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PREFACE TO THE FIRST EDITION 

HPHE fact that certain bodies, after being rubbed, appear 

to attract other bodies, was known to the ancients. In 

modern times, a great variety of other phenomena have been 

observed, and have been found to be related to these pheno¬ 

mena of attraction. They have been classed under the name 

of Electric phenomena, amber, rjktKrpov, having been the sub¬ 

stance in which they were first described. 

Other bodies, particularly the loadstone, and pieces of iron 

and steel which have been subjected to certain processes, have 

also been long known to exhibit phenomena of action at 

a distance. These phenomena, with others related to them, 

were found to differ from the electric phenomena, and have 

been classed under the name of Magnetic phenomena, the 

loadstone, p.&yvrj$f being found in the Thessalian Magnesia. 

These two classes of phenomena have since been found to be 

related to each other, and the relations between the various 

phenomena of both classes, so far as they are known, constitute 

the science of Electromagnetism. 

In the following Treatise I propose to describe the most 

important of these phenomena, to shew how they may be 

subjected to measurement, and to trace the mathematical 

connexions of the quantities measured. Having thus obtained 

the data for a mathematical theory of electromagnetism, and 
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having shewn how this theory may be applied to the calcula¬ 

tion of phenomena, I shall endeavour to place in as clear a 

light as I can the relations between the mathematical form of 

this theory and that of the fundamental science of Dynamics, 

in order that we may be in some degree prepared to determine 

the kind of dynamical phenomena among which we are to 

look for illustrations or explanations of the electromagnetic 

phenomena. 

In describing the phenomena, I shall select those which 

most clearly illustrate the fundamental ideas of the theory, 

omitting others, or reserving them till the reader is more 

advanced. 

Tlie most important aspect of any phenomenon from a 

mathematical point of view is that of a measurable quantity. 

I shall therefore consider electrical phenomena chiefly With 

a view to their measurement, describing the methods of 

measurement, and defining the standards on which they 

depend. 

In the application of mathematics to the calculation of elec¬ 

trical quantities, I shall endeavour in the first place to deduce 

the most general conclusions from the data at our disposal, 

and in the next place to apply the results to the simplest 

cases that can be chosen. I shall avoid, as much as I can. 

those questions which, though they have elicited the skill of 

mathematicians, have not enlarged our knowledge of science. 

The internal relations of the different branches of the 

science which we have to study are more numerous and com¬ 

plex than those of any other science hitherto developed. Its 

external relations, on the one hand to dynamics, and on the 

other to heat, light, chemical action, and the constitution of 

bodies, seem to indicate the special importance of electrical 

science as an aid to the interpretation of nature. 

It appears to me, therefore, that the study of electromagnet¬ 

ism in all its extent has now become of the first importance 

as a means of promoting the progress of science. 

The mathematical laws of the different classes of phenomena 

have been to a great extent satisfactorily made out. 
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The connexions between the different classes of phenomena 

have also been investigated, and the probability of the rigorous 

exactness of the experimental laws have been greatly strength¬ 

ened by a more extended knowledge of their relations to each 

other. 

Finally, some progress has been made in the reduction of 

electromagnetism to a dynamical science, by shewing that no 

electromagnetic phenomenon is contradictory to the suppo¬ 

sition that it depends on purely dynamical action. 

What has been hitherto done, however, has by no means 

exhausted the field of electrical research. It has rather opened 

up that field, by pointing out subjects of enquiry, and furnish¬ 

ing us with means of investigation. 

It is hardly necessary to enlarge upon the beneficial results 

of magnetic research on navigation, and the importance of a 

knowledge of the true direction of the compass, and of the 

effect of the iron in a ship. But the labours of those who 

have endeavoured to render navigation more secure by means 

of magnetic observations have at the same time greatly ad¬ 

vanced the progress of pure science. 

Gauss, as a member of the German Magnetic Union, brought 

his powerful intellect to bear on the theory of magnetism, and 

on the methods of observing it, and he not only added greatly 

to our knowledge of the theory of attractions, but reconstructed 

the whole of magnetic science as regards the instruments used, 

the methods of observation, and the calculation of the results, 

so that his memoirs on Terrestrial Magnetism may be taken as 

models of physical research by all those who are engaged in 

the measurement of any of the forces in nature. 

The important applications of electromagnetism to tele¬ 

graphy have also reacted on pure science by giving a com¬ 

mercial value to accurate electrical measurements, and by 

affording to electricians the use of apparatus on a scale which 

greatly transcends that of any ordinary laboratory. The con¬ 

sequences of this demand for electrical knowledge, and of 

these experimental opportunities for acquiring it, have been 

already very great, both in stimulating the energies of ad- 
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vanced electricians, and in diffusing among practical men 

a degree of accurate knowledge which is likely to conduce 

to the general scientific progress of the whole engineering 

profession. 

There are several treatises in which electrical and magnetic 

phenomena are described in a popular way. These, however, 

are not what is wanted by those who have been brought face 

to face with quantities to be measured, and whose minds do 

not rest satisfied with lecture-room experiments. 

There is also a considerable mass of mathematical memoirs 

which are of great importance in electrical science, but they 

lie concealed in the bulky Transactions of learned societies; 

they do not form a connected system ; they are of very unequal 

merit, and they are for the most part beyond the comprehension 

of any but professed mathematicians. 

I have therefore thought that a treatise would be useful 

which should have for its principal object to take up the 

whole subject in a methodical manner, and which should also 

indicate how each part of the subject is brought within the 

reach of m* thods of verification by actual measurement. 

The general complexion of the treatise differs considerably 

from that of several excellent electrical works, published, most 

of them, in Germany, and it may appear that scant justice is 

done to the speculations of several eminent electricians and 

mathematicians. One reason of this is that before I began 

the study of electricity I resolved to read no mathematics on the 

subject till I had first read through Faraday’s Experimental 

Researches in Electricity. I was aware that there was supposed 

to be a difference between Faraday’s way of conceiving phe¬ 

nomena and that of the mathematicians, so that neither he 

nor they were satisfied with each other’s language. I had 

also the conviction that this discrepancy did not arise from 

either party being wrong. I was first convinced of this by 

Sir William Thomson*, to whose advice and assistance, as 

* I take this opportunity of acknowledging my obligations to Sir W. 
Thomson and to Professor Tait for many valuable suggestions made during 
the printing of this work. 
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well as to his published papers, I owe most of what I have 

learned on the subject. 

As I proceeded with the study of Faraday, I perceived that 

his method of conceiving the phenomena was also a mathe¬ 

matical one, though not exhibited in the conventional form 

of mathematical symbols. I also found that these methods 

were capable of being expressed in the ordinary mathematical 

forms, and thus compared with those of the professed ma¬ 

thematicians. 

For instance, Faraday, in his mind’s eye, saw lines of force 

traversing all space where the mathematicians saw centres of 

force attracting at a distance: Faraday saw a medium where 

they saw nothing but distance: Faraday sought the seat of 

the phenomena in real actions going on in the medium, they 

were satisfied that they had found it in a power of action at a 

distance impressed on the electric fluids. 

When 1 had translated what I considered to be Faraday’s 

ideas into a mathematical form, I found that in general the 

results of the two methods coincided, so that the same phe¬ 

nomena were accounted for, and the same laws of action de¬ 

duced by both methods, but that Faraday’s methods resembled 

those in which we begin with the whole and arrive at the 

parts by analysis, while the ordinary mathematical methods 

were founded on the principle of beginning with the parts 

and building up the whole by synthesis. 

I also found that several of the most fertile methods of 

research discovered by the mathematicians could be expressed 

much better in terms of ideas derived from Faraday than in 

their original form. 

The whole theory, for instance, of the potential, considered 

as a quantity which satisfies a certain partial differential equa¬ 

tion, belongs essentially to the method which I have called that 

of Faraday. According to the other method, the potential, 

if it is to be considered at all, must be regarded as the result 

of a summation of the electrified particles divided each by its 

distance from a given point. Hence many of the mathematical 

discoveries of Laplace, Poisson, Green and Gauss find their 
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proper place in this treatise, and their appropriate expressions 

in terms of conceptions mainly derived from Faraday. 

Great progress has been made in electrical science, chiefly 

in Germany, by cultivators of the theory of action at a dis¬ 

tance. The valuable electrical measurements of W. Weber are 

interpreted by him according to this theory, and the electro¬ 

magnetic speculation which was originated by Gauss, and 

carried on by Weber, Riemann, J. and C. Neumann, Lorenz, &c., 

is founded on the theory of action at a distance, but depending 

either directly on the relative velocity of the particles, or on 

the gradual propagation of something, whether potential or 

force, from tire one particle to the other. The great success 

which these eminent men have attained in the application of 

mathematics to electrical phenomena, gives, as is natural, 

additional weight to their theoretical speculations, so that 

those who, as students of electricity, turn to them as the 

greatest authorities in mathematical electricity, would probably 

imbibe, along with their mathematical methods, their physical 

hypotheses. 

These physical hypotheses, however, are entirely alien from 

the way of looking at things which I adopt, and one object 

which I have in view is that some of those who wish to study 

electricity may, by reading this treatise, com© to see that 

there is another way of treating the subject,, which is no less 

fitted to explain the phenomena, and which, though in some 

parts it may appear less definite, corresponds, as I think, more 

faithfully with our actual knowledge, both in what it affirms 

and in what it leaves undecided. 

In a philosophical point of view, moreover, it is exceedingly 

important that two methods should be compared, both of 

which have succeeded in explaining the principal electro¬ 

magnetic phenomena, and both of which have attempted to 

explain the propagation of light as an electromagnetic phe¬ 

nomenon and have actually calculated its velocity, while at the 

same time the fundamental conceptions of what actually takes 

place, as well as most of the secondary conceptions of the 

quantities concerned, ate radically different. 
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I have therefore taken the part of an advocate rather than 

that of a judge, and have rather exemplified one method than 

attempted to give an impartial description of both. I have 

no doubt that the method which I have called the German 

one will also find its supporters, and will be expounded with 

a skill worthy of its ingenuity. 

I have not attempted an exhaustive account of electrical 

phenomena, experiments, and apparatus. The student who 

desires to read all that is known on these subjects will find 

great assistance from the TraiU d'Electricity of Professor A. 

de la Hive, and from several German treatises, such as Wiede¬ 

mann’s Galvan/sums, liiess’ Reibungselektricitdt, Beer’s Einlei- 

tung in die Elektrostatilc, &c. 

I have confined myself almost entirely to the mathematical 

treatment of the subject, but I would recommend the student, 

after he has learned, experimentally if possible, what are the 

phenomena to be observed, to read carefully Faraday’s Experi¬ 

mental Researches in Electricity. He will there find a strictly 

contemporary historical account of some of the greatest elec¬ 

trical discoveries and investigations, carried on in an order 

and succession which could hardly have been improved if the 

results had been known from the first, and expressed in the 

language of a man who devoted much of his attention to 

the methods of accurately describing scientific operations and 

their results*. 

It is of great advantage to the student of any subject to 

read the original memoirs on that subject, for science is always 

most completely assimilated when it is in the nascent state, 

and in the case of Faraday’s Researches this is comparatively 

easy, as they are published in a separate form, and may be 

read consecutively. If by anything I have here written I 

may assist any student in understanding Faraday’s modes of 

thought and expression, I shall regard it as the accomplish¬ 

ment of one of my principal aims—to communicate to others 

the same delight which I have found myself in reading Fara¬ 

day’s Researches. 

* Life and Letters of Faraday, vol. i, p. 395. 
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The description of the phenomena, and the elementary parts 

of the theory of each subject, will be found in the earlier 

chapters of each of the four Parts into which this treatise 

is divided. The student will find in these chapters enough 

to give him an elementary acquaintance with the whole 

science. 

The remaining chapters of each Part are occupied with the 

higher parts of the theory, the processes of numerical calcu¬ 

lation, and the instruments and methods of experimental 

research. 

The relations between electromagnetic phenomena and those 

of radiation, the theory of molecular electric currents, and 

the results of speculation on the nature of action at a dis¬ 

tance, are treated of in the last four chapters of the second 

volume. 
"ty 

Jambs Clerk Maxwell. 

Feb. 1, 1873. 
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TT7HEN I was asked to read the proof-sheets of the second 

™ * edition of the Electricity and Magnetism the work of,, 

printing had already reached the ninth chapter, the greater 

part of which had been revised by the author. 

Those who are familiar with the first edition will see from a 

comparison with the present how extensive were the changes 

intended by Professor Maxwell both in the substance and in 

the treatment of the subject, and how much this edition has 

suffered from his premature death. The first nine chapters 

were in some cases entirely rewritten, much new matter being 

added and the former contents rearranged and simplified. 

Prom the ninth chapter onwards the present edition is 

little more than a reprint. The only liberties I have taken 

have been in the insertion here and there of a step in the 

mathematical reasoning where it seemed to be an advantage 

to the reader and of a few foot-notes on parts of the subject 

which my own experience or that of pupils attending my 

classes shewed to require further elucidation. Those foot¬ 

notes are in square brackets. , 

There were two parts of the subject in the treatment of 

which it was known to me that the Professor contemplated 

considerable changes: viz. the mathematical theory of the 

conduction of electricity in a network of wires, and the de¬ 

termination of coefficients of induction in coils of wire. In 



PREFACE TO THE SECOND EDITION. xiv 

these subjects I have not found myself in a position to add, 

from the Professor’s notes, anything substantial to the work 

as it stood in the former edition, with the exception of a 

numerical table, printed in vol. ii, pp. 317-319. This table will 

be found very useful in calculating coefficients of induction 

in circular coils of wire. 

In a work so original, and containing so many details of 

new results, it was impossible but that there should be a few 

errors in the first edition. I trust that in the present edition 

most of these will be found to have been corrected. I have 

the greater confidence in expressing this hope as, in reading 

some of the proofs, I have had the assistance of various 

friends conversant with the work, among whom I may men¬ 

tion particularly my brother Professor Charles Niven, and 

Mr. J. J. Thomson, Fellow of Trinity College, Cambridge. 

W. D. Niven. 

Trinity College, Cambridge, 

Oct. 1,1881. 
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T UNDERTOOK the task of reading the proofs of this 

^ Edition at the request of the Delegates of the Clarendon 

Press, by whom I was informed, to my great regret, that Mr. 

W. D. Niven found that the pressure of his official duties 

prevented him from seeing another edition of this work 

through the Press. 

The readers of Maxwell’s writings owe so much to the un¬ 

tiring labour which Mr. Niven has spent upon them, that I am 

sure they will regret as keenly as I do myself that anything 

should have intervened to prevent this Edition from receiving 

the benefit of his care. 

It is now nearly twenty years since this book was written, 

and during that time the sciences of Electricity and Mag¬ 

netism have advanced with a rapidity almost unparalleled in 

their previous history; this is in no small degree due to the 

views introduced into these sciences by this book: many of 

its paragraphs have served as the starting-points of important 

investigations. When I began to revise this Edition it was 

my intention to give in foot-notes some account of the ad¬ 

vances made since the publication of the first edition, not 

only because I thought it might bo of service to the students 

of Electricity, but also because all recent investigations have 

tended to confirm in the most remarkable way the views ad¬ 

vanced by Maxwell. I soon found, however, that the progress 

made in the science had been so great that it was impossible 
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to carry out this intention without disfiguring the book by a 

disproportionate quantity of foot-notes. I therefore decided to 

throw these notes into a slightly more consecutive form and 

to publish them separately. They are now almost ready for 

press, and will I hope appear in a few months. This volume 

of notes is the one referred to as the ‘ Supplementary Volume.’ 

A few foot-notes relating to isolated points which could be 

dealt with briefly are given. All the matter added to this 

Edition is enclosed within { } brackets. 

I have endeavoured to add something in explanation of the 

argument in those passages in which I have found from my 

experience as a teacher that nearly all students find consider¬ 

able difficulties; to have added an explanation of all passages 

in which I have known students find difficulties would have, 

required more volumes than were at my disposal. 

I have attempted to verify the results which Maxwell gives 

without proof; I have not in all instances succeeded in 

arriving at the result given by him, and in such cases I have 

indicated the difference in a foot-note. 

I have reprinted from his paper on the Dynamical Theory of 

the Electromagnetic Field, Maxwell’s method of determining 

the self-induction of a coil. The omission of this from previous 

editions has caused the method to be frequently attributed to 

other authors. 

In preparing this edition I have received the greatest pos¬ 

sible assistance from Mr. Charles Chree, Fellow of King’s College, 

Cambridge. Mr. Chree has read the whole of the proof sheets, 

and his suggestions have been invaluable. I have also received 

help from Mr. Larmor, Fellow of St. John’s College, Mr. 

Wilberforce, Demonstrator at the Cavendish Laboratory, and 

Mr. G. T. Walker, Fellow of Trinity College. 

J. J. Thomson. 

Cavendish Laboratory : 

Dec. 5, 1891. 
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ELECTRICITY AND MAGNETISM. 

PRELIMINARY. 

ON THE MEASUREMENT OF QUANTITIES. 

1. ] Every expression of a Quantity consists of two factors or 

components. One of these is the name of a certain known quan¬ 

tity of the same kind as the quantity to be expressed, which is 

taken as a standard of reference. The other component is the 

number of times the standard is to be taken in order to make up 

the required quantity. The standard quantity is technically 

called the Unit, and the number is called the Numerical Value 

of the quantity. 

There must be as many different units as there are different 

kinds of quantities to be measured, but in all dynamical sciences 

it is possible to define these units in terms of the three funda¬ 

mental units of Length, Time, and Mass. Thus the units of area 

and of volume are defined respectively as the square and the 

cube whose sides are the unit of length. 

Sometimes, however, we find several units of the same kind 

founded on independent considerations. Thus the gallon, or the 

volume of ten pounds of water, is used as a unit of capacity as 

well as the cubic foot. The gallon may be a convenient measure 

in some cases, but it is not a systematic one, since its numerical 

relation to the cubic foot is not a round integral number. 

2. ] In framing a mathematical system we suppose the funda¬ 

mental units of length, time, and mass to be given, and deduce 

all the derivative units from these by the simplest attainable 

definitions. 

The formulae at which we arrive must be such that a person 

of any nation, by substituting for the different symbols the 

VOL. i. B 
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numerical values of the quantities as measured by his own 

national units, would arrive at a true result. 

Hence, in all scientific studies it is of the greatest importance 

to employ units belonging to a properly defined system, and to 

know the relations of these units to the fundamental units, so 

that we may be able at once to transform our results from one 

system to another. 

This is most conveniently done by ascertaining the diwenstons 

of every unit in terms of the three fundamental units. When a 

given unit varies as the nth power of one of these units, it is 

said to be of'/? dim elisions as regards that unit. 

For instance, the scientific unit of volume is always the cube 

whose side is the unit of length. If the unit of length varies, 

the unit of volume will vary as its third power, and the unit of 

volume is said to be of three dimensions with respect to the unit 
of length. 

A knowledge of the dimensions of units furnishes a test which 

ought to he applied to the equations resulting from any lengthened 

investigation. The dimensions of every term of such an equa¬ 

tion, with respect to each of the three fundamental units, must 

be the same. If not, the equation is absurd, and contains some 

error, as its interpretation would bo different according to the 

arbitrary system of units which we adopt* 

The Three Fundamental Units. 

3.] (1) Length. The standard of length for scientiiic purposes 

in this country is one foot, which is the third part of the standard 

yard preserved in the Exchequer Chambers. 

In France, and other countries which have adopted the metric 

system, it is the metre. The metre is theoretically the ten mil¬ 

lionth part of the length of a meridian of the earth measured 

from the pole to the equator; but practically it is the length of 

a standard preserved in Paris, which was constructed by Borda 

to correspond, when at the temperature of melting ice, with the 

value of the preceding length as measured by Delambre. The 

metre has not been altered to correspond with new and more 

accurate measurements of the earth, but the arc of the meridian 

is estimated in terms of the original mktre. 

* Tlie theory of dimensions was first stated by Fourier, Thtorie de Chaleur, § 160. 
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In astronomy the mean distance of the earth from the sun is 

sometimes taken as a unit of length. 

In the present state of science the most universal standard of 

length which we could assume would he the wave length in 

vacuum of a particular kind of light, emitted hy some widely 

diffused substance such as sodium, which has well-defined lines 

in its spectrum. Such a standard would he independent of any 

changes in the dimensions of the earth, and should be adopted 

by those who expect their writings to he more permanent than 

that body. 

In treating of the dimensions of units we shall call the unit of 

length [X]. If 1 is the numerical value of a length, it is under¬ 

stood to be expressed in terms of the concrete unit [X], so that 

the actual length would he fully expressed hy l [ L\ 

4. ] (2) Time. The standard unit of time in all civilized 

countries is deduced from the time of rotation of the earth 

about its axis. The sidereal day, or the true period of rotation 

of the earth, can be ascertained with great exactness by the 

ordinary observations of astronomers; and the mean solar day 

can he deduced from this by our knowledge of the length of 

the year. 

The unit of time adopted in all physical researches is one 

second of mean solar time. 

Tn astronomy a year is sometimes used as a unit of time. A 

more universal unit of time might be found by taking the 

periodic time of vibration of the particular kind of light whose 

wave length is the unit of length. 

We shall call the concrete unit of time [X], and the numerical 

measure of time t. 

5. ] (3) Maes. The standard unit of mass is in this country 

the avoirdupois pound preserved in the Exchequer Chambers. 

The grain, which is often used as a unit, is defined to be the 

7000th part of this pound. 

In the metrical system it is the gramme, which is theoretically 

the mass of a cubic centimetre of distilled water at standard 

temperature and pressure, but practically it is the thousandth 

part of the standard kilogramme preserved in Paris. 

The accuracy with which the masses of bodies can be com¬ 

pared by weighing is far greater than that hitherto attained in 

the measurement of lengths, so that all masses ought, if possible, 
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to be compared directly with the standard, and not deduced from 

experiments on water. 

In descriptive astronomy the mass of the sun or that of the 

earth is sometimes taken as a unit, but in the dynamical theory 

of astronomy the unit of mass is deduced from the units of time 

and length, combined with the fact of universal gravitation. The 

astronomical unit of mass is that mass which attracts another 

body placed at the unit of distance so as to pi educe in that body 

the unit of acceleration. 

In framing a universal system of units we may either deduce 

the unit of mass in this way from those of length and time 

already defined, and this we can do to a rough approximation in 

the present state of science; or, if we expect * soon to be able to 

determine the mass of a single molecule of a standard substance, 

we may wait for this determination before fixing a universal 

standard of mass. 

We shall denote the concrete unit of mass by the symbol [i/j 

in treating of the dimensions of other units. The unit of mass 

will be taken as one of the three fundamental units. When, as 

in the French system, a particular substance, water, is taken as 

a standard of density, then the unit of mass is no longer inde¬ 

pendent, but varies as the unit of volume, or as [//*]. 

If, as in the astronomical system, the unit of mass is defined 

with respect to its attractive power, the dimensions of [if] are 

[XT'2]. 

For the acceleration due to the attraction of a mass m at a 

distance r is by the Newtonian Law ~. Suppose this attraction 

to act for a very small time t on a body originally at rest, and to 

cause it to describe a space 8, then by the formula of Galileo, 

whence m = 2 
r~s 

Since r and s are both lengths, and t is a 

time, this equation cannot be true unless the dimensions of m are 

[LZT~2J. The same can be shewn from any astronomical equa- 

* See Prof. J. Loschmidt, ‘ Zur Grosse der Luftmolecule,' Academy of Vienna, 
Oct. 12, 1865 : G. J. Stoney on * The Internal Motions of Gases,’ Phil. Mag., Aug. 
1868 ; and Sir W. Thomson on 1 The Size of Atoms,’ Nature, March 81, 1870. 

{See also Sir W. Thomson on * The Size of Atoms,’ Nature, v. 28* pp. 208,250,274.) 
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tion in which the mass of a body appears in some but not in all 

of the terms *. 

Derived Units. 

6.] The unit of Velocity is that velocity in which unit of length 

is described in unit of time. Its dimensions are [Z27-*1]. 

If we adopt the units of length and time derived from the 

vibrations of light, then the unit of velocity is the velocity of 

light. 

The unit of Acceleration is that acceleration in which the 

velocity increases by unity in unit of time. Its dimensions are 

[LT~2]. 

The unit of Density is the density of a substance which con¬ 

tains unit of mass in unit of volume. Its dimensions are 

The unit of Momentum is the momentum of unit of mass 

moving with unit of velocity. Its dimensions are [A1LT~1]. 

The unit of Force is the force which produces unit of momentum 

in unit of time. Its dimensions are [MLT~2]. 

This is the absolute unit of force, and this definition of it is 

implied in every equation in Dynamics. Nevertheless, in many 

text books in which these equations are given, a different unit of 

force is adopted, namely, the weight of the national unit of mass; 

and then, in order to satisfy the equations, the national unit of 

mass is itself abandoned, and an artificial unit is adopted as the 

dynamical unit, equal to the national unit divided by the 

numerical value of the intensity of gravity at the place. In this 

way both the unit of force and the unit of mass are made to 

depend on the value of the intensity of gravity, which varies 

from place to place, so that statements involving these quantities 

are not complete without a knowledge of the intensity of gravity 

in the places where these statements were found to be true. 

The abolition, for all scientific purposes, of this method of 

measuring forces is mainly due to the introduction by Gauss of 

* If a centimetre and a second are taken as units, the astronomical unit of maBs 
would be about 1-537 x 107 grammes, or 15-37 tonnes, according to Baily's repetition 
of Cavendish's experiment. Baily adopts 5 (3604 as the mean result of all his experi¬ 
ments for the mean density of the earth, and tais, with the values used by Baily for 
the dimensions of the earth and the intensity of gravity at its surface, gives the 
above value as the direct result of his experiments. 

{Cornu’s recalculation of Baily’s results gives 5-55 as the mean density of the 
earth, and therefore 1*50 xlO7 grammes as the astronomical unit of mass; while 
Cornu’s own experiments give 5*50 as the mean density of the earth, and 1*49 x 107 
grammes as the astronomical unit of mass, j 
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a general system of making observations of magnetic force in 

countries in which the intensity of gravity is different. All such 

forces are now measured according to the strictly dynamical 

method deduced from our definitions, and the numerical results 

are the ?ame in whatever country the experiments are made. 

The unit of Work is the work done by the unit of force acting 

through the unit of length measured in its own direction. Its 

dimensions are \j\iLlT 

The Energy of a system, being its capacity of performing work, 

is measured by the work which the system is capable of per¬ 

forming by the expenditure of its whole energy. 

T1 le definitions of other quantities, and of the units to which 

they are referred, will be given when we require them. 

In transforming the values of physical quantities determined in 

terms of one unit, so as to express them in terms of any other 

unit of the same kind, we have only to remember that every ex¬ 

pression for the quantity consists of two factors, the unit and the 

numerical part which expresses how often the unit is to be taken. 

Hence the numerical part of the expression varies inversely as 

the magnitude of the unit, that is, inversely as the various powers 

of the fundamental units which are indicated by the dimensions 

of the dorived unit. 

On Physical Continuity and Disco utinuity. 

7.] A quantity is said to vary continuously if, when it passes 

from one value to another, it assumes all the intermediate values. 

We may obtain the conception of continuity from a considera¬ 

tion of the continuous existence of a particle of matter in time 

and space. Such a particle cannot pass from one position to 

another without describing a continuous line in space, and the 

coordinates of its position must be continuous functions of the 

time. 

In the so-called ‘ equation of continuity,’ as given in treatises 

on Hydrodynamics, the fact expressed is that matter cannot 

appear in or disappear from an element of volume without pass¬ 

ing in or out through the sides of that element. 

A quantity is said to be a continuous function of its variables 

if, when the variables alter continuously, the quantity itself alters 

continuously. 

Thus, if u is a function of z, and if, while x passes continuously 
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from x0 to £rx, u passes continuously from u0 to u{, but when x 
passes from xr to x2, u passes from ux to u2, ux being different 

from uv then u is said to have a discontinuity in its variation 

with respect to x for the value x = x]f because it passes abruptly 

from ux to ux while x passes continuously through xx. 

If we consider the differential coefficient of a with respect to x 
for the value x — xt as the limit of the fraction 

U2~-'U0 “-, 
X„ — ^'0 

when x2 and x0 are both made to approach xx without limit, then, 

if x{) and x., are always on opposite sides of the ultimate value 

of the numerator will be — u19 and that of the denominator 

Avill be zero. If u is a quantity physically continuous, the dis¬ 

continuity can exist only with respect to particular values of the 

variable x. We must in this case admit that it has an infinite 

differential coefficient when x = xL. If u is not physically con¬ 

tinuous, it cannot be differentiated at all. 

It is possible in physical questions to get rid of the idea of 

discontinuity without sensibly altering the conditions of the 

case. If x() is a very little less than xlt and x2 a very little 

greater than x1} then u0 will be very nearly equal to ux and u2 
to a/. We may now suppose u to vary in any arbitrary but 

continuous manner from u0 to u2 between the limits x0 and x2. 
In many physical questions wc may begin with a hypothesis of 

this kind, and then investigate the result when the values of 

x0 and x, are made to approach that of xx and ultimately to reach 

it. If the result is independent of the arbitrary manner in 

which we have supposed u to vary between the limits, we may 

assume that it is true when u is discontinuous. 

Discontinuity of a Function of more thorn One Variable. 

8.] If we suppose the values of all the variables except x to be 

constant, the discontinuity of the function will occur for particular 

values of x, and these will be connected with the values of the 

other variables by an equation which we may write 

0 = <p(x,y,z,&c.) = 0. 

The discontinuity will occur when 0 = 0. When 0 is positive 

the function will have the form F2 (x, y, z, &c.). When 0 is 
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negative it will have the form Fx (x, y, 2, &c.). There need be no 

necessary relation between the forms Fx and F2. 

To express this discontinuity in a mathematical form, let one 

of the variables, say x, be expressed as a function of 4> and the 

other variables, and let Fl and F2 be expressed as functions of 

cf), y, 0, &c. We may now express the general form of the function 

by any formula which is sensibly equal to F2 when <f> is positive, 

and to F1 when $ is negative. Such a formula is the following— 

Fx + e'*F2 
}+eH* 

As long as n is a finite quantity, however great, F will be a 

continuous function, but if we make n infinite F will be equal to 

F2 when <p is positive, and equal to Fx when </> is negative. 

Discontinuity of the Derivatives of a Continuous Function. 

The first derivatives of a continuous function may be discon¬ 

tinuous. Let the values of the variables for which the discon¬ 

tinuity of the derivatives occurs be connected by the equation 

<j> ~ <p(x, y,z...) = 0, 

and let F1 and F2 be expressed in terms of $ and n — 1 other 

variables, say (y, z...). 

Then, when <f> is negative, Fx is to be taken, and when </> .is 

positive F2 is to be taken, and, since F is itself continuous, when 

<p is zero, Fx = F.r 

clF dF 
Hence, when </> is zero, the derivatives and may be 

different, but the derivatives with respect to any of the other 

d F d F 
variables, such as —7-1 and ——, must be the same. The discon- 

dy dy 

tinuity is therefore confined to the derivative with respect to <#>, 

all the other derivatives being continuous. 

Periodic and Multiple Functions. 

9.] If u is a function of x such that its value is the same for 

x + a, x + na, and all values of x differing by a, u is called a 

periodic function of x, and a is called its period. 

If x is considered as a function of u, then, for a given value of 

u, there must be an infinite series of values of x differing by 
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multiples of a. In this case x is called a multiple function of u, 

and a is called its cyclic constant. 

» . dx 
The differential coefficient ~r~ has only a finite number of 

du J 
values corresponding to a given value of u. 

On the Relation of Physical Quantities to Directions in Space. 

10.] In distinguishing the kinds of physical quantities, it is of 

great importance to know how they are related to the directions 

of those coordinate axes which we usually employ in defining the 

positions of things. The introduction of coordinate axes into 

geometry by I)es Cartes was one of the greatest steps in mathe¬ 

matical progress, for it reduced the methods of geometry to 

calculations performed on numerical quantities. The position 

of a point is made to depend on the lengths of three lines which 

are always drawn in determinate directions, and the line joining 

two points is in like manner considered as the resultant of three 

lines. 

But for many purposes of physical reasoning, as distinguished 

from calculation, it is desirable to avoid explicitly introducing 

the Cartesian coordinates, and to fix the mind at once on a point 

of space instead of its three coordinates, and on the magnitude 

and direction of a force instead of its three components. This 

mode of contemplating geometrical and physical quantities is 

more primitive and more natural than the other, although the 

ideas connected with it did not receive their full development 

till Hamilton made the next great step in dealing with space, by 

the invention of his Calculus of Quaternions *. 

As the methods of Des Cartes are still the most familiar to 

students of science, and as they are really the most useful for 

purposes of calculation, we shall express all our results in the 

Cartesian form. I am convinced, however, that the introduction 

of the ideas, as distinguished from the operations and methods of 

Quaternions, will be of great use to us in the study of all parts 

of our subject, and especially in electrodynamics, where we have 

to deal with a number of physical quantities, the relations of 

which to each other can be expressed far more simply by a few 

expressions of Hamilton’s, than by the ordinary equations. 

* {For an elementary account of Quaternions, the reader may be referred to Kel- 
land and Tait’s * Introduction to Quaternions/ Tait’s 1 Elementary Treatise on 
Quaternion*/ and Hamilton’s ‘ Elements of Quaternions. * j 
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11.] One of the most important features of Hamilton’s method 

is the division of quantities into Scalars and Vectors. 

A Scalar quantity is capable of being completely defined by a 

single numerical specification. Its numerical value does not in 

any way depend on the directions we assume for the coordinate 

axes. 

A Vector, or Directed quantity, requires for its definition three 

numerical specifications, and these may most simply be under¬ 

stood as having reference to the directions of the coordinate axes. 

Scalar quantities do not involve direction. The volume of a 

geometrical figur , the mass and the energy of a material body, 

the liydrostaticai pressure at a point in a fluid, and the potential 

at a point in space, are examples of scalar quantities. 

A vector quantity has direction as well as magnitude, and is 

such that a reversal of its direction reverses its sign. The dis¬ 

placement of a point, represented by a straight line drawn from 

its original to its final position, may be taken as the typical 

vector quantity, from which indeed the name of Vector is 

derived. 

The velocity of a body, its momentum, the force acting on it, 

an electric current, the magnetization of a particle of iron, are 

instances of vector quantities. 

There are physical quantities of another kind which are related 

to directions in space, but which are not vectors. Stresses and 

strains in solid bodies are examples of these, and so are some of 

the properties of bodies considered in the theory of elasticity and 

in the theory of double refraction. Quantities of this class 

require for their definition nine numerical specifications. They 

are expressed in the language of quaternions by linear and 

vector functions of a vector. 

The addition of one vector quantity to another of the same 

kind is performed according to the rule given in Statics for the 

composition of forces. In fact, the proof which Poisson gives of 

the e parallelogram of forces ’ is applicable to the composition of 

any quantities such that turning them end for end is equivalent 

to a reversal of their sign. 

When'we wish to denote a vector quantity by a single symbol, 

and to call attention to the fact that it is a vector, so that we 

must consider it.s direction as well as its magnitude, we shall 

denote it by a German capital letter, as 21, &c. 
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In the calculus of quaternions, the position of a point in space 

is defined by the vector drawn from a fixed point, called the 

origin, to that point. If we have to consider any physical 

quantity whose value depends on the position of the point, that 

quantity is treated as a function of the vector drawn from the 

origin. The function may be itself either scalar or vector. The 

density of a body, its temperature, its hydrostatical pressure, the 

potential at a point, are examples of scalar functions. The 

resultant force at a point, the velocity of a fluid at a point, the 

velocity of rotation of an element of the fluid, and the couple 

producing rotation, are examples of vector functions. 

12.] Physical vector quantities may be divided into two classes, 

in one of which the quantity is defined with reference to a line, 

while in the other the quantity is defined with reference to an 

area. 

For instance, the resultant of an attractive force in any direction 

may be measurod by finding the work which it would do on a 

body if the body were moved a short distance in that direction 

and dividing it by that shoit distance. Here the attractive force 

is defined with reference to a line. 

On the other hand, the flux of heat in any direction at any 

point of a solid body may be defined as the quantity of heat 

which crosses a small area drawn perpendicular to that direction 

divided by that area and by the time. Here the flux is defined 

with reference to an area. 

There are certain cases in which a quantity may be measured 

with reference to a line as well as with reference to an area. 

Thus, in treating of the displacements of elastic solids, we may 

direct our attention either to the original and the actual positions 

of a particle, in which case the displacement of the particle is 

measured by the line drawn from the first position to the second, 

or we may consider a small area fixed in space, and determine 

what quantity of the solid passes across that area during the 

displacement. 

In the same way the velocity of a fluid may be investigated 

either with respect to the actual velocity of the individual 

particles, or with respect to the quantity of the fluid which flows 

through any fixed area. 

But in these cases we require to know separately the density 

of the body as well as the displacement or velocity, in order to 
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apply the first method, and whenever we attempt to form a 

molecular theory we have to use the second method. 

In the case of the flow of electricity we do not know anything 

of its density or its velocity in the conductor, w7e only know the 

value of what, on the fluid theory, would correspond to the 

product of the density and the velocity. Hence in all such cases 

we must apply the more general method of measurement of the 

flux across an area. 

In electrical science, electromotive and magnetic intensity 

belong to the first class, being defined with reference to lines. 

When we wish to indicate this fact, we may refer to them as 

Intensities. 

On the other hand, electric and magnetic induction, and 

electric currents, belong to the second class, being defined with 

reference to areas. When we wish to indicate this fact, we shall 

refer to them as Fluxes. 

Each of these intensities may be considered as producing, or 

tending to produce, its corresponding flux. Thus, electromotive 

intensity produces electric currents in conductors, and tends to 

produce them in dielectrics. It produces electric induction in 

dielectrics, and probably in conductors also. In the same sense, 

magnetic intensity produces magnetic induction. 

13.] In some cases the flux is simply proportional to the inten¬ 

sity and in the same direction, but in other cases wTe can only 

affirm that the direction and magnitude of the flux are functions 

of the direction and magnitude of the intensity. 

The case in which the components of the flux are linear 

functions of those of the intensity is discussed in the chapter on 

the Equations of Conduction, Art. 297. There are in general nine 

coefficients which determine the relation between the intensity 

and the flux. In certain cases we have reason to believe that six 

of these coefficients form three pairs of equal quantities. In such 

cases the relation between the line of direction of the intensity 

and the normal plane of the flux is of the same kind as that be¬ 

tween a semi-diameter of an ellipsoid and its conjugate diametral 

plane. In Quaternion language, the one vector is said to be a 

linear and vector function of the other, and when there are three 

pairs of equal coefficients the function is said to be self-conjugate. 

In the case of magnetic induction in iron, the flux (the mag¬ 

netization of the iron) is not a linear function of the magnetizing 
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intensity. In all cases, however, the product of the intensity 

and the flux resolved in its direction, gives a result of scientific 

importance, and this is always a scalar quantity. 

14. ] There are two mathematical operations of frequent occur¬ 

rence which are appropriate to these two classes of vectors, or 

directed quantities. 

In the case of intensity, we have to take the integral along a 

line of the product of an element of the line, and the resolved 

part of the intensity along that element. The result of this 

operation is called the Line-integral of the intensity. It repre¬ 

sents the work done on a body carried along the line. In certain 

cases in which the line-integral does not depend on the form of 

the line, but only on the positions of its extremities, the line- 

integral is called the Potential. 

In the case of fluxes, we have to take the integral, over a 

surface, of the flux through every element of the surface. The 

result of this operation is called the Surface-integral of the flux. 

It represents the quantity which passes through the surface. 

There are certain surfaces across which there is no flux. If 

two of these surfaces intersect, their line of intersection is a line 

of flux. In tho^e cases in which the flux is in the same direction 

as the force, lines of this kind are often called Lines of Force. 

It would be more correct, however, to speak of them in electro¬ 

statics and magnetics as Lines of Induction, and in electrokinc- 

matics as Lines of Flow. 

15. ] There is another distinction between different kinds of 

directed quantities, which, though very important from a physical 

point of view, is not so necessary to be observed for the sake of 

the mathematical methods. This is the distinction between 

longitudinal and rotational properties. 

The direction and magnitude of a quantity may depend upon 

some action or effect which takes place entirely along a certain 

line, or it may depend upon something of the nature of rota¬ 

tion about that line as an axis. The laws of combination of 

directed quantities are the same whether they are longitudinal or 

rotational, so that there is no difference in the mathematical 

treatment of the two classes, but there may be physical circum¬ 

stances which indicate to which class we must refer a particular 

phenomenon. Thus, electrolysis consists of the transfer of cer¬ 

tain substances along a line in one direction, and of certain 
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other substances in the opposite direction, which is evidently 

a longitudinal phenomenon, and there is no evidence of any 

rotational effect about the direction of the force. Hence we 

infer that the electric current which causes or accompanies 

electrolysis is a longitudinal, and not a rotational phenomenon. 

On the other hand, the north and south poles of a magnet do 

not differ ns oxygen and hydrogen do, which appear at opposite 

places during electrolysis, so that we have no evidence that 

magnetism is a longitudinal phenomenon, while the effect of 

magnetism in rotating tho plane of polarization of piano polarized 

light distinctly shews that magnetism is a rotational pheno¬ 

menon *. 

On Line-integrals, 

16.] The operation of integration of the resolved part of a 

vector quantity along a line is important in physical science 

generally, and should be clearly understood. 

Let x, y, z be the coordinates of a point P on a line whose 

length, measured from a certain point A, is s. These coordinates 

will bo functions of a single variable s. 

Let R be the numerical value of the vector quantity at P, and 

let the tangent to the curve at P make with the direction of R 

the angle e, then R cos e is the resolved part of R along the line, 

and the integral 
L = / R cos e ds 

J 0 

is called the line-integral of R along the line s. 

We may write this expression 

where X, F, Z are the components of R parallel to x, y, 0 respect¬ 

ively. 

This quantity is, in general, different for different lines drawn 

* (This must not be taken to imply that in any theory in which electric and 
magnetic phenomena are supposed to be due to the motion of a medium, the electric 
current must necessarily be due to a motion of translation and magnetic force to one 
of rotation. There are rotatory effects connected with a current, for example, 
a magnetic pole is turned round it, and it is probable that if the medium in which 
electrostatic phenomena have their seat has an electric displacement through it 
whose components are f, g, h, and is moving with the velocity u, v, to, it will 
be the seat of a magnetic force whose components are 4 tr (tvg — vh), 4 ir (uk — tof), 
4 7r (vf~ ug) respectively: thus, in this case, a motion of translation could produce 
a magnetic field. Phil, Mag. July, 1889.} 
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between A and P. When, however, within a certain region, the 

quantity x dx + Ydy +Zth=-D*, 

that is, when it is an exact differential within that region, the 

value of L becomes 
L = *A~*r, 

and is the same for any two forms of the path between A and P, 

provided the one form can be changed into the other by con¬ 

tinuous motion without passing out of this region. 

On Potentials. 

The quantity 'k is a scalar function of the position of the point, 

and is therefore independent of the directions of reference. It 

is called the Potential Function, and the vector quantity whose 

components arc X, Y, Z is said to have a potential F, if 

X : ,<L*) 
' ,1 ,■) ’ 

Y .(<WY 
\ly>- *—(£)■ 'tU'1 \Iy>' O/s 

When a potential function exists, surfaces for which the 

potential is Constant are called Equipotential surfaces. The 

direction of R at any point of such a surface coincides with the 

normal to the surface, and if n be a normal at the point P, 

d* 
<ln 

then R: 

The method of considering the components of a vector as the 

first derivatives of a certain function of the coordinates with re¬ 

spect to these coordinates was invented by Laplace* in his treat¬ 

ment of the theory of attractions. The name of Potential was 

first given to this function by Green f, who made it the basis of 

his treatment of electricity. Green’s essay was neglected by 

mathematicians till 1840, and before that time most of its im¬ 

portant theorems had been rediscovered by Gauss, Ohasles, 

Sturm, and Thomson J. 

In the theory of gravitation the potential is taken with the 

opposite sign to that which is here used, and the resultant force 

in any direction is then measured by the rate of increase of the 

potential function in that direction. In electrical and magnetic 

* Mec. Celeste, liv. iii. 
f Essay on the Application of Mathematical Analysis to the Theories of Elec¬ 

tricity and Magnetism, Nottingham, 1828. Reprinted in Crelleys Journal, and in 
Mr. Ferrers’ edition of Green’s Works. 

X Thomson and Tait, Natural Philosophy, § 483. 
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investigations the potential is defined so that the resultant force 
in any direction is measured by the decrease of the potential in 
that direction. This method of using the expression makes it 
correspond in sign with potential energy, which always decreases 
when the bodies are moved in the direction of the forces acting 
on them. 

17.] The geometrical nature of the relation between the 
potential and the vector thus derived from it receives great 
light from Hamilton’s discover}^ of the form of the operator 
by which the vector is derived from the potential. 

The resolved part of the vector in any direction is, as we have 
seen, the first derivative of the potential with respect to a co¬ 
ordinate drawn in that direction, the sign being reversed. 

Now if i, j, k are three unit vectors at right angles to each 
other, and if A", F, Z are the components of the vector ft resolved 
parallel to these vectors, then 

8 — iX + jY + kZ; (1) 

and by what we have said above, if 'P is the potential, 

~ s.d'V .crJ' . 

If we now write V for the operator, 

. d , d 7 d 

%dx + ^ dy + ' dz' 

(2) 

(3) 

8 = -v*. (4) 

The symbol of operation V may be interpreted as directing us 
to measure, in each of three rectangular directions, the rate of 
increase of and then, considering the quantities thus found as 
vectors, to compound them into one. This is what we are 
directed to do by the expression (3). But we may also consider 
it as directing us first to find out in what direction increases 
fastest, and then to lay off in that direction a vector representing 
this rate of increase. 

M. Lam^, in his Traite des Fonctions Inverses, uses the term 
Differential Parameter to express the magnitude of this greatest 
rate of increase, but neither the term itself, nor the mode in 
which Lamd uses it, indicates that the quantity referred to has 
direction as well as magnitude. On those rare occasions in 
which I shall have to refer to this relation as a purely geometrical 
one, I shall call the vector ft the space-variation of the scalar 
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function 'P, using the phrase to indicate the direction, as well as 

the magnitude, of the most rapid decrease of VP. 

18.] There are cases, however, in which the conditions 

dZ dY _ dX dZ _ dY 
dy dz ~~ 5 dz dx ~ aD dx dy ~ 

which are those of Xdx 4- Ydy -f Zdz being a complete differential, 

are satisfied throughout a certain region of space, and yet the 

line-integral from A to P may be different for two lines, each of 

which lies wholly within that region. This may be the case if 

the region is in the form of a ring, and if the two lines from A 
to P pass through opposite segments of the ring. In this case, 

the one path cannot be transformed into the other by continuous 

motion without passing out of the region. 

We are here led to considerations belonging to the Geometry 

of Position, a subject which, though its importance was pointed 

out by Leibnitz and illustrated by Gauss, has been little studied. 

The most complete treatment of this subject has been given by 

J. B. Listing*. 

Let there be p points in space, and let l lines of any form be 

drawn joining these points so that no two lines intersect each 

other, and no point is left isolated. We shall call a figure com¬ 

posed of lines in this way a Diagram. Of these lines, p~ 1 are 

sufficient to join the p points so as to form a connected system. 

Every new line completes' a loop or closed path, or, as we shall 

call it, a Cycle. The number of independent cycles in the 

diagram is therefore k = l—p-4-1. 

Any closed path drawn along the lines of the diagram is com¬ 

posed of these independent cycles, each being taken any number 

of times and in either direction. 

The existence of cycles is called Oyclosis, and the number of 

cycleB in a diagram is called its Cyclomatic number. 

Cyclos'ls in Surfaces and Regions. 

Surfaces are either complete or bounded. Complete surfaces 

are either infinite or closed. Bounded surfaces are limited by 

one or more closed lines, which may in the limiting cases become 

double finite lines or points. 

* Der Census BaUmlicher Complete, Gbtt. Abh., Bd. x. S. 97 (1861). {For an 
elementary account of those properties of multiply connected space which are necessary 
for physical purposes see Lamb’s Treatise on the Motion of Fluids, p. 47 } 

YOL. I. 0 
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A finite region of space is bounded by one or more closed 

surfaces. Of these one is the external surface, the others are 

included in it and exclude each other, and are called internal 

surfaces. 

If the region has one bounding surface, we may suppose that 

surface to contract inwards without breaking its continuity or 

cutting itself. If the region is one of simple continuity, such as 

a sphere, this process may be continued till it is reduced to a 

point; but if the region is like a ring, the result will be a closed 

curve ; and if the region has multiple connections, the result will 

be a diagram of lines, and the cyclomatic number of the diagram 

will be that of the region. The space outside the region has the 

same cyclomatic number as the region itself. Hence, i f the region 

is bounded by internal as well as external surfaces, its cyclomatic 

number is the sum of those due to all the surfaces. 

When a region encloses within itself other regions, it is called 

a Periphractic region. 

The number of internal bounding surfaces of a region is called 

its periphractic number. A closed surface is also periphractic, 

its periphractic number being unity. 

The cyclomatic number of a closed surface is twice that of 

either of the regions which it bounds. To find the cyclomatic 

number of a bounded surface, suppose all the boundaries to con¬ 

tract inwards, without breaking continuity, till they meet. The 

surface will then be reduced to a point in the case of an acyclic 

surface, or to a linear diagram in the case of cyclic surfaces. The 

cyclomatic number of the diagram is that of the surface. 

19.] Theorem I. If throughout any acyclic region 

Xclx + Ydy + Zdz=: -1)*, 

the value of the line-integral f rom a point A to a point P 

taken along any path within the region will be the same. 

We shall first shew that the line-integral taken round any 

clbsed path within the region is zero. 

Suppose the equipotontial surfaces drawn. They are all either 

closed surfaces or are bounded entirely by the surface of the re¬ 

gion, so that a closed line within the region, if it cuts any of the 

surfaces at one part of its path, must cut the same surface in 

the opposite direction at some other part of its path, and the 

corresponding portions of the line-integral being equal and 

opposite, the total value is zero. 
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Hence if AQP and AQ'P are two paths from A to P, the line- 

integral for AQ'P is the sum of that for AQP and the closed 

path AQ'PQA. But the line-integral of the closed path is zero, 

therefore those of the two paths are equal. 

Hence if the potential is given at any one point of such a 

region, that at any other point is determinate. 

20.] Theorem II. In a cyclic region in which the equation 

Xdx+ Ydy + Zdz = 

is everywhere satisfied, the line-integral from A to P along 

a line drawn within the region, will not in general he 

determinate unless the channel of communication between 

A and P he specified. 

LetiV be the cyclomatic number of the region, then N sections 

of the region may be made by surfaces which we may call Dia¬ 

phragms, so as to close up N of the channels of communication, 

and reduce the region to an ac37clic condition without destroying 

its continuity. 

The line-integral from A to any point P taken along a line 

which does not cut any of these diaphragms will be, by the last 

theorem, determinate in value. 

Now let A and P be taken indefinitely near to each other, but 

on opposite sides of a diaphragm, and let K be the line-integral 

from A to P. 

Let A' and P' be two other points on opposite sides of the same 

diaphragm and indefinitely near, to each other, and let K' be the 

line-integral from A' to P'. Then K' = K. 

For if we draw A A' and PP', nearly coincident, but on oppo¬ 

site sides of the diaphragm, the line-integrals along these lines 

will be equal*. Suppose each equal to Z, then K\ the line-integral 

of A' P\ is equal to that of A'A + AP + PP' = — Z + if + Z = if = 

that of AP. 

Hence the line-integral round a closed curve which passes 

through one diaphragm of the system in a given direction is a 

constant quantity K. This quantity is called the Cyclic constant 

corresponding to the given cycle. 

Let any closed curve be drawn within the region, and let it cut 

the diaphragm of the first cycle p times in the positive direction 

* {Since X, F, X, are continuous.} 
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and p' times in the negative direction, and let p—p' — nlt Then 

the line-integral of the closed curve will be nxKx. 

Similarly the line-integral of any closed curve will be 

n1K1 + n2K2 + ... +n8K8; 

where na represents the exqess of the number of positive passages 

of the curve through the diaphragm of the cycle S over the 

number of negative passages. 

If two curves are such that one of them may be transformed 

into the other by continuous motion without at any time passing 

through any part of space for which the condition of having a 

potential is not fulfilled, these two curves are called Reconcileable 

curves. Curves for which this transformation cannot be effected 

are called Irreccncileable curves * 

The condition that Xdx+ Ydy + Zdz is a complete differential 

of some function for all points within a certain region, occurs 

in several physical investigations in which the directed quantity 

and the potential have different physical interpretations. 

In pure kinematics we may suppose X, F, Z to be the com¬ 

ponents of the displacement of a point of a continuous body whose 

original coordinates are xy y, z; the condition then expresses that 

these displacements constitute a non-rotat tonal drain t. 

If X, F, Z represent the components of the velocity of a fluid 

at the point xy y, 2, then the condition expresses that the motion 

of the fluid is irrotational. 

If X, F, Z represent the components of the force at the point 

x, y} z, then the condition expresses that the work done on a 

particle passing from one point to another is the difference of the 

potentials at these points, and the value of this difference is the 

same for all reconcileable paths between the two points. 

On Surface-Integrals. 

21.] Let dS be the element of a surface, and € the angle which 

a normal to the surface drawn towards the positive side of the 

surface makes with the direction of the vector quantity R, then 

j*JR cos«dS is called the surface-integral of R over the surface S J. 

* See Sir W. Thomson *On Vortex Motion,’ Trans. R. S. JEJdin., 1867-8. 
+ See Thomson and Tait’s Natural Philosophy, § 190 (»L 
j {In the following investigations the positive direction of the normal is outwards 

from the surface, j 
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Theorem III. The surface-integral of the flux inwards through 

a closed surface may he expressed as the volume-integral of 

its convergence taken within the surface. (See Art. 25.) 

Let X, F, Z be the components of R, and let l, m, n be the 

direction-cosines of the normal to 8 measured outwards. Then 

the surface-integral of R over 8 is 

ifR cose dS =JJxidS+JJ YmdS+JJZndS, 0) 

the values of X, F, Z being those at a point in the surface, and 

the integrations being extended over the whole surface. 

If the surface is a closed one, then, when y and £ are given, 

the coordinate x must have an even number of values, since a line 

parallel to x must enter and leave the enclosed space an equal 

number of times provided it meets the surface at all. 

At each entrance 
Id 8 = — dydz, 

and at each exit ldS= dydz. 

Let a point travelling from x — — oo to = -F oc first enter 

the space when x = xlf then leave it when x~x2, and so on: 

and let the values of X at these points be Xu X2> &e., then 

JJXldS = -JJ{(J, - X2) + (X3-Xt) + &c. 

+ (X2n_,-X2n)}dydz. (2) 

If X is a quantity which is continuous, and has no infinite values 

between xy and then 
.. [**dX 

X*-A'=JXI dxdx' G) 

where the integration is extended from the first to the second 

intersection, that is, along the first segment of x which is within 

the closed surface. Taking into account all the segments which 

lie within the closed surface, we find 

If XldS= fff?x dxdydZ> (4) 
the double integration being confined to the closed surface, but 

the triple integration being extended to the whole enclosed space. 

Hence, if X, F, Z are continuous and finite within a closed surface 

S} the total surface-integral of R over that surface will be 

JJr cos (dS=JJjdX+dfy+~) dxdydz, (5) 
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the triple integration being extended over the whole space 

within S. 

Let us next suppose that X, F, Z are not continuous within 

the closed surface, but that at a certain surface F(x, 7/, z) = 0 the 

values of X, F, if alter abruptly from X, F, ^ on the negative 

side of the surface to X\ Y\ Z' on the positive side. 

If this discontinuity occurs, say, between xx and the value 

of X,2 — X1 will be 
/w X 

jJ£cdx+{X'-X)' ® 
where in the expression under the integral sign only the finite 

values of the derivative of X are to be considered. 

In this case therefore the total surface-integral of R over the 

closed surface will be expressed by 

=///(" + §) d*Jy*+ff{X--ZWdz 

+JJ(Y'~ Y)dzdx+JJ{Z'~ Z) dx-dy ; (7) 

or, if V, m\ n' are the direction-cosines of the normal to the sur¬ 

face of discontinuity, and d.R' an element of that surface, 

JjRc<*<dS=JfJ(^ + ^- + ,l±)dxdyd:. 

+JJX) + m'(T-Y) + n'(Z' — Z)jdS', (8) 

where the integration of the last term is to be extended over the 

surface of discontinuity. 

If at every point where X} F, Z are continuous 

dX dY dZ _. 

dx + dy dz ~ ’ 

and at every surface where they are discontinuous 

I'X' + m' r Hb n'Z'= VX + m' F+n'Z, (10) 

then the surface-integral over every closed surface is zero, and 

the distribution of the vector quantity is said to be Solenoidal. 

We shall refer to equation (9) as the General solenoidal con¬ 

dition, and to equation (10) as the Superficial solenoidal condition. 

22.] Let us now consider the case in which at every point 

within the surface S the equation 

dX dY dZ 

dx + dy ^ dz 
(11) 
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is satisfied. We have as a consequence of this the surface-integral 

over the closed surface equal to zero. 

Now lot the closed surface 8 consist of three parts Slt S(), and 

8.r Let 8X be a surface of any form bounded by a closed line Lx. 

Let 80 be formed by drawing lines from every point of Lx always 

coinciding with the direction of R. If Z, m, n are the direction- 

cosines of the normal at any point of the surface $0, we have 

R cos e = XL + Ym + Zn =0. (12) 

Hence this part of the surface contributes nothing towards the 

value of the surface-integral. 

Let tS2 be another surface of any form bounded by the closed 

curve Z2 in which it meets the surface 80. 

Let Qj, Q0, Q2 be the surface-integrals of the surfaces 819SQi 8., 

and let Q be the surface-integral of the closed surface 8. Then 

Q = + ~ 0 5 (13) 
and we know that Q0 = 0; (14) 

therefore Q>— —Qi> (15) 

or, in other words, the surface-integral over the surface 82 is equal 

and opposite to that over 8X whatever bli the form and position 

oi\V2, provided that the intermediate surface SQ is one for which 

R is always tangential. 

If we suppose LY a closed curve of small area, S0 will be a 

tubular surface having the property that the surface-integral over 

every complete section of the tube is the same. 

Since the whole space can be divided into tubes of this kind 

provided dX dY dZ 

dx dy dz 
(16) 

a distribution of a vector quantity consistent with this equation 

is called a Solenoidal Distribution. 

On Tubes and Lines of Flow. 

If the space is so divided into tubes that the surface-integral 

for every tube is unity, the tubes are called Unit tubes, and the 

surface-integral over any finite surface 8 bounded by a closed 

curve L is equal to the number of such tubes which pass through 

8 in the positive direction, or, what is the same thing, the number 

which pass through the closed curve L. 

Hence the surface-integral of 8 depends only on the form of 

its boundary Z, and not on the form of the surface within its 

boundary. 
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On Periphractic Regions. 

If, throughout the whole region bounded externally by the 

single closed surface S, the solenoidal condition 

dX dT dZ_ 

dx + dy + dz ~~ 

is satisfied, then the surface-integral taken over any closed surface 

drawn within this region will be zero, and the surface-integral 

taken over a bounded surface within the region will depend only 

on the form of the closed curve which forms its boundary. 

It is not, however, generally true that the same results follow 

if the region within which the solenoidal condition is satisfied is 

bounded otherwise than by a single surface. 

For if it is bounded by more than one continuous surface, one of 

these is the external surface and the others are internal surfaces, 

and the region 8 is a periphractic region, having within it other 

regions which it completely encloses. 

If within one of these enclosed regions, say, that bounded by the 

closed surface 8lt the solenoidal condition is not satisfied, let 

Qj = fffi cos € dSj 
be the surface-integral for the surface enclosing this region, and 

let Q2i Q89 &c. be the corresponding quantities for the other en¬ 

closed regions S2, S3, &c. 

Then, if a closed surface S' is drawn within the region S> the 

Value of its surface-integral will be zero only when this surface 

S' does not include any of the enclosed regions Sly S2, &c. If it 

includes any of these, the surface-integral is the sum of the surface- 

integrals of the different enclosed regions which lie within it. 

For the same reason, the surface-integral taken over a surface 

bounded by a closed curve is the same for such surfaces only, 

bounded by the closed curve, as are reconcileable with the given 

surface by continuous motion of the surface within the region S. 

When we have to deal with a periphractic region, the first thing 

to be done is to reduce it to an aperiphractic region by drawing 

lines Lv £2, &c. joining the internal surfaces 8lt S2i &c. to the 

external surface S. Each of these lines, provided it joins surfaces 

which were not already in continuous connexion, reduces the 

periphractic number by unity, so that the whole number of lines 

to be drawn to remove the periphraxy is equal to the periphractic 
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number, or the number of internal surfaces. In drawing these 

lines we must remember that any line joining surfaces which are 

already connected does not diminish theperiphraxy,but introduces 

cyclosis. When these lines have been drawn we may assert that 

if the solenoidal condition is satisfied in the region S, any closed 

surface drawn entirely within S, and not cutting any of the lines, 

has its surface-integral zero. If it cuts any line, say Lt, once or 

any odd number of times, it encloses the surface St and the 

surface-integral is 

The most familiar example of a periphractic region within which 

the solenoidal condition is satisfied is the region surrounding a 

mass attracting or repelling inversely as the square of the distance. 

In the latter case we have 

X=m~, Y=mZ — m— ; 

where m is the mass, supposed to be at the origin of coordinates. 

At any point where r is finite 

dX dY dZ_ 

dx + dy + dz ~~ 9 

but at the origin these quantities become infinite. For any closed 

surface not including the origin, the surface-integral is zero. If a 

closed surface includes the origin, its surface-integral is 47rm, 

If, for any reason, we wish to treat the region round m as if it 

were not periphractic, we must draw a line from m to an infinite 

distance, and in taking surface-integrals we must remember to 

add 4 7mi whenever this line crosses from the negative to the 

positive side of the surface. 

On Right-handed and Left-handed Relations in Space. 

23.] In this'treatise the motions of translation along any axis 

and of rotation about that axis will be assumed to be of the same 

sign when their directions correspond to those of the translation 

and rotation of an ordinary or right-handed screw 
* The combined action of the muscles of the arm when we turn the upper side of 

the right-hand outwards, and at the same time thrust the hand forwards, will impress 
the right-handed screw motion on the memory more firmly than any verbal definition. 
A common corkscrew may be used as a material symbol of the same relation. 

Professor W. H. Miller has suggested to me that as the tendrils of the vine are 
right-handed screws and those of the hop left-handed, the two systems of relations 
in space might be called those of the vine and the hop respectively. 

The system of the vine, which we adopt, is that of Linnaeus, and of screw-makers 
in all civilized countries except Japan. I)e Candolle was the first who called the 
hop-tendril right-handed, and in this he is followed by Listing, and by most writers 
on the circular polarization of light. Screws like the hop-tendril are made for the 
couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary 
carriages, but they are always called left-handed screws by those who use them. 
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For instance, if the actual rotation of the earth from west to east 

is taken positive, the direction of the earth’s axis from south to 

north will be taken positive, and if a man walks forward in the 

positive direction, the positive rotation is in the order, head, right- 

hand, feet, left-hand. 

If we place ourselves on the positive side of a surface, the 

positive direction along its bounding curve will be opposite to 

the motion of the hands of a watch with its face towards us. 

This is the right-handed system which is adopted in Thomson 

and Tait’s Natural Philosophy, and in Tait’s Quaternions. 

The opposite, or left-handed system, is adopted in Hamilton’s 

Quaternions (Leitures, p. 76, and Elements, p. 108, and p. 117 

note). The operation of passing from the one system to the other 

is called by Listing, Perversion. 

The reflexion of an object in a mirror is a perverted image of 

the object. 

When we use the Cartesian axes of ,r, y, s, we shall draw them 

so that the ordinary conventions about the cyclic order of the 

symbols lead to a right-handed system of directions in space. 

Thus, if as is drawn eastward and y northward, z must be drawn 

upward *. 

The areas of surfaces will be taken positive when the order of 

integration coincides with the cyclic order of the symbols. Thus, 

the area of a closed curve in the plane of xy may bo written either 

the order of integration being xy y in the first expression, and y, x 

in the second. 

This relation between the two products dx dy and dydx may 

be compared with the rule for the product of two perpendicular 

vectors in the method of Quaternions, the sign of which depends 

on the order of multiplication ; and with the reversal of the sign 

of a determinant when the adjoining rows or columns are ex¬ 

changed. 

For similar reasons a volume-integral is to be taken positive 

when the order of integration is in the cyclic order of the variables 

y, z, and negative when the cyclic order is reversed. 
z 

{As in the diagram 
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We now proceed to prove a theorem which is useful as estab¬ 

lishing a connection between the surface-integral taken over a 

finite surface and a line-integral taken round its boundary. 

24.] Theorem IV. A line-integral taken round a closed curve 

may be expressed in terms of a surface-integral taken over 

a surface bounded by the curve. 

Let X, F, Z be the components of a vector quantity 51 whose 

line-integral is to be taken round a closed curve s. 

Let S be any continuous finite surface bounded entirely by the 

closed curve s, and let £ ( be the components of another vector 

quantity 2J, related to X, F, Z by the equations 

(ZZ^cZF _dX_dZ d_7 dX 
* ~~ dy dz 9 ^ dz dx ^~dx dy 

Then the surface-integral of S3 taken over the surface 8 is equal to 

the line-integral of 51 taken round the curve s. It is manifest that 

£, rj, C satisfy of themselves the solenoidal condition. 

o. 
dx dy dz 

Let ly m, n be the direction-cosines of the normal to an element 

of the surface dSf reckoned in the positive direction. Then the 

value of the surface-integral of 33 may be written 

//« + mrj + n()dS. (2) 

In order to form a definite idea of the meaning of the element 

dS, we shall suppose that the values of the coordinates x} y, z for 

every point of the surface are given as functions of two inde¬ 

pendent variables a and ft. If ft is constant and a varies, the point 

(x, y, z) will describe a curve on the surface, and if a series of values 

is given to ft, a series of such curves will be traced, all lying on 

the surface 8. In the same way, by giving a series of constant 

values to a, a second series of curves may be traced, cutting the 

first series, and dividing the whole surface into elementary 

portions, any one of which may be taken as the element d8. 

The projection of this element on the plane of yz is, by the 

ordinary formula, 

<s> 
The expressions for mdS and ndS are obtained from this by 

substituting x, y, z in cyclic order. 
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The surface-integral which we have to find is 

JJ(l£+mii + n()dS; 

or, substituting the values of £ tj, C in terms of X, T, Z, 

//(m‘ dX dX dY 
■n ,—\-n 

dy 

,dY ,dZ 
■l~r +1 . ■ 

dz dy 

dZ v , „ 
m v J oo. 

dz dy dx v dz 1 * dy dx 

The part of this which depends on X may be written 

[ dX tdz dx dz dx, dX tdx. dy dx dy urn 'dad 13 

adding and subtracting 

dz dx. dX , dx dy 

' dy ^ da dfi dp da 

dX dx dx 

dx da dp 

dp d 

this becomes 

III 
dx sdX dx dX dy dX dz\ 

dp'dxda dy da dz da' 

dx sdX dx dX dy dX dz J , , 

da'dx dp + dy dp+ dz dpH1 ^ 

JJ v da dfi dli da' 

(5) 

(6) 

00 

(*) 

Let us now suppose that the curves for which a is constant 

form a series of closed curves surrounding a point on the 

surface for which a has its minimum value, a0, and let the last 

curve of the series, for which a = a}, coincide with the closed 

curve 8. 

Let us also suppose that the curves for which p is constant 

form a series of lines drawn from the point at which a = a0 

to the closed curve s, the first, p0> and the last, pv being 

identical. 

Integrating (8) by parts, the first term with respect to a and 

the second with respect to p, the double integrals destroy each 

other and the expression becomes 

Since the point (a, px) is identical with the point (a, /30), the 

third and fourth terms destroy each other; and since there is 
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but one value of x at the point where a = a0, the second term is 

zero, and the expression is reduced to the first term : 

Since the curve a = ax is identical with the closed curve 8, we 

may write the expression in the form 

/ (■») 

where the integration is to be performed round the curve s. We 

may treat in the same way the parts of the surface-integral 

which depend upon Y and Z, so that we get finally, 

ffll(+m,n + n()d8 =f(Xd£ + r% + Zd£)d.; (11) 

where the first integral is extended over the surface S, and the 

second round the bounding curve s *. 

On the effect of the operator V on a vector function. 

25.] We have seen that the operation denoted by V is that by 

which a vector quantity is deduced from its potential. The same 

operation, however, when applied to a vector function, produces 

results which enter into the two theorems we have just proved 

(III and IV). The extension of this operator to vector displace¬ 

ments, and most of its further development, are due to Professor 

Tait f. 

Let rr be a vector function of p, the vector of a variable point. 

Let us suppose, as usual, that 

p — ix+ jy + kz, 

and cr = iX + jY 4- kZ; 

where X, F, Z are the components of <r in the directions of the 

axes. 

We have to perform on cr the operation 

_ . d . d 7 d 

~~l dx + ^ dy + * dz 

Performing this operation, and remembering the rules for the 

multiplication of iy j, k, we find that W consists of two parts, 

one scalar and the other vector. 

* Thi* theorem was given by Professor Stokes, Smith's Prize Examination, 1854, 
question 8. It is proved in Thomson and Tait’s Natural Philosophy, § 190 (/). 

f See Proc. R. 8. Edin., April 28,1862. ' On Green’s and other allied Theorems,’ 
Trans. U. 8. Edin., 1869-70, a very valuable paper; and ‘On some Quaternion 
Integrals/ Proc. 11. 8. Edin., 1870-71. 
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The scalar part is 

_ ,d\ dY dZ>. TTT 
SV(r — — ( j+j—h 7 ), see Theorem III, 

v dx dy dzJ 

dX, 

‘ dy y 

and the vector part is 

.,dZ dYn . ,dX dZv 7 ,dF 

If the relation between X, F, Z and £, C that given by 

equation (1) of the last theorem, we may write 

VVa =z i£+jr) + k£. See Theorem IV. 

It appears therefore that the functions of X, F, Z which occur 

in the two theorems are both obtained by the operation V on 

the vector whose components are X, F, Z. The theorems them¬ 

selves may be written 

JJJsVo-ds = j'J's. <jUvdx, (III) 

and J'Sadp = —jjh. V<rUvds ; (IV) 

where ds is an element of a volume, ds of a surface, dp of a 

curve, and Uv a unit-vector in the direction 

of the normal. 

To understand the meaning of these func¬ 

tions of a vector, let us suppose that cr0 is the 

value of a at a point P, and let us examine 

the value of <r — rr0 in the neighbourhood of P. 

If we draw a closed surface round P, then, 

if the surface-integral of <r over this surface 

is directed inwards, &>V<r will be positive, and the vector <t —<rn 

near the point P will be on the whole directed 

towards P, as in the figure (1). 

I propose therefore to call the scalar part of W 

the convergence of <r at the point P. 

To interpret the vector part of V<r, let the direc¬ 

tion of the vector whose components are f, 77, f be 

upwards from the paper and at right angles to it, 

and let us examine the vector cr~-<r0 near the point 

P. It will appear as in the figure (2), this vector 

being arranged on the whole tangentially in the 

direction opposite to the hands of a watch. 

I propose (with great diffidence) to call the vector part of V<r 

the rotation of <r at the point P. 

\ 1 / 

/, \ 

Fig. 1. 

j t_\ 
Fig. 2. 

/ 

^ \ 

/ 
Fig. 3. 
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In Fig. 3 we have an illustration of rotation combined with 

convergence. 

Let us now consider the meaning of the equation 

Wcr — 0. 

This implies that Vo- is a scalar, or that the vector <r is the space- 

variation of some scalar function 

26.] One of the most remarkable properties of the operator V 

is that when repeated it becomes 

V “ ( <Lr + + dz*r 

an operator occurring in all parts of Physics, which we may refer 

to as Laplace’s Operator. 

This operator is itself essentially scalar. When it acts on a 

scalar function the result is scalar, wrhen it acts on a vector 

function the result is a vector. 

If, with any point P as centre, we draw a small sphere whose 

radius is r, then if q0 is the value of q at the centre, and q the 

mean value of q for all points within the sphere, 

5o-5 = tVi*vaqi 

so that the value at the centre exceeds or falls short of the mean 

value according as Vzq is positive or negative. 

I propose therefore to call Vzq the concentration of q at the 

point P, because it indicates the excess of the value of q at that 

point over its mean value in the neighbourhood of the point. 

If q is a scalar function, the method of finding its mean value 

is well known. If it is a vector function, we must find its mean 

value by the rules for integrating vector functions. The result 

of course is a vector. 



PART I. 

ELECTROSTATICS. 

CHAPTER I. 

DESCRIPTION OF PHENOMENA. 

Electrification hy Friction. 

27.] Experiment I *. Let a piece of glass and a piece of resin, 

neither of which exhibits any electrical properties, be rubbed to¬ 

gether and left with the rubbed surfaces in contact. They will 

still exhibit no electrical properties. Let them be separated. They 

will now attract each other. 

If a second piece of glass be rubbed with a second piece of 

resin, and if the pieces be then separated and suspended in the 

neighbourhood of the form or pieces of glass and resin, it may be 

observed— 

(1) That the two pieces of glass repel each other. 

(2) That each piece of glass attracts each piece of resin. 

(3) That the two pieces of resin repel each other. 

These phenomena of attraction and repulsion are called Elec¬ 

trical phenomena, and the bodies which exhibit them are said to 

be electrified, or to be charged with electricity. 

Bodies may be electrified in many other ways, as well as by 

friction. 

The electrical properties of the two pieces qf glass are similar 

to each other but opposite to those of the two pieces of resin : 

the glass attracts what the resin repels and repels what the resin 

attracts. 

* See Sir W. Thomson * Cn the Mathematical Theory of Electricity in Equilibrium/ 
Cambridge and Dublin Mathematical Journal, March, 1848. 
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If a body electrified in any manner whatever behaves as the 

glass does, that is, if it repels the glass and attracts the resin, the 

body is said to be vitreously electrified, and if it attracts the glass 

and repels the resin it is said to be resinously electrified. All 

electrified bodies are found to be either vitreously or resinously 

electrified. 

It is the established practice of men of science to call the vitreous 

electrification positive, and the resinous electrification negative. 

The exactly opposite properties of the two kinds of electrification 

justify us in indicating them by opposite signs, but the applica¬ 

tion of the positive sign to one rather than to the other kind must 

be considered as a matter of arbitrary convention, just as it is a 

matter of convention in mathematical diagrams to reckon positive 

distances towards the right hand. 

No force, either of attraction or of repulsion, can be observed 

between an electrified body and a body not electrified. When, in 

any case, bodies not previously electrified are observed to be acted 

on by an electrified body, it is because they have become electrified 

by induction. 

Electrification by Induction. 

28.] Experiment II *. Let a hollow vessel of metal be hung 

up by white silk threads, and let a similar thread 

be attached to the lid of the vessel so that the vessel 

may be opened or closed without touching it. 

Let the pieces of glass and resin be similarly sus¬ 

pended and electrified as before. 

Let the vessel be originally unelectrified, then if 

an electrified piece of glass is hung up within it by 

its thread without touching the vessel, and the lid 

closed, the outside of the vessel will be found to 

be vitreously electrified, and it may be shewn that 

the electrification outside of the vessel is exactly the 

same in whatever part of the interior space the glass Fig. 4. 

is suspended f. 

If the glass is now taken out of the vessel without touching 

it, the electrification of the glass will be the same as before it 

was put in, and that of the vessel will have disappeared. 

* This, and several experiments which follow, are due to Faraday, * On Static 
Electrical Inductive Action/ Phil. Mag., 1843, or Exp. Pcs., vol. ii. p. 279. 

f {This is an illustration of Art. 100 c.} 

VOL. I. D 
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This electrification cf the vessel, which depends on the glass 

being within it, and which vanishes when the glass is removed, is 

called electrification by Induction. 

Similar effects would be produced if the glass were suspended 

near the vessel on the outside, but in that case we should find 

an electrification, vitreous in one part of the outside of the vessel 

and resinous in another. When the glass is inside the vessel 

tho whole of the outside is vitreously and the whole of the inside 

resinously electrified. 

Electrification ly Conduction. 

29 ] Experiment III. let the metal vessel bo electrified by 

induction, as in the last experiment, let a second metallic body 

be suspended by white silk threads near it, and let a metal wire, 

similarly suspended, be brought so as to touch simultaneously the 

electrified vessel and the second body. 

The second body will now be found to be vitreously electrified, 

and the vitreous electrification of the vessel will have diminished. 

The electrical condition has been transferred from the vessel to 

the second body by means of the wire. The wire is called a con¬ 

ductor of electricity, and the second body is said to be electrified 

by conduction. 

Conductors and Insulators. 

Experiment IV. If a glass rod, a stick of resin or gutta-percha, 

or a white silk thread, had been used instead of the metal wire, no 

transfer of electricity would have taken place. Hence these latter 

substances are called Non-conductors of electricity. Non-conduc¬ 

tors are used in electrical experiments to support electrified 

bodies without carrying off their electricity. They are then called 

Insulators. 

The metals are good conductors ; air, glass, resins, gutta-percha, 

vulcanite, paraffin, &c. are good insulators ; but, as we shall see 

afterwards, all substances resist the passage of electricity, and all 

substances allow it to pass, though in exceedingly different degrees. 

This subject will be considered when we come to treat of the 

motion of electricity. For the present we shall consider only two 

classes of bodies, good conductors, and good insulators. 

In Experiment II an electrified body produced electrification in 

the metal vessel while separated from it by air, a non-conducting 
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medium. Such a medium, considered as transmitting these 

electrical effects without conduction, has been called by Faraday 

a Dielectric medium, and the action which takes place through it 

is called Induction. 

In Experiment III the electrified vessel produced electrification 

in the second metallic body through the medium of the wire. 

Let us suppose the wire removed, and the electrified piece of 

glass taken out of the vessel without touching it, and removed 

to a sufficient distance. The second body will still exhibit 

vitreous electrification, but the vessel, when the glass is removed, 

will have resinous electrification. If we now bring the wire into 

contact with both bodies, conduction will take place along the 

wire, and all electrification will disappear from both bodies, 

shewing that the electrification of the two bodies was equal and 

opposite. 

30. ] Experiment Y. In Experiment II it was shewn that if 

a piece of glass, electrified by rubbing it with resin, is hung up in 

an insulated metal vessel, the electrification observed outside does 

not depend on the position of the glass. If we now introduce the 

piece of resin with which the glass was rubbed into the same vessel, 

without touching it or the vessel, it will be found that there is 

no electrification outside the vessel. From this we conclude that 

the electrification of the resin is exactly equal and opposite to that 

of the glass. By putting in any number of bodies, electrified in 

any way, it may be shewn that the electrification of the outside of 

the vessel is that due to the algebraic sum of all the electrifica¬ 

tions, those being reckoned negative which are resinous. We have 

thus a practical method of adding the electrical effects of several 

bodies without altering their electrification. 

31. ] Experiment VI. Let a second insulated metallic vessel, 

B, be provided, and let the electrified piece of glass be put into 

the first vessel A, and the electrified piece of resin into the second 

vessel B. Let the two vessels be then put in communication by 

the metal wire, as in Experiment III. All signs of electrification 

will disappear. 

Next, let the wire be removed, and let the pieces of glass and of 

resin be taken out of the vessels without touching them. It will 

be found that A is electrified resinously and B vitreously. 

If now the glass and the vessel A be introduced together into 

a larger insulated metal vessel (7, it will be found that there is no 
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electrification outside (7. This shews that the electrification of A 

is exactly equal and opposite to that of the piece of glass, and 

that of B may be shewn in the same way to be equal and opposite 

to that of the piece of resin. 

We have thus obtained a method of charging a vessel with a 

quantity of electricity exactly equal and opposite to that of an 

electrified body without altering the electrification of the latter, 

and we may in this way charge any number of vessels with 

exactly equal quantities of electricity of either kind, which we 

may take for provisional units. 

32.] Expeeiment VII. Let the vessel B, charged with a 

quantity of positive electricity, which we shall call, for the 

present, unity, be introduced into the larger insulated vessel G 

without touching it. It will produce a positive electrification 

on the outside of G. Now let B be made to touch the inside of 

C. No change of the external electrification will be observed. 

If B is now taken out of C without touching it, and removed to 

a sufficient distance, it will be found that B is completely dis¬ 

charged, and that C has become charged with a unit of positive 

electricity. 

We have thus a method of transferring the charge of B to C. 

Let B be now recharged with a unit of electricity, introduced 

into C already charged, made to touch the inside of C, and re¬ 

moved. It will be found that B is again completely discharged, 

so that the charge of C is doubled. 

If this process is repeated, it will be found that however 

highly C is previously charged, and in whatever way B is 

charged, when B is first entirely enclosed in (7, then made to 

touch (7, and finally removed without touching (7, the charge of 

B is completely transferred to G, and B is entirely .free from 

electrification. 

This experiment indicates a method of charging a body with 

any number of units of electricity. We shall find, when we 

come to the mathematical theory of electricity, that the result of 

this experiment affords an accurate test of the truth of the 

theory *. 

* {The difficulties which would have to be overcome to make several of the 
preceding experiments conclusive are so great as to be almost insurmountable. Their 
description however serves to illustrate the properties of Electricity in a very 
striking way. In Experiment V no method is given by which the electrification of 
the outer vessel can be measured. ]> 
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33. ] Before we proceed to the investigation of the law of 

electrical force, let us enumerate the facts we have already 

established. 

By placing any electrified system inside an insulated hollow 

conducting vessel, and examining the resultant effect on the 

outside of the vessel, we ascertain the character of the total 

electrification of the system placed inside, without any com¬ 

munication of electricity between the different bodies of the 

system. 

The electrification of the outside of the vessel may be tested 

with great delicacy by putting it in communication with an 

electroscope. 

We may suppose the electroscope to consist of a strip of gold 

leaf hanging between two bodies charged, one positively, and 

the other negatively. If the gold leaf becomes electrified it will 

incline towards the body whose electrification is opposite to its 

own. By increasing the electrification of the two bodies and the 

delicacy of the suspension, an exceedingly small electrification of 

the gold leaf may be detected. 

When we come to describe electrometers and multipliers we 

shall find that there are still more delicate methods of detecting 

electrification and of testing the accuracy of our theories, but at 

present we shall suppose the testing to be made by connecting 

the hollow vessel with a gold leaf electroscope. 

This method was used by Faraday in his very admirable 

demonstration of the laws of electrical phenomena *. 

34. ] I. The total electrification of a body, or system of bodies, 

remains always the same, except in so far as it receives electrifi¬ 

cation from or gives electrification to other bodies. 

In all electrical experiments the electrification of bodies is 

found to change, but it is always found tha!> this change is due 

to want of perfect insulation, and that as the means of insulation 

are improved, the loss of electrification becomes less. We may 

therefore assert that the electrification of a body placed in a 

perfectly insulating medium would remain perfectly constant. 

II. When one body electrifies another by conduction, the 

total electrification of the two bodies remains the same, that 

is, the one loses as much positive or gains as much negative 

* ‘On Static Electrical Inductive Action/ Phil, Mag., 1843 or Exp. lies., vol, ii. 

p. 279. 
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electrification as the other gains of positive or loses of negative 

electrification. 

For if the two bodies are enclosed in the hollow vessel, no 

change of the total electrification is observed. 

III. When electrification is produced by friction, or by any 

other known method, equal quantities of positive and negative 

electrification are produced. 

For the electrification of the whole system may be tested in 

the hollow vessel, or the process of electrification may be carried 

on within the vessel itself, and however intense the electrifi¬ 

cation of the parts of the system may be, the electrification of 

the whole, as indicated by the gold leaf electroscope, is in¬ 

variably zero. 

The electrification of a body is therefore a physical quantity 

capable of measurement, and two or more electrifications can be 

combined experimentally with a result of the same kind as 

when two quantities are added algebraically. We therefore are 

entitled to use language fitted to deal with electrification as a 

quantity as well as a quality, and to speak of any electrified 

body as ‘ charged with a certain quantity of positive or negative 

electricity.’ 

35.] While admitting electricity, as we have now done, to the 

rank of a physical quantity, we must not too hastily assume 

that it is, or is not, a substance, or that it is, or is not, a form of 

energy, or that it belongs to any known category of physical 

quantities. All that we have hitherto proved is that it cannot 

be created or annihilated, so that if the total quantity of elec¬ 

tricity within a closed surface is increased or diminished, the 

increase or diminution must have passed in or out through 

the closed surface. 

This is true of matter, and is expressed by the equation known 

as the Equation of Continuity in Hydrodynamics. 

It is not true of heat, for heat may be increased or diminished 

within a closed surface, without passing in or out through the 

surface, by the transformation of some other form of energy into 

heat, or of heat into some other form of energy. 

It is not true even of energy in general if we admit the imme¬ 

diate action of bodies at a distance. For a body outside the 

closed surface may make an exchange of energy with a body 

within the surface. But if all apparent action at a distance is 
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the result of the action between the parts of an intervening 

medium, it is conceivable that in all cases of the increase or 

diminution of the energy within a closed surface we may be 

able, when the nature of this action of the parts of the medium 

is clearly understood, to trace the passage of the energy in or 

out through that surface. 

