate 
at a uniform rate at 70 revolutions per minute. Hence, B has normal 
but no tangential acceleration. The linear velocity of B is 

Vbo = 2*7(1 (R.P.S.) = 2.1# '0 = 0.993 ft./sec. 
\ 12 /60 

Since the graphical determination of the accelerations of the points 
C, Dy E, and F is of primary interest, the space and acceleration scales 
were chosen arbitrarily, and the velocity scale calculated in accordance 
with the preceding article. Using a space scale of 4 in. = 12 in., or 
1 in. = i foot, and an acceleration scale of 1 in. = 6 feet per second per 
second, kg and 1ca become | and 6, respectively, and the velocity scale 
becomes 1 in. = 1.224 ft./sec., that is, 

k, = Vk7ka = VyxG = 1.224 ft./sec. 

Hence, the velocity vector ob in Fig. 121 is drawn perpendicular to 

OioB to a length of = 0.81 in. The velocity of C relative to 0 is 

perpendicular to O30U, and the velocity of C relative to B is perpendicular 
to CB. Hence, in Fig. 121, the intersection of a line through 0 per¬ 
pendicular to OzoC with a line through b perpendicular to CB locates c 
and determines the vectors oc and be representing the velocities Vco 
and Vcb. The points e} d, and / may be located by proportion. 

In accordance with the preceding article and the scales chosen, 
making the velocity vector BQ in Fig. 120 equal to the vector ob of the 
velocity vectot diagram Fig. 121 and drawing QO' perpendicular to 
OiqQ gives the length O'B representing the normal, and in this case, 
the total acceleration of B relative to 0 to the scale chosen. Since this 
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normal acceleration acts from B towards Oio, the acceleration vector 
o'b', Fig. 122, is drawn equal to OfB and parallel to BOio. In a similar 
manner, the normal acceleration component O'C of C relative to 0 and 
the normal acceleration components B'C and B'D of points C and D 
relative to B can be obtained. Hence, in Fig. 122, the normal accel¬ 
eration components o'(co) and b'(cb) are drawn parallel and equal to 
O'C and BfC, respectively. The tangential acceleration components of 
C relative to 0 and of C relative to B are known to be perpendicular to 

the normal acceleration components. Hence, the intersection of a line 
through (ico) perpendicular to o'(c-o) with a line through (cb) perpendicular 
to b'(eb) determines c'*and the vector o'c' representing the acceleration 
Aco of C relative to 0. The line b'c' joining b' and c' determines the 
vector representing the acceleration Acb of C relative to JS. Since 
points C and D rotate $b<>ut B with the same angular velocity and 

acceleration, the normal and tangential acceleration components for 
C and D must be proportional to their distances from B. Hence, it 
follows that the right triangles b'(cb)c' and bf(db)d' are similar, since 
their bases and altitud as are proportional. The points cf and df and 
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V are, therefore, in the same straight line. Making vector b'(db) equal 
to B'D and drawing a perpendicular through (db) determines df and 
the vector ordf representing AD0, the acceleration of D relative to 0. 

In finding the acceleration of point D, it was pointed out that points 
C and D rotate about B with the same angular velocity and acceleration, 
and that, therefore, the normal and tangential acceleration components 
for C and D must be proportional to their distances from B. Since 
this is true for any other point in link 2, the point e' may be found by 
proportion. The point e' can also be found in a manner similar to that 
used for finding point c'. The normal acceleration components b'(eb) 
and c'(ec) of E relative to rotation about B and C) respectively, are 
equal and parallel to B'E and C'E. Hence, the intersection of the 
tangential components through (eb) and (ec)f perpendicular respectively 
to b'(eb) and c/(ec), determines ef and the acceleration vector o'ef rep¬ 
resenting the acceleration AE0 of E relative to the fixed member 0. 
Point /' may be located in a similar manner or by proportion. 

Since c\ d\ and e' are the termini of the vectors o'c', o'd', o'bf, 
and o'e', representing in magnitude and direction the accelerations of 
points C, D, B, and E of link 2, the figure 2' is properly termed the 
acceleration image of link 2 of the mechanism. Thus also 8' is the accel¬ 
eration image of link 8, and 1\ or line o'the acceleration image of 
link 1 of the mechanism. 
* As explained in Art. 76, the angular velocity and angular acceleration 
of any link can he found by dividing the tangential velocity and tan¬ 
gential acceleration of any point relative to some other point in the 
link by the distance between the two points. 

For applications of the acceleration vector diagram method to 
direct contact mechanisms see Arts. 82, 9§, and 99. 

79. Center of Acceleration. In the preceding article it was shown 
in connection with Figs. 120 and 122 that the acceleration images i', 
2'f and 8' for links 1, 2, and 8 are proportional to the respective links. 
Hence, the image 2f of Fig. 122 is proportional to link 2 of the mechanism, 
Fig. 120. By construction, lines b'(eh) and b'(cb) are parallel to EB 
and CB, respectively. Line b'(cb) mak^s an angle <t>2 with 6'c', and line 
bf(eb) makes the same angle with b'e'. If the acceleration image 2' is 
rotated counter-clockwise about V through an angle of (180 — <t>2), the 
line b'cf will be parallel to line BC of the mechanism, image 2' will be 
parallel to link 2, and the origin of will have moved to the position 
shown in Fig. 123. Since, as previously shotvn, rays oV* oV, ofd'f and 
o'V are proportional to the accelerations of tihe points C, E, D, and B 
of link 2 of the mechanism, the origin of corresponds to a point in link 2 
having zero acceleration. Having Fig. 123, the point in link 2 having 
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. zero acceleration relative to the fixed member is easily located as the 
intersection O'2 of lines through C and jB, Fig. 120, parallel, respectively, 
to cfof and b'o' of Fig. 123. This point is appropriately termed the 
instant center of acceleration. Just as the length of a ray from the instant 
center of velocity to any point in a link is proportional to the velocity 
of the point, so the length of a ray from the instant center of acceleration 
to any point in the link is proportional to the acceleration of the point. 
However, while the velocity vector for any point in a link always makes 
an angle of 90 degrees with the respective ray from the instant center 
of velocity, the acceleration vector for any point in a link makes an angle 
<f> with the respective ray from the instant center of acceleration. The 
value of this angle varies with the angular velocity and angular accel¬ 
eration of the link. It is an angle $2 for link 2 and a smaller angle <£3 

for link 3. For convenience 2f of Fig. 123 will be treated as link 2 of 
Fig. 120 to a different scale, in which case o' becomes the center of 
acceleration. Through b\ e', d!, and o', vectors have been drawn equal 
and parallel, respectively, to vectors o'b', oV, o'd', and o'c' of Fig. 122 

representing the accelerations ABO, Aeo1 Ado, and Aco. It is to be 
noted that the acceleration of each point in link 2 makes the same angle 

<Pz with its respective ray. 
It is to be noted that <£3 is opposite in sense to <#>2, and therefore 

negative. Hence, the angle through which the image 3' must be rotated 
about cf to bring it parallel to 3 is (180 — 4>) — (180 + <#>3). The accel¬ 
eration vector for any point in link 3 will make an angle fo with the 
ray drawn to the point from the center of acceleration of the link. 

In Fig. 122 the vector (cb)cf represents the tangential acceleration 
component AlCB of C relative to B, and vector V{cb) the normal accel¬ 

eration component AnCB of C relative to B. Hence, 

tan <p 
(cb)cr 

b\cb) 

A(jb BC(X20 OL 

A$b = BCWo “ 
. . (110) * 

The above equation shows that, to find the angle <t> for any link, the 
angular velocity and angular acceleration of the link relative to the 
fixed member must be known, or the tangential and normal acceleration 
components of some point in the link relative to some other point in the 
link must be known or determined analytically or graphically. In 
addition to knowing 4>, the directions of the accelerations of two points 

in the link relative to the fixed member must be known in order to locate 
the center of acceleration. There are special graphical constructions 

which enable the center of acceleration to be located if the direction 



104 VELOCITY AND ACCELERATION VECTOR DIAGRAMS 

and magnitude of the accelerations of two points in the link are known. 
Obviously special methods are unnecessary where the acceleration 
vector diagram is available. 

For further discussion of the methods of determining and using 
centers of acceleration the reader is referred to “ Kinematics of Ma¬ 
chinery” by A, W. Klein, or to “Mechanics of Machinery” by R. C. H. 
Heck. 

80. Klein Construction. The Klein construction is a simple geo¬ 
metric construction for accurately determining the acceleration of the 
cross-head of a slider-crank chain. This construction is illustrated in 
Fig. 124 and is applicable only when the crank rotates at a uniform 
rate. A circle is first described with P as a center and PR as the radius. 
With £ as a center and a radius equal to one-half the length of the 
connecting-rod, an arc is then drawn through P intersecting the circle 
at C and J. A line through C and J cuts the connecting-rod at D and 
the center-line //Oio at G. The acceleration of the cross-head is pro¬ 

portional to the length GOw- 
If, in accordance with Art. 77, the scales used in the velocity and 

acceleration vector diagrams, Figs. 125 and 126, are related thus, 
kv2 

ka = —, and the constant linear velocity of the center P of the crank-pin 
k8 

is represented by the length 0\oP of the crank, then the normal accel¬ 
eration component AP0 of P relative to the frame will also be equal to 
0\qP. Hence, the scales are, 

1 in. = k8 ft. = 
Ii in feet 

OwP in inches 

and 

1 in. = kv ft./sec. 
Vpo in ft./sec. 

OiqP in inches 

1 in. = ka ft./sec.2 = 
k2 

h 

In the velocity vector diagram, Fig. 125, vector op is perpendicular 
and equal to 0\oPf and oh and ph are respectively perpendicular to 
OiqB and PB. Hence, the triangles OwPB and oph are equal, and PB 

represents Vhp to the same scale as ph. Laying off this vector from H 
and applying the right-angle construction determines the length 07/ 
or the length pf{hp) representing the normal acceleration AnHP of H 

relative to P in the acceleration diagram, Fig. 126, to the same scale that 
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o'pf, or OioP, represents the normal and, in this case, the total accel¬ 
eration of P relative to the frame. Hence, referring to Fig. 124, 

07/ HQ DP CP 

IIQ ~ IIP LlUd CP ~ IIP * (HI) 

But CP and IIQ are each equal to ph. Hence, 

07/ = DP = p'(hp).(112) 

The tangential acceleration of II relative to P is perpendicular to HP, 
and the motion of II relative to the frame is rectilinear. Hence, the 
intersection of a line through (hp) perpendicular to p'ihp) with a line 

through o' parallel to HO] o determines h! and the vectors o'h! and p'h' 
representing, respectively, the accelerations AHO and Ahp. By con¬ 
struction o'p' and p'(hp) are respectively parallel and equal to OioP and 
DP, and (hp)hf and o'h' are respectively parallel to I)G and GOio. Hence, 
figure o'p'(hp)h' is equal to figure OwPDG, and the former, if revolved 
through 180 degrees, could be superimposed on the latter. Therefore, 
GOio represents the acceleration of the cross-head to the same scale 

as o'h'. 
81. Coriolis’ Law. If a point moves along a path as the path is 

translated, the acceleration of the point is the vector sum of the accel¬ 
eration of the point relative to the path and the acceleration of the 
coincident point or any other point of the path. If, however, a point 
moves along a path which is rotating, the acceleration of the point, as 
will be shown, is the vector sum of the two vectors just mentioned 

plus a third vector; that is, the acceleration of the point will be the 
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vector sum of the acceleration of the point relative to the path, the 
acceleration of the coincident point of the path, and a complementary 

acceleration. 
In the four-link mechanism shown in Fig. 127, links 1 and 8 have 

been extended so that they overlap. If link 1 is oscillated, the point D 

FIG 127 

on link 1 will describe a curve MN on link 8. For the initial position 
shown, point C' on 8 is coincident with Df on 1. If I is moved through 
a small angle A<t>, link 8 will be moved through a small angle A$. During 
this rotation of I, point Df will have moved to D", and the portion 
C’Ef of the curve on 8 will have rotated with link 8 to the position C"W3 
E" now being the point coincident with D", the new position of point D. 
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As link 1 rotates through an angle A</> in an interval of time At, it 
will be assumed that the linear velocity of Bf changes from Vb>o to 
another value Vb"o. Having these velocities, the linear velocities Vco 
and Vim of point D in 1 relative to the fixed member 0 can be found, 
also the velocities of Vco and VE"o of the coincident points C' and Eff 
in link 8 relative to 0. As previously shown, 

and 
Vco = Vco 44 Vcc.(113) 

Vc 'o — V e”0 44 Vc'B" .(114) 

Hence, as shown in Fig. 128, the velocity Vcc of Df relative to the 
coincident point C' becomes known Since D' is a point in 1 and C' 
is a point in 8, the motion of D' relative to C* is about the instant center 
O'is, and vector Vcc is normal to the instant radius 0\^Df and tangent 
to the curve MN at CSimilarly, as shown in Figs. 127 and 129, vector 
Vis normal to the instant radius 0"nDn and tangent to the curve 
at E". 

The change in the velocity of D relative to the fixed member 0 in 
the interval of time At is, from equations (113) and (114); 

V C'O —* V jyO — V E"0 —> Vco VV'E" —> Vcc . . . (115) 

But, as shown in Fig. 130, 

VE"Q — Vc*0 4> Ve"C” .(116) 
Hence, 

VIWO —> V D'O ~ ^ CO 4^ V E"C" —^ 1 CO 44 VD”R" —> VCC (117) 

As shown in Figs. 129 and 131, Vco —> Vco = A VCo is the change 
in the velocity of the coincident point Cf as a fixed point on the curve 
due to the rotation of the curve. The velocity of a point along a curve 
at any instant is tangent to the curve at the position of the point. The 
magnitude of the velocity of the moving point is, relative to the curve, 

the same at any particular position on the curve, whether the curve is 

moving or is stationary relative to a reference body. Now points Ef 
and E" mark identically the same point on the two positions of the 

curve MN. Hence, Vd^e' and Vd>>e" are, in magnitude, the same, but 
differ in direction, being respectively tangent to the curves at Ef and E". 
As shown in Figs. 127, 129, and 132, vectors Vd^e> and Vwb" differ in 
direction by the angle AO through which link 8 has rotated in the 
interval At Hence, Fig. 132, 

AO 
= Vzy#' 44 2Vdx'e* sin — . . . (118) 

m 
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Substituting for (Ff"o—1* Vco) and Vd"E" in equation (117) gives 

VWo—>Viro~ AVco+>V£"C'.+> V2TJD1'i?'Sin— ro'C' (119) 

But, considering the curve stationary, Vdx'e> Vd'c = AV dc, the 
change in the velocity of D in the interval At as it moves along the 

curve. Hence, 
AO 

AVdo = VD"o—* Vd'o “ A AVdcA$2V d^e' sin V.E"C" (120) 

and 

AVdo __ ATrco AV pc 
At ~ At At 

In the limit, 

2Vd^e' sin 

At 

AO 

2 
— 4» 

V Ef,C,r 

At 

Al DO 

At 
= Ado 

(121) 

the acceleration of the describing point D relative to the fixed member 0. 
And, in the limit, 

AVro 

At 
= A CO 

the acceleration of the coincident point C avS a fixed point on the curve 
relative to the fixed member 0 due to the rotation of the curve about 

the instant center O-so- 
And, in the limit, 

A Vdc 

At 
— A DC 

the acceleration of the describing point D relative to the coincident 
point C due to the rotation of link 1 relative to link 3 about the instant 
center O' 13. The tangential component AlDC of the acceleration ADC is 
tangent to the curve at C, and the normal component AnDC is directed 
toward the center of curvature Oc of the curve and is equal to V\c 
divided by the radius of curvature OcC'. 

Also, in the limit, 
AO 

21V,Su,-2- d) 

It V'XM ~ F""J0 

where VDC is the linear velocity of the describing point D along the 

curve, and W30 or o>c is the angular velocity of the curve or coincident 
point C relative to the fixed member 0. 
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It has been shown that, having the velocity of one point relative to 
another point in the same link, the angular velocity of the link is the 
relative velocity divided by the distance between the points. Hence, 

Vw = C"E"w*o.(122) 

In the limit, the distance between the points C" and E" is VpCdt. There¬ 
fore, 

VE"C" T7DC (tizodt 

A t ~~ dt 
VDC U 30 

Hence, by substitution in equation (121), 

A do — A co -H A j)c ■+> *2jV DCo)c . . . (123) 

where, to be general, ooc has been used instead of 0^30 to represent the 
angular velocity of the curve or coincident point C. 

Equation (123) is a mathematical statement of Coriolis’ law. It is 
to be noted that if the curve described by the point D had a motion of 
translation, <ac would be zero and ADO would be equal to the sum of 
two vectors, Aco and Anc. This statement and equation (123) are in 
agreement with the statements made at the beginning of this article. 

The compound supplementary acceleration 2V DCuc is such that if 
considered as a force acting at the terminus of the vector VDc it would 
cause the vector to rotate about its origin in the same direction as the 
curve rotates about its instant center. Hence, for the mechanism dis¬ 
cussed above, the supplementary acceleration 2VDcu>c acts along the 

line from Dr toward the instant center O'13. 
The compound supplementary acceleration 2VDCo>c is due to the 

fact that the curve MN has a motion of rotation. Because of this 
motion the vector difference between V&'o and Vc"o affects the accel¬ 
eration or rate of change of velocity of point £). The acceleration of 
point D is also affected by the fact that while VDx>E• and Vd”E" are equal 
in magnitude they are different in direction. As before pointed out, if 
the curve MN had a motion of translation, these two factors would 
disappear. 

It should be noted that for the mechanism used in the above demon¬ 
stration, the acceleration of the coincident point C could be found by 
first finding the acceleration of point F in link 8 by applying the velocity 
and acceleration vector diagram qjethod. This method of solution is 
illustrated in Figs. 133, 134, and 135. For convenience the essentials 
of Fig. 127 are repeated in Fig. 133, where OiqB = 1.333, 0\oD = 1.243, 
BF - 1.125, O30F = 1.953, O30C - 1.473, and O10O30 = 1.75 feet, 
the space scale being 1 in. = 1 foot or 1 in. » k9 « 1 foot. Link 1 is 
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assumed to have a uniform angular velocity auo of one radian per second; 
hence, the scale of Fig. 134 is 1 in. = kv = 1 foot per second. The 
scale of the acceleration vector diagram, Fig. 135, is in accordance with 

the relation ka 
kv2 

k. 
or 1 in. = ka = 1 foot per second per second. In 

accordance with scale kVf the known velocity of B is represented in Fig. 
134 by vector ob equal in length to 0\oB and perpendicular to it. The 
velocities VD0 and VDB are known to be perpendicular, respectively, 
to OiqD and BD. Hence, the intersection of a line through o perpend¬ 
icular to OioD with a line through b perpendicular to BD determines d 
and the velocity image 1 of link 1. In a similar manner +he intersection 
of a line through b perpendicular to BF with a line though o perpen¬ 
dicular to OsoF determines / and the velocity vector of The intersection 
of lines through o and / perpendicular, respectively*, to O^C and FC 
determines c, the line joining c and d representing to scale the velocity 

Since the angular velocity of link 1 is uniform, the acceleration AD0 
of point D relative to the fixed member 0 is directed from D towards 
Oio, and is represented to scale in Fig. 135 by a vector o'd' equal in 
length to DOiof or 1.243 in. The acceleration vectors b'(fb) and o'(fo) 
representing the normal acceleration components AnFB and AFO are 
parallel to FB and FO30, and equal to 

vm 
and 

0V0) 

Afb 
K 

An 
AFO 

ka 

v2fb 1 _ 

(FB)k. X ka ~ 
0.622 

1.125 X 1 
X - = 0.341 in. 

Via 1 _ 1.0452 

(FO30)k. ka 1.953 X 1 
X j = 0.559 in. 

Point f is determined by the intersection of lines through (fb) and (fo) 
perpendicular, respectively, to b’(fb) and o'(Jo). The acceleration 

image o'c'f of OsoCF and image S’ of link 3 may be constructed by 
proportion on o'f, the image of O30F, as a base. Vector oV represents 
in magnitude and direction the acceleration of the coincident point C 
which was to be found, or 

Aco = (o'c')ka = 0.933 X 1 = 0.933 ft./sec.2 

The determination of the acceleration of the coincident point C by 
the application of Coriolis’ law is presented in Fig. 136. The accel¬ 

eration Ado of the describing point D relative to the fixed member 0 
is given by equation (123) as, 

Ado == Aco 4^ Adc 44 2Vdc^c 
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As shown above, the vector ofd! representing the acceleration AD0 of 
the describing point is known in magnitude and direction. The relative 

/ - scale /*« irr 
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and the vectors o'(co) and c'(dc) representing the normal acceleration 

components A"0 and AnDC can therefore be computed: 

Vco 0.793 

(O'ioC)k, ~ 1.473 X 1 
0.54 rad./sec. 

2\z>c&c 2X 1.353 X0.54 .« . 
The vector representing 2V DC&C — — — 1.40 111. 

ka 1 

o'{co) = 

c'{dc) = 

T'2 
1 CO 0.793“ An A co __ 

ka ~ (OwC)kX 1.473 X 1 X 1 

y2 
* DC 

0.427 in. 

Air 

ka 

_1.353“ 

(OcC)kJoa 1.813 X 1 X 1 
1.01 in. 

where OcC is the radius of curvature of the curve at point C. Unless 
the law of the curve is known, this radius must be determined by trial 
from a trace of the curve. Whether this can be done with acceptable 
accuracy depends upon the nature of the curve. In the present instance 
the first rough trial gave a radius of curvature 3.5 per cent too large. 
As will be shown, this uncertainty can often be avoided by a proper 
choice of the describing point. 

It is known that vector o'(co), Fig. 136, is parallel to CO30 and is 
directed as from C toward O30, and that c'(dc) is parallel to COc and is 
directed as from C toward the center of curvature Or. The direction 
of the vector representing 2Vdcuc is such that if acting as a force at the 
terminus of the vector cd, representing the velocity Vdc, it would rotate 
the vector In the same sense as the curve MN is rotating, that is, clock¬ 
wise. Hence, the vector representing 2Vdccoc acts parallel to OcC and 
is directed as from Oc towards C, the opposite to that of vector c'(dc). 
Regular procedure would require that vector c'(dc) should be drawn 
from c\ whose location is unknown. This difficulty is due to the fact 
that the describing point D was taken on the link whose motion was 
known. To facilitate the construction of the diagram, Fig. 136, we 
may write 

A"d = ~ Ale or, d\cd) = — c'(dc) 
and 

2Vcdo)c = — 2 Vdc<oc (cd)(cd)i = — (dc)(dc)i 

Hence df{cd) = 1.01 in. is drawn to the left parallel to OcC> and 
(cd)(cd) 1 = 1.46 in. is drawn to the right parallel to C0c locating (cd) 1. 
Where a line through (cd) 1 perpendicular to d'(cd) 1 intersects a line 
through (co) perpendicular to of(co) locates cf and determines the 
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vector o'c' representing in magnitude and direction the acceleration 
Aco of the coincident point. It is to be noted that o'c' of Fig. 136 is 
in agreement with o'c' of Fig. 135. 

Had the describing point been taken on link 3, the curve being 
traced on link I, the difficulty encountered above would have been 
avoided. In general, the application of Coriolis7 law is facilitated if the 
describing point is so chosen as to trace a curve on the member whose 
motion is given. The easiest way to determine the acceleration of a 
point on link 3 by the application of Coriolis7 law is to extend link 1 
to overlap point F as the describing point on link 3, G being the coin¬ 
cident point on 1. Obviously the curve traced on 1 is the arc of a circle 
having its center of curvature at B. In accordance with equation 
(123), the acceleration of the describing point F is 

Apo = Ago 4-> Aya 44 2VF(;gig 

Since the curve is traced on /, the angular velocity of the curve or the 
coincident point G is that of link 7, or one radian per second. The 
velocity vectors og and gf representing the velocities Van and 1 V<v are 
determined by drawing from o and / in Fig. 134 lines perpendicular 
to OioG and OmF, respectively, until they intersect at g. Hence, 

og = 

o'(fo) - 

oVs) = 

A no A tic 1-2 
* no 2.23- 

ka (Ou>(l)k,k,t 2.23 X 1 X 1 

Vj-o ni43- 

2.23 in. 

Afo = __=_ 
ka «):w!<)kaka 1.953 X 1 X 1 

An l"2 11 fo * FG 

= 0.559 in. 

1.717“ 

ka (.BF)kJia 1.125 X 1 X 1 
= 2.627 in. 

21 ya oia 2 X 1. /17 X 1 

1 
= 3.434 in. 

Vector o'g' is drawn parallel to GOio, o'(fo) parallel to FO30, g'(fg) parallel 
to GBj and parallel to BG. The intersection of a line through 
(Jo) perpendicular to o'(Jo) with a line through (fg)\ perpendicular to 
g'(fg) 1 determines /' and the vector o'f' representing in magnitude and 
direction the acceleration A FO of the describing point F. It is to be 

noted that o'f' of Fig. 137 is equal and parallel to o'f of Fig. 135. If 
the acceleration of any other point in link 3 such as C is desired, it can 

be found by proportion. 
82. Applications of Coriolis, Law. (a) Direct Contact Mechanism. 

In Fig. 138 the curved link 39 is driven by the curved link F, D being 
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the contact point in S' and C the coincident contact point in I'. As 
before pointed out, the line of transmission at the instant is the common 
normal to the curves at the point of contact. The centers of curvature 
B and E of the driving and driven curves at the point of contact must 
lie on this common normal. Center B as a point in lf and center E 
as a point in S' will have the same motion at the instant as though they 

were points of the four-link mechanism shown. Hence, the acceleration 
of point D in S' may be found by first finding the acceleration of £ as 
a point in the equivalent four-link mechanism by applying the accel¬ 
eration vector diagram method or by applying Coriolis' law. These 
two solutions are illustrated in Figs. 138, 139, 140, and 141. 

In Fig. 138, OiqB - 1.00, O10C ~ 1.425, BE « 2.69, OaoE m 1.5, 
0%oD ** 1.655, and OiqOzo = 2.00 feet, the space scale being 1 in. 
*» 1 foot or 1 in. =* kt * 1 foot. Link 1 is assumed to have a uniform 
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angular velocity a>io of one radian per second; hence, the scale of 
Fig. 139 is 1 in. = kv = 1 foot per second. The scale of the acceleration 
vector diagrams Figs. 140 and 141 are in accordance with the relation 

ka ~ 
kv2 

k/ 
or, 1 in. = ka = 1 foot per second per second. In accordance 

with scale kv, the known velocity of point B is represented in Fig. 139 
by the vector ob equal in length to 0\qB and perpendicular to it. The 
velocities Vkb and VEo are perpendicular, respectively, to BE and 
OzqE. Hence, e is determined by the intersection of lines through b 
and o perpendicular, respectively, to BE and OwE. Since the angular 
velocity of link I' or I is uniform, the acceleration Am of B relative to 
the fixed member 0 is directed from B towards 0io, and is represented 
to scale in Fig. 140 by a vector o'V equal in length to OioB, or 1.00 in. 
The velocities Veo and VEb being known, the acceleration vectors 
o'(eo) and V(eb) representing the normal acceleration components AnEO 
and AnEB can be computed: 

f / \ A KO o (eo) = — 
Ka 

Y2 » Vf rir 
(0;u)E)kJ:a 

T/2 

b\eb) = 

1.5 X 1 X 1 

0562 A” El 

ka (BE)kJca 2.09 X 1 X 1 

= 0.82 in. 

= 0.116 in. 

Hence, the intersection of lines through (eo) and (eb) perpendicular 
respectively to o’(eo) and bf(eh) determines ef and the vector oV rep¬ 
resenting in magnitude and direction the acceleration AE0. Con¬ 
struction by proportion on o'e' as a base determines the location of d\ 
Hence, 

Aeo * o'e' X fca * 0.895 X 1 = 0.895 ft./sec.2 

A^eo ~ (e6)e' X ka — 0.355 X 1 = 0.355 ft./sec.2 

A*eo ^ 0.355 

(OsoE)k, * 1.5 X 1 
0.237 rad./sec.2 

Ado = o’d! X ka == 0.99 X 1 = 0.99 ft./sec.2 

In Fig. 141, the acceleration Aeo has been determined by the 
application of Coriolis, law by taking E as the describing point on 3 
and F as the coincident point on 1 extended. Obviously, the curve 
described on 1 is the arc of a circle having B as its center of curvature. 
By equation (123), 

Aeo ^ AEo 44 AEe 44 2Vef&f 

The motion of E relative to F is about the instant center O13, which 
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is at the intersection of OzoOw and FB extended. Hence, I ef is at 
right angles to BF. Point F in link 1 rotates about the instant center 

Oiq, and its velocity Veo is at right angles to OwF. Since the motion 

of E relative to F is about the instant center Qw, and of F relative to 
the fixed member 0 is about the instant center Oio, velocities Vef and 
Vfo are at right angles to FB and OwF. Hence, in Fig. 139, the inter¬ 
section of lines througli o and c perpendicular to FB and OwF deter¬ 
mines /. Having wF — cow, Veo, Vef, and Veo, the vectors repre¬ 
senting A”0, Aefj and 2Vefwe can be computed: 

co/i- W10 1 rad./see. 

o'f = 
Am A 1 Ft 

ka 

Alf 

2.8 

o'(eo) = -- =- 
K (O;!0/0 A’,/.',, 

K {OwF)ktk, 

y'rn l.fl- 

1.5 X 1 X 1 

2.S x 1 X 1 

- 0.82 in. 

2.8 in. 

2 V EF &F 

L 
2 X 2.14 X 1 

1 
= 4.28 in. 

/'(tf) 
AlF = _TL_ =_2. IT_ 

A'a (BF)k,ka 2.69 X 1 X 1 
1.70 in. 

where BF is the radius of curvature at F on the curve traced on link 1 
by the describing point E. The acceleration A F(, being directed from 
F towards Oio, the vector o'f is drawn parallel to FOiq. The accel¬ 
eration component AnEF is directed from F towards the center of curv¬ 
ature B, and the supplementary acceleration component 2YKFwF is so 
directed that if applied as a force at the terminus of the velocity vector 
fe representing VEF it would rotate the vector in the same sense as the 
curve or link 1 is rotating. Hence, in Fig. 141, vector/'(c/) is directed 
parallel to EB, and (ef) (ef), is directed parallel to BE. The vectors 
representing the tangential components A‘m and A‘KF are drawn through 
(eo) and (ef)i perpendicular to o'(co) and f'(ef)h respectively, their 
intersection e' determining the vector o'e' representing in magnitude 
and direction the acceleration AEO, which was to be determined. It 
is to be noted that o’e’ of Fig. 141 is equal and parallel to vector o'e' 
of Fig. 140. If desired, d' can be located by proportion. 

To determine .4.do by Coriolis’ law without resorting to the equivalent 
four-link mechanism, it is necessary to find the curve MN traced on 
link V by the describing point D on link S' as shown in Fig. 142. Bv 
Coriolis’ law, 

Ado = Aco 44 Adc 44 2Vdpuc 
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The angular velocity of link ]' being known, vector oc in Fig. 143, 
representing to the scale of kv = 1 the velocity Vco of the coincident 
point C relative to the fixed member 0, is known to be equal in length 

to OwC and perpendicular to it. Since Vdo and VDC are perpendicular, 
respectively, to O^D and the common normal OcCy lines drawn through 
o and c in Fig. 143 perpendicular, respectively, to OwD and OcC deter- 

M 

mine the location of d and the vectors od and cd representing the velocities 

VDO and VDC. The lengths of the vectors representing AnD0, ACo, AdCj 
and 2Fdc^c can therefore be computed; 

o'(do) = 
vDO V* DO 1.22J 

ka 0OzoD)kMka 1.655 X 1 X 1 
= 0.90 in. 

Ago __ Aq0_V2C0 — 1.43 

ka ka (OioC)k8ka 1.43 X 1 X 1 
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(de)(deh = 
2Vx>c<^c 2 X 1.725 X 1 

= 3.45 in. 

c'(dc) = 
(OcC)k,ka 

-hl2£.-= 1.595 in. 
1.865 X 1 X 1 

where OcC is the radius of curvature at C of the curve MN traced on 
link 1' by the describing point D on link S'. In Fig. 144, vector o'c' 
= 1.43 in. is laid off parallel to COio, o'(do) parallel to Z)Oy o, c'(dc) 
parallel to COc, and (dc)(dc) i parallel to OcC. The intersection of lines 
through (do) and (dc) \ perpendicular, respectively, to o'(do) and c/(dc)i, 
determines d' and the vectors (do)d', (dc)id'y and o'd' representing 
A'po, A*dc, and A^ It is to be noted that o'd' of Fig. 144 is equal and 
parallel to o'd' of Fig. 140. 

For further applications to direct-contact mechanisms of Coriolis’ 
law and the acceleration vector diagram see Arts. 98 and 99. 

(b) Shaper Mechanism. In the shaper mechanism shown in Fig. 145 
it is necessary to apply Coriolis’ law or its equivalent to find the accel¬ 
eration of a point on the vibrator, link 3. As usual in such mechanisms, 
the driving crank / will be assumed to rotate at a uniform rate. In 
the present problem the crank, which is 5| in. long, has been assumed 
to rotate at 21 revolutions per minute. The crank carries a crank-pin 
which is fitted with a sliding block 2 which slides in or on the vibrator 3 
as the crank rotates. The sliding block causes link 3 to oscillate about 
the fixed center O30 which imparts a reciprocating motion through 
link 4 to the slide, or ram, 5. The cutting tool of the shaper is attached 
to the ram, link 5. 

Let C be the coincident point on the axi of the crank-pin in link 2 
which is in contact with link 3. Evident ax as the crank rotates, de¬ 
scribing point D will describe a curve, in ^0is case a straight line, on 
link 2. The problem is to determine th(^ otal acceleration of the 
describing point D on link 3 which is at tfie instant coincident with 
point C on the curve on link 2. In solving the problem a space scale of 
1 in. = 12 in. = 1 foot and a velocity scale of 1 in. = 1.10 feet per 
second will be used. Hence, k9 * 1.0, kv = 1.10, and, for a complete 

kv2 1 102 
graphical solution, ka = — — = 1.21 feet per second per second. 

rCg 1.0 

The velocity of the coincident point C is 

Vco = »Z>(R.P.S.) = rH(tt) = 1.008 ft./sec. 

Hence the length of the velocity vector oc is 

Vco 1.008 . 
oc — ~ = —— = 0.917 in. 
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This vector is laid off from a convenient pole o perpendicular to COio, 

as shown in Fig, 146, The motion of D relative to C is seen by inspection 

to be along EO30; hence, the instant center O23 is at infinity. The 
describing point D on link 8 rotates about O30, which fixes the direction 
of the velocity of D relative to the fixed member 0 as perpendicular to 
EOzo- Hence, the intersection of a line through c parallel to EO30 with 
a line through 0 perpendicular to EOzq determines d and the length of 

the vectors cd and od representing the velocities Vdc and Vdo. In 
accordance with equation (123) 

Aix) = Aco 4> A&c 2Vdc&c 

Placing the vectors representing VCo and Vdo in Fig. 145, and applying 
the right-angle construction, determines the lengths O'C and &D of 
the vectors o'(co) and o'(do) representing the normal acceleration 
components A*0 and A^q in agreement with the scales chosen. Since 

link 1 rotates at a uniform rate, point C has no tangential acceleration, 
and Anco represents the total acceleration of C relative to 0. The 
normal acceleration component A%c is zero, since D rotates relative to 
C about O23 at infinity. Hence, A^ acting along EOsq is the accel¬ 
eration Adc of D relative to C. Summarizing, 
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, , __ Aco ___ Anro 
o c 

ka 
O’C = 1.83 in. 

o'(do) = Aj-° = O'D = 0.38 in. 

yj» 
c'(dc) = - = zero, making c' and (dr) coincident points. 

Ka 

Vno 0.847 
coc = u-jo = mo = —r —— =-= 0.547 rad./.sec. 

(0-.mD)kM 1.547 X 1 

ZVncwc 2 X 0.55 X 0.547 
(dc) (d< )\ = —t- =-—-= 0.497 in. 

1.21 

(dc)\d' = ■ ~— acting parallel to 0:wE. 
fca 

The direction of the vector (dc) (dc) i is sueli that if acting as a force at the 
end of the velocity vector cd it would rotate the vector in the same sense 
as link 2 or 3 is rotating, that is, clockwise. Hence, (dc)(dc)\ acts 
parallel to CO23. The acceleration vector diagram, Fig. 147, can there¬ 
fore be constructed, since oV, o'(do), and (dc)(dc) 1 are known in both 
magnitude and direction, and (dc)id' and (do)d' are known in direction, 
(dc)\d' and (do)df being parallel respectively to (hoC and O23C and 
intersecting at d'. The line joining o' and d' determines the length of 
the vector o'd' representing the acceleration Ado of the describing point 
D on link 8 which was to be found. 

Ado = o'd' X ka - 0.625 X 1.21 = 0.756 ft./sec.2 

The velocities and accelerations of E and F relative to 0 may be found 
by extending the velocity and acceleration vector diagrams Figs. 146 

and 147. 
83. Three Line Construction for Velocities and Accelerations. 

The so-called three line construction is found of great assistance in 
completing the construction of velocity and acceleration vector diagrams 
for certain complex mechanisms. The scale of the mechanism shown 
in Fig. 148 is \ in. = 12 in. or 1 in. = 2 feet, hence k9 = 2. The 
velocities and accelerations of points B, <7, D, E, and F for any motion 
of the driving link 1 are readily found by the ordinary vector diagram 
construction. A special construction, often referred to as the three line 

construction, is required to determine the velocities and accelerations 
of points Gf H, and K of link 7. The construction as applying to 
velocities will be dealt with first. 
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For this demonstration the driving link /, for the phase shown, 
is assumed to have an angular velocity of 15.1 radians per second 
but no angular acceleration. Hence, since radius OwC is 1.5 feet, the 
velocity of point C is 

Vco = wioK = 15.4 X 1.5 — 23.1 ft. per sec. 

This velocity is represented in Fig. 149 by vector or, for which a con¬ 
venient length of I in. has been chosen. Therefore, the velocity scale is 

1 in. = kv = 23.1 -f | = 26.4 ft. per sec. 

Velocities Vec and Veo are respectively perpendicular to CE and OjqE. 
Hence, the intersection e of a line through c perpendicular to CE, with 
a line through o perpendicular to 0:wE, determines the velocity images 
or, ce, and oc of links 7, and 3. Points h, <7, and / may be located by 
proportion. The relative velocities V(!Jiy Vjw, and VKF are known in 
direction but not in magnitude, being in direction perpendicular, 
respectively, to BG, Dll, and FK. Hence, points g, h, and k of the 
velocity vector diagram Fig. 149 must lie on lines 77, //, and K drawn 
through b} d, and / perpendicular, respectively, to BG, DII, and FK. 
The location of points g, h, and k on these lines must be such that lines 
joining them will form a triangle, or image, ghk, similar to GHK of 
Fig. 148 and at right angles to it. Through any point gi on line G 
draw a line perpendicular to GJI of Fig. 148 intersecting line II at hi. 
Through gi and hi draw lines perpendicular, respectively, to GK and HK. 
The chance that the intersection A*i of these lines will fall on line K is 
very remote, since the location of gi on line (7 was arbitrarily chosen. 
However, the velocity image ghk must be parallel to g\h\ki. Lines G 
and II intersect at m. Obviously the correct, location of k on line K 
is where a line joining ki and rn intersects K. Having k, the velocity 
image 7 of link 7 may be drawn and the velocity vector diagram com¬ 
pleted by drawing the vectors bg, dh, fk, og, oh, and ok. 

To admit of the various normal components of acceleration being 
determined graphically, the acceleration vector diagram of Fig. 150 

is drawn to a scale of 

1 in. = ka = — = r = 348.5 ft. per sec.2 
Z 

Since link 1 is without angular acceleration, the total acceleration of 
C is the normal acceleration represented by O'C, Fig. 148. From a 
convenient pole o' vector o'c' is drawn equal and parallel to O'C. The 
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vectors c'(ec) and o'(eo), representing the normal components of accel¬ 
eration A%r and A% of E relative to C and to 0, are determined graph- 
ically by use of the velocity vectors ce and oe and the right angle 
construction. These vectors, c'(ec) and o'(eo), are drawn parallel 
respectively to EC and EO3o- Since the tangential are at right angles 

FIG. 149 r/s: iam 

to the normal components of acceleration, e' is located at the inter¬ 
section of lines through (ec) and (eo) perpendicular respectively to 
c'(ec) and o'(eo). Having e', the acceleration images o'c', e'e', and 

o'e' can be drawn and the images b', d', and /' of points B, D, and F 
located by proportion. The length of the vectors b'(gb), d'(hd), and 

representing the normal components of acceleration AnOB, A*HD, 
and Akp, are determined graphically by using the velocity vectors bg, 
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dh, and fk and the right angle construction, and are drawn parallel, 

respectively, to GB, HD, and KF. It is to be noted that is very 

short. Since the tangential and normal components of acceleration 
are at right angles, g' is somewhere on line G drawn through (gb) at 
right angles to b'(gb) or to BG, Fig. 148. Similarly, h' and ¥ are some¬ 
where on lines II and K drawn through (hd) and (kf) at right angles to 
d'Qid) and f'(kf) or to DI1 and FK. It is further known that lines 
joining g', h', and k' will form a triangle, or image, g'h'k', similar to link 
GHK, and that this image will be at some unknown angle <f> with its 
link. This image, correct as to size and position, will be located by 
constructing two trial or false images shown dotted in the figure. The 
normal component of acceleration A nU(} of II relative to G, represented 
by vector g'\(h\g\) and found by using the velocity vector gh and the 
right angle construction, is first laid off from any point g'i in line G. 
Since the tangential is at right angles to the normal acceleration com¬ 
ponent, a line through {hxgi) at right angles to g'i(higi) or to HG will 
intersect II at h'\. Having g'i and h'i, the point k'i may be located by 
constructing on g'lh'i a figure similar to GHK, or k\ may be located by 
using the vectors representing the normal components of acceleration 
AnKH and AnKG. Having found a trial or false position ¥% of ¥, another 
point g'2 on G is selected, and a second false position ¥2 of ¥ is deter¬ 
mined. The intersection of fine K with a line joining k'x and ¥2 locates 
the correct position of ¥. By determining as already described the 
vector ¥(gk) representing A*K and drawing through (gJc) a line at right 
angles to ¥(gk), or to GK, the intersection g' is obtained. If h' is sim¬ 
ilarly found and the resulting image g'h'k' comes out similar to GHK, 
the accuracy of the construction is confirmed. Obviously, line k'xk'2 
is the locus of all the positions of ¥. If the construction has been 
accurately done it is evident that where k'xk'2 intersects K is the true 

position of ¥. 
In the Stephenson’s link mechanism shovra in Fig. 151, the driving 

link 1 represents the crank and eccentrics of the engine, B and D being 
the centers of the two eccentrics. Rotation of link 1 imparts a recip¬ 
rocating motion to the valve stem 8 through the links 2, 3, 4> and 7. 
The point of cut-off is determined by the position of the sliding block 6 
relative to link 7. By rotating bell crank 5 counter-clockwise, G of 
link 7 is moved nearer to center L of links 6 and 8, and the point of 
cut-off is made later for counter-clockwise rotation of link I, or of the 

engine shaft. If 5 is rotated clockwise until the mid-point H between 
G and K is below L, the rotation of the engine is reversed. It is to be 
noted that points B, D, F, G, H, and K correspond to points B, D, F, 
G} H, and K of Fig. 148. The velocities and accelerations of B and D 
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are easily determined from the angular motion of the driving link 1. 
For any given condition of operation, F is fixed relative to the frame 

and, therefore, has no motion. By the three line construction the 

velocities and accelerations of points G, //, and K of link 7 can be 

F/G 151 

found as for Fig. 148. Since F is fixed there is a certain amount of 

sliding between links 6 and 7. The center of link 6 will therefore trace 

a circular arc on link 7. Since the curve traced on 7 by the describing 

point L on link 6 has a motion of rotation, Coriolis’ law would apply 

to the determination of the acceleration of the point L common to 
links 6 and 8. 



CHAPTER V 

CAMS 

84. Definitions. A cam is a machine element which is so formed 
that its rotation, oscillation, or reciprocation will impart a prescribed 
motion of reciprocation or oscillation to a followerIn cam mechanisms 
the cam is the driver and the driven element is the follower. In such 
mechanisms it is the given motion of the cam, or driver, and the pre¬ 
scribed motion of the follower that fixes the outline or shape of the 
cam. An inverse cam mechanism is one where the element corresponding 
to the follower of a cam mechanism is used as the driver. In such 
mechanisms it is the given motion of the follower, or driver, and the 
prescribed motion of the. cam that fix the outline or shape of the cam. 
Cam mechanisms find a much wider field of application than inverse 
cam mechanisms. 

Cam mechanisms are used wherever it would be impossible or very 
inconvenient by any other means to transform a given motion simple 
in character into a desired motion definitely prescribed and accurately 
timed. Such mechanisms are very much used in all kinds of automatic 
machinery such as textile machinery, shoe machinery, machine tools, 
cigarette-making machinery, etc. 

86. Classification. Cams may be conveniently divided into five 
general classes: 

(а) Disk cams 
(б) Translation cams 
(c) Cylindrical cams 
(d) Conical cams 
(e) Spherical cams 

86. Disk Cams. A disk cam is a shaped disk which by its rotation 
or oscillation imparts a purely or intermittently reciprocating or 
oscillating motion to a follower whose plane of motion coincides with 
or is parallel to that of the cam. 

In Fig. 152 is shown a disk cam C which by its rotation imparts 
a reciprocating rectilinear motion to a roller follower F. The curved 
periphery of the disk constitutes the working surface of the cam, and 

125 
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for this reason such cams are sometimes referred to as periphery cams. 
The follower shown is commonly called a radial roller follower since its 
axis or line of motion DE is a radial line perpendicular to the axis of 

the cam. If the line of motion of the follower were GH instead of DE, 
the follower would be referred to as an offset roller follower. For the 
same follower motion, such a shift of the follower stem and roller would 
require a change in the shape of the cam. It is to be noted that the 
rotation of the cam positively drives the follower F radially outward 
from D along the line DE, but that it does not positively control the 
inward motion of the follower. The roller R of the follower on the 
inward stroke along ED is kept in contact with the rotating cam either 
by the action of gravity or by the action of a spring. A spring is used 

when the action of gravity would be insufficient or would be in the 
wrong direction to keep the roller of the follower in contact with the 
cam. The cam shown in Fig. 152 is therefore not a positive return cam. 

In Fig. 153 is shown a positive return radial disk cam for the same 

follower motion as in Fig. 152. It is to be noted that it consists of a 

grooved disk, the groove being of proper form and of a width to accom¬ 
modate the roller of the follower. Since the groove is cut in the face 

of the disk, such a cam is sometimes referred to as a face cam. The 

outline of the inner surface of the groove in Fig. 153 is identical with 
that of the working surface of the cam in Fig. 152, the outline of the 

outer surface of the groove being determined by th6 diameter of the 

roller of the follower. In order that the roller may be in contact with 

one side only of the groove and thus be free to roll, the groove should 

be slightly greater in width than the diameter of the roller. Because 

of this clearance the action may not for two reasons be satisfactory at 
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high speeds. When the motion or acceleration of the follower is reversed, 
the roller changes to the opposite side of the groove, and, on account of 
the clearance, strikes the opposite side with a sharp knock. In addition, 
the change in contact from one side of the groove to the other reverses 
the direction of rotation of the roller, which causes a grinding action. 
At slow or moderate speeds these effects may not be serious. 

In Fig. 154 is shown a disk cam which by its rotation imparts a 
rectilinear motion to a flatr-faced follower. The motion imparted will 
be thp same whether the axis of the follower stem is DE or is offset to 
some such position as GIL A disk cam driving a flat-faced follower 
having an offset stem is shown in Fig. 216. If the axis DE of the fol¬ 
lower stem does not coincide with the mid plane of the cam disk, the 

follower is offset axially. For a follower with a flat circular disk and a 
round stem, such an offset is an advantage, as the follower would rotate 
while reciprocating thus distributing instead of localizing the wear on 
the follower face. Such a follower is often called a mushroom follower. 

Disk cams such as are shown in Figs. 152, 153, and 154 may be used 
to actuate oscillating as well as reciprocating followers. A rotating 
disk cam actuating an oscillating roller follower is shown in Fig. 217, 

and oA actuating an oscillating flat-faced follower is shown in Fig. 218. 
In 10ig. 155 is shown a disk cam C which by its oscillation imparts 

a reeducating motion to the flat-faced follower F, This combination 

is oft&xhjalled a toe and wiper cam because of the form of the cam and 
its folk Ier and the action between them. - 

Inr f°* 156 is shown an oscillating positive return disk cam actuating 
oscill£e the roller followers. The mechanism shown is a common type of 
belt £uler,. for metal planers. The loose pulleys are lettered L\ and 
In and tha tight pulleys T\ and 7V In the phase shown the open belt 

is ruie ^e u loose pulley Li and the cross belt on loose pulley In, the 
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table of the planer being stationary. To drive the table forward on its 
working stroke, the open belt must be shifted from L\ to T1 while the 
cross belt remains on Lo. To return the table to its original position, 
the open belt must first be shifted from T\ to L\ followed by the cross 
belt being shifted from L> to 7V To get a quick return stroke, pulleys 
L2 and To are made smaller than L\ and T\. Only the middle portion 
of the slot in cam C is formed to impart motion to the shifters Fi and 
F2 about their centers D and E} the ends of the slot being circular about 
A as a center. To shift the belt for the working stroke, the slotted disk 
cam is rotated clockwise about center 4 by a pull in rod B. During 
this motion the follower roller for F\ will be working in the mid portion 
of the slot and the follower roller for Fo in the end of the slot, thus 
shifting the open belt from L\ to T\ without moving the cross belt 

from Z/2. To shift the belt for the return stroke, the cam is rotated 
counter-clockwise by a push on rod B. This motion will first shift 
the open belt from T1 to L\ and then, as the motion continues, will 
shift the cross belt from L2 to 7Y > 

In Fig. 157 is shown a positive return disk cam which by its iptation 
imparts a reciprocating rectilinear motion to the flat-faced f/folower. 
Since the follower is in the form of a yoke enclosing the cam, thfi. mech¬ 
anism is frequently called a yoke cam. Since there is only one cal ^ the 
motion of the follower, as will be shown later, can be definite v pre¬ 

scribed only in one direction. Two disks must be used if t}or 03 and 
fro motions of the follower are to be independently presc^tact. In 
Fig. 221 is shown a single disk cam driving a roller instead of ;ive slfaced 
yoke follower. Disk cams may drive oscillating as well as rcl Betating 
yoke followers as shown in Figs. 224 and 225. It is to beisfactoi that 
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in Fig. 225 double disks are employed, the motion of the follower yoke 
being different in one direction from that in the other. 

In Fig. 158 is shown a circular disk to whose face curved pieces are 
attached. These curved pieces form the working surfaces of the cam or 
cams carried by the disk. Since the form and position of these curved 
pieces may be changed, this type of cam is commonly spoken of as an 
adjustable plate cam. Either reciprocating or oscillating followers, 

usually fitted with rollers, may be used with this type of cam. It is a 
type well adapted for use in some automatic machines. 

87. Translation Cams. A translation cam is a shaped plate which 
by its reciprocating rectilinear motion imparts a purely or intermit¬ 
tently reciprocating or oscillating motion to a follower whose plane of 
motion is parallel to that of the cam. In Fig. 159 is shown a translation 

cam actuating a reciprocating roller follower. In Fig. 160 is shown a 
translation cam which by its intermittently reciprocating motion 
imparts an intermittently oscillating motion to the roller followers. 
Obviously, the purpose of the mechanism is identical with that of Fig. 
156, and, being lettered the same, needs no further description. 

88. Cylindrical Cams. A cylindrical cam is a cylinder whose sur¬ 
face carries a groove or a ridge or whose end is shaped, which, by its 
rotation or oscillation, imparts a purely or intermittently reciprocating 

or oscillating motion to a follower whose plane of motion is parallel to 

the axis of the cylinder. 
In Fig. 161 is shown a cylindrical cam whose rotation imparts to a 

roller follower a rectilinear motion parallel to the axis of the cylinder. 
Since the working surface of the cam is the formed end of a hollow 
cylinder, this type of cam is frequently called an end cam. It is to be 
noted that such a cam is not a positive return cam since it can positively 
drive the follower only in one direction. By having the roller of the 
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follower run in a groove in the surface of the cylinder, the cam becomes 
a positive return cam. Such a positive return cam is shown in Fig. 162. 

FIG. 161 nc 16£ 

Instead of the groove, a curved ridge on the surface of the cylinder 
could be used wTith a follower carrying two rollers, one on each side of 
the ridge. The rotation of the cam in Fig. 162 imparts to the follower 

Fig. 163. 

an oscillating motion in a plane parallel to the axis of the cam. It is 
evident by inspection that the angle of oscillation of the follower of 

FIG 164 

such a cam mechanism is limited. 
In Fig. 163 is shown a cylinder 
designed to receive working cam sur¬ 
faces of different shapes. This type 
of cam is often called a drum or 
barrel cam, and is a type much used 
in automatic lathes and other auto¬ 
matic machines. In Fig. ,,164 is 

shown another type of cylindrical 
cam often used in automatic ma¬ 
chines. It consists of a circular disk 

on whose periphery curved pieces are attached to impart a limited 
reciprocation or oscillation to the follower in a plane parallel to the 
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axis of the disk. It is therefore a cylindrical cam. Since the working 
cam surfaces attached to the disk are often for the purpose of 
actuating a trip follower, and are therefore “dogs,” this type of cam is 
often called a dog cam. 

89. Conical Cams. A conical cam is a cone whose surface carries 
a groove or ridge or whose end is shaped, which, by its rotation or 
oscillation, imparts a purely or intermittently reciprocating or oscil¬ 
lating motion to a follower whose plane of motion is parallel to an 
element of the cam cone. It is a useful form of cam where the desired 
motion of the follower is at an angle with the axis of rotation of the cam. 
Such a cam, actuating a reciprocating roller follower, is shown in Fig. 

165. As for cylindrical cams, the angle of oscillation for an oscillating 
follower is limited. For positive return of the follower a curved groove 
in the surface or a ridge on the surface of the cone may be employed as 
in cylindrical cams. 

90. Spherical Cams. A spherical cam is a portion of a sphere 
employed to oscillate a follower about an axis through the center of 
the sphere at any angle with the axis of rotation of the sphere. Such 
a cam is illustrated in Fig. 166 with the cam and follower axes inter¬ 
secting at right angles at the center of the sphere. To cause positive 
return of the follower the end of the follower must work in a curved 
groove or about a curved ridge on the inside surface of the sphere. 

91. Design of a Cam. Of the five general classes of cams discussed 
above, disk cams and cylindrical cams are the two classes most widely 
used in machinery. Such cams, as a rule, rotate at a uniform rate. Of 
the various kinds of cams, certain forms of disk cams are the easiest to 
design. In Fig. 167 is shown a disk cam C whose clockwise rotation 
positively drives the knife-edged follower F radially outward along 
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the line DE. The follower during its return along ED is kept in con¬ 
tact with the working surface of the cam by the action of gravity or 

by the action of a spring. 
In designing the cam shown in Fig. 167, the cam was assumed 

to rotate clockwise at a uniform rate. During the first 120-degree 
rotation of the cam, the pilch point P of the follower is to move from its 

initial position at 0 to its extreme position at 4- During the next 120- 
degree rotation of the cam the pitch point P of the follower is to return 
from its extreme position at 4 to its initial position at 0 where it is to 

E E 

rest or dwell for the remainder of the revolution of the cam. The 

total distance moved through by the pitch point of the follower in 
either direction is called the total displacement of the follower. In the 

present problem this has been taken as 1| inches. The outline of the 

cam is to be such that for each 30-degree rotation of the cam for the 

first 120 degrees the pitch point P of the follower is to move progressively 

from 0 to 1, 2, 3, and 4, and then to return from 4 to 5, 6, 7, and 8 during 

each 30-degree rotation of the cam for the second 120 degrees. The 

determination of the corresponding points I", 3", etc., on the 

outline of the working surface of the cam is facilitated if the cam is 
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displacement with time was not mentioned. As a matter of fact, it 
was assumed that the follower would be uniformly accelerated for one- 
half its stroke and then uniformly retarded for the remaining half of its 
stroke, and that the return motion would be the same as the outward 
motion. Accordingly, the positions of the pitch point for each interval 
of time were so located, and the corresponding shape of the cam deter¬ 
mined graphically. 

In Fig. 169 is shown a displacement-time graph for uniformly 
accelerated motion from rest during one-half the total displacement 

FIG. 169 

and uniformly retarded motion to rest for the remaining half of the 
displacement. For uniformly accelerated rectilinear motion from rest, 
the displacement or space covered in an interval of time t is 

$ = \At2 

Evidently, since the acceleration A is a constant, $ varies directly as t2. 

Hence, in 2 equal time units, 4 equal space or displacement units are 
covered; in 3 time units, 9 space units; in 4 time units, 16 space units; 
etc. This suggests an easy way of dividing one-half the total dis¬ 

placement, 
it 

into parts corresponding to any convenient number of 

equal time units. These time units may be represented by any con¬ 
venient length. In Fig. 169 the time required for One revolution of the 
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cam has been divided into 24 equal time intervals or units. The folic n- 
is uniformly accelerated for 4 time periods, uniformly retarded >r 
4 periods, similarly accelerated and retarded on the return stroke, ai 

dwells for the remaining 8 time periods. Hence, - was divided intc 
z 

(4)2 — IQ equal space units. In 1 time unit 1 space unit is covered; 

in 2 time units (2)2 = 4 space units; in 3 time units (3)2 = 9 space 

units; etc. is of such a length that it cannot be conveniently 

divided by the use of a scale into the required number of equal space 
units, 16 in the present instance, a line ah of such a length that it can 
be conveniently divided into 16 equal parts may be chosen and pro¬ 

jections made from it as shown. 
In Fig. 170 is shown a displacement-time graph for simple harmonic 

motion of the follower. It has previously been pointed out that if a 
point is moving in a circular path at a uniform speed, its projection 
on a diameter of the circular path will have simple harmonic motion. 
This suggests a simple method of plotting the displacement-time graph 

in Fig. 170 for the same timing as in Fig. 169, but for simple harmonic 
instead of uniformly accelerated and retarded motion of the follower. 
The total displacement of the follower is to take place in 8 equal time 

h 
units. Hence the radius vector - is to rotate at a uniform rate from 0 

z 
to 8 in eight equal units of time. Projections on the diameter, or h} 

for each unit of time make it an easy matter to plot the displacement¬ 
time graph as shown. 

93. Disk Cam with Radial Roller Follower. A disk cam rotating 
at a uniform rate is to impart motion to a radial roller follower 
in accordance with the displacement-time graph shown in Fig. 171. 
It is to be noted that the total displacement h is 1J in., and that the 

time for one revolution of the cam has been divided into 16 equal in¬ 
tervals. The follower is to move one-half the total displacement with 
simple harmonic motion in 4 time units, is to dwell for 2 time units, 

is to move to its maximum displacement with simple harmonic motion 

in 4 time units, is to dwell 1 time unit, is to return with uniformly 

accelerated and retarded motion in 4 time units, and is to dwell for the 

last time unit of the revolution of the cam. Since there is to be a dwell 

during the outward movement of the follower, the cam will be a double¬ 

step cam, the total displacement taking place in two instead of one 

uninterrupted step. The displacement scale for the pitch point P of the 

follower is found by projecting from the displacement-time graph, and 
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displwn about the portion PE of the axis of the follower in Fig. 172. 

wa,c diameter of the cam shaft and of the follower roller is 1 in. The 
ha mster of the hub has been taken 2 in. in accordance with a common 
sfoportion for the diameter B of cast-iron hubs in terms of the diameter 
rf the shaft A. For units in inches, 

B = lf.l + 1 .(124) 

It is quite common to assume that the minimum radius of the cam 
shall not be less than the radius of the hub plus J in. In accordance 
with this proportion the minimum radius of the cam in Fig. 172 has 

been taken as If in. Hence, the pitch point P in its lowest position is 
1| in. above the center D of the cam shaft. 

To avoid sacrifice of strength the keyway in the cam should not 
be located in the region where the radius of the cam is a minimum, 
and, in addition, should be so located as to easily establish the proper 

relative positions of follower, cam, and shaft in building and assembling 

the mechanism. 
Having the displacement-scale PE and the center of the cam shaft 

Z), the working surface of the cam is determined graphically by the 

method detailed in Art. 91. Since the displacement scale has been 

constructed on the basis of 16 equal time intervals for one revolution of 
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the cam, 16 radial lines equally spaced are drawn from the cam center 
D. These radial lines are numbered to correspond to the numbered 
positions of the pitch point of the follower, the numbers being primed 
and set down in an order the reverse of that of the rotation of the cam. 
To determine the pitch and working surfaces of the. cam, the same 
expedient is employed as was used in Art. 91, the cam being fixed and 
the frame and follower rotated in a direction the reverse of that for the 
cam. Hence, radius D3 is rotated counter-clockwise to the radial position 
S', thus determining the position of the roller center 8" on the pitch 
surface. Points 4", 5", 6", etc., were similarly determined. With 
these points as centers, circular arcs of a radius equal to the radius of 

© ~k~D 

FIG. 173 F/G ,74~ 

the roller were drawn, and the working surface of the cam was then 
drawn tangent to these arcs as shown. 

94. Diameter of Follower Roller. In Fig. 173 are shown the pitch 
surface and the working surface of a cam whose center is at D. It is 
to be noted that where the pitch surface is convex with respect to the 
cam center D, the radius r of the follower roller must not be greater 
than the minimum radius of curvature p of the pitch surface. The 
maximum value of r is limited to the minimum value of p, for which 
value the working surface would come to a sharp point. If r is taken 
greater than p, the center of the roller will not be kept to the pitch 

surface by the working surface, and the follower motion will not be as 
planned. Where the pitch surface is concave with respect to the cam 
center, the radius r of the roller may be greater than the radius of 

curvature p of the pitch surface. Hence, it is the minimum radius of 
curvature of the convex portion of the pitch surface that determines 

the maximum diameter of the follower roller. 
In Fig. 174 are shown the pitch surface and the working surfaces 

of the groove in the *face of a cam whose center is at 2). It is to be 
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noted that whether the pitch surface is convex or concave with respect 
to the cam center, the maximum value of the radius r of the follower 
roller is limited to the minimum value of the radius of curvature p of 
the pitch surface. If r is greater than the minimum value of p for the 

pitch surface, the center of the follower roller will not be constrained 
by the working surfaces to follow the pitch surface, and the motion 
of the follower will not be as planned. 

95. Radius of Base Circle. In Fig. 175 is shown, one-fifth full size, 
the pitch surface of the cam of Fig. 168 rectified on a line ad equal in 
length to the circumference of the base circle of the cam, the radial lines 
of the cam appearing as parallel vertical lines. As will be recalled, the 
base circle is a circle drawn through the point on the pitch surface where 

the pressure angle is a maximum. The curve mbgcnp is a displacement- 
space graph, and the completed figure may be called a base diagram. 
For this diagram, let 

h = the total displacement of the radial roller follower, 
P = the angle in degrees turned through by the cam during the 

total displacement ; 
R = the radius of the base circle of the cam; 

l = the length of the portion of the base diagram corresponding 
to the maximum displacement; 

/ = the 6am factor = • 
h 

Hence, 

.<>25> 
or 

R 
360/A 

2ir/3 
(126) 

It is to be noted that if the curve mbgcnp were the working surface of 
a translation cam moving under a vertical knife-edged follower at a 



140 CAMS 

uniform velocity corresponding to that of the base circle of the cam 
in Fig. 168, it would cause identically the same motion of the follower 
as the rotating cam. Furthermore, the pressure angle a for the knife- 
edged follower at m, b, g, r, and n would be the same as for the follower 
in Fig. 168 for the corresponding positions 0, 2, 4, Gf and 8 of the cam. 
Anywhere between m and b, however, the pressure angle is less than 
for the cam between 0 and 2) and anywhere between b and g it is greater 
than for the cam between 2 and 4> because of the rotation of the radial 
lines of the cam to parallelism in the process of rectification. For this 
reason the maximum pressure angle at the point of inflection of certain 
displacement-space graphs may not agree absolutely with the maximum 
pressure angle of the cam. Where there is a difference the error is so 
slight that it can be neglected. Hence, the cam factor / is dependent 
upon the displacement-space graph and the value of the maximum 
pressure angle chosen. 

It was mentioned in Art. 92 that the cams shown in Figs. 167 and 
168 were designed for uniformly accelerated motion from rest for the 
first half and uniformly retarded motion to rest for the last half of the 
total displacement of the follower. Hence, the displacement 6* in any 
interval of time t is, 

s = l At'2 

The length of the base circle arc corresponding to a displacement of 

~ of the follower is as shown in Fig. 175. At this instant the pressure 
« A 

angle is a maximum, and its tangent is equal to the slope of the dis- 
placement-spaice graph at 6. Since the cam rotates at a uniform rate, 
equal intervals of space represent equal intervals of time, or t = kx. 
Hence, 

Now 
s = \ At2 — \Ak2x2 

s ~ h/2 when x — ", or Ak2 = ~ 

The first derivative of s equals the slope of the displacement-space graph 

fh 
%nd is a maximum for x = —. Hence, 

A 

ds d i .. 0 ox . 4 /fh\ 2 
- - S(|W) - - -f- t«»« 

Dr 

/ = tan a 
(/ = 3.93 for a = 27°) 
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Hence, 

360/A, 

27r/3 

360 X 3.93 X 1.5 

2 7T12(T 
= 2 Bin. 

which is in agreement with Fig. 168. 
For the cam shown in Fig. 172 there are two points of inflection for 

the outward motion of the follower and one for the return motion. 
Hence, the pressure angle for the outward motion is a maximum either 
for position 2 or position #, Fig. 171, and is a maximum for the return 
motion for position 13. It can be shown by equations (126) and (144) 
that the maximum pressure angle for position 13 is 35° 20' and by 
equations (126) and (148) that t he pressure angles for positions 2 and 8 
are, respectively, 17° 50' and 13° 45'. 

In Table I below are given the values of the cam factor for various 
values of the maximum pressure angle for each of the five displacement- 
space graphs discussed in the next article, the values being obtained 
by the use of equations (127), (135), (144), (148), and (152). 

TABLE 1 

Cam Factor / for Different Values of the Maximum Pressure Angle a 

; 

Law of Displacement, 

1 

Maximum Pressure Angle a 

20° 25° 
; 

30° 35" 40° 45° 

Straight line arid two arcs of radius h as 

per Fig. 179 and equation (127). 

i 
; 

3.10 2.59 2.27 2.03 1.89 1.83 

Two arcs of radius // as per Fig. 182 and 

equation (135). 5.67 

! 
4.51 ! 3.73 

i 
2.78 

l 
2.51 2.42 

Uniformly accelerated and retarded mo¬ 

tion as per Fig. 185 and equation (144) 5.50 4.29 3.47 2.86 2.38 2.00 
Simple harmonic motion as per Fig. 188 

and equation (148). 4.31 3.37 2.72 2.24 1.87 1.57 

As per displacement graph Fig. 191 and 

equation (152). 5.50 4.29 3.47 2.86 2.38 2.00 

96. Displacement, Velocity, and Acceleration Graphs. There are 
two methods of designing cams. The law of motion of the follower 
may be fixed and the corresponding outline of the cam determined; 
or the outline of the cam may be fixed for a given total displacement 
and the corresponding motion of the follower then determined. The 

first method has been applied in Arts. 91 and 93, and the second method 
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will be illustrated presently. By the first method, the law of motion 
of the follower being known, the velocity and acceleration of the fol¬ 
lower can be computed and the dynamic aspects of the problem be made 
apparent in advance of determining the outline of the cam. Further¬ 
more, for disk cams with radial roller followers and for cylindrical 
cams with followers having a motion of translation parallel to the axis 
of rotation of the cam, the size of the cam may be computed in accord¬ 
ance with the preceding article for any given maximum pressure angle 
before'determining the outline of the cam. 

In Art. 91 uniformly accelerated and retarded motions of the fol¬ 
lower were assumed. An assumption of equal displacements in equal 
time units would have yielded a displacement graph as shown in Fig. 176; 

the velocity of the follower would have teen uni¬ 
form from the beginning to the end of its stroke 
as shown in Fig. 177; and the acceleration, 
except at the ends of the stroke, would have 
been zero. Such an assumption would require 
that the velocity of the follower be instan¬ 
taneously increased from zero to a definite value 
and then instantaneously decreased. This would 
mean an indefinitely high instantaneous value 
of the acceleration at the beginning and at the 
end of the follower stroke as indicated in Fig. 
178, and, hence, indefinitely high forces be¬ 
tween the cam and follower. To avoid this 
very undesirable condition, the law of motion 
of the follower should be such as to give grad¬ 

ually increasing and then gradually decreasing displacements of 
the follower for equal time units. Five displacement graphs of this 
character are shown in Figs. 179 to 191, together with the cor¬ 
responding velocity and acceleration graphs. For purposes of com¬ 
parison all the graphs are drawn for a maximum pressure angle a 
of 30 degrees and for a total displacement of 1.5 inches while the cam 
rotates through an angle 0 of 120 degrees, the R.P.M. of the cam 
being 160. The same scales were used for all of the graphs; a space 
scale of 4 in. = 12 in., a velocity scale of 1 in. = 5 ft./sec., and an 
acceleration scale of 1 in. = 100 ft./sec.2 

The displacement-space graph in Fig. 179 is seen to be a straight 
line tangent to two arcs of radius h for a maximum slope or maximum 
pressure angle a. For the straight portion of the graph the displacement 
of the radial follower is uniform, the velocity is constant, and the accel¬ 
eration is zero as shown in Figs. 180 and 181* For the curved portion 



DISPLACEMENT, VELOCITY, AND ACCELERATION GRAPHS 143 

of the graph, the motion of the follower is variable, 
of Fig. 179, 

fh ~= 2h sin a + 
h — 2 (h — h cos a) 

tan a 

h( 2 

From inspection 

(127) 
sin a 

= 2.26Sh for a - 30° 

The displacement for any value of x between zero and (h sin a) is 

s' = h — Vh2 - j;2 (128) 

For any value of x corresponding to an angular displacement (j> of the 
cam, <£ and ft being in radians, 

x 

fh 

<t> 
- or 
ft -Ht) (129) 

Substituting the value of x from (129) in (128) gives 

s = h — (130) 

The limiting value of <f> is for x = h sin a and is, from equations (129) 

and (127), 

^mux. 

/3/i sin a & sin2 a 

fh 

<3 
4.536 

2 — CO.S a 

for a = 30° 

(131) 

Differentiating (130) gives 

(132) 

where to is the angular velocity of the cam. Differentiating (132) gives 

(133) 

The velocity and acceleration graphs are shown in Figs. 180 and 181 
for the data and scales mentioned above. 
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In Fig. 182 is shown a displacement-space graph composed of two 

arcs of radius II for a maximum slope or pressure angle a. Ihe cor¬ 
responding velocity and acceleration graphs of the radial follower arc 

shown in Figs. 183 and 184. From inspection of Fig. 182, 

Hence, 

fh TJ . , fh 
— — II sin a and — 
2 2 

tan a 

tan a \ 

tan a — sin a! 

h 

2 — 2 cos a 

= 3.73/? for a = 30° 

(134) 

r/G !QO 

Substituting the value of II from (134) in the equation above, gives 

fh = 2II sin a = . .(135) 
" 1 — cos a 

= 3.73 h for « = 30° 

The displacement for any value of x between zero and (H sin a) is, 

s = H -V//2 - x2 (136) 
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For any value of x corresponding to an angular displacement <t> of the 
cam, <f> and /? being in radians, 

x 

fh ~ 
or x — 

Substituting the value of x from (137) in (136) gives 

(137) 

(138) 

fh & 
where the limiting value of </> corresponds to and is -. 
(138) gives 2 2 

V = 
ds 

dt 

Differentiating 

(139) 

where w is the angular velocity of the cam. Differentiating (139) gives 

A 
dV 

dt 
(140) 

In Fig. 185 is shown a displacement-space graph for uniform accel¬ 
eration and retardation of the radial follower from rest to rest. The 
corresponding velocity and acceleration graphs are shown in Figs. 186 
and 187. The displacement s at any instant during one-half the total 

displacement is 
8 = \At2 .(141) 

V = | - At.(142) 

Since the cam rotates at a uniform rate, equal intervals of space repre¬ 
sent equal intervals of time, or t = kx. Hence, 

s — \AP = \Ak2x2 

s = h/2 when x ='^~, or Ak2 =? . . . (143) 
Now 



146 CAMS 

The first derivative of s equals the slope of the displacement-space graph 

fh 
and is a maximum for x Hence, 

or 

ds _ d 

dx dx 

, 4 (fh\ 2 
- = Ak?x = — \lj = = tan a 

/ = tan a 
(/ = 3.46 for a = 30°) 

FIG. 189 

(144) 

o —--- 
o y 

! T l\ 

1 

? 
FIG. 187 

In Fig. 188 is shown a displacement-space graph for simple harmonic 

motion of the radial follower. From Art. 17, 

h , 
“ (1 — cos 6) . . . . 
2 

. . . (145) 

ds h . 
—- = - sm 6 . . . . 
dt 2 

. . . (146) 

dV h 
— = a)/ - cos Q ... 
dt 2 

... (147) 

The curves shown in Figs. 188, 189, and 190 may be plotted by pro¬ 
jecting a rotating vector. In Fig. 188 it is the projection of a vector of 

length ~ rotating through 180 degrees at a uniform rate in a period of 
2 
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time corresponding to that required by the rotating cam during the 
total displacement h of the radial follower. To plot the velocity graph 
shown in Fig. 189 by the projection of a rotating vector, the length of 

the vector used must be made equal to o>r and equal to o)r2 ^ for 

the acceleration graph shown in Fig. 190. From the data given above, 
the cam makes Wr — I revolutions per second or one revolution in § 
second. Since the cam makes ||g = 3 of a revolution during the total 
displacement of the follower, the time occupied is £ X | = | second. 

Hence, 
cor = 27r(^|§) -v- l = St radians per second. 

Since the cam rotates at a uniform rate, equal intervals of space 
represent equal intervals of time, or t = kx = 6/ o>r. Hence, 0 = urkx, 
and, from equation (145), the slope of the displacement-space graph is 

* da 
dx dx 

which is a maximum when 0 

0 7T 
0 = urkx, urk = - = - - and 

h h 
cos 6) ~ = - (sin 6) o)rk 

for which x = 
fh 

Hence, from 

x fh 

dx 

dx 

h ( 7r\ 7r 7r 
= - l sin ~ I “ = • - — tan a 

2 V 2/ fh 2f 
or 

/ = 
2 tan a 

(/ = 2.72 for a = 30°) . (148) 

All the laws of displacement dealt with up to this point give abrupt 
changes in the acceleration of the follower and consequently abrupt 
changes in the unbalanced forces acting on the frame of the mechanism. 
To eliminate these abrupt changes during the cycle, the motion of the 
follower must be such that its acceleration and retardation on the out 
and return strokes will gradually increase from zero and then gradually 
decrease to zero. To attain this result, the following equations were 
devised for which the graphs shown in Figs. 191, 192, and 193 were 

plotted in accordance with the data previously used; 

S = A (2d - sin 20).(149) 

A 
2;r 

(1 — cos 26) 
<im 

dt 
OV — (1 — COS 20) 

27r 
(150) 

A 
dV 

dt 

h . d(20) . h . 
wr— sin 20 —r— = o>/ — sm 20 

2jt dt 2rr 
. . (151) 
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In accordance with equation (149) the displacement is a maximum and 
equal to h when 8 = the value of 6 changing from zero to w while 
the cam rotates through an angle 0. It is to be noted that while the 
displacement graph cannot be plotted by projecting a rotating vector, 
the velocity and acceleration graphs can be as shown in Figs. 192 and 
193. For the data given above, the vectors shown rotate through 

FIG. 194 

27r radians, that is, 8 changes from zero to t while the cam rotates 

through an angle 0 = 120° in 0.125 second. Hence a>r — 
d{.28) 

dt 

2 7T 

0.125 

= it)7r radians per second, fctince the cam rotates at a uniform rate, 
equal intervals of space represent equal intervals of time, or t = kx; 

26 
and, from equation (150), wr = — * Hence, 26 = urkx, and, from 

t 
equation (149), the slope of the displacement-space graph is, 



DYNAMICS OF A CAM MECHANISM 149 

which is a maximum for 6 = - for which x = — and $ = -• Hence, 

2 7T 

from 20 = avfcr, corfc = — and 
fh 

ds h 2tt 2 

or 
/=-.- (/= 3.46 for a = 30°) . . . . (152) 

tan a 

Of the five displacement graphs shown in Figs. 179, 182, 185, 188, 
and 191, the law of displacement assumed for Fig. 179 yields the smallest 
cam, and that assumed for Fig. 182 the largest cam. It is to be noted 
that the laws of displacement assumed for Figs. 185 and 191 yield cams 
of the same size. Each assumed law of displacement results in a satis¬ 
factory variation of velocity of the follower, as shown in Figs. 180, 183, 
186, 189, and 192. The same cannot be said, however, of the corre¬ 
sponding variation of the acceleration. For the first four laws of dis¬ 
placement,, as shown in Figs. 181, 184, 187, and 190 and as before 
mentioned, there are abrupt changes in the acceleration of the follower 
during its motion. As a result then* will be abrupt changes in the 
unbalanced forces acting on the frame of the cam mechanism. The 
last assumption, as shown in Fig. 193 and as previously explained, is 
the only one of the five to give a gradual change in the acceleration 
and retardation of the follower throughout its motion. 

97. Dynamics of a Cam Mechanism. For purposes of comparison, 
as before stated, the graphs shown in Figs. 179 to 193 inclusive were 
plotted for a radial roller follower driven by a disk cam rotating at a 
uniform rate gt 160 R.P.M. A total displacement of 1.5 in. was assumed 
while the cam rotated through an angle 0 of 120 degrees, the return 
motion of the follower being the same as its outward motion. It will 
now be assumed that the follower moves vertically up and down, that 
the weight of the follower and roller is 3.22 pounds, and that the max¬ 
imum pressure angle a is to be 30°. Assuming the law of displacement 
of the follower to correspond to equation (149) and Fig. 191, it is possible 
to determine the radius of the base circle of the cam and to investigate 
the dynamic aspects of the cam mechanism in advance of determining 

the outline of the cam. The radius R of the base circle of the cam for 
a = 30° is, by equation (126), 

360/fe 

2w0 

360 X 3.46 X 1.5 
2.48, say, 2\ in. 

2tt120 
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The fact that $ varies from zero to t during the total displacement 
enables the displacement for any value of 0 to be computed by equation 
(149). The lengths of the rotating vectors to be used in plotting the 
velocity and acceleration graphs are, according to equations (150) and 

(151), and respectively, where h is in feet and cor is the 

angular velocity of the rotating vectors in radians per second. 

jj = 120° = ~ rad. 
i) 

co = angular velocity of the cam 

/160\ 16tt , , 

- (R.P.S.) 2tr = f~~j27r = rad./sec. 

The vectors rotate through 2r radians during the total displacement 
of the follower or while the cam rotates through an angle 0 or in a 

i - d 2?r 3 1 i rt 
period of time t = - = — X “r~ = 0 second. Hence 

CO 3 l07T 8 

2tt ^ 
== — = 16tt rad./sec. 

t 

and 

- 16tr X 
0125 

2tt 
1 

2 (16tt)2 
0.125 

2tr 
167T 

Fig. 191 is to a scale of 4 in. = 12 in.; Fig. 192 to a scale of 1 in. 
= 5 ft./sec.; Fig. 193 to a scale of 1 in. = 100 ft./sec.2; and Fig. 194 
to a scale of 1 in. — 10 pounds. 

In Fig. 194 the total displacement h of the follower is represented 
full size by line 08. This line was divided into 8 parts, corresponding 
to the displacements shown in Fig. 191 for the eight equal intervals 
of time. On the vertical lines through the points -so determined, the 

corresponding inertia forces of the follower were laid off, to a scale of 
1 in, = 10 pounds. These forces, being -equal to the product of the 
mass and acceleration of the follower, are proportional to the ordinates 

of the acceleration curve Fig. 193. Thus, for position £, the magnitude 
of the inertia force of the follower is 

W 3.22 
F = MA = — A = —~ X 50.06 = 5.006 pounds 

g 32.2 



AUTOMOBILE CAM WITH RADIAL ROLLER FOLLOWER 151 

Since at the instant the follower is moving vertically upward, the 
vertical component of the pressure between the follower roller and the 
cam surface will lx? equal to 5.006 pounds plus the weight of the fol¬ 
lower, 3.22 pounds. It is to be noted that just before position 5 is 
reached this pressure component has decreased to zero, and that beyond 
this the force of gravity would be insufficient to retard the follower 
as required to keep it in contact with the cam. Hence, if the assumed 
law of displacement is to be realized, the follower must be fitted with 
a spring. For satisfactory action the spring should have an initial 
compression when the follower is in its lowest position. This initial 
compression has been taken at 0.78 pound and is represented in Fig. 194 
by the ordinate ac} making the vertical component of pressure at the 
beginning of the upward stroke of the follower 3.22 + 0.78 = 4.0 pounds 
instead of 3.22 pounds. Assuming a helical spring, the downward 
force exerted by the spring on the follower will be proportional to the 
amount it is compressed. Representing the spring pressure at the 
end of the upward stroke by bd, and making this pressure 2.88 pounds, 
gives a minimum component of pressure near position 6 about equal 
to the initial compression of the spring. On this basis the spring pressure 
increases from 0.78 to 2.88 pounds during a compression of 1.5 in. The 
scale of the spring required is, therefore, (2.88 — 0.78) -f- 1.5 = 1.4 
pounds per inch of compression. Obviously the vertical component 
of the pressure between the follower roller and cam at any instant on 
the up or down stroke is represented to scale by the ordinate between 
cd and the curve, which ordinate varies from co at the beginning to d8 
at the end of the up stroke and from dS to co on the down stroke. During 
dwell the pressure between the roller and cam is evidently represented 
by co. It should be noted, however, that the magnitude of the vertical 
component of the unbalanced force acting on the frame of the cam 
mechanism at any instant is represented by the ordinate between 08 
and the curve. 

98. Automobile Cam with Radial Roller Follower. In a four stroke 
cycle automobile engine, the crank-shaft makes two revolutions to one 
of the cam shaft. Radial or offset disk cams with roller or rpushroom 
followers are usually employed to operate the valves of such engines. 
In general such cams are designed in accordance with the second method 
of designing cams, the outline of the working surface of the cam being 

fixed for a given total displacement and the corresponding law of motion 
of the follower then determined. That such cams may be most easily 
produced and ground true to form, their outlines are usually made up 
of circular arcs or straight lines and circular arcs. Where straight lines 
tangent to circular arcs are employed, the cam is known as a tangent 
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cam, and as a radial tangent cam if the line of motion of the reciprocating 
follower passes through the center of the cam shaft. This latter type is 
assumed in the present example. In Fig. 195, let 

= the angle turned through by the cam during the total dis¬ 
placement; 

5 = the "angle turned through by the cam while the roller follower 
is actuated by the tangent surface, or flank, of the cam; 

<t> = any angle turned through by the cam while the follower is 
in contact with the flank; 

6 = the angle turned through by the cam from any position of 
follower roller on the nose of the cam to the position for 
total displacement; 

'Ri = the minimum radius of the cam; 
R.2 — the maximum radius of the cam; 
#4 = the radius of the nose of the cam; 
Rz — Rz — Rt\ 
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r = the radius of the follower roller; 
h = the total displacement of the follower = R2 — Rx; 
s = the displacement of the follower at any instant; 

w = the angular velocity of the cam in radians per second. 

In any given case the minimum radius R\ of the cam, the total 
displacement h, arid the corresponding angular displacement 0 of the 
cam are fixed by the conditions of service and accepted practice, likewise 
the radius r of the follower roller. Having these, the angle h and the 
radius of the nose R± can be determined. Referring to Fig. 195, 

but 
h — Rs ~f- Ri — R1 (153) 

cos 0 = 
Rx - R4 

Ra 
or Ra 

Rx - R* 
cos j3 

(154) 

Substituting the value of Ra from (154) in (153) gives 

h = + Ra - R,.(155) 
cos /3 

Solving (155) for Ri gives 

Ri = Ri — 
h cos /3 

1 — cos /3 

also, 

tan 8 = 
IIC2 

OH 

Ri sin ft 

Ri + r 

{h + R\ — Ri) sin /3 

R7+~r 

(156) 

(157) 

For the roller in contact with the flank of the cam, the displacement of 
the pitch point of the follower for any angular displacement <t> of the 
cam between zero and 8, is 

s = 0C\ - {Ri + r) = + r) = (Ri + r)(sec *-l) (158) 
cos <t> 

Differentiating (158) with respect to time gives the velocity V of the 
follower: 

V « J - {Ri + r) sec <t> tan = a{Rt + r) . . (159) 
at \dt/ cos- <j> 

Differentiating (159) gives the acceleration A of the follower: 

A - — = 4lu(Ri + r) tan <f> sec <£]= o>2{Ri + r) [--(16°) 
at at L cos J 
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For the nose of the cam for values of 6 between zero and (0 — S), 

s = OC3 - (Ri + r) = (OE + EC*) - (fii + r) 

= COS ® - (Bi + r) +V(«4 + r)2 - (ft* sin 0)2 . . (161) 

Differentiating (161) gives the velocity F of the follower: 

R:\- sin 9 cos 9 _ . 1 
,-====== + ft3 Sin 9 . . 

V(ff7+ r)‘- - Hr sin2 9 J 

ds r 
= — = — CO 

dt L 
(162) 

Differentiating (162) gives the acceleration A of the follower: 

A 
dV 

dt 

RzW sin* 0 +(R-, + r)2(l - 2 sin2 0)] cog 

t(«4 + r)2 - tf32 sin2 tt]'- 3 
ft 

The design of a cam of the type discussed above for an automobile 
engine whose maximum speed of rotation is 3600 It.P.M. will now be 
taken as an example. It will be assumed that the exhaust valve is to 
have a total displacement, or lift, of in.; that it opens 40 degrees 
before the crank reaches the bottom dead center position, and that 
it closes 12 degrees after the crank reaches the top dead center position 
when the engine is cold. The valve is to have a dwell in the extreme 
lift position for a period corresponding to a 30 degree rotation of the 
crank. To allow for expansion as the engine warms up, there is to be 
a clearance of 0.008 in. between the follower roller and the cam when 
the engine is cold. The minimum radius of the cam is to be in. and 
the radius of the roller -fa in. 
Hence, 

Ri = H in., r = A in., h = H in., and R2 = R\ + h *= 1^ in. 

o> = angular velocity of the cam = = 607r rad./sec. 

It remains to find the nose radius and the angle P through which 
the cam turns while the valve is lifted ^ in. when the engine has warmed 
up. Before finding p it is necessary to find the angle </> through which 
the cam must turn for a lift corresponding to the clearance of 0.008 in. 
between the roller and the cam when the engine is cold. By reference 
to Fig. 195, it is evident that 

OCi * Rx + r + 0.008 in. 
and 

... , Ri + r Ri + r + 
COS W ■*“* '-•r ■ — ‘ M ZZZ 1.■-»»'■■»— .. ..mm.mmm* 

OCi Ri + r + 0.008 ff + * + 0.008 
or 

4> - 6.5° 

0.99364 
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Hence, during the lift of the valve, the cam must rotate through an 
angle, 

a 1/180 + 40 + 12 - 30 

’ ~ 2\ 2 
+ 6.5 = 57° 

From equation (156) the radius of the nose is 

„ ri h cos 0 13 
£LA = Hi --=- 

1 — cos0 16 
Whence 

11/ cos 57° \ 

32\1 - cos 57°/ 
0.4014 

Tis = Ro - Ri = fti + h - J?4 = 0.755 

From equation (157) 

(h'+ Ri - 
tan 8 = 

R4) sin ft (ft + ft - 0.4014) sin 57c 

R\ + r ft + 7 
16 

or 

and 
5 = 26° 52' 

0 - 6 = 30° 8' 

0.50655 

The values given in Table 2 below were computed by the use of equa¬ 
tions (158), (159), (160), (161), (162), and (163). For convenience, 
b and (0 — b) were each divided into two equal parts corresponding to 
positions 0, 2, 4, 6, and 8 in Figs. 196 to 199 inclusive. 

TABLE 2 

5 

<n 
to i o

 
50 
C

M
 

II m ■ i H 8
 

£
 

Position. 0 2 4 
1 

4 6 8 

<t>. 0 13°-~26' 26°-52' i 
i 

e i 
i 

30°-8' 15°-4' 0 

s in inches— . 0 0.0352 0.1510 8 0.1510 0.2945 0.3437 

V in ft./sec. 0 4.92 11.18 V 11.18 5.83 0 

A in ft./sec.*. 3704 4245 6295 A -3485 -4060 -4245 

Evidently the point of inflection of the displacement graph at which 
the pressure angle is a maximum is for position 4 when the displacement 
is 0.151 in. Hence the radius of the base circle is 

#te]21 + r + s«ii + 13ir + 0.151 == 1.401 in. 



156 CAMS 

and by equation (126) the cam factor is, 

= 2;rfiR = 2r57 X 1.401 = Q? 

f~~ 360h~ 360 X si 

By reference to Fig. 195, the maximum pressure angle is seen to be 
equal to 5, or 26° 52'. Substituting this pressure angle in equation 
(152) yields a cam factor of 3.95, showing that an assumed law of 

displacement in accordance with equation (149) would have resulted 
in a somewhat smaller cam. 

Instead of attacking the problem mathematically as above, the 
displacement, velocity, and acceleration graphs for the follower may 
be found graphically as shown in Figs. 196, 197, 198, and 199. Having 
found /3, S, and R± from the given data, the cam and follower may be 
drawn as shown in Fig. 196, and the displacement graph, Fig. 197, 
found in the usual way. The velocity graph may then be obtained by 
graphically differentiating the displacement graph in accordance with 
Ajt. 70 and the acceleration graph obtained by graphically differentiating 
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the velocity graph in accordance with Art. 71. In Fig. 197 the total 

displacement is represented full size, and the corresponding time while 
the cam rotates through the angle is represented by a line 1.393 in. 

long. Hence the space and time scales are 

1 in. = fc# = xV ft- 
and 

1 in. = kt — 
1 

R.P.S. 360/1.393 
0.00379 sec. 

In accordance with Art. 70 a constant Jength must be used for PD 
if the intercepts DE are to be to the same scale and used as ordinates 
of the velocity graph. In the present instance a constant length of 
0.88 in. was used for PD, making the velocity scale 

1 in. = kv — 
h 

(PD)kt 0.88 X 0.00379 
25 ft./sec. 

In differentiating the velocity graph a constant length PII — PD 

= 0.88 in. was used. Hence, in accordance with Art. 71, the intercept 

HJ at any instant represents the acceleration of the follower to a scale of 

kv 25 

JpJIjkt = 0.88 X 0.00379 
7500 ft./sec.2 

By the method just outlined and by drawing three times full size, values 
of the acceleration of the follower may be obtained that are in error by 

not more than 5 per cent. The evident difficulty with the method is in 
accurately drawing the tangent lines to the curves. 

The most accurate graphical method of determining the velocities 
and accelerations is by use of velocity and acceleration vector diagrams. 
In applying these diagrams it is necessary to deal with equivalent 
mechanisms. Evidently the equivalent mechanism, when the follower 
roller is in contact with the flank, is as shown in Fig. 200, and as shown 
in Fig. 203 when the follower roller is in contact with the nose of the 
cam. In Fig. 200 it is obvious that the pitch point D} common to the 

follower block 2 and stem Sf will trace a straight line on the rotating 
cam 1. Coriolis’ law must therefore be applied to determine the accel¬ 
eration of D} D being the describing point on the follower and C the 

coincident point on the rotating cam. The position shown corresponds 
to <t> = 13° 26', or to position 2f Fig. 196. The space scale of Fig, 200 



is 1 in. = k3 = j-Tj- ft.; the velocity scale of Fig. 201 is 1 in. — — 5i 

Ay 
ft./sec.; and the acceleration scale of Fig. 202 is 1 m. — ka - ^ 

= 300ir2 ft./sec.2. As a point in the cam, C rotates about 0io at a 
velocity 

, W R p s , 2tL285/1800 

12 12 \ 60 , 
= 6.425ir ft./sec. 

FIG. SOO FIG £02 

Hence vector oc in Fig. 201 is drawn normal to OioC to a length of 

Vco _ 6.425?r 

kv 5tt 
1.285 in. 

It is evident from the instant centers that Voo is directed normal to 
(hoD and that VDc is directed normal to Oj3Z). Hence vectors through 
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o and c normal to 0%qD and Oja/), respectively, intersect at d and 
determine the velocity vectors od and cd. Hence, 

Vdo — (od)kv — 2.6967r ft./sec. 

— (cd)fcv = 6.607T ft./sec. 

By Coriolis1 law, equation (123), 

Ado — Aro 44 Ado 4> 2 Vdc &c 

Since the cam rotates at a uniform rate, 

Vlo (6.425ir)2 
Aco — A'co — 

(OioC)K 1.285 XTV 

and vector o'c', parallel to COio, is of a^ength 

f f Aro 385.57r2 

°C = T~ = 300*-2 
= 1.285 in. 

385.5ir2 ft./sec.2 

Since D relative to the frame 0 and relative to C, or to the cam, traverses 
straight-line paths, the radius of curvature of the path in each case is 
infinite, and Anl>0 and A"dc are therefore zero. Hence ArX) = A'do and 

ADc = A‘dc and o'd' = (do)d’ and c’d' = (dc')id'. These vectors are 
respectively parallel and normal to OwD and 0\zD. Since the curve 
traced by the describing point I) is on the cam, the angular velocity 
«c of the curve is equal to the angular velocity o> of the cam, Or, 

Hence, 
uc = 2tt(R.P.S) = 2tt(- |o°) — 60*- rad./sec. 

2Vdcuc = 2(6.67r)607r = 792tt2 ft./sec.2 

The direction of the vector representing 2VDcuc is such that if applied 
as a force at the terminus of the velocity vector cd it would rotate the 
vector in the same sense as the cam carrying point C is rotating, that is, 
counter-clockwise. Hence the vector is parallel to OizD and of a length 
equal to 

/j w 7 s 2Fdc«C 
(dc){dc) i = —-- 

792b-2 

300tt2 
2.64 in. 