There is, however, another reason which warrants us in 

asserting that electricity, as a physical quantity, synonymous 

with the total electrification of a body, is not, like heat, a form 

of energy. An electrified system has a certain amount of 

energy, and this energy can be calculated by multiplying the 

quantity of electricity in each of its parts by another physical 

quantity, called the Potential of that part, and taking half the 

sum of the products. The quantities ‘ Electricity ’ and ‘ Potential/ 

when multiplied together, produce the quantity ‘ Energy.’ It is 

impossible, therefore, that electricity and energy should be 

quantities of the same category, for electricity is only one of the 

factors of energy, the other factor being ‘ Potential.’ * 

Energy, which is the product of these factors, may also be 

considered as the product of several other pairs of factors, 

such as 

A Force x A distance through which the force is to act. 

A Mass x Gravitation acting through a certain height. 

A Mass x Half the square of its velocity. 

A Pressure x A volume of fluid introduced into a vessel 

at that pressure. 

A Chemical Affinity x A chemical change, measured by the num¬ 

ber of electro-chemical equivalents which 

enter into combination. 

If we ever should obtain distinct mechanical ideas of the nature 

of electric potential, we may combine these with the idea of 

energy to determine the physical category in which ‘ Electricity' 

is to be placed. 

36.] In most theories on the subject, Electricity is treated as 

a substance, but inasmuch as there are two kinds of electrifi¬ 

cation which, being combined, annul each other, and since 

we cannot conceive of two substances annulling each other, a 

distinction has been drawn between Free Electricity and Com¬ 

bined Electricity. 

* {It is shown afterwards that ‘ Potential * is not of zero dimensions, j 
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Theory of Two Fluids. 

In what is called the Theory of Two Fluids, all bodies, in 

their unelectrified state, are supposed to be charged with equal 

quantities of positive and negative electricity. These quantities 

are supposed to be so great that no process of electrification 

has ever yet deprived a body of all the electricity of either 

kind. The process of electrification, according to this theory, 

consists in taking a certain quantity P of positive electricity 

from the body A and communicating it to B, or in taking 

a quantity N of negative electricity from B and communicating 

it to Ay or in some combination of these processes. 

The result will be that A will have P + N units of negative 

electricity over and above its remaining positive electricity, 

which is supposed to be in a state of combination with an equal 

quantity of negative electricity. This quantity P + N is called 

the Free electricity, the rest is called the Combined, Latent, or 

Fixed electricity. 

In most expositions of this theory the two electricities are 

called * Fluids/ because they are capable of being transferred 

from one body to another, and are, within conducting bodies, 

extremely mobile. The other properties of fluids, such as their 

inertia, weight, and elasticity, are not attributed to them by 

those who have used the theory for merely mathematical pur¬ 

poses ; but the use of the word Fluid has been apt to mislead 

the vulgar, including many men of science who are not natural 

philosophers, and who have seized on the word Fluid as the 

only term in the statement of the theory which seemed in¬ 

telligible to them. 

We shall see that the mathematical treatment of the subject 

has been greatly developed by writers who express themselves 

in terms of the 1 Two Fluids * theory. Their results, however, 

have been deduced entirely from data which can be proved by 

experiment, and which must therefore be true, whether we 

adopt the theory of two fluids or not. The experimental veri¬ 

fication of the mathematical results therefore is no evidence for 

or against the peculiar doctrines of this theory. 

The introduction of two fluids permits us to consider the 

negative electrification of A and the positive electrification of B 

as the effect of any one of three different processes which would 

lead to the same result. We have already supposed it produced 
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by the transfer of P units of positive electricity from A to B, 
together with the transfer of AT units of negative electricity from 
B to A. But if P + N units of positive electricity had been 
transferred from A to B} or if P + iV units of negative electricity 
had been transferred from B to A} the resulting ‘free electricity’ 
on A and on B would have been the same as before, but the 
quantity of ‘ combined electricity ’ in A would have been less in 
the second case and greater in the third than it was in the first. 

It would appear therefore, according to this theory, that it is 
possible to alter not only the amount of free electricity in a 
body, but the amount of combined electricity. But no phe¬ 
nomena have ever been observed in electrified bodies which can 
be traced to the varying amount of their combined electricities. 
Hence either the combined electricities have no observable 
properties, or the amount of the combined electricities is in¬ 
capable of variation. The first of these alternatives presents no 
difficulty to the mere mathematician, who attributes no pro¬ 
perties to the fluids except those of attraction and repulsion, for 
he conceives the two fluids simply to annul one another, like 
-he and — e, and their combination to be a true mathematical 
zero. But to those who cannot use the word Fluid without 
thinking of a substance it is difficult to conceive how tho 
combination of the two fluids can have no properties at all, so 
that the addition of more or less of the combination to a body 
shall not in any way affect it, either by increasing its mass or 
its weight, or altering some of its other properties. Hence it 
has been supposed by some, that in every process of electrifica¬ 
tion exactly equal quantities of the two fluids are transferred in 
opposite directions, so that the total quantity of the two fluids 
in any body taken together remains always the same. By this 
new law they ‘ contrive to save appearances/ forgetting that 
there would have been no need of the law except to reconcile 
the ‘ Two Fluids ’ theory with facts, and to prevent it from pre¬ 

dicting non-existent phenomena. 

Theoi'y of One Fluid. 

37.] In the theory of One Fluid everything is the same as in 
the theory of Two Fluids except that, instead of supposing the 
two substances equal and opposite in all respects, one of them, 
generally the negative one, has been endowed with the pro- 
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perties and name of Ordinary Matter, while the other retains 

the name of The Electric Fluid. The particles of the fluid are 

supposed to repel one another according to the law of the 

inverse square of the distance, and to attract those of matter 

according to the same law. Those of matter are supposed to 

repel each other and attract those of electricity. 

If the quantity of the electric fluid in a body is such that a 

particle of the electric fluid outside the body is as much repelled 

by the electric fluid in the body as it is attracted by the matter 

of the body, the body is said to be Saturated. If the quantity 

of fluid in the body is greater than that required for saturation, 

the excess is called the Redundant fluid, and the body is said to 

be Overcharged. If it is less, the body is said to be Under¬ 

charged, and the quantity of fluid which would be required to 

saturate it is sometimes called the Deficient fluid. The number 

of units of electricity required to saturate one gramme of 

ordinary matter must be very great, because a gramme of gold 

may be beaten out to an area of a square metre; and when in 

this form may have a negative charge of at least 60,000 units of 

electricity. In order to saturate the gold leaf when so charged, 

this quantity of electric fluid must be communicated to it, so 

that the whole quantity required to saturate it must be greater 

than this. The attraction between the matter and the fluid 

in two saturated bodies is supposed to be a very little greater 

than the repulsion between the two portions ox matter and that 

between the two portions of fluid. This residual force is supposed 

to account for the attraction of gravitation. 

This theory does not, like the Two Fluid theory, explain too 

much. It requires us, however, to suppose the mass of the 

electric fluid so small that no attainable positive or negative 

electrification has yet perceptibly increased or diminished either 

the mass or the weight of a body *, and it has not yet been able 

to assign sufficient reasons why the vitreous rather than the 

resinous electrification should be supposed due to an excess of 

electricity. 

One objection has sometimes been urged against this theory 

by men who ought to have reasoned better. It has been said 

that the doctrine that the particles of matter uncombined with 

, * {The apparent mass of a body is increased by a charge of electricity whether 
vitreous or resinous (see Phil Mag. 1861, v, xi. p. 229).} 
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electricity repel one another, is in direct antagonism with the 

well-established fact that every particle of matter cdtracts every 

other particle throughout the universe. If the theory of One 

Fluid were true we should have the heavenly bodies repelling 

one another. 

It is manifest however that the heavenly bodies, according to 

this theory, if they consisted of matter uncombined with elec¬ 

tricity, would be in the highest state of negative electrification, 

and would repel each other. We have no reason to believe that 

they are in such a highly electrified state, or could be maintained 

in that state. The earth and all the bodies whose attraction has 

been observed are rather in an unelectrified state, that is, they con¬ 

tain the normal charge of electricity, and the only action between 

them is the residual force lately mentioned. The artificial manner, 

however, in which this residual force is introduced is a much 

more valid objection to the theory. 

In the present treatise I propose, at different stages of the in¬ 

vestigation, to test the different theories in the light of additional 

classes of phenomena. For my own part, I look for additional 

light on the nature of electricity from a study of what takes place 

in the space intervening between the electrified bodies. Such is 

the essential character of the mode of investigation pursued by 

Faraday in his Experimental Researches, and as we go on I 

intend to exhibit the results, as developed by Faraday, 

W, Thomson, &c.; in a connected and mathematical form, so 

that we may perceive what phenomena are explained equally well 

by all the theories, and what phenomena indicate the peculiar 

difficulties of each theory. 

Measurement of the Force between Electrified Bodies. 

38.] Forces may be measured in various ways. For instance, 

one of the bodies may be suspended from one arm of a delicate 

balance, and weights suspended from the other arm, till the body, 

when unelectrified, is in equilibrium. The other body may then 

be placed at a known distance beneath the first, so that the 

attraction or repulsion of the bodies when electrified may increase 

or diminish the apparent weight of the first. The weight which 

must be added to or taken from the other arm, when expressed 

in dynamical measure, will measure the force between the bodies. 

This arrangement was used by Sir W. Snow Harris, and is that 
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adopted in Sir W. Thomson’s absolute electrometers. See 

Art. 217. 

It is sometimes more convenient to use a torsion-balance, in 

which a horizontal arm is suspended by a fine wire or fibre, so as 

to bo capable of vibrating about the vertical wire as an axis, and 

the body is attached to one end of the arm and acted on by the 

force in the tangential direction, so as to turn the arm round the 

vertical axis, and so twist the suspension wire through a certain 

angle. The torsional rigidity of the wire is found by observing 

the time of oscillation of the arm, the moment of inertia of the 

arm being otherwise known, and from the angle of torsion and 

the torsional rigidity the force of attraction or repulsion can be 

deduced. The torsion-balance was devised by Michell for the 

determination of the force of gravitation between small bodies, 

and was used by Cavendish for this purpose. Coulomb, working 

independently of these philosophers, reinvented it, thoroughly 

studied its action, and successfully applied it to discover the laws 

of electric and magnetic forces ; and the torsion-balance has ever 

since been used in researches where small forces have to be 

measured. See Art. 215. 

39.] Let us suppose that by either of these methods we can 

measure the force between two electrified bodies. We shall 

suppose the dimensions of the bodies small compared with the 

distance between them, so that the result may not be much 

altered by any inequality of distribution of the electrification on 

either body, and we shall suppose that both bodies are so 

suspended in air as to be at a considerable distance from other 

bodies on which they might induce electrification. 

It is then found that if the bodies are placed at a fixed distance 

and charged respectively with e and e of our provisional units of 

electricity, they will repel each other with a force proportional 

to the product of e and e/. If either e or ef is negative, that is, 

if one of the charges is vitreous and the other resinous, the force 

will be attractive, but if both e and e' are negative the force is 
again repulsive. 

We may suppose the first body, A, charged with m units of 

positive and n units of negative electricity, which may be con¬ 

ceived separately placed within the body, as in Experiment V. 

Let the second body, B, be charged with m' units of positive 

and n' units of negative electricity. 
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Then each of the m positive units in A will repel each of the 

m' positive units in B with a certain force, say /, making a total 

effect equal to mm' f. 

Since the effect of negative electricity is exactly equal and 

opposite to that of positive electricity, each of the m positive units 

in A will attract each of the n' negative units in B with the 

same force /, making a total effect equal to m n'f 

Similarly the n negative units in A will attract the m' positive 

units in B with a force nm' f, and will repel the n' negative units 

in B with a force nn'f. 

The total repulsion will therefore be (mm' + nn')f; and the 

total attraction will be (m ri -f m n) f 

The resultant repulsion will be 

(mm' + nn' — mn'or (m — n) (m'—n')f. 

Now m~n = e is the algebraical value of the charge on Ay and 

m'—n' = e is th&t of the charge on B, so that the resultant re¬ 

pulsion may be written ee'fi the quantities e and e' being always 

understood to be taken with their proper signs. 

Variation of the Force with the Distance. 

40. ] Having established the law of force at a fixed distance, 

we may measure the force between bodies charged in a constant 

manner and placed at different distances. It is found by direct 

measurement that the force, whether of attraction or repulsion, 

varies inversely as the square of the distance, so that iff is the 

repulsion between two units at unit distance, the repulsion at dis¬ 

tance r will be/r~2, and the general expression for the repulsion 

between e units and e' units at distance r will be 

feer~\ 

Definition of the Electrostatic Unit of Electricity. 

41. ] We have hitherto used a wholly arbitrary standard for our 

unit of electricity, namely, the electrification of a certain piece of 

glass as it happened to be electrified at the commencement of our 

experiments. We are now able to select a unit on a definite 

principle, and in order that this unit may belong to a general 

Bystem we define it so that/ may be unity, or in other words— 

The electrostatic unit of electricity is that quantity of positive 
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electricity; which, when placed at unit of distance from an equal 

quantity, repels it with unit of force*. 

This unit is called the Electrostatic unit to distinguish it from 

the Electromagnetic unit, to be afterwards defined. 

We may now write the general law of electrical action in the 

simple form p — ee' r~~2; or, 

The repulsion between two small bodies charged respectively 

with e and e units of electricity is numerically equal to the 

product of the charges divided by the square of the distance. 

Dimensions of the Electrostatic Unit of Quantity. 

42. ] If [Q] is the concrete electrostatic unit of quantity itself, 

and c, e the numerical values of particular quantities ; if [X] is 

the unit of length, and r the numerical value of the distance ; and 

if [X] is the unit of force, and F the numerical value of the force, 

then the equation becomes 

F[F] = ee'r-* [Q2] [L~2] ; 

whence [Q] = [XJPl] 

This unit is called the Electrostatic Unit of electricity. Other 

units may be employed for practical purposes," and in other de¬ 

partments of electrical science, but in the equations of electro¬ 

statics quantities of electricity are understood to be estimated in 

electrostatic units, just as in physical astronomy we employ a 

unit of mass which is founded on the phenomena of gravitation, 

and which differs from the units of mass in common use. 

Proof of the Law of Electrical Force. 

43. ] The experiments of Coulomb with the torsion-balance 

may be considered to have established the law of force with a 

certain approximation to accuracy. Experiments of this kind, 

however, are rendered difficult, and in some degree uncertain, by 

several disturbing causes, which must be carefully traced and 

corrected for. 

In the first place, the two electrified bodies must be of sensible 

dimensions relative to the distance between them, in order to be 

* {In this definition and in the enunciation of the law of electrical action the 
medium surrounding the electrified bodies is supposed to be air. See Art. 94.} 
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capable of carrying charges sufficient to produce measurable 

forces. The action of each body will then produce an effect on 

the distribution of electricity on the other, so that the charge 

cannot be considered as evenly distributed over the surface, or 

collected at the centre of gravity; but its effect must be calcu¬ 

lated by an intricate investigation. This, however, has been 

done as regards two spheres by Poisson in an extremely able 

manner, and the investigation has been greatly simplified by 

Sir W. Thomson in his Theory of Electrical Images. See Arts. 

172-175. 

Another difficulty arises from the action of the electricity 

induced on the sides of the case containing the instrument. By 

making the inner surface of the instrument of metal, this effect 

can be rendered definite and measurable. 

An independent difficulty arises from the imperfect insulation 

of the bodies, on account of which the charge continually de¬ 

creases. Coulomb investigated the law of dissipation, and made 

corrections for it in his experiments. 

The methods of insulating charged conductors, and of measur¬ 

ing electrical effects, have been greatly improved since the time 

of Coulomb,, particularly by Sir W. Thomson ; but the perfect 

accuracy of Coulomb’s law of force is established, not by any 

direct experiments and measurements (which may be used as 

illustrations of the law), but by a mathematical consideration of the 

phenomenon described as Experiment VII, namely, that an elec¬ 

trified conductor B, if made to touch the inside of a hollow closed 

conductor C and then withdrawn without touching C, is per¬ 

fectly discharged, in whatever manner the outside of C may be 

electrified. By means of delicate electroscopes it is easy to shew 

that no electricity remains on B after the operation, and by the 

mathematical theory given at Arts. 74 c, 74 c?, khis can only be the 

case if the force varies inversely as the square of the distance, 

for if the law were of any different form B would be electrified. 

The Electric Field. 

44.] The Electric Field is the portion of space in the neigh¬ 

bourhood of electrified bodies, considered with reference to elec¬ 

tric phenomena. It may be occupied by air or other bodies, or 

it may be a so-called vacuum, from which we have withdrawn 



ELECTROSTATIC PHENOMENA. 48 [45- 

every substance which we can act upon with the means at our 

disposal. 

If an electrified body be placed at any part of the electric field 

it will, in general, produce a sensible disturbance in the electri¬ 

fication of the other bodies. 

But if the body is very small, and its charge also very small, 

the electrification of the other bodies will not be sensibly dis¬ 

turbed, and we may consider the position of the body as deter¬ 

mined by its centre of mass. The force acting on the body will 

then be proportional to its charge, and will be reversed when 

the charge is reversed. 

Let e be the charge of the body, and F the force acting on the 

body in a certain direction, then when e is very small F is propor¬ 

tional to e, or F — Re, 

where R depends on the distribution of electricity on the other 

bodies in the field; If the charge e could be made equal to 

unity without disturbing the electrification of other bodies we 

should have F—R. 

We shall call R the Resultant Electromotive Intensity at the 

given point of the field. When we wish to express the fact that 

this quantity is a vector we shall denote it by the German letter ©. 

Total Electromotive Force and Potential. 

45.] If the small body carrying the small charge e be moved 

from one given point, A, to another B, along a given path, it 

will experience at each point of its course a force Re, where R 

varies from point to point of the course. Let the whole work 

done on the body by the electrical force be Ee, then E is called 

the Total Electromotive Force along the path AB, If the path 

forms a complete circuit, and if the total electromotive force round 

the circuit does not vanish, the electricity cannot be in equi¬ 

librium but a current will be produced. Hence in Electrostatics 

the total electromotive force round any closed circuit must be 

zero, so that if A and B are two points on the circuit, the total 

electromotive force from A to B is the same along either of the 

two paths into which the circuit is broken, and since either of 

these can be altered independently of the other, the total electro¬ 

motive force from A to B is the same for all paths from A to B. 

If B is taken as a point of reference for all other points, then the 

total electromotive force from A to B is called the Potential of A. 
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It depends only on the position of A. In mathematical investi¬ 

gations, B is generally taken at an infinite distance from the 

electrified bodies. 

A body charged positively tends to move from places of greater 

positive potential to places of smaller positive, or of negative, 

potential, and a body charged negatively tends to move in the 

opposite direction. 

In a conductor the electrification is free to move relatively to 

the conductor. If therefore two parts of a conductor have 

different potentials, positive electricity will move from the part 

having greater potential to the part having less potential as long 

as that difference continues. A conductor therefore cannot be 

in electrical equilibrium unless every point in it has the same 

potential. This potential is called the Potential of the Conductor. 

Equipotential Surfaces. 

46.] If a surface described or supposed to be described in the 

electric field is such that the electric potential is the same at 

every point of the surface it is called an Equipotential surface. 

An electrified particle constrained to rest upon such a surface 

will have no tendency to move from one part of the surface to 

another, because the potential is the same at every point. An 

equipotential surface is therefore a surface of equilibrium or a 

level surface. 

The resultant force at any point of the surface is in the direc¬ 

tion of the normal to the surface, and the magnitude of the force 

is such that the work done on an electrical unit in passing from 

the surface V to the surface V' is F— V'. 

No two equipotential surfaces having diffeient potentials can 

meet one another, because the same point cannot have more than 

one potential, but one equipotential surface may meet itself, and 

this takes place at all points and along all lines of equilibrium. 

The surface of a conductor in electrical equilibrium is neces¬ 

sarily an equipotential surface. If the electrification of the con¬ 

ductor is positive over the whole surface, then the potential will 

diminish as we move away from the surface on every side, and 

the conductor will be surrounded by a series of surfaces of lower 

potential. 

But if (owing to the action of external electrified bodies) some 

vol. 1. . e 
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regions of the conductor are charged positively and others ne¬ 

gatively, the complete equipotential surface will consist of the 

surface of tho conductor itself together with a system of other 

surfaces, meeting the surface of the conductor in the lines which 

divide the positive from the negative regions * These lines will 

be lines of equilibrium, and an electrified particle placed on one 

of these lines will experience no force in any direction. 

When the surface of a conductor is charged positively in some 

parts and negatively in others, there must be some other electri¬ 

fied body in the field besides itself. For if we allow a positively 

electrified particle, starting from a positively charged part of the 

surface, to move always in the direction of the resultant force 

upon it, the potential at the particle will continually diminish till 

the particle reaches either a negatively charged surface at a poten¬ 

tial less than that of the first conductor, or moves off to an infinite 

distance. Since the potential at an infinite distance is zero, the 

latter case can only occur when the potential of the conductor is 

positive. 

In the same way a negatively electrified particle, moving off 

from a negatively charged part of the surface, must .either reach 

a positively charged surface, or pass off to infinity, and the latter 

case can only happen when the potential of the conductor is 

negative. 

Therefore, if both positive and negative charges exist on a 

conductor, there must be some other body in the field whose 

potential has the same sign as that of the conductor but a greater 

numerical value, and if a conductor of any form is alone in the 

field the charge of every part is of the same sign as the potential 

of the conductor. 

The interior surface of a hollow conducting vessel containing 

no charged bodies is entirely free from charge. For if any part 

of the surface were charged positively, a positively electrified 

particle moving in the direction of the force upon it, must reach 

a negatively charged surface at a lower potential. But the whole 

interior surface has the same potential. Hence it can have no 

charge f. 

* {See Arts. 80, 114.} 

t {To make the proof rigid it is necessary to state that by Art. 80 the force cannot 
vanish where the surface is charged, and that by Art. 112 the potential cannot have a 
maximum or minimum value at a point where there is no electrification.} 
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A conductor placed inside the vessel and communicating with 

it, may be considered as bounded by the interior surface. Hence 

such a conductor has no charge. 

Lines of Force. 

47. ] The line described by a point moving always in the direc¬ 

tion of the resultant intensity is called a Line of Force. It cuts 

the equipotential surfaces at right angles. The properties of 

lines of force will be more fully explained afterwards, because 

Faraday has expressed many of the laws of electrical action in 

terms of his conception of lines of force drawd in the electric 

field, and indicating both the direction and the intensity at every 

point. 

Electric Tension. 

48. ] Since the surface of h conductor is an equipotential surface, 

the resultant intensity is normal to the surface, and it will be 

shewn in Art. 80 that it is proportional to the superficial density of 

the electrification. Hence the electricity on any small area of the 

surface will be acted on by a force tending from the conductor 

and proportional to the product of the resultant intensity and 

the density, that is, proportional to the square of the resultant 

intensity. 

This force, which acts outwards as a tension on every part of the 

conductor, will be called electric Tension. It is measured like 

ordinary mechanical tension, by the force exerted on unit of area. 

The word Tension has been used by electricians in several vague 

senses, and it has been attempted to adopt it in mathematical 

language as a synonym for Potential; but on examining the cases 

in which the word has been used, I think it will be more con¬ 

sistent with usage and with mechanical analogy to understand by * 

tension a pulling force of so many pounds weight per square inch 

exerted on the surface of a conductor or elsewhere. We shall 

find that the conception of Faraday, that this electric tension 

exists not only at the electrified surface but all along the lines of 

force, leads to a theory of electric action as a phenomenon of 

stress in a medium. 

Electromotive Force. 

49. ] When two conductors at different potentials are connected 

by a thin conducting wire, the tendency of electricity to flow 

E % 
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along the wire is measured by the difference of the potentials of 

the two bodies. The difference of potentials between two con¬ 

ductors or two points is therefore called the Electromotive force 

between them. 

Electromotive force cannot in all cases be expressed in the 

form of a difference of potentials. These cases, however, are not 

treated of in Electrostatics. We shall consider them when we 

come to heterogeneous circuits, chemical actions, motions of 

magnets, inequalities of temperature, &c. 

Capacity of a Conductor. 

50. ] If one conductor is insulated while all the surrounding 

conductors are kept at the zero potential by being put in commu¬ 

nication with the earth, and if the conductor, when charged with 

a quantity E of electricity, has a potential V, the ratio of E to V 

is called the Capacity of the conductor. If the conductor is 

completely enclosed within a conducting vessel without touching 

it, then the charge on the inner conductor will be equal and op¬ 

posite to the charge on the inner surface of the outer conductor, 

and will be equal to the capacity of the inner conductor multiplied 

by the difference of the potentials of the two conductors. 

Elect vie A ccumulat ora. 

A system consisting of two conductors whose opposed surfaces 

are separated from each other by a thin stratum of an insulating 

medium is called an electric Accumulator. The two conductors 

are called the Electrodes and the insulating medium is called the 

Dielectric. The capacity of the accumulator is directly propor¬ 

tional to the area of the opposed surfaces and inversely proportional 

to the thickness of the stratum between them. A Leyden jar is 

* an accumulator in which glass is the insulating medium. Accu¬ 

mulators are sometimes called Condensers, but I prefer to restrict 

the term 4 condenser * to an instrument which is used not to hold 

electricity but to increase its superficial density. 

PROPERTIES OF BODIES IN RELATION TO STATICAL ELECTRICITY. 

Resistance to the Passage of Electricity through a Body. 

51. ] When a charge of electricity is communicated to any part 

of a mass of metal the electricity is rapidly transferred from places 

of high to places of low potential till the potential of the whole 
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mass becomes the same. In the case of pieces of metal used in 

ordinary experiments this process is completed in a time too short 

to be observed, but in the case of very long and thin wires, such 

as those used in telegraphs, the potential does not become uniform 

till after a sensible time, on account of the resistance of the wire 

to the passage of electricity through it. 

The resistance to the passage of electricity is exceedingly dif¬ 

ferent in different substances, as may be seen from the tables at 

Arts. 362, 364, and 367, which will be explained in treating of 

Electric Currents. 

All the metals are good conductors, though the resistance of lead 

is 12 times that of copper or silver, that of iron 6 times, and that 

of mercury 60 times that of copper. The. resistance of all metals 

increases as their temperature rises. 

Many liquids conduct electricity by electrolysis. This mode of 

conduction will be considered in Part II. For the present, we 

may regard all liquids containing water and all damp bodies as 

conductors, far inferior to the metals but incapable of insulating 

a charge of electricity for a sufficient time to be observed. The 

resistance of electrolytes diminishes as the temperature rises. 

On the other hand, the gases at the atmospheric pressure, 

whether dry or moist, are insulators so nearly perfect when the 

electric tension is small that we have as yet obtained no evidence 

of electricity passing through them by ordinary conduction. The 

gradual loss of charge by electrified bodies may in every case be 

traced to imperfect insulation in the supports, the electricity 

either passing through the substance of the support or creeping 

over its surface. Hence, when two charged bodies are hung up 

near each other, they will preserve their charges longer if they 

are electrified in opposite ways, than if they are electrified in the 

same way. For though the electromotive force tending to make 

the electricity pass through the air between them is much greater 

when they are oppositely electrified, no perceptible loss occurs in 

this way. The actual loss takes place through the supports, and 

the electromotive force through the supports is greatest when the 

bodies are electrified in the same way. The result appears 

anomalous only when we expect the loss to occur by the passage 

of electricity through the air between the bodies. The passage 

of electricity through gases takes place, in general, by disruptive 

discharge, and does not begin till the electromotive intensity has 
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reached a certain value. The value of the electromotive intensity 

which can exist in a dielectric without a discharge taking place 

is called the Electric Strength of the dielectric. The electric 

strength of air diminishes as the pressure is reduced from the 

atmospheric pressure to that of about three millimetres of 

mercury *. When the pressure is still further reduced, the electric 

strength rapidly increases; and when the exhaustion is carried to 

the highest degree hitherto attained, the electromotive intensity 

required to produce a spark of a quarter of an inch is greater 

than that which will give a spark of eight inches in air at the 

ordinary pressure. 

A vacuum, that is to say, that which remains in a vessel after 

we have removed everything which we can remove from it, is 

therefore an insulator of very great electric strength. 

The electric strength of hydrogen is much less than that of air 

at the same pressure. 

Certain kinds of glass when cold are marvellously perfect in¬ 

sulators, and Sir W. Thomson has preserved charges of electricity 

for years in bulbs hermetically sealed. The same glass, however, 

becomes a conductor at a temperature below that of boiling water. 

Gutta-percha, caoutchouc, vulcanite, paraffin, and resins are 

good insulators, the resistance of gutta-percha at 75° F, be;ng 

about 6 x 1019 times that of copper. 

Ice, crystals, and solidified electrolytes, are also insulators. 

Certain liquids, such as naphtha, turpentine, and some oils, are 

insulators, but inferior to the best solid insulators. 

DIELECTRICS. 

Specific Inductive Capacity. 

52.] All bodies whose insulating power is such that when they 

are placed between two conductors at different potentials the 

electromotive force acting on them does not immediately dis¬ 

tribute their electricity so as to reduce the potential to a constant 

value, are called by Faraday Dielectrics. 

It appears from the hitherto unpublished researches of 

Cavendish f that he had, before 1773, measured the capacity of 

plates of glass, resin, bees-wax, and shellac, and had determined 

* -[The pressure at which the electric strength is a minimum depends on the 
shape and size of the vessel in which the gas is contained.} 

f {See Electrical Researches of the Honourable Henry Cavendish, j- 
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the ratios in which their capacities exceeded that of plates of air 

of the same dimensions. 

Faraday, to whom these researches were unknown, discovered 

that the capacity of an accumulator depends on the nature of the 

insulating medium between the two conductors, as well as on the 

dimensions and relative position of the conductors themselves. 

By substituting other insulating media for air as the dielectric of 

the accumulator, without altering it in any other respect, he found 

that when air and other gases were employed as the insulating 

medium the capacity of the accumulator remained sensibly the 

same, but that when shellac, sulphur, glass, &c. were substituted 

for air, the capacity was increased in a ratio which was different 

for each substance. 

By a more delicate method of measurement Boltzmann succeeded 

in observing the variation of the inductive capacities of gases at 

different pressures. 

This property of dielectrics, which Faraday called Specific In¬ 

ductive Capacity, is also called the Dielectric Constant of the 

substance. It is defined as the ratio of the capacity of an 

accumulator when its dielectric is the given substance, to its 

capacity when the dielectric is a vacuum. 

If the dielectric is not a good insulator, it is difficult to measure 

its inductive capacity, because the accumulator will not hold a 

charge for a sufficient time to allow it to be measured ; but it is 

certain that inductive capacity is a property not. confined to 

good insulators, and it is probable that it exists in all bodies * 

Absorption of Electricity. 

53.] It is found that when an accumulator is formed of certain 

dielectrics, the following phenomena occur. 

When the accumulator has been for some time electrified and 

is then suddenly discharged and again insulated, it becomes 

recharged in the same sense as at first, but to a smaller degree, 

so that it may be discharged again several times in succession, 

these discharges always diminishing. This phenomenon is called 

that of the Residual Discharge. 

* (Cohn and Arons (Wiedemann a Annalen, v. 33, j». 13) have investigated the 
specific inductive capacities of Borne non-insulating fluids such as water and alcohol : 
they find that these are very large ; thus, that of distilled water is about 76 and that of 
ethyl alcohol about 26 times that of air. } 
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The instantaneous discharge appears always to be proportional 

to the difference of potentials at the instant of discharge, and 

the ratio of these quantities is the true capacity of the accumu¬ 

lator ; but if the contact of the discharger is prolonged so as to 

include some of the residual discharge, the apparent capacity of 

the accumulator, calculated from such a discharge, will be too 

great. 

The accumulator if charged and left insulated appears to lose 

its charge by conduction, but it is found that the proportionate 

rate of loss is much greater at first than it is afterwards, so that 

the measure of conductivity, if deduced from what takes place 

at first, would be too great. Thus, when the insulation of a 

submarine cable is tested, the insulation appears to improve as 

the electrification continues. 

Thermal phenomena of a kind at first sight analogous take 

place in the case of the conduction of heat when the opposite 

sides of a body are kept at different temperatures. In the case 

of heat we know that they depend on the heat taken in and 

given out by the body itself. Hence, in the case of the electrical 

phenomena, it has been supposed that electricity is absorbed and 

emitted by the parts of the body. We shall see, however, in 

Art. 329, that the phenomena can be explained without the 

hypothesis of absorption of electricity, by supposing the dielectric 

in some degree heterogeneous. 

That the phenomena called Electric Absorption are not an 

actual absorption of electricity by the substance may be shewn 

by charging the substance in any manner with electricity while 

it is suiTOunded by a closed metallic insulated vessel. If, when 

the substance is charged and insulated, the vessel be instan¬ 

taneously discharged and then left insulated, no charge is ever 

communicated to the vessel by the gradual dissipation of the 

electrification of the, charged substance within it *. 

54.] This fact is expressed by the statement of Faraday 4hat it 

is impossible to charge matter with an absolute and independent 

charge of one kind of electricity f. 

In fact it appears from the result of every experiment which 

has befen tried that in whatever way electrical actions may take 

* { For a detailed account of the phenomena of Electric absorption, see Wiedemanns 
EUkiricitat, v. 2, p. 88.} 

f Exp, Res., vol. i. series xi. f ii. * On the Absolute Charge of Matter,' an4 § 1244. 
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place among a system of bodies surrounded by a metallic vessel, 

the charge on the outside of that vessel is not altered. 

Now if any portion of electricity could be forced into a body 

so as to be absorbed in it, or to become latent, or in any way 

to exist in it, without being connected with an equal portion 

of the opposite electricity by lines of induction, or if, after 

having been absorbed, it could gradually emerge and return 

to its ordinary mode of action, we should find some change of 

electrification in the surrounding vessel. 

As this is never found to be the case, Faraday concluded that 

it is impossible to communicate an absolute charge to matter, and 

that no portion of matter can by any change of state evolve or 

render latent one kind of electricity or the other. He therefore 

regarded induction as ‘ the essential function both in the first 

development and the consequent phenomena of electricity.* His 

‘induction* is (1298) a polarized state of the particles of the 

dielectric, each particle being positive on one side and negative 

on the other, the positive and the negative electrification of each 

particle being always exactly equal. 

Disruptive Discharge* 

55.] If the electromotive intensity at any point of a dielectric 

is gradually increased, a limit is at length reached at which there 

is a sudden electrical discharge through the dielectric, generally 

accompanied with light and sound, and with a temporary or 

permanent rupture of the dielectric. 

The electromotive intensity when this takes place is a measure 

of what we may call the electric strength of the dielectric. 

It depends on the nature of the dielectric, and is greater in 

dense air than in rare air, and greater in glass than in air, but 

in every case, if the electromotive force be made great enough, 

the dielectric gives way and its insulating power is destroyed, so 

that a current of electricity takes place through it. It is for this 

reason that distributions of electricity for which the electromotive 

intensity becomes anywhere infinite cannot exist. 

* See Faraday, Exp. Be«.y vol. i., aeries xii. and xiii.. 
{So many investigations have been made on the passage of electricity through 

gases since the first edition of this book was published that the mere enumeration of 
them would stretch beyond the limits of a foot-note. A summary of the results 
obtained by these researches wiU be given in the Supplementary Volume.]- 
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The Electric Glow. 

Thus, when a conductor having a sharp point is electrified, the 

theory, based on the hypothesis that it retains its charge, leads 

to the conclusion that as we approach the point the superficial 

density of the electricity increases without limit, so that at the 

point itself the surface-density, and therefore the resultant 

electromotive intensity, would be infinite. If the air, or other 

surrounding dielectric, had an invincible insulating power, this 

result would actually occur; but the fact is, that as soon as the 

resultant intensity in the neighbourhood of the point has reached 

a certain limit, the insulating power of the air gives way, so that 

the air close to the point becomes a conductor. At a certain 

distance from the point the resultant intensity is not sufficient to 

break through the insulation of the air, so that the electric current 

is checked, and the electricity accumulates in the air round the 

point. 

The point is thus surrounded by particles of air * charged with 

electricity of the same kind as its own. The effect of this charged 

air round the point is to relieve the air at the point itself from 

part of the enormous electromotive intensity which it would have 

experienced if the conductor alone had been electrified. In fact 

the surface of the electrified body is no longer pointed, because the 

point is enveloped by a rounded mass of charged air, the surface 

of which, rather than that of the solid conductor, may be regarded 

as the outer electrified surface. 

If this portion of charged air could be kept still, the electrified 

body would retain its charge, if not on itself at least in its 

neighbourhood, but the charged particles of air being free to move 

under the action of electrical force, tend to move away from the 

electrified body because it is charged with the same kind of elec- 

tricityr. The charged particles of air therefore tend to move off 

in the direction of the lines of force and to approach those sur¬ 

rounding bodies which are oppositely electrified. When they are 

gone, other uncharged particles take their place round the point, 

and since these cannot shield those next the point itself from the 

excessive electric tension, a new discharge takes place, after which 

the newly charged particles move oft*, and so on as long as the body 

remains electrified. 

* •{ Or dust ? It is doubtful whether air free from dust and aqueous vapour can be 
electrified except at very high temperatures ; see Supplementary Volume, j 
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In this way the following phenomena are produced :—At and 

close to the point there is a steady glow, arising from the con¬ 

stant discharges which are taking place between the point and 

the air very near it. 

The charged particles of air tend to move off in the same general 

direction, and thus produce a current of air from the point, con¬ 

sisting of the charged particles, and probably of others carried 

along by them. By artificially aiding this current we may increase 

the glow, and by checking the formation of the current we may 

prevent the continuance of the glow *. 

The electric wind in the neighbourhood of the point is sometimes 

very rapid, but it soon loses its velocity, and the air with its 

charged particles is carried about with the general motions of the 

atmosphere, and constitutes an invisible electric cloud. When the 

charged particles come near to any conducting surface, such as a 

wall, they induce on that surface a charge opposite to their own, 

and are then attracted towards the wall, but since the electro¬ 

motive force is small they may remain for a long time near the 

wall without being drawn up to the surface and discharged. They 

thus form an electrified atmosphere clinging to conductors, the 

presence of which may sometimes be detected by the electrometer. 

The electrical forces, however, acting between large masses of 

charged air and other bodies are exceedingly feeble compared with 

the ordinary forces which produce winds, and which depend on 

inequalities of density due to differences of temperature, so that 

it is very improbable that any observable part of the motion 

of ordinary thunder clouds arises from electrical causes. 

The passage of electricity from one place to another by the 

motion of charged particles is called Electrical Convection or 

Convective Discharge. 

The electrical glow is therefore produced by the constant passage 

of electricity through a small portion of air in which the tension 

is very high, so as to charge the surrounding particles of air which 

are continually swept off by the electric wind, which is an essential 

part of the phenomenon. 

The glow is more easily formed in rare air than in dense air, 

and more easily when the point is positive than when it is negative. 

* See Priestley’s History of Electricity, pp. 117 and 591; and Cavendish’s ‘ Elec¬ 
trical Researches,’ Vhil. Trans., 177b § b or Art. 125 of Electrical Researches of the 

Honourable Henry Cavendish. 
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This and many other differences between positive and negative 

electrification must be studied by those who desire to discover 

something about the nature of electricity. They have not, 

however, been satisfactorily brought to bear upon any existing 

theory. 

The Electric Brush. 

56. ] The electric brush is a phenomenon which may be pro¬ 

duced by electrifying a blunt point or small ball so as to produce 

an electric field in which the tension diminishes as the distance 

increases, but in a less rapid manner than when a sharp point is 

used. It consists of a succession of discharges, ramifying as they 

diverge from the ball into the air, and terminating either by 

charging portions of air or by reaching some other conductor. It 

is accompanied by a sound, the pitch of which depends on the 

interval between the successive discharges, and there is no 

current of air as in the case of the glow. 

The Electric Spark. 

57. ] When the tension in the space between two conductors is 

considerable all the way between them, as in the case of two balls 

whose distance is not great compared with their radii, the 

discharge, when it occurs, usually takes the form of a spark, by 

which nearly the whole electrification is discharged at once. 

In this case, when any part of the dielectric has given way, 

the parts on either side of it in the direction of the electric force 

are put into a state of greater tension so that they also give way, 

and so the discharge proceeds right through the dielectric, just as 

when a little rent is made in the edge of a piece of paper a 

tension applied to the paper in the direction of the edge causes the 

paper to be torn through, beginning at the rent, but diverging 

occasionally where there are weak places in the paper. The 

electric spark in the same way begins at the point where the 

electric tension first overcomes the insulation of the dielectric, 

and proceeds from that point, in an apparently irregular path, 

so as to take in other weak points, such as particles of dust 

floating in air. 

All these phenomena differ considerably in different gases, and in 

the same gas at different densities. Some of the forms of electrical 

discharge through rare gases are exceedingly remarkable. In some 

cases there is a regular alternation of luminous and dark strata, 
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so that if the electricity, for example, is passing along a tube 

containing a very small quantity of gas, a number of luminous 

disks will be seen arranged transversely at nearly equal intervals 

along the axis of the tube and separated by dark strata. If the 

strength of the current be increased a new disk will start into 

existence, and it and the old disks will arrange themselves in 

closer order. In a tube described by Mr. Gassiot * the light of 

each of the disks is bluish on the negative and reddish on the 

poauive side, and bright red in the central stratum. 

These, and many other phenomena of electrical discharge, are 

exceedingly important, and when they are better understood they 

will probably throw great light on the nature of electricity as 

well as on the nature of gases and of the medium pervading space. 

At present, however, they must be considered as outside the 

domain of the mathematical theory of electricity. 

Electric Phenomena of Tourmaline f. 

58.] Certain crystals of tourmaline, and of other minerals, 

possess what may be called Electric Polarity. Suppose a crystal 

of tourmaline to be at a uniform temperature, and apparently 

free from electrification on its surface. Let its temperature be 

now raised, the crystal remaining insulated. One end will be 

found positively and the other end negatively electrified. Let 

the surface be deprived of this apparent electrification by means 

of a flame or otherwise, then if the crystal be made still hotter, 

electrification of the same kind as before will appear, but if the 

crystal be cooled the end which was positive when the crystal 

was heated will become negative. 

These electrifications are observed at the extremities of the 

crystallographic axis. Some crystals are terminated by a six- 

sided pyramid at one end and by a three-sided pyramid at the 

other. In these the end having the six-sided pyramid becomes 

positive when the crystal is heated. 

Sir W. Thomson supposes every portion of these and other 

.hemihedral crystals to have a definite electric polarity, the 

intensity of which depends on the temperature. When the 

surface is passed through a flame, every part of the surface 

becomes electrified to such an extent as to exactly neutralize, 

* Intellectual Observer, March 1866. 
+ {Fora fuller account of this property and the electrification of crystals by radiant 

light and heat, see Wiedemann's Elehtrioitdt, v. 28, p. 816.} 
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for all external points, the effect of the internal polarity. The 

crystal then has no external electrical action, nor any tendency 

to change its mode of electrification. But if it be heated or cooled 

the interior polarization of each particle of the crystal is altered, 

and can no longer be balanced by the superficial electrification, 

so that there is a resultant external action. 

Plan of this Treatise. 

59.] In the following treatise I propose first to explain the 

ordinary theory of electrical action, which considers it as de¬ 

pending only on the electrified bodies and on their relative 

position, without taking account of any phenomena which may 

take place in the intervening media. In this way we shall 

establish the law of the inverse square, the theory of the poten¬ 

tial, and the equations of Laplace and Poisson. Wo shall next 

consider the charges and potentials of a system of electrified 

conductors as connected by a system of equations., the coefficients 

of which may be supposed to be determined by experiment in 

those cases in which our present mathematical methods are not 

applicable, and from these we shall determine the mechanical 

forces acting between the different electrified bodies. 

We shall then investigate certain general theorems by which 

Green, Gauss, and Thomson have indicated the conditions of so¬ 

lution of problems in the distribution of electricity. One result 

of these theorems is, that if Poisson's equation is satisfied by any 

function, and if at the surface of every conductor the function 

has the value of the potential of that conductor, then the func¬ 

tion expresses the actual potential of the system at every point. 

We also deduce a method of finding problems capable of exact 
solution. 

In Thomson s theorem, the total energy of the system is ex¬ 

pressed in the form of the integral of a certain quantity extended 

over the whole space between the electrified bodies, and also in 

the form of an integral extended over the electrified surfaces 

only. The equality of these two expressions may be thus inter¬ 

preted physically. We may conceive the physical relation be¬ 

tween the electrified bodies, either as the result of the state of the 

intervening medium, or as the result of a direct action between 

the electrified bodies at a distance. If we adopt the latter con¬ 

ception, we may determine the law of the action, but we can go 



59-] PLAN OF THIS TREATISE. 63 

no further in speculating on its cause. If, on the other hand, we 

adopt the conception of action through a medium, we are led to 

enquire into the nature of that action in each part of the medium. 

It appears from the theorem, that if we are to look for the seat 

of the electric energy in the different parts of the dielectric me¬ 

dium, the amount of energy in any small part must depend on 

the square of the resultant electromotive intensity at that place 

multiplied by a coefficient called the specific inductive capacity 

of the medium. 

It is better, however, in considering the theory of dielectrics 

from the most general point of view, to distinguish between the 

electromotive intensity at any point and the electric polarization 

of the medium at that point, since these directed quantities, 

though related to one another, are not, in some solid substances, 

in the same direction. The most general expression for the electric 

energy of the medium per unit of volume is half the product of 

the electromotive intensity and the electric polarization multi¬ 

plied by the cosine of the angle between their directions. In 

all fluid dielectrics the electromotive intensity and the electric 

polarization are in the same direction and in a constant ratio. 

If we calculate on this hypothesis the total energy residing 

in the medium, we shall find it equal to the energy due to the 

electrification of the conductors on the hypothesis of direct action 

at a distance. Hence the two hypotheses are mathematically 

equivalent. 

If we now proceed to investigate the mechanical state of the 

medium on the hypothesis that the mechanical action observed 

between electrified bodies is exerted through and by means of 

the medium, as in the familiar instances of the action of one 

body on another by means of the tension of a rope or the 

pressure of a rod, we find that the medium must be in a state of 

mechanical stress. 

The nature of this stress is, as Faraday pointed out*, a tension 

along the lines of force combined with an equal pressure in all 

directions at right angles to these lines. The magnitude of these 

stresses is proportional to the energy of the electrification per 

unit of volume, or, in other words, to the square of the resultant 

electromotive intensity multiplied by the specific inductive 

capacity of the medium. 

* Exp, Res., eeritta xi. 1297. 
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This distribution of stress is the only one consistent * with the 

observed mechanical action on the electrified bodies, and also 

with the observed equilibrium of the fluid dielectric which 

surrounds them. I have therefore thought it a warrantable step 

in scientific procedure to assume the actual existence of this 

state of stress, and to follow the assumption into its consequences. 

Finding the phrase electric tension used in several vague senses, 

I have attempted to confine it to what I conceive to have been 

in the minds of some of those who have used it, namely, the 

state of stress in the dielectric medium which causes motion 

of the electrified bodies, and leads, when continually augmented, 

to disruptive discharge. Electric tension, in this sense, is a 

tension of exactly the same kind, and measured in the same way, 

as the tension of a rope, and the dielectric medium, which can 

support a certain tension and no more, may be said to have 

a certain strength in exactly the same sense as the rope is said 

to have a certain strength. Thus, for example, Thomson has 

found that air at the ordinary pressure and temperature can 

support an electric tension of 9600 grains weight per square 

foot before a spark passes. 

60.] From the hypothesis that electric action is not a direct 

action between bodies at a distance, but is exerted by means of 

the medium between the bodies, we have deduced that this 

medium must be in a state of stress. We have also ascertained 

the character of the stress, and compared it with the stresses 

which may occur in solid bodies. Along the lines of force there 

is tension, and perpendicular to them there is pressure, the 

numerical magnitude of these forces being equal, and each pro¬ 

portional to the square of the resultant intensity at the point. 

Having established these results, we are prepared to take another 

step, and to form an idea of the nature of the electric polarization 

of the dielectric medium. 

An elementary portion of a body may be said to be polarized 

when it acquires equal and opposite properties on two opposite 

sides. The idea of internal polarity may be studied to the 

greatest advantage as exemplified in permanent magnets, and it 

will be explained at greater length when we come to treat of 

magnetism. 

* {This statement requires modification : the distribution of stress referred to iB 
only one among many such distributions which will all produce the required effect.} 
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The electric polarization of an elementary portion of a dielectric 

is a forced state into which the medium is thrown by the action 

of electromotive force, and which disappears when that force is 

removed. We may conceive it to consist in what we may call 

an electric displacement, produced by the electromotive intensity. 

When the electromotive force acts on a conducting medium it 

produces a current through it, but if the medium is a non-con¬ 

ductor or dielectric, the current cannot {continue to} flow through 

the medium, but the electricity is displaced within the medium 

in the direction of the electromotive intensity, the extent of this 

displacement depending on the magnitude of the electromotive 

intensity, so that if the electromotive intensity increases or 

diminishes, the electric displacement increases or diminishes in 

the same ratio. 

The amount of the displacement is measured by the quantity 

of electricity which crosses unit of area, while the displacement 

increases from zero to its actual amount. This, therefore, is the 

measure of the electric polarization. 

The analogy between the action of electromotive intensity in 

producing electric displacement and of ordinary mechanical force 

in producing the displacement of an elastic body is so obvious that 

I have ventured to call the ratio of the electromotive intensity to 

the corresponding electric displacement the coefficient of electric 

elasticity of the medium. This coefficient is different in different 

media, and varies inversely as the specific inductive capacity of 

each medium. 

The variations of electric displacement evidently constitute 

electric currents *. These currents, however, can only exist 

during the variation of the displacement, and therefore, since 

the displacement cannot exceed a certain value without causing 

disruptive discharge, they cannot be continued indefinitely in 

the same direction, like the currents through conductors. 

In tourmaline, and other pyro-electric crystals, it is probable 

that a state of electric polarization exists, which depends upon 

temperature, and does not require an external electromotive force 

to produce it. If the interior of a body were in a state of 

permanent electric polarization, the outside would gradually 

become charged ih such a manner as to neutralize the action of 

the internal polarization for all points outside the body. This 

* {If we assume the views enunciated in the preceding paragraph.} 

F VOL. I. 
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external superficial charge could not be detected by any of the 
ordinary tests, and could not be removed by any of the ordinary 
methods for discharging superficial electrification. The internal 
polarization of the substance would therefore never be discovered 
unless by some means, such as change of temperature, the amount 
of the internal polarization could be increased or diminished. 
The external electrification would then be no longer capable 
of neutralizing the external effect of the internal polarization, 
and an apparent electrification would be observed, as in the case 
of tourmaline. 

If a charge e is uniformly distributed over the surface of a 
sphere, the resultant intensity at any point of the medium sur¬ 
rounding the sphere is proportional to the charge e divided 
by the square of the distance from the centre of the sphere. 
This resultant intensity, according to our theory, is accompanied 
by a displacement of electricity in a direction outwards from the 
sphere. 

If we now draw a concentric spherical surface of radius r, the 
whole displacement, E, through this surface will be proportional 
to the resultant intensity multiplied by the area of the spherical 
surface. But the resultant intensity is directly as the charge e 
and inversely as the square of the radius, while the area of the 
surface is directly as the square of the radius. 

Hence the whole displacement, E, is proportional to the charge 
e, and is independent of the radius. 

To determine the ratio between the charge e, and the quantity 
of electricity, E, displaced outwards through any one of the 
spherical surfaces, let us consider the work done upon the 
medium in the region between two concentric spherical surfaces, 
while the displacement is increased from E to E + bE If Vx 
and V2 denote the potentials at the inner and the outer of these 
surfaces respectively, the electromotive force by which the 
additional displacement is produced is Vj— V2, so that the work 
spent in augmenting the displacement is (Fl — V2) bE. 

If we now make the inner surface coincide with that of the 
electrified sphere, and make the radius of the outer infinite, Vx 
becomes V, the potential of the sphere, and V2 becomes zero, so 
that the whole work done in the surrounding medium is VbE. 

But by the ordinary theory, the work done in augmenting the 

charge is Vbe, and if this is spent, as we suppose, in augmenting 
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the displacement, bE = be, and since E and e vanish together, 

E — e, or— 

The displacement outwards through any spherical surface 

concentric tvith the sphere is equal to the charge on the sphere. 

To fix our ideas of electric displacement, let us consider an 

accumulator formed of two conducting plates A and B, separated 

by a stratum of a dielectric C. Let W be a conducting wire 

joining A and B, and let us suppose that by the action of an 

electromotive force a quantity Q of positive electricity is trans¬ 

ferred along the wire from B to A. The positive electrification 

of A and the negative electrification of B will produce a certain 

electromotive force acting from A towards B in the dielectric 

stratum, and this will produce an electric displacement from 

A towards B within the dielectric. The amount of this dis¬ 

placement, as measured by the quantity of electricity forced 

across an imaginary section of the dielectric dividing it into 

two strata, will be, according to our theory, exactly Q. See Arts. 

75, 76, 111. 
It appears, therefore, that at the same time that a quantity 

Q of electricity is being transferred along the wire by the electro¬ 

motive force from B towards A, so as to cross every section of 

the wire, the same quantity of electricity crosses every section 

of the dielectric from A towards B by reason of the electric dis¬ 

placement. 

The displacements of electricity during the discharge of the 

accumulator will be the reverse of these. In the wire the dis¬ 

charge will be Q from A to B, and in ihe dielectric the displace¬ 

ment will subside, and a quantity of electricity Q will cross 

every section from B towards A. 

Every case of charge or discharge may, therefore be considered 

as a motion in a closed circuit, such that at every section of 

the circuit the same quantity of electricity crosses in the same 

time, and this is the case, not only in the voltaic circuit where 

it has always been recognized, but in those cases in wrhich elec¬ 

tricity has been generally supposed to be accumulated in certain 

places. 

61.] We are thus led to a very remarkable consequence of the 

theory which we are examining, namely, that the motions of 

electricity are like those of an incompressible fluid, so that the 

total quantity within an imaginary fixed closed surface remains 

F % 
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always the same. This result appears at first sight in direct 

contradiction to the fact that we can charge a conductor and 

then introduce it into the closed space, and so alter the quan¬ 

tity of electricity within that space. But we must remember 

that the ordinary theory takes no account of the electric dis¬ 

placement in the substance of dielectrics which we have been 

investigating, but confines its attention to the electrification at 

the bounding surfaces of the conductors and dielectrics. In the 

case of the charged conductor let us suppose the charge to be 

positive, then if the surrounding dielectric extends on all sides 

beyond the closed surface there will be electric polarization, 

accompanied with displacement from within outwards all over 

the closed surface, and the surface-integral of the displacement 

taken over the surface will be equal to the charge on the con¬ 

ductor within. 

Thus when the charged conductor is introduced into the closed 

space there is immediately a displacement of a quantity of elec¬ 

tricity equal to the charge through the surface from within out¬ 

wards, and the whole quantity within the surface remains the 

same. 

The theory of electric polarization will be discussed at 

greater length in Chapter V, and a mechanical illustration of 

it will bo given in Art 334, but its importance cannot be fully 

understood till we arrive at the study of electromagnetic phe¬ 

nomena. 

62.] The peculiar features of the theory are :— 

That the energy of electrification resides in the dielectric 

medium, whether that medium be solid, liquid, or gaseous, dense 

or rare, or even what is called a vacuum, provided it be still 

capable of transmitting electrical action. 

That the energy in any part of the medium is stored up in 

the form of a state of constraint called electric polarization, the 

amount of which depends on the resultant electromotive intensity 

at the place. 

That electromotive force acting on a dielectric produces what 

we have called electric displacement, the relation between the in¬ 

tensity and the displacement being in the most general case of a 

kind to be afterwards investigated in treating of conduction, but 

in the most important cases the displacement is in the same 

direction as the intensity, and is numerically equal to the intensity 
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multiplied by -i- K, where K is the specific inductive capacity of 
4 TT 

the dielectric. 

That the energy per unit of volume of the dielectric arising 

from the electric polarization is half the product of the electro¬ 

motive intensity and the electric displacement, multiplied, if 

necessary, by the cosine of the angle between their directions. 

That in fluid dielectrics the electric polarization is accompanied 

by a tension in the direction of the lines of induction, combined 

with an equal pressure in all directions at right angles to the 

lines of induction, the tension or pressure per unit of area being 

numerically equal to the energy per unit of volume at the same 

place. 

That the surface of any elementary portion into which we may 

conceive the volume of the dielectric divided must be conceived 

to be charged so that the surface-density at any point of the 

surface is equal in magnitude to the displacement through that 

point of the surface reckoned inwards. If the displacement is in 

the positive direction, the surface of the element will be charged 

negatively on the positive side of the element, and positively on 

the negative side. These superficial charges will in general 

destroy one another when consecutive elements are considered, 

except where the dielectric has an internal charge, or at the 

surface of the dielectric. 

That whatever electricity may be, and whatever we may 

understand by the movement of electricity, the phenomenon 

which we have called electric displacement is a movement of 

electricity in the same sense as the transference of a definite 

quantity of electricity through a wire is a movement of elec¬ 

tricity, the only difference being that in the dielectric there is a 

force which we have called electric elasticity which acts against 

the electric displacement, and forces the electricity back when 

the electromotive force is removed; whereas in the conducting 

wire the electric elasticity is continually giving way, so that 

a current of true conduction is set up, and the resistance depends 

not on the total quantity of electricity displaced from its position 

of equilibrium, but on the quantity which crosses a section of 

the conductor in a given time. 

That in every case the motion of electricity is subject to the 

same condition as that of an incompressible fluid, namely, that 
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at every instant as much must flow out of any given closed 

surface as flows into it. 

It follows from this that every electric current must form a 

closed circuit. The importance of this result will be seen when 

we investigate the laws of electro-magnetism. 

Since, as we have seen, the theory of direct action at a dis¬ 

tance is mathematically identical with that of action by means 

of a medium, the actual phenomena may be explained by the one 

theory as well as by the other, provided suitable hypotheses be 

introduced when any difficulty occurs. Thus, Mossotti' has de¬ 

duced the mathematical theory of dielectrics from the ordinary 

theory of attraction merely by giving an electric instead of a 

magnetic interpretation to the symbols in the investigation by 

which Poisson has deduced the theory of magnetic induction 

from the theory of magnetic fluids. He assumes the existence 

within the dielectric of small conducting elements, capable of 

having their opposite surfaces oppositely electrified by induction, 

but not capable of losing or gaining electricity on the whole, 

owing to their being insulated from each other by a non¬ 

conducting medium. This theory of dielectrics is consistent 

with the laws of electricity, and may be actually true. If it is 

true, the specific inductive capacity of a dielectric may be greater, 

but cannot be less, than that of a vacuum. No instance has yet 

been found of a dielectric having an inductive capacity less than 

that of a vacuum, but if such should be discovered, Mossotti’s 

physical theory must be abandoned, although his formulae 

would all remain exact, and would only require us to alter the 

sign of a coefficient. 

In many parts of physical science, equations of the same form 

are found applicable to phenomena which are certainly jf quite 

different natures, as, for instance) electric induction through di¬ 

electrics, conduction through conductors, and magnetic induction. 

In all these cases the relation between the intensity and the effect 

produced is expressed by a set of equations of the same kind, 

so that when a problem in one of these subjects is solved, the 

problem and its solution may be translated into the language 

of the other subjects and the results in their new form will still 

be true. 



CHAPTER II. 

ELEMENTARY MATHEMATICAL THEORY OF STATICAL 

ELECTRICITY. 

Definition of Electricity as a Mathematical Quantity. 

63.] We have seen that the properties of charged bodies are 

such that the charge of one body may be equal to that of an¬ 

other, or to the sum of the charges of two bodies, and that when 

two bodies are equally and oppositely charged they have no elec¬ 

trical effect on external bodies when placed together within a 

closed insulated conducting vessel. We may express all these 

results in a concise and consistent manner by describing an 

electrified body as charged with a certain quantity of electricity, 

which we may denote by e. When the charge is positive, that 

is, according to the usual convention, vitreous, e will be a positive 

quantity. When the charge is negative or resinous, e will be 

negative, and the quantity —e may be interpreted either as a 

negative quantity of vitreous electricity or as a positive quantity 

of resinous electricity. 

The effect of adding together two equal and opposite charges 

of electricity, + e and —<?, is to produce a state of no charge 

expressed by zero. We may therefore regard a body not charged 

as virtually charged with equal and opposite charges of indefinite 

magnitude, and a charged body as virtually charged with un¬ 

equal quantities of positive and negative electricity, the algebraic 

sum of these charges constituting the observed electrification. 

It is manifest, however, that this way of regarding an electrified 

body is entirely artificial, and may be compared to the concep¬ 

tion of the velocity of a body as compounded of two or more 

different velocities, no one of which is the actual velocity of the 

body. 
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ON ELECTRIC DENSITY. 

Distribution in Three Dimensions. 

64.] Definition. The electric volume-density at a given point 

in space is the limiting ratio of the quantity of electricity within 

a sphere whose centre is the given point to the volume of the 

sphere, when its radius is diminished without limit. 

We shall denote this ratio by the symbol p, which may be 

positive or negative. 

Distribution over a Surface. 

It is a result alike of theory and of experiment, that, in certain 

cases, the charge of a body is entirely on the surface. The density 

at a point on the surface, if defined according to the method given 

above, would be infinite. We therefore adopt a different method 

for the measurement of surface-density. 

Definition. The electric density at a given point on a surface 

is the limiting ratio of the quantity of electricity within a sphere 

whose centre is the given point to the area of the surface con¬ 

tained within the sphere, when its radius is diminished without 

limit. 

We shall denote the surface-density by the symbol cr. 

Those writers who supposed electricity to be a material fluid 

or a collection of particles, were obliged in this case to suppose 

the electricity distributed on the surface in the form of a stratum 

of a certain thickness 6, its density being p0, or that value of p 

which would result from the particles having the closest contact 

of which they are capable. It is manifest that on this theory 

p06 = a-. 

When <r is negative, according to this theory, a certain stratum 

of thickness 6 is left entirely devoid of positive electricity, and 

filled entirely with negative electricity, or, on the theory of one 

fluid, with matter. 

There is, however, no experimental evidence either of the 

electric stratum having any thickness, or of electricity being a 

fluid or a collection of particles. We therefore prefer to do 

without the symbol for the thickness of the stratum, and to use 

a special symbol for surface-density. 
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Distribution on a Line. 

It is sometimes convenient to suppose electricity distributed 

on a line, that is, a long narrow body of which we neglect the 

thickness. In this case we may define the line-density at any 

point to be the limiting ratio of the charge on an element of the 

line to the length of that element when the element is diminished 

without limit. 

If A denotes the line-density, then the whole quantity of elec¬ 

tricity on a curve is e —A ds, where ds is the element of the 

curve. Similarly, if a- is the surface-density, the whole quantity 

of electricity on the surface is 

where dS is the element of surface. 

If p is the volume-density at any point of space, then the 

whole electricity with a certain volume is 

e =j j'Jpdxdydz, 

where dxdydz is the element of volume. The limits of in¬ 

tegration in each case are those of the curve, the surface, or the 

portion of space considered. 

It is manifest that e, A, o and p are quantities differing in kind, 

each being one dimension in space lower than the preceding, so 

that if l be a line, the quantities e, l\, l2 <r, and Isp will be all of 

the same kind, and if [Z] be the unit of length, and [a], [a], [p] 

the units of the different kinds of density, [e]} [ZA], [L2 <r], and 

[L:] /)] will each denote one unit of electricity. 

. Definition of the Unit of Electricity. 

65.] Let A and B be two points the distance between which 

is the unit of length. Let two bodies, whose dimensions are 

small compared with the distance ABy be charged with equal 

quantities of positive electricity and placed at A and B respect¬ 

ively, and let the charges be such that the force with which they 

repel each other is the unit of force, measured as in Art. 6. Then 

the charge of either body is said to be the unit of electricity *. 

If the charge of the body at B were a unit of negative 

* {In this definition the dielectric separating the charged bodies is supposed to be 
air.} 
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electricity, then, since the action between the bodies would be 

reversed, we should have an attraction equal to the unit of force. 

If the charge of A were also negative, and equal to unity, the 

force would be repulsive, and equal to unity. 

Since the action between any two portions of electricity is not 

affected by the presence of other portions, the repulsion between 

e units of electricity at A and e units at B is ee\ the distance 

AB being unity. See Art. 39. 

Law of Force between Charged Bodies. 

66. ] Coulomb shewed by experiment that the force between 

charged bodies whose dimensions are small compared with the 

distance between them, varies inversely as the square of the dis¬ 

tance. Hence the repulsion between two such bodies charged 

with quantities e and e' and placed at a distance r is 

ee' 

r2 

We shall prove in Arts. 74 c, 74 d, 74 e that this law is the only 

one consistent with the observed fact that- a conductor, placed 

in the inside of a closed hollow conductor and in contact with 

it, is deprived of all electrical charge. Our conviction of the 

accuracy of the law of the inverse square of the distance may 

be considered to rest on experiments of this kind, rather than 

on the direct measurements of Coulomb. 

Resultant Force between Two Bodies. 

67. ] In order to calculate the resultant force between two 

bodies we might divide each of them into its elements of volume, 

and consider the repulsion between the electricity in each of the 

elements of the first body and the electricity in each of the 

elements of the second body. We should thus get a system of 

forces equal in number to the product of the numbers of the 

elements into which we have divided each body, and we should 

have to combine the effects of these forces by the rules of Statics. 

Thus, to find the component in the direction of x we should 

have to find the value of the sextuple integral 

f fffff f)~~ x')^xdy dz dx'dy'dz' 

{(x - x'Y + (y-y'f + (z - z'f} * ’ 

where x, y, z are the coordinates of a point in the first body at 
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which the electrical density is and x\ y\ z\ and p' are the 

corresponding quantities for the second body, and the integration 

is extended first over the one body and then over the other. 

Resultant Intensity at a Point. 

68.] In order to simplify the mathematical process, it is con¬ 

venient to consider the action of an electrified body, not on 

another body of any form, but on an indefinitely small body, 

charged with an indefinitely small amount of electricity, and 

placed at any point of the space to which the electrical action 

extends. By making the charge of this body indefinitely small 

we render insensible its disturbing action on the charge of the 

first body. 

Let e be the charge of the small body, and let the force acting 

on it when placed at the point (x, y, z) be R e, and let the 

direction-cosines of the force be l, m, n, then we may call R the 

resultant electric intensity at the point (x, y, z). 

If X, Y, Z denote the components of R, then 

X = Rl, Y = Rmt Z = Rn. 

In speaking of the resultant electric intensity at a point, we 

do not necessarily imply that any force is actually exerted there, 

but only that if an electrified body were placed there it would be 

acted on by a force R e, where e is the charge of the body *. 

Definition. The resultant electric intensity at any point is 

the force which would be exerted on a small body charged with 

the unit of positive electricity, if it were placed there without 

disturbing the actual distribution of electricity. 

This force not only tends to move a body charged with 

electricity, but to move the electricity within the body, so that 

the positive electricity tends to move in the direction of Ii and 

the negative electricity in the opposite direction. Hence the 

quantity R is also called the Electromotive Intensity at the 

point (x, y, z). 

When we wish to express the fact that the resultant intensity 

is a vector, we shall denote it by the German letter @. If the 

body is a dielectric, then, according to the theory adopted in 

this treatise, the electricity is displaced within it, so that the 

* The Electric and Magnetic Intensities correspond, in electricity and magnetism, 
to the intensity of gravity, commonly denoted by <jt in the theory of heavy bodies. 
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quantity of electricity which is forced in the direction of (5 across 

unit of area fixed perpendicular to @ is 

3) =-La'(S; 
4 7r 

where 35 is the displacement, ® the resultant intensity, and K the 

specific inductive capacity of the dielectric. 

If the body is a conductor, the state of constraint is continually 

giving way, so that a current of conduction is produced and 

maintained as long as 6 acts on the medium. 

Line-Integral of Electric Intensity, or Electromotive Force 

along an Arc of a Curve. 

69.] The Electromotive force along a given arc AP of a curve 

is numerically measured by the work which would be done by 

the electric intensity on a unit of positive electricity earned along 

the curve from A, the beginning, to P, the end of the arc. 

If s is the length of the arc, measured from Ay and if the re¬ 

sultant intensity R at any point of the curve makes an angle e 

with the tangent drawn in the positive direction, then the work 

done on unit of electricity in moving along the element of the 

curve ds will be A cos * ds, 

and the total electromotive force E will be 

*=/:* cos e ds, 

the integration being extended from the beginning to the 

of the arc. 

If we make use of the components of the intensity, the 

pression becomes 

vdx ^dy „dz^ 7 

ds ds 

end 

ex- 

If X, F, and Z are such that Xdx+ Ydy + Zdz is the complete 

differential of — F, a function of x, yy zy then 

E =f(Xdx + Ydy + Zdz) = -fdV^ VA — VP\ 

■where the integration is performed in any way from the point A 

to the point P, whether along the given curve or along any other 

line between A and P. 



POTENTIAL FUNCTIONS. 77 7°.] 

In this case V is a scalar function of the position of a point in 
space, that is, when we know the coordinates of the point, the 
value of V is determinate, and this value is independent of the 
position and direction of the axes of reference. See Art. 16. 

On Functions of the Position of a Point. 

In what follows, when we describe a quantity as a function of 
the position of a point, we mean that for every position of the 
point the function has a determinate value. We do not imply 
that this value can always be expressed by the same formula 
for all points of space, for it may be expressed by one formula 
on one side of a given surface and by another formula on the 
other side. 

On Potential Functions. 

70.] The quantity X dx -f Ydy + Zdz is an exact differential 
whenever the force arises from attractions or repulsions whose 
intensity is a function of the distances from any number of 
points. For if rx be the distance of one of the points from the 
point (x, y> z), and if Rx be the repulsion, then 

x — x. 
• dri 

Rl dx 9 

with similar expressions for Yl and Zv so that 

Xxdx + Yxdy -f Zxdz = Rxdrl; 

and since Rx is a function of rx only, Rxdrx is an exact differ¬ 
ential of some function of rv say — Vx. 

Similarly for any other force R2, acting from a centre at dis- 

tanco rt, J2dx + Y2dy + Z2dz = R2dr2 = -dV2. 

But X=Xx + X2 + &c., and F and Z are compounded in the same 
way, therefore 

Xdx+ Ydy + Zdz = -d^-dY-k c. = -dF. 

The integral of this quantity, under the condition that it vanishes 
at an infinite distance, is called the'Potential Function. 

The use of this function in the theory of attractions was intro¬ 
duced by Laplace in the calculation of the attraction of the 
earth. Green, in his essay ‘ On the Application of Mathematical 
Analysis to Electricity/ gave it the name of the Potential 
Function. Gauss, working independently of Green, also used 
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the word Potential. Clausius and others have applied the term 

Potential to the work which would be done if two bodies or 

systems were removed to an infinite distance from one another. 

We shall follow the use of the word in recent English works, 

and avoid ambiguity by adopting the following definition due to 

Sir W. Thomson. 

Definition of Potential. The Potential at a Point is the work 

which would be done on a unit of positive electricity by the 

electric forces if it were placed at that point without disturbing 

the electric distribution, and carried from that point to an in¬ 

finite distance: or, what comes to the same thing, the work 

which must be done by an external agent in order to bring the 

unit of positive electricity from an infinite distance (or from any 

place where the potential is zero) to the given point. 

71.] Expressions for the Resultant Intensity and its 

components in terms of the Potential. 

Since the total electromotive force along any arc AB is 

EAb = Va- Vih 

if we put ds for the arc AB wo shall have for the intensity re¬ 

solved in the direction of ds, 

p dV 
ds 

whence, by assuming ds parallel to each of the axes in succession, 

we get 

We shall denote the intensity itself, whose magnitude, or 

tensor, is R and whose components are X, F, Z, by the German 

letter as in Art. 68. 

The Potential at all Points within a Conductor is the same. 

72.] A conductor is a body which allows the electricity within 

it to move from one part of the body to any other when acted on 

by electromotive force. When the electricity is in equilibrium 

there can be no electromotive intensity acting within the 
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conductor. Hence R == 0 throughout the whole space occupied 

by the conductor. From this it follows that 

dV_ dV _ dV _ 

tlx ’ dy ~ °’ dz ~ 

and therefore for every point of the conductor 

0; 

F=G\ 
where C is a constant quantity. 

Since the potential at all points within the substance of the 

conductor is C\ the quantity C is called the Potential of the con¬ 

ductor. C may be defined as the work which must be done by 

external agency in order to bring a unit of electricity from an 

infinite distance to the conductor, the distribution of electricity 

being supposed not to be disturbed by the presence of the unit *. 

It will be shewn at Art. 246 that in general when two bodies 

of different kinds are in contact, an electromotive force acts from 

one to the other through the surface of contact, so that when 

they are in equilibrium the potential of the latter is higher than 

that of the former. For the present, therefore, we shall suppose 

all our conductors made of the same metal, and at the same 

temperature. 

If the potentials of the conductors A and B be VA and VH 

respectively, then the electromotive force along a wire joining 

A and B will be jr _ yR 

in the direction AB, that is, positive electricity will tend to pass 

from the conductor of higher potential to the other. 

Potential, in electrical science, has the same relation to Elec¬ 

tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem¬ 

perature, in Thermodynamics, has to Heat. Electricity, Fluids, 

and Heat all tend to pass from one place to another, if the 

Potential, Pressure, or Temperature is greater in the first place 

than in the second. A fluid is certainly a substance, heat is as 

certainly not a substance, so that though we may find assistance 

from analogies of this kind in forming clear ideas of formal 

relations of electrical quantities, we must be careful not to let 

the one or the other analogy suggest to us that electricity is 

either a substance like water, or a state of agitation like heat. 

* {If there is any discontinuity in the potential as we pass from the dielectric to 
the conductor it is necessary to state whether the electrified point is brought inside 
the conductor or merely to the surface, j 
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Potential due to any Electrical System. 

73.] Let there be a single electrified point charged with a 

quantity e of electricity, and let r be the distance of the point 

x\ y\ z' from it, then 

V=H Rdr=r~dr = 6-. 
Jr Jr 7* V 

Let there be any number of electrified points whose coordinates 

are (x^ yx, z{), (x2, y2, z^ &c. and their charges eu e2, &c., and 

let their distances from the point {x\ y\ z) be ru r2, &c., then 

the potential of the system at will be 

v=i0- 
Let the electric density at any point (x, y, z) within an elec¬ 

trified body be p, then the potential due to the body is 

V = dxdydz; 

Where T=,{(x~xy + (y-yJ + {Z-z'f}K 
the integration being extended throughout the body. 

On the Proof of the Law of the Inverse Square. 

74 a.] The fact that the force between electrified bodies is 

inversely as the square of the distance may be considered to be 

established by Coulomb’s direct experiments with the torsion- 

balance. The results, however, which we derive from such ex¬ 

periments must be regarded as affected by an error depending on 

the probable error of each experiment, and unless the skill of 

the operator be very great, the probable error of an experiment 

with the torsion-balance is considerable. 

A far more accurate verification of the law of force may be 

deduced from an experiment similar to that described at Art. 32 

(Exp. VII). 

Cavendish, in his hitherto unpublished work on electricity, 

makes the evidence of the law of force depend on an experiment 

of this kind. 

He fixed a globe on an insulating support, and fastened two 
hemispheres by glass rods to two wooden frames hinged to an 
axis so that the hemispheres, when the frames were brought 
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together, formed an insulated spherical shell concentric with the 

globe. 

The globe could then be made to communicate with the hemi¬ 

spheres by means of a short wire, to which a silk string was 

fastened so that the wire could be removed without discharging 

the apparatus. 

The globe being in communication with the hemispheres, he 

charged the hemispheres by means of a Leyden jar, the potential 

of which had been previously measured by an electrometer, and 

immediately drew out the communicating wire by means of the 

silk string, removed and discharged the hemispheres, and tested 

the electrical condition of the globe by means of a pith ball 

electrometer. 

No indication of any charge of the globe could be detected by 

the pith ball electrometer, which at that time (1773) was con¬ 

sidered the most delicate electroscope. 

Cavendish next communicated to the globe a known fraction 

of the charge formerly communicated to the hemispheres, and 

tested the globe again with his electrometer. 

He thus found that the charge of the globe in the original 

experiment must have been less than ^ of the charge of the 

whole apparatus, for if it had been greater it would have been 

detected by the electrometer. 

He then calculated the ratio of the charge of the globe to 

that of the hemispheres on the hypothesis that the repulsion is 

inversely as a power of the distance differing slightly from 2, 

and found that if this difference was there would have 

been a charge on the globe equal to of that of the whole 

apparatus, and therefore capable of being detected by the 

electrometer. 

74 i.] The experiment has recently been repeated at the 

Cavendish Laboratory in a somewhat different manner. 

The hemispheres were fixed on an insulating stand, and the 

globe fixed in its proper position within them by means of an 

ebonite ring. By this arrangement the insulating support of the 

globe was never exposed to the action of any sensible electric 

force, and therefore never became charged, so that the disturbing 

effect of electricity creeping along the surface of the insulators 

was entirely removed. 

Instead of removing the hemispheres before testing the potential 

vol. i. a 
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of the globe, they were left in their position, but discharged to 

earth. The effect of a given charge of the globe on the electro¬ 

meter was not so great as if the hemispheres had been removed, 

but this disadvantage was more than compensated by the perfect 

security afforded by the conducting vessel against all external 

electric disturbances. 

The short wire which made the connexion between the shell 

and the globe was fastened to a small metal disk which acted 

as a lid to a small hole in the shell, so that when the wire 

and the lid were lifted up by a silk string, the electrode of the 

electrometer could be made to dip into the hole and rest on the 

globe within. 

The electrometer was Thomson’s Quadrant Electrometer de¬ 

scribed in Art. 219. The case of the electrometer and one of the 

electrodes were always connected to earth, and the testing 

electrode was connected to earth till the electricity of the shell 

had been discharged. 

To estimate the original charge of the shell, a small brass ball 

was placed on an insulating support at a considerable distance 

from the shell. 

The operations were conducted as follows:— 

The shell was charged by communication with a Leyden jar. 

The small ball was connected to earth so as to give it a negative 

charge by induction, and wTas then left insulated. 

The communicating wire between the globe and the shell was 

removed by a silk string. 

The shell was then discharged, and kept connected to earth. 

The testing electrode was disconnected from earth, and made 

to touch the globe, passing through the hole in the shell. 

Not the slightest effect on the electrometer could be observed. 

To test the sensitiveness of the apparatus the shell was discon¬ 

nected from earth and the small ball was discharged to earth. 

The electrometer {the testing electrode remaining in contact with 

the globe} then shewed a positive deflection, D. 

The negative charge of the brass ball was about of the ori¬ 

ginal charge of the shell, and the positive charge induced by the 

ball when the shell was put to earth was about £ of that of 

the ball. Hence when the ball was put to earth the potential 

of the shell, as indicated by the electrometer, was about *ihr of 

its original potential. 
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But if the repulsion had been as r«-2, the potential of the globe 
would have been —0*1478 </ of that of the shell by equation (22), 
p. 85. 

Hence if + d be the greatest deflection of the electrometer 
which could escape observation, and D the deflection observed in 
the second part of the experiment, {since -H7% qV/i\^Vmust be 
less than d/D,} q cannot exceed 

+ L±. 
- 72 D 

Now even in a rough experiment D was more than 300 tZ, so 
that q cannot exceed j 

- 21600' 

Theory of the Experiment. 

74 c.] To find the potential at any point due to a uniform 
spherical shell, the repulsion between two units of matter being 
any given function of the distance. 

Let (f> (r) be the repulsion between two units at distance r, and 
let f(r) be such that 

dff\ = f(r)) = r[*<Hr)dr. (1) 

Let the radius of the shell be a, and its surface density cr, then, 
if a denotes the whole charge of the shell, 

a = 4 7t a2 a, (2) 

Let b denote the distance of the given point from the centre of 
the shell, and lot r denote its distance from any given point of 
the shell. 

If we refer the point on the shell to spherical coordinates, the 
pole being the centre of the shell, and the axis the line drawn to 
the given point, then 

r2 = a2 + b2 — 2ab cos 0. (3) 

The mass of the element of the shell is 

aa2 sin# d(f>d6, (4) 

and the potential due to this element at the given point is 

a a2 sin el&dOdt; (5) 

G 2 
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and this has to be integrated with respect to </> from </> = 0 to 

<f> = 2 ir, which gives 

27ro*a2sin 0 —^p-dQ, (6) 

which has to be integrated from 0 = 0 to 6 = 7r. 

Differentiating (3) we find 

rdr = a£>sin0cZ0. (7) 

Substituting the value of <20 in (6) we obtain 

2 nap'(r)dr, (8) 

the integral of which is 

F = 2 JT <r ^ {/(»’,) —/(r2)}, (9) 

where r, is the greatest value of r, which is always a-f ?>, and r2 

is the least value of r, which is 6—a when the given point is 

outside the shell and a — b when it is within the shell. 

If we write a for the whole charge of the shell, and V for its 

potential at the given point, then for a point outside the shell 

^=~6 (10) 

For a point on the shell itself 

F=ai*A2«)* (11) 
and for a point inside the shell 

V=2+ (12) 

We have next to determine the potentials of two concentric 

spherical shells, the radii of the outer and inner shells being a 

and b, and their charges a and /3. 

Calling the potential of the outer shell A, and that cf the 

inner B, we have by what precedes 

A = 2a*f{2a)+ 2ah{f{a + b)-f{a~b)h {U) 

B = {/(« + &)-/(«-&))• (14) 

In the first part of the experiment the shells communicate by 

the short wire and are both raised to the same potential, say V. 

* {Strictly/(2a)—/(0), but the conclusions arrived at In Art. 74 d are not altered 

if we write /(2 a) —/(0) for /(2 a) and f (2 b) —/(0) for / (2 b) all through.} 
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By putting A = B = F, and solving the equations (13) and 

(14) for ft, we find for the charge of the inner shell 

3 - oV-i bf(2a)-a\J(a + b)-f(a-by\ 
P ~ f(2a)f(2b)-[f(a + b)-f(a-b)f' <15> 

In the experiment of Cavendish, the hemispheres forming the 

outer shell were removed to a distance which we may suppose 

infinite, and discharged. The potential of the inner shell (or 

globe) would then become 

•o.=2(i«) 
In the form of the experiment as repeated at tho Cavendish 

Laboratory the outer shell was left in its place, but connected 

to earth, so that A = 0. In this case we find for the potential 

of the inner globe in terms of V 

W{ <■» 
74 d.] Let us now assume, with Cavendish, that the law of 

force is some inverse power of the distance, not differing much 

from tho inverse square, and let us put 

<j> (r) — r'l~i; (18) 

then / (r) = —r«+1 * (19) 

If we suppose q to be small, we may expand this by the ex¬ 

ponential theorem in the form 

f(r)=Y~[2r\l+<llogr+ log'r)2 + &c.j; (20) 

and if we neglect terms involving q2, equations (16) and (17) be¬ 

come 

?<=!]- <«) 

A = JF,[loS^-?log£±|], (22) 

from which we may determine q in terms of the results of the 

experiment. 

74 e.] Laplace gave the first demonstration that no function of 

the distance except the inverse square satisfies the condition that 

a uniform spherical shell exerts no force on a particle within it f. 

* { Strictly / (r) —/ (0) 

t Mec. Cel,, I. 2. 

j if be less than unity.) 
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If we suppose that ft in equation (15) is always zero, we may 

apply the method of Laplace to determine the form of /(r). We 

have by (15), 

bf(2a) — af (a + b) + af(a — b) = 0. 

Differentiating twice with respect to 6, and dividing by a, we 

find f"(a + b)=f"(a-b). 

If this equation is generally true 

f"{r) — C0, a constant. 

Hence, f (r) = C0 r 4- Cx; 

and by (1) jT <l> (r) dr = L & = C0 + ^, 

<P (r) = “z' 

We may observe, however, that though the assumption of 

Cavendish, that the force varies as some power of the distance, 

may appear less general than that of Laplace, who supposes it 

to be any function of the distance, it is the only one consistent 

with the fact that similar surfaces can be electrified so as to 

have similar electrical properties, {so that the lines of force are 

similar}. 

For if the force were any function of the distance except a 

power of the distance, the ratio of the forces at two different 

distances would not be a function of the ratio of the distances, 

but would depend on the absolute value of the distances, and 

would therefore involve the ratios of these distances to an 

absolutely fixed length. 

Indeed Cavendish himself points out * that on his own hypo¬ 

thesis as to the constitution of the electric fluid, it is impossible for 

the distribution of electricity to be accurately similar in two con¬ 

ductors geometrically similar, unless the charges are proportional 

to the volumes. For he supposes the particles of the electric 

fluid to be closely pressed together near the surface of the body, 

and this is equivalent to supposing that the law of repulsion is 

no longer the inverse square f, but that as soon as the particles 

come very close together, their repulsion begins to increase at a 

much greater rate with any further diminution of their distance. 

* {Electrical Researches of the Hon, H. Cavendish, pp. 27* 28.} 
f {Idem, Note 2, p. 370.} 
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Surface-Integral of Electric Induction, and Electric 

Displacement through a surface. 

75.] Let R be the resultant intensity at any point of the 

surface, and c the angle which R makes with the normal drawn 

towards the positive side of the surface, then R cos e is the 

component of the intensity normal to the surface, and if dS is the 

element of the surface, the electric displacement through dS will 

be, by Art. 68, 
— KRcostdS. 
4 7r 

Since we do not at present consider any dielectric except air, 

it = 1. 

We may, however, avoid introducing at this stage the theory 

of electric displacement, by calling R cos e d S the Induction 

through the element dS. This quantity is well known in 

mathematical physics, but the name of induction is borrowed 

from Faraday. The surface-integral of induction is 

jfR cos fdS, 

and it appears by Art. 21, that if X, Y, Z are the components 

of R, and if these quantities are continuous within a region 

bounded by a closed surface S, the induction reckoned from 

within outwards is 

JJitGostdS=Jf+ fy +■“?)**,&, 

the integration being extended through the whole space within 

the surface. 

Induction through a Closed Surface due to a single 

Centre of Force. 
76.] Let a quantity e of electricity be supposed to be placed at 

a point 0, and let r be the distance of any point P from 0, the 

intensity at that point is R = er~2 in the direction OP. 
Let a line be drawn from 0 in any direction to an infinite dis¬ 

tance. If 0 is without the closed surface this line will either 

not cut the surface at all, or it will issue from the surface as 

many times as it enters. If 0 is within the surface the line 

must first issue from the surface, and then it may enter and 

issue any number of times alternately, ending by issuing from it. 

Let e be the angle between OP and the normal to the surface 

drawn outwards where OP cuts it, then where the line issues 
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from the surface, cos € will be positive, and where it enters, cos e 
will be negative. 

Now let a sphere be described with centre 0 and radius unity, 
and let the line OP describe a conical surface of small angular 
aperture about 0 as vertex. 

This cone will cut off a small element d w from the surface of 
the sphere, and small elements dSly dS2i &c. from the closed 
surface at the different places where the line OP intersects it. 

Then, since any one of these elements dS intersects the cone 
at a distance r from the vertex and at an obliquity c, 

dS = ± r2 sec e d & ; 
and, since R = er~2, we shall have 

R cos (dS = ±e.du); 
the positive sign being taken when r issues from the surface, and 
the negative when it enters it. 

If the point 0 is without the closed surface, the positive values 
are equal in number to the negative ones, so that for any 

direction of r, SEcos tdS = 0, 

and therefore [[rco8 € dS = 0, 

the integration being extended over the whole closed surface. 

If the point 0 is within the closed surface the radius vector OP 
first issues from the closed surface, giving a positive value of edo», 
and then has an equal number of entrances and issues, so that in 

this case 2jR cos edS = eda>. 

Extending the integration over the whole closed surface, we 
shall include the whole of the spherical'surface, the area of which 
is 4 it, so that r r nr 

/ Rcoq <dS = e / do> == 47re. 

Hence we conclude that the total induction outwards through 
a closed surface due to a centre of force e placed at a point 0 is 
zero when 0 is without the surface, and 4*ne when 0 is within 
the surface. 

Since in air the displacement is equal to the induction divided 
by 4 7T, the displacement through a closed surface, reckoned out¬ 

wards, is equal to the electricity within the surface. 
Corollary. It also follows that if the surface is not closed but 

is bounded by a given closed curve, the total induction through 

it is w e, where « is the solid angle subtended by the closed curve 
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at 0. This quantity, therefore, depends only on the closed curve, 

and the form of the surface of which it is the boundary may be 

changed in any way, provided it does not pass from one side to 

the other of the centre of force. 

On the Equations of Laplace and Poisson. 

77.] Since the value of the total induction of a single centre 

of force through a closed surface depends only on whether the 

centre is within the surface or not, and does not depend on its 

position in any other way, if there are a number of such centres 

ei> e2> &c* within the surface, and eL\ ef, &e. without the surface, 

we shall have r r 
I / R cos e dS = 4 ne ; 

where e denotes the algebraical sum of the quantities of elec¬ 

tricity at all the centres of force within the closed surface, that 

is, the total electricity within the surface, resinous electricity 

being reckoned negative. 

If the electricity is so distributed within the surface that the 

density is nowhere infinite, we shall have by Art. 64, 

4 7Te — 4 7TI'jJpdx dy dz, 

and by Art. 75, 

JfR™‘dS=fffC£ + ddy + fz)d.cdydz. 

If we take as the closed surface that of the element of volume 

dx dy dz, we shall have, by equating these expressions, 

dx dr dz 

dx + dy + dz~~ 5 

and if a potential V exists, we find by Art. 71, 

d2V d2V d2V A 

dx2 dy2 + dz2 + ^ 

This equation, in the case in which the density is zero, is called 

Laplace’s Equation. In its more general form it was first given 

by Poisson. It enables us, when we know the potential at every 

point, to determine the distribution of electricity. 

We shall denote, as in Art. 26, the quantity 

d2V d2V d*V , 

a? + dy‘ + 3? by -v r’ 

and we may express Poisson’s equation in words by saying that 
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the electric density multiplied by 4 tt is the concentration of the 

potential. Where there is no electrification, the potential has no 

concentration, and this is the interpretation of Laplace's equation. 

By Art. 72, V is constant within a conductor. Hence within 

a conductor the volume-density is zero, and the whole charge 

must be on the surface. 

If we suppose that in the superficial and linear distributions 

of electricity the volume-density p remains finite, and that the 

electricity exists in the form of a thin stratum or a narrow fibre, 

then, by increasing p and diminishing the depth of the stratum 

or the section of the fibre, we may approach the limit of true 

superficial or linear distiibution, and the equation being true 

throughout the process will remain true at the limit, if inter¬ 

preted in accordance with the actual circumstances. 

Variation of the Potential at a Charged Surface. 

78 a.] The potential function, F, must be physically continuous 

in the sense defined in Art. 7, except at the bounding surface of 

two different media, in which case, as we shall see in Art. 246, 

there may be a difference of potential between the substances, 

so that when the electricity is in equilibrium, the potential at 

a point in one substance is higher than the potential at the 

contiguous point in the other substance by a constant quantity, 

C, depending on the natures of the two substances and on their 

temperatures. 

But the first derivatives of V with respect to x, y} or z may be 

discontinuous, and, by Art. 8, the points at which this discon¬ 

tinuity occurs must lie on a surface, the equation of which may 

be expressed in the form 

0 = <t> (*» y, z) = 0. (1) 
This surface separates the region in which <!> is negative from the 

region in which is positive. 

Let Vx denote the potential at any given point in the negative 

region, and V% that at any given point in the positive region, 

then at any point in the surface at which (j> = 0, and which may 

be said to belong to both regions, 

K+c-s. 00 
where C is the constant excess of potential, if any, in the sub¬ 

stance on the positive side of the surface. 

Let £, m# n be the direction-cosines of the normal r2 drawn* 
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from a given point of the surface into the positive region. Those 
of the normal vx drawn from the same point into the negative 
region will be — ly — m, and — n. 

The rates of variation of V along the normals are 

dK_ dVx dVx dVx 
dv~-l-d^~mdy-ndz' (3) 

dV2 7dV, d% , d\ tA. 
,2 = £72+m —. (4) 

dv2 dx dy dz ' 

Let any line be drawn on the surface, and let its length, measured 
from a fixed point in it, be s, then at every point of the surface, 
and therefore at every point of this line, \ — Vx = C. Differen¬ 
tiating this equation with respect to s, we get 

(^_^\dx (dX_dX,dy (<l^_dJ{sdz_ 
^ dx dx' ds 'dy dy' ds 'dz dz'da ’ ^ ' 
and since the normal is perpendicular to this line 

7dx dy dz 
lds + mds + nds=zQ‘ (6) 

From (3), (4), (5), (6) we find 

= (7) dx dx Kdvx dv2> 

dy dy ^dvx + dv)9 ' 

^^*(-5 + 1*5).. (9) 
ate ote Wiq (Ziy v 

If we consider the variation of the electromotive intensity at 
a point in passing through the surface, that component of the in¬ 
tensity which is normal to the surface may change abruptly at 
the surface, but the other two components parallel to the tangent 
plane remain continuous in passing through the surface. 

78 &.] To determine the charge of the surface, let us consider a 
closed surface which is partly in the positive region and partly in 
the negative region, and which therefore encloses a portion of the 

surface of discontinuity. 

* Since (5) and (6) are true for an infinite number of values of " , we have 

dh_dVi 
dor dx dy dy dz dz 7 ,d\\ dFlx ,d\\ dVx^ tdV9 
-—-5— =H-l(di+ 

dVx dV9\ 
and therefore by equations (8) and (4) each of these ratios - ^ + 
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The surface integral, 

fj R cos edS, 

extended over this surface, is equal to 4 ne, where 0 is the quantity 

of electricity within the closed surface. 

Proceeding as in Art. 21, we find 

f(r cos tdS = fff(~ + ** + J) dx dy dz ff* C0S « dS =fff^ + dj + ^dxdydz 
+lJ{l(X.2-X1)+m(7i-Yl) + n(Z2-Zl)} dS, (10) 

where the triple integral is extended throughout the closed surface, 

and the double integral over the surface of discontinuity. 

Substituting for the terms of this equation their values from 

(7), (8), (9), 

=///4 *pdx dy dz-JJds- (n) 
But by the definition of the volume-density, p, and the surface- 

density, cr, 

4 Tre = 4 7TJJJpdxdydz-f 4 7rj*JodS. (12) 

Hence, comparing the last terms of these two equations, 

—f . —i 

d v1 dv<A 
4- 4 7i o’ - 

This equation is called the characteristic equation of V at an 

electrified surface of which the surface-density is o. 

78 c.] If F is a function of x, y, z which, throughout a given 

continuous region of space, satisfies Laplace’s equation 

drV <PV rf*F 

dx2 + dy* + dz1 ~ ’ 

and if throughout a finite portion of this region F is constant and 

equal to G, then F must be constant and equal to G throughout 

the whole region in which Laplace’s equation is satisfied*. 

If F is not equal to G throughout the whole region, let 8 be 

the surface which bounds the finite portion within which F= C. 

At the surface Sy F= C. 

Let ybea normal drawn outwards from the surface 8. Since 

8 is the boundary of the continuous region for which F= G, the 

value of F as we travel from the surface along the normal begins 

* {It would perhaps be clearer to say that the potential is equal to C at any point 
which can be reached from the region of constant potential without passing through 
electricity.] 
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to differ from C. Hence — just outside the surface may be 

positive or negative, but cannot be zero except for normals 

drawn from the boundary line between a positive and a negative 

But if v is the normal drawn inwards from the surface S> V' = G 

and 7 , = 0. 
dv 

Hence, at every point of the surface except certain boundary 

Hnes> dV dV' 

is a finite quantity, positive or negative, and therefore the surface 

S has a continuous distribution of electricity over all parts of it 

except certain boundary lines which separate positively from 

negatively charged areas. 

Laplace’s equation is not satisfied at the surface S except at 

points lying on certain lines on the surface. The surface S there¬ 

fore, within which V = (7, includes the whole of the continuous 

region within which Laplace’s equation is satisfied. 

Force Acting on a Charged Surface. 

79.] The general expressions for the components of the force 

acting on a charged body parallel to the three axes are 6f the form 

A — JJj'pXdxdydz, (14) 

with similar expressions for B and Cy the components parallel to 

y and z. 
But at a charged surface p is infinite, and X may be discon¬ 

tinuous, so that we cannot calculate the force directly from 

expressions of this form. 

We have proved, however, that the discontinuity affects only 

that component of the intensity which is normal to the charged 

surface, the other two components being continuous. 

Let us therefore assume the axis of x normal to the surface at 

the given point, and let us also assume, at least in the first part 

of our investigation, that X is not really discontinuous, but that 

it changes continuously from Xl to X2 while x changes from xx 
to x2. If the result of our calculation gives a definite limiting 

value for the force when x2—xx is diminished without limit, we 
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may consider it correct when x2~xXi and the charged surface 

has no thickness. 

Substituting for p its value as found in Art. 77, 

r.m 
dX dY dZ; 

dx + dy + dz 
)Xdxdydz. (3 5) 

Integrating this expression with respect to x from x = xl to 

x = x2 it becomes 

A = r,ff[ux‘-x‘> +£ (f + (>«) 

This is the value of A for a stratum parallel to yz of which the 

thickness is x,, — x,. 
dY dZ 

Since Y and Z are continuous, is finite, and since X 

is also finite, 
r**,dY dZ\ v . 

X, (<iy + dz)Xdx<C(x2-«i). 

dY dZ 
where C is the greatest value of -f between a? — aJx 

and sc = x2. 

Hence when x2—xx is diminished without limit this term must 

ultimately vanish, leaving 

(17) A=ff^(^2~^2)dydz, 

where Xx is the value of X on the negative and X2 on the positive 

side of the surface. 

But by Art. 786, X2-X1 = <^-^=4 *«r, 

so that we may write 

A= JJ\ (X2 + Xl)a dy dz. 

(18) 

(19) 

Here dy dz is the element of the surface, cr is the surface-density, 

and £ (X2 4- XJ is the arithmetical mean of the electromotive in¬ 

tensities on the two sides of the surface. 

Hence an element of a charged surface is acted on by a force, 

the component of which normal to the surface is equal to the 

charge of the element into the arithmetical mean of the normal 

electromotive intensities on the two sides of the surface. 

Since the other two components of the electromotive intensity 

are not discontinuous, there can be no ambiguity in estimating 

the corresponding components of the force acting on the surface. 
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We may now suppose the direction of the normal to the surface 

to be in any direction with respect to the axes, and write the 

general expressions for the components of the force on the element 

of surface d S, A=\(Xt + X2) adS, \ 

B=i(Yl + Y/)ndS, ■ (20) 

C=\(ZX + Zj adS. J 

Charged Surface of a Conductor. 

BO.] We have already shewn (Art. 72) that throughout the 

substance of a conductor in electric equilibrium X = Y = Z = 0, 

and therefore V is constant. 

Hence 
dX dY dZ A 

dx + dy + dz -4ni>- °* 

and therefore p must be zero throughout the substance of the 

conductor, or there can be no electricity in the interior of the 

conductor. 

Hence a superficial distribution of electricity is the only 

possible distribution in a conductor in equilibrium. 

A distribution throughout the mass of a body can exist only 

when the body is a non-conductor. 

Since the resultant intensity within the conductor is zero, the 

resultant intensity just outside the conductor must be in the 

direction of the normal and equal to 4 tt <t, acting outwards from 

the conductor. 

This relation between the surface-density and the resultant in¬ 

tensity close to the surface of a conductor is known as Coulomb's 

Law, Coulomb having ascertained by experiment that the elec¬ 

tromotive intensity near a given point of the surface of a con¬ 

ductor is normal to the surface and proportional to the surface- 

density at the given point. The numerical relation 

R = 4 7r<r 

was established by Poisson. 

The force acting on an element, d S, of the charged surface of 

a conductor is, by Art. 79, (since the intensity is zero on the 

inner side of the surface,) 

\R<rdS: 2 7T<T2dS= ~R2dS. 
SiT 

This force acts along the normal outwards from the conductor, 

whether the charge of the surface is positive or negative. 
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Its value in dynes per square centimetre is 

\Rcr — 2 7r a2 — — JR2, 
8 7T 

acting as a tension outwards from the surface of the conductor. 

81.] If we now suppose an elongated body to be electrified, 

we may, by diminishing its lateral dimensions, arrive at the 

conception of an electrified line. 

Let ds be the length of a small portion of the elongated body, 

and let c be its circumference, and <r the surface-density of the 

electricity on its surface; then, if A is the charge per unit of 

length, A = c<r, and the resultant electric intensity close to the 

surface will be \ 
4 7T(T c= 4 7T — • 

C 

If, while A remains finite, c be diminished indefinitely, the in¬ 

tensity at the surface will be increased indefinitely. Now in 

every dielectric there is a limit beyond which the intensity 

cannot be increased without a disruptive discharge. Hence a 

distribution of electricity in which a finite quantity is placed on 

a finite portion of a line is inconsistent with the conditions 

existing in nature. 

Even if an insulator could be found such that no discharge 

could be driven through it by an infinite force, it would be 

impossible to charge a linear conductor with a finite quantity of 

electricity, for {since a finite charge would make the potential 

infinite} an infinite electromotive force would be required to 

bring the electricity to the linear conductor. 

In the same way it may be shewn that a point charged with 

a finite quantity of electricity cannot exist in nature. It is con¬ 

venient, however, in certain cases, to speak of electrified lines and 

points, and we may suppose these represented by electrified wires, 

and by small bodies of which the dimensions are negligible com¬ 

pared with the principal distances concerned. 

Since the quantity of electricity on any given portion of a wire 

at a given potential diminishes indefinitely when the diameter of 

the wire is indefinitely diminished, the distribution of electricity 

on bodies of considerable dimensions will not be sensibly affected 

by the introduction of very fine metallic wires into the field, 

such as are used to form electrical connexions between these 

bodies and the earth, an electrical machine, or an electrometer. 
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On Lines of Force. 

82.] If a line be drawn whose direction at every point of its 

course coincides with that of the resultant intensity at that 

point, the line is called a Line of Force. 

In every part of the course of a line of force, it is proceeding 

from a place of higher potential to a place of lower potential. 

Hence a line of force cannot return into itself, but must have 

a beginning and an end. The beginning of a line of force must, 

by § 80, be in a positively charged surface, and the end of a line 

of force must be in a negatively charged surface. 

The beginning and the end of the line are called corresponding 

points on the positive and negative surface respectively. 

If the line of force moves so that its beginning traces a closed 

curve on the positive surface, its end will trace a corresponding 

closed curve on the negative surface, and the line of force itself 

will generate a tubular surface called a tube of induction. Such 

a tube is called a Solenoid *. 

Since the force at any point of the tubular surface is in the 

tangent plane, there is no induction across the surface. Hence 

if the tube does not contain any electrified matter, by Art. 77 

the total induction through the closed surface formed by the 

tubular surface and the two ends is zero, and the values of 

J^Jr cos edS for the two ends must be equal in magnitude 

but opposite in sign. 

If these surfaces are the surfaces of conductors 

e = 0 and R = — 47rcr, 

*//■ and R cos (dS becomes dSf or the charge of the sur¬ 

face multiplied by 4 n f. 

Hence the positive charge of the surface enclosed within the 

closed curve at the beginning of the tube is numerically equal to 

the negative charge enclosed within the corresponding closed 

curve at the end of the tube. 

Several important results may be deduced from the properties 

of lines of force. 

* From aookrjy, a tube. Faraday uses (8271) the term ‘ Sphondyloid ’ in the same 
sense. 

f {B here is drawn outwards frcm the tube.} 

VOL I. H 
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The interior surface of a closed conducting vessel is entirely 

free from charge, and the potential at every point within it is 

the same as that of the conductor, provided there is no insulated 

and charged body within the vessel. 

For since a line of force must begin at a positively charged 

surface and end at a negatively charged surface, and since no 

charged body is within the vessel, a lino of force, if it exists 

within the vessel, must begin and end on the interior surface of 

the vessel itself. 

But the potential must be higher at the beginning of a line 

of force than at the end of the line, whereas we have proved that 

the potential at all points of a conductor is the same. 

Hence uo line of force can exist in the space within a hollow 

conducting vessel, provided no charged body be placed inside it. 

If a conductor within a closed hollow conducting vessel is 

placed in communication with the vessel, its potential becomes 

the same as that of the vessel, and its surface becomes con¬ 

tinuous with the inner surface of the vessel. The conductor is 

therefore free from charge. 

If we suppose any charged surface divided into elementary 

portions such that the charge of each element is unity, and if 

solenoids having these elements for their bases are drawn through 

the field of force, then the surface-integral for any other surface 

will be represented by the number of solenoids which it cuts. It 

is in this sense that Faraday uses his conception of lines of force 

to indicate not only the direction but the amount of the force at 

any place in tiro field. 

We have used the phrase Lines of Force because it has been 

used by Faraday and others. In strictness, however, these lines 

should be called Lines of Electric Induction. 

In the ordinary cases the lines of induction indicate the direc¬ 

tion and magnitude of the resultant electromotive intensity at 

every point, because the intensity and the induction are in the 

same direction and in a constant ratio. There are other cases, 

however, in which it is important to remember that these lines 

indicate primarily the induction, and that the intensity is 

directly indicated by the equipotential surfaces, being normal 

to these surfaces and inversely proportional to the distances 

of consecutive surfaces. 
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On Specific Inductive Capacity. 

83 a.] In the preceding investigation of surface-integrals we 

have adopted the ordinal conception of direct action at a dis¬ 

tance, and have not taken into consideration any effects de¬ 

pending on the nature of the dielectric medium in which the 

forces are observed. 

But Faraday has observed that the quantity of electricity in¬ 

duced by a given electromotive force on the surface of a 

conductor which bounds a dielectric is not the same for all 

dielectrics. The induced electricity is greater for most solid 

and liquid dielectrics than for air and gases. Hence these bodies 

are said to have a greater specific inductive capacity than air, 

which he adopted as the standard medium. 

We may express the theory of Faraday in mathematical 

language by saying that in a dielectric medium the induction 

across any surface is the product of the normal electric intensity 

into the coefficient, of specific inductive capacity of that medium. 

If we denote this coefficient by K, then in every part of the in¬ 

vestigation of surface-integrals we must multiply X, Y, and Z 

by AT, so that the equation of Poisson will become 

d RdV d dV d 

dx ' dx + dy * dy dz 

dV 
K + 4ttP = 0* (1) 

At the surface of separation of two media whose inductive 

capacities are Kx and Ar2, and in which the potentials are and 

K, the characteristic equation may be written 

dK 
(0\ 

dV 
+ AVP 

dv« 
-f 4tt<t — 0 ; (2) 

where r,, v2, are the normals drawn in the two media, and a- is 

the true surface-density on the surface of separation ; that is to 

say, the quantity of electricity which is actually on the surface 

in the form of a charge, and which can be altered only by con¬ 

veying electricity to or from the spot. 

Apparent distribution of Electricity. 

83 6.] If we begin with the actual distribution of the potential 

and deduce from it the volume-density P and the surface-density 

a on the hypothesis that K is everywhere equal to unity, we 

* {See note at the end of this chapter.} 

H 2 
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may call p the apparent volume-density and a the apparent 

surface-density, because a distribution of electricity thus defined 

would account for the actual distribution of potential, on the 

hypothesis that the law of electric force as given in Art. 60 

requires no modification on account of the different properties of 

dielectrics. 

The apparent charge of electricity within a given region may 

increase or diminish without any passage of electricity through 

the bounding surface of the region. We must therefore dis¬ 

tinguish it from the true charge, which satisfies the equation of 

continuity. 

In a heterogeneous dielectric in which K varies continuously, 

if p be the apparent volume-density, 

d2V d2V d2V . 

dtf + df + dz*+4irp =0- (3) 

Comparing this with the equation (1) above, we find 

, „ . dKdV dKdV dKdV 
4*(p-Kp) + (7^ + TzTz =0. (4) 

The true electrification, indicated by n, in the dielectric whose 

variable inductive capacity is denoted by K, will produce the 

same potential at every point as the apparent electrification, 

denoted by p\ would produce in a dielectric whose inductive 

capacity is everywhere equal to unity. 

The apparent surface charge, </, is that deduced from the 

electrical forces in the neighbourhood of the surface, using the 

ordinary characteristic equation 

dVx dV2 , / A J + _2 +4^'= 0. 
cL cL i>2 

(0 

Hence 

If a solid dielectric of any form is a perfect insulatoi, and if 

its surface receives no charge, then the true electrification 

remains zero, whatever be the electrical forces acting on it. 

+ 3 = o, 
1d»1 dr2 

dV2 4 7nr'K1 

dri ~ K^K2 dr2 ~ K2-K2 

The surface-density </ is that of the apparent electrification 

produced at the surface of the solid dielectric by induction. It 

disappears entirely when the inducing force is removed, but if 

during the action of the inducing force the apparent electrifica- 

d]r_ inn-'K2 
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tion of the surface is discharged by passing a flame over the 

surface, then, when the inducing force is taken away, there will 

appear a true electrification opposite to a*. 

APPENDIX TO CHAPTER II. 

The equations 

dvtl ' ldvx 

are the expressions of the condition that the displacement across any 

closed surface is 4 tt times the quantity of electricity inside it. The first 

equation follows at once if we apply this principle to a parallelepiped 

whose faces are at right angles to the co-ordinate axes, and the second if 
we apply it to a cylinder enclosing a portion of the charged surface. . 

If we anticipate the results of the next chapter, we can deduce these 

equations directly from Faraday's definition of specific inductive capacity. 

Let us take the case of a condenser consisting of two infinite parallel 

plates. Let Vxi V2 he the potentials of the plates respectively, d the 

distance between them, and E the charge on an area A of one of the 

plates, then, if K is the specific inductive capacity,of the dielectric 

separating them, 
V —V 

E = KA V- -?. 
471(1 

<2, the energy of the system, is by Art. 84 equal to 

or if F is the electromotive intensity at any point between the plates 

Q = KAdF1. 
O TT 

If we regard the energy as resident in the dielectric there will be 

Q/Ad units of energy per unit of volume, so that the energy per unit 

volume equals KFi/^tn. This result will be true when the field is not 

* See Faraday's * Remarks on Static Induction/ Proceedings of the lloyal Jm- 
stitutioa, Feb. 12, 1858. 
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uniform, bo that if Q denotes the energy in any electric field 

Let us suppose that the potential at any point of the field is increased 

by a small quantity hF when hF is an arbitrary function of x, y, z, theu 

hQ, the variation in the energy, is given by the equation 

idVd.bV dVd.hV dVd.hV, 
< - - _ 4---L _1 j) dxdydz; 

^ - i*JJ \dx ~dx~ ' dy IV + dz 

this, by Green’s Theorem, 

= " hffa 1;+Ki S) WdS 
~ LfIWfx)+ + t(Kdi)\bVdxdydz’ 

where dv2 and dvl denote elements of the normal to the surface drawn from 

the first to the second and from the second to the first medium respectively. 

But by (Arts. 85, 8G) 

= 2 (eh V) = j jah FdS-f Jfj'pb Vdxdydz, 

and since hF is arbitrary we must have 

1 ,vdV „ dFx 
— i j-h A2 —) = er, 

4 7r ^ 

which are the equations in the text. 

In Faraday’s experiment the flame may be regarded as a conductor in 

connexion with the earth, the effect of the dielectric may be represented 

by an apparent electrification over its surface, this apparent electrifica¬ 

tion acting on the conducting flame will attract the electricity of the 

opposite sign, which will spread over the surface of the dielectric while 

it will drive the electricity of the same sign through the flame to 

earth. Thus over the surface of the dielectric there will be a real elec¬ 

trification masking the effect of the apparent one; when the inducing force 

is removed the apparent electrification will disappear but the real electri¬ 

fication will remain and will no longer be masked by the apparent 

electrification. 



CHAPTER III. 

ON ELECTRICAL WORK AND ENERGY IN A SYSTEM 

OF CONDUCTORS. 

84.] On the Work which mud he dove by an external agent in 

order to charge an electrified system in a given manner. 

The work spent in bringing a quantity of electricity h e from 

an infinite distance (or from any place where the potential is zero) 

to a given part of the system where the potential is F, is, by the 

definition of potential (Art. 70), V be. 

The effect of this operation is to increase the charge of the 

given part of the system by so that if it was e before, it will 

become e -foe after the operation. 

We may therefore express the work done in producing a given 

alteration in the charges of the system by the integral 

W=2(fvbe)i (1) 

where the summation, (2), is to be extended to all parts of the 

electrified system. 

It appears from the expression for the potential in Art. 73, 

that the potential at a given point may be considered as the sum 

of a number of parts, each of these parts being the potential due 

to a corresponding part of the charge of the system. 

Hence if V is the potential at a given point due to a system 

of charges which wre may call 2 (e), and Vr the potential at the 

same point due to another system of charges which we may call 

2(6'), the potential at the same point due to both systems of 

charges existing together would be V -f V\ 

If, therefore, every one of the charges of the system is altered 

in the ratio of n to 1, the potential at any given point in the 

system will also be altered in the ratio of n to L 
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Let us, therefore, suppose that the operation of charging the 

system is conducted in the following manner. Let the system 

be originally free from charge and at potential zero, and let the 

different portions of the system be charged simultaneously, each 

at a rate proportional to its final charge. 

Thus if e is the final charge, and F the final potential of any 

part of the system, then, if at any stage of the operation the 

charge is ne, the potential will be nV, and we may represent 

the process of charging by supposing n to increase continuously 

from 0 to 1. 

While n increases from 71 to n + 5 n, any portion of the system 

whose final charge is e, and whose final potential is F, receives 

an increment of charge ebn, its potential being n F, so that the 

work done on it during this operation is eVnbn. 
Hence the whole work done in charging the system is 

2{eV)^ ndn = \2(eV), (2) 

or half the sum of the products of the charges of the different 

portions of the system into their respective potentials. 

This is the work which must be done by an external agent in 

order to charge the system in the manner described, but since 

the system is a conservative system, the work required to bring 

the system into the same state by any other process must be the 

same. 

We may therefore call 
W=\2(eV) (3) 

the electric energy of the system, expressed in terms of the charges 

of the different partB of the system and their potentials. 

85 a.] Let us next suppose that the system passes from the 

state (e, F) to the state (e, F') by a process in which the different 

charges increase simultaneously at rates proportional for each to 

its total increment e' — e. 
If at any instant the charge of a given portion of the system 

is e + n (e' — e), its potential will be V+n (V* — F), and the work 

done in altering the charge of this portion will be 

J(V~«) [F+»(F- F)] dn = \ (e'-e) (V'+V), 

so that if we denote by W' the energy of the system in the state 

(S, V') W'- W = *2(e'-e) (F7+ F) (4) 
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But JF=*2(eF), 

and W' = \2{e'V). 

Substituting these values in equation (4), -we find 

2(eV') = 2{e’V). . (5) 

Hence if, in the same fixed system of electrified conductors, we 

consider two different states of electrification, the sum of the 

products of the charges in the first state into the potentials of 

the corresponding portions of the conductors in the second state, 

is equal to the sum of the products of the charges in the second 

state into the potentials of the corresponding conductors in the 

first state. 

This result corresponds, in the elementary theory of electricity, 

to Green’s Theorem in the analytical theory. By properly 

choosing the initial and final states of the system, we may deduce 

a number of useful results. 

85 b.] From (4) and (5) we find another expression for the in¬ 

crement of the energy, in which it is expressed in terms of the 

increments of potential, 

W'—W = l2(e+e)(V'—V). (6) 

If the increments are infinitesimal, we may write (4) and (G) 

dW=2(Vbe) = 2(ebV); (7) 

and if we denote by We and Wv the expressions for W in terms 

of the charges and the potentials of the system respectively, and 

by Art er, and Vr a particular conductor of the system, its charge, 

and its potential, then 

Yr = 
dW0 

der 9 (8) 

er 

_ dWr 
~ dVr ’ (») 

86.] If in any fixed system of conductors, any one of them, 

which we may denote by Ati is without charge, both in the initial 

and final state, then for that conductor et = 0, and e't = 0, so 

that the terms depending on At vanish from both members of 

equation (5). 

If another conductor, say Auf is at potential zero in both states 
of the system, then = 0 and = 0, bo that the terms de¬ 
pending on Au vanish from both members of equation (5). 

If, therefore, all the conductors except two, Ar and A$) are 
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either insulated and without charge, or else connected to the 

earth, equation (5) is reduced to the form 

‘ erK' + e.Tr = e/K+e;Z (10) 

If in the initial state 

er — 1 and e6 — 0, 
and in the final state 

e,' = 0 and e' — 1, 
equation (10) becomes V/ — V9\ (11) 

or if a unit charge communicated to Ay raises A, when insulated 

to a potential F, then a unit charge communicated to A9 will 

raise Ar when* insulated to the same potential F, provided that 

every one of the other conductors of the system is either insulated 

and without charge, or else connected to earth so that its poten¬ 

tial is zero. 

This is the first instance we have met with in electricity of a 

reciprocal relation. Such reciprocal relations occur in every 

branch of science, and often enable us to deduce the solutions of 

new problems from those of simpler problems already solved. 

Thus from the fact that at a point outside a conducting sphere 

whose charge is 1 the potential is r"1, where *r is the distance 

from the centre, we conclude that if a small body whose charge 

is 1 is placed at a distance r from the centre of a conducting 

sphere without charge, it will raise the potential of the sphere 

to r_1. 

Let us next suppose that in the initial state 

Vr = 1 and V9 — 0, 

and in the final state 

and V/ = 1, 

equation (10) becomes e9 = er'; (12) 

or if, when Ar is raised to unit potential, a charge e is induced 

on A$ put to earth, then if A, is raised to unit potential, an equal 

charge e will be induced on Ar put to earth. 

Let us suppose in the third place, that in the initial state 

=- 1 and e9 = 0, 

and that in the final state 

V/ = 0 and e' = 1, 

equation (10) becomes in this case 

» . «/+?= 0. ^ (13) 

Hence if when A9 is without charge, the operation of charging 

Ar to potential unity raises A9 to potential F, then if Ar is kept 
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at potential zero, a unit charge communicated to Aa will induce 

on A,, a negative charge, the numerical value of which is V. 
In all these cases we may suppose some of the other con¬ 

ductors to be insulated and without charge, and the rest to be 

connected to earth. 

The third case is an elementary form of one of Green’s theorems. 

As an example of its use let us suppose that we have ascertained 

the distribution of electric charge on the different elements of a 

conducting system at potential zero, induced by a charge unity 

communicated to a given body Aa of the system. 

Let 7}r be the charge of Ar under these circumstances. Then 

if we suppose As without charge, and the other bodies raised each 

to a different potential, the potential of At will be 

K=-Sfoflf). (14) 

Thus if we have ascertained the surface-density at any given 

point of a hollow conducting vessel at zero potential due to a 

unit charge placed at a given point within it, then, if we know 

the value of the potential at every point of a surface of the 

same size and form as the interior surface of the vessel, we can 

deduce the potential at a point within it the position of which 

corresponds to that of the unit charge. 

Hence if the potential is known for all points of a closed 

surface it may be determined for any point within the surface, 

if there be no electrified body within it, and for any point 

outside, if there be no electrified body outside. 

Theory of a system of conductors. 

87.] Let Al9 A 2,... An be n conductors of any form; let elf e2, 

...en be their charges ; and If, If,... If their potentials. 

Let us suppose that the dielectric medium which separates the 

conductors remains the same, and does not become charged with 

electricity during the operations to be considered. 

We have shown in Art. 84 that the potential of each conductor 

is a homogeneous linear function of the n charges. 

Hence since the electric energy of the system is half the sum 

of the products of the potential of each conductor into its charge, 

the electric energy must be a homogeneous quadratic function of 

the n charges, of the form 

Wt = \pne1i + pne1e2+ \pne? +pliele3 +I>2Ze2ez + + &0- (15) 

The suffix e indicates that W is to be expressed as a function 
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of the charges. When W is written without a suffix it denotes 

the expression (3), in which both charges and potentials occur. 

From this expression we can deduce the potential of any one 

of the conductors. For since the potential is defined as the work 

which must be done to bring a unit of electricity from potential 

zero to the given potential, and since this work is spent in 

increasing TF, we have only to differentiate We with respect to the 

charge of the given conductor to obtain its potential. We thus 

obtain 

X = + Pn €r-“ "h Pnl^ni 

X Pls^l * • * Prs^r * * • Pm^m 

X = 2>m«l +JPm«r— + Pnn*H, ) 

(16) 

a system of n linear equations which express the n potentials in 

terms of the n charges. 

The coefficients pr9 &c., are called coefficients of potential. Each 

has two suffixes, the first corresponding to that-of the charge, 

and the second to that of the potential. 

The coefficient prri in which the two suffixes axe the same, 

denotes the potential of Ar when its charge is unity, that of all 

the other conductors being zero. There are n coefficients of this 

kind, one for each conductor. 

The coefficient prt, in which the two suffixes are different, 

denotes the potential of A4 when Ar receives a charge unity, the 

charge of each of the other conductors, except Ar} being zero. 

We have already proved in Art. 86 that prt = pg r, but we may 

prove it more briefly by considering that 

dV4 d dW d dWs dVr 

Pn ~ der~ der de, ~ de. der “ de, ~ P"' ('17) 

The number of different coefficients with two different suffixes 

is therefore \ n (n—l), being one for each pair of conductors. 

By solving the equations (16) for ev t2, &c., we obtain n 

equations giving the charges in terms of the potentials 

el ^ VllX + d"9irJn» 

= 9riX • * * "F $r»X ' • * d" X > 

^ 9nlX••• d“9n*X••• d*?tv^nn) * 

(18) 
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We have in this case also qrt — qari for 

___ der _ d dWy _ d dWv _ dea __ 

q" ~ dV~ dV, dVr ~ dVr~dV, ~ dVr ~ q,r' '19' 

By substituting the values of the charges in the equation for 

the electric energy 

W=\[elV1 + ... + erVr...+enVnl (20) 

we obtain an expression for the energy in terms of the potentials 

W,= \qnV^ + qM+U,^ ' 

+ ?13K*3 + ?23^T3+4?33t? + &C- (21) 

A coefficient in which the two suffixes are the same is called 

the Electric Capacity of the conductor to which it belongs. 

Definition. The Capacity of a conductor is its charge when its 

own potential is unity, and that of all the other conductors is 

zero. 

This is the proper definition of the capacity of a conductor when 

no further specification is made. But it is sometimes convenient 

to specify the condition of some or all of the other conductors in 

a different manner, as for instance to suppose that the charge of 

certain of them is zero, and we may then define the capacity of 

the conductor under these conditions as its charge when its 

potential is unity. 

The other coefficients are called coefficients of induction. Any 

one of them, as qrgi denotes the charge of Ar when Ae is raised to 

potential unity, the potential of all the conductors except A$ 
being zero. 

The mathematical calculation of the coefficients of potential 

and of capacity is in general difficult. We shall afterwards 

prove that they have always determinate values, and in certain 

special cases we shall calculate these values. We shall also 

show how they may be determined by experiment. 

When the capacity of a conductor is spoken of without 

specifying the form and position of any other conductor in the 

same system, it is to be interpreted as the capacity of the con¬ 

ductor when no other conductor or electrified body is within a 

finite distance of the conductor referred to. 

It is sometimes convenient, when we are dealing with capacities 

and coefficients of induction only, to write them in the form [A.P], 

this symbol being understood to denote the charge on A when 
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P is raised to unit potential {the other conductors being all at 

zero potential}. 

In like manner [(A 4 B) . (P+ Q)] would denote the charge on 

A 4 B when P and Q are both raised to potential 1; and it is 

manifest that since 

[(i4^.(P4C)]=[i.P]4[i.Q]4[B.P]4[5.(?] 

= [(P + Q).(4+5)], 
the compound symbols may be combined by addition and multi¬ 

plication as if they were symbols of quantity. 

The symbol [A . A~\ denotes the charge on A when the potential 

of A is 1, that is to say, the capacity of A. 
In like manner [(A 4 B). (ui 4 Q)] denotes the sum of the 

charges on A and B when A and Q are raised to potential 1, the 

potential of all the conductors except A and Q being zero. 

It may be decomposed into 

[A.A] + [A.B] + [A.Q] + [B.Q]. 
The coefficients of potential cannot be dealt with in this way. 

The coefficients of induction represent charges, and these charges 

can be combined by addition, but the coefficients of potential 

represent potentials, and if the potential of A is Vx and that of 

B is T£, the sum Vx 4 has no physical meaning bearing on the 

phenomena, though represents the electromotive force 

from A to B. 
The coefficients of induction between two conductors may be 

expressed in terms of the capacities of the conductors and that 

of the two conductors together, thus : 

[A . B] = l [(A 4B). (A 4Bj]~l [A . A] — J [B . iB], 

Dimensions of the coefficients, 

88.] Since the potential of a charge e at a distance r is ~ > 

the dimensions of a charge of electricity are equal to those of 

the product of a potential into a line. 

The coefficients of Rapacity and induction have therefore the 

same dimensions as a line, and each of them may be represented 

by a straight line, the length of which is independent of the 

system of units which we employ. 

For the same reason, any coefficient of potential may be 

represented as the reciprocal of a line. 
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On certain conditions which the coefficients must satisfy. 

89 a.] In the first place, since the electric energy of a system 

is an essentially positive quantity, its expression as a quadratic 

function of the charges or of the potentials must be positive, 

whatever values, positive or negative, are given to the charges 

or the potentials. 

Now the conditions that a homogeneous quadratic function 

of n variables shall be always positive are n in number, and 

may be written 

Pn 
PivPi>\ 
P± 1 J P'Zl ' 

> 1 

> 0, 

Pn* • 'Pi 

I Pnl'"Pnn 

> 0. 

(22) 

These n conditions are necessary and sufficient to ensure that 

shall be essentially positive *. 

But since in equation (16) we may arrange the conductors in 

any order, every determinant must be positive which is formed 

symmetrically from the coefficients belonging to any combin¬ 

ation of the n conductors, and the number of these combinations 

is 2M— 1. 

Only n, however, of the conditions so found can be inde¬ 

pendent. 

The coefficients of capacity and induction are subject to con¬ 

ditions of the same form. 

89 /;.] The coefficients of potential are all positive, but none 

of the coefficients prt is greater than prr or pt,. 

For let a charge unity be communicated to Ar, the other con¬ 

ductors being uncharged. A system of equipotential surfaces 

will be formed. Of these one will be the surface of Ar, and its 

potential will bo_prr. If As is placed in a hollow excavated in 

Ar so as to be completely enclosed by it, then the potential of 

A$ will also be 

If, however, At is outside of Ar its potential prt will lie between 

2>rr and zero. 

* See Williamson's Differential Calculus, 3rd edition, p. 407. 
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For consider the lines of force issuing from the charged con¬ 

ductor Ar, The charge is measured by the excess of the number 

of lines which issue from it over those which terminate in it. 

Hence, if the conductor has no charge, the number of lines 

which enter the conductor must be equal to the number which 

issue from it. The lines which enter the conductor come from 

places of greater potential, and those which issue from it go to 

places of less potential. Hence the potential of an uncharged 

conductor must be intermediate between the highest and lowest 

potentials in the field, and therefore the highest and lowest 

potentials cannot belong to any of the uncharged bodies. 

The highest potential must therefore beg?rr, that of the charged 

body Arf the lowest must be that of space at an infinite distance, 

which is zero, and all the other potentials such as prt must lie 

between prr and zero. 

If At completely surrounds A(, then prt = 

89 c.] None of the coefficients of induction are positive, and the 

sum of all those belonging to a single conductor is not 

numerically greater than the coefficient of capacity of that 

conductor, which is always positive. 

For let Ar be maintained at potential unity while all the other 

conductors are kept at potential zero, then the charge on Ar 

is g^, and that on any other conductor Ae is qrt. 

The number of lines of force which issue from Ar is qrr. Of 

these some terminate in the other conductors, and some may 

proceed to infinity, but no lines of force can pass between any 

of the other conductors or from them to infinity, because they 

are all at potential zero. 

No line of force can issue from any of the other conductors 

such as A,, because no part of the field has a lower potential 

than Aa. If A, is completely cut off from Ar by the closed surface 

of one of the conductors, then qr8 is zero. If A, is not thus cut 

off, qr9 is a negative quantity. 

If one of the conductors At completely surrounds Ari then all 

the lines of force from Ar fall on At and the conductors within 

it, and the sum of the coefficients of induction of these con¬ 

ductors with respect to Ar will be equal to qrr with its sign 

changed. Eut if Ar is not completely surrounded by a conductor 



PEOPEETIES OF THE COEFFICIENTS. 113 89 d.] 

the arithmetical sum of the coefficients of induction qra, &c. will 

be less than q, r. 

We have deduced these two theorems independently by means 

of electrical considerations. We may leave it to the mathe¬ 

matical student to determine whether one is a mathematical 

consequence of the other. 

89 d.] When there is only one conductor in the field its 

coefficient of potential on itself is the reciprocal of its capacity. 

The centre of mass of the electricity when there are no ex¬ 

ternal forces is called the electric centre of the conductor. If 

the conductor is symmetrical about a centre of figure, this 

point is the electric centre. If the dimensions of the conductor 

are small compared with the distances considered, the position 

of the electric centre may be estimated sufficiently nearly by 

conjecture. 

The potential at a distance c from the electric centre must be 

between 9 „ 

;(> + ?) “J '('-*?>*• 
where e is the charge, and a is the greatest distance of any part 

of the surface of the body from the electric centre. 

For if the charge be concentrated in two points at distances 

a on opposite sides of the electric centre, the first of these 

expressions is the potential at a point in the line joining the 

charges, and the second at a point in a line perpendicular to the 

line joining the charges. For all other distributions' within the 

sphere whose radius is a the potential is intermediate between 

those values. 

If there are two conductors in the field, their mutual coefficient 

of potential is where o' cannot differ from c, the distance 

a2 £)2 

between the electric centres, by more than —-; a and b being 
c 

the greatest distances of any part of the surfaces of thedbodies 

from their respective electric centres. 

♦ [For let p be the density of the electricity at any point, then if we take th$ line 
joining the electric centre to P aa the axis of z, the potential at P is 

1^- 
where c i* the distance of P from the electric centre. The first term equals e/c, the 
second vanishes since the origin is the electric centre, and the greatest value of the 

VOL. I. I 

+ ... | dxdydz, 
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89 e.] If a new conductor is brought into the field the 

coefficient of potential of any one of the others on itself is 

diminished. 

For let the new body, B, be supposed at first to be a non¬ 

conductor {having the same specific inductive capacity as air | 

free from charge in any part, then when one of the conductors, 

Alt receives a charge the distribution of the electricity on the 

conductors of the system will not be disturbed by B, as B is still 

without charge in any part, and the electric energy of the system 

will bo simply i,,Tf= 

Now let B become a conductor. Electricity will flow from 

places of higher to places of lower potential, and in so doing will 

diminish the electric energy of the system, so that the quantity 

i efpn must diminish. 

But e1 remains constant, therefore pu must diminish. 

Also if B increases by another body b being placed in contact 

with it, pu will be further diminished. 

For let us first suppose that there is no electric communication 

between B and b; the introduction of the new body b will 

diminish pn. Now let a communication be opened between B 

and b. If any electricity flows through it, it flows from a place 

of higher to a place of lower potential, and thex^efore, as we have 

shewn, still further diminishes plv 

third is when the electricity is concentrated at the points for which the third term 
inside the bracket has its greatest- value, which is oa/<s3, thus the greatest value of the 
third term is ea%/c' ; the least value of this term is when the electricity is concen¬ 
trated at the points for which the third term inside the bracket has its greatest nega¬ 
tive value which is —\alJc*; thus (he least value of the third term is — \m2/c\ 

■ The result at the end of Art. 89 d may be deduced as follows. Suppose the charge 
is on the first conductor, then the potential due to the electricity on this conductor 
by the above is less than a 

n + Tt" 
where R is the distance of the point from the electric centre of the first conductor; 
in the second term if we are only proceeding as far as c*—3, we may put R**c for any 
point on the second conductor. The first term represents the potential to which the 
second pqtpductor is raised by a charge e at the electric centre of the first, but by 
Art. 86, this is the same as the potential at the electric centre of the first due to a 
charge e on the second conductor, but we have just1 seen that this must be less than 

thus the potential of the second conductor due to a charge e on the first must be less 

tha“ « *(a' + P) 
c + CJ 

This however is not in general a very close approximation to the mutual potential 

of two conductors. ]■ 
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Hence the diminution of pu by the body B is greater than 

that which would be produced by any conductor the surface of 

which can be inscribed in B, and less than that produced by any 

conductor the surface of which can be described about B. 

We shall shew in Chapter XI, that a sphere of diameter ft at a 

distance r, great compared with b, diminishes the value of pu 

P 
by a quantity which is approximately £ * 

Hence if the body B is of any other figure* and if b is its 

greatest diameter, the diminution of the value of pn must be less 

than £ ~ • 
* r4 

Hence if the greatest diameter of B is so small compared with 

its distance from Ax that we may neglect quantities of the order 

P 
& 4 , we may consider the reciprocal of the capacity of Ax when 

alone in the field as a sufficient approximation to plv 

90 a.] Let us therefore suppose that the capacity of Ax when 

alone in the field is and that of A2, K.,, and let the mean 

distance between Al and A2 be r, where r is very great compared 

with the greatest dimensions of Ax and A2, then we may write 

Pn = h\ ’ ]>{i = r ’ ?,-2=7r2; 

K = tyK-r1 + e2r~1> 

%=zeir'1 + e2K2~l. 

Hence qn = Kx (1 -KxK2r~2y\ 

q}2 = — KXK 2r 1 (1 — K}K2r~2)^, 

q22 — K2 (1 — K2 r-2)-1. 

Of these coefficients gn and q22 are the capacities of Ax and A0 

when, instead of being each alone at an infinite distance from 

any other body, they are brought so as to be at a distance r from 

each other. 

90 ft.] When two conductors are placed so near together that 

their coefficient of mutual induction is large, the combination is 

called a Condenser. 

Let A and B be the two conductors or electrodes of a con¬ 

denser. 

* {See equation (43), Art. 146.} 
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Let L be the capacity of A, N that of J5, and M the coefficient 
of mutual induction. (We must remember that M is essentially 
negative, so that the numerical values of L + M and M + N are 
less than L and N.) 

Let us suppose that a and b are the electrodes of another con¬ 
denser at a distance R from the first, R being very great com¬ 
pared with the dimensions of either condenser, and let the 
coefficients of capacity and induction of the condenser a b when 
alone be l, n, m. Let us calculate the effect of one of the 
condensers on the coefficients of the other. 

Let D = LN— Mzy and d — In — m2; 

then the coefficients of potential for each condenser by itself are 

Paa— paa~ d~ln, 
Pab— pab = -d~'m, 

Van— D~lL, jhb — d~ll. 
The values of these coefficients will not be sensibly altered 

when the two condensers are at a distance R. 
The coefficient of potential of any two conductors at distance 

R is R~ly so that 

PAa = PAb ~ pBa = pBb = R~ L 

The equations of potential are therefore 

V4 = D-iNeA~D-'MeB + R-'ea + R-hb, 

VB = ~D-'MeA + R~ALeB + R'ea + R~'eb, 

Va = R-'6A + R-'eB + d-lnea — d~lmebt 

Vb = R~'eA + R~leB—d'~lmea + d^leb. 

Solving these equations for the charges, we find 

T (L + M)2{l + 2m+n) 
qAA-L -J- + R2J(L + 2M + N)(l + 2m + n)’ 

qAB = M'=M + 
(L + M) (M+ N) (l + 2 m + n) 

R2 — (L -f 2 M -f- N) {l + 2 m + n)3 

R(L + M)(l+m) 
R2 — (L + 2 M+ N) (l + 2 m + n) * 

R(L + M)(m + n) 
R2 -(L + 2 M + N) (l + 2 m + n) ’ 

where L\ M\ iY are what Z, M, lY become when the second con¬ 
denser is brought into the field. 
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If only one conductor, a, is brought into the field, m = n — 0, and 

„ _r,_r. _(L + MTl 

qAA~L ~Jj + R*-l(L + 2M+JSf)’ 

Vab-M -M+ Rz_l(L + 2M+Jf) 

qja = 
Rl(L + M) 

and 

&-HL + 2M+1T)' 
If there are only the two simple conductors, A and a, 

M = N —m — n~ 0, 

T LH RLl 
<lAA-L + R2_1rj> qAa- R2 _H> 

expressions which agree with those found in Art. 90 a. 

The quantity L + 2 M + N is the total charge of the condenser 

when its electrodes are at potential 1. It cannot exceed half 

the greatest diameter of the condenser *. 

L + M is the charge of the first electrode, and M+N that of the 

second when both are at potential 1. These quantities must be 

each of them positive and less than the capacity of the electrode 

by itself. Hence the corrections to be applied to the coefficients 

of capacity of a condenser are much smaller than those for a 

simple conductor of equal capacity. 

Approximations of this kind are often useful in estimating the 

capacities of conductors of irregular form placed at a consider¬ 

able distance from other conductors. 

91.] When a round conductor, of small size compared with 

the distances between the conductors, is brought into the field, 

the coefficient of potential of Ax on A2 will be increased when Az 
is inside and diminished when Az is outside of a sphere whose 

diameter is the straight line Ax A2. 
For if A j receives a unit positive charge there will be a distri¬ 

bution of electricity on A%, + e being on the side furthest from Ax, 

and —-e on the side nearest At. The potential at A2 due to this 

distribution on i3 will be positive or negative as -fc or~e is 

nearest to A2> and if the form of Az is not very elongated this 

will depend on whether the angle Ax Az A2 is obtuse or acute, 

and therefore on whether As is inside or outside the sphere 

described on A1 A2 as diameter. 

* {For we may prove, as in Art. 89 e, that the capacity of a condenser all of whose 
parts are at the Bame potential ie less than that of the sphere circumscribing it, and 
the capacity of the sphere is equal to its radius. ]• 
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If A3 is of an elongated form it is easy to see that if it is placed 

with its longest axis in the direction of the tangent to the circle 

drawn through the points Al9 A3, A2 it may increase the 

potential of A21 even when it is entirely outside the sphere, and 

that if it is placed with its longest axis in the direction of the 

radius of the sphere, it may diminish the potential of A2 even 

when entirely within the sphere. But this proposition is only 

intended for forming a rough estimate of the phenomena to be 

expected in a given arrangement of apparatus. 

92.] If a new conductor, A3, is introduced into the field, the 

capacities of all the conductors already there are increased, and 

the numerical values of the coefficients of induction between 

every pair of them are diminished. 

Let us suppose that Ax is at potential unity and all the rest at 

potential zero. Since the charge of the new conductor is negative 

it will induce a positive charge on every other conductor, and 

will therefore increase the positive charge of Ax and diminish 

the negative charge of each of the other conductors. 

93 a.] Work done by the elective forces during the displacement 

of a system of insulated charged conductors. 

Since the conductors are insulated, their charges remain 

constant during the displacement. Let their potentials be Vlf 

... before and Vx\ V/, ... Vf after the displacement. The 

electric energy is F = \ 2 (e V) 

before the displacement, and 

W'~ 

after the displacement. 

The work done by the electric forces during the displacement is 

the excess of the initial energy W over the final energy W\ or 

F-F'=12 [e(V-V')l 

This expression gives the work done during any displacement, 

small or large, of an ipsulated system. 

To find the force tending to produce a particular kind of dis¬ 

placement, let </> be the variable whose variation corresponds to 

the kind of displacement, and let <P be the corresponding force, 

reckoned positive when the electric force tends to increase <#>, 

then <t>d(p = —dW€> 
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where We denotes the expression for the electric energy as a 

quadratic function of the charges. 

93 b. 1 To prove that .-h . - = 0. 
J 1 d<fj d<j) 

We have three different expressions for the energy of the system, 

(1) . wUsieV), 
a definite function of the n charges and n potentials, 

(2) W€ = tSS(ere.i>n), 

where r and s may be the same or different, and both rs and sr 

are to be included in the summation. 

This is a function of the n charges and of the variables which 

define the configuration. Let cf> be one of these. 

(3) Wv=\^{VrKqn), 
where the summation, is to bo taken as before. This is a function 

of the n potentials and of the variables which define the con¬ 

figuration of which </> is one. 

Since W = We = Wy> 

W6+ Wv— 2 W =z 0. 

Now let the n charges, the n potentials, and c/> vary in any 

consistent manner, and we must have 

./dWe -ir\* r/dWy N rrl /dW 
sL(s;-,08M+sL(T»r-<l)l"fJ + (74 + i?>* = o. 

I <p d <f> ' 

Now the n charges, the n potentials, and c]) are not all inde¬ 

pendent of each other, for in fact only n 4- 1 of them can be 

independent. But we have already proved that 

dE- v 
deT ~ r’ 

so that the first sum of terms vanishes identically, and it follows 

from this, even if we had not already proved it, that 

dWv 

dV 
v 
- = e. 

and that lastly, 
dE , dwL = o. 
d<p d<p 

Work done by the electric forces during the displacement of a 

system whose potentials are maintained constant. 

93 c.] It follows from the last equation that the force 4> = ^ * 

and if the system is displaced under the condition that all the 
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potentials remain constant, the work done by the electric forces is 

f= jdwv = w; ~wy~, 
or the work done by the electric forces in this case is equal to the 

increment of the electric energy. 

Here, then, we have an increase of energy together with a 

quantity of work done by the system. The system must therefore 

be supplied with energy from some external source, such as a 

voltaic battery, in order to maintain the potentials constant 

during the displacement. 

The work done by the battery is therefore equal to the sum of 

tho work done by the system and the increment of energy, or, 

since these are equal, the work done by the battery is twice the 

work done by the system of conductors during the displacement. 

On the comparison of similar electrified systems. 

94.] If two electrified systems are similar in a geometrical sense, 

so that the lengths of corresponding lines in the two systems are 

as L to L\ then if the dielectric which separates the conducting 

bodies is the same in both systems, the coefficients of induction 

and of capacity will be in the proportion of L to If. For if we 

consider corresponding portions, A and A\ of the two systems, and 

suppose the quantity of electricity on A to be e, and that on A' 

to be e\ then the potentials V and V' at corresponding points 

B and B\ due to this electrification, will be 

F^.andF--^. 

But AB is to A'Br as L to 2/, so that we must have 

e:e'::LV:L'V\ 

But if the inductive capacity of the dielectric is different in the 

two systems, being K in the first and Kf in the second, then if the 

potential at any point of the first system is to that at the cor¬ 

responding point of the second as V to F7, and if the quantities 

of electricity on corresponding parts are as e and e\ we shall have 

e:e'::LVK:L'rK'. 

By this proportion we may find the relation between the total 

charges of corresponding parts of two systems, which are in the 

first place geometrically similar, in the second place composed 

of dielectric media of which the specific inductive capacities at 

corresponding points are in the proportion of K to K\ and in the 
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third place so electrified that the potentials of corresponding 

points are as V to V'. 
From this it appears that if q be any coefficient of capacity or 

induction in the first system, and q' the corresponding one in the 

second, q:q'::LK :L'K'; 

and if p and p' denote corresponding coefficients of potential in 

the two systems, 1 1 

p:p : :LK ' L'K'* 

If one of the bodies be displaced in the first system, and the 

corresponding body in the second system receives a similar dis¬ 

placement, then these displacements are in the proportion of L 

to L\ and if the forces acting on the two bodies are as F to F, 

then the work done in the two systems will be as FL to FL', 

But the total electric energy is half the sum of the charges 

of electricity multiplied each by the potential of the charged 

body, so that in the similar systems, if W and W' be the total 

electric energies in the two systems respectively, 

JV: W':: eV: e' V', 

and the differences of energy after similar displacements in the 

two systems will be in the same proportion. Hence, since FL 

is proportional to the electrical work done during the displace¬ 

ment, FL:FL': :eV:e' V'. 

Combining these proportions, we find that the ratio of the 

resultant force on any body of the first system to that on the 

corresponding body of the second system is 

F :F :: V*K: V'2K\ 
pi pf 2 

or F- F ••—- __ or *L2KL'2K> 

The first of these proportions shews that in similar systems the 

force is proportional to the square of the electromotive force and 

to the inductive capacity of the dielectric, but is independent of 

the actual dimensions of the system. 

Hence two conductors placed in a liquid whose inductive 

capacity is greater than that of air, and electrified to given 

potentials, •will attract each other more than if they had been 

electrified to the sapae potentials in air. 

The second proportion shews that if the quantity of electricity 
on each body is given, the forces arc proportional to the squares 
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of the charges and inversely to the squares of the distances, and 

also inversely to the inductive capacities of the media. 

Hence, if two conductors with given charges are placed in a 

liquid whose inductive capacity is greater than that of air, they 

will attract each other less than if they had been surrounded by 

air and charged with the same quantities of electricity*. 

* {It follows from the preceding investigation that the force between two electri¬ 
fied bodies surrounded by a medium who9e specific inductive capacity is K is «?'/AV2, 
where e and e are the charges on the bodies and r is the distance between them, j 



CHAPTER IV. 

GENERAL THEOREMS. 

95 a.] In the second chapter we have calculated the potential 

function and investigated some of its properties on the hypo¬ 

thesis that there is a direct action at a distance between electri¬ 

fied bodies, which is the resultant of the direct actions between 

the various electrified parts of the bodies. 

If we call this the direct method of investigation, the inverse 

method will consist in assuming that the potential is a function 

characterised by properties the same as those which we have 

already established, and investigating the form of the function. 

In the direct method the potential is calculated from the dis¬ 

tribution of electricity by a process of integration, and is found 

to satisfy certain partial differential equations. In the inverse 

method the partial differential equations are supposed given, and 

we have to find the potential and the distribution of electricity. 

It is only in problems in which the distribution of electricity 

is given that the direct method can be used. When we have to 

find the distribution on a conductor we must make use of the 

inverse method. 

We have now to shew that the inverse method leads in every 

case to a determinate result, and to establish certain general 

theorems deduced from Poisson’s partial differential equation, 

d2V d2V d2V 

dx2 + dy2 + dz2 + 

The mathematical ideas expressed by this equation ai'e of a 

different kind from those expressed by the definite integral /+QO /• + CO r + 00 n 

/ / - dx'dy'dz'. 

In the differential equation we expi'ess that the sum of the 

second derivatives of V in the neighbourhood of any point is 
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related to the density at that point in a certain manner, and no 

relation is expressed between the value of V at that point and 

the value of p at any point at a finite distance from it. 

In the definite integral, on the other hand, the distance of 

the point (x'y y\ z'), at which p exists, from the point (x, y, z\ at 

which V exists, is denoted by r, and is distinctly recognised in 

the expression to be integrated. 

The integral, therefore, is the appropriate mathematical ex¬ 

pression for a theory of action between particles at a distance, 

whereas the differential equation is the appropriate expression 

for a theory of action exerted between contiguous parts of a 

medium. 

We have seen that the result of the integration satisfies the 

differential equation. We have now to shew that it is the only 

solution of that equation satisfying certain conditions. 

We shall in this way not only establish the mathematical 

equivalence of the two expressions, but prepare our minds to 

pass from the theory of direct action at a distance to that of 

action between contiguous parts of a medium. 

95 6.] The theorems considered in this chapter relate to the 

properties of certain volume-integrals taken throughout a finite 

region of space which we may refer to as the electric field. 

The element of these integrals, that is to say, the quantity 

under the integral sign, is either the square of a certain vector 

quantity whose direction and magnitude vary from point to 

point in the field, or the product of one vector into the resolved 

part of another in its own direction. 

Of the different modes in which a vector quantity may be dis¬ 

tributed in space, two are of special importance. 

The first is that in which the vector may be represented 

as the space-variation [Art. 17] of a scalar function called the 

Potential. 

Such a distribution may be called an Irrotational distribution. 

The resultant force arising from the attraction or repulsion of 

any combination of centres of force, the law of each being any 

given function of the distance, is distributed irrotationally. 

The second mode of distribution is that in which the converg¬ 

ence [Art. 25] is zero at every point. Such a distribution may 

be called a Solenoidal distribution. The velocity of an incom¬ 

pressible fluid is distributed in a solenoidal manner. 
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When the central forces which, as we have said, give rise to 

an irrotational distribution of the resultant force, vary according 

to the inverse square of the distance, then, if these centres are 

outside the field, the distribution within the field will be sole- 

noidal as well as irrotational. 

When the motion of an incompressible fluid which, as we have 

said, is solenoidal, arises from the action of central forces de¬ 

pending on the distance, or of surface pressures; on a frictionless 

fluid originally at rest, the distribution of velocity is irrotational 

as well as solenoidal. 

When we have to specify a distribution which is at once irrota- 

tional and solenoidal, we shall call it a Laplacian distribution ; 

Laplace having pointed out some of the most important pro¬ 

perties of such a distribution. 

The volume integrals discussed in this chapter are, as we shall 

see, expressions for the energy of the electric field. In the first 

group of theorems, beginning with Green s Theorem, the energy 

is expressed in terms of the electromotive intensity, a vector 

which is distributed irrotationally in all cases of electric equi¬ 

librium. It is shewn that if the surface-potentials be given, then 

of all irrotational distributions, that which is also solenoidal has 

the least energy ; whence it also follows that there Can be 

only one Laplacian distribution consistent with the surface 

potentials. 

In the second group of theorems, including Thomson’s Theorem, 

the energy is expressed in terms of the electric displacement, a 

vector of which the distribution is solenoidal. It is shewn that 

if the surface-charges are given, then of all solenoidal distribu¬ 

tions that has least energy which is also irrotational, whence it 

also follows that there can be only one Laplacian distribution 

consistent with the given surface-charges. 

The demonstration of all these theorems is conducted in the 

same way. In order to avoid the repetition in every case of the 

steps of a surface integration conducted with reference to rect¬ 

angular axes, we make use in each case of the result of Theorem 

III, Art. 21*, where the relation .between a volume-integral and 

the corresponding surface-integral is fully worked out. All that 

* This theorem seems to have been first given by Ostrogradsky in a paper read in 
1828, but published in 1881 in the Mim. de VAcad. de St. Pitertbourgt T. I. p. 39. It 
may be regarded, however,, as a form of the equation of continuity. 
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we have to do, therefore, is to substitute for X, F, and Z in that 

Theorem the components of the vector on which the particular 

theorem depends. 

In the first edition of this book the statement of each theorem 

was cumbered with a multitude of alternative conditions which 

were intended to shew the generality of the theorem and the 

variety of cases to which it might be applied, but which tended 

rather to confuse in the mind of the reader what was assumed 

with what was to be proved. 

In the present edition each theorem is at first stated in a more 

definite, if more restricted, form, and it is afterwards shewn what 

further degree of generality the theorem admits of. 

We have hitherto used the symbol V for the potential, and we 

shall continue to do so whenever we are dealing with electrostatics 

only. In this chapter, however, and in those parts of the second 

volume in which the electric potential occurs in electro-magnetic 

investigations, we shall use ^ as a special symbol for the electric 

potential. 

Greens Theorem. 

96 a.] The following important theorem was given by George 

Green, in his ‘ Essay on the Application of Mathematics to Elec¬ 

tricity and Magnetism.’ 

The theorem relates to the space bounded by the closed surface 

s. We may refer to this finite space as the Field. Let v be a 

normal drawn from the surface s into the field, and let l, m, n be 

the direction cosines of this normal, then 

1dV d^ rf'R 
l+m -f n ~ 

dx ay dz dv (0 

will be the rate of variation of the function 'R in passing along 
d<^ 

the normal v. Let it be understood that the value of is to be 

taken at the surface itself, where v = t). 

Let us also write, as in Arts. 26 and 77, 

d2* d2* d2* 
dxz * dy2 dz2 

V2*, 

and when there are two functions, V and <f>, let us write 

dVd$ dVd® d^d& ™ 
-j—-3— + —"j— -f =— £.V¥V<f>. 
dx dx dy dy dz dz 

(2) 

(3) 
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The reader who is not acquainted with the method of Quater¬ 

nions may, if it pleases him, regard the expressions and 

AV^V<I> as mere conventional abbreviations for the quantities to 

which they are equated above, and as in what follows we shall 

employ ordinary Cartesian methods, it will not be necessary to 

remember the Quaternion interpretation of these expressions. 

The reason, however, why we use as our abbreviations these ex¬ 

pressions and not single letters arbitrarily chosen, is, that in the 

language of Quaternions tney represent fully the quantities to 

which they are equated. The operator V applied to the scalar 

function ^ gives the space-variation of that function, and the 

expression —S.WV<t> is the scalar part of the product of two 

space-variations, or the product of either space-variation into the 

resolved part of the other in its own direction. The expression 

d 
— is usually written in Quaternions S.UvV^, Uv being a unit- 

vector in the direction of the normal. There does not seem 

much advantage in using this notation here, but we shall find 

the advantage of doing so when we come to deal wTith anisotropic 

{non-isotropic} media. 

Statement of Green's Theorem. 

Let 'J' and 4> be two functions of x, y, 2, which, with their first 

derivatives, are finite and continuous within the acyclic region s, 

bounded by the closed surface 8, then 

[f*~ds -JJj+V2<M ? = Jffs.V*V<t>ds 

d<i> 

where the double integrals are to be extended over the whole 

closed surface «, and the triple integrals throughout the field, y, 

enclosed by that surface. 

To prove this, let us write, in Art. 21, Theorem III, 

X = + 

d<J> 

dx 

then R cos e 

„ r d<P „ 
7 = * , Z = * 

dy 

w /,d<P d<t> , 
; — ^ (/ jr + m ——f n 

d<t> 

dx dy 

dz 

d<$>\ 

dz' 

(5) 

= -^,by(l); (6) 
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. dX dY dZ _ ,d*<t> d2<\> eZ2<K 
aD dx + dy + dz~ ' da? + dy1 dz2' 

d^d<P d^d<t> 

+ dx dx + dy dy 

= by (2) and (3). 

But by Theorem III 

JJR cos ids = JJj ( 
dX dY dZ 

dx + dy ** dz 
yu 

+ 
c? 4> 

dz dz 

(?) 

or by (6) and (7) 

Jf*™* -JJI *V*<t>ds = ffj,S.VW&ds. (8) 

Since in the second member of this equation 4> and 4> may 

be interchanged, we may do so in the first, and we thus 

obtain the complete statement of Green’s Theorem, as given in 

equation (4). 

96 6.] We have next to shew that Greens Theorem is true 

when one of the functions, say 'I', is a many-valued one, provided 

that its first derivatives are single-valued, and do not become 

infinite within the acyclic region y. 

Since V4> and V4> are single-valued, the second member of 

equation (4) is single-valued; but since 4> is many-valued, any 

one element of the first member, as is many-valued. If, 

however, we select one of the many values of as %, at the 

point A within the region 9, then the value of 4* at any other 

point, P, will be definite. For, since the selected value of 4* is 

continuous within the region, the value of ♦ at P must be that 

which is arrived at by continuous variation along any path from 

A to P, beginning with the value 4^ at A. If the value at P 

were different for two paths • between A and P, then these two 

paths must embrace between them a closed curve at which the 

first derivatives of 4* become infinite *. Now this is contrary to 

the specification, for since the first derivatives do not become 

infinite within the region 9, the closed curve must be entirely 

without the region; and since the region is acyclic, two paths 

within the region cannot embrace anything outside the region. 

J [PfdV dy dy \ 

( / V dx + d dy + dz same for all reconcileable paths, and rA v dy 
since the region is acyclic all paths nre reconcileable.| 
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Hence, if 'Pq is given as the value of 4* at the point A, the 

value at P is definite. 

If any other value of 4>> say + had been chosen as the 

value at A, then the value at P would have been 4* + n k. But 

the value of the first member of equation (4) would be the same as 

before, for the change amounts to increasing the first member by 

and this, by Theorem III, Art. 21, is zero. 

96 c.] If the region $ is doubly or multiply connected, we may 

reduce it to an acyclic region by closing each of its circuits with 

a diaphragm, {we can then apply the theorem to the region 

bounded by the surface of s and the positive and negative sides 

of the diaphragm}. 

Let 81 be one of these diaphragms, and kx the corresponding 

cyclic constant, that is to say, the increment of 4' in going once 

round the circuit in the positive direction. Since the region v lies 

on both sides of the diaphragm sv every element of s1 will occur 

twice in the surface integral. 

If we suppose the normal vx drawn towards the positive side 

of dsv and iq' drawn towards the negative side, 

d4> __ d<& 

d d vx 

and = % + (ki) 

so that the element of the surface-integral arising from dwill be, 

since dvx is the element of the inward normal for the positive 

surface, da, t ,d* , d<i> , 
ds1 + % -j-7- ds1 = — K, as,. 

dvx 1 1 dv \ d i'j ] 

Hence if the region s is multiply connected, the first term of 

equation (4) must be written 

-&c. 
Knffdvnd>"n ffj**2*dsi (4a) 

where dv is an element of the inward normal to the bounding 

surface and where the first surface-integral is to be taken over 

the bounding surface, and the others over the different diaphragms, 

each element of surface of a diaphragm beiDg taken once only, and 

the normal being drawn in the positive direction of the circuit. 

This modification of the theorem in the case of multiply- 

VOL. I. K 



130 GENERAL THEOREMS. [96 d. 
connected regions was first shewn to be necessary by Helmholtz*, 

and was first applied to the theorem by Thomson f. 

96 ci] Let us now suppose, with Green, that one of the 

functions, say 4>, does not satisfy the condition that it and its 

first derivatives do not become infinite within the given region, 

but that it becomes infinite at the point P, and at that point 

only, in that region, and that very near to P the value of is 

+ where <h0 is a finite and continuous quantity, and r is 

the distance from P. This will be the case if <I> is the potential 

of a quantity of electricity e concentrated at the point P, together 

with any distribution of electricity the volume density of which 

is nowhere infinite within the region considered. 

Let us now suppose a very small sphere whose radius is a to 

be described about P as centre ; then since in the region outside 

this sphere, but within the surface 8, presents no singularity, 

we may apply Green’s Theorem to this region, remembering that 

the surface of the small sphere is to be taken account of in 

forming the surface-integral. 

In forming the volume-integrals we have to subtract from the 

volume-integral arising from the whole region that arising from 

the small sphere. 

Now j'J'J'bV^dxdydz for the sphere cannot be numerically 

greater than ^*),JfJtdXdyd,, 

or (V2^{27rea2 + i7ra3ct>0}, 

where the suffix, gi attached to any quantity, indicates that the 

greatest numerical value of that quantity within the sphere is to 

be taken. 

This volume-integral, therefore, is of the order a2, and may be 

neglected when a diminishes and ultimately vanishes. 

The other volume-integral 

J'JJ'W2 & dxdy dz 

we shall suppose taken through the region between the small 

sphere and the surface 8, so that the region of integration does 

not include the point at which <j> becomes infinite. 

♦ * Ueber Integral® der hydrodynamischen Gleiohungen welche den Wirbelbewe- 
gungen entsprechen,’ Crelle, 1858. Translated by Prof. Taifc, Phil. Mag., 1867 (I). 

f 1 On Vortex Motion,* Tram. J?. S, Edin. xxv. part. i. p. 241 (1867). 
t The mark / separates the'numerator from the denominator of a fraction. 
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The surface-integral J'Jdd for the sphere cannot be nu- 

r ray 
merically greater than <&aj / ds\ 

Now by Theorem III, Art. 21, 

//£*=-///”•“»*' 

5 numen- 

since dv is here measured outwards from the sphere, and this 

cannot be numerically greater than (V2^)^ 7ra3, and <J>, at the 

err dv 
surface is approximately - > so that / / <t> ds cannot be ] 

cally greater than *,a2e (y**),, 

and is therefore of the order a2, and may be neglected when <t 

vanishes. 

But the surface-integral for the sphere on the other side of 

the equation, namely, pp ^ 

does not vanish, for JJ— ds' = - 4 ire ; 

dv being measured outwards from the sphere, and if ^ be the 

value of V at the point P, 

^ ds = — ^TreV^. if* dv 

Equation (4) therefore becomes in this case 

ff* =/jhTv^-fffa™s* (4,l) 
97 a.] We may illustrate this case of Green’s Theorem by em¬ 

ploying it as Green does to determine the surface-density of a 

distribution which will produce a potential whose values inside 

and outside a given closed surface are given. These values must 

coincide at the surface, also within the surface V2^ = 0, and 

outside V2^ = 0 where yj/ and yfr' denote the potentials inside and 

outside the surface. 

Green begins with the direct process, that is to say, the diBtri- 

* {in this equation dv ig drawn to the inside of the surface and f fj* ^v^dxdydx 

is not taken through the space occupied by a small sphere whose centre is the point at 

which 4> becomes infinite.} 
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bution of the surface density, <r, being given, the potentials at an 

internal point P and an external point P' are found by integrat¬ 

ing the expressions 

* “V 
■ff ~ds’ (9) 

where r and rf are measured from the points P and Pr respect¬ 

ively, 

Now let = 1/r, then applying Green’s Theorem to the space 

within the surface, and remembering that V24> — 0 and V2# = 0 

throughout the limits of integration we find 

(10) 

where is the value of 'P at P. 

Again, if we apply the theorem to the space between the 

surface s and a surface surrounding it at an infinite distance «, 

the part of the surface-integral belonging to the latter surface 

will be of the order \/a and may be neglected, and we have 

d\ 

(11) 

Now at the surface, 'J' = and since the normals v and v are 

drawn in opposite directions, 

d 1 di 

dv dv 

Hence on adding equations (10) and (11), the left-hand mem¬ 

bers destroy each other, and we have 

rr 1 sdV d^\ 7 „ 
~A**r =Jfr (57 + dv )d8' ( 2) 

97 6.] Green also proves that if the value of the potential & 

at every point of a closed surface s be given arbitrarily, the 

potential at any point inside or outside the surface may be 

determined, provided V2^ — 0 inside or outside the surface. 

For this purpose he supposes the function to be such that 

near the point P its value is sensibly 1/r, while at the surface 

8 its value is zero, and at every point within the surface 

= 0. 

* {In equations 10 and 11 dv' is drawn to the inside of the surface and dv to the 

outside, j 
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That such a function must exist, Green proves from the 

physical consideration that if s is a conducting surface connected 

to the earth, and if a unit of electricity is placed at the point P, 

the potential within s must satisfy the above conditions. For 

since 8 is connected to the earth the potential must be zero at 

every point of s, and since the potential arises from the electricity 

at P and the electricity induced on 8, V2<l> = 0 at every point 

within the surface. 

Applying Green’s Theorem to this case, we find 

(I3) 
where, in the surface-integral, 'k is the given value of the potential 

at the element of surface ds\ and since, if o> is the density of the 

electricity induced on 8 by unit of electricity at P, 

Aj!,Tp + 57 = 0> (14) 

we may write equation (13) 

SfV = -JJVads*, (15) 

where <r is the surface-density of the electricity induced on ds by 

a charge equal to unity at the point P. 

Hence if the value of cr is known at every point of the surface 

for a particular position of P, then we can calculate by ordinary 

integration the potential at the point P, supposing the potential 

at every point of the surface to be given, and the potential 

within the surface to be subject to the condition 

= 0. 
We shall afterwards prove that if we have obtained a value of 

^ which satisfies these conditions, it is the only value of 'k which 

satisfies them. 

Green's Function. 

98.] Let a closed surface s be maintained at potential zero. 

Let P and Q be two points on the positive side of the surface s 

(we may suppose either the inside or the outside positive), and 

let a small body charged with unit of electricity be placed at P; 

the potential at the point Q will consist of two parts, of which 

one is due to the direct action of the electricity at P, while the 

* {This is the same as equation (14), p. 107.} 
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other is due to the action of the electricity induced on 8 by P. 
The latter part of the potential is called Green's Function, and is 
denoted by Gpq- 

This quantity is a function of the positions of the two points 
P and Q, the form of the function depending on the surface 8. 
It has been calculated for the case in which 8 is a sphere, and for 
a very few other cases. It denotes the potential at Q due to the 
electricity induced on 8 by unit of electricity at P. 

The actual potential at any point Q due to the electricity at P 
and to the electricity induced on s is l/rpq + Gpqi where rpq denotes 
the distance between P and Q. 

At the surface 8, and at all points on the negative side of 8, the 
potential is zero, therefore 

~ ~~ ’ 0) 
1 pa 

where the suffix a indicates that a point A on the surface s is 
taken instead of Q. 

Let (tpa* denote the surface-density induced by P at a point A' 
of the surface s, then, since Gpq is the potential at Q due to the 
superficial distribution. 

where ds is an element of the surface s at A', and the integration 
is to be extended over the whole surface s. 

But if unit of electricity had been placed at Q, we should have 
had by equation (1), 

(3) 

--//£*’ 
where <rqa is the density at A of the electricity induced by Q, ds 
is an element of surface, and rm> is the distance between A and 
A'. Substituting this value of 1 /rqa> in the expression for Gpq, 

we find r r r rrr n 

<5> 
Since this expression is not altered by changing p into q and 

« int0 »> we ^ that Gvq = G,p; (6) 

a result which we have already shewn to be necessary in Art. 86, 
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but which we now see to be deducible from the mathematical 

process by which Green’s function may be calculated. 

If we assume any distribution of electricity whatever, and 

place in the field a point charged with unit of electricity, and if 

the surface of potential zero completely separates the point from 

the assumed distribution, then if we take this surface for the 

surface $, and the point for P, Green’s function, for any point on 

the same side of the surface as P, will be the potential of the 

assumed distribution on the other side of the surface. In this 

way we may construct any number of cases in which Green’s 

function can be found for a particular position of P. To find 

the form of the function when the form of the surface is given 

and the position of P is arbitrary, is a problem of far greater 

difficulty, though, as we have proved, it is mathematically possible. 

Let us suppose the problem solved, and that the point P is 

taken within the surface. Then for all external points the 

potential of the superficial distribution is equal and opposite to 

that of P. The superficial distribution is therefore centrobarie *, 

and its action on all external points is the same as that of a 

unit of negative electricity placed at P. 

99 a.] If in Green’s Theorem we make = 4>, we find 

If 'P is the potential of a distribution of electricity in space 

with a volume-density p and on conductors whose surfaces are 

tq, s2, &c., and whose potentials are &c., with surface- 

densities <rlt <t2, &c., then 
V2*=4tt p, (17) 

d* 
~~i = —47T(r, 
av 

since dr is drawn outwards from the conductor, and 

(18) 

If <I9> 

where <q is the charge of the surface s1. 

Dividing (16) by — 87t, we find 

\ (*i«i + *2*4 + &c-) + IJff *pdxdydz 

(20) 

* Thornton and Tait’s Natural Philosophy t § 526. 
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The first term is the electric energy of the system arising 

from the surface-distributions, and the second is that arising 

from the distribution of electricity through the field, if such a 

distribution exists. 

lionce the second member of the equation expresses the whole 

electric energy of the system*, the potential 4> being a given 

function of x, y, 0, 

As we shall often have occasion to employ this volume-integral, 

we shall denote it by the abbreviation WJ,, so that 

* = JrJff[C^)+ 0*+ {^y^ydz. (21) 

If the only charges are those on the surfaces of the conductors, 

p = 0, and the second term of the first member of equation (20) 

disappears. 

The first term is the expression for the energy of the charged 

system expressed, as in Art. 84, in terms of the charges and the 

potentials of the conductors, and this expression for the energy 

we denote by W. 

99 &.] Let 4k be a function of x, y, 0, subject to the condition 

that its value at the closed surface * is 4', a known quantity for 

every point of the surface. The value of 4k at points not on the 

surface * is perfectly arbitrary. 

Let us also write 

0*+ <22> 

the integration being extended throughout the space within the 

surface; then we shall prove that if 4q is a particular form of 4> 

which satisfies the surface condition and also satisfies Laplace’s 

Equation _. 0 (23) 

at every point within the surface, then Wv the value of W 
corresponding to 4q, is less than that corresponding to any func¬ 

tion which differs from 4q at any point within the surface. 

For let ^ be any function coinciding with 4q at the surface 

but not at every point within it, and let us write 

* = (24) 

then 4>2 is a function which is zero at every point of the 

surface. 

* { The expression on the right-hand side of (20) does not represent the energy where 

the conductors are surrounded by any dielectric other than air.} 
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The value of W for 4> will be evidently 

1JT ixr nr 1 dty.d'i'^ 7 7 7 . . 

w= *+ <26> 

By Green’s Theorem the last term may be written 

The volume-integral vanishes because v24q = 0 within the 

surface, and the surface-integral vanishes because at the surface 

4^ = 0. Hence equation (25) is reduced to the form 

W = Tff + B£. (27) 

Now the elements of the integral Wz being sums of three 

squares, are incapable of negative values, so that the integral 

itself can only be positive or zero. Hence if W, is not zero it 

must be positive, and therefore W greater than Wi. But if W> 

is zero, every one of its elements must be zero, and therefore 

d%_ d% __ n d_ 

dx ~ ' dy ~ ’ dz ~ 

at every point within the surface, and 4>2 must be a constant 

within the surface. But at the surface 4>2 = 0, therefore 4^ = 0 

at every point within the surface, and 4> = so that if W is 

not greater than WJ, 4> must be identical with 4** at every point 

within the surface. 

It follows from this that 4^ is the only function of x, ?/, z 
which becomes equal to 4* at the surface, and which satisfies 

Laplace’s Equation at every point within the surface. 

For if these conditions are satisfied by any other function 4^, 

then W3 must be less than any other value of W. But we have 

already proved that Wt is less than any other value, and therefore 

than W6. Hence no function different from 4q can satisfy the 

conditions. • 

The case which we shall find most useful is that in which the 

field is bounded by one exterior surface, #, and any number of 

interior surfaces, s2, &c., and when the conditions are that the 

value of 4r shall be zero at a, 4q at s19 4^ at s2, and so on, where 

4'1, 4^, &c. are constant for each surface, as in a system of 

conductors, the potentials of which are given. 

Of all values of 4/ satisfying these conditions, that gives the 

minimum value of W+ for which V24/ = 0 at every point in the 

field. 
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Thomson’s Theorem. 

Lemma. 