As shown above, vectors o'c' and (dc)(dc)i in Fig. 202 are known in mag¬ 
nitude and direction, and (dc)\d' and b'd', or (do)d', are known in 
direction, hence the intersection d' is determined, and 

Ado = (o'd')ka = 1.44 X 300tt2 = 4250 ft./sec.2 

which is almost identically the same as the computed value given in 
Table 2 for the same position. 
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By reference to Fig. 203, the equivalent mechanism for the follower 
roller in contact with the nose of the cam is seen to be the familiar slider- 
crank chain. The position shown corresponds to 6 = 15° 4', or to 
position 6, Fig. 196. The space, velocity, and acceleration scales for 
Figs. 203, 204, and 205 are the same as used for Figs. 200, 201, and 
202. It is to be noted that EF is the radius of curvature of the pitch 
surface of the cam at point F. In the present instance this radius is 

FIG. e03 

known by construction to be constant and equal to (fl4 + r) = 0 8389 in 
throughout contact between the roller and the nose of the cam': other¬ 
wise it would be necessary to determine this radius by trial for each 
poation of the cam and follower. Obviously, since link 1 rotates with 
the cam the velocity VBO at the instant of point E relative to the frame 
is normal to OiqE, and has a magnitude of 

Veo - u(O10E) rn = 3.775a- ft./seC. 
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Hence vector oe in Fig. 204 is drawn normal to OioE to a length of 

V no 3.7757r 

kv 5tt 
0.755 in. 

Velocities VFo and Vfe are parallel and normal, respectively, to OioF 
and EF.' Hence the intersection at / of vectors through o and e, parallel 

and normal, respectively, to OwF and EF, determines the velocity 
vectors of and cf. Hence, 

Vro = (of)kv = 0.375 X 5tt = 1.8757T ft./sec. 
and 

VFE = (ef)kv = 0.75 X 5tt = 3.757T ft./sec. 

Since the angular velocity of 0\oE is uniform, 

= V%o = (3.775tt)2 

ftfc, 0.755 X A 
2235 ft,/sec.2 

and the length of the vector in Fig. 205 representing Ann is 

o 
2235 

300tt2 
0.755 in. 

This vector is directed parallel to EOio from £* towards O\o. Now, 

V\K _ (3.75tt)2 

(EF)ks 0.8382 X rV 
1990 ft./sec.2 

and the length of the vector representing AnFE is 

1990 

300tt2 
0.67 in. 

Vector (fe)f representing AlFE is known to be directed normal to e'(fe), 
and vector o'/' representing AFO = AlFO is known to be parallel to 
FOio. Hence the intersection of lines through (fe) and o', respectively 
normal and parallel to e'(/e) and FOio, determines /' and the vector 
o'/' representing AFoy or 

Af0 * (o'/')&0 = 1.37 X 3007t2 = 4055 ft./sec.2 

which is almost identically the same as the computed value given 
in Table 2 for the same position. 

As before pointed out, the displacements and corresponding accel¬ 

erations of the follower may be used to design a suitable spring to keep 
the follower in contact with the cam. To this end, let 
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IF = the weight of the follower, valve, spring retainer, and 

half the spring == 1.00 lb.; 
D = diameter of the valve = If in.; 
R = mean radius of the coils of the spring = f in. 

For a helical spring, 

and 

where 

(164) 

5d4 

64 R2n 
(165) 

d = the diameter of the wire in inches; 
p — the maximum induced shear stress in pounds per square 

inch; 
P = the axial load in pounds compressing or elongating the 

spring; 
5 = the deflection, or amount in inches that the spring is 

compressed or elongated; 
n — the number of coils; 
E = the shear modulus of elasticity of the spring material 

in pounds per square inch 
= 12,000,000 for steel wire. 

In Fig. 206 the total displacement 
of the follower or valve is represented 
four times full size by the line 08. This 

line is divided to correspond to the 
displacements shown in Fig. 197. The 
ordinates at 0} 2, 4, etc., were com¬ 
puted from the corresponding ordi¬ 

nates of Fig. 199, and are shown in 
Fig. 206 to a scale of 1 in. = 200 
pounds. At position 2, for example, 

the acceleration of the follower from 
Fig. 199 is 4245 ft./sec.2, and the 
corresponding inertia force is 

F - MA 
1.00 

32.2 
X 4245 - 131.7 lbs. 

Length of ordinate at 2 
131.7 

200 
0.6585 in. 
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It is to be noted that at position 4 there is a sudden change from accel¬ 
eration to retardation, and that for the remainder of the lift a downward 
force is required to keep the follower roller in contact with the cam. 
Since the action of gravity is only one pound, it is insufficient to give 
the required retardation, and a spring must therefore be used. In fact, 
the action of gravity is so small compared to the required retarding 
force that it will be neglected. To represent it on the diagram would 
require a line 0.005 in. below and parallel to 08. For satisfactory action 
the spring pressure at any instant from position 4 to 8 should be some¬ 
what in excess of the required retarding force. Hence, in Fig. 206, 
the pressure line cd of the spring is drawn below and approximately 
parallel to ab, the ordinates of the shaded portion of the diagram giving 
the variation of the vertical component of the pressure between the 
roller and cam during the up and down motion of the follower and valve. 
The scale of the spring required is 

-—. ~ (144 _ I00)ff = 128 lbs./inch of compression, 
tf , , 

and the total deflection is 

6 = iH ==1-125 in. 

From equation (164) for an allowable stress p — 65000, 

_ 3/jjjgg = 3I 
' irp ’ 

16 X 144 X 0.625 

tt65000 
0.192 or No. 6 wire, 

and from equation (165) 

Sd4E 1.125(0.192)412000000 

n ~ 64PR3 ~ 64 X 144(0.625)3 ~ l0’ Say 8 

Hence a helical spring of number 6 steel spring wire having 8 effective 
coils and set with an initial compression of 100 pounds will be satis¬ 
factory. 

M. Automobile Cam with Mushroom Follower. In the preceding 
example, the motion of the follower for a cam outline of known form 
was first analyzed mathematically, next the method of determining 
velocity and acceleration graphs by graphical differentiation was 

employed, and finally the method of determining the velocity and 
acceleration of the follower for any position of the cam by applying 
velocity and acceleration vector diagrams was illustrated. The present 
example will be treated by the first and last methods only. In Fig. 
207, let 



164 CAMS 

fi — the angle turned through by the cam during the total 
displacement; 

8 — the angle turned through by the cam while the follower is 

in contact with the flank of the cam; 
<t> = any angle turned through by the cam while the follower is 

in contact with the flank; 
6 = the angle turned through by the cam from any position of 

the follower in contact with the nose of the cam to the 
position for total displacement; 

R\ = the minimum radius of the cam; 
R2 = the maximum radius of the cam; 

/?4 = the radius of the nose of the cam; 

Rz = i?2 ~~ Ra ) 
h =* the total displacement of the follower = R2 — Ri; 
$ = the displacement of the follower at any instant; 

o) = the angular velocity of the cam in radians per second. 
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In any given case the minimum radius R1, the total displacement h, 
the corresponding angular displacement /3 of the cam, and the radius 
of the nose R4 are fixed by the conditions of service and accepted prac¬ 
tice. Having these, the angle 8 and the outline radius R can be deter¬ 
mined. Referring to Fig. 207, 

<’72 = fg2 + eg2.(166) 
But 

cf — R — R4, fg = R[) sin 0, and eg ~ R — Ri + Tfo cos 

Substituting these values of c/, fg> and eg in (166) and solving for R 
gives 

R«2 - R42 + Ri2 - 2R:iRl cos fl 

2(Ri — R4 — Rz cos 0) 
(167) 

also, 

• x -fa sin 8 = -- = 
<7 

7?rt sin (3 

A' - /?4 
(168) 

For the follower in contact with the flank of the cam, the displacement 
of the follower for any angular displacement (j> of the cam between 

zero and 6, is 
s = ab = ob — Ri — de — Ri.(169) 

But 

cd R — de 
cos </) — — = —-— or de = R — (R — R1) cos <f> 

co R — R1 

Substituting the value of de in (169) gives 

s = (R - Iti)(l - cos <f>) .(170) 

Differentiating (170) with respect to time gives the velocity V of the 
follower: 

/Jo 

V = ~~ ~ co(R — Ri) sin 4>.(171) 
dt 

Differentiating (171) with respect to time gives the acceleration A of 
the follower: 

dV 
A - — - o>2(R - Rx) cos 4>.(172) 

dt 

For the nose of the cam for values of 0 between zero and Q3 — 8), 

$ a= otu — Ri = on -f- urn — == 1?3 cos 0 + i?4 — Jf2i . (173) 



166 CAMS 

Differentiating (173) gives 

V = = — coi?3 sin $.(174) 
at 

Differentiating (174) gives 

A = ~ « - cos e.(175) 
at 

The design of a cam of the above type for an automobile engine whose 
maximum speed of rotation is 3600 Il.P.M. will now be taken as an 
example. It will be assumed as before that the exhaust valve is to 
have a lift of ^ in., that it opens 40 degrees before the crank reaches 
the bottom dead center position, and that it closes 12 degrees after 
the crank reaches the top dead center position. To allow for expansion 

as the engine warms up there is to be a clearance angle of the cam 
shaft of 4.5 degrees when the engine is cold. The minimum radius of 
the cam is to be J in. and the radius of the nose T\ in., hence, 

Ri = | in., R4 = TV in., h = H in.; 

#2 = Ri + h = 1^2 in., and Rz = Rz — R± = in.; 

o) = angular velocity of cam = = 60t rad./sec.; 

^-l(180 + 40 + ,2)+45.62, 30, 

Substituting in equations (167) and (168) gives 

R = 2.5024 in. and 8 = 20° 20' 

Hence, 
(P - 8) = 42° 10' 

The values given in Table 3 below were computed by the use of equa¬ 
tions (170) to (175), inclusive. For convenience 8 and (/3 — 5) were 
each divided into two equal parts corresponding to positions 0, 2, 6, 
and 8 in Figs. 208 to 211, inclusive. 

In Fig. 20^ the total displacement is represented full size, and the 
corresponding time while the cam rotates through the angle /3 is rep¬ 

resented by a line 1.74 in. long. Hence the space and time scales are 

1 in. = fc, = A ft- 

1 in. 
1 / 0 \ 1 = 60 /62.5\ 1 

R.P.SV360/1.74 1800 \ 360/1.74 
=. 0.003325 sec. 

and 
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The velocity scale of Fig. 210 is 1 in. = kv = 25 ft./sec., and the accel¬ 
eration scale of Fig. 211 is 1 in. = ka — 7500 ft./sec.2. 

TABLE 3 

o>
 

« O
 

,°
 s 

: 

{d - 6) « 42°~10' 

Position. 0 
. + 

2 4 4 6 8 

<L. 0 io°~io' ! 
o e 42°-10' 21°~5' 0 

8 in inches. 0 0.0675 0.1090 8 0.1090 0.285 0.3437 

V in ft./sec. 0 4,85 9.56 V 9.56 5.27 0 

A in ft/sec.2. 5ft6* *5100 4860 A \ 1987 2506 2585.5 

In applying the velocity and acceleration vector diagrams it is 
necessary, as before stated, to deal with an equivalent mechanism. 
The equivalent mechanism for the follower in contact with the flank 
of Hie cam is shown in frig. 208. Obviously, if a pin, located at the 
center of 'curvature of the outline of the flank, were fitted with a sliding 
block 8, rotation of the pin with the cam would impart the same motion 
to the slotted follower as the cam imparts to the mushroom follower. 
For the follower in contact with the nose of the cam, the equivalent 
mechanism would be similar, the pin being located at the center of 
curvature of the nose. In Fig. 208, position 8 has been chosen to illus¬ 
trate the application of the vector diagram method. At the instant 
point F in 3 is coincident with C, a point common to links 1 and 8. 
Point C as a point in 1 rotates about the fixed center 0\o. Hence 
velocity Vco and its vector oc in Fig. 212 are normal to OioC. 

Vco 

oc 

o>(OioC)k8 « 60*(1.75)tV = 8.75tt ft./sec. 

Vc° ^ 8.75tr 

kv 5 ir 
= 1.75 in. 

Velocity VFo is directed vertically upward, and velocity Vcf horizontally 
to the right. Hence the intersection of a vertical line through o with 
a horizontal line through c determines / and the velocity vectors of 
and /c. 

Vro (of)kv = 1.725 X 5r ** 8.625*r ft./sec* 

^Ycr 055 (fc)ki, 0.308 X 5-r * 1.54ir ft./sec. 
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Since the cam rotates at a uniform rate Aco = A£0, and 

Arn — Aco — 

V (8.757r)2 

(O10C)ka 1.75 X tV 

Adopting an acceleration scale of 1 in. = ka 

= 525tr2 ft./sec.2 

fct2 (5tt) 

tV 
ft./sec.2, the length of accele?ation vector o'c' in Fig. 213 becomes 

= 3007T2 

oc 
Aco 525tr2 

3007T2 
1.75 in. 

This vector is directed parallel to COio- Since F moires vertically in 
a straight line relative to the frame and moves horizontally in a 
straight line relative to C, accelerations Afo and Acf have no normal 
components. Hence the intersection at f' of a vertical line through o' 
with a horizontal line through c' determines the acceleration vectors 

o'/' and c'f. Hence, 

Afo = (p'f')ka « (1.725)300tt2 « 5107.5 ft./sec.2 
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It is to be noted that this value is in very close agreement with the 
value in Table 3 for the same position. It is also to be noted that the 
equivalent mechanism is the familiar Scotch yoke, the follower therefore 
having harmonic motion as is plainly indicated by equations (170) 

to (175), inclusive. 
100. Disk Cam with Reciprocating Flat-Faced Follower. The 

first method of designing cams was illustrated and fully discussed in 
Arts. 91 and 93, and the second method in Arts. 96, 98, and 99. The 
cam constructions in this and the remaining articles of this chapter, 
with the exception of Arts. 101 and 105, will be based on the first method 
of design, which requires the working surface of a cam to be determined 
from the assumed law of displacement of its follower. 

It is required in the present problem to determine the working 
surface of a disk cam to impart a motion to a reciprocating fiat-faced 
follower in accordance with the displacement-time graph shown in 
Fig. 214. The total displacement of the follower has been taken as 
i\ in., and the time for one revolution of the cam in a clockwise direction 
at a uniform rate has been divided into 1,6 equal time intervals. As for 
the problem in Art. 93, the follower is to move one-half the total dis¬ 
placement with simple harmonic motion in 4 time units, is to dwell 
for 2 time units, is to move to its maximum displacement with simple 
harmonic motion in 4 time units, is to dwell 1 time unit, is to return 
with uniformly accelerated and retarded motion in 4 time units, and 
is to dwTcll for the last time unit of the revolution of the cam. In Fig. 
215 the axis of the stem of the flat-faced follower intersects the axis of 
the cam. It is to be noted that this is not essential, since the axis of 
the stem could be in any other location parallel to that showm without 
affecting the cam outline or the motion of the follower. To determine 
the outline of the cam it is necessary to construct a displacement scale 
for some point on the follower. While any point in the follower 
might be used, the most convenient point is D, where a perpendicular 
through 0 intersects the contact surface of the follower. Having 
the X axis of Fig. 214 in line with Z), the displacement scale DS 
is easily constructed by projection. Since the zero position of the 
follower is its lowest position, the center of the cam must be a distance 
below the contact ^surface of the follower equal to the minimum radius 
of the carii. For reasons which will be explained later, this radius was 
taken If in., or J in. greater than for the cam in Art. 93. As the cam 
rotates clockwise, point D on the contact surface of the follower advances 
to positions 1, 2, 8, etc.; or, as the follower is rotated counter-clockwise 
with the cam stationary, point D moves to the radial positions I", 2", 
8", etc. Hence, say for the second position, the intersection of an arc 
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of radius 02 with the radial line 02* of the cam determines the position 
2" of point D of the contact surface of the follower. Since the contact 
surface of the follower is perpendicular to the stem of the follower, a 
line through 2" perpendicular to 02' determines one line to which the 
working surface of the cam must be tangent. Lines representing the 
contact surface of follower having been similarly located for the re¬ 

maining positions, the working surface of the cam is drawn tangent 
to them as shown. 

Had the minimum radius of the cam been taken 1| in. as for the 
cam in Art. 93, the lines for positions 11, 12, and 13 would have inter¬ 
sected as shown at K, thus requiring the working surface of the cam to 
come to quite a sharp point. This defect was remedied in "the usual 
way by increasing the minimum radius of the cam, in this instance, 
to If in. It is to be noted that a satisfactory working surface for a 
minimum radius of 1 in. is impossible, since the line for position 12 
would fall beyond the intersection of the lines for positions 11 and 18. 

The point of contact between cam and follower is a maximum 
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distance to the right of D for position 18, and a maximum to the left 
of D for position 8 as shown. To allow for wear and for initial variation 
in form, the contact surface should extend somewhat beyond the 
apparent points of contact. As shown in Fig. 215, M and N have been 
made about \ in. greater than the maximum distances to the points of 
contact. If the follower stem were round and its axis located as shown 
but offset from the midplane of the cam, the friction between the cam 
and follower face would cause the follower to rotate while reciprocating, 
thus requiring the follower face to be in the form of a circular disk of 
radius M. Such a follower is known as a mushroom follower. The 
rotation of the follower distributes the wear and assists lubrication. 

For a reciprocating flat-faced follower the pressure between the 
cam and follower, friction neglected, is at right angles to the follower 
face. The pressure angle is therefore constant and equal to 90 degrees 
minus the angle between the follower face and stem. Since in the 
present instance the angle between the face and stem is 90 degrees, the 
pressure angle is zero. 

For this and the cams to follow, the velocity of sliding between 
cam and follower at any instant may be determined, as previously 
explained, by the method of instant centers of Art. 65 or by the vector 
diagram methods of Arts. 47 and 75(c). 

101. Stamp Mill Cam. In Fig. 216 is shown a reciprocating flat¬ 
faced follower F actuated by a rotating disk C in the form of a double 
involute cam. This cam mechanism is used in stamp mills for pulver¬ 
izing crushed ore such as gold-bearing quartz. The follower stem or 
rod E with a stamp head and steel shoe attached to its lower end, is 
called the stamp. On being raised and released by the rotating cam, 
the stamp drops, and the ore in the mortar is crushed between the 
stamp shoe and the die or anvil. It is to be noted that the stamp is 
raised and dropped twice during each revolution of the double cam. 
Furthermore, since a certain period of time is required for the drop 
of the stamp, the cam must be so constructed that the stamp is raised 
during a rotation of less than 180 degrees. As a rule a stamp mill ♦con¬ 
sists of a battery of 5 or 10 stamps, the cams being mounted on the 
same shaft in proper angular relation to give the desired sequence for 
the rise and fall of the stamps. 

A common outline for the working surfaces of stamp mill cams is 

an involute curve PP1P2P3 generated by a line PL rolling on a base 
circle B. Hence PiG is equal in length to the arc PG, and KM to the 
arc PGM. Therefore, as OG and the cam rotate from a position parallel 

to the follower face to the position shown, the follower or stamp is raised 
a distance equal to the difference between MK and GPj. Since GP\ 
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and MK are proportional to the angular displacement of the cam, it 
follows that the stamp would be lifted at a uniform velocity provided 

the cam rotates at a uniform rate. The follower face is in its lowest 

position when the stamp shoe is on the die, and in this position it should 
be a sufficient distance, say GP\, above the center of the cam shaft 
to clear the hub of the cam. Assuming the lowest position of the fol¬ 
lower face to be a distance GP\ above the center of the cam, and Pz to 
be the teiminus of the involute, then the lift due to the action of the 
involute is 

h = IIP; - GP x = 2rR.(176) 

Assuming the hub radius to be li in., (U\ = 1H in*> h — 2\ in., and 
6 — 105°, then 

h /360\ _ 2.5/360\ 

2tAT/ 2~tt\105/ 
1.363 in., say 1 in., or 0 — 104.5° 

It is to be noted that throughout involute action the normal through 
the point of contact of cam and follower is tangent to the base circle B. 

Hence the point of contact K remains at 
a constant distance from the axis of the 
stamp stem. By making the axis of the 
stem tangent to the base circle, the 
amount the point of contact is offset 
with respect to the stem axis is some¬ 
what reduced and the lifting action 
thereby improved. The additional lift 
of the stamp after involute action ceases 
is given by the difference between OPa 
and HPz. The pressure between the cam 
and the follower as the cam slides off 
the follower is relieved by the tendency 
of the stamp to keep on moving upward. 
The distance in feet that the stamp 
would move without help from the cam 
after involute action ceases would be 
$ = v2 2g. Evidently a uniform 

velocity of lift from the instant contact 
between cam and follower begins is 
impossible, as it would require an accel¬ 
erating force of infinite magnitude. 
Owing, however, to the flexible belt drive r/G. eie 



DISK CAM WITH OSCILLATING ROLLER FOLLOWER 173 

and the elasticity and yield of the members involved, a short interval 
elapses before uniform velocity is established, and the initial pressure 

between cam and follower is in consequence reduced in magnitude to 
operative values, provided, of course, it is not attempted to rotate the 
cams at too high speed. 

102. Disk Cam with Oscillating Roller Follower. In Fig. 217 the 
disk cam C which rotates clockwise at a uniform rate is to impart a 
motion of oscillation to the roller follower F which is pivoted at Pq. 

\ I 

FIG ^/7 

The total angular displacement of the follower is to be 20 degrees for 
an arc of travel of the pitch point D of 11 in. Hence, the follower 
radius PoD must be, 

FoD - i-as© -358 

The law of displacement of D along the circular arc DS is to be the same 
as for the problem of Art. 93. To construct the displacement scale for 
Fig. 217, it is therefore required to divide the arc DS, which is If in. 

long, to correspond exactly to the displacement scale of Fig. 172, for 
which the total rectilinear displacement is If in. One method is to 
transfer the divisions of the straight line of the same length as the arc 
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to the edge of a strip of paper and then, after bending it to conform 
to the arc, to transfer the divisions from the edge of the paper to the 
arc. Having the displacement scale DS in accordance with the desired 

law of displacement of the pitch point D, the working surface of the 

cam may most easily be determined by considering the cam stationary 
and rotating the follower counter-clockwise. As before explained, this 
gives the same relative motion of follower and frame as clockwise 
rotation of the cam. Since 16 equal intervals of time were used in 
constructing the displacement scale, 16 radial lines equally spaced are 
drawn through the center of the cam. While any one of these lines 
might be used as a reference, the most convenient line is the one nearest 
to but wholly on one side of the displacement scale DS. This line, a 
vertical line in the present instance, is numbered o', and the others 
numbered consecutively in the direction of rotation of the follower. 
The method of finding the location of the pitch point for each interval 
will be illustrated by considering position 8. With 08 as a radius, an 
arc is drawn until it intersects 08' at E. This corresponds to a rotation 
of the follower of eight intervals plus the offset M. Since a rotation of 
eight intervals only is desired, the rotated position 8" of 8 is back of E 
a distance E8" equal to M. All other positions of the pitch point, 
such as l'\ 2", 5", etc., were found in a similar manner. With each 
point as a center, arcs of the roller radius were struck, and the working 
surface of the cam drawn tangent to them as shown. 

If the follower arm oscillates in the plane of the cam, it must be so 
shaped as not to interfere with the cam. With a sheet of celluloid on 
which the centers 0, D, Po, and the radius PoD are marked, the position 
for which the cam would be the nearest to or overlap PoD the farthest 
may easily be found by revolving the sheet of celluloid about center 0. 
Lacking a sheet of celluloid, a transparent triangle may be used. It 
is to be noted that for the position of the pitch point D' about midway 
between 18" and 14", the follower radius P'D' is nearest to the working 
surface of the cam. The required shape of the follower arm to safely 
clear the cam is shown dotted. To simplify the pattern work the 
outlines of the follower arm should be composed of straight lines and 
circular arcs. 

Since the path of the follower roller does not depart so widely from 
a radial line through the center of the cam, the approximate size of 
the cam for any given pressure angle could be computed by the method 
outlined in Art. 95. 

103. Disk Cam with Oscillating Flat-Faced Follower. In Fig. 218 
the disk cam C which rotates clockwise at a uniform rate is to impart 
a motion of oscillation to a flat-faced follower F which is pivoted at Po. 
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The total angular displacement and the law of displacement of the 
follower are to be the same as for the problem in the preceding article. 
Point D on the face of the follower was taken the same distance, 3.58 in., 

from the pivot Po as in Fig. 217, in order that the same displacement 
scale DS might be used; otherwise any other convenient point on the 
face might have been used. As in the previous problem, the most con¬ 
venient expedient in determining the outline of the working surface 

of the cam is to consider the cam stationary and to rotate the follower 
and frame in the counter direction. This was done in the previous 
problem to determine the location of the center of the follower roller 
for each interval. In the present instance it is required to find the 
location of a Une representing the follower face for each interval. Hence 
two convenient points such as D and P must be located for each interval, 
and a line drawn from D tangent to an arc of radius PqKo having the 
revolved position of P as a center. In eleven intervals* D has moved 



176 CAMS 

to position 11 and has revolved to position 11", a distance M back of 
the radial line 11', and Pq has revolved to position P\\. A line from 
11" tangent to an arc of radius PqKq having Pw as a center locates the 
position of the cam face for position 11. All the other positions of the 
cam face were located in a similar manner, and the outline of the working 
surface of the cam drawn tangent to them as shown. Since D is at a 
constant distance from P, the revolved positions of D could have been 
located by the locus instead of the offset method. Thus 2" is at a distance 
from P2 equal to PqD, and hence at the intersection of two arcs of radii 
02 and PqD having their respective centers at 0 and P2. 

To fix the length of the follower face it is necessary to determine 
the contact points nearest to and farthest from the pivot point. In the 
present instance these points occur for positions IS and 2, respectively. 
To allow for wear and variations in form, the follower face should be 
made a suitable amount longer than the distance between the two con¬ 
tact points determined. 

For a given law of displacement and distance between 0 and Pq, 

a satisfactory cam outline for cam mechanisms of this type may be 
possible for rotation in one direction while not possible for rotation in 
the opposite direction. A sharp-pointed cam or an impossible outline 
can be avoided only by having a suitable la^v of displacement and 
distance OPq. 

104. Positive Return Single-Disk Cams with Reciprocating Yoke 
Followers. With the exception of Fig. 153, Art. 86, it was assumed in 
connection with the cam mechanisms previously dealt with that the 
follower on its return stroke was kept in contact with the cam by the 
action of gravity or by the action of some form of spring. In Fig. 220 
is shown a rotating single-disk cam which positively controls the motion 
of the reciprocating flat-faced yoke follower in both directions. For 
this type of cam mechanism the return motion of the follower must 
be the same but opposite in direction to that of the outward motion. 
This is true since that part of the working surface which causes motion 
in one direction causes the motion in the opposite direction, the other 
half of the working surface merely acting to positively constrain the 
motion to that prescribed. Hence such a cam mechanism could not be 
designed for a displacement graph such as shown in Fig. 171, but must 
be designed for a prescribed motion in one direction which is acceptable 

for the motion in the opposite direction. The mechanism is therefore 
not suitable for situations where the outward and return motions must 
be different. 

The cam in Fig. 220 is designed in accordance with the displacement 
graph shown in Fig. 219, the outward and return motions to be uniformly 
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accelerated and retarded for 4 and 2 periods, respectively. The dis¬ 
placement scale DS is easily obtained by projection. Having the dis¬ 
placement scale, the outline of the working surface of the cam is deter¬ 
mined in the same manner as for the cam in Art. 100. Since such cams 
are at all times tangent to the faces of the yoke, they are of constant 

breadth and are referred to as consta?itr-breadth cams. Hence, having 
located 2", the distance to the opposite point 8" on the same radial 
line is equal to the distance between the faces of the follower. 

The single-disk cam with a reciprocating roller yoke follower shown 
in Fig. 221 is subject to the same limitation, so far as the motion of the 
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follower is concerned, as the mechanism shown in Fig. 220. The cam 
in Fig. 221 was designed for the same motion of the follower as assumed 
in Fig. 220, and the outline of the working surface of the cam was 
determined by the same method as used for the roller follower cam in 

Art. 93. Since the 
distance from any 
point on the pitch 
surface to the one 
opposite on the same 
radial line of the 
cam is equal to the 
distance between the 
centers of the fol¬ 
lower rollers, such 
cams are referred to 
as constant diameter 
cams. The diameter 
of this type of posi¬ 
tive return cam may 
be computed by the 
method outlined in 
Art. 95 for any given 
maximum pressure 
angle. 

105. Positive Re¬ 
turn Single-Disk 
Circular Arc Cams. 
In Figs. 222, 223, 
and 224 are shown 
three positive return 
single-disk cams the 
outlines of whose 
working surfaces are 
made up of circular 
arcs. Such cams are 
designed for a given 
total displacement 

of the follower, the law of displacement following the assigned outline 
of the cam. 

The outline of the cam in Fig. 222 is made up of arcs of two different 
radii. In order that the cam may be of constant breadth, the centers, 
0, By and C must be at the apices of an equilateral triangle. It is 
evident by inspection that the total displacement h is equal to (I£ — Ri) 
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or R = h + Ri- Obviously there is a dwell of the follower at either end 
of its stroke while the cam rotates through 60 degrees, and the follower 
travels its total displacement in either direction while the cam rotates 
through 120 degrees. In Art. 99 the law of motion of a reciprocating 
flat-faced follower operated by a circular arc disk cam was treated 
mathematically. From that treatment the law of motion of the follower 
in Fig. 222 may be easily obtained. From equation (170) for any dis¬ 
placement <j> of the cam between zero and 5 = 60 degrees while the 

follower is in contact with the flank of the cam of radius R, the dis¬ 
placement of the follower is, since R3 = R — i?i, 

5 - JS3(1 - cos <t>).(177) 
Hence 

ds 
F = -r = uRz sin </>.(178) 

and 

co2/?3 cos <f> (179) 

From equation (173) for any displacement $ of the cam between 
(/3 — 5) = 60 degrees and zero while the follower is in contact with 
the nose of the cam of radius R* = Ri, the displacement of the follower 

is 

Hence, 

and 

s ® R$ cos 6 .(180) 

els 
V = — = — toi?3 sin d.(181) 

A — — = — w2Rs cos 9 .... (182) 



180 CAMS 

It is evident by inspection of the constant-breadth cam shown in 
Fig. 223 that B = Ra + Ri, that h = if3 — R\, and that R = Rz + R\ 

a 
= 2R3 sin from which 

* . a R:i + Ri h + 2 ft, 
sin - =-=-- 

2 2 R3 2 h + 2Ri 
and 

Rs = 

R1 

. . (183) 

. . (184) 

2^-1 

The required angle a may therefore be computed for any given values 
of the minimum radius Ri of the cam and the total displacement h of 

the follower. Having Ri and a, the radius R% may be computed. For 
a = 60°, R\ must be zero when h = ife; for a = 180°, Rs must be 
equal to Ri and h = 0. Obviously there is a dwell of the follower at 
either end of its stroke while the cam rotates through an angle a, and 

the follower travels its total displacement in either direction while the 
cam rotates through an angle 0 = (180 — a). For any displacement <f> 

a 
of the cam between zero and 5 = 90 — - while the follower is in contact 

4U 

with the flank of the cam of radius R, equations (177), (178) and (179) 
apply. From equation (173) for any displacement 0 of the cam between 

(p — 6) = — 90 + and zero while the follower is in contact with 

the sharp nose of the cam of radius R± = 0, the displacement of the 

follower is 
s = cos 6 — Ri (185) 
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Hence 

V - T = - a>R3 sin 9.(186) 
at 

and 
dV 

A - — = - o>2Rz cos 6 .(187) 
dlj 

In Fig. 224 is illustrated a circular arc cam operating an oscillating 
flat-faced follower. The cam outline is a complete circle of radius R 
whose center E is a distance CE from the center of rotation C of the 
cam. Such a cam is known as an eccentric. As the cam rotates, its 
center E describes a circle, and the 
center line of the follower moves from 
a position of tangency at E to the posi¬ 
tion at F. It is to be noted that the 
follower moves downward through the 
angle S while the cam rotates through 
an angle a — (180 — 0), and moves 

upward through the angle 6 while the 
cam rotates through the angle (3 = 
(180 + 0). It is this difference between a and p that makes difficult 
the design of positive return single-disk cams to operate oscillating 
followers. For any given distance between the centers C and 0 and 
desired oscillation 6, the eccentric throw CE must be 

CE = (CO) sin \ .(188) 

106. Positive Return Double-Disk Cams. As before mentioned, 
it is necessary for positive return single-disk cams to have the return 
motion of the follower the same but opposed to that of the outward 
motion. By using two disk cams, the return motion and the outward 
motion may be different and separately prescribed. A positive return 
double-disk cam operating an oscillating roller yoke follower is shown 
in Fig. 225. The two cams arc mounted side by side on the same shaft, 
and the centers of the follower rollers are maintained a constant distance 

apart equal to that between the centers 0\ and O2 by the connecting-rod 
B. The cam whose* outline is shown solid drives the follower to the 
right, and the follower is driven to the left by the cam whose outline is 
shown dotted. The displacement scales DS and D1S1 of the centers 

of the follower rollers are identical, except for numbering, and are in 
accordance with the displacement graph shown in Fig. 171, motion to 
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the right being interrupted and occupying 10 time periods while motion 
to the left is quite different and occupies only 4 time periods. The 
displacement scale DS being based on 16 equal time intervals, 16 cor¬ 
responding radial lines equally spaced are drawn through the cam shaft 
center. As the usual expedient of rotating the follower will be employed, 
these radial lines are numbered to correspond to the numbering of 
scale DS, but in a direction counter to that of the rotation of the cam. 
Having numbered DS and the radial lines, it remains to number the 
displacement scale DiSi. The initial position 0 of the follower roller 

center D corresponds to the radial line O', while the initial position 
of the follower roller center D\ corresponds to the radial position 8' 
and is therefore numbered 8\, the remaining points on the scale being 

numbered to agree with the radial lines 10', 12', etc. The location of 
a pitch point for each cam will illustrate the method employed to 
determine the cam outlines. Point 2" is the proper offset distance 
from radial line 2' on an arc of radius 02, and the# corresponding point 

10\" for the return cam is on an arc of radius 010All the other pitch 
points were located in a similar manner, and the cam outlines drawn 

tangent to arcs of the roller radius struck from these pitch points as 

centers. 
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The outlines of positive return double-disk cams to operate roller 
or flat-faced yoke followers are determined in a manner similar to that 
just described. It should be noted that where a reciprocating roller 
yoke follower is used, the diameter of the cam for any given maximum 
pressure angle may be computed by the method of Art. 95, and the 
diameter approximated for oscillating roller yoke followers where the 
paths of the roller centers do not depart too widely from a radial line 

of the cams. 
107. Cylindrical Cams. In Fig. 226 is shown a cylindrical cam for 

operating a reciprocating roller follower parallel to the axis of rotation 
of the cam. To simplify the construction, a plain cylindrical roller was 

assumed for the follower. The grooved cam is shown in plan and 
elevation. To the right in Fig. 227 is shown a development of the 
outer surface of the cylinder, the horizontal base line BL being equal in 
length to the outer circumference of the cam. The displacement scale 
for the pitch point of the follower roller is in accordance with Fig. 171. 
Since this is based on 16 equal time intervals and the cam is assumed 
to rotate at a uniform rate, 16 elements of the cylinder are drawn 
equally spaced and perpendicular to BL. The center of the follower 
roller on the pitch curve for each interval is then easily located by 
projection as shown by 8" for the third interval for position 8 of the 
follower. Having located the points on the pitch curve DE} the devel¬ 
opment of the sides of the rolW groove are drawn tangent to arcs of 
the roller radius struck from centers on the pitch curve.* The devel¬ 
opments of the ridgeg to form the roller groove may be drawn in the 
same manner by striking arcs of a radius equal to the roller radius 
plus the desired thickness of the ridges. Having the development, 



184 CAMS 

the elevation of the cam, Fig. 226, may be drawn by projecting from 

the plan and from Fig. 227 as shown for position 3. 
Sheet metal templates of the form shown in the development, 

Fig. 227, may be made, wrapped around the cam blank, and used to 
scribe on the surface of the blank the outlines of the sides of the roller 
groove. It may be noted that a translation cam, if it were possible 
to reciprocate it at a uniform velocity, would give the same motion to 
a reciprocating roller follower as the cylindrical cam of Fig. 226. 

As mentioned in Art. 88, oscillating roller followers as shown in Fig. 
162 may be used with grooved cylindrical cams provided the path of 
the center of the roller does not depart too widely from a line parallel 
to the axis of the cam. For cylindrical cams of comparatively small 
diameters, the follower roller should be in the form of the frustum of a 
cone whose apex is in the axis of the cam. By this expedient the bottom 
and top of the cam groove will tend to rotate the follower roller at the 
same speed. Where the roller is made of plain cylindrical form, there is 
more or less slipping of the roller in the groove by reason of the fact 
that the bottom of the groove travels at a lower velocity than the top. 

It should be noted that the diameter of a cylindrical cam having a 
roller follower moving in a line parallel to the axis of the cam may be 
computed for any given maximum pressure angle by the method outlined 
in Art. 95, and by the same method the diameter may be approximated 
for a cam with an oscillating roller follower where the path of the roller 
center does not depart too widely from a line parallel to the axis of the 
cam. 

108. Inverse Cam Mechanisms. As before stated, an inverse cam 
mechanism is one where the element corresponding to the follower of a 
cam mechanism is used as the driver. In such mechanisms, it is the 
given motion of the follower, or driver, and the prescribed motion 
of the cam that fix the outline or shape of the cam. Inverse cam mech¬ 
anisms find a much narrower field of application than cam mechanisms. 

In Fig. 228 is shown an inverse cam mechanism in which an oscil¬ 
lating arm fitted with a roller is to drive a translation cam up and down 
in accordance with the displacement scale DS. The translation cam is 
to move vertically upward \\ in. with uniformly accelerated and re¬ 
tarded motion during 4 and 2 time periods, respectively, and therefore 
vertically downward with uniformly accelerated and retarded motion 
during 2 and 4 time periods, respectively. By a mechanism not shown, 
the center of the driving roller is moved from a position on one side of 
the vertical center line to a position an equal distance on the other side, 
the horizontal travel 0f6' of the roller center to be simple harmonic. 
Since the total displacement of the cam has been based on 6 time periods, 
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the semicircle on 0'6' as a diameter is»divided by radial lines into 6 equal 

spaces, and the positions O', 2', 4', etc., of the roller center determined 

by projection. With the cam stationary, 1 hi' position of the roller, 

say for position //, is at 4"> a distance M vertically below 4' ■ All the 

other positions of the roller center were found in a similar manner. 

With these positions as centers, circles of a radius equal to that of the 

roller were drawn, and the outlines of the two sides of the slot in the 

translation cam drawn tangent to them. Since with the cam stationary, 

fig aea 

the frame and center P would move downward as the roller follower * 
swings to the right, another method is suggested for determining each 

position of the roller center. For position 4, the center P would be at Pi, 
a distance M below the position shown. Evidently the corresponding 

position 4" of the roller center is where an arc of radius PO' with Pi as 

a center intersects the vertical through 4'• As previously explained, 

this latter method is known as the locus method, and the former as the 

offset method. 



CHAPTER VI 

ROLLING CURVES AND FRICTION GEARING 

109. Requirements for Pure Rolling. For pure rolling action 
between two curves in direct contact, it was shown in Art. 48 that 
the point of contact, and therefore the contact radii, must lie in the line 
joining the centers of rotation. Since the contact radii must lie in the 
line of centers, it follows that their sum must equal the distance between 
the centers and that they must make equal angles with the common 
tangent to the rolling curves. Also, since in pure rolling action there 
must be entire absence of slipping, the arcs making contact in any 
interval of time must be of the same length. 

For pure rolling action it was also shown in Arts. 48 and 49 that 
the angular velocity ratio at any instant is inversely as the contact 
radii or inversely as the perpendiculars let fall from the centers of 
rotation to the common tangent or to the common normal, or inversely 
as the segments into which the line of centers is cut by the common 
normal. Hence, for constant angular velocity ratio combined with 
pure rolling, the point of contact must be a fixed point in the line of 
centers, which means that the contact radii of the curves in contact 
must be of constant length and therefore that the curves must be circles. 

For positive driving, it was shown in Art. 50 that the normal com¬ 
ponent of the motion of the contact point of the driver must be directed 
toward the follower, and that the common normal must not pass through 
the center of rotation of either driver or follower. It is to be noted 
that while pairs of circular arcs satisfy the conditions for pure rolling 
they do not meet the requirements for positive driving. There are* 
however, many pairs of curves that meet the requirements for both 
pure rolling and positive driving. Two of these curves will be treated 
in detail, and a general method will be developed for deriving a curve 
to roll with a given curve about centers a fixed distance apart. 

110. Rolling Circles. The pairs of circles shown in contact in Figs. 
229 and 230 fulfill the requirements for pure rolling action in that the 
point of contact P remains in the line of centers as action proceeds. 
Since, however, the common normal passes through the centers of 
rotation, the requirement for positive driving is not fulfilled. Assuming 

186 
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that each pair is independently turned or that the friction of contact is 
sufficient to give pure rolling action, the peripheral velocity Vx of circle 1 
will be the same as V2 of circle 2. If a>i is the angular velocity of 1 
and W2 is the angular velocity of 2, then 

But 

Hence 

V\ — o>i Ri and V2 = oi2R2 

Vt = V2 

m Ri = «2tf2 or — = ~ .... (189) 
C02 it 1 

that is, the angular velocity ratio of 1 to 2 is inversely as the contact 
radii R\ and R2. Since the contact radii do not vary in length, the 

angular velocity ratio is constant. This is true only for rolling circles 
or circular arcs. For other rolling curves where the contact radii vary 

in length from instant to instant, the angular velocity ratio varies with 
the change in the length of the contact radii. 

In Fig. 229, where the fixed centers 0\ and O2 are on opposite sides 
of the point of contact P, clockwise or counter-clockwise rotation of 
one circle will cause the other circle to rotate in the reverse direction. 
In Fig. 230, where the fixed centers Oi and O2 are on the same side of 
the point of contact P, rotation of one of the circles in either direction 
causes the other to rotate in the same direction. These directional 
relations must be considered in solving for either Ri or i?2 in terms of 

the angular velocity ratio — and the distance 0i02 between centers. 
«2 
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For Fig. 229, the contact radius Ri is easily found in terms of — and 
C02 

O1O2 by adding unity to each side of equation (189). Thus, 

ft R2 + Pi __ O1O2 
Ttx + “ rT~ ~ Ri 

or 

R1 
0\02 

—+ 1 
C02 

For Fig. 230, R1 is obtained by subtracting unity from each side of 
equation (189). Thus, 

or 

R2 R2-R\ O1O2 
Ri Ri Ri 

Ri 
0\02 

0)2 

111. Rolling Ellipses. It can be shown that two equal ellipses are 
of such form as to roll together without slipping if the centers of rotation 
are taken a distance apart equal to the common major axis of the 
ellipses, and the center of rotation of each ellipse is located at one of 

its foci. 
Ellipses 1 and 2 in Fig. 231 are equal, since their minor axes C\Di 

and C2D2 and their major axes P\B\ and P2B2 are equal. As will be 
recalled, the sum of the distances from the foci of an ellipse to any 
point on its periphery is equal to the major axis of the ellipse. Hence 
the foci F\ and 0\ of ellipse 1 are at a distance equal to one-half the 
major axis from the ends C1 and Dj of the minor axis. The foci of an 
ellipse are therefore located as soon as the minor and major axes are 
fixed. In accordance with the same property, having located the foci, 

the sum of the radii vectors F1S1 and O1S1 for any point Si on the 
periphery is equal to the major axis PijBi. Another property of the 
ellipse is that the tangent T1S1 at any point such as Si makes the same 
angle 6 with the radii vectors F1S1 and O1S1, By the aid of these two 

properties it can be shown that the two equal ellipses 1 and 2 of Fig. 
231, whose centers of rotation 0\ and O2 are a distance apart equal to 
the common major axis, are of such form as to roll together without 
slipping. In Fig. 231 the two equal ellipses have been placed in contact 
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with the two major axes in the same horizontal line, making the distance 

between the fixed centers O1O2 = 0\Pi + O2P2 = PiB\. Thus, for 
the instant, the conditions for pure rolling are satisfied. Since at the 

instant the common normal through the point of contact passes through 
the centers 0\ and O2, the requirement for positive driving is absent 
and must be assumed. If the arcs P1S1 and P2S2 are taken equal, 
Si and S2 become similar points on equal ellipses, and therefore have 

equal radii vectors making the same angle with the tangents T\Si 
and T2S2, or 

O2S2 == FiSl} F2S2 = OiSiy and 62 ^ 0i 
But 

O2S2 F2S2 — B2P2 — O1O2 

Hence, by substitution, 

O2S2 “f" Oi$i = O1O2 

Therefore, if the driver 1 is rotated clockwise through an angle P\0\Si 
and the driven ellipse 2 is rotated counter-clockwise through an angle 

P2O2S2, it follows that the radii vectors 0\S\ and O2S2 will coincide 

with the line of centers O1O2 as shown in Fig. 232, that points Si and S2 
will become coincident points in the line of centers, and that the tangents 
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TjSi and T2S2 will coincide, since they pass through coincident points 

at the same angle with the contact radii or the line of centers. It has 
therefore been shown that, for equal arcs, contact will be maintained 
in the line of centers with the contact radii making equal angles with 
the common tangent, thus proving that pure rolling action between two 
equal ellipses is possible. 

Since for the phase shown in Fig. 231 the common normal passes 
through the fixed centers, one ellipse will not positively drive the other. 
This is also true for the phase 180 degrees removed when B\ and Bo are 
the coincident points of contact. If for these two critical phases the 
friction of contact is sufficient to prevent slipping, one ellipse would 
positively drive the other through 180 degrees when positive driving 
would cease. For instance, if 1 is rotated clockwise, it will positively 
drive 2 counter-clockwise through 180 degrees, after which the trans¬ 
mission of motion would cease, as the periphery of 1 would be moving 
away from that of 2. Hence, if the rotation of one ellipse is to rotate the 
other continuously, something must be done to secure transmission 
through the second 180 degrees and to overcome the failure of positive 
driving at the two critical phases. It is to be noted by reference to 
Figs. 231 and 232 that the distance between the free foci F1 and F2 

remains constant and equal to the common major axis, or to O1O2, 
the distance between centers, as one ellipse rolls on the other. Hence 
the equivalent mechanism shown in Fig. 233 gives the same motion to 
F1 and F> and therefore to link 3 as the rolling ellipses give to the free 
foci F\ and F2. The rolling ellipses therefore correspond to the centrodes 
of such a system of links as shown in Fig. 233. If the free foci in Fig. 232 
are connected by a link, rotation of one ellipse would transmit motion 
to the other continuously except at the two critical phases when the 
added link would lie in the line of centers. To insure positive driving 
through these two dead center positions, mating teeth of proper outline 
may be formed at the ends of the ellipses as shown in Fig. 234. With 
these additions, motion equivalent to the rolling of the ellipses could 
be transmitted continuously from one shaft to the other. It is to be 
noted, however, that the addition of the link would make it necessary 
to mount the ellipses on the ends of the shafts. By using full elliptical 
gears, as shown in Fig. 235, the link may be omitted and the gears placed 
anywhere along the shafts. In general such gears are used wherever 
it is desired to transmit motion equivalent to the rolling of equal ellipses 
from one shaft to another. They have been applied to the quick return 
mechanisms of shaping machines to secure a more uniform velocity on 
the cutting stroke than is possible by the use of circular gears. They 
have also been applied to slide-valve mechanisms to give a different 
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point of cut-off on one stroke than on the other. The method of properly 
forming the teeth on such gears will be discussed in a later chapter. 

In the transmission of motion by pure rolling, as demonstrated in 
Art. 48, the angular velocity ratio at any instant is inversely as the 
contact radii. If, in Fig. 231, on represents the angular velocity of 

ellipse 1 at the instant and to2 that of ellipse 2, then the angular velocity 
ratio is a maximum for the phase shown, and is equal to 

on _ O2P2 _ O1B1 

0)2 OxPi OlPl 
(190) 

Obviously, as action continues this ratio grows smaller and smaller, 
reaching a minimum value when B\ and B2 become the coincident 
contact points, the minimum value being 

* on O2B2 O1P1 

o>2 O1B1 0\B\ 
(191) 

The maximum and minimum values of the angular velocity ratio show 
that one is the reciprocal of the other. Hence, if one is fixed, the other 
follows. By fixing either ratio, the minor and major axes for two equal 

ellipses can be determined for any given distance between centers. As 
an example> assume that O1O2 = 12 in. and that the maximum value 
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of the angular velocity ratio — is to be 2. From (191) it follows that 
C02 

the minimum value of the angular velocity ratio is §, and from (190) 

it follows that 

y'4r = 2 or OiBi = 20iPi 
Oil 1 

Since the major axis is equal to the distance between centers, 

Pji?! = O1O2 - OiPi + 0\B\ = OiPi + 20iPi = 12 in. 

From which, 

01P1 = V- = 4 in. 

and 
OiBi = 20iPi = 8 in. 

The distance between the foci is 

OiFi - OiBi - OiPi = 8 - 4 = 4 in. 

Having the major axis and the distance between the foci, the ellipses 

may be constructed. Remembering that C\F\ = the length of 

one-half the minor axis may 
be computed if desired. The 
computed, value in this instance 
is 5.65 in. 

Sectors of ellipses can be 
used as driver and follower to 

transmit a reciprocating or 
oscillating motion from one 
shaft to another. In this case 

the distance between the shaft 
centers and the maximum and 

FI G 236 minimum angular velocity ratios 
for a given angular displacement 

of the driver may be assumed, the angular displacement of the follower 
being fixed by that assumed for the driver. Since only equal ellipses 
can roll together the sectors will be portions of equal ellipses. As an 

example, assume, for Fig. 236, that the distance O1O2 between the 
centers is 3 in., that the maximum and minimum values of the angular 

velocity ratio — are to be -V* and respectively, and that a is to be 
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75 degrees. In accordance with the angular velocity ratios, 

02P 11 , O2B2 7 
cw'T and S’j 

The length of 0\P is easily obtained by adding unity to each side of the 
first equation. Thus, 

11 , 02P , t 16 02P + 0,P O1O2 

T + 1’oT'+1 “r w 
whence, 

OiP = MO1O2) = || in. and 02P = O1O2 - 0XP = 2^ in. 

By a similar treatment of the second equation, 

O1P1 = lfg in. and O2B2 — 1i56 in. 

Having a and the lengths of the contact radii, it remains to locate 
the foci of the ellipses before the curves can be drawn. Through 0\ 
draw O1P1 making an angle a = 75° with 0i02. Since the sum of the 
radii vectors for any point on the periphery of the ellipses must be 
equal to the common major axis, or distance between centers, the 
focus F\ must be a distance from P equal to P02 and a distance from 
Bi equal to 02P2. Hence Fi is the intersection of two arcs drawn with 
P and Pi as centers and P02 and O2P2 as the respective radii. Since 
O2P2 is equal to 0\F\} the focus P2 is located as the intersection of two 
arcs drawn with 02 and P as centers and O1F1 and POi as the respective 
radii. Having the foci and the major axis of the equal ellipses, the curves 
may be constructed. Such sectors of equal ellipses may be used as 
rolling curves, or as the pitch curves for segmental gears to transmit 
the same motion. 

Because of its bearing on lobed wheels, it should be noted that if 
the maximum and minimum angular velocity ratios are reciprocal, the 
rolling sectors become equal sectors of equal ellipses, and the angular 
displacements of driver and follower become equal. 

112. Rolling Logarithmic Spirals. The polar equation of the loga¬ 
rithmic spiral, Fig. 237, is 

ad = log, R .(192) 

in which R is the radius vector, 6 the angle of rotation of R, and a the 
coefficient of angularity of the spiral. It can be shown that for any 
given value of a the angle between the tangent and radius vector is the 
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same for all points on the curve. Differentiating (192) with respect 

to R gives 
dd log* e 1 Rdd _ 1 

adR = ~R~ = R °r Hi = a ‘ ' ‘ 

But 
RdO 1 

tan 0 = —- or tan 0 = - . . . . (194) 
dR a 

(193) 

Since for any regular logarithmic spiral a is constant, it follows that 
the angle 0 made by the tangent with the radius vector is the same 

for all points on the curve. For this reason the curve is often called 
an equiangular spiral. 

in the lengths of the radii vectors is constant. Referring again to 

Fig. 237, it is evident that 

' (ds)2 = (Rdd)2 + (dR)2 

dR 
But from (193) Rdd = —, hence 

a 

(ds)2 =(~)2+ (dR)2 = (dR)2(~ + l) 

or * 
11 -L (i.2 

ds = dR\~~?— .*. . . (195) 
* a1 

Integrating (195) gives _ 

• -(ft - R2 (196) 
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Since for similar spirals a is constant, it is therefore proved that for 
ai#s of equal length the difference in the lengths of the radii vectors 
is constant. Thus, for the pairs of similar spirals shown ih Figs. 238 and 

239, if arcs PB\ and PB2 are equal, then O2P — O2P2 = 0\B\ — 0\P. 
Hence, for any pair of similar logarithmic spirals rotating about their 
foci as fixed centers, it follows that the point of contact will lie on the 
line of centers and, consequently, that the curves will roll together 
without slipping. In Fig. 238, where the foci or fixed centers 0\ and O2 

are on opposite sides of the point of contact P} the spirals rotate in 
opposite directions, while in Fig. 239, where Oy and O2 are on the same 
side of P, they rotate in the same direction. 

A single pair of logarithmic spirals cannot transmit motion con¬ 
tinuously in one direction, but a single pair of sectors of similar spirals 
can be used as rolling curves or as the 
pitch curves of segmental gears to 
transmit oscillating motion from one 
shaft to another. For a single pair of 
such sectors, the maximum and mini¬ 
mum angular velocity ratios for a 
given distance between centers and a 
given angular displacement of one of 
the sectors may be assumed as for 
sectors of equal ellipses. As an example, 
assume for Fig. 240 that the distance 
O1O2 between centers is to be 3 in., Q 
that 1 the driver is to rotate through £40 

60 degrees, and that the maximum and 
minimum angular velocity ratios are to be f and respectively. Since 
these ratios are inversely as the contact radii and since the center 
distance O1O2 — 3 in., the necessary lengths of the radii vectors are, 

OiP = 1 in., 02P = 2 in., OyBy = 2} in., and O2B2 = f in. 

Having the radii vectors for the extreme positions, it is necessary to 
determine the angular displacement 62 of the driven sector before the 
spiral curves can be constructed. Applying equation (192) to spiral 1 

gives 

ad" — logt. O1B1 = log, 2.25 

and 

a6' » log* 0\P ~ log* 1.0 



196 ROLLING CURVES AND FRICTION GEARING 

Subtracting the second from the first, remembering that 0" — 0' = 0i 

607T 7T 
= = - radians, gives 

180 3 ’ 6 

a 

Hence 

7r\ 2.25 
= log,2.25 - log, 1.0 = log,— = 0.8109 

3X0.8109 
a —- = 0.774 

From equation (194) tan <f> = - = 1.2914. Hence </>, the angle between 
a 

the tangents and radii vectors, is 52° 10' 30". Since the value of a 
is known, 02 may be computed by applying equation (192) to sector 2. 
Hence, 

e2 = (0" - 0') = 

log 
o2P 

a 

, 8 
°gf 3 

(h774 
1.2672 - 

or 

62 
1.2672 X 180 

7r 
72.576° 72° 34' 34" 

Having 0i and 62 and the corresponding radii vectors, the curves are 
readily drawn. Solving equation (192) for the length R of the radius 
vector bisecting the angle between two known radii vectors R' and R" 

in terms of each known radius vector, gives R = V/2' X R". Hence, 
the length of O1C1 bisecting Q\ is 

O1C1 =\/(OiP)(OiB1) = Vl.O x 2.25 = 1.5 in. 

and the length O2C2 bisecting d2 is 

02c2 = V(ChB2) (o7P) = x 2 = 1.2247 in. 

Points between P and Cj, C2 and P2, etc., may be found in a similar 
manner. 

Because of its bearing on lobed wheels, it should be noted that if 
the maximum and minimum angular velocity ratios are reciprocal, the 
rolling sectors become equal sectors of similar spirals, and the angular 
displacements of driver and follower become equal. 

113. General Case of Rolling Curves. It has been shown for 
rolling sectors of similar spirals and equal ellipses that, where the 
terminal angular velocity ratios are independently chosen for a given 
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distance between centers, the angular displacement of the follower is 
fixed by that assumed for the driver. This is true for all rolling sectors 
whether or not the nature of the rolling curves is known. 

A general method will now be developed for constructing a curve 
to roll upon another curve when the distance between centers and the 
terminal angular velocity ratios are known for a given angular dis¬ 
placement of the driver. If only the terminal angular velocity ratios 
are known, then the curve of the driver must be given from which to 
construct the curve of the follower; if in addition to the terminal angular 
velocity ratios, intermediate ratios are known for definite divisions of 
the total angular displacement of the driver, then both curves may be 
constructed. That is to say, if for a given total angular displacement of 

F/G.24/ FIG. 242 

the driver the terminal contact radii and those for intermediate angular 
displacements are known, the curves of the driver and follower may 
be constructed. This most general case is shown in Fig. 241, where 
the rolling curves of the driver 1 and the follower 2 and the total dis¬ 

placement 82 of the follower are to be determined for known values of 
O1O2 and 0i and known locations of the contact points P, Pi, P2, etc., 
on the line of centers corresponding to the divisions 0, 1, 2, etc., of the 
angular displacement of the driver. Hence the given angular velocity 

O2P O2P1 O2P0 
ratios are —-, 77-77, 77-77, etc.; and the radii vectors OiP, 0\B\y 0\B2, 

0\P 0\P\ OiP2 
etc., of the driver for positions 0, 1, 2, etc., are respectively equal to 

OiP, 0\P\, O1P2, etc. The curve of the driver is obtained by passing 
a smooth curve through the points P, B\, B2, etc. The radius vector 

02P'i must be equal to 02Pi, and the arc distance from P to B\ must 
be the same as that from P to Pi. Hence the intersection of an arc 
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of radius PB\ having its center at P with an arc of radius O2P1 having 
its center at O2 determines B\ and the radius vector 02B'i. So also 
Br2 is the intersection of #two arcs of radii B1B2 and O2P2 with centers 
at B'\ and O2, respectively. Points Bf3, B'4, etc., are successively 
determined in a similar manner, and the curve of the follower obtained 
by drawing a smooth curve through the points. How perfectly this 
curve will roll on the driver depends on the number of points taken 
on the curve of the driver and the judgment displayed in drawing a 
smooth curve through the corresponding points on the follower. If 
the intervals between the points on the curve of the driver are taken 
too great, errors are introduced on account of the difficulty of obtaining 
arcs to correspond with the chords used; while, if the intervals are 
taken too small, errors accumulate through the difficulty of accurately 
carrying out the graphical work. 

In Fig. 242 a definite form of curve, a straight line, has been chosen 
for the driver, and the follower curve PB^B'+B'c, to roll with it has been 
determined for the angular positions 0, I, 2, 3, etc., of the driver in a 
manner similar to that outlined above. Thus Bf2 is at the intersection 
of two arcs of radii O2P2 and B\B2 with centers at O2 and B\} respec¬ 
tively. As in the previous example, the accuracy of form attained for 
the follower will depend upon selecting points on the curve of the driver 
that are not too far apart or too close together. 

For rolling sectors where the terminal angular velocity ratios are 
independently chosen, it has been shown in this and the previous 
articles that the angular displacement of the follower for a given angular 
displacement of the driver cannot be predicted. It therefore follows 
that the* general method just outlined for the construction of rolling 
curves cannot be applied where it is desired to control the angular 
displacement of the follower for a given angular displacement of the 
driver. Hence, without modification, the method cannot be applied 
to the construction of lobed wheels where it is required that the follower 
will make one revolution or some exact multiple or exact divisor of a 
revolution for one revolution of the driver. 

Where it is desired to fix the total angular displacement of the 
follower for a given total displacement of the driver, the general method 
shown in Figs. 243 and 244 may be used. In Fig. 243, sector 1 in rotating 
through 180 degrees is to rotate sector 2 through 180 degrees. For 
convenience the driver was assumed to rotate at a jmiform rate, and 
hence the divisions 1, 2, 3, etc., of its total angular displacement were 
taken equal A semicircle of any convenient radius 0\C is therefore 
divided into equal displacement arcs CE. The corresponding angular 
displacements desired for the follower are V, 2', S', etc. For each one 
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of these displacements, arcs /<’//, KL, etc., were drawn equal to CE. 
How corresponding points such as B2 and B'2 were found for each 
sector is shown in Fig. 244. Obviously the angular velocity ratio 

desired for the second interval is — — — 
U2 62 

OiG . 
—, since (02G)9'2 

= (OiD)62. To obtain B2 and B'2, draw any two lines from O2 and 0\ 
intersecting at some convenient point M. From S and N draw lines 
parallel, respectively, to O2M and 0\M, intersecting at Q. A line 

through M and Q will divide O1O2 in the desired ratio since 0\RM 
and NRQ are similar triangles, likewise O2RM and SRQ. Hence the 
intersection of an arc of radius 0\R with the mid radial line of dis¬ 
placement 2 determines #2, the cor¬ 
responding point B'2 being similarly 
located. Applying this same process 
to the other corresponding divisions 
locates the points B\ and B'\, B3 and 
B'3, etc., on the driver and follower, 
respectively, through which smooth 
curves may be drawn. Since this 
general method of constructing roll¬ 
ing curves enables the corresponding 
angles of rotation of driver and 
follower to be independently chosen, 
it is a method suitable to the con¬ 
struction of irregular uni- or multi- 
lobed wheels. A brief treatment of regular lobed wheels, based on 
curves of known characteristics, will now be given. 

114. Lobed Wheels. It has been shown that a pair of equal ellipses 
can rotate continuously with rolling contact, and that the , angular 

velocity ratio passes through one maximum and one minimum value 
for Qach revolution. A pair of equal ellipses each rotating about one 
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of its foci, Fig. 232, is one of the most familiar examples of a pair of 
single-lobed wheels. Where in a complete rotation it is desired to have 
the value of the angular velocity ratio pass through several maxima 

and minima, multi-lobed wheels are used. 
It was pointed out in Arts. Ill and 112 that sectors of equal ellipses 

and similar logarithmic spirals will each rotate through the same angle 
if the maximum and minimum angular velocity ratios are reciprocal. 
Hence each one of a pair of uni-lobed wheels may be made up of a pair of 
180-degree sectors of equal ellipses or similar logarithmic spirals, and each 
one of a pair of bi-lobed wheels may be made up of two pairs of 90-degree 
sectors, and each one of a pair of tri-lobed wheels may be made up of three 

FIG. 245 

pairs of 60-degree sectors, etc. In Fig. 245 is shown a pair of uni-lobed 
wheels each composed of a pair of 180-degree sectors of similar logarithmic 
spirals; in Fig. 246 a pair of bi-lobed wheels each composed of two 
pairs of 90-degree sectors of equal ellipses, and in Fig. 247 a pair of 
tri-lobed wheels each composed of three pairs of 60-degree sectors of 
similar spirals. Such wheels will, of course, work together only in 
similar and equal pairs, the follower making one revolution to one of 

the driver. The number of changes in the angular velocity ratio from 
a maximum to a minimum or from a minimum to a maximum will 
correspond during each revolution to the number of lobes on each wheel. 

The lobes of lobed wheels are not necessarily symmetrical. In 
Fig. 248 is shown a pair of unsymmetrical, uni-lobed wheels each com¬ 
posed of a 270-degree and a 90-degree sector of similar logarithmic 
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spirals. This is possil.h, sines the maximum minimum 

vetaty rat,os are Taproot For the s.,„,e reason asymmetrical 

F/G.247 

multi-lobed wheels composed of sectors of similar spirals may be easily 

constructed. 
It was shown for similar logarithmic spirals in Art. 112 that arcs 

between any two radii having the same difference in length are equal. 

Hence lobed wheels having an unequal number of lobes may be easily 
derived from similar spirals. A series of three such wheels that will 
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act together continuously are shown in Fig. 249, the difference 
between the maximum and minimum radius of each wheel being the 

same. 
Lobed wheels having an unequal number of lobee may be derived 

from equal rolling ellipses. This is effected by a process known as the 
contraction or expansion of angles, illustrated in Figs. 250 and 251. The 
pair of rolling sectors shown in Fig. 250 make contact on the line of 
centers at P. As sector 1 rotates through the angle PO\Ci, sector 2 

rotates through the angle PO2C2, points Ch and C> becoming coincident 
points in the line of centers at C. If in Fig. 251 the corresponding 

F/G. 2S2 

radiants are made the same in length as those of Fig. 250, but each 
corresponding angle is reduced in exactly the same proportion, the 
sectors formed by passing smooth curves PB\C\ and PB2C2 through 
the points thus located will roll together with the same angular velocity,, 
ratio as the sectors in Fig. 250. This process has been applied in Fig. 
252 in constructing the two- and three-lobed wheels to roll together 
during continuous rotation. The wheels are based on the two equal 

ellipses PB\C\ and PP2C2. The bi-lobe is to make | of a revolution 
while the tri-lobe makes i of a revolution. Hence for the two equal 
arcs PBi and PB2, the angles PO\B\ and PO2B2 must be in the ratio 
of 3 to 2. If angle PO1B1 is taken 150 degrees and angle PO2P2, or 
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n is taken 100 decrees and the distance between centers 0,0, 
is taken 2^ mM then 

OiFi 
(O1O0) sin (d\ — do) 

sin 01 4- Bin 02 
(197) 

2.5 X 0.76G04 

0.50 + 0.98481 

Since the ellipses are equal, focus F> is likewise located, and the ellipses 
can be constructed and points B\ and Bz located. In deriving sector 
PO\D\ of the bi-lobe from sector POiBi and in deriving sector PO2D2 

of the tri-lobe from sector PO2B2 after the manner described above, 
angles PO\B\ and PO2B2 are reduced, respectively, to 90 and 60 degrees. 
For the center distance and angles chosen, the maximum and minimum 
angular velocity ratios are 

<hP 

OiP 
3.13 and 

0>lh 

Oi Th 
= 0.507 

To secure positive driving in all possible phases of action, lobed 
wheels are fitted with teeth, the rolling curves of the lobed wheels 
serving as pitch curves in forming the teeth. If the teeth are of proper 
form, the resulting toothed gears will act together to transmit motion 
exactly equivalent to the rolling of the curves of the lobed wheels. 

116. Rolling Surfaces. In the first chapter it was shown that the 
plane motion of any body may be completely represented by the motion 
of a plane figure. Hence a plane figure rotating about a fixed center 
may represent a body rotating about an axis through the fixed center 
perpendicular to the plane of motion. It therefore follows that rolling 
curves in the same plane may represent rolling surfaces rotating about 
parallel axes. Any of the rolling curves treated in the preceding articles 
of this chapter may be and were regarded as rolling surfaces rotating 
about parallel axes, the surfaces being generated by a straight line 
moving along the rolling curves while remaining parallel to the axes of 
rotation. Hence rolling circles become rolling right circular cylinders, 
and rolling curves become rolling cylinders in a general sense. As before 
indicated, such rolling surfaces rotating about parallel axes are used as 
the pitch surfaces of a class of toothed gears known as spur gears. 

When the axes of rotation, instead of being parallel, are at an angle 
and intersect, the rolling surfaces become tangent cones or frusta having 
a common contact element and a common apex at the intersection of 
the axes. While rolling cones are not necessarily right circular cones, 
the use of other than right circular cones is so rare that only such cones 
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will be treated. Toothed gears whose pitch surfaces are rolling cones 

are known as bevel gears. 
Axes of rotation that are at an angle but do not intersect may be 

connected by two members which will roll together making contact 
along a common rectilinear element. The rolling surfaces are hyperbo¬ 
loids of revolution generated by a straight line rotating about each axis, 
the generating line neither intersecting nor paralleling either axis. While 
in a sense the action between such surfaces departs somewhat from pure 
rolling, the manner of departure is not such as to affect the angular 
velocity ratio or to prevent the surfaces from being used as the pitch 
surfaces of toothed gears. Such gears are known as hyperboloidal gears. 
If the pitch surfaces are right circular cylinders with their axes at an 
angle but not intersecting, the gears are known as helical gears. 

116. Rolling Cylinders. It has just been shown that the motion of 
rolling surfaces having parallel axes may be completely represented by 
rolling curves rotating in the same plane about fixed centers. As for 
the corresponding rolling curves, the angular velocity ratio at any in¬ 
stant for such rolling surfaces is inversely as the contact radii. Since 

for rolling right circular cylinders the lengths of the contact radii do 
not change as action proceeds, the angular velocity ratio is constant, as 
explained in Art. 110, for rolling circles. Hence for rolling right circular 

cylinders with axes parallel, 

U?l R'2 

032 R1 

The angular velocities may be expressed in degrees, radians, or revo¬ 
lutions per minute or per second. For any given distance between 
centers, R\ may easily be obtained for any given angular velocity ratio 
by adding or subtracting unity from each member of the above equa¬ 
tion and solving for Ri in terms of the distance between centers and 
the angular velocity ratio. If the axes of rotation are on opposite sides 
of the line of contact, unity is added, and is subtracted if the axes are 
on the same side of the line of contact. As explained in Arts. 110 and 
112, the location of the axes with respect to the line of contact will 

depend upon whether the rolling cylinders are to rotate in the opposite 
or in the same direction. 

117. Rolling Cones. Since, as before explained, rolling cones other 
than right circular cones are so rarely used, only right circular cones 
will be treated. In Fig. 253 are shown two cylinders combined with 
two cones. Since each cylinder has a base in common with the base 
of its cone, each cylinder and cone have a common axis. If the cones 
are to roll together they must be of the same slant height. As shown 
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in Fig. 253, the cylinders are in contact with their axes parallel. Hence 
the bases of the cones have a common tangent through P perpendicular 
to the plane of the axes. If the axes BB and CC are rotated in their 
common plane about the tangent through P, the apices of the cones, since 
the slant heights are the same, will meet at F, as shown in Fig. 254; 
the cones will be tangent along the line FP, and the base circles of the 
cones will still have a common tangent through P perpendicular to the 
plane of the axes. Hence the coincident contact points of the base 
circles at P will have equal velocities along the common tangent, and 
the base circles in the new positions can roll together as in the original 
positions. Since this is true of other transverse sections an equal 

distance from F along the contact element FP, the cones can have the 
same rolling action as the original cylinders. 

Rolling cones may be used to connect two shafts wdrich intersect 
at a given angle and which are to rotate at a given angular velocity 
ratio. Assume the shafts BB and CC in Fig. 255 to intersect at any 

coji 

given angle a, the angular velocity ratio — to be of any given value. 
0)c 

Lay off on BB and CC from D the respective lengths DE and DF in the 

0)B 
ratio of-Through F and E draw lines respectively parallel to BB 

Ctic 

and CC intersecting at G. It can be proved that a line through D and G 
is the contact element of the desired cones. From G drop perpen¬ 

diculars GH and GK on the axes BB and CC. Since FK is parallel to EG 
and EH is parallel to FG, the two right triangles FKG and EHG are 

similar. Hence, 
KG FG DE tin 
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that is, the contact radii of the cones are inversely as the desired angular 
velocities, and therefore the cones in rolling together will transmit 

motion from one shaft to the 

other at the desired ratio. 
M Any point such as P in DO 

may be chosen as the contact 
point of the base circles of the 
frusta to be used. 

In Fig. 255 a pair of cones 
was determined for a given 
angular velocity ratio between 
shafts BE and CC by making 
the construction in the acute 
angle a. This construction for 
the same conditions as in Fig. 
255 is repeated in (1) in Fig. 
256. In (2), to the right of 
(1), the same construction has 
been applied to the obtuse 
angle (180°— a), giving cones 

FIG. 255 whose base circles are in the 
same ratio as those in (1) but 

whose angles of slope are different. Only for a - 90° would the slope 
angles and the pairs of cones be alike. It is to be noted that the pairs 
of cones in (1) and (2) drive shafts CC in opposite directions. Whether 

F/G. 256 

the construction is to be applied to the acute or to the obtuse angle 
depends upon the relation of the shafts and the direction of rotation 
desired. The two pairs of cones in (3) and (4) for shafts CC below shaft 
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HU arc respectively identical with those in IV) tvM 

responding paw relates its shaft CC in the same direction. 

Where the two cones are, of about the same, size and the, direction of 

rotation and relation of the shafts are such as to make it necessary to 

use the obtuse angle, one frustum may cut through the shaft of the 

other as shown in Fig. 257, making it necessary to mount the frusta 

on the ends of the shafts. Again the angular velocity ratio and relation 
of the shafts may be such as to cause the contact element of the pair of 
frusta to be perpendicular to one of the shafts, as shown in Fig. 258, 
in which case one of the cones becomes a flat disk. Or, again, the 

FIG. 257 FIG. 259 

angular velocity ratio and relation of the shafts may l>e such as to cause 
the contact (dement to fall inside one of the frusta, as in Fig. 259. 

In the great majority of applications of rolling cones, the axes inter¬ 
sect at right angles. As before mentioned, the principal application 
of rolling conical surfaces is as the pitch surfaces of bevel gears. 

118. Rolling Hyperboloids. A straight line rotating about an 
axis which it does not intersect, and to which it is not parallel, generates 
a surface called an hyperboloid of revolution. The rotating straight 
line is the generatrix of the warped surface generated. It being a surface 
of revolution, the sections normal to the axis of the figure are circles, 
the smallest being known as the gorge circle. The intersection of an 
axial plane with the surface is an hyperbola, which hyperbola, if rotated 
about the axis, would generate the same surface as the revolving straight 
line. Because of this fact the figure is known as an l^perboloid of 

revolution. In Fig. 260 is shown a pair of these surfaces which are 
tangent to each other along the common element EE. If the axes BB 
and CC are fixed in the positions corresponding to this tangency, it is 
evident that the two surfaces will remain tangent as the two hyper¬ 
boloids rotate about their axes. 
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It can be shown that two hyperboloids of revolution can be tangent 
along an element only when the radii of the gorge circles are propor¬ 
tional to the tangents of the angles between the contact element and 

R\ tan <pj 
the respective axes, or only when — = -- 

R'2 tan <p2 
In Fig. 261 let BB and 

CC represent the fixed axes of rotation and EE the common element 
between two tangent hyperboloids. A plane through BB parallel to 

CC and a plane through CC perpendicular to the first plane will inter¬ 
sect along C'C'} giving the angle d between the axes BB and CC. Line 
B\C\, being the intersection of planes through BB and CC perpen¬ 
dicular to FBiK, is perpendicular to Loth axes and equal to the sum 

of the gorge circle radii. Since radii from B\ and C\ are perpendicular 
to the hyperboloids, the point of contact P is in C\B\y and the gorge 
circle radii B\P and C\P are perpendicular to the common tangent EE. 
Line WE' is the projection of EE on the base plane FB\K, and gives 
the angles 4>\ and <£2 made by the common element with the axes. A 
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plane through any point G normal to EE gives the lines FG and EG, 
which are normal to the: hyperboloids at point G on the line of contact. 
Evidently, 

tan 4n = G'F = GF = G'G _ PH, __ R{ 

tan <f>2 G'K GH G"Il PC\ lt2 ' ' 
• 

Any point in hyperboloid 1 must move in a plane perpendicular to 
its axis BB, and any point in hyperboloid 2 must move in a plane per¬ 
pendicular to its axis CC. Hence, in Fig. 260, the velocity of, point P 
as a point in 1 is V\, and as a point in 2 is V2. For proper action at all 
points along the contact element, the components of these velocities 
perpendicular to the contact element must be equal, that is, Vi cos <f>x 
must equal V2 cos 02. It therefore follows that the rate of sliding along 
the contact element will be the algebraic difference between V\ sin 0 1 

and V2 sin 02. Since these components can affect neither the motion 
nor the normal components, the angular velocity ratio of the rolling 
hyperboloids is not affected. It is this characteristic of the rolling 
action between the hyperboloids that was referred to in Art. 115. Hence 
the angular velocity ratio between hyperboloids 1 and 2 is 

V, 
Od] R1 Y\R2 
^ = “ T 

R2 

Substituting the value of 
R2 

Ri 
from (198) gives 

R‘2 COS 02 

R\ cos 
(199) 

oil tan 02 cos 02 sin 02 

a)2 tan 0i cos 0i sin 01 
(200) 

The method of constructing a pair of rolling hyperboloids to transmit 
motion between two shafts in parallel planes a fixed distance B\Cx 

O)] 
apart, and at an angle 6 for a given angular velocity ratio —, is shown 

in Fig. 260. Line CC oi the plan view in Fig. 260, and C'Cr in Fig. 261, 
represent the projection of shaft CC on a plane through BB parallel 
to CC, the shafts being at an angle 6 and the angular velocity ratio 

between hyperboloids 1 and 2 being — Lay off from P on BB and 
0)2 

CC in Fig. 260 tfie respective lengths PL and PM in the ratio of on 

to o)2. Lines through L and M parallel, respectively, to CC and BB 
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will intersect at G. A line through G and P determines the projection 

EE of the contact element. Through G draw a line perpendicular to 
EE intersecting BB and CC at F and //. Then the gorge circle radii 
of the hyperboloids are in the ratio of GF to GII, since PFGI1 of Fig. 

260 is similar to B\FG'K of Fig. 261, for which it was shown that —- 
* n-2 

G'F 
must equal —— for proper action, 

(r A 
Hence, as 

GF 

GII 
of Fig. 260 is equal to 

G'F 

G'K 
~ of Fig. 261, the respective gorge circle radii AT and ST of the re¬ 

quired hyperboloids are obtained by dividing the distance BiC 1 between 
shafts in the ratio of GF to GII. 

119. Friction Gearing. Pairs of surfaces that can rotate continu¬ 
ously in rolling contact have been treated in the preceding articles. 
Such surfaces divide themselves into two classes: those that roll together 
at a constant angular velocity ratio, and those that roll together at a 
varying angular velocity ratio. For this latter class of surfaces it has 
been pointed out that while one will positively drive the other between 
certain phases during a revolution, there are certain critical phases 
between which there is no positive driving and between which they 
could not drive by friction, since the driver tends to leave contact with 
the follower. Hence, such surfaces cannot be used in friction gearing 
where it is required that the surfaces remain in contact under pressure 
as action proceeds. The former class of surfaces which can roll together 
at a constant angular velocity ratio include all the surfaces of revo¬ 
lution. Since for such surfaces the common normals pass through 
the axes of rotation, there can be no positive driving. This very fact 

makes them suitable for friction gearing since pressure between them 
can be maintained even though slip occurs while they drive. Hence, 
rolling cylinders, cones, hyperboloids, and other surfaces of revolution 
may be used in friction gearing. Of these, cylinders and cones are 
most used, cylinders being used more frequently than cones. By the 
use of cylindrical friction wheels power may be transmitted between 
parallel shafts at practically a constant angular velocity ratio. For 
shafts that intersect at an angle, rolling cones are used. For shafts 
at an angle that do not intersect, an auxiliary shaft and a combination 

of cylinders and cones would in general be used in preference to rolling 
hyperboloids. 

In Fig. 262 are shown two cylinders on parallel shafts which are 
supported by bearings B symmetrically placed. Let cylinder 1 be 
the driver and cylinder 2 the follower. If the cylinders are pressed 
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together, the total pressure normal to their surfaces along the line 
of contact and the pressure* on each pair of bearings will be the same. 
Since all materials are more or less elastic, the cylinders will be somewhat 
deformed by the pressure between them, and instead of line there will be 
surface contact. If the cylinders are rolled together while under pressure, 
the deformation and readjustment that takes place constitutes a re¬ 
sistance to motion known as rolling friction. A turning moment would 
therefore have to be applied to the driver to turn the follower even 
though there was no resisting torque to be overcome at the shaft and 
bearings of the follower. In transmitting power from one shaft to 
another, it therefore follows that the friction at contact acting in the 
plane of motion must be sufficient to overcome the rolling friction at 
contact, the friction at the follower bearings, and the resisting torque 
at the follower shaft. The friction between two surfaces in contact 
under pressure is the force required to cause relative sliding between 
them. Within limits, this force, or friction, varies directly with the 
normal pressure between the two surfaces in contact. Hence if the 
total normal pressure between cylinders 1 and 2 is N, the friction F is 

F = jjlN 

where g is the coefficient of friction. The value of g for dry, unlubricated 
surfaces at low velocities depends upon the kind of materials in contact 
and the finish of the surfaces. For a slip between driver and follower of 
not more than 2 to 3 per cent, 0.20 would be a fair value of /x for cast iron 
in contact with cast iron, and 0.30 for cast iron in contact with leather. 
Since the coefficients of friction for certain fibrous materials in contact 
with metals are higher than for metals in contact with metals, the 
driver is generally surfaced with some fibrous material such as leather, 
wood, or asbestos, while the follower surface is made of metal. This 
practice of making the follower surface of the harder material is followed 
to avoid having a spot worn in the follower should driving fail and the 
rotating driver be in contact with a stationary follower, as might occur 
if an excessive overload were thrown on the follower. This would also 
be the case if the driver were put in motion before being pressed against 
the follower. The pressure per inch of length of contact is generally 
limited to about one-fifth the crushing strength of the fibrous material 
used, which would be about 150 pounds per inch for leather. 

To illustrate the general method of designing friction wheels, suppose, 
in Fig. 262, that the shafts are 15 in. apart, and that a leather-covered 

driver rotating at 210 R.P.M. is to transmit 3.6 horse-power to a cast- 
iron follower which is to rotate at 140 R.P.M, Neglecting slip, the 
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diameters of driver and follower must obviously be 12 in. and 18 in., 

respectively, and the peripheral velocity of each would be 

But 

or 

V = tt/XR.P.M.) = x(J-|)210 = 660 ft./min. 

H.P. 
FV 

33000 

F = 
H. P.33000 

V 

3.6 X 33000 

660 
= 180 pounds 

F/O. 262 FIG. 263 

Hence, the wheels must be pressed together with a force of 

F _ 180 

"n ~ 0.30 
= 600 pounds 

Allowing, as mentioned above, a pressure of 150 pounds per inch of 
length of contact, the width of the wheels must be 

N_ _ 600 

150 “ 150 
4 in. 

As before pointed out, rolling cylinders, cones, and hyperboloids 
may be used as elements in friction gearing, and may be used also 
as the pitch surfaces of toothed gears. Friction wheels and toothed 
gears are therefore both suitable for about the same distances between 
shafts, but differ in their capacity to transmit power and in their manner 

of transmitting it. Where the power to be transmitted from one shaft 
to another is relatively small and a small amount of slip is not objec- 
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tionable, friction gears may possibly be used to advantage over toothed 
gears. It should be remembered, however, that while friction gears are 
simpler in form and more easily produced, they are larger for the same 
power than toothed gears, may wear out more rapidly, and may in the 
end be more expensive. Under sudden changes of load, friction gears 
have the advantage of absorbing a certain amount of the shock in 
slipping. Where the power to be transmitted is large, toothed gears 
are to be preferred to friction gears, and are preferred, whether the 
power to be transmitted is small or large, where the angular velocity 
ratio between the shafts is to remain constant from instant to instant. 
It is this requirement that makes the use of toothed gears positively 
necessary in so many situations. Thus friction wheels would not do 
as timing gears for automobile engines, nor as part of the mechanism to 
drive the tool carriage of a lathe in cutting a thread. For long distances 
between shafts, where a slip of from 2 to 3 per cent is not objectionable, 
belt and rope drives are used. Powers of considerable magnitude may 
be so transmitted. For positive driving over shorter distances, trans¬ 
mission chains are used. 

120. Grooved Friction Wheels. For two plain cylinders on parallel 
shafts, it was shown in the problem of the preceding article that the 
total pressure on each pair of bearings was equal to the total normal 
pressure between the two wheels. By using a pair of grooved wheels 
as shown in Fig. £63, the load on the bearings for a given total pressure 
normal to the contact surfaces of the wheels may be greatly reduced, 
thereby reducing the wear and frictional loss at the bearings. 

In Fig. 264 is shown a section at contact of a single wedge and groove 
of two wheels on parallel shafts. The forces represented are in the 
plane of the axes of the parallel shafts. The wedge of one wheel is 
forced into the groove of the other by drawing the two shafts together 
with a force P acting radially in the plane of the axes of the shafts. 

N 
The force P is resisted by two forces — normal to the sides of the groove, 

z 

and two forces ac^n8 al°ng the ^ne contact. For equilibrium 

the sum of the radial components of these forces must be equal to P. 
Hence, 

sin 0 + 2 cos 0 ~ iV(sin 0 + y. cos 0) (201) 

For the resisting forces /x it is assumed that, due to the elasticity 
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of the materials, there is impending slip after the wedge and groove 
have been brought together and are held by the force P. It is doubtful 
if this component is fully effective even for wheels that are stationary. 
Experiments on wheels in motion seem to show that this component 
should be about one-fourth that given above. Equation (201) may 
therefore be written 

P ~ n(^sin 0 + " cos dj .(202) 

or 

N =-P. .(203) 
M 

sin 0 H— cos 0 
4 

which gives the normal pressure of contact N for a radial force P acting 

in the plane of the shafts. The power that can be transmitted is 
dependent upon the frictional resistance to slip in the tangent plane 

at contact. Hence, 

F = tiN =-—- .... (204) 
M 

Sill 0 + 7 cos 0 
4 

Assuming for the problem of the preceding article jbliat the friction 
wheels have 60-degree grooves (20 = 60°) the required force P at each 
pair of bearings for F = 180 pounds becomes 

P = ~(sin 0 + 7 cos 0^ = ~-~Yo.50 + ~~ X 0.866^ = 345 pounds 
/A 4 / 0.30 \ 4 / 

This is seen to be over 40 per cent less than the force at the bearings for 
plain friction wheels. The advantage of the grooved wheels is therefore 

apparent. 
In Fig. 264, h is the working depth of the wedge and groove. To be 

certain that the contact will be only on the sides of the wedge and groove, 
the total depth of the groove and the height of the wedge must be 

made greater than the working depth. This difference is made sufficient 
to allow for a reasonable amount of wear. If, at the mid line of the 

working depth, the mating wheels have the same velocity, it follows 
that on either side of this line they will have different velocities. Hence, 
the greater the working depth of the groove relative to the mean radii 

of the wheels the greater will be the relative sliding or wearing action. 
If, in Fig. 264, R\ is the mean radius of the driver and R2 that of the 
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follower, and it is assumed that the two wheels have the same velocity 
V at these radii, then 

V - 2*/iiNi = 2irR2N2 or RtNi - R2N2 

where N j and N2 represent the respective revolutions per minute of 
driver and follower. Remembering that RiNi ~ R2N2, the velocity 
of sliding at the base of the wedge of the driver is 

V. = 2tr(/f2 + - h\Nl = irh(Ni + N2) (205) 

In a similar manner it can be shown that the velocity of sliding at the 
bottom of the groove in the follower is the same. It is to be noted that 
this relative sliding which results in wear is independent of any slipping 
that may occur at the mean dept h of the grooves and therefore represents 
an action that is not present in plain cylindrical friction wheels. Since 
this secondary sliding is directly proportional to h, the, working depth 

of the grooves should be made as small as practicable. Several grooves 
of small depth are therefore better than one deep groove. 

Friction wheels of all kinds are generally so mounted that they can 
be engaged and disengaged at will, and the pressure between the wheels 
regulated to suit the power to be transmitted. 

121. Friction Speed Variators. As pointed out in the preceding 
articles, pairs of friction wheels may be used where it is desired to 

transmit small and moderate amounts of power from one shaft to 

another at practically a fixed angular velocity ratio. If a transmission 
is desired where the angular velocity ratio can be changed at will over 

quite a wide range with little or no change in the amount of slip, a 
combination of rolling surfaces of revolution is used. Such combinations 
are known as speed variators. Secondary sliding is usually present, 
which reduces somewhat the efficiency of such gearing. Three variators 
for parallel shafts are shown in Figs. 265, 266, and 267. 



216 ROLLING CURVES AND FRICTION GEARING 

In Fig. 265 are shown two equal frusta of cones mounted on parallel 
shafts, the distance between the shafts being such that there is a safe 
clearance between the cones. In a plane parallel to the cone shafts 
is an auxiliary shaft carrying a friction wheel 8. The angle which 
this shaft makes with the cone shafts will depend upon the diameter 
of 8. By having the operating mechanism such that 8 may be raised, 
moved to any desired position on its shaft, and then pressed against the 

two cones, the angular velocity ratio of the two cone shafts may be varied 
over quite a wide range. If the diameters of the ends of the frusta 
are in the ratio of 2 to l, then the combination admits of the angular 
velocity ratio of the driver and driven shafts being varied from 1/2 to 
2/1. It is to be noted that the cones will rotate in the same direction. 
In Fig. 266 is shown a better combination for the same purpose in which 
one cone drives the other in the opposite direction. This speed variator 

is known as the Evans friction cone pulleys. In this use of two equal 
frusta, an endless loop of belt B is pinched between the cones. The 
angular velocity ratio of the drive is varied by shifting the loop of belt 

to different positions between the cones. 
In Fig. 267 is shown a combination first applied to a machine tool feed 

mechanism, and known as Sellers feed disks. Two equal disks 1 and 2 
are mounted in the same plane on parallel shafts a fixed distance apart* 
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Between them are mounted two convex disks 3 and 4. /These disks are 
pushed together by helical springs pressing against washers with spher¬ 
ical seats at the centers of the disks. The disks may therefore be 
spread apart farther on one side than on the other. With the axis of 3 
and 4 midway between shafts B and C, the angular velocity ratio between 
shafts B and C will be unity. By swinging 3 and J+ towards shaft B, the 
angular velocity ratio of B to C is lowered, and is raised as 3 and 4 
are moved away from shaft B. 

In Fig. 268 is shown a combination made by the Power and Speed 
Controller Company for varying the speed ratio between two disks 1 
and 2 whose axes coincide. Between the two disks are two equal friction 
wheels 3 and 4j each wheel being mounted in a forked spindle as shown 
separately in detail. The operating mechanism is such that the forked 
spindles and the two wheels can be turned in opposite directions through 
equal angles. Disks 1 and2 are surfaces of revolution having torus-shaped 
channels of the same radius as wheels 3 and 4• One of these disks, 
say ), is keyed to the drive shaft, while the other, being free to rotate 
relative to the shaft, is pushed toward 1 by the action of a helical spring. 
When the axes of 3 and 4 stand perpendicular to the drive shaft, the 
angular velocity ratio of 1 to 2 is unity. With 3 and 4 turned as shown, 
the angular velocity ratio is more than unity, and it would be less than 
unity for both tilted the other way. 

In Fig. 269 is shown a speed variator for shafts at right angles. 
The friction element 2 is a flat circular disk in contact with the friction 
wheel 1 which is mounted on a splined shaft BB parallel to the surface 
of 2. The operating mechanism is such that 1 may be moved and held 
in any position along shaft B. When 1 is pressed against 2 on the 

extreme right, the angular velocity ratio — is a maximum, the ratio 
0)2 

decreasing as 1 is moved along BB to the left toward the center of 2. 
lil is moved to the left beyond the center, the rotation of 2 is reversed. 
This device has been used as a speed variator for sensitive drill presses, 
and was used for a time in certain makes of automobiles in place of 
the usual clutch and transmission gears. 



CHAPTER VII 

STRAIGHT AND HELICAL SPUR GEARS 

122. Classification of Gears. In the preceding chapter rolling sur¬ 
faces were classified as those that roll together at a constant angular 
velocity ratio and those that roll together at a varying angular velocity 
ratio. The treatment of the latter class of rolling surfaces was confined 
to sectors and to regular and irregular uni- and multi-lobed wheels hav¬ 
ing plane motion about parallel axes. It was pointed out that by using 
such surfaces as the pitch surfaces of toothed gears, motion equivalent 
to the pure rolling of the surfaces could be transmitted from one shaft to 
another. Apart from the occasional use of rolling sectors, equal ellipses, 
and now and then a pair of irregular lobed wheels, such surfaces are 
seldom fitted with teeth and used as gears. Practically all of the gears 
used in machinery are for the purpose of transmitting motion from one 
shaft to another at a constant angular velocity ratio, and are, therefore, 
based on the first class of rolling surfaces. In classifying gears, the 
intersection of the working surface of a tooth with the pitch surface of 
the gear will be referred to as the pitch element of the tooth. 

As previously pointed out, gears that are to transmit motion between 
parallel shafts are called spur gears. If they are to transmit motion at a 
constant angular velocity ratio, their pitch surfaces must be rolling right 
circular cylinders. Where the pitch elements of the teeth are straight 
the gears are known as straight spur gears, and as curved spur gears if 
the pitch elements of the teeth are curved. Where the pitch elements 
are helices, the gears are known as helical spur gears. A very unusual 
combination of gears is shown in Fig. 270, which illustrates a part of a 
horizontal milling machine. A mating pair of straight spur gears is 
shown at 1 and #, and a pair of mating helical spur gears at 3 and If.. 

Gears to transmit motion between shafts that intersect are called 
bevel gears. If they are to transmit motion at a constant angular ve¬ 
locity ratio, their pitch surfaces must be rolling right circular cones. If 
the pitch elements of the teeth are straight lines passing through the 
apices of the pitch cones, the gears are known as straight bevel gears. In 
spiral bevel gears the teeth are curved and oblique, while in skew bevel 
gears they are straight and oblique with respect to the elements of the 
pitch cones. A mating pair of straight bevel gears is shown at 5 and 6 

218 
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in Fig. 270. Where the axes intersect at right angles and the bevel 
gears of the mating pair are of the same size, as shown at 7 and 8 in 

Fig. 270, the gears are called miter gears. 
Motion between shafts that are at an angle but do not intersect is 

transmitted positively and continuously at a constant angular velocity 
ratio either by helical gears, erroneously called spiral gears, or by 

Fig. 270. 

lypcrboloidal gears. If the pitch surfaces are right circular cylinders, the 
gears are called helical gears; if the pitch surfaces are portions of hyperbo¬ 
loids of revolution, the gears are called hyperboloidal gears. A mating 

pair of helical gears is shown at 8 and 9 in Fig. 270, also at 10 and 1L 
It is to be noted that 8 works as a helical spur gear with 4 and as a helical 
gear with 9. Helical gear 10 is a single thread worm mating with a 
worm wheel 11. The worm is a regular helical gear, while the worm 

whqel is not. The worm, like all helical gears, is formed by cutting 
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helical tooth spaces in a right circular cylinder, while the worm wheel 
is formed by cutting tooth spaces in a cylinder whose face has been 
hollowed out to conform to the worm. Because of the difficulty of pro¬ 
ducing them, hyperboloidal gears, until recently, have been very little 
used. It is the only general class of gears not shown in Fig. 270. 