100 a.] Let ¥ be any function of x, y, z which is finite and 

continuous within the closed surface s, and which at certain 

closed surfaces, s1, s2,..., sp, &c., has the values ^,..., , &c. 

constant for each surface. 

Let u, v, w be functions of x, y, z, which we may consider as 

the components of a vector S subject to the solenoidal condition 

du dv dw 

dx dy dz 
(28) 

and let us put in Theorem III 

X = \PUy Y = Z = 'VlVy (29) 

we find as the result of these substitutions 

pu + mpv + npw 
’> +fff* +a +S) 

'///(“ dx + V dy + wdz) = °> (3°) 

the surface-integrals being extended over the different surfaces 

and the volume-integrals being taken throughout the whole 

field, and where lpi mp, np are the direction cosines of the normal 

to sp drawn from the surface into the field. Now the first 

volume-integral vanishes in virtue of the solenoidal condition 

for u, v, w, and the surface-integrals vanish in the following 

cases:— 

(1) When at every point of the surface # = 0. 

(2) When at every point of the surface lu + mv-\-nw = 0. 

(3) When the surface is entirely made up of parts which 

satisfy either (1) or (2). 

(4) When ^ is constant over each of the closed surfaces, and 

JJ[lu + mv + nw) ds = 0. 

Hence in these four cases the volume-integral 

»§)«»* -»• (*>) 

1006.] Now consider a field bounded by the external closed 
surface a, and the internal closed surfaces sl9 sa, &c. 
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Let ^ be a function of x, y, z, which within the field is finite 

and continuous and satisfies Laplace’s Equation 

V2* = 0, (32) 

and has the constant, but not given, values ^x> 2, &c. at the 

surfaces 8Jf s2, &c. respectively, and is zero at the external 

surface 8, 

The charge of any of the conducting surfaces, as s19 is given 

by the surface integral 

e,=~4hffSs*1’ (33) 

the normal vx being drawn from the surface into the electric 

field. 

100 c.] Now let /, g, h be functions of x, y, z, which we may 

consider as the components of a vector 3), subject only to the 

conditions that at every point of the field they must satisfy the 

solenoidal equation 

£♦3+*-* <"> 

and that at any one of the internal closed surfaces, as 8lf the 

surface-integral 

Jj(lj+,ni1g + n1h)d8 = e1( (35) 

where ll,mv are the direction cosines of the normal vx drawn 

outwards from the surface 81 into the electric field, and ex is the 

same quantity as in equation (33), being, in fact, the electric 

charge of the conductor whose surface is 

We have to consider the value of the volume-integral 

Wv = 2.///(f2 + g2 + h2)dxdydz, (36) 

extended'throughout the whole of the field within 8 and without 

8ly «r2, &c., and to compare it with 

F* = UfflO* O'* <"> 

the limits of integration being the same. 

Let us write 

u =/ + 
r lid*' “-v^iTT dy’ • 4ii 

and W% — Z.fff {u2 + v2 + vj2) dxdydz; 

v = g + w — h + 
4tt dz 
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then since 

f + f + h* 

+ u2 + v2 + w2— 
l r d'i' d+l 
- u -T- + v -r- + w- j~ > 

2n\_ dx dy dz J 

wv= n;+ 
d* d'i* rf+N , , , .... 

u— +v-j- + iv -j-)dxdydz. (40) Jff ^" dx ' dy ' w dz 

Now in the first place, u, v, w satisfy tho solenoidal condition 
at every point of the field, for by equations (38) 

du dv dw df dg dh 1 
I __ i _ __ ^ | _y i 

dx dy dz dx dy dz 4nr 
V“*, (41) 

and by the conditions expressed in equations (34) and (32), both 

parts of the second member of (41) are zero. 

In the second place, the surface-integral 

//ft 
u 4-nxw) dsx 

=//<V + 'm1g + nlh)dsi + -ff d<V 
dsu (42) 

4 7tJJ dvY 
but by (35) the first term of the second member is epand by (33) 

the second term is — elf so that 

(ZjU-f 4-nxiv) ds1 — 0. (43) 
//ft 

Hence, since % is constant, the fourth condition of Art. 100 a 
is satisfied, and the last term of equation (40) is zero, so that the 
equation is reduced to the form 

(44) 

Now since the element of the integral is the sum of three 

squares, u2 + v2 4* w2, it must be either positive or zero. If at any 
point within the field u, v9 and w are not each of them equal to 
zero, the integral b£ must have a positive value, and W® must 

therefore be greater than W+. But the values u = v = w = 0 at 
every point satisfy the conditions. 

Hence, if at every point 
1 __ 1 d$ h __!_ d4> 

J ~~ 4tt dx’ ^ 4 7r dy ~~ 4 7j dz’ 
(45) 

then Fd = b*, (46) 

and the value of W% corresponding to these values of /, g, h, is 
less than the value corresponding to any values of /, g, h9 

differing from these. 
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Hence the problem of determining the displacement and 
potential, at every point of the field, when the charge on each 
conductor is given, has one and only one solution. 

This theorem in one of its more general forms was first stated 
by Sir W. Thomson*. We shall afterwards show of what gene¬ 
ralization it is capable. 

100 <i.] This theorem may be modified by supposing that the 
vector 3), instead of satisfying the solenoidal condition at every 
point of the field, satisfies the condition 

df dg dh _ 
dx + dy + dz f>y 

where p is a finite quantity, whose value is given at every point 
in the field, and which may be positive or negative, continuous 
or discontinuous, its volume-integral within a finite region 
being, however, finite. 

We may also suppose that at certain surfaces in the field 
If 4- mg -f nh 4- Vf 4* m' g' +n'h' = cr, (48) 

where Z, m, n and l\ ra', n' are the direction cosines of the normals 
drawn from a point of the surface towards those regions in which 
the components of the displacement are /, g, h and f, g\ h/ re¬ 
spectively, and cr iB a quantity given at all points of the surface, 
the surface-integral of which, over a finite surface, is finite. 

100 e.] We may also alter the condition at the bounding sur¬ 
faces by supposing that at every point of these surfaces 

lf+ mg 4- nh = or, (49) 
where cr is given for every point. 

(In the original statement we supposed only the value of the 
integral of <r over each of the surfaces to be given. Here we 
suppose its value given for every element ^f surface, which 
comes to the same thing as if, in the original statement, we had 
considered every element as a separate surface.) 

None of these modifications will affect the truth of the theorem 
provided we remember that 4* must satisfy the corresponding 
conditions, namely, the general condition, 

d2y 
dx2 + dy 

and the surface condition 
dy d¥ 
dTv +dV 

d2+ d2* 

4- 4 7T<r = 0. 

(50) 

(51) 

* Cambridge and Dublin Mathematical Journalt February, 1848. 
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For if, as before 

, 1 d* Id* , 1 d* 
/+V,d^=u' 9 47r dy ~ V> h+Ti'Tz=W’ 

then u, v, w will satisfy the general solenoidal condition 

du dv dw __ 

dx dy + dz ~~ * 

and the surface condition 

lu -h mv + nw -f I'vf 4- mV 4- n'vf = 0, 

and at the bounding surface 

lv, + mv + nw~ 0, 

whence we find as before that 

-JIM d& dV t d'P, 7 7 7 

di + Vdt+Wdz)dxdyds ^ dx^ dy ' ~ dz 

and that — U* 4- W9. 

Hence as before it is shewn that W® is a unique minimum 

when = 0, which implies that u2 f V 4-w2 is everywhere zero, 

and therefore 
1 d<k 1 d* L d* 

~~ 4 7i dx ’ ^ ~ A - 'u‘ ’ 1 ~~ A - A~ * 

L d<b 

L~~~X~irdz' J 4tt dx J 4?r dy 4tt dz ' 

101 a.] In our statement of these theorems we have hitherto 

confined ourselves to that theory of electricity which assumes 

that the properties of an electric system depend on the form and 

relative position of the conductors, and on their charges, but 

takes no account of the nature of the dielectric medium between 

the conductors. 

According to that theory, for example, there is an invariable 

relation between the surface density of a conductor and the 

electromotive intensity just outside it, as expressed in the law 

of Coulomb R = 4ir<r. 

But this is true only in the standard medium, which we may 

take to be air. In other media the relation is different, as was 

proved experimentally, though not published, by Cavendish, and 

afterwards rediscovered independently by Faraday. 

In order to express the phenomenon completely, we find it 

necessary to consider two vector quantities, the relation between 

which is different in different media. One of these is the electro¬ 

motive intensity, the other is the electric displacement. The 

electromotive intensity is connected by equations of invariable 
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form with the potential, and the electric displacement is con¬ 

nected by equations of invariable form with the distribution of 

electricity, but the relation between the electromotive intensity 

and the electric displacement depends on the nature of the 

dielectric medium, and must be expressed by equations, the most 

general form of which is as yet not fully determined, and can be 

determined only by experiments on dielectrics. 

101 ?>.] The electromotive intensity is a vector defined in 

Art. 68, as the mechanical force on a small quantity e of elec¬ 

tricity divided by e. We shall denote its components by the 

letters P, Q, P, and the vector itself by 

In electrostatics, the line integral of @ is always independent 

of the path of integration, or in other words & is the space- 

variation of a potential. Hence 

P=r- 
d* 

dx ’ 
P = ~ 

dV 
fa’ 

or more briefly, in the language of Quaternions 

g = - V'P. 

101 c.] The electric displacement in any direction is defined 

in Art. 60, as the quantity of electricity carried through a small 

area A, the plane of which is normal to that direction, divided 

by A. We shall denote the rectangular components of the 

electric displacement by the letters /, g, A, and the vector itself 

by 2>. 

The volume-density at any point is determined by the equation 

df da dh 
p = ~~ 4- -f -r- > 

dx dy dz 

or in the language of Quaternions 

P = -S.V\D. 

The Burface-density at any point of a charged surface is deter¬ 

mined by the equation 

a = (/*+ mg + nh + Vf + m'g' + n'K, 

where /, <7, h are the components of the displacement on one side 

of the surface, the direction cosines of the normal drawn from 

the surface on that side being l, m, n, and fy g\ h! and l\ m', n' 

are the components of the displacements, and the direction cosines 

of the normal on the other side. 

This is expressed in Quaternions by the equation 
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where Uv) Uv are unit normals on the two sides of the surface, 

and 8 indicates that the scalar part of the product is to be taken. 

When the surface is that of a conductor, v being the normal 

drawn outwards, then since/, g\ h' and 2)' are zero, the equation 

is reduced to the form 
(t = //+ mg + nh ; 

= -S. Uv<X). 

The whole charge of the conductor is therefore 

=Jj (lf+ mg -f nh) ds; 

=-//• 
S.Uv^ds. 

101 d] The electric energy of the system is, as was shewn in 

Art. 84, half the sum of the products of the charges into their 

respective potentials. Calling this energy W, 

W=h2(e*) 

-\JJfp^dxdydz + \Jj^ds, 
-w*( 

+ 2 JJ * (¥+rn (J + n^) ds; 

rdf dq dhs , , , 

dx + dy+dz)dxdydz 

where the volume-integral is to be taken throughout the electric 

field, and the surface-integral over the surfaces of the con¬ 

ductors. 

Writing in Theorem III, Art. 21, 

X .= 4/, Y= *gy Z — 

we find, if l, m, n are the direction cosines of the normal facing 

the surface into the field, 

ffnv+*»»+»*) * - -///* (f + %+fj ****** 

-IIP 
d^ 

dy 

d + 

dx+<1'ihj+hirddx,1ildz- 
Substituting this value for the surface-integral in W we find 

,d* . dV , ci4\ '-HIP 
or W=.~JJJ(fP + gQ + kR)dxdydz. 

dx+^+hTz)dxdydz’ 

101 e.] We now come to the relation between 2) and 

The unit of electricity is usually defined with reference to 
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experiments conducted in air. We now know from the ex¬ 

periments of Boltzmann that the dielectric constant of air is 

somewhat greater than that of a vacuum, and that it varies 

with the density. Hence, strictly speaking, all measurements of 

electric quantity require to be corrected to reduce them either 

to air of standard pressure and temperature, or, what would be 

more scientific, to a vacuum, just as indices of refraction 

measured in air require a similar correction, the correction in 

both cases being so small that it is sensible only in measure¬ 

ments of extreme accuracy. 

In the standard medium 

4 tt2) — g, 

or 4 tt/=P, 4 7rg ~ Q, 4 ~ih R. 

In an isotropic medium whose dielectric constant is K 

4 7iD=r Arg, 

4 7T/ = KP, 4tTQ = KQ: 4 7rh = KR. 

There are some media, however, of which glass has been the 

most carefully investigated, in which the relation between 35 and 

g is more complicated, and involves the time variation of one 

or both of these quantities, so that the relation must be of the 

form 

F(35, g, 2, g, $), g, &c.) = 0. 

We shall not attempt to discuss relations of this more general 

kind at present, but shall confine ourselves to the case in which 

2) is a linear and vector function of g. 

The most general form of such a relation may be written 

4 77 3) = <f> (g), 

where <f> during the present investigation always denotes a linear 

and vector function. The components of 2) are therefore homo¬ 

geneous linear functions of those of g, and may be written in 

the form 4*/ = Kxx P + Kzv Q + KXZR, 

l*g = KvxP + KyvQ + KyaR, 

4* h = KxxP + KlvQ + KzzR; 

where the first suffix of each coefficient K indicates the direction 

of the displacement, and the second that of the electromotive 
intensity. 

The most general form of a linear and vector function involves 
vol. 1. l 
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nine independent coefficients. When the coefficients which have 

the same pair of suffixes are equal, the function is said to be 

self-conjugate. 

If we express ® in terms of 35 we shall have 

@ = 4 

or P = 4 7T {Kxf+ Kx 9 + k*x 
Q = 4 7T (Jcxy /+ k„ g + Ky A), 

R = 4 * (kxz f+JcVMg + Kz h). 
101 /.] The work done by the electromotive intensity whose 

components are P, Q, P, in producing a displacement whose com¬ 

ponents are df, and dA, in unit of volume of the medium, is 

dW= Pdf + Qdg 4- Rdh. 
Since a dielectric {in a steady state} under electric displace¬ 

ment is a conservative system, W must be a function of f g, A, 
and since f g, A may vary independently, we have 

D dW „ dW » dW 
p = -^, Q = — *= dT 

Hence 
cZ2 TT 

But 
dP 

dg ' 

df 9 dg ’ 

dP ^d2W = d2W ^dQ 

dg ~ dgdf “ cZ/cty ~ d/ 

4ttJcvx) the coefficient of g in the expression for P, 

and = 4-nlcxy> the coefficient of / in the expression for Q. 

Hence if a dielectric is a conservative system (and we know that 

it is so, because it can retain its energy for an indefinite time), 

lCxy - kyxl 

and (f>~1 is a self-conjugate function. 

Hence it follows that <£ also is self-conjugate, and Kxy = Kyx. 

101 #.] The expression for the energy may therefore be written 

in either of the forms 

w*=~LfffiK**p2+K**Q2+K"R2+2 K"QR 
or + 2KaRP+2Kti/PQ]dxdy dz, 

A® = 2itJJJiKxf2 + g2 + k„h2 + 2kv,gh 

+ 2 k„ hf + 2 K„fg] dx dy dz, 

where the suffix denotes the vector in terms of which W is to be 

expressed. When there is no suffix, the energy is understood to 

be expressed in terms of both vectors. 
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We have thus, in all, six different expressions for the energy 

of the electric field. Three of these involve the charges and 

potentials of the surfaces of conductors, and are given in Art, 87. 
The other three are volume-integrals taken throughout the 

electric field, and involve the components of electromotive in¬ 

tensity or of electric displacement, or of both. 

The first three therefore belong to the theory of action at a 

distance, and the last three to the theory of action by means of 

the intervening medium. 

These three expressions for W may be written, 

r = - 5///«•»«*■ 

w- = -rJffs-'*♦<«>*•■ 

Wjo = — 277fff S. 

101 A] To extend Green's Theorem to the case of a hetero¬ 

geneous anisotropic {non-isotropic} medium, we have only to 

write in Theorem III, Art. 21, 

dx +K*ydy +Kx'dz 1 

d<t> 1 

=4 
X 

7 

£ = *[ 

d<t> 

"dy 1 

£* . K 
" dy dzl 1. 

^ a. K 1? 4- V 1*] 
•dee +Ktv dy + K“ dz\’ 

and we obtain, if Z, m, n are the direction cosines of the outward 

normal to the surface (remembering that the order of the suffixes 

of the coefficients is indifferent), 

ff * \(KJ + Kvtm+Kmn) ~ + (KJ + Kvtvi + K,yn) ^ 
kd<f> 1 

-///* [$;(*" 
d* , K d_± , p- «i*\ 
ate % + dJ 

d 

dy 

_d 

dz 

+ -r(ir-£ + ir»r + Jir.- 
d<l> 

'dy 

dz 

d<K 

dl' 

dd> 

dz 
dx dy dz 
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rr(T,r dydy „ dya<p „ 
■///[ “ 'dx dx+ K'y dy dy + K 

d*d<t> 

„ ,dyd<t> dy d<t>, ir , 
dz dz 

r sd^ d$> dVd<bs 

dz dx dx dz - 

ir sdy d$> d^d^l, 7 j 
+ K~(7uTy + WjTJrdy,l‘ 

= /7'-l'*.»> ^ + (Jf„i + *■„«. + JT.»)^ 

r/vPl 
+ (/C^A> + A>)™ cfe 

rrrd i Tr d^ #r ^ t- 
~ij/ i3* + Kzvdy +Azz7h) 

d ,T. d^ „ dy , „ cZ'fr. 
+ dy(K*z dx + Kyv dy+Kvzd3^ 

d dy ir dy rr . , , 
+ Tz (■k « dx + k * Wy + h “ dj)J1dx'({y dz■ 

Using quaternion notation, the result may be written more 

briefly, 

JJ'bS- Uv<f>(vy)d8-Jjj'yS.\vy(vy)} d<? 

= -fj'fs.vy<t>(vQ)dr = -JJJs.vyy(vy)d’■? 

=J f ys.Uvy(vy)d8-JJJ'<t>S.{v^(vy)}d> 

Limits between which the electric capacity of a conductor 

must lie. 

102 a.] The capacity of a conductor or system of conductors 

has been already defined as the charge of that conductor or system 

of conductors when raised to potential unity, all the other con¬ 

ductors in the field being at potential zero. 

The following method of determining limiting values between 

which the capacity must lie, was suggested by a paper 4 On the 

Theory of Resonance/ by the Hon. J. W. Strutt, Phil. Trans. 1871. 

See Art. 306. 

Let 8j denote the surface of the conductor, or system of con¬ 

ductors, whose capacity is to be determined, and s0 the surface of 

all other conductors. Let the potential of sL be 'Jq, and that of 

80, 'l/0. Let the charge of s} be el. That of s0 will be —ev 
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Then if q is the capacity of s,, 

(1) 9 
and if W is the energy of the system with its actual distribution 

of electricity W = i ex (4^ — 4'0), (2) 

, _ 2 W e,2 /Q. 

and 9 ~ 2 W' ^ 

To find an upper limit of the value of the capacity: assume 

any value of 'f' which is equal to 1 at sl and equal to zero at s0, 

and calculate the value of the volume-integral 

F*=f,///[(£),+Q'+<4> 
extended over the whole field. 

Then as we have proved (Art. 99 b) that W cannot be greater 

than W*, the capacity, q, cannot be greater than 2 W+. 
To find a lower limit of the value of the capacity: assume 

any system of values of /, g, h, which satisfies the equation 

<¥ , , dh _ 
dx + dy+ dz~ ’ 

and let it make J j(lt f+ to, g + n, h)ds1 = e,. 

Calculate the value of the volume-integral 

W® — 2 7TJ*JJ(/2 + g2 + h2) dx dy dz, 

extended over the whole field ; then as we have proved (Art. 100 c) 

that W cannot be greater than W®, the capacity, q, cannot be less 

(5) 

(6) 

(7) 

than 

2 W* W 

The simplest method of obtaining a system of values of /, g, A, 

which will satisfy the solenoidal condition, is to assume a distribu¬ 

tion of electricity on the surface of sJt and another on *0, the sum 

of the charges being zero, then to calculate the potential, 4*, due 

to this distribution, and the electric energy of the system thus 

arranged. 

If we then make 

*_1 d& _ 1 d$> , _ 1 ^ 
^ ~~ 47t dx9 & 47t dy' ~~~~4irdz ’ 

these values of/) g, h will satisfy the solenoidal condition. 
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But in this case we can determine W® without going through 

the process of finding the volume-integral. For since this solu¬ 

tion makes V2'!' = 0 at all points in the field, we can obtain W® 

in the form of the surface-integrals, 

W» = \ff'if,T'd8i+lff'l'crod8o> (9) 

where the first integral is extended over the surface 8X and the 

second over the surface 80. 

If the surface 80 is at an infinite distance from sx, the potential 

at 80 is zero and the second term vanishes. 

102 &.] An approximation to the solution of any problem of 

the distribution of electricity on conductors whose potentials are 

given may be made in the following manner:—. 

Let 8X be the surface of a conductor or system of conductors 

maintained at potential 1, and let 80 be the surface of all the other 

conductors* including the hollow conductor which surrounds the 

rest, which last, however, may in certain cases be at an infinite 

distance from the others. 

Begin by drawing a set of lines, straight or curved, from 

8| to 8q • 

Along each of these lines, assume ^ so that it is equal to 1 at 

8j, and equal to 0 at s0. Then if P is a point on one of these 

lines {8X and 80 the points where the line cuts the surfaces} we may 

Ps 
take 4q = - ~ ° as a first approximation. 

si 8o 

We shall thus obtain a first approximation to 4' which satisfies 

the condition of being equal to unity at and equal to zero at 80. 

The value of IF* calculated from 'Iq would be greater than W. 

Let us next assume as a second approximation to the lines of 

force 

. d% 

f=-pni’ 
d*. 

g=-p*S' 
h — —p 

d*x 

dz 
(10) 

The vector whose components are/] g, h is normal to the surfaces 

for which 4q is constant. Let us determine p so as to make 

f \ <7, h satisfy the solenoidal condition. We thus get 

(d2% t d2Vj dpd% dpd% dpd% 
dt " " * * 

/<* Tj Ur T j Vi TTjN 

^ v daft dnfi J”' 'J'* 0. (11) 
dx2 ' dy2 ^ dz2 > ^ dx dx ^ dy dy ^ dz dz 

If we draw a line from 8X to 80 whose direction is always normal 
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to the surfaces for which is constant, and if we denote the 

length of this line measured from s0 by s, then 

}dx __ _ d$\ j^dy _ d% Rdz __ d4q 

' dy' 
R 

ds dx ’ ds ds ds; 

d^ 
where ii is the resultant intensity = —so that 

dpd'&l dpd'\*1 dpd'&1 _ ^djo 

da; d# "** dy dy dz dz “ ds ’ 

~K d%' 

and equation (11) becomes 

: T?2 
dV 

r*iV2'lr 
whence p ~ C exp. Jf ^-2 2 d^, 

the integral being a line integral taken along the line s. 

Let us next assume that along the line s, 

d'P,, ^da; . dy hdz 

ds* ds ds 

(12) 

(13) 

(14) 

(15) 

d'i', 

= -pW> (16) 

then %=cfo (exp-f^rd%)d'i>1, (17) 

the integration being always understood to be performed along 

the line s. 

The constant C is now to be determined from the condition 

that 1 at 8X when also % = 1, so that 

mw*-'- <,8) 

This gives a second approximation to 'I', and the process may 

be repeated. 

The results obtained from calculating Jf^, H£>8, TJ*a, &c., give 

capacities alternately above and below the true capacity and 

continually approximating thereto. 

The process as indicated above involves the calculation of the 

form of the line s and integration along this line, operations 

which are in general too difficult for practical purposes. 
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In certain cases however we may obtain an approximation by 

a simpler process. 

102 c.] As an illustration of this method, let us apply it to 

obtain successive approximations to the equipotential surface^ 

and lines of induction in the electric field between two surfaces 

which are nearly but not exactly plane and parallel, one of 

which is maintained at potential zero, and the other at potential 

unity. 

Let the equations of the two surfaces be 

=/i («. y) = « (i9) 
for the surface whose potential is zero, and 

(®,y) = 6 (20) 

for the surface whose potential is unity, a and b being- given 

functions of x and y, of which b is always greater than a. The 

first derivatives of a and b with respect to x and y are small 

quantities of which we may neglect powers and products of more 

than two dimensions. 

We shall begin by supposing that the lines of induction are 

parallel to the axis of z, in which case 

/=0, 9=0, g=0. (21) 

Hence h is constant along each individual line of induction, 

an<^ *P = — f hdz = —4Trh(z — a). (22) 
J a 

When z = 6, 'P = 1, hence 

A = 
47r (fe—a)’ 

(23) 

and 'P = f—- > (24) 
6 — a 

which gives a first approximation to the potential, and indicates 

a series of equipotential surfaces the intervals between which, 

measured parallel to z, are equal. 

To obtain a second approximation to the lines of induction, 

let us assume that they are everywhere normal to the equi¬ 

potential surfaces as given by equation (24). 

This is equivalent to the conditions 

d'P dV , dt'P 
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where X is to be determined so that at every point of the field 

df dq dh , , 

and also so that the line-integral 

A.r^dx, dv . j.dz\.Ja /o?\ /> rdx dy 7 dz, 7 

4V(fTs+(JTs+hds^ds’ 
taken along any line of induction from the surface a to the 

surface b, shall be equal to — 1. 

Let us assume 

X = 1 -f A +B(z — a) +C(z — a)2, (28) 

and let us neglect powers and products of A, B, C\ and at this 

stage of our work powers and products of the first derivatives of 

a and b. 

The solenoidal condition then gives 

V*a, C = -\ (29) 
b — a ' 

*Ler“ v’=-(£+$)• 

If instead of taking the line-integral along the new line of 

induction, we take it along the old line of induction, parallel to 

s, the second condition gives 

1 = 1 +A + \B{b-a) + iC(b-a)2. 

Hence A = £ (b - a) V2 (2 a + b), (31) 

and 
i {b-a) V2(2a + b), 

X=\+\(b-a)V*(2a + b)-(z-a)V1a-\(-Z-~^V*(b-a). (32) 

We thus find for the second approximation to the components 

of displacement, 
. r A r da d(b—a)z — a 1 \ 

-*’/=S=iba + -'d£-JtZa}‘ 
A X [da d(b—a)z~a] 

= + (3S> 

and for the second approximation to the potential, 

+}V°(2a + b)(Z-a)-iV*a£=-“f 

-iV2(b-a) (g-q)3 
(b-a)* 

(34) 
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If cra and arb are the surface-densities and 4,a and the poten¬ 

tials of the surfaces a and b respectively, 

•> - k<*~ '•'-'thr 
* { This investigation is not very rigorous, and the expressions for the surface density 

do not agree with the results obtained by rigorous methods for the cases of two 
spheres, two cylinders, a sphere and plane, or a cylinder and plane placed close 
together. We can obtain an expression for the surface density as follows. Let us 
assume that the axis of z is an axis of symmetry, then the axis will cut all the equi- 
potential surfaces at right angles, and if V is the potential, Ii2 the principal radii 
of curvature of an equipotential surface where it is cut by the axis of z% the solenoidal 
condition along the axis of z may easily be sluuvn to be 

dz> +\Jtl+Hi)dz 
0. 

H Ya> Vb are the potentials of the two surfaces respectively, t the distance between 
the surfaces along the axis of z, 

rr rr /dF\ , _ {<PV\ 

or if JRAl, JRa^ denote the principal radii of curvature of the first surfaces, substituting 

. <PV 
f°r dx* ^°m differential equation, we get 

when <ta is the surface density where the axis of z cut the first surface, hence 

a*-k(J^rk)appr°x*mateiy> 

similarly a B = -L ^JLzJa) + approximately, 

and these expressions agree in the cases before mentioned with those obtained by 
rigorous methods, j 



CHAPTER V. 

MECHANICAL ACTION BETWEEN TWO ELECTRICAL SYSTEMS. 

103.] Let Ex and E2 be two electrical systems the mutual 

action between which we propose to investigate. Let the dis¬ 

tribution of electricity in Ex be defined by the volume-density, 

p,, of the element whose coordinates are xxy yxyzv Let p2 be the 

volume-density of the element of E2, whose coordinates are 

*®2> 3/2 > ^2* 

Then the ^-component of the force acting on the element of Ex 

on account of the repulsion of the element of E2 will be 

Pi P2 -L^rJ dx! dyl dz] dx2dytdz2, 

where r2 = (x1 ~ x2)- + (yx- y2f + (zx +- z2f, 

and if A denotes the x-component of the whole force acting onii^ 

on account of the presence of Ez 

A =ffffffa^1^pip*dxidy^^ (x) 
where the integration with respect to xly yXi zx is extended 

throughout the region occupied by Ex% and the integration with 

respect to x2, y2, z2 is extended throughout the region occupied 

by E2. 

Since, however, px is zero except in the system Ex, and p2 is zero 

except in the system E2i the value of the integral will not be 

altered by extending the limits of the integrations, so that we 

may suppose the limits of every integration to be + 00. 

This expression for the force is a literal translation into mathe¬ 

matical symbols of the theory which supposes the electric force 

to act directly between bodies at a distance, no attention being 

bestowed on the intervening medium. 

If we now define 92, the potential at the point xl9 yv zx, 

arising from the presence of thp system E2, by the equation 

rdx*dy*dz*> (2) 
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'Rj will vanish at an infinite distance, and will everywhere satisfy 

the equation V2% = 4rPi. (3) 

We may now express A in the form of a triple integral 

A=~III SfPi dx'dyi dzi • 
Here the potential is supposed to have a definite value at 

every point of the field, and in terms of this, together with the 

distribution, pXi of electricity in the first system Ex, the force A is 

expressed, no explicit mention being made of the distribution of 

electricity in the second system E2, 

Now let VJ/1 be the potential arising from the first system, 

expressed as a function of x, y, z, and defined by the equation 

*1 -fff ^ dxi dVy dzi > (5) 

4-q will vanish at an infinite distance, and will everywhere satisfy 

the equation V2 ¥, = 4 nPl. (6) 

We may now eliminate p1 from A and obtain 

in which the force is expressed in terms of the two potentials 

only. 

104.] In all the integrations hitherto considered, it is in¬ 

different what limits are prescribed, provided they include the 

whole of the system Ex. In what follows we shall suppose the 

systems Ex and E2 to be such that a certain closed surface ,s* 

contains within it the whole of Ex but no part of E2. 

Let us also write 

P = Pi + P*, * = *,+*2, 
P2 = °> P = 
Pi = 0, P = Pr 

An = pldx1dy1dz1 

represents the resultant force, in the direction x, on the system 

Ex arising from the electricity in the system itself. But on the 

theory of direct action this must be zero, for the action of any 

particle P on another Q is equal and opposite to that of Q on P, 

and since the components of both actions enter into the integral, 

they will destroy each other. 

then within 8, 

and without s, 

Now 

(8) 

(9) 

(10) 
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We may therefore write 

where 4* is the potential arising from both systems, the integration 

being now limited to the space within the closed surface 8, which 

includes the whole of the system E1 but none of E2. 

105.] If the action of E2 on 2£, is effected, not by direct action 

at a distance, but by means of a distribution of stress in a medium 

extending continuously from E2 to Ely it is manifest that if we 

know the stress at every point of any closed surface 8 which 

completely separates Ex from E2, we shall be able to determine 

completely the mechanical action of E2 on Ev For if the force 

on E1 is not completely accounted for by the stress through 8, 

there must be direct action between something outside of s and 

something inside of s. 

Hence if it is possible to account for the action of E2 on Ey by 

means of a distribution of stress in the intervening medium, it 

must be possible to express this action in the form of a surface - 

integral extended over any surface 8 which completely separates 

E2 from Ev 

Let us therefore endeavour to express 

_ i rrrd^rd2^ d2* d,2* 
~ dx L dx2 + dy2 + dz2 . 

dx dy dz (12) 

in the form of a surface integral. 

By Theorem III, Art. 21, we may do so if we can determine X, 

Y and Z, so that 

d*(d2* dH> dr*. _dX dY dZ 

dx ^ dx2 + dy2 + dz*' ~ dx + dy + dz 

Taking the terms separately, 

d*d2V d (d*v2 

dx dx2 ~~ 2 dx -dx' 9 

d*d2* 
dx dy1 

d sdVdV 

dy ^dx dy 

d* d2* 
dy dxdy’ 

d sd^d^s 1 d 

dy^dxdy' 2 dx^dy) 

Similarly 
d*d2*_ d 1 

dx dz2 ~~ dz^dx dz ' 2 dx^dz ' 



158 MECHANICAL ACTION. [i°5- 

If, therefore, we write 

A=fff(%+Th? + is)d°:dy‘h- <■*> 

the integration being extended throughout the space within s. 

Transforming the volume-integral by Theorem III, Art. 21, 

A =ff(lp*x+mPv*+np^d8> (l6) 

where ds is an element of any closed surface including the whole 

of Ex but none of E2i and Z, m, n are the direction cosines of the 

normal drawn from ds outwards. 

For the components of the force on Ex in the directions of y 
and zy we obtain in the same way 

B ~ff ^Pmv+rllpvv+np‘^ ds’ 
(17) 

G-Jf\1P*'+mp»‘+np“)ds- (18) 

If the action of the system E2 on Ex does in reality take place 

by direct action at a distance, without the intervention of any 

medium, we must consider the quantities p„ &c. as mere abbre¬ 

viated forms for certain symbolical expressions, and as having 

no physical significance. 

But if we suppose that the mutual action between E2 and Ex is 

kept up by means of stress in the medium between them, then 

since the equations (16), (17), (18) give the components of the re¬ 

sultant force arising from the action, on the outside of the surface 

By of the stress whose six components are ptae &c., we must 
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consider p^ &c. as the components of a stress actually existing 

in the medium. 

106.] To obtain a clearer view of the nature of this stress let 

us alter the form of part of the surface s so that the element ds 
may become part of an equipotential surface. (This alteration of 

the surface is legitimate provided we do not thereby exclude any 

part of Ex or include any part of E2.) 

Let v be a normal to ds drawn outwards. 

dy 
Let jR = — — be the intensity of the electromotive intensity 

in the direction of r, then 

dy D7 dy dy 
dx dy dz 

Hence the six components of the stress are 

= — Bn. 

Pxz = ^-R2(l2-'m2-n2), pv, = ~R2mn, 

Pw = ~ & (m2 - »* - P), p„ = -1- &td. 

p„ = — R2 (n2—P —m2), pxv R2lm. 

If a, bf c are the components of the force on ds per unit of area, 
1 

a = lpxm+mpvx + rip* = — R% 
O 7T 

b = R2m, 
8 IT 

c = -- R2n. 
8 tr 

Hence the force exerted by the part of the medium outside ds 
on the part of the medium inside ds is normal to the element 

and directed outwards, that is to say, it is a tension like that of 

a rope, and its value per unit of area is R2. 

Let us next suppose that the element ds is at right angles 

to the equipotential surfaces which cut it, in which case 

,dy dy dy 
l ~j—b Tfi -j -f- n —j = 0. (19) 

dx dy dz 
. _r/d4\2 /d'K2 /d'K2] 

Now 8*(lp„+mptz + npj) = Z[(^J - - {^) J 

„ d^d'V . d'Pd'i 
+ 2l»7-T- +2U-J--J- • 

dx dy dx dz 



Hence if the element ds is at right angles to an equipotential 

surface, the force which acts on it is normal to the surface, and 

its numerical value per unit of area is the same as in the former 

case, but the direction of the force is different, for it is a pressure 

instead of a tension. 

We have thus completely determined the type of the stress at 

any given point of the medium. 

The direction of the electromotive intensity at the point is a 

principal axis of stress, and the stress in this direction is a tension 

whose numerical value is 

p=LR2> w 

where R is the electromotive intensity. 

Any direction at right angles to this is also a principal axis of 

stress, and the stress along such an axis is a pressure whose 

numerical magnitude is also p. 

The stress as thus defined is not of the most general type, for 

it has two of its principal stresses equal to each other, and the 

third has the same value with the sign reversed. 

These conditions reduce the number of independent variables 

which determine the stress from six to three, accordingly it is 

completely determined by the three components of the electro¬ 

motive intensity 

d* dV d* 
dxy ~~ dy’ ~ Hz 
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The three relations between the six components of stress are 

P V* ^ Pyy) i,P»z d" Pxx)'> j 

P\x = (Pw+Pzz) {Pzx+PwY * (23) 

P xy “ (Pzz Pxx) (Pyy "t*Pzz)' 

107.J Let us now examine whether the results we have obtained 

will require modification when a finite quantity of electricity is 

collected on a finite surface so that the volume-density becomes 

infinite at the surface. 

In this case, as we have shewn in Arts. 78 <x, 78/>, the com¬ 

ponents of the electromotive intensity are discontinuous at the 

surface. Hence the components of stress will also be discon¬ 

tinuous at the surface. 

Let l, m, n be the direction cosines of the normal to ds. Let 

]\ Qf R be the components of the electromotive intensity on the 

side on which the normal is drawn, and ly, Q\ R' their values 

on the other side. 

Then by Arts. 78 a and 78 6, if a is the surface-density 

P — P' = 4n(rl, \ 

Q — Q' = 4 7Term, > (24) 
R~R' — 4 Iran. / 

Let a be the ^-component of the resultant force acting on 

the surface per unit of area, arising from the stress on both sides, 

then 

« = l (pzx~p'xz) + m (pxy-p'xy) + n (p„ -p'xl), 

= yJ {(P*-p/2) - (Q2 -Q'2) - (R2 -R'1)} 

+ ~m(PQ-R'Q') + ^n(PR-P'R'), 

= U {(P-F) (P + F)- (Q -Q') ((Q + O') - (R-R') (R + R')} 
O 7T 

+ ~m{(P~P')(Q + Q') + (P + F) (Q-Q')} 

+ ±n{(P-F)(R + R') + (P + F) (R-R')}, 
o TT 

= ^l<r {l(P + P')—m(Q + Q')—n(R + R')} 

+ ±m<r{l(Q + Q')+m(P + P')}+ln<T{l(R + R') + n{P + P')}, 

=L(p+n (25) 

VOL. I. M 
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Hence, assuming that the stress at any point is given by 

equations (14), we find that the resultant force in the direction 

of x on a charged, surface per unit of volume is equal to the 

surface-density multiplied into the arithmetical mean of the x- 

components of the electromotive intensities on the two sides of the 

surface. 

This is the same result as we obtained in Art. 79 by a process 

essentially similar. 

Hence the hypothesis of stress in the surrounding medium is 

applicable to the case in which a finite quantity of electricity is 

collected on a finite surface. 

The resultant force on an element of surface is usually deduced 

from the theory of action at a distance by considering a portion 

of the surface, the dimensions of which are very small compared 

with the radii of curvature of the surface*. 

(>11 the normal to the middle point of this portion of the surface 

take a point P whose distance from the surface is very small com¬ 

pared with the dimensions of the portion of the surface. The 

electromotive intensity at this point, due to the small portion of 

the surface, will be approximately the same as if the surface had 

been an infinite plane, that is to say 2tt<t in the direction of the 

normal drawn from the surface. For a point P' just on the other 

side of the surface the intensity will be the same, but in the 

opposite direction. 

Now consider the part of the electromotive intensity arising 

from the rest of the surface and from other electrified bodies at 

a finite distance from the element of surface. Since the points 

P and P' are infinitely near one another, the components of the 

electromotive intensity arising from electricity at a finite distance 

will be the same for both points. 

Let P{) be the ^-component of the electromotive intensity on 

A or A' arising from electricity at a finite distance, then the total 

value of the .r-component for A will be 

P = P0 + 2tt(tI, 

and for A' P' = P0~ 2ncrL 
Hence P0 = JfP + P'). 

Now the resultant mechanical force on the element of surface 

must arise entirely from the action of electricity at a finite distance, 

* Thin method is clue to La place. See Poisson, ‘Sur la Distribution de l\51ectricit6 
&c.’ Mini. de VInstitut, lsll, p. 30. 
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since the action of the element on itself must have a resultant zero. 

Hence the ^-component of this force per unit of area must be 

a = crPQ, 

= i <t{P + P'). 

108.] If we define the potential (as in equation (2)) in terms 

of a distribution of electricity supposed to be given, then it follows 

from the fact that the action and reaction between any pair of 

electric particles are equal and opposite, that the ^-component of 

the force arising from the action of a system on itself must be 

zero, and we may write this in the form 

Jffa V'Vdxdy dz = 0. (26) 

But if we define ^ as a function of xy y} z which satisfies the 

equation y^ = 0 

at every point outside the closed surface s, and is zero at an infinite 

distance, the fact, that the volume-integral extended throughout 

any space including & is zero, would seem to require proof. 

One method of proof is founded on the theorem (Art. 100 c), that 

if V2^ is given at every point, end ^ = 0 at an infinite distance, 

then the value of 4* at every point is determinate and equal to 

~ ffflV'4' dxdVdz> (27) 

where r is the distance between the element dx dy dz at which the 

concentration of VJ/ is given = S72$ and the point x, y\ z at which 

is to be found. 

This reduces the theorem to what we deduced from the first 

definition of 

But when we consider 4* as the primary function of x, y, z, from 

which the others are derived, it is more appropriate to reduce (26) 

to the form of a surface-integral, 

A - JJ(lpxx + mpxll + npxl) dS, (28) 

and if we suppose the surface S to be everywhere at a great 

distance a from the surface 8, which includes every point where 

differs from zero, then we know that vk cannot be numerically 

greater than c/a, where 4 ire is the volume-integral of V2^, and that 

R cannot be greater than —d^/da or c/a2, and that the quantities 

Pjcx» Pxy, can none of them be greater than pf i.e. R2/Sit or 

e~/8 77 a4. Hence the surface-integral taken over a sphere whose 
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radius is very great and equal to a cannot exceed e2/2a2, and 

when a is increased without limit, the surface-integral must be¬ 

come ultimately zero. 

But this surface-integral is equal to the volume-integral (26), 

and the value of this volume-integral is the same whatever be 

the size of the space enclosed within >S', provided >SY encloses every 

point at which differs from zero. Hence, since the integral 

is zero when a is infinite, it must also be zero when the limits of 

integration are defined by any surface which includes every 

point at which V->vT differs from zero. 

109.] The distribution of stress considered in this chapter is 

precisely that to which Faraday was led in his investigation 

of induction through dielectrics. He sums up in the following 

words:— 

‘ (1297) The direct inductive force, which may be conceived to 

be exerted in lines between the two limiting and charged con¬ 

ducting surfaces, is accompanied by a lateral or transverse force 

equivalent to a dilatation or repulsion of these representative 

lines (1224); or the attractive force which exists amongst the 

particles of the dielectric in the direction of the induction is 

accompanied by a repulsive or a diverging force in tin- transverse 

direction. 

‘(1298) Induction appears to consist in a certain polarized 

state of the particles, into which they are thrown by the elec¬ 

trified body sustaining the action, the particles assuming positive 

and negative points or parts, which are symmetrically arranged 

with respect to each other and the inducting surfaces or particles. 

The state must be a forced one, for it is originated and sustained 

only by force, and sinks to the normal or quiescent state when 

that force is removed. It can he continued only in insulators 

by the same portion of electricity, because they only can retain 

this state of the particles.'’ 

This is an exact account of the conclusions to which we have 

been conducted by our mathematical investigation. At every 

point of the medium there is a state of stress such that there is 

tension along the lines of force and pressure in all directions 

at right angles to these lines, the numerical magnitude of the 

pressure being equal to that of the tension, and both varying as 

the square of the resultant force at the point. 

The expression 4 electric tension ’ has been used in various 
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senses by different writers. I shall always use it to denote the 

tension along the lines of force, which, as we have seen, varies 

from point to point, and is always proportional to the square of 

the resultant force at the point. 

HO.] The hypothesis that a state of stress of this kind exists 

in a fluid dielectric, such as air or turpentine, may at first sight 

appear at variance with the established principle that at any 

point in a fluid the pressures in all directions are equal. But 

in the deduction of this principle from a consideration of the 

mobility and equilibrium of the parts of the fluid it is taken for 

granted that no action such as that which we here suppose to 

take place along the lines of force exists in the fluid. The state 

of stress which we have been studying is perfectly consistent 

with the mobility and equilibrium of the fluid, for we have seen 

that, if any portion of the fluid is devoid of electric charge, it 

experiences no resultant force from the stresses on its surface, 

however intense these may be. It is only when a portion of the 

fluid becomes charged that its equilibrium is disturbed by the 

stresses on its surface, and we know that in this case it actually 

tends to move. Hence the supposed state cf stress is not incon¬ 

sistent with the equilibrium of a fluid dielectric. 

The quantity If, which was investigated in Chapter JV, 

Art. 99a, may be interpreted as the energy in the medium due 

to the distribution of stress. It appears from the theorems of 

that chapter that the distribution of stress which satisfies the 

conditions there given also makes If an absolute minimum. 

Now when the energy is a minimum for any configuration, that 

configuration is one of equilibrium, and the equilibrium is stable. 

Hence the dielectric, when subjected to the inductive action of 

electrified bodies, will of itself take up a state of stress distributed 

in the way we have described *. 

It must be carefully borne in mind that we have made only 

one step in the theory of the action of the medium. We have 

supposed it to be in a state of stress, but we have not in any 

way accounted for this stress, or explained how it is maintained. 

This step, however, seems to me to be an important one, as it 

* {The subject of the stress in the medium will be further considered in the Sup¬ 
plementary Volume, it may however be noticed here that the problem of finding a 
system of stresses which will produce the same forces as those existing in the electric 
field is one which has an infinite number of solutions. That adopted by Maxwell is 
one that could not in general be produced by strains in an elastic solid. [ 
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explains, by the action of the consecutive parts of the medium, 
phenomena which were formerly supposed to be explicable only 
by direct action at a distance. 

111.] I have not been able to make the next step, namely, to 
account by mechanical considerations for these stresses in the 
dielectric. I therefore leave the theory at this point, merely 
stating what are the other parts of the phenomenon of induction 
in dielectrics. 

I. Electric Displacement, When induction is transmitted 
through a dielectric, there is in the first place a displacement of 
electricity in the direction of the induction. For instance, in a 
Leyden jar, of which the inner coating is charged positively and 
the outer coating negatively, the direction of the displacement 
of positive electricity in the substance of the glass is from within 
outwards. 

Any increase of this displacement is equivalent, during the 
time of increase, to a current of positive electricity from within 
outwards, and any diminution of the displacement is equivalent 
to a current in the opposite direction. 

The whole quantity of electricity displaced through any area 
of a surface fixed in the dielectric is measured by the quantity 
which we have already investigated (Art. 75) as the surface- 
integral of induction through that area, multiplied by A/4 
where K is the specific inductive capacity of the dielectric. 

II. Surface charge of the particles of the dielectric. Conceive 
any portion of the dielectric, large or small, to be separated (in 
imagination) from the rest by a closed surface, then we must 
suppose that on every elementary portion of this surface there 
is a charge measured by the total displacement of electricity 
through that element of surface reckoned imvards. 

In the case of the Leyden jar of which the inner coating is 
charged positively, any portion of the glass will have its inner 
side charged positively and its outer side negatively. If this 
portion be entirely in the interior of the glass, its surface charge 
will be neutralized by the opposite charge of the parts in contact 
with it, but if it be in contact with a conducting body, which is 

incapable of maintaining in itself the inductive state, the surface 
charge will not be neutralized, but will constitute that apparent 
charge which is commonly called the Charge of the Conductor. 

The charge therefore at the bounding surface of a conductor 
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and the surrounding dielectric, which on the old theory was 

called the charge of the conductor, must be called in the theory 

of induction the surface charge of the surrounding dielectric. 

According to this theory, all charge is the residual effect of the 

polarization of the dielectric. The polarization exists throughout 

the interior of the substance, but it is there neutralized by the 

juxtaposition of oppositely charged parts, so that it is only at 

the surface of the dielectric that the effects of the charge become 

apparent. 

The theory completely accounts for the theorem of Art. 77, 

that the total induction through a closed surface is equal to the 

total quantity of electricity within the surface multiplied by 4t. 

For what we have called the induction through the surface is 

simply the electric displacement multiplied by 4 7r, and the total 

displacement outwards is necessarily equal to the total charge 

Within the surface. 

The theory also accounts for the impossibility of communi¬ 

cating an ‘absolute charge’ to matter. For every particle of the 

dielectric has equal and opposite charges on its opposite sides, 

if it would not be more correct to say that these charges are only 

thei manifestations of a single phenomenon, which we may call 

Electric Polarization, 

A dielectric medium, when thus polarized, is the seat of 

electric energy, and the energy in unit of volume of the 

medium is numerically equal to the electric tension on unit of 

area, both quantities being equal to half the product of the 

displacement and the resultant electromotive intensity, or 

p = Ia’(52 = ^D2, 
O 7T A 

where p is the electric tension, 2) the displacement, © the electro¬ 

motive intensity, and K the specific inductive capacity. 

If the medium is not a perfect insulator, the state of con¬ 

straint, which we call electric polarization, is continually giving 

way. The medium yields to the electromotive force, the electric 

stress is relaxed, and the potential energy of the state of con¬ 

straint is converted into heat. The rate at which this decay of 

the Btate of polarization takes place depends on the nature of the 

medium. In some kinds of glass, days or years may elapse 

before the polarization sinks to half its original value. In copper, 

a similar change is effected in less than the billionth of a second. 
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We have supposed the medium after being polarized to be 

simply left to itself. In the phenomenon called the electric 

current the constant passage of electricity through the medium 

tends to restore the state of polarization as fast as the con¬ 

ductivity of the medium allows it to decay. Thus the external 

agency which maintains the current is always doing work in 

restoring the polarization of the medium, which is continually 

becoming relaxed, and the potential energy of this polarization 

is continually becoming transformed into heat, so that the final 

result of the energy expended in maintaining the current is to 

gradually raise the temperature of the conductor, till as much 

heat is lost by conduction and radiation from its surface as is 

generated in the same time by the electric current. 



CHAPTER VI. 

ON POINTS AND LINES OF EQUILIBRIUM. 

112.] If at any point of the electric field the resultant force is 

zero, the point is called a Point of equilibrium. 

If every point on a certain line is a point of equilibrium, the 

line is called a Line of equilibrium. 

The conditions that a point shall be a point of equilibrium are 

that at that point 

dV _ (IV _ 

dx ~ °’ dy ~ °J dz ~~ °* 

At such a point, therefore, the value of V is a maximum, or 

a minimum, or is stationary, with respect to variations of the 

coordinates. The potential, however, can have a maximum or a 

minimum value only at a point charged with positive or with 

negative electricity, or throughout a finite space bounded by a 

surface charged positively or negatively. If, therefore, a point 

of equilibrium occurs in an uncharged part of the field the po¬ 

tential must be stationary, and not a maximum or a minimum. 

In fact, a condition for a maximum or minimum is that 

<VV drV lVV 

dx?' dy*9 and \izl 

must be all negative or all positive, if they have finite values. 

Now, by Laplace’s equation, at a point where there is no 

charge, the sum of these three quantities is zero, and therefore 

this condition cannot be satisfied. 

Instead of investigating the analytical conditions for the cases 

in which the components of the force simultaneously vanish, we 

shall give a general proof by means of the equipotential surfaces. 

If at any point, P, there is a true maximum value of V, then, 

at all other points in the immediate neighbourhood of P, the 

value of V is less than at P. Hence P will be surrounded by a 

series of closed equipotential surfaces, each outside the one before 
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it, and at all points of any one of these surfaces the electrical 

force will be directed outwards. But we have proved, in 

Art. 76, that the surface-integral of the electromotive intensity 

taken over any closed surface gives the total charge within that 

surface multiplied by 4 7t. Now, in this case the force is every¬ 

where outwards, so that the surface-integral is necessarily posi¬ 

tive, and therefore there is a positive charge within the surface, 

and, since we may take the surface as near to P as we please, 

there is a positive charge at the point P. 

In the same way we may prove that if V is a minimum at P, 

then P is negatively charged. 

Next, let P be a point of equilibrium in a region devoid of 

charge, and let us describe a sphere of very small radius round 

P, then, as we have seen, the potential at this surface cannot be 

everywhere greater or everywhere less than at P. It must 

therefore be greater at some parts of the surface and less at 

others. These portions of the surface are bounded by lines in 

which the potential is equal to that at P. Along lines drawn 

from P to points at which the potential is less ‘than that at P 

the electrical force is from P, and along lines drawn to points of 

greater potential the force is towards P. Hence the point P is 

a point of stable equilibrium for some displacements, and of 

unstable equilibrium for other displacements. 

113.] To determine the number of the points and lines of equi¬ 

librium, let us consider the surface or surfaces for which the 

potential is equal to C9 a given quantity. Let us call the regions 

in which the potential is less than C the negative regions, and 

those in which it is greater than C the positive regions. Let 

T£ be the lowest, and Vx the highest potential existing in the 

electric field. If we make <7 = T£, the negative region will in¬ 

clude only the point or conductor of lowest potential, and this 

is necessarily charged negatively. The positive region consists 

of the rest of space, and since it surrounds the negative region 

it is periphractic. See Art. 18. 

If we now increase the value of (7, the negative region will 

expand, and new negative regions will be formed round nega¬ 

tively charged bodies. For every negative region thus formed 

the surrounding positive region acquires one degree of peri- 

phraxy. 

As the different negative regions expand, two or more of them 
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may meet in a point or a line. If n -f 1 negative regions meet, 

the positive region loses n degrees of periphraxy, and the point 

or the line in which they meet is a point or line of equilibrium 

of the nth degree. 

When (J becomes equal to \\ the positive region is reduced to 

the point or the conductor of highest potential, and has therefore 

lost all its periphraxy. Hence, if each point or line of equilibrium 

counts for one, two, or w, according to its degree, the number so 

made up by the points or lines now considered will be less by 

one than the number of negatively charged bodies. 

There are other points or lines of equilibrium which occur 

where the positive regions become separated from each other, 

and the negative region acquires periphraxy. The number of 

these, reckoned according to their degrees, is less by one than 

the number of positively charged bodies. 

If we call a point or line of equilibrium positive when it is the 

meeting-place of two or more positive regions, and negative when 

the regions which unite there are negative, then, if there are p 

bodies positively and n bodies negatively charged, the sum of 

the degrees of the positive points and lines of equilibrium wdll be 

^—1, and that of the negative ones n — 1. The surface which 

surrounds the electrical system at an infinite distance from it is 

to be reckoned as a body whose charge is equal and opposite to 

the sum of the charges of the system. 

But, besides this definite number of points and lines of equi¬ 

librium arising from the junction of different regions, there may 

be others, of which we can only affirm that their number must 

be even. For if, as any one of the negative regions expands, it 

meets itself, it becomes a cyclic region, and it may acquire, by 

repeatedly meeting itself, any number of degrees of cyclosis, each 

of which-corresponds to the point or line of equilibrium at which 

the cyclosis was established. As the negative region continues 

to expand till it fills all space, it loses every degree of cyclosis 

it has acquired, and becomes at last acyclic. Hence there is a 

set of points or lines of equilibrium at which cyclosis is lost, and 

these are equal in number of degrees to those at which it is 

acquired. 

If the form of the charged bodies or conductors is arbitrary, 

we can only assert that the number of these additional points or 

lines is even, but if they are charged points or spherical con- 
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ductors, the number arising in this way cannot exceed 

(n~ 1) (w —2), where n is the number of bodies *. 

114. ] The potential close to any point P may be expanded in 

the series y = + + H2 + &c.; 

where Hl, II,, &c. are homogeneous functions of x, y, zy whose 

dimensions are 3, 2, &c. respectively. 

Since the first derivatives of V vanish at a point of equi¬ 

librium, II\ = 0, if P be a point of equilibrium. 

Let IIn be the first function which does not vanish, then close 

to the point P we may neglect all functions of higher degrees as 

compared with IIu. 

Now Hn = 0 

is the equation of a cone of the degree ft, and this cone is the 

cone of closest contact with the equipotential surface at P. 

It appeal's, therefore, that the equipotential surface passing 

through P has, at that point, a conical point touched by a cone 

of the second or of a higher degree. The intersection of this 

cone with a sphere whose centre is the vertex is called the 

Nodal line. 

If the point P is not on a line of equilibrium the nodal line 

does not intersect itself, but consists of n or some smaller number 

of closed curves. 

If the nodal line intersects itself, then the point P is on a line 

of equilibrium, and the equipotential surface through P cuts 

itself in that line. 

If there are intersections of the nodal line not on opposite 

points of the sphere, then P is at the intersection of three or 

more lines of equilibrium. For the equipotential surface through 

P must cut itself in each line of equilibrium. 

115. ] If n sheets of the same equipotential surface intersect, 

they must intersect at angles each equal to 77/ft. 

For let the tangent to the line of intersection be taken as the 

axis of z, then d'1 V/dz1 = 0. Also let the axis of x be a tangent 

to one of the sheets, then d2 V/dx2 = 0. It follows from this, by 

Laplace’s equation, that (PV/dy1 — 0, or the axis of y is a tangent 

to the other sheet. 

This investigation assumes that II2 is finite. If II2 vanishes, 

let the tangent to the line of intersection be taken as the axis 

* {l have not been able to find any place where thin result is proved.] 
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of 3, and let x — r cos d, and y = r sin 6, then, since- 

d2V d2 V d2V_ 
dzl ~ °’ dx2 + df ~ ' 
d2V 1 dV 1 d2V_ 

°r dr* r dr r* dO* 5 

the solution of which equation in ascending powers of r is 

V— + rcos(0 4- Oj) + A2r2cos(2 Q + a2) + &c. 4- ri ftrncos(u. 0 -f- aj. 

At a point of equilibrium is zero. If the first term that does 

not vanish is that in rn, then 

V— V0 = Anrn cos (n 6 + an) -f terms in higher powers of r. 

This equation shews that n sheets of the equipotential surface 

V — V0 intersect at angles each equal to it/n. This theorem was 

given by Rankine *. 

It is only under certain conditions that a line of equilibrium 

can exist in free space, but there must be a line of equilibrium 

on the surface of a conductor whenever the surface density of 

the conductor is positive in one portion and negative in another. 

In order that a conductor may be charged oppositely on 

different portions of its surface, there must be in the field some 

places where the potential is higher than that of the body and 

others where it is lower. 

Let us begin with two conductors electrified positively to the 

same potential. There will be a point of equilibrium between 

the two bodies. Let the potential of the first body be gradually 

diminished. The point of equilibrium will approach it, and, at 

a certain stage of the process, will coincide with a point on its 

surface. During the next stage of the process, the equipotential 

surface round the second body which has the same potential as 

the first body will cut the surface of the second body at right 

angles in a closed curve, which is a line of equilibrium. This 

* 'Summary of the Properties of certain Stream nines,’ Phil. Mag., Oct. 1864. 
See also, Thomson and Tail’s Natural Philosophy, § 7 SO ; and Rankine and Stokes, 
in the Proc. JR. S., 1867, p. 468 ; also W. R. Smith, Proc. R. S. Rdin. 1869-70, p. 79. 

{This investigation is not satisfactory as cPV/dza only vanishes along the axis of z. 
Rankine’a original proof is rigid. 11m may be written as 

where «*, «*+1... are homogeneous functions of x, y of degrees n, n + 1 respectively, the 
axis of z is a singular line of degree n. Since JHJm satisfies VlHm =» 0, we must have 

d?u% (Pun 

dx* + Ity " °’ 

or «„ « Arn cos (»0 + a); but un ■* 0 is the equation of the tangent planes from the 
axis of z to the cone 11m — 0, that is of the « sheets of the equipotential surface, hence 
these cut at augle v/n.} 
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closed curve, after sweeping over the entire surface of the con¬ 

ductor, will again contract to a point; and then the point of 

equilibrium will move off on the other side of the first body, and 

will be at an infinite distance when the charges of the two 

bodies are equal and opposite. 

Earmhaivs Theorem. 

116.] A charged body placed in a field of electric force cannot 

be in stable equilibrium. 

First, let us suppose the electricity of the moveable body A, 

and also that of the system of surrounding bodies B} to be fixed 

in those bodies. 

Let V be the potential at any point of the moveable body due 

to the action of the surrounding bodies B, and let e be the 

electricity on a small portion of the moveable body A surround¬ 

ing this point. Then the potential energy of A with respect to 

ii will be M=S(Ve), 

where the summation is to be extended to every charged portion 

of A. 
Let a, 6, c be the coordinates of any charged part of A with 

respect to axes fixed in A, and parallel to those of x, ?/, z. Let 

the absolute coordinates of the origin of these axes be £, ?7, £ 

Let us suppose for the present that the body A is constrained 

to move parallel to itself, then the absolute coordinates of the 

point a, b, c will be 

a = £ + 2/ = 77 -h z — (+c. 

The potential of the body A with respect to B maj^ now be 

expressed as the sum of a number of terms, in each of which V 
is expressed in terms of a, b, c and £, rj, £ and the sum of these 

terms is a function of the quantities a, b, c, which are constant 

for each point of the body, and of £, 77, £ which vary when the 

body is moved. 

Since Laplace’s equation is satisfied by each of these terms it 
is satisfied by their sum, or 

(PM <PM d2M _ 

de + dr,* + d(* ~ °' 

Now let a small displacement be given to A, so that 

d£—ldr, dq = mdr, d£~ndr; 
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and let dM be the increment of the potential of A with respect to 

the surrounding system B. 

If this be positive, work will have to be done to increase r, 

and there will be a force R = dM/dr tending to diminish r and 

to restore A to its former position, and for this displacement 

therefore the equilibrium will be stable. If, on the other hand, 

this quantity is negative, the force will tend to increase r, and 

the equilibrium will be unstable. 

.Now consider a sphere whose centre is the origin and whose 

radius is r, and so small that when the point fixed in the body 

lies within this sphere no part of the moveable body A can 

coincide with any part of the external system B. Then, since 

within the sphere V2M = 0, the surface-integral 

taken over the surface of the sphere, is zero. 

Hence, if at any part of the surface of the sphere dM/dr is 

positive, there must be some other part of the surface where it is 

negative, and if the body A be displaced in a direction in which 

dM/dr is negative, it will tend to move from its original position, 

and its equilibrium is therefore necessarily unstable. 

The body therefore is unstable even when constrained to move 

parallel to itself, and a fortiori it is unstable when altogether 

free. 

Now let us suppose that the body A is a conductor. We 

might treat this as a case of equilibrium of a system of bodies, 

the moveable electricity being considered as part of that system, 

and we might argue that as the system is unstable when 

deprived of so many degrees of freedom by the fixture of its 

electricity, it must d fortiori be unstable when this freedom is 

restored to it. 

But we may consider this case in a more particular way, 

thus— 

First, let the electricity be fixed in A, and let A move parallel 

to itself through the small distance dr. The increment of the 

potential of A due to this cause has been already considered. 

Next, let the electricity be allowed to move within A into its 

position of equilibrium, which is always stable. During this 

motion the potential will necessarily be diminished by a quantity 

which we may call Cdr. 
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Hence the total increment of the potential when the electricity 

is free to move will be 
(dM 
V dr 

C)dr; 

and the force tending 

position will be 

to bring A back towards its original 

where C is always positive. 

Now we have shewn that dM/dr is negative for certain 

directions of r, hence when the electricity is free to move the 

instability in these directions will be increased. 



CHAPTER VII. 

FORMS OF THE EQUIPOTENTIAL SURFACES AND LINES OF 

INDUCTION IN SIMPLE CASES. 

117.] We have seen that the determination of the distribution 

of electricity on the surface of conductors may be made to depend 

on the solution of Laplace’s equation 

dW dW drV_ 
dxl + d f + dzr- - °’ 

V being a function of x, y, and z, which is always finite and con¬ 

tinuous, which vanishes at an infinite distance, and which has a 
given constant value at the surface of each conductor. 

It is not in general possible by known mathematical methods 
to solve this equation so as to fulfil arbitrarily given conditions, 
but it is easy to write down any number of expressions for the 

function V which shall satisfy the equation, and to determine in 
each case the forms of the conducting surfaces, so that the func¬ 
tion V shall be the true solution. 

It appears, therefore, that what we should naturally call the 

inverse problem of determining the forms of the conductors when 
the expression for the potential is given is more manageable than 

the direct problem of determining the potential when the form of 
the conductors is given. 

In fact, every electrical problem of which we know the solu¬ 

tion has been constructed by this inverse process. It is therefore 
of great importance to the electrician that he should know what 
results have been obtained in this way, since the only method by 
which he can expect to solve a new problem is by reducing it to 
one of the cases in which a similar problem has been constructed 
by the inverse process. 

This historical knowledge of results can be turned to account 
in two ways. If we are required to devise an instrument for 
making electrical measurements with the greatest accuracy, we 

may select those forms for the electrified surfaces which corre- 
vol. i. n 
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spond to cases of which we know the accurate solution. If, on 

the other hand, we are required to estimate what will be the 

electrification of bodies whose forms are given, we may begin 

with some case in which one of the equipotential surfaces takes 

a form somewhat resembling the given form, and then by a 

tentative method wTe may modify the problem till it more nearly 

corresponds to the given ease. This method is evidently very 

imperfect considered from a mathematical point of view, but it 

is the only one we have, and if we are not allowed to choose our 

conditions, we can make only an approximate calculation of the 

electrification. It appears, therefore, that what we want is a 

knowledge of the forms of equipotential surfaces and lines of 

induction in as many different cases as we can collect together 

and remember. In certain classes of cases, such as those relating 

to spheres, there are known mathematical methods by which we 

may proceed. In other cases we cannot afford to despise the 

humbler method of actually drawing tentative figures on paper, 

and selecting that which appears least unlike the figure we 

require. 

This latter method I think may be of some use, even in cases 

in which the exact solution has been obtained, for J find that an 

eye-knowledge of the forms of the equipotential surfaces often 

leads to a right selection of a mathematical method of solution. 

I have therefore drawn several diagrams of systems of equi¬ 

potential surfaces and lines of induction, so that the student may 

make himself familial' with the forms of the lines. The methods 

by which such diagrams may be drawn will be explained in 

Art. 123. 

118.] In the first figure at the end of this volume we have the 

sections of the equipotential surfaces surrounding two points 

charged with quantities of electricity of the same kind and in 

the ratio of 20 to 5. 

Here each point is surrounded by a system of equipotential 

surfaces which become more nearly spheres as they become 

smaller, though none of them are accurately spheres. If two of 

these surfaces, one surrounding each point, be taken to represent 

the surfaces of two conducting bodies, nearly but not quite 

spherical, and if these bodies be charged with the same kind of 

electricity, the charges being as 4 to 1, then the diagram will 

represent the equipotential surfaces, provided we expunge all 
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those which are drawn inside the two bodies. It appears from 

the diagram that the action between the bodies will be the same 

as that between two points having the same charges, these 

points being not exactly in the middle of the axis of each body, 

but each somewhat more remote than the middle point from the 
other body. 

The same diagram enables us to see what will be the distribu¬ 

tion of electricity on one of the oval figures, larger at one end 

than the other, which surround both centres. Such a body, if 

charged with 25 units of electricity and free from external 

influence, will have the surface-density greatest at the small end, 

less at the large end, and least in a circle somewhat nearer the 

smaller than the larger end *. 

There is one equipotential surface, indicated by a dotted line, 

which consists of two. lobes meeting at the conical point P. 

That point is a point of equilibrium, and the surface-density 

on a body of the form of this surface would be zero at this 
point. 

The lines of force in this case form two distinct systems, 

divided from one another by a surface of the sixth degree, 

indicated by a dotted line, passing through the point of equi¬ 

librium, and somewhat resembling one sheet of the hyperboloid 
of two sheets. 

This diagram may also be taken to represent the lines of force 

and equipotential surfaces belonging to two spheres of gravitating 

matter whose masses are as 4 to 1. 

119.] In the second figure we have again two points whose 

charges are as 20 to 5, but the one positive and the other nega¬ 

tive. In this case one of the equipotential surfaces, that, namely, 

corresponding to potential zero, is a sphere. It is marked in the 

diagram by the dotted circle Q. The importance of this spherical 

surface will be seen when we come to the theory of Electrical 
Images. 

We may see from this diagram that if two round bodies are 

charged with opposite kinds of electricity they will attract each 

other as much as two points having the same charges but placed 

somewhat nearer together than the middle points of the round 
bodies. 

* {This can be seen by comparing the distances between the equipotential bui faces 
m various parts of the field. ]■ 

N 2 
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Here, again, one of the equipotential surfaces, indicated by a 

dotted ]ine, has two lobes, an inner one surrounding the point 

whoso charge is 5 and an outer one surrounding both bodies, 

the two lobes meeting in a conical point P which is a point of 

equilibrium. 

If the surface of a conductor is of the form of the outer lobe, a 

roundish body having, like an apple, a conical dimple at one end 

of its axis, then, if this conductor be electrified, wo shall be able 

to determine the surface-density at any point. That at the 

bottom of the dimple will be zero. 

Surrounding this surface wo have others having a rounded 

dimple which flattens and finally disappears in the equipotential 

surface passing through the point marked M. 
The lines of force in this diagram form two systems divided by 

a surface which passes through the point of equilibrium. 

If we consider points on the axis on the further side of the 

point B, we find that the resultant force diminishes to the double 

point P, where it vanishes. It then changes sign, and reaches a 

maximum at M, after which it continually diminishes. 

This maximum, however, is only a maximum relatively to 

other points on the axis, for if we consider a surface through M 
perpendicular to the axis, M is a point of minimum force rela¬ 

tively to neighbouring points on that surface. 

120.] Figure III represents the equipotential surfaces and 

lines of induction due to a point whose charge is 10 placed at A, 
and surrounded by a field of force, which, before the introduction 

of the charged point, was uniform in direction and magnitude at 

every part *. 

The equipotential surfaces have each of them an asymptotic 

plane. One of them, indicated by a dotted line, has a conical 

point and a lobe surrounding the point A. Those below this 

surface have one sheet with a depression near the axis. Those 

above have a closed portion surrounding A and a separate sheet 

with a slight depression near the axis. 

If we take one of the surfaces below A as the surface of a 

conductor, and another a long way below A as the surface of 

another conductor at a different potential, the system of lines 

* j Maxwell does not give the strength of the field. M. Cornu however has calcu¬ 
lated the strength of the uniform field from the diagram of the lines of force, and finds 
that its electromotive intensity before the introduction of the charged body was 
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and surfaces between the two conductors will indicate the distri¬ 

bution of electric force. If the lower conductor is very far from 

A its surface wil] be very nearly plane, so that we have here the 

solution of the distribution of electricity on two surfaces, both of 

them nearly plane and parallel to each other, except that the 

upper one has a protuberance near its middle point, which is 

more or less prominent according to the particular equipotentiab 

surface we choose. 

121.] Figure IV7 represents the equipotential surfaces and lines 

of induction due to three points A> B and C, the charge of A 
being 15 units of positive electricity, that of B 12 units of nega¬ 

tive electricity, and that of C 20 units of positive electricity. 

These points are placed in one straight line, so that 

AH = 9, BC = 1G, AC = 25. 
In this case, the surface for which the potential is zero consists 

of two spheres whose centres are A and C and whose radii are 15 

and 20. These spheres intersect in the circle which cuts the plane 

of the paper at right angles in I) and 1)\ so that B is the centre ol 

this circle and its radius is 12. This circle is an example of a 

line of equilibrium, for the resultant force vanishes at every 

point of this line. 

If we suppose the sphere whose centre is A to be a conductor 

with a charge of 3 units of positive electricity, placed under 

the influence of 20 units of positive electricity at C, the state of 

the case will be represented by the diagram if we leave out all 

the lines within the sphere A. The part of this spherical surface 

below the small circle 1)1/ will be negatively charged by the 

influence of (7. All the rest of the sphere will be positively 

charged, and the small circle 1)1/ itself will be a line of no 

charge. 

We may also consider the diagram to represent the sphere 

wThose centre is (7, charged with 8 units of positive electricity, 

and influenced by 15 units of positive electricity placed at A. 
The diagram may also be taken to represent a conductor 

whose surface consists of the larger segments of the two 

spheres meeting in DDcharged with 23 units of positive elec¬ 

tricity. 

We shall return to the consideration of this diagram as an 

illustration of Thomson’s Theory of Electrical Images. See 

Art. 168. 
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122.] These diagrams should be studied as illustrations of the 

language of Faraday in speaking of ‘ lines of force/ the ‘ forces of 

an electrified body/ &c. 

The word Force denotes a restricted aspect of that action 

between two material bodies by which their motions are rendered 

different from what they would have been in the absence of that 

action. The whole phenomenon, when both bodies are contem¬ 

plated at once, is called Stress, and may be described as a trans¬ 

ference of momentum from one body to the other. When we 

restrict our attention to the first of the two bodies, we call the 

stress acting on it the Moving Force, or simply the Force on that 

body, and it is measured by the momentum which that body is 

receiving per unit of time. 

The mechanical action between two charged bodies is a stress, 

and that on one of them is a force. The force on a small 

charged body is proportional to its own charge, and the force per 

unit of charge is called the Intensity of the force. 

The word Induction was employed by Faraday to denote the 

mode in which the charges of electrified bodies are related to 

each other, every unit of positive charge being connected with a 

unit of negative charge by a line, the direction of which, in fluid 

dielectrics, coincides at every part of its course with that of the 

electric intensity. Such a line is often called a line of Force, 

but it is more correct to call it a line of Induction. 

Now the quantity of electricity in a body is measured, accord¬ 

ing to Faraday’s ideas, by the number of lines of force, or rather 

of induction, which proceed from it. These lines of force must 

all terminate somewhere, either on bodies in the neighbourhood, 

or on the walls and roof of the room, or on the earth, or on the 

heavenly bodies, and wherever they terminate there is a quantity 

of electricity exactly equal and opposite to that on the part of 

the body from which they proceeded. By examining the dia¬ 

grams this will be seen to be the case. There is therefore no 

contradiction between Faraday’s views and the mathematical 

results of the old theory, but, on the contrary, the idea of lines 

of force throws great light on these results, and seems to afford 

the means of rising by a continuous process from the somewhat 

rigid conceptions of the old theory to notions which may be 

capable of greater expansion, so as to provide room for the 

increase of our knowledge by further researches. 



I 2 3.] AND LINES OF INDUCTION. 183 

123.] These diagrams are constructed in the following manner:— 

First, take the case of a single centre of force, a small electrified 

body with a charge e. The potential at a distance r is V = e/r ; 

hence, if we make r = e/V, we shall find r, the radius of the sphere 

for which the potential is V. If we now give to V the values 

1, 2, 3, &c., and draw the corresponding spheres, we shall obtain 

a series of equipotential surfaces, the potentials corresponding to 

which are measured by the natural numbers. The sections of 

these spheres by a plane passing through their common centre 

will be circles, each of which we may mark with the number 

denoting its potential. These are indicated by the dotted semi¬ 

circles on the right hand of Fig. 6. 

If there be another centre of force, we may in the same way 

draw the equipotential surfaces belonging to it, and if we now 

wish to find the form of the equipotential surfaces due to both 

centres together, we must remember that if Vt be the potential due 

to one centre, and K that due to the other, the potential due to 

loth will be 1^+K= V. Hence, since at every intersection of 

the equipotential surfaces belonging to the two series we know 

both Vx and we also know the value of V. If therefore we 

draw a surface which passes through ail those intersections for 

which the value of V is the same, this surface will coincide with 

a true equipotential surface at all these intersections, and if the 

original systems of surfaces are drawn sufficiently close, the new 

surface may be drawn with any required degree of accuracy. 

The equipotential surfaces due to two points whose charges are 

equal and opposite are represented by the continuous lines on 

the right hand side of Fig. G. 

This method may be applied to the drawing of any system 

of equipotential surfaces when the potential is the sum of two 

potentials, for which we have already drawn the equipotential 

surfaces. 

The lines of force due to a single centre of force are straight 

lines radiating from that centre. If we wish to indicate by these 

lines the intensity as well as the direction of the force at any 

point, we must draw them so that they mark out on the equi¬ 

potential surfaces portions over which the surface-integral of 

induction has definite values. The best way of doing this is to 

suppose our plane figure to be the section of a figure in space 

formed by the revolution of the plane figure about an axis passing 
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through the centre of force. Any straight line radiating from 
the centre and making an angle 0 with the axis will then trace 
out a cone, and the surface-integral of the induction through that 
part of any surface which is cut off by this cone on the side next 
the positive direction of the axis is 2ite(\ — cos 0). 

If we further suppose this surface to be bounded by its inter¬ 
section with two planes passing through the axis, and inclined 
at the angle whose arc is equal to half the radius, then the 
induction through the surface so bounded is 

i e (1 —cos 6) = <h, say ; 

and 0 — cos'"1 (l — 2 • 

If we now give to 4> a series of values 1, 2, 3...e, we shall find 
a corresponding series of values of 6, and if e be an integer, the 
number of corresponding lines of force, including the axis, will 
be equal to e. 

We have thus a method of drawing lines of force so that the 
charge of any centre is indicated by the number of lines which 
diverge from it, and the induction through any surface cut off in 
the way described is measured by the number of lines of force 
which pass through it. The dotted straight lines on the left- 
hand side of Fig. 6 represent the lines of force due to each of 
two electrified points whose charges are 10 and —10 respect¬ 
ively. 

If there are two centres of force on the axis of the figure we 
may draw the lines of force for each axis corresponding to values 
of 4>1 and <I>2, and then, by drawing lines through the consecutive 
intersections of these lines for which the value of + <I>2 is the 
same, we may find the lines of force due to both centres, and in 
the same way we may combine any two systems of lines of force 
which are symmetrically situated about the same axis. The 
continuous curves on the left-hand side of Fig. 6 represent the 
lines of force due to the two charged points acting at once. 

After the equipotential surfaces and lines of force have been 
constructed by this method, the accuracy of the drawing may be 
tested by observing whether the two systems of lines are every¬ 

where orthogonal, and whether the distance between consecutive 
equipotential surfaces is to the distance between consecutive lines 
of force as half the mean distance from the axis is to the assumed 
unit of length. 
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In the case of any such system of finite dimensions the line of 

force whose index number of has an asymptote which passes 

through the electric centre (Art. 89 d) of the system, and is in¬ 

clined to the axis at an angle whose cosine is 1 — 2<I>/6, where e 

is the total electrification of the system, provided <f> is less than e. 

Lines of force whose index is greater than e are finite lines. If 

e is zero, they are all finite. 

The lines of force corresponding to a field of uniform force 

parallel to the axis are lines parallel to the axis, the distances 

from the axis being the square roots of an arithmetical series. 

The theory of equipotential surfaces and lines of force in two 

dimensions will be given when we come to the theory of con¬ 

jugate functions *. 

* See a paper * On the Flow of Electricity in Conducting Surfaces/ by Prof. W. R. 
Smith, Proc. R. S. JR din., 1869-70, p. 79. 



CHAPTER VIII. 

SIMPLE CASES OF ELECTRIFICATION. 

Two Parallel Planer. 

124.] We shall consider in the first place two parallel plane 

conducting surfaces of infinite extent, at a distance <• from each 

other, maintained respectively at potentials A and B. 

It is manifest that in this case the potential lr will be a 

function of the distance 0 from the plane A, and will be the same 

for all points of any parallel plane between A. and B, except 

near the boundaries of the electrified surfaces, which by the 

supposition are at an infinitely great distance from the point 

considered. 

Hence, Laplace’s equation becomes reduced to 

d2V 

dz~ 
0, 

the integral of which is 

V=L\ + t\z; 

and since when z = 0, V = A, and when z — c, V — B, 

V=A + (B-A)*-. 

For all points between the planes, the resultant intensity is 

normal to the planes, and its magnitude is 

r = a~b. 
C 

In the substance of the conductors themselves, R = 0. Hence 

the distribucion of electricity on the first plane has a surface- 

density <r, where 

4 R A~B 4 71 cr = /i =-- 
C 

On the other surface, where the potential is B, the surface- 



SIMPLE CASES. PARALLEL PLANES. 187 

density a will be equal and opposite to <r, and , / * B~A 4 TUT = — R =-. 
c 

let us next consider a portion of the first surface whose area 

is S, taken so that Ho part of S is near the boundary of the 

surface. 

The quantity of electricity on this surface is ex — Sa, and, by 

Art. 79, the force acting on every unit of electricity is so 

that the whole force acting on the area 8y and attracting it 

towards the other plane, is 

f = \ Rs<r = — m; = — -* 
Sir 8 77 c*“ 

Here the attraction is expressed in terms of the area S, the 

difference of potentials of the two surfaces (A~B), and the dis¬ 

tance between them c. The attraction, expressed in terms of the 

charge elf on the area S, is v 2 nr 2 

The electric enorgy due to the distribution of electricity on 
the area S, and that on the corresponding area S' on the surface 
B defined by projecting S on the surface B by a system of lines 
of force, which in this case are normals to the plane, is 

W=h(etA+*gB), 
__ 8 (A-B)2> 

4 7T C 

R- „ 

= -g- 

The first of these expressions is the general expression of elec¬ 
tric energy (Art. 84). 

The second gives the energy in terms of the area, the distance, 
and difference of potentials. 

The third gives it in terms of the resultant force R, and the 
volume Sc included between the areas S and S', and shews that 
the energy in unit of volume is p where 8 up = JJ2. 

The attraction between the planes is pS, or in other words, 
there is an electrical tension (or negative pressure) equal to p on 

every unit of area. 
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The fourth expression gives the energy in terms of the charge. 

The fifth shews that the electrical energy is equal to the work 

which would be done by the electric force if the two surfaces 

were to be brought together, moving parallel to themselves, with 

their electric charges constant. 

To express the charge in terms of the difference of potentials, 

we have 1 S / . jj\ / a n\ 
ei = 7- M~B) = q(A-B). 

1 4 7T C 

The coefficient q represents the charge due to a difference of 

potentials equal to unity. This coefficient is called the Capacity 

of the surface due to its position relatively to the opposite 

surface. 

Let up now suppose that the medium between the two surfaces 

is no longer air but some other dielectric substance whose specific 

inductive capacity is K, then the charge due to a given difference 

of potentials will be K timer; as great as when the dielectric is 

The total energy will be 

The force between the surfaces will be 

Hence the force between two surfaces kept at given potentials 

varies directly as K, the specific inductive capacity of the dielec¬ 

tric, but the force between two surfaces charged with given 

quantities of electricity varies inversely as K. 

Two Concentric Spherical Surfaces. 

125.] Let two concentric spherical surfaces of radii a and 6, of 

which h is the greater, be maintained at potentials A and B 

respectively, then it is manifest that the potential V is a function 

of r the distance from the centre. In this case, Laplace’s equa¬ 

tion becomes d2 V 2 d V 
-777 + 7 77 = 0. 
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The solution of this is 

V = Cj + Ggr-1; 

and the conditions that F = ri when r = a, and F= J5 when r — £>, 

give for the space between the spherical surfaces, 

V — 
Aa — Bh 

dV 
R = - ^ = - 

ar 

a~1 — b~L 

A — B 

-1r 
,-2 

If fTj, <r2 are the surface-densities on the opposed surfaces of a 

solid sphere of radius a, and a spherical hollow of radius b, then 

1 A-B _ 1 B-A 

<Tj 47ra2a~* —Ir1' 4/nbia l — b~1 

If el and c2 are the whole charges of electricity on these 

surfaces, 

f, = 4 Tracer. = 
A- 

i~ ] * 
-5 

rft-i 
-6,. 

The capacity of the enclosed sphere is therefore 
ah 

If the outer surface of the shell is also spherical and of radius c, 

then, if there are no other conductors in the neighbourhood, the 

charge on the outer surface is 

Crj   Be. 

Hence the whole charge on the inner sphere is 

ab 

and that on the outer shell 

e.i+e3 = h-a(B-A) + Bc. 

If we put b = oc, we have the case of a sphere in an infinite 

space. The electric capacity of such a sphere is a, or it is 

numerically equal to its radius. 

The electric tension on the inner sphere per unit of area is 

- 1 h*{A-B)' 
P ~~ 8 * a,2 (6 — cr)- 

The resultant of this tension over a hemisphere is 7ta2p = F 

normal to the base of the hemisphere, and if this is balanced by 

a surface tension exerted across the circular boundary of the 

hemisphere, the tension on unit of length being T, we have 

F= 2vaT. 
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Hence F = 1-^raf=^ 
T= V (A-Bf 

16 7ra {b — a)1 

If a spherical soap bubble is electrified to a potential A, then, 

if its radius is a, the charge will bo Aa, and the surface-density 

will be i £ 

4 77 a 

The resultant intensity just outside the surface will be 4 it a, 

and inside the bubble it is zero, so that by Art. 79 the electric 

force on unit of area of the surface will be 2tut2, acting outwards. 

Hence the electrification will diminish the pressure of the air 

within the bubble by 2 7r a2, or 

1 A2 

8* a* ’ 

But it may be shewn that if T0 is the tension which the liquid 

film exerts across a line of unit length, then the pressure from 

within required to keep the bubble from collapsing is 2 T{)/a, If 

the electric force is just sufficient to keep the bubble in equi¬ 

librium when the air within and without is at the same pressure, 

A2 ~ 16traT0. 

Two Infinite Coaxal Cylindric Surfaces. 