Gears may, therefore, be classified, as given below in Table 4, in 
accordance with the relation of the axes, the kind of pitch surfaces, 
the character of the pitch elements of the teeth, the kind of teeth, and 
the nature of the contact between mating teeth. 

TABLE 4 

Classification of Gears 

Name of Gear 

! 

Relation of Axes 

Pitch 

Surfaces 

Pitch 

Elements 

of Teeth 

Kind of Teeth 

Tooth 

Contact 

Straight spur... . Parallel Cylinders Straight lines Straight Straight line 

Helical spur. Parallel Cylinders Helices* Helical Oblique 

straight line t 

Straight bevel.. . . Intersecting Cones Straight lines Straight Straight line 

Spiral bevel. Intersecting ! Cones Curved lines Curved oblique Curved line 

Skew bevel. Intersecting Cones Curved lines Straight oblique Oblique 

straight line 

Helical. 

Worm and worm- 

At any angle not 

intersecting 

Cylinders Helices Helical Point 

wheel . Usually at 90° 

not intersecting 

Cylinder 

for worm 

Helices for 

worm 

Helical for worm Carved line 

Hyperboloidal .. . At any angle not Hyperboloids Straight or Oblique, straight Straight or 

intersecting of revolution curved lines or curved curved line 

* Spur gears may have curved, oblique teeth other than helical, but no such gears have ever 

come into general use. 

t For involute teeth. 

Besides being employed much more frequently, spur gears are 
simpler than the gears of any other class, and an understanding of 
them is of very considerable help in the study of bevel, helical, and 
hyperboloidal gears. This chapter will therefore be devoted to the 
theory of spur gears. 

123. History.* A few historical remarks are here introduced in the 
hope of arousing the student's interest in gears and of awakening a 
proper appreciation of these highly important and indispensable machine 
elements. Although toothed gears have been used for over 2200 years, 
it was only about 250 years ago that the theory of correct tooth shapes 

♦Principally from “Historical Notes on Gear Teeth” by L. D. Burlingame, 
Machinery (N. Y.), March, 1924. 
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was first enunciated, and only about 75 years ago that a means of 
accurately cutting gear teeth was first made commercially available. 

The works of Aristotle indicate that toothed gears were used as 
early as 350 b.c. As early as 150 b.c., Ctesibius employed spur and 
bevel gears in his water-clocks. That gears were employed by the 
Romans in the early Christian era is proven by the sculptured gears 
on the Column of Trajan in Rome. Leonardo da Vinci, in his work, 
Codice Atlantico, published about 1492, shows sketches of spur, bevel, 
and worm gears applied to widely different purposes. It is not apparent 
that he or any of his predecessors had solved the problem of theoretically 
correct tooth shapes. 

So far as known, the celebrated Danish astronomer, Olaf Roemer, 
was, in 1674, the first to deduce the theory of correct tooth shapes for 
gears. He proposed the use of cycloidal outlines. In 1695 Philippe de 
Lahaire, a Frenchman, advocated involute outlines as equally suitable. 
In 1760 the involute was further elucidated by Leonard Euler, a Swiss 
mathematician. He is generally credited as the first to seriously suggest 
involute outlines. In an essay, prepared in 1752, Charles E. L. Camus, 
a French genius, who at the age of twelve gave lectures in science in 
Paris, gave such a comprehensive treatment of cycloidal tooth outlines 
as to enable mechanics for the first time to make practical application 
of the theory. He pointed out the requirements for positive, continuous 
driving, and showed that action was smoother in recess than in approach. 
He also conceived the idea of interchangeability. Camus favored 
cycloidal over involute outlines as did Hawkins, an Englishman, who 
translated Camus’ work. However, when, in 1837, Hawkins brought 
out the second edition of his translation, he devoted a lengthy appendix 
to the merits and superiority of involute outlines over cycloidal. In a 
paper before the Institution of Civil Engineers in 1837, Robert Willis 
set forth the requirements for an interchangeable system of gears and 
described his odontograph for laying out involute gear teeth. This 
paper was republished in his “Principles of Mechanism” in 1841. The 
angle of obliquity and#tooth proportions adopted later by the Brown 
and Sharpe Manufacturing Company are essentially the same as those 
proposed by Willis. He perhaps deserves more credit than any one else 
for improving practice and for the present almost universal recognition 
of the superiority of involute over cycloidal outlines for gear teeth. 

When the contest between these two systems was at its height in this 
country, George B. Grant was probably the outstanding champion of 
the involute system. 

The first gear-cutting machines used reciprocating or rotating tools 
shaped to correspond to the tooth spaces to be cut. Apparently the 
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first rotating gear-cutter was made before 1782 by a famous French 
mechanic named Jacques de Vaucanson. The end of a bar was first 
turned to conform to the space to be cut, and the fine teeth were then 
formed by the use of hammer and chisel before the cutter was hardened. 
The first gear-cutting machine appeared about 1800, It was small and 
hand operated. The first power-driven, precision gear-cutting machine 
to be built in this country was built in 1855 by Joseph R. Brown of the 
Brown and Sharpe Manufacturing Company. In 1861 Brown invented 
the formed milling cutter, a cutter that could be sharpened by grinding 
without changing the shape of its cutting face. Previously, in 1861, 
he had invented the universal milling machine. With this machine 
and with a set of formed cutters provided for each pitch, a shop was 
equipped to cut spur, bevel, and helical gears. The method is inherently 
inaccurate for bevel gears, and accurate for spur gears only when the 

3hape of the cutter corresponds to the number of teeth in the gear to be 
cut. Since the number of cutters in a set is necessarily. limited by the 
consideration of cost, the method can be only closely approximate for 
spur gears. The generating method as patented by Hugo Bilgram in 
1884 constituted the next and most important advance in the art of 
cutting gear teeth. Improvement in the accuracy and the rapidity 
with which gears can be cut is due to the application of the principle 
invented by Bilgram. Many machines have been developed for gen¬ 
erating gear teeth. Some employ a straight-sided cutter, some a pinion¬ 
shaped cutter, while others use a hob. A brief treatment of the methods 
now employed will be found in the next three chapters. 

124. Terminology. Time and space will be conserved if certain 
terms to be used are defined and illustrated before considering in detail 
the profiles and the action of mating gear teeth. Most of the following 
terms are illustrated in Fig. 271. 

The pitch diameter, Z>, is the diameter of the pitch circle. 
The pitch pointy P, of a pair of mating gears is the point of tangency 

of their pitch circles. 



TERMINOLOGY 223 

The circular pitch, pc, of a gear is the distance, measured on the 
pitch circle, from a point on one tooth to the corresponding point on 
the next tooth. It is therefore equal to the circumference of the pitch 
circle divided by the number of teeth. 

The diametral pitch, p'c, is the ratio of the number of teeth in a gear 
to its pitch diameter expressed in inches. By expressing the circular 
pitch and the diametral pitch in terms of the number of teeth N and the 
pitch diameter D in inches, the relation between them is easily obtained. 

Pc = 

Pc = 

7tD 

N 

N 

1) 

(206) 

(207) 

The product of (206) and (207) is 

Pctfc = tt.(208) 

The module, m, is the reciprocal of the diametral pitch, and therefore 
represents the number of inches of diameter per tooth. 

The addendum, a, is the radial distance from the pitch circle to the 
ends of the teeth, or to the addendum circle. 

The dedendum, d, is the radial distance from the pitch circle to the 
bottom of the tooth spaces, or to the dedendum circle. 

The clearamef cy is the radial distance from the end of a tooth on 
one gear to the bottom of the tooth space of the mating gear. 

The whole depth, hf or height of tooth, is the sum of the addendum 
and dedendum. 

The working depth is the depth to which the teeth of one gear extend 
into the spaces of the mating gear. It is the sum of the addenda of the 
mating gears. It is also equal to the whole depth minus the clearance. 

The point of a tooth is that portion included between the pitch and 

addendum circles. 
The root of a tooth is the portion included between the pitch and 

dedendum circles. 
The face of a tooth is that portion of the tooth outline, or profile, 

which extends from the pitch to the addendum circle. 
The flank of a tooth is that portion of the tooth profile which extends 

from the pitch circle to the bottom of the tooth space, or to the dedendum 
circle. 

The backlash is the width of a tooth space of one gear, measured 

along its pitch circle, minus the thickness of a tooth of the mating gear, 
measured along its pitch circle. For cut industrial spur gears, the Amer- 
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ican Gear Manufacturers’ Association recommend for the backlash 
a minimum of 0.03 in., an average of 0.04 in., and a maximum of 0.05 
in. divided by the diametral pitch. 

The term 'pinion is used to designate the smaller gear of a mating 
pair. 

A rack is a portion of a spur gear whose pitch radius is infinitely 
long. Its pitch surface is therefore a plane and its pitch curve a straight 
line. A rack may have either straight or oblique teeth. 

126. Fundamental Law of Gear Tooth Profiles. Mating pairs of 
gear teeth may be regarded as direct contact members or cams fastened 
to mating pitch surfaces to secure positive driving. In order that the 
drivings may l>e continuous as well as positive, the cams, or teeth, on 
each gear must be sufficient in number to admit of one pair coming 
into action before the preceding pair goes out of action. If the teeth 
are not of proper shape, the driving will not be equivalent to the pure 
rolling of the pitch surfaces or curves, and the angular velocities from 
instant to instant will not be inversely as the contact radii of the pitch 
curves. To secure transmission equivalent to the rolling of the pitch 
curves, the common normal through the point of contact of the mating 

teeth must pass through the point in the line of centers at which the pitch 

curves are tangent. This follows from what has previously been demon¬ 
strated: that rolling curves make contact in their line of centers; that 
their angular velocities are inversely as their contact radii; and that 
the angular velocities of direct contact members are, as demonstrated 
in Art. 43, inversely as the segments into which the line of centers is 
cut by the common normal through the point of contact of the members. 
Hence, at any instant, the common normal to mating tooth profiles 
must pass through the point of tangency of the pitch curves in the line 
of centers if driving is to be equivalent to the rolling of the pitch curves. 
If the pitch curves are circles, the point of tangency, or pitch point, is 
a fixed point in the line of centers; if the pitch, or rolling, curves are 
not circles, the pitch point will be a moving point in the line of centers. 

Within limits, the profile of a tooth on one gear may be assumed, 
and the profile of the tooth on the mating gear may then be derived by 
applying the fundamental law stated above. A tooth so derived to 
mate with a given tooth is known as a conjugate tooth. It can also be 
shown that tooth profiles described by a point on a curve which rolls 
upon each of a pair of pitch curves, will fulfill the requirement above 
stated. 

126. Conjugate Spur Gear Teeth. A portion of a gear having 36 
teeth is shown in Fig. 272. For convenience, straight line profiles have 
arbitrarily been chosen for the teeth, the included angle of each tooth 
being 60°. The path of the point of contact, the conjugate rack tooth, 
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and a conjugate gear tooth for the given tooth are shown in Figs. 274, 
276, and 278. 

In Fig. 273, five equally spaced positions of the given profile are 
shown. According to Art. 125, the points of contact must be where 

lines through the pitch point P, perpendicular to the different positions 
of the given profile, intersect the profile lines 12', S', etc. Since the 
given profile is a straight line, the normals and therefore the points of 
contact a, b, c, d, and e are easily determined. A smooth curve through 
these points gives the path of the point of contact. To draw a smooth 
curve through the points a, b, etc., in Fig. 273 would obscure the per- 
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poncliculars Pa, Pb, etc. The positions and points of Fig. 273 were 
therefore repeated in Fig. 274, and the path of the point of contact 
abPcde drawn as shown. 

Fig. 275 is a repetition of Fig. 273 with the addition of the pitch 
line PP of the rack. Since, in driving the rack, the flank of the given 
gear tooth will come in contact with the face of the rack tooth, the 
position lines t, 2, S, 4, and 5 for the rack in Fig. 276 are in the reverse 
order to those of Fig. 275. These lines are perpendicular to the pitch 
line of the rack and are spaced in accordance with the lengths of the 
corresponding pitch arcs between the five different positions of the given 
gear tooth profile, which, for convenience, were taken equal. Point a', 
as a point on the conjugate rack tooth profile, is where an arc of radius 
P'a\ equal to the perpendicular Pa of Fig. 275, intersects a line through 
a parallel to the pitch line PP. Points b', cetc., were determined in 
a similar manner. A smooth curve through the points so determined 
gives the profile of the conjugate rack tooth. 

The tooth profile shown in Fig. 278 is conjugate for the given profile 
and is for a gear of the same number of teeth, 36, as the given gear. 
Fig. 277 is a repetition of Fig. 273 with the addition of the pitch curve 
PP of the conjugate gear. For the same reason as for the rack, the 
radial position lines of Fig. 278 are in the reverse order to those in 
Fig. 277, the displacement angles in each case corresponding to equal 
arcs. Point a', as a point on the conjugate gear tooth profile, is where 
an arc of radius P'a', equal to the perpendicular Pa of Fig. 277, inter¬ 
sects an arc having its center at the center of the conjugate gear and 
a radius equal to the distance from this center to the point a in Fig. 
277. The remaining points were found in a similar manner. 

It is to be noted that while a 36-tooth gear having tooth profiles 
as shown in Fig. 278 will work properly with a 36-tooth gear having 
tooth profiles as shown in Fig. 277, two gears similar to either one will 
not work properly together. Also, the given gear will work with the 
conjugate rack, but, for the conjugate gear of Fig. 278 to work with 
the rack, the shading of the profile in Fig. 276 must be on the other 
side. In other words, the gears are not interchangeable. For inter¬ 
changeability, as will be shown, the path of the point of contact must 
be symmetrical with respect to the line of centers. 

It is evident that the above constructions can be carried out for 
any given profile.* To construct a conjugate gear tooth profile from 

*For another geometrical method see “Ermittlung der Gegenflanke bei gege- 
benem Zahnprofil” (Determination of the Conjugate Profile of a Gear Tooth) by 
Prof. Dr. Ing. F. Rotscher, Aachen, Germany, Zeitschrifl des Vereines deutscher 

Ingenieure, Oct. 12, 1929, vol. 73, No. 41. pages 1469-1471, 9 figures. 



CONJUGATE SPUR GEAR TEETH 227 

an arbitrary rack tooth profile is the reverse of the problem illustrated 
in Figs. 275 and 276. It would require perpendiculars to be drawn 
through the pitch point P to different and convenient positions of the 
given rack tooth profile. While for every possible path of the 
point of contact there is a conjugate rack tooth profile, there 
is no simple and general graphical construction for making the 
determination. 

The conjugate profile of Fig. 278 could be determined from the 
arbitrary profile of Fig. 277 by the method illustrated in Fig. 279. 
That a conjugate so determined would fulfill the fundamental law stated 
in Art. 125 is by no means as obvious 
as for the method of determination 
just described above. In Fig. 279, 
1 and 2 are two pitch curves, P 

being the pitch point on the line 
of centers O1O2. M is a thin metal 
band fastened to 1 and 2 to enable 
one to be rolled on the other without 
slipping. T is a thin metal tem¬ 
plate of the arbitrary tooth profile 
which is fastened to 1 so that the 
sheet of paper S, which is fastened 
to 2, may slide under the template 
as 1 and 2 are rolled together. If 
for each of several relative positions of 1 and 2, the curve of the given 
profile is traced on the paper and a smooth curve is then drawn tangent 
to the several tracings on S, the resulting smooth curve C will be the 
conjugate of the given profile. 

The method illustrated by Fig. 279 suggests how a tooth acting as 
a cutter could produce its conjugate profile. If 1 and 2 were rotated 
about Oi and 02, respectively, by small angular displacements cor¬ 
responding to the rolling of the pitch curves, and T were reciprocated 
parallel to 02 after each small angular displacement, T would cut its con¬ 
jugate in 2. From this point of view, Fig. 279 may be regarded as an illus¬ 
tration, though incomplete, of the generating process of cutting gear 

teeth. 
While the concepts of this article and the fundamental law of gear 

tooth profiles are of greater practical importance in the cutting of gear 
teeth, the describing method of generating gear tooth profiles to be 
given in the next and some of the succeeding articles is quite necessary 
to an understanding of gear tooth action and to an appreciation of what 
constitutes a suitable generating profile. 
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127. General Method of Describing Gear Tooth Profiles. The 
general method of describing gear tooth profiles by means of an auxiliary 
rolling curve, or generator, is illustrated in Fig. 280. Suppose the 
outlines of the two plane figures 1 and 2 to be two curves capable of 

rolling together about the fixed 
centers 0\ and 02. Since they 
are rolling curves, their point of 
contact, or tangency, will lie on 
the line of centers, and their angu¬ 
lar velocity ratio at any instant 
will be inversely as their contact 
radii. For a pair of teeth to give 
a relative motion to 1 and 2 equiv¬ 
alent to the rolling of the curves, 
the common normal to the teeth 
in contact must pass through the 
point P on the line of centers at 
which the curves are tangent. The 

. profiles of a pair of teeth to fulfill 

F/G 280 this r(‘(Iu^reiuen^ may be described 
^ by a point on any curve such as 

G, whose maximum radius of curvature will permit it to roll on either 
pitch curve. 

Starting with point g of G in contact with 1 at a, the point g will 
describe the curve ag on 1 as G is rolled backward on 1 to the position 
shown. Since G has been rolled on 1, the arcs Pa and Pg are equal. 
If the arc Pb is made equal to Pa and G is rolled on the concave side of 2 
from a position with g of G in contact at b to the position shown, the 
point g will describe the curve bg on 2. Having rolled G on 1 and then 
on 2y let it now be assumed that they roll together simultaneously 
beginning with the positions shown by the full lines as initial. A counter¬ 
clockwise rotation of 1 will cause 2 and G to rotate clockwise. Since the 
arcs Pa, Pb, and Pg are equal, point g in G will retrace the curve ga 

on 1 and the curve gb on 2, and the points a, b, and g will come together 
at P' with 1, 2, and G in the positions shown dotted. Evidently as 1, 

2, and G roll together simultaneously, the instant center of rotation of 
G relative to 1 and 2 is always the point of contact in the line of centers, 
and the point of contact between the two curves that are traced is 
always the describing point g in G. For the initial position, this instant 
center of rotation is P. Hence, the describing point g is, at the instant, 
moving in the direction gc normal to its rotational radius Pg. Since 

at the instant g is likewise describing the curves ga and gb, the common 
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tangent to these curves coincides with gc, and Pg is, therefore, the 
common normal to ga and gb. It having been proved that the common 
normal to curves ga and gb passes through the point on the line of 
centers at which the pitch curves are tangent, it follows that, with gb 

as a tooth profile on 2 and with ga as a tooth profile on 7, clockwise 
rotation of 2 will positively drive 1 counter-clockwise with a relative 
motion between 2 and 7 equivalent to the rolling of the pitch arcs Pb 

and Pa. 

In choosing the pitch curves for Fig. 280, circles were purposely 
avoided. Since the pitch surfaces of toothed gears are almost invariably 
surfaces of revolution, circles or circular arcs will be used as pitch lines 
in all but one of the remaining articles of this chapter. 

128. Forms of Spur Gear Teeth. It is evident from the preceding 
article that there are many curves that could be used as generators 
to describe gear tooth profiles. However, on account of the practical 
difficulties of generation and cutting, the circle is the only curve that has 
been used to generate tooth profiles by rolling on the pitch circles. As 
a generator of tooth profiles the straight line is now used almost to the 
exclusion of the cir¬ 
cle, but, as will be 
shown, it is not 
rolled on the pitch 
but on a base circle. 

The curve traced 
by a point on a 
circle as it rolls on 
the convex side of 
another circle is 
called an epicycloid; 

the curve traced by 
a point on a circle 
as it rolls on the 
concave side of an¬ 
other and larger 
circle is called a hy- 
pocycloid; and the 
curve traced by a point on a circle as it rolls on a straight line is called 
a cycloid. It will be found that gear teeth whose profiles have thus 
been traced are referred to either as epicycloidal teeth or as cycloidal 

teeth. The latter term will be used in this text. 
In Fig. 281 the describing circles 2 and 3 are shown tangent to circle 

1 at P. If 2 is rolled to the right on 7, the point on 2 coincident with 
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P will trace the epicycloid E. To carry out the construction, the cir¬ 

cumference of circle 1 to the right of P is divided into equal arcs of con¬ 
venient length, Pa, ab} be, etc.; and the circumference of circle 2 to the 
right of P is divided into equal arcs of the same length, Pa', a'6', 6'c', 
etc. Hence, when 2 is rolled to the right on I, the point a' will come into 
coincidence with a, b' with b, c' with c, etc., and the describing point 
on 2 will have moved to a", b", c", etc., corresponding to the dotted 
positions of the describing circle. If the describing circle 8 is rolled to 
the left on the inside of I, the point on 8 coincident with P will describe 
the hypocycloid II. The points a", b", c", etc., on this curve were 
located by the same method as employed in plotting the epicycloid. 
If the diameter of 8 had been taken equal to the radius of /, the hypo- 
cycloid II would have coincided with the radial line POi. It is obvious 
from the method employed in plotting the epicycloid and the hypo- 
cycloid, that points a" and a', b" and bc" and etc., must lie on 
concentric arcs from 0\ as a center. This suggests a simpler method 

than that employed 
for plotting the curves 
whereby the drawing of 
the different positions 
of the describing circles 
may be avoided. Thus, 
as for each of the other 
positions, ccn is the re¬ 
volved position of chord 
c'P. Hence c" is the 
intersection of an arc 
through c' from Oi as a 
center with an arc of 
radius c'P from c as 
center. This construction 
is shown more clearly in 
Fig. 282, points a", b", 
d", etc., being located in 
the same manner as c". 

When a right line rolls upon a circle, called the base circle, any 
point in the line traces a curve called the involute of a circle. It is a 
property of 4his curve that the normal at any point is tangent to the 
base circle. Gear teeth whose profiles have thus been traced are referred 
to as involute teeth. 

In Fig. 283 the straight line 2 is shown tangent at P to the base 
circle 1 upon which it is to roll. To carry out the construction, the 
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circumferential arc of 1 to the left of P is divided into equal arcs of 
convenient length, Pa, ab, bc} etc.; and the straight line 2 to the left 
of P is divided into equal parts, Pa', a'6', 6'c', etc., of the same length. 
Hence, when 2 is rolled on 1, the point a' will come into coincidence 
with a, b' with b, c! with c, etc., and the describing point on 2 will have 
moved to a", 6", c", etc. 
corresponding to the dotted 
positions of the generating 
line 2. It is obvious from 
the method employed in plot¬ 
ting the involute curve N 

that points a' and a", 6' and 
6", c' and c", etc., must be 
on concentric arcs from Oi as 
a center. This suggests a 
simpler method than that 
employed for plotting the 
curve whereby the dotted 
positions of the generating 
line may be eliminated. 
Obviously, if c" is on an 
arc through c! from center 
0i, it must be a distance 
from c equal to c'P. Hence c" is where an arc through c' from 0i as a 
center intersects an arc of radius c'P from c as a center, points a", 
6", d", etc., being located in a similar manner. For the polar equation 
of the involute see equation (235) Art. 147. 

It is to be noted that while P in 2 is describing the involute shown, 
every other point in the generating line is describing an identical in¬ 

volute. Thus the invo¬ 
lute described by c' after 
making contact with 1 
at c would be the same 
as the involute N and 
at every point would be 
at a normal distance from 

N equal to the arc Pc. If N and the new involute were corresponding 
profiles of adjacent teeth, the arc Pc becomes the base pitch, pb. 

Where, fo^ illustrative purposes, it is necessary to draw the teetfy 
on a gear, an easy approximate method of drawing the involute profiles 
is a convenience. Such a method is shown in Fig. 284, which shows 
a line, drawn through a point P on the pitch circle tangent to the base 



232 STRAIGHT AND HELICAL SPUR GEARS 

circle at P'. An arc through P from P' as a center will be found to be 
in fair agreement with an involute through P. The profiles of the 
teeth shown were drawn in this manner. Where a closer approximation 
is desired, use may be made of other centers on the base circle. Thus 
let B and C be determined as the intersections of an arc through P 

from P' as a center with arcs concentric to the pitch circle. Then 
determine the tangency points Bf and C' on the base circle by drawing 
tangents through B and C. With B' and C' as centers, draw the arcs 
BA and CD, and finish the flank by drawing an arc from A with the 
point of tangency A' as a center. The radii A'A, B'B, P'P, etc., may 
be used for additional tooth profiles if desired. 

As before pointed out, the cycloidal tooth form was the first to be 
adopted, and for many years was used exclusively. Now the involute 
is used almost to the exclusion of the cycloidal form. Practically the 
only use now made of cycloidal curves is in conjunction with the involute 
in a composite form of gear tooth. The involute and composite are the 
principal forms of gear teeth used to-day. However, a brief treatment 
of the cycloidal form is justified, and will be found to contribute to a 
better understanding of the involute and composite forms. 

129. Cycloidal Spur Gear Teeth. In Fig. 285, the two pitch circles 
1 and 2, with centers at Oi and O2, respectively, are tangent at point P. 

The generator, or describing circle, 8 has its center O3 on the line of 
centers O1O2. In the figure arcs Pa, Pb, and Pg are equal. If 1, 2, 

and 3 roll together simultaneously as they rotate about their respective 
centers 01, O2, and O3, point g on 8 will trace the hypocyloid ga on 1 
and the epicycloid gb on 2 as 1, 2, and 3 rotate through the equal arcs 
Pa, Pb, and Pg, points a, b, and g becoming coincident at P. During 
this rotation the instant center of rotation of 8 relative to 1 and 2 
evidently remains at the pitch point P. Since g in 8 is describing both 
curves, the curves at any instant are in contact at g, and therefore 
their common tangent must coincide? with the direction of motion of g 

which is perpendicular to Pg; hence, Pg is the common normal to the 
described curves. Since, during action, the instant center remains at P, 
the common normal will always cut the line of centers at a fixed point. 
The hypocycloid of 1 acting on the epicycloid of 2 will therefore transmit 
motion from 1 to 2 at a constant angular velocity ratio corresponding 
to the rolling of the pitch circles. Hence the described curves are 
suitable as tooth profiles for the gears. 

If 1 were fitted with a hypocycloidal flank ag and 2 with an epi- 
cycloidal face bg, counter-clockwise rotation of lf through an arc aP 

would drive 2 clockwise through an arc 6P. To continue the driving 
beyond P, with the same pair of teeth, it is necessary to add an epicy- 
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cloidal face to 1, such as a'g', and a hypocycloidal flank to 2, such as 
b'g'. These may be described by another generator such as 4 rolling on 
the outside of 1 and the inside of 2. A tooth having such a profile 

composed of a face and a flank is shown shaded at c for 1 and shaded 
at e for 2. These two profiles acting together would drive from one 

side of P to the other. Similar but reversed profiles d and / are added 
to enable either gear to drive the other in either direction. With single 
profiles, one gear could drive the other only in one direction. 

It is to be noted that the face of profile c has not been made as long 
as a'g', nor has the face of profile e been made as long as bg. Hence, 
if 1 and 2 were fitted with teeth as shown at cd and ef, contact would 
begin at h and cease at k for counter-clockwise rotation of 1 acting as 
the driver. Since at the beginning of contact the flank of 1 engages 
with the face of 2, the point at which contact begins is determined by 
the intersection of the addendum circle of 2 with the describing circle 8, 
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and the point at which contact ends is determined by the intersection 
of the addendum circle of 1 with the describing circle 4. The path of 
the point of contact between a pair of teeth during action is therefore 
the reverse curve hPk. 

To meet essential requirements, a pair of mating gear wheels 
would require that the common circular pitch be an exact divisor of 
the circumferences of the pitch circles 1 and 2, that the addenda of the 
mating teeth be sufficiently long to insure one pair of teeth coming into 
action before the preceding pair goes out of action, and that the depth 
of the tooth spaces be greater than t he sum of the addenda of the mating 
teeth to provide clearance in action. 

130. Action of Cycloidal Spur Gear Teeth, (a) Path of the Point 
of Contact. In Fig. 286, 1 is the driver and 2 the driven gear. The 

pair of teeth to the left of the line of 
centers is just coming into contact, 
while to the right a pair is shown just 
quitting contact. As was shown in the 
preceding article, the reverse curve 
gPg' is the path of the point of con¬ 
tact during action between the pair of 
mating teeth. It wTas also shown that 
arcs Pa, Pb, and Pg are equal, like¬ 
wise arcs Pa', Pb', and Pg'. Hence 
gPg' — aPa' — bPb', or the point of 
contact of a pair of mating gear teeth 
traverses the path gPg' while the 
mating gears turn through the equal 
arcs aPa' and bPb’. 

(6) Arc and Angle of Action. The distance on the pitch circle 
between the positions of a tooth from the beginning to the end of contact, 
is called the arc of action. Thus aPa' is the arc of action of 1, and bPb' 
that of 2. Since the action of mating gears is equivalent to the rolling 
of the pitch circles, it follows that the arcs of action of mating gears 
are equal. The angle subtended by the arc of action is called the angle 
of action. This angle is, therefore, the angle turned through by a gear 
from the beginning to the end of tooth contact. Thus aO\a' is the 
angle of action of 1, and bO^V that of 2. The angle turned through 
by a gear from the beginning of tooth contact to contact at the pitch 
point P, is called the angle of approach. Thus aO\P is the angle of 
approach of 1 and 6O2P that of 2, aP and bP being the respective arcs 
of approach. The angle of recess is the angle turned through by a gear 
from tooth contact at the pitch point to the end of contact. Thus 
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PO\ar is the angle of recess of 1 and PO^b' that of 2, Pa' and Pbf being 
the respective arcs of recess. 

(c) Continuous Driving and Length of Teeth. To secure continuous 
driving by having one pair of teeth come into action before the preceding 
pair goes out of action, the length of the arc of action or path of contact 
must be greater than the circular pitch. The ratio of the arc of action 
to the circular pitch is called the contact ratio. For durability and quiet 
running in the transmission of any appreciable amount of power, it has 
been found from experience that the contact ratio should, if possible, be 
1.40 or more. The nearer the ratio used approaches unity, the higher 
the degree of accuracy of profile shapes required to secure quiet running. 
When it is necessary to use a ratio of less than 1.40, 1.20 should be 

regarded as the minimum. Since g and g' mark the intersections of the 
addendum circles of 2 and 1 with the generating circles 8 and 4, the 
length of the path of contact gPg', and therefore the arc of action, is 
determined by the addenda of the mating gears. The greater the ad¬ 
denda the greater the length of the path of contact or arc of action. The 
maximum addendum possible is reached when the teeth become pointed, 
which fixes the maximum length of teeth and the maximum arc of 
action possible for any given pitch and pair of pitch and describing 
circles. If the addenda and pitch circles are fixed, the length of the 
arc of action will depend upon the size of the describing circles. The 
larger they are the greater will be the arc of action but the weaker will 
be the teeth. For this reason a diameter of describing circle larger than 
1 the pitch diameter of the gear is seldom used. 

(d) Angle of Obliquity and Pressure Angle. The angle between the 
common normal to the teeth at their point of contact and the common 

tangent to the pitch circles is called the angle of obliquity, or commer¬ 
cially, the pressure angle. Thus a is the maximum angle of obliquity 
during approach and a the maximum during recess. It is to be noted 
that during approach the angle of obliquity decreases from a to zero, 
and, during recess, increases from zero to a. Since the obliquity in¬ 
creases the pressure between the teeth and at the bearings, the angle 
of obliquity should be no greater than that required for satisfactory 
and continuous driving. For the transmission of any appreciable 
amount of power, the maximum obliquity should not exceed 30 degrees. 
For more than one pair of teeth continuously in action, this would 
give an average obliquity of less than 15 degrees. For light work and 
extreme cases, the maximum obliquity may be as high as 36 degrees. 
Neglecting the friction of sliding, the pressure between the teeth would 
act at an angle equal to the angle of obliquity. Hence the pressure 
normal to the teeth will be equal to that corresponding to the torque 
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to be transmitted divided by the cosine of the angle of obliquity. The 
per cent increase of the normal over the tangential pressure will there- 

- . 1 A . 
1), which equals slightly over 15 per cent for an fore be 100 

angle of 30 degrees. 
The effect of the friction of sliding between the teeth is to make 

the pressure angle greater than the angle of obliquity during approach 
and to make it less during recess. The energy lost in friction at the 
teeth and at the bearings is therefore less during recess than during 
approach. This, to some degree, accounts for the action being smoother 
during recess than during approach. The principal reason, however, 
for the smoother action is the difference in the direction of sliding 

between the teeth during 
[O/ approach and recess. Dur- 

A ing approach the teeth, 
L / while sliding on each other, 

- \ ~ // \ __ /> , „ are pushing into mesh, 
\\ ^while during recess they 

u / are drawing out of mesh. 
^_yb VAN/3^ %Gears would therefore be 

\ P more efficient and durable 
,/ \ \ if jthe action were confined 

/ ) \ F/6 268 to recess. However, con- 
2 f \ 

\ tinuous driving and other 

^ ^ —r— requirements will often 
F/G 267 q> \ u v , 

make such a limitation ol 
action, at least for straight 

spur gears, either impossible or undesirable. As will be evident later, 
the best tooth proportions for any given conditions of operation are 
generally a compromise between requirements and possibilities. 

(e) Velocity of Sliding between Teeth. The determination of the 
velocity of sliding between teeth at the beginning of contact is shown 
in Figs. 287 and 288. Fig. 287 is a repetition of part of Fig. 286, Q\ 
being the point in 1 in contact with point g2 in 2. The velocities of 
these respective points must be perpendicular to their respective radii 
giOi and £202. With velocity V0l0 of point gi of the driver known, the 
velocities V02O and V0l0i may be found by the method of Art. 47 or 
by the velocity vector diagram method of Chapter IV. In Fig. 288, 
vector ogi is drawn perpendicular to radius g\0\ and of a length to 
represent the known velocity V0lO. It is known that the velocity of g2 

is perpendicular to 0202, and that the velocity of 02 relative to gi must 
be along the common tangent TT, or perpendicular to the common 

F/G 267 
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normal 02P. Hence the intersection of lines through 0 and 01, per¬ 
pendicular, respectively, to Q2O2 and g2P, determines g> and the velocity 
vectors 002 and g\g2 representing the velocity V0t0 and the velocity of 
sliding V02ox of g2 relative to gu It is to be noted that the farther the 
coincident points of contact g\ and g2 are from the pitch point P, the 
greater the angle between vectors og 1 and ogz and the greater the vector 
{7i02 representing the velocity of sliding between the teeth. As the 
coincident points of contact approach the pitch point P, vectors O0i 
and 002 are brought together, the relative sliding being reduced to zero 
for contact at P. 

131. Interchangeable Cycloidal Spur Gears. It has been shown that 
the two gears 1 and 2 in Fig. 286 will work together satisfactorily because 
the respective engaging faces and flanks were described by the same 
generating circle. If the tooth profiles of a third gear are described by 
the same generating circles, 3 and 4, to work with 7, it will not work 
with gear 2. The flanks of the third gear, described by generator Jh 
will engage with the faces of gear 2 which were described by generator 3; 
and the faces of the third gear, described by generator 3, will engage 
with the flanks of gear 2 which were described by generator 4- The 
third gear will therefore not work satisfactorily with gear 2 because the 
respective engaging faces and flanks were not described by the same 
generator, or describing circle. Obviously, to make the three gears 
interchangeable, the describing circles 3 and 4 must be of the; same 
diameter. It can therefore he stated that for a set of gears of the same 
'pitch to be interchangeable, the describing circles used must be of the same 
diameter. 

The diameter of the describing circle for an interchangeable set of 
gears must obviously be smaller than the pitch diameter of the smallest 
pinion that would be considered desirable. It must also be of such a 
diameter as to give suitable flanks. The smaller the describing circle 
the greater the angle of obliquity for a given addendum and the shorter 
the arc of action. The larger the diameter of the describing circle the 
greater will be the arc of action for a given addendum or the smaller 
the addendum for a given arc of action. These considerations would 
point to as large a describing circle as possible. If, however, the diam¬ 
eter of the describing circle is made larger than the pitch radius of the 
pinion, the flanks of the teeth will be inside of a radial line from the 
center of the gear to the point where the face meets the pitch circle. 
If the describing circle diameter is made smaller than the pitch radius 
of the pinion, the flank will fall outside of the radial line, giving a stronger 
form of tooth. If the diameter of the describing circle is made equal 
to the pitch radius of the pinion, the flanks described will be radial. 
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This is the compromise usually made. With equal describing circles, 
the path of contact becomes symmetrical with respect to the line of 
centers, the condition for interchangeability mentioned in Art. 126. 
Other obvious conditions for interchangeability are that all gears of the 
same pitch must have the same addendum and a tooth thickness equal 
to one-half the circular pitch. 

132. Proportions of Cycloidal Spur Gear Teeth. It has just been 
shown that for a set of gears of the same pitch to be interchangeable, 
the describing circles must be equal in diameter. The Brown & Sharpe 
Company adopted for their system of cycloidal gears a diameter of 
describing circle equal to the pitch radius of the 15-tooth pinion of the 
set. This makes the flanks of the adjacent teeth of a 12-tooth pinion 
practically parallel but sufficiently convergent to permit the use of a 
rotating cutter. The William Sellers Company adopted a describing 
circle diameter equal to the pitch radius of the 12-tooth pinion, thus 
securing somewhat stronger tooth forms. In addition to having equal 
describing circles, all gears of the same pitch must have similarly pro¬ 
portioned teeth. The gears of a set must have' the same addendum, 
and the depth of the tooth spaces must be twice the addendum plus a 
suitable clearance. For this reason interchangeable gears are referred 
to as equal addendum gears to distinguish them from unequal addendum 

gears. 
Proportions of the teeth of cut and cast gears are given below in 

terms of the diametral pitch. The generally accepted values are given 
for cut gears, and the proportions for cast gears are quite representative 
of average practice. It is to be noted that for cast gears the clearance 
is increased and the thickness of the teeth is made less than the width 
of the tooth spaces to allow for inaccuracies of size, form, and spacing. 

Cut 

Gears 

Cast 

Gears 

Addendum = a 
LO 

P'c 

1.0 

P'c 

Clearance = c 
0.157 

P'c 

0.25 

P'c 

Dedendum = d = a + c 
_ 1.157 

P'c 

1.25 

P'c 

Thickness of tooth = l — 
1.5708 

P'c 

1.50 

P'c 

Backlash *= b = zero 
0.1416 

P'c 
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Using the addendum given above and the describing circle diameter 
of the Sellers system, it can easily be shown that two mating 12-tooth 
pinions would have a maximum obliquity of 20.304 degrees, and a 
contact ratio, or ratio of the arc of action to the circular pitch, of 1.3536. 
The angle of obliquity and contact ratio increase slightly as a 12-tpoth 
pinion is mated with gears having a greater number of teeth than itself. 
If mated with a rack, the maximum obliquity becomes 20.405 degrees, 
and the contact ratio becomes 1.3603. Using the same addendum and 
the same diameter for the describing circles, it can be shown that the 
contact ratio and maximum obliquity for two 10-tooth pinions would be 
1.319 and 19.785 degrees. In this case the diameter of the describing 
circles is 0.60 that of the 
pitch diameter of the 
pinions. A value for 
this ratio of 0.625 is 
usually regarded as a 
maximum. Where pos¬ 
sible1 a value of 0.50 is 

to be preferred, since it 
gives tee?th having ra¬ 
dial flanks and of 
stronger form. Using 
a ratio of 0.50 and an 
addendum equal to the 
reciprocal of the dia¬ 
metral pitch, it can be 
shown that two 6-tooth 
pinions would have a 
contact ratio of 1.02 and a maximum obliquity of 30.6 degrees. Two 
4-tooth pinions having pointed teeth and a diameter of the describing 
circles equal to 0.625 the pitch diameter of the pinions, would have 
a contact ratio slightly greater than unity and a maximum obliquity 

of 36 degrees. 
133. Cycloidal Rack and Pinion. If one of a pair of mating spur 

gears has a pitch radius of infinite length, its pitch circle becomes a 
straight line. A gear of infinite radius is called a rack, and its mate of 
finite radius is called a pinion, the combination being known as a rack 
and pinion. Such a combination is shown to the right in Fig. 289. The 
method of describing the tooth profiles is precisely the same as for a 
pair of gears of finite pitch radii. Since the pitch curve of the rack 
is a straight line, the faces and flanks are both cycloids and will be alike, 
if, as for interchangeable gears, only one size of describing circle is used. 
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In this event, any size of gear of the same pitch will mate properly 
with the rack. The method of describing the respective faces and 
flanks of the rack and pinion teeth are shown to the left in Fig. 289, 
the complete rack and pinion being shown to the right. Since a rack 
must be of limited length, the motion transmitted must be reciprocating. 

134. Internal Cycloidal Gears. In mating spur gears so far con¬ 
sidered, the parallel axes of the pitch cylinders or pitch circles were 

located on opposite sides of the pitch point, the pitch circles making 
contact externally. Such gears are referred to as external gears. Where 
the centers of the pitch circles arc on the same side of the pitch point, 
the pitch circles make contact internally, and the gears are called 
internal gears. Such a pair of mating gears is shown in Fig. 290; the 
enveloping gear, only a part of which is shown, is sometimes referred 
to as an annular gear. 

As shown in Fig. 290, the tooth profiles are described in the same 
manner as those for external gears. The result, however, is somewhat 
different. In external gears, epicycloidal faces mate with hypocycloidal 
flanks, while in internal gears, the mating faces and flanks are either 
both epicycloids or both hypocycloids. If the diameters of the pitch 
and describing circles are not properly related, the faces of the teeth 
of the pinion and gear may interfere, or foul, as the pinion teeth enter 
and leave the tooth spaces of the gear at k and l 
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Reference must be made to the double generation of the epicycloid 
and the hypocycloid to determine whether or not the active and inactive 
faces of internal cycloidal gears will interfere. The faces of the pinion 
teeth of Fig. 290 were generated by rolling the describing circle 4 on 
the outside of the pitch circle of /. The face ac of the pinion tooth of 
Fig. 291 was generated in a similar manner by rolling 4 from a to the 
left on /. The face ac may also be generated by rolling the enveloping 
circle 4* to the left from a to P on t, provided R\y the radius of 4\ is 
equal to the sum of the radii R\ and TrU. Since 4' lies between the pitch 
circles 1 and 2, it is called the intermediate describing circle of the pinion. 
The face bd of the tooth on 
the gear was generated by 
rolling the describing circle 3 
from b to the right, on the 
inside of 2, arc Pb having 
been taken equal to Pa. 
The face bd may also be 
generated by rolling the cir¬ 

cle 3' to the right from b 
on the inside of 2 provided 
Ii3'f the radius of 3\ is 
equal to the difference be¬ 
tween the radii Ro and R%. 
Since 3' lies between the pitch 
circles 1 and 2, it is called the 
intermediate describing circle 
of the gear. If, as in Figs. 290 
and 291, the intermediate 
describing circle of the pinion is smaller than the intermediate describing 
circle of the gear, the faces of the pinion teeth will not touch or foul 
the faces of the teeth of the gear as the pinion teeth enter and leave the 
tooth spaces of the gear. If, as in Fig. 292, the intermediate describing 
circles 4' and 3' are of the same radius, the faces of the pinion and 
gear teeth will touch but will not foul. Only in this case is the path 
of contact extended beyond that given by the describing circles 3 and 4. 
The active and inactive faces of the teeth of the pinion and gear will, 
however, fbul, if, as in Fig. 293, the radius Rr of the intermediate 
describing circle of the pinion is greater than 7?3', the radius of the 
intermediate describing circle of the gear. Hence, if the active and 

inactive faces are not to touch or foul, 

(Ri + Ra) must be less than (R2 — R3) . ♦ . (209) 
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If the describing circles 3 and 4 are of the same size, then 

(#3 = R4) must be less than \ (R2 — R\) . . (210) 

135. Pin Gears. In Fig. 294 a generating circle having a diameter 
equal to the pitch diameter of 2 is used for pitch circles 1 and 2. A 
point on this generator will describe an epicycloid if rolled on the outside 
of lf and the hypocycloid described on 2 by the same generator will be 
a point. Obviously, if the epicycloid could act on a mere point, the 
motion transmitted would be equivalent to the rolling of the pitch 
circles. 

For clockwise rotation of /, action will cease at c where the addendum 
circle of 1 intersects the generating circle, which is also the pitch circle, 

of 2. Hence, arc Pc is the 
path of contact, also the arc 
of action. Since Pc is 
greater than the pitch arc, 
action will be continuous. 
If the circular pitch and the 
relation of the pitch circles 
were such that point d would 
fall on the generating circle, 
the ratio of the arc of action 
to the circular pitch would 
be unity, the theoretical 
limit for continuous driving. 
So long as d falls within the 
generating circle, continuous 
driving is assured. It is to 
be noted that with 1 as the 
driver the entire action is in 
recess, and with 2 'as the 

driver it is in approach. Since action is smoother during recess than 
approach, it is always more satisfactory to have the pin gear the follower. 

To get actual driving it is necessary to fit gear 2 with pins of sensible 
diameter, as indicated in Fig. 294. The tooth profiles of 1 then become 
curves parallel to the epicycloids, the curves being tangent to a series of 
arcs having a radius equal to the radius of the pins and drawn from 

centers in the epicycloids. In the figure these curves are shown dotted. 
The common normal Pe intersects the tooth profile at /. If the dotted 
tooth profiles are topped off by an arc through / from center Oi, the pin, 

whose center is at ey would be just quitting action. If it can be assumed 
that the pin whose center is at P is just coming into action, then the 
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arc of action would be equal to the circular pitch and continuous driving 
theoretically possible. This condition would not, however, obtain, 
since the dotted profile parallel to the epicycloid would not make contact 
with the pin until its center had passed the pitch point, P. 

The points on the profiles are at the ends of normals to the epicycloids, 
the length of the normals being equal to the radius of the pins. If one 
end of a line equal to the radius of the pins is moved along while re¬ 
maining normal to the epicycloid, the other end will trace the profile 
curve desired. Since this moving radius will first be tangent to the 
pitch circle at P, the first point on the curve will lie outside of the pitch 
circle on this tangent. As the radius is moved outward from P along 
the epicycloid, the tracing end of the moving radius will at first move 
inward and then outward forming a cusp inside the pitch circle. As 
only one branch, the outward branch, of the traced curve can be used 
as the tooth profile, contact with the pin cannot begin with the pin 
center at P. The angle of approach, which is small in any event, is 
thereby reduced, also the arc of action. Whether or not practical 
conditions for continuous driving exist can only be determined graph¬ 
ically. 

In Fig. 295 is shown a construction for determining the size of pin 
and conditions for continuous driving. The point B of the epicycloidal 
tooth must fall within the generating and pitch circle 2 as shown, and 
the radius of the pin must be made less than CD, D being the inter¬ 
section of the normal CP with the radial line 0\B. If the radius of the 
roller were taken equal to CD, the tooth point would be at D and there¬ 
fore just quitting contact with the pin. Draw from E a line EF normal 
to the epicycloid AB. An arc through F with 0\ as a center determines 
G, the position of the pin center when the tooth profile is quitting contact 
with the pin. Point H is where the outward branch of the parallel 
curve, traced as explained above, cuts the circumference of the pin 
whose center is at P. Line IIJ is the moving radius normal to the 
epicycloid at J. An arc through J with 01 as a center intersects the 
generating circle 2 at K. When J has moved to K the pin will be in 
contact with the profile HL at II. If KG is less than PC, the radius 
of the pin is too large; if it is equal to or greater than PC, the radius 
of the roller is satisfactory. When KG is greater than PC the tooth 
ME may be topped off. 

Pin gears may be two mating gears as shown in Fig. 294, or they 
may be in the form of a rack and pinion, or they may constitute a pair 
of internal gears. In any event, as before pointed out, the follower 
and not the driver should be fitted with pins for smoothest action. 
Such gears are very little used except for instruments and clockwork. 
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136. Involute Spur Gear Teeth. In Fig. 296 a line ab is shown 
tangent to the two base circles, 1 and 2, having their centers at Oi 

"and 02, respectively. If the tangent line were pulled to the right with 
pure rolling between it and the base circles, the base circles would be 
rotated through equal arcs of a length equal to the distance moved by 

the tangent line, the motion of the base circles being the same as though 
they rolled together in contact. If a thin band ran from the periphery 
of 2 to the periphery of 1, counter-clockwise rotation of 2 would cause 
the same relative motion of 1 and 2. During this motion any point 
such as g on the moving straight line would trace an involute curve cd 

on 1 and an involute ef on 2. This can be shown by parting the line 

ab at any point such as g and considering the relative motion between 
a straight line and a circle. Rolling a straight line on a stationary circle 
gives the same relative motion between the line and the circle as rotating 
the circle and having the straight line move in a fixed straight path 
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as though the pitch line of a rack. Hence, with 1 stationary, the rolling 
of ga on it gives the same relative motion between the line and circle 

as before. Obviously the free end of the rolling straight line ga will 
trace the involute cd on 1, and the free end of gb will trace the involute 
ef if rolled on 2. At the instant shown, a is the instant center of ga 
and b the instant center of gb. The direction of motion of the free end 
of each segment is therefore perpendicular to ah; the involutes being 
described are tangent at g; and the line ab is their common normal. 
Hence, with cd and cf as the respective tooth profiles of 1 and 2> the 
common normal will, at any instant, be tangent to the base circles and 
will cut the line of centers at the fixed point P. The involute curves 
therefore fulfill the fundamental requirement for tooth profiles and will 
transmit motion from one wheel to the other equivalent to the pure 
rolling of the base circles. The constant angular velocity ratio of the 
motion transmitted is not only inversely as the radii of the base circles 
but also inversely as the segments into which the line of centers is cut 
by the.common normal. Hence the motion transmitted is also equiv¬ 
alent to the rolling together of the two nominal pitch circles P and 2\ 

Since the common normal through the point of contact of involute 
profiles is always tangent to the base circles, it follows that the point 
of contact must follow this tangent line. The beginning of contact is 
where the addendum circle of the driven gear intersects the tangent 
to the base circles, and the end of contact is where the addendum circle 
of the driver intersects this tangent. The path of the point of contact 
is therefore that portion of the tangent line between these two points. 

137. Action of Involute Spur Gear Teeth, (a) Path of the Point of 
Contact. It was shown in the preceding article that the point of 
contact of involute teeth travels along a line tangent to the base circles. 
It is therefore evident, as shown in Fig. 297, that ab is the maximum 
length possible for the path of contact. For contact to begin at a 
and end at b, the addendum radii of 2 and 1 would have to be O^a and 
Oiby respectively. For the pitch and the distance between centers and 
the base circles chosen, this maximum length cannot be realized. 
Assuming that 1 acts as the driver, that 2 and / are to have 12 and 20 
teeth, respectively, and that the teeth are carried to a point, contact 
would begin at m and cease at n; as for any kind of teeth, contact 
begins where the addendum circle of the driven wheel intersects the 
path of contact, and contact ceases where the addendum circle of the 

driver intersects the path of contact. 
(6) Arc and Angle of Action. The profiles of a pair of mating teeth 

in contact at m at the beginning and at n at the end of action are shown 
dotted. The dotted profiles cmd, c'P, and c"dnn are traced by points 



ACTION OF INVOLUTE SPUR GEAR TEETH 247 

m, Pj and n as ab is rolled on i, and the dotted profiles e"nf"f e'P, and 
efm as ba is rolled on 2. Evidently dd" and ff" are the respective pitch 

arcs turned through by gears V and 2f during action between a pair of 
mating teeth, and are, therefore, the arcs of action. Accordingly dP 
and Pd" are the respective arcs of approach and recess of /', and fP 
and Pf" the respective arcs of approach and recess of 2'. Since the action 

of mating gears is equivalent to the rolling of the base or pitch circles, 
it follows that the respective arcs of action, approach, and recess 
are equal. Hence dd" = //", dP = fP, and Pd" = Pf". The angles 
of action, approach, and recess of either the driver or the follower are 
the angles corresponding to the arcs of action, approach, and recess. 
The respective angles of approach and recess are ft and ft' for and 
ft and ft' for 2'. 

(c) Angle of Obliquity and Pressure Angle. The angle of obliquity a 
is the angle between the common normal and a line through the pitch 
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point perpendicular to the line of centers. This angle for involutes is 

constant since the path of contact follows the tangent to the base 
circles. Since the obliquity increases the pressure between the teeth 
and at the bearings, the angle of obliquity should be no greater than 
that required for satisfactory and continuous driving. For involute 
teeth this angle is constant during action, and about 30 degrees has 
come to be regarded as the permissible maximum. Neglecting the 
friction of sliding, the ^pressure between the teeth will act along a line 
tangent to the base circles. Hence the pressure will be equal to that 
corresponding to the torque to be transmitted divided by the cosine 
of the angle of obliquity. The per cent increase in the pressure due 

to the obliquity will therefore be 100 (-lY which equals slightly 
\cos a / 

less than 15.5 per cent for an angle of 30 degrees. 
As before pointed out, the effect of the friction of sliding between 

the teeth is to make the pressure angle' greater than the angle of ob¬ 
liquity during approach and less during recess. This, to some degree, 
accounts for the action being smoother during recess than during 
approach. The principal reason for the smoother action, as before 
mentioned, is the difference in the direction of sliding between the teeth 
during approach and recess. During approach, the teeth, while sliding 
on each other, are pushing into mesh, while during recess they are 
drawing out of mesh. Gears would therefore be more efficient and 
durable if the action were confined to recess. However, continuous 
driving and other requirements will often make such a limitation of 
action, at least for straight spur gears, either impossible or undesirable. 
As before stated, the best tooth proportions for any given conditions 
of operation are generally a compromise between requirements and 
possibilities. 

(d) Base Pitch. The base pitch, pb, is the distance, measured on 
the base circle, from a point on one tooth to the corresponding point 
on the next tooth. In order to run together, it is a fundamental re¬ 
quirement of involute gears that they have the same base pitch. As 
pointed out in Art. 128, it is the constant normal distance between 
adjacent involute profiles. In terms of the number of teeth N and 
the radius of the base circle 5, the base pitch is, 

Vb = 

2ttB 

N 
(211) 

But B in terms of the pitch circle radius R and the angle of obliquity a is, 

B = R cos a 
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Substituting in (211) and solving gives pb in terms of the circular pitch 
pc and the angle of obliquity a: 

Vo 
2ttR cos a 

Pc cos a (212) 

(c) Continuous Driving and Length of Teeth. For continuous driving 
one pair of teeth must come into action before the preceding pair goes 
out of action. This means that the ratio of the arc of action to the circu¬ 
lar pitch or the ratio of the length of the path of contact to the base 
pitch should be greater than unity. -As before stated, this ratio, called 
the contact ratio, should be, if possible, 1.40 or more for durability 
and quiet running in the transmission of any appreciable amount of 
power. The nearer this ratio approaches unity, the higher the degree 
of accuracy required in the tooth profiles to secure quiet running. For 
this reason 1.20 should be regarded as a minimum value for this ratio. 
For the wheels shown in Fig. 297, where the angle of obliquity is 30 
degrees, this ratio is almost 1.45. 

It is evident by inspection of the figure that the longer the teeth 
the greater will l^e the length of the path of contact and the greater 
the number of pairs of teeth in action. Since, for involutes, contact 
cannot extend within the base circles, the longest teeth possible are 
fixed by the points a and b where the line of action is tangent to the 
base circles. The largest possible size of addendum circles would there¬ 
fore pass through these points, and the teeth of each gear could be 
made of corresponding length, provided, for the number of teeth desired, 
the teeth did not come to points within these circles. 

138. Distance between Centers of Involute Spur Gears. One of 
the most valuable properties of involute profiles for gear teeth is that 
the distance between centers of mating gears may be varied without 
changing the value of the angular velocity ratio or its constancy. This 
property, which is peculiar to involute gears, is very valuable in the 
design and building of machines. It provides tolerance in building, 
and makes it possible to have change gears function properly without 
exact adjustment of the center distances. It also permits, where re¬ 
quired, a change in the center distance while in operation. For a pair 
of cycloidal gears, there is only one theoretically correct distance 
for which they will transmit motion at a constant angular velocity 
ratio. 

In Fig. 298 the involutes for the base circles 1 and 2 are shown in 
contact at g in the common tangent or path of contact ab. If the center 
Ox of base circle 1 is moved to O'i, the base circle moving to 1', the 
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common tangent or path of contact becomes a'V. Since the diameters 
of the base circles have not been changed, the involutes have not been 
changed. The new point of contact of the involutes is, therefore, at 

gf where the involute of 
2 intersects the path of 
contact a'b'. The common 
normal for the first position 
of the base circles cuts the 
line of centers at P, and 
for the second position at 
P\ It is evident by in¬ 
spection that triangles 
PO\a and POzb are simi¬ 
lar, likewise P'O'ia' and 
P'02V. Hence, 

O2P 02b 

07a 
and 

02P' 02V 

0'iP' ~ 0\a! 

But Ozb' = 02b — Bz and 
0\a' = Oia = B1; whence, 

O2P Bz 

OtP^Ji 
and 

OzP' Bz 

0'iP' ~ B\ 

(213) and (214) 

Since the angular velocity ratio of two mating gears is inversely as the 
segments into which the line of centers is cut by the common normal, 
it follows from (213) and (214) that the angular velocity ratio of the 
involute gears in Fig. 298 is the same in the second as in the first position. 
Hence, 

on O2P OzPf Bz 

^ = OxP = 0\Pf = Bi 

The angular velocity ratio of mating involute gears is therefore deter- 
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mined by the diameters of the base circles and not by the distance 
between centers. 

It is to be noted that as gear 1 is drawn away from gear 2, the angle 
of obliquity, the diameters of the pitch circles, the circular pitch, and 
the backlash are increased. Since the length of the path of contact, 
and therefore the arc of action, are determined by the intersection of 
the addendum circles with the common tangent, it is also to be noted 
that the path of contact is reduced as the gears are drawn apart. The 
proportions of the teeth and the conditions for positive driving therefore 
determine how far apart a pair of mating involute gears may be drawn. 
Theoretically they may be drawn apart until the ratio of the path of 
contact to the base pitch is reduced to unity. The minimum distance 
between centers is that which will give zero backlash. 

139. Interchangeable Involute Spur Gears. It is evident from the 
preceding discussion that, for any given angular velocity ratio and 
distance between centers, the diameters of the base circles are fixed 
by the angle of obliquity desired. Only when this angle is fixed is there 
a definite relation between the pitch and base circles. 'For a given angle 
of obliquity, any two gears of a set of gears of the same pitch will mate 
properly, provided all of the gears of the set have the same addendum 
and a tooth thickness equal to one-half the circular pitch. Hence, 
for interchangeability, involute gears of the same 'pitch must have the same 

angle of obliquity, the same addendum, and a tooth thickness equal to one- 

half the circular pitch. 

In fixing the proportions of interchangeable involute gears, the angle 
of obliquity and the addendum must be so chosen that the smallest 
gear of the set will mesh with a rack without interference, and that a 
pair of the smallest gears of the set will mesh and drive continuously. 
As will be shown, a pinion that will mesh with a rack without inter¬ 
ference will mesh without interference with any other gear of the 
set having an equal or larger number of teeth than itself. It will 
also be shown that if a pair of the smallest gears of a set will drive 
continuously, any other pair of gears of the same pitch will drive con¬ 

tinuously. 
140. Involute Rack and Pinion. The involute described by a 

straight line rolling on a circle more and more nearly approaches a 
straight line as the radius of the circle upon which it rolls is increased, 
the involute becoming a straight line for a circle of infinite radius. 
Hence, the involute profiles of the teeth of a rack, since a rack is a portion 
of a gear of infinite radius, are straight lines. Since, for involute teeth, 
the common normals during action coincide with a line through the 
pitch point tangent to the base circles, the straight-sided rack tooth 
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profiles must be perpendicular to this common normal. As the angle 
between the common normal and the pitch line of the rack is the angle 
of obliquity a, the straight-sided rack tooth profiles will be at an angle 
of (90 — a) with the pitch line of the rack. The rack and pinion shown 
in Fig. 299 were drawn for an angle of obliquity of 22\ degrees. 

141. Interference. Since the involute curve begins at the base 
circle, no involute action can take place within the base circle. Hence, 

for two pitch circles, the points of tangency of the line of obliquity 
with the base circles determine the maximum addendum for each of 
the pair to work together without interference. Thus, for the rack 
and pinion in Fig. 299, point a, for a given angle of obliquity a, fixes 
the maximum addendum for the rack. The addendum assigned to 
the pinion fixes point b. For interchangeable gears, the addendum of 
the pinion is made the same as that of the rack. 

From the base circle inward the flanks of the pinion teeth in Fig. 299 
were made radial. If the addendum of the rack teeth in Figr 299 were 
paade greater than shown, there would be interference, and action 
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between the rack and pinion would be impossible without undercutting 
the pinion teeth as shown in Fig. 300. The path of the corner of the 
rack tooth which determines the outline of the undercutting of the 
pinion teeth may be obtained by rolling the pitch line of the rack on the 
pitch circle of the pinion. It is to be noted that the extended rack tooth 
would cut away the flank for a certain distance outside as well as inside 
of the base circle. Hence, besides weakening the teeth, undercutting 
reduces the arc of action. For these reasons excessive undercutting is 
to be avoided. 

It is evident by reference to Fig. 299, that if a gear of finite radius 

had the same addendum as the rack and were to mesh with the pinion, 
action would begin at a point on the line of obliquity nearer P than a. 

Hence, if the number of teeth on the pinion is such that it will mesh 
with a rack without interference, it will mesh without interference 
with any other gear having the same or a greater number of teeth than 

itself. It is also evident, for a given rack tooth addendum, that the 
number of teeth must be such that action will begin at a or between P 

and a if interference is to be avoided. Referring to Fig. 299, 

Jl 
(Pa) , . v'c 

sm a = ——— and sin a — —— 
R (Pa) 

The product of these two equations gives 

sin2 a = 
k 

Rp’c 
(216) 
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But p'c in terms of the number of teeth N and the pitch radius R of the 
pinion is 

Substituting this value of p'c in (216) and solving for N gives 

2k 
N = —— .(217) 

sin- a 

By the use of equation (217) the smallest number of teeth for a pinion 
that will mesh with a rack without interference can be determined for 
any given addendum and angle of obliquity. Solving (217) for k gives 

k = 
N sin2 a 

2 
(218) 

By use of equation (218), the maximum addendum for non-interference 
can be determined for any given angle of obliquity and number of teeth 
on the pinion. For Fig. 299, where the pinion has 12 teeth and the 
angle of obliquity is 22| degrees, k equals 0.878. 
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142, Duration of Contact. Not only must involute gears be free 
from interference, but the duration of contact must be sufficient to 
insure continuous driving; that is, one pair of teeth must come into 
contact before the preceding pair goes out of contact. This means t^iat 
the ratio of the base arc of action, or length of the path of contact, to the 
base pitch must be greater than unity. In Fig. 301, where 1 is the 
driver and 2 the driven gear, let 

B\ and B2 = the respective radii of the base circles of 1 and 2; 

R1 and R2 = the respective pitch radii of 1 and 2; 

Ei and E2 = the respective outside, or external, radii of 1 and 2; 

h , k2 
01 and a* = the respective addenda of 1 and 2 = 

Pc 
and 

a = the angle of obliquity; 

Pi = the angle of action of 1; 

ft 1 = the angle of approach of 1; 

P'\ = the angle of recess of 1; 

N1 and N2 = the respective numbers of teeth of 1 and 2; 

pij = the base pitch. 

It has already been shown that the length of the path of contact cd is 
equal to the product of the angle of action and the radius of the base 
circle, or, cd = P1B1. Hence the ratio of cd to the base pitch is the 
contact ratio n, or average number of pairs of teeth in action. Hence, 

cd 
n = — 

Vb 

Referring to Fig. 301, 

cP = ce — Pe = Vi?22 — B22 — R2 sin a 

and 

Pd = bd — bP = VEi2 - B? - Ri sin a 

Whence, 

cd == cP + Pd = Ve22 — B22 + VE? — B\2 — (Ri + R2) sin a 

Hence, 

= - = ~[Ve? - B2- +VE{2 - BS - (III + Ri) sin a] (219) 
Pb Pb 
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But from equation (212) 

als^, 

fb = pc cos a 

Ri 

w cos a 

Ni 
and i?i = Ri cos a 

N1 cos a 

2 p’c 2 p'c 

_ n2 
and B > = Ri COS oc 

N2 cos a 

2 p’c 2 p'c 

Ei — Ri + cti = r-t" + 
2 Pc 

N2 
E2 = Ri + <12 = — + 

h 

P'c 

k2 

P’c 

N i -f~ 2/bi 

2p'c 

N<2 + 2 k2 

2p'c 

Substituting the above values of pi, Bi and #2, #1 and 7^2, and 2?i and 
E2 in (219), and solving, gives 

-7Vi2-(A^i+iV2)tanaJ 

(220) 

where k\ = a\p'c and hi — aip'c. If Ni — Ni = N, and hi = k\ — k, 
equation (220) reduces to 

n — N tan a (221) 

The above equations hold where each gear of the pair has a finite number 
of teeth and where (ce — Pe) is not greater than bP nor (bd — bP) 

greater than Pe; or where (VE22 — B22 — #2 sin a) is not greater 

than R\ sin a nor (VE{2 — B{2 — R\ sin a) greater than R2 sin a. 

It has been shown that k must be less for a gear to mesh with a raqk 
without interference than to mesh with a gear having an equal or greater 
number of teeth than itself. Hence the maximum addendum to be 
used in the above equations is determined by equation (218) if one gear 
is to mesh with an equal or larger gear than itself without interference 
and without undercutting. 

It is to be noted that if two equal gears will drive continuously, 
either one will give continuous driving when mated with any other 
gear larger than itself. Hence, if two of the smallest gears of an inter¬ 
changeable system will give continuous driving, any pair of gears of 
the system will drive continuously. 
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143. Standard Interchangeable Involute Gear Teeth. Previous to 
1921 a committee of the A.S.M.E., appointed for the purpose, recom¬ 
mended a basic involute rack tooth form for general adoption having 
an angle of obliquity of 22| degrees. The proportions recommended 
are shown in Fig. 302. Since any two gears that will mesh with a rack 
without interference will mesh with each other without interference, 
the rack tooth proportions shown may be used as a basis for an inter¬ 
changeable system of involute 
gears. The first column of 
Table 5 gives the limits of 
such a system. It is to be 
noted that a pinion having 12 

teeth is the smallest that will 
mesh with the rack without 
interference and without un¬ 
dercutting the flanks of the /r/g 3o£ 

pinion teeth. A pair of such 
pinions will drive continuously and satisfactorily since the contact 
ratio would be 1.218. Under this system, pinions having a smaller 
number of teeth than 12 would be undercut after the manner shown in 
Fig. 300, thus weakening the teeth and somewhat reducing the duration 
of contact. Two 10-tooth pinions are, the smallest that will give con¬ 
tinuous driving, the contact ratio being 1.175. 

In January, 1927, the American Standards Association approved 
two spur gear tooth forms 

A?0*" as Tentative American 
m 77 w \ 

\ Standards. This work was 
y- j- v sponsored by the A.S.M.E. 

^ I \ / I \ / cn. and the American Gear 
A u \ | /| n A 304j Manufacturers' Association. 
j_A: 4-^A-_ _ v PcJ 1 The proportions approved for 

' ^7 the kagjc jnvoiute rack are 

^/G 303 shown in Fig. 303, and the 
proportions approved for the 

basic rack of the composite system are shown in Figs. 304 and 305. 
The limits of the A.S.A. 20-degree stub involute tooth are given 

in the second column of Table 5. It is to be noted that a pinion having 
14 teeth is the smallest that will mesh with a rack without interference 
and without undercutting the flanks of the pinion teeth. A pair of such 
pinions will drive continuously and satisfactorily since the contact 
ratio would be 1.217. Under this system, pinions having a smaller 
number of teeth than 14 would be undercut after the manner shown in 
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TABLE 5 

Comparison of Interchangeable Involute Systems 

A.S.M.E. 

22\° 

Tooth 

A.S.A. 

20° Stub 

Tooth 

Full „ 

Depth 

141° 

Tooth 

Full Depth 

A.S.A. 

Composite 
Tooth 

1 Angle of obliquity — a = 22 2 20 Hi Hi 

k 0.875 0.80 1.0 1.0 
2 Addendum = a = - 

Pc p'c P'c P'c P C 

2k 
Working depth = 2a = —- = 

1.75 1.60 2 0 2.0 
3 

Vc P'c P'c P'c p'c 

4 Minimum whole depth = ].875 , 1.80 2.157 2.157 

h = 2a + c — P'c P'c p'c p'c 

5 Minimum clearance = 0.125 0 20 0 157 0.157 

II 

C
l 1 

■<
 1! P'c P'c P'c P'c 

6 Number of teeth in smallest pinion 
to mesh with rack without inter¬ 

ference (Equation 217). 12 14 32 12* 

7 Maximum addendum for a 12-tooth 
0 878 0.7018 0.376 1.0* 

pinion to mesh with rack without 

interference (Equation 218). p'c P'c P'c 

8 Number of pairs of teeth in action 

for a pair of 12-tooth pinions hav¬ 

ing the addendum of line 7 (Equa¬ 

tion 221). Should be greater 

than unity for continuous driving 1.223 1.061 0.7392 1.375* 

9 Number of pairs of teeth in action for 

a pair of equal pinions having the 

number of teeth of line 6 and the 
addendum of line 2 (Equation 

221). 1.218 1.217 1.972 1.375* 

* Equations 217, 218, and 221 do not apply to 14$-dogree composite system. 

Fig. 300, thus weakening the teeth and somewhat reducing the duration 
of contact. Two 12-tooth pinions are the smallest that would give con¬ 
tinuous driving, the contact ratio being 1.049. By shortening the 
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addendum to 0.7018/p'c, undercutting is eliminated and the duration 
of contact slightly increased, the contact ratio being increased from 
1.049 to 1.061. 

In the third column of Table 5 are shown the limits for a full depth 
14^-degree involute system. For such a system a pinion having 32 teeth 
is the smallest that will mesh with a rack without interference and 
without undercutting the flanks of the pinion teeth. Under this system, 
pinions having a smaller number of teeth than 32 would be undercut 
after the manner of Fig. 300, thus weakening the teeth and reducing 
the duration of contact. Two 20-tooth pinions are the smallest that 
would give continuous driving, the contact ratio being n — 1.08. For n 

to be greater than unity for two mating gears, the sum of the numbers 
of teeth on the pinion and gear must be 39 or greater with the pinion 
having not less than 15 teeth. For n to be equal to or greater than 
1.40, the sum of the numbers of teeth must be 45 or greater with the 
pinion having not less than 20 teeth. By reducing the addendum to 
0.53/p'c, the number of teeth in the smallest pair of pinions to give 
continuous driving may be reduced from 20 to 17, for which n would 
equal 1.044. Hence, a strictly 14§-degree involute cannot be used as a 
basis for an interchangeable set of gears if it is desired to have? a 12-tooth 
pinion as the smallest gear of the system. In general the full depth 
14^-degree involute system is best adapted to large gears having 40 teeth 
or more, while the 20-degree stub tooth system is best adapted to gears 
having a small number of teeth. 

In the 141-degree composite system, which adopts the 12-tooth 
pinion as the smallest gear of the set, the tooth profile of the basic rack 
is a combination of involute and cycloidal curves. The last column of 
Table 5 gives the limits of the A-S-A. 14|-degree composite system. In 
Fig. 304 the line bPc is drawn at an angle of 14| degrees with the pitch 
line 2 of the rack, circle 1 being the pitch circle of a 12-tooth pinion 
with its center at 0\. The corresponding base circle 8 is tangent to line 
bPc at c. Since there can be no involute action beyond c, the distance ce 

is the maximum addendum of a 14|-degree involute rack tooth, the 
computed value for which, as before mentioned, is 0.37614/p'c. Since 
PcOi is evidently a right triangle, point c lies on a circle, 4, having a 
diameter equal to the radius of the 12-tooth pinion. Hence, if kl is 
described by rolling 4 on pitch line 2 and fg is described by rolling 4 on 
the inside of 1, the cycloidal face kl of the rack tooth will mesh properly 
with the hypocycloidal flank fg of the pinion tooth. Beyond cy the path 
of contact, cdy would therefore follow the describing circle The flank 
mn of the rack tooth will mate properly with the face bh of the pinion 
if the flank mn is made a cycloid described by rolling 5 on pitch line 2y 
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and the face bh is made an epicycloid by rolling 5 on the outside of 1. 

The rack tooth profile is therefore cycloidal from n to in, involute from 
m to fc, and cycloidal from k to l\ while the pinion tooth profile is hypo- 

cycloidal from g to /, involute from / to b, and cpicycloidal from b to h. 

With the diameter of 4 equal to the radius of 1, the hypocycloid fg 

becomes a radial line. If the rack tooth is to be basic for an inter- 

F!G. 305 

changeable system of gears, the generating circle 5 must be made equal 
to 4) in which case the path of the point of contact abPcd becomes 
symmetrical with respect to the center line OiP. It is in the above 
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manner that the basic rack of the 14 ^-degree composite system as shown 
in Fig. 305 was derived. In the figure the radii and the location of the 
centers are given that would very accurately approximate the true 
cycloidal faces and flanks of the rack. 

It is to be noted that the rack as shown in Fig. 305 is basic for an 
interchangeable system of gears having 12 or more teeth. It is not 
basic for gears having less than 12 teeth, since for such gears the gener¬ 
ating circle 4 would intersect the 14^-degree line beyond the point of 
tangency with the base circle of the pinion. It is also to be noted that 
with this system the distance between centers must be accurately 
maintained. If the gears are drawn apart, the duration of contact 
for the transmission of motion at a constant angular velocity ratio is 
shortened to that corresponding to the involute portions of the profiles. 

Besides the systems above mentioned then; is the 20-degree standard 
involute stub-tooth system of the Fellows Gear Shaper Company, in 
which the addendum and clearance for the teeth of a gear are determined 
by the use of a larger diametral pitch than that used to determine the 
circular pitch and number of teeth. Their standard pitch designations 
are as follows: |, |, y, £, i, u>, ft, }°, and [j. For each designation, 
the; numerator is to be used to determine the circular pitch and number 
of teeth, and the denominator used to determine the addendum and 
clearance of the teeth. Thus a tooth of 4 diametral pitch would have an 
addendum of unity divided by 5 and a clearance of 0.25 divided by 5. 
In a similar manner an 8 diametral pitch tooth would have an addendum 
of TV or 0.10 in. and a clearance of 0.25/10 or 0.025 in. 

144. Specific Sliding and Velocity of Sliding. Two equal involutes 
1' and 2' are shown in Fig. 306, e and e’ being the coincident points of 
contact. Points a, b, c, etc., on V and a', 5', c'f etc., on 2’ correspond 
to equal divisions of the equal base circles 1 and 2. It is evident from 
the process of generation that the radius of curvature at any point on 
an involute is equal to the length of the generating line from the point 
on the involute to the point of tangency on the base circle. It is to be 
noted that the radius of curvature, which for either involute in Fig. 306 
is zero at the origin a or g', increases at a less and less rapid rate as the 
generating line is rolled on its base circle. The ratio of the radius of 
curvature at b to that at a is infinite; at c it is twice that at b; at d it 
is 1.5 times that at c; etc. In other words, the farther the portion of 
an involute is from the origin the less sensitive it is; and the nearer the 
portion is to the origin the more sensitive it is as to form and the more 
difficult it is to produce with acceptable accuracy. The active portions 
of gear tooth profiles should therefore be no nearer to the base circle 

than is absolutely necessary. 
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As curve 2' acts on V, the portion e'd' will roll and slide on portion 

ed, d'c' on dc, c'b' on cb, andi'a' on ba. As these corresponding portions 
must act together, the amount of sliding between any two will be their 

difference in length. Hence there is more sliding between b'a' and ba 
than between b'c' and be, and more between b'c' and be than between 
c'd' and cd. The distance that b'a' slides on ba or that ba slides on b'a', 

F/G. 306 

is the difference in the lengths of the two portions of the curves. Since 
ba is much shorter than b'a', each element of ba is exposed to much more 
sliding and wear than b'a', or, contrarywise, each element of b'a' is 
exposed to much less sliding and wear than ba. The measure of this 
action is called the specific sliding. Thus the specific sliding of 2' on 1' 

for the portions b'a' and ba is and the specific sliding of I' on 
ba-bW- ba 

2 18—zn— b a 
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In Fig. 307 points ci and cz are the coincident points of contact of 
the involute tooth profiles of a pinion and gear having their centers 
at Oi and O2, respectively. In Fig. 307, let 

N1 = the number of teeth on the pinion; 
N2 = the number of teeth on the gear; 
It 1 — the pitch radius of the pinion; 
R2 = the pitch radius of the gear; 
B1 = the radius of the base circle of the pinion; 
B2 = the radius of the base circle of the gear; 

a — the angle of obliquity; 
Pi = b\C\ = the radius of curvature of the involute of 1 at c\\ 
P2 = boC2 = the radius of curvature of the involute of 2 at ('2; 
>Si = the specific sliding on the pinion tooth; 
S2 = the specific sliding on the gear tooth; 
V\ = the velocity of sliding on the pinion tooth; 
V2 = the velocity of sliding on the gear tooth; 

If the pinion is displaced an infinitesimal angle 1, the angular dis¬ 
placement of the radius of curvature pi will be the same. The cor¬ 
responding displacement of the gear and P2 will be dfa. Hence, 

arci = p\d<t>i and arci = P2d(f>2 
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But, since the action of the pinion and gear is equivalent to the rolling 
of the base circles, 

Hence, 

d(j>2B2 = and 
ft 
B> 

Ni 

N2 

d<f> 2 — dcf) i 

The specific sliding Si on the pinion tooth is, therefore, 

arc\ — arc 2 Pid(f>\ — p2d(j>2 
Si 

arc i 

Pid<f>i — P2d(f>] 

p\d(j> i 

Ni 

N >/ piA^2 — P2N i 

Pid<f> 1 P1N2 
(222) 

and the specific sliding S2 on the gear tooth is 

a arc‘2 — arc 1 P2N1 — P1N2 
S'2 — = ~ 

arc2 P2N1 
(223) 

It is to be noted that for contact at 7>i, pi = 0. Substituting this value 
of pi in (222) gives the specific sliding on the pinion as — 00 , and sub¬ 
stituting in (223) gives the specific sliding on the gear as unity. For 
contact at 62, P2 = 0, which, when substituted in (222), gives the 
specific sliding on the pinion as unity, arid a specific sliding on the gear 
of — 00 when substituted in (223). For contact at the pitch point P, 

pi = Pi tan a and P2 B2 tan a = B\ 
N2 

Ni 
tana, which, when sub¬ 

stituted in (222) and (223), gives a specific sliding of zero on the pinion 
and on the gear. For contact at P, there is, therefore, pure rolling 
between the tooth profiles. 

Since rack tooth profiles are straight, equal angular displacements 
of the pinion mean equal portions of the rack tooth profiles. Also, since 
the specific sliding for contact at the pitch point is zero, the profile 
arcs of the teeth of the pinion and rack are equal for such contact. 
Each portion of the rack tooth profile may therefore be taken equal to 
the portion of the pinion tooth profile for contact at the pitch point, or 

arc2 = pidffri = B\ tan ad(j>\ 

Substituting this value of arcs in (222) and (223) will give the expressions 
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for the specific sliding on the pinion and on the rack. Thus, for a rack 
and 'pinion. 

Si = 
pid^i — B\ tan adcf)i 

pid<t>i 

Pi — B\ tan a 

Pi 
(224) 

and 

& 
Bi tan a d<f>\ — p\d(j>i B\ tan a — pj 

#i tan a d<j>i B\ tan a 
(225) 

The velocity of sliding may be found by applying the velocity vector 
method as in Art. 130 and as shown in Fig. 308, or it may be found from 
the specific sliding Si and $2. From Fig. 308 the velocity of sliding 
on the pinion, Fw is represented in magnitude and direction by the 
vector C-1C2, and the velocity of sliding on the gear, VClC2, by the vector 
C2C1. The velocity of sliding on the pinion and on the gear may also 
be found by multiplying the respective values of the specific sliding, 
by the tangential component of the velocity of c.\. Since Bi and pi 
have the same angular velocity, the tangential component of the velocity 
of ci is to that of bi as pi is to B\. Taking Vp as the pitch line velocity 
and Vbl as the velocity of b\, then 

y _V«! Vp COS a 

and the tangential component V of the velocity of Ci becomes 

V = Vbl~ = Vr cos a .... (226) 
Bi B\ 

Multiplying (222) by the value of V from (226) gives the velocity of 
sliding, Fi, on the pinion, or 

= n&r1) ■ ■ ■ <227> 

and multiplying (223) by the value of V from (226) gives the velocity 
of sliding V2 on the gear, or 

V’-V'C • ■ • <s®> 

Remembering that B1N2 = R2A1, it is to be noted that Vi and V2 are 
equal in magnitude but opposite in sign. In a similar manner, V\ and 
V2 for a pinion and rack may be obtained by multiplying (224) and 
(225) by the value of V from (226). 

145. Non-Interchangeable, or Unequal Addendum, Involute Gears. 
For interchangeability, as was shown in Art. 139, involute gears of the 
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same pitch must have the same angle of obliquity, the same addendum, 
and a tooth thickness equal to one-half the circular pitch. Under any 

given interchangeable system, this merely means that the teeth of all 
gears of a given pitch will fit and mesh properly at a distance between 
centers proportional to the number of teeth in the mating gears. If, 
in addition, the width of face and the diameter and length of the hubs 
of such gears are properly related to the pitch and number of teeth, 
the gears are reduced to the status of standardized commercial parts. 
While there is a considerable field for such gears, there are many situ¬ 
ations where such gears cannot be used. The reason for this is that the 
service requirements are often such as to demand gears of a given pitch 
and number of teeth which differ widely in the bore, diameter, length, 
position, and form of the hubs, if not to differ in other respects. This 
can be verified by the inspection of the gears of almost any machine. 
There are, however, certain advantages in cutting the teeth of gears 
to an interchangeable system even though the gears are not otherwise 
interchangeable. The principal advantages are ease and convenience 
in calculations and economy in tools, especially if formed milling 
cutters are used to cut the gear teeth. To secure these advantages, 
there are certain disadvantages that must be accepted. A sufficiently 
large angle of obliquity must be chosen to permit the smallest gear of 
the set to mesh with the basic rack without interference and without 
undue undercutting. This means a greater angle of obliquity for the 
smaller gears than is necessary or desirable for the larger gears of the 
set. Thus an angle of obliquity of 20 degrees, while satisfactory for 
gears having a small number of teeth, is larger than necessary for gears 
having 40 or more teeth. The requirement of a fixed relation between 
the addendum and the pitch also mitigates against realizing to the 
greatest degree the advantages of the involute form of tooth profile. 
To realize to the fullest extent the benefits of this form of profile, we 
must be free to choose for each pair of mating gears the most suitable 
angle of obliquity and tooth proportions. For gears that are not other¬ 
wise interchangeable, there can be little objection to proportioning the 
teeth on a non-interchangeable basis. By so doing, mating pairs of gears 
have been designed to run satisfactorily at higher pitch line velocities 
than is possible for gears whose teeth are on an interchangeable basis. 
If proportioning teeth on a non-interchangeable basis meant a special 
cutter for each gear to be cut, it would, of course, be prohibitive; but, 
as will be shown, any cutter used to generate standard equal addendum 
teeth may be used to generate unequal addendum teeth. Thus a hob 
or a pinion-shaped or a rack-shaped cutter may be used. 

In Art. 144 it was shown that the nearer the active portion of a tooth 
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profile is to the base circle the more sensitive it is as to form and the more 
difficult it is to produce with acceptable accuracy. It was also shown 
that to reduce wear the specific sliding should be as low as possible 
These advantages can be secured by varying the angle of obliquity 
and tooth proportions to suit the number of teeth of the mating gears. 
For doing this either one of two methods may be followed: the addendum 
and angle of obliquity may be varied without changing the pitch and 
distance between centers; or the pitch and distance between centers 
may be varied as well as the addendum and angle of obliquity. The 
first is called the range cutter method and the second the variable center 
distance method. 

146. Range Cutter Method for Non-Inter changeable Gears. An 
interchangeable system requires only one generating cutter for each 
pitch. The first method mentioned above would require a series of 
generating cutters for each pitch with the addendum and angle of 
obliquity of each cutter selected with due regard to the reduction of the 
specific sliding and the sensitiveness of the tooth profiles. Because of 
the number of cutters required, this method of solving the problem, so 
far as the writer knows, has not been used commercially. What an 
orderly solution on this basis would mean is indicated by Table 6, the 
data for which were taken from “Spur Gears”* by Earle Buckingham. 
It is to be noted that five different angles of obliquity and three different 
proportions for the addendum are proposed for gears having ten or more 
teeth. This would mean five different generating cutters for each pitch; 
that is, five hobs or five pinion or five rack-shaped cutters for each pitch. 
While gears cut with one cutter would not be interchangeable with 
those cut with any other cutter of the set, the gears cut by each cutter 
would be interchangeable within the range of the sum of the numbers 
of teeth for mating gears given in the table. Under a non-interchangeable 
system organized in accordance with Table 6, all gears would have the 
same pitch and tooth thickness, and the distance between the centers 
of any two mating gears would correspond to the pitch and number of 
teeth in the gears as for interchangeable 'gears. Thus a pair of gears 
of 4 pitch and 16 and 24 teeth, respectively, would, in accordance with 
the table, be cut by a 4 pitch cutter corresponding to an angle of obliquity 
of 22\ degrees. The pitch diameters of the gears would be 4 and 6 
inches, respectively, with 5 inches between centers as for 4 pitch inter¬ 
changeable gears of 16 and 24 teeth. Two 10-tooth pinions in accordance 
with the table would have a contact ratio of 1.058, and would there¬ 
fore drive positively and continuously. So far as concerns the reduction 
of the specific sliding and the sensitiveness of the tooth profiles, the 

* Published by the McGraw-Hill Book Company. 
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range cutter method gives practically as good results as the second, 
or variable center distance, method, besides making the calculations 
much more simple. 

TABLE 6 

Angle of obliquity in degrees. 25 22 i 20 17 14} 

Addendum in inches. a 
0.80 0 90 1.00 1.00 1.00 

1 V'c V'c V'c Pc v'c 

Working depth in inches. h — c 
1.60 1.80 2.00 2.00 2.00 

P'c V’c V'c p'c V'c 

Clearance in inches. c 
0.20 0 20 0 20 0.20 0 20 

p'c V'c V'c v’c V'c 

W hole depth in inches. h 
1.80 2 00 2.20 2.20 2 20 

V'c V’c V'c V'c V'c 

Smallest number of teeth in equal 

pinions. N 10 1C 21 30 40 

Range of the sum of the number of 

teeth in a pair of mating gears. Nl+Ni 20-31 32-41 42-59* 60-78t 80 

and up 

* Except that a pinion having 1.5, 16, 17, IS, or 19 teeth may mesh with a gear having 45 teeth 

or less. 
t Except that a pinion having 34, 35, 36, 37, 38, ort39 teeth may meBh with a gear having 45 

teeth or less. 

147. Variable Center Distance Method for Non-Interchangeable 
Gears, (a) General Considerations. The second, or variable center 
distance, method would vary the pitch and distance between centers 
as well as the addendum and angle of obliquity. This is possible since, 
as shown in Art. 138, the position of the pitch point and the size of the 
pitch circles depend entirely on the size of the base circles and the 
distance between centers. Any generating cutter used to cut inter¬ 
changeable gears may be used to cut such gears. The problem is to 
determine the size of the blanks, the distance between centers, and the 
proper distance from the center of each blank to the cutter. Whatever 
the form of the generating cutter, whether an involute hob or a pinion¬ 
shaped or a rack-shaped cutter, the necessary calculations are most 
easily based on the basic rack tooth form to which the cutter corresponds. 
To illustrate the method, the generating cutter will be assumed, as in 
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“Spur Gears” by Earle Buckingham, to correspond to the full depth 
14i-degree basic rack shown in Fig. 309. Since equal addendum gears 
having an obliquity of 14.} degrees are satisfactory for gears having 
40 or more teeth, the variable center distance method may be confined 
to mating gears having pinions of less than 40 teeth. Assuming the 
smallest pinion to have 10 teeth, and that it is not to be undercut, makes 
it possible to establish a regular way of varying the root radius, or the 
distance from the 
center of the blank to 
the cutter. 

(b) Relation of 

Basie Rack to Pinion 

or Gear. The relation 
of a 10-tooth pinion 
to the basic rack is 
shown in Fig. 310. 
To avoid undercut¬ 
ting, point 6 on the F/G. 3 OS 

basic rack must be no 
nearer the center line ---c 
0\c than the point a \ 
on the base circle. ^ P \ 3 jg 
Assuming this posi- ' \ ^ | $ 
tion gives a root \ i 
radius II of the \Y W ^ 

pinion of 4.48655 in. / 1 \ ^ r f 

for a nominal diame- j —tt~ 

tral pitch of unity, or rach~y\ 1 ■ 
and gives the thick- \ T~7 1 jr \ ^ 
ness of the pinion -SZ.-—J.—§£—yj_ 
teeth at the nominal 
pitch radius of 5.0 in. 
as the nominal circu¬ 
lar pitch minus t} or 1.9259 in. It might be mentioned that a pair of 
10-tooth pinions will not drive continuously since their contact ratio is 
only 0.961. For a pinion having 40 or more teeth, the nominal pitch line 
of the rack is taken, as intimated above, tangent to the pitch circle of 
the pinion. Hence, for a 40-tooth pinion having a diametral pitch of 
unity, the root radius becomes (20 — 1.20) = 18.80 in. If the rack 
were placed with b in line with a on the base circle of the 40-tooth 
pinion, the corresponding root radius H = (A — f) would be 18.5463 in., 
which is 0.2537 in. less than 18.80 in. This difference of 0.2537 in. 
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suggests a regular way of fixing the root radii of pinions having from 

10 to 40 teeth. Thus for a pinion having N teeth, the root radius //, 
for a nominal diametral pitch of unity, may be taken, 

ff-(W) + 0.2537(^f") 

/N cos2 141 \ /N 
= (-2-~ “ °-20) + 0.2537f — (229) 

The distance G from the center of the gear to the nominal pitch line of 
the rack becomes 

(? = // + 1.20 .(230) 

The tooth thickness at the nominal pitch radius of the gear becomes 

l' = - t) = r + 2(G - R) tan 14’ .... (231) 
A 

(c) Equation of the Involute. Having the tooth thickness at the 
nominal pitch radii of two mating gears, it is necessary to have the 
equation of the involute to find the angle of obliquity, the distance 
between centers, the actual pitch radii, the tooth thicknesses at any 
other radii, etc. In Fig. 311 is shown an involute generated from a 
base circle of radius B. For a point P at any radius R: 

cos a = —.. (232) 
il 

p = B(6 + a) and p = B tan a 

Equating and solving for 0 gives, in radians, 

6 — tan a — a ... 

Also, 
(233) 

(234) 

Substituting in (233) the values of tan a and a from equation (234) 
gives the polar equation of the involute as 

(d) Pair of Unequal Addendum Gears. Fig. 312 shows two gears, 

1 and 2, in mesh for which R’i and R'2 are the nominal pitch radii, and 
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B’i and B'2 the respective base circle radii corresponding to an angle 

of obliquity = a'2 = 14| degrees. Without backlash, 

t" 1 + t"2 = Vc 
2 tK"2 

N2 
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An expression for tn2 may be obtained in a similar manner. Since 
a 2 — ol 1 and a"2 — c/'i, it should be remembered in determining tn2 

that, by equation (233), $'2 = O'l and d,f2 — 0"i. Hence, 

But, 

or, 

//r 1 2 + (0', - 0".) 

R"j __ _ Aji 

Rfr 1 ~ jVx :U,< R\ ~ Ni 

'No No 
R"2 = A’"i and R'2 = «'i — 

Ni Ni 

(238) 

Substituting those values of R."2 and R'2 in (238) gives 

^IVi 

' !”2K + 0 
. . (239) 

27r[{" 
Adding (237) and (239) and substituting —- for {t"\ + t"2) from 

(236) and solving for 6" 1 gives 

_ (I'l + ^2)iVi - grft' 

1 2R’i{Ni + N2) 

Ni 

~ + e\ (240) 

Substituting the values of 0"i and 6\ in radians from (233) gives 

tan a" 1 — a"\ 
(t\ + t’2)N 1 - 2ttR'\ 

"2 R'i(Ni + N2) 
+ (tan a'i — c/i) (241) 

The expression (tan a — a) is called the involute function of a and is 
generally written inv. a. If the value of a" 1 is to be obtained from 
equation (241) otherwise than by trial, recourse must be had to a table 
of involute functions. Such a table in increments of a minute is to be 
found in “Spur Gears” by Buckingham. 

To get the thickness tn of an involute tooth at any radius Rn having 
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the thickness i! at a radius Rf for an angle of obliquity a'} we have 
from (237) and (233), 

2Hr 
2 R 

- + (tan a — a!) — (tan a (242) 

where, by (232), cos a" — —. 

Equation (242) is also convenient in finding at what radius R" 
the thickness t" is zero, or the radius at which the tooth comes to a 
point. 

(e) Illustrative Problem. Assuming as an illustration that gears 1 

and 2 in Fig. 312 have, respectively, 12 and 30 teeth of unity diametral 
pitch, then, 

N i - 12 
R\ = 0 in. 
Hi = 5.44080 in. 
G\ = 6.64080 in. 
t'i = 1.90225 in. 

Substituting in (241) gives 
gears will act: 

* " t! tun a i — a i — 

N2 = 30 
It’s = 15 in. 
lh = 14.02885 in. (Eq. 229) 
(k = 15.22885 in. (Eq. 230) 
Vs = 1.68917 in. (Eq. 231) 

the angle of obliquity at which the two 

0.016255 or a"i = a"2 = 20° 34' 

The distance C between centers is 

C = R" i + ]{"■> = 
B'o 

cos a i cos a i 

(R\ + J2'2)coh 145 

COS a 1 
= 21.71517 in. 

or the pitch radii are 

R"i = —1-c^>14?- = 6.2043 in. R"2 = 15.5108 in. 
cos a 1 

Having and R"2, the circular pitch, by equation (236), is 

pc = 3.2485 in. 

which is seen to be 0.1069 in. greater than the nominal circular pitch 
of 3.1416 in. Subtracting the sum of the root radii from the distance 
between centers gives the whole depth of the teeth plus clearance. 
For the basic rack shown in Fig. 309 the ratio of the whole depth to 
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the whole depth plus clearance is — = Using this same proportion, 
2.4 12 

the whole depth of the gear teeth becomes 

h = U(C -Hi- H2) = 2.0584 in. 
Hence, 

Clearance — (C — Hi — H2 — h) — 0.1871 in. 

The external radii of the gears become 

Ei — Hi + h = 7.4992 in. and E2 — H2 + h = 16.0872 in. 

By equation (242) the respective tooth thicknesses of pinion and 
gear at the pitch radii R" 1 and R"2 are 

t”i = 1.8341 in. and t"2 = 1.4144 in. 

The proportions found for the above illustrative problem are summarized 
in Table 7. For any other nominal diametral pitch than unity, divide 
the linear dimensions by the desired pitch. 

TABLE 7 

Dimensions in Inches Pinion Gear 

Number of teeth. N 12 30 

Root radius. H 5.4408 14.02885 

15 5108# Pitch radius. R 6.2043 

External radius. E 7 4992 16.0872 

Whole depth of teeth. h 2.0584 2.0584 

Clearance. c 0.1871 0.1871 

Addendum. a 1.2949 0.5764 

Circular pitch. Pc 

t 
3.2485 3.2485 

Tooth thickness. 1.8341 1.4144 
Angle of obliquity. a 20° 34' 

(/) Comparison of Pairs of Equal and Unequal Addendum Gears. 

In Table 8 two pairs of equal pinions each having 12 teeth and a 
diametral pitch of unity are contrasted. It is to be noted that the 
specific sliding, particularly on the dedendum, is very much higher for 
the 20-degree standard stub tooth than for the 14|-degree variable 
center distance pinions. The latter pair of pinions would therefore 
wear much better and their active profiles could be more easily pro¬ 
duced with acceptable accuracy. These advantages more than com¬ 
pensate for the fact that the duration of contact is greater and the 
angle of obliquity less for the stub tooth than for the variable center 
distance pinions. - , 
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TABLE 8 

For Two Equal Pinions Having 12 Teeth and a 

Diametral Pitch of Unity. (Pinions having 

12-20° Stub Teeth are Slightly Undercut) 

20° Standard 

Stub Tooth 

System 

14 1° Basic Rack 

Variable Center 

Distance 

System 

Number of teeth. 12 12 

Maximum radius of curvature of active profile, 

inches. 3.8014 4 4122 
Minimum radius of curvature of active profile, 

inches. 0.3028 1.2073 
Active profile above pitch line, inches. 0.8000 0.7976 

Active profile below pitch line, inches. 

Total height of active profile, inches. 

Specific sliding on the addendum. 

0.3538 

1.1538 

+0.92 

—11.55 

0.5190 

1.3166 

+0.72 

-2.65 Specific sliding on the dedendum. 

Duration of contact in tooth intervals. 1.185 1.052 

Angle of obliquity. 20° 25°-49' 

Distance between centers in inches ... 12 12.9039 

1.8538 Tooth depth in inches. 1.80 

In Table 9 two pair of mating gears, each pair having 12 and 30 teeth, 
respectively, and a diametral pitch of unity, are contrasted. It is to 
be noted that, with respect to specific sliding and duration of contact, 

r/G. 3/3 f/G. 3/4 f/G. 3/5 

the variable center distance pair is much superior to the pair having 
standard 20-degree stub teeth. It is also to be noted that the angle of 
obliquity is about the same for each pair. 

In addition to the benefits just mentioned, varying the angle of 
obliquity and tooth proportions to suit the numbers of teeth in mating 

gears also results in teeth of stronger form. This is illustrated in Figs. 
313,314, and 315. In Fig. 313 is shown a standard 14§-degree composite 
tooth of a 14-tooth pinion of 2 diametral pitch; in Fig. 314 a standard 

20-degree stub tooth for the same pitch and number of teeth; and in 
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TABLE 9 

For a Pair of Mating Gears Having 12 and 30 

Teeth and a Diametral Pitch of Unity. 

(Pinions having 12-20" Stub Teeth are 

Slightly Undercut) 

Number of teeth on pinion. 

Maximum radius of curvature of active profile, 

inches. 

Minimum radius of curvature of active profile. 

inches.‘. 

Active profile above pitch line, inches. 

Active profile below pitch line, inches. 

Total height of active profile, inches. 

Specific sliding on addendum of pinion. 

Specific sliding on dedendum of pinion . 

20° Standard 

Stub Toot h 

System 

12 

3 8014 

0.1682 

0.8000 

0.3593 

1.1593 

+0 64 

-15 68 

14i° Basic Rack 

Variable Center 

Distance System 

12 

4.7416 

0.7086 

1.2943 

0.3522 

1.6465 

40.75 
-2 90 

Number of teeth on gear. 

Maximum radius of curvature of active profile, 

inches. 

Minimum radius of curvature of active profile, 

inches. 

Active profile above pitch line, inches. 

Active profile below pitch line, inches. 

Total height of active profile, inches. 

Specific sliding on addendum of gear. 

Specific sliding on dedendum of gear. 

Duration of contact, in tooth intervals . 

Angle of obliquity. 

Distance between centers in inches. 

Tooth depth in inches. 

30 

7.0142 

3.3810 

0.7441 

0.5048 

1.2489 

40.94 

-1.81 

1.230 

20° 

21 00 

1 .80 

30 

6.9196 

2.8866 

0.5763 

0.7039 

1.2802 

+0.74 
-3.10 

1.325 

20° 34' 

21.7143 

2.0576 

Fig. 315 a 14-J-degree variable center distance tooth for a pair of 14-tooth 
pinions of the same nominal pitch. It is to be noted that the form of 
the tooth in Fig. 314 is stronger than that of Fig. 313, and that the 
form of Fig. 315 is considerably stronger than either of the other 
two. 

So far the discussion has been with reference to mating pairs of gears 
where the pinion had 10 or more teeth. For gear trains involving more 
than two gears, there are two possible solutions. If the distances 
between centers do not have to be proportional to the number of teeth 
in the gears, then all the gears of the train may be cut by the use of a 
14^ degree cutter after the variable center distance method. If it is 

desired to have the center distances proportional to the number of 
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teeth in the gears, one of the range cutters may be selected which has 
an angle of obliquity suited to the smallest gear in the train. By this 
method all the gears of a train would have the same addendum and 

angle of obliquity; by the variable center distance method, the angle 
of obliquity of each pair would be different, and each gear of the train 
would have a different addendum. 

Two 5-tooth equal addendum pinions, to drive continuously, would 
require an addendum of 0.722 divided by the diametral pitch and an 
angle of obliquity of 32J degrees, giving a contact ratio of 1.015 tooth 
intervals. On a variable center distance basis, using a 222-degree basic 
rack, a 19-tooth gear is the smallest gear that would give continuous 
driving with a 5-tooth pinion, the contact ratio being 1.035. For the 
continuous transmission of power, as before stated, the contact ratio 
should be at least 1.20. 

While the variable center distance method using standard generat¬ 
ing cutters had previously been applied in this and other countries, 
Maag was probably the first manufacturer to produce non-interchange- 
able gears on a commercial basis that were designed to realize fully the 
possibilities of the involute form of tooth profile. The principles dis¬ 
cussed in this article are the same as applied by Maag. 

148. Strength, Wear, and Noise of Gear Teeth. The purpose of 
gears is to transmit power safely and efficiently with as little noise and 
wear as possible. The strength of gear teeth and the amount of power 
that may safely be transmitted by them are questions that await 
further experimental investigation for satisfactory settlement. 

It is evident from inspection of Figs. 313, 314, and 315 that the 
shape and strength of the teeth of gears having the same pitch and 
number of teeth, vary with the system. In addition, the shape and 
strength for any given system and pitch vary with the number of teeth 
in the gear. The factors affecting the strength of gear teeth may be 
listed as follows: 

Physical characteristics of the material; 
Pitch of the teeth; 
Shape of the teeth; 
Inaccuracies of tooth profiles and spacing causing variations of the 

angular velocity ratio resulting in more or less shock; 
Point of application of the load; 
Character of the load; that is, whether the load is steadily, or 

suddenly, or impulsively applied; 
Influence of the velocity in increasing the load to be transmitted 

from tooth to tooth; 
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Influence of the inertia of the rotating masses in increasing the load 

to be transmitted from tooth to tooth; 
Whether more than one tooth takes the load; 
Factor of safety to cover unknown factors and contingencies. 

As intimated above, the experimental work that has been done has not 
been sufficiently extensive to enable 'the influence of the above factors 
to be stated quantitatively in the form of an equation. The equation 
developed by Wilfred Lewis in 1892 has been extensively used and is 
still frequently used in estimating the strength of gear teeth. The 
equation assumes that the load on a gear is carried by a single tooth 
acting as a cantilever beam. Since a cantilever of constant width and of 
uniform strength is parabolic in outline, the weakest section of a tooth 
was assumed to be where a parabola would be tangent to the outlines 
of the tooth, the parabola being drawn through the point of intersection 
of the line of action of the load and the center line of the tooth. For 
any given system, the shape of the tooth and its weakest section was 
found to be a function of the circular pitch and number of teeth. Hence 
a tooth shape factor y} which for any given system varies with the 
number of teeth, appears in the equation. The Lewis equation is: 

W = Spcby .(243) 

Where W = the useful load in pounds assumed to be taken by one tooth; 
pc = the circular pitch in inches; 
b = the width of face of the gear in inches; 
y = the tooth shape factor in terms of the number of teeth N 

in the gear 

(o.l24 - 

= 0.148 - 

1.083 + 

for the 14J-degree composite system, 
addendum equal to unity divided by 
the diametral pitch 

for the 20-degree stub tooth system, 
addendum equal to 0.80 divided by the 
diametral pitch 

for the 20-degree full depth tooth, ad¬ 
dendum equal to unity divided by the 
diametral pitch 

for 10 to 40 teeth and ^0.124 — 

for over 40 teeth for the 14^-degree 
variable center distance system; 

S = the safe working stress = 
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Where Ut 

k 

Q 

It is to be noted that in the notation as defined practically all of the 
factors affecting the strength of gear teeth have been considered except 
the question of the distribution of the load over more than one tooth. 
The assumption that the load is taken by one tooth is on the side of 
safety. For convenience this load is taken as the useful load tangent 
to the pitch circle, which is slightly greater than the component of the 
load at the tip of the tooth acting normal to the axis of the tooth. By 
using different values of the velocity factor g for different grades of 
work, the influence of accuracy as well as velocity is taken into 

account. 
For non-metallic pinions of rawhide, fiber, Bakelite, Micarta, and 

Fabroil, the low elasticity of the materials very largely nullifies the 
effects of inaccuracies, distortions under load, and inertia of the rotating 
masses. The teeth of non-metallic pinions soon become conjugate to 
the mating metallic teeth, especially if the ratio of the gear to the pinion 
is a whole number. For pinions of non-metallic materials for velocities 

— ultimate tensile strength of the material in pounds per 
square inch 

= 24000 for cast-iron 
= 36000 for semi-steel 
= 36000 for bronze 
= 45000 for malleable iron 

= 60000 for steel castings (S.A.E. 1235) 
= 70000 for steel forgings (S.A.E. 1030) 
= 90000 for steel forgings (S.A.E. 1045) 
= 120000 for steel forgings (S.A.E. 3245); 
= the factor of safety 
= 3 for steady loads on single pairs of gears 
= 4 for suddenly applied loads on single pairs of gears 
= 5 for steady loads on gears of a train beyond the first mesh 
= 6 for suddenly applied loads on gears of a train beyond 

the first mesh; 
= the velocity influence factor 

600 . , ..... 

600 + V 

1200 

1200 + V 

78 

78 +VV 

for ordinary commercial cut gears for pitch line 
velocities V up to 2000 feet per minute 

for carefully cut gears for pitch line velocities 
V from 1000 to 4000 feet per minute 

for high class gears for pitch line velocities V 

from 4000 to 10000 feet per minute. 
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up to 3000 feet per minute, the value of the working stress in the Lewis 
equation may be taken as 

»S = 6000(— j-0 - + 0.25^ .... (244) 
\200 + V I 

The experimental work that has thus far been done has not been 
sufficiently extensive to establish for any given material the pressure 
per inch of face beyond which wear would be unacceptably rapid. It 
seems, however, quite well established that accurately cut gears when 
properly lubricated will not wear appreciably if the maximum stress at 
contact is kept within the elastic limit of the material in compression. 
For two convex cylinders in contact under a total load W the maximum 
compressive stress induced at contact is, according to Hertz, 

0.35ir I— 
Pi P2 

Hy + jr 
\ti\ lit 2 

(245) 

Where W = the total load in pounds; 
b = the length in inches of the cylinders in contact; 

pi = the radius of curvature in inches of the first cylinder at 
contact; 

P2 = the radius of curvature in inches of the second cylinder at 
contact; 

Ei = the modulus of elasticity of the material of the first cylinder; 
Z?2 — the modulus of elasticity of the material of the second 

cylinder. 

In applying equation (245) to gears, it would appear, from the nature 
of the wear of gear teeth, that the use of the radii of curvature at the 
pitch points of the teeth in contact is justified. Where, as in internal 
involute gears, a convex surface is in contact with a concave, the plus 
sign in the numerator of (245) should be changed to minus. Besides 
holding the compressive stress at contact within the elastic limit of the 
material and making proper provision for lubrication, it is very im¬ 
portant, for minimum wear, that the tooth profiles be smooth and accu¬ 
rately shaped and spaced. 

Minimum vibration and noise demand good design and good work¬ 
manship. This applies both to the gears themselves and the case or carrier 
in which they are mounted. Rough tooth profiles cause a high-pitched 
squeal or scream, and inaccurate profiles and spacing cause a grumble of 
varying intensity which is one of the most disagreeable of gear noises. 
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To have and to maintain accuracy of alignment is also very important. 
With accurate gears having smooth profiles, the sound emitted will 
depend upon the number of tooth engagements per second, the human 
ear being capable of hearing sounds of from 32 to 38000 vibrations per 
second. If the gear is so shaped that its natural frequency corresponds 
to the number of tooth engagements pen second, the sound will be 
augmented. If, in turn, the gear case or carrier has the same natural 
frequency, it will act as a resonator and further augment the sound. 
Hence, neither the case nor the gears themselves should be resonators 
having a natural frequency corresponding to the number of tooth 
engagements per second. The resonance of gears may often lx* reduced 
by the use of ribs or by making them in parts, and the resonance of gear 
casings by avoiding simple shapes and extensive flat surfaces. Where 
two or more pairs of gears are housed in the same casing, consonance as 
well as resonance must be considered. In such cases the smaller the 
numbers expressing the ratios of the vibrations of the different pairs, 
the more harmonious' will be the sound. For this reason countershaft 
gears of automobile transmissions have boon made with the same number 
of teeth, the pitch being varied to secure the desired reduction ratios. 

149. Comparison of Involute and Cycloidal Tooth Forms. One of 
the most important advantages of the involute over the cycloidal form 
of tooth is that involute cutters of all kinds are much easier and cheaper 
to produce than cycloidal cutters. For the same pitch and the same 
degree of accuracy, cycloidal teeth require about three times as many 
formed cutters as involute teeth. For all kinds of generating cutters 
the two tooth forms are on a par so far as the required number of cutters 
is concerned, but the cycloidal cutters, as previously stated, would be 
more difficult and expensive to make. Since the involute is not sensitive 
as to center distance, equal and unequal addendum gears may, as 
demonstrated in Art. 145, be cut with the same generating cutter. This 
gives the involute tooth form a decided advantage over the cycloidal. 

As was shown in Art. 145 the most sensitive and difficult portions 
of the involute may, by proper design, be eliminated from the active 
portion of involute tooth profiles. Since the highly sensitive portions 
of cycloidal tooth profiles occur at and near the pitch circle, they cannot, 
by any expedient, be eliminated from the active profiles. However, being 
at and near the pitch circle, the inclusion of the sensitive portion in the 
active profile does not result in high specific sliding as with the involute. 

The next most important advantage of the involute over the cy¬ 
cloidal form of tooth is that, for the transmission of motion at a constant 
angular velocity ratio, the distance between the centers of mating gears 
is not fixed for the former, while it is fixed for the latter. A still further 
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advantage of less importance is that the angle of obliquity during action 

is constant for the involute while variable for the cycloidal form. Hence, 

for constant power, the pressure at the bearings of a pair of involute 
gears will be constant in magnitude and direction, while for a pair of 
cycloidal gears both the magnitude and direction of the pressure at the 
bearings will vary somewhat during the action of the gears. 

An advantage of the cycloidal over the‘involute tooth form for 
external gears is that with the former a convex surface is always in 
contact with a concave, while with the involute form a convex surface 

is always in contact with a convex surface, or at best, with a flat surface. 
With the cycloidal form there is, therefore, a nearer approach to surface 
contact than with the involute, a condition more favorable to effective 
lubrication. Another advantage of this difference in contact is that for 
the same pressure the induced stress at contact would, as shown by 
equation (245), be less for cycloidal than for involute teeth. 

160. Internal Involute Gears. For the same pitch and number of 
teeth, internal involute gears are superior in many respects to external 
involute gears. Only in recent years has this been fully appreciated 
and applied. Because of their efficiency and compactness such gears 
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arc now employed for truck and tractor drives, and as reduction gears 

in air drills, hoists, aeroplane propellers, etc. Two points of superiority 
are shown in Fig. 316; greater compactness and greater safety. For 
the pinion and internal gear shown, the distance between the centers 
of the shafts is in. and the overall covering dimension 9| in. For the 
same pitch and number of teeth, these dimensions for a pair of external 
gears would be 6§ in. and 13.4 in., respectively. In addition, the internal 
gear, due to its form, acts as a protecting guard, while, for external 
gears, a separate cover must be furnished as a guard. Other advantages 

of internal gears over external gears are, for the same tooth proportions, 
greater length of the path of contact, greater strength of the gear teeth, 
and lower specific sliding resulting in less wear and longer life of the 

teeth. 
Fig. 317 shows some of the teeth of a 24-tooth pinion in mesh with 

a 32-tooth internal gear. The base circles of the pinion and gear cor¬ 
respond to an angle of obliquity of 14J degrees, and the teeth have an 
addendum of unity divided by the diametral pitch. The points of 
tangency of the line of obliquity de with the respective base circles are 
b and d. Since radius 0%b is greater than the base circle radius B2 of 
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the gear, pure involute action cannot begin before b is reached. The 
possible action that may take place before this point is reached will 
depend upon the shape assigned to the pinion tooth profiles inside the 
base circle, or upon the shape assigned to the internal gear tooth profiles 
inside the circle of radius O^b. In the figure, the flanks of the pinion 
teeth inside the base circle have been made radial. These portions of 

the flanks of the pinion teeth are therefore hypocycloids generated 
by circle 3 having a diameter equal to the radius of the pinion. Hence, 
for proper action between the tooth profiles of the pinion and gear, the 
faces of the gear teeth inside of the circle of radius Ojb must be hypo- 
cycloids generated by rolling 3 on the inside of the pitch circle of the 
gear. The teeth are thus corrected so far as concerns the interference 
of the active profiles. Contact between each pair of teeth would there¬ 
fore begin at a and cease at c where the outside radius of the pinion 
intersects the line of obliquity de, the resulting path of contact being abc. 

However, the pinion and gear are so nearly of the same size that the 
inactive profiles of the teeth will interfere, or foul, as they go in and 
come out as shown by the shaded areas at/, g, h, and /. It is to be 
noted, for the data chosen, that fouling would not be eliminated even 
if the addendum of the teeth of the gear were reduced by making the 
addendum circle equal to Cb?>. The trouble is that there is not sufficient 
difference between the numbers of tooth on the gear and pinion. For 
14|-degree obliquity and a pinion addendum of unity divided by the 
diametral pitch, the gear should, in general, have at least 12 more teeth 
than the pinion if fouling is to be avoided. For 20-degree obliquity 
and a ^pinion addendum equal to 0.75 divided by the diametral pitch, 
the gear should, in general, have at least 7 more teeth than the pinion. 

While for tooth space equal to tooth thickness, a 4-tooth pinion 
cannot be made to drive a rack continuously, a 4-tooth pinion with 
proper obliquity and pointed teeth can be made to drive continuously 
an internal gear having 6 or more teeth up to about 10,000. By using 
pointed pinion teeth and making the tooth thickness of the pinion greater 
than the tooth space, a 3-tooth pinion can be made to drive a 5-tooth 
internal gear. 

It is obvious from an inspection of Fig. 319 that, for the involute 
pinion shown, an external gear having the same addendum and pitch 
radius as the internal gear would have a shorter path of contact than 
that shown for the pinion and internal gear. It is also obvious that 
the outlines of the teeth of the external gear would correspond to the 
outlines of the spaces of the internal gear. The teeth of an internal 
gear are therefore stronger in form than the teeth of an external gear of 
the same pitch diameter and number of teeth. 
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Generally speaking, the portions of the toot h profiles of a pair of 
external gears that are in contact at the beginning and end of action 
are opposite in sensitiveness, while for an internal gear pair they are 
of the same sensitiveness. This means that the contact radii of curv¬ 
ature of the teeth of an internal gear pair differ less in length than the 
contact radii of the teeth of a pair of external gears of the same pitch 
and number of teeth. According to Art. 144, the specific sliding and 
consequent wear would therefore be less for an internal gear pair than 
for a pair of external gears. 

The tooth contact for a pair of internal involute gears is between 
convex and concave surfaces. For the same? pitch and tooth load, 
this, according to Art. 148, means that the maximum compressive 

stress induced at contact would be appreciably lower for an internal 
gear pair than for a pair of external gears of the same number of teeth. 

The cycloidal pinion and internal gear shown in Fig. 318 have 12 
and 48 teeth, respectively, of 3 diametral pitch and an addendum of 
unity divided by the diametral pitch. The respective flanks and faces 
of the pinion and gear teeth have been generated by circle 3. According 
to Art. 134 the radius of the generating circle of the respective flanks 
and faces of the gear and pinion could be made as great as 5 in. without 
causing the inactive profiles to foul. In the figure a radius of 4 in. was 
used, thus giving a path of contact aPb 1.884 in. long. A generating 
circle the same size as 3 would have given a shorter path of contact 
aPc 1.611 in. long. For the teeth as generated, the angle of obliquity 
at the beginning of action is 25° 35' 10" and 7° 2' at the end of action. 
The 20-degree involute pinion and internal gear shown in Fig. 319 have 
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12 and 48 teeth, respectively, of 3 diametral pitch. To contrast the 
length of the path of contact with that of Fig. 318, the addendum 
radius of the gear was taken as small as involute action permitted, 
namely E, and the working depth of the tooth the same as Fig. 318, 
giving a pinion addendum of 0.4587 in. It is to be noted that for this 

addendum the pinion teeth 
come almost to a point. 
For the proportions shown, 
the path of contact aPb 
is 1.492 in., or 0.392 in. 
shorter than the path of 
the cycloidal pair shown 
in Fig. 318. 

161. Williams, Tooth 
Form for Internal Gears. 
Williams proposed that 
the teeth of internal gears 
be made with straight pro¬ 
files as shown in Fig. 320. 
Having assumed straight 
profiles corresponding to 
some desired angle of ob¬ 
liquity a for contact at the 
pitch point P, the path of 
the point of contact and 
the conjugate profile of the 
pinion teeth may be found 

as outlined in Art. 126. As shown in Fig. 320, the path of the point of 
contact closely approximates the arc of a circle of radius p. With 
reference to the figure: 

Ni = the number of teeth on the pinion; 
N2 — the number of teeth on the gear; 

a = the angle of obliquity for contact at the pitch point; 
<t> = the angle corresponding to half of a tooth space 

1/360\ 90 

~ 4\ N2) ~ N2’ 
6 = half the included angle of a tooth space = (a — 0); 

O2Q = R2 sin a; 
PQ = R2 cos a; 

p = the radius approximating the path of contact 

R2 cos a 
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Evidently a circle with 0\ as a center would be tangent to the path of 
contact at a'. Since a given point on the face of a pinion tooth can make 
contact properly with only one point on the profile of a gear tooth, a' 
marks the earliest beginning of contact possible and fixes the limiting 
value of the addendum of the gear teeth. In a similar manner b' marks 
the extreme end of contact and fixes the limiting value of the addendum 
of the pinion teeth, provided they do not come to a point within this 
limit. 

For the purpose of comparison, Fig. 320 was drawn for the same 
pitch, the same numbers of teeth, and the same working depth, using 
equal addenda, as was 
used in Figs. 318 and 319. 
The angle of obliquity at 
the pitch point was taken 
20 degrees, making the 
gear tooth space angle 
26 = 36° 15'. For these 
data the resulting length 
of the path of contact 
aPb is 1.645 in., or 0.153 
in. greater than for the 
20-degree involute pair of 
Fig. 319. The angle of 
obliquity at the beginning 
of action at a is 26° 21' 
30", and 13° 50' at the 
end of the action at b. 

The simple form of 
the tooth spaces of the 
internal gear and the 
resulting form of the 
path of contact consti¬ 
tute the advantages of 
the Williams tooth form. 
Cutters for the internal 
gear are easily made with 
precision, and may be used in existing gear-cutting machines. For 
satisfactory results the teeth of the pinion should be generated. This 
would require a cutter of the same shape as a section of the gear. How¬ 
ever, such a cutter, while easily made, could not be used on any existing 
gear-cutting machine. With the Williams tooth form the path of contact 
is longer for the same working depth than for the involute tooth form, 
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and smaller pinions are possible for equal tooth space and thickness 

and equal addenda for the pinion and gear. 
152. Stepped and Helical Spur Gears. Thus far only straight spur 

gears, the pitch elements of whose teeth are straight lines parallel to the 
axes of rotation, have been considered. Spur gears, the pitch elements 
of whose teeth are not straight and parallel to the axes of rotation, art1 
called curved spur gears. While theoretically the pitch elements of the 
teeth of such gears may be of any form, they are, for ease and convenience 
in cutting or casting, almost invariably regular helices or combinations 
of regular helices. W here the pitch elements of the teeth are regular 
helices, the gear is calk'd a helical spur gear. A pair of such gears is 
shown at 3 and 4 in Fig. 270. It is evident that a pair of such gears, 
when transmitting power, would develop an axial thrust. Bearings 
to take this thrust must therefore1 be provided. A pair of herringbone 

spur gears is shown in Fig. 321. It is to be noted that a herringbone 
gear is equivalent to two 
equal helical spur gears of 
opposite twist. Hence, the 
axial thrust on one half of 
the gear is counterbalanced 
by an equal and opposite 
axial thrust on the other half, 
thus relieving the supporting 
bearings of axial thrust. 

A straight line in a plane 
which rolls on a base cylinder 
will generate the involute 
tooth surface of a straight 
spur gear if the line is parallel 
to the axis of the cylinder. 
If the straight line is oblique 
to the axis of the base cylin¬ 
der, it will generate the 
involute tooth surface of a 

helical spur gear when the plane is rolled on the base cylinder. From 
the method of generation it follows that the contact between the teeth 
of a pair of helical spur gears will be a straight diagonal line. It also 
follows that the tooth sections are involute in outline only in the plane 
of rotation. 

Fig. 322 shows four equal straight spur gears of equal width having 
a relative angular displacement between them of one-quarter the circular 
pitch. By fastening the laminations together, a stepped spur gear is 

FIG. 332 
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formed, lo make the figure more easily read, the plan was projected 
from the pitch circle and the pitch sections of the teeth cross-hatched. 
It is to be noted that the stepped gear would rotate through a pitch arc 
equal to one-quarter of the circular pitch from the time a tooth on one 
lamination leaves contact until a tooth on the next lamination comes 
into contact in the axial plane. Hence, contact in the axial plane, or 
pure rolling action between mating teeth, is four times as frequent for 
the stepped gear as it would be for a straight spur gear of width 6. 
If, therefore, the laminations could be accurately spaced, stepped gears 
would be quieter and smoother in action than straight spur gears. How¬ 
ever, since accurately spaced stepped gears would be more difficult 
and expensive to make than helical spur gears, they are never used to 
secure quiet running. Cast gears having a small number of teeth arc 
sometimes stepped to secure continuous driving. Cast gears that would 
otherwise have a contact ratio of less than unity are made in two steps. 

A helical spur gear may be looked upon as a stepped spur gear having 
an infinite number of laminations which have been given a uniform 
relative twist. Obviously, if the total twist for a pair of mating gears 
is made equal to or greater than the circular pitch, there will be con¬ 
tinuous contact in the axial plane as the gears rotate. Hence, helical 
gears are much quieter and smoother running than straight spur gears 
and can be run successfully at much higher velocities, pitch line velocities 
as high as 12,000 feet per minute being not uncommon. Double helical 
and herringbone gears are therefore used for pitch line velocities that 
would be too high for straight spur gears; and, because they run more 
quietly and smoothly, they are being used in preference to straight 
spur gears for lower velocities. 

Another advantage of helical over straight spur gears is that con¬ 
tinuous positive driving can be secured by the use of smaller pinions. 
For continuous positive driving with straight spur gears, the arc of 
action must be greater than the circular pitch. With helical spur gears, 
t he arc of action plus the twist of the teeth must be equal to or greater 
than the circular pitch. Hence, for a pair of helical spur gears, con¬ 
tinuous driving is, within limits, independent of the number of teeth in 
the gears. It is possible, though not practical, to have a helical pinion of 
one tooth work properly with a helical gear. 

If the faces of the teeth of a pair of helical gears were relieved from 
the pitch elements outward, the contact between the teeth would, theo¬ 
retically, be reduced to a point, which, during action, would traverse 
the pitch elements of the mating teeth. Hence, tooth contact throughout 
rotation would remain in the plane of the axes of the gears, and there 
would be only pure rolling between the teeth. While such a pair of 
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gears, because of having point contact, may not be considered of any 
practical importance, they may be considered as probably constituting 
the only example of pure rolling and constant angular velocity ratio 
combined with positive driving. 

In Fig. 323 is shown the pitch cylinder of a helical gear with the 
corresponding pitch elements of adjacent teeth crossing the elements 
of the pitch cylinder at an angle <j>, called the helix angle. The circular 
pitch measured in the plane of rotation is pc. The normal circular pitch 
pnj or, briefly, the normal pitch, is the distance between the corresponding 
pitch .elements of adjacent teeth measured along the normal helix cd. 

Obviously, 

pn = pr cos 4) .(246) 

0 

Since the product of the corresponding circular and diametral pitches 
is equal to ir, the relation of the diametral pitches p'n and p'c becomes 

Pn = 
cos </> 

(247) 

As pointed out above, the tooth profiles of helical involute gears are 
involute in outline in the plane of rotation but not in any other plane. 
While not involutes, the outlines of the normal sections of the teeth 
will approximate involutes for a pitch radius corresponding to the 
radius of curvature of the normal helix. 

The angle of obliquity a! in the normal plane is related to the helix 
angle <t> and the angle of obliquity a in the plane of rotation. In Fig. 
324, PBD represents the plane of rotation of a helical gear and is at 
right angles to plane PBC which is tangent to the pitch cylinder of the 
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gear; PCE is the normal plane, and plane PDE is at an angle a with 
the tangent plane PBC measured in the plane of rotation PBD. 
Obviously, 

BD = CE = PB tan a 
and 

Hence, 

PC = 
PB 

COS 0 

tan a' — 
CE 

PC 
cos 4> tan a . (248) 

The angle of obliquity a is therefore always less than the angle of 
obliquity a in the plane of rotation. 

The above equations apply also to helical gears, sometimes erro¬ 
neously called spiral gears. Helical spur gears should not, however, be 
confused with helical gears. Even though they appear alike and are 
cut in the same way, they differ in design and in the action between 
mating teeth. Helical spur gears have parallel axes, their angular 
velocities are inversely as their pitch diameters, their teeth make line 
contact, and the action between mating teeth consists of a combination 
of rolling and sliding in the plane of rotation as in straight spur gears. 
There is no component of sliding along the teeth. Helical gears have 
non-parallel, non-intersecting axes, their angular velocities are not 
inversely as their pitch diameters, their teeth make point contact, and, 
in action, there is a component of sliding along the teeth as well as a 
combination of rolling and sliding similar to that for helical spur gears. 

If PE in Fig. 324 represents the load on a tooth in the normal plane, 
then PD represents the component of the load in the plane of rotation, 
and ED the component parallel to the axis of the gear. If we deal 
only with the tooth load in the tangent plane PBC, then PB is the com¬ 
ponent in the plane of rotation and CB the component parallel to the 
axis. In Fig. 325, the shaded bands represent sections of teeth at the 
pitch surface of a helical spur gear. If in this figure W corresponds to the 
load PB of Fig. 324, then the axial thrust becomes W tan <j>} and the 
normal load becomes W -f* cos </>. Noting that the width of face b 
equals l cos <j>, where l is the length of the tooth, the load per inch of 
length of tooth becomes, 

w 
cos 4> b 

(249) 

Hence the load per inch of length of tooth for a helical spur is the same 
as for a straight spur gear of the same width of face b. However, the 
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thickness of a helical gear tooth is proportional to pn, while the thickness 
of the corresponding straight spur gear tooth would be proportional 
to pc. The helical gear tooth would therefore appear to be the weaker 
tooth. For usual values of 4> and b it is, however, stronger, owing to 
the fact that the line of contact runs diagonally across the tooth and 
can never be straight across the tip of a tooth as in straight spur gears. 

It is to be noted that the larger the helix angle </>, the greater the 
axial component W tan 0, and the greater the thrust on the bearings 
of helical gears, or the greater the wedging action of the teeth of herring¬ 
bone gears. The helix angle should therefore be made no greater than 
necessary. Since, as before pointed out, the twist should be equal to or 
greater than the circular pitch, b and 0 are related thus: 

— > —— - or > cot 0.(250) 
pc tan 0 

Hence the smaller b the greater must be the helix angle 0. For herring¬ 
bone gears the active width of face and therefore the ratio of b to pc 
must be twice that given above, or 2 cot 0. The American Gear 
Manufacturers’ Association recommend a minimum factor -of 2.3 
instead of 2.0, or a minimum width of face 

b = = 2.3Vc cot <t> .... (251) 
tan 0 

This Association also recommends 45 and 20 degrees as maximum and 
minimum values for the helix angle. As a rule, large helix angles are 
confined to high speeds and light loads. 

TABLE 10 

! 
Minimum Maximum 

Addendum. n 0.7 /p'r i.o/p'c 
Clearance. 
Backlash, industrial gears. 

high-speed gears. 

c 0.157/v'c 
0.030/p'c but not < 0.002" 
0.040/p'c but not < 0.003" 

0.30/p'c 

Angle of obliquity. a 15°-23' i 25° 
Helix angle, or angle of cut. <t> 20° 45° 
Active face of herringbone gears. 

. 

b 
i 

2.3 pc cot 0 

When helical and herringbone gears are cut with the tools for straight 
spur gears, their tooth proportions are necessarily referred to the normal 
section. The general designer should always leave the details of tooth 
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proportions, helix angle, etc., to the gear manufacturer. In the design 
of helical and herringbone gears, the American Gear Manufacturers’ 
Association recommend that the diametral pitch and tooth proportions 
bo referred to and calculated on the basis of the diametral pitch in the 
plane of rotation. The further recommendations of the Association 
are given in Table 10. 

Helical and herringbone gears that are to be cut on a Fellows gear 
shaper are usually designed for a helix angle c/> of approximately 15 
degrees or for a, helix angle of approximately 23 degrees. 

163. Non-Circular Spur Gears. Gears for the transmission of 
motion between parallel shafts are called spur gears. Thus far only 
circular spur gears have been treated. The pitch surfaces of such gears 
are right cylinders, their pitch curves are circles, and their purpose is to 
transmit motion between parallel shafts at a constant angular velocity 
ratio. The purpose of non-circular spur gears is to transmit motion 
between parallel shafts at a varying angular velocity ratio. Rolling 
sectors and regular and irregular uni- and multi-lobed wheels having 
plane motion about parallel axes were fully treated in Chapter VI. 
As was there pointed out, such rolling surfaces and their corresponding 
rolling curves may be used as the pitch surfaces or curves of non-circular 
spur gears. Many non-circular pitch curves are shown in Figs. 231 to 
252. A pair of elliptical gears, Fig. 235, is perhaps one of the most 
familiar examples of a pair of non-circular spur gears. , 

Since the pitch curves of non-circular gears are not of uniform curv¬ 
ature, it follows from Arts. 127, 129, and 136 that the tooth spaces of 
any such gear must necessarily differ in shape. To cut .such a gear 
accurately by the use of formed cutters would therefore require as many 
cutters as there are tooth spaces. On account of the limited demand 
for such gears, machines to cut them by a process of generation have 
not been developed. Such a machine is not available even for elliptical 
gears, the most common form of non-circular gears. The tooth profiles 
of non-circular gears, unless cut by a generating process, must, therefore, 

be only approximately correct in outline. 
A method of cutting approximately correct teeth on non-circular 

gears by the use of formed cutters may be derived from the graphical 
methods of describing the outlines of gear teeth as given in Arts. 129 
and 136. If, as outlined in Art. 129,-circles are used as generators and' 
are rolled on the pitch curves, cycloidal tooth profiles will be described. 
Since it is required that the generating curve be capable of rolling on 
the pitch curves, the circle, being the simplest, is, theoretically, the best 
generator for non-circular spur gear teeth. The radius of the generating 
circle must, of course, be less than the minimum radius of curvature of 
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the pitch curve on which it is to roll. If a diameter of generating circle 
corresponding to available cycloidal formed cutters can be used, a cutter 
may be selected for each tooth space to correspond closely to the radius 
of curvature of the pitch curve at that tooth space. 

If involute teeth are desired, the generator becomes a straight line, 
and the procedure of Art. 137 would be followed. As for pitch circles, 
the base curves of non-circular pitch curves are curves drawn tangent 
to obliquity lines through various points on the pitch curve, or the 
pitch curves and corresponding base curves may be looked upon as 
made up of a series of circular arcs. It was thus that the base curves 
and the corresponding involute outlines of the teeth were found for the 
elliptical gears shown in Fig. 235. Centers on the minor and major 
axes for arcs that would closely approximate the pitch ellipses were 

first found, and then the corresponding base arcs were drawn from the 
same centers for the desired angle of obliquity. This same approximate 
method may be applied to other non-circular pitch curves, and an 
involute formed cutter selected to correspond more or less closely to the 
radius of curvature of the pitch curve at each tooth space. 



CHAPTER VIII 

CUTTING OF STRAIGHT AND HELICAL SPUR GEARS 

154. Cast and Rolled Gears. The first toothed wheels were made 
of wood, and the first metallic gears were cast. Although the production 
of cut gears has teen greatly increased and the cost greatly reduced, 
cast gears, both small and large, are still found, in certain situations, 
to be cheaper than cut gears and to give satisfactory service. Cast 
gears are still used in machines and appliances of low grade, and in 
places where they are exposed to the elements and operated only occa¬ 
sionally. Such gears are, for example, still used in agricultural ma¬ 
chinery. 

Cast gears may be pattern molded or machine molded. For pattern 
molding a complete pattern is employed. Except for the core prints on 
the hub, such patterns are, in appearance, exactly like the gears desired. 
To allow for the possible warping and twisting of the pattern, for im¬ 
perfections in the form and spacing of the teeth, and for rapping the 
pattern preparatory to drawing it from the sand, backlash must be 
provided. The backlash, or difference between the width of the tooth 
spaces and the thickness of the teeth, is generally made about 0.045 
times the circular pitch. 

Since patterns are costly and liable to warp and twist, special ma¬ 
chines for molding gears were devised to reduce the amount and cost 
of the pattern work and, at the same time, to produce more accurate 
gears. The principle of such machines may be illustrated by the use 
of Fig. 326. About a stake, or arbor, a circular pit having a depth equal 
to the width of face of the gear, and a diameter greater than the outside 
diameter of the gear, is first swept up in the sand. On the central stake 
is then mounted an indexing head carrying a radial arm to the outer 
end of which is attached the vertical support d which carries at its 
lower end a pattern of at least two teeth. The vertical support d and 
pattern block can be moved up and down or in and out radially. As 
shown in the plan view, it is moved radially outward to the proper 
radius, and molding sand is filled in between the pattern block and the 
outer edge be of the pit. Owing to the shape of the teeth and the fact 

295 
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that the pattern block can be moved radially inward, no draft is required, 
thus leaving the teeth more accurate in form than the teeth of a com¬ 
plete gear pattern. Having filled the space between the pattern block 

and pit with sand, the pattern block is withdrawn radially and accu¬ 
rately rotated, or indexed, about the central arbor through an angle 
corresponding to the circular pitch. The pattern block is then run out 
to the proper radius as before, and sand is filled in between it and the 
outer edge of the pit. After completing the molding of the tooth spaces 
in this manner, the molding machine is lifted out and the mold for the 
gear completed by placing the cores to form the inner part of the rim 
and the arms and hub. 

Small gears and other products arc frequently die cast. In die 

casting the molten metal is forced into steel molds under pressure. In 
general the process is limited to melting temperatures of about 1200° F., 
or to the use of aluminum, zinc, tin, lead, and antimony, and their 
alloys. Such castings may be made so accurate as to size and form as 
to be used directly without machining. Certain noil-metallic materials, 
such as Bakelite, which, under moderate heat, are sufficiently plastic, 
are pressed to form in dies. Small gears and other products are thus 
made. 

The teeth of metallic gears, especially of steel, have been rolled to 
form by a molding process of generation. The metal blank was heated 
until plastic and then rolled under pressure in contact with a rolling die, 
which generated the teeth. Straight and curved spur and bevel gears 
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were produced by this process which was used for a time and then 
abandoned. 

166. Gear-Cutting Machines. If the teeth of a gear are to be cut, 
a gear blank is first turned to the finished dimensions of the gear. The 
teeth are then formed in the heavy rim of t he blank by cutting away 
the metal to form tooth spaces of the required shape. The development 
of gear-cutting machines to do this work at a reasonable cost has re¬ 
quired a vast amount of experimentation and the designing and re¬ 
designing of many different types of machines and cutters. No class 
of machine tools has called for more ingenuity in design than gear-cutting 
machines. In the many machines that have been designed, the cutting 
is either a planing or a milling operation. In the planing machines 
the cutter has a reciprocating motion and makes many cutting and 
return strokes for each tooth space formed. Machines that mill the 
tooth spaces use rotating cutters, and the cutting is continuous for at 
least each tooth space that is cut. The principal types of gear-cutting 
machines may be classified as non-generating machines, template 
machines, and generating machines. The non-generating machines use 
a cutter formed to the shape of the tooth space to be cut. The cutter 
may be in the form of a planing tool as shown in Fig. 327, or in the 
form of a milling cutter as shown in Figs. 328 and 329. In the 
template machines, a template of proper form is used to guide the 
cutting tool in shaping the tooth spaces. In the generating machines, 
the gear teeth are generated by properly relating the motion of the gear 
blank and the motion of the cutter. For want of space only the principles 
of the machines and not the machines themselves wall be discussed. 

166. Formed Cutter Method of Cutting Gear Teeth. Quite nat¬ 
urally, the use of a planing tool, corresponding in shape to the tooth 
space to be cut, was one of the first methods to suggest itself for cutting 
gears. The manner in which such a cutter is used to cut a straight spur 
gear is shown in Fig. 327. The gear blank G is mounted on the arbor, 
or mandrel, A ; the tool T is mounted in the tool post and slide with its 
midplane in the radial plane of the blank. As the tool reciprocates 
parallel to the axis of the blank, it is fed, for each cutting stroke, radially 
inward toward the axis of the blank. After each tooth space has been 
finished, the arbor and blank are turned, or indexed, through an angle 
corresponding to the circular pitch of the gear. This indexing must be 
accurately done if the teeth are to be equally spaced. 

To cut a helical spur gear by this method, the blank must be oscil¬ 
lated about its axis in unison with the reciprocation of the tool. If 
the helix angle is 23 degrees, the blank must rotate through a pitch 
arc equal to the axial travel of the tool times the tangent of 23 degrees. 
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F/G. 328 

Because of the many idle return strokes of the tool for each tooth 

space that is cut, the above method of cutting gear teeth is slow. A 

further objection to the method is that all the cutting is done by a single 

cutting face or edge. For this reason, except for small teeth, the tooth 
spaces of gears to be cut by 
this method are first rough 
cut to approximately correct 
shape. 

As pointed out in Art. 
123, the first milling cutter 
was made about 150 years 
ago and was an end milling 
tool of the type shown at T 
in Fig. 328. It is mounted 
with its axis of rotation in 
the radial plane of the blank 
and at a distance from the 
axis of the blank equal to 
the root radius of the gear. 

As the cutter rotates it is fed parallel to the axis of the blank; or, as 
the cutter rotates, the blank is fed parallel to its own axis. After each 
tooth space has been finished, the blank and arbor are indexed through 
an angle corresponding to the circular pitch. To cut a helical gear by 
this method, the blank 
must be rotated about 
its axis as the cutter is 
fed parallel to the axis 
of the blank. It is to 
be noted that this 
method of cutting is 
superior to the planing 
method mentioned 
above. Instead of 
having only one, the 
tool has many cutting 
edges; and instead of 
there being many, there 
is only one idle stroke 
for each space that is cut. This type of cutter, while still used in 
Europe, is not used in this country. 

The type of formed cutter shown in Fig. 329 was invented by Joseph 
R. Brown in 1864; it can be sharpened by grinding without changing 

p ill SB 
S9 
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the shape of its cutting face. The cutter is mounted with its midplane 
in the radial plane of the blank at a distance from the axis of the blank 
equal to the root radius of the gear. As the cutter rotates, the blank 
is fed axially into the cutter; or the blank may be held stationary and 
the rotating cutter fed parallel to the axis of the blank. After each tooth 
space has been finished, the blank and arbor are indexed through an 
angle corresponding to the circular pitch of the gear. It is to be noted 
that this method of cutting has the same advantages over the planing 
method as those mentioned for the method of Fig. 328. 

Except for large spur gears of heavy pitch, comparatively few of 
the gears now produced are cut by formed cutters. The use of milling 
and other machines employing the Brown type of cutter is largely 
confined to small repair and jobbing shops. For the standard M-^-degree 
composite system of tooth profiles, sets of formed cutters of the Brown 
type are available for each of the diametral pitches given in Table 11. 

TABLE 11 

Diametral Pitches 

Stock Cutters Made to Order 

2 0 11 20 30 1 21 41 34 60 

2* 7 12 22 32 u 93 
“4 H 38 64 

3 8 14 24 36 0 31 13 44 70 

4 9 16 20 40 u 3* 15 50 80 

5 10 18 28 48 3i' 56 120 

For each diametral pitch, a set of 15 cutters is available to cut from 
12 teeth to a rack. For the same pitch and same degree of accuracy, 
as stated in Art. 149, the cycloidal system requires about three times 
as many cutters as the involute system. 

A given number of cutter can, of course, be correct only for a given 
number of teeth. In Table 12 each cutter is of correct shape for the 
minimum number of teeth of its range. Where a gear has a number of 
teeth falling within one of the ranges given in the table, it is customary 
to use the cutter corresponding to that range. It can be shown, however, 
that the action of a pair of mating gears can be improved by using for 
one gear a cutter corresponding to a range higher than would include the 
number of teeth in the gear, and for the other gear the customary 
cutter. The depths to which the spaces are cut should then be varied 
accordingly. Buckingham in his book “ Spur Gears” gives a table 
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TABLE 12 

Gutters for Standard 14^° Composite System 

Number 

Cutter 
Will Cut Gears 

Number 

Cutter 
Will Cut Gears 

1 from 135 teeth to rack 5 having 21 or 22 teeth 

n “ SO “ “ 134 5 i “ 19 or 20 “ 

2 “ 55 “ “ 79 0 <c 17 or 18 “ 

21 42 “ “ 54 Hi “ 15 or 16 “ 
3 “ 35 “ “ 41 7 “ 14 teeth 

3J “ 30 “ “ 34 7J “ 13 “ 

4 “ 20 “ “ 29 & “ 12 “ 

4] “ 23 “ “ 25 

showing the cutters and the dept hs to which the tooth spaces should be 

cut for different pairs of gears. 
If a formed cutter of the Brown type is to be used to cut a helical 

spur gear, the cutter is rotated in a plane, making the helix angle <t> 
with the radial plane of the blank G, as shown in Fig. 330. With the 
cutter at a distance from the axis of the blank equal to the root radius 
of the gear, the blank is fed axially toward the rotating cutter. While 
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being fed axially the blank is simultaneously rotated, counter-clockwise 
in the present instance, the ratio of the pitch arc to the axial feed being 
equal to the tangent of </>. On the completion of each tooth space the 
blank is indexed through an angle corresponding to the circular pitch 
of the gear. 

As stated in Art. 152, the normal sections of the teeth of a helical 
involute gear are not involute in outline. The outlines correspond 
approximately to involutes for a pitch radius equal to the radius of 
curvature of the normal helix. This radius of curvature is equal to the 
radius of curvature at the end of the minor axis of an ellipse formed by 
the intersection of a plane cf with the pitch cylinder when drawn tangent 
to the normal helix cd as shown in Fig. 323. The minor and major 

2 R 
axes of such an ellipse are, respectively, 2R and-, for which the 

cos 0 
radius of curvature p at the end of the minor axis is 

R_ 

cos2 4> 
(252) 

Or, if the gear* has N teeth, the shape of the normal section of a tooth 
and space will correspond approximately to a formative number of teeth 
Nf whose value is 

2trp 2 ttR 2tt R N 
Nf = — = ■-=-— = —— . . (253) 

Pn Vn COS- 0 pr COS6 0 COS'* 0 

On account of the warped nature of the helical surface of the tooth 
space, a cutter selected to correspond to N$ and the diametral pitch p'n 
of the gear would undercut the flanks and relieve the faces of the tooth 
profiles.* To most closely approximate the tooth space, the cutter 
should be selected for the diametral pitch pfn and a number of teeth 
N'f instead of Nf. The value of N'/ is 

N'f = 

N 

cos3 4> 
+ p'nd tan2 4> (254) 

where N — the number of teeth in the gear; 
p'n — the diametral pitch of the cutter or the normal diametral 

pitch of the gear; 
d = the pitch diameter of the cutter; 
0 = the helix angle. 

*See “Selection of Milling Cutters for Helical Involute Teeth,” by Ernest Wild* 

haber, American Machinist Dec. 20, 1923. 
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167. Template Method of Cutting Gear Teeth. The principle of 
the template method of cutting spur gear teeth may be illustrated by 
Fig. 331, which shows the gear blank G and the planing tool T. This 
tool is mounted in a tool holder which can be reciprocated parallel to 
the axes of the blank and also fed normal to the axis of the blank. As 
the tool head is fed perpendicular to the axis of the blank, the follower 
roller R will traverse the cam, or template, (7, and the cutting point 
of the tool, moving upward as it advances, will trace a curve in exact 
agreement with the line described by the center of the roller. In using 
template machines the tooth spaces of the gear to be cut are first either 
cast or rough machined approximately to shape. Employing a template 
of proper form, one side of each tooth is then finished, the gear being 
indexed as required. Having finished one side of the teeth, the tool 

F/G. 332 

and template are changed and the other side of the teeth is finished. In 
some machines the wheel is reversed to finish the second side of the 
teeth. There are machines which employ two tools* and two templates 
operating simultaneously. The use of template machines is practically 
confined to gears having large teeth, say, to teeth having a circular 
pitch of 3 inches or more. In planing helical and herringbone gears by 
this method, the gear must, of course, be oscillated as the planing 
tool reciprocates. 

168. Shaping Method of Generating Gear Teeth. As before stated, 
generating machines employ planing or rotating cutters, the gear teeth 
being generated by properly relating the motion of the gear blank 
and the motion of the cutter. The planing tools used are of two types: 
a cutter in the form of a rack, and a cutter in the form of a pinion. The 

hob, which is the rotating cutter employed, is veiy well adapted to 
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repetition work. It is not only widely used as a generating cutter but is 
also much used as a roughing-out tool. 

The generation of gear teeth by the use of a cutter of basic rack 
form may be illustrated by Fig. 332. For straight spur gears, the blank 
is mounted on an arbor with its axis parallel to the pitch plane of the 
rack, or cutter, and the cutter is reciprocated parallel to the axis of 
the blank. The blank is first fed into the cutter until the pitch circle 
of the blank is tangent to the pitch line of the cutter; then, as the cutter 
reciprocates, the blank is slowly fed parallel to the pitch line of the 
cutter and at the same time rotated about its axis with a motion equiv¬ 
alent to the pure rolling of the pitch circle of the blank on the pitch line 
of the cutter. If the cutter contained a few more teeth than the gear 
to be cut, all of the teeth of the blank would be generated by an unin¬ 
terrupted feeding movement to the left equal to the pitch circumference 
of the blank. Since such a long cutter would not be practical, a shorter 
one is used; and the blank, after moving to the left a distance equal to 
some multiple of the circular pitch, is returned to its original position 
to start again the generating movement to the left. While being returned 
to its original position, the blank is, of course, not rotated. How often 
this interrupted generation must be repeated depends upon the number 
of teeth to be cut. 

The putting of a helical spur gear may be illustrated by Fig. 333. 
The dotted construction shown above the gear blank represents a rack 
having the same helix angle </> and*the same normal pitch pn as the gear 
to be cut, and, hence, represents a rack on which the finished gear could 
roll. The cutter to be used, shown by full lines in the figure, may be 
regarded as cut from the imaginary rack by planes passed normal to the 
teeth of the rack. The teeth of the gear may be generated by recip¬ 
rocating such a cutter in a plane parallel to but along a path at an 
angle <t> with the axis of the blank. As in cutting straight spur gears, 
the blank is fed to the left parallel to the pitch plane of the rack and 
at the same time rotated about its axis with a motion equivalent to pure 
rolling with the imaginary rack. After rolling to the left some multiple 
of the circular pitch, the blank is returned, without rolling, to its original 
position and the generating process continued as before and the same 
repeated until the gear is finished. 

The related motions of cutter and blank as just described for the 
cutting of straight and helical spur gears are in accordance with the 
operation of the Maag gear shaper which uses a rack-shaped cutter 
properly relieved to facilitate cutting and to provide for sharpening 
without change of shape. Such cutters are easily made with precision. 
In some other machines using this type of cutter, the blank is merely 
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rotated about its axis, while the reciprocating cutter is translated as a 
rack. In such machines it is the cutter and not the blank that is set 
back after each interval of generation. 

The Fellows gear shaper, the Sykes gear-cutting machine, and the 
universal gear shaper made by the National Tool Company use pinion¬ 
shaped cutters. Such cutters are properly relieved to facilitate cutting 
and to provide for sharpening without change of form. A cutter for 
generating straight spur gears is shown in Fig. 334. The work, or gear 
blank, is mounted on an arbor whose axis is parallel to the axis of the 
spindle of the ram on which the pinion-shaped cutter is mounted. The 

Fig. 334 

gear blank is first fed into the reciprocating cutter until the nominal 
pitch circles of blank and cutter are tangent, after which the cutter and 
blank are given a feed rotation equivalent to the pure rolling of their 
pitch circles. All the teeth of the gear are thus generated in one com¬ 

plete revolution of the blank. 
The cutter used for generating helical or herringbone spur gears is 

in the form of a helical spur pinion as shown in Fig. 335. The process 
of generation is the same as for straight spur gears except that the cutter, 
while making the cutting stroke, rotates so that its teeth may follow 
the helix angle. Hence, the cutter rotates through a pitch arc equal to 

the travel of the ram times the tangent of <p. 
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With the Fellows gear shaper, straight and helical internal as well 
as external gears may be cut. The machine is extensively used in the 

Fig. 335 

automotive industry for finishing gears that have been roughed out 
on gear milling or bobbing 
machines. The pitch diame¬ 
ter of the pinion cutters is 
small, 3 in. and 4 in. for ex¬ 
ternal gears, and nominally 
3^ in. and 5^ in. for internal 
gears. For practical tooth 
proportions and obliquity of 
action, these small pitch 
diameters limit the size of 
the teeth that can be cut, 
the largest tooth being 3 
diametral pitch or approx¬ 
imately one inch circular 
pitch. Cutters of unity di¬ 
ametral pitch have been used 
in the Sykes gear shaper. 

159. Hobbing Method of 
Generating Gear Teeth. In Fig. 336 is shown a triple-thread screw, 
the lead l of which is 3 times the axial pitch p0- By lead is meant the 
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axial advance of the thread per turn. It is the distance from a point 
on one thread to the corresponding point on the same thread meas¬ 
ured in the axial plane of the screw. The pitch is the axial distance 
from a point on one thread to the corresponding point on the next thread. 
For a single-thread screw the lead and pitch are equal. Assuming the 
threads of proper form, the screw of Fig. 336 could be used to drive a 
gear, in which case, it would be called a worm and R would be the 
pitch radius of the worm. If the right triangle cde in Fig. 337, the 
respective legs of which represent the lead and pitch circumference of 
the worm, were wrapped clockwise on the pitch cylinder of the worm, 
the hypotenuse ce would follow the pitch helix of the worm. The 
angle X is called the lead angle of the worm. Obviously, 

X " Sft 
(255) 

For a multi pie-thread worm of N threads the axial pitch is 

Va 
l 

N 
and the normal pitch pn is 

Pn 

m 
N 

l cos X 
= pa COS X 

(256) 

(257) 

For the worm to drive a straight spur gear, the normal pitch pn of the 
worm must be equal to the circular pitch of the gear. Hence, the axial 

pitch of the worm must be, 
from (257), 

pa Pr Pn = _ 
cos X cos X 

(258) 

Fia. 338 

Fig. 338 shows a single¬ 
thread tool-steel screw that 
has been made into a hobbing 
cutter, or hob, by cutting 
straight radial gashes in the 
screw and properly relieving 

the remaining portions of the thread to facilitate their acting as cutters. 
A hob having more than one thread is called a multi-thread hob. Since 
such hobs cut more rapidly than single-thread hobs, they are much used 
as roughing-out tools in cutting gears. Where a hob is employed as a 
finishing tool, a single-thread hob is generally used since greater accuracy 
can be secured with less difficulty than with multi-thread hobs. 
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Assuming that the thread surfaces of the screw from which the hob 
was made are of proper form to generate involute teeth, the manner of 
applying such a hob to the generation of straight spur gear teeth may 
be illustrated by Fig. 339. In the figure are shown the pitch surface, 
the pitch helix, and the lead angle X of the hob / and the pitch cylinder 2 
and corresponding pitch elements of adjacent teeth of a straight spur 
gear. The pitch helix of the hob will be tangent to a pitch element 
of the gear when the pitch surfaces of hob and gear are tangent and the 
axis of the hob is at an angle X with the plane of rotation of the gear. 
Assuming the hob to be single threaded and to have a normal pitch 
equal to the circular pitch of 
the gear, the hob, if acting as 
a worm, would have to make 

as many revolutions as there 
are teeth in the gear to cause 
the gear to make one revolu¬ 
tion. A double-thread hob 
would have to make only one- 
half as many revolutions. 
Hence, if the gear is to have 
N2 teeth and the hob has N1 

threads, the angular velocity ratio of the hob to the gear must be 

/7 G. 339 

c01 IV2 

052 IV1 

(259) 

If, in Fig. 339, N2 teeth are to be cut by a hob having JVi threads, the 
sequence of operations would be as follows: First the hob would be 
mounted with its axis at an angle X with the plane of rotation of the 
blank and at a distance from the axis of the blank equal to the sum 
of the pitch radii of hob and blank. Then, as the hob and gear are 

positively driven at an angular velocity ratio of —, the hob would be 

fed parallel to the axis of the blank. In this manner it is possible to 
generate all the teeth of the blank in one complete axial pass of the hob 
across the face of the blank. The hob, having left-hand threads, would 
rotate in the direction indicated by arrow H, the gear in the direction 
indicated by arrow G} and the feed of the hob would be upwards parallel 

to the axis of the blank. 
In Fig. 340 are shown the pitch cylinder of a hob 1 having a right- 

hand thread and the pitch cylinder of a helical gear 2 having right-hand 

helical teeth, X being the lead angle of the hob and <f> the helix angle 
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AMS Of HOB 

of the gear teeth. For the pitch helix of the hob to be tangent to the 
pitch element of a gear tooth, the pitch cylinders must be tangent 
and the axis of the hob must be at an angle 6 = (<£ — X) with the plane 

of rotation of the gear as 
shown. If the hob and gear 
were both left-hand instead 
of right-hand, the angle be¬ 
tween the axis of the hob 
and the plane of rotation of 
the gear would be the same, 
6 = (</> — X), but rotated 
(180 — 20) from the position 
shown. If either one were 
left-hand and the other right- 
hand, the angle 6 would be 
(</> + X). 

Af/$ Of GfAR BLAHK 

F/G. 3*0 

It has just been shown that in cutting a straight spur gear having 

N<2 
N2 teeth using a hob having N1 threads, the hob must make — revo- 

N1 

lutions to one of the blank as the hob is fed across the face parallel to 
the axis of the blank. In cutting the teeth of a helical gear by the use 
of a hob, the angular velocity ratio 
of hob and blank is not inde¬ 
pendent of the feed of the hob, 
and will be greater or less than 
No 
—, depending upon the direction 
N1 

of the feed and the hand of the 
hob and gear. In Fig. 341 let 
ABJL represent the development 
of a helical gear having N2 right- 
hand helical teeth, cj> being the 
helix angle and h the lead of the 
teeth. Assuming that the hob is of 
the same hand and that it has N1 

threads and a lead angle X, the 
axis of the hob would be set at an 

angle 6 = (^> — X) with the plane of rotation of the blank as shown in 
Fig. 340. The hob and gear would be positively driven in the directions 
shown by the respective arrows H and G in Fig. 340, and the hob fed 
downward parallel to the axis of the blank. The direction of the down¬ 
ward feed of the hob is represented by the arrow F in Fig. 341. If G 

F/G. 34/ 
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is the direction of motion of the blank, then, relatively, the hob moves 
from right to left, at the same time that it moves downward, AE being 
its line of movement relative to the blank. If in exactly one revolution 
of the blank, represented by AB in Fig. 341, the hob is fed downward a 
distance BE, it is to be noted that the cutter would not be working 
on the same tooth it was at A. The cutter will not be working on the 
same tooth until it has been fed downward a distance CD and the blank 
has been rotated through the pitch arc AC. Hence to cut N2 teeth for 

N2 
a feed equal to CD for — rotations of the hob, the gear blank must be 

rotated through 
AC 
AB 

turns. The angular velocity ratio of the hob to the 

blank must, therefore, be 

au _ /N2\ ^ (AC\ = /A^\ ^ (AB + BC\ = N2_ 

o)2 ~ \nJ : \AB/~\nJ : V AB ) / • BC\ 
N\l+Ai) 

From similar triangles, 

(260) 

BC _ CD 
AB ~ h 

But, 

h = 
AB 2ttR2 

tan 4> 
= - 

tan 0 

Hence, 

BC _ CD _ CD tan 0 

AB ~ 1-2 2tR2 

where CD represents the feed of the hob parallel to the axis of the blank 

N<> 
for — revolutions of the hob. Calling this feed / and substituting the 

N1 

BC 
above value of —- in (260) gives 

AB 

0)2 

n2 

NAl + 
f tan <t>\ 

2tR2 ) 

(261) 

Equation (261) holds where the hob and gear are of the same hand. 
Where the hob and gear are of opposite hand, the plus sign in the de¬ 

nominator must be changed to a minus sign. 
Since helical gears are of the same form as helical spur gears, the 
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method outlined above for the hobbing of helical spur gears applies 

also to the hobbing of helical gears. 
In the discussion above it was assumed that the threads of the hob 

were of such form as to generate involute teeth. To generate teeth 
of helical spur and helical gears that will be conjugate, the hob teeth 
must be of such form as to generate the straight-sided teeth of the basic 
rack. It has been common to assume that the teeth of the hob should 
be straight sided in the axial plane of the hob. Properly, the sides of 
the teeth should be straight not in the axial plane, but in a plane tangent 
to a base cylinder of radius r. * The value of this radius is 

R sin X 

Vtan2 a + sin2 X 
(262) 

Z 

r/G. 343 

where R = the pitch radius of the hob; 
X = the lead angle of the hob; 
a = the angle of obliquity or angle of the sides of the teeth of 

the basic rack. 

The involute helicoidal surface of the threads of a hob may be con¬ 
sidered as generated by a line rolling on a base cylinder of radius r while 
remaining tangent to a helix having a lead l equal to that of the hob. 
Hence the generating line would make a constant angle d with a plane 

* For a discussion of the theory, use, and manufacture of involute hobs, see “Spur 
Gears,” by Buckingham, McGraw-Hill Book Company; and “Problem of the Theo¬ 
retically Correct Involute Hob,” by Nikola Trobjevich, in Machinery for January, 
1919. 
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perpendicular to the axis of the base cylinder and would describe in this 
plane an involute curve as shown in Fig. 342. As defined, 

tan 5 
2irr 

(263) 

In finishing the threads of a screw for a hob the tool may be set as shown 
at A or B in the Fig. 343. 

In the above description of the use of a hob in generating gear teeth, 
the pitch helix of the hob was assumed tangent to the pitch element of 
the tooth to be cut. In this position the hob will cut a width of space 
equal to the normal pitch thickness of the hob tooth. If the angle of 

set of the hob is altered, the thickness of the space and tooth produced 
will be changed and the height of fillet at the root of the tooth, but 
there will be no other change.* The sections of the gear teeth in the 
plane of rotation will still be involute in outline. The hob, may, there¬ 
fore, be set to a depth and angle by trial to secure the tooth thickness 
desired. This freedom of choice of the set of the hob is of great practical 

value in gear cutting. 
160. Grinding Gear Teeth. When grinding is employed as a final 

operation on metal parts it is used either to improve the quality of the 
finish of the surfaces or to improve both the quality of the finish and 
the accuracy of form of the surfaces. Grinding is about the only method 

* For a discussion of the theory, use, and manufacture of involute hobs, see “Spur 
Gears,” by Buckingham, McGraw-Hill Book Company. 
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of restoring accuracy of form to parts that have been distorted in heat 
treating. This is the chief reason for grinding hardened or heat-treated 
gears. Unharderied gears are often ground not so much to improve the 
accuracy of form of the teeth as to secure more highly finished tooth 

profiles. 
In grinding gear teeth, generating methods are generally used, 

although formed grinding wheels are used to some extent. One of the 
generating methods employed in grinding the teeth of straight involute 
spur gears is shown in Fig. 344. The gear to be ground is mounted 

on an arbor, and the grinding wheel is so mounted that the plane of its 
active face, which is normal to its axis, will coincide with the side of a 
tooth of the imaginary basic rack, shown dotted in the figure. The 
axis of the grinding wheel spindle is therefore at the angle of obliquity a 

with the pitch line of the rack. As the grinding wheel is moved forward 
parallel to the pitch line of the rack, the gear is rotated about its axis 
as though actuated by the imaginary rack which is moving in unison 

with the grinding wheel. With a grinding- wheel of small diameter, 
this movement of the gear and grinding wheel is an interrupted feeding 

movement. Between successive feeds, the grinding wheel is given a 

grinding and a return stroke parallel to the axis of the gear. In some 

grinding machines movement parallel to the axis of the gear is elim¬ 
inated by using a grinding wheel large enough in diameter to cover 
the whole width of face of the teeth. 



CHAPTER IX 

STRAIGHT AND SPIRAL BEVEL GEARS 

CUTTING OF BEVEL GEARS 

161. Cycloidal Bevel Gear Teeth. While, as stated in Art. 115, 
rolling cones are not necessarily right circular cones, the use of other 
than such cones is so rare that only rolling right circular cones wjll be 
treated. By a pair of such cones rolling together without slipping, 
motion may be transmitted between intersecting shafts at a constant 
angular velocity ratio. The method of determining a pair of cones for 
any given angular velocity ratio and angle between intersecting shafts 
was given in Art. 117. As there pointed out, such rolling cones may 
be used as the pitch surfaces of bevel gears. By supplying the conical 
pitch surfaces with teeth of proper form, motion may be positively 
transmitted between intersecting shafts which will be equivalent to 
the rolling of the pitch cones. 

In the case of spur gears, the motion is about parallel axes, and 
therefore falls, according to Art. 27, under the head of plane motion. 
Hence, in dealing with the relative motion of such gears, the gears may 
be represented by plane sections. This simple treatment cannot, 
however, be applied to bevel gears. While each gear taken separately 
has plane motion of rotation about its axis, the relative motion of 
corresponding sections of a pair of gears is in a spherical surface. The 
tooth profiles are, therefore, not generated on a plane but on a spherical 
surface, making two projections necessary in determining the profiles 
of the teeth. 

Just as an element of a describing cylinder in rolling on a pitch 
cylinder generates the cycloidal tooth surface of a spur gear, so an 
element of a describing cone in rolling on a pitch cone generates the 
cycloidal tooth surface of a straight bevel gear. In Fig. 345 are shown 
a pitch cone 1 and two describing cones 3 and 4 having the same slant 
height, or cone distance, apd a common apex 0. The bases of the 
cones are, therefore, small circles of a sphere having a radius equal to 
the common cone distance of the cones. If cone 3 is rolled to the right 
on the outside of 1 from contact along aO to contact along P0, the 

313 
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element gO will generate the ruled surface aOg, and point g will describe, 

in the surface of the sphere, the curve ag. This curve, being analogous 
to the epicycloid treated in Art. 128, may be called a spherical epi¬ 
cycloid. In a similar manner, if 4 is rolled to the right on the inside of 
1 from contact along a'O to contact along P'O, the element g'O will 
generate the ruled surface a'Og', and the point g' will describe, in the 
surface of the sphere, the curve a'g', which may be called a spherical 
hypocycloid. The generated surfaces aOg and a'Og' are of proper form 
for the respective faces and flanks of gear teeth for the pitch cone 1. 
In a similar manner the describing cones 8 and 4 could be used to gen¬ 
erate the teeth of another pitch cone having the same cone distance as 

1. For the second toothed cone to engage properly with the first, the 
faces of the teeth of one and the flanks of the teeth of the other pitch 

cone must be generated by the same describing cone. The two pitch 
cones with teeth thus generated would then work together properly 
and would positively transmit motion from one to the other equivalent 
to the rolling of the pitch cones. 

In Fig. 346 are shown two pitch cones 1 and 2 and two describing 
cones 8 and 4. These cones have the same cone distance, their axes are 
in the same meridian plane of the enveloping sphere, and they make 
contact along the common element OP. If these four cones are rolled 
together simultaneously about their fixed axes OOi, OO2, OO3, and 
OO4, element gO of 8 will generate" the tooth face of 1 and the flank of 
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2 as shown, and element g'O of 4 will generate the tooth flank of 1 and 
the face of 2. Since gO will always be the common element of the 
tooth face of 1 and the flank of 2, a plane through the three points P, 
g, and 0 will be the common normal plane of the generated surfaces 
and will always pass through the common element PO of the pitch cones. 
Likewise, since g'O will always be the common element of the tooth 
flank of 1 and the face of 2, a plane through P, g\ and 0 will be the 
common normal plane of the generated surfaces and will always pass 
through the common element PO of the pitch cones. Since the com¬ 
mon normal plane always passes through the contact element of the 
pitch cones, it therefore follows that teeth whose surfaces are thus 
generated will transmit motion positively about axes 001 and OO2 at 
a constant angular velocity ratio. It is to be noted that the sections of 
bevel gear teeth are spherical, and that the path of contact of mating 
sections follows the boundaries of the corresponding spherical sections 
of the describing cones. Thus, in Fig. 346, the path of contact of the 
outer sections of the teeth is the line g'Pg in the surface of the sphere 
of radius OP. While the same fundamental law applies both to cy¬ 
cloidal bevel and cycloidal spur gear teeth, it is quite evident that the 
former are much more difficult to draw or to describe mechanically 
than the latter. 

162. Involute Bevel Gear Teeth. When a plane is rolled on a base 
cylinder, a straight line in the plane parallel to the axis of the cylinder 
will generate the involute tooth surface of a straight spur gear, and a 
curved line in the plane would generate the involute tooth surface of a 
curved spur gear. In a similar manner, a curved line in a circular plane 
will generate the spherical involute tooth surface of a curved bevel 
gear when the plane is rolled on the base cone, and a radial line in the 
circular plane would generate the spherical involute tooth surface of a 
straight bevel gear. In Fig. 347 the cone distance element AO of the 
pitch cone AOB is shown in a horizontal plane. In Fig. 348 a plane EF 
has been passed through the pitch element AO at an angle of obliquity 
a with a horizontal plane through the same pitch element. The base 
cone for angle a is, therefore, the cone tangent to plane EF, or cone 
COD. The projection of this base cone, but not of the pitch cone, is 
shown in Fig. 348, the plane EF being tangent to it along the element 
GO. If the circular plane EF, whose radius is equal to the cone distance 
of the pitch and base cones, is rolled on the base cone, the element GO 
will generate a spherical involute surface, and the point G will describe, 
in the surface of the sphere, the spherical involute GHKL. The spher¬ 
ical involute surface thus generated is of proper form and a suitable 

portion of it could be used for the surface of the teeth of a straight 
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bevel gear having the pitch and base cones shown. For another pitch 

cone of the same cone distance as AOB, a corresponding base cone 
could be similarly determined for the same angle of obliquity, and a 

spherical involute surface could be generated as before by rolling the 
circular plane on the base cone. If the two base cones were supplied 
with teeth having surfaces corresponding to the surfaces thus generated, 
they would work together properly as straight involute bevel gears, 
and would transmit motion at a constant angular velocity ratio equiv¬ 
alent to the rolling of the pitch or base cones. It is to be noted that 
the sections of the teeth are spherical and that the path of contact of 
mating sections follows the boundary of the obliquity plane in the 
corresponding spherical section. 

In Fig. 347 the pitch angle <#> of the pitch cone was purposely taken 
less than 90 degrees. For a pitch angle of 90 degrees, the elements 
of the .pitch cone would lie in a plane of radius AO, and the resulting 
bevel gear would be what is called a crown gear. It is to be noted that 
while the elements of the pitch cone would lie in a plane, the elements 
of the corresponding base cone would not. Therefore, while the cro^n 
gear is to bevel gears what the rack is to spur gears, the sides of the 
teeth of an involute crown gear are not flat as are the teeth of a rack. 

163. Octoid Bevel Gear Teeth. Cycloidal and involute bevel gear 
teeth are so complex in form that no successful attempts have been 
made to design and build gear-cutting machines to cut them. Prac¬ 
tically all gear-cutting machines capable of cutting bevel gear teeth with 
accuracy are machines which generate teeth that are conjugate to crown 
gear teeth having flat or plane sides. This form of tooth together 
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with a machine to generate conjugate bevel gear teeth was invented 
by Hugo Bilgram in 1884. 

In Fig. 349, AB represents the pitch plane of a crown gear. The 
plane sides of the teeth lie in meridian planes of the sphere at the desired 
angle with the pitch plane as shown by plane KL for the side HPG of 
a tooth. Meridian planes perpendicular to KL will pass through an 
axis QR perpendicular to KL. As KL is revolved about axis MN, 
the line of contact of plane KL with a conjugate surface will lie in a 
plane through QR per¬ 
pendicular to KL; and 
the path of the point of 
contact in the surface of 
the sphere will follow 
the figure-of-eight curve 
PCDPFEP. Because of 
the shape of this curve 
the corresponding teeth 
are referred to as octoid 
teeth. For teeth of the 
height shown, the path 
of contact is either TS 
or T'S', depending on 
the direction of rotation. 
Since the path of contact 
is symmetrical with re¬ 
spect to the great circle 
MN, a pair of bevel gears having teeth conjugate to the crown gear 
teeth will themselves be conjugate. 

164. Tredgold’s Approximate Method of Drawing Bevel Gear 
Teeth. As before mentioned, it is difficult to construct spherical 
involutes and epicycloids and to represent the teeth of bevel gears on 
paper. In practice a method known as Tredgold’s approximation is 

always used. 
Fig. 350 shows the projection of two pitch cones / and 2 on a plane 

parallel to the plane of the axes 00i and OO2 of the cones. PM and 
PN represent the bases of the pitch cones, and the common cone dis¬ 
tance PO is the radius of a circumscribing sphere. O1O2 is drawn per¬ 
pendicular to the pitch element PO, and 0\M and OzN perpendicular, 
respectively, to the pitch elements OM and ON; hence, POiM and 
PO2N may be assumed to represent the projections of two cones con¬ 
structed about the axes OOi and OO2. These cones are called back 
cones, and any element of one of these cones is perpendicular to an 

M 
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element of the pitch cone having the same base. As shown in the figure, 
the surfaces of these back cones closely approximate the surface of the 
circumscribing sphere for a short space either side of the base pitch 

circles. These conical surfaces have a practical advantage over the 

spherical surface in that they can be developed upon a plane for the 
construction of the tooth profiles. Tredgold’s approximate method 

consists in describing tooth outlines on the developed surfaces of these 
back cones and then of wrapping these surfaces into their original 
positions. In the development of the surfaces of the back cones, POiM 
and POzN, the development of their base boundaries, PM' and PN'> 

may be treated as the pitch arcs of spur gears and tooth outlines drawn 
upon them by any of the methods previously applied to such gears. 
When the developed surfaces are rolled back into the back cones, the 
tooth outlines described will represent the large ends of the teeth of the 
bevel gears; and a straight line through 0 following such profiles would 
sweep up the tooth surfaces of the bevel gears. As can be seen, such 
teeth would agree very closely with teeth of truly correct form. With 
the tooth form determined, it is merely a matter of projection to draw 
a picture of a bevel gear. Two elevations of a bevel gear are shown 
in Fig. 351, a brief study of which will make the method of projection 
clear. 
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In Fig. 351, OMM is the projection on an axial plane of the pitch 

cone of the bevel gear. The angle 4> is called the pitch angle of the 
gear and R the pitch radius. As before shown, A represents very closely 
the correct shape of the outer ends of the bevel gear teeth. It is to be 
noted that this shape does not correspond to the shape of a spur gear 
tooth for a pitch radius R but corresponds in shape to a pitch radius 
Rf equal to the cone distance of the back cone. Since Rf determines 
the form of the tooth, it is called the formative radius. Obviously, 

and the formative number of teeth N/ is, 

N/ = 2 p'cRj = 
2p'rR _N__ 

cos <t> cos 4> 
. . (265) 

where N is the actual number of teeth in the bevel gear. 
166. Relation of the Elements and Angles of Bevel Gears. In 

Fig. 352 a bevel pinion 1 is represented in mesh with a bevel gear 2 
for an angle 0 between shafts. In Art. 117 it was shown how to locate 
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the contact element of a pair of pitch cones for any given angular 

velocity ratio and angle between shafts. If an is the angular velocity of 
the pinion and cos the desired angular velocity of the gear, then the 

contact element of the pitch cones is located as follows: From the 
point of intersection 0 of the axes of the shafts lay off distances x and y 
along the axes such that, 

X coi 

y .<*>2 

The intersection P of lines parallel to the shafts through the points 

thus located determines the contact element OP of the pitch cones. 
With further reference to Fig. 352, let 

R\ and R2 = the respective pitch radii of the pinion and gear; 
E\ and E2 = the respective external radii of the pinion and gear; 
N1 and N2 — the respective numbers of teeth of the pinion and gear; 

pc = the circular pitch in inches; 
p'c — the diametral pitch; 

ai and <12 = the respective addenda of the pinion and gear; 
8 = the angle between the center lines of the shafts of the 

pinion and gear; 
4>\ and <t>2 = the respective pitch angles of the pinion and gear; 
/Si and 02 = the respective face angles of the pinion and gear; 
81 and 82 = the respective addendum angles of the pinion and gear. 
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Obviously, 

Hence, 

x — 
R2_ 

sin 9 
Ri , Ri Ni 

y = —— and — = — 
sin 9 R2 N-2 

tan <t>2 = 
i?2 R-> R2 sin 9 

y + x cos 0 Ri ^ R2 cos 9 Rt + R2 cos 9 

sin 9 

sin 9 sin 9 

sin 9 

R i Ni 
—- + cos 9 — + cos 9 
XL2 N 2 

(266) 

Similarly, 

tan = 
sin 6 

No 
. (267) 

+ cos 9 

also, 

N i 

Gi ai sin 0i , «2 a2 sin 02 
tan 5i = -- =-—- and tan 62 = — =--- (268) 

l 111 i 112 

Assuming the addenda of pinion and gear to be equal, that is, assuming 
k 

a\ = a<> = a = —, then, 
Pc 

fc sin 0i 2A: sin 0i 2/c sin 02 
tan 5i = tan 52 = T>  = —~- =-~- (269) 

p'Jii Ax No 

For equal addendum full depth teeth, k = 1.0, and for stub teeth 

k = 0.80. 
The face angles are: 

Pi — (0i + ^i) and P‘2 = (02 + S2) . . (270) 

The external radii are: 

Ei = R\ + <21 cos 0i and Z?2 = /?2 + «2 cos 02 (271) 

By means of the above relations the dimensions and angles necessary 
in making bevel gear patterns and in machining the blanks may be 
found. The width of face b is rarely made greater than one-third the 
cone distance PO because of the difference in the size of the tooth sec¬ 
tions at the large and small ends. The thickness t of the rim is generally 
made about equal to the thickness of the root of a tooth at the large end. 

In the great majority of cases where bevel gears are used, the shafts 
are at right angles. For such cases, stock gears can frequently be 
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obtained from gear manufacturers if the proportions and angular 
velocity ratio are not unusual. Where the shafts are at right angles 
and the gears of the mating pair are of the same size, the gears are called 
miter gears. 

166. Action of Bevel Gears. Due mainly to the greater number of 
teeth in contact, spur gears havii% a large number of teeth will run 
together more quietly and smoothly than those having a smaller number 
of teeth. The fact that a pair of bevel gears will run more quietly and 
smoothly than a pair of spur gears of the same number of teeth may, 
therefore, be explained. It was shown in Art. 164, equation (266), 
that a beyel gear having N teeth is equivalent to a spur gear having 

N 
Nf --teeth. Since bevel gears are equivalent to spur gears having 

cos <t> 
a greater number of teeth, it therefore follows that a pair of bevel gears 
will run more quietly than a pair of spur gears having the same number 
of teeth as the bevel gears. 

The action between bevel gear teeth consists of a combination of 
rolling and sliding between spherical sections-of the teeth about the 
apex of the pitch cones as a center. As in spur gears, there is no sliding 
along the elements of the teeth. Fof continuous positive driving, the 
pitch arc of action must be greater than the circular pitch. This ratio 
can be very closely approximated for a pair of cycloidal or involute 
bevel gears by reference to a pair of equivalent spur gears as determined 
by Tredgold’s approximation. 

167. Interchangeability of Bevel Gears. For a set of bevel gears of 
the same pitch to be interchangeable, they must belong to the same 
odontic system and have a path of the point of contact that is sym¬ 
metrical with respect to the plane of the axes, and they must have the 
same cone distance, the same addendum, and a tooth thickness of one 
half the circular pitch. When, from a set of interchangeable bevel gears, 
a substitution is made for one of a pair, the angular velocity ratio and 
the angle between shafts are changed. If the angle between shafts is 
fixed, then, for different angular velocity ratios, the gears must be made 
in pairs. Generally, stock, commercial gears are made for common 
angular velocity ratios and for shafts at 90 degrees. 

168* Spiral and Skew Bevel Gears. Thus far only straight bevel 
gears have been discussed. Bevel gears the pitch elements of whose 
teeth are curved lines and not straight lines through the common apex 
of the pitch cones may be called curved bevel gears. While theoretically 
the pitch elements of the teeth of curved bevels may be t>f any form, 
the actual curve is governed by what is possible to out. Oumd bevels 
having curved oblique teeth are called spiral bevels, while those having 
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straight oblique teeth are called skew bevels. A pair of Gleason* spiral 
bevel gears is shown in Fig. 353. These bevel gears have teeth that are 
curved on the arc of a circle. They were developed primarily for auto¬ 
mobile drives. The action between the teeth of spiral and skew bevels 
is the same as between the teeth of straight bevels. There is no sliding 
along the teeth. 

Curved bevel gears possess the same advantages over straight bevel 
gears that curved spur gears possess over straight spur gears. Obviously, 
if the teeth, Fig. 354, are given a lead equal to or greater than the 
circular pitch, there would be continuous contact in the plane of the 

Fig. 353 

axes of the pair of gears as they rotate; and the different pairs of teeth 
would come into contact gradually instead of coming at once into full 
line contact across the entire width of face as in strajght bevel geara. 
For these reasons curved bevels run more quietly and smoothly than 
straight bevels. For best results the Gleason Works recommend a lead 
of from 1.15 to 1.40 times the circular pitch and recommend also a 
spiral angle of from 30 to 40 degrees for small and from 15 to 20 degrees 
for large bevel gears. For high velocity ratios and pinions having a 
small number of teeth, the addenda of the pinion and gear are made 
Unequal to avoid undue undercutting, the addendum of the pinion 
teeth being made about 0.70 and the addendum of the gear teeth about 

•Gleason Works, Rochester, N. Y. 
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0.30 the working depth of the teeth. Another advantage of curved 
over straight bevels is that continuous positive driving can be secured 
with smaller pinions. For continuous driving with straight bevels, the 
arc of action must be greater than the circular pitch, while with curved 
bevels all that is necessary is that the lead of the teeth be greater than 
the circular pitch. Hence, for a pair of curved bevels, continuous positive 
driving is, within limits, independent of the number of teeth in the 
gears. However, ten is about the minimum number of teeth for a 
pinion if undue undercutting is to be avoided and sufficient durability 
secured. 

For spiral bevel gears there is an axial thrust due to the angle of the 
spiral. In addition, there is an axial thrust, as for straight bevels, 
tending to separate the gears. This thrust is independent of the direc¬ 

tion of rotation and is due to the cone angle and obliquity of action. 
Because of the obliquity of action there is a, force component in the 
axial plane of the gears. Since the gears are conical, this force component 
has components parallel to the axes of the gears tending to separate 
them. Since the axial thrust due to the angle of the spiral may be in 
either direction, the resultant thrust is either the sum or the difference 
of the thrusts due to the angle of the spiral and the obliquity of action. 
The hand of the pinion, being more evident than the hand of the gear, 
is usually* used to designate the hand of a pair of spiral bevel gears. 
Hie pinion and gear in Fig. 353 would be called right-hand spiral bevels. 

For the pinion as the driver and for clockwise rotation when viewed 
from, the large end, the thrust on the pinion due to the spiral angle 
would be toward the center of the gear. Reversing the rotation cf 
the praion would reverse this thrust. For left-hand spiral bevels, 

the thrusts for clockwise and counter-clockwise rotation of the pinion 
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would be just the reverse of those given for the right-hand spiral bevels. 
As to hand and thrust, skew bevel gears are similar to spiral bevel gears. 

169. Formed Cutter Method of Cutting Bevel Gear Teeth. Before 
generating machines were developed, straight bevel gears were cut on 
milling machines by the use of formed cutters. Occasionally pairs of 
Bevel gears are still cut by this method. As will be shown, the method 
is inherently incorrect and should never be used where the service 
requirements for the gears are at all exacting. 

While there are two methods of using formed cutters of the Brown 
type, only the preferred method will be described. Standard spur 
gear milling cutters are used for the parallel depth method, while special 

bevel gear milling cutters are required for the offset metho'd of cutting 
bevel gear tooth spaces that vary characteristically in depth as well as 
width. It is the use of this latter type of cutter that will be described. 

It was shown in Art. 164 that the teeth of a bevel gear correspond 
closely to those of a spur gear of a pitch radius and number of teeth 
equal to the formative radius Rf and formative number of teeth Nf 
given by equations (264) and (266). The cutting face of such a bevel 
gear milling cutter is shown at C in Fig. 355. It has the same shape 
as the sides of the large end of the tooth spaces to be cut, but is made 
sufficiently thin to pass through the small end of the tooth spaces. The 
bevel gear blank B is mounted on an arbor of the milling machine in- 
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dexing head with its axis in a plane perpendicular to the axis of rotation 
of the cutter. The blank is then adjusted until its axis is at an angle 
(</>—• 6) with the horizontal travel of the milling machine table, <t> being 
the pitch and 8 the addendum angle of the blank. With the axis of 
the blank in the mid plane of the cutter, and the cutter adjusted to the 
proper depth, counter-clockwise rotation of the cutter as the blank is 
fed to the left would cut a slot in the blank, the bottom of which would 
be parallel to nO. In Fig. 356 is shown a projection of the slot at and 
below the surface of the pitch cone, the width of the slot at the pitch 
surface of the cone being cd at the large end and cf at the small end. 
It is to be noted that df extended does not intersect the center line at 0 
but at O'. If, in finishing the side ghkm of the tooth space, the cutter is 
to follow the pitch element as required, then the relative positions of 
blank and cutter must be changed. To cause the extension of df to 
pass through 0, the blank must be turned forward through an angle 
(6 — X), as indicated by the arrow in Fig. 356. The blank is then 
moved backward parallel to the axis of the cutter a distance called the 
offset. The value of this offset $ is 

cd (cd — cf\l 

S = 2 ~ \ 2 )b 
(272) 

where l is the cone distance of the pitch cone and b the width of face of 
the gear. Having completed these adjustments, the rotating cutter, 
as the blank is fed to the left into it, will follow the pitch element of 
the side of the tooth space. After finishing the side of a tooth space, 
the blank is indexed and the same side of the next tooth space is finished. 
In a 'similar manner, the same side of all the other tooth spaces are 
finished and the blank and cutter then positioned to finish the opposite 
side of all the tooth spaces. 

While teeth cut as just described will be of proper thickness in the 
pitch cone, they cannot be of correct shape throughout their length. 
The curve of the cutter being correct for the large end of the tooth 
spaces, its change of curvature is not rapid enough for correct shape 
at the small end of the spaces. Hence the points of the teeth grow more 
and more defective in form as the small end is approached, the points 
being too wide. The teeth must, therefore, be relieved by filing or 
grinding, as suggested by the shaded triangular area in Fig. 355. 

In applying the above method to steel gears, the tooth spaces are 
roughed out before positioning the blank for the finishing cuts. The 
tooth spaces of cast-iron gears are not roughed out unless the teeth are 
larger than about 5 diametral pitch. 
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170. Template Method of Cutting Bevel Gear Teeth. In general 
this method is applied only to* large bevel gears which are beyond the 
capacity of generating machines. The tooth spaces are first roughed 
out and then finished by a reciprocating planing tool whose line of 
travel on each cutting stroke is determined by a template, or former. 

The principle of the template method of cutting bevel gear teeth 
may be illustrated by Fig. 357. In this figure 0 is the apex of the bevel 
gear blank B, and EG is the center line of roller R and the path of 
travel of the cutting point of the tool C. This tool is held in the tool 
slide $ which is caused to reciprocate on the guide GG. The roller R 
on arm GG is maintained in contact with the template T whose guiding 
surface is parallel to an enlarged profile of the tooth to be cut. The 
guiding surface of the template must be of such form that, as the roller 
is moved downward in contact with it, the center line EG of the roller 

will generate the tooth surface of the bevel gear about 0 as a center. 
Thus one side of a tooth is finished by feeding the guiding arm GG of 
the cutting tool downward after each cutting stroke until the bottom 
of the tooth space is reached. The gear is then indexed and the same 
side of the next tooth is finished, and, in a similar manner, the same 
side of the remaining teeth. The cutting tool and guide are then posi¬ 
tioned for finishing the other side of the teeth. 

171. Shaping Method of Generating Bevel Gear Teeth. The shap¬ 
ing method of generating bevel gear teeth is generally employed as a 
finishing process, the tooth spaces having first been roughed out. Prac¬ 
tically all of the machines using this method are built to generate teeth 
that are conjugate to a crown gear having straight or flat-sided teeth. 
Hence the generating tools will have straight sides and can be easily 

made with precision. 
The Gleason* method of generating the teeth of straight bevel 

Gleason Works, Rochester, N. Y. 
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gears is illustrated in Fig. 358. The horizontal line in the figure rep¬ 
resents the pitch plane of an imaginary crown gear. The bevel gear 
blank, with its tooth spaces roughed out, is placed in the machine with 
its apex at the center of and its pitch cone tangent to the pitch plane 
of the crown gear. The space between the cutting edges of the tools C 
and C corresponds to the thickness of the tooth to be cut. These tools 
reciprocate, their cutting edges following planes which correspond to 
the sides of a tooth space of the basic crown gear. The beginning of the 
generation of a tooth is shown at (a), the mid-position at (6), and the 
end of the process at (c). Starting with the related positions shown 
at (a), the blank and tools are given a generating roll as the cutting 
tools reciprocate. This roll of the blank and the reciprocating tools is 

F/G. 359 

sufficient for the generation of a tooth, and corresponds to the rolling 
together of the pitch cone of the blank and the pitch surface of the 
imaginary crown gear. Having generated a tooth, the tools are with¬ 
drawn, and the blank is indexed for the next tooth while the blank and 
tools are rolled back to their original positions, the second and succeeding 
teeth being generated in the same manner as the first tooth. 

The Gleason* method of generating the teeth of spiral bevel gears 
is illustrated in Fig. 359. As before mentioned, Gleason spiral bevel 
gears have their teeth curved on the arc of a circle. The cutter is a 
circular steel disk having a number of blades fastened to its periphery 
whose cutting edges are straight. Owing to a correction for the spiral 
and dedendum angles of the gear, the angle which the cutting edges 
of the blades make with the plane of rotation of the cutter is not quite 

* Gleason Works, Rochester, N. Y. 
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the same as the angle of the sides of the teeth of the imaginary straight 

crown gear, and the plane of rotation of the cutter is not quite parallel 

to the pitch plane of the crown gear. The horizontal line in Fig. 359 

represents the pitch plane of the crown gear. As for straight bevel 

gears, the gear blank is mounted in the machine with its apex coincident 

with the center of and its pitch cone tangent to the pitch plane of the 

imaginary crown gear. The beginning of the generation of the side of a 

tooth is shown at (a), the mid position at (b), and the end of the process 

at (r). As the cutter rotates, the pitch cone of the blank and the pitch 

plane of the crown gear are rolled together, as indicated by the arrows, 

from the position at (a) to that at (c). During this rolling action, one 

side of a tooth is generated. The blank and cutter are then rolled back 
to the original position, the gear blank indexed, and a side of the second 

tooth is generated. In a similar manner, the same side of all the re¬ 

maining teeth and then the opposite side of all the teeth are generated. 