126.] Let the radius of the outer surface of a conducting 

cylinder be a, and let the radius of an inner surface of a hollow 

cylinder, having the same axis with the first, be b. Let their 

potentials be A and B respectively. Then, since the potential V 

is in this case a function only of r, the distance from the axis, 

Laplace’s equation becomes 

whence 
Since V: 

<FV 1 dV_ 

ar1 + r dr ~~ 

V = Cx + C2 log r. 

A when r = a, and V = b when r — b, 

A logj + B log y 
t r • a 
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If cr1? <t2 are the surface-densities on tho inner and outer 
surfaces, 

4 7TO-J = 

A~B 

a log- 
4 7T(T9 = 

7> — A 

blog 
9 a 0 a 

If ex and e2 are the charges on the portions of the two cylinders 
between twro sections transverse to the axis at a distance l from 
each other, 

el = 2italcrx = \ 
A-B 

log- 

The capacity of a length L of the interior cylinder is therefore 

log - 
6 a 

If the space between the cylinders is occupied by a dielectric of 
specific inductive capacity K instead of air, then the capacity of 
a length l of the inner cylinder is 

IK 

V' 
0 a 

The energy of the electrical distribution on the part of the 
infinite cylinder which we have considered is 

IK(A-B)2 

log- 

c 

Fig. 5* 

127.] Let there be two hollow cylindric conductors A and 5, 
Fig. 5, of indefinite length, having the axis of x for their common 
axis, one on the positive and the other on the negative side of 
the origin, and separated by a short interval near the origin 
of coordinates. 

Let a cylinder C of length 2l be placed with its middle point 
at a distance x on the positive side of the origin, so as to extend 
into both the hollow cylinders. 

Let the potential of the hollow cylinder on the positive side be 
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A, that of the one on the negative side B, and that of the internal 

one 0, and let us put a for the capacity per unit of length of C 
with respect to A, and J3 for the same quantity with respect to B. 

The surface-densities of the parts of the cylinders at fixed 

points near the origin and at points at given small distances 

from the ends of the inner cylinder will not be affected by the 

value of x provided a considerable length of the inner cylinder 

enters each of the hollow cylinders. Near the ends of the hollow 

cylinders, and near the ends of the inner cylinder, there will be 

distributions of electricity which we are not yet able to calculate, 

but the distribution near the origin will not be altered by the 

motion of the inner cylinder provided neither of its ends comes 

near the origin, and the distributions at the ends of the inner 

cylinder will move with it, so that the only effect of the motion 

will be to increase or diminish the length of those parts of the 

inner cylinder where the distribution is similar to that on an 

infinite cylinder. 

Hence the whole energy of the system will be, so far as it 

depends on xy 
Q = \a{l + x) (C— A)--h\fi(l-x) (C~-B)~ + quantities 

independent of x ; 
and the resultant force parallel to the axis of the cylinders since the 

energy is expressed in terms of the potentials will by Art. 93 fc be 

X = d£=la(C-A)*-y(C-By. 

If the cylinders A and B are of equal section, a = ft, and 

X ^a(B~A)(C-l(A+B)). 
It appears, therefore, that there is a constant force acting on 

the inner cylinder tending to draw it into that one of the outer 

cylinders from which its potential differs most. 

If C be numerically large and A +B comparatively small, then 

the force is approximately X = a(B — A) C- 

so that the difference of the potentials of the two cylinders can 

be measured if we can measure X, and the delicacy of the 

measurement will be increased by raising (7, the potential of the 
inner cylinder. 

This principle in a modified form is adopted in Thomsons 

Quadrant Electrometer, Art. 219. 

The same arrangement of three cylinders may be used as a 

measure of capacity by connecting B and C. If the potential of 
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A is zero, and that of B and C is V, then the quantity of elec- 

tricifcy on A will be ^ = + a(i + x))V. 

where ql3 is a quantity depending on the distribution of electricity 

on the ends of the cylinder but not upon xt so that by moving 0 
to the right till x becomes x + £ the capacity of the cylinder C 
becomes increased by the definite quantity a£, where 

1 

a = —V 
2 log - 

6 a 

a and b being the radii of the opposed cylindric surfaces. 

VOL. 1. o 



CHAPTER IX. 

SPHERICAL HARMONICS. 

128.] The mathematical theory of spherical harmonics has 

been made the subject of several special treatises. The Ilandbuch 

dev Kugelfunctionen of Dr. E. Heine, which is the most elaborate 

work on the subject, has now (1878) reached a second edition in 

two volumes, and I)r, F. Neumann has published his Beitrdge 

zur Theorie der Kugelfunctionen (Leipzig, Teubner, 1878). The 

treatment of the subject in Thomson and Tait’s Natural Philo¬ 

sophy is considerably improved in the second edition (1879), and 

Mr. Todhunter’s Eleme/ntary Treatise on Laplaces Functions, 

Ixtw.e s Functions, and Bessel's Functions, together with Mr. 

b errors1 Elementai'y Treatise on Spherical Harmonics and, 

subjects connected with them, have rendered it unnecessary to 

devote much space in a book on electricity to the purely mathe¬ 

matical development of the subject. 

I have retained however the specification of a spherical 

harmonic in terms of its poles. 

On Singular Points at which the Potential becomes Infinite. 

129 a.] If a charge, A0, of electricity is uniformly spread over 

the surface of a sphere the coordinates of whose centre are 

(a, b, c), the potential at any point y, z) outside the sphere is, 

by Art. 125, y=rA 

■where r2 = (x — a)2 -f (y — bf + {z— c)2. (2) 

As the expression for V is independent of the radius of the 

sphere, the form of the expression will be the same if we suppose 

the radius infinitely small. The physical interpretation of the 

expression would be that the charge A0 is placed on the surface 

of an infinitely small sphere, which is sensibly the same as a 
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mathematical point. We have already (Arts. 55, 81) shewn that 

there is a limit to the surface-density of electricity, so that it is 

physically impossible to place a finite charge of electricity on a 

sphere of less than a certain radius. 

Nevertheless, as the equation (1) represents a possible distri¬ 

bution of potential in the space surrounding a sphere, we may 

for mathematical purposes treat it as if it arose from a charge A{t 

condensed at the mathematical point (a, 6, c), and we may call 

the point a singular point of order zero. 

There are other kinds of singular points, the properties of 

which we shall presently investigate, but before doing so we must 

define certain expressions which we shall find useful in dealing 

with directions in sp>ace, and with the points on a sphere which 

correspond to them. 

129 6.] An axis is any definite direction in space. We may 

suppose it defined by a mark made on the surface of a sphere at 

the point where the radius drawnfroru the centre in the direction 

of the axis meets the surface. This point is called the Pole of 

the axis. An axis has therefore one pole only, not two. 

If fj. is the cosine of the angle between the axis h and any 

vector r, and if P — v r9 (3) 

p is the resolved part of r in the direction of the axis h. 

Different axes are distinguished by different suffixes, and the 

cosine of the angle between two axes is denoted by Amn, where 

m and n are the suffixes specifying the axis. 

Differentiation with respect to an axis, h, whose direction 

cosines are Z, AT, N, is denoted by 

d_ 

dh 

From these definitions it is evident that 

dr _ pm _ 
r | Mm > 

d/tm r 

d'Pn . _ tym 

dhm~ "" “ dh„ ’ 

dum A. 

r d d %r d 
L y- + M -j- iY ~ ■ 

ax dy dz (4) 

(5) 

(6) 

' Mm Mn 

dh. 

If we now suppose that the potential at the point (j:, y, z) due 

to a singular point of any order placed at the origin is 

Af(x, y, z), 
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then if such a point be placed at the extremity of the axis fi, 

the potential at (x, y, z) will be 

Af[(z-Lh), (y-Mh), (a-JM)], 

and if a point in all respects the same, except that the sign of A 

is reversed, be placed at the origin, the potential due to the pair 

of points will be 

V = Af[(x—Lh\ (y-Mh), (z~Nh)]-Af(xyy, z\ 

— — Ah ~ / (x, y\ z) + terms containing h2. 
(tfi. 

If we now diminish h and increase A without limit, their pro¬ 

duct continuing finite and equal to A\ the ultimate value of the 

potential of the pair of points will be 

V'=-A'^hf(x,y,Z). (8) 

If/(;r, y, z) satisfies Laplace’s equation, then, since this equation 

is linear, V\ which is the difference of two functions, each of 

which separately satisfies the equation, must itself satisfy it. 

129 c.] Now the potential due to a singular point of order zero, 

(9) 

satisfies Laplace’s equation, therefore every function formed from 

this by differentiation with respect to any number of axes in 

succession must also satisfy that equation. 

A point of the first order may be formed by taking two points 

of order zero, having equal and opposite charges —A0 and A0, 

and placing the first at the origin and the second at the extremity 

of the axis /q. The value of hi is then diminished and that of 

A0 increased indefinitely, but so that the product A0/q is always 

equal to Ar The ultimate result of this process, when the two 

points coincide, is a point of the first order whose moment is Ax 

and whose axis is /q. A point of the first order is therefore a 

double point. Its potential is 

*=-*u3;* 

(10) 

By placing a point of the fiist order at the origin, whose 

moment is —Aly and another at the extremity of the axis h2 
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whose moment is Alf and then diminishing h2 and increasing Ax, 

sothat A1ki = \Ai, (11) 

we obtain a point of the second order, whose potential is 

cl 

_ ^ ^ 3 fh t (12) 

We may call a point of the second order a quadruple point 

because it is constructed by making four points of order zero 

approach each other. It has two axes hY and h2 and a moment 

A2, The directions of these axes and the magnitude of the 

moment completely define the nature of the point. 

By differentiating with respect to n axes in succession we 

obtain the potential due to a point of the nth order. It will be 

the product of three factors, a constant, a certain combination of 

cosines, and r~(n+1). It is convenient, for reasons which will 

appear as we go on, to make the numerical value of the constant 

such that when all the axes coincide with the vector, the co¬ 

efficient of the moment is We therefore divide by n 

when we differentiate with respect to hn. 
In this way we obtain a definite numerical value for a par¬ 

ticular potential, to which we restrict the name of The Solid 

Harmonic of degree — (n+ 1), namely 

K=(-l)- ' * d 1 (13) 

is still the 

1.2.3 ... ft dhl dh2 dhh- r 

If this quantity is multiplied by a constant it 

potential due to a certain point of the ?ith order. 

129 d.] The result of the operation (13) is of the form 

Vn=Ynr-(»+'\ (14) 

where Yn is a function of the n cosines /uq.../uiw of the angles 

between r and the n axes, and of the \n (n— 1) cosines X12, &c. 

of the angles between pairs of the axes. 

If we consider the directions of r and the n axes as determined 

by points on a spherical surface, we may regard Yn as a quantity 

varying from point to point on that surface, being a function of the 

(n 4* 1) distances between the n poles of the axes and the pole 

of the vector. We therefore call Yn The Surface Harmonic of 

order n. 

130 a.] We have next to shew that to every stirface-harmonic 
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of order n there corresponds not only a solid harmonic of degree 

— (n 4- 1) but another of degree n, or that 

(15) 

satisfies Laplace’s equation. 

dHn _ . d\l 
For 

dx 
= (2 n+ 1) r2n"1 x\^+ 7'2n+l 

dx 

= (2 n + 1) [(2 11 -1) a* + r‘] r2* - ■3 V„ + 2 (2 n + 1) r4"-1 a; 

dj? ' 
Hence 

rf4//n , d*Hn , d»7f. 

+ r- 

dx. + 'dy? + 1LT = (2n + »)(2w+2)r*""1^ 

+ *(.n+.,,•"(*£=+4?-+.f) 

+,-.(g+<s+^). <„> 
vur t*y- cte2 y 

Now, since T£ is a homogeneous function of x, y, and of 

negative degree 71 + 1, 

cZF 
(17) 

The first two terms therefore of the right-hand member of 

equation (16) destroy each other, and, since satisfies Laplace’s 

equation, the third term is zero, so that Hn also satisfies Laplace’s 

equation, and is therefore a solid harmonic of degree n. 
This is a particular case of the more general theorem of 

electrical inversion, which asserts that if F (x, y, z) is a function 

of xy y, and 0 which satisfies Laplace’s equation, then there exists 

another function, 
a-F( rp \ 

<#y 
r2 

crz, 
ra ) ’ 

which also satisfies Laplace’s equation. See Art. 162. 

130 />.] The surface harmonic Yn contains 2 n arbitrary vari¬ 

ables, for it is defined by the positions of its n poles on the 

sphere, and each of these is defined by two coordinates. 

Hence the solid harmonics Vn and Hn also contain 2 n arbitrary 

variables. Each of these quantities, however, when multiplied 

by a constant, will satisfy Laplace’s equation. 

To prove that AHn is the most general rational homogeneous 

function of degree n which can satisfy Laplaces equation, we 
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observe that K, the general rational homogeneous function of 

degree n, contains (n+ 2) terms. But V2K is a homo¬ 

geneous function of degree n — 2, and therefore contains \ n (n — 1) 

terms, and the condition V2K = 0 requires that each of these 

must vanish. There are therefore %n(n— 1) equations between 

the coefficients of the \ {n+ 1) (n + 2) terms of the function K, 

leaving 2n-f 1 independent constants in the most general form 

of the homogeneous function of degree n which satisfies Laplace’s 

equation. But IIw, when multiplied by an arbitrary constar^ 

satisfies the required conditions, and has 2n+\ arbitrary con¬ 

stants. It is therefore of the most general form. 

131a.] We are now able to form a distribution of potential 

such that neither the potential itself nor its first derivatives 

become infinite at any point. 

The function Vn = satisfies the condition of vanishing 

at infinity, but becomes infinite at the origin. 

The function IIn = Ynrn is finite and continuous at finite dis¬ 

tances from the origin, but does not vanish at an infinite distance. 

But if we make anl£r~<n+1) the potential at all points outside 

a sphere whose centre is the origin, and whose radius is a, and 

tt-(n+i)]£r» potential at all points within the sphere, and if 

on the sphere itself we suppose electricity spread with a surface 

density a such that 
4ttad2 sss (2 714- (18) 

then all the conditions will be satisfied for the potential due to 

a shell charged in this manner. 

For the potential is everywhere finite and continuous, and 

vanishes at an infinite distance; its first derivatives are every¬ 

where finite and are continuous except at the charged surface, 

where they satisfy the equation 

dV ,dV', 
dv + dv' +4™- °> (19) 

and Laplace’s equation is satisfied at all points both inside and 

outside of the sphere. 

This, therefore, is a distribution of potential which satisfies 

the conditions, and by Art. 100 c it is the only distribution which 

can satisfy them. 

131 6.] The potential due to a sphere of radius a whose surface- 

density is given by the equation 

47ra2<r = (2n + l)^, (20) 
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is, at all points external to the sphere, identical with that due to 

the corresponding singular point of order n. 
Let us now suppose that there is an electrical system which 

we may call E} external to the sphere, and that 9 is the potential 

due to this system, and let us find the value of S('I'g) for the 

singular point. This is the part of the electric energy depending 

on the action of the external system on the singular point. 

If A0 is the charge of a singular point of order zero, then the 

potential energy in question is 

W0 = A0*. (21) 

If there are two such points, a negative one at the origin 

and a positive one of equal numerical value at the extremity of 

the axis , then the potential energy will be 

-A,*+^(++Ai^ +W^ + &c.), 

and when A0 increases and hq diminishes indefinitely, but so that 

— Aj, the value of the potential energy for a point of the 

first order will be 

W, = A * 

Similarly for a point of order n the potential energy will be 

Trr 1 >. d!n'J' * , x 
TF = —--A^-jr-(23) 

1.2 ...7L dhj... dhn v ' 
131 (’.] If we suppose the charge of the external system to 

be made up of parts, any one of which is denoted by dE, and 

that of the singular point of order n to be made up of parts 

any one of which is de, then 

* = 2 (\dE). (24) 

But if Vn is the potential due to the singular point, 

TJ=2(;<fe). (25) 

and the potential energy due to the action of E on e is 

Wn = 2 (*de) = 22 i^-dEde) = 2 {V„dE), (26) 

the last expression being the potential energy due to the action 

of e on E. 

* We shall find it convenient, in what follows, to denote the product of the posi¬ 
tive integral numbers 1.2.3... » by » ! 



132.] SINGULAR POINT EQUIVALENT TO A CHARGED SHELL. 201 

Similarly, if <rd& is the charge on an element da of the shell, 

since the potential due to the shell at the external system E 

is ]£, we have 

Wn='2(VndE) = ^(ldEcd8) = 2 (Veda). (27) 

The last term contains a summation to be extended over the 

surface of the sphere. Equating it to the first expression for Wn> 

we have r r 
11*<rda = 2(*cfe) 

= A 
dnV 

n\ ndh1...dhn 
(28) 

If we remember that 4 Trcra2 = (2n+l)Ynf and that An = an, this 

becomes „ „ , 7„. 

This equation reduces the operation of taking the surface 

integral of 'Pl^cfe over every element of the surface of a sphere of 

radius a, to that of differentiating 'P with respect to the n axes 

of the harmonic and taking the value of the differential coeffi¬ 

cient at the centre of the sphere, provided that 'P satisfies 

Laplace’s equation at all points within the sphere, and 1^ is a 

surface harmonic of order n. 

132.] Let us now suppose that sP is a solid harmonic of positive 

degree m of the form _ m /n„x 
6 vp - a~m Ym rm. (30) 

At tne spherical surface, r = a, and 'P — Ymi so that equation 

(29) becomes in this case 

477 dn(Y r™) 

If YYnda = 
n\(2n + \)w dfiv..dhn’ 

where the value of the differential coefficient is to be taken at 

the centre of the sphere. 

When n is less than m, the result of the differentiation, is a 

homogeneous function of x, y, and 0 of degree m — n, the value of 

which at the centre of the sphere is zero. If n is equal to m the 

result of the differentiation is a constant, the value of which we 

shall determine in Art. 134* If the differentiation is carried 

further, the result is zero. Hence the surface-integral ff YmYnds 

vanishes whenever m and n are different. " JJ 

The steps by which we have arrived at this result are all of 
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them purely mathematical, for though we have made use of terms 

having a physical meaning, such as electrical energy, each of 

these terms is regarded not as a physical phenomenon to be 

investigated, but as a definite mathematical expression. A 

mathematician has as much right to make use of these as of any 

other mathematical functions which he may find useful, and a 

physicist, when he has to follow a mathematical calculation, will 

understand it all the better if each of the steps of the calculation 

admits of a physical interpretation. 

133.] We shall now determine the form of the surface har¬ 

monic Yn as a function of the position of a point P on the sphere 

with respect to the n poles of the harmonic. 

We have 
1^=1, Y2 = — 4 A12, ) ^ 

I 4 (^1^23 + **2A31 +M3A12V 
and so on. 

Every term of 1* therefore consists of products of cosines, 

those of the form /u, with a single suffix, being cosines of the 

angles between P and the different poles, and those of the form 

A, with double suffixes, being cosines of the angles between the 

poles. 

Since each axis is introduced by one of the n differentiations, 

the symbol of that axis must occur once and only once among 

the suffixes of the cosines of each term. 

Hence if in any term there are 8 cosines with double suffixes, 

there must be n —2 s cosines with single suffixes. 

Let the sum of all products of cosines in which s of them have 

double suffixes be written in the abbreviated form 

2(Mn'2aA‘). 

In every one of the products all the suffixes occur once, and 

none is repeated. 

If we wish to express that a particular suffix, m, occurs among 

the ii s only or among the a’b only, we write it as a suffix to the 

M or the A. Thus the equation 

2 (m"-2'A*) = 2 0/-2V) + 2 (m*-2*a;u) (33) 

expresses that the whole set of products may be divided into two 

parts, in one of which the suffix m occurs among the direction 

cosines of the variable point P, and in the other among the 

cosines of the angles between the poles. 
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Let us now assume that for a particular value of n 

Yn = An.02 0**) + An.^ (^A1) + &c. 

+ ^n.,2(Mn-2lA*) + &c., (34) 

where the A’s are numerical coefficients. We inay write the 

series in the abbreviated form 

T9 = 8[A9m§Z(f-*' A-)], (35) 

where S indicates a summation in which all values of 8, including 

zero, not greater than \n, are to be taken. 

To obtain the corresponding solid harmonic of negative degree 

(/^4-1) and order n, we multiply by r~(w‘rl>, and obtain 

Vn = 8 [An., r*-*-1 2 (p-*9k% (36) 

putting Tfx~p, as in equation (3). 

If we differentiate Yn with respect to a new axis hm we obtain 

— (n+ 1)1£+1, and therefore 

(n + 1 )Vu+1=8[Aa„ (2 n+ 1 -2«)rs-*-»S (p’"*,+ ,A*) 

(37) 

If we wish to obtain the terms containing 8 cosines with 

double suffixes, we must diminish 8* by unity in the last term, 

and we find 

in+l) K+i = ^’[r2'-2"-3 {j4„.,(2« —2s+ 1) 2 (p"’2,+1A-) 

S(p-«*+1X0i]- 08) 
Now the two classes of products are not distinguished from 

each other in any way except that the suffix m occurs among 

the //s in one and among the A’s in the other. Hence their 

coefficients must be the same, and since we ought to be able to 

obtain the same result by putting n -f 1 for n in the expression 

for \ and multiplying by n+ 1, we obtain the following equa- 

tions, (n+l)An+1= (2n-28+l)An_, = -An.,_1. (39) 

If we put 8=0, we obtain 

(n+ 1) An+l,0 — (2n + 1) AnQ ; 

and therefore, since Alt0 = 1, 

_ 2ri‘ 

and from this we obtain the general value of the coefficient 

(40) 

(41) 

' n! ( h —8) ’ 
(12) 

and finally the trigonometrical expression for the surface bar- 
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raonic, as 
Yn = s[(~iy 

(2n~-2«)! 

2n“* w! (n^iOjl 
2 (/xtt-2,Af)] * (43) 

This expression gives the value of the surface harmonic at any 

point P of the spherical surface in terms of the cosines of the 

distances of P from the different poles and of the distances of 

the poles from each other. 

It is easy to see that if any one of the poles be removed to 

the opposite point of the spherical surface, the value of the har¬ 

monic will have its sign reversed. For any cosine involving the 

index of this pole will have its sign reversed, and in each term 

of the harmonic the index of the pole occurs once and only once. 

Hence if two or any even number of poles are removed to the 

points respectively opposite to them, the value of the harmonic 

will be unaltered. 

Professor Sylvester has shewn (Phil. Mag., Oct. 1876) that, 

when the harmonic is given, the problem of finding the n lines 

which coincide with the axes has one and only one solution, 

though, as we have just seen, the directions to be reckoned 

positive along these axes may be reversed in pairs. 

134.] We are now able to determine the value of the surface 

Ym Yn ds when the order of the two surface harmonics 

is the same, though the directions of their axes may be in general 

different. 

For this purpose we have to form the solid harmonic Ymrm and 

to differentiate it with respect to each of the n axes of 1^. 

Any term of Imrm of the form may be written 

r2‘p™~2'Differentiating this n times in succession with 

respect to the n axes of Yn) we find that in differentiating r 

* (Wemay deduce from this that 

<IP d9 dr 1 t-l)».2n! 
i\a?dy* dzT It “ 2nn ! 

72* 
Sr^){^yqzr^ ___ (p0tz*^!ftzr + 4e%aPy*-*zr + rC^Vy*?-*) 

+ (27TT) * *0*'*?^*' + + 
+pc2rC2iP-ay*ir~* + qC^yPy^z™) 

~(2 

+ i>c4 «*a zr + pci rca z™ + rc2 ,]ci. j:P-*yQ-* zr + ,c4 rra xPy**"' zr~2 

+ i>carc4.a;P~92/«zr“‘ + «c2rc4.xPy«~*zr-* 4- vcncitc%a^-y-V"3) + 

where » « p + q + r and iP *= + y3 + z3, and mcn denotes the number of permutations 

of m things n at a time divided by 2J (|) l •} 
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with respect to 8 of these axes we introduce 8 of the pn’s, and 

the numerical factor 

2s(28— 2)...2, or 2'$!. 

In continuing the differentiation with respect to the next 8 axes, 

the pn*8 become converted into Xnn’s, but no numerical factor is 

introduced, and in differentiating with respect to the remaining 

ii — 28 axes, the ^s become converted into A^’s, so that the 

result is 2*8! A* A* A™~2*. 
nn mm mn. 

We have therefore, by equation (31), 

and by equation (43), 

n.n+2d*(X£) 

dhv..dhn * 

Hence, performing the differentiations and remembering that 

m = ?), we find 

IfF-s>=(,6) 
135 «.] The expression (46) for the'surface-integral of the pro¬ 

duct of two surface-harmonics assumes a remarkable form if we 

suppose all the axes of one of the harmonics, Ym, to coincide with 

each other, so that Yiyi becomes what we shall afterwards define 

as the zonal harmonic of order m, denoted by the symbol Pm. 

In this case all the cosines of the form Anm may be written \xH, 

where /jtn denotes the cosine of the angle between the common 

axis of Pm and one of the axes of Yn. The cosines of the form 

Amm will all become equal to unity, so that for 2A* we must 

put the number of combinations of 8 symbols, each of which is 

distinguished by two suffixes out of n, no suffix being repeated. 

Hence vx* =_vl * (47) 
~ 2".s ! (n — 2«)! ‘ v ’ 

* j We can Bee this if we consider how many permutation* of the suffixes of one 

tern in the expression we can form. The suffixes consist of 8 groups of two 

numbers each, by altering the order of the groups we can form n! arrangements, and 
by interchanging the order of the numbers inside the groups we can form from any 
one of these arrangements 2* other arrangements, so that from each of the groups of 
suffixes we can get 2* *! arrangements ; thus, if N be the number of terms in the series 

N2*s\ arrangements of the n numbers taken 2 s at a time may be made, but the 

whole number of arrangements thus made is evidently the number of permutations of 

nthiugs taken 2 « at a time, or - ; thus# 2*«! - , or JV= 2,t! (* 
(»-2#)l ’ (71-2#)!’ 
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The number of permutations of the remaining n— 2s indices of 

the axes of Pin is (n — 2s)! Hence 

2(Al;2#) = (n-2«)!M-*-. (48) 

Equation (46) therefore becomes, when all the axes of Ym 

coincide with each other, 

//>- 
TPds 

(2 n — 2 ft)! 
S(n"_2*Al ')] (49) 

JJ "-" (2»+l)»i!"Lv ’ 'J v ' 
4 7T ^ 

= g~—j Zm by equation (43), (50) 

where J£(m) denotes the value of Y^ at the pole of Pm. 

We may obtain the same result by the following shorter 

process:— 

Let a system of rectangular coordinates be taken so that the 

axis of z coincides with the axis of Pm> and let Ynrn be expanded 

as a homogeneous function of xy y, z of degree n. 

At the pole of Pmy x = y = 0 and z — r, so that if Czn is the 

term not involving x or y, C is the value of Yn at the pole of Pn. 

Equation (31) becomes in this case 

//**•*= 
As m is equal to n, the result of differentiating CzH is to! G, and 

is zero for the other terms. Hence 

if7- YnPmds = c, 
n m 2n-fl 

C being the value of 3£ at the pole of Pm. 

135 ft.] This result is a very important one in the theory of 

spherical harmonics, as it shews how to determine a series of 

spherical harmonics which expresses the value of a quantity 

having any arbitrarily assigned finite and continuous value at 

each point of a spherical surface. 

For let F be the value of the quantity and ds the element of 

surface at a point Q of the spherical surface, then if we multiply 

Fdti by Pn, the zonal harmonic whose pole is the point P of the 

same surface, and integrate over the surface, the result, since 

it depends on the position of the point P, may be considered as 

a function of the position of P. 

But since the value at P of the zonal harmonic whose pole is 

Q is equal to the value at Q of the zonal harmonic of the same 

order whose pole is P, we may suppose that for every element 
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ds of the surface a zonal harmonic is constructed having its pole 

at Q and having a coefficient Fds. 

We shall thus have a system of zonal harmonics superposed 

on each other with their poles at every point of the sphere where 

F has a value. Since each of these is a multiple of a surface 

harmonic of order n, their sum is a multiple of a surface har¬ 

monic (not necessarily zonal) of order a. 

The surface integral JJFPnds considered as a function of the 

point P is therefore a multiple of a surface harmonic Yn ; so that 

2 w+lffnlJ. 

is also that particular surface harmonic of the nth order which 

belongs to the series of harmonics which expresses F\ provided 

F can be so expressed. 

For if F can be expressed in the form 

F ~ A0Y0 + + AnYn + &c., 

then if we multiply by Pnds and take the surface integral over 

the whole sphere, all terms involving products of harmonics of 

different orders will vanish, leaving 

If 
Hence the only possible expansion of F in spherical harmonics is 

F = JfFP0 ds + &c.+( 2 n + 1)ff FFn ds + &c. j • (51) 

Conjugate Harmonics. 

136.] We have seen that the surface integral of the product of 

two harmonics of different orders is always zero. But even 

when the two harmonics are of the same order, the surface 

integral of their product may be zero. The two harmonics are 

then said to be conjugate to each other. The condition of two 

harmonics of the same order being conjugate to each other is 

expressed in terms of equation (46) by making its members equal 

to zero. 

If one of the harmonics is zonal, the condition of conjugacy is 

that the value of the other harmonic at the pole of the zonal 

harmonic must be zero. 

If we begin with a given harmonic of the nih order, then, in 



208 SPHERICAL HARMONICS. [137. 

order that a second harmonic may be conjugate to it, its 2 n 
variables must satisfy one condition. 

If a third harmonic is to be conjugate to both, its 2n variables 

must satisfy two conditions. If we go on constructing harmonics, 

each of which is conjugate to all those before it, the number of 

conditions for each will be equal to the number of harmonics 

already in existence, so that the (2?i+l)th harmonic will have 

2 n conditions to satisfy by means of its 2 n variables, and will 

therefore be completely determined. 

Any multiple AYn of a surface harmonic of the nih order can 

be expressed as the sum of multiples of any set of 2 n + 1 con¬ 

jugate harmonics of the same order, for the coefficients of the 

2n + l conjugate harmonics are a set of disposable quantities 

equal in number to the 2 n variables of Yn and the coefficient A. 

In order to find the coefficient of any one of the conjugate 

harmonics, say Y* suppose that 

AX = A0 K + &c. + Av T>x + &c. 

Multiply by F* ds and find the surface integral over the sphere. 

All the terms involving products of harmonics conjugate to each 

other will vanish, leaving 

aJJ Y^ds = ArffiY-Jd*, ' (52) 

an equation which determines Aa. 

Hence if we suppose a set of 2n+l conjugate harmonics 

given, any other harmonic of the nth order can be expressed in 

terms of them, and this only in one way. Hence no other 

harmonic can be conjugate to all of them. 

137.] We have seen that if a complete system of 27?/+ 1 har¬ 

monics of the ?ith order, all conjugate to each other, be given, 

any other harmonic of that order can be expressed in terms of 

these. In such a system of 2 n + 1 harmonics there are 2n(2n + 1) 

variables connected by ?i(2?i+l) equations, n{2n+l) of the 

variables may therefore be regarded as arbitrary. 

We might, as Thomson and Tait have suggested, select as a 

system of conjugate harmonics one in which each harmonic has 

its n poles distributed so that j of them coincide at the pole of the 

axis of x, k at the pole of y, and l (== n—j — k) at the pole of z. 

The + 1 distributions for which l = 0 and the n distributions 

for which l = 1 being given, all the others may be expressed in 

terms of these. 
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The system which has been actually adopted by all mathe¬ 

maticians (including Thomson and Tait) is that in which n—<r 

of the poles are made to coincide at a point which we may call 

the Positive Pole of the sphere, and the remaining <r poles are 

placed at equal distances round the equator when their number 

is odd, or at equal distances round one half of the equator when 

their number is even. 

In this case fiY, /x2,... are each of them equal to cos 6, which 

we shall denote by pt. If we also write v for sin 0, ... 

are of the form v cos (<£ — /3), where f3 is the azimuth of one of the 

poles on the equator. 

Also the value of \P(J is unity if p and q are both less than 

n — (T, zero when one is greater and the other less than this 

number, and cos 8 tt/o-when both are greater, s being an integral 

number less than <t. 

138.] When all the poles coincide at the pole of the sphere, 

a = 0, and the harmonic is called a Zonal harmonic. As the 

zonal harmonic is of great importance we shall reserve for it the 

symbol Pn. 

We may obtain its value either from the trigonometrical 

expression (43) or more directly by differentiation, thus 

w + l In i 

1 . 3.5...(2n-i; 

1.2.3 L 2.(2%—1)^ 

4. n(n-l)(n-2)(n-3) 4 
* . ./-v -T \ i c\ *-» \ r~ 

2.4. (2 n- 1) (2% — 3) 

(53) 

2nj)l(u—p)\(n— 2p)\ r J " 
where we muBt give to p every integral value from zero to the 

greatest integer which does not exceed {n. 

It is sometimes convenient to express Fn as a homogeneous 

function of cos 6 and sin 0, or, as we write them, m and i\ 

{2n— 2p) 

-2 p)l^ J 

: b — ■ 

n (n - 
2.2 vv- 

n (n — 1) (n — 2) (n — 3) 
2.2.4.4 

—&c., 

<m> 

It is shewn in the mathematical treatises on this subject that 

VOL. i. p 
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is the coefficient of h* in the expansion of (1 — 2+ 

1 dn 
{and that it is also equal to — ■=— 1 )w}. 
( n 2nn\ djj. vr 1 J 

The surface integral of the square of the zonal harmonic, or 

/[(Pnfds = 2 va* p\p.ir)Ydp = (66) 

Hence . (57) 

139.] If we consider a zonal harmonic simply as a function 

of ju, and without any explicit reference to a spherical surface, it 

may be called a Legendre’s Coefficient. 

If we consider the zonal harmonic as existing on a spherical 

surface the points of which are defined by the coordinates 0 and <£, 

and if we suppose the pole of the zonal harmonic to be at the point 

(b\ <//), then the value of the zonal harmonic at the point (0, <f>) 

is a function of the four angles O', 0, <£, and because it is a 

function of m, the cosine of the arc joining the points (0, $) and 

(0/, 4>0, it will be unchanged in value if 0 and 0', and also <£ and </>', 

are made to change places. The zonal harmonic so expressed has 

been called Laplace's Coefficient. Thomson and Tait call it the 

Biaxal Harmonic. 

Any homogeneous function of x, yy z which satisfies Laplace’s 

equation may be called a Solid harmonic, and the value of a solid 

harmonic at the surface of a sphere whose centre is the origin may 

be called a Surface harmonic. In this book we have defined a 

surface harmonic by means of its n poles, so that it has only 2 n 

variables. The more general surface harmonic, which has 2n+ 1 

variables, is the more restricted surface harmonic multiplied by 

an arbitrary constant. The more general surface harmonic, when 

expressed in terms of 0 and </>, is called a Laplace’s Function. 

140 a.] To obtain the other harmonics of the symmetrical sys¬ 

tem, we have to differentiate with respect to <r axes in the plane 

of xy inclined to each other at angles equal to v/a. This may 

be most conveniently done by means of the system of imaginary 

coordinates given in Thomson and Tait’s Natural Philosophy, 

vol. I, p. 148 (or p. 185 of 2nd edition). 

If we write £=-x + iy, r] = x—iy, 

where i denotes V — 1, the operation of differentiating with respect 

to the <t axes if one of these axes makes an angle a with x may 

be written when <r is odd in the form 
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<a A (A*+~i) A 4. e~i{m^i)£. \ (A**i) A + «~l(a+7)A / , d . d 
(c T?+e"aj~ v d£ dry 

This equals 

If <r is even we may prove that the operation of differentiating 

may be written 

. f . / d9 d9 v . / d9 d9 v / . . 
/   1 \ A < f»OC rrn i (- - - 1   ovn rr n I  -L_\ f / R O \ 

r d* d° ) .id" d") 

\d? + dt)*) 
■ 4- Sin era. 1 < ~r~y - 

\d? ' dj"] 

/ i \ ~r~ 1 . / tv \ . / ir 11 \ I 
(— 1) 2 } COS <ra. i( --) — Bin era 4* -7— ) 
v 7 ( W/f' drf> xd£° dif'S 

/ da d9 \ fa) d* d9 fa) 
Thus, if ifr y-) = Bs, ™ = Be, 

vd£* di/*' d£9 drf ’ 

we may express the operation of differentiating with respect to the 
(*) fa) 

<r axes in terms of Bs, Be. These are, of course, real operations, 

and may be expressed without the use of imaginary symbols, thus: 

(*) d9~l d ct((t — l) (cr — 2) d9~^ d3 , 
2<r-i])$ — ~ _ ■ _' ' / „ j /cn\ ~ ___ __ _ALIA_Z1 ___ 4. 

dx9~ldy 1.2.3 d^""3 d?/3 ’’ 

n 1 rla) <l9 (r((T — 1) d'-2 d2 0 
2<r~1Dc = y-A-' - — — + &C. (61) 

dx,<r 1 .2 d#a~2 d?/2 v 

We shall ateo write 
y/w-tr (a) (<r) x/tt-cr (<r) fa) 

-ri#=J)(, and Dc = Dcr, (02) 
(Is'1-" »’ n V ' 

fa) fa) 
so that B$ and Br denote the operations of differentiating with 

u >i 
respect to n axes, n — <r of which coincide with the axis of s, 

while the remaining <r make equal angles with each other in the 
fa) 

plane of xy> D$ being used when the axis of y coincides with 
“ fa) 

one of the axes, and Dc when the axis of y bisects the angle 
H 

between two of the axes. 

The two tesseral surface harmonics of order n and type <r may 

now be written („> , <«•) i 
Ys = (-1)" — rn+1B*-, (63) 

n n [nr 

fa) 1 fa) 1 
Yc^(-l)n~rn+1Dc~- (6 

n n 1 nr 

Writing p. = cos 0, v = sin 0t p2 — x2 + y2, r2 = (rj +z2, 

so that z = ftr, p = vrx x = p cos <p) y = p sin <f>, 

we have Ls1- = (-1)'^ i(ir-fi')^r1» (< 
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(66) 

in which we may write 

= P'Bmtr<l>, — (£* + rfr) = pcCOS (70. (67) 

We have now only to differentiate with respect to z, which we 

may do so as to obtain the result either in terms of r and z, or as 

a homogeneous function of z and p divided by a power of r, 

du~r 1 , (2to)! 2”>! 1 <lu~r 1 _ . 1 ,,.I(2»)! 2<r<r! 1 

dzu-°r^+l ~ ' ~ ' °2’^r (2ojTl r2,,+1 X 

(^(^-.r-1) _2r 

L 2 (2?i — 1) 
1 , (n + tr)! 1 

0F ~ ^ '’ l‘>rr\ I ^»+i X 

If we write 

©(<r) ^L-- 

(2a-)! r-"+1 

<w~g) (n-ar-1)^,. 
4(<r+l) “ P 

>•]*. (68) 

!•]• (69) 

(U-Q-) (n—jr 1) 

2 (2 ft— 1) ^ 
(ft — j) (ft —<t—1 ) (ft —tr —2) (ft —<r —3) 

2.4(2»-l) (2 ft-3) M 
and 

V') - _ (n-cr) (ll-q-l) _28 
[M 4 (<t + 1) ** 

-&c. , (70) 

L 4(<r+l) r 

(n — or) (n — a-— 1) (n — cr — 2) (n — <r— 3) 

4.8 (<x ■+■ 1) (<r -f- 2) 

oW _ 2W'ft! (ft4-<r)l »w 

~4r4-&C. , (71) 

then 0<*> = 3W (72) 
(2w)!<rl * ' ' 

so that these two functions differ only by a constant factor. 

We may now write the expressions for the two tesseral har¬ 

monics of order n and type cr in terms either of 0 or 3, 

Ys = ", 2 sin 0-0= ^ + 3W 2 sin <r 0, (73) 
•> 2 +anl n\ * r 22<rnl crin r’ v } 

Yc = 0(cr) 2 cos + t 3n} 2 cos a<t> t- (74) 
n 2n + <r7l!w! n V ' 

* { Equation (68) may easily be ploved by noticing that the left-hand side is (n — <r) \ 
2 <7+1 (2 cr-f I) 

times the coefficient of hn~v in <----, or -=—- <1 +--—i 51 • if 
l£7 + (z + A)aJ l r3 j » 1 

we write this as ,4-, ft..#.-?} and pick out the coefficient of hn-<r, 

re get equation (69).} 
t {This value must le halved when a m 0.} 
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We must remember that when a = 0, sin cr$ = 0 and cos <r</> = 1. 

For every value of <t from 1 to n inclusive there is a pair of 
(0) (0) 

harmonics, but when 0 = 0, Y'tt = 0, and Yc — Pn, the zonal har¬ 
n n 

monic. The whole number of harmonics of order n is therefore 

2 n -f 1, as it ought to be. 

140?;.] The numerical value of F adopted in this treatise is 

that which we find by differentiating r"1 with respect to the n 

axes and dividing by n! It is the product of four factors, the 

sine or cosine of <r<£, r0-, a function of /x (or of /tx and r), and a 

numerical coefficient. 

The product of the second and third factors, that is to say, the 

part depending on 6, has been expressed in terms of three different 

symbols which differ from each other only by their numerical 

factors. When it is expressed as the product of v" into a series 

of descending powers of jx, the first term being it is the 

function which we, following Thomson and Tait, denote by 0. 

The function which Heine (Handbuch der Kugelfundionen, 

§47) denotes by 7^n), and calls eine zugeordnete Function erster 

Art, or, as Todhunter translates it, an ‘Associated Function of 

the First Kind/ is related to by the equation 

©<;> = (_!)%». (75) 

The series of descending powers of /x, beginning with fxn~a, is 

expressed by Heine by the symbol and by Todhunter by the 

symbol n). 

This series may also be expressed in two other forms, 

^ n) = 
(71 — <t) ! dn+{ 

(2 n)! dn*+° 
_ 2"(n—<r)\nl dr 

(2 n) I ' ( G) 
The last of these, in which the series is obtained by differentiating 

the zonal harmonic with respect to /x, seems to have suggested the 

symbol adopted by Ferrers, who defines it thus 

T^”) = v*—1 —_L2!*:!1_©' 
n d\x* n 2W (n — a)l n\ 

(°) (77) 

When the same quantity is expressed as a homogeneous 

function of /x and r, and divided by the coefficient of /xtt“<rr<r, it 

is what we have already denoted by 
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140 tf.] The harmonics of the symmetrical system have been 

classified by Thomson and Tait with reference to the form of the 

spherical curves at which they become zero. 

The value of the zonal harmonic at any point of the sphere is 

a function of the cosine of the polar distance, which if equated 

to zero gives an equation of the nth degree, all whose roots lie 

between —1 and +1, and therefore correspond to n parallels of 

latitude on the sphere. 

The zones included between these parallels are alternately 

positive and negative, the circle surrounding the pole being 

always positive. 

The zonal harmonic is therefore suitable for expressing a 

function which becomes zero at certain parallels of latitude on 

the sphere, or at certain conical surfaces in space. 

The other harmonics of the symmetrical system occur in pairs, 

one involving the cosine and the other the sine of They 

therefore become zero at <x meridian circles on the sphere and 

also at 72 —cr parallels of latitude, so that the spherical surface is 

divided into 2a*(n — <t— 1) quadrilaterals or tesserae, together with 

4 a triangles at the poles. They are therefore useful in investiga¬ 

tions relating to quadrilaterals or tesserae on the sphere bounded 

by meridian circles and parallels of latitude. 

They are all called Tesseral harmonics except the last pair, 

which becomes zero at 72 meridian circles only, which divide the 

spherical surface into 2 n sectors. This pair are therefore called 

Sectorial harmonics. 

141.] We have next to find the surface integral of the square of 

any tesseral harmonic taken over the sphere. This we may do by 

the method of Art. 134. We convert the surface harmonic F(<r) 
n 

into a solid harmonic of positive degree by multiplying it by 

we differentiate this solid harmonic with respect to the n axes of 

the harmonic itself, and then make x = y = 0 = 0, and we 

47ra2 

7i J (2 71+ 1) 

These operations are indicated in our notation by 

Writing the solid harmonic in the form of a homogeneous 

function of 3 and £ and viz., 

multiply the result by 
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<«) 
we find that on performing the differentiations with respect 

to z, all the terms of the series except the first disappear, and 

the factor (n—<r) ! is introduced. 

Continuing the differentiations with respect to £ and rj we 

get rid also of these variables and introduce the factor —2 i<rl, so 

that the final result is 

//< Ys)ds= A™- (80) 
2n+l 2 2<rnln\ 

We shall denote the second member of this equation by the 

abbreviated symbol [n, <r]. 

This expression is correct for all values of cr from 1 to n inclu¬ 

sive, but there is no harmonic in sin rr</> corresponding to a = 0. 

In the same way we can shew that 

yl)ds- (w+,T)!(ft-,T)! IP 27M-1 2~ern'.nl 

for all values of a from 1 to n inclusive. 

When <r = 0, the harmonic becomes the zonal harmonic, and 

4 7T02 

(81) 

//(%"*=//«)■*- 
S7V <82> 

a result which may be obtained directly from equation (50) by 

putting Yn — Pm and remembering that the value of the zonal 

harmonic at its pole is unity. 

142 a.] We can now apply the method of Art. 136 to determine 

the coefficient of any given tesseral surface harmonic in the 

expansion of any arbitrary function of the position* of a point on 

a sphere. For let F be the arbitrary function, and let A* be the 

coefficient of in the expansion of this function in surface 

harmonics of the symmetrical system, then 

JjFY?d*=A<;?ff(Y?)ds = A?[n, <+ (83) 

where [n, a] is the abbreviation for the value of the surface in¬ 

tegral given in equation (80). 

142 &.] Let be any function which satisfies Laplace's equa¬ 

tion, and which has no singular values within a distance a of a 

point 0, which we may take as the origin of coordinates. It 

is always possible to expand such a function in a series of solid 

harmonics of positive degree, having their origin at 0. 
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One way of doing this is to describe a sphere about 0 as centre 
with a radius less than a, and to expand the value of the potential 
at the surface of the sphere in a series of surface harmonics. 
Multiplying each of these harmonics by r/a raised to a power 
equal to the order of the surface harmonic, we obtain the solid 
harmonics of which the given function is the sum. 

But a more convenient method, and one which does not involve 
integration, is by differentiation with respect to the axes of the 
harmonics of the symmetrical system. 

For instance, let us suppose that in the expansion of 4*, there is 
(a) Itr) 

a term of the form Ac Yc rn. 

If we perform on 'k and on its expansion the operation 

d,d° d* 
dzn~a + dif 

and put x) y, z equal to zero after differentiating, all the terms 
O) 

of the expansion vanish except that containing Ac. 

Expressing the operator on ^ in terms of differentiations with 
respect to the real axes, we obtain the equation 

dn:i rd<r _ * (/r -D 1 * 
dz*~" Idx* 1 . 2 dx°~2 dy2 J 

(n + rr)! (n — (r)! 
Ac >--~--t-- 3 

n 2a n! 

from which we can determine the coefficient of any harmonic 
of the series in terms of the differential coefficients of V with 
respect to x} y, z at the origin. 

143.] It appears from equation (50) that it is always possible 

to express a harmonic as the sum of a system of zonal harmonics 
of the same order, having their poles distributed over the surface 
of the sphere. The simplification of this system, however, does 
not appear easy. I have, however, for the sake of exhibiting to 
the eye some of the features of spherical harmonics, calculated 
the zonal harmonics of the third and fourth orders, and drawn, by 
the method already described for the addition of functions, the 
equipotential lines on the sphere for harmonics which are the 
sums of two zonal harmonics. See Figures VI to IX at the end 
of this volume. 

Fig. VI represents the difference of two zonal harmonics of the 
third order whose axes are inclined at 120° in the plane of the 
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paper, and this difference is the harmonic of the second type in 

which a = 1, the axis being perpendicular to the paper. 

In Fig. VII the harmonic is also of the third order, but the 

axes of the zonal harmonics of which it is the sum are inclined at 

90°, and the result is not of any type of the symmetrical system. 

One of the nodal lines is a great circle, but the other two which 

are intersected by it are not circles. 

Fig. VIII represents the difference of two zonal harmonics of 

the fourth order whose axes are at right angles. The result is a 

tesseral harmonic for which n = 4, <r = 2. 

Fig. IX represents the sum of the same zonal harmonics. The 

result gives some notion of one type of the more general har¬ 

monic of the fourth order. In this type the nodal line on the 

sphere consists of six ovals not intersecting each other. Within 

these ovals the harmonic is positive, and in the sextuply con¬ 

nected part of the spherical surface which lies outside the ovals, 

the harmonic is negative. 

All these figures are orthogonal projections of the spherical 

surface. 

I have also drawn in Fig. V a plane section through the axis 

of a sphere, to shew the equipotential surfaces and lines of force 

due to a spherical surface electrified according to the values of a 

spherical harmonic of the first order. 

Within the sphere the equipotential surfaces are equidistant 

planes, and the lines of force are straight lines parallel to the 

axis, their distances from the axis being as the square roots of the 

natural numbers. The lines outside the sphere may be taken as 

"a representation of those which would be due to the earth’s mag¬ 

netism if it were distributed according to the most simple type. 

144 a:] WTe are now able to. determine the distribution of 

electricity on a spherical conductor under the action of electric 

forces whose potential is given. 

By the methods already given we expand the potential due 

to the given forces, in a series of solid harmonics of positive 

degree having their origin at the centre of the sphere. 

Let AnrnYn be one of these, then since within the conducting 

sphere the potential is uniform, there must be a term — A,trw]^ 

arising from the distribution of electricity on the surface of the 

sphere, and therefore in the expansion of 4tto- there must be a 

term 4:ro-n = (2w + lja"*”1 AmYn, 
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In this way we can determine the coefficients of the harmonics 

of all orders except zero in the expression for the surface density. 

The coefficient corresponding to order zero depends on the charge, 

e, of the sphere, and is given by 4ir<r0 == a~%e. 

The potential of the sphere is 

v=%+e~. 
a 

144 6.] Let us next suppose that the sphere is placed in the 

neighbourhood of conductors connected with the earth, and that 

Greens Function, tr, has been determined in terms of x, y, z and 

x't y', z\ the coordinates of any two points in the region in which 

the sphere is placed. 

If the surface density on the sphere is expressed in a series 

of spherical harmonics, then the electrical phenomena outside the 

sphere, arising from this charge on the sphere, are identical with 

those arising from an imaginary series of singular points all 

at the centre of the sphere, the first of which is a single point 

having a charge equal to that of the sphere and the others are 

multiple points of different orders corresponding to the harmonics 

which express the surface density. 

Let Green’s function be denoted by GPV>, where p indicates the 

point whose coordinates are x, y, 3, and p' the point whose co¬ 

ordinates are x', y\ zf. 
If a charge A0 is placed at the point pthen, considering 

x\ y\ zf as constants, Gpp- becomes a function of xy y, z ; and the 

potential arising from the electricity induced on surrounding 

bodies by A0 is 'F = A0GPP>. (1) 

If, instead of placing the charge A0 at the point p\ it were* 

distributed uniformly over a sphere of radius a having its centre 

at p\ the value of 4* at points outside the sphere would be the 

same. 

If the charge on the sphere is not uniformly distributed, let 

its surface density be expressed, as it always can, in a series of 

spherical harmonics, thus 

4 7raV = A0 + 3Al Y1 + &c. + (2n+ l)AnYn+ .... (2) 

The potential arising from any term of this distribution, say 

4naz<rn = (2n+l)AHY„ (3) 

vn . . , dn 
will befor points inside the sphere, and AHYn for 

points outside the sphere. 
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Now the latter expression, by equations (13), (14), Arts. 129 c 
and 129 d is equal to . an dn 1^ 

n! dhv..dhnr 
or the potential outside the sphere, due to the charge on the 

surface of the sphere, is equivalent to that due to a certain 

multiple point whose axes are hx... hn and whose moment is 

A%a\ 
Hence the distribution of electricity on the surrounding con¬ 

ductors and the potential due to this distribution is the same as 

that which would be due to such a multiple point. 

The potential, therefore, at the point p, or (x, y, z), due to the 

induced electrification of surrounding bodies, is 

. « 
where the accent over the d's indicates that the differentiations 

are to be performed with respect to x', y\ Y. These coordinates are 

afterwards to be made equal to those of the centre of the sphere. 

It is convenient to suppose Yn broken up into its 2n -f 1 con¬ 

stituents of the symmetrical system. Let A^ be one of 

these, then d'* __ Tv{(r) /R, 

d'kr.7dn * 

It is unnecessary here to supply the affix s or c, which indicates 

whether sin acf) or cos 0*$ occurs in the harmonic. 

We may now write the complete expression for 'P, the potential 

arising from induced electrification, 

* = A0G + 22[(-1 YA?a~D^G~\. (6) 

But within the sphere the potential is constant, or 

*+ -Aa + 22 F-4^1 A*? 7(:i,l = constant. (7) 
a 0 LaMi+1 ni W| J ' 

Now perform on this expression the operation where the 

differentiations are to be with respect to x, yy 2, and the values 

of n{ and are independent of those of n and <r. All the terms 

of (7) will disappear except that in F^l), and we find 

_2(^i+°-i)1K-^)i \ Aw 
2^ ?i1! a*1*1 wi 

= £2[(- 1)M:^ D^D'^g] . (8) 

We thus obtain a set of equations, the first member of each of 
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which contains one of the coefficients which we wish to deter¬ 

mine. The first term of the second member contains A0i the 

charge of the sphere, and we may regard this as the principal 

term. 

Neglecting, for the present, the other terms, we obtain as a 

first approximation 

A^ = - 
22*1 rq! 

Aoa" 
G. 

(9) 2(nl + ar1)\(n1~a-1 

If the shortest distance from the centre of the sphere to the 

nearest of the surrounding conductors is denoted by b, 

If, therefore, b is large compared with a, the radiu.s of the 

sphere, the coefficients of the other spherical harmonics are very 

small compared with A0. The ratio of a term after the first on 

the right-hand side of equation (8) to the first term will there- 

a 2n+*i+1 
fore be of an order of magnitude similar to (j-) 

We may therefore neglect them in a first approximation, and 

in a second approximation we may insert in these terms the 

values of the coefficients obtained by the first approximation, 

and so on till we arrive at the degree of approximation required. 

Distribution of electricity on a nearly spherical conductor. 

145 a.] Let the equation of the surface of the conductor be 

r = a(l+F), (1) 

where F is a function of the direction of r, that is to say of 6 

and 4>, and is a quantity the square of which may be neglected 

in this investigation. 

Let F be expanded in the form of a series of surface harmonics 

^;=/o+/l^+/2^2 + ^:C* (2) 

Of these terms, the first depends on the excess of the mean 

radius above a. If therefore we assume that a is the mean 

radius, that is to say approximately the radius of a sphere whose 

volume is equal to that of the given conductor, the coefficient f0 

will disappear. 

The second term, that in fx, depends on the distance of the 

centre of mass of the conductor, supposed of uniform density, 
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from the origin. If therefore we take that centre for origin, the 

coefficient fx will also disappear. 

We shall begin by supposing that the conductor has a charge 

A0i and that no external electrical force acts on it. The potential 

outside the conductor must therefore be of the form 

V = ^0“ + ^1^1r2 + &C. ++ 1 + (3) 

where the surface harmonics are not assumed to be of the same 

types as in the expansion of F. 

At the surface of the conductor the potential is that of the 

conductor, namely, the constant quantity a. 

Hence, expanding the powers of r in terms of a and F> and 

neglecting the square and higher powers of F, we have 

a = A01-(l-F) + AJ±-2Y'(l-2F) + &c. 

+ An-LiYn'(l-(n+l)F) + ....(4) 

Since the coefficients Ax, &c. are evidently small compared 

with Aoi we may begin by neglecting products of these co¬ 

efficients into F\ 

If we then write for F in its first term its expansion in 

spherical harmonics, and equate to zero the terms involving 

harmonics of the same order, we find 

a = A*l’ (5) 

A^' = AuafJ.| = 0, (6) 

AnYn = A0an/nY„. (7) 
It follows from these equations that the Yns must be of the 

same type as the F’s, and therefore identical with them, and 

that Ax = 0 and A% = A0anfn. 

To determine the density at any point of the surface, we have 

the equation , dV dV . , 
^ 4 77 0- ~-- =-- cos e, approximately ; (8) 

d v dr 

where v is the normal and € is the angle which the normal makes 

with the radius. Since in this investigation we suppose F and 

its first differential coefficients with respect to 6 and <\> to be 

small, we may put cos e = 1, so that 

4ir<r = ~S = +&c-+(™+1M»£^ +•••• (9) 
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Expanding the powers of r in terms of a and F, and neglecting 

products of F into An} we find 

4« = A0±(l-2F) + tkc. + (n + l)A A F„. (10) 
it lb 

Expanding F in spherical harmonics and giving An its value 

as already found, we obtain 

47TO- = A0 [l +/^ + 2/3IJ + &C.+ (r— 1 )/«£]. (11) 
lb 

Hence, if the surface differs from that of a sphere by a thin 

stratum whose depth varies according to the values of a spherical 

harmonic of order n, the ratio of the difference of the surface 

densities at any two points to their sum will be n— 1 times 

the ratio of the difference of the radii at the same two points to 

their sum. 

145 6.] If the nearly spherical conductor (1) is acted on by 

external electric forces, let the potential, U, arising from these 

forces be expanded in a series of spherical harmonics of positive 

degree, having their origin at the centre of volume of the 

conductor 

U = BQ + B,rY' + B^Y: + &c. + Bnr" (12) 

where the accent over Y indicates that this harmonic is not 

necessarily of the same type as the harmonic of the same order 

in the expansion of F. 
If the conductor had been accurately spherical, the potential 

arising from its surface charge at a point outside the conductor 

would have been 
1 ri 3 fjVn + li 

V=A0-~ B^Y'-&c. — (13) 

Let the actual potential arising from the surface charge be 

V 4- IT, where 

W=C,±r"+Sm. + C.^t-,Ym" + ...; (14) 

the harmonics with a double accent being different from those 

occurring either in F or in U, and the coefficients G being small 

because F is small. 

The condition to be fulfilled is that, when r = a (l -f F), 

U+ V+ W = constant = AQ1 -f B0, 
°a 0 

the potential of the conductor. 
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Expanding the powers of r in terras of a and F' and retaining 

the first power of F when it is multiplied by A or B} but neglect¬ 

ing it when it is multiplied by the small quantities G, we find 

— A0 i 4- 3B1aYl' + 5B^a2 Y/ 4- &c. 4- (2n + l)BnanYn'4- ...J 

+^i>r+&c.+c'm<7iriF^+... = 0. (is) 

To determine the coefficients C, we must perform the multipli¬ 

cation indicated in the first line, and express the result in 

a series of spherical harmonics. This series, with the signs 

reversed, will be the series for W at the surface of the con¬ 

ductor. 

The product of two surface spherical harmonics of orders n 

and m, is a rational function of degree n 4- m in x/r, y/r, and z/r, 

and can therefore be expanded in a series of spherical harmonics 

of orders not exceeding m + n. If, therefore, F can be expanded 

in spherical harmonics of orders not exceeding m, and if the 

potential due to external forces can be expanded in spherical 

harmonics of orders not exceeding w, the potential arising from 

the surface charge will involve spherical harmonics of orders 

not exceeding m 4- n. 

This surface density can then be found from the potential by 

the approximate equation 

4 7T.T+ ~(U+V+W) = 0. (1G) 

145 c.] A nearly spherical conductor enclosed in a nearly 

spherical and nearly concentric conducting vessel. 

Let the equation of the surface of the conductor be 

r = a(l+F), (17) 

where F = /,^ + ftc. +/i° ^ 0 8) 
Let the equation of the inner surface of the vessel be 

r = b(l + 0), (19) 

where G = 9l 7X + &c. + g? , (20) 

the f s and g s being small compared with unity, and being 

the surface harmonic of order n and type <t. 

Let the potential of the conductor be a, and that of the 

vessel /3. Let the potential at any point between the conductor 

and the vessel be expanded in spherical harmonics, thus 
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* = h0 + k, Ytr + &c. + h("] FfV + ... 

+ hl+kY1±+&c. + ^Yy±i + ...,(2l) 

then we have to determine the constants of the forms h and k so 

that when r = a (1 -f F)i ^ = a, and when r = b (1 + G), ^ = ft. 
It is manifest, from our former investigation, that all the A’s 

and i-’s except h0 and k0 will be small quantities, the products of 

which into jFmay be neglected. We may, therefore, write 

a = h0 + Lfl 1 (! - F) + &C. + (/£>«* + Jn) 7^ + ''' > (22) 

ft = *0 + K hi - G) + &c.+0<;V+Jn)FW + • • • • (23) 

We have therefore 
« = ^o + ^o It/ 

= ^0 "h ^0 ^ 5 

whence we find for &0, the charge of the inner conductor, 

and for the coefficients of the harmonics of order n 
hnM ntiA<r) 

k? = k/ J’LZll’' . , 
0i2«+l_a2-+l’ 

b« + lf(<’)_an+\q(<r) 
LO) — h n*Ln Jn_J_n_ 

where we must remember that the coefficients/^, /^a), are 

those belonging to the same type as well as order. 

The surface density on the inner conductor is given by the 

equation 

4w <ra? = Ic0(l +... + ABF„(a) +...) 

f',){(n + 2)a2n+l +(n-1 )b2n+l] -g(,r)(2n+ l)ax+ibK 
where A, — —---—:-2-—-- • (31) 

146.] As an example of the application of zonal harmonics, 

let us investigate the equilibrium of electricity on two spherical 

conductors. 
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Let a and b be the radii of the spheres, and c the distance 

between their centres. We shall also, for the sake of brevity, 

write a = ex, and b = nj, so that x and y are numerical quantities 

less than unity. 

Let the line joining the centres of the spheres bo taken as 

the axis of the zonal harmonics, and let the pole of the zonal 

harmonics belonging to either sphere be the point of that sphere 

nearest to the other. 

Let r bo the distance of any point from the centre of the first 

sphere, and s the distance of the same point from that of the 

second sphere. 

Let the surface density, aq, of the first sphere be given by the 

equation 

4 7r oq^ *■' — A -f A| 7, 4- 3 ^4 2 4 & C. 4 f 2Tfi -f- 1) AmPm, (1) 

so that A is the total charge of the sphere, and Alt &c. are the 

coefficients of the zonal harmonics I{, &c. 

The potential due to this distribution of charge may be repre¬ 

sented by 

V = 1 [2. + A A %AJ- ^ + to. + ] (2) 

for points inside the sphere, and by 

U= I [a + A^ + AJ^ + ^. + AJ^] (3) 

for points outside. 

Similarly, if the surface density on the second sphere is given 

by the equation 

4 77aq62 = B 4 P\P\ 4* &c. -f- (271 + 1.) BnBn1 (4) 

the potential inside and outside this sphere due to this charge 

may be represented by equations of the form 

V' = l[s + B^l + &C. + B.P9£\, (5) 

F = i[s + JB^^ + &c. + £nP„^], (6) 

where the several harmonics are related to the second sphere. 

The charges of the spheres are A and B respectively. 

The potential at every point within the first sphere is constant 

and equal to a, the potential of that sphere, so that within the 

first sphere jrg + y _ a. (7) 

vol. 1. Q 
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Similarly, if the potential of the second sphere is /3, for points 

within that sphere, U+ V' = 0. (8) 

For points outside both spheres the potential is 'P, where 

J7+F=*. (9) 

On the axis, between the centres of the spheres, 

r + s = c. (10) 

Hence, differentiating with respect to r, and after differentiation 

making r = 0, and remembering that at the pole each of the 

zonal harmonics is unity, we find 

, 1 dV A 

A'a* ds~°’ 

.2! d?V 
+ y (11) 

A m±+(_nr»imv_-o 
Aman+1+^ °’ / 

where, after differentiation, 8 is to be made equal to c. 

If we perform the differentiations, and write a/c = a: and 

6/0 = 2/j these equations become 

0 = Al + Bx2 + 2B1x2y + 3B2x2y2 + &c. 4 (7141) Bnx2yn, \ 

0 — A2-tBxz + 3B1xzy + 6B2x?y2 + &c. -4-l(n+ \)(n + 2)Bnx?yn, 

0 = Am + Bxm+1 -f (tw 4-1) + 4 (m+ 1 )(m 4 2) Bzxm+1y2 

mini * 17 / 

By the corresponding operations for the second sphere we find, 

0 = 5j4 j4t/24 2j43£C2/24 3 A^22/24&c. 4(m4 l)udm#m2/2, 1 

0 = B24 ^2/3 4 3Axxyz 4 §A2x2yz 4 &c. 4 4(m 4 l)(m 4 2)Amxmyzi 

0 = Bu + Ayn+l + (n + l)A1xyu+1+\(n + l)(n + 2)Ailx2yn+1+ &C.T 1 

+ {m + nV: A a.mv„+I 
+ mlnl AmX y 7 

To determine the potentials, a and 0, of the two spheres we 

have the equations (7) and (8), which we may now write 

ca = A~+B + B:y + B2y2 + &c. + Bnyn, (14) 
X 

c/3 = B-+A + Axx + A2x2 + &c. + Amxm 
y 
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If, therefore, we confine our attention to the coefficients Ax to 

Am and B1 to Bn, we have m 4- n equations from which to deter¬ 

mine these quantities in terms of A and B, the charges of the two 

spheres, and by inserting the values of these coefficients in (14) 

and (15) we may express the potentials of the spheres in terms 

of their charges. 

These operations may be expressed in the form of determinants, 

but for purposes of calculation it is more convenient to proceed 

as follows. 

Inserting in equations (12) the values of Bx...Bn from equa¬ 

tions (13), we find 

Ax = — Bx2 4- A x2yz [2.1 4- 3.1 y2 -f 4.1 y4 4 5.11/6 4- G. 1 yH -f ...] 

+ A}x3y3[2.2 -4 3.3y2 4-4.4y4 4 5,5y6 + ...] 

4- A,zx4yz\2.3 4- 3.62/2 4- 4 .lO^/4 4-...] 

4- A2oc5y* [2.4 4 3.10 y2 4-...] 

4- A4x^y3 [2.54-...] (16) 

4-. 

A2 — — Bx3 4- A x3y3 [3.1 4- 6.1 y2 4 10.1 y4 4- 15.1 y6 f ...] 

+ .41«4y3[3.2 + 6.3y2+10.4y4+ ...] 

4- A2x5y3[3.34-6.Sy2 4-...] 

4- A2xey3[3A 4* .-■] (17) 

4-. 

Az = — Bx4 + A x4y3\4.A 4- 10. \y2 + 20. ly4 4-...] 

4- Axx^y3\_^ .2 4- 10.3y24-...] 

4-^2a:c2/3[4.3 4*...] (18) 

+. 
A4 = —Bx6 + A x5y3[5A 4-15-11/24-_] 

+ A1X°y3[5.2 + ...] (19) 

4-. 

By substituting in the second members of these equations the 

approximate values of A3 &c., and repeating the process for 

further approximations, we may carry the approximation to the 

coefficient to any extent in ascending powers and products of x 

andy. If we write = PnA-qnB, 

B, — ~r*A+ 8hB, 
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we find 

/>, = .r2/ [ 2 + 3/ + 4/ + 5/ + 6/ + 7/° + 8/2 + 9/4 + &C.] 

+ 35/[8 + 30/ + 75/ + 154/ + 280/ + &C.] 

+ x7yG [18 + 90/ + 288/ + 735/ + &c.] 

+ a9/ [32 + 200/ 4- 780/ + &c.] 

+ it*13?/6[50+ 375/ + &c.] 

+ a,13/[72 + &c.] 

+ z*if [32 + 192/ + &C.J 

+ *r10/[l44 + &c.] 

. (20) 

7i = 
+ CT5/[ 4+ 9/ + 16/ + 25/ + 36/ + 49/° + 64/2 + &c.] 

+ a7/ [ 6+ 18/ + 40?/4 + 75?/°+ 126 / + 196/° + &c] 

+ 3°/[ 8 + 30/+ 80/+ 175/ + 336/ + &C.] 

+ a*n/[l0 + 45/ + 140/+350/-f &e.] 

+ #13/[l2 + 63/ + 224/ + &c.] 

+ &15/[l4 + 84/ + &c.] 

+ £I7/[l6 + &c„] 

+ z8/[ 16+ 72/+ 209/+ 488/ +Ac.] 

+ »10/[ 60+ 342/+ 1222/ + &C.] 

+ £12/[150+ 1050/+ &C.] 

+ a?u/[308 + &c.] 

+ #11/[ 64 + <fec.] (21) 

+. 

It will be more convenient in subsequent operations to write 

these coefficients in terms of a, b, and c, and to arrange the terms 

according to their dimensions in c. This will make it easier to 

differentiate with respect to c. We thus find 

px = 2 a 2b3c~Ci + 3 a-Wc~1 + 4 a267<r9 + (5a2 b9 + 8 a66c)<ru 

+ (6a2&u + 39 a6 6s + 18a7£>6)c~13 

+ (7a2bu + 75a5 610 + 90a7 b* + 32 a96e)<r15 

+ (8a2615+ 154a5612 + 288a7£>10 + 32a8£>9 + 200a9£>8 + 60au£e)<rn 
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4*(9a2b17 + 280a6bu 4 735a7Z>12 4 192a*bu 4 780a9510 

4-144a10&9 4 375a116® 4 72a13//)cr19 4 .... (22) 

qx = a2c~24 4a5//c~®4(6a7634 9a6//)c~10 

4(8a9634 18 a7//4 16a567)c~12 

4 (10a1163 4 30a9b5 4 16a8b6 4 40a77>7 4 25a5b9)c~u 

4 (12a13//4 45a11//4 60 a10//4 80a9/>7 

4 72 a8 7/ -t- 75a7/>9 4 36a6//1) c~u 

4 (14 a16// 4 63 a13// 4 150 a12// 4 140an67 4 3 4 2a106® 

4 175a96° 4 209a®/>10 4 126a76n 4 49a6//3)c~38 

4 (16 a17// 4 84a16// 4 308a14// 4 224a13//74 1050a12// 

4 414a11// 4 1222a10?>10 4 336a9611 4 488a®/>12 4 196a7613 

4 64a6/>16)c~20 4 ... . (23) 

p2 r= 3a37/c~G4 6a37/6’~® 4 10a3/>7c'10 4(12ac//4 15a3b9)c~12 

4 (27a8// 4 54a0 6® 4 21 a3bll)c~u 

4 (48 a10// 4 162 a8 6® 4 158aGb10 4 28a3b13)c~16 

4 (75a12// 4 360a10// 4 48a9b9 4 606a® 630 

4 372a°612 4 36a3//5)c~18 4 ... . (24) 

q% = a3r~34 6a6//c~9 4 (9 a8// 4 18a6//)r~31 

4(12 a10// 4 36a8b5 4 40a6/>7)c~13 

4 (15a32// 4 60a10//4 24 a9// 4 100a8// 4 75a6//)tr16 

4 (18a34// 4 90a3265 4 90a11// 4 200a1067 

4 126a96® 4 225a8// 4 126(6°t11)c~17 

4 (21a10// 4 126a34// 4 2 2 5 a33// 4 350a3267 4 594 a31// 

4 525a10Z>9 4 418a°610 4 441 a®/>n 4 196a°//3)c-39 4 .... (25) 

jp3 = 4a4//c~74 10a4//c~94 20a4l7c”134(l6a7664 35a469)c"J3 

4 (36a9//4 84a7// 4 56a4/>n)c~15 

4 (64a11// 4 252a9// 4 282 a7//0 4 84a4/>13)c~17 4 .... (26) 

y3 = a4c“4 4 8a7//c~10 4 (12 a9// 4 30a7//)c~12 

4 (16 a31 // 4 6 0 a9 b5 4 8 0 a7 b1) c~14 

4 (20a3363 4 100 a13// 4 32 a10// 4 200 a9 b7 4 1 75 a7 ft9) (T1* 

4 (24a16ft3 4 150a1366 4 120 a12// 4 400a13 ft7 4 192a10ft® 

4 525a9ft9 4 336a7fcn)c“18 4 .... (27) 
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/>< = 5a5b3c~3 + 15a5fc6c~10 + 35a6i>7c-12 + (20a8&® + 70asi>9)c~14 

+ (45a10&8 + 120a868 + 126a56n)<rl6 + .... (28) 

(/, = a5c~5 + 10a863o_11 + (15a10&3 + 45a866)c-13 

+ (20 aub3 + 90aub& + 140 a867)cr16 

+ (25a14&3 + 150aI2/;5 + 40tt1168 + 350a10&7 + 350 u869)c_n+_ 

p5 = 6a8&3<r9 + 21«6(/crn + 56ac67e-13 

+ (24a96fi + 126«8fc9)c~15 + .... (30) 

'/r, = a8c~°+12«9&3c-I2 + (18an?>3 + 63(t9/;5)c~14 

+ (24c/13(>3+ 126ftn&6 + 224aW)c-18 + ... . (31) 

j)t = 7a’’b3c~v' + 28a’b3c~12 + 8ia’’b'lc~u +_ (32) 

7« = «7<'~7 + 14a10i3c~13 + (21a1263 + 84a1('66)<ru+.... (33) 

jh, = 8a3b3c~n + 3Ga8?/’c13+ .... (34) 

Y, = a*e~8+ 16aui3cr14 +.... (35) 

p8 = 9a9£>3c~12 + ... . (36) 

(/g = a0c_9+ .... (37) 

The values of the r’s and s’b may be written down by inter¬ 

changing a and b in the q’s and pa respectively. 

If we now calculate the potentials of the two spheres in terms 

of these coefficients in the form 

a = IA 4 mB, (38) 

P = mA + nB, (30) 

then l, m, n are the coefficients of potential (Art. 87), and of these 

m = c~l +p1ac~2 +pta2c~3 + &c., (40) 

to = b*1-qyac~2 — q2a2c~3 — &c., (41) 

or, expanding in terms of a, b, c, 

to = c_1 + 2a3b3c~'! + 3 a3b3(a2 + b2)c~9 + a3&3(4 a4 + 6a2&2 + 4 64)c~u 

+ a3i3[5a8+ 10a462+8o363+ 10a264 + 5&6]cr13 

+ u3Z»3[6a8+ 15a862 + 30a663 +20a464 

+ 30a3 65+ 15a2£>8 + 668]c18 

+ a363[7a,0 + 21a862 + 75a763 + 35a6 64+ 144a6i® 

+ 35 a4 68 + 75a3V + 21 a2b* + 7&10]<r17 

+ a32>3 [8 a12 + 28 a10b2 + 15 4 a9 b3 + 5 6 asb* + 4 46 a766 + 10 2 a8 b* 

+ 446 asb7 + 56 a468 + 154 a3b9 + 2 8 a2 b10 + 8 P2]tr18 
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+ a3 />3[9 a14 4- 36 a12/)2 4* 2 8 0 a11 i3 4- 8 4 a10 54 -f 110 7ae65 4- 318 a8/)® 

4- 1668a7 ?>7 4- 318a6/)8 + 1107a6/;9 + 84a46104- 280a36n 

4* 36a2b12 4- 96u]c~21 4-.... (42) 

n = 6-"1 — a3<r4~ aV‘~6 — a7c“8~(a8 + 4/>3)a6c~10 

— (a6 4- 12a2bs + 9b5)a6c~12 — (a7 + 25a4/;3 4- 36a266+ 16/>7)ae6*“14 

— (a9 4- 44a0/;3 4- 96a4/)5 4- 16a3i° 4- 80a2/;7 4- 25&9)a6(;“10 

— (a114- 70a863 4- 210a®65 4- 84a66® 4- 260a467 

4- 72a3?;8 4- 150a2/;9 4- 36/;n)a6c~18 

— (a13 4- 104a10/)3 4- 406a8/>5 4* 272a7 Z>6 4- 680a6 Z>7 4- 468a6?>8 

4- 575a4/;9 4- 209a3/)104- 252a2/;11 4- 49/>13)a°r-20 

— (a16 4- 147a1263 4- 720alob5 4- 693a9/)6 4* 1548a8/)7 4- 1836a7/)8 

4- 1814a6/;94- 1640a6/;104- 1113a46114- 488a3/)12 

4- 392a2/)13 4* 64Z)15)a6c"22 4-.... (43) 

The value of l can be obtained from that of n by interchanging 

a and b. 

The potential energy of the system is, by Art. 87, 

W= \lA2 + mAB + \nB\ (44) 

and the repulsion between the twro spheres is, by Art. 93 a, 

dW , M9dl . T^dm . r^odn , 

-dc=iA‘dc + ABrc + iI>‘s- w 

The surface density at any point of either sphere is given by 

equations (1) and (4) in terras of the coefficients A„ and B„. 



CHAPTER X. 

CONFOCAh QUADIMO SURFACES * 

147.] Let the general equation of a confocal system be 

A54— a1 
+_y — 

2 + A2 — fr + A2 ~ t*2 
1, (D 

where A is a variable parameter, which we shall distinguish by a 

suffix for the species of quadric, viz. we shall take A} for the 

hyperboloids of two sheets, A2 for the hyperboloids of one sheet, 

and A3 for the ellipsoids. The quantities 

(X9 Aj, h9 A2, c, A3 

are in ascending order of magnitude. The quantity a is intro¬ 

duced for the sake of symmetry, but in our results we shall 

always suppose a = 0. 

If we consider the three surfaces whose parameters are 

Aj, X2, X3, we find, by elimination between their equations, that 

the value of x2 at their point of intersection satisfies the 

equation 

x2(b2 — a2)(c2 — a2) — (A^ — a2) (A22 —a2) (A32~a2). (2) 

The values of y2 and z2 may be found by transposing a, &, e 

symmetrically. 

Differentiating this equation with respect to Ax, we find 

(3) 
If dsT is the length of the intercept of the curve of intersection 

of A2 and A3 cut off between the surfaces Aj and + d\lf then 

dV2 

dA3 

dx 
dl\ 

+ dy 
d\. 

dz 

dAj 
A,2 (V- V)(V-V) 

(*) 

* This investigation is chiefly borrowed from a very interesting work,—Lemons but 
In Functions Inverses des Transcend antes et les Surfaces Isothermes. Par G. Lam<$, 
Paris, 1857. 
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The denominator of this fraction is the product of the squares 

of the semi-axes of the surface At. 

If we put 

A2 = a32-a2*. A* = V-ai*> and A2 = V-V, (5) 
and if we make a = 0, then 

^1 __^2^3__# /g\ 

t/Aj \/62-— A^ VV5 — A^ 

It is easy to see that D2 and DB are the semi-axes of the 

central section of \1 which is conjugate to the diameter passing 

through the given point, and that I)3 is parallel to and 

D2 to ds3. 

If we also substitute for the three parameters A,, A2, A3 their 

values in terms of three functions a, ft, y, defined by the equations 

(Ai cdkx 

Jo V (62 — A^j (c2 — Aj2) 

P = f^..-.. (?) 
4 A(A2i! — b‘) (c* — A/) 

r*s efZA» 

Jc V(A3^^)(A3^C2) 

then Aq = ~D2D3da, ds2 = il^DjcZ/3, ds3 = ^DlD2dy. (B) 

148.] Now let F be the potential at any point, a, /B, y, then the 

resultant force in the direction of dsx is 

_dV_ _dVda_ _dV_c__. ( , 

1 ~~ (bx da dst ~~ da D2Db 

Since dsv ds21 and ds3 are at right angles to each other, the 

surface-integral over the element of area c£s2c£s3 is 

Rids^ds* 
d a JJ2 Dz 

dVR? 

da c 
dftdy. 

Now consider the element of volume intercepted between the 

surface a, j3> y, and a-fda, fi + dp, y + dy. There will be eight 

such elements, one in each octant of space. 

We have found the surface-integral of the normal component 

of the force (measured inwards) for the element of surface 

intercepted from the surface a by the surfaces and /3 + d/3, y 

and y + d y. 
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The surface-integral for the corresponding element of the 

surface a + da will be 

dVD2D 1 D2 _ _ 
+ da C d^dy+ da;* cdadPdy 

since Dx is independent of a. The surface-integral for the two 

opposite faces of the element of volume will be the sum of these 

quantities, or d2VD 2 

d a2 
d ad(3 dy. 

Similarly the surface-integrals for the other two pairs of faces 

will be d2y J) 2 d2y D2 

“L±±dadl3d yand dadpdy. 

These six faces enclose an element whose volume is 
T) 2 7) 2 7) 2 

dslds^ds^ — —~i—“ d adPd 

and if p is the volume-density within that element, we find by 

Art. 77 that the total surface-integral of the element, together 

with the quantity of electricity within it multiplied by 4 7r, is 

zero, or, dividing by d ad fidy, 

nd■+*1d°+ d.+4„msm-0 an (ia‘ 1 * dp ' + d/ * ' c" ’ ' ' 
which is the form of Poisson’s extension of Laplace’s equation 

referred to ellipsoidal coordinates. 

If p = 0 the fourth term vanishes, and the equation is equi¬ 

valent to that of Laplace. 

For the general discussion of this equation the reader is 

referred to the work of Lamd already mentioned. 

149.] To determine the quantities a, y, we may put them in 

the form of ordinary elliptic integrals by introducing the auxiliary 

angles 0, </>, and \/q where 

A1 = 6sin0, (12) 

A2 = Vc* sin2 </> + b* cos2<f>9 (13) 

Aa = csec\^. (14) 

If we put b = kcy and k2 + k'2 = 1, we may call k and k' the 

two complementary moduli of the confocal system, and we find 

fe dd 
a = / .■==:::■.■■:■=== , (15) 

J o V1 ~/c2sin2 0 

an elliptic integral of the first kind, which we may write ac¬ 

cording to the usual notation F(k, 0). 
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In the same way we find 

~ Jo 
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P - = F(k')-F(k', </>), 
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(16) 

(17) 

Vl — k'z cos* (/) 

where F(k') is the complete function for modulus k', 

v=f >, ■ = m-m *)■ 
J0 Vl~ /c^COS^v// 

Here a is represented as a function of the angle 0, which is 

accordingly a function of the parameter A2, as a function of <£> 

and thence of A2, and y as a function of v// and thence of A3. 

But these angles and parameters may be considered as func¬ 

tions of a, j3, y. The properties of such inverse functions, and of 

those connected with them, are explained in the treatise of 

M. Lame on this subject. 

It is easy to see that since the parameters are periodic functions 

of the auxiliary angles, they will be periodic functions of the 

quantities a, {3, y: the periods of Ax and A3 are 4 F(k), and that 

of A 2 is 2 F(lc'). 

Particular Solutions. 

150.] If V is a linear function of a, /3, or y, the equation is 

satisfied. Hence we may deduce from the equation the distri¬ 

bution of electricity on any two confocal surfaces of the same 

family maintained at given potentials, and the potential at any 

point between them. 

The Hyperboloids of Two Sheets. 

When a is constant the corresponding surface is a hyperboloid 

of two sheets. Let us make the sign of a the same as that of x 

in the sheet under consideration. We shall thus be able to study 

one of these sheets at a time. 

Let Op a2 be the values of a corresponding to two single sheets, 

whether of different hyperboloids or of the same one, and let 

V2i be the potentials at which they are maintained. Then, if 

we make _ _ _ 
(18) 

gu a., 
the conditions will be satisfied at the two surfaces and throughout 

the space between them. If we make V constant and equal to 

in the space beyond the surface a*, and constant and equal to 

in the space beyond the surface a2, we shall have obtained 

the complete solution of this particular case. 
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The resultant force at any point of either sheet is 

±R,= -dr (i.) 
ds{ da dsx 

lr_y r 
or R1 = h^ P (20) 

a2 al 

If pj be the perpendicular from the centre on the tangent 

plane at any point, and I\ the product of the semi-axes of the 

surface, then px I)2T>^ = 1\. 
Hence we find p Vz cpl , , 

a2““al •*! 

or the force at any point of the surface is proportional to the 

perpendicular from the centre on the tangent plane. 

The surface-density a may be found from the equation 

4 7T(T = i?r (22) 

The total quantity of electricity on a segment cut off by a plane 

whose equation is x = d from one sheet of the hyperboloid is 

££-»)• 

The quantity on the whole infinite sheet is therefore infinite. 

The limiting forms of the surface are :— 

(1) When a = F (k) the surface is the part of the plane of xz 

on the positive side of the positive branch of the hyperbola 

whose equation is x‘i z2 

*=1, ^ 

(2) When a = 0 the surface is the plane of yz. 

(3) When a = —F(k) the surface is the part of the plane of xz 

on the negative side of the negative branch of the same hyperbola. 

The Hyperboloid of One Sheet 

By making /3 constant we obtain the equation of the hyper¬ 

boloid of one sheet. The two surfaces which form the boun¬ 

daries of the electric field must therefore belong to two different 

hyperboloids. The investigation will in other respects be the 

same as for the hyperboloids of two sheets, and when the 

difference of potentials is given the density at any point of the 

surface will be proportional to the perpendicular from the centre 

on the tangent plane, and the whole quantity on the infinite 

sheet will be infinite* 
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Limiting Forms. 

(1) When f3 = 0 the surface is the part of the plane ot xz 

between the two branches of the hyperbola whose equation is 

written above, (24). 