The process as just described applies to the cutting of spiral bevel 

pinions. In generating the gear it is usual to employ a double row of 

cutters and to generate both sides of a tooth space simultaneously. 

Large spiral bevels over 18 inches and up to 60 inches in diameter 

are generated on machines using a single straight-sided planing tool. 

In these machines the blank rotates continuously and the same cut is 

taken on all the teeth in the gear before the next cut is taken. 

Generated spiral bevels may be run at much higher speeds than 

straight bevels cut by the template method without objectionable noise 
and vibration. The limiting peripheral velocity for straight bevels cut 

by the template method is about 1000 feet per minute, while generated 

spiral bevels have been run satisfactorily at peripheral velocities as 

high as 5000 feet per minute. 



CHAPTER X 

HELICAL AND HYPERBOLOIDAL GEARS 

CUTTING OF HELICAL GEARS 

172. Helical Gears. By means of helical gears motion may be 
transmitted at a constant angular velocity ratio between non-intersecting 
shafts at any angle. As mentioned in Art. 152, the pitch surfaces of 
such gears are right cylinders, the teeth are helicoidal, and, in the 

general case, there is point contact between 
the teeth. While the non-intersecting 
shafts may be at any angle, they are, as 
a rule, at right angles, as shown for the 
pair at 8 and 9 in Fig. 270 or as shown in 
Fig. 360. 

Where two cylinders are tangent to 
each other, they will have line contact 
when the axes are parallel, and point 
contact when the axes * are not parallel. 
In the latter case, the two elements, one 
on each cylinder, through the point of 
contact determine a plane tangent to both 
cylinders. The contact radii of the cyl¬ 
inders are perpendicular to this plane 
at the coincident points of contact of 
the cylinders. When the cylinders are 
rotated about their axes, the direction 
of motion of the coincident points of con¬ 
tact at any instant is in the tangent 
plane at right angles to the axes of rota¬ 
tion. This is sho\^n in Fig. 361 which 

represents the plan view of two cylinders l and 2 in contact at P whose 
non-intersecting axes 0\0i and O2O2 are at an angle 6. If Vi and V2 

are the respective linear velocities of the coincident points of contact 
in 1 and 2, then F, drawn perpendicular to km} represents their common 

component. The respective components of Vi and V2 perpendicular 
330 
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to V are PT\ and PT2. The algebraic difference of these components 

represents the instantaneous velocity of sliding of the coincident points 

of contact in the direction T1T2, while V represents the velocity of 

rolling perpendicular to the sliding. The rolling and sliding action 

between the tangent cylinders at any instant is thus determined by 
their peripheral velocities Vx and F2. If V\ and V2 are constant, then 

the relative sliding and rolling will be constant. The direction of sliding 

will be tangent to a helix crossing the elements of 1 at an angle <j>\ and 
tangent to a helix crossing the elements of 2 at an angle 02. The 
rolling which is at right angles to the sliding will be between helices 
crossing the elements of the respective pitch cylinders 1 and 2 at angles 
of (90 — $1) and (90 — 02). Since these helices are at right angles 

F/G.362 

to the helices corresponding to the helix angles 0i and 02, they are 

called normal helices. 
If cylinders 1 and 2 are used as the pitch surfaces of gears to have 

a constant angular velocity ratio corresponding to Vi and V2, the 
teeth of these gears must be of such form as to permit the sliding action 
and to transmit motion at an angular velocity ratio corresponding to 
the rolling action. Evidently the sliding may take place if the gears are 
supplied with teeth of uniform section whose pitch elements are helices 
crossing the elements of the respective pitch cylinders at angles 0 1 

and 02, 0i being the helix angle of / and 02 the helix angle of 2. If 
helicoidal involute teeth are desired, the form of the teeth, as for helical 
involute spur gears, must be such as would be generated by a straight 
oblique line in a plape which rolls on the base cylinder of the gear. 

If gears 1 and 2 were supplied with teeth of the form just described, 
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they would transmit motion positively from one shaft to the other at a 
constant angular velocity ratio. Each gear would be a helical gear and 
would appear and be cut in the same way as a helical spur gear. As 
before pointed out, helical gears should not, however, be confused with 
helical spur gears. The action between mating teeth is widely different. 
Helical spur gears are mounted on parallel shafts, their angular veloc¬ 
ities are inversely as their pitch diameters, their teeth make line 
contact, and the action between mating teeth consists of a combination 
of rolling and sliding in the plane of rotation as for straight spur gears. 
There is no sliding along the teeth. With helical gears, the non-inter¬ 
secting shafts may be at any angle, the angular velocities arc not in¬ 
versely as the pitch diameters, the teeth make point contact, and, in 
action, there is a component of sliding along the teeth as well as a com¬ 
bination of rolling and sliding similar to that in helical spur gears. 

The hand of helical gears is designated the same as for screws. Thus 
in Fig. 362, in which the same proportions have been used as in Fig. 361, 
1 and 2 are right-hand gears. If 1, as viewed from the right, is rotated 
clockwise, then 2 will lx; driven counter-clockwise, as indicated by the 
arrows; or, if 1 is rotated counter-clockwise, 2 will be driven clockwise. 

As pointed out in Art. 152, mating helical spur gears must be of 
opposite hand and have the same helix angle; mating helical gears may 
be of the same or of opposite hand, and the helix angles may or may 
not be the same. Since for mating helical spur gears the normal pitch 
and helix angle must be the same, it follows that they have the same 
circular pitch. For mating helical gears, while the normal pitch must 
be the same, the circular pitches are different unless the helix angles 
are equal. 

Where the hands of mating helical gears are the same, the angle 
between the shafts, whether 90 degrees or less, is equal to the sum of 
the helix angles; that is, 6 = (<t>i + <t>2), as in Fig. 361. Where the 
hands of the gears are not the same, as may be the case for shafts at an 
acute angle, the angle between shafts is equal to the difference of the 
helix angles. Thus, in Fig. 361, if V\ were so much less than V2 as to 
make Pkm an obtuse angle, then V would fall to the left of Vi, making 
1 and 2 of opposite hand and so increasing </>2 that 0 would equal 
(</>2 — <t> 1). It is to be noted that where the shafts are at right angles, 
as they generally are, V must fall on or between V\ and V2, making 
both gears of the same hand, either right or left, and making 0 always 

equal to (<j>i + <£2). 
173. Pitch and Form of Teeth of Helical Gears. In Fig. 363 is 

shown the pitch cylinder of a helical gear with the corresponding pitch 
elements of adjacent teeth crossing the elements of the pitch cylinder 
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at a helix angle <f>. The circular pitch measured in the plane of rotation 

is The normal circular pitch pn, or, briefly, the normal pitch, is 
the distance between the corresponding pitch elements of adjacent 
teeth measured along the normal helix cd. Obviously, 

Vn = Vc cos <t> 

Since the product of corresponding circular and diametral pitches is 
equal to 7r, the relation of the diametral pitches //„ and p'c becomes 

cos <t> 

In Fig. 364 is shown the development, to a reduced scale, of the 
helical gear shown in Fig. 363. Obviously, if the right triangle adb 

were wrapped around a pitch cylinder of radius 12, the hypotenuse db 
would form a helix crossing the elements of the cylinder at the helix 
angle <£, and line dc would form the normal helix. Evidently dc rep¬ 
resents the length of the normal helix from one tooth around the cylinder 
to the same tooth extended. Hence the number of teeth N in the 

gear is 
dc (ad) cos <j> 2ttR cos <t> , 

N = — = -— -r =- = 2Rp n cos <t> (273) 
Pn Pn Pn 

The lead l of the teeth of a helical gear is 
2tR / . 

I = 2a R tan \ = 2irR tan (90 -</>) = :-- . (274) 
tan <f> 

The radius B of the base cylinder for an angle of obliquity a is, 

B = R cos a 
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For the same lead as the pitch cylinder, the tangent of the helix angle 

4>' of the base cylinder is 

, 2rB 2rrll cos a 

=T'“.r~ 
(275) 

Substituting the value of 1 from (274) gives 

tan 0' = cos a tan 0.(276) 

A straight line at an angle of 0' with the gear axis in a plane rolling on 
the base cylinder would generate the helicoidal involute tooth surface 
of the gear. 

174. Angular Velocity Ratio of Helical Gears and Distance between 
Centers. As for all other classes of gears, the angular velocities of 
helical gears are inversely as the number of teeth. This relation, while 
self-evident, may be obtained if desired by combining equations (278) 
and (280) given below. 

00] No 

U>2 N1 

(277) 

Also, if Ri and R2 are the respective pitch radii of 1 and 2 in Fig. 361, 
and oji and a>2 the respective angular velocities, then the angular 
velocity ratio of 1 and 2 is 

/v,\ ^ / Y:i\ 
\rJ~ ' \rJ 

1 Ro 

^Ri 
But, 

V = V\ cos 0i 

Hence, 
001 R2 COS 02 

(JOO R1 cos 0i 

V1 cos 4-2 

V2 cos 01 

(278) 

The angular velocities of helical gears are not, therefore, inversely as 
their pitch radii, as for spur gears, unless the helix angles 4> 1 and <j>2 

are equal. From equation (273), 

N\ = 2R\p'n cos 0] and N2 = 2/fep n cos 02 . (279) 

or, since the normal pitch of mating gears must be equal, 

N2 R2 COS 02 

N1 R\ cos 0i 
(280) 
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Ihe distance C between the centers of a pair of helical gears is equal to 

the sum of the pitch radii of the pinion and gear. Hence, from (279}, 

C — Ji\ -|- Ii> 
1 / N i N, \ 

2p'n\cos 0 1 cos 02/ 

N ]/ 1 

2p'„\cos 0i 
+ ——) 

COS 02/ 
(281) 

where n = — = If the pinion and gear have the same helix angle, 

equation (281) reduces to 

c = ^ Z1 + 
2p'„ \cos 0i/ 

or, for 02 = 0i, 
2'p'nC COS 01 

iVi =- 
to + 1 

(282) 

(283) 

175. Worm and Worm Wheel. A worm is a regular helical gear, 
while a worm wheel is not. The worm, like all helical gears, is formed 
by cutting helicoidal tooth spaces in a right cylinder, while the worm 
wheel is formed by hobbing tooth spaces in the face of the blank as 
shown in Fig. 367 and as described in Art. 178. In the case of 
a worm and worm wheel, it is the manner of hobbing the wheel 
that differentiates the pair from a pair of regular helical gears. 
Ordinarily a worm has one, two, three, or four threads, and is referred 
to as a single, double, triple, or quadruple thread worm. The worm is 
usually the driver and the wheel the follower. The combination is 
generally, though not necessarily, used between shafts at right angles 
where a great reduction in speed is desired. 

For a worm to drive a straight spur gear, Fig. 339, the normal pitch 
of the worm must be equal to the circular pitch of the gear, and the 
angle between the worm and gear shafts must be equal to 90 degrees 
minus the lead angle X of the worm. The teeth of the worm and gear 
will make point contact. For a worm to drive a lielical gear, Fig. 340, 
the normal pitch of the worm must be equal to the normal pitch of the 
gear, and the angle between the worm and gear shafts must be 

'[90° — (0 — X)] if the worm and gear are of the same hand, and 
[90° — (0 + X)] if they are of opposite hand. The teeth of the worm 
and gear will make point contact. If the worm and gear were of the 
same hand and 0 = X, then the angle between the shafts would be 
90 degrees; if of opposite hand and 0 - X, the angle between shafts 
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would be (90° — 2X). Where worms are used to drive involute spur 
or helical gears, the 
worms, to be conjugate, 
must be true involute 
helical gears. They must 
therefore have helical in¬ 
volute teeth of the form 
described in Art. 173; 
that is, the sections of 
the teeth in the planes of 
rotation must be involute 
in outline. 

However, because of 
the point contact be¬ 
tween the teeth, worms 
are very seldom mated 
with straight spur or 
with helical gears. To 
secure line contact, 
worms are almost in¬ 

variably mated with hobbed worm wheels of the type shown in Fig. 
367. For a worm and worm 
wheel to be conjugate, all that 
is required is that the hob used 
to cut the wheel will have the 
same diameter and form of teeth 
as the worm to be used. Hence 
the worm for a worm wheel is 
not necessarily a true involute 
helical gear the sections of whose 
teeth in the plane of rotation are 
involute in outline. 

In Fig. 365 is shown a triple 
thread worm, the lead l of which 
is three times the axial pitch pa. 
The respective legs of the right 
triangle cde in Fig. 366 represent 
the lead and pitch circumference 
of the worm. If this triangle were 
wrapped on the pitch cylinder of 
the worm, the hypotenuse ce 
would follow the pitch helix of the worm. The lead angle, helix 

Fig. 367 
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angle, and pitch radius of the worm are, respectively, represented 
by X, <f>, and R. Obviously 

tan X = 
l 

2irR 
(284) 

For a multi-thread worm of N threads, the axial pitch is 

Pa 

and the normal pitch pn is 

Vn 

N 

(rlf) l cos X 

~Y “ ~N~ Pa COS X 

(285) 

(286) 

Since the equations deduced in Arts. 173 and 174 do not involve 
the form of the teeth, they apply to the use of worms. Their application 
will be restricted to the usual case of shafts at right angles for which the 
helix angle 0 of the wheel is equal to the lead angle X of* the worm. As 
for all kinds of gears, 

From (278) 

0)1 N‘> 

0)2 N1 
(287) 

0)1 R2 COS 02 R2 cos X R2 

0)2 Ri cos 0i #1 cos (90 — X) R i tan X 

Substituting the value of tan X from (284) gives 

o)i 2ttR2 

0)2 l\ 
(288) 

Equation (288) shows that the angular velocity ratio of a worm and 
wheel is independent of the pitch radius of the worm. For any given 
axial pitch and number of threads, the pitch radius of the worm should, 
however, be so chosen as to yield a lead angle as efficient as the velocity 
ratio and conditions of service will permit. Special attention should 
therefore be given to worms and wheels whose primary function is to 
transmit power. By a proper choice of the lead angle, efficiencies as 
high as 97 per cent have been attained in automotive worm and wheel 
drives. Experimental work is in agreement with the theory of screws 
in showing that worms are most efficient for a lead angle of about 
45 degrees, and that there is little change in the efficiency for a variation 
of about 15 degrees above or below this angle. With respect to the 
efficiency of worms and wheels, it may be said that wear will be least 
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for lead angles from 60 to 30 degrees, will not be serious from 30 to 
20 degrees, and will not be destructive from 20 to 12 degrees. The 
corresponding ranges for the helix angle are, therefore, 30 to 60, 60 to 
70, and 70 to 78 degrees. Assuming the same variation to hold for the 
design of helical gears in general, the helix angle of the driver should, 
for best results, be from 30 to 60 degrees. 

The American Gear Manufacturers7 Association recommend for 
worm gearing for general commercial use, “ that the thread form to be 
regarded as standard will be the form produced by a straight-sided 

milling cutter having a 
diameter not less than 
the outside diameter of 
the worm nor greater than 
1.25 times the outside 
diameter of the worm, the 
sides of the cutter having 
an angle of obliquity of 
14 \ degrees in the case of 
single and double thread 
worms and an angle of 
obliquity of 20 degrees in 
the case of triple and 
quadruple thread worms.” 
The recommendations of 
the A. G. M. A. for the 

standardization of commercial worm gearing for general purposes for 
shafts at 90 degrees are set forth in Table 13. Referring to Figs. 368 
and 369, let 

pa = the axial pitch of the worm in inches = the circular 
pitch p0 of the worm wheel; 

a = the addendum of the worm and worm wheel teeth; 
h = the whole depth of the worm and worm wheel teeth; 
h = the lead of the worm in inches = paN\; 
X = the lead angle of the worm; 

a! = the angle of the side of the milling cutter. ’A very close 
approximation to the pressure angle an in the normal 
plane for contact at the pitch point is, in degrees, 

On = 

90 sin3 X\ 

~~nI r and the tangent of the 

pressure angle a0 in the axial plane is 
tan aa = sec X tan an; 
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Ni and N2 = 
Ri and R2 — 

C « 

Di and D2 — 
F2 = 

I?i and E2 — 
A1 and An — 
B\ and B2 = 

61 and 62 = 

(?i and Ci2 = 
Li and Li = 

//2 - 

X2 - 

the respective numbers of teeth of worm and wheel; 
the respective pitch radii of worm and wheel; 
the distance between centers of worm and wheel 

= R\ -f- Rn; 

the respective pitch diameters of worm and wheel; 
the radius at the throat of the worm wheel; 
the respective outside radii of worm and wheel; 
the respective diameters of the worm and wheel hubs; 
the respective diameters of the bores of the worm and 

wheel hubs; 

respectively, the threaded length of the worm and the 
width of the face of the worm wheel; 

the respective extensions of the worm and wheel hubs; 
the respective lengths of the worm and wheel hubs; 
the radius of the wheel face; 
the radius of the wheel rim. 

176. Solution of Helical Gear Problems. As before stated, helical 
gears are used to transmit motion at a constant angular velocity ratio 
between non-intersecting shafts which are at an angle of 90 degrees or 
less, 90 degrees being the usual angle. In helical gear problems the 
angular velocity ratio and angle between shafts are always fixed, while 
the distance between shafts may or may not be fixed, the most difficult 
type of problem being for a fixed distance between shafts. As an ex¬ 
ample of the simpler type of problem let it be assumed that the angular 
velocity ratio of driver to follower is 2 for an angle between shafts of 
60 degrees, and that the distance between shafts is to be approximately 

5.25 in.; that is: 

n = — =2, 6 =*= 60° and C = Ri + R2 = 5.25 in., approximately. 
0>2 

A diametral pitch of 4 will be assumed suitable for the power to be 
transmitted. Assuming the same helix angle for driver and follower gives 

0 
02 = = - = 30°, which, according to Art. 175, is an efficient angle. 

2 
Hence, by equation (283) the number of teeth Ni in the driver is 

N J = 
2p'nC cos 

n + 1 

2(4)5.25,(0.86603) 

2 + 1 
12.124 

Since C is not absolutely fixed, Ni may be called 12, in which case, by 
equations (277) and (279), the remaining values become as follows: 
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TABLE 13 

Proportions of Standard Commercial Worms and Wheels Recommended 

by the American Gear Manufacturers' Association 

(Gear Ratios 10 to 1 to 100 to 1) 

Worm Single and Double Triple and Quadruple 

Dimension Thread Worms Thread Worms 

Pa = 1, A, ], 4, 1, J, 1,1], 11, If, or 2 1 r, 3 1 5 3 1 1 1 1 1 1 a nr 0 
4 1 lit) H > 2mo 4 * I > 1 4 > 1 2 > 1 4 » OI A 

a = 0.3187?a 0.286p„ 

h = 0.686 0.623$, 

<*' = 14.5° 20° 

h h 
X = tan X = — tan X —- 

27T/?! 2 Trtf, 

Nt = 1 or 2 3 or 4 

R i = 1.20a, +0.55 1.20p„ +0.55 

2.40pa +1.10 2.40pa +1.10 

2Ei = 3.036pa + 1.10 2.972/*,+1.10 

Al = 1.664^ + 1.0 1.726/-,,+ 10 

Max. — pa +0.625 7>a+0.625 

f N.A / Nt\ 
hi = 

*(4-5+») *(4-5+a) 

Gi — Va Va 

l JvA 
L\ = 'Pal 6 5+ — 7>//( 6.5+“~ ) 

V 50/ \ 50/ 

Wheel 
I 

Single and Double Triple and Quadruple 

Dimension Thread Worms Thread Worms 

Vr = pa as for worms />a as for worms 

a, h, amla' = as above for worms as above for worms 

JV2 = N\ (Gear ratio) Ah (Gearratio) 

r2= 
Vn^t PgNz 

2tt 2ir 

z>2= 
PaNl PaNz 

7T 7T 

2 F2 = /)2+0.636$, £>2+0.572p„ 

2 F2 = £>2+1.1135$, £>2+0 8903p„ 

^2 = 1.875B, 1.875B2 

b,= 2 a/ (Di+a)a+0.5pa 2V/(£>1+a)a+0.25pa 

G2 = 0.25B2 0.25B2 

l2= 62+2G2 62+2(j2 

//2= 0.882p„+0.55 0.914pa+0.55 

x2= 2.20pa +0.55 2.10pa +0.55 
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N'2 = nN i = 24 

Bi = 

R2 = 

2p'n cos 

#2 

- 1.732 in. 

= 3.464 in. 
2p‘'w COS 02 

0 = 7/1+ 7/2 = 5.196 in 

If the distance of 5.25 in. between centers is to be adhered to, then a 
solution must be nought by varying the helix angles. Since 5.196 in. 
differs very little from the distance desired, the numbers of teeth, 12 

and 24, may be retained. Remembering that 02 — d — 01, it is found, 
by substituting in equation (281), that 

[ 1 2 1 
-_l---- must equal 3.5 

Lcos 0i cos (10 — 0i)J 

By trial, in which a table of reciprocals is convenient, it is found that 
<t>\ = 27° 25', and 02 - 32° 35'. Hence, 

Ri = 
N1 

2p'n COS 01 

N'2 

= 1.6898 in. 

= 3.5603 in. 7/2 — 7 7 
2p n COS 02 

G = 7/i + R‘2 = 5.2501 in. 

The above values are satisfactory 
provided the gear-cutting ma¬ 
chine can be geared for the re¬ 
quired lead. 

177. Graphical Solution of 
Helical Gear Problems. The 

relations between the dimen¬ 

F/G. 370 

sions of any pair of helical gears may be represented graphically. 
In Fig. 370 let ox and oy represent the axes of a pair of helical 
gears and 0 the angle between them. On ox and oy, respectively, 

lay off oa and ob such that ~ = -:1■ = n, the angular velocity ratio of 
ob 0)2 

driver and follower. From 0 draw a line through the intersection d of 
lines bd and ad drawn parallel respectively to ox and oy. Then draw 
two parallel lines a distance apart equal to 2 C at an angle 01 with ox, 

2 C being twice the distance between the axes of the gears and 0i the 
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helix angle of the driver. These parallel lines will intersect ox and oy 

at m and n, the line mn intersecting od at k. Draw kg and kh perpen¬ 
dicular, respectively, to ox and oy. Then angle hkn will represent the 

helix angle 02 of the follower and km and kn the respective diameters 

Z)i and D2 of the driver and follower. 
Obviously, if angle xms = </>i, then angle tny must be equal to 

(1S — 0 1) or to <#>2, the helix angle of the follower. By construction, 

oa oc kf kh (kn) cos 02 

C02 ob of ke kg (km) cos 0i 

But from equation (278), 

0)1 Do COS 02 

0)2 Di COS 01 

(289) 

(290) 

Combining (289) and (290) gives 

kn Do kn -f- km 2 C D2 *4* D\ 

km Di km km D\ 

Hence, 
km = D\ and, therefore, kn = D2 

From equations (279) 

N1 = p'nDi cos 01 = v,n(km) cos 0i = yfn(kg) 

No = p'nD'2 cos 02 = pfn(kn) COS 02 = p'n(kh) 

Lengths (kh) and (kg) may 
therefore be regarded as 
the pitch diameters of 
straight spur gears having 
the same pitch pfn and the 
same numbers of teeth 
N1 and N2 as the pair of 
helical gears. 

The method of apply¬ 
ing the above construc¬ 
tion to the solution of 
helical gear problems is 
shown in Fig. 371. Assum- 

0)1 

mg 6, p'n, and C 
0)2 

known, the values N1 and N2, D\ and D2, and <t>i and <h may be deter¬ 
mined. 
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Lines ox and oy are first drawn from o at the given angle 0, and the 
line od determined by drawing ad and bd parallel, respectively, to ox 

and oy, having laid off on and ob to the ratio — = — = n. A line 
ob 0)2 

m'nr equal in length to 2 C is then drawn in such a position that it will 
intersect od extended at a maximum distance ok' from o. Since k' is 
a maximum distance from o, the perpendiculars k'g' and k'h' will be of 
maximum length and will give maximum approximate values of AT 
and No when multiplied by p'n. The nearest whole numbers lower 
than these maximum computed values should be taken for AT and N2 

that will satisfy the relation — 
0)2 

Ar2 

AT* 
Having fixed on N1 and AT, 

N1 AT 
the values kg ~ -■/ and kh = may be computed and drawn parallel 

V n V n 
to k'g' and k'h', thus locating k. Drawing through k the line mn — m'n' 

= 2 C, determines the helix angles mkg = <f> 1 and nkh = <£2. If the 
first values of AT and AT that are tried do not give practical values of 
(t>i and <t>2, the next lower values of AT and No that would satisfy the 
given angular velocity ratio should be tried. If by such trials a satis¬ 
factory solution cannot be found, either the pitch or the distance between 
centers should be changed. 

While the helix angles, determined as just outlined, may be very 
close approximations to the true results, it cannot be hoped that they 
will be exact. The exact values should be obtained by trial by the 
use of equation (281) as illustrated at the close of the previous 

article. 
178. Cutting of Helical Gears. Since any one of a pair of helical 

gears is, geometrically, a helical spur gear, the cutting of a helical gear 
presents the same problem as the cutting of a helical spur gear. Helical 
gears are, therefore, cut in the same way as helical spur gears. The 
formed cutter method of cutting was described in Art. 156, the template 
method in Art. 157, the shaping method of generation in Art. 158, and 
the bobbing method of generation in Art. 159. It remains to explain 

the cutting of a worm wheel. 
Worm wheels that are to have line contact with their worms are 

always hobbed. The hobbing of such a wheel is shown in Fig. 372. 
Single and double thread hobs are usually fluted parallel to their axes, 

as shown in Fig. 338; hobs having more than two threads should be 
fluted normal to the thread angle reckoned from the outside diameter 
of the hob. For shafts at 90 degrees, the hob is positioned with its 
axis at right angles to the axis of the arbor on which the worm wheel 
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blank is mounted. As the hob and blank are driven positively, the hob 

N2 
making — revolutions to one of the blank, the hob is fed toward the 

N i 
axis of the blank, or vice versa, until the axis of the hob is at the 
proper distance from the axis of the blank. One revolution of the 
blank, after the hob has been fed to its proper depth, serves to generate 
all the teeth in the worm wheel blank. 

For large lead angles, hobs that taper off at one end like a tap are 
sometimes used. The axis of such a hob is set at once to the proper 

Fig. 372 

distance from the axis of the blank, and, as the hob and blank rotate, 
the hob is fed into the blank in the direction of its own axis. To com¬ 
pensate for this movement differential gearing superposes on the uniform 
rotation of the hob an additional rotary movement proportional to the 
axial advance of the hob. 

179. Hyperboloidal Gears. As defined in Arts. 115 and 122, hyper- 
boloidal gears are toothed gears whose pitch surfaces are rolling hyper¬ 
boloids. In Fig. 373 are shown the pitch cylinders 7' and 2' of a pair 
of helical gears and the hyperboloidal pitch surfaces 1 and 2 of a pair 
of hyperboloidal gears mounted on the same shafts A A and BB which 
are at an angle 6 in parallel planes. Motion may be transmitted from 
one shaft to the other at the same angular velocity ratio either by the 
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pair of helical gears represented by V and or by the pair of hyper- 
boloidal gears represented by 1 and 2. While the two pairs of gears 
are mounted on the same'shafts, it is to be noted that they are quite 
different in appearance. The hyperboloidal gears look like bevel gears 
and arc often referred to as skew bevel gears. While; the shafts may 
be at any angle, they are, in most engineering applications, at right 
angles. 

Rolling hyperboloids were quite; fully discussed in Art. 118, and a 

F/G. 373 

graphical method was there developed for locating the contact element 
and for determining the respective radii of the gorge circles of a pair 

COl 

of rolling hyperboloids for a given angular velocity ratio — and a given 
C02 

angle 0 and a given distance C between shafts. Equations (198), (199), 
and (200), as there derived, apply to Fig. 373. For shafts at right 
angles, 0 = 90°, these equations become: 
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— = tan2 = cot2 02 .(291) 
K-2 

Wl R2 #2 
— = — tan 0i = — cot 02 
C*?2 #1 /Li 

. . (292) 

— = cot 4>x = tan .(293) 
C02 

By adding unity to each side of equation (292) and substituting n for 

COl 
— and C for the distance (R1 + R2) between shafts, the following 
C02 

expressions are obtained: 

C tan 4>i 

n + tan <fn 

R2 
Cn 

tan <t> 1 + n 

_C 

n tan <£2 + 1 

C 

cot (j>2 + n 

. (294) 

. (295) 

As for all kinds of gears, 

toi N 2 

0)2 N1 

(296) 

Two pair of Gleason* hyperboloidal gears are shown in Fig. 374. 
These gears are known to the trade as Hypoid gears. The method of 
accurately generating the teeth of such gears was developed at the 
Gleason Works, f Like spiral bevel gears, Hypoid gears were developed 
primarily for automobile drives. They are now applied to other pur¬ 
poses, and Hypoid gears 55 inches in diameter have been made. 

For hyperboloidal as for helical gears there is a component of sliding 
along the teeth as well as a combination of rolling and sliding similar 
to that in spur gears. However, hyperboloidal gear teeth have line 
contact, while the teeth of helical gears have point contact. Hyper¬ 
boloidal gears are, therefore, more durable and suitable for the trans¬ 
mission of power than helical gears. The sliding along the teeth suffi¬ 
ciently assists lubrication so that Hypoid gears, in spite of this additional 
sliding, wear as well as spiral bevel gears. Their most important ad- 

* Gleason Works, Rochester, N. Y. 

t See U. S. patents to Ernest Wildhaber: 1,622,555; 1,676,419; 1,673,540; 

1,705,886; 1,676,371; etc. 

See also “Design, Production, and Application of the Hypoid Rear-Axle Gear/* 

by Arthur L. Stewart and Ernest Wildhaber, in the Journal of the Society\ of Auto¬ 
motive Engineers for June, 1926. 
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vantage over spiral bevel gears is due to the fact that their shafts do 
not intersect. This makes it possible, as shown in Fig. 374, to continue 
the shaft on which the pinions are mounted, and to drive several or 
more parallel shafts from the same drive shaft as when helical gears 
or worms and worm wheels are employed. 

The pitch surface of a spur gear rack is a plane. In bevel gearing 
the pitch surface of the crown gear, or rack, is a circular plane. The 
pitch surface of a rack for hyperboloidal gears is a helicoidal surface. 

Fig. 374 

For this pitch surface the helix through P in Fig. 373 is a straight line 

normal to the contact pitch element EE, and the curve through F is a 
helix. The element of this pitch surface is the pitch element PF of the 
hyperboloids. It is evident from the nature of the pitch surface of a 
rack which would act with either hyperboloid that correct teeth for 
hyperboloidal gears are very complex in form, and their generation an 

intricate problem. 



CHAPTER XI 

LINKWORK AND MISCELLANEOUS MECHANISMS 

180. General Considerations. In the preceding chapters various 

direct contact mechanisms, simple or basic four-link mechanisms, and 

compound mechanisms have been treated. It has been shown how to 

find the linear displacement, velocity, and acceleration of any point in 

a mechanism and the angular velocity and angular acceleration of any 

link. Except for direct contact mechanisms, the effect of the propor¬ 

tions of the links of a mechanism on the motion transmitted from the 

driver to the follower has not, however, been discussed to any extent. 

A study of how the proportions of the links of a mechanism affect the 

motions transmitted is called linkwork. The term applies to those 

mechanisms in which the motion of the driver is transmitted to the 

follower by means of a rigid link and not by means of a flexible con¬ 

nector or by direct contact between the driver and follower. Mechan¬ 

isms, or linkages, can be used to convert: 

(а) Continuous rotation into continuous rotation with a con¬ 

stant or variable angular velocity ratio; 

(б) Continuous rotation into reciprocation, rectilinear or circu¬ 

lar, or the reverse; 

(c) Reciprocation into reciprocation with a constant or a variable 

ratio. 

With the above conversions in mind, some mechanisms of funda¬ 

mental importance and some of common occurrence will be studied. 

181. Four-Link Mechanism, Reciprocation of Driver and Follower. 
As pointed out in Chapter II, the simplest complete kinematic, or con¬ 

strained, chain has four links. A four-link mechanism having four 
binary links and four turning pairs is shown in Fig. 375. In this and 

the figures to follow, 0 is the fixed link, 1 the driver, 2 the connecting 

link, and S the follower, the respective lengths of the links being Zo, l\9 h, 

and h. The proportions of the links in Figs. 375 and 376 are such that 
neither the driver 1 nor the follower 8 can make a complete rotation. 
Hence, proportioned as they are, these mechanisms can only convert 
circular reciprocation into circular reciprocation. 

348 
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The mechanism in Fig. 375 is shown dotted in three limiting phases. 
With C at C', center B is at the dead-point position Br, and the follower 
S is in its extreme position to the right. Point Cf is the intersection of 
an arc of radius (li + l>) from Oio as a center with an arc of radius h 

from 0;u> as a center, Bf being the intersection of a line from C" to Oio 
with an arc of radius h from Oio as a center. With B at B" and B'", 

center C is at the respective; dead-point positions C" and C"', and the 
driver 1 is in its extreme left positions. Points B" and B,ff are the 
intersections of an arc of radius (0 + h) from 0;u> as a center with an 
arc of radius l\ from Oio as a center. While center B reciprocates 
through the arc B"B'Band back to R", center C of the follower 
reciprocates through the arc C"C'C'n and back to C". Within these 
limits either member might act as the driver and its circular reciproca¬ 
tion cause circular reciprocation of the other. However, in the neigh¬ 
borhood of the dead-point positions of the follower, the action of an 

actual mechanism would not be smooth and satisfactory. For this 
reason, 1) if it is assumed to be the driver, should reciprocate through a 
smaller arc than B"B'B"r. Referring to the lengths of the links in the 

figure, it is to be noted that (h + h) < (lo + ^j)ror (h ~ h) < (fo — h)- 

For it to be possible for 1 to make a complete rotation, it is evident, by 
inspection of one of the limiting positions, that (h + h) must be equal 

to or greater than (lo + l\)} or (h — h) > Qo ~ h)- , 
Fig 37G has been lettered in the same manner as Fig. 375 and to it 

the same analysis applies. Theoretically, while B reciprocates through 
the arc B,rBfBm and back to B", center C of the follower reciprocates 
through the arc C"C'C'" and back to C". To be practical, as explained 
immediately above, the driver should reciprocate through a smaller arc 

than B"B'B"'. In Fig. 376, lo < (fe ~h + h) or (h + h) > (h + h)- 
For it to be possible for 1 to make a complete rotation, it is evident, by 
inspection of one of the limiting positions, that lo must be equal to or 

greater than {h h + Zi)> or (fe + h) < (fo 
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Four-link mechanisms are much used to convert circular reciprocation 
into circular reciprocation at a constant or variable angular velocity 
ratio. An example from a four-valve engine using a Corliss type of 
valve is shown in Fig. 377. Such engines employ two oscillating valves 
at each end of the cylinder, one to control the admission and cut-off of 
steam and the other to control the exhaust and compression. The 

figure shows a steam valve for controlling the admission and cut-off 
of steam at one end of the cylinder. The valve S is oscillated about its 

axis O30 by link 8 which is driven by link 1 through link 2. The steam 
edge of the valve is shown coincident with the steam edge of the port. 
To admit steam to the cylinder the valve must be rotated clockwise 
and rotated counter-clockwise to stop, or cut-off, the admission of steam. 

The proportions of the links are such as to give a rapid opening and 
closing of the valve with a 
slower and much reduced 

movement of the valve after 
it is closed. As 1 recipro¬ 
cates through the arc BB' 
and back to B, 8 reciprocates 
through the arc CC' and 
back to C, and the valve 
uncovers and then closes 

the steam port to the ad¬ 
mission of steam. As the 
motion of 1 continues from B 

to B" and back to B} 8 moves from C to C" and back to C. It is 
to be noted that 1 oscillates through angle BO10B' during the open¬ 
ing and closing of the valve and through the larger angle BO10B" 
after the valve is closed, while the valve oscillates through the respect¬ 
ively larger and smaller angles CO30C" and CO30C". Hence, by prop¬ 
erly proportioning the links, a quick comparatively large travel of the 

valve in opening and closing is secured with a slower and much 

reduced travel after closing. 
For the proportions shown in Figs. 375, 376, and 377, motion is 

transmitted from driver to follower at a variable angular velocity ratio. 
This ratio may be found for any phase by the method of Art. 43 or by 
applying the angular velocity theorem of Art. 67. According to Art. 43 
the angular velocities of driver and follower are inversely as the per¬ 

pendiculars let fall from their fixed centers upon the line of trans¬ 

mission, or inversely as the segments into which the line of centers 

is cut by the line of transmission. Applying this to Fig. 376, the 

TO CLOSZ 
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ratio of the angular velocities of driver and follower for the phase 

shown is, ^ = O30F3 = Oi aOao 

^30 OloFi Oy\0 io 

It is thus evident that the angular velocity ratio of driver to follower 
in Figs. 375, 376, and 377 is variable. 

The linear velocities of B and C for any phase may be found by the 
instant center method of Art. 64 or by the velocity vector diagram 
method of Art. 74. 

182. Four-Link Mechanism, Rotation of Driver and Reciprocation 
of Follower. It was shown in the preceding article that complete 

rotation of the driver requires that (h — h) ? (Io — h) or (h + h) ^ 

(io + is). In the respective Figs. 378 and 379 (I2 — h) = (io — k) 

and (h + h) = (io + fe). While these proportions make it possible 
for the driver 1 to make a complete rotation, the movement of the 
follower 3 would not be completely constrained. As before, three 

limiting positions are shown dotted for each mechanism. It is to be 

noted that Br and Cf are simultaneous dead-point positions of B and C 

making it possible for the follower 3 to move either toward C" or Ctn 

as the motion of 1 the driver is continued. Hence, the motion of the 

follower is incompletely constrained. 
For continuous rotation of the driver and complete constrainment 

of the follower, (h — h) must be greater than (lo — h) and (I2 + Ji) 
must be less than (to + h). A linkage so proportioned is shown in 
Fig. 380. Continuous rotation of the driver imparts a circular recip¬ 

rocation to the follower which is completely constrained. The propor¬ 

tions of the mechanism are such that the angular velocity ratio of the 
driver to follower is variable as can easily be shown by applying the 

method of Art. 43 as was done in the preceding article. 
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183. Four-Link Mechanism, Rotation of Driver and Follower. If 
both the driver and the follower are to rotate continuously, Fig. 381, 
there must be no dead-points; for, if the driver 1 should reach a dead- 
point, the follower 3 would come to rest-, and, if the follower 3 should 
reach a dead-point, its motion would not be fully constrained, and, 
generally, it would lock the driver and prevent rotation. If, in Fig. 
381, either the driver or the follower were to have a dead-point at B' 

or C\ then each would have dead-points simultaneously. It can be 
seen by inspection of these positions that to avoid dead-points (fe + h) 

must be greater than (/(> + h) and h must be less than (Za — Z0 + li), 
or the proportions must be such that (Jo + h) > (Z;s + h) and (b> — l\) 

< (h Zo). The lengths of the links in Fig. 381 are in accordance with 
these relations. With the links so related there can be no dead-points, 
and continuous rotation of either 1 or 3 will cause the other to rotate 
continuously. The angular velocity ratio will, however, be variable 

as can be shown by applying the method of Art. 43 or by applying the 
angular velocity theorem of Art. G7. Thus, for the phase shown, 

0010 ^ 0\\\0%0 

coao 010 F1 013010 

The mechanism shown in Fig. 381 is called a drag-link mechanism. 
When used to connect two cranks, the center line of whose shafts coin¬ 
cide, the length of the fixed link 0 becomes zero. In this event links 
lf 2, and 3 act as though pinned together and cease being a kinematic 
chain and become a structure, the three links rotating as one piece. 
Hence, with h equal to zero, driver and follower would rotate at the 
same angular velocity, and their angular velocity ratio would be unity. 
Two cranks of equal length are sometimes coupled up in this way in 
preference to having a shaft with a single center crank, the results of 
possible misalignment of the shafting being less objectionable for the 
former than for the latter arrangement. While for the former arrange- 
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ment a misalignment would cause a slight variation in the angular 
velocity ratio, the wrenching action and stresses induced would not he 
as severe as for the latter arrangement. 

It has just been shown that if the length Iq of the fixed link is zero, 
the angular velocities of driver and follower are equal whether h and 12 
are equal or unequal. The angular velocities of driver and follower are 
also equal if h = h and 1> = lo. As shown in Fig. 382, these are the pro¬ 
portions that must be used in connecting the drive wheels of a locomo¬ 
tive. Since for these proportions the driver and follower would have 
simultaneous dead-point positions in the line of centers, special means 
must be provided to completely constrain the motion of the follower. 
The special means used for locomotives is to employ two side rods 2 

and 2' and t wo pairs of cranks 1 and 3 and 1' and 3' of equal length, 
cranks 1 and 1' being at the same angle, usually 90 degrees, as cranks 

F/G. 388 

F/G >383 

F/G. 384 

3 and 3'. Then, when 1 and 3 are horizontal and on dead center, 1' and 
S' will be vertical and in a favorable position to be driven by the engine 
on the right side of the locomotive; and 1 and 3 will be in a favor¬ 
able position to be driven by the engine on the left side of the loco¬ 
motive when 1' and 3' are on dead center. Thus the motion of the 
drive wheels is completely constrained and stalling of the locomotive 
is made impossible. That the angular velocity ratio of driver to fol¬ 
lower is constant and equal to unity is shown by applying the method 
of Art. 43. Since cranks 1 and 3 are of equal length, the perpendicu¬ 
lars let fall from 010 and O30 on the line of transmission will always be 
equal, which means that the angular velocity ratio of driver to follower 
will always be unity. It is to be noted that this will always be true 
where the links, 0, 1, 2, and 3 form a parallelogram. 
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Other possible arrangements for securing complete constrainment 
of the follower are shown in Figs. 383 and 384. It is to be noted that 
in each case three equal cranks are employed whose pins are connected 
by a ternary link. It is also to be noted that while the centers of rota¬ 
tion of the cranks may be spaced in any manner, the crank-pin centers 
as spaced by the ternary link must agree with the spacing of the centers 
of rotation of the cranks. The middle crank, marked by an arrow, 
should be the driver. 

184. Four-Link Mechanism with Sliding Block. In Fig. 385 is 
shown a four-link mechanism having four binary links and three turn¬ 
ing and one sliding pair. Evidently circular reciprocation or rotation 
of 1 will cause circular reciprocation of the sliding block 8. Assuming 
the radius of the center line of the slot to be equal to S', the mechanism 
shown is exactly equivalent to a mechanism having four turning pairs 
and four links 0,1, 2, and S', or equivalent to such a mechanism as is 
shown in Fig. 380. If the radius S' of the center line of the slot were 
made of infinite length, the slot would be straight and the sliding block 

would have rectilinear recipro¬ 
cation. Such a four-link 
chain with three turning and 
one rectilinear sliding pair is 
called the “ slider crank chain,” 
the four inversions of which 
are shown in Figs. 38, 39, 40, 
and 41. The most widely used 
slider crank mechanism is the 

one where the fixed member is the guide on which the slide reciprocates. 
It is the mechanism generally used to convert rotation into rectilinear 
reciprocation or rectilinear reciprocation into rotation. 

186. Slider Crank Mechanism, Connecting-rod of Finite Length. 
In Fig. 386 is shown' a slider crank mechanism with a connecting-rod 2 

of finite length. This is the typical mechanism used in engines to 
convert rectilinear reciprocation into rotation and in pumps and com¬ 
pressors for converting rotation into rectilinear reciprocation. This 
mechanism Jms previously been treated in many articles. In Art. 65 
it was shown how to find, by the method of instant centers, the linear 
velocity of the cross-head and the velocity of any point in the connect¬ 
ing-rod for any position and velocity of the crank. In Art. 70 it was 
shown how to find the linear acceleration of the cross-head from a plot 
of its linear velocity. In Art. 72 a full analytical treatment of the 
velocity and acceleration of the cross-head and connecting-rod was given, 
and in Art. 76 the determination of these velocities and accelerations 
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by means of velocity and acceleration vector diagrams was fully treated. 
In view of this previous treatment, only matters relating to the effect 
of proportions will be treated here. 

In practically all engines, pumps, compressors, etc., the center line 
of travel of the cross-head passes through the shaft center as shown in 
Fig. 386. The cross-head position corresponding to any crank position, 
or the crank position corresponding to any cross-head position, is easily 
found graphically. The cross-head position D corresponding to crank 
position Df is where an arc having a radius equal to the length l of the 
connecting-rod from D' as a center intersects the center line HC‘ The 
crank positions corresponding to any cross-head position are where an 
arc of radius l from the cross-head position as a center intersects the 
crank circle. Thus, for cross-head position D, the crank is either at 
D' or Dn depending upon whether the cross-head and piston are on 
their forward or return stroke. Obviously, IV and Cf are the respective 

dead center positions of the crank and H and C the Corresponding posi¬ 
tions of the cross-head at the head and crank ends of the stroke. With 
the crank vertically up or down at P' or P", it is to be noted that the 
cross-head is at P, a distance MP from the middle of its stroke. This 
is due to the fact that the connecting-rod is of finite length. In design¬ 
ing engines this effect of “ the angularity of the connecting-rod ” on 
the events of the cycle must be considered. For the cross-head at the 
mid-stroke position M, the crank is either at M' or M". Hence the 
first half of the forward stroke is covered in less time than the last half 
and the second half of the return stroke in less time than the first half. 
The greater the length of the connecting-rod relative to the crank the 
less MP and the smaller the difference in time between the halves of the 
stroke and the nearer will the motion of the cross-head approach being 

truly harmonic. For the crank at P' or P", 

MP - MOio - POio - l -Vp - R2 = R(n -Vn2 - 1) (297) 



356 LINKWORK AND MISCELLANEOUS MECHANISMS 

where n — It is to be noted that MP decreases as n increases, 
R 

being zero for a rod of infinite length. 
In Fig. 387, B is where the connecting-rod extended intersects a 

line through the shaft center perpendicular to the center line Z)Oio. 
Making the usual assumption that the crank rotates at a uniform rate, 
it was shown in Art. 70 that the intercept OioB represents the linear 
velocity of the cross-head to the same scale that OlqD' represents the 
constant linear velocity of the crank-pin. Hence the linear velocity of 
the cross-head is the same as that of the crank-pin for crank positions 
for which the intercept is equal to the crank length R. This is obvi¬ 
ously true for the vertical position 0\o P' of the crank and is also true 
for the crank position OioM'. As the crank passes through the 
dead center positions H' and C' the velocity of the cross-head is zero. 

Hence, the velocity of 
the cross-head increases 
from zero to a value 
equal to the linear ve¬ 
locity of the crank pin 

as the crank rotates 
from H' to M', rises 
above this value be¬ 
tween M' and Pr, and 
then falls off to zero as 

the crank reaches C'. The position of the crank-pin M' at which the 
velocity of the cross-head first equals that of the crank-pin may be 
determined by computing the length of the perpendicular FM'. Since 
the triangle P'OioM' is isosceles, OiqN, drawn perpendicular to MM'P', 
will equally divide the angle P'OioM'. Also, since P'Oio and NOio 
are respectively perpendicular to DOio and MM'P', angle P'OioN is 
equal to <f>, likewise angle M'MOio- The displacement of the crank 
when the velocity of the cross-head is first equal to the linear velocity of 
the crank-pin, is, therefore, 

or, 

But, 

Hence, 

0 = 90 - 20 

sin 6 = sin (90 — 2</>) = cos 2<f> = 1 — 2 sin2 <t> . 

FM' — 1 sin = = R sin 6. 

R • sin 6 
sin <t> = — sin 0 = 

n 

(298) 

(299) 
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Substituting this value of sin </> in (298) gives 

2 
sin 0 = 1 sin2 0 

n* 

or 
n* 

sin2 0 + - sin 0 — — 
1 ft r» 2 2 

Completing the square and solving gives, 

sin 0 = n[zk Vs + n~ — n].(300) 
4 

Since the sine of an angle can not be numerically greater than unity, 
the double sign of the radical may be dropped. Taking the plus sign 
and substituting the value of sin 0 from (300) in (299) gives, 

JJj, _ 
FM' = ---[ v 8 + n- - n].(301) 

4 

where a line a distance FM’ from and perpendicular to the center line 
DOio intersects the crank circle locates the position Mf of the crank-pin 
when the velocity of the cross-head is first equal to that of the crank-pin. 

The crank position corresponding to the maximum velocity of the 
cross-head is of interest since at that instant the acceleration of the 
reciprocating parts is zero. Equation (94) gives the value of the 
acceleration of the reciprocating parts for any angular displacement 0 
of the crank. The velocity of the reciprocating parts is therefore a 
maximum when the right-hand member of this equation equals zero, or, 

n cos d + cos 2d = n cos 6 -{- 2 cos2 6 — 1 = zero 

Transposing and completing the square, 

_ n fn\2 1 /n\2 
cos2 0 + - cos 0 +(4) -2+(-4) 

or, _ 

cos 6 = ] [a/8 + n2 — n\.(302) 

The reciprocating parts reach their maximum velocity just after the 
position where the crank is perpendicular to the rod; that is, just after 
the position where, 

l 
tan $ = = n 

R 
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If, as shown in Fig. 388, the center line of the motion of the cross¬ 
head does not pass through the center of rotation Oio of the crank, the 
stroke of the cross-head will not be equal to the diameter of the crank- 
pin circle and the to-and-fro strokes of the cross-head will not be cov¬ 
ered in equal intervals of time. Thus, in Fig. 388, if EF is to be the 
path of travel of the cross-head, one end of the stroke will be at H 
where an arc of radius (l + R) from Oio as a center intersects EF, and 
the other end of the stroke will be at C where an arc of radius (l — R) 
from Oio as a center intersects EF. The corresponding crank positions 
are IF and C'. Hence the stroke to the right is made while the crank- 
pin rotates through the arc TI'D'Cand the stroke to the left while the 
crank-pin rotates through the arc CfD"H'. For uniform rotation of 
the crank, the stroke to the right is therefore made in less time than 
the stroke to the left. Because of this fact the mechanism is some¬ 
times used as a “ quick return mechanism.” Within certain limits 

the proportions of a mech¬ 
anism for a given crank 
length R and connecting- 
rod length l may be deter¬ 
mined for a given ratio of 
the out to the return 
stroke. The crank circle 
is first divided into arcs 
C/D"H' and H'D'C' cor¬ 
responding to the given 
ratio thereby determining 

the crank positions OioH' and OioC". Points C and II marking the ends 
the stroke of the cross-head are then determined by laying off from 
Oio on C'Oio and OioII' extended the respective distances (l — R) and 
(Z + R). A line through H and C gives the center line of travel of the 
cross-head, and the perpendicular distance from this line to Oio the 
offset of the center of rotation of the crank. 

The slider crank mechanism with an offset crank has been used in 
single acting gas and steam engines to give a quicker return, or exhaust, 
stroke than the pressure, or working, stroke. To illustrate this appli¬ 
cation by means of Fig. 388, the direction of rotation of the crank 
must be the reverse of that shown. Thus, on the pressure, or work¬ 
ing, stroke, the crank would rotate through the arc H'D,fCf and 
through the arc C,D,W on the return, or exhaust, stroke. By 
using two cylinders and cranks at 180 degrees it is possible by this 
means to have the piston of one cylinder complete its exhaust stroke 
and to start on its pressure stroke before the piston of the other cylinder 



SLIDER CRANK MECHANISM 359 

has completed its pressure stroke, thus avoiding points of zero turning 
moment. Furthermore, for a given ratio of connecting-rod length to 
crank .length, an offset crank will reduce the obliquity of action during 
high pressure on the working stroke and increase the maximum obliquity 
of action on the exhaust stroke. Or, to state the case somewhat dif¬ 
ferently, the length of the connecting-rod can be reduced and the design 
made more compact for a given maximum obliquity of action during the 
period of high pressure on the working stroke. 

186. Slider Crank Mechanism, Connecting-rod Length Equal to 
the Crank Length. When the length of the rod in a slider crank mech¬ 
anism is made equal to that of the crank, the motion of the follower, 
cross-head, will not be definitely constrained. If, in Fig. 386, the 

length of the connecting-rod is made equal to that of the crank, it is 
evident that as the crank is rotated from Hf to Pf the cross-head will 
move to Oio and for any further rotation of the crank the connecting- 
rod will rotate with the crank. Only 

the inertia of the cross-head as it ap¬ 
proaches Oio can insure its passing this 
dead-point position, lienee, for a 
length of connecting-rod equal to that 
of the crank, the sliding block or fol¬ 
lower, is not definitely constrained. If, 
as in Fig. 389, the crank is attached to 
the middle of a ternary link fitted with 
two sliding blocks and having a length 
equal to twice that of the crank, both 
8 and 4 will be constrained to recipro¬ 
cate in rectilinear paths. It is to be 
noted that this mechanism is not a simple four-link but a compound 
mechanism; in fact, a double four-link mechanism. The stroke of 
each block will be twice instead of being equal to the diameter of the 
crank-pin circle. When E is at A, F is at Ff and G is at 0\. As the 
crank rotates from A to B, F moves from F' to 0i and G moves from 
Oi to G'; and as the crank moves from B to C, F moves from Ox to F" 
and G moves from Gf to Ox. As the crank rotates through the second 
half of its revolution from C through D to A, F moves from Fn through 
0i to Ff and G moves from Oi to G" and back to Oi. For any phase 
the distance of G from Oi corresponds to the distance Oio# of Fig. 387, 
and hence is proportional to the velocity of F for uniform rotation of 
the crank; likewise 0\F is proportional to the velocity of G at any 
phase. In this mechanism the rod, or ternary link, S is subjected to a 
bending action as well as to tension and compression. So far as the 
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motion of either 8 or 4 is concerned, the mechanism of Fig. 77 is the 

equivalent of that of Fig. 389. 
The elliptic trammel which is used for drawing ellipses is an applica¬ 

tion of the mechanism of Fig. 389. If, in Fig. 390, GF is made equal 
to the difference of the semi-major and semi-minor axes of the ellipse 

desired, and the extension FP is made equal to the semi-minor axis; 
then a pencil at P will trace an ellipse in one turn of the crank 0\E. 
If an ellipse is traced, then, for any phase such as shown, PK would 

represent x and PH would represent y. Triangles KPG and HFP are 
similar; hence, 

x y 
cos 6 — - and sin 6 — - 

a b 

Squaring these equations and adding them together gives, 

(o)"+(0*_COS2 9 + S'°! ” ’ 1 

which is the equation of an ellipse about co-ordinate axes coincident 

with the major and minor axes. 
An Oldham coupling is shown in Fig. 391. This coupling is used to 

transmit motion between parallel shafts whose axes F and G are a short 
distance apart. As shown in Fig. 392, it is an inversion of the mechan¬ 

ism of Fig. 389 with link 2 instead of 0 as the fixed member. Evidently 
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with 2 fixed the locus of 0\ is a circle of diameter FG. Let 0\ and Oi" 
be two positions of Oi. Then angles OiGOi' and Oi'FOi", being 
angles of the same segment of a circle, are equal. Hence, if 3 is 

turned through the angle Oi'FOi", 4 will be turned through an equal 
angle Oi'GOi". If, therefore, 3 and 4 are mounted on shafts, rotary 
motion may be transmitted from one to the other at an angular velocity 
ratio equal to unity. The form actually taken by the coupling is shown 

/~/6. 3&F 

in Fig. 391, which is lettered and numbered the same as Figs. 389 and 
392. Disk 0, instead of being shown with two slots at right angles, is 
shown with a slot on one side and with a guide strip on the other side at 
right angles to the slot. 

187. Slider Crank Mechanism, Connecting-rod of Infinite Length. 
In treating the slider crank mechanism with a connecting-rod of finite 
length, it was pointed out in Art. 185 that the longer the connecting- 
rod relative to the crank the more nearly would the motion of the cross- 
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head approach being harmonic. In the slidef crank mechanism shown 

in Fig. 393, a slotted cross-head and sliding block have been substituted 
Just as the cross-head and its guide 
are equivalent to a link of infinite 
length, so the slot in the cross¬ 
head and the sliding block are 
equivalent to a wconnCcting-rod 
of infinite length. As pointed 
out in Art. 72, the slotted cross¬ 
head is frequently called the 
Scotch yoke. 

It is to be noted that for any an¬ 
gular displacement 0 of the crank 
the displacement x of the cross¬ 
head is equal to 72(1 — cos 0); in 

other words, as pointed out in Art. 17, the cross-head has simple harmonic 
motion, for uniform rotation of the crank. If V\ is the constant linear 
velocity of the crank-pin, then, for any angular displacement 0 of the 
crank, the corresponding velocity of the cross-head is, by resolution, 

Vz = Vi sin 0 = co72 sin 0 

and the acceleration of the cross-head is, 

d 
Az = -7 (Vz) = o)2R cos 0 

at 

These equations are the same as the equations in Art. 17 applying to 
simple harmonic motion. 

The application of this mechanism to fire engines and other steam 
pumps is indicated in Fig. 393, where S is the steam cylinder and P the 
pump cylinder. The function of the crank and shaft in this case is to 

carry a flywheel which, by absorbing and redistributing energy, keeps 
the crank rotating at approximately a constant speed, thus regulating 
the motion of the cross-head and pistons of the steam and pump cylin¬ 
ders. The practical advantage of using this equivalent of a rod of 
infinite length is that it results in a more compact mechanism than 
the usual slider crank mechanism with a rod of finite length. The 
distance between the stuffing-box glands of the steam and pump cylinders 
only needs to be equal to the stroke plus the outside width of the yoke 
plus a suitable allowance for clearance at each end of the stroke. 

The crank-pin is fitted with the sliding block 2 to avoid line contact 

for the connecting-rod of Fig. 386. 
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and undue wear. Kinematically it is not essential. Even when the 
pin is fitted with a block, the slotted cross-head and sliding block can 
not be as satisfactory as a connecting-rod with its pin connections owing 
to the fact that sliding pairs can not be lubricated as effectively as turn¬ 
ing pairs. The slotted cross-head is only used where the utmost com¬ 
pactness is essential. 

188. Eccentric and Rod. An eccentric is merely a crank-pin which 
is larger in diameter than the shaft to which it is fastened. It is a 
modified crank. Thus, in Fig. 394, Oio is the center of a shaft of 
radius r, and E the center of an eccentric of radius R. The eccentricity, 
or equivalent crank length, is OioE. The eccentric, eccentric-rod, 
sliding block, and frame are, kinematically, the same as the slider crank 
mechanism composed of the links 0, 1, 2, and 8, for which the stroke 
of the sliding block is seen to be twice OiqE or equal to the diameter 
of the dotted circle. With E in its left dead center position, F on the 

eccentric is at F'; and with E in its right dead center position, G is 
at (?'. * It is to be noted that 

F'G1 = OioF - OioG = (OioE + R) — (/2 — OioE) = 2OioE 

or F'G' is equal to the diameter of the dotted circle. Hence the eccen¬ 
tric, eccentric-rod, sliding block, and frame are equivalent to the slider 
crank mechanism composed of the links 0, 1, 2, and 8. Radius OioE is 
the eccentricity, or throw, of the eccentric, and DE is the length of the 
eccentric-rod. 

An eccentric is used to obtain a reciprocating motion from a rotating 
shaft. Since it can be attached anywhere along a shaft, it avoids the 

"necessity of forming any part of the shaft into a crank, which might 
be awkward and expensive and might weaken the shaft. Eccentrics 

are very commonly used to drive the valve gears of engines. They 
are not used to transmit any considerable amount of power or used in 
place of large throw cranks as the friction loss due to their size would 
be objectionable if not prohibitive. 
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189. Oscillating Beam. An oscillating beam, as shown in Fig. 395 

at B, is sometimes used in engines, pumps, and other machinery. In 
the figure, CC is the center line of the piston motion, L is the distance 
from the center of oscillation to this center line, and 2S is the stroke. 
In order to reduce the angularity of the connecting-rod R, the beam 
should oscillate through the same angle on each side of center line OF, 
which is at right angles to CC, and the distances FE and ED should be 

equal. The length of OG of the beam to fulfill these requirements may 

be found thus: 
OG = OD = L + ED.(303) 

or, 

But, 

Hence, 

OG2 = (L + ED)2 

OG2 = S'2 + OF2 = S2 + (L - ED)2 

(L + ED)2 = S2 + (L- ED)2 

ED 
ap 
4 L 

From which, 
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Substituting this value of ED in (303) gives the length OG of the beam as, 

OG = L + ED = L + ~.(304) 

190. Bell-Crank. In Fig. 396 is shown a method of proportioning 
a bent lever, or bell-crank, to receive and to transmit motion along 
the lines OA and OB in the ratio of m to n. Lay off on OB a distance 
m equal to the desired motion along OA, and on OA lay off a dis¬ 
tance n equal to the desired motion along OB. Through the points a 
and b thus determined draw lines parallel respectively to OA and OB 
intersecting at q. Any point as Q on the line drawn through 0 and q 
that will give suit¬ 
able angular displace¬ 
ments may be taken 
as the center of the 
bell-crank. From Q 
drop perpendiculars 
QPa and QPb on OA 
and OB. To reduce 
the distortion of the 
desired motion to a 

minimum, the angu¬ 
lar displacement of 
the arms of the bell- 
crank on each side of 
these perpendiculars 
should be equal, and 
the respective radii Ra and Rb should be such as to make CPa = EPa 
and C'Pb = E'Pb. Lengths m and n being known the radii Ra and 
Rb may be computed by the method of the preceding article. 

191. Quick Return Mechanisms. Various forms of quick return 
mechanisms are to be found in machine tools and other classes of 
machines either as auxiliary or as primary mechanisms. The primary 
mechanism in shapers and Blotters is a quick return mechanism. In 
the operation of these machine tools a cutting tool makes a cutting, 
or working, stroke and an idle return stroke for each cut that is taken. 
By making the idle return stroke at a higher speed than the working 
stroke, time is conserved and the capacity of the machine thereby 

increased. 
One of the simplest quick return mechanisms is the slider crank 

mechanism with an offset crank. This mechanism was used in some of 
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the early shapers and is shown in diagrammatic form in Fig. 388. The 
application of the mechanism and how it is proportioned for a given 
time ratio of working to return stroke were discussed in Art. 185. When 

used as a shaper mechanism, the sliding block 8 is made longer and the 
cutting tool attached to its outer end, the slide carrying the tool head 
being known as the ram. Also, when used as a shaper mechanism, 

the crank 1 is slotted and fitted with an adjustable crank-pin. By 
moving the crank-pin toward or away from the center of rotation of the 
crank, the length, or throw, of the crank, and hence the stroke of the 

ram, is decreased or increased. It is to be noted that as the length of 

the stroke is decreased, the time ratio of the working to the return 
stroke is decreased. 

The drag link, or MacCord, quick return mechanism is shown 

diagrammatically in Fig. 397. This compound mechanism is formed 

by adding links 4 and 5 to the drag-link mechanism shown in Fig. 381. 
In designing the basic four-link mechanism of the linkage shown in 

Fig. 397, the proportional limits given in Art. 183 should be followed. 

When used as a shaper mechanism, link 8 is slotted and fitted with an 
adjustable crank-pin for changing the length of the stroke. As 

the driver 1 rotates counter-clockwise from OioB' to OioB", it is to be 

noted that O30C rotates counter-clockwise from O30C' to O30C" and D 
moves from D' to D" on the working stroke. The return stroke, D” 
to D', is completed as O30C rotates from O30C" to O30C', or as O10B 
rotates counter-clockwise from O10B" to O10B'. Assuming the driver 1 
to rotate at a uniform rate, the time ratio of the working to the return 

stroke is the ratio of arc B'EB" to arc B"BB'. It is one of the advan¬ 

tages of this mechanism that this time ratio does not change with 

a change in the length of the stroke. 

If the angular velocity ratio of 8 to 1 is desired for the MacCord 
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mechanism, it may be found for any phase by applying the angular 
velocity theorem of Art. 67. Thus, 

W30 

W10 

Ou)Oyt 

O30O13 

O>30 = W10 
OloO,3 

&300,3 

The linear velocity of 5, the ram, may be found by the method of 
resolution, the method of instant centers, or by the velocity vector 

diagram method; and the acceleration of the ram may be found by the 
acceleration vector diagram method. If interested in both the velocity 

and acceleration of the ram, the velocity should be found by the vector 
diagram method; if interested only in the velocity of the ram, either 
the vector diagram method or the method of instant centers should 
be used. Having the angular velocity of 1, the driver, the linear 
velocity of any point in 1 becomes known. Having the linear velocity 
of a point in 1, the linear velocity of 5, the ram, is, for any phase, equal 
to the linear velocity of the instant center Oir>, which is at the instant a 

point common to both 1 and 5. Thus, 

Vo„ 
OioOy5 

O10O12 
Vdo = Vo16 = Vol2 

/QiogiA 
\OxoOvz) 

The methods just stated may be applied to any of the quick return 
mechanisms yet to be described. 1 

A diagrammatic representation of the Whitworth quick return 
mechanism is shown in Fig. 398. This compound mechansim is formed 

by adding links 4 and 5 to the inversion of the slider crank chain shown 
in Fig. 39, where the crank is the fixed member. As the driver 1 
rotates clockwise from Oiofi'^to 0\pBffy OzoC rotates clockwise from 

O30C' to O30C" and D moves from D' to D" on its working stroke. 

The return stroke, D" to D\ is completed as O30C rotates from O30C" 

to O30C' or as O10B rotates clockwise from OiqB" to O10B'. Assuming 
the driver 1 to rotate at a uniform rate, the time ratio of the working 

to the return stroke is equal to the ratio of arc B'BB" to arc B"EB\ 
By moving the crank-pin C along S toward or away from 030, the length 

of the crank and the stroke of the ram is decreased or increased. It is 

to be noted that the time ratio of the working to the return stroke is not 
affected by changing the length of the stroke of the ram. 

Shaper mechanisms are usually designed for a given time ratio of 
the working to the return stroke for a given maximum length of stroke. 
Usually the minimum length of stroke is also fixed. For the Whitworth 
mechanism shown in Fig. 398 a suitable ratio of connecting-rod length 
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CD to the crank length O30C for the maximum length of stroke would be 
selected, also a suitable length O10B for the driver crank. Points Br 
and B" would then be determined by dividing a circle of radius 0\oB 
into arcs B'BB" and Bf/EB' in the given time ratio of the working to 
the return stroke. The center O30 and the center line of travel of the 
ram is then determined by passing a line through Bf and J3". 

The practical form of the Whitworth quick return mechanism is 
indicated in Fig. 399. It has been lettered and numbered the same as 
the skeleton diagram in Fig. 398 and is shown for the same phase. The 
double slotted member 3 rotates about the axis O30 of its supporting 
spindle S. This spindle has its supporting bearings in the fixed stud 

P. The gear carrying the crank-pin B and sliding block 2 rotates on 
this stud, thus causing the double slotted member 3 to rotate about its 
axis 030. In changing the length of the stroke, the adjustable crank- 
pin C is moved further in or further out in the slot (?i. 

In Fig. 400 is shown a so-called “ crank shaper ” mechanism. As 
crank 1 rotates clockwise from O10B' to O10B", the vibrator 3 rotates 
through the angle 6 and the ram moves from D' to D" on its working 

stroke. The return stroke, D" to Z)', is completed as the crank rotates 
clockwise from O10B" to 0\oB'. Assuming crank 1 to rotate at a uniform 
rate, the time ratio of the working to the return stroke is seen to be 
equal to the ratio of the respective angles (180 + 6) and (180 — 0). 
Obviously, since 6 decreases with the stroke, the time ratio decreases as 
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the stroke is shortened. In spite of this defect, this type of mechanism 

for shapers is favored over others because it places the driving mechan¬ 
ism below the ram. The stroke is shortened by moving crank-pin B 
toward its center of rotation Oh». In the practical forms of this 
mechanism, this can be done while the shaper is running. 

In Fig. 401 is shown the velocity diagram for the crank-shaper 

mechanism of Fig. 400 for the maximum stroke of the ram. As before 
pointed out, the velocity of the ram for any phase may be found by the 
method of resolution, by the method of instant centers, or by the 
velocity vector diagram method. 

It is to be noted that the type of mechanism shown in Fig. 400 may 
be varied somewhat by changing the form of the connection at the lower 

and at the upper end of the vibrator. One variation is to interpose a 
link between th° lower end of the vibrator and the frame and to connect 
the upper end of the vibrator directly to the ram by means of a turning 

pair. Other variations are to connect the vibrator either to the ram or 
the frame by a turning pair and to use a sliding pair at the other end. 

In Fig. 402 the quick return of the ram is obtained by using a pai" 
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of elliptical gears. Gear 1, which rotates at a uniform rate, drives gear 
2 to which crank C is attached. The length of the stroke is varied by 
changing the length, or throw, of the crank. With the gears, crank, and 
ram related as shown, the return stroke of ram 4 is made while gear 1 
rotates clockwise through the angle 0, and the cutting, or working, 
stroke is made while gear 1 rotates through an angle of (360 — 0). 
The time ratio of the working to the return stroke is therefore equal 
to the ratio of the respective angles (360 — 0) and 0. It is to be noted 
that this ratio is a maximum for the gears, crank, and ram related as 
shown; that is, this ratio is a maximum when, for the ram at the end 
of its working stroke, gear 1 makes contact with gear 2 at the point 

where a line through the axis of rotation of gear 2 at right angles to its 
major axis intersects its pitch line. 

192. Floating Lever. The floating lever is, as its name indicates, 
a lever whose fulcrum is not fixed. The application shown in Fig. 
403 is from the field of marine engineering. The figure shows a small 
engine, called a reversing engine, whose function is to position the 
valve gear of the main propelling engine for part or full steam ahead 
or astern. The valve gear for each cylinder of the main engine is 

attached by a connecting-rod to a crank keyed to shaft S. The operat¬ 
ing crank 8 is also keyed to this shaft and is connected to cross-head 6 
by connecting-rod 7. Hence the position of the valve gear of the main 
engine depends on the position of the piston Ox the reversing engine, 
which, in turn, depends on the position of the hand-controlled operating 



VARIABLE STROKE MECHANISM 371 

lever 1. In the figure, the operating lever, valve, and piston are shown 
in their mid positions which correspond to the mid, or neutral, positions 
of the valve gear of the main engine. It is to be noted that moving 
the operating lever to the left moves the valve to the right and admits 
steam to the right end of the cylinder, thus causing the piston and 
cross-head to move to the left. Point F, which was the fulcrum of the 
floating lever, now moves to the left with the cross-head while H acts 
as the fulcrum thus causing G and the valve to move to the left. As 
the valve moves to the left, the flow of steam to the right end of the 
cylinder is cut off, the piston of the reversing engine is brought to rest, 
and the valve gear of the main engine has been moved to a new operating 
position. How far the piston of the reversing engine moves to the left 

or right as the operating lever is moved to the left or right, is thus 
controlled by the floating lever S. 

The principle of the floating, or differential, lever is also applied to 
the operating gear of direct-acting steam pumps, steam-hydraulic forg¬ 
ing presses, and other machines. 

193. Variable Stroke Mechanism. In Fig. 404 is shown a variable 
stroke mechanism in which the rotating crank 1 is the driver and sliding 
block 8 the follower. With the control lever 6 at 0, the slide 8 will be 
at 0' and its stroke will be zero. With the control lever at 1 slide 8 will 
reciprocate from 0' to 1', from O' to 2' for the control lever at 0, from 0' 
to 3' for the control lever at 3, etc. With the control lever to the right 
of 0, slide 8 will reciprocate to the left instead of the right of O'. These 
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changes in the length and direction of the stroke of 8 may be made, if 
desired, while the crank continues to rotate. 

It is to be noted that the length of link 4 is equal to the distance on 
link 8 between the centers O34 and O30. Hence, with the control lever 
at 0, center O45 will coincide with O30 and no motion can be transmitted 
to 8 by the rotating driver. Link 5 is isosceles. 

194. Ackermann Automobile Steering Mechanism. While the old 
turn-table steering mechanism as used on horse-drawn vehicles is theo¬ 

retically correct, it imposes too many limitations and difficulties of 
design and operation to be applied to automobiles. Automobiles use 
side pivot steering, the requirements for which, for perfect action, are 
shown in Fig. 405. For absence of skidding when a turn is made, the 
front wheels should turn, within their limits of action, through such 
angles a and /3 that their axes will intersect at a common point 0 on the 
axis of the rear wheels. In this event all four wheels will follow circular 
paths about 0 as a center, and the only tendency to skid will be due to 
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centrifugal action. The proper relation of the angles a and (3 in terms 
of the pivot distance P and the length of the wheel base L, may be 
derived thus, 

Hence, 
A = L cot a and B = L cot (3 

P = A — B = L cot a — L cot fi 
or 

cot a — cot (3 — 
L 

(305) 

The Ackermann side pivot steering mechanism, shown in Fig. 406, 
is the most widely used mechanism for automobile steering. In this 
mechanism, links 1 and 2 are compound links in the form of bell-cranks. 
The phase of the mechanism for straight-ahead running is shown in 
heavy dotted lines, and the phase of the mechanism for turning in the 
shortest permissible radius is shown in heavy full lines. For the angle 
6 and proportions of the links chosen, it is to be noted that the axes 
of the front wheels 1 and 2 intersect the axis of the rear wheels at. points 
Oj and 02 and not at a common point as required for perfect action. 
Hence the wheels will tend to follow paths that do not have a common 
center, and there will bo some skidding. While with the Ackermann 
mechanism skidding can not be wholly eliminated, angle 9 and the 
proportions of the mechanism should be so chosen as to reduce the 
inherent tendency to skid to a minimum, especially for turning radii 
that could be taken at high speeds wdiere centrifugal action would tend 
to increase the skidding. 

196. Straight-Line Mechanisms. A large number of linkages have 
been devised to make a point move in a straight line independently of 
any planed guides. Although commonly called parallel motions, such 
linkages may more appropriately be called straight-line mechanisms. 

Watt/s straight-line mechanism is shown in Fig. 407. Links 1 and 
8 oscillate about their fixed centers 0io and Oso. Any angular motion 
of one link is transmitted through link 2 to the other link. If either 
1 or 3 is moved from its central position, A will be drawn to the left and 
B to the right. If P is properly located on link 2, it will trace a path 
very closely approximating a straight line, provided 1 and 8 are not 
oscillated through too great an angle. The complete path of P, as 
shown dotted in the figure, is shaped somewhat like the figure 8. The 
length of the straight portion of this path will be a maximum when 
centers Oi o and 030 are so located that link 2 will be at right angles to 
1 and 8 when they are parallel. For 1, 2, and 8 so related, point P, 
if properly located on 2, will travel in a path very closely approximating 
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a straight line for a distance equal to the length of 2. Whether or not 
/, 2, and 8 are so related, point P should be so located that the seg¬ 
ments AP and BP of link 2 will be inversely as the lengths h and h of 
links 1 and 8. In Fig. 407 the fixed centers Oio and O30 are on oppo¬ 
site sides of 2. When these centers are on the same side 6f 2, point P 
will be on 2 extended. 

Instead of using a cross-head and guides as is now common, Watt 
used the mechanism of Fig. 407 to guide the piston-rod in many of his 

engines. The earliest of the modern type of steam-engine indicator, 
the Richard’s Indicator, used the Watt mechanism. 

In Fig. 408 is shown a Tabor engine indicator in part section. The 
purpose of this instrument is to automatically record how the steam 
or gas pressure in an engine cylinder varies with the position of the 
piston of the engine. The indicator is attached at 0 to a short pipe 
leading to the engine cylinder. The movement of the piston H, to 
which the piston rod 1 is attached, is governed by the helical spring 
K. The variation of pressure in the engine cylinder as the piston 
moves back and forth, causes the piston H and rod 1 to move up and 
down. This movement in being transmitted to the pencil point P is 
multiplied by links 0, 2, 5, and 4> the pencil point moving vertically 
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up and down parallel to the axis of the drum F. By a cord attached to a 
reducing motion this drum is oscillated through an arc of about 4 inches 
in unison with the motion of the engine piston. The simultaneous 
motion of the pencil and drum causes a figure to be drawn on a strip 
of paper placed on the drum. This figure is called an indicator card. 
By scaling the card the pressure in the engine cylinder for any position 
of the piston may be determined. The length of the card is propor¬ 
tional to the stroke of the engine, and its area is proportional to the 
power developed in that end of the cylinder to which the indicator is 
attached. 

The pencil mechanisms of indicators are interesting examples of the 
application of straight-line mechanisms. The Tabor indicator mechan¬ 
ism is illustrated in Fig. 408 and Fig. 409. In this mechanism the 
pencil P is constrained to move in a straight line mm by a pin D moving 
in a slot of proper shape in the fixed link 0. It is evident that the 

center line nn of this slot may be determined by plotting the curve 
traced by the center of pin D as P is moved in a straight line mm. If 
a circular arc can be found which will agree closely with nn, a link 5 
having a length equal to the radius 6f the arc could be substituted for 
the slotted link 0. This link is indicated by a dotted fine in Fig. 409. 
Making this substitution results in a mechanism similar to that used on 
the Thompson indicator. 

Fig. 410 represents the pencil mechanism of the Crosby indicator. 
If P is moved in a straight line mm, point B in link 2 will trace a curve. 
The length of link 3 is made equal to the radius of a circular arc most 
nearly approaching the curve traced by B. 

Two other approximate straight-line mechanisms are shown in Figs. 
411 and 412. Fig. 411 represents Roberts7 straight-line mechanism. 
With 1 and 3 of equal length and with point P of link 2 in the middle 
of line AB when CD is parallel to AB, point P will, Within limits, trace 
an approximately straight line. For the limiting positions of P to coin¬ 
cide with A and B, the length CD must be equal to 0.50(AB) and the 
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length of links 1 and 8 must not be less than 0.59304P). With 1 and 
8 equal to or longer than 0.593(AB), P will coincide with B when AC 
and CD are in line and will coincide with A when DB and CD are in line. 
The longer 1 and 8 the more accurately will P trace a straight line 
between A and B when CD = 0.50(A/?). 

F/G. 4U FIG. 4^ 

Fig. 412 represents TchebichefTs straight dine mechanism. In this 
mechanism links 1 and 3 are of equal length, and the tracing point P is 
in the middle of CD and is in mid position when CD is parallel to AB. 
Within limits P will trace an approximately straight line parallel to AB. 
If CD is made 0.50(.4P), and the length of links 1 and 8 is made equal 
to 1.25(djB), then P will lie in the extension of the mid position of CD 

when either 1 or 3 is vertical. When 
3 is vertical, P will be at Pf and at 
P" when 1 is vertical. For the links 
so proportioned, P will trace an ap¬ 
proximately straight line from P' to 
P" parallel of AB. 

Paucellier’s straight-line mechan¬ 
ism, shown in Fig. 413, is exact. 
It contains no sliding pairs. Links 
1 and 2 have a common fixed center 
at B; the length of link 8 is equal 

to BC; and links 4, 5, 6, and 7 are of 
equal length. One limit of its motion is when links 8 and 4 are in line, 
the other limit is when 8 and 7 are in line. In accordance with these 

limits, P' is the upper and P" the lower limiting position of P. Between 
these limits P will move in a straight line. This can be shown by prov¬ 
ing that the distance BH to the foot of a perpendicular dropped from P 
is the same for all phases of the mechanism between the limits men¬ 
tioned. Take any phase as shown, drop a perpendicular PH on the 
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extension of BC, and draw the line DK. PIIB is a right triangle by 
construction, and KDB is a right triangle since its hypotenuse is the 
diameter of a circle. Hence, 

or, 

BP BK 

BIJ ~ BD 

BII 
(BD)(BP) 

BK 
(306) 

But since triangles EBP, EDF, and EPF are always isosceles, a line 
joining B and P will always contain D and bisect EF at right angles at G. 
Hence, 

(BIJ)(BP) = (BG - DG)(BG + DG) 

= BG2- IKK = (B1P - EG2) - (.DE2 - EG2) = BE2 - DE‘ 

Substituting this value of (BI))(BP) in (306) gives the distance from B 
to the foot of a perpendicular dropped from any position of P as 

BII 
BE- - l)fp 

BK 
(307) 

Since BE, DE, and BK = 2BC are constants, the distance BH is con¬ 
stant, which means that P travels in a straight line. 

An exact straight-line mechanism can be made by slightly modifying 
the mechanism of Fig. 389. If block 4 is omitted, point G is definitely 
constrained by block 8 to move in a straight line for an oscillation of 
link 1 of less than 90 degrees either side of center line CFf, This modi¬ 
fication of Fig. 389 is known as the Scott Russell straight-line mechanism. 

196. Pantographs. A pantograph is a mechanism in which if one 
point is made to travel in a certain path, some other point in the mechan¬ 
ism will trace a similar enlarged or reduced path. Such a mechanism 
is shown in Fig. 414 with its fixed center at A. Links 1, 3 and 5 arc 
equal and parallel, also links 2 and 4- If point p is on a line joining 
A and P, it can be shown that when P is moved to P' along any path, 
p will move to p' along a similar path. From similar triangles, 

AP _ AE APf AE' 

Ap~ AC and Ap'~AC' 

But AE' = AE and AC' = AC. Therefore, 

AP AP' 

Ap Ap' 
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Hence, for any movement of P, the distances of p from A is proportional 
to the distance of P from A. Since triangles AEP and ACp are always 
similar, it follows that p will always lie on the line joining A and P. 
The angular motion of p about A will therefore always equal the angular 
motion of P about A. Since the angular motions of p and P about A 
are always equal and their radii vectors always proportional, p and P 
must trace similar paths. 

In Fig. 415 is shown a form of pantograph called the “ lazy- 
tongs.” It is shown, as sometimes used, as a mechanism to reduce 
the motion of the cross-head of an engine when using an indicator. The 
pantograph is attached to the cross-head at P with a fixed center at A. 

o 

F/G. 4/4 

F/G. 4/5 F/G, 4/6 

The indicator cord C is attached at p in the line AP and is run parallel 
to the path ran of P and then around a pulley to the indicator. The 
practical objection to the lazy-tongs is the large number of joints and 
consequent liability to lost motion from wear. The pantograph reduc¬ 
ing motion shown in Fig. 416 has fewer joints. 

Pantographs are used for reducing or enlarging drawings and are 
used in engraving and other machines to cause a point or a tool or an 
oxygen jet to follow a given pattern. 

197. Hooke’s Coupling. Hooke’s coupling, or universal joint, is 
used to connect two shafts which intersect. Fig. 417 is a picture of 
such a coupling, the requirements of whose construction are clearly 
shown in Fig. 418. Each shaft is fitted with a forked end, and these 
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forks are connected by a rigid piece having four pins at right angles 
whose axes intersect at the point of intersection 0 of the axes of the 
shafts. As the shafts rotate, each point in the pivot piece moves in the 
surface of a sphere. The coupling is equivalent to a four-link chain 
the axes of whose pivots lie in the radii of a sphere instead of normal 
to a plane. It is equivalent to what Releaux calls a four-link conic 
chain. Such a conic chain may be produced by eliminating the half 
aOf of the cross and the halves am and fn of the forks and adding the 
spherical link bg, which is shown dotted. Kinematically, this mechan¬ 
ism would be the exact equivalent of the original mechanism. 

While for a complete revolution of one shaft the other makes a com¬ 
plete revolution, it can be shown that the angular velocity ratio of one 
to the other is not constant during the revolution. The plane of pro- 

Fig. 417. 

jection of the plan shown in Fig. 419(a) is parallel to the plane of the axes, 
MO and NO, of two shafts which intersect at an angle (3. The projec¬ 
tion of the plane of rotation of / and g of Fig. 418 is normal to NO and 
is represented in Fig. 419(a) by the line fg, the projection of the plane 
of rotation of a and b being the line PL normal to MO. Fig. 419(6) 
is the elevation projected on a plane normal to MO. In this elevation 
the path of a and 6 of Fig. 418 is represented by the circle ACBD. The 
circular path of / and g of Fig. 418 appears in Fig. 419(6) as the ellipse 
AFBG, in which OF = OG = Of cos fi = OA cos 0. When the pivot a, 
taken as the driver, is at A in Fig. 419(6), the follower pivot / is at F. 
For any angular movement 6 of the driver arm, A moves to A\, and F 
of the follower moves to F\. Since the driver and follower arms are 
at right angles, the projected angle A\OF\ will be a right angle. This 
follows since the projected angle of two lines at right angles on a plane 
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parallel to one of them is always a right angle. Hence, angle FOF\ is 
equal to 0. But FOF\ is only the projection of the angle described by 
the rotation of the follower. To obtain the magnitude of the actual 
angle of rotation, plane AFBG must be rotated about AB into the plane 
ACBD. Before making this rotation draw F\E perpendicular to GF. 
On making the rotation, as can be seen by reference to Figs. 419(a) and 
419(6), F will coincide with C, F\ with Fi, and E with E'} giving angle 

/V G. 4/£>(6) 

FiOC, or <£, as the angle rotated through by the arm / as arm a rotates 
through an angle 0. Hence, 

tan 0 = 
E'F'i 

OE' 
and tan 0 = 

EF i 

OE 

Since EFi = E'F'i and OE = OE' cos 0, 

tan 0 _ OE 

tan 6 = OE' 

OE' cos 0 

OE' 
= cos 0 (308) 

or 
<f> = tan^1 (tan 6 cos 0) (309) 
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in which cos 0 is a constant. The angular velocity ratio of the follower 
to the driver may be obtained by differentiating (309) with respect to 6. 
Hence, 

«n 

0)m 

d<t> 
dd 

d 
dd 

[tan"1 (tan 0 cos P)] 
cos P sec2 6 

1 + cos2 (3 tan2 6 

cos p 

_cos2 6_cos p 
cos2 0 + cos2 P sin2 0 1 — sin2 0 sin2 p 

cos2 6 

(310) 

The angular velocity ratio may bo expressed also in terms of </> and p 
by obtaining the value of sin2 0 from (308) and substituting the same 
in (310). 

wn 1 — cos2 <f> sin2 p 

G>m COS P 
(310a) 

Equations (310) and (310a) show that the angular velocity ratio, —, 

of follower to driver is a minimum when sin2 d is a minimum and cos2 <j> 
is a maximum, or when either d or <p equals 0°, 180°, etc. These equa- 

00 yi 

tions also show that — is a maximum when sin2 d is a maximum and 
COm 

cos2 </> is a minimum, or when either d or </> equals 90°, 270°, etc. Hence, 
for uniform angular velocity of the driver, the follower has its minimum 
angular velocity when the driver is at A or B and the follower at F or G. 
The follower has its maximum angular velocity when the driver is at C 
or D and the follower at B or A. 

The angular acceleration an of the follower for uniform angular ve¬ 
locity of the driver and for any given angle p between shafts, may be 
obtained from equation (310) for any angular displacement d of the 
driver. Thus, 

__ dxjOn __ dd (tfwA 2 d / cos p \ 

an dt dt V dd ) m dfi \1 — sin2 d sin2 p) 

= 00 
2 
m 

cos P sin2 P sin 2d 
_(1 — sin2 13 sin2 d)2_ 

. . (311) 

By using two couplings and an intermediate shaft K, as shown in 
Fig. 420, variation of angular velocity between the driver and follower 
can be eliminated. To accomplish this, the driver and follower shafts 
M jyid N must make the same angle p with the intermediate shaft K 
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and the forks on K must be so related that when one lies in the plane of 
shafts K and M the other will lie in the plane of K and N. With the 
universal joints so related, uniform rotation of either M or N will 
impart, in accordance with the law deduced above, exactly the same 

F/O. 480 

motion to K. Hence, whatever the motion of M or N, the intermediate 
shaft K will impart to the other exactly the same motion. 

198. Intermittent Gears. The purpose of intermittent gears is to 
convert continuous into intermittent rotation. The angular motion of 

F 

the driving gear is continuous while that of the driven gear, or follower, 
is intermittent, the follower being locked in position during its periods 
of dwell. In Fig. 421,1 is the'driver and 2 the follower. They have 22|- 
degree involute teeth and their respective pitch diameters correspond 
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to 16 and 24 teeth. They are designed for an intermittent rotation of 
the follower of one-fourth of a revolution for every complete revolution 
of the driver. Although the driver may rotate clockwise or counter¬ 
clockwise, it is represented in the figure as rotating counter-clockwise, 
the follower being driven clockwise. Tooth A i, acting on the involute 
profile of stop A2 of the follower, drives the follower until it leaves 
contact at 5, after which, the driver and follower act as ordinary gears 
until points Ci and C2 are going out of contact at B. During this 
period, the driver and follower have rotated through the respective 
angles $i and 02 which are inversely as the pitch diameters of the gears, 
or as 3 to 2. After C\ and C2 have reached By the follower has still 
to be moved through the angle 4>2 before the center line 0>F of the 
second stop will coincide with the line of centers O1O2. This move¬ 
ment is caused by curve G as the driver rotates through the angle <j> 1, 
bringing D to the line of centers. If G is so formed as to keep con¬ 
tinuously in contact with the end of the stop, the angular velocity ratio 
from the beginning to the end of driving will be inversely as the pitch 
diameters. Driving ceases as I) reaches the line of centers and will not 
begin again until the driver has rotated through an angle equal to 
(360 — 61 — </>i), or until tooth A\ again comes into the position shown. 
Hence, as the driver rotates through an angle of (61 + the follower 

. is turned through 90 degrees and remains at rest while the driver 
rotates through an angle of (360 — 0i — </> 1). 

Intermittent gears of the general type just described are frequently 
used in counting mechanisms. It is to be noted that the operation of 
such gears is accompanied by shock at the beginning and at the end of 
action. At the beginning of action, the continuously rotating driver 
comes suddenly into contact with the stationary follower; and, at the 
end of action, the rotating follower is suddenly brought to rest by the 
cylindrical portion of the driver. Hence, such gears are unsatisfactory 
at high speeds and also unsatisfactory if the gears are heavy or if they, 

are to be used to overcome any appreciable resistance. 
199. Geneva Wheels. Geneva wheels are better adapted than 

intermittent gears for converting continuous into intermittent rotation. 
As will be shown, they are superior because the follower is started grad¬ 
ually and gradually brought to rest without shock. The principle of 
their construction is identical with that of the Geneva Stop. In the 
Geneva stop, which was used to prevent the over-winding of a spring, 

t one of the slots of the follower was blanked in order to bring the driver 
i& and follower to rest after a certain fixed number of revolutions of the 
fc driver. In Geneva wheels, the follower has a complete complement 

of slots, thus permitting unlimited rotation of the driver. Geneva 
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wheels are used in moving picture machines, as indexing devices in 
machine tools, and have many other applications. 

Two pairs of Geneva wheels are shown in Figs. 422 and 423 for 
exactly the same intermittent rotation of the follower for continuous 
rotation of the driver. They differ only in the method of locking the 
follower during its periods of dwell. In Fig. 422, 1 is the driver and 8 
the follower. It is to be noted that the driving pin P enters the slot 
of the follower tangentially, thus starting the follower without shock. 
Assuming the driver to rotate uniformly, as is usually the case, the 
follower is accelerated in its motion until the driving pin is in the line of 
centers QiOij after which, the follower is decelerated and comes to rest 

F/G.42P F/G.4P3 

with the pin leaving the slot tangentially without shock. In order that 
the follower may rotate while the pin is in action, the driver is hollowed 
out at A to clear the follower. The follower is rotated through an 
angle <£ while the driver rotates through an angle 6. In the example 
shown <f> = 90 degrees. Hence, the driver and follower make a quarter 
turn together after which the driver completes its rotation while the 
follower is locked and held from rotating by the cylindrical portion ( 
of the driver. If a follower is desired for one-sixth of a turn for eac 
revolution of the driver, 4> would be equal to 60 degrees; 6 would 1 
equal to (180 -* <j>), or 120 degrees; and the follower would be lock* 
while the driver turned through (360 — 120) or 240 degrees. 
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In Fig. 423 the driving pin is fitted with a roller, P, which, as for 
the example in Fig. 422, works in slots at 90 degrees. The follower 2 is 
fitted with four locking rollers, A, B) C, and D, the driver 1 being grooved 
for these rollers. It is to be noted that the driver is just releasing 
roller D as the driving roller P enters a driving slot. As P is leaving the 
slot after driving the follower through 90 degrees, roller C has moved 
to B and is entering the locking slot at end E, This locking slot pre¬ 
vents the follower from moving as the driver rotates through (360 — 0), 
or 270 degrees. Hence, as for the example in Fig. 422, tbe driver makes 
three-quarters of a revolution during the dwell of the follower. 

200. Ratchets. Ratchet and pawl mechanisms are used to convert 
rectilinear or circular reciprocation into intermittent rectilinear or cir¬ 

cular motion. In Fig. 424, O is the fixed member, 1 the vibrating driver, 

2 the driving pawl, and 3 the ratchet wheel. As 1 moves to the left on 
its working stroke, the ratchet wheel 3 is rotated counter-clockwise by 
the direct action of pawl 2. Since 1 and 3 have independent fixed 
centers, the mechanism on the working stroke acts as a four-link mech¬ 
anism, O, ly 2, and 3 being the four links. On the. return, or idle, stroke 
of the driver, the ratchet wheel either remains or is held stationary. If 
center 0\ of the driver coincided ‘•with center Os of the ratchet wheel, 
there would be no relative motion between links i, 2, and 3 as there 
is for the example shown. Ordinarily the fixed centers of driver and 

follower coincide. 
In order that the resistance to rotation of the ratchet wheel may not 
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tend to force the driving pawl out of action, the line of action Pm of 
the force between the pawl and tooth must pass between the centers 
0i and 0. Obviously, if this line of action were to pass outside of 0, 
the force on the pawl would throw it out of contact unless the friction of 
contact were sufficient to keep the pawl seated. Hence, for ratchet 
mechanisms, the normal to the face of the tooth through its point of 
contact with the pawl, must pass between the centers 0i and 0, or 
between the center of rotation of the driver and the center of rotation 
of the pawl. This principle must be observed both for driving and for 
locking pawls. 