(2) When = F(k') the surface is the part of the plane of xy 

which is on the outside of the focal ellipse whose equation is 

* + <25> 

The Ell i2)8o ids. 
For any given ellipsoid y is constant. Jf two ellipsoids, yx 

and y2, be maintained at potentials Vx and V1, then, for any 

point y in the space between them, we have 

The surface-density at any point is 

* = (2r) 
4w>i““ya ^3 

where is the perpendicular from the centre on the tangent 

plane, and P3 is the product of the semi-axes. 

The whole charge of electricity on either surface is given by 

V — V 
= -Q (28) 

y\ - y* 
and is finite. 

When y = F(k) the surface of the ellipsoid is at an infinite 

distance in all directions. 

If we make Vl =. 0 and y2 = F(k), we find for the quantity of 

electricity on an ellipsoid y maintained at potential V in an 

infinitely extended field, y 

Q = cF(kP^‘ (29) 
The limiting form of the ellipsoids occurs when y = 0, in which 

case the surface is the part of the plane of xy within the focal 

ellipse, whose equation is written above, (25). 

The surface-density on either side of the elliptic plate whose 

equation is (25), and whose eccentricity is 1c, is 

V 1 1 

(3°' 

V 1 c* <?-¥ 

y 
and its charge is Q = c • (31) 
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Particular Cases. 

151.] If c remains finite, while b and therefore k is diminished 

till it becomes ultimately zero, the system of surfaces becomes 

transformed in the following manner : — 

The real axis and one of the imaginary axes of each of the 

hyperboloids of two sheets are indefinitely diminished, and the 

surface ultimately coincides with two planes intersecting in the 

axis of z. 

The quantity a becomes identical with 0, and the equation 

of the system of meridional planes to which the first system is 

reduced is x2 y2 

(sin a)2 (cos a)- 

As regards the quantity /3, if we take the definition given in 

page 233, (7), we shall be led to an infinite value of the integral at 

the lower limit. In order to avoid this we define /3 in this 

particular case as the value of the integral 

r_cd\2 
*Aa A2 \/cz— 

If we now put A2 = c sin </>, ft becomes 

? i. e. log cot J (f>; 
j $ sin <f> & 

. e*3 — e~P . . 
whence cos 0 — ~~——, (33) 

and therefore sin 0 — —-- * (34) 

If we call the exponential quantity \(eP + e~*) the hyperbolic 

cosine of #, or more concisely the hypocosine of /3, or cosh and 

if we call \(e& — e~P) the hyposine of p, or sinh ft, and if in the 

same way we employ functions of a similar character analogous 

to the other simple trigonometrical ratios, then A2 = c sech and 

the equation of the system of hyperboloids of one sheet is 

x2 + y2 z2 

(sech#)2 (tanh#)2 ~ ° 

The quantity y is reduced to 0, so that A3 = csecy, and the 

equation of the system of ellipsoids is 

+ ■ *2 ^c2. (36x 

(secy)2 (tany)2 ' 

Ellipsoids of this kind, which are figures of revolution about 

their conjugate axes, are called planetary ellipsoids. 
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The quantity of electricity on a planetary ellipsoid maintained 

at potential V in an infinite field, is 

Q = r_L_, (37) 
' y 

where c sec y is the equatorial^ radius, and c tany is the polar 

radius. 

If y = 0, the figure is a circular disk of radius c, and 

V 
<T —---— ) (38) 

2 7i2 V cz — r2 

V 

152.] Second Case. Let b = c, then & = 1 and &'= 0, 

a = log tan™— — > whence A, = ctanha, (40) 
4 

and the equation of the hyperboloids of revolution of two sheets 

becomes x2_y2 + z2_ __ c2 /4 j v 

(tanh a)2 (sech a)2 

The quantity p becomes reduced to fa and each of the hyper¬ 

boloids of one sheet is reduced to a pair of planes intersecting 

in the axis of x whose equation is 
/j/2 />2 

-JL__ -0= 0. (42) 
(sin fi)2 (cos /3)2 

This is a system of meridional planes in which p is the longitude. 

The quantity y as defined in page 233, (7), becomes in this case 

infinite at the lower limit. To avoid this let us define it as the 

value of the integral C* cdA?> 
/ \" 2 ,2 * 

If we then put A~ = c sec \f/, we find y = f . ^ j whence 

A3 = c coth y, and the equation of the family of ellipsoids is 

= c2. (43) 
(coth y)2 (cosech y)z 

These ellipsoids, in which the transverse axis is the axis of 

revolution, are called ovary ellipsoids. 

The quantity of electricity on an ovary ellipsoid maintained 

at potential V in an infinite field becomes in this case, by (29), 

cV+P-^t, (44) 
U. sin 

where c sec \fr0 is the polar radius. 
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If we denote the polar radius by A and the equatorial by B, the 

result just found becomes 

Tr (45) 

, A + VA*- 
log- ~ B 

B- 

If the equatorial radius is very small compared to the polar 

radius, as in a wire with rounded ends, 

V log 2 A— log B 1 ' 

When both b and c become zero, their ratio remaining finito, 

the system of surfaces becomes two systems of confocal cones} 

and a system of spherical surfaces of which the radii are in¬ 

versely proportional to y. 

If the ratio of b to c is zero or unity, the system of surfaces 

becomes one system of meridian planes, one system of right cones 

having a common axis, and a system of concentric spherical 

surfaces of which the radii are inversely proportional to y. This 

is the ordinary system of spherical polar coordinates. 

Cylindric Surfaces. 

153.] When c is infinite the surfaces are cylindric, the generat¬ 

ing lines being parallel to the axes of z. One system of cylinders 

is hyperbolic, viz. that into which the hyperboloids of two sheets 

degenerate. Since, when c is infinite, k is zero, and therefore 

0 = a, it follows that the equation of this system is 

= b\ (47) 
x2 y2 

Bira 

The other system is elliptic, and since when k = 0, /3 becomes 

or = b cosh /?, i; * V'Af-b* 
the equation of this system is 

r 
= i>2. 

(cosh/3)2 ' (sinh/3)2 " 

These two systems are represented in Fig. X at the end of this 

volume. 

Confocal Paraboloids. 

154.] If in the general equations we transfer the origin of co¬ 

ordinates to a point on the axis of x distant t from the centre of 

the system, and if for x, A, b, and c we substitute t + x, t + A, t +• b, 
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and t + c respectively, and then make t increase indefinitely, we 

obtain, in the limit, the equation of a system of paraboloids 

whose foci are at the points x = b and x = c, viz. the equation is 

4(l-x) + i-s + ;r-:; = <>' <19> 
If the variable parameter is A for the first system of elliptic 

paraboloids, ^ for the hyperbolic paraboloids, and v for the second 

system of elliptic paraboloids, we have A, 6, fxt c, v in ascending 

order of magnitude, and 

x = A + m + v — c — b, \ 

V ~ c-b ’ l (50) 

.2 _ „ (c-X)(c-m)(<’-c) 
2 — * _ . 

c — o 

In order to avoid infinite values in the integrals (7) the cor¬ 

responding integrals in the paraboloidal system are taken 

between different limits. 

We write in this case 

_ fb 
a ~Jk a) (c 9 

b=r_ 
Jb \/(/li —6) (c — y)9 

_ r dv 
Jc \/(r — b) (v — c) 

From these we find 

A = i (c + b) — i (c — 6) cosh a, \ 

M = i(c + 6)~i(o — 6)eos/3, > (51) 

v = i (c + 5)-f i (c —6) coshy ; 7 

a? = J (c-f + i (c — b) (cosh y—cos /3 — cosh a), \ 

y = 2(c-6)8inh|Bin|eoBh|, ( (52) 

«= 2(c~Z>) cosh~cos^sinh“» 
^ 2 2* > 

When i = c we have the case of paraboloids of revolution 

about the axis of x; and {see foot note} 

x = a (e2o — e2y), 

y = 2aea+y cos /3, (53) 

0= 2aea+vsin/3. 

VOL. I. 
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The surfaces for which /3 is constant are planes through the 

axis, /3 being the angle which such a plane makes with a fixed 

plane through the axis. 

The surfaces for which a is constant are confocal paraboloids. 
When a oo the paraboloid is reduced to a straight line 
terminating at the origin. 

We may also find the values of a, y in terms of r, 0, and <£, 
the spherical polar coordinates referred to the focus as origin, 
and the axis of the paraboloids as the axis of 0, 

a — log (?d cos J 0), 

= (54) 
y = log (r* sin \ 0). 

We may compare the case in which the potential is equal to a, 
with the zonal solid harmonic r* Q{. Both satisfy Laplace’s 
equation, and are homogeneous functions of x, y, z> but in the 
case derived from the paraboloid there is a discontinuity at the 
axis {since a is altered by writing 6+ 2tt for 0}. 

The surface-density on an electrified paraboloid in an infinite 
field (including the case of a straight line infinite in one direction) 
is inversely as the square root of the distance from the focus, or, 
in the case of the line, from the extremity of the line *. 

* (The results of Art. 154 can be deduced as follows. Changing the variables from 
x, y, z to X, v, Laplace’s equation becomes 

d ( Q*-0 (b-K)* (c-K)* 

dk ( (/* — b)t (<? — >*)£ (y — (v~c)^ 1 

or (y-ji) {6—j (ft-A)*(c-A)* ~ J 

or if 

+ {/<-*}* | (>-&)* 

+ (m—X) {y —c}i ~ j (v~h)l (v—| » 0 

da _ 1 _ 
dk~~ 

d0 1 
dfx “ 

djt =_1_ 
dv 

Laplace’s equation becomes 

So that a linear function of a, y satisfies Laplace’s equation. 
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When 6 « c, we may take 

X . {61 

v - 6{l + e?}. 

From (61) (ji- l) «= $ (<■ —b) {1 — cob#}, 

(c~/i) = i(e-b) {l+cos0} ; 
hence from (60), 

x ■* 6 + 6(eV-~e“), 

y2 «= 46a<?>"f'a sin2^> 
2 

jz2 m 4 63e'>'+acofia-* 
2 

If we take the origin at thefocuB x «= 6, and write 2/3' for 0, ae2^ for bf*, a«2^ 

for 6fa, we get # *= e2-y — e2a ? 

y = 2aea,+>/8in/9' 

* — 2a€a,+>/cos/9'. 

From which equations of the form (54) may easily be deduced. 
Since from these equations the force along the radius varies as 1/r, the normal force, 

1 r 
and therefore the surface-density, will vary as — • - where p is the perpendicular 

from the focus on the tangent plane, thus the surface-density varies as 1 /p} and there¬ 
fore inversely as the square root of r. j 



CHAPTER XI. 

THEOEY OF ELECTRIC IMAGES AND ELECTRIC INVERSION. 

155.] We have already shewn that when a conducting sphere 

is under the influence of a known distribution of electricity, the 

distribution of electricity on the surface of the sphere can be 

determined by the method of spherical harmonics. 

For this purpose we require to expand the potential of the in¬ 

fluenced system in a series of solid harmonics of positive degree, 

having the centre of the sphere as origin, and we then find a 

corresponding series of solid harmonics of negative degree, which 

express the potential due to the electrification of the sphere. 

By the use of this very powerful method of analysis, Poisson 

determined the electrification of a sphere under the influence of 

a given electrical system, and he also solved the more difficult 

problem to determine the distribution of electricity on two con¬ 

ducting spheres in presence of each other. These investigations 

have been pursued at great length by Plana and others, who have 

confirmed the accuracy of Poisson. 

In applying this method to the most elementary case of a 

sphere under the influence of a single electrified point, we require 

to expand the potential due to the electrified point in a series 

of solid harmonics, and to determine a second series of solid 

harmonics which express the potential, due to the electrification 

of the sphere, in the space outside. 

It does not appear that any of these mathematicians observed 

that this second series expresses the potential due to an imaginary 

electrified point, which has no physical existence as an electrified 

point, but which may be called an electrical image, because the 

action of the surface on external points is the same as that which 

would be produced by the imaginary electrified point if the 

spherical surface was removed. 
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This discovery seems to have been reserved for Sir W. Thomson, 

who has developed it into a method of great power for the 

solution of electrical problems, and at the same time capable of 

being presented in an elementary geometrical form. 

His original investigations, which are contained in the Cam¬ 

bridge and Dublin Mathematical Journal, 1848, are expressed 

in terms of the ordinary theory of attraction at a distance, and 

make no use of the method of potentials and of the general 

theorems of Chapter IV, though they were probably discovered 

by these methods. Instead, however, of following the method of 

the author, I shall make free use of the idea of the potential and 

of equipotential surfaces, whenever the. investigation can be 

rendered more intelligible by such means. 

Theory of Electric Images. 

156.] Let A and B, Figure 7, represent two points in a uniform 

dielectric medium of infinite extent. 

Let the charges of A and B be ex 

and e2 respectively. Let P be any 

point in space whose distances from 

A and B are 7\ and r2 respectively. 

Then the value of the potential at P 

will be e2 
(i) 

'1 ' 2 

The equipotential surfaces due to 

this distribution of electricity are represented in Fig. I (at the 

end of this volume) when ex and e2 are of the same sign, and in 

Fig. II when they are of opposite signs. We have now to 

consider that surface for which V = 0, which is the only 

spherical surface in the system. When ex and e2 are of the 

same sign, this surface is entirely at an infinite distance, but 

when they are of opposite signs there is a plane or spherical 

surface at a finite distance over which the potential is zero. 

The equation of this surface is 

et + ei=0- (2) 
1 2 

Its centre is at a point C in AB, produced, such that 

AC:BCz:e*ze*, 

and the radius of the sphere is 

AB 
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The two points A and B are inverse points with respect to this 

sphere, that is to say, they lie in the same radius, and the radius 

is a mean proportional between their distances from the centre. 

Since thit» spherical surface is at potential zero, if we suppose 

it constructed of thin metal and connected with the earth, there 

will be no alteration of the potential at any point either outside 

or inside, but the electrical action everywhere will remain that 

due to the two electrified points A and B. 

If we now keep the metallic shell in connection with the earth 

and remove the point B, the potential within the sphere will 

become everywhere zero, but outside it will remain the same as 

before. For the surface of the sphere still remains at the same 

potential, and no change has been made in the exterior electri¬ 

fication. 

Hence, if an electrified point A be placed outside a spherical 

conductor which is at potential zero, the electrical action at all 

points outside the sphere will be that due to the point A together 

with another point B within the sphere, which we may call the 

electrical image of A. 

In the same way we may shew that if B is a point placed 

inside the spherical shell, the electrical action within the sphere 

is that due to 5, together with its image A. 

157.] Definition of an Electrical Image. An electrical image 

is an electrified point or system of points on one side of a surface 

which would produce on the other side of that surface the same 

electrical action which the actual electrification of that surface 

really does produce. 

In Optics a point or system of points on one side of a mirror 

or lens which if it existed would emit the system of rays which 

actually exists on the other side of the mirror or lens, is called a 

virtual image. 

Electrical images correspond to virtual imaged in Optics in 

being related to the space on the other side of the surface. They 

do not correspond to them in actual position, or in the merely 

approximate character of optical foci. 

There are no real electrical images, that is, imaginary electrified 

points which would produce, in the region on the same side of 

the electrified surface, an effect equivalent to that of the electrified 

surface. 

For if the potential in any region of space is equal to- that due 
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to a certain electrification in the same region it must be actually 

produced by that electrification. In fact, the electrification at 

any point may be found from the potential near that point by 

the application of Poisson's equation. 

Let a be the radius of the sphere. 

Let / be the distance of the electrified point A from the 

centre C. 

Let e be the charge of this point. 

Then the image of the point is at Bf on the same radius of the 

sphere at a distance 1 and the charge of the image is —Cj- 

We have shewn that this image 

will produce the same effect on the 

opposite side of the surface as the \ 

actual electrification of the surface / I \ 

does. We shall next determine the a 7 uz b c 1d 

surface-density of this electrification \ J 

at any point P of the spherical sur- 

face, and for this purpose we shall Fig 7 

make use of the t heorem of Coulomb, 

Art. 80, that if R is the resultant force at the surface of a con¬ 

ductor, and cr the superficial density, 

R — 4 7r <r, 

R being measured away from the surface. 

We may consider R as the resultant of two forces, a repul- 

6 Cl 1 
sion acting along AP} and an attraction e ^ acting 

along PB. 
Resolving these forces in the directions of AC and CP, we 

find that the components of the repulsion are 

along AC, and — along CP. 

Those of the attraction are 
1 2 1 

~~eJ BP* ^ al°DS AC, and — ey Jfpa along CP. 

CL CV^ 
Now BP = j.AP, and BC = -j , so that the components of the 

attraction may be written 

~efjps along AC,uxd-ef- along CP. 
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The components of the attraction and the repulsion in the 

direction of AG are equal and opposite, and therefore the 

resultant force is entirely in the direction of the radius CP. 

This only confirms what we have already proved, that the 

sphere is an equipotential surface, and therefore a surface to 

which the resultant force is everywhere perpendicular. 

The resultant force measured along CP, the normal to- the 

surface in the direction towards the side on which A is placed, is 

R = —e--7^* (3) 
a AP3 v ' 

If A is taken inside the sphere / is less than a, and we must 

measure R inwards. . For this case therefore 

r> a2 — f~ 1 . . 
R-=-e-(4) 

a AP' x 7 

In all cases we may write 

■n  AD,Ad 1 , 
R ~ ~~€~~cp~aF^ ^ 

where ADy Ad are the segments of any line through A cutting 

the sphere, and their product is to be taken positive in all cases. 

158.] From this it follows, by Coulomb’s theorem, Art. 80, 

that the surface-density at P is 

AD,Ad 1 , . 

" ” ~e17jDP ZP* 

The density of the electricity at any point of the sphere varies 

inversely as the cube of its distance from the point A. 
The effect of this superficial distribution, together with that of 

the point A, is to produce on the same side of the surface as the 

point A a potential equivalent to that due to e at A} and its 

image -~ej and on the other side of the surface the poten¬ 

tial is everywhere zero. Hence the effect of the superficial 

distribution by itself is to produce a potential on the side of A 

equivalent to that due to the image -~ej and on the 

opposite side a potential equal and opposite to that of e at A. 

The whole charge on the surface of the sphere is evidently 

— ej since it is equivalent to the image at B. 

We have therefore arrived at the following theorems on the 
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action of a distribution of electricity on a spherical surface, the 

surface-density being inversely as the cube of the distance from 

a point A either without or within the sphere. 

Let the density be given by the equation 

<r = 2F3’ (7) 

where C is some constant quantity, then by equation (6) 

~ AD.Ad 
<7 = -e—• (8) 

4tia v 1 
The action of this superficial distribution on any point 

separated from A by the surface is equal to that of a quantity 

of electricity — e, or ir>aC 

AD . Ad 
concentrated at A. 

Its action on any point on the same side of the surface with A 
is equal to that of a quantity of electricity 

AirCd1 
/Tad:Ad 

concentrated at B the image of A. 

The whole quantity of electricity on the sphere is equal to the 

first of these quantities if A is within the sphere, and to the 

second if A is without the sphere. 

These propositions were established by Sir W. Thomson in his 

original geometrical investigations with reference to the distribu¬ 

tion of electricity on spherical conductors, to which the student 

ought to refer. 

159.] If a system in which the distribution of electricity is 

known is placed in the neighbourhood of a conducting sphere of 

radius a, which is maintained at potential zero by connection 

with the earth, then the electrifications due to the several parts 

of the system will be superposed. 

Let A T, A2, &c. be the electrified points of the system, fv f2i &c. 

their distances from the centre of the sphere, el, e2, &c. their 

charges, then the images Bl,B2, &c. of these points will be in the 

same radii as the points themselves, and at distances -r, &c. 
fi J 2 

from the centre of the sphere, and their charges will be 

&c 
7i’ V. 

The potential on the outside of the sphere due to the superficial 
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electrification will be the same as that which would be produced 

by the system of images B19B2, &c. This system is therefore 

called the electrical image of the system An A.z, &c. 

If the sphere instead of being at potential zero is at potential 

V, we must superpose a distribution of electricity on its outer 

surface having the uniform surface-density 0 
V 

4 TTCL 

The effect of this at all points outside the sphere will be equal to 

that of a quantity Va of electricity placed at its centre, and at 

all points inside the sphere the potential will be simply increased 

by F 

The whole charge on the sphere due to an external system of 

influencing points, Alt A27 &c. is 

E = Va-e * , *_ &c., (9) 
/1 / 3 

from which either the charge E or the potential V may be cal¬ 

culated when the other is given. 

When the electrified system is within the spherical surface the 

induced charge on the surface is equal and of opposite sign to the 

inducing charge, as we have before proved it to be for every 

closed surface, with respect to points within it. 

*160.] The energy due to the mutual action between an elec¬ 

trified point e, at a distance / from the centre of the sphere 

* phe discussion in the text will perhaps be more easily understood if the problem 

be regarded as an example of Art. 86. Let os then suppose that what is described 
as an electrified point is really a small spherical conductor, the radius of which is 6 
and the potential v. We have thus a particular case of the problem of two spheres of 
which one solution has already been given in Art. 146, and another will be given in 
Art. 173. In the case before us however the radius b is so small that we may 
consider the electricity of the small conductor to be uniformly distributed over its 
surface and all the electric images except the first image of the small conductor to 
be disregarded. Since the charge E on the sphere is given, we must in addition to 
the charge —eajf at the image have a charge ea/f at the centre of the sphere. 

We thus have V — — + % > 
« / 
j. a 
E + e . _ ./ 

/ 
ea 

'r-a9 
e 

+ r 
The energy of the system is therefore, Art. 85, 

E* Ee e1 /1 a3 \ 

2a / + 2U "/V’-aV 
By means of the above equations we may also express the energy in terms of the 

potentials : to the same order of approximation it is 

ciV'1 ab 1/ rtba v 8 T-7r’+a(*V^)‘*- J 
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greater than a the radius, and the electrification of the spherical 

surface due to the influence of the electrified point and the 

charge of the sphere, is 

Ee 1 e2a? . . 

~ f ~ 2 /*(/*-a2) ’ ^ ^ 

V is the potential, and E the charge of the sphere. 

The repulsion between the electrified point and the sphere is 

therefore, by Art. 92, 

F = ea ~ (p-arf) 

-/A ef(f*_a2}z)- (n) 

Hence the force between the point and the sphere is always 

an attraction in the following cases— 

(1) When the sphere is uninsulated. 

(2) When the sphere has no charge. 

(3) When the electrified point is very near the surface. 

In order that the force may be repulsive, the potential of the 
p 

sphere must be positive and greater than e —^2 » anc* 

charge of the sphere must be of the same sign as e and greater 

thanc^t^. 
f 

At the point of equilibrium the equilibrium is unstable, the 

force being an attraction when the bodies are nearer and a 

repulsion when they are farther off. 

When the electrified point is within the spherical surface the 

force on the electrified point is always away from the centre of 

the sphere, and is equal to 
e2af 

(a*-/2)2’ 

The surface-density at the point of the sphere nearest to the 

electrified point when it lies outside the sphere is 

1 4tt a* l {/-<*)*'$ 

a2(Sf~a)\ 1 (e. «*W-a)/ ,l2\ 
-4,a'r 67(/-a)*)' ( } 

The surface-density at the point of the sphere farthest from 

the electrified point is 
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(13) 

When Et the charge of the sphere, lies between 

a2 (3 a) a2(3f+a) 

the electrification will be negative next the electrified point and 

positive on the opposite side. There will be a circular line of 

division between the positively and the negatively electrified 

parts of the surface, and this line will be a line of equilibrium. 

If E=ea (—=L=r - -), (14) 
V/*-a2 J 

the equipotential surface which cuts the sphere in the line of equi¬ 

librium is a sphere whose centre is the electrified point and whose 

radius is Vf2—al. 
The lines of force and equipotential surfaces belonging to a 

case of this kind are given in Figure IV at the end of this 

volume. 

Images in an Infinite Plane Conducting Surface. 

161.] If the two electrified points A and B in Art. 156 are 

electrified with equal charges of electricity of opposite signs, the 

surface of zero potential will be the 

plane, every point of which is equidistant 

from A and B. 
Hence, if A be an electrified point 

whose charge is e, and AD a perpen¬ 

dicular on the plane, produce AD to 

B so that DB = AD, and place at B a 

charge equal to — e, then this charge 

at B will be the image of A, and will 

produce at all points on the same side 

of the plane as A, an effect equal to 

that of the actual electrification of the 

plane. For the potential on the side of A due to A and B 
fulfils the conditions that V2 V = 0 everywhere except at A, and 

that V = 0 at the plane, and there is only one form of V which 

can fulfil these conditions. 

To determine the resultant force at the point P of the plane, we 
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observe that it is compounded of two forces each equal to > 
A JL 

one acting along AP and the other along PB. Hence the 

resultant of these forces is in a direction parallel to AB and 

equal to e AB 
AP2 * ALP# 

Hence Rf the resultant force measured from the surface towards 

the space in which A lies, is 

j> _ _ 2eAD 
R ~ AP* ' (15) 

and the density at the point P is 
eAD 

<T~ 2ttAP3 " 

On Electrical Inversion. 

162.] The method of electrical images leads directly to a method 

of transformation by which we may derive from any electrical 

problem of which we know the solution any number of other 

problems with their solutions. 

We have seen that the image of a point at a distance r from 

the centre of a sphere of radius R is in the same radius and at a 

distance r' such that rr = R2. Hence the image of a system of 

points, lines, or surfaces is obtained from the original system by 

the method known in pure geometry as the method of inversion, 

and described by Chasles, Salmon, and other mathematicians. 

If A and B are two points, A' and Bf their images, 0 being 

the centre of inversion, and R the radius 

of the sphere of inversion, 

OA.OA' = R2^ OB.OB'. 
Hence the triangles OAB. OB' A' are similar, 

and AB iA'B'hOA: OB'::OA.OB : JR2. 

If a quantity pf electricity e be placed at 

Ay its potential at B will be V = . 

If e' be placed at A\ its potential at B' will be 

Y* — e . 

In the theory of electrical images 

e:e::OA:R::R: OA'. 
Hence V : V' :: R : OB, (17) 

or the potential at B due to the electricity at A is to the 
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potential at the image of B due to the electrical image of A as R 
is to OB. 

Since this ratio depends only on OB and not on OA, the poten¬ 

tial at B due to any system of electrified bodies is to that at B' 

due to the image of the system as R is to OB. 
If r be the distance of any point A from the centre, and ?ythat 

of its image A\ and if e be the electrification of A, and e that of 

A', also if L, S, K be linear, superficial, and solid elements at A, 

and L', S', K7 their imaged at A', and A, <r, p, A', <r\ p the corre¬ 

sponding line-surface and volume-densities of electricity at the 

two points, V the potential at A due to the original system, and 

V the potential at A' due to the inverse system, then 

S _ V _ R? _ /* ST _ P* _ r4 K’ _ R« _ \ 
r ~ L ~ r* ~ R2’ S ~ ~ R4 5 K ~ r“6“ ~ R6’ 

/ _ R _ / _ r _ P 

^ r P’ A P V */18\ 
^ __ __ P* / __ r* _ P5 f 

<r ~~ R*~ r'* ’ p~ Rs~ r/fi ’ 

F'_ r _ P 

V ~ P ~ r,# / 
If in the original system a certain surface is .that of a con¬ 

ductor, and has therefore a constant potential P, then in the 

transformed system the image of the surface will have a potential 

R 
P^r. But by placing at 0, the centre of inversion, a quantity 

of electricity equal to —PR, the potential of the transformed 

surface is reduced to zero. 

Hence, if we know the distribution of electricity on a con¬ 

ductor when insulated in open space and charged to the potential 

P, we can find by inversion the distribution on a conductor, 

whose form is the image of the first, under the influence of an 

electrified point with a charge —PR placed at the centre of 

inversion, the conductor being in connexion with the earth. 

163.] The following geometrical theorems are useful in studying 

cases of inversion. 

Every sphere becomes, when inverted, another sphere, unless 

it passes through the centre of inversion, in which case it becomes 

a plane. 

If the distances of the centres of the spheres from the centre 

* See Thomwrn and Tait’s Natural Philosophy, $ 515, 
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of inversion are a and a', and if their radii are a and a', and if 

we define the power of a sphere with respect to the centre of in¬ 

version to be the product of the segments cut off by the sphere 

from a line through the centre of inversion, then the power of 

the first sphere is a2 —a2, and that of the second is a'1 —a *. We 

have in this case 
a 
a 

a 

a 

R2 
a~ — cr 

a * — a ‘ 

~w~ 
(19) 

or the ratio of the distances of the centres of the first and second 

spheres is equal to the ratio of their radii, and to the ratio of the 

power of the sphere of inversion to the power of the first sphere, 

or of the power of the second sphere to the power of the sphere 

of inversion. 

The image of the centre of inversion with regard to one sphere 

is the inverse point of the centre of the other sphere. 

In the case in which the inverse surfaces are a plane and a 

sphere, the perpendicular from the centre of inversion on the 

plane is to the radius of inversion as this radius is to the diameter 

of the sphere, and the sphere has its centre on this perpendicular 

and passes through the centre of inversion. 

Every circle is inverted into another circle unless it passes 

through the centre of inversion, in which case it becomes a 

straight line. 

The angle between two surfaces, or two lines at their intersec¬ 

tion, is not changed by inversion. 

Every circle which passes through a point and the image of 

that point with respect to a sphere, cuts the sphere at right angles. 

Hence, any circle which passes through a point and cuts the 

sphere at right angles passes through the image of the point. 

164.] We may apply the method of inversion to deduce the 

distribution of electricity on an uninsulated sphere under the in¬ 

fluence of an electrified point from the uniform distribution on 

an insulated sphere not influenced by any other body. 

If the electrified point be at A, take it for the centre of in¬ 

version, and if A is at a distance f from the centre of the sphere 

whose radius is a, the inverted figure will be a sphere whose 

radius is a! and whose centre is distant f* where 

a f 
The centre of either of these spheres corresponds to the inverse 
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point of the other with respect to A, or if G is the centre and B 
the inverse point of the first sphere, Cf will be the inverse point, 

and B' the centre of the second. 

Now let a quantity e! of electricity be communicated to the 

second sphere, and let it be uninfluenced by external forces. It 

will become uniformly distributed over the sphere with a surface- 

“y (21) 
4 7ni* V ' 

Its action at any point outside the sphere will be the same as 

that of a charge e' placed at B' the centre of the sphere. 

At the spherical surface and within it the potential is 

a constant quantity. 

Now let us invert this system. The centre B; becomes in the 

inverted system the inverse point B, and the charge e' at B' 
B 

becomes e'y at B, and at any point separated from B by the 

surface the potential is that due to this charge at B. 
The potential at any point P on the spherical surface, or on 

the same side as B, is in the inverted system 

e' R 
of AP‘ 

If we now superpose on this system a charge e at A> where 

the potential on the spherical surface, and at all points on the 

same side as B, will be reduced to zero. At all points on the 

same side as A the potential will be that due to a charge e at A, 

and a charge e' ~ at B. 

-d A ,-R a! a 
But e'j = -ey = (24) 

as we found before for the charge of the image at B. 

To find the density at any point of the first sphere we have 

- = (25) 
Substituting for the value of <r in terms of the quantities be¬ 

longing to the first sphere, we find the same value as in Art 158, 

° 4 itaAP3 ’ 
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On Finite Systems of Successive Images. 

165.] If two conducting planes intersect at an angle which is 

a submultiple of two right angles, there will be a finite system 

of images which will completely determine the electrification. 

For let AOB be a section of the two conducting planes per¬ 

pendicular to their line of intersection, and let the angle of inter- 

7T 
section AOB = - > let P be an electrified point. Then, if we 

n 
draw a circle with centre 0 and radius OP, and find points which 

are the successive images of P in the two planes beginning with 

OB, we shall find for the image of P in OB, P, for the image 

of Qx in OA, Q3 for that of P, in OB, for that of Qz in OA, 

Q2 for that of Pz in OB, and so on. 

If we had begun with the image of P in AO we should have 

found the same points in the 

reverse order Q2, P3, QA, P2, Ql9 
provided AOB is a submultiple 

of two right angles. 

For the electrified point and 

the alternate images P2, P, 

are ranged round the circle at 

angular intervals equal to 2 AOB, 
and the intermediate images 

Qu Qi are intervals of 
the same magnitude. Hence, 

if 2AOB is a subraultiple of 

2 7r, there will be a finite number of images, and none of these 

will fall within the angle AOB. If, however, AOB is not a 

submultiple of 7r, it will be impossible to represent the actual 

electrification as the result of a finite series of electrified points. 

If AOB = -> there will be n negative images Qu Q2, &c., each 
n 

equal and of opposite sign to P, and n— 1 positive images P. 

Pj, &e., each equal to P, and of the same sign. 

2 ~ 
The angle between successive images of the same sign is —' * 

If we consider either of the conducting planes as a plane of 

symmetry, we shall find the electrified point and the positive 

and negative images placed symmetrically with regaid to that 

VOL. i. s 
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plane, bo that for every positive image there is a negative 

image in the same normal, and at an equal distance on the 

opposite side of the plane. 

If we now invert this system with respect to any point, the 

two planes become two spheres, or a sphere and a plane inter- 

secting at an angle the influencing point P, the inverse point 

of P, being within this angle. 

The successive images lie on the circle which passes through P 

and intersects both spheres at right angles. 

To find the position of the images we may make use of the 

principle that a point and its image in a sphere are in the 

same radius of the sphere, and draw successive chords of the 

circle on which the images lie beginning at P and passing 

through the centres of the two spheres alternately. 

To find the charge which must be attributed to each image, 

take any point in the circle of intersection, then the charge of 

each image is proportional to its distance from this point, and its 

sign is positive or negative according as it belongs to the first or 

the second system. 

166.] We have thus found the distribution of the images when 

any space bounded by a conductor consisting of two spherical 

surfaces meeting at an angle - > and kept at potential zero, is 
rt\ 

influenced by an electrified point. 

We may by inversion deduce the case of a conductor consisting 

of two spherical segments meeting at a re-entering angle - , 

Fig. 11. 

charged to potential unity 

and placed in free space. 

For this purpose we invert 

the system of planes with re¬ 

spect to P and change the signs 

of the charges. The circle 

on which the images formerly 

lay now becomes a straight 

line through the centres of 

the spheres. 

If the figure (11) represents a section through the line of 

centres AB) and if D, D' are the points where the circle of 

intersection cuts the plane of the paper, then, to find the sue- 
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cessive images, draw DA a radius of the first circle, and draw 

DC, DE, &c., making angles &c. with DA. Thv 

points A, Cy E, &c. at which they cut the line of centres will be 

the positions of the positive images, and the charge of each will 

be represented by its distance from D. The last of these images 

will be at the centre of the second circle. 

To find the negative images draw DQ, DR, &c., making angles 

7T 2 7T 
- , — > &c. with the line of centres. The intersections of these 
n n 

lines with the line of centres will give the positions of the 

negative images, and the charge of each will be represented by 

its distance from D {for if E and Q are inverse points in the 

sphere A the angles ADE, AQD are equal}. 

The surface-density at any point of either sphere is the sum 

of the surface-densities due to the system of images. For 

instance, the surface-density at any point S of the sphere whose 

centre is A, is 

' = + 11 
where A, B, C, &c. are the positive series of images. 

When S is on the circle of intersection the density is zero. 

To find the total charge on one of the spherical segments, we 

may find the surface-integral of the induction through that 

segment due to each of the images. 

The total charge on the segment whose centre is A due to the 

image at A whose charge is DA is 

= \ (DA+ 0A), 

where 0 is the centre of the circle of intersection. 

In the same way the charge on the same segment due to the 

image at B is £ (DB + OB)y and so on, lines such as OB measured 

from 0 to the left being reckoned negative. 

Hence the total charge on the segment whose centre is A is 

\ (DA + DB + DC + &c.) + 4 (OA + 0B + OC4- &c.) 

- £ (DP + DQ + &c.) - i (OP + OQ + &c.). 

167.] The method of electrical images may be applied to any 

space bounded by plane or spherical surfaces all of which cut one 

another in angles which are submultiples of two right angles. 

s % 
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In order that such a system of spherical surfaces may exist, 

every solid angle of the figure must be trihedral, and two of its 

angles must be right angles, and the third either a right angle 

or a submultiple of two right angles. 

Hence the cases in which the number of images is finite 

are— 

(1) A single spherical surface or a plane. 

(2) Two planes, a sphere and a plane, or two spheres inter¬ 

secting at an angle ~ • 

(3) These two surfaces with a third, which may be either plane 

or spherical, cutting both orthogonally. 

(4) These three surfaces with a fourth, plane or spherical, 

cutting the first two orthogonally and the third at an angle -7 • 

Of these four surfaces one at least must be spherical. 

We have already examined the first and second cases. In the 

first case we have a single image. In the second case we have 

2 1 images arranged in two series on a circle which passes 

through the influencing point and is orthogonal to both surfaces. 

In the third case we have, besides these images and the in¬ 

fluencing point, their images with respect to the third surface, 

that is, 4 n — 1 images in all besides the influencing point. 

In the fourth case we first draw through the influencing point 

a circle orthogonal to the first two surfaces, and determine on it 

the positions and magnitudes of the n negative images and the 

7i—l positive images. Then through each of these 2 n points, 

including the influencing point, we draw a circle orthogonal to 

the third and fourth surfaces, and determine on it two series of 

images, n' in each series. We shall obtain in this way, besides 

the influencing point, 2nn'—l positive and 2nn' negative 

images. These 4 ti n' points are the intersections of circles 

belonging to the two systems of lines of curvature of a cyclide. 

If each of these points is charged with the proper quantity of 

electricity, the surface whose potential is zero will consist of 

n + n' spheres, forming two series of which the successive spheres 

of the first set intersect at angles and those of the second set 

at angles , while every sphere of the first set is orthogonal to 

every sphere of the second set. 



TWO SPHERES CUTTING ORTHOGONALLY. 261 168.] 

Case of Two S'pheres cutting Orthogonally. See Fig. IV 

at the end of this volume. 

168.] Let A and B, Fig. 12, be the centres of two spheres 

cutting each other orthogonally 

in a circle through D and //, and 

let the straight line DU cut the 

line of centres in C. Then C is 

the image of A with respect to 

the sphere B, and also the image 

of B with respect to the sphero 

A. If AD ~ a, BD = (3, then 

AB — V a2 + and if we place Fig. 12. 

at A, B, C quantities of electricity equal to a, /3, and- 
V a2 + fi2 

respectively, then both spheres will be equipotential surfaces 

whose potential is unity. 

We may therefore determine from this system the distribution 

of electricity in the following cases : 

(1) On the conductor PDQU formed of the larger segments of 

both spheres. Its potential is unity, and its charge is 

a+ /3-_ = AD + BD- CD. 
VV + ,32 

This quantity therefore measures the capacity of such a figure 

when free from the inductive action of other bodies. 

The density at any point P of the sphere whose centre is A, 

and the density at any point Q of the sphere whose centre is B, 
are respectively 

On the circle of intersection the density is zero. 

If one of the spheres is very much larger than the other, the 

density at the vertex of the smaller sphere is ultimately three 

times that at the vertex of the larger sphere. 

(2) On the lens P'DQ'U formed by the two smaller segments of 
a 

the spheres, charged with a quantity of electricity =-==. > 
“ ' Vo^ + fi2 

and acted on by points A and B, charged with quantities a and /3 
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at potential unity, and the density at any point is expressed 

by the same formula. 

(3) On the meniscus DPD'Q' charged with a quantity a, and 

acted on by points B and C charged respectively with quantities 

and 

unity. 

, which is also in equilibrium at potential 

(4) On the other meniscus QDP'JD' charged with a quantity 

6 under the action of A and (7. 

We may also deduce the distribution of electricity on the 

following internal surfaces— 

The hollow lens P'DQ'D' under the influence of the internal 

electrified point C at the centre of the circle DD\ 
The hollow meniscus under the influence of a point at the 

centre of the concave surface. 

The hollow formed of the two larger segments of both spheres 

under the influence of the three points A, B, C. 
But, instead of working out the solutions of these cases, we 

shall apply the principle of electrical images to determine the 

density of the electricity induced at the point P of the external 

surface of the conductor PDQLY by the action of a point at 0 
charged with unit of electricity. 

Let 0 A = a, OB = b, OP — r, BP = py 

AD — a, BD = /3, AB = V a2-f /d2. 

Invert the system with respect to a sphere of radius unity and 

centre 0. 

The two spheres will remain spheres, cutting each other ortho¬ 

gonally, and haying their centres in the same radii with A and B. 
If we indicate by accented letters the quantities corresponding 

to the inverted system, 

b /_ « p/_ 0 
a2-a2’ b2-,82’ a2-a2’ 

r,_I 
r-r> p - 

If, in the inverted system, the potential of the surface is 

unity, then the density at the point P/ is 

1 A 
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If, in the original system, the density at P is <r, then 

263 

CT 
~~~r <X 

and the potential is - • By placing at 0 a negative charge of 

electricity equal to unity, the potential will become zero over 

the original surface, and the density at P will be 

__ 1 a2 —a2/ _ffV*_\ 

4 7r ar3 V (/32r2 -f (b2—82) (p2 — 

This gives the distribution of electricity on one of the spherical 

segments due to a charge placed at 0. The distribution on the 

other spherical segment may be found by exchanging a and b, 

a and /3, and putting q or AQ instead of p. . 

To find the total charge induced on the conductor by the 

electrified point at 0, let us examine the inverted system. 

In the inverted system we have charges a at A\ and ft' at B\ 
a 8' 

and a negative charge ——~ at a point C' in the line A'B\ 
v a2 8'1 

such that A'O': C'B':: a2 : /3'2. 

If 0A'= a\ OB' = b\ 00' = c', we find 

„/2__a'28'* + b'2 a'2-a'28'2 

a'2 4- ft'2 

Inverting this system the charges become 

a a 13' ft 

a b' 

and — 
/ /yf 

a 8 

b' 

a/3 

Va!2 4- 8'2 c Va282 + b2 a2 — a282 

Hence the whole charge on the conductor due to a unit of 
negative electricity at 0 is 

a 8_a_$_ 

a b </a,2 82+ b2 a2 — a282 

Distribution of Electricity on Three Spherical Surfaces 
which Intersect at Right Angles. 

169.] Let the radii of the spheres be a, 8, y, then 

BO = VW+7\ OA = AB = Vtfr+82. 

Let PQR} Fig. 13, be the feet of the perpendiculars from ABC 
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on the opposite sides of the triangle, and let 0 be the inter¬ 

section of perpendiculars. 

Then P is the image of B 
/ \ in the sphere y, and also the 

/ B __\_^ image of C in the sphere p. 
Also 0 is the image of P in the 

/ / \ sphere a. 

! \ Let charges a, p, and y be 

\ j placed at A, B, and C. 
\ \ I / J Then the charge to be placed 

.X. J at P is 

_£y__ _ i 

„ "-^ VW+? ~ /T-l * 
v & r 

Also AP 
^2y2 + y2a2 + a2/SI2 

, so that the charge at 0, con¬ 

sidered as the image of P, is 

Vp-y' + y-at + u-jj* /}_ 1 J_ 
V a* 02 y2 

In the same way we may find the system of images which are 

electrically equivalent to four spherical surfaces at potential 

unity intersecting at right angles. 

If the radius of the fourth sphere is b, and if we make the 

charge at the centre of this sphere = 6, then the charge at the 

intersection of the line of centres of any two spheres, say a and 

fi, with their plane of intersection, is 

A/ + p* 
The charge at the intersection of the plane of any three centres 

ABC with the perpendicular from the centre D is 

-TTh-T' 
V a' + p* + y* 

and the charge at the intersection of the four perpendiculars is 

_1_ VI f.1 1 ’ 
a1 p2 ^ yz ^ 62 
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System of Four Spheres Intersecting at Right Angles, at zero 

potential, under the Action of an Electrified Unit Point. 

170.] Let the four spheres be A, B,C, D, and let the electrified 

point be 0. Draw four spheres A19 Bu C19 Dx, of which any 

one, Alf passes through 0 and cuts three of the spheres, in this 

case B, 0, and D, at right angles. Draw six spheres (ab)y (ac)y 

(ad), (he), (bd), (c<2), of which each passes through 0 and through 

the circle of intersection of two of the original spheres. 

The three spheres B,, Cl9 D1 will intersect in another point 

besides 0. Let this point be called A\ and let B\ C\ and 1)' be 

the intersections of Cly Dx, Aly of Dx, Aly Bly and of A}y Bly C1 

respectively. Any two of these spheres, Aly Bly will intersect 

one of the six (cd) in a point (a' b'). There will be six such 

points. 

Any one of the spheres, AJf will intersect three of the six (ab), 

(ac)y(ad) in a point a\ There will be four such points. Finally, 

the six spheres (ab), (ac), (ad)y (cd), (db), (bc)y will intersect in one 

point S in addition to 0. 

If we now invert the system with respect to a sphere of radius 

unity and centre 0, the four spheres A, B, 0, D will be inverted 

into spheres, and the other ten spheres will become planes. Of 

the points of intersection the first four A'y B\ C\ IX will become 

the centres of the spheres, and the others will correspond to the 

other eleven points described above. These fifteen points form 

the image of 0 in the system of four spheres. 

At the point A'y which is the image of 0 in the sphere A, we 

must place a charge equal to the image of 0, that is, — -, where 
a 

a is the radius of the sphere A, and a is the distance of its centre 

from 0. Lrthe same way we must place the proper charges at 

B\C',U. 

The charge for any of the other eleven points may be found 

from the expressions in the last article by substituting a, /3', y \ b' 
for a, /3, y, 5, and multiplying the result for each point by the 

distance of the point from 0, where 

/ Q n/_ 0 /_ y ./ _ & 
a2_a2> b*-~p*' 7 ~ Cc — yz* d*-b*' 

[The cases discussed in Arts. 169, 170 may be dealt with as 

follows: Taking three coordinate planes at right angles, let us 
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place at the system of eight points (± ± ± —) 

charges ±ey the minus charges being at the points which have 
1 or 3 negative coordinates. Then it is obvious the coordinate 
planes are at potential zero. Now let us invert with regard to 
any point and we have the case of three spheres cutting ortho¬ 
gonally under the influence of an electrified point. If we invert 
with regal’d to one of the electrified points, we find the solution 
for the case of a conductor in the form of three spheres of radii 
a, p, y cutting orthogonally and freely charged. 

If to the above system of electrified points we superadd their 
images in a sphere with its centre at the origin we see that, in 
addition to the three coordinate planes, the surface of the sphere 
forms also a part of the surface of zero potential.] 

Two Spheres not Intersecting. 

171.] When a space is bounded by two spherical surfaces 
which do not intersect, the successive images of an influencing 
point within this space form two infinite series, none of which lie 
between the spherical surfaces, and therefore fulfil the condition 
of the applicability of the method of electrical images. 

Any two non-intersecting spheres may be inverted into two 
concentric spheres by assuming as the point of inversion either 
of the two common inverse points of the pair of spheres. 

We shall begin, therefore, with the case of two uninsulated 

concentric spherical surfaces, subject 
to the induction of an electrified point 
P placed between them. 

Let the radius of the first be b, and 
that of the second bewy and let the 
distance of the influencing point from 
the centre be r = be*. 

Then all the successive images 
will be on the same radius as the 
influencing point. 

Let Q0, Fig. 14, be the image of P in the first sphere, ij that 
of Q0 in the second sphere, Qx that of Px in the first sphere, and 
so on; then OP,. OQ, = 62, 

and 0P#.0Q,.1 = 6Vt!rJ 
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also OQ0 = be 

01\ = 

OQx = be-iu+vw,k c. 

Hence OP, = be^m\ 
OQg = be-'u+2t™\ 

If the charge of P is denoted by P, that of Pa by P4, then 

_ pe = - Pe-(u+87nK 
Next, let Q/ be the image of P in the second sphere, P/ that 

of Q/ in the first, &c., then 

OQi = ie2®-*, OP/ = be'-*™, 
OQ2' = fo4Tzr~“, OP/ = 

OQ/ = be2*™~\ 01/ =r 

Q-/ = -P«*w-», P/ = iV-®. 

Of these images all the P’s are positive, and all the Q’s 

negative, all the P'*s and Q’s belong to the first sphere, and 

all the P’s and Q”s to the second. 

The imageB within the first sphere form two converging series, 
the sum of which is ^-u i 

This therefore is the quantity of electricity on the first or 

interior sphere. The images outside the second sphere form two 

diverging series, but the surface-integral due to each with respect 

to the spherical surface is zero. The charge of electricity on the 

exterior spherical surface is therefore 

r\ e" —1 ' ea~l 

If we substitute for these expressions their values in terms of 

OA, OB, and OP, we find 
, . vOAPB 

charge on A = -PqjjJB‘ 

. „ „OBAP 
charge on B =-P(Jp£B’ 

If we suppose the radii of the spheres to become infinite, the 

case becomes that of a point placed between two parallel planes 

A and B. In this case these expressions become 

charge on A = -Pjgy 

charge on B = — • 



268 ELECTRIC IMAGES. [172. 

172.] In order to pass from this case to that of any two spheres 

not intersecting each other, we begin by finding the two common 

inverse points O, O' 

through which all cir¬ 

cles pass that are ortho¬ 

gonal to both spheres. 

Then, if we invert the 

system with respect to 

either of these points, 

the spheres become 

concentric, as in the 

first case. 

If wc take the point 

O in Fig. 15 as centre 

of inversion, this point 

will be situated in Fig. 14 somewhere between the two spherical 

surfaces. 

Now in Art. 171 we solved the case where an electrified point 

is placed between two concentric conductors at zero potential. 

By inversion of that case with regard to the point O we shall there¬ 

fore deduce the distributions induced on two spherical conductors 

at potential zero, exterior to one another, by an electrified 

point in their neighbourhood. In Art. 173 it will be shewn how 

the results thus obtained may be employed in finding the distri¬ 

butions on two spherical charged conductors subject to their 

mutual influence only. 

The radius OAPB in Fig. 14 on which the successive images 

lie becomes in Fig. 15 an arc of a circle through O and O', and 

the ratio of O'P to OP is equal to GeH where C is a numerical 

quantity. 

T, * * 1 O'P , O'A _ . O'B 
If we put 0 = log , a = loS oa ’ = log OB ’ 

then /3 — a = -cr, u + a = 6*. 

All the successive images of P will lie on the arc O'APBO. 

The position of the image of P in A is Q0 where 

*(Qo) = 1°s§§ = 2a-*- 
* {Since O' inverts into O, the common oentre of the spheres, we have by Art. 162 

O'P OP O'A OA .. . O'P.OA OP „ 

OP 0 0’ OA OO' 80 th4t OP.O'A ~ OA ° ‘ ‘ 
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That of Q0 in B is F? where 

*(f?) = log + 

Similarly 

6 (FJ) = 6 + 2ssr, 6 (Qs) ~ 2a~d—28&. 
In the same way if the successive images of P in B, A, B, &c. 

are Q0', F*', Q/, &c., 

e(Oo) = 2/3-0, = 
0(Pt')= e-2sv, 6 (Q/) = 2/3 — 04- 2s®-. 

To find the charge of any image FJ we observe that in the 

inverted figure (14) its charge is 

vi- 
In the original figure (15) we must multiply this by OFJ. Hence 

the charge of FJ in the dipolar figure as P = P/ OP, is 

v OF?- O'f? 
OP. O P 

If we make £ = -/OP. O'P, and call £ the parameter of the 

point P, then we may write 

P = - P 
• £ ’ 

or the charge of any image is proportional to its parameter. 

If we make use of the curvilinear coordinates 6 and (/>, such 

thafc eW-H 
) 4- V—i<t> — l?/- 

4" y/ — 1 y k 
where 2k is the distance 00', then 

__ k sinh 0 & sin $ 

y ~~ cosh 0—cos </>’ cosh 0 — cos (p ’ 

x2 + (y — k cot $)2 = k2 cosec2 <£, 

(x + k coth 0)2 4-y2 ~ k2 cosech2 6, 

cot </> — 
a;2 4- ?/2 

2% 

£ = 

. v a £C2 4* 2/2 4- fc2 
c„th* =-ifc— i 

-/2/fc 

/ cosh <9 — cos <p 
t- 

* {Henoe is constant for all points on the arc along which the images are 
situated. ) 

t In these expressions we must remember that 

2 cosh 0 «s e9 + 9~$, 2 sinh 0 = c* —e““*, 
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Since the charge of each image is proportional to its parameter, 

£, and is to be taken positively or negatively according as it is 

of the form P or Q, we find 

F? = 

Q* =■ 

p; 

Q/= 

P Vcosh 0 — cos 0 

v^cosh (0 + 2 scr) — cos <p 

P v'cosh 0 ~ COB (p 

x/cosh (2 a - 6 — 2 8cr) — COS <p 

P v/cosh 0—-cos (p 

Vcosh (0 — 2 sst) — cos </> 

P \/cosh 0 —cos <p 

a/cosh (2/i — 0-f 2 8 ocr) — cos <£ 

We have now obtained the positions and charges of the two 

infinite series of images. We have next to determine the total 

charge on the sphere A by finding the sum of all the images 

within it which are of the form Q or P'. We may write this 

Pv'cosh 0—cos 4>2:=: ..r.• ..=--- • ., 
v cosh (0 — 2acr) — cos <p 

P— Vcosh 0 — cos 0rj —. ; — — . 
v cosh(2a —0 —28®”) —cos</> 

In the same way the total induced charge on B is 

P Jcosh6-coa^p^lZ™ ——==-.1..—, 
vcosh(0 + 2 8*r)~-cos <p 

— P-v/cOSh 0 —C0S</>2*~^-::r-r . 
V/COsh(2/3 —0 -f 28®) — cos<j> 

173.] We shall apply these results to the determination of the 

coefficients of capacity and induction of two spheres whose radii 

are a and 6, and the distance between whose centres is c. 

Let the sphere A be at potential unity, and the sphere H at 

potential zero. 

Then the successive images of a charge a placed at the centre 

and the other functions of 9 are derived from these by the same definitions as the 
corresponding trigonometrical functions. 

The method of applying dipolar coordinates to this case was given by Thomson in 
Liouville $ Journal fur 1847. See Thomson’s reprint of Electrical Papery §§ 211, 212. 
In the text I have made use of the investigation of Prof. Betti, Nuovo Cimento, 
vol. xx, for the analytical method, but I have retained the idea of electrical images as 
used by Thomson in his original investigation, Phil. Mag., 1858. 



TWO ELECTRIFIED SPHERES. 271 

of the sphere A will be those of the actual distribution of elec¬ 

tricity. All the images will lie on the axis between the poles 

and the centres of the spheres, and it will be observed that of 

the four systems of images determined in Art. 172, only the third 

and fourth exist in this case. 

If we put 

V a* -f I)4 + < • 2c£u2 — 2azb2 

then sinh a sinh /3 = - 

The values of 0 and </> for the centre of the sphere A are 

0 — 2a, = 0. 

Hence in the equations we must substitute a or —k—__ 
sinh a 

for P, 2 a for 0 and 0 for </>, remembering that P itself forms part of 

the charge of A. We thus find for the coefficient of capacity of A 

9aa= *2.-0^}—). 

for the coefficient of induction of A on B or of B on A 

sinh sw' 

We might, in like manner, by supposing B at potential unity 

and A at potential zero, determine the value of qbb. We should 

find, with our present notation, 

To calculate these quantities in terms of a and the radii of 

the spheres, and of c the distance between their centres, we 

observe that if 

K = vV + b* + c4 - 2 6 V - 2 c2«2 - 2cP&2, 

we may write 

sinh a = — -—, sinh 3 : 
2 ac 

K . , if 
7tt~ » smn cr = —=-, 
2/>c 2a& 

, f^ + a2 —£>2 , c2 + b2 — a2 c2_ f/2_ ;.i 
cosha--2—, cosh= 2c6 * C03hw = —^ 

and we may make use of 

sinh (a 4* /3) = sinh a cosh /3 + cosh a sinh /3, 

cosh (a + ft) = cosh a cosh /3 + sinh a sinh /3. 
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By this process or by the direct calculation of the successive 

images as shewn in Sir W. Thomson’s paper, we find 

a2b a362 

$aa ^ ^ ^2 "f" / 2 l.* "t'A TA T~\ 4* &C., 

ab 

- b2 (c2 — b2 + ac) (c2 — b2 — ac) 

a2b2 

^ah c c(c2- a2 — b2) c(c2- 

8 63 

12 — b2 4- a6) (c2 — a2 — 62 — a6) 
— &c., 

?66 

7 062 a263 
; + &C. 

6'2 — a2 (c2 — a2 + be) (c2 — a2 — be) 

174.] We have then the following equations to determine 

the charges Ea and Eb of the two spheres when electrified to 

potentials Va and Vb respectively, 

Ekt 

&b == la + K ?ftft • 

If we pu t 5,w- (?a(,2 = D = jj,. 

paa pb e , — tfatiD i 

whence ?V./>» - /w - iy; 

then the equations to determine the potentials in terms of the 

charges are Va= pIMEa+pahEb, 

1ft — Ea + Pftft Eb, 
and p,**, paft, and are the coefficients of potential. 

The total energy of the system is, by Art. 85, 

Q = \(Ea\a + EbVh) 

— i (l£2#aa + 2 Ttt + V 2 qb\) 

= 1 {Eapaa + 2 EaEhpab + Eb2J)Mi). 
The repulsion between the spheres is therefore, by Arts. 92, 93, 

r= + 

where c is the distance between the centres of the spheres. 

Of these two expressions for the repulsion, the first, which 

expresses it in terms of the potentials of the spheres and the 

variations of the coefficients of capacity and induction, is the 

most convenient for calculation. 

We have therefore to differentiate the q*s with respect to c. 

These quantities are expressed as functions of k} a, 0, and vj} and 
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must be differentiated on the supposition that a and b are con* 

stant. From the equations 

7 . . T . . „ sinh a sinh/3 
k = — ttsmh a = b sinh ft = — c --r~r- > 

dk cosh a cosh ft 

dc ~~ sinh nr 

we find 
da 

dc ~~ 

sinh a cosh ft 

Ajsinhtc- ’ 

dft cosh a sinh ft 

dc ~ k sinh nr 

d cj i 

dc ~ k' 

whence we find 

dq aa cosh a cosh ft qfUJl "^, = „ (sc + b cosh 0)cosh (s-n — d 

dc ~ Sinh rs k c (sinh (s-n —a))2 

dqab _ cosh a cosh ft qnb *3oo & cosh SGT 

dc sinh nr k 1 (sinhs'car)2’ 

dqbb __ cosh a cosh ft qbb ^ $ = » (sc + a cosha) cosh (ft rj- sra). 

dc ~~ sinh vj k ~ <T(sinh (ft + sw))2 

Sir William Thomson has calculated the force between two 

spheres of equal radius separated by any distance less than the 

diameter of one of them. For greater distances it is not neces¬ 

sary to use more than two or three of the successive images. 

The series for the differential coefficients of the q’s with respect 

to c are easily obtained by direct differentiation, 

dqaa __ 2a2bc 2aAb2c (2c2 — 2b2 — a2) a 

dc (c2—b2)2 (c2~b2 + ac)2(c2~b2-~ac)2 

dqab __ ab a2b2(3e2 — a2 — b2) 

dc c2 c2(c2 —■ a2 — 62)2 

a3 b3 {(5 c2 -<z2- b2)(c2 - a2 - b2) - a2 h2} ^ 

+ c2 (c* - a2 - b2 + abf (d-a?-b2- abf 

dqbb __ 2 ab2c 2 a2bzc (2 c2 — 2 a2 — b2) „ 

dc (cl—a2)2 (c2—a2 + 6e)2 (c2 ~ a2 — 6c)2 

Distribution of Electricity on Two Spheres in Contact. 

175.] If we suppose the two spheres at potential unity and 

not influenced by any point, then, if we invert the system with 

respect to the point of contact, we shall have two parallel planes. 

VOL. i. t 
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distant -1- and from the point of inversion, and electrified by 
M Ci/ £i 0 

the action of a positive unit of electricity at that point. 

There will be a series of positive images, each equal to unity, 

at distances s(~ + from the origin, where 8 may have any 

integral value from — oc to +cc. 

There will also be a series of negative images each equal to 

— 1, the distances of which from the origin, reckoned in the 

direction of a, are - + + 
a xa b} 

When this system is inverted back again into the form of the 

two spheres in contact, we have corresponding to the positive 

images a series of negative images, the distances of which from 

the point of contact are of the form 
A J\ 

s (.7, + 7.) 
, where 8 is positive 

for the sphere A and negative for the sphere B. The charge 

of each image, when the potential of the spheres is unity, is 

numerically equal to its distance from the point of contact, and 

is always negative. 

There will also be a series of positive images corresponding to 

the negative ones for the two planes, whose distances from the 

point of contact measured in the direction of the centre of a, 

are of the form ----- • 
A K 

‘(a+ ft) 

When 8 is zero, or a positive integer, the image is inside 

the sphere A. 

When 8 is a negative integer the image is inside the sphere B. 

The charge of each image is numerically equal to its distance 

from the origin and is always positive. 

The total charge of the sphere A is therefore 

p s — co 1 db g — 00 1 

a=: ^9 = 0 1 /I s* 
-h 8i-b y ) 
a xa bJ 

Each of these series is infinite, but if we combine them in the 

form y. a2fe _ 

a ~ 8(a + b) {8(a + b)—a} 

the series becomes convergent. 
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In the same way we find for the charge of the sphere J5, 

p ji >= oo ah ah 29 = —GO 1 

a = ’“1 8 

•\$ = 00 ah* 

e(a + b) {8(a + b) — b\ 

The expression for Ea is obviously equal to 

ab 

a -f- 6 ( i oa+b T—i 

i-e 
dey 

in which form the result in this case was given by Poisson. 

It may also be shewn (Legendre, Traitt d$8 Fonctions Ellip- 

tiques, ii. 438) that the above series for Ea is equal to 

where y = •57712..., and 'P(x) = ^logT(1 + x). 

The values of 'P have been tabulated by Gauss (Werke, Band iii, 

pp. 161-162). 

If we denote for an instant b~{a + b) by x, we find for the 

difference of the charges Ea and Eb, 

ab 

a + b 

7iab 

x -T-logsm™, 

cot 

dx 

7tI) 

a-f-o a + o 

When the spheres are equal the charge of each for potential 

Unityi8 . 1 
mi 2s(2s— 1) 

= a{\ — ^ -t- ^ j + &c.) 

= aloge 2 = -69314718a. 

When the sphere A is very small, compared with the sphere B, 

the charge on A is 

E* = \ 21 = i s\ approximately, 

ir2 a2 
or Ea = 

6 r 

T % 
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The charge on B is nearly the same as if A were removed, or 

Eb = b. 

The mean density on each sphere is found by dividing the 

charge by the surface. In this way we get 

_ Ea _ 7T 

(T° ~~ i-na2 24 b ’ 

Eh _ 1 

(Tb 4 77 b2 inb’ 

7r2 

Hence, if a very small sphere is made to touch a very large 

one, the mean density on the small sphere is equal to that on 

7T2 
the large sphere multiplied by y, or 1*644936. 

Application of Electrical Inversion to the case of a 

Spherical Bold. 

176. ] One of the most remarkable illustrations of the power of 

Sir W. Thomson’s method of Electrical Images is furnished by his 

investigation of the distribution of electricity on a portion of a 

spherical surface bounded by a small circle. The results of this 

investigation, without proof, were communicated to ML Liouville 

and published in his Joui'nal in 1847. The complete investigation 

is given in the reprint of Thomson’s Electrical Papers, Article 

XV. I am not aware that a solution of the problem of the dis¬ 

tribution of electricity on a finite portion of any curved surface 

has been given by any other mathematician. 

As I wish to explain the method rather than to verify the 

calculation, I shall not enter at length into either the geometry 

or the integration, but refer my readers to Thomson’s work. 

Distribution of Electricity on an Ellipsoid. 

177. ] It is shewn by a well-known method* that the attraction 

of a shell bounded by two similar and similarly situated and 

concentric ellipsoids is such that there is no resultant attraction 

on any point within the shell. If we suppose the thickness of 

the shell to diminish indefinitely while its density increases, we 

ultimately arrive at the conception of a surface-density varying 

as the perpendicular from the centre on the tangent plane, and 

* Thomson and Tait’s Natural Philosophy, § 520, or Art. 150 of this book. 
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since the resultant attraction of this superficial distribution on 

any point within the ellipsoid is zero, electricity, if so distributed 

on the surface, will be in equilibrium. 

Hence, the surface-density at any point of an ellipsoid undis¬ 

turbed by external influence varies as the distance of the tangent 

plane from the centre. 

Distribution of Electricity on a Dish 

By making two of the axes of the ellipsoid equal, and making 

the third vanish, we arrive at the case of a circular disk, and at an 

expression for the surface-density at any point P of such a disk 

when electrified to the potential V and left undisturbed by ex¬ 

ternal influence. If <r be the surface-density on one side of the 

disk, and if KPL be a chord drawn through the point P, then 

V 

2hW1cKPL 

Application of the Principle of Electric Inversion. 

178.] Take any point Q as the centre of inversion, and let R 
be the radius of the sphere of inversion. Then the plane of the 

disk becomes a spherical surface passing through Q} and the disk 

itself becomes a portion of the spherical surface bounded by a 

circle. We shall call this portion of the surface the bowl. 
If S' is the disk electrified to potential V' and free from external 

influence, then its electrical image S will be a spherical segment 

at potential zero, and electrified by the influence of a quantity 

V'R of electricity placed at Q. 
We have therefore by the process of inversion obtained the 

solution of the problem of the distribution of electricity on a bowl 

or a plane disk at zero potential when under the influence of an 

electrified point in the surface of the sphere or plane produced. 

Influence of an Electrified Point placed on the unoccupied 
part of the Spherical Surface. 

The form of the solution, as deduced by the principles already 

given and by the geometry of inversion, is as follows : 

If C is the central point or pole of the spherical bowl S, and 

if a is the distance from C to any point in the edge of the segment, 

then, if a quantity q of electricity is placed at a point Q in the 

surface of the sphere produced, and if the bowl S is maintained 
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at potential zero, the density u at any point P of the bowl will be 

1 q /CQ^a2 

" ~ 2 it 2QP2/ V tf-CP2’ 

CQ, CP) and QP being the straight lines joining the points, (7, Q, 

and P. 

It is remarkable that this expression is independent of the 

radius of the spherical surface of which the bowl is a part. It 

is therefore applicable without alteration to the case of a plane 

disk. 

Influence of any Number of Electrified Points. 

Now let us consider the sphere as divided into two parts, one 

of which, the spherical segment on which we have determined 

the electric distribution, we shall call the bowl, and the other 

the remainder, or unoccupied part of the sphere on which the 

influencing point Q is placed. 

If any number of influencing points are placed on the remainder 

of the sphere, the electricity induced by these on any point of the 

bowl may be obtained by the summation of the densities induced 

by each separately. 

179.] Let the whole of the remaining surface of the sphere be 

uniformly electrified, the surface-density being p, then the density 

at any point of the bowl may be obtained by ordinary integration 

over the surface thus electrified. 

We shall thus obtain the solution of the case in which the bowl 

is at potential zero, and electrified by the influence of the re¬ 

maining portion of the spherical surface rigidly electrified with 

density p. 

Now let the whole system be insulated and placed within a 

sphere of diameter f, and let this sphere be uniformly and rigidly 

electrified so that its surface-density is //. 

There will be no resultant force within this sphere, and therefore 

the distribution of electricity on the bowl will be unaltered, but 

the potential of all points within the sphere will be increased by 

a quantity V where y 277//. 

Hence the potential at every point of the bowl will now be V. 

Now let us suppose that this sphere is concentric with the sphere 

of which the bowl forms a part, and that its radius exceeds that 

of the latter sphere by an infinitely small quantity. 



SPHERICAL BOWL. 279 

We have now the case of the bowl maintained at potential V 
and influenced by the remainder of the sphere rigidly electrified 

with superficial density p -f p. 
180.] We have now only to suppose p + p' = 0, and we get the 

case of the bowl maintained at potential V and free from external 

influence. 

If or is the density on either surface of the bowl at a given point 

when the bowl is at potential zero, and is influenced by the rest 

of the sphere electrified to density p, then, when the bowl is main¬ 

tained at potential V9 we must increase the density on the outside 

of the bowl by p\ the density on the supposed enveloping sphere. 

The result of this investigation is that if / is the diameter of 

the sphere, a the chord of the radius of the bowl, and r the chord 

of the distance of P from the pole of the bowl, then the Burface- 

density a on the inside of the bowl is 

and the surface-density on the outside of the bowl at the same 

point is V 

In the calculation of this result no operation is employed 

more abstruse than ordinary integration over part of a spherical 

surface. To complete the theory of the electrification of a spherical 

bowl we only require the geometry of the inversion *of spherical 

surfaces. 

181.] Let it be required to find the surface-density induced at 

any point of the uninsulated bowl by a quantity q of electricity 

placed at a point Q, not now in the spherical surface produced. 

Invert the bowl with respect to Q, the radius of the sphere of 

inversion being & The bowl S will be inverted into its image S\ 
and the point P will have P' for its image. We have now to 

determine the density a at P/ when the bowl S' is maintained at 

potential V', such that q = VR, and is not influenced by any 

external force. 

The density <r at the point P of the original bowl is 

</I?3 

* ~ QP* 5 

this bowl being at potential zero, and influenced by a quantity q 
of electricity placed at Q. 
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The result of this process is as follows: 

Let the figure represent a section through the centre, 0, of the 

sphere, the pole, (7, of the bowl, and the influencing point Q> 

D is a point which corresponds in the inverted figure to the 

unoccupied pole of the rim of the 

bowl, and may be found by the 

following construction. 

Draw through Q the chords EQE' 

and FQFthen if we suppose the 

radius of the sphere of inversion to 

be a mean proportional between the 

segments into which a chord is 

divided at Q, E'Fr will be the image 

of EF. Bisect the arc F'CE' in D\ 

so that FD'=D'E\ and draw D'QD 

to meet the sphere in D. I) is the 

point required. Also through 0, the centre of the sphere, and Q 

draw HOQH' meeting the sphere in H and H'. Then if F be 

any point in the bowl, the surface-density at P on the side which 

is separated from Q by the completed spherical surface, induced 

by a quantity q of electricity at Q, will be 

q QH.QH’ <PQ,0D*-aKi PQ,CD*-a\^) 

2** HH\ PQ:i \DQ W2- CPV tan [ DQ v«* - CP*) J J» 

where a denotes the chord drawn from C, the pole of the bowl, 

to the rim of the bowl*. 

On the side next to Q the surface-density is 

a QH. QH' 

a ^ 2 tt HH\ PQ? * 

* { For further investigations of the electrical distribution on a bowl, see Ferrer’s 
Quarterly Journal of Math. 1882 ; Gallop., Quarterly Journal, 1886, p. 229. In this 

paper it is shewn that the capacity of the bowl « S*n.a) where a is the radius of 
If 

the sphere of which the bowl forma a part and a the semi-vertical angle of the cone 
passing through the edge of the bowl whose apex is the centre of the sphere. 
Bee also Kruseman * On the Potential of the Electric Field in the neighbourhood of a 
Spherical Bowl/ Phil, Mag. xxiv. 88, 1887. Basset, Proc. Lond. Math. Soe. xvi. 
p. 286.} 
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APPENDIX TO CHAPTER XI. 

{The electrical distribution over two mutually influencing spheres has 

occupied the attention of many mathematicians. The first solution, which 

was expressed in terms of definite integrals, was given by Poisson in two 

most powerful and fascinating papers, Mem. de VImtitut, 1811, (1) p. 1, 

(2) p. 163. In addition to those mentioned in the text the following 

authors among others have considered the problem. Plana, Mem, di 

Torino 7, p. 71, 16, p. 57 ; Cayley, Phil. Mag. (4), 18, pp. 119, 193; 

Kirchhoff, Crelle, 59, p. 89, Wied. Ann. 27, p. 673 ; Mascart, C. R, 98, 

p. 22*2, 1884. 

The series giving the charges on the spheres have been put in a very 

elegant form by Kirchhoff. They can easily be deduced as follows. 

Suppose the radii of the spheres whose centres are A, B are a, by their 

potentials V, V respectively, then if the spheres did not influence each 

other the electrical effect would be the same as that of two charges a Uy 

b V placed at the centres of the spheres. When the distance c between 

the centres is finite this distribution of electricity would not make the 

potentials over the spheres constant; thus the charge at A w^ould alter 

the potential of the sphere B. If we wish to keep this potential unaltered 

we must take the image of A in B and place a charge there, this charge 

however will alter the potential of A, bo we must take the image of this 

image and so on. Thus we shall get an infinite series of images which it 

will be convenient to divide into four sets a, ft, y, b. The first two sets 

are due to the charge at the centre of A, a comprises the images inside 

A, ft, the images inside the sphere B, the other two sets, y and b, are 

due to the charge at the centre of B\ y consists of those inside h of 

those inside A. Let pu, fn denote the charge and the distance from 

A of the nth image of the first set, p/, fn' the charge and the distance 

from B of the nth image of the second set, then we have the following 

relations between the consecutive images, 

,, V „ / Pnfn' 

>
 II 1 Pn — b ’ 

Jn+1 c-fn" a 

Eliminating and pn' from these equations we get 

_ _Pn{cfK+,-a2) 
r.+.-—~ab-> 

J. A J. a 
/•+> =-w’ 80 cfn+1~a = c’-o/.-y’ 

C-T 

C~fn 

but 
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but from (1) 

and thus 

Po+i 

Pn _ Ca—c/»-6,,r. 

P»+i 

J>» _ c/»-«8 

t’n-i 

;>» JP»_ _ ca—6*—a2 

a& 

. 1 1 1 , 
or if we put p,— p, p„-1= p—, P«+1= p~. we get 

h *n—i x«+l 

p +P -cP^JZ^p 

From the symmetry of the equations we see that if we put —■> we 

shall get the same sequence equation for Pn' as for Pn. 

From the sequence equation we see that 

P^Aa"+^-, 

where a and 1/a are the roots of the equation 

a2—or--' + 1 = 0. 
ab 

We shall suppose that a is the root which is less than unity. Then 

and the charge on the sphere due to this series of images is 

n s v Cl** 

^"> = 0 4a2n + fi’ 

To determine A and B we have the equations 

P<> = Ya =A + B> 

i>‘ = CZ^==^a + f: <Art-164> 

(a-f&a)2 
:nce -Q =-— = - r. say. 

**=• p(‘-«lr^-.+i4v+4v+ 
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Vn- A'a*n + jr 
, abU 1 

Po ~ — A'+ir' 

Pi = 
a*VU 

c (c2 — (a2 4- 6*)) A'a* + B' 
A'/B' = — a2, Hence 

, , <*bU ^ ( 1 a a3 ) 
,„d = -— «-•){,—,+ra+prr.+ •••}• 

Hence if EY and E% are the charges on the sphere, and if 

Ei = 1nU+VnV> 
£t=q„u+ ?iaF; 

?n = a(l-n|]Trp+i - fv+1 - tv + "■} ’ 

ab, o. ( 1 , o. a* ) 
?u=-7(l-“'))^+ra+ri^i+-4> 

^22 = 
_ f 1 a a2 ) 
6(l-r» ){-!--* + + HV + - j ’ 

where 
(6 + aa*) 

71 ~ c* 

These are the series given by Poisson and Kirchlioff. 

Since 

an 

n + 4r 

«f— 1 V Jo 

1 - 1 1 _ 
l-tp~2 p 

1 a» 1 

8i“^ df 
t*’1-\ 1 ’ 

r ompt 

2 Jo 
rc°ansin(2»loga+2logO^ 

i-jV“ ~ 2 2nloga+21ogf Jo eZw<—1 

V «“ _ 1 1 v 

1 — £2al“ 2 1—a ~ 2rcloga+21og£ 

— 2 i 
f® v ansin(27iloga*f 2logf)< 

J ©
 i 

N.
 r 

an / f2<log£ 

Now 
2«loga+21ogf 

dt 
i 1 — a(2<lo*“ ’ 

dt, 

and 
- sin(2*logf) — asin(2*logf/a) 

2a*sin(2nloga+2log£)* = —\— 
v * T ew 1 — 2a cos (2$loga)-|-afl 

hence 
f2<Iog* 

a€2tl°ga 

_„ r sin(2<iogf)~-aBin(gtiogf/a) ij( 
Jo —1)(1 — 2 a cos (2 dog a) 4* a2)) 

which is Poisson's intogral for these expressions.} 

* {De Morgan, IHy. and Int. Cal. p. 672.} 



CHAPTER XII. 

THEORY OF CONJUGATE FUNCTIONS IN TWO DIMENSIONS. 

182.] The number of independent cases in which the problem 

of electrical equilibrium has been solved is very small. The 

method of spherical harmonics has been employed for spherical 

conductors, and the methods of electrical images and of inversion 

ane still more powerful in the cases to which they can be applied. 

The case of surfaces of the second degree is the only one, as far 

as I know, in which both the equipotential surfaces and the lines 

of force are known when the lines of force are not plane curves. 

But there is an important class of problems in the theory of 

electrical equilibrium, and in that of the conduction of currents, 

in which we have to consider space of two dimensions only. 

For instance, if throughout the part of the electric field under 

consideration, and for a considerable distance beyond it, the 

surfaces of all the conductors are generated by the motion of 

straight lines parallel to the axis of z, and if the part of the 

field where this ceases to be the case is so far from the part con¬ 

sidered that the electrical action of the distant part of the field 

may be neglected, then the electricity will be uniformly dis¬ 

tributed along each generating line, and if we consider a part 

of the field bounded by two planes perpendicular to the axis of z 
and at distance unity, the potential and the distributions of 

electricity will be functions of x and y only. 

If pdxdy denotes the quantity of electricity in an element 

whose base is dx dy and height unity, and <r ds the quantity on an 

element of area whose base is the linear element ds and height 

unity, then the equation of Poisson may be written 

dW d2V 
a? + ^?+4*',=0- 
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When there is no free electricity, this is reduced to the equa¬ 

tion of Laplace, d2 F d2 V 

dx2 + dy2, ~~ 

The general problem of electric equilibrium may be stated as 
follows:— 

A continuous space of two dimensions, bounded by closed 
curves CXi C2, &c* being given, to find the form of a function, F, 
such that at these boundaries its value may be Vl9 F2, &c. re¬ 
spectively, being constant for each boundary, and that within 
this space F may be everywhere finite, continuous, and single 
valued, and may satisfy Laplace’s equation. 

I am not aware that any perfectly general solution of even 

this problem has been given, but the method of transformation 

given in Art. 190 is applicable to this case, and is much more 

powerful than any known method applicable to three dimen¬ 

sions. 

The method depends on the properties of conjugate functions 
of two variables. 

Definition of Conjugate Functions. 

183.] Two quantities a and (3 are said to be conjugate functions 

of x and y, if a 4* f — 1 /3 is a function of x+ \/— 1 y. 

It follows from this definition that 

da d!3 . da dB . . 

Si-Sy- “d % + = <’> 
d2a d2 a 

<M + dy2 

d?J3 d?J3 _ 

dx2 + dy2 

Hence both functions satisfy Laplace’s equation. Also 

dadfi 

dx dy 

da d& 

dy dx 
= R2. 

If x and y are rectangular coordinates, and if dsx is the inter¬ 

cept of the curve (/3 = constant) between the curves (a) and 

(a + da), and cfo2 the intercept of a between the curves (j3) and 

(/3 + dp), then _ ds2 _ 1 

and the curves intersect at right angles. 

If we suppose the potential F= TJ-f- ka, where k is some con¬ 
stant, then F will satisfy Laplace’s equation, and the curves (a) 
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will be equipotential curves. The curves (p) will be lines of 
force, and the surface-integral of R over unit-length of a cylin¬ 
drical surface whose projection on the plane of xy is the curve 

AB will be k (Pb~Pa), where Pa and pB are the values of P at 
the extremities of the curve. 

If there be drawn on the plane one series of curves corre¬ 
sponding to values of a in arithmetical progression, and another 
series corresponding to a series of values of P having the same 
common difference, then the two series of curves will everywhere 
intersect at right angles, and, if the common difference is small 
enough, the elements into which the plane is divided will be 
ultimately little squares, whose sides, in different parts of the 
field, are in different directions and of different magnitudes, being 
inversely proportional to JR. 

If two or more of the equipotential lines (a) are closed curves 
enclosing a continuous space between them, we may take these 
for the surfaces of conductors at potentials ^+kax, I£-f ka2, &c. 
respectively. The quantity of electricity upon any one of these 

k 
between the lines of force (flj) and (02) will be —(j32 —/Sj. 

The number of equipotential lines between two conductors 
will therefore indicate their difference of potential, and the 
number of lines of force which emerge from a conductor will 
indicate the quantity of electricity upon it. 

We must next state some of the most important theorems 
relating to conjugate functions, and in proving them we may use 
either the equations (l), containing the differential ct efficients, 
or the original definition, which makes use of imaginary 
symbols. 

184.] Theorem I. If x' and yf are conjugate functions with 
respect to x and y> and if x" and y" are also conjugate 
functions with respect to x and y} then the functions x' + x" 

and y' + y" will he conjugate-functions with respect to x 
and y. 

For 
dx dy . dx dy 

dx dy dx dy 

d(x' + x")^d(y' + y") 
dx dy 

therefore 
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Also 

GRAPHIC METHOD. 287 

__ dy' 
dy~ dx ’ & dy ~ dx ’ 

therefore dV+fQ = _ <W+£) 
dy dx 

or x' + x" and y' + y" are conjugate with respect to x and y. 

Graphic Representation of a Function which is the Sum 
of Two Given Functions. 

Let a function (a) of x and y be graphically represented by a 

series of curves in the plane of xy, each of these curves corre¬ 

sponding to a value of a which belongs to a series of such values 

increasing by a common difference, 6. 

Let any other function, (/3), of x and y be represented in the 

same way by a series of curves corresponding to a series of values 

of /3 having the same common difference as those of a. 

Then to represent the function (a + ft) in the same way, we must 

draw a series of curves through the intersections of the two former 

series, from the intersection of the curves (a) and (fi) to that of 

the curves (a + S) and (/5 —6), then through the intersection of 

(a+ 2 5) and (/3—2 5), and so on. At each of these points the 

function will have the same value, namely (a + fi). The next 

curve must be drawn through the points of intersection, of (a) 

and + of (a -f 6) and (/3), of (a 4* 2 h) and (£ — 5), and so on. 

The function belonging to this curve will be (a-f + 8). 

In this way, when the series of curves (a) and the series (/3) are 

drawn, the series (a -I- fi) may be constructed. These three series 

of curves may be drawn on separate pieces of transparent paper, 

and when the first and second have been properly superposed, 

the third may be drawn. 

The combination of conjugate functions by addition in this way 

enables us to draw figures of many interesting cases with very 

little trouble when we know how to draw the simpler cases of 

which they are compounded. We have, however, a far more 

powerful method of transformation of solutions, depending on the 

following theorem. 

185.] Theorem II. If x" and y” are conjugate functions with 

respect to the variables x' and y\ and if x' and y' are con¬ 
jugate functions with respect to x and y, then x,f and y/( will 

be conjugate functions with respect to x and y. 
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dx'_ dx dx”dy' 

dx' dx dy' dx * 

dy" dy' dy" dx' 
dy' dy dx' dy 

df. 
dy’ 

dx" dx' dx" dy' 
dx' dy dy' dy * 

dy"dy' _ dy^drf 
dy' dx dx' dx 

dy"> 

dy 1 

and these are the conditions that x" and y" should be conjugate 
functions of x and y. 

This may also be shewn from the original definition of conjugate 

functions. For xh + a/ — 1 y" is a function of x' + — 1 y\ and 

x' + */~ly' is a function of x -f V — 1 ?/. Hence, x" -f V — 1 y" 

is a function of x -f- V ~ 1 y. 

In the same way we may shew that if x' and y' are conjugate 
functions of x and y, then x and y are conjugate functions of x' 
and y'. 

This theorem may be interpreted graphically as follows:— 
Let x', y' be taken as rectangular coordinates, and let the 

curves corresponding to values of x" and of y" taken in regular 
arithmetical series be drawn on paper. A double system of 
curves will thus be drawn cutting the paper into little squares. 
Let the paper be also ruled with horizontal and vertical lines at 
equal intervals, and let these lines be marked with the corre¬ 
sponding values of x' and y\ 

Next, let another piece of paper be taken in which x and y are 
made rectangular coordinates and a double system of curves x\ y' 
is drawn, each curve being marked with the corresponding value 
of x' or y\ This system of curvilinear coordinates will correspond, 
point for point, to the rectilinear system of coordinates x\ yf on 
the first piece of paper. 

Hence, if we take any number of points on the curve x" on the 
first paper, and note the values of x' and y' at these points, and 

mark the corresponding points on the second paper, we shall find 

For 
dx" 

dx 

and 
dx" 
dy 
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a number of points on the transformed curve xIf we do the 

same for all the curves x", y" on the first paper, we shall obtain 

on the second paper a double series of curves x'\ y" of a different 

form, but having the same property of cutting the paper into 

little squares. 

186.] Theorem III. If V is any function of x' and y', and if 
x' and y' conjugate functions of x and y, then 

the integration being between the same limits. 

dV _dVdx' dVdyf 
iJk dx ~ dx' tlx + dyr dx * 
d2V_ dfV(dxV d2V dx'dy' tVV(dy\* 
dx2 ~~ dx'2'dx' 2 dx'dy' dx dx *** dy- 'dx ' + dy'Adx) 

dVd°-x' dVd2y\ 
+ dx dx1 + dy' dx* 5 

d2 V _ d2 V dx\* dfV_ dxf dy' (PV (dy\2 

aU dy* ~~ dx'2 ' dy ' + dx'dy' dy dy + dy'2 ^ dy' 
dVd2x' dV dry' 

+ dx' dy2 + dy' dy2 

Adding the last two equations, and remembering the conditions 

of conjugate functions .(1), we find 

d2V d2V __ dfVi,drfd2 ,dx\2l dfV((dy\2 (d£*\ 
dx2 + dy2 dx'2f^dx^ + 'dy' J dy'2cdx' 'dy ' j 

(d2V d2V, Ax! dy' dx'dy\ 

'dx'1 + dy'2' 'dx dy dy dx' 
Hence 

\d2V d2VN rr,d2V d2V,j . rcA2V d2V,( dx'dy' dx'dy\ , 7 

j/W* + dxdy ~JJ(dx'1 + c/y'J(dx dy dy dJd dy’ 

=jj(d71 + dr)dxdl/- 
If V is a potential, then, by Poisson’s equation 

d?V d2V A 

dx2 + dy2 + *** 

and we may write the result 

Jjpdxdy = JJ p'dx'dy', 

VOL. I. 
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or the quantity of electricity in corresponding portions of two 

systems is the same if the coordinates of one system are conjugate 

functions of those of the other. 

Additional Theorems on Conjugate Functions. 

187.] Theorem IV. If xx and yl9 and also ,r2 and y2, are 

conjugate functions of x ami y, then, if 

X = xvr,z-y1y.z, and Y = ■.rty., + x2yl, 

X and Y will he conjugate fund ions of x avid y. 

For X+ V-\ Y = {x{+ V-l2/,)(a-2+ V-\y.z). 

Theorem V. If <p he a solution of the equation 

<p<t> 
+ dif ~ ’ 

and if 2 R i 

+ ‘‘k 
) , and © = — tan~ 

P and 0 will he conjugate fun* tions of x and y 

or 11 and © are conjugate func 

are conjugate functions of x and y. 

d(f> 

( dx 

dy 

For 11 and © are conjugate functions of ^ and , and these 
ay ax 

Example I.—Inversion. 

188.] As an example of the general method of transformation 

let us take the case of inversion in two dimensions. 

If 0 is a fixed point in a plane, and 0 A a fixed direction, and 

if r — OP = aep: and 0 = A0Py and if xy y are the rectangular 

coordinates of P with respect to 0, 

p = log - Vx2 -f yly 6 = tan-1 - > 
a x 

x = aeP cos 6y y = aep sin 0, 

thus p and 0 are conjugate functions of x and y. 

If pf = np and 6/ — n6, p and 6' will be conjugate functions of 

p and 0. In the case in which n = — 1 we have 

, and 0' = — 0, (6) 

which is the case of ordinary inversion combined with turning 

the figure 180° from 0A. 
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Inversion in Two Dimensions. 

In this case if r and r' represent the distances of corresponding 
points from 0, e and e' the total electrification of a body, 8 and S' 
superficial elements, V and V' solid elements, cr and a' surface- 
densities, p and p' volume densities, <f> and <p' corresponding poten¬ 
tials, 

r' _ y ~ a2 ^ ?/2 _ a4 _ Z4 

r “ 8 r2 ~ a2 ’ V ~ r4 “ a4 ? 
___ <r' r2 a2 p' r4 a4 

£ * a2 r'2 p a4 r'4 ’ 
and since by hypothesis <// is got from <f> by expressing! 

the old variables in terms of the new, — = 1. 
<#> / 

Example II.— Elatric Images in Two Dimensions. 

189.] Let A be the centre of a circle of radius AQ = b at zero 
potential, and let E be a charge at A, 
then the potential at any point P is 

<£ = 2 E log ; (8) 

and if the circle is a section of a 
hollow conducting cylinder, the surface- 

E 
density at any point Q is — — g • 

Invert the system with respect to a point 0, making 

AO — mb, and a2 = (mi1 — I) b2; 

then the circle inverts into itself and we have a charge at A' 
equal to that at A} where 

AA'=h~. 
m 

The density at Q' is 
E b2-AA]2 

2 tt6 A'Q'2 ’ 

and the potential at any point P' within the circle is 

<//—<£ — 2E (logb — log AP), 
= 2E(logOP'-logAfP'~logm). (9) 

This is equivalent to the potential arising from a combination 
of a charge E at A\ and a charge — E at 0, which is the image 
of A' with respect to the circle. The imaginary charge at 0 is 
thus equal and opposite to that at A', 

u % 
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If the point F is defined by its polar coordinates referred to 

the centre of the circle, and if we put 

p = logr—log&, and p0 = log-4^4/ — logi>, 

then AF = be?, A A' = be% AO = be; (10) 

and the potential at the point (p, $) is 

<p = E log (e~~2p°~~2e~p0 & cos 9 -f e2p) 

— E log (e2po — 2 cos 0 -f e2p) + 2 J57p0. (11) 

This is the potential at the point (p, 0) due to a charge E, 

placed at the point (p0, 0), with the condition that when p = 0, 

<p = 0. 

In this case p and 9 are the conjugate functions in equations 

(5): p is the logarithm of the ratio of the radius vector of a 

point to the radius of the circle, and 0 is an angle. 

The centre is the only singular point in this system of coor- 

~ ds round a closed curve is 
as 

zero or 2ir, according as the closed curve excludes or includes 

the centre. 

Example III.—Neumanns Transformation of this Case*. 

190.] Now let a and 0 be any conjugate functions of x and yy 

such that the curves (a) are equipotential curves, aiid the curves 

(/3) are lines of force due to a system consisting of a charge of 

half a unit per unit length at the origin, and an electrified system 

disposed in any manner at a certain distance from the origin. 

Let us suppose that the curve for which the potential is a0 is 

a closed curve, such that no part of the electrified system except 

the half-unit at the origin lies within this curve. 

Then all the curves (a) between this curve and the origin 

will be closed curves surrounding the origin, and all the curves 

(/3) will meet in the origin, and will cut the curves (a) ortho¬ 

gonally. 

The coordinates of any point within the curve (</0) will be 

determined by the values of a and 0 at that point, and if the 

point travels round one of the curves (a) in the positive direc¬ 

tion, the value of 0 will increase by 2 ir for each complete circuit. 

If we now suppose the curve (a0) to be the section of the inner 

* See Crelle’e Journal, lix. p. 835, 1861, al»o Schwarz Crelle, Ixxiv. p. 218, 1872. 

dinates, and the line-integral / 
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surface of a hollow cylinder of any form maintained at potential 

zero under the influence of a charge of linear density E on a line 

of which the origin is the projection, then we may leave the 

external electrified system out of consideration, and we have for 

the potential at any point (a) within the curve 

</> = 2 E (a — a0), (12) 

and for the quantity of electricity on any part of the curve o0 

between the points corresponding to fa and /32, 

Q='-Efa-t3,). (13) 
6 7T 

If in this way, or in any other, we have determined the dis¬ 

tribution of potential for the case of a curve of given section 

when the charge is placed at a given point taken as origin, we 

may pass to the case in which the charge is placed at any other 

point by an application of the general method of transformation. 

Let the values of a and /3 for the point at which the charge is 

placed be ax and fay then substituting in equation (11) a — a0 

for p, —a0 for p0i since both vanish at the surface a — e0, and 

ft— fix for 0, we find for the potential at any point whose coor¬ 

dinates are a and /3, 

<f> = E log (1 — 2 ~2*<> cos (/3 — fa) -f e2 (•+«»-*«•)) 

— ^log(l —2ea~a* cos(/3 ——2E(al — aQ). (14) 

This expression for the potential becomes zero when a = a0, 
and is finite and continuous within the curve a0 except at the 

point (dj, fa), at which point the second term becomes infinite, 

and in the immediate neighbourhood of that point this term 

is ultimately equal to — 2 E log r\ where r' is the distance from 

that point. 

We have therefore obtained the means of deducing the 
solution of Green’s problem for a charge at any point within 
a closed curve when the solution for a charge at any other point 
is known. 

The charge induced upon an element of the curve a0 between 
the points /3'and + dp by a charge E placed at the point (aly fa) 
is, With the notation of Art. 183, 

ld<t> 

4 7T dSj 
ds2, 

where de1 is measured inwards and a is to be put equal to a0 

after dilferentiation. 
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This becomes, by (4) of Art. 183, 

1 </0 
4rr da 

dP, (a = au); 

i.e. 
E 1 — ^2(ai-«o) ? ^ 

2 7T 1 — 2 eOi cos (tf — yB,) -f- c1’("i~a«> 
(15) 

From this expression we may find the potential at any point 

(a,, /3j) within the closed curve, wrhen the value of the potential 

at every point of the closed curve is given as a function of 

and there is no electrification within the closed curve. 

For, by Art. 86, the part of the potential at (a,, /3l), due to the 

maintenance of the portion d/3 of the closed curve at the potential 

V is nV, where n is the charge induced on dfi by unit of electri¬ 

fication at (aJf /3j). Hence, if V is the potential at a point on 

the closed curve defined as a function of /3, and </> the potential 

at the point (alt/3t) within the closed curve, there being no 

electrification within the curve, 

.= 1 f2n_(1 Vd(i_ 

2ttJ0 l — 2e(ai-ao)CG3(fi — lj1) + es'ai-ai>) * 

Example IV.—Distribution of Electricity near an Edge of a 

Conductor formed hy Two Plane Faces. 

191.] In the case of an infinite plane face y = 0 of a con¬ 

ductor, extending to infinity in the negative direction of y, 

charged with electricity to the surface-density rr0, wre find for 

the potential at a distance y from the plane 

r= e — 4 17 rr() y, 
where C is the value of the potential of the conductor itself. 

Assume a straight line in the plane as a polar axis, and trans¬ 

form into polar coordinates, and we find for the potential 

T7 = C— 4 71 o-0aep sin 0, 

and for the quantity of electricity on a parallelogram of breadth 

unity, and length measured along the axis 

E = (T^ae*. 

Now let us make p = np and 0 = n 6\ then, since p and $' 

are conjugate to p and 6, the equations 

V = C — 4 7T(r0aenp/ sin n O' 

and E — cr()aenp' 

express a possible distribution of potential and of electricity. 
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If we write r for aep\ r will be the distance from the axis ; we 

may also put 0 instead of 6' for the angle. We shall then have 

V = C—ino-Q-^amnO, 

V will be equal to C whenever ri0 = ir or a multiple of tt. 

Let the edge be a salient angle of the conductor, the inclination 

of the faces being a, then the angle of the dielectric is 2ir — a, so 

that when 6 = 2 it —a the point is in the other face of the con¬ 

ductor. We must therefore make 

n (2TT — a) = 77, or n — 

V=C-4Tr<r0a(-) 
. 7t6 

-) sm ~ — i 
a' 2 7r — a 

The surface-density <r at any distance r from the edge is 

When the angle is a salient one a is less than 7r, and the 

surface-density varies according to some inverse power of the 

distance from the edge, so that at the edge itself the density 

becomes infinite, although the whole charge reckoned from the 

edge to any finite distance from it is always finite. 

Thus, when a = 0 the edge is infinitely sharp, like the edge of 

a mathematical plane. In this case the density varies inversely 

as the square root of the distance from the edge. 

7T 
When a = ~ the edge is like that of an equilateral prism, and 

the density varies inversely as the |th power of the distance. 

7T 
When a = - the edge is a right angle, and the density is in- 

versely as the cube root of the distance. 

2 7T 
When a = *— the edge is like that of a regular hexagonal 

u 
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prism, and the density is inversely as the fourth root of the 

distance. 

When a = 7r the edge is obliterated, and the density is con¬ 

stant. 

When a = £ tt the edge is like that of the outside of the 

hexagonal prism, and the density is directly as the square 

root of the distance from the edge. 

When a = f 7r the edge is a re-entrant right angle, and the 

density is directly as the distance from the edge. 

When a = |ir the edge is a re-entrant angle of 60°, and the 

density is directly as the square of the distance from the edge. 

In reality, in all cases in which the density becomes infinite 

at any point, there is a discharge of electricity into the dielectric 

at that point, as is explained in Art. 55. 

Example V.—Ellipses and Hyperbolas. Fig. X. 

192.] We see that if 

= e* cos yx = e* sin (1) 

xx and yx will be conjugate functions of </> and \f/. 

Also, if cos y2 — — e~* sin \f/, (2) 

x2 and y2 will be conjugate functions of <f> and \jr. Hence, if 

2x = xY + z2 = (6*4-<r*)cos^, 2y = y2 = €~^)sini/r, (3) 

x and y will also be conjugate functions of </> and 

In this case the points for which 0 is constant lie on the ellipse 
whose axes are e* + e~* and e^ — cr^. 

The points for which \js is constant lie on the hyperbola whose 
axes are 2 cos \fr and 2 sin \jr. 

On the axis of x, between x = — 1 and x = + 1, 

4> — 0, yj/ = cos"1 x. (4) 

On the axis of xy beyond these limits on either side, we have 

x> 1, \jr 2mry </> = log(#+V#2—1), 

XK. — 1, yfr = (271 + l)7rt = log (Vx2 — 1 — x). (6) 

Hence, if 0 is the potential function, and \jr the function of 
flow, we have the case of electricity flowing from the positive 
to the negative side of the axis of x through the space between 
the points — 1 and + 1, the parts of the axis beyond these lizpits 
being impervious to electricity. 
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Since, in this case, the axis of y is a line of flow, we may 

suppose it also impervious to electricity. 

We may also consider the ellipses to be sections of the equi- 

potential surfaces due to an indefinitely long flat conductor of 

breadth 2, charged with half a unit of electricity per unit of 

length. {This includes the charge on both sides of the flat 

conductor.} 

If we make \fs the potential function, and <f> the function of 

flow, the case becomes that of an infinite plane from which 

a strip of breadth 2 has been cut away and the plane on 

one side charged to potential tt while the other remains at 

zero potential. 

These cases may be considered as particular cases of the 

quadric surfaces treated of in Chapter X. The forms of the 

curves are given in Fig. X. 

Example VI.—Fig. XL 

193.] Let us next consider xf and y' as functions of x and y, 

where 

x' — h log yl, y' = b tan-1 ^, (6) 
x 

x' and yf will be also conjugate functions of the <p and \j/ of 

Art. 192. 

The curves resulting from the transformation of Fig. X with 

respect to these new coordinates are given in Fig. XI. 

If x' and yf are rectangular coordinates, then the properties of 

the axis of x in the first figure will belong to a series of lines 

parallel to x' in the second figure for which yf = bn'n, where n' 

is any integer. 

The positive values of xf on these lines will correspond to 

values of x greater than unity, for which, as we have already 

seen, 

\f/mr9 </> = log(#+ V'#2— 1) = log(e^ -f c6—l). (7) 

The negative values of x' on the same lines will correspond 

to values of x less than unity, for which, as we have seen, 
x' 

</> = 0, \fr = COS-1 x = cos”1 cb. (8) 

The properties of the axis of y in the first figure will belong 

to a series of lines in the second figure parallel to x\ for which 

2/'= + (9) 
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The value of \f/ along these lines is \fr = tt(yi + i) for all points 

both positive and negative, and 
x[ /~2? 

<P = log(2/4- Jyl+ 1) = log (a6 + /V cA+l). (10) 

[The curves for which <f> and \j/ are constant may be traced 

directly from the equations 

xf = i b log i (e2* + e~2<t> 4- 2 cos 2 \^), 

yf —b tan-3 (C~—--- tan \ls) • 

As the figure repeats itself for intervals of irb in the values of 

yr it will be sufficient to trace the lines for one such interval. 

Now there will be two cases, according as </> or yf/ changes sign 

with y\ Let us suppose that <£ so changes sign. Then any 

curve for which \j/ is constant will be symmetrical about the 

axis of xcutting that axis orthogonally at some point on its 

negative side. If we begin writh this point for which </> = 0, and 

gradually increase $, the curve will bend round from being at 

first orthogonal to being, for large values of <p, at length parallel 

to the axis of x', The positive side of the axis of x! is one of the 

system, viz. \fr is there zero, and when y'~±h'nbi \j/ = \tt. 

The lines for which \j/ has constant values ranging from 0 to £ 7? 

form therefore a system of curves embracing the positive side of 

the axis of x\ 

The curves for which $ has constant values cut the system y\r 

orthogonally, the values of </> ranging from +00 to — oo. For 

any one of the curves </> drawTn above the axis of x' the value of 

<l> is positive, along the negative side of the axis of x the value 

is zero, and for any curve below the axis of x' the value is 

negative. 

We have seen that the system \j/ is symmetrical about the axis 

of x'; let PQR be any curve cutting that system orthogonally 

and terminating in P and R in the lines y'— ±\^b, the point 

Q being in the axis of x\ Then the curve PQR is symmetrical 

about the axis of of, but if c be the value of <#> along PQ, 

the value of <f> along QR will be — c. This discontinuity in the 

value of (j> will be accounted for by an electrical distribution in 

the case which will be discussed in Art. 195. 

. If we next suppose that \j/ and not </> changes sign with y\ the 

values of <f> will range from 0 to oo. When <f> = 0 we have the 
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negative side of the axis of x\ and when $ = oo we have a line 

at an infinite distance perpendicular to the axis of x'. Along any 

line PQR between these two cutting the ^ system orthogonally the 

value of 4> is constant throughout its enti e length and positive. 

Any value \j/ now experiences an abrupt change at the point 

where the curve along which it is constant crosses the negative 

side of the axis of x', the sign of \p changing there. The sig¬ 

nificance of this discontinuity will appear in Art. 197. 

The lines we have shewn how to trace are drawn in Fig. XI 

if we limit ourselves to two-thirds of that diagram, cutting off 

the uppermost third ] 

194. ] If we consider </> as the potential function, and \// as the 

function of flow, we may consider the case to be that of an in¬ 

definitely long strip of metal of breadth irb with a non-conducting 

division extending from the origin indefinitely in the positive 

direction, and thus dividing the positive part of the strip into two 

separate channels. We may suppose this division to be a narrow 

sLt in the sheet of metal. 

If a current of electricity is made to flow along one of these 

divisions and back again along the other, the entrance and exit 

of the current being at an infinite distance on the positive side 

of the origin, the distribution of potential and of current will be 

given by the functions </> and ^ respectively. 

If, on the other hand, we make V7 potential, and </> the 

function of flow, then the case will be that of a current in the 

general direction of y\ flowing through a sheet in which a number 

of non-conducting divisions are placed parallel to x\ extending 

from the axis of y to an infinite distance in the negative 

direction. 

195. ]. We may also apply the results to two important cases 

in statical electricity. 

(1) Let a conductor in the form of a plane sheet, bounded by 

a straight edge but otherwise unlimited, be placed in the plane 

of xz on the positive side of the origin, and let two infinite con¬ 

ducting planes be placed parallel to it and at distances inb on 

either side. Then, if ^ is the potential function, its value is 0 

for the middle conductor and l n for the two planes. 

Let us consider the quantity of electricity on a part of the 

middle conductor, extending to a distance 1 in the direction of 0, 

and from the origin to xf = a. 
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The electricity on the part of this strip extending from a?/ to 

X2 *S 4^ 

Hence from the origin to x' — a the amount on one side of the 

middle plate is 

E = ~ l°g(y+ \/1 eh~l)* (11) 

If a is large compared with b, this becomes 

E = --log 
4tt 0 

_ + ft log, 2 /12) 

47t6 

Hence the quantity of electricity on the plane bounded by 

the straight edge is greater than it would have been if the elec¬ 

tricity had been uniformly distributed over it with the same 

density that it has at a distance from the bounda^, and it is 

equal to the quantity of electricity having the same uniform 

surface-density, but extending to a breadth equal to fclogtf2 

beyond the actual boundary of the plate. 

This imaginary uniform distribution is indicated by the dotted 

straight lines in Fig. XI. The vertical lines represent lines of 

force, and the horizontal lines equipotentiai surfaces, on the 

hypothesis that the density is uniform over both planes, pro¬ 

duced to infinity in all directions. 

196.] Electrical condensers are sometimes formed of a plate 

placed midway between two parallel plates extending con¬ 

siderably beyond the intermediate one on all sides. If the 

radius of curvature of the boundary of the intermediate plate 

is great compared with the distance between the plates, we 

may treat the boundary as approximately a straight line, and 

calculate the capacity of the condenser by supposing the inter¬ 

mediate plate to have its area extended by a strip of uniform 

breadth round its boundary, and assuming the surface-density 

on the extended plate the same as it is in the parts not near the 

boundary. 

Thus, if S be the actual area of the plate, L its circumference, 

and B the distance between the large plates, we have 

(13) 
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and the breadth of the additional strip is 

so that the extended area is 

S' = S+ log.2 BL. 

The capacity of one side of the middle plate is 
1 S' 1 (£ rl. „) 

(») 

(15) 

(16) 

Corrections for the Thickness of the Plate. 

Since the middle plate is generally of a thickness which 
cannot be neglected in comparison with the distance between 
the plates, we may obtain a better representation of the facts 
of the case by supposing the section of the intermediate plate 
to correspond with the curve \js = \f/'. 

The plate will be of nearly uniform thickness, j3 = 2b\f/'} at a 
distance from the boundary, but will be rounded near the edge. 

The position of the actual edge of the plate is found by putting 

V' = °> whence x' _ b ]og# cos ^ (17) 

The value of </> at this edge is 0, and at a point for which 
xr as a (a/b being large) it is approximately 

a + b loga 2 

Hence, altogether, the quantity of electricity on the plate is 
the same as if a strip of breadth 

| (log. 2 +log. COB Jj), 

i-e- ^ log. (2 cos (18) 

had been added to the plate, the density being assumed to be 
everywhere the same as it is at a distance from the boundary. 

Density near the Edge. 

The surface-density at any point of the plate is 
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The quantity within brackets rapidly approaches unity as x' 
increases, so that at a distance from the boundary equal to n 
times the breadth of the strip a, the actual density is greater 

than the normal density by about of the normal density. 

In like manner we may calculate the density on the infinite 

planes ^ 
l pb 

(20) 
4 ah 

+ 1 

When x' = 0, the density is 2~* of the normal density. 

At u times the breadth of the strip on the positive side, the 

density is less than the normal density by about of the 
z 

normal density. 

At n times the breadth of the strip on the negative side, the 

density is about of the normal density. 
z 

These results indicate the degree of accuracy to be expected in 

applying this method to plates of limited extent, or in which 

irregularities may exist not very far from the boundary. The 

same distribution would exist in the case of an infinite series of 

similar plates at equal distances, the potentials of these plates 

being alternately + V and — V. In this case we must take the 

distance between the plates equal to B. 
197.] (2) The second case we shall consider is that of an 

infinite series of planes parallel to x z at distances B = and 

all cut off by the plane of y'z, so that they extend only on the 

negative side of this plane. If we make <£ the potential function, 

we may regard these planes as conductors at potential zero. 

Let us consider the curves for which $ is constant. 

When yf = n it 6, that is, in the prolongation of each of the 

planes, we have = b log J (S + <r>>, (21) 

when y' = (n + £)7r£>, that is in the intermediate positions 

b\og\((& — e-*). (22) 

Hence, when </> is large, the curve for which <f> is constant is 

an undulating line whose mean distance from the axis of y' is 

approximately a = b(<f>~ log, 2), (23) 
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and the amplitude of the undulations on either side of this line is 

<t> -L p~4> 

Wog^. <«> 

When <j> is large this becomes be~2<^ so that the curve ap¬ 

proaches to the form of a straight line parallel to the axis of y' 

at a distance a from that axis on the positive side. 

If we suppose a plane for which x' = a, kept at a constant 

potential while the system of parallel planes is kept at a different 

potential, then, since b<f> = a 4-6 log* 2, the surface-density of 

the electricity induced on the plane is equal to that which 

would have been induced on it by a plane parallel to itself at 

a potential equal to that of the series of planes, but at a distance 

greater than that of the edges of the planes by b log€ 2. 

If B is the distance between two of the planes of the series, 

B — irb, so that the additional distance is 

(25) 
7T 

198.] Let us next consider the space included between two 

of the equipotential surfaces, one of which consists of a series of 

parallel waves, while the other corresponds to a large value 

of <#>, and may be considered as approximately plane. 

If D is the depth of these undulations from the crest to the 

trough of each wave, then we find for the corresponding value of </>, 
D 

<P=i log-£—• (26) 

eb -1 

The value of x' at the crest of the wave is 

b log i (efi + e~~*). (27) 

* Hence, if A is the distance from the crests of the waves to 

* Let ♦ be the potential of the plane, <p of the undulating surface. The quantity 
of electricity on the plane per unit area is 14-4 wb. Hence the capacity 

« l4-4ird(*-$>), 

« l4-4»r(i4 + a'), suppose. 

Then A + — b (♦ — <f>). 

But A + 6log\ (e* + e"*) = b (♦-log 2) ; 

a'= —b<p + b (log 2 + log t (e* + e~*)) 

*= hlog(l + e~^) 

«= b log 
2 

by (26). n » 

l + e~b 
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the opposite plane, the capacity of the system composed of the 

plane surface and the undulating surface is the same as that of 

two planes at a distance A + a, where 

°' = flog.—2—ir <28) 
1+ enR 

199.] If a single groove of this form be made in a conductor 

having the rest of its surface plane, and if the other conductor is 

a plane surface at a distance A, the capacity of the one conductor 

with respect to the other will be diminished. The amount of 

this diminution will be less than the ^th part of the diminution 

due to n such grooves side by side, for in the latter case the 

average electrieal force between the conductors will be less than 

in the former case, so that the induction on the surface of each 

groove will be diminished on account of the neighbouring 

grooves. 

If L is the length, B the breadth, and D the depth of the 

groove, the capacity of a portion of the opposite plane whose 

area is S will be 

S-LB ^_LB__ J$ LB^  o' 

4rn A * 47r(A + a) 4 7rA 4ttA A+a ^ 

If A is large compared with B or a\ the correction becomes 

by (28) LB* 2 

4? IP1'*' —S' <30> 
1+e u 

and for a slit of infinite depth, putting D = go , the correction is 

L B1 

4^IO=-2- <31> 

To find the surface-density on the series of parallel plates we 

must find <r = — when 0 = 0. We find 
4tt ax 

The average density on the plane plate at distance A from the 

edges of the series of plates is cF = • Hence at a distance 
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from the edge of one of the plates equal to na the surface- 

density is of this average density. 

200.] Let us next attempt to deduce from these results the 

distribution of electricity in the figure {a series of co-axial 

cylinders in front of a plane} formed by rotating the plane of 

the figure in Art. 197 about the axis 2/'= — R. In this case, 

Poisson’s equation will assume the form 

drV d2V 

dx'2 + dy'2 ' 

1 dV 
+4irp = 0. (33) 

R+y'dy' 

Let us assume V— <f), the function given in Art. 193, and 

determine the value of p from this equation. We know that the 

first two terms disappear, and therefore 

1 1 d(t> 
p~ 4 -rtit + y'dy'' (3 ^ 

If we suppose that, in addition to the surface-density already 

investigated, there is a distribution of electricity in space ac¬ 

cording to the law just stated, the distribution of potential will 

be represented by the curves in Fig. XI. 

Now from this figure it is manifest that is generally very 

small except near the boundaries of the plates, so that the new 

distribution may be approximately represented by a certain 

superficial distribution of electricity near the edges of the plates. 

If therefore we integrate J'j'pdx'dyf between the limits y'~Q 

and y' = ~ b, and from x = —oc to x = + oc , we shall find the 

whole additional charge on one side of the plates due to the 

curvature. 

Since ““ — 
dy dx 

7, we have 

.jdx-L 
i 

4 7r JR -f* i/ dx* 

1 

VOL. I. 

_1_ 
4 ir R + y‘ 

l l 

8 72 + 2/' 
x 

7 ('/'.-V'-oo) 

(35) 
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Integrating with respect to y', we find 

[*r j •, / 1 12R + B. 2R + B . . 
J. }.jdxdy = 5-5 —b- l0s 2K (36) 

= - + &c. (37) 
32 R 192 R2, v 7 

This is half the total quantity of electricity which we must 

suppose distributed in space near the edge of one of the cylinders 

per unit of circumference. Since it is only close to the edge of 

the plate that the density is sensible, we may suppose the elec¬ 

tricity all condensed on the surface of the plate without altering 

sensibly its action on the opposed plane surface, and in calcu¬ 

lating the attraction between that surface and the cylindric 

surface we may suppose this electricity to belong to the cylindric 

surface. 

If there had been no curvature the superficial charge on the 

positive surface of the plate per unit of length would have been 

r° 1 d<t> 7 , 1 /f , * 1 

~]-^dy'dx = 
Hence, if we add to it the whole of the above distribution, this 

charge must be multiplied by the factor (l + to get the total 

charge on the positive side*. 

f In the case of a disk of radius R placed midway between two 

* Since there is a charge on the negative side of the plate equal to that on the 
positive side, it would seem that the total charge on the cylinders per unit cir¬ 

cumference is — ifl + t so that the correction for curvature is (1 + and not 
4v 4 Iv x 4 it7 

(l + g aa *n the text. } 

+ [In Art. 200, in estimating the total space distribution we might perhaps more 

correctly take for it the integral JJ*p2ir (R + yf) fix' dy\ which gives, per unit circum¬ 

ference of the edge of radius J?, — thus leading to the same correction as in the 

text. 
The case of the disk may be treated in like manner as follows : 
Let the figure of Art. 195 revolve round a line perpendicular to the plates and at a 

distance + Ji from the edge of the middle one. That edge will therefore envelope a 
circle, which will be the edge of the disk. As in Art. 200, we begin with Poisson’s 
equation, which in this case will be 

J*V <PV 1 dV A 

dy'* + dx% ti — x’ dx' + 

We now assume that V = the potential function of Art. 195. We must therefore 
suppose electricity to exist in the region between the plates whose volume density p is 

1 1 df 

iff K —x' dsc' * 
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infinite parallel plates at a distance J3, we find for the capacity 

of a disk -R2 log,, 2 

The total amount is 

~+2- °‘-R+\B. 
a is 

2p JR p.2n(T{ — x)dx dy'. 

(38) 

Now if jR is large in comparison with the distance between the plates this result 
will be seen, on an examination of the potential lines in Fig. XI, to be sensibly the 

a: 
dip 
dx' 

dx' dy'; that is, — $ ir B. 

The total surface distribution it we include both sides of the disk is 

*R 

^ (R-X')(df\ dx■ 
J 0 v»* / = 0 

J\ * 
Jo ”''0 

! — ^ l°g ^ b + \/e 1 — 1 ^ dxf 

~f0 *")!*' 

Mog (l + dt. 

To evaluate the latter integral put 

. Vl-c~2C = l-t, 

we get approximately if Jl/h is large 

R 

Jb log {l+ 

2 It 

b 

log ( (2-0(~ 

i(iog-2}--| log 2 (-i»g 2 - 2” r -.Vi 

so that the quantity of electricity on the plate 

R* 
“~2 b 

1 h , — h 1 
It log 2 — - {IogS}* + ->Vl 

Since the difference of potential of the plates — - and B *= ir&, the capacity is U 
IP 2 B B B^*~* 11 rr9 1 

IT + ;*>*3 + 4- + aPClog2)*- ?2n.1 r»-p - l2-2^2)*' 

a result which is leas than that in the text by -28 J3 nearly.] 

X 2 
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Theoi'y of Thomsons Guard-ring. 

201.] In some of Sir W. Thomson’s electrometers, a large plane 

surface is kept at one potential, and at a distance A from this 

surface is placed a plane disk of radius R surrounded by a large 

plane plate called a Guard-ring with a circular aperture of radius 

R' concentric with the disk. This disk and plate are kept at 

potential zero. 

The interval between the disk and the guard-plate may be 

regarded as a circular groove of infinite depth, and of breadth 

R' — R, which we denote by B. 

The charge on the disk due to unit potential of the large disk. 
Jt2 

supposing the density uniform, would be-~j« 

The charge on one side of a straight groove of breadth B and 

length i = 2 7r jR, and of infinite depth, may be estimated by 

the number of lines of force emanating from the largo disk and 

falling upon the side of the groove. Referring to Art. 197 and 

footnote we see that the charge will therefore be 

ILBx 1 

i.e. i 

47rb 9 

RB 

XA+a'* 

since in this case <1>= 1, $ = 0, and therefore b — A + a. 

But since the groove is not straight, but has a radius of curv- 

ature R, this must be multiplied by the factor (l -f J 

The whole charge on the disk is therefore 

JR2 . RB / B , 

U+ir+a'(1 + 2B) 

B2 + B'2 B'2 — B2 , 

8 A 8 A A-f* a 

The value of a cannot be greater than 

= 0.22 B nearly. 

(39) 

(40) 

If B is small compared with either A or R this expression will 

give a sufficiently good approximation to the charge on the disk 

due to unity of difference of potential. The ratio of A to jR 

* {If we take the correction for curvature to be (l + see footnote p. 306, the 

charge on the disk will be less than that given in the text by Ba/16 (A + a').} 
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may have any value, but the radii of the large disk and of the 

guard-ring must exceed R by several multiples of A. 

Example VII.—Fig. XII. 

202.] Helmholtz, in his memoir on discontinuous fluid motion*, 

has pointed out the application of several formulae in which the 

coordinates are expressed as functions of the potential and its 

conjugate function. 

One of these may be applied to the case of an electrified plate 

of finite size placed parallel to an infinite plane surface connected 

with the earth. 

Since xl = A<f> and yx — Axf/, 

and also x2 = A e* cos \j/ and y2 = Aefi sin xf/, 

are conjugate functions of $ and \f/, the functions formed by 

adding xx to x2 and yx to y2 will be also conjugate. Hence, if 

x = A(f) -f Ae* cos \f/, 

y — A \js+ A e* sin \f>, 

then x and y will be conjugate with respect to <f> and \f/, and <f> 

and \fr will be conjugate with respect to x and y. 

Now let x and y be rectangular coordinates, and let Jc\f/ be the 

potential, then k<p will be conjugate to k\j/f k being any constant. 

Let us put \j/ = 7r, then y = An, x = A(<f> — efi). 

If 4> varies from — to 0, and then from 0 to -f oo , x varies 

from — oo to — A and from — A to — oo . Hence the equipotential 

surface, for which ^ = tt, is a plane parallel to xz at a distance 

b = 7r A from the origin, and extending from x— —<x> to x — — A. 

Let us consider a portion of this plane, extending from 

x = — (A + a) to x — — A and from z = 0 to z — c, 

let us suppose its distance from the plane of xz to be y = b = A n, 

and its potential to be V = k \jr = k n. 

The charge of electricity on the portion of the plane considered 

is found by ascertaining the values of </> at its extremities. 

We have therefore to determine <f> from the equation 

x — —(A 4-a) = A (<f) ~ e*), 

c/> will have a negative value <f>x and a positive value <f>.2; at the 

edge of the plane, where x = — A, <f) = 0. 

Hence the charge on the one side of the plane is — ck<f>x~ in, 

and that on the other side is c kcf>2 ~ 4 tt. 

* Monatsberichte der Kdnigl. AJcad. der Wiesemchaften, zu Berlin, April 23,1868, 

p. 215. 
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Both these charges are positive and their sura is 

4 77 

If we suppose that a is large compared with A, 

, _ Cl A 1 + e 
$1-—1 -he 

<£2 = log + 1 + {a + 1 + &c*)| ‘ 

If we neglect the exponential terras in fa we shall find that 

the charge on the negative surface exceeds that which it would 

have if the superficial density had been uniform and equal to 

that at a distance from the boundary, by a quantity equal to the 

charge on a strip of breadth A ~ ~ with the uniform superficial 

density. 

The total capacity of the part of the plane considered is 

The total charge is CV, ami the attraction towards the infinite 

plane, whose equation is y — 0 and potential ^ = 0, is 

A 

,dC 

=fV£t.(' + , A a 
i-H-log-r 

+ e 1 + &c.) 

V*cf b b* air , ) 
= 0 7-2) a + - — -0- log y- + &c. \ • 

8 77 O2 v 7T 7T20- ° b ) 

The equipotential lines and lines of force are given in Fig. XII. 

Example VIII. Theory of a Grating of Parallel Wires. Fig. XIII. 

203.] In many electrical instruments a wire grating is used to 

prevent certain parts of the apparatus from being electrified by 

induction. We know that if a conductor be entirely surrounded 

by a metallic vessel at the same potential with itself, no elec¬ 

tricity can be induced on the surface of the conductor by any 

electrified body outside the vessel. The conductor, however, 

when completely surrounded by metal, cannot be seen, and 

therefore, in certain cases, an aperture is left which is covered 

with a grating of fine wire. Let us investigate the effect of this 
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grating in diminishing the effect of electrical induction. We 

shall suppose the grating to consist of a series of parallel wires 

in one plane and at equal intervals, the diameter of the wires 

being small compared with the distance between them, while 

the nearest portions of the electrified bodies on the one side and 

of the protected conductor on the other are at distances from the 

plane of the screen, which are considerable compared with the 

distance between consecutive wires. 

204.] The potential at a distance r from the axis of a straight 

wire of infinite length charged with a quantity of electricity A 

per unit of length is 7=-2Alogr' + G • (1) 

We may express this in terms of polar coordinates referred to 

an axis whose distance from the wire is unity, in which case we 

must make ?»'2 | — 2 v cos 6 4- r*2, (2 j 

and if we suppose that the axis of reference is also charged with 

the linear density A', we find 

F= — A log (1 — 2rcos0 + r2) — 2 A'log r + (7. (3) 

If we now make 

0 = 
2 77 x 

then, by the theory of conjugate functions, 

'ivy 

f = r(! ~ ^ 27r* 
4rry - n V 

2e cos——’ -he a ) — 2A'loge ft -f C, 
a 

M) 

00 

where x and y are rectangular coordinates, will be the value of 

the potential due to an infinite series of fine wires parallel to 2 

in the plane of xz, and passing through points in the axis of x 

for which x is a multiple of a, and to planes perpendicular to the 

axis of y. 

Each of these wires is charged with a linear density A. 

The term involving A' indicates an electrification, producing a 

constant force in the direction of y. 
a 

The forms of the equipotential surfaces and lines of force when 

A' = 0 are given in Fig. XIII. The equipotential surfaces near 

the wires are nearly cylinders, so that we may consider the 

solution approximately true, even when the wires are cylinders 

of a diameter which is finite but small compared with the dis¬ 

tance between them. 
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The equipotential surfaces at a distance from the wires become 

more and more nearly planes parallel to that of the grating. 

If in the equation we make y—bv a quantity large compared 

with a, we find approximately, 

(A -f A ') + C nearly. (6) 
ct 

If we next make ?/ = ~~b21 where b2 is a positive quantity large 

compared with (/., we find approximately, 

\ C nearly. (7) 

If c is the radius of the wires of the grating, c being small 

compared with a, we may find the potential of the grating itself 

by supposing that the surface of the wire coincides with the 

equipotential surface which cuts the plane of xz at a distance c 

from the axis of 0. To find the potential of the grating we 

therefore put x=c, and y = 0, whence 

F= — 2 A log^ 2 sin — + C. (8) 

205.] We have now obtained expressions representing the 

electrical state of a system consisting of a grating of wires 

whose diameter is small compared with the distance between 

them, and two plane conducting surfaces, one on each side of 

the grating, and at distances which are great compared with 

the distance between the wires. 

The surface-density 0-, on the first plane is got from the 

equation (6) dV. 4w. 

47r<T‘= db1 ~ « ^(9) 

that on the second plane ir2 from the equation (7) 

If we now write 

4wct-2 = 
dV.z 

db, 
(10) 

a = r.M*-?)' (ii) 

and eliminate c, A and A' from the equations (6), (7), (8), (9), (10), 
we find 

4^1(b1 + ba+b-^) = V1(l + ^)-Vi-V^, (12) 

4n<Ti[b1 + b2+^) = -V1+ J£(l + • (13) 
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When the wires are infinitely thin, a becomes infinite, and the 

terms in which it is the denominator disappear, so that the case 

is reduced to that of two parallel planes without a grating in¬ 

terposed. 

If the grating is in metallic communication with one of the 

planes, say the first, V = Vv and the right-hand side of the 

equation for <r, becomes Vx—Vv Hence the density <r1 induced 

on the first plane when the grating is interposed is to that 

which would be induced on it if the grating were removed, 

the second plane being maintained at the same potential, as 

i to i + • 

We should have found the same value for the effect of the 

grating in diminishing the electrical influence of the first surface 

on the second, if we had supposed the grating connected with 

the second surface. This is evident since bx and b2 enter into 

the expression in the same way. It is also a direct result of the 

theorem of Art. 88. 

The induction of the one electrified plane on the other through 

the grating is the same as if the grating were removed, and the 

distance between the planes increased from bx -f b2 to 

7 j bx b,2 
b1+b2+-y. 

If the two planes are kept at potential zero, and the grating 

electrified to a given potential, the quantity of electricity on the 

grating will be to that which would be induced on a plane of 

equal area placed in the same position as 

bi*>t: &2 + a(&, + &*). 
This investigation is approximate only when bx and b2 are 

large compared with n, and when a is large compared with c. 

The quantity a is a line which may be of any magnitude. It 

becomes infinite when c is indefinitely diminished. 

If we suppose c = \ a there will be no apertures between the 

wires of the grating, and therefore there will be no induction 

through it. We ought therefore to have for this case a = 0. 

The formula (11), however, gives in this case 

= —0-11 a, 

which is evidently erroneous, as the induction can never be 
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altered in sign by means of the grating. It is easy, however, to 

proceed to a higher degree of approximation in the case of a 

grating of cylindrical wires. I shall merely indicate the .steps 

of this process. 

Method of Approximation. 

206.] Since the wires are cylindrical, and since the distri¬ 

bution of electricity on each is symmetrical with respect to the 

diameter parallel to y, the proper expansion of the potential is 

of the form 7 = C0 log r + 1C, r‘ cos / 6, (14) 

where r is the distance from the axis of one of the wires, and 0 

the angle between r and y; and, since the wire is a conductor, 

when r is made equal to the radius V must be constant, and 

therefore the coefficient of each of the multiple cosines of 6 must 

vanish. 

For the sake of conciseness let us assume new coordinates 

£, 77, &c. such that 

a£=2Tixy ai\ = 2ny, ap — 2~ry a (3 = 2irb, &c., (15) 

and let Fp = log^+^-f 2cosf). (16) 

Then if we make 

, 7 4 a dFp . d*FB o 
V=A0Ffs + A1-l- + Ji(i^+&c. (17) 

by giving proper values to the coefficients A we may express 

any potential which is a function of 77 and cos £, and does not 

become infinite except when 77 4- ft = 0 and cos f = 1. 

When (3 — 0 the expansion of F in terms of p and 6 is* 

F0 = 2 logp + p2 cos 20-— p4 cos 464- &c. (18) 

For finite values of (3 the expansion of Fis 

Fp = /J + 2log(l —e~fi)+ pcose- ffzjyP2cos29 + &c. (19) 

In the case of the grating with two conducting planes whose 

equations are 77 = (3X and ?/ = — f32y that of the plane of the 

grating being 77 = 0, there will be two infinite series of images 

* {The expansion of F can be got by noticing that log (e"*1 +1*) — 2 cos £) only 
differs by a constant from log ra + log rx% + log ra3 + ... where r, rlt ra... are the distances 
of P from the wires. 

We can apply the Bame method to expand Fp since this corresponds to moving the 
wires through a distance —6 parallel toy, the expansion however is not of the same 
form as that given in the text. ] 
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of the grating. The first series will consist of the grating itself 

together with an infinite series of images on both sides, equal 

and similarly electrified. The axes of these imaginary cylinders 

lie in planes whose equations are of the form 

rj = ±2?l(/31 + /32), (20) 
n being an integer. 

The second series will consist of an infinite series of images for 

which the coefficients A0, A# A4, &c. are equal and opposite to 

the same quantities in the grating itself, while Av A3, &c. are 

equal and of the same sign. The axes of these images are in 

planes whose equations are of the form 

?=2/*a±2 m(& + £2), (21) 
m being an integer. 

The potential due to any infinite series of such images will 

depend on whether the number of images is odd or even. Hence 

the potential due to an infinite series is indeterminate, but if we 

add to it the function C, the conditions of the problem will 

be sufficient to determine the electrical distribution. 

We may first determine Vx and Yp the potentials of the two 

conducting planes, in terms of the coefficients A0> Av &c., and 

of B and C. We must then determine o-j and <x2, the surface- 

densities at any points of these planes. The mean values of crx 

and (Tj, are given by the equations 

= ~(A0~B), i-na2 = -J(A0+B). (22) 
It ft 

We must then expand the potentials due to the grating itself 

and to all the images in terms of p and cosines of multiples of 6, 

adding to the result B p C08 q + <7. 

The terms independent of 6 then give V the potential of the 

grating, and the coefficient of the cosine of each multiple of 0 

equated to zero gives an equation between the indeterminate co¬ 

efficients. 

In this way as many equations may be found as are sufficient 

to eliminate all these coefficients and to leave two equations to 

determine <r1 and <r2 in terms of Vly F, and F. 

These equations will be of the form 

lj — F= 47Tflr1(61 + a —y)-b 4 7ro\>(a-fy), 

Vj, — V = 4 7T crx (a + y) + 4 ttct2 (b2 + a—y). (23) 

The quantity of electricity induced on one of the planes 
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protected by the grating, the other plane being at a given dif¬ 

ference of potential, will be the same as if the planes had been at 

a distance 

A)_+SA-tar b8tead 
a+y 12 

The values of a and y are approximately as follows, 

__ a (. a 5 7r4c4 

2tt ( 27r<; 3 15a4 + 7i4<;4 

y = 
3 vac2 

3 a2-f-7r2d2 

+ 2e a \l+e a+e « + &c./+&c.|» (24) 

| + &c* (25) 

- 4 »T — A h<i „ —4 rr— 

1 —e 

* {In the Supplementary Volume another method of employing conjugate functions, 
by which the capacity of finite plane surfaces etc. can be calculated, will be described j. 



CHAPTER XIII. 

ELECTROSTATIC INSTRUMENTS. 

On Electrostatic Instrwments. 

The instruments which we have to consider at present may 

be divided into the following classes: 

(1) Electrical machines for the production and augmentation 
of electrification. 

(2) Multipliers, for increasing electrification in a known ratio. 
(3) Electrometers, for the measurement of electric potentials 

and charges. 

(4) Accumulators, for holding large electrical charges. 

Electrical Machines. 
207.] In the common electrical machine a plate or cylinder of 

glass is made to revolve so as to rub against a surface of leather, 
on which is spread an amalgam of zinc and mercury. The 
surface of the glass becomes electrified positively and that of 

the rubber negatively. As the electrified surface of the glass 
moves away from the negative electrification of the rubber it 
acquires a high positive potential. It then comes opposite to a 

set of sharp metal points in connexion with the conductor of the 
machine. The positive electrification of the glass induces a 
negative electrification of the points, which is the more intense 
the sharper the points and the nearer they are to the glass. 

When the machine works properly there is a discharge through 
the air between the glass and the points, the glass loses part of 
its positive charge, which is transferred to the points and so to 

the insulated prime conductor of the machine, or to any other 
body with which it is in electric communication. 

The portion of the glass which is advancing towards the 
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rubber has thus a smaller positive charge than that which is 
leaving it at the same time, so that the rubber, and the con¬ 
ductors in communication with it, become negatively electrified. 

The highly positive surface of the glass where it leaves the 
rubber is more attracted by the negative charge of the rubber 
than the partially discharged surface which is advancing towards 
the rubber. The electrical forces therefore act as a resistance to 
the force employed in turning the machine. The work done in 
turning the machine is therefore greater than that spent in over¬ 
coming ordinary friction and other resistances, and the excess is 
employed in producing a state of electrification whose energy is 
equivalent to this excess. 

The work done in overcoming friction is at once converted 
into heat in the bodies rubbed together. The electrical energy 
may be also converted either into mechanical energy or into 
heat. 

If the machine does not store up mechanical energy, all the 
energy will be converted into heat, and the only difference be¬ 
tween the heat due to friction and that due to electrical action 
is that the former is generated at the rubbing surfaces while 
the latter may be generated in conductors at a distance*. 

We have seen that the electrical charge on the surface of the 
glass is attracted by the rubber. If this attraction were suffi¬ 
ciently intense there would be a discharge between the glass and 
the rubber, instead of between the glass and the collecting points. 
To prevent this, flaps of silk are attached to the rubber. These 
become negatively electrified and adhere to the glass, and so 
diminish the potential near the rubber. 

The potential therefore increases more gradually as the glass 
moves away from the rubber, and therefore at any one point 
there is less attraction of the charge on the glass towards the 
rubber, and consequently less danger of direct discharge to the 
rubber. 

In some electrical machines the moving part is of ebonite 
instead of glass, and the rubbers of wool or fur. The rubber 
is then electrified positively and the prime conductor negatively. 

* It is probable that in many cases where dynamical energy is converted into heat 
by friction, part of the energy may be first transformed into electrical energy and 
then converted into heat as the electrical energy is spent in maintaining currents of 
short circuit close to the rubbing surfaces. See Sir W. Thomson, ‘On the Electro- 
dynamic Qualities of Metals.’ Phil. Trans., 1856, p. 649. 
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The Eledrophorus of Volta. 

208. ] The electrophorus consists of a plate of resin or of 

ebonite backed with metal, and a plate of metal of the same size. 

An insulating handle can be screwed to the back of either of 

these plates. The ebonite plate has a metal pin which connects 

the metal plate with the metal back of the ebonite plate when 

the ebonite and metal plates are in contact. 

The ebonite plate is electrified negatively by rubbing it with 

wool or cat’s skin. The metal plate is then brought near the 

ebonite by means of the insulating handle. No direct discharge 

passes between the ebonite and the metal plate, but the poten¬ 

tial of the metal plate is rendered negative by induction, so 

that when it comes within a certain distance of the metal pin a 

spark passes, and if the metal plate be now carried to a distance 

it is found to have a positive charge which may be communicated 

to a conductor. The metal at the back of the ebonite plate is 

found to have a negative charge equal and opposite to the charge 

of the metal plate. 

In using the instrument to charge a condenser or accumulator 

one of the plates is laid on a conductor in communication with 

the earth, and the other is first laid on it, then removed and 

applied to the electrodo of the condenser, then laid on the fixed 

plate and the process repeated. If the ebonite plate is fixed the 

condenser will be charged positively. If the metal plate is fixed 

the condenser will be charged negatively. 

The work done by the hand in separating the plates is always 

greater than the work done by the electrical attraction during 

the approach of the plates, so that the operation of charging the 

condenser involves the expenditure of work. Part of this work 

is accounted for by the energy of the charged condenser, part 

is spent in producing the noise and heat of the sparks, and the 

rest in overcoming other resistances to the motion. 

On Machines producing Electrification by Mechanical Work. 

209. ] In the ordinary frictional electrical machine the work 

done in overcoming friction is far greater than that done in 

increasing the electrification. Hence any arrangement by which 

the electrification may be produced entirely by mechanical work 

against the electrical forces is of scientific importance if not of 
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practical value. The first machine of this kind seems to have 

been Nicholson's Revolving Doubler, described in the Philo¬ 
sophical Transactions for 1788 as ' an Instrument which, by the 

turning of a Winch, produces the Two States of Electricity with¬ 

out Friction or Communication with the Earth/ 

210.] It was by means of the revolving doubler that Volta 

succeeded in developing from the electrification of the pile an 

electrification capable of affecting his electrometer. Instruments 

on the same principle have been invented independently by 

Mr. C. F. Varley* and Sir W. Thomson. 

These instruments consist essentially of insulated conductors 

of various forms, some fixed and others moveable. The move- 

able conductors are called Carriers, and the fixed ones may be 

called Inductors, Receivers, and Regenerators. The inductors 

and receivers are so formed that when the carriers arrive at 

certain points in their revolution they are almost completely 

surrounded by a conducting body. As the inductors and re¬ 

ceivers cannot completely surround the carrier and at the same 

time allow it to move freely in and out without a complicated 

arrangement of moveable pieces, the instrument is not theoreti¬ 

cally perfect without a pair of regenerators, which store up the 

small amount of electricity which the carriers retain when they 

emerge from the receivers. 

For the present, however, we may suppose the inductors and 

receivers to surround the carrier completely when it is within 

them, in which case the theory is much simplified. 

We shall suppose the machine to consist of two inductors A 
and C, and of two receivers B and Di with two carriers F and G. 

Suppose the inductor A to be positively electrified so that 

its potential is A, and that the carrier F is within it and is at 

potential F. Then, if Q is the coefficient of induction (taken 

positive) between A and F\ the quantity of electricity on the 

carrier will be Q (F—A). 
If the carrier, while within the inductor, is put in connexion 

with the earth, then F= 0, and the charge on the carrier will be 

— QA, a negative quantity. Let the carrier be carried round 

till it is within the receiver B, and let it then come in contact 

with a spring so as to be in electrical connexion with B. It 

* Specification of Patent, Jan. 27, 1860, No. 206. 
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will then, as was shewn in Art. 32, become completely dis¬ 

charged, and will communicate its whole negative charge to the 

receiver B. 

The carrier will next enter the inductor G, which we shall 

suppose charged negatively. While within C it is put in 

connexion with the earth and thus acquires a positive charge, 

which it carries off and communicates to the receiver 1), and so on. 

In this way, if the potentials of the inductors remain always 

constant, the receivers B and 1) receive successive charges, 

which are the same for every revolution of the carrier, and thus 

every revolution produces an equal increment of electricity 

in the receivers. 

But by putting the inductor A in communication with the 

receiver I), and the inductor G with the receiver B, the poten¬ 

tials of the inductors will be continually increased, and the 

quantity of electricity communicated to the receivers in each 

revolution will continually increase. 

For instance, let the potential of A and D be 77, and that of B 
and C, F, then, since the potential of the carrier is zero when 

it is within A, being in contact wTith earth, its charge is 

— ~Q U. The carrier enters B with this charge and com¬ 

municates it to B. If the capacity of B and G is B} their 

potential will be changed from V to V~ ^ 77. 

If the other carrier has at the same time carried a charge 

— QV from G to D, it will change the potential of A and 1) from 

u to U— % V, if 0' is the coefficient of induction between the 
A 

carrier and (7, and A the capacity of A and D. If, therefore, 

77n and Vu be the potentials of the two inductors after n half 

revolutions, and 77tt+1 and Tr„ + ] after n + l half revolutions, 

r - r Q' v 
tn+l — Un . rrt, 

V — V- 

If we write p1 = ~ and q1 = -j- > we find 

PU»+1+VX+1 = (PUH + (JVu) (l-M) ~ (/>C) + ?T«) (1 ~P<l)n+1> 

pU«+i-qK+1 = (pUn-qVj (i +pq) = (pU0~q%) (i +Pqr\ 



322 ELECTROSTATIC INSTRUMENTS. [211. 

Hence 

2 un= uu((i-pq)n+(' +m)") + |^((1-m)"-(1+m)*)» 

2V« = ((l-/»2)"-0 +M)”) + ^ (0 -M^ + C1 +M)n) ' 

It appears from these equations that the quantity pU+qV 
continually diminishes, so that whatever be the initial state of 

electrification the receivers are ultimately oppositely electrified, 

so that the potentials of A and B are in the ratio of q to ~p. 
On the other hand, the quantity pU—qV continually in¬ 

creases, so that, however little pU may exceed or fall short of 

qV at first, the difference will be increased in a geometrical ratio 

in each revolution till the electromotive forces become so great 

that the insulation of the apparatus is overcome. 

Instruments of this kind may be used for various purposes.— 

For producing a copious supply of electricity at a high 

potential, as is done by means of Mr. Valley’s large machine. 

For adjusting the charge of a condenser, as in the case of 

Thomson’s electrometer, the charge of which can be increased or 

diminished by a few turns of a very small machine of this kind, 

which is called a Replenishes 

For multiplying small differences of potential. The inductors 

may be charged at first to an exceedingly small potential, as, for 

instance, that due to a thermo-electric pair, then, by turning the 

machine, the difference of potentials may be continually multi¬ 

plied till it becomes capable of measurement by an ordinary 

electrometer. By determining by experiment the ratio of 

increase of this difference due to each turn of the machine, the 

original electromotive force with which the inductors were 

charged may be deduced from the number of turns and the final 

electrification. 

In most of these instruments the carriers are made to revolve 

about an axis and to come into the proper positions with respect 

to the inductors by turning an axle. The connexions are made 

by means of springs so placed that the carriers come in contact 

with them at the proper instants. 

211.] Sir W. Thomson*, however, has constructed a machine 

for multiplying electrical charges in which the carriers are drops 

of water falling into an insulated receiver out of an uninsulated 

* Proc. une 20, 1867. 
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vessel placed inside but not touching an inductor. The receiver 

is thus continually supplied with electricity of opposite sign to 

that of the inductor. If the inductor is electrified positively, the 

receiver will receive a continually increasing charge of negative 

electricity. 

The water is made to escape from the receiver by means of a 

funnel, the nozzle of which is almost surrounded by the metal of 

the receiver. The drops falling from this nozzle are therefore 

nearly free from electrification. Another inductor and receiver 

of the same construction are arranged so that the inductor of 

the one system is in connexion with the receiver of the other. 

The rate of increase of charge of the receivers is thus no longer 

constant, but increases in a geometrical progression with the 

time, the charges of the two receivers being of opposite signs. 

This increase goes on till the falling drops are so diverted from 

their course by the electrical action that they fall outside of the 

receiver or even strike the inductor. 

In this instrument the energy of the electrification is drawn 

from that of the falling drops. 

212. ] Several other electrical machines have been constructed 

in which the principle of electric induction is employed. Of 

these the most remarkable is that of Holtz, in which the carrier 

is a glass plate varnished with gum-lac and the inductors are 

pieces of pasteboard. Sparks are prevented from passing be¬ 

tween the parts of the apparatus by means of two glass plates, 

one on each side of the revolving carrier plate. This machine 

is found to be very effective, and not to be much affected by the 

state of the atmosphere. The principle is the same as in the 

revolving doubler and the instruments developed out of the 

same idea, but as the carrier is an insulating plate and the 

inductors are imperfect conductors, the complete explanation of 

the action is more difficult than in the case where the carriers 

are good conductors of known form and are charged and dis¬ 

charged at definite points*. 

213. ] In the electrical machines already described sparks 

occur whenever the carrier comes in contact with a conductor at 

a different potential from its own. 

* {The induction machines most frequently used at present are those of Voss and 
Wimshurst. A description of these with diagrams will be found in Nature, vol. xxviii. 
p. 12.} 
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Now we have shewn that whenever this occurs there is a loss 

of energy, and therefore the whole work employed in turning 

the machine is not converted into electrification in an available 

form, but part is spent in pro¬ 

ducing the heat and noise of 

electric sparks. 

I have therefore thought it 

desirable to shew how an elec¬ 

trical machine may be con¬ 

structed which is not subject 

to this loss of efficiency. I 

do not propose it as a useful 

form of machine, but as an 

example of the method by 

which the contrivance called 

in heat-engines a regenerator 

may be applied to an electrical machine to prevent loss of work. 

In the figure let A, B, (\ A\ B\ C' represent hollow fixed 

conductors, so arranged that the carrier P passes in succession 

writhin each of them. Of these A, A' and B, B' nearly surround 

the carrier when it is at the middle point of its passage, but 

C and 0' do not cover it so much. 

We shall suppose A, B, C to be connected with a Leyden jar 

of great capacity at potential V, and A', B\ (f to be connected 

with another jar at potential — V'. 
P is one of the carriers moving in a circle from A to C\ &c., 

and touching in its course certain springs, of which a and a are 

connected with A and A' respectively, and e, e are connected 

with the earth. 

Let us suppose that when the carrier P is in the middle of A 
the coefficient of induction between P and A is — A. The 

capacity of P in this position is greater than A, since it is not 

completely surrounded by the receiver A. Let it be A +a. 
Then if the potential of P is Uy and that of A, V, the charge 

onP will be (A-ha) U-AV. 
Now let P be in contact with the spring a when in the middle 

of the receiver A, then the potential of P is V, the same as that 

of A, and its charge is therefore aV. 
If P now leaves the spring a it carries with it the charge aV. 

As P leaves A its potential diminishes, and it diminishes still 
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more when it comes within the influence of C\ which is 

negatively electrified. 

If when P comes within G' its coefficient of induction on C' 
is — (/ and its capacity is G'-fthen, if U is the potential of 

]\ the charge on P is 

(U' + r')U+<rV'=aV. 
If r; r = a V, 

then at this point lT the potential of P will be reduced to zero. 

Let P at this point come in contact with the spring ef which 

is connected with the earth. Since the potential of P is equal 

to that of the spring there will be no spark at contact. 

This conductor 6", by which the carrier is enabled to be con¬ 

nected to earth without a spark, answers to the contrivance 

called a regenerator in heat-engines. We shall therefore call it 

a Regenerator. 

Now let P move on, still in contact with the earth-spring e\ 
till it comes into the middle of the inductor //, the potential of 

which is V. If —B is the coefficient of induction between 

P and B at this point, then, since U = 0 the charge on P will 

be -BV. 
When P moves away from the earth-spring it carries this 

charge with it. As it moves out of the positive inductor B 
towards the negative receiver A' its potential will be increasingly 

negative. At the middle of A\ if it retained its charge, its 

potential would be 
_ A'V' + BV 

A' + d ’ 

and if BV is greater than a!V' its numerical value will be 

greater than that of V'. Hence there is some point before P 
reaches the middle of A' where its potential is — V\ At this 

point let it come in contact with the negative receiver-spring a\ 
There will be no spark since the two bodies are at the same 

potential. Let P move on to the middle of A\ still in contact with 

the spring, and therefore at the same potential with A'. During 

this motion it communicates a negative charge to A'. At the 

middle of A' it leaves the spring and carries away a charge — d V' 
towards the positive regenerator C, where its potential is re¬ 

duced to zero and it touches the earth-spring e. It then slides 

along the earth-spring into the negative inductor B\ during 

which motion it acquires a positive charge B'V7 which it finally 
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communicates to the positive receiver A, and the cycle of opera¬ 

tions is completed. 

During this cycle the positive receiver has lost a charge aV 
and gained a charge B'V\ Hence the total gain of positive 

electricity is B' V'—a V. 
Similarly the total gain of negative electricity is BV— a V. 
By making the inductors so as to be as close to the surface of 

the carrier as is consistent with insulation, B and B' may be 

made large, and by making the receivers so as nearly to surround 

the carrier when it is within them, a and a' may be made very 

small, and then the charges of both the Leyden jars will be 

increased in every revolution. 

The conditions to be fulfilled by the regenerators are 

CV = aV, and CV = a'Y. 

Since a and &' are small the regenerators must neither be 

large nor very close to the carriers. 

On Electrometers and Electroscopes. 

214.] An electrometer is an instrument by means of which 

electric charges or electric potentials may be measured. In¬ 

struments by means of which the existence of electric charges or 

of differences of potential may be indicated, but which are not 

capable of affording numerical measures, are called Electro¬ 

scopes. 

An elecuoscope if sufficiently sensitive may be used m elec¬ 

trical measurements, provided we can make the measurement 

depend on the absence of electrification. For instance, if we 

.have two charged bodies A and B we may use the method 

described in Chapter I to determine which body has the greater 

charge. Let the body A be carried by an insulating support 

into the interior of an insulated closed vessel C. Let C be 

connected to earth and again insulated. There will then be no 

external electrification on C. Now let A be removed, and B 

introduced into the interior of C} and the electrification of C 
tested by an electroscope. If the charge of B is equal to that 

of A there will be no electrification, but if it is greater or less 

there will be electrification of the same kind as that of B, or 

the opposite kind. 

Methods of this kind, in which the thing to be observed is the 

non-existence of some phenomenon, are called null or zero 
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methods. They require only an instrument capable of detecting 

the existence of the phenomenon. 

In another class of instruments for the registration of phe¬ 

nomena the instruments may be depended upon to give always 

the same indication for the same value of the quantity to be 

registered, but the readings of the scale of the instrument are not 

proportional to the values of the quantity, and the relation 

between these readings and the corresponding value is unknown, 

except that the one is some continuous function of the other. 

Several electrometers depending on the mutual repulsion of 

parts of the instrument which are similarly electrified are of 

this class. The use of such instruments is to register phenomena, 

not to measure them. Instead of the true values of the quantity 

to be measured, a series of numbers is obtained, which may be 

used afterwards to determine these values when the scale of the 

instrument has been properly investigated and tabulated. 

In a still higher class of instruments the scale readings ave 

proportional to the quantity to be measured, so that all that is 

required for the complete measurement of the quantity is a 

knowledge of the coefficient by which the scale readings must be 

multiplied to obtain the true value of the quantity. 

Instruments so constructed that they contain within them¬ 

selves the means of independently determining the true values 

of quantities are called Absolute Instruments. 

Joulomb’s Torsion Balance. 

215.] A great number of the experiments by which Coulomb 

established the fundamental laws of electricity were made by 

measuring the force between two small spheres charged with 

electricity, one of which was fixed while the other was held in 

equilibrium by two forces, the electrical action between the 

spheres, and the torsional elasticity of a glass fibre or metal wire. 

See Art.. 38. 

The balance of torsion consists of a horizontal arm of gum-lac, 

suspended by a fine wire or glass fibre, and carrying at one end 

a little sphere of elder pith, smoothly gilt. The suspension wire 

is fastened above to the vertical axis of an arm which can be 

moved round a horizontal graduated circle, so as to twist the 

upper end of the wire about its own axis any number of 

degrees. 
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The whole of this apparatus is enclosed in a case. Another 

little sphere is so mounted on an insulating stem that it can be 

charged and introduced into the case through a hole, and brought 

so that its centre coincides with a definite point in the horizontal 

circle described by the suspended sphere. The position of the 

suspended sphere is ascertained by means of a graduated circle 

engraved on the cylindrical glass case of the instrument. 

Now suppose both spheres charged, and the suspended sphere 

in equilibrium in a known position such that the torsion-arm 

makes an angle 6 with the radius through the centre of the fixed 

sphere. The distance of the centres is then 2 a sin 4 6, where a 

is the radius of the torsion-arm, and if F is the force between the 

spheres the moment of this force about the axis of torsion is 

Fa cos 10. 

Let both spheres be completely discharged, and let the torsion- 

arm now be in equilibrium at an angle <fi wTith the radius through 

the fixed sphere. 

Then the angle through which the electrical force twisted the 

torsion-arm must have been 0 — <p, and if M is the moment of 

the torsional elasticity of the fibre, we shall have the equation 

Fa cos i 6 = M{0 — <f>). 

Hence, if we can ascertain M, we can determine F\ the actual 

force between the spheres at the distance 2 a sin id. 
To find if, the moment of torsion, let I be the moment of 

inertia of the torsion-arm, and T the time of a double vibration 

of the arm under the action of the torsional elasticity, then 

In all electrometers it is of the greatest importance to know 

what force we are measuring. The force acting on the suspended 

sphere is due partly to the direct action of the fixed sphere, but 

partly also to the electrification, if any, of the sides of the case. 

If the case is made of glass it is impossible to determine the 

electrification of its surface otherwise than by very difficult 

measurements at every point. If, however, either the case is 

made of metal, or if a metallic case which almost completely 

encloses the apparatus is placed as a screen between the spheres 

and the glass case, the electrification of the inside of the metal 

screen will depend entirely on that of the spheres, and the 
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electrification of the glass case will have no influence on the 

spheres. In this way we may avoid any indefiniteness due to 

the action of the case. 

To illustrate this by an example in which we can calculate all 

the effects, let us suppose that the case is a sphere of radius b, 
that the centre of motion of the torsion-arm coincides with the 

centre of the sphere and that its radius is a ; that the charges on 

the two spheres are Ex and E, and that the angle between their 

positions is 0; that the fixed sphere is at a distance a3 from the 

centre, and that r is the distance between the two small spheres. 

Neglecting for the present the effect of induction on the dis¬ 

tribution of electricity on the small spheres, the force between 

them will be a repulsion 

and the moment of this force round a vertical axis through the 

centre will be A’ff, ««, sin 6 

V6 

The image of El due to the spherical surface of the case is a 

point in the same radius at a distance from the centre -- with 

b ai 
a charge — JP, —, and the moment of the attraction between E 

& 1 a} 

and this image about the axis of suspension is 

EE 

Jr . 
, a — sin 6 
b tu 

EEV 

1 ax ( ah 
1 la1-- 2 — 

( aA 

aaj sin 0 

air n b*)l 
— COS 0 + / 

a i ) 

„ a2a2j)j 
^jl-2.JcoS9+ 

If b, the radius of the spherical case, is large compared with a 
and av the distances of the spheres from the centre, we may 

neglect the second and third terms of the factor in the de¬ 

nominator. Equating the moments tending to turn the torsion- 

arm, we get 

EEi cut, sin 0 = iW ((9- <#>). 
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Electrometers for the Measurement of Potentials. 

216.] In all electrometers the moveable part is a body charged 

with electricity, and its potential is different from that of certain 

of the fixed parts round it. When, as in Coulomb’s method, an 

insulated body having a certain charge is used, it is the charge 

which is the direct object of measurement. We may, however, 

connect the balls of Coulomb’s electrometer, by means of fine 

wires, with different conductors. The charges of the balls will 

then depend on the values of the potentials of these conductors 

and on the potential of the case of the instrument. The charge 

on each ball will be approximately equal to its radius multiplied 

by the excess of its potential over that of the case of the instru¬ 

ment, provided the radii of the balls are small compared with 

their distances from each other and from the sides or opening of 

the case. 

Coulomb's form of apparatus, however, is not well adapted for 

measurements of this kind, owing to the smallness of the force 

between spheres at the proper distances when the difference of 

potentials is small. A more convenient form is that of the 

Attracted Disk Electrometer. The first electrometers on this 

principle were constructed by Sir W. Snow Harris *. They have 

since been brought to great perfection, both in theory and con¬ 

struction, by Sir W. Thomson f. 

When two disks at different potentials are brought face to 

face with a small interval between them there will be a nearly 

uniform electrification on the opposite faces and very little elec¬ 

trification on the backs of the disks, provided there are no other 

conductors or electrified bodies in the neighbourhood. The 

charge on the positive disk will be approximately proportional to 

its area, and to the difference of potentials of the disks, and 

inversely as the distance between them. Hence, by making the 

areas of the disks large and the distance between them small, a 

small difference of potential may give rise to a measurable force 

of attraction. 

The mathematical theory of the distribution of electricity 

over two disks thus arranged is given at Art. 202, but since 