In situations where the ratchet wheel would rotate backward, or 
overhaul, during the return stroke of the driver, a locking pawl as shown 
at 4 is introduced. This pawl is free to rotate about its fixed center 04. 
It prevents backward rotation without interfering with the forward 
rotation of the ratchet wheel. It is impossible, however, even with the 
best design and adjustment of the mechanism to entirely eliminate 
overhaul. Whether the amount is slight or practically equal to the 
pitch of the ratchet teeth will depend upon where the driver ends its 
working stroke. The amount of the overhaul may be reduced by 
reducing the pitch of the teeth or by employing more than one locking 
pawl. The pitch must not be made so small, however, as to make the 
teeth too weak. By using two or more pawls of different length, the 
maximum overhaul may be reduced to a little less than the pitch divided 
by the number of pawls. 

For feed motions, it is sometimes desirable to be able to reverse the 
direction of rotation of the ratchet wheel. Such a ratchet mechanism 
is shown in Fig. 425. The pawl, being symmetrical about its center 
line, will work on either side of the driver. When on the left, the 
ratchet wheel will be rotated counter-eloekwise and will be rotated 
clockwise when the pawl is on the right side of the driver. It is to be 
noted that the centers of rotation of driver and follower coincide. 

A double acting ratchet is shown in Fig. 426. The ratchet wheel 
is driven on the clockwise as well as the counter-clockwise stroke of 
the driver. In this case no locking pawl is needed to prevent overhaul. 

In Fig. 427 is shown a ratchet wheel 3 without teeth driven by a 
friction pawl 2. The driving is noiseless and by proper design can be 
made almost positive. The magnitude of the angular motion of the 
ratchet wheel is not, as for toothed ratchet wheels, restricted to a multi¬ 
ple of a given pitch. When necessary another friction pawl 4 may be 

introduced to prevent overhaul. 
In the type of frictional ratchet shown in Fig. 4?8, the pawls are 

either balls or rollers. In this form of ratchet either the ratchet wheel 
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or the driver 4s fitted with teeth. Whether the one or the other is sup¬ 
plied with teeth, it is to be noted that the magnitude of the angular 
motion of the ratchet wheel is in no way governed by the pitch of 
the teeth. Like the ratchet shown in Fig. 427, the drive is by friction 

r/G. +2G r/G. +27 

and is almost noiseless and can, by proper design, be made almost 
positive. 

The ratchets thus far described and their numerous modifications 
are suitable for many purposes requiring the conversion of oscillation 

r/G. +23 r/G +23 

into intermittent rotation. They are suitable for feed and other mech¬ 
anisms wherever the required oscillation of the driver is not too rapid. 
Where the oscillation is rapid, there is too much shock when the driving 
oawl makes contact with the stationary ratchet wheel or an unduly 
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heavy spring is required to keep the pawl from flying out of position on 
the return stroke of the driver, thus increasing the wear and noise. 
Also, if the oscillation of the driver is too rapid, the rotation of the 
ratchet wheel may, due to its inertia, exceed that corresponding to the 
stroke of the driver. This latter defect makes the ordinary ratchet un¬ 
suitable for revolution and other counting devices. A ratchet suited to 
such a purpose is shown in Fig. 429. 

In Fig. 429, the driver 1 carries a tooth, or beak, so formed and 
placed as to make overtravel of the ratchet wheel impossible. The 
outline ab of this beak should be a circular arc with ()\ as a center so 
that the pin it stops will rest against it without being moved on the 
return stroke of the driver. 

In Fig. 430 is shown another device much used in counters. On the 
upward stroke, the driver tooth b, acting on tooth a of the ratchet 
wheel, causes a rotation equal to one-half the pitch; and on the 
return stroke, the driver tooth b'} acting on the tooth a', com¬ 
pletes the rotation of the .ratchet, or star, wheel through an arc equal 
to the pitch measured at the bottom of the tooth spaces. Hence, one 
rotation of the 10-tooth star wheel 2 requires 10 double strokes of the 
driver 1. 

201. Escapements. Mechanisms that are used to cause a wheel 
to rotate intermittently that would otherwise rotate continuously, are 
called escapements. With slight modifications the mechanism shown 
in Fig. 430 could be made into an escapement mechanism suitable for 
controlling the train work of a clock. If, under the action of a spring 
or weight, wheel 2 should tend to rotate continuously in a counter¬ 
clockwise direction, it would tend to cause l to reciprocate. If 1 were 
attached to a pendulum, the pendulum in swinging would cause the wheel 
to rotate intermittently instead of continuously as it otherwise would. 
In order that the wheel may be released as the pendulum swings back 
and forth, the frictional resistance tending to reduce the amplitude of 
the swing of the pendulum must be overcome. This is done by shaping 
the teeth of 1 and 2 so that each time 2 is released it will give to the 
pendulum a slight impulse which will maintain the amplitude of its 
swing. 

The Graham escapement is shown in Fig. 431. Under the action 
of a spring or weight, the escape wheel 1 tends to rotate continuously 
in a clockwise direction. The forked lever F and anchor 2 are attached 
to the verge, and the oscillation of the pendulum is transmitted to the 
anchor by means of the forked lever F. In the phase shown, a tooth of 
the escape wheel is acting on the right-hand pallet of anchor 2 causing 
the anchor to swing to the right and to transmit to the pendulum a 
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slight impulse through the forked lever F. As before explained, this 
impulse is necessary to maintain the amplitude of the swing of the 
pendulum by overcoming the frictional resistance which otherwise 
would bring the pendulum to rest. As the pendulum and anchor con¬ 
tinue to swing to the right, the right pallet clears the wheel and the left 
pallet enters a tooth space of the escape wheel and brings it to a stop. 
As the pendulum swings back, the escape wheel, just as it is released, 
gives a slight impulse to the left pallet before it swings free of the wheel. 
Just before the left pallet clears the wheel, the right pallet has started 

to enter a tooth space preparatory to bringing the escape wheel again to 
rest. Hence, for every swing of the pendulum, the escape wheel is 
permitted a rotation corresponding to one tooth. In portable time¬ 
pieces, a balance wheel instead of a pendulum is used to regulate the 
period of the vibrating member. 

The escapements just described permit equal fractions of a revolu¬ 
tion of the escape wheel in equal periods of time. They are in conse¬ 
quence called uniform escapements. Those permitting unequal por¬ 
tions of a revolution in equal periods of time are called periodical 
escapements. The mechanism in clocks controlling the striking of the 
hours is an example of this form of escapement. Those permitting 
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both the intermittent rotation and the time intervals to vary are called 

adjustable escapements. 

For a greater variety of ratchets and escapements than can be shown 

here, the reader is referred to the Constructor by F. Reuleaux.1 Suf¬ 

ficient has been given to establish the general principles governing 

the action of such mechanisms. 

1 English translation made in 1893 by II. H. Suplee. 



CHAPTER XII 

BELT, ROPE, AND CHAIN TRANSMISSION 

202. Belts. Belts are flexible connectors used to transmit motion 
from a member on one shaft to a member on another shaft. Although 
in recent years rubber belts of trapezoidal section to run in V grooves 
have come into quite extended use, belts are, as a rule, thin flat bands 
of leather, rubber, cotton, earners hair, or steel. 

The best leather belting is made from the center back portions of the 
hides of steers. Single-ply belting may run from | in. to ^ in. thick, the 
average being about 3% in. thick. Double-ply, triple-ply, and thicker 
belts are made by cementing together two, three, or more thicknesses of 
leather. Belts thicker than double-ply are, as a rule, not carried in 
stock. Double-ply belting is designated as light, regular, and heavy 
double, and may run from 1% in. to § in. thick, the average thickness for 
ordinary widths being about 1 in. Commercial sizes of belts range 
from h in. to 72 in. wide. 

Rubber belting is made by impregnating canvas with rubber, folding 
the same into a belt, and then vulcanizing it. The number of thick¬ 
nesses of canvas in the belt designates the ply of the belt which may be 
3, 4, 5, 6, 7, 8, or 10 ply. Rubber belting is especially favored in damp 
places. It is somewhat cheaper than leather belting. Besides being 
used to transmit power, it is much used in belt conveyors for transport¬ 
ing materials. 

Textile belts of cotton may be woven to the desired width and 
thickness, or they may be built up to the desired thickness by stitching 
together layers of cotton duck. Such belts are impregnated with cer¬ 
tain compounds to make them practically impervious to moisture and 
to the action of mineral oils and to increase their ability to transmit 
power. Cotton belting that has been impregnated with balata gum is 
known to the trade as balata beltmg. In weaving camel’s hair belting 
the lengthwise strands are of camel’s hair yarn. 

The use of thin bands of steel, while one of the most recent develop¬ 
ments in belting, has made little progress. 

In making leather belting the ends of the strips of leather are scarfed 
and cemented together. The joints of endless leather belts are made 

391 
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in a similar manner. Where leather belts are not endless, the ends are 
joined by means of rawhide or soft wire lacing, or some patented form 
of metal joint is used. Endless rubber, cotton, and balata belts are 
furnished on order by the manufacturers. Where these varieties are 
not endless, they are usually joined by some patented form of metal 
fastener. 

203. Belt Transmission and Angular Velocity Ratio. Flexible con¬ 
nectors in the form of thin flat bands are occasionally used, as shown 
in Fig. 432, to transmit oscillating motion from one shaft member to 
another. One end of the band 2 is wrapped part way around and fast¬ 

ened to 1, and the other 
end is wrapped part way 
around and fastened to 3. 
Since the band is flexible, 
it is only by a pull in the 
band that one member 
can drive the other. 
Hence, acting as an 
oscillating driver, can 
positively drive the fol¬ 
lower 3 on the clockwise, 
or working, stroke, but 
will not drive the follower 
on the counter-clockwise, 
or return, stroke. To 
have the mechanism func¬ 
tion, 3, the follower, must 
be rotated counter-clock¬ 
wise by a spring or counter¬ 
weight on the return^ 
stroke of the driver. 

In accordance with Art. 43, the angular velocities of driver and 
follower are inversely as the perpendiculars let fall from their fixed 
centers on the line of transmission, or inversely as the segments into 
which the1 line of centers is cut by the line of transmission. The line of 
transmission NE in Fig. 432 lies in the mid, or neutral, plane of the 

band. Hence, 
OUO _ ^30^3 __ OzoE 

C030 OioFi OiqE 

If a constant angular velocity ratio is desired, it therefore follows that 
E must be a fixed point in the line of centers; that is, members 1 and 
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S must be cylinders of circular section or segments of such cylinders. 
If segments are used, only an oscillating motion may be transmitted, 
and the ends of the band must be fastened to the segments. By using 
an endless band tightly fitted over two cylinders, as shown in Figs. 433 
and 434, either oscillation or continuous rotation may be transmitted 
from one cylinder to the other. This is possible for two cylinders a 
given distance apart since the necessary length of the belt does not 
change with the angular displacement of the cylinders. If the band is 
fastened to the cylinders, oscillation of either cylinder will cause posi¬ 
tive oscillation of the other. If the band is not fastened to the cylin¬ 
ders, then, due to the friction between the band and the surfaces of the 
cylinders, continuous rotation may be transmitted from one cylinder 
to the other. The use of belts is practically confined to the continuous 
driving of one pulley by another in this maimer. 

Obviously, for the open belt illustrated in Fig. 433, the follower 
rotates in the same direction as the driver. If the follower is to be 
rotated in a direction opposite to that of the driver, the belt must be 
crossed as shown in Fig. 434. These directional relations of the rota¬ 
tion of driver and follower are indicated by the fact that the intersection 
E of the line of transmission with the line of centers is between the fixed 
centers for the crossed belt and for the open belt is on the line of centers 
extended. In accordance with the deductions stated above from Art. 
43, the relation of the angular velocities of driver and follower for open 
and closed belts is, 

co i o O30F3 0;\oE 

who OwFi Ou)E 
It is to be noted, that 

O30F3 = I?3 + ^ ~ 0 and O10F1 = \{D\ + t) 

Hence, 

^ = L±i).(312) 
c*io (Z>i + 0 ' 

Since the thickness of a belt is generally small as compared to the diam¬ 
eters of the pulleys, the effect of the thickness on the angular velocity 
ratio is often neglected. Hence, 

one _ Eh 
a>30 D1 

(313) 

that is, the angular velocities of belt driven pulleys are inversely as their 
diameters. 
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As stated above, the friction between the belt and the faces of the 
pulleys makes it possible for the driving pulley to overcome a resisting 
moment at the follower pulley and to cause it to rotate. It is in this 
way that power is transmitted from one shaft to another by the use 
of belts and pulleys. Since the transmission is by friction there is 
more or less slip, usually not over two per cent, between the belt and 
the pulleys. Due to this slip and to the elasticity of the belt mate¬ 
rial, the transmission, while very efficient, is not positive. Since, 
however, there are many situations where positive driving is not essen¬ 
tial, transmission of motion and power by means of belts is widely used. 
Generally speaking, belts are used where the distance between the 
shafts is too great for gears but not so great as to make the use of belting 
uneconomical. For the usual belt widths and pulley diameters, the 
maximum distance between shafts will be found to run from 15 to 
30 feet. The minimum distance between shaft centers is usually given 
as either 3.5 times the diameter of the largest pulley or as 10 times the 
diameter of the smallest pulley. Due to the slip and elasticity of belting, 
belt drives adjust themselves without shock to sudden changes in load. 
Because of this, belt instead of chain drives are often used for center 
distances that are suitable to the use of chains. This is particularly 
true of the use of multiple V-belts with grooved pulleys. 

As shown in Fig. 434, crossed belts rub together where they cross 
between the pulleys. For this reason they should not be used at high 
speeds as the wear would be excessive. Since at low speeds the wear 
would not be serious, advantage may be taken of the fact that crossed 
belts give a greater arc of contact than open belts. 

204. Belt Tension and Power. If a belt is fitted to a pair of pulleys 

with a certain initial tension, then, due to friction and to the elasticity 
of the belt material, the tension will increase on the driving or tight 
side of the belt and will decrease on the slack side as a driving torque is 
applied to overcome the resisting torque at the follower pulley. If, in 

Fig. 435, T\ represents the pull on the tight side and T2 that on the 
slack side, then the summation of moments about the center 0 of the 
pulley will give the turning moment on the pulley; or, neglecting the 

thickness of the belt, 

Turning moment = TiR — T2R ~ (Ti — T2)R . (314) 

(T\ — T2) is called the effective pull of the belt. The peripheral veloc¬ 
ity in feet per minute of a pulley having a radius of R feet and rotating 

at N revolutions per minute is 

V - 2irRN 
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Assuming the velocity of the belt to be the same as that of the pulley, 
the horse-power that may be transmitted by the belt is 

(Ti ~ T2)V 

33,000 
(315) 

where (T\ — T2) is the effective belt pull in pounds. 

To use a belt most effectively, (T\ — T2) or the ratio —1- 
Ti 

should be as large as possible. For leather belts on cast-iron pulleys, 
this ratio may be as high as 0.80 and as high as 0.90 for paper pulleys. 
Besides the possible effective pull depending on the kind of belt and the 
kind of pulley, it depends also on the diameter of the pulley, the arc of 
contact, the slip, the velocity of the belt, and other factors. The 

effective pull (T\ — T2) increases with the slip, with the diameter of 
the pulley, and with the velocity of the belt, up to velocities of from 
6000 to 7000 feet per minute. For average conditions of power and 
speed these factors are often not considered in calculating the width of 
a belt. In rough calculations the width of the belt is based on an 
allowable effective pull per inch of width. For leather belting the 

following average values are sometimes used: 

50 pounds per inch of width for single-ply belts; 
80 pounds per inch of width for double-ply belts; 

100 pounds per inch of width for triple-ply belts. 

Thus, according to equation (315), the total effective belt pull to trar^s- 
mit 15 horse-power at 2500 feet per minute would be, 

(Ti - T2) 
(H.P.) 33,000 15 X 33,000 

= 198 pounds 
V 2500 
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Assuming a single-ply leather-bolt and an allowable effective pull of 
50 pounds per inch of width would call for a belt width B of 

ri T\ - T2 198 
B = —-= —- = 3.96 in. or 4 in. 

— t'2 50 

206. Shifting of Belts. If, as shown in Fig. 436, a force P is applied 
on an edge of the advancing side of a belt, the belt will be deflected in 
the direction of the applied force as shown by the dotted lines. This 
causes each successive portion of the belt as it passes on the pulley to 
take up a new position, thus shifting the belt in the direction in which 
the force acts. A much smaller force is required to shift a belt when 
applied to the advancing side than when applied to the receding side. 
When applied to the receding side, the force must be sufficiently large 

to.actually overcome the frictional resistance between the belt and the 
pulley. It must be remembered, however, that the receding side of 
the belt relative to one pulley is the advancing side relative to the other 
pulley. 

In belt shifting mechanisms a fork spanning the belt and suitably 
mounted on a slide is shifted to the right or to the left as required. 

206. Crowning of Pulleys. If a belt is placed under some tension 
on a conical pulley, it will tend to lie flat on the conical surface of the 
pulley. The belt will, due to its lateral stiffness, assume some such 
position as shown by the full lines in Fig. 437. It is to be noted that 
the edges of the belt are curved with respect to the plane of rotation 
of the pulley. Hence, as rotation of the pulley moves the belt in the 
direction indicated by the arrow, point A on the edge of the belt will 
move to Bf and the belt will be advanced to the dotted position BCD. 
As rotation continues, the belt will continue to climb toward the base 
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of the cone. If, as shown, the pulley is made up of two equal frusta 
whose bases coincide, the belt will continue to shift its position until 
its center line lies in the base plane MM of the pulley. Having arrived, 
the belt will continue to run in this position since any tendency to dis¬ 
place it is countered by an equal tendency to return it. 

For convenience of manufacture, pulleys are usually crowned by 
giving the rim a straight taper both ways from the mid plane of the 
pulley face as shown in Fig. 437. To curve the face is better but more 
expensive. Excessive crowning is detrimental to the life of the belt. 
Where the pulley shafts are truly parallel only a slight amount of crown¬ 
ing is necessary. It is quite usual practice to make the height of crown 
H correspond to | in. per foot of width of pulley face F. It is recog¬ 
nized, however, that the crown for leather should be greater than for 
fabric belts, and greater for low than for high speeds. In view of this 
the crown for leather belts is sometimes given as { in. per foot for low 
speeds and | in. or less per foot for high speeds. 

207. Tight and Loose Pulleys. It is frequently found desirable in 
machines and in the transmission of power to stop the driven shaft with¬ 

out stopping the driving shaft. One of the advantages of belt trans¬ 
mission is that this may be done by mounting a tight and a loose 
pulley on the driven shaft as shown in Fig. 438. The loose pulley L is 
free to rotate on the driven shaft, while the tight pulley T is keyed to 
the shaft. Generally the hub of the tight pulley is utilized to keep the 
loose pulley from sliding in one direction while a collar C, fastened to 
the driven shaft, prevents it from sliding in the opposite direction. 
The tight and loose pulleys are each made somewhat greater in width 
than the belt which is to run on them. The width of the driving pul¬ 
ley Dy which is keyed to the driving shaft, is made equal to the sum of 
the widths of the tight and loose pulleys plus the small clearance be¬ 
tween their rims. When it is desired to stop the driven shaft, the belt 
is shifted from the tight to the loose pulley, and from the loose to the 
tight pulley when it is desired to start the driven shaft. This is done 
by applying a pressure to one edge or the other of the advancing side 
of the belt as explained in Art. 205. This is conveniently done by 
means of the belt shifter S, which, as shown, is merely a sliding bar to 
which is attached a fork which spans the belt. 

That the belt may not have a tendency to run off the pulley to 
which it is shifted, both the tight and loose pulleys are crowned. To 
facilitate the shifting of the belt, the wide driving pulley D is not 

crowned. 
208. Length of Belt. The length of belt required for a drive may 

be found by measuring a scale drawing of the drive or by direct measure- 
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ment after the drive is installed. The length may also be computed 
from the pulley diameters and distance between centers. It is only 
when the length of belt is essential to the design of a drive, as for cone 
pulleys, that a careful calculation of the length is made. 

The length of the belt for a given pair of pulleys and distance 

between centers depends upon whether the belt is crossed or open. If 
the belt is crossed, as shown in Fig. 439, its length L is evidently, 

L - 2(Ff) + arc (FMF) + arc (fmf) . . . (316) 

where, 

2(Ff) = 2(Sq) = 2VC2 - (R + r)2 

arc (FMF) -f- axe (fmf) = R(ir -f- 2</>) -f- r(7r + 2<fr) = (R + r)(7r -f- 2<f>) 

But, 

sin <f> = 
R + r 

C 
or 

Hence, 

arc (FMF) + arc (fmf) = (R + r)r + 2(R + r) 

Substituting in (316) the values found for 2 (Ff) and the sum of the arcs 
gives the length of a crossed belt as 

L = 2VC2 - (R + r)2 + (R + r)v + 2(R + r) sin~1(^~L) (317) 

In a similar manner, using Fig. 440, the length of an open belt is found to 

be 

L = 2VC2 — (R — r)2 + (I? + r)x + 2(B - r) sin -1 

To be strictly accurate in using equations (317) and (318) the radii 
R and r should be to the neutral plane of the belt. Assuming the neu¬ 

tral plane to correspond to the mid plane of the belt, the values of R 
and r would be equal to the respective radii of the pulleys plus one-half 

-) (318) 
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the thickness of the belt. Whether it is necessary or not to consider 
the effect of the thickness of the belt will depend on the distance between 
centers. The greater the distance between 
centers the smaller will be the effect of the 
belt thickness. 

209. Cone Pulleys. It is often found 
desirable to be able to change the speed of a 
shaft which [is to be driven by another shaft 
rotating at a constant speed. For this pur¬ 
pose a pair of stepped pulleys, commonly 
called cone 'pulleys, is often employed. Such 
a pair of pulleys is shown in Fig. 441. The 
driving cone rotates at a constant speed, 
and the speed of rotation of the driven cone 
is changed by shifting the belt from one step 
to another. Such pulleys are ordinarily de¬ 
signed so that the possible speeds of the 
driven pulley will be in geometric progres- w/ 4 
sion. The progression ratio, the distance 2 / 
between centers, and the minimum and F/G. 44/ 
maximum angular velocities of the driven 
pulley are fixed by the conditions of service. Having these and the 
belt velocity, power to.be transmitted, and the space available, it is 
possible to fix on reasonable values for the respective radii of the first 
step of the driving and driyen pulleys. In Fig. 441, let, 

o) = the constant angular velocity of the driving pulley; 
Ri and n = the respective radii of the first step of the driving and 

driven pulleys for the minimum angular velocity au of 
the driven pulley; 

Rn and r„ = the respective radii of the nth step of the driving and 
driven pulleys; 

03n = the angular velocity of the driven pulley for the belt on 
# the nth step; 

fc = the progression ratio. 

In accordance with Fig. 441, and the above notation, the following 
relations may be written: 

031 Rl 

03 

032 

03 

n 
i?2 . , 032 T 031 
— or, smce W2 = /can, — = #— = 
7*2 03 03 

(319) 
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^3 _ #3 _ J1?l\ 

CO 7’3 \ ?'l / 

— fcn~]( —\ 
o> rn \ r j / 

Dividing (320) by (319) gives, 

(320) 

— = fc”'1.(321) 
C01 

This relation enables the necessary number of steps n to be computed 
for any progression ratio k and any maximum and minimum angular 
velocities con and coi of the driven pulley; or, the progression ratio k may 
be computed for any given number of steps and angular velocities 
con and coi. 

If, as is usual, the driving and driven cones are to be equal, then (— 
\ Tn 

must be equal to 

gives, 

Making this substitution in (320) and solving 

•£- =Vr->.(322) 
Ri 

As an illustration, let it be assumed that the maximum and minimum 
angular velocities, wn and on, of the driven pulley are to be 110 and 50 
respectively and that the progression ratio k, as for machine-tool cone- 
pulley drives, is not to exceed 1.25. Then, according to (321), the 
necessary number of steps is, 

n — 
log k log 1.25 

+ 1 = 4.533, say 5 

Since the computed value of n had to be changed to a whole number, it 
becomes necessary to recompute k. For 5 steps equation (321) gives 

the recomputed value of k as V/2.2 = 1.218. Assuming, as is usual, 
that the pulleys are to be of the same size, then, by (322), 

Oh) = v/^ri =v/!-2184 = i-483. say as 4J in. is to 2§f in. 

The radii of the remaining steps of the cone pulleys must be such 
as to be in the proper ratio and to require the same length of belt. For 
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a crossed belt, the relation of the radii is simple. For any given distance 
C between centers, it is obvious from inspection of (317) that the length 
of the belt for any step x will be the same as required by the first step if 

(Rx + rx) = (R\ + rj).(323) 

That is, the 
independent 

radii of the steps of a pair of cones for a crossed belt are 
of the distance C between centers. From (320) 

Cx) 

R* 

rx 
kx or Rx = rj—)kx 1 

Substituting this value of Rx in (323) and solving, gives 

rx 
R i + ri 

1 + 
• (324) 

Having the radius tv of step x of the driven cone, the radius Rx of the 
corresponding step of the driving cone becomes, from (323), 

Rx = (Ri + n) -rx.(325) 

Because of the greater ease with which the belt can be shifted, cone 
pulleys are usually designed for open belts. The radii of the steps of a 
pair of cones for an open belt are not, as for a crossed belt, independent 
of the distance C between centers. While for any given value of C the 
radii of the steps must be such as to require the same belt length for 
each position of the belt, it is very difficult to obtain from equation (318) 
an expression for Rx or rx in terms of the known values R\, r\, and C. 
The most practical solution is a graphical one derived by Burmester.* 
This method is illustrated in Fig. 442. A 45-degree line AB, equal in 
length to the distance C between the shaft centers, is first laid off; and 

C 
a line BE, equal in length to —, is then drawn at right angles to AB. 

A 

Through E is drawn an arc from A as a center. On a vertical line 
through any convenient point on AB the known radii R\ and n of the 
first step of the respective driving and driven pulleys are laid off as 
shown. A line through N parallel to AB intersects the arc at F; and 
a line through M parallel to AB intersects a vertical through F at G. 
The intersection with AB of a horizontal through G determines the 

origin 0. For any step x for an angular velocity ratio of —, the COr- 
CO 

• Lehrbuch der Kinematik, Vol. 1, by Dr. L. Burmester, page 395, published by 
Verlag Von Arthur Felix, Leipzig, Germany. 
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responding radii Rx and rx of the driving and driven pulleys may be 

found by drawing a line OK at an angle 0X with OH such that^ 

cot 0X 
COj- Rx 

Lx) Tx 

(326) 

If the speeds are in geometric progression, then, in accordance with 
(320), 

0) 

Rx 

Tx 
cot Or = = ~ = f— U* 1 

While the proof of the above construction is too long and intricate 
to be given here, it may be said that the method is, in theory, almost 

F/G 442 

absolutely accurate. The arc EFJ is the only approximation in the 
construction, and it does not deviate from the theoretically correct 
curve as much as 0.02 per cent for values of <j>, see Fig. 440, from zero 
to 75 degrees. It can therefore be said, that the only errors involved 
in the use of the method are those of drafting and measurement. 



SPEED CONES 403 

210. Speed Cones. To change the speed of a driven shaft by the 
shifting of a belt, speed cones, or conical drums, are occasionally used 
instead of cone pulleys. The shape of the cones will depend upon how 
the speed of the driven shaft is to vary for equal increments of shift of 
the belt. If, for equal increments of shift, the speed of the driven cone 
is to change in geometric progression, the shape of the cones for a 
crossed belt will be as shown in Fig. 443 and as shown in Fig. 444 for an 
open belt. In these illustrations short cones and a high progression 
ratio were used to make the variation in shape more pronounced and 
obvious. For the pair of equal cones shown in Fig. 443 the dotted 
diameters at equal intervals 
along the axes were com¬ 
puted by equations (324) 
and (325). In Fig. 444 the ~£ 
diameters at equal intervals 
were determined by the 
Burmester method. Since 
the relation (Rx + rx) = 
(l\i + n) is true for the 
frusta of a pair of equal 
cones having straight sides, 
a crossed belt would be 
equally tight in all posi¬ 
tions on such a pair of 
cones. Since any speed 
from the lowest to the 
highest can be obtained 
by shifting the belt the 
proper amount, frusta of > 
equal cones having -straight 
sides are generally used for crossed belts. For such a pair of cones 

the speed of the driven cone would not, however, change in geometric 
progression for equal intervals of shift of the belt. On such a pair 
of cones an open belt would not be equally tight in all positions. 
Where, however, for a reasonable distance between centers, the cones 
are long as compared to their diameters, the variation in tightness is 
often not sufficient to defeat the transmission of small or moderate 

amounts of power. 
Speed cones have the advantage of permitting every possible change 

of speed from the minimum to the maximum but are open to the objec¬ 
tion that the belt tends to climb toward the large end of each cone of 
the pair thus tightening the belt and increasing the pressure on the 
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bearings. To prevent this action, the belt must be guided on the 
approaching side of both the driving and driven cones. In shifting the 
belt both these guides must be shifted an equal amount simultaneously. 
It is because of the difficulty of shifting the belt and of the tendency of 
the belt to climb that speed cones are so little used. When used they 

are made longer in 
proportion to their 
diameters than those 
shown in Figs. 443 
and 444. 

211. Variable 
Speed Belt Trans¬ 
mission. A vertical 
unit of a Reeves vari¬ 
able speed transmis¬ 
sion is shown in Fig. 
445. In this type of 
transmission,variation 
of speed is secured, in 
effect, by changing the 
diameters of the pul¬ 
leys. Rotation is 
transmitted from one 
double cone to the 
other by means of a 
special type of belt B. 
As shown, the belt 
consists of an endless 
rubber band to each 
side of which are bol¬ 
ted hardwood blocks. 

The ends of these blocks are beveled, faced with leather, and formed 
to fit the sloping sides of the cones C. It is therefore the edges 
and not the under face of the belt that transmit the motion from 
one double cone to the other. To change the angular velocity ratio, 
the pair of ‘cones on one shaft are pulled apart while the pair on the 
other shaft are pushed together in such proportion as to keep the 
belt equally tight. This is effected by turning the screw E by 
means of handwheel H. The screw, having right-hand threads on one 
end and left-hand threads on the other, operates the levers F about 
their fulcrums thus spreading the pair of cones on one shaft and pushing 
the pair on the other shaft closer together. By this means every pos- 
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sible change of speed between the minimum and maximum limits can 
be secured. 

Horizontal units are more generally used than vertical. Either 
shaft, Si or S2, may act as the driver and be connected by gearing or by 
a belt or transmission chain to an electric motor or other source of 
power. Units are made in capacities to transmit from a fraction of to 
150 horse-power and for ratios of the maximum to the minimum revolu¬ 
tions of the driven shaft from 2 up to 16. 

212. Belt Transmission between Non-Parallel Shafts. It is some* 
times desired to connect two shafts which are not parallel by a belt. 
To do this, the mid line of the advancing side of the belt must lie in 
the mid plane of the pulley upon which it advances. The application 
of this fundamental principle, which ap¬ 
plies to all belt drives, may be illustrated 
by Fig. 446. In this figure let the full 
circle 1 and the dotted circle 2 represent B, 
two pulleys in the same plane on parallel 
shafts, and let the line T\T2 be drawn 
through the points where the mid line of 
the belt is tangent to the receding side of 
the pulleys. If the lower pulley and its 
shaft are turned about T\T2 as an axis to 
the position shown by the full lines, the 
line T1T2 will represent the intersection 
of the mid planes of the pulleys. Hence 
the line A\A2 in which the belt advances 
on the lower pulley will lie in the plane of 
the lower pulley; and the line B1B2 in 
which the belt advances on the upper pulley will lie in the plane 
of the upper pulley. It was shown in Art. 205 that a belt will run 
on a pulley without shifting its position if its line of travel lies in the 
plane of the pulley. Hence, for the direction of motion indicated, one 
shaft can drive the other without the belt running off the pulleys. If, 
however, the direction of motion of the belt be reversed, the belt will 
not advance upon each pulley in the plane of rotation and, therefore, 
would at once run off. For a belt to drive non-parallel shafts in either 
direction necessitates the use of guide pulleys. 

If on rotating pulley 2 the shafts are to remain in parallel planes, 
one or both pulleys must be adjusted until T\T2 is perpendicular 
to a plane through the axis of 1 parallel to the axis of 2. Where a belt 
connects two non-intersecting shafts at 90 degrees, the drive is called a 
quarter-turn drive. 
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213. Guide Pulleys. The principle just developed above that the 
mid line of the advancing side of a belt must lie in the mid plane of the 
pulley, is generally applicable to belt drives. By means of guide pulleys, 
or idlers, two intersecting or non-intersecting shafts can be connected 
by a belt. If desired the belts can be made to run in either direction 
by so placing the guide pulleys that both sides of the belt will lie in the 
planes of the pulleys. A few arrangements of belt-connected shafts are 
shown in Figs. 447, 448, and 449. For the drives shown in Figs. 447 

and 448 the belt may run in either direction; for the drive shown in 
Fig. 449 the belt will only remain on the pulleys when run in the direc¬ 
tion indicated by the arrows. 

214. Belt Tighteners. Besides being used as guide pulleys or as 
supporting pulleys for long runs of belt, idle pulleys, when suitably 

mounted, are used as belt tighteners. Their function when so employed 
is to increase the efficiency of the drive by maintaining the belt tension 
and increasing the arc of contact between the belt and the pulleys 
as shown in Fig. 450. In the example shown, the frame carrying the 

idler is in the form of a lever pivoted about the axis of the motor shaft. 
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The position of the idler is automatically maintained by the adjustable 
weight W at the opposite end of the lever. Springs whose tension 
or compression can be adjusted by means of a screw, are sometimes 
used instead of adjustable weights. By employing belt tighteners the 
distance between the shafts of high ratio belt drives can be reduced 

r/a 45/ 

considerably below the minimum limits given in Art. 203 without sac¬ 
rifice of efficiency. Such drives are generally known as short-center- 

distance drives. 
In Fig. 451 the counter shaft C to which the pinion and driven pul¬ 

ley are keyed is carried by a suitable frame F pivoted about the axis of 
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the drivep shaft £2. With the belt running in the direction shown, the 
reaction on the pinion teeth tends to rotate the frame F counter-clock¬ 
wise about S2 thus automatically maintaining the tension in the driving 

belt. 
215, V-Belt Drives. In recent years endless bands of vulcanized 

rubber reinforced by cotton cord and fabric have come into extensive 
use for short-center-distance transmissions. As shown in Fig. 452, the 
bands are trapezoidal in section and run in the V grooves of the pulleys. 
They are referred to by some as V-belts and by others as V-ropes. For 
transmitting any considerable amount of power they are used in multiple 
as shown in the figure. Their great advantage over flat belts is due to 

their wedging action, which greatly increases the amount of power that 
may be transmitted for a given arc of contact. Because of the greater 
area of contact with the sides of the pulley grooves, V-belts are more 
efficient than endless loops of fibrous rope used in a similar manner. 
They are silent, shock absorbing, and almost positive and slipless in 
action. Hence, for many short-center-distance machine drives, they 
have displaced flat belt, chain, and gear drives. Plain idler pulleys 
pressing against the outside of the V-belts on the slack side are used as 
tighteners for such drives where provision can not be made for taking 
up the slack by increasing the distance between centers. 

216. Rope Drives. Ropes running on grooved sheaves are often 
used to transmit power from one shaft to another. Drives transmitting 
from one to 2000 horse-power are quite common and larger powers are 
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not unusual. In the multiple, or English, system, two or more endless 
loops of rope are used in the same manner as shown in Fig. 452 for 
V-belts. In the continuous, or American, system, a single loop of rope 
is used as shown in Fig. 453. The multiple system dates from 1863, 
and the continuous system from 1883. The first multiple rope power 
transmission was designed by James Combe of Belfast, Ireland, in 1856 
and was installed in 1863. This drive was, in 1924, and probably still 
is, in operation. 

Each system has its advantages. For large powers and for parallel 
shafts in a horizontal plane, or in a plane not too far removed from the 

Fig. 453. 

horizontal, the multiple is superior to the continuous system. It is 
Simpler and cheaper, the ropes have longer life, and there is more security 
against interruption of service, since, if a rope breaks, the other ropes 
will carry the load until repair can be made. The continuous system 
has wider adaptability and is more suitable for vertical, quarter turn, 
and complex drives. In this system a uniform tension is maintained 
by the use of a tension sheave. As shown in Fig. 453, the rope should 

be guided from the slack side of the driving pulley tp the tension sheave 
and from there to the slack side of the driven sheave. Instead of doing 
this as shown in the figure, the rope could be passed from the slack side 
of the driver around a loose sheave on the driven shaft from which it 
could be passed around a tension sheave to the slack side, of the driven 
sheave. It is apparent that, with either system, several shafts may be 
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driven from the same driving sheave, and that either system of drive 
may be used over short or long distances. Shafts 175 feet apart have 
been successfully driven by ropes without using idlers. Where sup¬ 
porting idlers are used, power can be efficiently transmitted over longer 
distances. For very long distances wire rope is used in preference to 
cotton or manila, especially if the drive is exposed to the elements. 

Fibrous rope drives are almost noiseless, are shock absorbing, and 
are almost positive and slipless in action. Where the power to be 
transmitted is over 200 horse-power and the distance between centers 
is over 25 or 30 feet, rope drives are cheaper to install and to maintain 
than rubber or leather belt drives. 

The larger the ratio of the diameter of the sheave to the diameter 
of the rope the less will be the bonding of the rope as it runs over the 
sheave and, in consequence, the less will be the wear of the rope due to 

internal chafing. For power transmission this ratio should be at least 
36. In order that each run of rope may take its share of the load, the 
pitch diameter of each sheave groove should be the same; and, to 
reduce the wear of the rope, the grooves should be smooth. 

Since in the continuous system the rope is kept taut by a tension 
sheave, the sheave grooves may be shallower than for the multiple 
system without danger of the rope leaving the grooves. The type of 
sheave groove for the continuous system is shown in Fig. 454 and for 
the multiple system in Fig. 455. It is to be noted that the deeper 
groove for the latter system requires a wider sheave. The groove 
angle should not be made less than 45 degrees nor more than 60 degrees, 
45 and 50 being common angles. Since guide and tension sheaves do 
not transmit power, wedging action is unnecessary, and the grooves 
may be made as shown in Figs. 456 and 457. 

The grooves of wire rope hoisting sheaves are usually made as shown 
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in Fig. 45S. Since for the transmission of power the velocity of the 
rope is usually much greater than in hoisting, the bottom of the grooves 
of such sheaves are usually filled with rubber or leather as shown in 
Fig. 459. This practice increases the grip of the rope and decreases 
the wear very materially. 

217. Hoisting Chain. The 
kind of chain generally used 
in this country for hoisting pur¬ 
poses is shown in Fig. 460, the 
links being made of wrought- 
iron or steel. The chain is 
either wound on a grooved 
drum or is propelled by a 
pocket wheel, or sprocket, as 
shown in the figure. When the 
chain links are sufficiently uni¬ 
form as to size and form to use with grooved sheaves and drums, 
the chain is generally referred to as coil chain. If the links are suffi¬ 
ciently uniform as to size and form to work well in sprockets, the 
chain is generally called pitch chain. 

218. Transmission Chains. Power may be transmitted from one 
shaft to another by means of 
chains and toothed wheels, or 
sprockets, as shown in Fig. 461. 
Except for a limitation that will 
be mentioned later, transmission 
chains may be used instead of 
gears to secure positive driving 
where t he distance between shafts 
is too great for gears or where the 
use of gears wTould be less con¬ 
venient. Chains are used instead 
of belts either because positive 
driving is required or because 
the center distance is so short 
that a flat belt would be less 
convenient and satisfactory. 

The Ewart detachable link chain, shown in Fig. 462, was invented 
in 1873. The method of inserting or detaching a link is clearly shown 
in the figure. The links are of high grade malleable iron and are avail¬ 
able in some two dozen stock sizes. The chain is used with cast sprockets 
for the transmission of motion and power at velocities not exceeding 
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400 feet per minute. The ratio of the sprockets should not be greater 
than 5/1, and the smaller sprocket of a pair, where possible, should 
have not less than 10 teeth. These remarks apply also to the interlock¬ 

ing pintle chain with malleable iron links shown in Fig. 463. When 
used as conveyor chain, the links of these chains are cast with various 
kinds of projections for attaching the conveying elements. 

Fig. 463. Fig. 46l\ 

The block chain shown in Fig. 464 is a finished steel chain made up 
of steel blocks connected by steel side links. Since this type of chain . 
is only suitable for the transmission of small amounts of power at rela¬ 
tively low velocities, it is only stocked in a few small sizes. The roller 
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chain shown in Fig. 465 is much more suitable for the transmission of 
power and is available in many different sizes ranging in pitch from 
$ to 4 inches. The flat links are made from cold rolled high carbon 
steel, the pins are made of alloy steel and heat treated, and the bush¬ 
ings and rollers are case hardened. When made with two or more 
rows of rollers, the chain is referred to as multiple strand roller chain. 
By this means the power capacity for any given pitch is increased. 

Fig. 464. 

With proper lubrication, velocities as high as 2000 feet per minute have 
been successfully used with multiple strand roller chain, and as high as 
1400 feet per minute with single strand chain. For general purposes, 
however, the velocity of single strand chain is usually limited to 700 to 
900 feet per minute. The ratio of the sprockets should not exceed 
7/1 to 10/1, and the smaller sprocket of a pair, where possible, should 
have not less than 11 teeth. The smaller the pitch the higher the rotative 
speed permissible for a given diameter of sprocket. Hence, for a given 

Fig. 465. 

power and diameter of sprocket, a desirable reduction in pitch may be 
secured by using a multiple instead of a single strand chain. Finished 
block and roller chains are run on finished sprockets. With roller chains 
a mechanical efficiency of transmission as high as 0.96 is possible. When 
roller chain is used as conveyor chain, the side links are so formed that 

the conveying elements may be attached. 
The type of toothed, or silent, chain shown in Fig. 466 was invented 

by Hans Renold of England. In Fig. 467 is shown the Morse chain of 
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this type. The chains differ only in the type of joint used. In the 
Renold chain, a round pin works in a segmental bushing, while in the 
Morse chain two pins are used to form a rocker joint. With these 
chains a sustained efficiency of transmission of over 0.98 is possible. 
The links are punched from cold rolled alloy steel and then hardened; 
the pins are cut to length from alloy steel rods which have been drawn 

Fig. 466. 

to size and are then hardened. Power has been successfully transmitted 
at velocities as high as 2500 feet per minute. For general purposes, 
however, the velocity is usually limited to 1200 to 1400 feet per minute. 
The ratio of the sprockets should not exceed 7/1 to 10/1, and the smaller 
sprocket of a pair, when possible, should have not less than 17 teeth, 
an odd number of teeth being better than an even number. The 
larger sprocket also, where the ratio permits, should have an odd number 

Fig. 467. 

of teeth if the use of a special link to join the chain is to be avoided. In 
other words, the chain, if possible, should have an even number of links. 
As for roller chain, the smaller the pitch the higher the rotative speed 
permissible for any given diameter of sprocket. 

219. Velocity Ratio. With respect to chain sprockets, the ratio of 
the revolutions is, as for gears, inversely as the numbers of teeth in the 
sprockets. That is to say, if the driving sprocket has 24 teeth and the 
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driven sprocket 12 teeth, one revolution of the driver will cause the 
driven sprocket to make 2 revolutions. But, unlike gears, the angular 
velocity ratio is not constant for all phases of the sprockets. In dem¬ 
onstrating this, a roller chain will be used. This choice is merely a 
matter of convenience since the relative motion of adjoining links for 
each of the chains shown in the previous article is, as for the roller 
chain, about a pin or axis. 

In Fig. 468 the chain has 12 links, and the sprockets 1 and 2 have 
8 and 4 teeth respectively. To obtain a pronounced variation in the 
angular velocity ratio, a short center distance and a pinion having 

FIG. 468 

very few teeth were purposely selected. It was proved in Art. 43 that 
the angular velocities of driver and follower are inversely as the per¬ 
pendiculars let fall from their fixed centers on the line of transmission, 
or inversely as the segments into which the line of transmission cuts the 
line of centers. This was again proved by the method of instant cen¬ 
ters in Art. 67. Hence, 

W20 0u)0\2 

io O20O12 

or W20 
(hoO]o\ 

ChoOuH0 

Assuming the driver 1 to rotate at a constant rate, the angular velocity of 
2 will be a maximum when the intersection 0\z of the line of transmis¬ 
sion with the line of centers is nearest to 0\0 and O20, and the angular 
velocity of 2 will be a minimum when O12 is farthest from O10 and O20. 
For the proportions chosen, o>20 is a maximum for the phase shown 
dotted when the pitch line of a link on the follower lies in the line of 
transmission, or when roller A is just coming into action and roller C is 
just going out of action. The angular velocity of the follower will be a 
minimum when the line of transmission is tangent to the pitch circle of 
the follower, as shown by the full lines in the figure. If the sprockets 
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acted like gears, the angular velocity ratio would be constant and 
inversely as the numbers of teeth, or 

^20 oho = 2.0wio 

Because sprockets do not act like gears, the angular velocity of the 
follower from the time a roller goes into action at A until it leaves action 
at C decreases from a maximum of 2.51 on o at A to a minimum of 
1.828a?io at B and then increases to the maximum of 2.51ouo at C. 
There is, therefore, a variation in the angular velocity of the follower of 
37.3 per cent above the minimum, or a variation from constancy of 8.6 
per cent below to 25.5 per cent above the value of 2.0c«;io. A polar 
diagram of the variation of the angular velocity of the follower from the 
instant a roller comes into action at A until it leaves action at C is 
represented by the full curve E, the dotted curve D representing the 
constant angular velocity ratio corresponding to the numbers of teeth in 
the sprockets. 

While it is impossible by the use of chains to transmit motion from 
one shaft to another at a constant angular velocity ratio, it is possible 
to make the variation so slight as to make chain transmission applicable 
to many purposes. This is done by giving due consideration to the 
pitch of the chain, the number of teeth on the smaller sprocket, the ratio 
of the sprockets, and the distance between centers. The smaller the 
pitch and the greater the number of teeth on the pinion for a given 
sprocket ratio and distance between centers, the smaller will be the 
variation of the angular velocity ratio. 

The limitation on the substitution of chain for gear transmission 
mentioned at the beginning of Art. 218 arises from the fact that the 
angular velocity ratio of chain sprockets is not constant and inversely 
as the numbers of teeth as for gears. Hence, chain can not be substi¬ 
tuted for gear drives where it is absolutely essential that theeangular 
velocity ratio shall remain constant throughout each revolution of the 
driver and driven shafts. Thus gear and not chain transmission is used 
to drive the lead screw of a lathe, the succession of feed rolls in a printing 
press, many machine tool indexing mechanisms, etc. 

It is found most convenient in chain transmission to express the dis- 
ance between centers as a multiple of the pitch of the chain and to deter¬ 
mine this distance in terms of the numbers of teeth in the sprockets and 
the desired number of links or pitches in the chain. It should be noted 
that the distance between centers for sprockets and chain depends upon 
the phase of rotation of the sprockets. In obtaining the center distance, 
the phase desired is, of course, the one giving the shortest center distance. 
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220. Sprockets for Roller Chain. As a roller chain runs on or off a 
sprocket, the roller which is about to seat and the roller which is unseat¬ 
ing swings, relative to the sprocket, about the axis of the adjoining 
roller as shown in Fig. 469. Hence, the outlines of the sprocket teeth 
are made up of tangent arcs of two different radii drawn from the 
pitch points A, J5, C, etc., as centers. Thus, as link D rotates about 
center A, center E describes an arc BF of a radius equal to the pitch, and 
the roller describes an arc G of a radius equal to the pitch minus the 
roller radius. This arc G is tangent to an arc from B as a center having 
a radius equal to that of the roller. A sprocket with teeth so formed 
will work properly with the chain so long as the pitch of the chain 
remains exactly equal to that of the sprocket teeth. However, as the 
pitch of the chain increases because 
of wear at the joints, the action of 
the chain becomes imperfect. One 
of the first methods to be applied 
to correct this defect was to decrease 
the thickness of the sprocket teeth, 
thus increasing the tooth spaces as 
shown at H. This permitted the 
chain to stretch but caused the pull 
in the chain to be taken by the 
first tooth of the driver and the 
last tooth of the follower, resulting in 
the chain slipping forward relative 
to the sprockets as each incoming 
roller seated on the driver. If the 
pitch of the sprocket is made more 
than that of the chain, the last tooth of the driver and the first tooth of 
the follower will take the load, resulting in the chain slipping backward 
relative to the sprockets as each Successive roller comes into action. 
An expedient that would permit the chain to stretch without resulting 
in defective action was first applied by Hans Renold. His expedient 
was to so modify the sprocket teeth that the chain would automatically 
move radially outward as it stretched. 

The Renold roller chain sprocket tooth is shown in Fig. 470. Line 
CF is drawn tangent to the roller circle at an angle of 30 degrees with 
the radial line through center A of the roller. The point of the tooth 
is finished off by drawing the clearance arc EG from P as a center, BE 
being perpendicular to DE. If it were practicable to hold to the same 
clearance arc for all numbers of teeth, the tooth spaces would be the 
same for all sprockets for a given diameter of roller. The tooth outline 
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DEG falls within the arc II drawn from B as a center as for the tooth 
outlines in Fig. 469. It is to be noted that the line of pressure between 
the roller and such an outline as II would coincide with the pitch chord 

F/G. 470 

AB, or line of pull AL, while, for the ILenold tooth, the line of pressure 
AK is at an angle a with the pull. It is this obliquity of action which 
causes the chain to automatically move radially outward in contact 

F/G 47/ 

with the sprocket teeth as the chain stretches. This angle of obliquity 
in terms of the pitch angle 6 and number of teeth N is, in degrees, 

180 

N 
(327) 
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For N — 6 it is to be noted that a becomes zero, DE is reduced to zero, 
P is moved to B, and the tooth outline would coincide with 11 and be in 
agreement with the teeth of Fig. 469. 

The form of sprocket tooth developed by the Diamond Chain and 
Manufacturing Company and approved by the A.S.M.E., the S.A.E., 
and the A.G.M.A. is shown in Fig. 471. With reference to the figure, 
let 

P 
N 

e 

the pitch of the chain; 

the number of teeth in the sprocket; 

360° 
the pitch angle in degrees = -; 

N 

R 

d 

r 

0 

the radius of the pitch circle of the sprocket = ———; 

2 sin ~ 
2 

the nominal diameter of the chain roller; 

the radius of the bott om of the tooth space = 0.5025d + 0.0015; 

o 60° 

35 + aT; 

4> 18° 
56° 

N’ 

a the pressure angle = 

AC = 0.80 d; 

120°\ 

N ) 
6£\ 
n) 

maximum; 

minimum; 

AK = 1.24 d. 

To determine the outline of a tooth, draw the pitch circle, locate the 
pitch points A and Bf draw a circle of radius r from A as a center, locate 
centers C and K, draw tangent arc EF from C as a center, draw the tan¬ 
gent line FG} and complete the outline of one side of the tooth by a 
tangent arc from K as a center. While the principle of the tooth is the 
same as for the Renold tooth, it is to be noted that the pressure angle 
changes as the chain stretches and moves radially outward in contact 

with the teeth. 
221. Sprockets for Toothed, or Silent, Chain. The Renold toothed 

chain as made by the Link-Belt Company is shown in Fig. 466. The 
riveting and washer of the mid joint has been cut away to show the 
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construction of the joint. It is to be noted that the bushing segment 
on the left of the pin is carried by the set of links to the right, and that 
the segment of bushing on the right of the pin is carried by the set of 
links to the left. Hence relative motion of the sets of links to the 
right and left of the pin causes the bushing segments to rotate on the 
pin. The amount one set of links can swing up or down with respect 
to the other set of links is indicated by the clearance spaces which are 
shown black. 

The Morse chain as made by the Morse Chain Company is shown 
in Fig. 467. The third and fourth washers from the left have been cut 

away to show the construction at the joint. It is to be noted that the 
pin is in two segments, the set of links to the right of the joint carrying 
the flat-faced segment and the set of links to the left of the joint carrying 
the rocker segment. As one set of links swings relative to the next set, 
the pin segments rock one upon the other. For highest efficiency the 
chain should be run in the direction indicated by the arrow. The mid 
link of each alternate set of links is, as shown, a special link. By run¬ 
ning in a groove cut in the teeth of the sprocket wheels, these special 
links keep the chain from shifting in an axial direction on the sprockets. 
Other means are employed for both the Eenold and Morse chains to 
accomplish the same thing. 

The principle of the toothed chain link is shown in Fig. 472. The 
ends of each link are straight and at an included angle 2a. This angle 
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is usually 55 or 60 degrees. Each link enters two tooth spaces of the 
sprocket and makes surface contact with the sprocket teeth. The con¬ 
tact surfaces being flat, the pressure acts normal to the tooth surfaces 
and at a constant angle with the pitch cord and the line of transmission. 
This angle is evidently a and equal to 30 degrees when 2a equals 60 
degrees. This obliquity of action causes the chain to move radially 
outward as the chain stretches with wear at the joints. 

Since each link spans a sprocket tooth, it must be notched to clear 
the tooth. The inside as well as the outside of the chain teeth are 
made straight and at such an angle as will permit the chain to wrap on 
the sprockets or to sag between sprockets. As shown to the right in the 
figure, one set of links with respect to the next set swings through the 

pitch angle 0 in wrapping on the sprocket and can swing through the 
angle p before the inside of the chain tooth comes in contact with a 

sprocket tooth. 
The tooth angle 4> in terms of a and the pitch angle 0, or in terms 

of a and the number of sprocket teeth N, is 

720° 
4> = 2 (a — 0) = 21a — .(328) 

Evidently, for 2a equal to 60 degrees, the sides of the teeth of a 12- 
tooth sprocket will be parallel. To avoid this and to keep down the 
variation in the angular velocity ratio, it is specified that the smaller 
of a pair of sprockets shall never have less than 15 teeth, and not less 
than 17 or 19 is recommended for large pitches and high speeds. 
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As shown in Fig. 473, the action of the teeth of a Morse chain with 
the teeth of the sprocket is the same as just described. The change in 

the relative positions of the segments of the pins as the chain wraps 

on the sprocket is clearly shown in the figure. It is to be noted that 
the seat pins SP and rocker pins R make surface contact when in the 
line of transmission TT and make line contact when the chain is 

wrapped on the sprocket. In the Renold chain there is rotational 
sliding between the pin and bushing segments, while in the Morse chain 

the pin segments rock or roll upon each other. As before mentioned, 

this difference in action at the joints constitutes the primary difference 

in the two chains. 
Toothed chains seat more quietly than roller chains, adjust them¬ 

selves more perfectly to the sprockets as the chain stretches and, for 

a given width, will transmit more power. 



CHAPTER XIII 

TRAINS OF MECHANISM 

222. Trains of Mechanism. Machine's 1 hat. receive energy fron' 
some natural source, such as gas, gasoline, oil, coal, falling water, 
currents of air, and that, transform it into mechanical energy are cal! , 

fl 
prime movers. Thus internal combustion engines, steam engines, st« 
turbines, water wheels, water turbines, and windmills are prime me . ® 
The mechanical energy from prime movers may be transmit' <^arna8e 
, i- r 11 r r r i i • 1 nut to close 
to machines tor the performance of useful work, or it may tr , * 
before being transmitted to such machines. Thus r^e . ° e c^r- 

, , . . , . -is per inch, or the 
pressors, or electric generators may be directly or r, , , , , , r the carnage, is con- 
prime movers, and the transformed energy bee trails' , . ,. . . 
1 .. „ , , . ,, , , i ; , . end of the lead screw 
pneumatically, or electrically to tools and niacin , . . _ 
* ri n 4 -44 i • ‘c and gear 11. For this of useful work. Energy so transmitted is _ , , , , 

. . . . . ,. . * marked advantage since 
mechanical energy of reciprocation or rob , ^ 

. . , . . . ie center distances to trans- 
and consumed, thus the mechanical °i\y rafi0 

mover may be converted by a generate^ thattrains of mechanism 
energy may be transmit ed to and re%ng gearg and other whee,g tQ 

mechanical energy of rotation, and tlmay contain guch e,ements ag 
mitted to and consumed by such ma^ and aU manner Qf ]jnk 
machines, etc., in doing useful work.dnigmg are to be found machineg 

In accordance with the abojj^ mechanicaI energy ig utilized in 
mechanism or combination of - motion of the driving element of a 
purpose of generating, transfjj wheel traing figUEe very ]arge]y jn the 

To do this, such moving part;d through the machine. For this and 
friction wheels, pulleys and,arent) thig chapter wi]1 be confined to the 

chains, etc., aie necessary. ycjjc wheel trains. In an ordinary wheel 

are combined in various axes of the wheels relative to the fixed 

changes and transformati,heel trains such relative motion is involved, 
trains of mechanism, an oy pulleys, ropes and sheaves, chains and 
be familiar, will be dcscrilf gears may be variously combined to form 

In Fig. 474 is shown,heg] train composed of gears only is called a 
The head stock is fitted 

driving belt on the smallej trains, the following common elements of 
lathe spindle, to which t 
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rotative speed; with the belt on the largest step of the cone and the 
back gears in, the lathe spindle is driven at its lowest rotative speed. 
The piece of metal to be formed rotates with the face plate. If the 
piece is quite short compared to its diameter, it is fastened to the face 
plate; if long compared to its diameter, it is mounted between the live 
and dead centers and coupled to the face plate by a dog. 

The cutting tool is held in the tool post which is attached to the 
cross-slide. This slide is part of the tool carriage which is mounted on 
the ways of the lathe bed. In facing off a piece of work mounted on the 
th 

ce mounted between centers, 
to the axis of rotation of the 
ylindrical form, the cutting 
ition of the work. These 
lal feed, may be obtained 
atting tool is obtained by 
>r the longitudinal feed, 
aken from the rotating 
clt train from gear 4 on 
cross feed of the tool is 
>tating feed rod through. 
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a suitable train of mechanism in the apron of the tool carriage. The 
longitudinal feed is controlled by knob 6 and is also obtained from the 
feed rod through a suitable train of mechanism in the apron. At the 
end of this train is a pinion which meshes with the feed rack attached 
to the lathe bed and causes the tool carriage to move longitudinally on 
its guides, or ways. It is to be noted that the longitudinal feed train, 
besides containing gears, cone pulleys, and a belt, contains a rack and 
a sliding member on the feed rod, and that the cross-feed train contains 
the same sliding member on the feed rod and a screw and a slide and its 
guides. The cross and longitudinal feeds are reversed by operating 
the feed control lever 7. 

When cutting screw threads, the tool carriage is driven by the lead 
screw instead of the feed rod. This screw is driven by gear 4 through 
the gear train shown. The longitudinal feed of the tool and carriage 
is thrown in or out by operating lever 9 which causes a split nut to close 

over or to release the lead screw; and the direction of feed of the car¬ 
riage is controlled by lever 7. The number of threads per inch, or the 
number of turns of the work per inch of advance of the carriage, is con¬ 
trolled by changing the size of the gear on the left end of the lead screw 
and adjusting the idler gear 10 to mesh with it and gear 11. For this 
train of change gears, involute gears have a marked advantage since 
they do not require precise adjustment of the center distances to trans¬ 
mit motion at an unvarying angular velocity ratio. 

It is evident from the above description that trains of mechanism 
to be found in machines, besides containing gears and other wheels to 
transmit continuous rotary motion, may contain such elements as 
screws, cams, levers, intermittent gears, and all manner of linkages. 
Generally these latter parts and mechanisms are to be found in machines 
at or near the point where the available mechanical energy is utilized in 
doing useful work. Usually the motion of the driving element of a 
machine is that of rotation, and wheel trains figure very largely in the 
transmission of motion to and through the machine. For this and 
other reasons that will be apparent, this chapter will be confined to the 
treatment of ordinary and cyclic wheel trains. In an ordinary wheel 

train there is no motion of the axes of the wheels relative to the fixed 
member whereas in cyclic wheel trains such relative motion is involved. 
Friction wheels, belts and pulleys, ropes and sheaves, chains and 

sprockets, and all kinds of gears may be variously combined to form 
mixed wheel trains. A wheel train composed of gears only is called a 

gear train. 
Before discussing wheel trains, the following common elements of 

trains will be discussed: 
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Sliding gears; Reversing mechanisms; 
Clutches; Change gear mechanism; 
Idler gears; Gear cones. 

223. Sliding Gears. A sliding gear is an element frequently used in 
gear trains to change the angular velocity ratio of adjacent shafts. It 
is a common element in automobile transmissions and the gear trains of 
many other machines. In Fig. 475 the sliding compound gear 7, 
composed of gears a and 5, is free to slide but not to rotate on its shaft. 
Gears c and d are keyed to shaft B forming the compound gear 2. The 
forked member F, which operates in a groove in f, is fastened to a sliding 
rod. By shifting F to the left, gear a is thrown in mesh with gear c; 
and gear b is thrown in mesh with gear d by shifting F to the right. 

By this means the ratio of the angular velocities of the two shafts A 
and B is changed. 

In the example shown, the compound gear 1 slides on a feather, or 
spline. A feather, or spline, is a long key fitted and fastened into a 
key way cut in the shaft on which the gear slides; or it is a shorter key 
fitted and fastened into the keyseat of the hub of the sliding gear or 
other sliding member. Generally one or two feathers are used. Where, 
as in automobile transmissions, the service is severe, splined shafts are 
used, the splines being integral with shaft as shown in the right-hand 
view of the figure. For such shafts the hub of the mating member is 

generally broached. 
224. Clutches. Clutches may in general be divided into two classes, 

positive jaw clutches and friction clutches. Of the many possible 
examples of the latter class only three will be shown. 
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A jaw clutch is shown in Fig. 476. The clutch 7, while free to slide, 
is held from turning on shaft A by a spline. With the clutch disengaged 
as shown, shaft A is free to rotate in gears a and b. Gears c and d are 
keyed to shaft B, forming the compound gear 2. For shaft A to drive 
shaft B through gears a and e, clutch / is shifted to t he left to engagement 
with a; and for A to drive B through b and tf, the clutch is shifted to the 
right to engagement with b. The clutch is called a positive jaw clutch 
because fro m the 
moment of engage- 
ment it drives posi- HI p-j 
tively, without slip. 

In the example ' ~ ~ ~ ~~ 
shown, the engaging S v- 
teeth are so shaped i — 

that gears a and b ~_z / . fF'^-YA 
may be driven in . 1 'rj—.ETTZ 

either direction by ~ -— - 
the clutch. Where \l±S^ ~ —HCi—lJU_' —:■ 
the drive is to be / 
continuously in one ~END VIEWOFclutch FIG. 4-76 H 
direction, the back 
faces of the teeth are often beveled to make engagement and disengage¬ 
ment easier. Jaw clutches should not be engaged or disengaged under 
load or while in motion unless the speed of rotation is low. 

The double jaw clutch in Fig. 476 and the sliding gear in Fig. 475 
are used for the same purpose, that is, for changing the angular velocity 
ratio of the two shafts A and B. It is to be noted that with the double 
jaw clutch both pairs of gears are always in mesh, whereas with the 
sliding gear one pair of gears only can be in mesh. It is also to be noted 
that a double friction clutch in place of the double jaw clutch could be 
used in Fig. 476. 

Three examples of friction clutches are shown in Figs. 477, 478, 
and 479. The advantage of the friction clutch is that it can be engaged 
and disengaged at will under load and in motion. The purpose of the 
cone clutch shown in Fig. 477 is to transmit motion and power from gear g 
to shaft A through cone C, or from shaft A through cone C to gear g. 
The gear is free to rotate on the shaft; and the cone, while free to slide, 
is held from turning on the shaft by a spline. The cone is held out of 
engagement by the thrust of three helical springs, S, only one of which 
is shown; it is forced into engagement by pushing rod R to the right 
thus forcing the conical thimble T between the bell cranks B which in 

turn force the cone into engagement with the gear. 
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The purpose of the disk clutch shown in Fig. 478 is to transmit 
motion and power from pulley P to shaft A through member D, or from 
shaft A through member D to pulley P. Between the four annular 
disks rotating with P are three annular disks fitted over splines on D. 

When the clutch is disengaged, pulley P rotates freely on the shaft. 
Member D, which carries three disks and the pressure element E, is 
keyed to shaft A. The clutch is engaged by pushing rod R to the right 
into the position shown. The tapered end of the rod causes the bell 

cranks B to contact with E thus pressing the disks together. It is to 
be noted that the fulcrums of the bell cranks are in D and that their 

contacts with E are adjustable. When R is drawn to the left, E is 
pushed to the right by three helical springs S, the disks are relieved of 
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pressure, and those carried by P are free to rotate between those carried 
by D. 

The purpose of the expanding ring clutch shown in Fig. 479 is to 
transmit motion and power from shaft A to gear g or from gear g to 
shaft A. The conical thimble T is splined to the shaft. When the 
clutch is disengaged the shaft is free to rotate in the gear. The end 
view of lever L and of the expansion ring R, which is keyed to the shaft, 
is shown to the right in the figure. When T is shifted to the left, its 
conical end causes lever L to turn the notched pin P to which it is 
attached. The action of the notched pin on the end of the split ring 
causes the ring to expand and to grip the gear. 

226. Idler Gears. Fig. 480 shows an intermediate, or idler, gear 2 
interposed between gears 1 and 3. If 1 mated directly with 3 they 

would rotate in opposite directions. It is obvious by inspection that 
the effect of interposing the idler is to cause 1 and 3 to rotate in the 
same instead of in opposite directions. The angular velocity ratio of 
1 and 3 has not, however, been changed by interposing the idler. Since 
the pitch line velocities of mating gears must be equal, the pitch line 
velocity of 2 is the same as f, that of 3 the same as 2, and, therefore, 
that of 3 the same as 1 as it would be if 1 and 3 mated directly. This 
also is easily demonstrated by means of the angular velocity ratios. 
As has been shown, the angular velocities of a pair of mating gears are 
inversely as their pitch radii, pitch diameters, or numbers of teeth. 
Assuming wio, <*>20, and o?3o to represent the respective angular velocities 
of gears !, 2, and S} and Ni> N2} and N3 the respective numbers of teeth 

in the gears, then 

4010 — ^3 a ^ 
^ ~ n{ an *30 ~ N2 
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Multiplying these equations together gives 

c*Mo N;\ 
OJliO N i 

or, the angular velocity ratio of / to 3 is the same with the idler as with¬ 
out. Idler gears are therefore used to change the direction of rotation 
without changing the angular velocity ratio. 

226. Reversing Mechanisms. In Fig. 481 a pair of idler gears, 2 
and 3, is used to control the relation of the directions of rotation of 1 

and Jf. With the con¬ 
trol lever L in the 
position shown, the 
four gears are in series, 
and the direction of 
rotation of 4 is op¬ 
posed to that of 1. To 
cause 1 and 4 to rotate 
in the same direction, 
gear 2 is thrown out of 
mesh and gear S into 

mesh with 1 and 4 by 
moving the control lever L to the position shown dotted. This is the 
reversing mechanism used in the head stqck of the lathe shown in Fig. 
474 to control the direction of rotation- of the lead screw and feed rod, 
7 being the control lever corresponding to L. 
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The reversing mechanism shown in Fig. 482 is composed of a double 
clutch and three bevel gears. The double jaw clutch 1 and shaft A are 

fitted with a spline. With the clutch out, the shaft is free to rotate in 
gears a and c. Gear a rotates with pulley P to which it is keyed, and 
gear c is driven by gear b in a direction opposed to that, of a. To have 
the shaft rotate in the same direction as the pulley, 1 is moved to the 
left to engagement with a; to reverse the direction of rotation of the 
shaft, 1 is moved to the right- to engagement with c. 

227. Change Gear Mechanism. Changes in speed may be secured, 
as indicated in Arts. 223 and 224, by the use of sliding gears or clutches. 
Another way is to provide some convenient means, as shown in Fig. 483, 

of actually changing the size of gear on either or both the driven and 
driving shafts. The figure illustrates a change gear mechanism com¬ 
monly used on lathes of the type shown in Fig. 474, where the revolu¬ 
tions of the lead screw per revolution of the lathe spindle are changed 
by changing the size of gear 12 on the lead screw. In Fig. 483, gear 8 
corresponds to 12 of Fig. 474, and gear 1 to gear 11 which is driven from 
the lathe spindle by a reversing mechanism similar to that shown in 
Fig. 481. Since the shaft to which 1 is keyed and the lead screw to 
which 8 is keyed are a fixed distance apart, an adjustable idler gear 2 
must be provided for connecting them. H is a slotted member which 
can be turned about the axis of 3 and locked in position by the washer 
and nut at N. The distance between the axes of 2 and S can be varied 
by moving the bolt on which 3 rotates along the slot in H and locking 



432 TRAINS OF MECHANISM 

it in the position desired. Member H therefore permits the ratio of 
gears 1 and S to be changed and the idler gear adjusted to connect them. 
The size of the idler may also be changed when desirable. \ 

228. Gear Cones. Gear cones are often used, especially in feed 
trains, for making speed changes. In the feed train shown in Fig. 484, 
the gear cone 2 is made up by keying gears c, d, e, and f to the same 
spindle. In the figure, A is the driving and B the driven shaft. 
Through the double jaw clutch 1, the gear cone may be driven by gear a 
or by gear 6; and, by means of the snap key K, shaft B may be driven 

through gears d and S, e and 4? or f and 5. The rod R, which carries 
the snap key, is fitted into the hollow portion of shaft B. The rod is 
shown in its lowest position with the key connecting gear 5 with shaft 5. 
To disconnect 5 and connect 4 with shaft B, the rod and key are raised 
by turning the pinion P which meshes with the rack teeth turned on the 
upper end of the rod. With the clutch engaging gear a, the cone is 
driven at its lowest speed, and at its highest speed with the clutch 
engaging gear 6. The two speeds of the cone and the three possible 
positions of the snap key make it possible for shaft B to be driven at 
six different speeds. 
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In Fig. 485 an idler 2 is used as a tumbler gear to connect gear S on 
shaft B with any step of the gear cone 1 on shaft A. This arrangement 
is extensively used in feed and lead screw trains and is occasionally used 
in the main drives of machine tools. Either shaft may be the driver. 
In the figure A is the driver. Shaft B may be fitted with a long spline, 
or the bushing to which gear 3 is keyed may be fitted with a short spline 
which slides in a keyway in the shaft. Member C, which carries the 
tumbler gear 2, may be turned about the axis of shaft B. By sliding 
the tumbler mechanism along and swinging it about shaft B, gear S 
may be connected to any step of the cone. In the end elevation, 3 is 
shown connected to the largest step of the cone, the position for the 
highest rotative speed of shaft B. In the other view the tumbler 

mechanism is shown with the axis of 2 in the plane of A and B. The 
housing for the train is slotted and has a series of five holes into which 
the pin of the latch on the outer end of C may be inserted to lock the 
tumbler mechanism in any one of its five positions. Thus the ratio 
of the angular velocities of A and B may be ff, ff, f#, or f$. 

229. Value of a Train. The value of a wheel train is the ratio of 
the angular velocities of the first and last or of the last and first wheels 
or shafts of the train. 

It has already been shown that the angular velocities of a pair of 

pulleys, sheaves, or friction wheels are inversely as their radii or diam¬ 
eters, and that the angular velocities of a pair of gears are inversely as 
their pitch radii or pitch diameters or numbers of teeth. The spur 
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gear train shown in' Fig. 486 is composed of the single gears 1 and 4 
and the compound gears 2 and 8. For the gear train shown let ouo, 
Si, Di, and Ni, respectively, represent the angular velocity, pitch 
radius, pitch diameter, and number of teeth of the driving gear 1; 
W20, S‘2 and R'2, D% and D'2, and N2 and Nf2 the angular velocity, 
pitch radii, pitch diameters, and numbers of teeth of the compound 

F/G. 486 r/G, 467 

gear 2; etc. Then the angular velocity ratios of the various pairs 
relative to the fixed member 0 are, 

O)io R2 D‘2 N‘2 

o)2o R\ Di N1 

0)20 ^ 12.3 _ Ds N3 

^ * wr w2 = wi 
0)30 _ R± __ D± N4 

~ Wz = Jyl = w* 
The product of these ratios is 

o>io _ 0)10/Q)20 |Q)3o _ _ D2/A3 

0)40 0)20 \0)30/ 0)40 Sl\I$'2' R'z DAD'Jd's 

That is, the ratio of the angular velocities of the first and last wheels or 
shafts of a wheel train is equal to the continued product of the radii, 
diameters, or numbers of teeth of the driven wheels divided by the cc .«e 
tinued product of the radii, diameters, or numbers of teeth of the dr’en at 
wheels. Since, for a given train, the angular velocity of the first 
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is usually known and the angular velocity of the last wheel is desired, 
the reciprocal of the above ratio, or the ratio of the angular velocities 
of the last and first wheels or shafts of a train, is often the more service¬ 
able ratio. According to (329) this ratio is equal to the continued 
product of the radii, diameters, or numbers of teeth in the driving wheels 
divided by the continued product of the radii, diameters, or numbers 
of teeth in the driven wheels. Using the numbers of teeth shown in 
Fig. 486, the angular velocity ratio of the last to the first wheel or 
shaft is: 

mo ^ ^ 18/l3\l4 = 
coio N2 W3 / N4. 54\42/65 45 

or gear 4 and the shaft to which it, is keyed makes one revolution for 
every 45 revolutions of /, the driver. Hence, if the angular velocity 
of the driver is 900 R.P.M., the corresponding angular velocity of 4 is 

o?4o = o) 10C-iV) = 900(xV) ^ 20 R.P.M. 

The same reduction in speed could, of course, be obtained by mating 
1 with a gear having (45 X 18) or 810 teeth. It can easily be shown 
that the train has the advantage of being more .compact and flexible. 
Assuming a diametral pitch of 5, the sum of the pitch diameters of a 

single pair of gears would be 
810 + 18 

5 . 
or 165.6 in., which corresponds 

to a distance between centers of 82.8 in. By using a train such as shown, 
the same reduction in speed is secured with smaller gears and in less 
space. It is to be noted, however, that the same diametral pitch cannot 
be used throughout the train. Since the load on the teeth of the pinion 
of 2 will be greater than the load on the teeth of ly the former must have 
larger teeth than the latter; likewise the pinion of 2 must have larger 
teeth than the pinion of 2. The pitches given in the figure are for 
approximately the same factor of safety. For these pitches and the 
numbers of teeth shown, the respective distances between the centers 
of 1 and 2} 2 and 5, 3 and 4 are 7.20, 7.857 and 15.8 in. Assuming all 
the shafts of the train to be in the same plane gives a distance between 
the centers of the first and last shafts of 30.857 in. and an overall dimen¬ 
sion of the pitch circles of 45.657 in. against corresponding values of 
82,8 and 165.6 in. for a single pair of gears. By placing the shafts of 
pbe train in different planes, the largest overall dimension, neglecting 

eter^ddendums of the teeth, can be reduced to 34.8 in. 
their Pulley and gear train is shown in Fig. 487. The diameters of the 
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pulleys and the numbers of teeth for the gears are given in the figure. 
The value of the train for the proportions shown is 

<040 __ _8 /10\18 _ _3 

«io ” 20\24/70 ” 70 

or gear 4 makes 3 revolutions for every 70 revolutions of 7, the driver. 
Hence, if the angular velocity of the driver is 700 R.P.M., the angular 
velocity of Jj. is 

co4o = 700(W) = 30 R.P.M. 

As before pointed out, belts and pulleys are used instead of gears 
where positive driving is not essential and the distance between centers 

is too great for gears; and belts and pulleys are used instead of chains 
and sprockets over center distances suitable to both where positive 
driving is not required. 

In the trains shown in Figs. 486 and 487 all the shafts are parallel. 
In the gear train shown in Fig. 488, one of the shafts is at right angles 
to the other three. The train is composed of a pair of spur gears having 
15 and 45 teeth, a pair of bevel gears having 25 and 30 teeth, and a 
single-thread worm mating with a worm wheel having 50 teeth. Since 
the definition of the value of a wheel train is perfectly general, the value 
for the train shown is 
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If the angular velocity of 1 is 1800 R.P.M., the corresponding angular 
velocity of 4 is 

<*>•10 — 

^10 

180 

1800 

180 
10 R.P.M. 

Pulley, sheave, and sprocket trains are used, as in the case of gear 
trains, to secure compactness and flexibility. Primary trains in several 
instead of a single step are also often desirable in order that secondary 
trains may be driven from one or more of the intermediate shafts of the 
primary train. 

230. Direction of Rotation in a Wheel Train. The gears of a mating 
pair of external spur gears rotate in opposite directions. Hence the 
adjacent axes in a train of external gears rotate in opposite directions 
and the alternate axes in the same direction. If such a train has an 
even number of axes, it therefore follows that the first and last wheels 
or axes will rotate in opposite directions and that they will rotate in the 
same direction if the train has an odd number of axes. Thus 1 and 4 
in Fig. 486 rotate in opposite directions. 

The gears of a mating pair of internal gears rotate in the same 
direction. If such a pair were substituted for one of the pairs of external 
gears in Fig. 486, the first and last shafts would rotate in the same 
direction. 

As was shown in Art. 225, idler gears are used to change the direction 
of rotation without changing the value of the angular velocity ratio. 

Pulleys connected by an open belt rotate in the same direction, and 
pulleys connected by a crossed belt rotate in opposite directions. 
Although in Fig. 487 there is an even number of shafts, the first and 
last shafts rotate in the same direction because one pair of pulleys is 
connected by a crossed belt and the other pair by an open belt. 

231. Back Gears. The spindle of the lathe shown in Fig. 474 is 
driven by a cone pulley and back gear train similar to the one shown in 
Fig. 489. This is a common speed change mechanism in machine tools 
and other machines using cone pulleys. In metal-working machines 
the cone pulley on the counter-shaft is usually the same size as the one 
on the machine. Pinion a and the cone pulley to which it is attached 
are free to rotate on the spindle when gear d, which is keyed to the 
spindle, is disconnected from the cone pulley. In the figure the com¬ 
pound gear 2} which rotates freely on its spindle, is shown out of mesh 
with a and d. It can be put in mesh by turning handle II forward, the 
portion of the spindle on which 2 rotates being eccentric with respect 
to the ends which are supported in bearings in the frame. If the 
counter-shaft is a single speed shaft, the arrangement shown provides 



438 TRAINS OF MECHANISM 

eight changes in speed. With the back gears out and d connected to 
the cone, four different spindle speeds may be obtained by shifting the 
belt on the cone pulley, the highest spindle speed being obtained with 
the belt running from the largest step of the counter-shaft cone to the 
smallest step on the machine cone. By disconnecting d from the cone 
and placing the back gears in mesh with a and d, four more changes of 
speed are secured. The diameters of the pulley steps and the numbers 
of teeth on the gears are given in the figure. Assuming the counter¬ 
shaft to run at 200 R.P.M. and the belt progressively changed from the 
smallest to the largest step of the machine cone, the following four 
spindle speeds shown to the left are obtained : 

/lO.75\ 

200\T75/ = 452-63 51.05 

(o *7c\ 

= 259.22 29.22 

(6 75\ 
= 154.28 17.39 

(4 75 \ 

kTW = 8837 996 

The additional four speeds obtained by using the back gears are shown 
above to the right. These four speeds were obtained by multiplying 
the first four speeds by the reduction factor (H X fl). It is to be 
noted that the eight speeds are approximately in geometric progression. 
An exact series, according to equation (321), would call for & progres¬ 
sion ratio of 

k = 4 '452.63 

9.96 
1.725+ 

By using a two-speed counter-shaft, eight more changes in speed may be 
secured. If the possible sixteen speeds are to be in geometric progres¬ 

sion, with 453 as maximum, the second speed of the counter-shaft must be 

n = 200-5- V1.725 = 152 R.P.M. 

Twelve spindle speeds in geometric progression may be obtained 
with 10 as the minimum and 453 as the maximum R.P.M. by changing 
the counter shaft speed, the diameters of the cone pulley steps, and 
substituting a compound sliding gear for a and a compound gear for 6. 

232. Geared Lathe Heads, In the earlier machine tools speed 
changes were secured by the use of cone pulleys and back gears. It is 
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now more common to drive the primary shafts of such machines at a 
constant speed and to obtain all changes in speed by means of gears. 
Such drives are known as constant speed drives. Two examples of 
this type of drive are shown in Figs. 490 and 491. 

Fig. 490 is a diagrammatic representation of the geared head of a 
LeBlond lathe. The constant speed pulley is fitted with a multiple 
disk clutch similar to Fig. 478 by means of which shaft A is engaged or 
disengaged from the rotating pulley. •The clutch is operated by rod R 

which runs through shaft A to the clutch. Shaft A is splined for the 
triple sliding gear 1 composed of gears a, b, and c. Gears a', b', and cr 
are keyed to shaft B, which is splined for the double sliding gear com¬ 
posed of gears d and e. Gears df and e! are keyed to C, the lathe 
spindle. Six different spindle speeds are possible. With d in mesh 

with df the three lowest spindle speeds in ascending order are obtained 
by placing a in mesh with a', next b with b', and then c with c'. The 
three next speeds in ascending order are obtained in the same manner 
by first placing e in mesh with eAssuming the pulley to rotate at 
500 R.P.M., the six possible speeds for the numbers of teeth given in the 
figure are 

53.5, 76.4, 112.0, 178.8, 255.0, and 372.5 R.P.M. 

These speeds arc approximately in geometric progression. 
Fig. 491 is a diagrammatic representation of the geared head of a 

Reed-Prentice lathe. This head has eight forward and eight reverse 
speeds of the spindle D, Bevel gear a is attached to and rotates with 

the constant speed pulley. By means of the reversing mechanism at R} 
which is similar to the one shown in Fig. 482, shaft A may be caused 
to rotate in either direction. Each one of gears d, e, /, g, h> and k is 
fitted with a friction clutch similar to the one shown in Fig. 479. 
Unlike the head in Fig. 490, all the gears in the train are constantly 
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in mesh. By means of the double friction clutch at 1, either gear d 
or gear e may be connected to shaft A. Gears d' and ef of the compound 
gear 2 are keyed to shaft B. Either g or f may be connected to the 
hollow shaft to which h is keyed by means of the double friction” clutch 
at 8; and either h or k may be connected to the lathe spindle D by 
means of the double friction clutch at 5. Gears i and j of the compound 

gear 4 are keyed to shaft C. The lowest spindle speed is obtained by 
engaging gears fc, /, and rf, motion being transmitted from shaft A to D 
through gears d} d'} e', f, h} i, j, and k. The next, speed higher is obtained 
by disengaging / and engaging g. The next two speeds higher are 
obtained by first disengaging d and engaging e and then having first / 
and then g engaged. Four more speeds are obtained by disengaging k 

and engaging h and operating the 
clutches at 1 and 8 as for the first 
four speeds. Since friction clutches 
are used throughout, any speed 
change can be made without danger 
while the shafts are in motion. For 
the train shown in Fig. 490, the 
clutch connecting the pulley and 
shaft A should be disengaged before 
making a speed change. 

233. Screw-Cutting Train. The 
cutting of screw threads was ex¬ 
plained in Art. 222 in discussing 
the lathe shown in Fig. 474. In 

mpdem lathes the required number of turns of the lead screw is com¬ 
monly controlled by a gear train containing a cone and tumbler gear 
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mechanism similar to that shown in Fig. 485. The earlier lathes of the 
type shown in Fig. 474 used a train similar to that shown in Fig. 492. 
This train is a combination of the mechanisms shown in Figs. 481 and 
483. If 1 and 4 are of the same size and 1 makes the same number of 
turns as the lathe spindle, then the number of turns of gear 6', which is 
keyed to the lead screw, will depend on the numbers of teeth in gears 
4 and 6. Assuming the lead screw to be a single-thread screw having 
4 threads per inch, or a lead of { in., the tool carriage would advance 
1 in. for every 4 turns of the lead screw. To cut 4 threads per inch, 
gears 4 and 6 must therefore have the same number of teeth. To cut 
9 threads per inch the spindle and gear 4 must make 9 turns while gear 
6 and the lead screw make 4 turns; or the ratio of the angular velocities 

0040 9 
of gears 4 and 6 must be-= . This ratio is also inversely as the 

OOGO 4 

numbers of teeth in the respective gears, or Hence, to 
U40 N o 9 

0>GO N 4 4 
cut n threads per inch with a lead screw having n' threads per inch 

AT _ n 

AT “ n' 

n 
or Ni\= N±-- . 

n 
(330) 

Corresponding values of n and AT are given below for AT = 24 and 

n' = 4: 

n — 5 6 7 8 9 10 11 11J 
AT = 30 36 42 48 54 60 66 69 

12 13 and 14 
72 78 and 84 

By placing a 48-tooth gear on the stud with gear 4 the following values 
of AT for cutting 2, 2|, 3, 3|, and 4 threads per inch are obtained: 

n — 2 2\ 3 31 and 4 
AT = 24 30 36 42^ and 48 

Hence a set of 16 change gears, including two 48-tooth gears, are required 
to cut the numbers of threads per inch given above. The reversing 
mechanism in the train enables either right- or left-hand threads to be 

cut. 
In some screw-cutting trains of the above type a compound gear 

is substituted for 5, the idler gear. Although the -screw-cutting trains 
of lathes of different make vary in type and in details of design and 
arrangement, the principles of all such trains are the same as the train 

just described. 
Since the constancy of the angular velocity ratio of gears having 
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involute teeth is not affected by variation of the distances between 
centers, involute gears only should be used in change gear trains. 

234. Automobile Transmission. A typical automobile transmis¬ 
sion having three forward and one reverse speed is shown in Fig. 493. 
The speed changes are secured as in Fig. 490 by the use of sliding gears. 
Pinion 2 is formed on the end of shaft A which is coupled with the 
crank-shaft of the engine. The end of shaft A is hollowed out and 
bushed to serve as a supporting bearing for the end of shaft D. The 
left end of sliding gear/is formed to fit over the end of 2 and acts as a 
jaw clutch coupling. Shaft D is splined for the sliding gears / and g, 
and its right end is coupled to a shaft leading to the rear axle drive. 
Gears a, b, c, and d are keyed to counter-shaft J3, forming the compound 

gear 2. The reverse idler gear e is carried by stud C, the location of 
whose axis relative to the axes of B and D is shown in the end elevation. 
For low speed forward, gear g is shifted to the left into mesh with gear c, 
and D is driven by A through gears 2, a, c} and g. For the second speed, 
gear / is shifted to the right into mesh with gear 6, the drive being 
through gears 2, a, b, and /. For the highest speed, gear / is shifted to 
the left over the end of 2, making the drive from A to D direct. The 
reverse speed is secured by shifting g to the right into mesh with e, the 
drive being through gears 2, a, d, e, and g. For the numbers of teeth 
shown the respective ratios of the speed of D to that of A are (if x if) = 
0.309, (if X ft) = 0.611, and 1.0 for the forward speeds, and (if X if) 
= 0.247 for the reverse speed. 

235. Cyclic Trains. A mechanism has been defined as a kinematic 
chain with one of its links fixed. The mechanism obtained from a given 
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kinematic chain depends, therefore, upon which link of the chain is 

fixed. This is just as true of a train of wheels as it is of any other train, 
or chain. 

In Mg. 494, 0 and 2 are mating gears. With 1 as the fixed member, 
the chain becomes an ordinary gear train such as has been treated in 
the previous articles. With gear 0 as the fixed member the chain 
becomes a cyclic gear train. If 1 is rotated about the fixed center Oio, 
any point on the pitch circle of 2 will describe an epicycloid on 0. If 0 
were an internal gear as shown in Fig. 496, then any point on the pitch 
circle of 2 would describe a hypocycloid on 0. Since either or both of 
these actions may be present, it is convenient to refer to wheel trains 
with one of the wheels fixed as cyclic trains. Such mechanisms are 
unique and at times very convenient and useful. 

In cyclic wheel trains the information usually desired’is the ratio, 
with respect to the fixed member, of the angular velocity of the last 
wheel of the train to that of the arm which carries it. With 0 in Fig. 494 

as the fixed member, this ratio is evidently- Now a>2i = o>2o - <*uo; 

hence, 

or, 

But, 

W20 = <*>10 + <*>21 

C02° ^ Cdio + 0)21 __ j <*>2l 

0)10 0)10 <*>10 

c*uo *= — o)oi*f hence 

0)20 - 0)21 — =1-. 
0)10 <*>01 

(331) 
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It is to be noted that in equation (331) the ratio of the angular velocities 
of 2 and 1 relative to 0 as the fixed member is equal to unity minus the 
ratio of the angular velocities of 2 and 0 relative to 1 as the fixed member. 
Since with 1 fixed the mechanism is an ordinary wheel train, the ratio 

0)21 
— is evident by inspection. If the angular velocities o?2i and mi 
mi 

are opposite in sense, this ratio is negative; and it is positive if the 
angular velocities are of the same sense. Unity in the right-hand 
member of the equation means that 2, solely because of its motion with 
1 about Oio, makes one revolution relative to the fixed member for each 
revolution of 1. This is shown in Fig. 495 where the four positions 

-Pi, P2, P3, and P4 of a point in 2 are given for one rotation about 0io 
with 0, ly and 2 locked together. Because of this rotation about O10, 
2 has obviously made one revolution relative to the fixed member. 

qjoq 

The angular velocity ratio for the cyclic train shown in Fig. 494 
w 10 

may be expressed in terms of the respective numbers of teeth No and N2 

in gears 0 and 2 by substituting in equation (331). Since wit h 1 fixed 
0 and 2 would rotate in opposite directions, the angular velocity ratio 

mi . ,. 
— is negative; or 
cooi 

mi _ ^2 
mi N2 

Substituting this in (331) gives 

. ,JV„ 60 

1+^-1 + 20-+4 

That is, as shown by the sign, 2 rotates in the same direction and four 
times as fast as 1 relative to the fixed member 0. 

For the cyclic train shown in Fig. 496 the angular velocity ratio 

That is, as shown by the sign, 2 rotates in the opposite direction and 
two times as fast as 1 relative to the fixed member 0. 
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For the cyclic train shown in Fig. 497 the angular velocity ratio 

— No v N 3 , No 

0)01 ~ NsX N2~+ N~2 
Hence, 

0)20 _ j 0)21 _ ^ No 

wio t*)oi N2 

In other words, this train is the exact equivalent of the train of Fig. 
496. 

In solving cyclic trains, the two operations indicated by equation 
(331) may be performed and the results tabulated. The entire train is 
first locked and turned one revolution in a positive direction about Oio; 
the train is then unlocked, the supporting arm is fixed, and the gear 
which is to be the fixed member is rotated to its original position by 
giving it one turn in a negative direction, that is, in a direction opposite 
to that used for Ihe locked train. By tabulating the turns of each 

member for ea<;h of the two manipulations mentioned, the resultant 
turns of each member of the train are readily determined. Such a 
tabulation for the train of Fig. 497 is shown in Table 14. 

TABLE 14 

Operation 

Number of Revolutions of Each Member 

0 

i 

1 8 2 

Entire train locked and given 
one positive turn about Cho 

+ 1 + 1 +i +i 

Train unlocked and 0 given one 
negative turn with 1 fixed -1 0 + * 

Nt 
(No N,\ No 

U Nt) N* 
' 

Resultant turns for one positive 
turn of 1 with 0 fixed 0 +1 

C*>3° 1 No 

= 4-5 

0)20 No 
— = l-- — 2 
u10 N2 
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In dealing with cyclic trains it should be very carefully noted that 
the sign of an angular velocity ratio is even more important than its 
numerical value. 

236. Ferguson’s Paradox. The cyclic train known as Ferguson's 
paradox is shown in plan and elevation in Fig. 498. The base is fitted 
with a vertical spindle to which gear 0 is fastened and about which arm 
1 revolves. This arm carries two spindles. Idler 2 rotates about* the 
first spindle carried by arm 1, and the three separate gears 8, ^and-5 
rotate about the second spindle. The three separate gears are so 
nearly of the same size that they can be dnveh cohtinuously by the 
same idler. If the drive of each separate gear is to be without variation 
of the angular velocity, involute gears must be used. J ' 

The angular velocity ratios desired are —, —, and —. These 
C010 Cl) 10 O>10 

ratios may be obtained by applying the two manipulations explained 
in the previous article and tabulating the results as shown in Table 15. 
In the tabulation the numerical values of the number of teeth in the 
respective gears have been used. 

It is to be noted that for each turn of 1 gear 8 makes ^ of a turn 
relative to 0 in a direction opposed to that of /, gear 4 is stationary 
relative to 0, and gear 5 makes of a turn relative to 0 in the same 
direction as L Thus, paradoxically, two out of three ^ears driven by 
the same idler rotate in opposite directions,* and *the’other is stationary 
relative ta the fixed member. This mechanism demonstrates that in a 
cyclic train the directions of rotation of the gears relative to the fixed 
member are not determined by the number of axes. 
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TABLE 15 

Operation 

Number of Revolutions of Each Member 

0 / ' 2 3 4 5 

Entire train locked and 

given one positive turn 

about 010 

+ 1 + 1 4-1 4-1 4-1 4-1 

Train unlocked and O 
given one negative 

turn with 1 fixed 

~1 0 
30 

/50 30\ 

— (30^49/ \30 X 501 

1 

■g
T

s 
X

 
2
1
8

 

Resultant turns for one 

positive turn of 1 with 

O fixed 

D 4-1 
W20 8 

o>io 3 

CO rm 1 

cojo 40 

O
 II 

* 

III 

COCO 1 

CO10 51 

-A- 

The above ratios may also be obtained by writing expressions cor¬ 
responding to equation (331) and making proper substitutions of the 
numbers of teeth in the gears. Thus, 

mo _ j __ wst __ ^ No 

COlo tool A/3 

W40 _ J _ W4i _ J A^O 

Wio WOl A^4 

cor»° __ j j Wo 

ooio oooi Arr, 

50 __1_ 

49 ~ ~ 49 

50 _ 1_ 

51 ~ 51 

237. Reverted Cyclic Train. The operation of a cyclic train is not 
affected by the shape of the carrying arm. In Fig. 497 center O21 is on 
O10O31 extended. It is evident that O21 could be on any line through 
O31 without affecting the operation of the train. When the axis of the 
last wheel of a cyclic train coincides with the axis of the fixed wheel, 
the train is called a reverted cyclic train. Such a train is shown in 
Fig. 499. Since the axes of the driving and driven shafts are coincident, 
the bearings supporting the shafts may be made integral with the frame 
to which the fixed gear is fastened. The convenience and adaptability 
of the mechanism are primarily due to this feature. In the figure, 
compound gear $, which is composed of gears a and bf is carried by arm 1 
which rotates with shaft A to which it is keyed. Expressing the 
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desired angular velocity ratio in accordance with equation (331) and 
using the numbers of teeth shown, gives, 

<^30 

coio 
= 1 - 

W31 
= 1 

U01 

No N» 

Na x Ns 

/ 99 101 
1 - — X — 

\100 100, 
1_ 

10000 

That is, gear 8 and shaft B make one revolution for every 10,000 revolu¬ 
tions of arm 1 and shaft A. To obtain this very striking reduction in 
speed, it is to be noted that the sum of the numbers of teeth on gears b 
and 8 is slightly greater than the sum for gears O and a. This means 
that b and 3 must have slightly smaller teeth than O and a if the axes of 
shafts A and B are to coincide. Hence a standard pitch can be used 
for only one of the pairs of gears. 

For both pairs of gears in Fig. 499 to have the same pitch, (No + Na) 
must equal (Nd + Ns)- This will be true for iVo = 99, Na = 101, 
Nb = 100, and Ns = 100. This apparently slight change makes, 
however, a great change in the ratio of transmission, the ratio becoming 

^30 

Wl() «01 

99 100 

101 X 100, 101 

That is, shaft B makes 2 revolutions for every 101 revolutions of A. 
If, in Fig. 499, A rotates 10,000 times as fast as B, it is to be noted 

that the torque on shaft B, ignoring friction, will be 10,000 times that 
on shaft A. Hence, if substantially the same size of tooth is to be used 
on both pairs of gears, the size should correspond to the maximum 
torque; otherwise, the size of the teeth on each pair of gears should 
correspond to the torques on the driving and driven shafts. 

In practical applications of the reverted cyclic train, a spider carry¬ 
ing two or more gears equally spaced around O and 8 is generally used 
instead of a single arm or crank. This is done to balance the mechan¬ 
ism and to distribute the load to be carried over several teeth, thus 
reducing the size of the teeth and the gears. The use of a spider instead 
of a crank is illustrated in the applications to follow. 

238. Applications of the Reverted Cyclic Train. Fig. 500 illustrates 
an application of the reverted cyclic train to a hand-operated hoist 
Similar trains are applied to power hoists. Sprocket S is rotated by 
pulling on a hand chain which passes over it. The rotation of S is 
transmitted to shaft A through the automatic sustaining brake R which 
is keyed to A. Shaft A rotates in the hollow shaft of the hoisting 
sprocket II. Pinion 8 is keyed to the right-hand end of A and meshes 
with gears b of the compound gears 2. The compound gears are carried 
by the spider 1 which is keyed to the hollow shaft of the hoisting sprocket 
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H. Gears a mesh with the fixed internal gear 0. As pinion 3 rotates 
with A, the action of the compound gears with A and the fixed internal 
gear 0 causes the spider and the hoisting sprocket II to rotate. Let the 
numbers of teeth in the gears be as follows: No = 54, Na = 14, ATb = 28, 

and N3 = 12. Taking the desired angular velocity ratio as then 
0?30 

That is, the hoisting sprocket H rotates in the same direction as the 
hand-operated sprocket S and makes one revolution for every 10 revo¬ 

lutions of the latter. 
Fig. 501 illustrates an application of the reverted cyclic train to a 

speed-reducing unit. To balance the mechanism and to distribute the 
load over more teeth, three gears are carried by spider 1 which rotates 
with shaft B. Pinion 3 is keyed to or is made an integral part of the 
high revolution shaft A. Gears 2 mesh with the internal gear 0 which 

is held by the stationary frame or casing. Either — or — may be 
* «30 w10 
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regarded as the angular velocity ratio desired. For the numbers of 
teeth shown in the figure, 

mo 

W1C 

No 
N2 

& 

That is, shaft A rotates 6 times as fast as shaft B and in the same 
direction. 

The planetary transmission formerly used in Ford automobiles 
employed reverted cyclic trains of external gears similar to that shown 
in Fig. 499. The compound gear contained three instead of two gears; 

and two gears, either one of which could be held stationary, were used 
to secure the second and reverse speeds. 

239. Boring Bar Feed Train. In the use of one type of boring bar 
the work is held stationary and the head which holds the cutting tool 
is fed axially along while it rotates with the bar. A cyclic feed train is 
generally used to propel the tool head along the bar. Such bars are 
sometimes used in lathes. The piece to be bored is fastened to the 
carriage or bed of the lathe concentric with the boring bar which is 
mounted between the lathe centers. The bar rotates with the face 
plate of the lathe and drives its own feed train through gears mounted 
on the tail stock of the lathe. The cyclic feed train of such a bar is 
shown in Fig. 502. The boring bar 1 and the fixed gear 0, which is 
fastened to the tail stock, are concentric with the line of centers XX of 
the lathe. The compound gear 2 is mounted on a pin carried by a lug 
or arm of the boring bar. Gear 8 is keyed to the feed screw S which 
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lies in a longitudinal groove in the bar and passes through a threaded 
lug on the tool head. The direction and magnitude of the feed of the 
tool head along the bar for each revolution of the bar will depend on the 
direction and number of revolutions of the feed screw relative to the bar. 
Hence the desired angular velocity ratio is 

C031 __ __ _ __ /No Nb\ 
0310 O301 \Na N'J 

Assuming the head stock to the left and the tail stock to the right, 
then, with the bar rotating forward, the tool head would have to move 
along the bar to the right to cut right-hand internal threads. Hence 
to cut 6 infernal right-hand threads per inch with a single-thread lead 
screw having 8 right-hand threads per inch, the lead screw would have 

F/G. see 

to make 8 negative turns relative to the bar while the bar made 6 positive 
turns relative to 0; or, 

om^/No JVA _ 8 =_4 

<oio \Na X Nj 6 3 

If Nb — Ns ~ 24, then — = Assuming the gears to have the same 
a O 

d 3 
pitch and that —-—* = then 

c + d 7 

= l or No+ Na = l(N» + Ns) = |(24 + 2^) = 112 
iVo T iV'o 7 o 6 
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But No = ~Na; hence, 
o 

Nad + 1) = 112 or Na = ? X 112 = 48 and No = 64 

240, Humpage’s Gear. Thus far cyclic trains composed only of 
spur gears have been treated. As shown in Fig. 503, bevel gears may 
also be used in the construction of such trains. Though more difficult 
and expensive to construct than spur gear trains, they are, in general, 
more compact and are very flexible with respect to4 the transmission 
ratio and the direction of motion transmitted. Although four bevel 
gears are used in the reverted cyclic train shown in Fig. 503, only three 
gears are necessary to its operation. A reverted cyclic train of spur 
gears would require at least four gears to obtain the same speed reduc¬ 

tion between the two shafts. In the figure, shaft A, to which gear 8 is 
attached, is the high revolution shaft, and 0 is the fixed gear. For 
balance 1 is fitted with two gears of the same size. The angular velocity 
ratio desired is between shafts A and By or between 8 and I, relative to 
the fixed member O. For the numbers of teeth shown, 

fr>30 _ _ / _ No __ No _ .48 23 

ouo~ coi - N2X~N‘J~ +N~3~ +21~ y 

That is, shafts A and B rotate in the same direction, A rotating ^ times 
as fast as B. 

The compound reverted cyclic train of bevel gears shown in Fig. 504 
is called Humpage’s gear. This mechanism has been used in machine 
tools and other machines as a speed-reducing gear. The desired 
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QUESTIONS AND PROBLEMS 

The questions and problems to follow are so numbered as to be readily associated with 
the articles to which they relate. Thus 0.1 is the first question or problem on Art. 0- 22.6 
the sixth question or problem on Art. 22, 08.3 the third on Art. 08, etc. 

Chapter ] 

Fundamental Conceptions 

1.1. Define Kinematics. Define Kinematics of Macliinery. What has made the r 
development of kinematics as a separate subject possible? 

2.1. Name in proper sequence the four steps into which the design of a machine ma? 
be divided and explain the purpose of each step and how the steps are related. * 

3.1. What, two kinds of quantities are dealt with in kinematics and how do tl ( . 1 
differ? ' 

, y- ' 
4.1. Define what, is meant by a rector and explain the terms origin and term, 

Explain and illustrat e what is meant, by a localized vector, by a f ree vector. What a ’ T ,i/._ 
tage has the graphical over the purely mathematical method of solving problems? ^ ,c{£m 

5.1. Determine and label the vector sum of a vector K running northeast 2 i. 
a vector L mnning south 1] units. From the vector sum determined, subtract 
N running southeast 3 units. , i don vec" 

jC 

6.1. (a) Define the terms resultant and component and explain what is rr-J . 
phrases composition of vectors and resolution of vectors. /ft '/ af,10Ih 

(b) Show graphically how the known motion of a [>oint in a plane at 4| ;onls’ 
be resolved into t wo component motions whose directions are known. J§^ r^nat, vf 

(c) Show graphically how the known motion of a point in a plane m, any n* i.?n 
he resolved into two component motions when the magnitude and duration of one 
components are known. w 

6.2. (a) Show graphically how7 the known motion of a point in Mplane at any instant 
can be resolved into two component motions who.se magnitudes ajvc known. 

(b) Show graphically how the known motion of a point in a jlane at any instant can 
be resolved into two component motions when the magnitude offone component and the 
direction of the other are known. / 

6.3. If the components of the motion of a point in a plane are 04 and 48 Uniterm length 
and the resultant vector is 70 units in length, determine graphically the component vec¬ 
tors. i 

6.4. Determine the vector components making angles c| 30 and 60 degrees on oppo¬ 
site sides of a resultant 450 units long. , 

6.5. Graphically determine the resultant of three components the first of which is 00 
units long and is directed vertically upwards mid the second and third are 80 and 100 
units long and respectively directed 30 and 75 degrees to the right of the first. 

6.6. A vector 40 units in length is to extend upward and to the right at an angle of 
60 degrees with the horizontal: 

457 
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(a) Resolve the vector into two components one of which is to have a length of 30 
units and the other is to be directed to the right at an angle of 45 degrees with the hori¬ 
zontal. 

(b) Resolve the vector into a horizontal and a vertical component. 
(c) Resolve the vector into components 25 and 50 units long. 

7.1. Define and illustrate what is meant by the path of a moving point having plane 
motion and show how the jx>sition of the ]x>int at any instant may be specified. Define 
and give examples of rectilinear, curvilinear, uniform, and non-uniform motion. 

8.1. Define and illustrate what is meant by the displacement of a ‘moving point and 
express the displacement in two vectorial equations. How may the direction of the dis¬ 
placement be expressed algebraically, mid how by means of the expression can it be shown 
that the direction of motion of a jioint at any instant is tangent to the path at the point? 

10.1. Define and illustrate angular displacement and express the relation between 
linear and angular displacement in a vectorial equation. To what in the limit does this 
relation reduce? 

ft 
11.1. Define the terms linear speed and linear velocity. What kind of quantity is 

B ipeed and what kind is velocity? Derive the mathematical expression for the linear speed 
r a particle at any instant. 

tl 

11.2. (a) If a sprinter runs 100 yards in 10.4 seconds, what is his speed in miles per 
r. Am. 19.66 mi./hr. 

I If a train is running at a constant linear speed of 54 miles per hour, express its 
in feet per minute, in feet per second, and in inches per second. 

A ns. 4752 ft./min., 79.2 ft./sec., 950.4 in./sec. 

A body moves in a straight path at a speed of V = t* -M2 + 21, where V is 
-T second and t is in seconds. How far in feet will the body move from rest in 

A ns. 112.96 ft. 

te and illustrate what is meant by the angular velocity of a point. In what 
gular velocity be expressed? Derive the differential equation expressing 
locity of a moving point or body at any instant. 

/om the fundamental differential equations for the angular velocity and linear 
a point moving in a path whose radius of curvature at the point is R, derive the 

x* ^hematical relation between the angular velocity and linear speed. 

13.2. A boy is tui \png a grindstone 28 inches in diameter at a uniform rate of 30 R.P.M. 
Determine the angular velocity of the grindstone in radians per second and the linear 
speed of a point on its periphery in feet per minute. Ans. r rad./sec., 220 ft./min. 

13.3. An engine with a stroke of 18 inches runs at 210 R.RM. Determine the 
linear speed of the crank-pin center in feet per second, the angular velocity of the crank 
in radians per second, and the mean piston speed in feet per minute. 

Am. 16.5 ft./see., 22 rad./sec., 630 ft./min. 

13.4. A drill manufacturer states that mild steel is drilled to best advantage at a per¬ 
ipheral speed of 120 feet per minute for high speed drills. Determine the number ol 
revolutions per minute that should be used for drills J, f, lib and 2} inches in diameter. 

Ans. 916.4, 523.6, 333.2, 203.6 R.P.M. 

13.5. The difference in the linear speeds of two points on a radial line in the plane ol 
motion of a wheel having an angular velocity of 105 R.P.M. is 3300 inches per minute. 
How far apart are the two points? Ans. 5 in. 

14.1, Where, for a point having curvilinear motion,*the center of curvature of the curve 
at the point is not taken as the origin of the radius vector, how are the transverse and 
radial components of the velocity and the axial components of the velocity expressed? 
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15.1* Define the linear acceleration of a moving point. To what may the linear accel¬ 
eration of a moving point be due? Explain what changes in the velocity of a moving 
point take place in variable rectilinear motion, in uniform curvilinear motion, and 
in variable curvilinear motion? In what units may the acceleration of a moving point be 
expressed? 

16.1. For uniformly accelerated rectilinear motion derive algebraic expressions for: 
(а) the velocity at any instant in terms of the initial velocity, acceleration, and time; 
(б) the velocity in terms of the initial velocity, acceleration, and displacement; 
(c) the displacement in terms of the initial velocity, acceleration, and time; 
(d) the displacement in terms of the initial velocity, the final velocity, and the time. 

16.2. For non-uniformly accelerated rectilinear motion derive differential expressions 
for: 

(a) the velocity at any instant in terms of displacement and time; 
(b) the acceleration in terms of velocity and time and in terms of displacement and 

time; 
(c) the acceleration in terms of velocity and displacement. 

16.3. In starting from rest on a straight horizontal road an automobile is given a con¬ 
stant linear acceleration of 4i feet per second per second. For how many seconds must 
it be accelerated to attain a speed of 42 miles per hour and how many feet will it hav 
passed over? Am. 13.68 sec., 421 ft.* o). 

16.4. A suburban train travels 2 miles in a direct line between station stops in 6 r y '!* 
utes. If it is given a constant accelei ation along the track for three-fourths of the . 
tance and a constant retardation for the last fourth, determine the acceleration 
retardation, and the maximum velocity attained. * /ct«>n 

Ans. 0.2173 ft./sec./sec., 0.6518 ft./sec./sec., 58.67 ft , 

16.6. In 2.75 feet the speed of a point moving in a rectilinear path uniformly/ 
from 10 to 34 inches per second. Determine the time interval in seconds and tly1 
tion in inches per second per second. Am. 1.5 sec. and 16 in. J 

.'/•/ ation, the 
17.1. Define simple harmonic motion and derive algebraic expressions for s^nts? 

ment, velocity, and acceleration of a point having simple harmonic motiojji? kahat vr ^ 
terms amplitude, period, and frequency, and cite an example of a body , 0n 
pie harmonic motion. , / 6 >the 

17.2. Assuming a point to be moving at a uniform rate in a circular path 8 incht> 
diameter at 90 R.P.M., determine the numerical value of the velocity and acceleration 
of the projection of the point on a horizontal diameter when the ro/ational radius of the 
point is at 45 degrees and when at 90 degrees with the horizontal, ff 

Am. 2.22 and r ft./see., 20.9 &nd 0.00 ft./sec./sec. 

18.1. (a) Draw a figure representing a point having variably curvilinear motion, and 
draw the vector diagram representing the tangential and normal changes of velocity of 
the point. 

(6) Derive the differential equation for the tangential acceleration and the algebraic 
expression for the normal acceleration of the point. How are these acceleration compon¬ 
ents directed with respect to the radius of curvature of the path? Write the vector 
equation and draw the vector diagram for the total acceleration of the point. 

18.2. (a) For a point having variable curvilinear motion, tell what is meant by the 
tangential and by the normal acceleration of the point and tell to what changes these 
acceleration components are due. How are these acceleration components directed with 
respect to the radius of curvature of the path? Express the direction of the acceleration 
in terms of its components. 

(b) Write the vectorial and algebraic equations representing the total acceleration 
of the point and draw the corresponding vector diagram for the/bcceieration. 
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18.3. The speed of a point moving in a circular path 21 inches in diameter uniformly 
increases in one-half revolution from 10 to 34 inches per second. Determine the tan¬ 
gential component of acceleration, the maximum value of the normal component of accel¬ 
eration, and the corresponding total acceleration of the moving point and the angle which 
the total acceleration makes with the radius of curvature. 

Am. 16 in./sec./sec., 110.1 in./sec./sec., 111.25 in./sec./sec., and 8° 16'. 

18.4. An automobile in going around a right angle turn of 100-feet radius uniformly 
decreases in speed from 20 miles to 16 miles per hour. What is the total linear accelera¬ 
tion of the automobile in miles per hour per second at the beginning and also at the end of 
the retardation period? How is the acceleration at the end of the retardation period 
directed with respect) to the radius of curvature? 

Ans. 5.904 mi./hr./sec., 3.814 mi./hr./sec., and 9° 59' +. 

19.1. (a) What components of acceleration other than the normal and tangential are 
often found convenient especially in the mathematical analysis of the motion of a point? 
State the differential equations for these components in terms of the velocity components 
and time and in terms of the component displacements ami time. 

® (6) Give the algebraic equations for the total acceleration and for the angle which the 
^total acceleration makes with the Y axis. 

20.1. For uniformly accelerated motion of a point in a circular path, derive the alge- 
*aic expressions for: 

(a) the angular velocity at any instant in terms of the initial angular velocity, the 
liar acceleration, and the time; 

) the angular velocity in terms of the initial angular velocity, the angular accelera- 
- vnd the angular displacement; 
- ^>the angular displacement in terms of the initial angular velocity, the time, and the 

^acceleration; 
- -'-e angular displacement in terms of the initial angular velocity, the final angular 
- y// -ml the time. 

non-uniformly accelerated motion of a point in a circular path or in a path 
V// WlsA curvature at the instantaneous position of the point is known, derive the 
^^^^bressions for: 

^lgolar acceleration at any instant in terms of the angular velocity and the 
, > m terms of the angular displacement and time; 

fcj) the angular acceleration and displacement in terms of the angular velocity. 

^ 20.3. In starting,from rest the flywheel of a stationary steam engine attains its full 
speed of 112 R.P.Miin 45 seconds. Assuming the angular acceleration to be constant, 
determine its value icf radians per second per second and determine the number of revolu¬ 
tions made by the flywheel in coming to full sfieed. Am. 0.261 rad./sec./sec., 42 rev. 

21.1. For accelerated curvilinear motion of a point, derive the algebraic expression 
for the tangential acceleration at any instant in terms of the radius of curvature and the 
angular acceleration. Express the normal acceleration in terms of the angular velocity 
and radius of curvature and determine the total acceleration in terms of the radius of 
curvature and the angular velocity and acceleration. 

21.2. Determine the value in radians per second per second of the angular accelera¬ 
tion of the rotational radius of the point in problem 18.3. Am. 1.524 rad./sec./sec. 

21.3. Determine the maximum and minimum values of the angular velocity and also 
the value of the angular acceleration of the automobile in problem 18.4. 

Am. 0.2933 rad./sec., and 0.2347 rad./sec.; 0.009859 rad./sec./sec. 

22.1. Define the relative motion of a point or body. In mechanics and kinematics 
what relative motion is taken as the absolute motion of a point or body? What is meant 
by a reference body? 
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22.2. The driving wheels of a steam locomotive are 5 feet in diameter and the stroke 
of the piston is 24 inches. Calculate in feet per second the average linear speed of the pis¬ 
ton relative to the locomotive frame when the locomotive runs along the track at the 
rate of 40 miles per hour. Determine the average linear speed in feet per second of the 
piston relative to the ground on the forward stroke of the piston, also on the back stroke. 

Am. 14.93 ft./see., 73.60 ft./sec., 43.74 ft./sec. 

22.3. On a freight train running forward at 20 miles per hour is a brakeman walking 
toward the head end of the train at 4 miles per hour. What is the linear speed of the brake- 
man relative to the track? What would be his speed relative to the track if the train were 
backing at 20 miles per hour? What would be his speed relative to the track in each case 
if he were walking toward the rear end of the train at 4 miles per hour? 

Am. 24 mi./hr., —16 mi./hr., 16 mi./hr., —24 mi./hr. 

22.4. A locomotive running at 30 miles per hour has driving wheels 63 inches and pilot 
wheels 28 inches in diameter. 

(a) What is the angular velocity in revolutions per minute of the pilot wheels relative 
to the drivers? Ans. 200 R.P.M. 

(b) What is the angular velocity ratio of the pilot wheels to drivers? Ans. 2.25. 
(c) What is the linear speed of the highest, point in the tread of the drivers relative to 

the corresponding point on the pilot wheels? A ns. Zero. 

22.5. A 21-inch loose pulley rotates clockwise at 150 R.P.M., and a 14-inch loose pul q 
ley on the same shaft rotates counterclockwise at 300 R.P.M. Considering countf /,» 
clockwise rotation as positive: ^ ■ 

(a) What is the peripheral speed in feet per second ol the 14-inch pulley rela > 
to the 21-inch pulley? A rts. 32.08 ft./sff 

(b) What, is the angular velocity in radians per second of the 21-inch relat! 
the 14-incli pulley? Ans. -47.14 rad.4 .• 

(c) What is the ratio of the angular velocity of the 21-inch to the 14-b 
ley? Ansy ion vec- 

(d) Answer (a), (6), (c) assuming both pulleys to rotate counter-clockwise. 
Ans. 4.58 ft./sec.;—15.7 rad./sec./ at ion, the 

. ^ felts? 22.6. An automobile with 30-inch wheels is traveling at 20 miles per hou 
(a) What is the maximum linear velocity in feet per second that any p/m ia vf 

may have relative to the frame? AnsJl9.33 ; j., 
(ib) What is the maximum linear velocity m feet per second that anwpoint in a \ . 

may have relative to the ground? Afs. 58.66 ft./sec. T 
(c) What is the angular velocity in radians per second of a wheel relative to the ground/* 

Ans. 23.46 rad./sec. 

22.7. A man walks south at 4 miles per hour over a bridge placed at right angles to 
the river which flows west at 2 miles per hour. Determine by means of vectors the velocity 
in miles per hour of the man relative to the river and of the river lelative to the man. 

Ans. southeast 4.47 mi./hr. and northwest 4.47 mi./hr. 

22.8. A man is riding a motor-cycle north 45 degrees east in a wind from the west of 
20 miles per hour. If to the man the wind appears to be blowing south 30 degrees east, 
what is the speed of the motor-cycle and what is the velocity of the wind relative to the 
man? Ans. 17.936 mi./hr. and 14.64 mi./hr. 

23.1. Define and cite an example of free motion, of constrained motion, of uncon¬ 
strained motion. 

24.1. Define the three terms, motion cycle, period} and phase, and cite an example 
illustrating the terms. 

25.1. Define the three terms, continuous motion, intermittent motion, and recipro¬ 
cating motion, and cite examples illustrating these different kinds of motion. 
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27.1. Define what is meant by the plane motion of a body. Explain why the motion 
of every point in a body having plane motion may be fully represented by the motion of 
a plane figure. How many kinds of motion are there? 

28.1. Define what is meant by plane motion of rotation of a body and explain what is 
meant by a gauge line for such a motion. 

29.1. Define the four terms, translation, plane translation, plane rectilinear transla¬ 
tion, and plane curvilinear translation. State what is true with respect to displacement, 
velocity, and acceleration for the points of a body having a motion of translation. Cite 
examples of plane rectilinear and curvilinear translation. 

30.1. Illustrate by means of a sketch and explain how any plane motion of a body may 
be reduced to a combination of translation and rotation. 

30.2. What kind of motion has the piston of a steam engine relative to the cylinder; 
the crank relative to the frame; the connecting-rod relative to the crank; the connecting- 
rod relative to the cross-head; the connecting-rod relative to the frame? 

31.1. Define the two terms, helical motion and regular helical motion. Cite an exam- 
5* pie of the latter. 

^ 32.1. Define what is meant by spherical motion and cite, an example. 

33.1. Explain how the two limits of helical motion are rectilinear translation and 
’4ane rotation and how plane motion is a limiting case of spherical motion. 

Chapter II 

-m 
Transmission of Motion 

(a) Name and give examples of the three possible kinds of contact between the 
■|arts of machines. Define the terms, kinematic pair, higher pair, and lower pair, 

concrete illustration of each term. 
/lain what is meant by the elements of a pair. Give concrete examples of a 

sliding pair, a screto pair, and a spherical pair. 
of a closed pair, an unclosed pair. 

Tell what, is meant by and 

.r>hy is it usually desirable, if practicable, to substitute lower for higher pairing 
o* Ahe consftmction? Show by means of three sketches of the same simple mechanism 

^ undesirable higher pairing can be improved and how it can be changed to 
ower pairing without affecting the related motions of the parts. Cite some examples 

grjf where higher pairing cannot be avoided. Between what three kinds of surfaces only is 
it possible to have surface contact? 

34.3. By means of a sketch of a cam and its follower show and explain how the opera¬ 
tion of the mechanism can be greatly improved by the introduction of an intermediate 
part. Cite an example of where higher pairing is substituted to advantage for lower pair¬ 
ing and tell why the substitution is effective and desirable. 

35.1. Define the term kinematic link. Explain what is meant by a binary link, by a 
ternary link, by a quaternary link. What kind of a link, if the valve gear is neglected, is 
the frame of a simple steam engine? Of how many and of what kind of elements of pairs 
is the frame composed? Name the other kinematic links of the engine and the pairing 
elements in each link. By means of a sketch show how the links of the engine are repre¬ 
sented diagrammatically. 

36.1. Define the term chain. Explain the difference between a structure, or locked chain, 
a kinematic chain, and an unconstrained chain. Make a sketch of each kind of chain. 

36.2. The criterion of constraint is written J+\H « fN — 2. Explain the 
notation in this equation and tell, in obtaining values for J, what equivalents are used for 
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ternary and quaternary joints. How does the equation indicate whether a chain is locked, 
constrained, or unconstrainedV 

36.3. (a) Determine by use of the criterion of constraint, J ~f \II -=fiV-2, if 
the chains shown in Figs. 36.3 (a), 36.3 (6), and 36.3 (c) are locked, constrained, or uncon¬ 
strained. 

(b) How many links has the simplest complete kinematic chain? What are kinematic 

F/G. 36 3 (a) 

chains called that have fewer links than the basic chain; that have more links than tl 
basic chain? y 

37.1. What is meant by the term mechanism*? How many mechanisms may be ir 
from a kinematic chain of n links? What term is applied to this process of obtaining 
ferent mechanisms from the same kinematic chain? 1 

38.1. Make sketches illustrating the various inversions of the slider crank ch , 
name for each of the inversions at least one machine in which the particular inv lon vec„ 
mechanism is used. id 

39.1. (a) Define the term machine. What distinguishes a machine from a f '■ / ^tion, the 
or combination of mechanisms? Name some machine elements that are V. scents? 
form the mechanisms to be found in machines. t^'hat vf 

(b) Tn analyzing the relative motions of the parts of a machine, what member^ /on 
regarded as fixed? Cite an example of a machine part whose complete constraint itke 
not due to the material connections. Cite an example showing that the j^arts of a nuiA bp, 
are not necassarily, to the bast advantage, completely constrained. 

40.1. State the four different ways in which motion can be transmitted from" one 
body to another and give examples of each method of transmitting motion. 

41.1. Define the terms driver and follower. Make sketches of mechanisms illustrating 
the three methods of transmitting motion by material connection, indicating the driver 
and follower in each and their directions of rotation. 

FIG. 42.1(c) 

42.1. Define the line of transmission and give its location for each of the mechanisms 
shown in Figs. 42.1 (a), 42.1 (5), and 42.1 (e). 
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43.1. State the relation of the angular velocities of driver and follower for the three 
methods of transmitting motion by material connection and prove the relation for Pig. 
42.1 (a). 

43.2. Answer question 43.1 using Fig. 42.1 (6). 

43.3 Answer question 43.1 using Fig. 42.1 (c). 

43.4. After drawing in the necessary construction lines, properly letter Figs. 42.1 (a), 
42.1 (6), and 42.1 (c), and write for each the two relations of the angular velocities in 
linear terms. 

44.1. State the relation of the angular velocities of driver and follower for the three 
methods of transmitting motion by material connection, and then state the requirement 
for a constant ratio of the angular velocities. For what class of direct contact, members 
is this relation of fundamental importance? Where motion is transmitted from driver to 
follower by a rigid connector, what must be the proportions for constant angular velocity 
ratio; what for transmission of motion by a flexible connector? 

45.1. For the three methods of transmitting motion by material connection, when are 
( the directions of rotation of driver and follower the same; when diffeient? Draw sketches 
gv of mechanisms illustrating the three methods of transmission, first for the driver and fol¬ 

lower rotating in the same direction and then for rotation in different directions. 

46.1. For pure rolling to hike place between two direct-contact, members, what must 
1 true of the lengths of the contact arcs? For pure rolling what must be true of the con¬ 
it of the two members relative to a contact point on either one; what must be true for 

^ sliding and for combined rolling and sliding? 

shown by the method of resolution and composition of vectors. Also show how the 
velocity of sliding may be obtained by the vector subtraction of the velocities of the coin¬ 
cident points of contact. 

47.2. Answer question 47.1 using Fig. 47.2. 
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47.3. Answer question 47.1 using Fig. 47.3. 

47.4. Answer question 47.1 using Fig. 47.4. 

47.5. Answer question 47.1 using Fig. 47.5. 

48.1. St,ate and prove the requirement for pure rolling for direct-eon tact members. 
Name three pairs of curves capable of transmitting motion from one to the other with 
pure rolling action. State and prove the three ways in which the angular velocity ratio 
may be expressed for direet-cdfttact members having pure rolling action. 

49.1. Why are circles or circular arcs rotating about their geometric axes the only 
class of curves between which there can be pure rolling combined with the transmission 
of motion at a constant angular velocity ratio? 

50.1. Explain what is meant by positive driving. Jn direct-contact mechanisms, what 
component only of the motion of the driver can cause motion of the follower? State and 
prove the criterion for positive driving. 

60.2. State the criterion for positive driving and determine, by applying the criterion 
to the direct-contact mechanisms shown in lugs. 47.1, 47.4, and 47.5, if positive driving 
exists for the phases shown. 

Charter III 

Analysis of Plane Motion 

61.1 State the five fundamental principles whose application is necessary to an analy¬ 
sis of plane motion. ' , 

62.1. How must the velocities of any two points in a body having plane mot ion r !cj'~ 
tive to another body be related? Assuming the velocities of two points so related, d {etibn 
mine and prove the location of the inst ant center of one body relative to the other. 
resj>ect to two bodies, what can be said about their instant center or instant axis? 

/ ion vec- 
63.1 and 64.1. Describe what is meant by fixed and permanent centers and 

that are neither fixed nor permanent, anil illustrate the same by using the sL ’ ^ 
mechanism of a simple engine as an example. Explain and interpret the no tat ss'^nts? 
to be used in designating the links and instant centers of a mechanism. ^a’hat V 

66.1. To locate the instant center of one body relative to another whf A i.& /on 
only is necessary respecting the velocities of any two points in one of the bvxlies whe, /the 
velocities of the points are not per[>endicular to the line joining the points; what must be 
known respecting the velocities wrhere the velocities of the t wo points are perpendicular 
to a line joining the points? Why cannot the velocities of any two prints in a body rela¬ 
tive to some other body be parallel and unequal unless perpendicular to the line joining 
the points? What is the motion of one body relative to another where the velocities of 
any two points in one body are parallel and equal? 

65.2. Where a locomotive is running on the track without slipping, what is the loca¬ 
tion of the instant center of any one of its drive wheels relative to the track, and what is 
the velocity of the highest point on the drive wheel in terms of the velocity of the locomo¬ 
tive? What is the location of the instant center of any drive wheel relative to the track, 
if, at starting, the drive wheels rotate without advancing the locomotive and train? If 
there is both rolling and sliding between the drive wheels and rails and the peripheral 
velocity of the drivers relative to the locomotive frame is greater than the velocity of the 
locomotive, what would be the location of the instant center of a drive wheel relative to 
the track and t he velocities of the lowest and highest points on the drive wheel in terms 
of the known velocities? 

66.1. Without the aid of Kennedy’s Theorem, determine and fully justify the method 
of determining the locations of the instant centers O20 and On of the kinematic chain shown 
in Fig. 56.1. 
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56.2. Without the aid of Kennedy's Theorem, determine and fully justify the method 
of determining the locations of the instant centers O20 and On of the kinematic chain 
shown in Fig. 56.2. 

57.1. Express, in the form of an equation, the total number of instant centers N for a 
kinematic chain having n links and t hen explain how the equation is deduced. 

58.1. First state, and then make a suitable sketch and prove, Kennedy’s Theorem. 

68.2. For the kinematic chain shown in Fig. 56.1, determine the total number of 
instant centers to be found and then locate all the centers, making use of Kennedy’s 

l Theorem. State how and to which centers the theorem was applied. 

g 58.3. Same problem as 58.2 but applied to Fig. 56.2. 

69.1. For the mechanism shown in Fig. 59.1 determine the total number of instant 
centers to be found and then locate all the centers, making use of Kennedy's Theorem. 
State how and to which centers the theorem was applied. 

69 2 Same problem ^9.1 but applied to Fig. 59.2. 

69 3 Same problem as 59.f- but applied to Fig. 59.3. 

69 4 Same problem as 59.1 but applied to Fig. 59.4. 

69.6. Same problem as 59.1 but applied ' to Fig. 69.5. 

69.6. Same problem as 59.1 but appbed to£Fig. 59.6. 

■n *1, 'nmmnlete kinematic cha jn shown in Fig. 47.1 first determine the total 
60.1. For the ^ found a nd then determine their locations giving a full 

number of instant centers to i 
explanation of the method used. 

80.2 Same problem as 60.1 but appl *ed to Fig. 47.4. 

60.3. Same problem as 60.1 but applied to Fig. 47.5. 
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61.1. How does a mechanism differ from a kinematic chain and how many mechanisms 
can be made from a given chain? Stat e what is meant by inversion and illustrate the same 
by skectches of an assumed chain. Explain the effect of inversion on the location of the 
instant centers. 

62.1. For the mechanism shown in Fig. 62.1 determine the total number of instant 
centers to be found, analyze the mechanism, and by the aid of charts and the application 
of Kennedy’s Theorem locate the instant centers. State, for the mechanism, how many 
determining lines intersect to locate each instant center. 

62.3, Same problem as 62.1 but applied to Fig. 62.3. o 

62.4. Same problem as 62.1 but applied to Fig. 62.4. 

62.6. Same problem as 62.1 but applied to Fig. 62.5. 

62.6. Same problem as 62.1 but applied to Fig. 62.6. 

62.7. Same problem as 62.1 but applied to Fig. 62.7. 

63.1. What is meant by a fixed centrode, a moving centrode, an axodj 
in Fig. 56.1 to be the fixed member, show the fixed centrodes of On and 
of the fixed centrode of 2 relative to 0 and the moving centrode of % 
of 2 relative to 0, are the fixed and moving centrodes equivalent to the c 
What practical difficulties would be involved in making the substitute 

64.1. State the two principles used in determining linear vek 
instant centers. Assuming for Fig. 56.1 that 0 is the fixed meml 
velocity of On is known, show and explain how, by the method pr/Q gp> j 
velocity of On is graphically determined. Designate the gauge li 
were used as pivot points and which point was used as the trails^ terr ijne 0f travel of the 

66.1. For the mechanism (shown in Fig. 65.1 assume a lino 6 inches long. Assuming the 
tive to the fused member and determine graphically, by tlhiine graphically, by applying 
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the corresponding linear velocities of points Q and R. List for each point the pivot and 
transfer points used in determining its velocity. 

65.2. Same problem as 65.1 but applied to Fig. 59.3. 

65.3. Same problem as 65.1 but applied to Fig. 59.4. 

65.4. Same problem as 65.1 but applied to Fig. 59.6. 

65.5. Same problem as 65.1 but applied to Fig. 59.5. 

65.6. Same problem as 65.1 but applied to Fig. 65.6. 

65.7. Same problem as 65.1 but applied to Fig. 65.7. 

65.8. Same problem as 65.1 but applied to Fig. 62.3. 

65.9. Same problem as 65.1 but applied to Fig. 62.5. 

66.10. For the mechanism shown in Fig. 65.1 assume a linear velocity for point P 
'ative to the fixed member and determine graphically, by the parallel line construction, 
h-corresponding linear velocities of points Q and R. 

'" ‘5.1. For the mechanism shown in Fig. 62.3 assume a linear velocity for point P rela- 
" the fixed member and determine graphically, by the method of resolution, the cor- 

^ling linear velocities of Q and R. 

' /// l Same problem as 66.1 but applied to Fig. 59.5. 

|kime Problem as 66.1 but applied to Fig. 65.7. 

ovT^Zx the mechanism shown in Fig. 62.7 assume a linear velocity for j>oint Q rela- 
ed member and determine graphically, by the method of resolution, the cor- 

noar velocities of R and P. 

rst state and then make a suitable sketch and prove the angular velocity 

istrate, by means of sketches of two simple mechanisms, how the directions 
<r & fwo bodies are related to their pivot and transfer points. 

he mechanism illustrated in Fig. 59.1 assume an angular velocity vector 
*kwise rotation of 1 relative to 0 and determine graphically by applying 

69.2. Same probity theorem the angular velocity of 2 relative to 0. From the angular 
59 3 Same probiive to 0, determine graphically the angular velocity of S relative to 2. 

,, 9 two determinations the pivot and transfer points used; and, assum- 
69.4. Same prome. se rotation as positive, tell whether the angular velocities deter- 

69.5. Same problennus. 

69.6. Same problem 1 as 68.1 but applied to Fig. 59.3. 

60.1. For the incompias 68.1 but applied to Fig. 59.5. 
number of instant cental 16g l but applied to pig 59 G 
explanation of the method 

00.2. Same problem aa 61 

00.3. Same problem as 
m' l but applied to Fig. 65.7. 
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68.7. For the mechanism in Fig. 59.1 assume an angular velocity vector for clockwise 
rotation of 1 relative to 0 and determine graphically the corresponding angular velocity 
of 2 relative to /. The determination of w2i is to he done in two steps using two angular 
velocity ratios and two constructions, treating center ()& as not available. 

68.8. For the mechanism shown in Fig. 56.1 assume an angular velocity vector for 
clockwise rotation of 2 relative to and determine graphically the corresponding angular 
velocity of 3 relative to 0. The determination of W30 in to he done in two steps using two 
angular velocity ratios and two constructions, treating center O20 as not available. 

69.1. What is a graph? Where vector quantities are plot ted what only, with respect 
to the vector quantity, can be shown by the graph. Why does the text use the term 
velocit y instead of sj>eed graph? 

70.1. Assuming for the mechanism shown in Fig. 59.1 that link / rotates at a uniform 
rate, plot the radial velocity-space graph of 02.t, showing and fully justifying the con¬ 
struction for one point on the graph. Fully explain how the velocity scale of the graph 
would be determined. Plot and explain how the rectified velocity-space graph is obtained 
from the radial velocity-space graph. 

70.2. Make a, sketch of the slider-crank mechanism of an engine, assume the uniform 
velocity of t he crank-pin to be represented by the crank length, and plot the velocity- 
space graph of the cross-head, showing and fully justifying the construction of one jx)int.} 
on the graph. Assuming the stroke of the engine to be 15 inches, the R.P.M. of the crank/' 
to be 224, and the space scale to be 4 in. = 12 in., determine the velocity scale in feet p< 
second per inch. A ns. 5.806 ft./sec./in.- 

70.3. Make a sketch of the slider-crank mechanism of an engine, assume the unif 
velocity of the crank-pin to be represented by the crank length, and plot, t he polar ve1 
graph of the cross-head, showing and fully justifying the construction for one pc 
the graph. Assuming the stroke of the engine to be 18 inches, the R.P.M. of the r Jon vec“ 
be 210, and the space scale to be 3 in. - 12 in., determine the velocity scale ir 
second per inch. Am. 7.333 ft../ ation, the 

scents? 
70.4. Make a sketch of the slider-crank mechanism of an engine, assume tja/hat vet;tor 

velocity of the crank-pin to be represented by the crank length, and plot t Y 
time graph of the cross-head, showing and fully justifying the construction ftfj011j A no — 
on the graph. Assuming the stroke of the engine to be 20 inches, the R.P.M. o 
to be 168, and the space-scale to be 3 in. - 12 in., determine the velocity soalq 
second per inch. Am. 5.866 f 

70.6. In a distance-time, or space-time, graph the space scale is 1 in. = * 
time scale is 1 in. = kt sec. Making a suitable sketch, show and prove hov^ 
nates may be obtained from the space-time graph and to what scale such^* 
represent velocities. 

71.1. (a) In d velocity-space graph, the space scale is 1 in. = ks fH 
scale is 1 in. = kv ft./sec. Making a suitable sketch, show and prov^ 
ordinates may be obtained from the velocity-space graph and to whatf 
would represent accelerations. 

(b) Where the velocity-space graph applies to rectilinear moti' 
, ordinates represent; where the graph applies to curvilinear mot1 
ordinates represent? 

(c) What would be the acceleration scale if the respective 
graph were 1 in. = ks — 2 ft. and 1 in. = kv — 26.4 ft/sec.? 

Am. 1 in. =? center line of travel of the 
, . . , is 6 inches long. Assuming the 

71.2. (a) In a velocity-ame graph the fame scale is 1 n. ^ hically by applying 
is 1 in. = kv ft./sec. Making a suitable sketch, show and p h F ^ ■; 

.f 0:3911" 

FI G. 32. / 
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may be obtained from the velocity-time graph and to what scale such ordinates would 
represent accelerations. 

(b) Where the velocity-time graph applies to rectilinear motion, what do the derived 
ordinates represent; where the graph applies to curvilinear motion, what do the derived 
ordinates represent? 

(c) What would be the acceleration scale if the respective scales of the velocity-time 
graph were 1 in. = kt — 0.159 sec. and 1 in. = kv = 26.4 ft./sec. and a constant length of 
0.375 inch is used for the time increment in obtaining the acceleration ordinates? 

Am. 1 in. = ka = 442.8 ft./sec./sec. 

71.3. When only is the Klein construction applicable in determining the acceleration 
of the cross-head of a slider-crank mechanism for all positions of the crank? Make a 
sketch showing the Klein construction for a position of the crank and explain how the 
acceleration scale for the construction is determined. 

72.1. In Fig. 72.1, for uniform rotation of the crank, 

VxPO 

Vvpo 

Axpq 

- — uR |sin 0 + ~ sin 20 J 

= wR( 1 — c) cos 6 

= — oi2R (em 6 -j- — cos 

Avp0 = - 032R{ 1 - c) sin 0 

a> cos 6 
a>2o 

<*20 - 

, Vril ~ sin2 0 

^2(1 — n2) sin 9 

(n2 — sin2 0)M 

1 A h 

r' md c = r 
mechanism, assume the stroke of the cross-head to be 18 inches, the R.P.M. 

to be 210, and the length of the connecting rod to be 45 inches. 

FIG.-51 ^ 

•k* 
69.2. Sameproi,. 

69.3. Same probii 

69.4. Same proble-^ 

69.6. Same problem. 

69.6. Same problem a 0f the proper equations, the angular velocity and angular ' 

60.1. For the incompiating rod for the crank in the 120 degree position, 
number of instant centen ^ Am. 2.233 rad./sec., 84.1 rad./sec./sec. 
explanation of the method r the proper equations, the X and Y components of the linear 

on a Qome problem as 60c point on the connecting rod for the crank in the 120-degree, 
s p * es. Also determine the velocity and the acceleration of the 

60.3. Same problem as w.. n 

Ft G. 72 J 
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Ans. 13.718 ft./sec., 4.95 ft./sec., 196.0 ft./sec. /sec., 188.615 ft./sec./sec., 14.58 ft./sec 
at 70°-10' with the vertical and 272.0 
ft./sec./sec. at 46°-6' with the vertical. 

72.2. By use of the data and the equa¬ 
tions given in 72.1 determine the velocity 
and acceleration of the cross-head of the 
engine. 

’ Am. 12.86 ft./sec., 217.8 ft./sec./sec. 

72.3. For the mechanism shown in Fig. 
72.3 assume the stroke of the slotted cross- 
head to be 18 inches, the R.P.M. of the 
crank to be 210, and determine, by use of 
the equations given in 72.1, the velocity 
and acceleration of the cross-head for the 
crank in the 120-degree position. 

B 

I 
V si «A vA J 

1 \ 
- 

i# y 
To / % 

F/G. 72.3 

Ans. 14.29 ft./sec., 181.5 ft./sec. /sec. 

Chapter IV 

Velocity and Acceleration Vector Diagrams 

73.1. (a) The magnitude and direction of the forces acting on the parts of high-speed 
machinery depend upon what three things? Which one of the three factors may usually^, 
be neglected? For low-speed machinery what two factors are often neglected in deter/ 
mining the magnitude and direction of the forces acting on each part? 

(b) Why in a steam engine is the effective force at the cross-head pin during the fif J 
part of the stroke less than the difference in ste;im pressure on the head and crank-T^n 
sides of the piston? Why are the reactions at the crank-shaft bearings less than w 
correspond to the net steam pressure on the piston? 

(c) Why is it of importance, especially in the design of high-speed machinery^ 
able to determine the linear acceleration of any point, and the angular acceleratior 
link of a mechanism? 

aiion, the 
73.2. (a) Suppose that the rod showm in Fig. 73.2, weighing 161 pounds, is$(>nts? 

a part, of a machine, to have linear but no angular acceleration, and that the linea>]iat vector 
tion of its center of gravity C is Ac = 25 ft./sec./sec, in the direction shown. V 
force is required to accelerate the rod and what must be its line of action? Ifoon, ADO - 

F/G. 73.2 F/G. 75./ 

of gravity of the rod is midway between centers B and D and the ' 
ated by pulls through these centers, what would be the ma&nitr 
forces? Am. F ~ 125 lb. through C in direction of A 

(b) Assume the rod in Fig. 73.2 to be 30 inches long, to ha 
8 inches about its center of gravity and to have, in addition t* 
angular acceleration of 18 rad./sec./sec.; determine the aeceJ 
action with respect to C. Assuming the rod actually accelee center line of travel of the 
ters B and D, determine the magnitude and direction of thesis 6 inches long. Assuming the 
45 degrees with center line DB. --rmine graphically, by applying 
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Ans. F — 125 lb. parallel to and 3.84 in. from Ac, F& — 39.87 lb. and F# = 85.13 lb 
parallel to F. 

74.1. (a) What simple relation of the velocities of any two points in the same rigid 
body is the key to the construction of velocity vector diagrams? 

(b) What is the velocity image of a link of a mechanism, and how is the image related 
to the link in shape, size, and position? 

(r) How may the angular velocity of a link be obtained from a linear dimension of 
the link and its velocity image? 

76.1. (a) For the mechanism shown in Fig. 75.1, the known velocity of B relative 
to the fixed member is represented by a vector equal in length to OuJ3; determine the cor¬ 
responding velocities of points (\ Q, and It by means of the velocity vector diagram, 
number the velocity images, and draw the velocity vectors from C, Q, and It in the sketch 
of the mechanism. 

(b) Represent the phorograph for the phase shown, tell to what scale it must be 
drawn, and explain how it is obtained from the vector diagram. 

76.2. For the mechanism shown in Fig. 02.3 assume a vector to represent 
velocity of P relative to the fixed member and determine t he corresponding v, 

& points Q and It by means of the velocity vector diagram, number the velocit ^ \ 
and draw the velocity vectors from Q and R in the sketch of the mechanism. dg8 j 

76.3. Same problem as 75.2 hut. applied to Fig. 05.7. d 8AP 

76.4. Same problem as 75.2 but applied to Fig. 59.5. 

76.6. For the mechanism shown in Fig. 02.7 assume a vector to represent the 
—city of Q relative to the fixed member and determine the corresponding velocit. fid It by means of the velocity vector diagram, number the velocity images, 

dooity vectom from P and R in the sketch of the mechanism. 

) Why should a related and consist ant notation be used in the construct it 
and acceleration vector diagrams? In accordance with the text, how, in 

ctor diagram, would the velocity Vji0 be represented; how, in an acceleratioi 
ram, would the acceleration A bo be represented? 
it is the key to the construction of acceleration vector diagrams? In such a 

j,’ now, by means of a sketch, how the vectors representing AIi0l AnBo, and 
‘irked and related. 

' N, Show, for Fig. 72.1, how to construct the velocity vector diagram giving the 
joints B, P, and I). Assuming the space scale to be 1 in. — ^ ft. and the 

vfiff r velocity of the crank-pin to be represented by the crank length, deter- 
rfftfP1 is mine the velocity scale of the diagram. 

fr/Q 1 (b) Having the velocities and the velocity scale, show 
h Q how to construct the acceleration vector diagram to a scale 

' of 1 in. = ka ft./sec./sec. 

B.2. Same p ^ y / 76.3. Same problem as 76.2 but applied to promts P, Q, 
9.3. Same probJ ^ , and R of Fifr 65 p 

i9.4. Same proble^ • 76.4. Same problem as 76.2 but applied to promts B, C, 

>9.6. Same problem Q, and R of Fig. 75.1. 

59.6. Same problem i ^ 77.1. In Fig. 77.1 let the velocity of point P at the 
.p tocompiat instant along its path ST be represented by the vector PQ 

’P*1, penten in inches to a scale of 1 in. = kv ft./sec., and let the radius 

69.2. Same p ^ y / 76.3. Same problem as 76.2 but applied to promts Pt Q, 
69.3. Same probJ ^ , and R of Fij?> 65 p 

69.4. Same proble^, 76.4. Same problem as 76.2 but applied to promts B, C, 

69.6. Same problem Q, and R of Fig. 75.1. 

69.6. Same problem a 77,1. jn Fig. 77.1 let the velocity of point P at the 

ftft 1 F r the incompiat instant along its path ST be represented by the vector PQ 
hp Anstant center. in inches to a scale of 1 in. = kv ft./sec., and let the radius 

number o mpthrxF e of curvature R of the path at promt P be represented in 
explanation of the metnoa ^ Qp ^ ^ ^ ^ ^ = ft 

60.2. Same problem as ot . gp and tFe gpace and velocity scales. 

60.3 Same problem as 60..' wn normal to OQ, then NP represents Anp0 in magnitude 
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and direction to a scale of L m = ka — If ka and are arbitrarily chosen, what 

must be the velocity scab1 for the construction shown? 
(r) If PQ is mnde equal 1o OP and QN is drawn noirnal to OQ, to what does the 

acceleiation scale reduce? 

78.1. For Fig 72 1 assume the stroke of the cross-head to be IS inches the R.P.M. 
of the crank to be 210, the length of the connect ing-iod to be 45 inches, the distance b 
to be 18 inches, and the displacement of the crank to be 120 degrees: 

(a) What must be the acceleration scale for a complete graphical solution by 
means of velocity and acceleiation vector diagrams if the constant linear velocity of the 
crank-pm renter B is represented by the crank length to a space scale of 1 m. = j It.? 

Am 1 in = ka — 121 ft./sec./sec. 
(6) By means of vector diagrams determine V po, V do, Von, A po, Ado, and A 'dh. 

Am 14 58, 12 80, and S 55 ft /sec , and 272 0, 217 8, and 315 4 ft./sec /sec. 
(c) Determine the angular velocity and angular aeceleration of the connecting-rod. 

Am. <j3 = 2.233 rad./sec. and a^o — 84.1 rad./sec /sec. 

79.1. (a) By means of the acceleration vector diagram of problem 78 1 show how to 
locate1 the instant center of acceleration of the connecting-rod and explain what it means. 

(b) In what way is the instant center of acceleration similar and in what way different 
from the instant center of velocity? 

(c) Show how to determine the angle which the* acceleration vector fox any point in, 
the connecting-rod makes with the ray from the instant center of acceleration to tb» 
respective point. 

80.1. (a) Make a sketch of a slider-crank mechanism and show the Klein eonsti 
tion for determining the acceleration of the cross-head. When only is this construct 
applicable? 

(b) How are the space, velocity, and acceleration scales related? 
(c) Prove the Klein construction by making use of the velocity and acceleration vec¬ 

tor diagrams. 

81.1. (a) For a point moving along a path which has a motion of translation, the 
acceleration of the moving point is equal to the vector sum of what two components? 

(6) If the path along which a point moves has a motion of rotation, to what vector 
sum is the acceleration of the moving point equal? 

(c) Interpret Coriolis’ Law as expressed mathematically by the equation, ADO — 
Aco +> Adc *+> 2Vdcwc and tell how the direction of the 
compound supplementary acceleration is determined 

(d) To facilitate the application of Coriolis’ Law7, on 
what member should the curve traced by the describing 
point be located? 

82.1. The outline of the automobile cam shown in Fig. 
82.1 is made up of circular arcs and straight lines. The 
cam is rotating counter-clockwise at 1050 R P.M By 
applying Coriolis’ Law to the equivalent mechanism, 
determine the linear velocity and acceleration of the fol¬ 
lower, or point />, for the phase shown. On determining 
the equivalent mechanism, treat Z), which is common to 
2 and 3, as the describing point, and C as the coincident 
point in 1. 
Ans. Vdo = 2.61 ft./sec. and ADo - 1308.0 ft./see./see. 

82.2. Assume for Fig. 62.7 that the center of rotation 
of the crank is 131 inches and point R 29| inches below the center line of travel of the 
ram when the crank is 30 degrees with the horizontal and is 6 inches long. Assuming the 
crank rotating at a uniform speed of 21 R.P.M., determine graphically, by applying 
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Coriolis’ Law, the linear acceleration of point D on the vibrator, point D being the 
describing point and Q the point on the axis of the crank-pin coincident with D. 
Determine also the linear velocities and accelerations of points P and R. 

Arts. VD0 - 0.8433, VDQ = 1.111, VDR ~ 0.8617, VPO = 1.283, and VB0 = 0.341 
ft./sec; Ado = 0.93571APO = 1.1454, and ARO ~ 1.629 ft./sec./sec. 

83.1. For Fig. 151 of the text, assume crank 1 to rotate counter-clockwise at 105 
R.P.M. and determine, by applying the three-line construction, the linear velocities and 
accelerations of points G, H, and K; then determine, by applying Coriolis’ Law, the 
linear acceleration of point L. 

Chapter V 

. Cams 

84.1. (a) Define the term cam. Make a sketch of a cam mechanism. In such a 
mechanism, which is the driver and which the follower, and what two things determine the 
shape of the cam? What is meant by an inverse cam mechanism? Which type of mechan¬ 
ism is most used, the cam or inverse cam mechanism? 

(b) Why and where are cam mechanisms used? 

86.1. Into what five general classes may cams be divided? 

86.1. (a) Define the term disk cam and make a sketch of a disk cam mechanism. Why 
are some disk cams called periphery cams? What is meant by a radial roller follower, by 
in offset roller follower? 

k (6) What is meant by a positive return disk cam? Why are some positive return disk 
ms called face cams? 

86.2. (a) Make a sketch of 
a disk cam mechanism with a 
reciprocating flat-faced follower. 
In what two ways may such a 
follower be offset? What is 
meant by a mushroom follower 
and what are the advantages of 
such a follower? 

(6) Make a sketch of a ro¬ 
tating disk cam having an oscil¬ 
lating roller follower and a 
sketch of such a cam with an 
oscillating flat-faced follower? 

(c) Show, by a sketch, what 
is meant by a toe and wiper cam 

F/G. <3 €>.3* mechanism. 

86.3. What kind of a disk cam and followers is shown in Fig. 86.3? State the pur¬ 
pose of the mechanism and explain how it works. 

86.4. (a) Make a sketch of a positive return cam mechanism having a single disk cam 
and a reciprocating flat-faced follower. Why is such a cam called a yoke cam? 

(6) Make a sketch of a type of disk cam that is often called an adjustable plate cam. 

87.1. Make a sketch of a translatim'cam mechanism and define the term translation 

cam. 

88.1. (a) Make a sketch of a cylindrical cam mechanism and define the term cylin¬ 
drical cam. ' 

(b) Why are some cylindrical cams called end cams? Make a sketch of a positive 
return cylindrical cam. ♦ 

(c) What is meant by a drum or barrel cam and where are such cams mudh used? 
Why are some cylindrical cams called dog cams? 
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89.1. Make a sketch of a conical cam mechanism, tell when such a cam mechanism 
would be used, and define the term conical cam. How would you make a positive return 
conical cam? 

90.1. Make a sketch of a spherical cam mechanism, tell when such a cam mechanism 
would be used, and define the term spherical cam. How would you make a positive return 
spherical cam? 

91.1. (a) Which two of the five classes of cams are most frequently used in machinery? 
(b) Make a sketch of a disk cam with a radial direct contact follower, mark the pitch 

point for the phase drawn, label the working surface, determine and indicate the total dis¬ 
placement, and tell what is meant by the term dwell. 

91.2. (a) What expedient is generally used to facilitate the determination of the work¬ 
ing surface of a cam for a given displacement? 

(b) Show how to determine the working surface of a disk cam for a radial roller fol¬ 
lower having given the desired displacement of the follower and the center of rotation of 
the cam. Fully justify the construction for one position of the follower. 

91.3. (a) Make a sketch of a disk cam with a radial roller follower, label the pitch 
surface and the working surface, and indicate the pitch point and pressure angle for the 
phase shown. 

(b) What, in general, is regarded as a limiting value for the pressure angle? Why 
should this angle be limited? 

(e) Explain why a roller follower is to be preferred to a direct-contact, follower. 

92.1. A cam follower having recitilinear motion is to be uniformly accelerated from 
rest during the first third of its total displacement h, is to move at a uniform velocity for 
the second third, and is to be uniformly retarded to rest during the last, third of its dis¬ 
placement. 

(a) Assuming the first third of the displacement to take place in 3 equal time periods, 
show and explain how to plot the corresponding portion of the displacement-time graph; 
and determine also the value of the acceleration in terms of h and the velocity attained at 
the end of the period of acceleration in terms of h. 

Ans. A — ifrh/time interval/time interval, V = ih/time interval. 
(b) Show that the middle third of the displacement at uniform velocity would be cov¬ 

ered in one-half the time of the first or last third. 
(c) Determine the slope of the graph at the end of the acceleration period and the slope 

of the. uniform velocity portion of the graph. How far from the origin would this latter 
portion of the graph intersect the A" axis if extended downward? 

Ans. slopes = fh. x — 1 ] time intervals. 

92.2. Show how to construct a displacement time graph for a reciprocating follower 
driven by a cam which rotates at a uniform rate. The follower is to move outward with 
uniform acceleration for £, uniform velocity for {, uniform retardation for and is to 
dwell for J revolution of the cam; and the follower is to return with uniform acceleration 
for £, uniform retardation for £, and is to dwell for £ revolution of the cam. 

92.3. Show how to construct a displacement-time graph for a reciprocating follower 
driven by a cam which rotates at a uniform rate. The follower is to move outward with 
simple harmonic motion for f and is to dwell for £ revolution of the cam; and the follower 
is to return with uniform acceleration for {, uniform retardation for £, and is to dwell for 
£ revolution of the cam. 

92.4. Show how to construct a displacement-time graph for a reciprocating follower 
driven by a cam which rotates at a uniform rate. For \ its displacement, the follower is 
to move outward with simple harmonic motion in 1 revolution of the cam, is to dwell 
for }, and is to complete its displacement with simple harmonic motion in £ revolution of 
the cam; and the follower is to return with simple harmonic motion in £ and is to dwell 

for A revolution of the cam. 



476 QUESTIONS AND PROBLEMS 

92.5. Show how to construct a displacement-time graph for a reciprocating follower 
driven by a cam which rotates at a uniform rate. The follower is to move outward with 
uniform acceleration for 75 degrees, uniform retardation for 60 degrees, and is to dwell for 
45 degrees rotation of the cam; and the follower is to return with simple harmonic motion 
for 120 degrees and is to dwell for 00 degrees rotation of the cam. 

93.1. Show how to determine the outline of the working surface of a disk cam which, 
jin rotating at a uniform rate, is to drive a radial roller follower in a 45-degree line in accord¬ 
ance with an assumed displacement scale. Fully justify the construction for one position 
of the follower. 

93.2. For a disk earn rotating at a uniform rate, show how to determine the working 
surface of the cam for a radial roller follower moving horizontally in accordance with an 
assumed displacement scale. Fullv justify the construction for one position of the follower. 

94.1. Show, by means of sketches what must be the relation between the radius of 
the follower roller and the radius of curvature of the pitch surface of a non-positive and 
of a positive ret urn disk cam. 

96.1. (a) What is meant by the base radius of a radial disk cam? In Fig. 95.1 is shown 
the base diagram for a radial disk cam rotating at a uniform rate. Assuming for a total dis¬ 
placement h that the cam rotates through an angle 0 in degrees, determine an expression 
for the base radius /? in terms of h and (3 and the cam factor /. 

(6) Assuming the follower is uniformly accelerated for the first half and uniformly 
retarded for the second half of the displacement, determine an expression for the cam 
factor/in terms of the pressure angle a. 

96.1. (a) What are the two methods of designing cams? 
(6) Assume that the follower of a radial disk cam is uniformly accelerated for the first 

half and uniformly retarded for the second half of its displacement; determine expres¬ 
sions for the displacement, velocity, and acceleration of the follower; draw the graphs; 
and determine the product, fh, of the cam factor and displacement in terms of h and the 
maximum pressure angle. 

96.2. (a) What are the two methods of designing cams? 
(b) Assume the follower of a radial disk cam to have simple harmonic motion; deter¬ 

mine expressions for the displacement,, velocity, and acceleration of the follower; draw 
the graphs; and determine the product, fh, of the cam factor and displacement in terms 
of h and the maximum pressure angle. 

96.3. (a) The base radius of a disk cam is R — —and the cam factor for a radial 
2irfi 

follower having uniformly accelerated motion for the first half and uniformly retarded 
motion for the second half of its displacement is / = 2/tan a. Assuming thfc cam to 
rotate through 120 degrees for a desired displacement of 1.5 inches, determine the base 
radius of the cam for a maximum pressure angle of 30 degrees. 

Ans. R = 2.48, say 2J in. 
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(b) Determine the minimum distance from the pitch point of the follower to the center 
)f the cam, also the minimum radius of the cam for a follower roller diameter of J inches. 

Am. If and 1$ in. 

96.4. (a) The base radius of a disk cam is R = ——and the cam factor for a radial 
2*-0 

follower having simple harmonic motion Is/ = tt ~ 2 tan a. Assuming the cam to rotate 
through 150 degrees for a desired displacement of 2 inches, determine the base radius of 
the cam for a maximum pressure angle of 25 degrees. Am. R - 2.575, say 2ft in. 

(6) Determine the minimum distance from the pitch point of the follower to the center 
of the cam, also the minimum radius of the cam for a follower roller diameter of f inches. 

Am. 1A anti 1A in. 

96.6. (a) The base radius of a disk cam is R — and the cam factor for a radial 
* 2 ?r0 

follower for a displacement-space graph made up of two equal circular arcs is/ = —_ 
1 — cos a 

Assuming the cam to rotate through 150 degrees for a desired displacement of 1.25 inches, 
determine the base radius of the cam for a maximum pressure angle of 25 degrees. 

A ns. R — 2.155, say 2J in. 
(b) Determine the minimum distance from the pitch jxiint of the follower to the center 

of the cam, also the minimum radius of the cam for a follower roller diameter of f inches. 
A ns. 1 \ and 1J in. 

97.1. (a) Assuming for problem 96.4 that the cam rotates at a uniform speed of 150 

R.P.M., determine the angular velocity oor of the rotating vector and the acceleration 
and retardation of the follower during its total displacement in 6 equal intervals. 
Ana. oor - 6ir rad./sec., A - 29.61,25.04, 14.80,0, 14.S, 25.64 and 29.61 ft./sec./sec. 

(6) Assuming the follower and roller to weigh 4.83 pounds and to move vertically 
up and down, determine if the weight of the follower and roller is sufficient to keep 
the roller in contact with the cam. Am. Yes. 

(c) What is the vertical component of pressure between the roller and earn at the 
beginning and at the end of its upward displacement and during the period of dwell? 

A ns. 9.27, 0.39, and 4.83 lb. 
(d) If the speed of t ho cam were increased 50 per cent what scale of spring would be 

required for an initial compression of 0.84 pound and a vertical pressure component 
between cam and roller of 0.68 pound for the maximum lift position. Ana. 2.5 lb./in. 

98.1. The exhaust valve of an automobile engine is to have a total displacement, or 
lift, of ,*6 of an inch. The valve is to open 45 degrees before the crank reaches its bottom 
dead center position and is to close 5 degrees after the crank has reached its top dead 
center position when the engine is cold; and the valve is to dwell in its extreme position 
for a period corresponding to a rotation of the crank of 30 degrees. To allow for expan¬ 
sion as the engine warms up, there is to be a clearance of about 0.006 of an inch between 
the cam and follower roller when the engine is cold. A tangent cam with a radial roller 
follower is to be used, the minimum radius of the cam to be A and the diameter of the 
follower roller to be \ of an inch. 

(а) Through what angle 4> would the cam rotate when the engine is cold before the 
valve would begin to lift? Am. <£ ■= 5° — 54', say 6°. 

(б) Through what angle 0 does the cam turn during the lift of the valve after the 

engine has warmed up? Ana. 0-56°. 
(c) Determine the maximum radius R2 of the cam and the radius R4 of the nose. 

Ans. R2 — 1.0 and R4 — 0.2911 in. 
(d) Determine the angles 8 and (0 - 8) turned through by the cam during which the 

follower roller is in contact respectively with the flank find nose of the cam. 
Am. 8 = 27°-35' and (0 - 8) = 28°-25'. 

98.2. Assuming for problem 98.1 that the maximum speed of the engine is 2100 R.P.M., 
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compute the displacements and linear velocities and accelerations of the follower for 
4> - 0°, 13°-47.5', and 27°-35' and for 0 = 2S°-25', 14°-12.5', and 0°. 

Arts. s = 0.00, 0.0334, 0.1443, 0.1443, 0.2697, and 0.3125 in. 
V * 0.00, 2.61, 6.06, 6.06, 3.14, and 0.00 ft./sec. 
A = 1133.5, 1307.8, 1976.8, 1279.2, 1362.5 and 1409.5 ft./sec./sec. 

98.3. Draw the cam and follower three times full size, using the values found in 98.1, 
and determine the displacement-time graph of the follower for the phases given in 98.2 
and from it determine the velocity and acceleration graphs by graphical differentiation. 
The values found should agree within 5 per cent, with those found in 98.2. 

98.4. (a) By using equivalent mechanisms for the cam and follower, graphically deter* 
mine, by means of vector diagrams, the velocities and accelerations of the follower for 
the phases given in 98.2. The values found should agree very closely with the 
computed values. 

(b) In what way is the vector superior to the analytical method for determining 
velocities and accelerations? 

99.1. The exhaust valve of an automobile engine is to have a total displacement, or 
lift, of 3^ of an inch. The valve is to open 45 degrees before the crank reaches its bottom 
dead center position and is to close 5 degrees after the crank Inis reached its top dead cen¬ 
ter position when the engine, is cold. To allow for expansion as the engine warms up there 
is to be a clearance angle of the cam shaft of 4.5 degrees when the engine is cold. The 
minimum radius of the cam is to be \ J and the radius of the nose ys of 311 inch. 

(а) Determine the maximum radius Ri of the cam and the angle 0 turned through by 
the cam during the lift of the valve after the engine has warmed up. 

Ans. R2 — 1.0 in. and 0 — 62°. 
(б) Determine the radius of curvature R of the flank of the cam. 

Ans. R ~ 2.4338 in. 
(c) Determine the angle 8 turned through by the cam while the follower is in contact 

with the flank of the cam, also the angle (/3 — 8) dur ing which there is contact with the 
nose. Ans. 8 = 18°-37.5' and (0 - 8) = 43°-22.5\ 

99.2. Assuming for problem 99.1 that the maximum speed of the engine is 2100 R.P.M., 
compute the displacements and linear velocities and accelerations of the follower for 
<t> = 0°, 9°-18.75', and 18°-37.5' and for 9 = 43°-22:5', 21°-41.25\ and 0°. 

Ans. s = 0.00, 0.0230, 0.0910, 0.0910, 0.2550, and 0.3125 in. 
V = 0.00, 2.589, 5.112, 5.112, 2.752, and 0.00 ft./sec. 
A = 1760.0, 1736.8, 1667.8, 866.2, 1107.3, and 1191.7 ft./sec./sec. 

99.3. (a) By using the equivalent mechanism for the cam and follower, graphically 
determine, by means of vector diagrams, the velocities and accelerations of the follower 
for the phases given in 99.2. The values found should agree very closely with the com¬ 
puted values. 

(6) In what way is the vector superior to the analytical method for determining veloci¬ 
ties and accelerations? 

100.1. Assume a displacement scale and show how to determine the working surface 
of a disk cam which, while rotating at a uniform rate, is to drive a reciprocating flat¬ 
faced follower whose face is at right angles to its stem. Fully justify the construc¬ 
tion for one position of the follower and explain how the extent of the follower face 
is determined. What is it that determines the minimum radius of the cam? 

100.2. Assume a displacement scale and show how to determine the working 
surface of a disk cam which, while rotating at a uniform rate, is to drive a recipro¬ 
cating flat-faced follower whose face makes an angle of 75 degrees with its stem. 
Fully justify the construction for one position of the follower and explain how the 
extent of the follower face is determined. What is it that determines the minimum 
radius of the cam? 
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101.1. (a) Make a sketch of a stamp mill cam; state its purpose and explain how it 
works. 

(6) Assume the working surfaces of a stamp mill cam to be involutes and derive an 
equation for the radius of the base circle of the cam in terms of the displacement h of the 
follower and angle 0 turned through by the cam during involute action. 

(c) Explain how to determine the positive displacement of the follower after involute 
action ceases. 

102.1. (a) Assume a displacement scale and show how to determine the working sur¬ 
face of a disk cam which, while rotating at a uniform rate, is to (hive an oscillating roller 
follower. Fully justify the const me lion for one position of the follower. 

(b) Assuming the follower arm to move in the plane of motion of the cam, explain 
how a suitable shape for the follower arm may be determined. 

103.1. Assume a displacement scale and show how to determine the working surface 
of a disk cam which, while rotating at a uniform rate, is to drive an oscillating flat-faced 
follower whose face does not pass through the axis of oscillation. Fully justify the con¬ 
struction for one position of the follower and explain how the extent of the follower face 
is determined. 

104.1. What must be true of the to and fro motion of a yoke follower for a single 
disk cam? Assume a displacement scale and show how to determine the working 
surface of such a cam to drive a flat-faced yoke follower. How are such cams often 
referred to? 

104.2. What must be true of the to and fro motion of a yoke follower for a single-disk 
cam? Assume a displacement scale and show, how to determine the working surface of 
such a cam to drive a roller yoke follower. How arc such cams often referred to? 

105.1. (a) What is meant by positive return single-disk circular arc cams? 

(b) In Fig. 105.1 the outline of the working surface of the cam is made up of circular 
arcs of two different radii with their centers at the apices of an equilateral triangle. 
For the follower in contact with the flank of the cam of radius R the displacement is 
8 * (R — Rx) (1 — cos 4?) = R&(1 — cos <f>); and is $ = Ra cos 0 for the follower in con¬ 
tact with the nose of radius - Rh Determine expressions for the velocity and accelera¬ 
tion of the follower for follower contact with the flank and for follower contact with the 
nose of the cam. Through what angle does the cam rotate for each of these contacts, 
and through what angle does the cam rotate during the dwell at each end of the 

stroke? 
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105.2. (a) What is meant by fx>sitivc return single-disk circular arc earns? _ 
(b) For the cam mechanism shown in Fig. 105.2, determine the value of R$ m terms 

of R\ ami a for a given value 
of the minimum radius R\ 
and total displacement h of 
t fie follower. 

(r) For the follower in 
contact, with the flank of 
radius R the displacement is 
,s* — R'&{ 1 — cos </>); and is .s = 

R,i cos 0 - R\ for the follower 
in contact with the sharp 
nose of the cam. Determine 
expressions for the velocity 
and acceleration of the fol¬ 
lower for follower contact, with 
the flank and for follower con¬ 
tact with the nose of the cam. 

FIG. IQ5.2 Through what angle does the 
cam rotate for each of these 

contacts, and through what angle does the ram rotate during the dwell at each end of 
the stroke? 

105.3. (a) For the cam mechanism shown in Fig. 105.3 what must be the eccentric 
throw' for a desired oscillation flof the follower and 
a given distance between the centers C and O? 

(b) Through what angles does the cam or eccen¬ 
tric rotate for the to and fro oscillation of the fol¬ 
lower? Why, for a given oscillation, is it difficult 
to determine the working surface of a single-disk 
positive? return cam that, is not in the form of a:i 
eccentric? 

106.1. Assume a displacement scale and show 
how to determine the working surfaces of a double- frjQ /Q£tJ 
disk cam which, while rotating at a uniform rate, 
is to drive a reciprocating roller yoke follower. Fully justify the construction for one 
position of the follower. 

107.1. (a) What information is it necessary to have and what drawings is it neces¬ 
sary to make to determine the working surfaces of a positive return cylindrical cam? 

(b) How should the shape of the follower roller for a positive return cylindrical cam 
be determined for the most, satisfactory action? Why would such a roller be better than a 
plain cylindrical roller? 

107.2. (a) Assume a displacement scale and show how to determine the working sur¬ 
face of a positive return cylindrical cam which, while rotating at a uniform rate, is to drive 
a roller follower parallel to the axis of the cam. Fully justify the construction for one 
position of the follower. 

(6) Explain what should be the shape of the follower roller for best results. 

108.1. (a) What is meant by an inverse cam mechanism? 
(b) A roller at the end of an oscillating arm is to drive a translation cam along a line 

in the same horizontal plane as the mid position of the center line of the oscillating arm. 
The center of the roller moves in a circular arc path with uniform tangential acceleration 
for the first half and uniform tangential retardation for the second half of the oscillation 
of the arm; the corresponding motion of the translation cam is to be simple harmonic. 
Show how to determine the outlines of the pitch and working surfaces of the slot in the 
cam. 
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path and the followed isT slotuT'T'tth<Mlnver ‘R a nillrx reciprocating; in a horizontal 
Assume displaeemZ f f^ ** 15 degrees with the vertical, 
ine surface of thr» / \ * °r ^ d[lvt‘\Jm< f°dower> ^U)W how to determine the work¬ 
er the phase shown ’ ^ in<lMiate tllc dlrectlon of molion of the driver and the follower 

108.3. In an inverse cam mechanism the driver is a roller reciprocating in a horizontal 
path and the follower is a slotted plate oscillating about a pivot in the line of motion of 
the driver extended. Assume displacement scales for the driver and follower, show how 
to determine the working surface of the cam, and indicate the direction of motion of the 
driver and the follower for the phase shown. 

Chapter VI 

Rolling Curves and Friction Gearing 

109.1. (a) Statu the requirements for pure rolling between two curves with respect 
to the point of contact and the relation of the common tangent to the contact radii. 

(b) Statu the four ways in which the angular velocities of a pair of rolling curves are 
related. What mast be the shajie of the rolling curves if the angular velocity ratio is to 
be constant? 

(r) State the criterion of positive driving for a pair of rolling curves. What, can be 
said of a pair of circles with resjiect to pure rolling and positive driving? 

110.1. (a) Why is positive driving not assured bet ween two circles or two circular 
cylinders? If they are to roll together what must be assumed? 

(6) Assuming two circles 7 and i to be in contact externally, deduce the equation 
for the radius of fine in terms of the angular velocity ratio and distance between centers. 

(c) Assuming t wo circles 7 and ? to be in contact internally, deduce the equation for 
the radius of one in terms of the angular velocity ratio and distance between centers. 

110.2. (a) Determine the radii of a pair of rolling circles for an angular velocity ratio 
of J and a distance bet ween centers of 7 inches, the circles to rotate in opposite directions. 

Am. 3 and 4 in. 
(b) What would be the respective radii if the circles are to rotate in the same direction? 

Arcs. 21 and 28 in. 

110.3. (a) Determine the radii of a pair of rolling circles for an angular velocity ratio 
of J and a distance between centers of 101 inches, t he circles to rotate in the same direction. 

Am. 7 and 171 in. 
(b) What would be the respective radii if the circles are to rotate in opposite direc¬ 

tions? A ns. 3 and 71 in. 

111.1. (a) Having given the minor and major axes of an ellipse, explain how the foci 
are located. How are the radii vectors to any point on an ellipse related to the tangent 
to the ellipse at the said point? 

(6) Prove that pure rolling is possible between two equal ellipses whose axes are a dis¬ 
tance apart equal to the major axes of the ellipses. 

111.2. (a) Point out, for two equal ellipses, the critical phases during a rotation of 
180 degrees when the conditions for positive driving do not obtain. Why cannot one 
ellipse drive another equal ellipse through more than 180 degrees? 

(jb) To what linkage, or system of links, do two equal ellipses correspond? By what 
two means may continuous positive driving between two equal ellipses be secured? 

111.3. Assuming for a pair of rolling ellipses that the distance between the centers of 
rotation is to be 7 inches and that the angular velocity ratio is to vary from f to f, deter¬ 
mine the major and minor axes and the distance between the foci of the ellipses. 

Ans. 7, 6.325, and 3 in. 
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111.4. Assuming for a pair of rolling ellipses that the distance between the centers of 
rotation is to be 10 inches and that the angular velocity ratio is to vary from | to f, deter¬ 
mine the major and minor axes and the distance between the foci of the ellipses. 

Ans. 10, 9.798, and 2 in. 

111.5. (a) Show how to lav out a pair of oscillating sectors of ellipses for a distance 
of 15 inches between the centers of rotation and for a change in the angular velocity ratio 
of driver to follower from f to § while the driving sector rotates through an angle of 75 
degrees. 

(6) What must be true if sectors of ellipses are to oscillate through equal angles? 

111.6. Show how to lay out a pair of oscillating sectors of ellipses for a distance of 15 
inches between the centers of rotation and for a change in the angular velocity ratio from 
f to \ while the driver and follower each oscillate through an angle of 75 degrees. 

112.1. The polar equation of the logarithmic spiral is aB — logc R. Prove that for 
any given value of a the angle between the tangent and the radius vector is the same at all 
points in the spiral. 

112.2. (a) The polar equation of the logarithmic spiral is ad — logt» R. Prove that 
the difference in the lengths of the radii vectors is the same for all arcs of equal length. 

(b) Explain how it follows that pure rolling is possible between two similar spirals 
rotating about their foci. 

112.3. (a) Two sectors of similar logarithmic spirals in oscillating about axes 6 inches 
apart are to transmit motion from one to the other at an angular velocity ratio of driver 
to follower varying from f to J while the driver rotates through an angle of 75 degrees. 
Determine the radii vectors of the sectors and by use of the equations aB = log* R and 

tan <f> = - determine the angle of oscillation of the follower. 
a 

Ans. R'i — 2, R\ — 4, R"i = 4.5, and R"2 =? 1.5 in., 02 - 90°-37.4'. 
(6) Having the angular displacement and terminal radii vectors of each spiral, explain 

how the rolling curves are plotted. 

112.4. (a) Having the equation ad = logP R, show that the radius vector R bisecting 
the angle between two known radii vectors R' and R" is equal to the square root of the 
product of the known radii vectors. 

(6) Two sectors of similar logarithmic spirals in oscillating about axes 6 inches apart 
are to transmit motion from one to the other at an angular velocity ratio varying from 
f to | while driver and follower each rotate through 60 degrees. Determine the terminal 
radii vectors of the sectors and plot the rolling curves. 

Am. R\ and ft"2 = 2 in., R"i and R'2 = 4 in. 

113.1. (a) Show how to construct the rolling curves of a pair of sectors and to obtain 
the angular displacement of the follower, having given the successive angular displace¬ 
ments of the driver, the distance between centers, and the terminal and intermediate 
angular velocity ratios which have been independently chosen. 

(b) Why is this method for rolling sectors not applicable to the construction of lobed 
wheels? 

113.2. (a) Show how to construct a pair of rolling sectors for a given distance between 
centers where the total angular displacement of the follower and the total and inter¬ 
mediate angular displacements of the driyer have been independently chosen together 
with the terminal and intermediate angular velocity ratios. 

(6) Why is this method of construction applicable to lobed wheels? 

114.1. (a) Give the most familiar example of a pair of uni-lobed wheels. 
(b) What must be true if sectors of equal ellipses or sectors of similar logarithmic 

spirals are to roll together through equal angles, 
(c) How may uni-, bi~, and tri-lobed wheels be derived from equal ellipses and similar 

logarithmic spirals?^ 
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• <'U-> must be true if sectors of equal ellipses or sectors of similar logarithmic 
spirals are to roll together through equal angles? 

(f>) Explain how you would derive a pair of uiisymmet.rical uni-lobed wheels, also a 
pair of symmetrical tri-lobed wheels, from similar logarithmic spirals. 

114.3* (a) What must be true if sectors of equal ellipses or sectors of similar logarithmic 
spirals are to roll together through equal angles? 

(6) For equal arcs, how are the radii vectors of a logarithmic spiral related? 
(c) Explain how it is possible to derive from similar logarithmic spirals a train of lobed 

wheels having one, two, and three lobes. 

114.4. By the use of a pair of rolling sectors explain the process known as the contrac¬ 
tion or expansion of angles. To what well-known pair of rolling curves may this process 
be applied in deriving pairs of wheels having an unequal number of lobes? 

115.1. What are the pitch surfaces and the relation of the axes of spur gears, of 
bevel gears, of helical gears, of hyperboloidal gears? 

117.1. Using a combination of circular right cylinders and cones prove that pure roll¬ 
ing is possible between two cones of the same slant height. 

117.2. (a) For axes intersecting at an angle of (10 degrees show how to determine the 
frusta of a pair of cones which in rolling together will transmit motion from one shaft to 
the other at an angular velocity ratio of mid prove the construction. 

(6) For the same angular velocity ratio and relation of the shafts as in (a)> show what 
changes in the meclianism are necessaiy to reverse the rotation of the driven shaft. 

* 118.1. How may a hyperboloid be generated by a straight line rotating about an axis? 
Why is the resulting figure known as an hyperboloid of revolution? What is the gorge 
circle of such a figure? What is the shape of the contact line of a pair of rolling lyper- 
boloids and what is the distance between their axes of rotation? 

119.1. (a) Why cannot rolling surfaces whose transverse sections are not circular be 
used in friction gearing? Why are surfaces of circular section suitable? 

(6) When power is transmitted from one shaft to another by means of friction wheels, 
what resistances must, the friction in the tangent plane be sufficient to overcome? What 
is the value of this friction in terms of the coefficient of friction and the normal pressure 
at contact? 

(c) Why are the contact surfaces of a pair of friction wheels often made of different 
materials? With respect to the driver and follower, explain how the two different mate¬ 
rials should be used. 

119.2. (a) By means of a pair of circular right cylinders whose axes are 14 inches 
apart, motion is to be transmitted from the driver to the driven shaft at an angular velocity 
ratio of determine the diameters of the wheels assuming no slip. Ans. 16 and 12 in. 

(6) The driver, which is covered with leather, rotates at 280 R.P.M. The driven 
wheel is cast-iron; the coefficient of friction is 0.30; and the wheels are 4 inches wide. 
Determine the horse-power transmitted assuming the wheels pressed together with a force 
of 600 pounds. Ans. 4.8 H.P. 

119.3. A pair of friction wheels is to be used to transmit 6 horse-power between parallel 
shafts 16 inches apart. The leather-covered driver rotates at 350 and the cast-iron fol¬ 
lower at 210 R.P.M. Assuming a coefficient of friction of 0.30 and an allowable pressure 
per inch of face of 150 pounds, determine the normal pressure between the wheels and 
their widths of face. Ans. 600 lb. and 4 in. 

119.4. (a) Under what conditions might friction wheels instead of gears be used to 
advantage? Where they are more suitable what advantages have they? 

(b) Where are toothed gears to be preferred to friction wheels? Give some examples 
of services where friction wheels could not be used in place of toothed gears. 
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120.1. (a) Make a suitable sketch and determine the relation between the radial 
pressure P in the plane of the axes of a pair of V-grooved friction wheels and the pressure 
N normal to the contact surfaces. What would be the relation bet ween P and N if the 
tangential components in the plane of t he axes were considered only 25 per cent effective? 

(6) Having the relation between P and N, determine an expression for the friction 
normal to the plane of the axes. 

120.2. A pair of cast-iron V-grooved friction wheels having 45-degree grooves is to be 
used to transmit 6 horse-power between parallel shafts 10 inches apart, the driver rotating 
at 350 and the follower at 210 R.P.M. Assuming a coefficient of friction of 0.20 determine 
the radial force in the plane of the axes with which the wheels must be held together. 

A?is. 386 lb. 

120.3. Assuming the wheels in problem 120.2 to have one 45-degree wedge and groove, 
of 2-inch working depth, determine by what per cent, the secondary sliding or grinding 
action is greater than if the two wheels had four 45-degree wedges and grooves of a work¬ 
ing depth of J inch. A ns. 300 per cent. 

121.1. (a) What is the purpose of friction speed variators? 
(b) Make a sketch of the Evans friction cone pulleys for parallel shafts and explain 

how the angular velocity ratio is varied; also sketch the Sellers’ feed disks and explain 
how the angular velocity ratio is varied. Is secondary slippage present in these variators? 

121.2. (a) Make a sketch of a friction speed variator for shafts whose axes coincide 
and explain how the angular velocity ratio is varied. 

(6) Make a sketch of a friction sf**d variator for shafts at right angles and explain 
how the angular velocity ratio is varied and the direction of rotation of the driven wheel 
reversed. 

CHAPTER VII 

Straight and Helical Spur Gears 

122.1. (a) What are the pitch surfaces and the relation of the axes of spur gears? 
(6) What is meant by t he pilch element, of a gear tooth? 
(c) What is meant by a straight spur gear, by a curved spur gear, by a helical spur gear? 

Make a sketch showing the axes, the pitch surfaces, and the pitch elements of the teeth of 
a pair of straight spur gears, also of a pair of helical spur gears. 

122.2. (a) What are the pitch surfaces and the relat ion of the axes of bevel gears? 
(ib) What is meant by the pitch element of a gear tooth? 
(c) What is meant, by a straight bevel gear, by a curved l>evel gear, by a spiral bevel 

gear, by a skew bevel gear? Make a sketch showing the axes, the pitch surfaces, and the 
pitch elements of the teeth of a pair of straight, bevel gears, also of a pair of spiral bevel 
gears. 

122.3. (a) What, are the pitch surfaces and the relation of the axes of helical gears, of 
hyperbolmdal gears? 

(b) What is meant by the pitch element of a gear tooth? 
(c) Make a sketch showing the axes, the pitch surfaces, and the pitch elements of the 

teeth of a pair of helical gears. 

122.4. Classify in tabular form the different kinds of gears, giving the name, the rela¬ 
tion of the axes, the pitch surfaces, the pitch elements of the teeth, the kind of teeth, and 
the nature of the tooth contact for each kind of gear. 

123.1. (a) How long have toothed gears been used, about how many years ago was 
the theory of correct tooth shapes first enunciated, and for about how many years have 
machines been available for cutting gear teeth? 

(b) When and by whom was the theory of correct tooth shapes first deduced? When 
and by whom was the theory of cycloidal tooth outlines first put on a practical basis? 
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When and by whom were involute tooth outlines and proportions put on a practical 
basis? 

(c) When and by whom was the first power-driven, precision, gear-cutting machine 
built? When and by whom was the generating method of cutting gears invented? 

124.1. By means of a labeled sketch illustrate the following terms: pitch diameter, 
jritch circle, addendum circle, dedendum circle, circular pilch, addendum, dedendum, 
whole depth, working depth, clearance, face, flank, point., and root. 

124.2. (a) Express the circular and the diametral pitches in terms of the pitch diame¬ 
ter and number of teeth and deduce the relation between them. 

(b) Define the terms blacklash, pinion, and rack. 

125.1. (a) How may mating gear teeth be regarded and why are they used? 
(6) State the fundamental law of gear tooth profiles for the positive transmission of 

motion equivalent to the rolling of the pitch curves. 

126.1. Assume a gear with teeth having straight line profiles and by application of 
the fundamental law of gear tooth profiles show how to determine graphically the path of 
the point of contact. 

126.2. Assume a gear with teeth having straight line profiles and by application of 
the fundamental law of gear tooth profiles show how to determine graphically the con¬ 
jugate rack tooth profile. 

126.3. Assume a gear with teeth having straight line profiles and by application of the 
fundamental law of gear tooth profiles show how to determine graphically the conjugate 
gear tooth profile. 

126.4. (a) By the use of a pair of pitch surfaces, a metal template of an arbitrary tooth 
profile, and a piece of pajx'r, show and 
explain how the conjugate tooth profile 
may be graphically determined. 

(b) How does this met hod suggest how 
the given tooth acting as a cutter could 
generate its conjugate? 

127.1. Explain and prove how a point 
on the generator G in Fig. 127.1 may be 
used to describe gear tooth profiles for 
the pair of pitch curves 1 and :<? that will 
transmit motion from one to the other 
equivalent to the rolling of the pitch 
curves. 

128.1. (a) Why is the circle the only 
generating curve that has been used to 
describe gear tooth profiles by rolling on 
the pitch circles? 

(6) Define the terms epicycloid, hypo- 
cycloid, and cycloid, show how the first 
two curves are generated, and explain a 
simpler method of generating these curves 
which avoids the necessity of rolling the describing circles. 

128.2. (a) Tell what is meant by the involute of a circle, show how it is generated, 
and explain a simpler method of plotting the curve which avoids the necessity of rolling 

the generating line. 
(6) What is meant by the base pitch? 
(c) Briefly explain an approximate method of drawing involute tooth profiles. 

FIGJ21J 
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129.1. (a) Make a sketch similar to Fig. 129.1, state the fundamental law of gear 
tooth profiles, and prove that by means of cycloidal tooth profiles motion equivalent to 

f 
the rolling of the pitch circles L and 2 can be trans¬ 
mitted from one gear to the other. 

(6) What must be done if driving is to continue 
beyond P? 

129.2. (a) By use of Fig. 129.1 explain what is 
done to make it possible for one gear to drive the 
other in either direction. 

(6) How are the points at the beginning and 
end of action determined and what is the path of 
the point of contact? 

(c) What is required of a pair of gears for posi¬ 
tive continuous driving? 

130.1. (a) By the use of Fig. 130.1 explain how 
the path of the point of contact is obtained and 

no./soj 
show what pitch arcs are of the same length as the 
path of contact. 

(6) Designate the arcs of action and the arcs of 
approach and recess, also the angles of action, approach, and recess, 
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130.2. (a) What requirement must be fulfilled to secure continuous driving? What 
is meant by the contact ratio, what value of this ratio is desirable, and what value should 
be regarded as a minimum for the quiet and efficient transmission of any appreciable 
amount of power? For any given circular pitch and pitch diameter, what two things fix 
the maximum length of teeth and maximum arc of action possible? How does the strength 
of the teeth limit one of these factors? 

130.3. (a) By the use of Fig. 130.1 show what is meant by the angle of obliquity and 
tell how it varies during action. Why is this angle often referred to as the pressure angle? 
What is the effect of the angle of obliquity On the pressure between the teeth and at the 
bearings? 

(6) What is the effect of the friction of sliding between teeth on the obliquity of action 
of the pressure? How may the smoother action during recess than during approach be 
accounted for? 

» 

130.4. For an assumed pitch line velocity of the gears in Fig. 130.1 show how to obtain 
the velocity of sliding between the teeth at the beginning of contact. Explain how this 
velocity of sliding varies during approach and recess. 

131.1. (a) State and explain the major requirements for interchangeability of cycloidal 
spur gears of the same pitch. Name two other requirements for interchangeability. 

(b) What is it that determines the diameter of the describing circle of interchangeable 
cycloidal gears? As a compromise what diameter is usually used? 

* (c) What can be said of the path of the point of contact of interchangeable gears? 

132.1. (a) What diameter of describing circle was adopted by the William Sellers 
Company for their system of interchangeable cycloidal gears? Although assuming the 
smallest pinion to have 12 teeth why did the Brown & Sharpe Company adopt a describ¬ 
ing circle diameter equal to the radius of the 15-tooth pinion? 

(b) Why are interchangeable gears referred to as equal addendum gears? 
(c) About what is the contact ratio and maximum angle of obliquity for a pair of 

Sellers’ 12-tooth pinions? 
(cl) What is the smallest pair of pinions that would drive continuously for a ratio of 

describing circle to pitch diameter of 0.50, for a ratio of describing circle to pitch diameter 
of 0.625? 

133.1. Make a sketch of a cycloidal rack and pinion, and, assuming interchangeability, 
show how the teeth of the rack are described. The rack may be regarded as what kind 
of gear? 

134.1. (a) What is the difference, with respect to the contact of the pitch surfaces, 
between a pair of internal and a pair of external gears? 

(6) How are the tooth profiles of internal cycloidal gears described? How, with 
respect to faces and flanks, does the action of internal gears differ from that of external 

gears? 
(c) Why must the pitch and describing circles of internal gears be properly related? 

134.2. (a) Explain what is meant by saying that the faces of the pinion teeth will not 
touch or foul the faces of the internal gear teeth if the intermediate, describing circle of the 
pinion tooth faces is smaller than the intermediate describing circle of the gear tooth faces? 

(6) That the active and inactive faces of pinion and gear may not touch or foul 
(Ri -f R4) must be less than (R2 — /?3), where R\ and R2 are the respective radii of pinion 
and gear and /?3 and. R4 are the respective radii of the describing circles of the gear and 
pinion .tooth faces. What does this rule reduce to if the describing circles 3 and 4 are made 
the same size? What, accordingly, would be the limiting describing circle radius for a 
pinion and gear whose respective pitch radii are 4 and 8 inches? Am. 2.0 in. 

136.1. (a) Make a sketch and show that a pair of pin gears is basically a pair of cycloi¬ 
dal gears for which a single describing circle is used. Of what diameter must the describing 

circle be made? 



488 QUESTIONS AND PROBLEMS 

(6) Explain how the outlines of the teeth to act with the pins are determined. Why, 
if possible, should the pin gear be the follower? 

(c) Why for continuous driving, assuming the pin gear to be the follower, must a pin 
be beyond the pitch point before the preceding pin goes out of action? 

136.1. (a) Make a sketch similar to Fig. 136.1, state the fundamental law of gear, 
tooth profiles, and prove that, with involute tooth profiles motion equivalent to the rolling 
of the pitch circles V and 2' can be transmitted from one gear to the other. 

\ j F/C. / 36./ 

\k 
(6) What is the path of the point of contact and how is its length determined? 

137.1. (a) By elaborating Fig. 136.1 somewhat, explain how the path of the point ol 
contact is determined. 

(6) Determine the arcs of action and the arcs of approach and recess, also the angles 
of action, approach, and recess. 

137.2. (a) Explain what is meant by the cingle of obliquity. Why is this angle often 
referred to as the pressure angled What is the effect of the angle of obliquity on the pres¬ 
sure between the teeth and at the bearings? 

(b) What is the effect of the friction of sliding between teeth on the obliquity of action 
of the pressure? How may the smoother action during recess than during approach be 
accounted for? 
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137.3. (a) Define the term Ixise pitch and determine the value of the base pitch in 
terms of the circular pitch and angle of obliquity, using Fig. 136.1 if necessary. 

(b) What requirement must be fulfilled to secure continuous driving? What is meant 
by the contact ratio, what value of this ratio is desirable, and what value should be regarded 
as a minimum for the quiet and efficient transmission of any appreciable amount of power? 
What fixes the maximum length of teeth and value of the contact ratio for any given pitch, 
pitch diameters, and angle of obliquity? 

138.1. (a) What is one of the most valuable properties of involute gear tooth profiles? 
Explain the practical value of this property. 

(b) By adding to Fig. 136.1 prove that gears 1 and 2 may be pulled apart without 
affecting the angular velocity ratio or its constancy. Upon what only does the angular 
velocity ratio of involute gears depend? 

(c) When two involute gears are pulled apart, what and how are certain elements of 
the gears changed? What is it that determines how far a pair of gears may be drawn 
apart? 

139.1 (a) What are the requirements for involute gears of the same pitch to be inter¬ 
changeable? 

(ib) What considerations fix the angle of obliquity for interchangeability of involute 
gears? 

140.1 Prove that the tooth profiles of an involute rack are straight lines making an 
angle of 90 degrees minus the angle of obliquity with the pitch line of the rack. 

141.1 (a) Show how to det ermine t he maximum addendum of a rack that will mate 
with a pinion without interference? What happens if the rack is made with a greater 
addendum and what is the effect on the pinion teeth if they are cut to mate with the rack 

teeth? 
(6) Explain why the contact ratio is greater for a pinion and rack than for a pinion 

and gear, also explain why a pinion that will mesh with a rack without interference will 
mesh without interference with any gear having an equal or greater number of teeth than 
itself. 

141.2. (a) For a rack and pinion, where the addendum of the rack equals kp'n derive 

the relation N — — and k — —s*-- ** and interpret the equations, 
sura 2 

141.3. (a) What is the smallest number of teeth on a pinion that will mat e with a rack 
without interference for an angle of obliquity of 141 degrees and a value of k equal to 
unity? If A; is to equal unity, what should the angle of obliquity be for the rack to mate 
with a 12-tooth pinion without interference? 

Am. N - 32, a - 24° -5.85'. 
(6) What should be the value of k if a 12-tooth pinion is to mate with a 20-degree rack 

without interference? Am. k = 0.7018. 

142.1. (a) What is the value of the contact ratio for a pair of 12-tooth pinions having 
22£ degree involute teeth and an addendum of 0.875/p',.? Would the two pinions be 
suitable for the quiet and efficient transmission of power? Am. 1.218. 

(b) If one or both of a pair of gears had more than 12 teeth would the contact ratio be 
greater or less than for a pair of 12-tooth pinions? 

142.2. (a) What is the value of the contact ratio for a pair of 14-tooth pinions having 
20-degree involute teeth and an addendum of 0.80/p'r? Would the two pinions be suit¬ 
able for the quiet and efficient transmission of power? Am. 1.217. 

(6) If one or both of a pair of gears had more than 14 teeth, would the contact ratio 
be greater or less than for a pair of 14-tooth pinions? 

143.1. (a) On a sketch of the basic rack, give the proportions of the addendum and 
dedendum of the 22^-degree interchangeable involute system of gear teeth proposed by 

the A.S.M.E. 
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(6) What is the smallest pinion that will mate with the rack without interference? 
(c) What is the contact ratio for a pair of 12-tooth pinions? What is the smallest pair 

of pinions that wilfgive continuous driving? 

143.2. (a) On a sketch of the basic rack, give the proportions of the addendum and 
dedendum of the 20-degree interchangeable involute system of gear teeth approved by 
the A.S.A. 

(b) What is the smallest pinion that will mesh with the rack without interference? 
(c) What is the contact ratio for a pair of 14-tooth pinions? What is the smallest pair 

of pinions that will give continuous driving? 

143.3. (a) What is the smallest pinion that will mesh with a full-depth 14 J-degree 
involute rack without interference? 

(b) Give the proportions of the addendum and dedendum for the 14 2-degree inter¬ 
changeable composite system of gear teeth approved by the A.S.A. 

(c) Make a sketch and fully explain how the basic rack for the 14^-degree composite 
system was derived from the 12-tooth pinion. 

143.4. What is peculiar alxmt the 20-degree standard involute stub-tooth system of 
the Fellows Gear Shaper Company? Give one of their pitch designations and explain 
what it means. 

144.1. (a) Explain why the farther a portion of an involute is from the origin the less 
sensitive it is as to form. Why, as a result, should the active portions of gear-tooth pro¬ 
files be as far removed as possible from the origin? 

(b) By the use of two equal base circles and their involutes fully explain what is meant 
by specific sliding? Why should the specific sliding l>etween gear-tooth profiles be kept as 
low as possible? 

144.2. For a.pail- of 22-tooth pinions having 20-degree involute stub teeth of unity 
diametral pitch, the respective minimum and maximum radii of curvature of the teeth 
are 1.8118 and 5.7020 inches. Determine the specific sliding on the addendum and deden¬ 
dum of the teeth. Ans. 0.681 and —2.135. 

144.3. For a pair of mating gears having 12 and 30 20-degree involute stub teeth of 
unity diametral pitch, the respective minimum and maximum radii of curvature are 
0.1682 and 3.8014 inches for the pinion teeth and 3.381 and 7.0142 inches for the gear 
teeth. Determine the specific sliding on the addendum and dedendum of the pinion teeth 
and the specific sliding on the addendum and dedendum of the gear teeth. 

Ans. 0.644, —15.7, 0.94, —1.813. 

145.1. (a) Although some of the gears in such machines as lathes, boring mills, auto¬ 
mobiles, etc., are interchangeable as to pitch, form, and number of teeth, why are they 
not in fact interchangeable? 

(6) What are the only advantages of cutting gear teeth to an interchangeable system, 
and what are the disadavantages? 

145.2. (a) How otherwise than as non-interchangeable involute gears are such gears 
referred to? 

(6) State two advantages that may be secured by designing gear teeth 0$ a non-inter- 
changeable basis? By what two methods may these advantages be secured and what 
are the two methods called? 

146.1. (a) In the range cutter method for non-interchangeable gears what two things 
are varied to decrease the sensitiveness of the active profiles and to decrease the wear by 
reducing the specific sliding? 

(b) In the orderly solution outlined by Earle Buckingham how many different gen¬ 
erating cutters for each pitch are necessary to cut gears having 10 or more teeth? How 
many different angles of obliquity and different addenda are employed for each set of 
generating cutters? 
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(c) Wlmt advantage has the range cutter methcxl over the mriable center distance 
method? 

147.1. (a) In the variable center distance met hod for non-interchangeable gears, how 
many generating cutters are necessary for* each nominal pitch? What kind of generating 
cutters may be used? 

(b) In this method what four things are varied to decrease the sensitiveness of the 
active profiles and to decrease the wear by decr easing the specific sliding? 

(c) What is the problem in designing gears to be cut on a variable center distance 
basis? 

147.2. A pair of gears to have 24 and 54 teeth and a nominal diametral pitch of unity 
are to be generated in accordance with the variable center distance method outlined in 
Art. 147. Expressing linear dimensions in inches, determine the following for the 
pillion and gear: 

■A ns.- 

Root radius. .H 
Pinion 
11.1062 

Gear 
25.800 

Pitch radius. .R 12.1062 27.2389 
Distance between centers. .. 
External radius. 

.C 

.E 13.3469 
39.3451 

27.9807 
Circular pitch. .Vr 3.1694 3.1694 
Tooth thickness. .t 1 7170 1.4524 
Whole depth of teeth. .h 2.1807 2.1807 
Addendum. 1.2407 0.7418 
Clearance. .c 0.1982 0.1982 
Angle of obliquity. .a 16° 20' 

147.3. The pair of non-interchangeable gears of problem 147.2 are to be compjired 
with a pair of standard 20-degree stub-tooth gears having 24 and 54 teeth and a diametral 
pitch of unity. Expressing linear dimensions in inches, determine, for the purpose, the 
following: 

Am. 
20° 14J° 

Pinion 
Standard Basic Rack 

Stub Tooth Variable 
Gears Center Distance 

Max. radius of curvature of active profile. . 6.0570 6.3860 
Min, radius of curvature of active profile. . 1.9760 1.8064 
Active profile outside pitch circle. . 0.8000 1.2407 
Active profile inside pitch circle.. . 0 5519 0.2476 

Total height of active profile. . 1.3519 1.4883 
Specific sliding on addendum of pinion. . +0.4650 +0.6675 

Specific sliding on dedendum of pinion. . -1.5550 -1.3030 

Gear 

Max. radius of curvature of active profile. . 11.3623 9.3560 

Min. radius of curvature of active profile. . 7.2817 4.7764 

Active profile outside of pitch circle. . 0.8000 0.7418 

Active profile inside of pitch circle. . 0.6042 0.4399 

Total height of active profile. . 1.4042 1.1817 

Specific sliding on addendum of gear. . +0.6080 +0.5655 

Specific sliding on dedendum of gear. ....... -1.8700 -2.0060 

Contact ratio for pair of gears.. . 1.382 1.637 



492 QUESTIONS AND PROBLEMS 

148.1. (a) What is the purpose of toothed gears? 
(6) Name the principal factors involved in the strength of gear teeth. 
(c) What assumptions were made by I^ewis with resjxict to the load carried by a gear 

tooth and how did he arrive at the weakest section of a tooth? The Lewis equation is 
W — Spcby; explain the notation of this equation. 

148.2. Assume the two pair of gears of problem 147.3 to be cast of steel, to be carefully 
cut, and to be subjected to a sternly load. On the assumption that the gears are 10 inches 
wide and that the pinion of each pair rotates at. 420 R.P.M., determine the safe load and 
horse-power for each pair. 

Ams. W — 26,050 lb. and II.P. = 2084 for equal add. gears. 
\V ~ 24,450 lb. and II.P. = 1075 for unequal add. gears. 

148.3. For durability in operation the maximum stress at contact should not exceed 
the elastic limit. Determine for the gears of problem 148.2 the safe tooth load and horse¬ 
power for a maximum stress at contact of 30,OCX) lb./sq. in. 

A ns. W — 4880 lb. and H.P. — 390.5 for the equal add. gears. 
W = 40801b. and II.P. — 329.0 for the unequal add. gears. 

148.4. (a) For the least vibration and noise, what should lie true of the tooth profiles 
and t heir spacing? 

(b) What range of sound vibrations per second are audible to the human ear? 
(c) When will gears and their casings act as resonators? How may the resonance of 

gears and gear casings often be reduced? When must consonance be considered and what 
must be true to secure harmonious sounds? 

149.1 (a) What advantage has the involute over the cycloidal form of tooth in the 
use of formed cutters; what, advantages in the use of generat ing cutters? 

(b) Why cannot the sensitive portions of cycloidal tooth forms be eliminated? In 
what way is this a, disadvantage? In what way is it not, as for involute teeth, a disad¬ 
vantage? 

(r) What other advantage has the involute over the cycloidal form of tooth? 
(d) Explain the advantages of the cycloidal over the involute form of tooth for external 

gears. 

150.1. (a) Wliat five advantages have internal over external involute gears? 
(6) What kind of interference are internal involute gears subject to that external 

involute gears are not? To avoid such interference bow many more teeth should the 
gear have than the pinion for 20-dcgree teeth having an addendum of 0.75 divided by the 
diametral pitch? 

(c) By means of a sketch show that a pair of internal gears would have a longer path 
of contact than a pair of external gears of t he same size and tooth proportions. Explain 
why the internal gear would have teeth of stronger form than the corresponding 
external gear. 

150.2. (u) Why would the sjxxufic sliding and wear be less for a pair of internal than 
for a pair of external involute gears of the sfime size and tooth proportions? 

(b) Why would a pair of internal involute gears lubricate better thkri a pair of external 
involute gears of the same size and tooth proportions? Why would the maximum com¬ 
pressive stress at contact be less for the former than for the latter pair of gears? 

(c) Which permits of the longer path of the point of contact, a pair of involute 
or a pair of cycloidal internal gears of the same pitch radii and working depth of 
teeth ? 

151.1 What is the Williams’ tooth form for internal gears? What are the two advan¬ 
tages of this form of tooth? How is the proposed system for internal gears at a serious 
disadvantage? 

152.1. (a) Why are the teeth of curved spur gears almost invariably made in regular 
helical form? What are such gears called? What is meant by a herringbone gear and why 
are such gears used? 
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(6) How may the involute tooth surfaces of straight spur gears be regarded as gener¬ 
ated, how the involute tooth surfaces of helical spur gears? How does it follow that the 
contact line of the mating teeth of a pair of helical spur gears is a straight diagonal line 
and that the tooth sections are involute in outline only in the plane of rotation? 

162.2. (a) What is meant by a stepfjed spur gear? What must be true for a stepped 
gear to be quieter and smoother in action than a straight spur gear? Why, for cut gears, 
are not stepped gears used instead of helical spur gears? 

(b) Where and for what reason are east, stepped spur gears sometimes used? 
(c) How may a helical spur gear be regarded as a limiting case of a stepped spur gear? 

162.3. (a) Why are helical spur gears quieter and smoother in action than straight 
spur gears? 

(6) Why is it possible with helical spur gears to secure continuous driving by the use 
of pinions that would be too small for continuous driving with straight spur gears? 

(c) How, with helical gears, is it theoretically possible to get pure rolling and constant 
anguhir velocity ratio combined with positive driving? Why is this possibility of no prac¬ 
tical importance? 

152.4. (a) Make a sketch of t he pitch surface of a helical spur gear showing the pitch 
elements of adjacent- teeth, define the normal circular pitch, and express it in terms of the 
circular pitch and helix angle. Deduce the relation between the normal diametral pitch 
and the diametral pitch and helix angle of the gear. 

(b) Although helical spur and helical gears appear alike and are cut in the same way, 
explain why they are differently classified and how they differ in action. 

162.6. (a) Treating the force and components in the tangential plane only, show that 
the load {>er inch of length of tooth is the sam^ tor helical as for straight spur gears. 
Account for the fact that helical spur ge^rvheth are actually stronger than the teeth of 
straight spur gears of the same pitej .tod width of face. 

152.6. (a) How, for helie^dSpur gears, should the circular flitch, width of face, and 
helix angle be related? What minimum value should the width of face of herringbone 
gears exceed? Why should large helix angles be confined to high speeds and light loads? 

(6) Upon what, according to the American Gear Manufacturers’ Association, should 
the design of helical spin* gears be based? 

163.1. (a) What is the purpose of non-circular spur gears? Name the most familiar 
example of a pair of non-circular spur gears. 

(b) What would be required in the way of formed cutters to cut the tooth spaces of a 
• pair of non-circular gears with precision? Why have not- machines been developed for 
generating the teeth of non-circular gears? 

(c) How may approximately correct cycloidal tooth spaces be cut in non-circular 

gears? 
(d) How may approximately correct involute tooth spaces be cut in non-circular 

gears? 

Chapter VIII 

Cutting of Straight and Helical Spur Gears 

164.1. (a) Of what material were the first toothed wheels made and how were the first 

metallic gears made? 
(6) What are the two methods of producing cast gears? Where and when are cast 

gears still used? Why are pattern molded gears made with blacklash? 

164.2. (a) For what two reasons are, gears machine molded instead of being pattern 

molded? 
(b) By the use of suitable sketches explain the process of machine molding a gear. 

Why are machine molded gears more accurate than pattern molded gears? 
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154.3. (a) How are gears die cast? To about what melting temperature is this process 
limited? What metals and alloys are generally used and what non-metallic materials are 
so molded? Why are machine parts die cast? 

(£>) Explain the principle of rolling metallic gears to form. What kinds of gears were 
made by this process and what material was used? 

155.1. (a) What can be said of gear-cutt ing machines as contrasted with other kinds 
of machine tools? What two types of cutting tools do gear-cutting machines use? What 
is the outstanding difference in the use of these cutting tools? 

(b) What are the three principal types of gear-cutting machines? 

166.1. (a) Make a suitable sketch and fully explain the method of cutting a straight 
spur gear by the use of a formed pinning tool. How, with such a tool, would a helical spur 
gear be cut ? 

(b) What are the objections to the use of a formed planing tool in Cutting gears? 

156.2. (a) Make a suitable sketch and fully explain the method of cutting a straight 
spur gear by the use of a formed rotating cutter of the earliest type. How, with such a 
tool, would a helical spur gear be cut? 

(b) In what two ways is a formed rotating cutter sui>erior to a formed planing tool? 

156.3. (a) When was the Brown type of formed, rotating cutter invented? In ’ 
way is it superior to the earliest tyj>e of rotating cutter and in what way s’ 
formed planing tool? 

(b) Make a suitable sketch and fully explain the method of cutting a straight spir 
gear by the use of a Brown type of cutter. When only will the method result in correc 
shaped tooth spaces? 

156.4. (a) Make a suitable sketch explain the method of cutting a 
spur gear by the use of a Brown type of cutter. «c 

(b) Why, by using Brown cutters made for straight, or gears, is it impose 
correctly shaped tooth spaces in helical spur gears, it be«,, assumed that tht 
the space will correspond to the shape of the cutter? 

156.5. (a) Determine, in terms of the helix angle and actual number of tee*, 
formative number of teeth to which the shaf)e of the tooth spaces of a helical gear apj 
mately correspond, the radius of curvature at the end of the minor axis of an ellipse t 0 

p = tf/cosV 
{b) Why will not a cutter selected for the formative number of teeth cut a tooth space 

in a helical spur gear corresponding in shape to itself? Would a cutter selected for a. 
higher or lower number of teeth cut a space more closely corresponding to the formative 
number of teeth? 

157.1. (a) What kind and shape of cutting tool is used in the template method of cut¬ 
ting gear teeth? 

(b) Make a suitable sketch and fully explain the template method of cutting straight 
spur gears. How, by this method, would a helical spur gear be cut? 

(c) What is it that determines when the template method would be used? 

158.1. (a) In the shaping method of generating gear teeth what two types of planing 
tools are used? 

(b) Make a suitable sketch and fully explain the method of generating the teeth of a 
straight spur gear by using a cutter of basic rack form. 

158.2. (a) In the shaping method of generating gear teeth what two types of planing 
tools are used? 

(6) Make a suitable sketch and fully explain the method of generating the teeth of a 
helical spur gear by using a cutter of basic rack form'. 

168.3. (a) In the shaping method of generating gear teeth what two types of planing 
tools are used? 
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(6) Make a suitable sketch and fully explain the method of generating the teeth of a 
straight spur gear by using a pinion shaped cutter 

168.4. (a) In the shaping method of generating gear teeth what two types of planing 
tools are used? 

(6) Make a suitable sketch and fully explain the method of generating tht teeth of a 
helical spur gcai by using a pinion shaped cutter 

159.1. Make a sketch of a tilple-thiead snew and of the trimgle showing the relation 
of the pitch elements of the screw Define the teims lead, anal pilch, tnd lead angle 
Express the tangent of the kad angle in terms of the lead and pitch tadius of the screw, 
the axial pitch in teims of the lead and number of thieids, uid the normal pitch of the 
screw m terms of the axial pit( h and a function of t he lead angle 

169.2. (a) What is a worm? To propeily dnvc a straight spui gen b\ such a sciew- 
like member, what must be true of the foim of the threads and what two pitches must be 
equal? Deduce the ielation between the axial pitch of the woim, the circulai pit( h of the 
geai, and the lead angle of the worm 

(6) Of what material aie hobs made, how are they made, and for wh it purposes are 
they used? 

ty 
line 

snafts. 

159.3. (a) Make a suitable sketch and fully explain how the tooth of i stiaight spur 
gear are generated by the hobbing process At what angulu velont> r itio must the hob 
and geai Wank be driven? Is this i atio iffected by the rate of feed of the hob? 

(ib) In what way is the bobbing method supenoi to the shaping method of generating 
geai teeth? 

159.4. Make a sk~ / if the developed pitch surf w e of i i lght-h ind helical gear and 
yy c 8u 

show that for 2 re view fc* <*of a right-hand hob the blank must be driven at more than 
penphenfh 

one revolution forh minpidef^rate the teeth of the helical spur gear Show that the 

Aguiar velocity ^„d dZg 
that the contemplated k , . ccl 

teq itch cylinders? fts of iuod » nd an a 

/ How may the involute teeth of helical spur and heli^ ^ 
* StJ ouch uo. 

/where/is ^ w^j1 tooth action and otherwise, does a pair ^ cones of a bevel 

pi/ ^§9.6. r of hehcal spur gears? 
/ ^jajake a sketch showing the pitch surfaces and the pitch elementjrt^ ^ indicate 

k 8Piir ^ight-hand hehcal gears, assume the direction of rotation of one,'^ ^ e 
e*Phiirfidm& direction of rotation of the other? ne ^ 

(a) Make a sketch showing the pitch surface and the pitch e\ the 
y teeth of a hehcal gear and determine the relation between the circuh ~m&l 
16m and between the cncular and normal diametral pitches. . V 

^esaJ) Make a sketch of the developed pitch surface and lead triangle of a\ al gear 
(l ^determine the number of teeth m terms of the pitch radius, normal diamCu al pitch, 
*1 helix angle, and express the lead in terms of the pitch radius and helix angle. 

/is.2. (a) How may the tooth surfaces of an involute hehcal gear be considered as 

iated? 
i) F0r a helix angle <f> and an angle of obliquity a in the plane of rotation, determine 
Radius of the base cylinder of a hehcal gear and the tangent of the helix angle <j>' of the 
s cylinder as a function of a and <t>. How is the angle 4>’ related to the method of gen- 

ion mentioned in (a)? 

’ 174.1. (a) Make a plan view of the pitch surfaces of a pair of helical gears, and from 
( b linear velocities of the coincident points in contact determine the angular velocity 
Ktio of the gears in terms of the pitch radii and helix angles. 
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(6) Assuming the pinion to have 16 teeth of 4 diametral pitch, determine N2 and the 
pitchradiiof pinion and gear. Ans. N2 « 24, Ri = 2 in., i?2 - 3 in. 

166.1. (a) Explain why a pair of bevel gears will run more smoothly than a pair of 
spur gears of the same pitch and number of teeth? 

(6) Explain the action between bevel gear teeth. What condition must be fulfilled 
for positive driving and how may the contact ratio of a pair of bevel gears be approxi¬ 
mated? 

167.1. (a) State the requirements for interchangeability of bevel gears. 
(b) Why is it not found desirable to make interchangeable bevel gears? 

168.1. (a) WThat is meant by a straight bevel gear, a curved bevel gear, a spiral bevel 
gear, and a skew bevel gear? Is there any difference in the action of the teeth of such 
bevel gears? 

(6) Make a sketch of a right-hand spiral bevel pinion and gear showing the pitch sur¬ 
faces and pitch elements of the teeth. What are the advantages of spiral over straight 
bevel gears and why do the former run more quietly than the latter? 

168.2. Make a sketch of a right-hand spiral bevel pinion and gear showing the pitch 
surfaces and pitch elements of the teeth, and explain how the direction of the thrust along 
the pinion shaft is determined for clockwise rotation ot the pinion and then how deter¬ 
mined for counter-clockwise rotation, the pinion to be tl)£ ^river. 

169.1. (a) Make a sketch similar to Mg. 169.1 (a) ancV^l^^d fully explain how the 

, e c 

/ / 
/ i a 
r . ,Q JCUod A 

-j_[/*__ * a/ 

“"1.~e \ ^«r gears, is it ~ 
J h . oed" N assumed ti 

* \ i? "* i 
w, m term^41 . angle and actual number N 

' ,—«s \ ith to which the shape of the tooth space's of a hel’cal, 
l ( ) t radius of curvature at the end of the minor axis of an v. 

V*C' a cutter selected for the formative number of teeth cut a td» 
c\. car corresponding in shape to itself? Would a cutter select * 

-*?|anber of teeth cut a space more closely corresponding to the fori/ 

It /hat kind and shape of cutting tool is used in the tempi?* ^method 

ting r A ] $ 
v A suitable sketch and fully explain the template method of c< ^ stn 

spur get /low, by this method, would a helical spur gear be cut? ;> £ / 
(c) W „cd is it that determines when the template method would be used? & >* 

168.1. (a) In the shaping method of generating gear teeth what two types o> \ 
tools are used? 

(b) Make a suitable sketch and fully explain the method of generating the teeth \ 
straight spur gear by using a cutter of basic rack form. ^ 

168.2. (a) In the shaping method of generating gear teeth what two types of planiitii 
tools are used? 

(6) Make a suitable sketch and fully explain the method of generating the teeth of't? 
helical spur gear by using a cutter of basic rack form. * ^ 

168.3. (a) In the shaping method of generating gear teeth what two types of planing 
tools are used? 
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171.1 Make suitable sketches and explain the Gleason method of generating the teeth 
of straight bevel gears by the shaping process. 

171.2. Make suitable sketches and explain how the teeth of spiral bevel gears of the 
Gleason type are generated by the shaping method. Make a separate sketch of the type 
of cutter used. 

Chapter X 

Helical and Hyperboloidal Gears 

Cutting of Helical Gears 

172.1. (a) What are the pitch surfaces and the relation of the axes of helical gears? 
For what purpose are'such gears used? 

(6) Make a plan view of the pitch sur faces of a pair of helical gears whose axes are at 
an angle 6, assume peripheral velocities of the pitch cylinders and show how to determine 
the helices through the coincident points of contact and the corresponding velocity com¬ 
ponents of rolling and sliding. 

(c) In order that the contemplated sliding may take place, what must be true of the 
teeth for the pitch cylinders? 

172.2. (a) How may the involute teeth of helical spur and helical gears be considered 
as generated? 

(ib) How, with respect to tooth action and otherwise, does a pair of helical gears differ 
from a pair of helical spur gears? 

(c) Make a sketch showing the pitch surfaces and the pitch elements of the teeth of a 
pair of right-hand helical gears, assume the direction of rotation of one, and indicate the 
corresponding direction of rotation of the other? 

173.1. (a) Make a sketch showing the pitch surface and the pitch elements of the 
adjacent teeth of a helical gear and determine the relation between the circular and normal 
pitches and between the circular and normal diametral pitches. 

(6) Make a sketch of the developed pitch surface and lead triangle of a helical gear . 
and determine the number of teeth in terms of the pitch radius, normal diametral pitch, 
and helix angle, and express the lead in terms of the pitch radius and helix angle. 

173.2. (a) How may the tooth surfaces of an involute helical gear be considered as 

generated? 
(6) For a helix angle <f> and an angle of obliquity a in the plane of rotation, determine 

the radius of the base cylinder of a helical gear and the tangent of the helix angle 4>' of the 
base cylinder as a function of a and <£. How is the angle <f>' related to the method of gen¬ 
eration mentioned in (a)? 

174,1. (a) Make a plan view of the pitch surfaces of a pair of helical gears, and from 
the linear velocities of the coincident points in contact determine the angular velocity 
ratio of the gears in terms of the pitch radii and helix angles. 
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(b) Express the number of teeth on each gear in terms of the pitch radius, the 
normal diametral pitch, and the helix angle. Express the distance between centers 
in terms of the numbers of teeth, the normal diametral pitch, and the helix angles 
of the gears. 

175.1. (a) What is the distinguishing difference between a worm and worm-wheel pair 
and a pair of regular helical gears? 

(6) If a worm is to drive involute spur and helical gears what kind of teeth must the 
worm have and. how may they be considered to be generated? 

(c) Why are worms seldom used to drive straight spur or helical gears? 
(d) For a worm and worm wheel to be conjugate, what must be true of the hob and 

worm? 

175.2. (a) Make a sketch of a double-thread right-hand worm and its lead triangle 
and express the tangent of the lead angle in terms of the had and pitch radius of the worm, 
the axial pitch of the worm in terms of the lead and number of teeth or threads of the 
worm, and the normal pitch in terms of the axial pitch and lead angle of the worm. 

(b) The angular velocity ratio of a pair of helical gears was shown to be 

Cl)i   /?<> COS </>2 

C02 R\ COS <pi 

Assuming the axes at 90 degrees, show that the angular velocity ratio of a worm and worm 
wheel is independent of the pitch radius of the worm. Why, however, should the pitch 
radius of the worm be chosen with due regard to the axial pitch and number of threads? 

175.3. (a) The tangent of the lead angle of a worm having an axial pitch of 1 inch 
and a pitch diameter of 2.5 inches is 0.38197; determine the lead angle and the number of 
threads on the worm. Ana. X = 20° 54.5', Ni — 3. 

(6) What would be the angular velocity ratio and the distance between centers if the 
co 20 

worm mated with a worm wheel having 60 teeth? Am. — = —, C = 10.7993 in. 
0)2 1 

175.4. (a) For a worm and worm wheel, about what lead angle gives the highest 
efficiency? 

(6) Why are wear and efficiency related? What is the range of the lead angle for 
least wear, for wear that would not be serious, and for wear that would not be destruc¬ 
tive? What are the corresponding ranges of the helix angle? How may these ranges 
be applied to the design of regular helical gears? 

176.1. Shafts at an angle of 60 degrees are to be driven at an angular velocity 
ratio of 2 by a pair of helical gears having a normal diametral pitch of 4. Assuming 
the helix angles of the gears to be equal and the center distance to be approximately 
6.5 inches, determine the number of teeth, the pitch radii, and the center distance for 
the gears. 
Ans Ni = 15, N2 = 30, <f>i = <f>2 = 30°, R1 = 2.165 in., R2 = 4.330 in., C = 6.495 in. 

176.2. Shafts at an angle of 75 degrees and exactly 5.5 inches apart are to be driven 
at an angular velocity ratio of 1.5 by a pair of helical gears having a normal diametral 
pitch of 4. Determine the number of teeth, the helix angles, and the pitch radii of 
the gears. 

Ans. Nl - 14, N2 - 21, <h = 38° 39', <fo = 36° 21', Ri = 2.24077 in., R2 = 3.2592 in. 

177.1. Show and prove that the relations between the dimensions of a pair of helical 
gears may be represented graphically for an angle between shafts of 0, an angular 
velocity ratio of driver to follower of o>i/w2, a distance between centers of C, and a 
desired helix angle for one of the pair of gears. 

177.2. Having given 0, o>i/co2, p'» ,and (7, show howto determine graphically the 
values of Ni and JV2, D\ and D2, and <t>i and 4>* for a pair of helical gears. What 
check should be applied to the graphical solution? 
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♦ ;*!!'\is thT no difference in the cutting of a helical gear and the cut- 
ting oi a helical spur gear? 

(6) How are single- and double-thread hobs fluted? How are hobs having more 
than two threads fluted? 

(c) Make a suitable sketch and fully explain the hobbing of a worm wheel for 
non-intersecting axis at 90 degrees. 

179.1. (a) What are the pitch surfaces and the relation of the axes of hyper- 
boloidal gears? 

(6) By what two kinds of gears may motion be transmitted at a constant angular 
velocity ratio between shafts that are at an angle but do not intersect? 

(c) Why are hyperboloidal gears better than helical gears for the transmission of 
power? What advantage have they over spiral bevel gears? 

Chapter XI 

Linkwork and Miscellaneous Mechanisms 

180.1. What is meant by the term linkwork? To what kinds of mechanisms does 
the term apply? To what three conversions of motion may such mechanisms be 
applied? 

181.1 Make a sketch of a four-link mechanism for circular reciprocation of driver 
and follower, dot in the three limiting positions of the mechanism, and explain how 
the three positions were determined. Explain what is meant by dead point positions 
and why the reciprocation of the follower should be such as to avoid dead point posi¬ 
tions. How are the lengths of the links related in such a mechanism, and what must 
be the relation for complete rotation of the driver? 

181.2. Make a sketch of a Corliss valve and driving mechanism with the steam 
edge of valve and port coincident and explain the operation of the mechanism. What 
characteristics of the motion of the valve on its seat are sought in proportioning the 
links? For the case represented, show how to find the angular velocity ratio of 
valve to driver by the instant center method and explain how this ratio varies during 
a complete cycle. 

182.1. Make a sketch of a four-link mechanism for rotation of the driver and cir¬ 
cular reciprocation of the follower. Why would the motion of the follower be incom¬ 
pletely constrained if (l2 — l\) — ([lo — lz) or if (Z2 + h) — (Z0 -f- Z3)? What must be 
the relation of the lengths of the links for complete rotation of the driver and com¬ 
plete constrainment of the follower? Show how to find for such a mechanism the 
angular velocity ratio of the follower to driver by the method of instant centers. 

183.1. Make a sketch of a four-link mechanism for continuous rotation of driver 
and follower. Why would not the length relations (Z2 + h) — (h + lo) and h = 
(h — U + h) be satisfactory for such a mechanism? How must the lengths of the 
links be related? Show how to find for such a mechanism the angular velocity ratio 
of follower to driver by the method of instant centers. What is such a four-link 
mechanism called? 

183.2. If a drag link is used to connect two cranks the axes of whose shafts coin¬ 
cide, what is the angular velocity ratio of the two cranks? In what way might such 
an arrangement be superior to a shaft with a center crank? What effect has misalign¬ 
ment of the shafts on the angular velocity ratio of the cranks? 

183.3. Why in a drag-link mechanism will not rotation of the driver cause con¬ 
tinuous rotation of the follower when the cranks are of equal length and the length 
of the drive rod is equal to the distance between the centers of rotation? Sketch and 
explain how, for these proportions, complete constrainment of the follower is secured 
in the case of locomotive drive wheels? Show, by means of sketches, two wayB of 
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connecting a driver and twto followers to secure complete constrainment of the fol¬ 
lowers. How must the crank centers and centers of rotation be spaced and which 
crank should be the driver? 

184.1. Make a sketch of a mechanism having four binary links and three turning 
and one sliding pair for converting rotation into circular reciprocation. Explain 
what changes are necessary to transform such a mechanism into the common slider- 
crank chain. 

185.1. Make a sketch of the common slider-crank mechanism having a connect¬ 
ing-rod of finite length and explain how to find the position of the cross-head for any 
crank position and how to find the crank positions for any cross-head position. What 
is meant by “the angularity of the connecting-rod”? Express the distance from the 
mid-stroke position of the cross-head to its position corresponding to either 90-degree 
position of the crank in terms of the radius R of the crank and length l of the con¬ 
necting-rod. To what is this distance equal for a rod of infinite length? 

185.2. Make a sketch of the common slider-crank mechanism having a rod of 
finite length l and crank radius R and determine an expression in terms of l and R for 
the distance from the line of travel of the cross-head pin center to the center of the 
crank-pin when the linear velocity of the cross-head first equals that of the crank-pin 
center. Compute the distance for l = 60 and R = 12 inches. Ans. 11.168 in. 

185.3. For the common slider-crank mechanism having a rod of finite length l 
and crank radius Rt the acceleration of the cross-head is 

A - — oj2R ^cos 0 + j cos 20^ 

where w is the constant angular velocity of the crank in radians per second and 0 the 
angular displacement of the crank. By use of the equation, determine an expression 
for the displacement of the crank at the instant the linear velocity of the cross-head 
is a maximum. Determine the angle in degrees and minutes for l = 60 and 72 == 12 
inches, and determine also the angle in degrees and minutes when the rod is perpen¬ 
dicular to the crank. Ans. 79° 16' 21” and 78° 41' 24”. 

185.4. Make a sketch of a slider-crank mechanism with an offset crank and explain 
how to determine the stroke of the cross-head. Assuming the mechanism to be used 
as a quick return motion and the crank to rotate at a uniform rate, show how to deter¬ 
mine the path of travel of the cross-head and the offset of the crank for a time ratio 
of forward to return motion of 1.4/1 and for a connecting-rod length of three times 
the crank length. 

186.1. Make a sketch of a double slider-crank mechanism having a connecting- 
rod in the fqrm of a ternary link whose length is equal to twice that of the crank. 
Explain what addition will make this mechanism into an elliptic trammel and prove 
that the pencil point will trace an ellipse. 

186.2. Make a sketch of an Oldham coupling and explain what inversion of the 
double slider-crank mechanism it represents. Make a suitable sketch and prove that 
the inverted mechanism may be used in the form of an Oldham coupling to transmit 
motion between parallel shafts sat. a constant angular velocity ratio. 

187.1. What name has been given to the slider-crank mechanism having a rod of 
infinite length? Make a sketch of such a mechanism and prove that the cross-head 
will have simple harmonic motion for uniform rotation of the crank. What advan¬ 
tages and disadvantages has this mechanism as applied to steam fire engine pumps? 

188.1. (a) Make a sketch of a shaft, eccentric, eccentric-rod, and sliding block 
and show that the mechanism is the exact equivalent of the common slider-crank 
mechanism having a crank length equal in length to the distance between the centos 
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of shaft and eccentric. Explain what is meant by the eccentricity, or throw, of an' 
eccentric. 

(b) Where and why are eccentrics used in preference to cranks? Why are eccen¬ 
trics not used in place of large throw cranks? 

189.1. If L is the distance from the center of oscillation of a beam to the center 
line of travel of a piston or ram whose stroke is 2$, show that for minimum angu¬ 
larity of the connecting-rod the length of the beam from the center of oscillation 

$2 

should be OG = L + —Determine OG in feet and inches for a stroke of 8 feet and 
4 L 

for L equal to 12 feet. Ans. 12 ft. 4 in. 

190.1. A bell crank is to transmit motion in the ratio of 2 to 1, respectively, along 
two lines OA and OB intersecting at 120 degrees; show how to determine graphically 
the center of oscillation and the arms of t{xe bell crank. Explain how the equation 
given in 189.1 would be used in determining the radii of the arms. 

191.1. (a) Explain why quick return mechanisms are used in shapers and slotters. 
(b) Explain the operation of the quick ret urn mechanism shown in Fig. 62.1 and 

show how to determine the time ratio of the cutting to the return stroke. What 
practical method is used for changing the length of stroke, and what effect has chang¬ 
ing the length of stroke on the time ratio? 

(c) Assuming the driving link to rotate at a uniform rate show how to determine 
the linear velocity of the ram by the method of instant centers. 

191.2. Same problem as 191.1 but applied to Fig. 62.7. 

191.3. Same problem as 191.1 but applied to Fig. 36.3 (c). 

191.4. Same problem as 191.1 but applied to Fig. 191.4. 

191.6. Same problem as 191.1 but applied to a sketch of the drag link, or Mac 
Cord, quick return mechanism. 

192.1. The application of the floating lever shown in Fig. 192.1 is taken from what 
field of engineering? Why is lever 3 called a floating lever? Explain what takes 
place when the operating, or control, lever 1 is moved to the left; When it is moved 
to the right. Name some machines in which the floating, or differential, lever is used. 

193.1. Explain the operation of the variable stroke mechanism shown in Fig. 

193.1. How may the stroke of 8 be reversed? 

194.1. (a) What are the requirements for perfect side pivot automobile steering? 
Why, for the front wheels turned as shown in Fig. 194.1, would there be no tendency 
to skid? By the use of the figure derive the necessary relation between a and /3 in 
terms of the pivot distance P and length L of the wheel base. 
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(b) Make a sketch of the Ackermann automobile steering mechanism with the 
front wheels turned, the straight-ahead phase of the mechanism being shown by 
heavy dotted lines. Why are not perfect steering conditions possible for all phases 
of this mechanism? What should be kept in mind in proportioning the mechanism? 

196.1. Make a sketch of Watt’s straight-line mechanism. For what purpose 
did Watt use this mechanism? What should be the relation of the links for maximum 
length of the straignt-line motion, and how, for best results, should the point P on 
the connecting link be located? Is the motion of P exact or approximate? 
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195.2. Make a sketch of the essential parts of an engine indicator and describe 
how and for what purpose it is used. 

195.3. Make a diagrammatic sketch of the straight-line mechanism of an engine 
indicator and explain how the proportions of the links are arrived at for straight-line 
motion of the pencil. Is the motion of 
the pencil limited or unlimited, and is it 
exact or approximate? 

195.4. Make a sketch of Roberts 
straight-line mechanism and state the 
length of the connecting link in terms of 
the distance between the fixed centers of 
rotation of the side links. Is the path of 
the tracing point P exact or approximate? 
The condition giving the minimum length 
of the side links for the tracing point at 
one of the fixed centers occurs when the 
connecting link and a side link are in line. 

" Prove, for this condition, that the mini¬ 
mum length of the side links must be 
0.593 times the distance between the fixed 
centers of rotation. 

195.5. Make a sketch of TchebichefT’s straight-line mechanism. Is the path of 
the tracing point exact or approximate? Prove that the length of the side links 
must be equal to 1.25 times the distance between the fixed centers of rotation for P 
to lie in the extension of the mid position of the connecting link when the connecting 
link and either side link are vertical. 

195.6. Make a sketch of Paucellier’s straight-line mechanism and prove that the 
motion of the tracing point is exact. 

196.1. (a) What is the purpose of a pantograph and where are such mechanisms 

used? 
(6) Make a sketch of a pantograph and explain how the mechanism would be 

used to enlarge a drawing. 

196.2. (a) What is the purpose of a pantograph and where are such mechanisms 

used? 
(6) Make a sketch of a pantograph, properly locate two points in the mechanism, 

and prove that the two points will trace exactly similar paths. 

196.3. The pantograph shown in Fig. 196.3 is to be used as an 
indicator reducing motion on an engine having a stroke of 28 
inches. Show how to determine the point of attachment of the 
indicator drum cord and the necessary addition to the mechanism 
to take an indicator card 3.5 inches long. In what direction must 
the cord run from its point of attachment? 

197.1. (a) Make a sketch of Hooke’s coupling, or universal 

joint. 
(6) For two shafts intersecting at an angle 0 and connected 

by a universal joint, the angular velocity ratio of follower to driver 
for any displacement 9 of the driver is 

77T77/77v77777. 

FIG. 196.3 

°>n _ COS ft 

Wm 1 - sin2 9 sin2 /3 
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or in terms of j3 and the angular displacement 4> of the follower, 

on 1 — cos2 sin2 ft 

om cos (3 

For what values of either 6 or </> is the angular velocity ratio of follower to driver a 
maximum; for what values a minimum? 

(c) Make a sketch and explain how, by the use of an intermediate shaft and two 
couplings, the angular velocity ratio of follower to driver may be made constant and 
equal to unity. 

197.2. Two shafts intersecting at an angle (3 are fitted with a universal joint; 
make a suitable sketch and derive the relation of the angular displacement <f> of the 
follower in terms of /3 and the angular displacement 6 of the driver. 

197.3. (a) Two shafts intersecting at 60 degrees are connected by a universal 
coupling. By use of the proper equation from problem 197.1, determine the angu¬ 
lar velocity ratio of follower to driver for a displacement of the driver fork of 45 
degrees from the vertical to the plane of the shafts. Am. 0.80. 

(b) Having found the angular velocity ratio, determine the angular displace- * 
ment of the follower. Am. 26° 34'. 

198.1. (a) For what purpose are intermittent gears used? 

F 

(b) Explain the operation of the pair of intermittent gears shown in Fig. 198.1 
and state the ratio of the period of dwell to the period of motion of the follower. 

(c) Why, except at low speeds, is the action of intermittent gears unsatisfactory? 

199.1. (a) For what purpose are Geneva wheels used, and why, for this pur¬ 
pose, are they much superior to intermittent gears? Name some applications of 
Geneva wheels. 

(6) Explain the operation and features of construction of the pair of Geneva 
wheels shown in Fig. 199.1. What is the ratio of the period of dwell to the period 
of motion of the follower? 
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199.2. Same as problem 199.1 but applied to Fig. 199.2. 

200.1. (a) For what purpose are ratchet and pawl mechanisms used? 
(b) Make a sketch of a toothed ratchet wheel and pawl mechanism and explain 

its operation. 

(c) How must the ratchet teeth and pawl be proportioned to prevent the pawl 
from being thrown out of action? 

(d) Why is it sometimes necessary to use a locking pawl? What expedients may 
be employed to reduce the amount of overhaul? 

200.2. (a) For what purpose are ratchet and pawl mechanisms used? 
(6) Show by means of a sketch what is meant by a double-acting ratchet and 

state what advantage it has over a single-acting ratchet. 
(c) Make a sketch of a friction ratchet and pawl mechanism. What advantages 

has such a ratchet mechanism over mechanisms using toothed ratchet wheels? 

201.1. (a) What is the difference in purpose between a ratchet and an escape¬ 
ment mechanism? Where are escapements used? 

(d) Make a sketch of an escapement mechanism and explain its operation. For 
a pendulum control what action must there be between the escape wheel and anchor 
pallet at each release of the wheel? 

Chapter XII 

Belt, Rope, and Chain Transmission 

202.1?. (a) What is the average thickness of single-ply leather belting? How are 
double-ply and triple-ply leather belts made and about what is the average thick¬ 
ness Of dbuble-ply belts of ordinary widths? 

(6) How are rubber belts made and to what does the ply correspond? Where 
are rubber preferred to leather belts? 

(c) How are cotton belts made? What is meant by balata belting? How is 
camel's hair belting made? 
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203.1. (a) For the continuous driving of one pulley by another by means of a 
belt, prove that, neglecting slip, the angular velocities of driver and follower are 
inversely as their diameters plus the thickness of the belt. Why is the effect of the 
thickness of the belt often neglected? 

(6) When are belts used in preference to other means of transmitting power? 
What is the maximum distance between shaft centers for the usual belt widths and 
pulley diameters; what is usually regarded as the minimum distance between cen¬ 
ters when belt tighteners are not used? When is belt instead of chain transmission 
used? 

204.1. (a) kMake a sketch of a pulley and belt and prove that the turning moment 
on the pulley is equal to the radius of the pulley times the difference in the pulls on 
the tight and slack sides of the belt. 

(b) Determine an expression for the horse-power that may be transmitted by a 
belt in terms of the total effective pull of the belt and the diameter and revolutions 
of the pulley. 

(c) Name the principal factors upon which the effective belt pull depends. 

204.2. A 35-inch pulley rotating at 240 R.P.M. is to transmit 32 horse-power; 
determine the width of a double-ply leather belt for an effective pull per inch of width 
of 80 pounds. Ans. 6 in. 

205.1. Make a suitable sketch and fully explain how a belt is shifted. Of what 
do belt-shifting mechanisms consist and how should they be placed? 

206.1. (a) Make a suitable sketch and fully explain why crowning is effective 
in keeping a belt from running off a pulley. 

(6) How in general are pulleys crowned? What is a very common value for the 
height of crown? When for a leather belt the crowning of the pulley is varied with 
the belt speed, would low or high speed call for the greater crowning? 

207.1. Make a suitable sketch, including the belt shifter, and fully explain how 
and why tight and loose pulleys are used. For such a drive, explain which of the 
pulleys should be crowned. 

208.1. Make a suitable reference sketch and derive an expression for the length 
of a crossed belt in terms of the pulley radii and the distance between axes. 

208.2. Make a suitable reference sketch and derive an expression for the length 
of an open belt in terms of the pulley radii and the distance between axes. 

209.1. Make a sketch of a pair of equal cone pulleys; let Ri, 7?2, etc., be the 
respective radii of the smallest to the largest step of the driving cone, and ru r2, etc., 
be the respective radii of the largest to the smallest step of the driven cone; let o) be 
the constant angular velocity of the driver and «i, w2, etc., the angular velocities 
of the driven cone for the belt on the respective steps 1, 2, etc. Assuming the speeds 
of the driven cone to be in geometric progression and k to be the geometric ratio, 

derive the expression — = kn~ ', where a>n is the angular velocity of the driven cone 
COl 

for the belt on the nth step. Assuming the cones equal, derive the expression 

209.2. The speeds of the driven cone of a pair of equal cone pulleys are to be in 
geometric progression; the progression ratio fc is not to be less than 1.25; and the 
maximum and minimum angular velocities, con and an, of the driven cone are to be 

180 and 60. Having given — = kn~l and — = \/kn~\ determine the number of 
coi Ri 

steps of the cones and the radii of their smallest and largest steps, the smallest radius 
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to be not less than 2\ nor more than 2J inches; also determine the value of k and 
the speeds of the driven cone. 

Ana. n - 6, Rl = 2f in., r, - 4JJ in., k = 1.2457, R.P.M. = 60, 74.74, 93.11, 
116.1, 144.5, 180.0. 

209.3. The length of a crossed belt is, 

L = 2VCr- (lfT^y + (ft + r)w + 2 (ft + r) sin"1 

and 

fS* = 
» rx r, 

where A; is the progression ratio, w the constant angular velocity of the driving cone 
and ojx the angular velocity of the driven cone with the belt on step x. Determine 
the relation between RX1 rXJ Ri, and ri for any given distance C between centers, and 
then determine an expression for rx in terms of Ri, ri, /c, and x. 

209.4. (a) Why are cone pulleys usually designed for open instead of crossed 
belts? 

(b) By inspection of the equation which follows for the length of an open belt, 
demonstrate that the radii of the steps of a pair of cone pulleys are not independent 
of the distance between centers. 

L = 2 \Zr- - + (R f r)n + 2 (ft - r) sin - 1 

(c) What is the most practical way of determining the radii of the steps of a pair 
of cone pulleys for an open belt and a given distance between centers? What prac¬ 
tically are the only errors involved in the use of this method? 

210.1. (a) Make a sketch showing the approximate shape of a pair of speed 
cones for a crossed belt and then for an open belt for speeds in geometric progression 
for equal increments of shift of the belt. How do the pairs differ in appearance? 

(b) Why may a pair of frusta of equal right cones with straight sides be used for 
crossed belts? Will the speeds change in geometric progression for equal increments 
of shift of the belt? Under what conditions may such a pair of cones be used with 
open belts? 

(c) What advantage have speed cones over stepped cones and what objections 
can be urged against ttfe use of speed cones? 

211.1. (a) Make a sketch representing the essential parts of a Reeves variable- 
speed belt transmission and explain its operation. How is the belt constructed and 
how does its manner of transmitting power differ from that of an ordinary belt? 

(b) For about what range of capacities are Reeves transmissions made and for 
about what range of the ratio of the maximum to the minimum revolutions of the 
driven shaft? 

212.1. (a) What principle must be followed in designing a belt drive to transmit 
power between non-parallel shafts? Starting with two pulleys in the same plane on 
parallel shafts, explain how one shaft may be swung out of parallelism with the other 
shaft without the belt running off, the shafts to remain in parallel planes. What 
name is given to a belt drive where the shafts are at right angles but not in the same 
plane? 

(6) What must be done to transmit motion in either direction between pulleys 
on non-parallel shafts by means of a belt? 

212.2. Two shafts at right angles but not in the same plane are to be connected 
by a belt. By means of a two-view orthographic sketch show how this can fee done 
without the use of guide pulleys. 
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213.1. (a) State the principle to be applied and make a two-view sketch of a belt 
drive with shafts intersecting at 90 degrees that will operate in either direction, 
angular velocity ratio §. 

(6) Make a sketoh of a belt drive between non-parallel shafts where the use of a 
guide pulley is necessary to drive in one direction. What would be necessary to 
make the drive operate in either direction? 

213.2. By means of a two-view orthographic sketch show how two pulleys 
unequal in diameter on shafts intersecting at right angles can be connected by a belt 
using two guide pulleys located on a third shaft. 

214.1. (a) What is the function of belt tighteners? How does the use of belt 
tighteners affect the distance between centers that may be successfully used? 

(6) Make a sketch of an adjustable, automatic belt tightener employing a 
weighted idler pulley, and explain its operation. On which side of the belt should the 
idler be placed? 

214.2. (a) What is the function of belt tighteners? How does the use of belt 
tighteners affect the distance between centers that may be successfully used? 

(6) Make a sketch of a self-adjusting, automatic belt tightener employing a gear 
and pinion, and explain its operation. 

215.1. (a) Make a sketch of a V-belt drive. Why, for short center distances, has 
this form of drive displaced many flat belt, chain, and gear drives? In what way 
are V-belt superior to rope drives? 

(6) Explain in what two ways V-belts may be kept taut. 

216.1. (a) What are the names of the two systems of rope drive? About when 
was each system first applied? What is the usual power range of rope transmissions? 

(6) Make a sketch of a multiple rope drive and state the advantages of the mul¬ 
tiple over the continuous system. 

(c) About what is the limiting distance between centers for fibrous rope used 
without idlers? What kind of rope is used for extreme center distances? 

216.2. (a) What are the names of the two systems of rope drive? About when 
was each system first applied? What is the usual power range of rope transmissions? 

(b) Make a sketch of a continuous rope drive and state the advantages of the 
continuous over the multiple system. 

(c) About what is the limiting distance between centers for fibrous rope used 
without idlers? What kind of rope is used for extreme center'distances? 

216.3. (a) What can be said in favor of fibrous ripe drives? When are fibrous 
rope drives cheaper than rubber or leather belt drives? 

(b) Why should not the pitch diameter of fibrous rope sheaves be less than 36 
times the diameter of the rope? What should be true of the sheave grooves? 

(c) Make sketches of the types of grooves for the transmission sheaves of the 
multiple and continuous systems, also sketches of the grooves for the guide and ten¬ 
sion sheaves of these systems. Why, for the same size and number of ropes, are trans¬ 
mission sheaves wider for the multiple than for the continuous system? What 
groove angles are common? 

(d) Make sketches of the grooves for wire rope hoisting and transmission sheaves. 
For what two reasons are the bottoms of the grooves of transmission sheaves filled 
with rubber or leather? 

217.1. Make a sketch of the kind of chain generally used in this country for hoist¬ 
ing purposes. Of what materials are such chains made? What is meant by aril 
chain; by pitch chain? 

213.1. (a) When are transmission chains used instead of gears or flat belts? 
(b) Make sketches of the Ewart detachable chain and the interlocking pintle 
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chain, and state of what material these chains are made and with what kind of 
sprockets they are used. Give the maximum velocity of transmission, the number of 
teeth on the smallest sprocket that should be used, and the maximum ratio of the 
sprockets for such chain. 

218.2. (a) When are transmission chains used instead of gears or flat belts? 
(b) Make sketches of the block and the roller chain and state with what kind of 

sprockets they are used. Why are block chains made in only a few small sizes? Of 
what materials are the parts of roller chains made? For single-strand roller chain 
what range of velocity of transmission for general purposes should not be exceeded 
and what minimum size of sprocket and range of the maximum ratio of sprockets are 
recommended for such chain? 

(c) Why, with a sprocket of given diameter, may a given power be transmitted 
at a higher rotative speed with multiple- than with single-strand chain? What 
mechanical efficiency is possible with roller chain? 

218.3. (a) When are transmission chains used instead of gears or flat belts? 
(b) Make sketches of the Renold and of the Morse chain, and tell how and of 

what materials they are made. What sustained efficiency of transmission is possible 
with these chains, and what range of velocity of transmission is recommended as a 
maximum? Wrhat is the minimum size of sprocket that should be used and what 
range of ratio of sprockets should not be exceeded? Why should the chain if pos¬ 
sible have an even number of links? 

219.1. (a) Make a diagrammatic sketch of a chain transmission, and show, by 
application of the angular velocity theorem, that motion cannot be transmitted from 
one shaft to another at a constant angular velocity ratio. In the demonstration in 
the text, by what percentage did the angular velocity ratio of follower to driver vary 
below and above that corresponding to the numbers of teeth in the sprockets? Bf 
what means is this variation of the angular velocity ratio greatly reduced and 
chain transmission made applicable to many purposes? 

(6) Name some applications where chain could not be substituted for gear trans¬ 
mission. 

220.1. (a) Show by means of a sketch how to determine theoretically correct 
outlines of the teeth pf sprockets for roller chain, assuming the chain and sprocket 
t^eth to have the same pitch. 

(6) Why, in operation, does the pitch of a chain increase? What expedient was 
first applied to permit this change of pitch, and how was the action between the 
chain and sprockets affected? What would be the result if the pitch of the sprocket 
teeth were originally made greater than that of the chain? 

220.2. (a) What expedient did Hans Renold apply to roller chain sprocket teeth 
to prevent defective action as the chain stretched? 

(b) Show- by means of a sketch the Renold form of tooth space for roller chain 
sprockets. What action causes the chain to move radially outward in contact with 
the sprocket teeth as the chain stretches because of wear? How is the obliquity of 
action determined for a sprocket of N teeth? 

(c) While the Renold and Diamond roller chain sprocket teeth are based on the 
same principle in what way do they differ in action? 

221.1. (a) By means of a suitable sketch show how the teeth of the sprockets 
for toothed, or silent, chain are determined by the links of the chain. Why, as they 
stretch, do such chains move radially outward in contact with the sprocket teeth? 
What is the obliquity of action for 60-degree links, and what would be the tooth 

ingle for a sprocket having 12 teeth? 
f (h) What is the primary difference between the Renold and Morse chains? 
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Chapter XIII 

Trains of Mechanism 

222.1. (a) What is meant by the term prime mover? Name several examples of 
prime movers and give the source of energy of each. 

(6) What may be done with the mechanical energy delivered by a prime mover 
before it is consumed in doing useful work? Illustrate by an example. 

222.2. (a) Give a definition of a machine that would cover all kinds of machines. 
(b) Name some kinematic and machine elements that are used for the moving 

parts of machines. What are properly proportioned and related combinations of 
such parts called? 

222.3. (a) By means of a sketch illustrate the following parts of a metal working 
lathe: head stock, tail stock, bed, cone pulley, back gears, spindle, face plate, live 
and dead centers, tool post, cross-slide, tool carriage, feed rod, and lead screw. 

(b) Explain how the work may be held and rotated in a lathe. 

222.4. (a) Describe how a piece of work mounted between centers in a lathe is 
turned (machined), giving the motion of the work and the motion of the cutting 
tool. 

(b) Describe how a piece of work to be bored would be mounted in a lathe and 
describe how it would be machined. 

222.6. Describe how a piece of work to be threaded externally would be mounted 
in a lathe and describe how the screw threads would be cut. 

222.6. (a) What other kinematic and machine elements besides gears and other 
Wheels are found in trains of mechanism? Where in machines are such elements 
generally found? Usually what kind of motion has the driving element of a machine 
and what kind of elements figure largely in the transmission of mechanical energy 
to and through a machine? 

(b) What is meant by a mixed wheel train, what by a gear train? What is the 
difference between an ordinary wheel train and a cyclic wheel train? 

223.1. (a) For what purpose are sliding gears used? Make a sketch of a sliding 
gear and explain how it operates. What is meant by a compound gear? 

(b) What is meant by a feather, or spline, and how is it used? What is meant by 
a splined shaft and when are such shafts used? 

224.1. (a) Make a sketch of an assembly of a double jaw clutch, two gears, and a 
compound gear and explain how the mechanism is used. 

(b) Where rotation is to be continuously in the same direction, how may the 
teeth of a jaw clutch be shaped to facilitate engagement and disengagement? What 
precaution should be observed in operating jaw clutches? 

224.2. What decided advantage has the friction over the jaw clutch? Make a 
sketch of a cone clutch and explain its operation. 

224.3. What decided advantage has the friction over the jaw clutch? Make a 
sketch of a disk clutch and explain its operation. 

224.4. What decided advantage has the friction over the jaw clutch? Make a 
sketch of an expanding ring clutch and explain its operation. 

226.1. First state and then, by using a sketch, demonstrate the purpose for which 
idler gears are used. 

226.1. Make a sketch of the spur gear reversing mechanism as used in lathes 
and explain its operation. 
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226.2. Make a sketch of a bevel gear reversing mechanism and explain its opera¬ 
tion. 

227.1. Make a sketch of the kind of change gear mechanism used on the earlier 
metal working lathes and explain how and for what purpose it was used. 

228.1. Make a sketch of a speed change mechanism using a gear cone and a snap 
key and explain its operation. 

228.2. Make a sketch of a speed change mechanism using a cone gear and tum¬ 
bler gear and explain its operation. Where are such mechanisms used? 

229.1. (a) What is meant by the value of a wheel train? 
(6) State in words the value of a wheel train. 
(c) Suitably number and letter a sketch of a gear train and prove that the value 

of the train is as stated in (b). 

229.2. (a) For the same overall ratio, what advantages has a train over a single 
pair of wheels? 

(b) If in a gear train the diametral pitch of the high revolution pinion is just 
adequate, why cannot the same pitch be used throughout the train? 

229.3. A circular saw is to run at 3000 R.P.M. while the line shaft runs at 150 
R.P.M. A 32-inch pulley is used on the line shaft and a 5-inch pulley on the saw 
arbor. What commercial sizes of pulleys should be used on the countershaft for the 
angular velocity ratios of the two changes to be approximately equal? 

Ans. 7 and 22 in. 

229.4. A 10-inch diameter pulley on a drive shaft is connected by a belt to a 
36-inch diameter pulley on an intermediate shaft to which is keyed an 18-tooth bevel 
pinion meshing with a 60-tooth bevel gear on a worm shaft. The worm has a triple 
thread and drives a 54-tooth worm wheel. Determine the R.P.M. of the worm wheel 
for 432 R.P.M. of the drive shaft. Ans. 2.0. 

229.6. The cutting speed of a planer is to be 33 feet per minute. The driving 
gear engaging with the rack of the planer platen has a pitch diameter of 21 inches 
and is keyed to a shaft carrying a 40-tooth worm wheel driven by a double-thread 
worm on a shaft which carries a 24-inch diameter pulley connected by a belt to a 
16-inch diameter counter-shaft pulley. At what R.P.M. should the counter-shaft run 
to give the desired cutting speed? Ans. 180 R.P.M. 

229.6. The driving wTheel of a hoisting mechanism is 36 inches in diameter. 
Keyed to the same shaft is a 15-tooth pinion meshing with a 36-tooth gear on a worm 
shaft. A single thread worm drives a 50-tooth worm wheel keyed to the shaft of a 
winding drum 12 inches in diameter. What is the ratio of the peripheral speeds of 
the driving wheel to the winding drum? Ans. 360. 

230.1. (a) When, in a train of external gears, will the first and last shafts rotate 
in the same direction, when in opposite directions? 

(b) If the worm of the train shown in Fig. 488 is left-hand, would shafts 1 and 4 
rotate in the same or in opposite directions? Explain in detail how the relative rota¬ 
tion of the shafts was determined. 

231.1. (a) Make a sketch of a cone pulley with back gears and explain how the 
back gears are thrown in and out of mesh and how the different speeds are obtained. 

(6) By what two expedients may the number of possible speeds be increased? 

231.2. (a) The steps of two equal cone pulleys.for a machine tool drive are 12, 
9i, 7J, and 5 inches in diameter. The pinion attached to the cone pulley has 26 
teeth and meshes with a back gear having 90 teeth which is rigidly connected to a 
pinion of 30 teeth meshing with an 86-tooth gear on the spindle. Assuming the 



QUESTIONS AND PROBLEMS 514 

R.P.M. of the counter-shaft to be 120, determine the possible revolutions per minute 

of the spindle with and without the back gears. 
Am. 5.05, 9.30, 15.72, 29.02, 50, 92.31, 156, and 288 R.P.M. 

231.3. (a) Determine, the progression ratio for the spindle speeds of problem 
231.2 to be in geometric progression. Are the actual speeds practically in geometric 
progression? Arts, k — 1.782. 

(b) Assuming the number of spindle speeds of problem 231.2 to be doubled by 
using two counter-shaft speeds, determine the second counter-shaft speed for approxi¬ 
mate geometric progression starting with 5.05 as the minimum spindle speed. 

Am. k - 1.335, R.P.M. 160. 

231.4. (a) Determine the progression ratio for the spindle speeds of problem 
231.2 to be in geometric progression. Are the actual speeds practically in geometric 
progression? Am. k * 1.782. 

(6) Twelve spindle speeds in geometric progression from 5.05 to 288 R.P.M. may 
be obtained by employing a compound sliding gear in the back gear train. Determine 
the progression ratio, counter-shaft R.P.M., and diameters of the cone pulley steps 
assuming 12 inches as diameter of largest step. 

A ns. 1.444-p, 166, and 0f|, 8if, 10A and 12 in, 

232.1. (a) What type of speed change drive has displaced the older drive using 
a cone pulley and back gears? What is the newer drive called? 

(b) The primary speed change drive of a vertical boring mill is shown in Fig. 
232.1. Shaft A is belt driven at 225 R.P.M. The compound gear if, composed of 
gears a and 5, slides on shaft A; the triple gear 2, composed of gears c, d, and ef is 
keyed to shaft B; the compound gear 3, composed of gears / and gr, slides on the 
sleeve to which pinion h is attached,* compound gear 4, composed of gears i and i, is 
free to rotate on shaft B; and gear k slides on shaft C. In accordance with the num¬ 
bers of teeth shown, determine the eight possible speeds of shaft C. ' 

Am. 1462, 21.92, 34.34, 51.51, 77.14, 115.71, 181.25, end 271.87. 

232.2. The gears and shafts of a speed change box are shown in Fig. 232.2. 
Gears a end b are keyed to shaft A; the compound gear lt composed of gears c and d, 
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and the compound gear 2, composed of gears e and /, slide on shaft B; and gears g 
and h are keyed to shaft C, In accordance with the numbers of teeth shown, deter¬ 

mine the four possible values of the angular veloeity ratio of A to C. What would 
be the progression ratio if the speeds were in geometric progression? 

Ans. 0.2265, 0.4475, 0 896, and 1.767, k = 1.983. 

233.1. The single-thread lead screw of a lathe has 4 threads per inch. The 
change gears have 24, 30, 36, 42, 48, 48, 54, 60, 66, 69, 72, 78, and 84 teeth. If the 
stud gear and the lathe spindle rotate at the same angular velocity, what gears should 
be used on the stud and on the lead screw to cut 3, 4, 9, and 11 threads per inch? 

Ans. 48 and 36, 48 and 48, 24 and 54, and 24 and 66. 

234.1. An automobile transmission is shown in Fig. 234 1. Explain how the 

three forward and one reverse speeds are obtained and determine the angular velocity 
ratios of shaft A to D for these speeds. Ans. 1.00, 1.444, 2.294, and 3.00. 
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235.1. (a) What is meant by the term cyclic train and how is the term cyclic jus¬ 
tified? 

(6) For the cyclic train shown in Fig. 235.1 develop the equation for obtaining 
the angular velocity ratio of gear 2 to arm 1 each relative to gear 0. Explain how 
the directional relation is deterrdined. 

FIG. 235.3 

235.2. For Fig. 235.1 assume the respective numbers of teeth of gears 0, 2, and 
3 to be 75, 15, and 20 and show how the angular velocity ratios wao/wio and a>3o/wjo 
can be determined by tabulation. If arm 1 is rotating counter-clockwise, state and 
explain in what directions gears 2 and 3 are rotating. Ans. — 4.0 and +4.75. 

235.3. For the cyclic train of Fig. 235.3, determine, for the numbers of teeth 
shown, the numerical values of the angular velocity ratios «2o/«io, c*W«iot 
fcW«3i, and W23/W10 and state the directional relations of rotation. 

t , 40 20 9 360 . 580 

Am- +n' ■ 9’ ~lT _ 319’ + 99 - 

FIG. 235. 5 

235.4. In Fig. 235.4 arm 1 is keyed to a shaft whose axis coincides with the axis 1 
/oi the fixed gear 0. Using the numbers of gear teeth given in the figure, determine 
the number of revolutions of the shaft to cause gear 3 to make one revolution rela¬ 
tive to the fixed member and state whether 3 and the shaft rotate in the same or 
opposite directions. Ans. —20. 

235.6. For the cyclic train shown in Fig. 235.5 determine the number of teeth for 
/gear 4 so that gear 4 will make three times as many revolutions as gear 2 relative to 
the fixed gear but in the opposite direction. Ans. N* = 30. 

236.1. Make a sketch of the mechanism known as Ferguson’s Paradox and by 
means of assumed numbers of teeth for the gears demonstrate what is paradoxical 
about the mechanism. Explain why involute gears must be used. 
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237*1. (a) What is meant by a reverted cyclic train and what are the advantages 
of cyclic trains of such form? 

(b) Make a sketch of a reverted cyclic gear train and assign such a number of 
teeth to each gear that the driving arm will rotate 10,000 times as fast as the driven 
gear or shaft. Why can not such an extreme ratio be obtained by the use of standard 
pitch gears? 

237.2. In the reverted cylic train of Fig. 237.2 arm 1 rotates with shaft A, gears 
a and b are keyed to the same stud forming the compound gear 2f and gear S is keyed 
to shaft B. How many revolutions will shaft B make for 30 revolutions of shaft A. 
Will A and B rotate in the same or in opposite directions? Am. —1.347. 

Nb‘ 
PP 

w '9 M M ■Mai 
1 H sHSsEEs nMSa 
L£J p n li o i 
No- 35 .-i-L 

T—1 A 

r/G. 237.2 

237.3. In the reverted cyclic train of Fig. 237.3 arm 1, which is keyed to a rotating 
shaft, carries gear S and the compound gear 4 composed of gears a and b; gear 2 is 
keyed to a shaft in line with the shaft to which / is keyed. How many revolutions 
relative to the fixed gear 0 does arm 1 make for 36 revolutions of 2? Do 1 and 2 
rotate in the same or in opposite directions? Am. —21.6. 

238.1. Make a two-view sketch of a hand-operated hoist in which a reverted 
cyclic train containing a stationary internal gear is employed, and explain the opera¬ 
tion of the hoist. For what reasons are two rotating arms used instead of one? 

238.2. Make a two-view sketch of a reducing gear unit in which a reverted cyclic 
train containing a stationary internal gear is em¬ 
ployed, and explain the operation of the unit. For 
what reasons are two or more rotating arms used 
instead of one? 

238.3. In the reverted cyclic hoisting mechanism 
shown in Fig. 238.3 gear 8 is keyed to the drive 
shaft and the rotating arm 1 is keyed to the same 
shaft as the hoisting drum. What is the angular 
velocity ratio of the driving shaft to the drum rela¬ 
tive to the fixed internal gear 0? If the drum is to 
be turned clockwise in what direction must the driv¬ 
ing shaft turn? Am. +12.047. 

239.1. In Fig. 239.1 is shown a cyclic boring bar 
feed train. The bar and gear 1 which is fastened to it rotate about axis A A; com¬ 
pound gear 2, composed of gears a and 6, rotates about axis BB; and compound 
gear 8t composed of gears c and d, rotates about axis A A. As the bar rotates gear 4 
and lead screw S are driven by the train of gears 1, a, b, c, and d. Assuming the 



618 QUESTIONS AND PROBLEMS 

A/ zr P<L~^ / S-AJ.*72 

FIG. 239J 

bar to rotate forward and the lead screw to have 4 right-hand threads per inch, 
determine the number of teeth for gears b and c to cut 8 internal right-hand threads 
per inch. Am. N’t = 32andNc = 64. 

240.1. (a) Make a sketch of a simple reverted cyclic train of bevel gears, explain 
its action, and derive an expression for the angular velocity ratio of the driving to 
the driven shaft. 

(b) What advantages have bevel gear over spur gear cyclic trains? Why are the 
latter more frequently used? 

240.2. Explain the action of Humpag^’s reverted cyclic train of bevel gears, 
using Fig. 240.2, and determine 
the angular velocity ratio of 
shaft A to B for the numbers of 
teeth given. Do shafts A and B 
rotate in the same or in opposite 
directions? Am. —70.0. 

241.1. What is the cyclic 
equalizing gear used in the axle 
drives of automobiles called? 
Make a sketch of such a train 
and explain its purpose and how 
it operates. When does it act as 
a cyclic train and when does it 
not? What is the relation be¬ 
tween the angular velocities of 
the wheel axles and the ring gear 
relative to the housing? 

242.1. Make a diagrammatic 
sketch of a cyclic differential 
hoisting mechanism, explain its 

operation and derive an expression for the angular velocity ratio of the driving 
shaft to the hoisting drum. State and explain what kind of gears must be used. 

242.2. Make a diagrammatic sketch of a Weston differential chain hoist, explain 
its operation, and derive an expression for the distance the load is hoisted for one 
turn of the compound sprocket. 
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Accelerated rectilinear motion, 11 

Acceleration, analytical treatment, 81, 
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Ackermann automobile steering mechan¬ 

ism, 372 
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of obliquity, 235, 247 
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Angular velocity theorem, 70 
Annular gears, 240 
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Aristotle, 221 
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with mushroom follower, 163 

Automobile differential, 453 

Automobile steering mechanism, 372 

Automobile transmission, 442 
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Back gears, 437 

Backlash, 223 

Barrel cam, 130 

Base circle, 230 

Base circle of cam, 134 
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Base radius of cam, 139 
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Bell-crank, 365 

Belt, rope, and chain transmission, 391 

Belts, 391 

length of, 397 

power of, 394 

quarter turn, 405 

shifting of, 396 

Belt tension and power, 394 

Belt tighteners, 406 

Belt transmission, 39, 392 

angular velocity ratio of, 392 
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shafts, 405 

Belt transmission, variable speed, 404 
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cutting of, 325, 327 
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Bevel gears, cycloidal, 313 

elements of, 319 

interchangeability of, 322 

involute, 315 

octoid, 316 

relation of elements of, 319 

skew, 218, 220, 322 

spiral, 218, 220, 322 

straight, 218, 220, 313, 322 
Bilgram, Hugo*, 222, 317 

Block chain, 412 

Boring bar feed train, cyclic, 450 

Brown, Joseph R., 221 

Buckingham, Earle, 267, 269,-310, 311 

Burlingame, L. D., 220 

Burmester, L., 401 

Burmester method, 401 

Cam, base circle of, 134 

base diagram of, 139 

base radius of, 139 

definition of, 125, 183 

design of, 131 

pitch surface of, 134 

pressure angle of, 134 

working surface of, 133 

Cam mechanism, dynamics of, 149, 162 

Cams, barrel, 130 

classification of, 125 

conical, 125, 131 
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constant diameter, 178 
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dog, 131 

double disk, 181 

double step, 136 

drum, 130 

end, 129 

face, 126 
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periphery, 126 
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183, 184 

radial tangent,' 152 

spherical, 125, 131 

stamp mill, 171 

tangent, 151 

toe and wiper, 127 

Cams, translation, 125, 129 

Camus, Chas. E. L., 221 

Candee, Allen H., vi 

Cast and rolled gears, 295 

Center of acceleration, 102 

Centrodes and axodes, 60 

Chain, block, 412 

hoisting, 411 

roller, 412 

silent, 413 

Chain hoist, 448, 455 

Chains, kinematic, 31 

locked, 31 

unconstrained, 31 

Chain transmission, 414 

Change gear mechanism, 431 

Circle, involute of, 230, 270 

Circular arc cams, 178 

Circular pitch, 223 

Classification of cams, 125 

Classification of gears, 218, 220 

Classification of motions, 22 

Clearance, 223 

Closed pairs, 28 
Clutches, cone, 427 

disk, 428 

expanding ring, 429 

friction, 427 

positive jaw, 427 

Combe, James, 409 

Comparison of equal and unequal adden¬ 

dum gears, 274 

Comparison of interchangeable involute 

systems, 258 

Comparison of involute and cycloidal 

tooth forms, 281 

Components of acceleration, 13, 15 

of velocity, 10 

Composition of vectors, 4 

Condition of pure rolling, 43, 45 

Cone clutches, 427 

Cone gears, 432 

Cone pulleys, 399 

Cones, rolling, 204 

speed, 403 

Conical cams, 125, 131 

Conjugate gear teeth, 224 
Constant angular velocity ratio, 40 
Constant breadth cams, 177 

Constant diameter cams, 178 
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Constrained motion, 21 

Constrainment, 31, 32 

Contact, duration of, 255 

Contact ratio, 255 

Continuous driving, 235, 249 

Continuous motion, 22 

Coriolis’ Law, 105 

applications of, 109, 113, 118 

Coupling, Hooke’s, 378 

Criterion of constraint, 32 

Crosby indicator mechanism, 375 

Crowning of pulleys, 396 

Ctesibus, 221 

Curved bevel gears, 218, 220, 322 

Curved spur gears, 218, 220, 288 

Curvilinear motion, 6 

Cut ting of bevel gears, 325, 327 

Cutting of helical gears, 343 

Cutting of screw threads, 425, 440 

Cutting of spur gears, 295, 297, 302, 305 

Cycle of motion, 22 

Cyclic boring-bar train, 450 

Cyclic equalizing gears, 453 

Cyclic hoist, 448 

Cyclic speed reducing unit, 449 

Cyclic trains, 425, 442 

Cylinders, rolling, 204 

Cylindrical cams, 125, 129, 183 

Cycloid, 229 

Cycloidal and involute tooth forms, 

comparison of, 274 

Cycloidal bevel gears, 313 

Cycloidal gear teeth, 229, 232, 238 

Cycloidal internal gears, 240 

Cycloidal rack and pinion, 239 

Cycloidal spur gears, 229, 232, 234 

action of, 234 

daVinci, Leonardo, 221 
Dedendum, 223 
deLahaire, Philippe, 221 

Dent, J. A., 32 
Describing circle, 229, 238, 241 

Design of cam, 131 

Design of machine, 1 

determination of acting forces, 2, 87 

determination of kinematic scheme, 1 

proportioning parts, 2 

specification and drawing, 2 

deVaucanson, Jacques, 222 

Diameter of follower roller, 138 

Diametral pitch, 223 

Differential gears, 453 

Differential hoists, 455 

Differential lever, 370 

Differential mechanisms, 370, 454 

Differentiation, graphical, 77, 78, 79, 80, 
156, 

Direct contact mechanisms, 41, 57, 94, 
113, 157 

Directional relation, 40, 437 

Disk cams, 125, 136, 151, 163, 169, 171, 
173, 174, 176, 178, 181 

Disk clutches, 428 

Displacement, angular, 7 
linear, 6 

Displacement scale, 136 

Displacement-space graph, 139, 141 

Displacement-time graphs,*134 

Displacement, velocity, and accelera¬ 

tion graphs, 141 

Distance between centers, 250, 334, 346 

Dog cam, 131 

Double disk cams, 181 

Double step cam, 136 

Driver, 125 

Driver and follower, 37 

Drum cam, 130 

Duration of contact, 255 

Dwell of follower, 133 

Dynamics of cam mechanism, 149, 162 
f 

Eccentric and rod, 363 

Effect of inversion on instant centers, 58 

Elements of bevel gears, 319 

Ellipses, 188 

Elliptical gears, 188, 293 

End cam, 129 

Engine indicator, 374 

Epicycloid, 229 

Equal addendum gears, 238, 251 

Equal and unequal addendum gears, 238, 

251, 265 

comparison of, 274 

Equalizing gears, cyclic, 453 

Equation of involute, 270 

Escapements, 388 

Euler, Leonard, 221 

Ewart transmission chain, 411 

Expanding ring clutches, 429 
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Face cams, 126 

Face of tooth, 223 

Feed trains, 424, 433, 451 

Fellow's gear shaper, 304 

Ferguson's paradox, 446 

Fixed and permanent centers, 49 
Flank of tooth, 223 

Flat-faced follower, 163, 169, 171, 174 
Floating lever, 370 

Follower, 37, 125 

displacement scale of, 136 

dwell of, 133 

offset, 126 

oscillating, 127, 173, 174, 181 

pitch point of, 132 

radial, 126 

total displacement of, 132 

Follower roller diameter, 138 

Formed cuttdr method of cutting gears, 

297, 325 

Form of teeth of bevel gears, 316 

of helical gears, 332 

of spur gears, 229 

Fouling, 240 

Four-link chain, 33, 52, 57 

Four-link mechanism, 348, 351, 352, 354 

Free motion, 21 

Free vectors, 3 

Friction clutches, 427 

Friction gearing, 186, 210, 213, 215 

Friction speed variators, 215 

Friction wheels, grooved, 213 

Fundamental conceptions, 1 

Fundamental law of tooth profiles, 224 

Gear cones, 432 

' Gear cutting, formed cutter method, 297, 

325 

hobhing method, 305, 343 

shaping method, 302, 327 

template method, 302, 327 

Gear cutting machines, 297 

Geared lathe heads, 438 

Gearing, friction, 186, 210, 213, 215 

Gears, annular, 240 

back, 437 

cast, 295 

change, 431 

classification of, 218, 220 

cone, 432 

Gears, differential, 453 

elliptical, 188, 293 

equal addendum, 238 

equalizing, 453 
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helical, 219, 330 

helical spur, 218, 220, 228 

history of, 220 

hyperboloidal, 219, 330, 344 

idler, 429 

interchangeable, 237, 251, 257 

intermittent, 382 

internal, 240, 282, 286 

machine molded, 295 

noise of, 277 

pattern cast, 295 

pin, 242 

rolled, 295 

sliding, 426 

unequal addendum, 238, 265 

Gear shaper, Fellow's, 304 

National Universa!, 304 

Gear teeth, cutting of, 297, 302, 305, 

325, 327, 343 
cycloidal, 229, 232, 238 

forms of, 229 

fundamental law of, 224 

general method of describing, 228 

grinding of, 311 

involute, 245, 246, 257 

length of, 235, 249 

proportions of, 238, 257 

strength of, 277 

Gear terminology, 222 

Gear tooth, face of, 223 

flank of, 223 

General case of rolling curves, 196 
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Geneva stop, 383 

Geneva wheels, 383 

Graham’s escapement, 388 

Grant, G. B>, 221 

Graphical determination of angular 
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Graphical differentiation, 77,78,79,80,156 

Graphs, 74, 78, 134, 141 

Grinding gear teeth, 311 

Grooved friction wheels, 213 

Guide pulleys, 406 
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Harmonic motion, simple, 12 

Harper, A. C., 32 

Hawkins, 221 

Helical gear problems, 341 

graphical solution of, 341 
mathematical solution of, 339 

Helical and Hyperboloidal gears, 219, 
330, 344 

Helical gears, angular velocity ratio of, 
334 

cutting of, 343 

distance between centers of, 334 

form of teeth of, 332 

pitch of teeth of, 332 

Helical motion, 22, 25 

Helical spur gears, 218, 220, 288 
Herringbone gears, 288 

Higher pair, 28 
History of gears, 220 

Ilobb, 305 
Hobbing of gear teeth, 305, 343 

Hoist, cyclic, 448 

Hoisting chain, 411 

Hoists, differential, 455 

Hooke’s coupling, 378 

Humpage’s gear, 452 

Hyperboloidal gears, 219, 330, 344 

Hyperboloids, rolling, 207 

Hypocycloid, 229 

Idler gears, 429 

Image, acceleration, 97 

velocity, 90 

Incomplete four-link chain, 33, 57 

Indicator mechanisms, 374 

Instant centers, 47, 50, 52, 57, 58 

effect of inversion on, 58 

location of, 50, 52, 57, 58 

number of, 54 
Instant center method for linear veloci¬ 

ties, 64, 66 

Interchangeability of bevel gears, 322 

Interchangeable cycloidal spur gears, 237 

Interchangeable involute spur gears, 251, 

257 
Interchangeable involute systems, com¬ 

parison of, 258 

Interference, 240, 252, 284 

Intermediate describing circle, 241 

Intermittent gears, 382 

Intermittent motion, 22 

Internal cycloidal gears, 240 

Internal gears, 240, 282, 286 

Internal involute gears, 282, 286 
Inverse cam mechanism, 125, 184 
Inversion, 33 

effect on instant centers, 58 

Involute and cycloidal tooth forms, com¬ 
parison of, 281 

Involute bevel gear teeth, 315 

Involute, equation of, 270 

Involute of circle, 230, 270 

Involute rack and pinion, 251 

Involute spur gears, equal addendum, 

251, 257 

unequal addendum, 265 

Involute spur gear teeth, 245, 246, 257 

Kennedy, A. B. W., 55 

Kennedy’s theorem, 55 

applieat ions of, 59 

Kinds of quantities, 3 

Kinematic chains, 31 

Kinematic links, 30 

Kinematic scheme, determination of, 1 

Kinematics, definition of, 1 

place in design of machine, 1 

Klein, A. W., 32 

Klein construction, 81, 104 

Lathe, description of, 423 

Lathe heads, geared, 438 

Length of belts, 397 

Length of teeth, 235, 249 

Lever, 364, 365, 370 

differential, 370 

Lewis equation, 278 

Lewis, Wilfred, 278 

Linear acceleration, 10, 11,12,13,15,81, 

94, 100, 105, 120, 141, 153, 156, 157, 

165, 167 

Linear displacement, 6 

Linear speed, 8 

Linear velocities by instant centers, 64,66 

by resolution, 69 

Linear velocity, 8,9,64,69,74,81,86,88, 

141, 153, 156, 157, 165, 167, 261 

Line of transmission, 37 

Links, binary, 30 

kinematic, 30 



524 INDEX 

Links, quaternary, 30 

ternary, 30 

Linkwork and miscellaneous mecha¬ 

nisms, 348 

Lobed wheels, 199 

Localized vector, 3 

Location of instant centers, 50, 52, 57, 58 

Locked chain, 31 

Logarithmic spirals, 193 

Loose pulleys, 397 

Lower pair, 28 

Maag, 277, 303 

Maag gear shaper, 303 

Machine, definition of, 34, 423 

Machine molded gears, 295 

Machines, gear cutting, 297 

Marshall's valve gear, 92 

Mechanism, definition of, 33 

Mechanisms, differential, 370, 451 

direct contact, 41, 57, 94, 113, 157 

escapement, 388 

miscellaneous, 348 

quick return, 365 

ratchet, 385 

straight-line, 373 

variable stroke, 371 

Methods of transmitting motion, 35 

Miter gears, 219, 322 

Module, 223 

Morse silent chain, 413 

Motion, accelerated, 11 

constrained, 21 

continuous, 22 

curvilinear, 6 

cycle of, 22 

free, 21 

harmonic, 12 

helical, 22, 25 

intermittent, 22 

period of, 22 

phase of, 22 

plane, 22, 26, 47 

reciprocating, 22 

rectilinear, 6, 11 

relative, 17 

rotary, 23 

simple harmonic, 12 

spherical, 22, 26 

uniform, 6 

Motion, variable, 6 

Motion of a point, 6 

Motions, classification of, 22 

Motion, transmission of, 28 

National Universal Gear Shaper, 304 

Nature of rolling and sliding, 41, 43, 45 

Noise of gear teeth, 277 

Non-circular spur gears, 293 

Non-iuterehangeable involute gears, 265 

general considerations, 266, 268 

illustrative problem, 273 

pair of, 270 

relation of rack and pinion of, 269 

Normal acceleration, 13 

Notation, xv, 49 

Number of instant centers, 54 

Obliquity, angle of, 235, 247 

Octoid bevel gear teeth, 316 

Offset follower, 126 

Oscillating beam, 364 

Pairs, 28 

Pantographs, 377 

Parallel motions, 373 

Path, 6 

Path of point of contact, 234, 246 

Pattern cast gears, 295 

Paueellier’s straight-line mechanism, 876 

Period of motion, 22 

Periphery cams, 126 

Permanent and fixed centers, 49 

Phase of motion, 22 

Phorograph, 92 

Pin gears, 242 

Pinion, 224, 239, 251 

Pitch, base, 248 

circular, 223 

diametral, 223 

Pitch diameter, 222 

Pitch element, 218, 220 

Pitch of teeth of helical gears, 332 

Pitch point, 222 

Pitch point of follower, 132 

Pitch surface of cam, 134 

Plane motion, 22, 26, 47 

Point, motion of, 6 

path of, 6 

Point of contact, path of, 234, 246 
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Point of tooth, 223 

Positive driving, 45 

Positive jaw clutches, 427 

Positive return cams, 126, 176, 178, 181, 

183, 184 

Power of belts, 394 

Pressure angle, 134, 235, 247 

Pressure angle of cam, 134 

Prime movers, 423 

Proportioning parts of machine, 2 

Proportions of goal teeth, 238, 257 

Pulleys, cone, 399 

crowning of, 396 

tight and loose, 397 

Pure rolling, 43, 45, 186 

Quantities, kinds of, 3 

Quarter turn bolt, 405 

Quick return mechanisms, 365 

Rack, 224, 239, 251 

Radial follower, 126 

Radial tangent cam, 152 

Radial velocity-space graph, 75 

Range cutter method, 267 

Ratchet mechanisms, 385 

Ratio of angular velocities, 37, 40, 70, 

334, 433, 442 

Reciprocating motion, 22 

Rectilinear motion, 6, 11 

Relation of angles and elements of bevel 

gears, 319 

Relation* of directions, 40, 437 

Relation of linear and angular accelera¬ 

tions, 17 

Relation of linear and angular displace¬ 

ments, 7 

Relation of linear and angular velocities, 9 

Relation of motions, 26 

Relation of scales, 98 

Relative motion, 17 

Renold, Hans, 413 

Renold silent chain, 413 

Resolution of vectors, 4 

Resolution of velocities, 69 

Reuleaux, F., 390 

Reversing mechanisms, 430 

Reverted cyclic trains, 447, 448 

Richard’s indicator mechanism, 374 

Robert’s straight-line mechanism, 375 

I Romer, Olaf, 221 

Rolled gears, 295 
Roller chain, 412 

Roller chain sprockets, 417 

Rolling and sliding, 41, 43, 45 

Rolling circles, 186 

cones, 204 

curves, 186, 196 

cylinders, 204 

ellipses, 188 

hyperboloids, 207 

logarithmic spirals, 193 

surfaces, 203 

Rolling, requirements of, 186 

Root of tooth, 223 

Rope drives, 408 

Rope sheaves, 410 

Rotation, 23 

Rotation and translation, 25 

Scalar quantities, 3 

Scale relations, 98 

Screw cutting train, 440 

Screw" pair, 28 

Screw threads, eutting of, 425, 440 

Sheaves, 410 

Shifting of belts, 396 

Shaping method of generating gear teeth, 

302, 327 

Silent chain, 413 

Silent chain sprockets, 419 

Simple harmonic motion, 12 

Skew bevel gears, 218, 220, 322 

Slider crank mechanism, 33, 53, 75, 81, 

95, 104, 354, 359, 361, 363 

Sliding between teeth, 236, 261 

Sliding gears, 426 

Sliding pair, 28 

Smith, R. IL, 88 

Solution of helical gear problems, 339, 

341 

Specification and drawing, 2 

Specific sliding and velocity of sliding. 

236, 261 

Speed, 8 

Speed cones, 403 

Speed reducing unit, cyclic, 449 

Speed variators, friction, 215 

Spherical cams, 125, 131 

Spherical motion, 22, 26 
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Spherical pair, 28 

Spiral bevel gears, 218, 220, 322 

Spiral gears, 219, 220 

Spirals, logarithmic, 193 

Sprockets, chain, 417, 419 

Spur gears, curved, 218, 220, 288 

cutting of, 295, 297, 302, 305 

helical, 218, 220, 288 

herringbone, 288 

non-circular, 293 

stepped, 288 

straight, 218, 220 

Spur gear teeth, action of, 243, 246 

form of, 229 

Stamp mill cam, 171 

Standard interchangeable involute gear 

teeth, 257 

Steering mechanism of automobile, 

372 

Stephenson’s valve gear, 123 

Stepped spur gears, 288 

Stewart, A. L., 346 

Straight bevel gears, 218, 220, 313, 

322 

Straight-line mechanisms, 373 

Straight spur gears, 218, 220 

Strength, wear, and noise of gear teeth, 

277 

Structure, 31 

Subtraction of vectors, 3 

Suplee, H. H., 390 

Surfaces, rolling, 203 

Syke’s gear cutting machine, 304 

Tabor indicator mechanism, 374 

Tangent cam, 151 

Tangential acceleration, 13 

Tchebicheffs straight-line mechanism, 

376 

Teeth, fundamental law of, 224 

Template method of cutting gear teeth, 

302, 327 

Tension of belts, 394 

Terminology of gears, 222 

Three-line construction, 120 

Theorem of angular velocities, 70 

Tight and loose pulleys, 397 

*oe and wiper cam, 127 

^al displacement of follower, 132 

m, cyclic, 442 

Trains of mechanism, 423 

Train, value of a, 433 

Translation, 24 

Translation and rotation, 25 

Translation cams, 125, 129 

Transmission, automobile, 442 

belt, 39, 392 

chain, 414 

Transmission chains, 411 

Transmission of motion, 28 

Transmitting motion, methods of, 35 

Tredgold’s approximate method, 317 

Trobjevieh, Nickola, 310 

Turning pair, 28 

Unclosed pair, 28 

Unconstrained chain, 31 

Undercutting, 253 

Unequal addendum gears, 238, 265 

Uniform motion, 6 

Universal joint, 378 

Utilization of energy, 423 

Value of wheel train, 433 

Valve gear, Marshall’s, 92 

Stephenson’s, 123 

Variable center distance method, 268 

Variable motion, 6 

Variable speed belt transmission, 404 

Variable stroke mechanism, 371 

V-belfc drives, 408 

Vector diagram of accelerations,*94, 100, 

120, 157, 167 

Vector diagram of velocities, 88, 91, 120, 

157, 167 

Vector quantities, 3 

Vectors, addition of, 3 

composition of, 4 

resolution of, 4 

subtraction of, 3 

Velocities, analytical treatment of, 81, 

141, 151, 163, 261 

three-line construction for, 120 

Velocities by resolution, 69 

Velocity and acceleration, 86 

Velocity, angular, 9, 70, 72, 84, 90 

linear, 8, 9, 64, 69, 74, 81, 88, 141, 

153, 156, 157, 165,167, 261 

Velocity components, 10 
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