* Phil. Tram. 1884. 

t See an excellent report on Electrometers by Sir W. Thomson. Iteport of the 
British Association, Dundee, 1867. 
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it is impossible to make the case of the apparatus so large that 

we may suppose the disks insulated in an infinite space, the 

indications of the instrument in this form are not easily inter¬ 

preted numerically. 

217.] The addition of the guard-ring to the attracted disk 

is one of the chief improvements which Sir W. Thomson has 

made on the apparatus. 

Instead of suspending the whole of one of the disks and 

determining the force acting upon it, a central portion of the 

disk is separated from the rest to form the attracted disk, and 

the outer ring forming the remainder of the disk is fixed. In 

this way the force is measured only on that part of the disk 

where it is most regular, and the want of uniformity of the 

COUNTER PO/Se 

electrification near the edge is of no importance, as it occurs 

on the guard-ring and not on the suspended part of the disk. 

Besides this, by connecting the guard-ring with a metal case 

surrounding the back of the attracted disk and all its sus¬ 

pending apparatus, the electrification of the back of the disk 

is rendered impossible, for it is part of the inner surface of a 

closed hollow conductor all at the same potential. 

Thomson’s Absolute Electrometer therefore consists essentially 
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of two parallel plates at different potentials, one of which is 

made so that a certain area, no part of which is near the 

edge of the plate, is moveable under the action of electric force. 

To fix our ideas we may suppose the attracted disk and guard¬ 

ring uppermost. The fixed disk is horizontal, and is mounted 

on an insulating stem which has a measurable vertical motion 

given to it by means of a micrometer screw. The guard-ring 

is at least as large as the fixed disk ; its lower surface is truly 

plane and parallel to the fixed disk. A delicate balance is 

erected on the guard-ring to which is suspended a light move- 

able disk which almost fills the circular aperture in the guard¬ 

ring without rubbing against its sides. The lower surface of 

the suspended disk must be truly plane, and we must have the 

means of knowing when its plane coincides with that of the 

lower surface of the guard-ring, so as to form a single plane 

interrupted only by the narrow interval between the disk and 

its guard-ring. 

For this purpose the lower disk is screwed up till it is in 

contact with the guard-ring, and the suspended disk is allowed 

to rest upon the lower disk, so that its lower surface is in 

the same plane as that of the guard-ring. Its position with 

respect to the guard-ring is then ascertained by means of a 

system of fiducial marks. Sir W. Thomson generally uses for 

this purpose a bla$k hair attached to the moveable part. This 

hair moves up or down just in front of two black dots on a 

white enamelled ground and is viewed along with these dots 

by means of a plano-convex lens with the plane side next the 

eye. If the hair as seen through the lens appears straight and 

bisects the interval between the black dots it is said to be in 

its sighted position, and indicates that the suspended disk with 

which it moves is in its proper position as regards height. The 

horizontality of the suspended disk may be tested by comparing 

the reflexion of part of any object from its upper surface 

with that of the remainder of the same object from the upper 

surface of the guard-ring. 

The balance is then arranged so that when a known weight 

is placed on the centre of the suspended disk it is in equilibrium 

in its sighted position, the whole apparatus being freed from 

electrification by putting every part in metallic communication. 

A metal case is placed over the guard-ring so as to enclose the 
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balance and suspended disk, sufficient apertures being left to Bee 
the fiducial marks. 

The guard-ring, case, and suspended disk are all in metallic 

communication with each other, but are insulated from the 

other parts of the apparatus. 

Now let it be required to measure the difference of potentials 

of two conductors. The conductors are put in communication 

with the upper and lower disks respectively by means of wires, 

the weight is taken oft' the suspended disk, and the lower disk 

is moved up by means of the micrometer screw till the electrical 

attraction brings the suspended disk down to its sighted 

position. We then know that the attraction between the disks is 

equal to the weight which brought the disk to its sighted position. 

If W be the numerical value of the weight, and <j the force of 

gravity, the force is Wg9 and if A is the area of the suspended 

disk, D the distance between the disks, and V the difference of 

the potential of the disks *, 

ir / 8 7T(] W 
or 

* Lot 11s denote the radius of the suspended disk by R, and that of the aperture 
of the guard-ring by K, then the breadth of the annular interval between the 
disk and the ring wiil be B ** B' — R. 

If the distance between the suspended disk and the large fixed disk is /), and 
the difference of potentials between these disks is V, then, by the investigation in 
Art. 201, the Quantity of electricity on the suspended disk will be 

1 in-R> a ) 

87> ~ bD T) + a ( ’ 
loo- 2 

where a ** B - ^ , or a = 0-220635 (R' — R)- 
IT 

If the surface of the guard-ring is not exactly in the plane of the surface of 
the suspended disk, let us suppose that the distance, between the fixed disk and 
the guard-ring is not D but I) + z= 1)\ then it appears from the investigation in 
Art. 225 tbnt there will be an additional charge of electricity near the edge of 
the disk on account of its height z above the general surface of the guard-ring. 
The whole charge m this case is therefore, approximately, 

Q = V\- 
\ r:1 4- 7?/2 Tl + II' IV mi + log, D, _ T) 

and in the expression for the attraction we must substitute for A, the area of the 
disk, the*corrected quantity 

where R — radius of suspended disk, 
R' — radius of aperture in the guard-ring, 
J> =- distance between fixed and suspended disks, 
jy -- distance between fixed disk and guard-ring, 
a - 0*220635 (7?'- R). 

When a is small compared with D we may neglect the second term, and when 
I?~D is small we may neglect the last term. {For another investigation of this see 
Supplementary Volume.} 
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If the suspended disk is circular, of radius U, and if the radius 

of the aperture of the guard-ring is Rthen 

+ and V — 4Z>AJ 

218.] Since there is always some uncertainty in determining 

the micrometer reading corresponding to I) = 0, and since any 

error in the position of the suspended disk is most important 

when I) is small, Sir W. Thomson prefers to make all his 

measurements depend on differences of the electromotive force 

V. Thus, if V and V are two potentials, and 1) and D' the 

corresponding distances, 

V-V'=(D-D’)^/S^. 

For instance, in order to measure the electromotive force of a 

galvanic battery, two electrometers are used. 

By means of a condenser, kept charged if necessary by a 

replenishes the lower disk of the principal electrometer is main¬ 

tained at a constant potential. This is tested by connecting the 

lower disk of the principal electrometer with the lower disk of a 

secondary electrometer, the suspended disk of which is connected 

with the earth. The distance between the disks of the secondary 

electrometer and the force required to bring the suspended disk 

to its sighted position being constant, if we raise the potential 

of the condenser till the secondary electrometer is in its sighted 

position, we know that the potential of the lower disk of the 

principal electrometer exceeds that of the earth by a constant 

quantity .which we may call V. 
If we now connect the positive electrode of the battery to 

earth, and connect the suspended disk of the principal electro¬ 

meter to the negative electrode, the difference of potentials 

between the disks will be V+v, if v is the electromotive force 

of the battery. Let D be the reading of the micrometer in this 

case, and let D' be the reading when the suspended disk is 

connected with earth, then 

In this way a small electromotive force v may be measured 

by the electrometer with the disks at a conveniently measurable 

distance. When the distance is too small a small change of 
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absolute distance makes a great change in the force, since the 

force varies inversely as the square of the distance, so that any 

error in the absolute distance introduces a large error in the 

result unless the distance is large compared with the limits of 

error of the micrometer screw. 

The effects of small irregularities of form in the surfaces of the 

disks and of the interval between them diminish according to 

the inverse cube and higher inverse powers of the distance, and 

whatever be the form of a corrugated surface, the eminences of 

which just reach a plane surface, the electrical effect at any 

distance which is considerable compared to the breadth of the 

corrugations, is the same as that of a plane at a certain small 

distance behind the plane of the tops of the eminences. See 

Arts. 197, 198. 

Fy means of the auxiliary electrification, tested by the aux¬ 

iliary electrometer, a proper interval between the disks is secured. 

The auxiliary electrometer may be of a simpler construction, 

in which there is no provision for the determination of the force 

of attraction in absolute measure, since all that is wanted is to 

secure a constant electrification. Such an electrometer may be 

called a gauge electrometer. 

This method of using an auxiliary electrification besides the 

electrification to be measured is called the Heterostatic method 

of electrometry, in opposition to the Idiostatic method in which 

the whole effect is produced by the electrification to be measured. 

In several forms of the attracted disk electrometer, the at¬ 

tracted disk is placed at one end of an arm which is supported 

by being attached to a platinum wire passing through its centre 

of gravity and kept stretched by means of a spring. The other 

end of the arm carries the hair which is brought to a sighted 

position by altering the distance between the dish s, and so ad¬ 

justing the force of the electric attraction to a constant value. 

In these electrometers this force is not in general determined in 

absolute measure, but is known to be constant, provided the 

torsional elasticity of the platinum wire does not change. 

The whole apparatus is placed in a Leyden jar, of which the 

inner surface is charged and connected with the attracted disk 

and guard-ring. The other disk is worked by a micrometer 

screw, and is connected first with the earth and then with the 

conductor whose potential is to be measured. The difference of 
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readings multiplied by a constant to be determined for each 

electrometer gives the potential required. 

219.] The electrometers already described are not self-acting, 

but require for each observation an adjustment of a micrometer 

screw, or some other movement which must be made by the 

observer. They are therefore not fitted to act as self-registering 

instruments, which must of themselves move into the proper 

position. This condition is fulfilled by Thomsons Quadrant 

Electrometer. 

The electrical principle on which this instrument is founded 

may be thus explained :— 

A and B are two fixed conductors which may be at the same 

or at different potentials. C is a moveable conductor at a high 

potential, which is so placed that part of it is opposite to the 

surface of A and part opposite to that of B, and that the pro¬ 

portions of these parts are altered as C moves. 

For this purpose it is most convenient to make C moveable 

about an axis, and make the opposed surfaces of A, of B, and 

of C portions of surfaces of revolution about the same axis. 

In this way the distance between the surface of C and the 

opposed surfaces of A or of B remains always the same, and the 

motion of C in the positive direction simply increases the area 

opposed to B and diminishes the area opposed to A. 
If the potentials of A and B are equal there will be no force 

urging C from A to B, but if the potential of C dittors from that 

of B more than from that of A, then 0 will tend to move so as 

to increase the area of its surface opposed to B. 
By a suitable arrangement of the apparatus this force may be 

made nearly constant for different positions of C within certain 

limits, so that if C is suspended by a torsion fibre, its deflexions 

will be nearly proportional to the difference of potential between 

A and B multiplied by the difference of the potential of C from 

the mean of those of A and B. 
C is maintained at a high potential by means of a condenser 

provided with a replenisher and tested by a gauge electrometer, 

and A and B are connected with the two conductors the dif¬ 

ference of whose potentials is to be measured. The higher the 

potential of C the more sensitive is the instrument. This elec¬ 

trification of C, being independent of the electrification to be 

measured, places this electrometer in the heterostatic class. 
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We may apply to this electrometer the general theory of 

systems of conductors given in Arts. 93, 127. 

Let A, B, C denote the potentials of the three conductors re¬ 

spectively. Let a, 6, c be their respective capacities, p the co¬ 

efficient of induction between B and (7, q that between C and A, 

and r that between A and B. All these coefficients will in 

general vary with the position of (7, and if 0 is so arranged that 

the extremities of A and B are not near those of C as long as 

the motion of C is confined within certain limits, we may 

ascertain the form of these coefficients. If 0 represents the de¬ 

flexion of C from A towards B, then the part of the surface of A 
opposed to G will diminish as 6 increases. Hence if A is kept 

at potential 1 while B and C are kept at potential 0, the charge 

on A will be a = o0 — a0, where a0 and a are constants, and a is 

the capacity of A. 
If A and B are symmetrical, the capacity of B is b — bQ + aQ. 
The capacity of C is not altered by the motion, for the only 

effect of the motion is to bring a different part of C opposite to 

the interval between A and B. Hence c — c0. 

The quantity of electricity induced on C when B is raised to 

potential unity is p == £>0 — a0> 
The coefficient of induction between A and C is q = q0 4- a0. 
The coefficient of induction between A and B is not altered 

by the motion of C, but remains r = r0. 

Hence the electrical energy of the system is 

IF= \A2a + \B2b + \C2c + BCp -f CAq + ABr, 

and if 0 is the moment of the force tending to increase 0, 

dW 
0 = A, B, C being supposed constant, 

= -\ A* a+IB* a-BCa+ CAa ; 

or 0 = a (A-B) {C-i(A +B)}*. 

. jjdr 
AB -r~ » 

dd 

* | ThiB can also be deduced as follows : If the needle is symmetrically placed 
within the quadrants there will be no couple when A =* B. Since d W/d6 vanishes 
in this case for all possible values of C, we must have 

da 

’ d~6 

. db 

+ idt + 
dr 

d$ 
« 0, 

dp dq 

d€ + d~6 
-0, 

dc 

Te « o. 

YOL, I. Z 
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In the present form of Thomson's Quadrant Electrometer the 

conductors A and B are in the form of a cylindrical box com¬ 

pletely divided into four quadrants, 

separately insulated, but joined by 

wires so that two opposite quadrants 

A and A' are connected together as 

arc also the two others B and B\ 

The conductor C is suspended so as 

to be capable of turning about a 

vertical axis, and may consist of 

two opposite flat quadrantal arcs sup¬ 

ported by radii at their extremities. 

In the position of equilibrium these 

quadrants should be partly within A and partly within By and 

the supporting radii should be near the middle of the quadrants 

of the hollow base, so that the divisions of the box and the 

extremities and supports of C may be as far from each other as 

possible. 

The conductor C is kept permanently at a high potential by 

being connected with the inner coating of the Leyden jar which 

forma the case of the instrument. B and A are connected, the 

first with the earth, and the other with the body whose potential 

is to be measured. 

If the potential of this body is zero, and if the instrument be 

in adjustment, there ought to be no force tending to make 0 

move, but if the potential of A is of the same sign as that of C, 

then C will tend to move from A to B with a nearly uniform 

force, and the suspension apparatus will be twisted till an equal 

force is called into play and produces equilibrium. Within 

« . ^ „ db dq\ 
6° that i (A-B) {A ~~ B j-Q +2 

If the quadrants entirely surround the needle the couple will not be affected by 
increasing all the potentials by the same amount, henoe 

da dh „ dq 

dd~ de + 2i7* “ °' 

So that ^ = 

If the quadrants are symmetrical ~ and we get the expression in the text. 

The student should also consult Dr. G. Hopkinson’s Paper on the Quadrant Electro¬ 
meter, Phil. Mag. 5th series, xix. p. 291, and Hallwacha Wied. Ann. xxix. p. 11.} 
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certain limits the deflexions of C will be proportional to the 

product (A-B) {C-\{A+B)}. 

By increasing the potential of C the sensibility of the instru¬ 

ment may be increased, and for small values of i (A+B) the 

deflexions will be nearly proportional to (A — B) C. 

On the Measurement of Electric Potential. 

220.] In order to determine large differences of potential in 

absolute measure we may employ the attracted disk electro¬ 

meter, and compare the attraction with the effect of a weight. 

If at the same time we measure the difference of potential of 

the same conductors by means of the quadrant electrometer, we 

shall ascertain the absolute value of certain readings of the scale 

of the quadrant electrometer, and in this way we may deduce 

the value of the scale readings of the quadrant electrometer in 

terms of the potential of the suspended part, and the moment of 

torsion of the suspension apparatus*. 

To ascertain the potential of a charged conductor of finite size 

we may connect the conductor with one electrode of the electro¬ 

meter, while the other is connected to earth or to a body of 

constant potential. The electrometer reading will give the 

potential of the conductor after the division of its electricity 

between it and the part of the electrometer with which it is 

put in contact. If K denote the capacity of the conductor, and 

K' that of this part of the electrometer, and if F, V' denote the 

potentials of these bodies before making contact, then their 

common potential after making contact will be 

_ AT+ArT 

Vas~k + K'. 

Hence the original potential of the conductor was 

r= v+ §(V-r). 
If the conductor is not large compared with the electrometer, 

K' will be comparable with K, and unless we can ascertain the 

values of K and K' the second term of the expression will have 

a doubtful value. But if we can make the potential of the 

* {Large differences of potential are more conveniently measured by means of 
Sir William Thomson’s new Voltmeter.} 
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electrode of the electrometer very nearly equal to that of the 

body before making contact, then the uncertainty of the values 

of K and K' will be of little consequence. 

If we know the value of the potential of the body approxi¬ 

mately, we may charge the electrode by means of a c replenisher ’ 

or otherwise to this approximate potential, and the next experi¬ 

ment will give a closer approximation. In this way we may 

measure the potential of a conductor whose capacity is small 

compared with that of the electrometer. 

To Measure the Potential at any Point in the Air. 

221.] First Method. Place a sphere, whose radius is small 

compared with the distance of electrified conductors, with its 

centre at the given point. Connect it by means of a fine wire 

with the earth, then insulate it, and carry it to an electrometer 

and ascertain the total charge on the sphere. 

Then, if V be, the potential at the given point, and a the 

radius of the sphere, the charge on the sphere will be — Va — Q, 

and if V' be the potential of the sphere as measured by an 

electrometer when placed in a room whose walls are connected 

with the earth, then Q — y\t 

whence K+ P=0, 

or the potential of the air at the point where the centre of the 

sphere was placed is equal but of opposite sign to the potential 

of the sphere after being connected to earth, then insulated, and 

brought into a room. 

This method has been employed by M. Delmann of Creuznach 

in measuring the potential at a certain height above the earth’s 

surface. 

Second Method. We have supposed the sphere placed at the 

given point and first connected to earth, and then insulated, 

and carried into a space surrounded with conducting matter at 

potential zero. 

Now let us suppose a fine insulated wire carried from the 

electrode of the electrometer to the place where the potential is 

to be measured. Let the sphere be first discharged completely. 

This may be done by putting it into the inside of a vessel of 

the same metal which nearly surrounds it and making it touch 

the vessel. Now let the sphere thus discharged be carried to 
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the end of the wire and made to touch it. Since the sphere is 
not electrified it will he at the potential of the air at the place. 
If the electrode wire is at the same potential it will not be 
affected by the contact, but if the electrode is at a different 
potential it will by contact with the sphere be made nearer to 
that of the air than it was before. By a succession of such 
operations, the sphere being alternately discharged and made 
to touch the electrode, the potential of the electrode of the 
electrometer will continually approach that of the air at the 
given point. 

222.] To measure the potential of a conductor without touch¬ 
ing it, we may measure the potential of the air at any point in 
the neighbourhood of the conductor, and calculate that of the 
conductor from the result. If there be a hollow nearly sur¬ 
rounded by the conductor, then the potential at any point of 
the air in this hollow will be very nearly that of the conductor. 

In this way it has been ascertained by Sir W. Thomson that 
if two hollow conductors, one of copper and the other of zinc, 
are in metallic contact, then the potential of the air in the 
hollow surrounded by zinc is positive with reference to that of 
the air in the hollow surrounded by copper. 

Th ird Method. If by any means we can cause a succession of 
small bodies to detach themselves from the end of the electrode, 
the potential of the electrode will approximate to that of the sur¬ 
rounding air. This may be done by causing-shot, filings, sand, 
or water to drop out of a funnel or pipe connected with the 
electrode. The point at which the potential is measured is that 
at which the stream ceases to be continuous and breaks into 
separate parts or drops. 

Another convenient method is to fasten a slow match to the 
electrode. The potential is very soon made equal to that of the 
air at the burning end of the match. Even a fine metallic point 
is sufficient to create a discharge by means of the particles of 
the air {or dust?} when the difference of potentials is consider¬ 
able, but if we wish to reduce this difference to zero, we must 
use one of the methods stated above. 

If we only wish to ascertain the sign of the difference of the 
potentials at two places, and not its numerical value, we may 
cause drops or filings to be discharged at one of the places from 
a nozzle connected with the other place, and catch the drops or 
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filings in an insulated vessel. Each drop as it falls is charged 

with a certain amount of electricity, and it is completely dis¬ 

charged into the vessel. The charge of the vessel therefore is 

continually accumulating, and after a sufficient number of drops 

have fallen, the charge of the vessel may be tested by the 

roughest methods. The sign of the charge is positive if the 

potential of the place connected to the nozzle is positive rela¬ 

tively to that of the other place. 

MEASUREMENT OP SURFACE-DENSITY OP ELECTRIFICATION. 

Theory of the Proof Plane. 

223.] In testing the results of the mathematical theory of the 

distribution of electricity on the surface of conductors, it is 

necessary to be able to measure the surface-density at different 

points of the conductor. For this purpose Coulomb employed a 

small disk of gilt paper fastened to an insulating stem of gum- 

lac. He applied this disk to various points of the conductor by 

placing it so as to coincide as nearly as possible with the surface 

of the conductor. He then removed it by means of the in¬ 

sulating stem, and measured the charge of the disk by means 

of his electrometer. 

Since the surface of the disk, when applied to the conductor, 

nearly coincided with that of the conductor, he concluded that 

the surface-density on the outer surface of the disk was nearly 

equal to that on the surface of the conductor at that plaee, and 

that the charge on the disk when removed was nearly equal to 

that on an area of the surface of the conductor equal to that of 

one side of the disk. A disk, when employed in this way, is 

called a Coulomb's Proof Plane. 

As objections have been raised to Coulomb’s use of the proof 

plane, I shall make some remarks on the theory of the experi¬ 

ment. 

This experiment consists in bringing a small conducting body 

into contact with the surface of the conductor at the point where 

the density is to be measured, and then removing the body and 

determining its charge. 

We have first to shew that the charge on the small body when 

in contact with the conductor is proportional to the surface- 
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density which existed at the point of contact before the small 

body was placed there. 

We shall suppose that all the dimensions of the small body, 

and especially its dimension in the direction of the normal at the 

point of contact, are small compared with either of the radii of 

curvature of the conductor at the point of contact. Hence the 

variation of the resultant force due to the conductor supposed 

rigidly electrified within the space occupied by the small body 

may be neglected, and we may treat the surface of the conductor 

near the small body as a plane surface. 

Now the charge which the small body will take by contact 

with a plane surface will be proportional to the resultant force 

normal to the surface, that is, to the surface-density. We shall 

ascertain the amount of the charge for particular forms of the body. 

We have next to shew that when the small body is removed 

no spark will pass between it and the conductor, so that it will 

carry its charge with it. This is evident, because when the 

bodies are in contact their potentials are the same, and therefore 

the density on the parts nearest to the point of contact is ex¬ 

tremely small. When the small body is removed to a very short 

distance from the conductor, which we shall suppose to be elec¬ 

trified positively, then the electrification at the point nearest to 

the small body is no longer zero but positive, but, since the 

charge of the small body is positive, the positive electrification 

close to the small body will be less than at other neighbouring 

points of the surface. Now the passage of a spark depends in 

general on the magnitude of the resultant force, and this on the 

surface-density. Hence, since we suppose that the conductor is 

not so highly electrified as to be discharging electricity from the 

other parts of its surface, it will not discharge a spark to the 

small body from a part of its surface which we have shewn to 

have a smaller surface-density. 

224.] We shall now consider various forms of the small body. 

Suppose it to be a small hemisphere applied to the conductor 

so as to touch it at the centre of its flat side. 

Let the conductor be a large sphere, and let us modify the 

form of the hemisphere so that its surface is a little more than a 

hemisphere, and meets the surface of the sphere at right angles. 

Then we have a case of which we have already obtained the 

exact solution. See Art. 168. 



344 ELECTROSTATIC INSTRUMENTS. [22 5* 

If A and B be the centres of the two spheres cutting each 

other at right angles, DD' a diameter of the circle of intersection, 

and C the centre of that circle, then if V is the potential of a 

conductor whose outer surface coincides with that of the two 

spheres, the quantity of electricity on the exposed surface of the 

sphere A is \V{AD + BD + AG-CD- BC), 

and that on the exposed surface of the sphere B is 

\ V(AD -f BD + BC—CD - A C), 

the total charge being the sum of these, or 

V (AD 4- BD — CD). 

If a and /3 are the radii of the spheres, then, when a is large 

compared with /3, the charge on B is to that on A in the ratio of 

4 a* 

Now let o- be the uniform surface-density on A wrhen B is 

removed, then the charge on A is 

4 77 a2 0-, 

and therefore the charge on B is 

3 JT /32<r (l + — — +&c.)» 
x 3 a ' 

or, when /3 is very small compared with a, the charge on the 

hemisphere B is equal to three times that due to a surface-density 

cr extending over an area equal to that of the circular base of the 

hemisphere. 

It appears from Art. 175 that if a small sphere is made to 

touch an electrified body, and is then removed to a distance 

from it, the mean surface-density on the sphere is to the surface- 

density of the body at the point of contact as 712 is to 6, or 

as 1.645 to 1. 

225.] The most convenient form for the proof plane is that of 

a circular disk. We shall therefore shew how the charge on a 

circular disk laid on an electrified surface is to be measured. 

For this purpose we shall construct a value of the potential 

function so that one of the equipotential surfaces resembles a 

circular flattened protuberance whose general form is somewhat 

like that of a disk lying on a plane. 

Let (t be the surface-density of a plane, which we shall suppose 

to be that of xy. 
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The potential due to this electrification will be 

V — —47T(TZ. 

Now let two disks of radius a be rigidly electrified with 

surface-densities — cr' and -f cr'. Let the first of these be placed 

on the plane of xy with its centre at the origin, and the second 

parallel to it at the very small distance c. 

Then it may be shewn, as we shall see in the theory of mag¬ 

netism, that the potential of the two disks at any point is co cr c, 

where co is the solid angle subtended by the edge of either disk 

at the point. Hence the potential of the whole system will be 

V= — 4 7i cr Z 4- cr'c co. 

The forms of the equipotential surfaces and lines of induction 

are given on the left-hand side of Fig. XX, at the end of Vol. II. 

Let us trace the form of the surface for which F=0. This 

surface is indicated by the dotted line. 

Putting the distance of any point from the axis of z = r, then, 

when r is much less than a, and z is small, we find 

0 
lO — 2ir — 2 7T —f* &c. 

a 

Hence, for values of r considerably less than a, the equation 

of the zero equipotential surface is 

0 = — 4 77az(x -f 2 7r a c — 2 7i cr' + &c.: 
u a 

cr'c 
or z0=--• 

2 a + </ - 
a 

Hence this equipotential surface near the axis is nearly flat. 
Outside the disk, where r is greater than a, co is zero when 

z is zero, so that the plane of xy is part of the equipotential 
surface. 

To find where these two parts of the surface meet, let us find 
dV 

at what point of this plane ^ = 0. 

When r is very nearly equal to a, the solid angle co becomes 

approximately a lune of the sphere of unit radius whose angle 
is tan^^-r-fr—a)}, that is, a is 2 tan”-1 a)}, so that 

when 2=0 ~ = — 47t <t + j approximately. 
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Hence, when 

dV 

dz 
= 0, r0 = a + 

a C 

27T(T 
= a + —, nearly. 

The equipotential surface V= 0 is therefore composed of a disk¬ 

like figure of radius r0, and nearly uniform thickness z0, and of 

the part of the infinite plane of cry which lies beyond this figure. 

The surface-integral over the whole disk gives the charge of 

electricity Qn it. It may be found, as in the theory of a circular 

current in Part IV, Art. 704, to be 

8 d 
Q = 4na<r'c {log--- - 2} + *crr02. 

' o~a 

The charge on an equal area of the plane surface is tt(tt029 
hence the charge on the disk exceeds that on an equal area of 

the plane very nearly in the ratio of 

zn. 8 tt rn 
I + 8-^log——°to unity, 

^0 Z0 

where zQ is the thickness and r0 the radius of the disk, z0 being 

supposed small compared with r0. 

On Electric Accumulators and the Measurement of Capacity. 

226.] An Accumulator or Condenser is an apparatus consisting 

of two conducting surfaces separated by an insulating dielectric 

medium. 

A Leyden jar is an accumulator in which an inside coating of 

tinfoil is separated from the outside coating by the glass of which 

the jar is made. The original Leyden phial was a glass vessel 

containing water which was separated by the glass from the 

hand which held it. 

The outer surface of any insulated conductor may be con¬ 

sidered as one of the surfaces of an accumulator, the other being 

the earth or the walls of the room in which it is placed, and the 

intervening air being the dielectric medium. 

The capacity of an accumulator is measured by the quantity 

of electricity with which the inner surface must be charged to 

make the difference between the potentials of the surfaces unity. 

Since every electrical potential is the sum of a number of 

parts found by dividing each electrical element by its distance 

from a point, the ratio of a quantity of electricity to a potential 
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must have the dimensions of a line. Hence electrostatic capacity 

is a linear quantity, or we may measure it in feet or metres 

without ambiguity. 

In electrical researches accumulators are used for two principal 

purposes, for receiving and retaining large quantities of electricity 

in as small a compass as possible, and for measuring definite 

quantities of electricity by means of the potential to which they 

raise the accumulator. 

For the retention of electrical charges nothing has been devised 

more perfect than the Leyden jar. The principal part 6f the loss 

arises from the electricity creeping along the damp uncoated 

surface of the glass from the one coating to the other. This 

may be checked in a great degree by artificially drying the air 

within the jar, and by varnishing the surface of the glass where 

it is exposed to the atmosphere. In Sir W. Thomsons electro¬ 

scopes there is a very small percentage of loss from day to day, 

and I believe that none of this loss can be traced to direct con¬ 

duction either through air or through glass when the glass is 

good, but that it arises chiefly from superficial conduction along 

the various insulating stems and glass surfaces of the instru¬ 

ment. 

In fact, the same electrician has communicated a charge to 

sulphuric acid in a large bulb with a long neck, and has then 

hermetically sealed the neck by fusing it, so that the charge was 

completely surrounded by glass, and after some years the charge 

was found still to be retained. 

It is only, however, when cold, that glass insulates in this 

way, for the charge escapes at once if the glass is heated to a 

temperature below 100°C. 

When it is desired to obtain great capacity in small compass, 

accumulators in which the dielectric is sheet caoutchouc, mica, 

or paper impregnated with paraffin are convenient. 

227.] For accumulators of the second class, intended for the 

measurement of quantities of electricity, all solid dielectrics must 

be employed with great caution on account of the property which 

they possess called Electric Absorption. 

The only safe dielectric for such accumulators is air, which 

has this inconvenience, that if any dust or dirt gets into the 

narrow space between the opposed surfaces, which ought to be 

occupied only by air, it not only alters the thickness of the 
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stratum of air, but may establish a connexion between the 

opposed surfaces, in which case the accumulator will not hold a 

charge. 

To determine in absolute measure, that is to say in feet or 

metres, the capacity of an accumulator, we must either first 

ascertain its form and size, and then solve the problem of the 

distribution of electricity on its opposed surfaces, or we must 

compare its capacity with that of another accumulator, for which 

this problem has been solved. 

As the problem is a very difficult one, it is best to begin with 

an accumulator constructed of a form for which the solution is 

known. Thus the capacity of an insulated sphere in an unlimited 

space is known to be measured by the radius of the sphere. 

A sphere suspended in a room was actually used by MM. 

Kohlrausch and Weber, as an absolute standard with which 

they compared the capacity of other accumulators. 

The capacity, however, of a sphere of moderate size is so small 

when compared with the capacities of the accumulators in 

common use that the sphere is not a convenient standard 

measure. 

Its capacity might be greatly increased by surrounding the 

sphere with a hollow concentric spherical surface of somewhat 

greater radius. The capacity of the inner surface is then a 

fourth proportional to the thickness of the stratum of air and 

the radii of the two surfaces. 

Sir W. Thomson has employed this arrangement as a standard 

of capacity, {it has also been used by Prof. Rowland "and Mr. 

Rosa in their determinations of the ratio of the electromagnetic 

to the electrostatic unit of electricity, Phil. Mag. ser. v. 28, 

pp. 304, 315,} but the difficulties of working the surfaces truly 

spherical, of making them truly concentric, and of measuring 

their distance and their radii with sufficient accuracy, are con¬ 

siderable. 

We are therefore led to prefer for an absolute measure of ca¬ 

pacity a form in which the opposed surfaces are parallel planes. 

The accuracy of the surface of the planes can be easily tested, 

and their distance can be measured by a micrometer screw, and 

may be made capable of continuous variation, which is a most 

important property of a measuring instrument. 

The only difficulty remaining arises from the fact that the 
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planes must necessarily be bounded, and that the distribution of 

electricity near the boundaries of the planes has not been rigidly 

calculated. It is true that if we make them equal circular disks, 

whose radius is large compared with the distance between them, 

we may treat the edges of the disks as if they were straight 

lines, and calculate the distribution of electricity by the method 

due to Helmholtz, and described in Art. 202. But it will be 

noticed that in this case part of the electricity is distributed on 

the back of each disk, and that in the calculation it has been 

supposed that there are no conductors in the neighbourhood, 

which is not and cannot be the case with a small instrument. 

228.] We therefore prefer the following arrangement, due to 

Sir W. Thomson, which we may call the Guard-ring arrange¬ 

ment, by means of which the quantity of electricity on an 

insulated disk may be exactly determined in terms of its 

potential. 

The Guard-ring Accumulator. 

Bh is a cylindrical vessel of conducting material of which the 

outer surface of the upper face"is accurately plane. This upper 

surface consists of two parts, 

a disk A} and a broad ring 

BB surrounding the disk, 

separated from it by a very 

small interval all round, just 

sufficient to prevent sparks 

passing. The upper surface 

of the disk is accurately in 

the same plane witli that of 

the guard-ring. The disk is 

supported by pillars of insulating material GG. C is a metal 

disk, the under surface of which is accurately plane and parallel 

to BB. The disk G is considerably larger than A. Its distance 

from A is adjusted and measured by means of a micrometer 

screw, which is not given in the figure. 

This accumulator is used as a measuring instrument as 

follows:— 

Suppose C to be at potential zero, and the disk A and vessel 

Bb both at potential F. Then there will be no electrification on 

B 7 A B 

a(y 
L _ 

G G 

£ 
Fig. 21. 
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the back of the disk because the vessel is nearly closed and is 

all at the same potential. There will be very little electrification 

on the edges of the disk because BB is at the same potential 

with the disk. On the face of the disk the electrification will 

be nearly uniform, and therefore the whole charge on the disk 

will be almost exactly represented by its area multiplied by the 

surface-density on a plane, as given in Art. 124. 

In fact, we learn from the investigation in Art. 201 that the 

charge on the disk is 

(E2-f E'2 E'2 —E2 a ) 

V\ SA 8~A A -f-aJ * 

where R is the radius of the disk, R' that of the hole in the 

guard-ring, A the distance between A and (7, and a a quantity 

which cannot exceed (E'-~E)—— • 
77 

If the interval between the disk and the guard-ring is small 

compared with the distance between A and C, the second term 

will be very small, and the charge on the disk will be nearly 

V?L±~. 
8 A 

{This is very nearly the same as the charge on a disk uni¬ 

formly electrified with the surface-density V/i tt A, whose radius 

is the arithmetic mean between those of the original disk and 

the hole.} 

Now let the vessel Bh be put in connexion with the earth. 

The charge on the disk A will no longer be uniformly dis¬ 

tributed, but it will remain the same in quantity, and if we 

now discharge A we shall obtain a quantity of electricity, 

the value of which we know in terms of V, the original 

difference of potentials and the measurable quantities R, R' 
and A. 

On the Comparison of the Capacity of Accumulators. 

229.] The form of accumulator which is best fitted to have its 

capacity determined in absolute measure from the form and 

dimensions of its parts is not generally the most suitable for 

electrical experiments. It is desirable that the measures of 

capacity in actual use should be accumulators having only two 

conducting surfaces, one of which is as nearly as possible sur¬ 

rounded by the other. The guard-ring accumulator, on the 
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other hand, has three independent conducting portions which 

must be charged and discharged in a certain order. Hence it is 

desirable to be able to compare the capacities of two accumu¬ 

lators by an electrical process, so as to test accumulators which 

may afterwards serve as secondary standards. 

I shall first shew how to test the equality of the capacity of 

two guard-ring accumulators. 

Let A be the disk, 5 the guard-ring with the rest of the con¬ 

ducting vessel attached to it, and 0 the largo disk of one of 

these accumulators, and let A\ B\ and O' be the corresponding 

parts of the other. 

If either of these accumulators is of the more simple kind, 

having only two conductors, we have only to suppress B or 5', 

and to suppose A to be the inner and C the outer conducting 

surface, G in this case being understood to surround A. 

Let the following connexions be made. 

Let B be kept always connected with O', and Bf with 0, that 

is, let each guard-ring be connected with the large disk of the 

other condenser. 

(1) Let A be connected with B and O' and with J, the elec¬ 

trode of a Leyden jar with a positive charge, and let A' be 

connected with 5' and G and with the earth. 

(2) Let A, jB, and G' be insulated from J. 
(3) Let A be insulated from B and O', and Af from B' and C. 
(4) Let B and O' be connected with B' and 0 and with the 

earth. 

(5) Let A be connected with A'. 

(6) Let A and A' be connected with an electroscope E. 

We may express these connexions as follows:— 

(1) o = G = B' = A' | A = B = J. 
(2) o = C = 5' = .4' | A = B = O' | 

(3) 0 = C = B' | A' | A | B = O'. 

(4) 0 = 0 = B' | A' | A | B = G/ = 0. 

(5) 0 = G = B' | A' = A | B-G'z=o. 
(6) 0 = 0=5' j A'=E=A | 5 = 0' = 0. 

Here the sign of equality expresses electrical connexion, and 

the vertical stroke expresses insulation. 

In (1) the two accumulators are charged oppositely, so that A 
is positive and A' negative, the charges on A and Af being 
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uniformly distributed on the upper surface opposed to the large 

disk of each accumulator. 

In (2) the jar is removed, and in (3) the charges on A and A' 

are insulated. 

In (4) the guard-rings are connected with the large disks, so 

that the charges on A and A\ though unaltered in magnitude, 

are now distributed over their whole surfaces. 

In (5) A is connected with A'. If the charges are equal and 

of opposite signs, the electrification will be entirely destroyed, 

and in (6) this is tested by means of the electroscope E. 

The electroscope E will indicate positive or negative electri¬ 

fication according as A or A' has the greater capacity. 

By means of a key of proper construction*, the whole of these 

operations can be performed in due succession in a very small 

fraction of a second, and the capacities adjusted till no electri¬ 

fication can be detected by the electroscope, and in this way the 

capacity of an accumulator may be adjusted to be equal to that 

of any other, or to the sum of the capacities of several accumu¬ 

lators, so that a system of accumulators may be formed, each of 

which has its capacity determined in absolute measure, i.e. in 

feet or in metres, while at the same time it is of the construction 

most suitable for electrical experiments. 

This method of comparison will probably be found useful in 

determining the specific capacity for electrostatic induction of 

different dielectrics in the form of plates or disks. If a disk of 

the dielectric is interposed between A and 0, the disk being 

considerably larger than A, then the capacity of the accumulator 

will be altered and made equal to that of the same accumulator 

when A and G are nearer together. If the accumulator with the 

dielectric plate, and with A and 0 at distance x, is of the same 

capacity as the same accumulator without the dielectric, and 

with A and 0 at distance xthen, if a is the thickness of the 

plate, and K its specific dielectric inductive capacity referred to 

air as a standard, 

K — —%- 
a + x — x 

The combination of three cylinders, described in Art. 127, 

has been employed by Sir W. Thomson as an accumulator whose 

* {Such a key is described in Ur. Hopkinson's paper on the Electrostatic Capacity 
of Glass and of Liquids, Phil. Trans., 1881, Part II, p. 860.} 
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capacity may be increased or diminished by measurable quan¬ 

tities. 

The experiments of MM. Gibson and Barclay with this ap¬ 

paratus are described in the Proceedings of the Royal Society, 

Feb. 2, 1871, and Phil. Trans., 1871, p. 573. They found the 

specific inductive capacity of solid paraffin to be 1.975, that 

of air being unity. 

VOL. I. a a 



PART II. 

ELECTROKINEMATICS. 

CHAPTER I. 

THE ELECTRIC CURRENT. 

230. ] We have seen, in Art. 45, that when a conductor is in 

electrical equilibrium the potential at every point of the con¬ 
ductor must be the same. 

If two conductors A and B are charged with electricity so 

that the potential of A is higher than that of B, then, if they 

are put in communication by means of a metallic wire C 
touching both of them, part of the charge of A will be trans¬ 

ferred to B, and the potentials of A and B will become in a 

very short time equalized. 

231. ] During this process certain phenomena are observed 

in the wire C, which are called the phenomena of the electric 
conflict or current. 

The first of these phenomena is the transference of positive 

electrification from A to B and of negative electrification from B 
to A. This transference may be also effected in a slower manner 

by bringing a small insulated body into contact with A and B 
alternately. By this process, which we may call electrical con¬ 

vection, successive small portions of the electrification of each 

body are transferred to the other. In either case a certain 

quantity of electricity, or of the state of electrification, passes 

from one place to another along a certain path in the space 

between the bodies. 
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Whatever therefore may be our opinion of the nature of elec¬ 

tricity, we must admit that the process which we have described 

constitutes a current of electricity. This current may be de¬ 

scribed as a current of positive electricity from A to B, or a 

current of negative electricity from 5 to A, or as a combination 

of these two currents. 

According to Fechner’s and Weber’s theory it is a combination 

of a current of positive electricity with an exactly equal current 

of negative electricity in the opposite direction through the same 

substance. It is necessary to remember this exceedingly artificial 

hypothesis regarding the constitution of the current in order to 

understand the statement of some of Weber’s most valuable ex¬ 

perimental results. 

If, as in Art. 36, we suppose P units of positive electricity 

transferred from A to B, and N units of negative electricity 

transferred from B to A in unit of time, then, according to 

Weber’s theory, P — N, and P or N is to be taken as the 

numerical measure of the current. 

We, on the contrary, make no assumption as to the relation 

between P and JT, but attend only to the result of the current, 

namely, the transference of P-f N units of positive electrification 

from A to B, and we shall consider P + N the true measure 

of the current. The current, therefore, which Weber would call 

1 we shall call 2. 

On Steady Currents. 

232.] In the case of the current between two insulated con¬ 

ductors at different potentials the operation is soon brought to 

an end by the equalization of the potentials of the two bodies, 

and the current is therefore essentially a Transient Current. 

But there are methods by which the difference of potentials of 

the conductors ma}r be maintained constant, in which case the 

current will continue to flow with uniform strength as a Steady 

Current. 

The Voltaic Battery. 

The most convenient method of producing a steady current is 

by means of the Voltaic Battery. 

For the sake of distinctness we shall describe Daniell’s Con¬ 

stant Battery:— 

A solution of sulphate of zinc is placed in a cell of porous 

a a 2 
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earthenware, and this cell is placed in a vessel containing a 

saturated solution of sulphate of copper. A piece of zinc is 

dipped into the sulphate of zinc, and a piece of copper is dipped 

into the sulphate of copper. Wires are soldered to the zinc and to 

the copper above the surfaces of the liquids. This combination 

is called a cell or element of Daniell's battery. See Art. 272. 

233.] If the cell is insulated by being placed on a non-con¬ 
ducting stand, and if the wire connected with the copper is put 
in contact with an insulated conductor A, and the wire con¬ 
nected with the zinc is put in contact with B, another insulated 
conductor of the same metal as then it may be shewn by 
means of a delicate electrometer that the potential of A exceeds 
that of B by a certain quantity. This difference of potentials is 
called the Electromotive Force of the Daniell’s Cell. 

If A and B are now disconnected from the cell and put in 
communication by means of a wire, a transient current passes 
through the wire from A to B, and the potentials of A and B 
become equal. A and B may then be charged again by the cell, 
and the process repeated as long as the cell will work. But if 
A and B be connected by means of the wire C, and at the same 
time connected with the battery as before, then the cell will 
maintain a constant current through C, and also a constant 
difference of potentials between A and B. This difference will 
not, as we shall see, be equal to the whole electromotive force of 
the cell, for part of this force is spent in maintaining the current 
through the cell itself. 

A number of cells placed in series so that the zinc of the first 
cell is connected by metal with the copper of the second and 
so on, is called a Voltaic Battery. The electromotive force of 
such a battery is the sum of the electromotive forces of the cells 
of which it is composed. If the battery is insulated it may be 
charged with electricity as a whole, but the potential of the 
copper end will always exceed that of the zinc end by the elec¬ 
tromotive force of the battery, Whatever the absolute value of 
either of these potentials may be. The cells of the battery may 
be of very various construction, containing different chemical 
substances and different metals, provided they are such that 
chemical action does not go on when no current passes. 

234.] Let us now consider a voltaic battery with its ends 
insulated from each other. The copper end will be positively 
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or vitreously electrified, and the zinc end will be negatively or 

resinously electrified. 

Let the two ends of the battery be now connected by means 

of a wire. An electric current will commence, and will in a 

very short time attain a constant value. It is then said to be 

a Steady Current. 

Properties of the Current. 

235.] The current forms a closed circuit in the direction from 

copper to zinc through the wires, and from zinc to copper 

through the solutions. 

If the circuit be broken by cutting any of the wires which 

connect the copper of one cell with the zinc of the next in order, 

the current will be stopped, and the potential of the end of 

the wire in connexion with the copper will be found to exceed 

that of the end of the wire in connexion with the zinc by a 

constant quantity, namely, the total electromotive force of the 

circuit. 

Electrolytic Action of the Current. 

236.] As long as the circuit is broken no chemical action goes 

on in the cells, but as soon as the circuit is completed, zinc is 

dissolved from the zinc in each of the Daniells cells, and copper 

is deposited on the copper. 

The quantity of Bulphate of zinc increases, and the quantity 

of sulphate of copper diminishes unless more is constantly 

supplied. 

The quantity of zinc dissolved, and also that of copper de¬ 

posited, is the same in each of the Daniells cells throughout the 

circuit, whatever the size of the plates of the cell, and if any one 

of the cells be of a different construction, the amount of chemical 

action in it bears a constant proportion to the action in the 

Daniell’s cell. For instance, if one of the cells consists of two 

platinum plates dipped into sulphuric acid diluted with water, 

oxygen will be given off at the surface of the plate where 

the current enters the liquid, namely, the plate in metallic 

connexion with the copper of Daniell’s cell, and hydrogen 

at the surface of the plate where the current leaves the liquid, 

namely, the plate connected with the zinc of Daniells cell. 

The volume of the hydrogen is exactly twice the volume of 
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the oxygen given off in the same time, and the weight of the 

oxygen is exactly eight times the weight of the hydrogen. 

In every cell of the circuit the weight of each substance 

dissolved, deposited, or decomposed is equal to a certain quantity 

called the electrochemical equivalent of that substance, multi¬ 

plied by the strength of the current and by the time during 

which it has been flowing. 

For the experiments which established this principle, see the 

seventh and eighth series of Faraday's Experimental Researches; 
and for an investigation of the apparent exceptions to the rule, 

see Miller’s Chemical Physics and Wiedemann's Galvanismus. 

237.] Substances which are decomposed in this w y are called 

Electrolytes. The process is called Electrolysis. The places 

where the current enters and leaves the electrolyte are called 

Electrodes. Of these the electrode by which the current enters 

is called the Anode, and that by which it leaves the electrolyte 

is called the Cathode. The components into which the electrolyte 

is resolved are called Ions: that which appears at the anode is 

called the Anion, and that which appears at the cathode is called 

the Cation. 

Of these terms, which wTere, I believe, invented by Faraday 

with the help of Dr. Whewell, the first three, namely, electrode, 

electrolysis, and electrolyte have been generally adopted, and 

the mode of conduction of the current in which this kind of 

decomposition and transfer of the components takes place is 

called Electrolytic Conduction. 

If a homogeneous electrolyte is placed in a tube of variable 

section, and if the electrodes are placed at the ends of this tube, 

it is found that when the current passes, the anion appears at 

the anode and the cation at the cathode, the quantities of these 

ions being electrochemically equivalent, and such as to be 

together equivalent to a certain quantity of the electrolyte. In 

the other parts of the tube, whether the section be large or 

small, uniform or varying, the composition of the electrolyte 

remains unaltered. Hence the amount of electrolysis which 

takes place across every section of the tube is the same. Where 

the section is small the action must therefore be more intense 

than wThere the section is large, but the total amount of each ion 

which crosses any complete section of the electrolyte in a given 

time is the same for all sections. 
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The strength of the current may therefore be measured by the 

amount of electrolysis in a given time. An instrument by 

which the quantity of the electrolytic products can be readily 

measured is called a Voltameter. 

The strength of the current, as thus measured, is the same 

at every part of the circuit, and the total quantity of the elec¬ 

trolytic products in the voltameter after any given time is pro¬ 

portional to the amount of electricity which passes any section 

in the same time. 

238.] If we introduce a voltameter at one part of the circuit 

of voltaic battery, and break the circuit at another part, we 

may suppose the measurement of the current to be conducted 

thus. Let the ends of the broken circuit be A and B, and let A 
bo the anode and B the cathode. Let an insulated ball be made 

to touch A and B alternately, it will carry from A to B a certain 

measurable quantity of electricity at each journey. This quan¬ 

tity may be measured by an electrometer, or it may be calculated 

by multiplying the electromotive force of the circuit by the 

electrostatic capacity of the ball. Electricity is thus carried 

from A to B on the insulated ball by a process which may 

be called Convection. At the saino time electrolysis goes on in 

the voltameter and in the cells of the battery, and the amount of 

electrolysis in each cell may be compared with the amount 

of electricity carried across by the insulated ball. The quantity 

of a substance which is electrolysed by one unit of electricity 

is called an Electrochemical equivalent of that substance. 

This experiment would be an extremely tedious and trouble¬ 

some one if conducted in this way with a ball of ordinar}r 

magnitude and a manageable battery, for an enormous number 

of journeys would have to be made before an appreciable 

quantity of the electrolyte was decomposed. The experiment 

must therefore be considered as a mere illustration, the actual 

measurements of electrochemical equivalents being conducted 

in a different way. But the experiment may be considered 

as an illustration of the process of electrolysis itself, for if we 

regard electrolytic conduction as a species of convection in 

which an electrochemical equivalent of the anion travels with 

negative electricity in the direction of the anode, while an 

equivalent of the cation travels with positive electricity in 

the direction of the cathode, the whole amount of transfer of 
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electricity being one unit, we shall have an idea of the process 

of electrolysis, which, so far as I know, is not inconsistent with 

known facts, though, on account of our ignorance of the nature 

of electricity and of chemical compounds, it may be a very 

imperfect representation of what really takes place. 

Magnetic Action of the Current. 

239. ] Oersted discovered that a magnet placed near a straight 

electric current tends to place itself at right angles to the plane 

passing through the magnet and the current. See Art. 475. 
If a man were to place his body in the line of the current so 

that the current from copper through the wire to zinc should 

flow from his head to his feet, and if he were to direct his face 

towards the centre of the magnet, then that end of the magnet 

which tends to point to the north would, when the current flows, 

tend to point towards the man’s right hand. 

The nature and laws of this electromagnetic action will be 

discussed when we come to the fourth part of this treatise. 

What we are concerned with at present is the fact that the 

electric current has a magnetic action which is exerted outside 

the current, and by which its existence can be ascertained and 

its intensity measured without breaking the circuit or intro¬ 

ducing anything into the current itself. 

The amount of the magnetic action has been ascertained to be 

strictly proportional to the strength of the current as measured 

by the products of electrolysis in the voltameter, and to be quite 

independent of the nature of the conductor in which the current 

is flowing, whether it be a metal or an electrolyte. 

240. ] An instrument which indicates the strength of an elec¬ 

tric current by its magnetic effects is called a Galvanometer. 

Galvanometers in general consist of one or more coils of silk- 

covered wire within which a magnet is suspended with its axis 
horizontal. When a current'is passed through the wire the 

magnet tends to set itself with its axis perpendicular to the 

plane of the coils. If we suppose the plane of the coils to be 

placed parallel to the plane of the earth’s equator, and the 

current to flow round the coil from east to west in the direction 

of the apparent potion' of the sun, then the magnet within will 

tend to set itself with its magnetization in the same direction as 
that of the earth considered as a great magnet, the north pole of 
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the earth being similar to that end of the compass needle which 

points south. 
The galvanometer is the most convenient instrument for 

measuring the strength of electric currents. We Bhall therefore 

assume the possibility of constructing such an instrument 

in studying the laws of these currents, reserving the discussion 

of the principles of the instrument for our fourth part. When 

therefore we say that an electric current is of a certain strength 

we suppose that the measurement is effected by the galvano¬ 

meter. 



CHAPTER II. 

CONDUCTION AND RESISTANCE. 

241.] If by means of an electrometer we determine the elec¬ 

tric potential at different points of a circuit in which a constant 

electric current is maintained, we shall find that in any portion 

of the circuit consisting of a single metal of uniform temperature 

throughout, the potential at any point exceeds that at any other 

point farther on in the direction of the current by a quantity 

depending on the strength of the current and on the nature and 

dimensions of the intervening portion of the circuit. The dif¬ 

ference of the potentials at the extremities of this portion of the 

circuit is called the External electromotive force acting on it. 

If the portion of the circuit under consideration is not homo¬ 

geneous, but contains transitions from one substance to another, 

from metals to electrolytes, or from hotter to colder parts, there 

may be, besides the external electromotive force, Internal elec¬ 

tromotive forces which must be taken into account. 

The relations between Electromotive Force, Current, and 

Resistance were first investigated by Dr. G. S. Ohm, in a work 

published in 1827, entitled Die Oalvanische Kette Mathematisch 
Bearbeitety translated in Taylors Scientific Memoirs. The result 

of these investigations in the case of homogeneous conductors is 

commonly called ‘ Ohm's Law.' 

Ohm 8 Law. 

The electromotive force acting between the extremities of any 

part of a circuit is the product of the strength of the current 

and the resistance of that part of the circuit. 

Here a new term is introduced, the Resistance of a conductor, 

which is defined to be the ratio of the electromotive force to 



242.] COMPARISON WITH PHENOMENA OF HEAT. 363 

the strength of the current which it produces. The introduction 

of this term would have been of no scientific value unless Ohm 

had shewn, as he did experimentally, that it corresponds to a 

.real physical quantity, that is, that it has a definite value which 

is altered only when the nature of the conductor i9 altered. 

In the first place, then, the resistance of a conductor is inde~ 

pendent of the strength of the current flowing through it. 

In the second place the resistance is independent of the 

electric potential at which the conductor is maintained, and of 

the density of the distribution of electricity on the surface of 

the conductor. 

It depends entirely on the nature of the material of which the 

conductor is composed, the state of aggregation of its parts, and 

its temperature. 

The resistance of a conductor may be measured to within one 

ten thousandth or even one hundred thousandth part of its 

value, and so many conductors have been tested that our as¬ 

surance of the truth of Ohm's Law is now very high*. In the 

bixth chapter we shall trace its applications and consequences. 

Generation of Heat by the Current. 

242.] We have seen that when an electromotive force causes 

a current to flow through a conductor, electricity is transferred 

from a place of higher to a place of lowrer potential. If the 

transfer had been made by convection, that is, by carrying 

successive charges on a ball from the one place to the other, 

work would have been done by the electrical forces on the ball, 

and this might have been turned to account. It is actually 

turned to account in a partial manner in those dry pile circuits 

where the electrodes have the form of bells, and the carrier ball 

is made to swing like a pendulum between the two bells and 

strike them alternately. In this wray the electrical action is 

made to keep up the swinging of the pendulum and to propagate 

the sound of the bells to a distance. In the case of the con¬ 

ducting wire we have the same transfer of electricity from a 

place of high to a place of low potential without any external 

work being done. The principle of the Conservation of Energy 

♦ {For the verification of Ohm’s Law for metallic conductors see Chrystal, B. A. 
Report 1866, p. 36, who shews that the resistance of a wire for infinitely weak currents 
does not differ from its resistance for very strong ones by 10“10 per cent.; for the verifi¬ 
cation of the law for electrolytes see Fitzgerald and Trouton, B. A. Report, 1886.} 
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therefor© leads us to look for internal work in the conductor. 

In an electrolyte this internal work consists partly of the separa¬ 

tion of its components. In other conductors it is entirely con¬ 

verted into heat. 

The energy converted into heat is in this case the product of 

the electromotive force into the quantity of electricity which 

passes. But the electromotive force is the product of the current 

into the resistance, and the quantity of electricity is the product 

of the current into the time. Hence the quantity of heat multi¬ 

plied by the mechanical equivalent of unit of heat is equal to 

the square of the strength of the current multiplied into the 

resistance and into the time. 

The heat developed by electric currents in overcoming the 

resistance of conductors has been determined by Dr. Joule, who 

first established that the heat produced in a given time is pro¬ 

portional to the square of the current, and afterwards by careful 

absolute measurements of all the quantities concerned, verified 

the equation jH _ qi ^ * 

where J is. Joule's dynamical equivalent of heat, H the number 

of units of heat, G the strength of the current, R the resistance 

of the conductor, and t the time during which the current flows. 

These relations between electromotive force, work, and heat, 

were first fully explained by Sir. W. Thomson in a paper on the 

application of the principle of mechanical effect to the measure¬ 

ment of electromotive forces*. 

243.] The analogy between the theory of the conduction of 

electricity and that of the conduction of heat is at first sight 

almost complete. If we take two systems geometrically similar, 

and such that the conductivity for heat at any part of the first 

is proportional to the conductivity for electricity at the corre¬ 

sponding part of the second, and if we also make the temperature 

at any part of the first proportional to the electric potential at 

the corresponding point of the second, then the flow of heat 

across any area of the first will be proportional to the flow of 

electricity across the corresponding area of the second. 

Thus, in the illustration we have given, in which flow of elec¬ 
tricity corresponds to flow of heat, and electric potential to 
temperature, electricity tends to flow from places of high to 

* Phil Mag., Dec. 1851. 
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places of low potential, exactly as heat tends to flow from places 
of high to places of low temperature. 

244, ] The theory of electric potential and that of temperature 
may therefore be made to illustrate one another; there is, 
however, one remarkable difference between the phenomena of 
electricity and those of heat. 

Suspend a conducting body within a closed conducting vessel 
by a silk thread, and charge the vessel with electricity. The 
potential of the vessel and of all within it will be instantly 
raised, but however long and however powerfully the vessel be 
electrified, and whether the body within be allowed to come in 
contact with the vessel or not, no signs of electrification will 
appear within the vessel, nor will the body within shew any 
electrical effect when taken out. 

But if the vessel is raised to a high temperature, the body 
within will rise to the same temperature, but only after a con¬ 
siderable time, and if it is then taken out it will be found hot, 
and will remain so till it has continued to emit heat for some 
time. 

The difference between the phenomena consists in the fact 
that bodies are capable of absorbing and emitting heat, whereas 
they have no corresponding property with respect to electricity. 
A body cannot be made hot without a certain amount of heat 
being supplied to it, depending on the mass and specific heat of 
the bod^, but the electric potential of a body may be raised to 
any extent in the way already described without communicating 
any electricity to the body. 

245. ] Again, suppose a body first heated and then placed 
inside the closed vessel. The outside of the vessel will be at 
first at the temperature of surrounding bodies, but it will soon 
get hot, and will remain hot till the heat of the interior body 
has escaped. 

It is impossible to perform a corresponding electrical experi¬ 
ment. It is impossible so to electrify a body, and so to place it 
in a hollow vessel, that the outside of the vessel shall at first 
shew no signs of electrification but shall afterwards become 
electrified. It was for some phenomenon of this kind that 
Faraday sought in vain under the name of an absolute charge 
of electricity. 

Heat may be hidden in the interior of a body so as to have no 
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external action, but it is impossible to isolate a quantity of elec¬ 

tricity so as to prevent it from being constantly in inductive 

relation with an equal quantity of electricity of the opposite 
kind. 

There is nothing therefore among electric phenomena which 

corresponds to the capacity of a body for heat. This follows at 

once from the doctrine which is asserted in this treatise, that 

electricity obeys the same condition of continuity as an incom¬ 

pressible fluid. It is therefore impossible to give a bodily charge 

of electricity to any substance by forcing an additional quantity 

of electricity into it. See Arts. 61, 111, 329, 334. 



CHAPTEK III. 

ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT. 

The Potentials of Different Substances in Contact. 

246.] If we define the potential of a hollow conducting vessel 
as the potential of the air inside the vessel, we may ascer¬ 

tain this potential by means of an electrometer as described in 
Part I, Art. 221. 

If we now take two hollow vessels of different metals, say 

copper and zinc, and put them in metallic contact with each 

other, and then test the potential of the air inside each vessel, 
the potential of the air inside the zinc vessel will be positive as 

compared with that inside the copper vessel. The difference of 

potentials depends on the nature of the surface of the insides of 
the vessels, being greatest when the zinc is bright and when the 
copper is coated with oxide. 

It appears from this that when two different metals are in 
contact there is in general an electromotive force acting from 

the one to the other, so as to make the potential of the one 

exceed that of the other by a certain quantity. This is Volta's 
theory of Contact Electricity. 

If we take a certain metal, say copper, as the standard, then 

if the potential of iron in contact with copper at the zero 

potential is 7, and that of zinc in contact with copper at zero is 
Zy then the potential of zinc in contact with iron at zero will be 

Z—J, if the medium surrounding the metals remains the same. 

It appears from this result, which is true of any three metals, 

that the difference of potential of any two metals at the same 

temperature in contact is equal to the difference of their 

potentials when in contact with a third metal, so that if a 

circuit be formed of any number of metals at the same tempera- 
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ture there will be electrical equilibrium as soon as they have 

acquired their proper potentials, and there will be no current 

kept up in the circuit 

247. ] If, however, the circuit consist of two metals and an 

electrolyte, the electrolyte, according to Volta’s theory, tends to 

reduce the potentials of the metals in contact with it to equality, 

so that the electromotive force at the metallic junction is no 

longer balanced, and a continuous current is kept up. The 

energy of this current is supplied by the chemical action which 

takes place between the electrolyte and the metals. 

248. ] The electric effect may, however, be produced without 

chemical action if by any other means we can produce an 

equalization of the potentials of two metals in contact. Thus, 

in an experiment due to Sir W. Thomson*, a copper funnel is 

placed in contact with a vertical zinc cylinder, so that when 

copper filings are allowed to pass through the funnel, they 

separate from each other and from the funnel near the middle 

of the zinc cylinder, and then fall into an insulated receiver 

placed below. The receiver is then found to be charged 

negatively, and the charge increases as the filings continue 

to pour into it. At the same time the zinc cylinder with 

the copper funnel in it becomes charged more and more posi¬ 

tively. 

If now the zinc cylinder were connected with the receiver by 

a wire, there would be a positive current in the wire from the 

cylinder to the receiver. The stream of copper filings, each 

filing charged negatively by induction, constitutes a negative 

current from the funnel to the receiver, or, in other words, 

a positive current from the receiver to the copper funnel. The 

positive current, therefore, passes through the air (by the 

filings) from zinc to copper, and through the metallic junction 

from copper to zinc, just as in the ordinary voltaic arrange¬ 

ment, but in this case the force which keeps up the current 

is not chemical action but gravity, which causes the filings to 

fall, in spite of the electrical attraction between the positively 

charged funnel and the negatively charged filings. 

249. ] A remarkable confirmation of the theory of contact 

electricity is supplied by the discovery of Peltier, that, when 

a current of electricity crosses the junction of two metals, the 

* North British Review, 1864, p. 353 ; and Proc. K. June 20, 1867. 
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junction is heated when the current is in one direction, and 

cooled when it is in the other direction. It must be remem¬ 

bered that a current in its passage through a metal always 

produces heat, because it meets with resistance, so that the 

cooling effect on the whole conductor must always be less than 

the heating effect. We must therefore distinguish between the 

generation of heat in each metal, due to ordinary resistance, 

and the generation or absorption of heat at the junction of two 

metals. We shall call the first the frictional generation of heat 

by the current, and, as we have seen, it is proportional to the 

square of the current, and is the same whether the current be 

in the positive or the negative direction. The second we may 

call the Peltier effect, which changes its sign with that of the 

current. 

The total heat generated in a portion of a compound conductor 

consisting of two metals may be expressed by 

H = jCH-UCt, 

where H is the quantity of heat, J the mechanical equivalent of 
unit of heat, R the resistance of the conductor, C the current, and 
t the time ; IT being the coefficient of the Peltier effect, that is, the 
heat absorbed at the junction by unit of current in unit of time. 

Now the heat generated is mechanically equivalent to the 

work done against electrical forces in the conductor, that is, it is 

equal to the product of the current into the electromotive force 

producing it. Hence, if E is the external electromotive force 

which causes the current to flow through the conductor, 

JH = CEt = RC21 — JU Gt, 

whence E = RC—/IT. 

It appears from this equation that the external electromotive 

force required to drive the current through the compound 

conductor is less than that due to its resistance alone by the 

electromotive force JU. Hence Jfl represents the electromotive 

contact force at the junction acting in the positive direction. 

This application, due to Sir W. Thomson*, of the dynamical 

theory of heat to the determination of a local electromotive force 

is of great scientific importance, since the ordinary method of 

connecting two points of the compound conductor with the 

* Proc, R. S. EdinDec. 15, 1851; and Trant. R. S. Edi*., 1854. 

VOL. 1. B b 
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electrodes of a galvanometer or electroscope by wires would be 

useless, owing to the contact forces at the junctions of the wires 

with the materials of the compound conductor. In the thermal 

method, on the other hand, we know that the only source of 

energy is the current of electricity, and that no work is done 

by the current in a certain portion of the circuit except in 

heating that portion of the conductor. If, therefore, we can 

measure the amount of the current and the amount of heat 

produced or absorbed, we can determine the electromotive force 

required to urge the current through that portion of the con¬ 

ductor, and this measurement is entirely independent of the 

effect of contact forces in other parts of the circuit. 

The electromotive force at the junction of two metals, as 

determined by this method, does not account for Volta s electro¬ 

motive force as described in Art. 246. The latter is in general 

far greater than that of this Article, and is sometimes of opposite 

sign. Hence the assumption that the potential of a metal is 

to be measured by that of the air in contact with it must be 

erroneous, and the greater part of Volta’s electromotive force 

must be sought for, not at the junction of the two metals, but 

at one or both of the surfaces which separate the metals from 

the air or other medium which forms the third element of the 

circuit. 

250.] The discovery by Seebeck of thermoelectric currents in 

circuits of different metals with their junctions at different tem¬ 

peratures, shews that these contact forces do not always balance 

each other in a complete circuit. It is manifest, however, that 

in a complete circuit of different metals at uniform temperature 

the contact forces must balance each other. For if this were not 

the case there would be a current formed in the circuit, and this 

current might be employed to work a machine or to generate 

heat in the circuit, that is, to do work, while at the same time 

there is no expenditure of energy, as the circuit is all at the 

same temperature, and no chemical or other change takes place. 

Hence, if the Peltier effect at the j unction of two metals a and b 
be represented by Tlab when the current flows from a to 6, then 

for a circuit of two metals at the same temperature we must 

have na6 + H6a = 0, 

and for a circuit of three metals a, 6, c, we must have 

nfl6 = 0. 
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It follows from this equation that the three Peltier effects are 

not independent, but that one of them can be deduced from the 

other two. For instance, if we suppose c to be a standard metal, 

and if we write Pa = Jnac and Jnhei then 

Jnoh = pa-pb. 
The quantity Ptt is a function of the temperature, and depends 

on the nature of the metal a. 
251.] It has also been shewn by Magnus that if a circuit is 

formed of a single metal no current will be formed in it, however 

the section of the conductor and the temperature may vary in 

different- parts*. 

Since in this case there is conduction of beat and consequent 

dissipation of energy, we cannot, as in the former case, consider 

this result as self-evident. The electromotive force, for instance, 

between two portions of a circuit might have depended on 

whether the current was passing from a thick portion of the 

conductor to a thin one, or the reverse, as well as on its passing 

rapidly or slowly from a hot portion to a cold one, or the reverse, 

and this would have made a current possible in an unequally 

heated circuit of one metal. 

Hence, by the same reasoning as in the case of Peltiers 

phenomenon, we find that if the passage of a current through 

a conductor of one metal produces any thermal effect which is 

reversed when the current is reversed, this can only take place 

when the current flows from places of high to places of low tem¬ 

perature, or the reverse, and if the heat generated in a conductor 

of one metal in flowing from a place where the temperature is x 
to a place where it is y, is £T, then 

JH= RCPt-S^yCt, 

and the electromotive force tending to maintain the current will 

be Sxv. 
If x, y, z be the temperatures at three points of a homo¬ 

geneous circuit, we must have 

+ $aa. + Sxy — 0, 

according to the result of Magnus. Hence, if we suppose 0 to be 

the zero temperature, and if we put 

Qx = Szt and Qv = Svti 

* { Le Roux has shewn that this does not hold when there are such sudden changes 
in the section that the temperature changes by a finite amount in a distance com¬ 
parable with molecular distances.} 

b b a 
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we find S*, = Q*-Q„ 
where Qx is a function of the temperature x, the form of the 

function depending on the nature of the metal. 

If we now consider a circuit of two metals a and b in which 

the temperature is x where the current passes from a to b, and 

y where it passes from b to a, the electromotive force will be 

P ~ Pnx — P\>x + Qbx ~ Qby + Hy Hy + Qay ~~ Qax» 
where Pax signifies the value of P for the metal a at the tempera¬ 

ture x, or 

P— fiix — Qax~(Pay--Qay) — (Rx — Qbx) + Ibp — Qbv 
Since in unequally heated circuits of different metals there are 

in general thermoelectric currents, it follows that P and Q are 

in general different for the same metal and same temperature. 

252]. The existence of the quantity Q was first demonstrated 

by Sir. W. Thomson, in the memoir we have referred to, as a 

deduction from the phenomenon of thermoelectric inversion dis¬ 

covered by Gumming*, who found that the order of certain 

metals in the thermoelectric scale is different at high and at low 

temperatures, so that for a certain temperature two metals may 

be neutral to each other. Thus, in a circuit of copper and iron 

if one junction be kept at the ordinary temperature while the 

temperature of the other is raised, a current sets from copper to 

iron through the hot junction, and the electromotive force con¬ 

tinues to increase till the hot junction has reached a temperature 

T, which, according to Thomson, is about 284°C. When the 

temperature of the hot junction is raised still Further the elec¬ 

tromotive force is reduced, and at last, if the temperature be 

raised high enough, the current is reversed. The reversal of the 

current may be obtained more easily by raising the temperature 

of the colder junction. If the temperature of both junctions is 

above T the current sets from iron to copper through the hotter 

junction, that is, in the reverse direction to that observed when 

both junctions are below T. 
Hence, if one of the junctions is at the neutral temperature T 

and the other is either hotter or colder, the current will set from 

copper to iron through the junction at the neutral temperature. 

253.] From this fact Thomson reasoned as follows:— 

Suppose the other junction at a temperature lower than T. 

* Cambridge Transactions, 1823. 



THERMOELECTRIC PHENOMENA. 373 253-] 

The current may be made to work an engine or to generate heat 

in a wire, and this expenditure of energy must be kept up by 

the transformation of heat into electric energy, that is to say, 

heat must disappear somewhere in the circuit. Now at the 

temperature T iron and copper are neutral to each other, so that 

no reversible thermal effect is produced at the hot junction, and 

at the cold junction there is, by Peltier’s principle, an evolution 

of heat by the current. Hence the only place where the heat 

can disappear is in the copper or iron portions of the circuit, so 

that either a current in iron from hot to cold must cool the iron, 

or a current in copper from cold to hot must cool the copper, or 

both these effects may take place. {This reasoning assumes that 

the thermoelectric junction acts merely as a heat engine, and 

that there is no alteration (such as would occur in a battery) in 

the energy of the substance forming the junction when electricity 

passes across it.} By an elaborate series of ingenious experi¬ 

ments Thomson succeeded in detecting the reversible thermal 

action of the current in passing between parts of different 

temperatures, and he found that the current produced opposite 

effects in copper and in iron*. 

When a stream of a material fluid passes along a tube from 

a hot part to a cold part it heats the tube, and when it passes 

from cold to hot it cools the tube, and these effects depend on 

the specific capacity for heat of the fluid. If we supposed elec- 

tricity, whether positive or negative, to be a materjLal fluid, we 

might measure its specific heat by the thermal effect on an un¬ 

equally heated conductor. Now Thomson’s experiments shew 

that positive electricity in copper and negative electricity in 

iron carry heat with them from hot to cold. Hence, if we 

supposed either positive or negative electricity to be a fluid, 

capable of being heated and cooled, and of communicating heat 

to other bodies, we should find the supposition contradicted by 

iron for positive electricity and by copper for negative electricity, 

so that we should have to abandon both hypotheses. 

This scientific prediction of the reversible effect of an electric 

current upon an unequally heated conductor of one metal is 

another instructive example of the application of the theory of 

Conservation of Energy to indicate new directions of scientific 

research. Thomson has also applied the Second Law of Thermo- 

* * On the Eleetrodynamic Qualities of Metals.* Phil. Trans., Part III, 1856. 
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dynamics to indicate relations between the quantities which we 

have denoted by P and Q, and has investigated the possible 

thermoelectric properties of bodies whose structure is different 

in different directions. He has also investigated experimentally 

the conditions under which these properties are developed by 

pressure, magnetization, &c. 

254.] Professor Tait* has recently investigated the electro¬ 

motive force of thermoelectric circuits of different metals, having 

their junctions at different temperatures. He finds that the 

electromotive force of a circuit may be expressed very ac¬ 

curately by the formula 

E = a— [£0-—£ (^i + 

where tx is the absolute temperature of the hot junction, t2 that 

of the cold junction, and t0 the temperature at which the two 

metals are neutral to each other. The factor a is a coefficient 

depending on the nature of the two metals composing the circuit. 

This law has been verified through considerable ranges of tem¬ 

perature by Professor Tait and his students, and he hopes to 

make the thermoelectric circuit available as a thermometric 

instrument in his experiments on the conduction of heat, and in 

other cases in which the mercurial thermometer is not convenient 

or has not a sufficient range. 

According to Tait’s theory, the quantity which Thomson calls 

the specific heat of electricity is proportional to the absolute 

temperature in each pure metal, though its magnitude and even 

its sign vary in different metals. From this he has deduced by 

thermodynamic principles the following results. Let kat, kbt, kct 
be the specific heats of electricity in three metals a, 6, c, and let 

ThCi rTca) Tab be the temperatures at which pairs of these metals 

are neutral to each other, then the equations 

(kb—kc) Thc -f (ke — kn) Tca + (ka—kb)Tah = 0, 

J^ab = (^a “““ kb) t(Tab~~ ^)> 

Eab = (K - kh) (tx -12) [:Tab -*(«! + y ] 

express the relation of the neutral temperatures, the value of 

the Peltier effect, and the electromotive force of a thermoelectric 

circuit. 

* Proc. R. S. JEdin.t Session 1870-71, p. 808, also Dec. 18,1871. 



CHAPTER IV. 

ELECTROLYSIS. 

Electrolytic Conduction. 

255.] I have already stated that when an electric current in 

ahy part of its circuit parses through certain compound sub¬ 

stances called Electrolytes, the passage of the current is accom¬ 

panied by a certain chemical process called Electrolysis, in 

which the substance is resolved into two components called Ions, 

of which one, called the Anion, or the electronegative component, 

appears at the Anode, or place where the current enters the 

electrolyte, and the other, called the Cation, appears at the 

Cathode, or the place where the current leaves the electrolyte. 

The complete investigation of Electrolysis belongs quite as 

much to Chemistry as to Electricity. We shall consider it from 

an electrical point of view, without discussing its application to 

the theory of the constitution of chemical compounds. 

Of all electrical phenomena electrolysis appears the most 

likely to furnish us with a real insight into the true nature of 

the electric current, because we find currents of ordinary matter 

and currents of electricity forming essential parts of the same 

phenomenon. 

It is probably for this very reason that, in the present imper¬ 

fectly formed state of our ideas about electricity, the theories of 

electrolysis are so unsatisfactory. 

The fundamental law of electrolysis, which was established by 

Faraday, and confirmed by the experiments of Beetz, Hittorf, 

and others down to the present time, is as follows:— 

The number of electrochemical equivalents of an electrolyte 

which are decomposed by the passage of an electric current 

during a given time is equal to the number of units of electricity 

which are transferred by the current in the same time. 
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The electrochemical equivalent of a substance is that quantity 
of the substance which is electrolysed by a unit current passing 
through the substance for a unit of time, or, in other words, by 
the passage of a unit of electricity. When the unit of electricity 
is defined in absolute measure the absolute value of the electro¬ 
chemical equivalent of each substance can be determined in 
grains or in grammes. 

The electrochemical equivalents of different substances are 
proportional to their ordinary chemical equivalents. The 
ordinary chemical equivalents, however, are the mere numerical 
ratios in which the substances combine, whereas the electro¬ 
chemical equivalents are quantities of matter of a determinate 
magnitude, depending on the definition of the unit of electricity. 

Every electrolyte consists of two components, which, during 
the electrolysis, appear where the current enters and leaves the 
electrolyte, and nowhere else. Hence, if we conceive a surface 
described within the substance of the electrolyte, the amount of 
electrolysis which takes place through this surface, as measured 
by the electrochemical equivalents of the components transferred 
across it in opposite directions, will be proportional to the total 
electric current through the surface. 

The actual transfer of the ions through the substance of the 
electrolyte in opposite directions is therefore part of the pheno¬ 
menon of the conduction of an electric current through an 
electrolyte. At every point of the electrolyte through which 
an electric current is passing there are also two opposite material 
currents of the anion and the cation, which have the same lines 
of flow with the electric current, and are proportional to it in 
magnitude. 

It is therefore extremely natural to suppose that the currents 
of the ions are convection currents of electricity, and, in parti¬ 
cular, that every molecule of the cation is charged with a certain 
fixed quantity of positive electricity, which is the same for the 
molecules of all cations, and that jevery molecule of the anion is 
charged with an equal quantity of negative electricty. 

The opposite motion of the ions through the electrolyte would 
then be a complete physical representation of the electric current. 
Wre may compare this motion of the ions with the motion of 
gases and liquids through each other during the process of 
diffusion, there being this difference between the two processes, 
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that, in diffusion, the different substances are only mixed 
together and the mixture is not homogeneous, whereas in 
electrolysis they are chemically combined and the electrolyte 
is homogeneous. In diffusion the determining cause of the 
motion of a substance in a given direction is a diminution of 
the quantity of that ’substance per unit of volume in that 
direction, whereas in electrolysis the motion of each ion is due 
to the electromotive force acting on the charged molecules. 

256. ] Clausius *, who has bestowed much study on the theory 
of the molecular agitation of bodies, supposes that the molecules 
of all bodies are in a state of constant agitation, but that in solid 
bodies each molecule never passes beyond a certain distance from 
its original position, whereas in fluids a molecule, after moving 
a certain distance from its original position, is just as likely to 
move still farther from it as to move back again. Hence the 
molecules of a fluid apparently at rest are continually changing 
their positions, and passing irregularly from one part of the fluid 
to another. In a compound fluid he supposes that not only do 
the compound molecules travel about in this way, but that, in 
the collisions which occur between the compound molecules, the 
molecules of which they are composed are often separated and 
change partners, so that the same individual atom is at one time 
associated with one atom of- the opposite kind, and at another 
time with another. This process Clausius supposes to go on in 
the liquid at all times, but when an electromotive force acts on 
the liquid the motions of the molecules, which before were 
indifferent^ in all directions, are now influenced by the electro¬ 
motive force, so that the positively charged molecules have a 
greater tendency towards the cathode than towards the anode, 
and the negatively charged molecules have a greater tendency 
to move in the opposite direction. Hence the molecules of the 
cation will during their intervals of freedom struggle towards 
the cathode, but will continually be checked in their course by 
pairing for a time with molecules of the anion, which are also 
struggling through the crowd, but in the opposite direction. 

257. ] This theory of Clausius enables us to understand how 
it is, that whereas the actual decomposition of an electrolyte 
requires an electromotive force of finite magnitude, the con¬ 
duction of the current in the electrolyte obeys the law of Ohm, 

* Pogg. Am. oi. p. 838 (1857). 
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bo that every electromotive force within the electrolyte, even the 
feeblest, produces a current of proportionate magnitude. 

According to the theory of Clausius, the decomposition and 

recomposition of the electrolyte is continually going on even 

when there is no current, and the very feeblest electromotive 

force is sufficient to give this process a certain degree of direction, 

and so to produce the currents of the ions and the electric 

current, which is part of the same phenomenon. Within the 

electrolyte, however, the ions are never set free in finite 

quantity, and it is this liberation of the ions which requires 

a finite electromotive force. At the electrodes the ions accumu¬ 

late, for the successive portions of the ions, as they arrive at the 

electrodes, instead of finding molecules of the opposite ion ready 

to combine with them, are forced into company with molecules 

of their own kind, with which they cannot combine. The 

electromotive force required to produce this effect is of finite 

magnitude, and forms an opposing electromotive force which 

produces a reversed current when other electromotive forces are 

removed. When this reversed electromotive force, owing to the 

accumulation of the ions at the electrode, is observed, the 

electrodes are said to be Polarized. 

258. ] One of the best methods of determining whether a body 

is or is not an electrolyte is to place it between platinum 

electrodes and to pass a current through it for some time, and 

then, disengaging the electrodes from the voltaic battery, and 

connecting them with a galvanometer, to observe whether a 

reverse current, due to polarization of the electrodes, passes 

through the galvanometer. Such a current, being due to ac¬ 

cumulation of different substances on the two electrodes, is a 

proof that the substance has been electrolytically decomposed 

by the original current from the battery. This method can 

often be applied where it is difficult, by direct chemical methods, 

to detect the presence of the products of decomposition at the 

electrodes. See Art. 271. 

259. ] So far as we have gone the theory of electrolysis appears 

very satisfactory. It explains the electric current, the nature of 

which we do not understand, by means of the currents of the 

material components of the electrolyte, the motion of which, 

though not visible to the eye, is easily demonstrated. It gives 

a clear explanation, as Faraday has shewn, why an electrolyte 
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which conducts in the liquid state is a non-conductor when 

solidified, for unless the molecules can pass from one part to 

another no electrolytic conduction can take place, so that the 

substance must be in a liquid state, either by fusion or by 

solution, in order to be a conductor. 

But if we go on, and assume that the molecules of the ions 

within the electrolyte are actually charged with certain definite 

quantities of electricity, positive and negative, so that the elec¬ 

trolytic current is simply a current of convection, we find that 

this tempting hypothesis leads us into very difficult ground. 

In the first place, we must assume that in every electrolyte 

each molecule of the cation, as it is liberated at the cathode, 

communicates to the cathode a charge of positive electricity, the 

amount of which is the same for every molecule, not only of 

that cation but of all other cations. In the same way each 

molecule of the anion when liberated, communicates to the 

anode a charge of negative electricity, the numerical magnitude 

of which is the same as that of the positive charge due to a 

molecule of a cation, but with sign reversed. 

If, instead of a single molecule, we consider an assemblage of 

molecules constituting an electrochemical equivalent of the ion, 

then the total charge of all the molecules is, as we have seen, 

one unit of electricity, positive or negative. 

260.] We do not as yet know how many molecules there are 

in an electrochemical equivalent of any substance, but the mole¬ 

cular theory of chemistry, which is corroborated by many 

physical considerations, supposes that the number of molecules 

in an electrochemical equivalent is the same for all substances. 

We may therefore, in molecular speculations, assume that the 

number of molecules in an electrochemical equivalent is iY, a 

number unknown at present, but which we may hereafter find 

means to determine *. 

Each molecule, therefore, on being liberated from the state of 

combination, parts with a charge whose magnitude is and is 

positive for the cation and negative for the anion. This definite 

quantity of electricity we shall call the molecular charge. If it 

were known it would be the most natural unit of electricity. 

Hitherto we have only increased the precision of our ideas by 

* See note to Art. 6. 
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exercising our imagination in tracing the electrification of mole¬ 
cules and the discharge of that electrification. 

The liberation pf the ions and the passage of positive elec¬ 
tricity from the anode and into the cathode are simultaneous 
facts. The ions, when liberated, are not charged with elec¬ 
tricity, hence, when they are in combination, they have the 
molecular charges as above described 

The electrification of a molecule, however, though easily 
spoken of, is not so easily conceived. 

We know that if two metals are brought into contact at any 
point, the rest of their surfaces will be electrified, and if the 
metals are in the form of two plates separated by a narrow 
interval of air, the charge on each plate may become of con¬ 
siderable magnitude. Something like this may be supposed to 
occur when the two components of an electrolyte are in combi¬ 
nation. Each pair of molecules may be supposed to touch at 
one point, and to have the rest of their surface charged with 
electricity due to the electromotive force of contact. 

But to explain the phenomenon, we ought to shew why the 
charge thus produced on each molecule is of a fixed amount, 
and why, when a molecule of chlorine is combined with a 
molecule of zinc, the molecular charges are the same as when 
a molecule of chlorine is combined with a molecule of copper, 
although the electromotive force between chlorine and zinc is 
much greater than that between chlorine and copper. If the 
charging of the molecules is the effect of the electromotive force 
of contact, why should electromotive forces of different intensities 
produce exactly equal charges ? 

Suppose, however, that we leap over this difficulty by simply 
asserting the fact of the constant value of the molecular charge, 
and that we call this constant molecular charge, for convenience 
in description, one molecule of electricity. 

This phrase, gross as it is, and out of harmony with the rest 
of this treatise, will enable us at least to state clearly what is 
known about electrolysis, and to appreciate the outstanding 
difficulties. 

Every electrolyte must be considered as a binary compound 
of its anion and its cation. The anion or the cation or both 
may be compound bodies, so that a molecule of the anion or the 
cation may be formed by a number of molecules of simple 
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bodies. A molecule of the anion and a molecule of the cation 
combined together form one molecule of the electrolyte. 

In order to act as an anion in an electrolyte, the molecule 
which so acts must be charged with what we have called one 
molecule of negative electricity, and in order to act as a cation the 
molecule must be charged with one molecule of positive electricity. 

These charges are connected with the molecules only when 
they are combined as anion and cation in the electrolyte. 

When the molecules are electrolysed, they part with their 
charges to the electrodes, and appear as unelectrified bodies 
when set free from combination. 

If the same molecule is capable of acting as a cation in one 
electrolyte and as an anion in another, and also of entering into 
compound bodies which are not electrolytes, then we must 
suppose that it receives a positive charge of electricity when it 
acts as a cation, a negative charge when it acts as an anion, and 
that it is without charge when it is not in an electrolyte. 

Iodine, for instance, acts as an anion in the iodides of the 
metals and in hydriodic acid, but is said to act as a cation in 
the bromide of iodine. 

This theory of molecular charges may serve as a method by 
which we may remember a good many facts about electrolysis. 
It is extremely improbable however that when we come to under¬ 
stand the true nature of electrolysis we shall retain in any form 
the theory of molecular charges, for then we shall have obtained 
a secure basis on which to form a true theory of electric currents, 
and so become independent of these provisional theories. 

261.] One of the most important steps in our knowledge of 
electrolysis has been the recognition of the secondary chemical 
processes which arise from the evolution of the ions at the elec¬ 
trodes. 

In many cases the substances which are found at the elec¬ 
trodes are not the actual ions of the electrolysis, but the pro¬ 
ducts of the action of these ions on the electrolyte. 

Thus, when a solution of sulphate of soda is electrolysed by a 
current which also passes through dilute sulphuric acid, equal 
quantities of oxygen are given off at the anodes, both in the 
sulphate of soda and in the dilute acid, and equal quantities of 
hydrogen at the cathodes. 

But if the electrolysis is conducted in suitable vessels, such as 
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U-shaped tubes or vessels with a porous diaphragm, so that the 

substance surrounding each electrode can be examined sepa¬ 

rately, it is found that at the anode of the sulphate of soda 

there is an equivalent of sulphuric acid as well as an equivalent 

of oxygen, and at the cathode there is an equivalent of soda as 

well as an equivalent of hydrogen. 

It would at first sight seem as if, according to the old theory 

of the constitution of salts, the sulphate of soda were elec¬ 

trolysed into its constituents sulphuric acid and soda, while 

the water of the solution is electrolysed at the same time into 

oxygen and hydrogen. But this explanation would involve the 

admission that the same current which passing through dilute 

sulphuric acid electrolyses one equivalent of water, when it 

passes through a solution of sulphate of soda electrolyses one 

equivalent of the salt as well as one equivalent of the water, and 

this would be contrary to the law of electrochemical equivalents. 

But if we suppose that the components of sulphate of soda are 

not S03 and Na20 but S04 and Na2,—not sulphuric acid and 

soda but sulphion and sodium—then the sulphion travels to the 

anode and is set free, but being unable to exist in a free state 

it breaks up into sulphuric acid and oxygen, one equivalent of 

each. At the same time the sodium is set free at the cathode, 

and there decomposes the water of the solution, forming one 

equivalent of soda and one of hydrogen. 

In the dilute sulphuric acid the gases collected at the elec¬ 

trodes are the constituents of water, namely one volume of 

oxygen and two volumes of hydrogen. There is also an in¬ 

crease of sulphuric acid at the anode, but its amount is not 

equal to an equivalent. 

It is doubtful whether pure water is an electrolyte or not. 

The greater the purity of the water, the greater the resistance to 

electrolytic conduction. The minutest traces of foreign matter 

are sufficient to produce a great diminution of the electrical 

resistance of water. The electric resistance of water as deter¬ 

mined by different observers has values so different that we 

cannot consider it as a determined quantity. The purer the 

water the greater its resistance, and if we could obtain really 

pure water it is doubtful whether it would conduct at all *. 

* {See F. Kohlrausch, ‘Die Elektrische Leitungsfahigkeifc ties im Vacuum dis- 
tillirten Wasaera.* Wied. Ann. 24, p. 48. Bleekrode Wied. Ann. 3, p. 161, has 
shewn that pure hydrochloric acid is a non-conductor.] 
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As long as water was considered an electrolyte, and was, 

indeed, taken as the type of electrolytes, there was a strong 

reason for maintaining that it is a binary compound, and that 

two volumes of hydrogen are chemically equivalent to one 

volume of oxygen. If, however, we admit that water is not an 

electrolyte, we are free to suppose that equal volumes of oxygen 

and of hydrogen are chemically equivalent. 

The dynamical theory of gases leads us to suppose that in 

perfect gases equal volumes always contain an equal number of 

molecules, and that the principal part of the specific heat, that, 

namely, which depends on the motion of agitation of the mole¬ 

cules among each other, is the same for equal numbers of 

molecules of all gases. Hence we are led to prefer a chemical 

system in which equal volumes of oxygen and of hydrogen are 

regarded as equivalent, and in which water is regarded as a 

compound of two equivalents of hydrogen and one of oxygen, 

and therefore probably not capable of direct electrolysis. 

While electrolysis fully establishes the close relationship be¬ 

tween electrical phenomena and those of chemical combination, 

the fact that every chemical compound is not an electrolyte 

shews that chemical combination is a process of a higher order 

of complexity than any purely electrical phenomenon. Thus the 

combinations of the metals with each other, though they are 

good conductors, and their components stand at different points 

of the scale of electrification by contact, are not, even when in a 

fluid state, decomposed by the current *. Most of the combina¬ 

tions of the substances which act as anions are not conductors, 

and therefore are not electrolytes. Besides these we have many 

compounds, containing the same components as electrolytes, but 

not in equivalent proportions, and these are also non-conductors, 

and therefore not electrolytes. 

On the Conservation of Energy in Electrolysis. 

262.] Consider any voltaic circuit consisting partly of a 

battery, partly of a wire, and partly of an electrolytic cell. 

During the passage of unit of electricity through any section 

of the circuit, one electrochemical equivalent of each of the 

substances in the cells, whether voltaic or electrolytic, is elec¬ 

trolysed. 

* {See Roberts-Austen, B. A. Report, 1887.} 
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The amount of mechanical energy equivalent to any given 

chemical process can be ascertained by converting the whole 

energy due to the process into heat, and then expressing the 

heat in dynamical measure by multiplying the number of 

thermal units by Joule’s mechanical equivalent of heat. 

Where this direct method is not applicable, if we can estimate 

the heat given out by the substances taken first in the state 

before the process and then in the state after the process .during 

their reduction to a final state, which is the same in both cases, 

then the thermal equivalent of the process is the difference of 

the two quantities of heat. 

In the case in which the chemical action maintains a voltaic 

circuit, Joule found that the heat developed in the voltaic cells 

is less than that due to the chemical process within the cell, and 

that the remainder of the heat is developed in the connecting 

wire, or, when there is an electromagnetic engine in the circuit, 

part of the heat may be accounted for by the mechanical work 

of the engine. 

For instance, if the electrodes of the voltaic cell are first con¬ 

nected by a short thick wire, and afterwards by a long thin 

wire, the heat developed in the cell for each grain of zinc 

dissolved is greater in the first case than in the second, but the 

heat developed in the wire is greater in the second case than in 

the first. The sum of the heat developed in the cell and in the 

wire for each grain of zinc dissolved is the same in both cases. 

This has been established by Joule by direct experiment. 

The ratio of the heat generated in the cell to that generated 

in the wire is that of the resistance of the cell to that of the wire, 

so that if the wire were made of sufficient resistance nearly the 

whole of the heat would be generated in the wire, and if it were 

made of sufficient conducting power nearly the whole of the heat 

would be generated in the cell. 

Let the wire be made so as to have great resistance, then the 

heat generated in it is equal in dynamical measure to the product 

of the quantity of electricity which is transmitted, multiplied by 

the electromotive force under which it is made to pass through 

the wire. 

263.] Now during the time in which an electrochemical equi¬ 

valent of the substance in the cell undergoes the chemical process 

which gives rise to the current, one unit of electricity passes 
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through the wire. Hence, the heat developed by the passage of 

one unit of electricity is in this case measured by the electro¬ 

motive force. But this heat is that which one electrochemical 

equivalent of the substance generates, whether in the cell or in 

the wire, while undergoing the given chemical process. 

Hence the following important theorem, first proved by Thom¬ 

son (Phil. Mag., Dec. 1851):— 

‘ The electromotive force of an electrochemical apparatus is 

in absolute measure equal to the mechanical equivalent of the 

chemical action on one electrochemical equivalent of the sub¬ 

stance *' 

The thermal equivalents of many chemical actions have been 

determined by Andrews, Hess, Favre and Silbermann, Thomsen, 

&c., and from these their mechanical equivalents can be deduced 

by multiplication by the mechanical equivalent of heat. 

This theorem not only enables us to calculate from purely 

thermal data the electromotive forces of different voltaic arrange¬ 

ments, and the electromotive forces required to effect electrolysis 

in different cases, but affords the means of actually measuring 

chemical affinity. 

It has long been known that chemical affinity, or the tendency 

which exists towards the going on of a certain chemical change, 

is stronger in some cases than in others, but no proper measure 

of this tendency could be made till it was shewn that this 

tendency in certain cases is exactly equivalent to a certain 

electromotive force, and can therefore be measured according to 

the very same principles used in the measurement of electro¬ 

motive forces. 

Chemical affinity being therefore, in certain cases, reduced to 

the form of a measurable quantity, the whole theory of chemical 

processes, of the rate at which they go on, of the displacement of 

one substance by another, &c., becomes much more intelligible 

than when chemical affinity was regarded as a quality sui generis, 

and irreducible to numerical measurement. 

* (This theorem only applies when there are no reversible thermal effects in 
the cell; when these exist the relation between the electromotive force p and the 
mechanical equivalent of the chemical action, a>, is expressed by the relation 

where 0 is the absolute temperature of the cell. v. Helmholtz, 1 Die Thermodynamik 
chemischer Vorgange/ Wi&zenschaftlich e A b hand lung tn, ii. p. 958.} 

VOL. I. C C 
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When the volume of the products of electrolysis is greater than 

that of the electrolyte, work is done during the electrolysis in 

overcoming the pressure. If the volume of an electrochemical 

equivalent of the electrolyte is increased by a volume v when 

electrolysed under a pressure p, then the'work done during the 

passage of a unit of electricity in overcoming pressure is vp, and 

the electromotive force required for electrolysis must include a 

part equal to vp, which is spent in performing this mechanical 

work. 

If the products of electrolysis are gases which, like oxygen and 

hydrogen, are much rarer than the electrolyte, and fulfil Boyle’s 

law very exactly, vp will be very nearly constant for the same 

temperature, and the electromotive force required for electrolysis 

will not depend in any sensible degree on the pressure *. Hence 

it has been found impossible to check the electrolytic decom¬ 

position of dilute sulphuric acid by confining the decomposed 

gases in a small space. 

When the products of electrolysis are liquid or solid the 

quantity vp will increase as the pressure increases, so that if v 

is positive an increase of pressure will increase the electromotive 

force required for electrolysis. 
In the same way, any other kind of work done during electro¬ 

lysis will have an effect on the value of the electromotive force, 

as, for instance, if a vertical current passes between two zinc 

electrodes in a solution of sulphate of zinc a greater electromotive 

force will be required when the current in the solution flows 

upwards than when it flows downwards, for, in the first case, it 

carries zinc from the lower to the upper electrode, and in the 

second from the upper to the lower. The electromotive force 

required for this purpose is less than the millionth part of that 

of a Daniells cell per foot. 

* {This result is inconsistent with the Second Law of Thermodynamics; according 
to this Law an increase in the pressure increases the Electromotive force required for 
Electrolysis. See J. J.Thomson’s ‘ Applications of Dynamios to Physics and Chemistry,' 
p. 86. v. Helmholtz, * Weitere Untersuchungen die Electrolyse des Wassers betreffend.’ 
Wied. Ann. 84, p. 787.} 



CHAPTER V. 

ELECTROLYTIC POLARIZATION. 

264.] When an electric current is passed through an electro¬ 

lyte bounded by metal electrodes, the accumulation of the ions 

at the electrodes produces the phenomenon called Polarization, 

which consists in an electromotive force acting in the opposite 

direction to the current, and producing an apparent increase of 

the resistance. 

When a continuous current is employed, the resistance appeal's 
to increase rapidly from the commencement of the current, and 
at last reaches a value nearly constant. If the form of the vessel 
in which the electrolyte is contained is changed, the resistance is 
altered in the same way as a similar change of form of a metallic 
conductor would alter its resistance, but an additional apparent 
resistance, depending on the nature of the electrodes, has always 
to be added to the true resistance of the electrolyte. 

266.] These phenomena have led some to suppose that there is 
a finite electromotive force required for a current to pass through 
an electrolyte. It has been shewn, however, by the researches of 
Lenz, Neumann, Beetz, Wiedemann *, Paalzow f, and recently by 

those of MM. F. Kohlrausch and W. A. Nippoldtt, Fitzgerald 
and Trouton §, that the conduction in the electrolyte itself obeys 
Ohm’s Law with the same precision as in metallic conductors, 
and that the apparent resistance at the bounding surface of the 
electrolyte and the electrodes is entirely due to polarization. 

266.] The phenomenon called polarization manifests itself in 
the case of a continuous current by a diminution in the current, 
indicating a force opposed to the current. Resistance is also 

* Elektricitat, i. 568, bd. I t Berlin. JHonaUbericht, July, 1888. 
t Bogg* Ann. bd. cxxxYiii. s. 286 (Ootober, 1869). I B. A. Report, 1887. 

C C % 
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perceived as a force opposed to the current, but we can distin¬ 

guish between the two phenomena by instantaneously removing 

or reversing the electromotive force. 

The resisting force is always opposite in direction to the 

current, and the external electromotive force required to over¬ 

come it is proportional to the strength of the current, and 

changes its direction when the direction of the current is 

changed. If the external electromotive force becomes zero the 

current simply stops. 

Tho electromotive force due to polarization, on the other hand, 

is in a fixed direction, opposed to the current which produced 

it. If the electromotive force which produced the current is 

removed, the polarization produces a current in the opposite 
direction. 

The difference between the two phenomena may be compared 

with the difference bet ween forcing a current of water through 

a long capillary tube, and forcing water through a tube of 

moderate bore up into a cistern. In the first case if we 

remove the pressure which produces the flow the current will 

simply stop. In the second case, if we remove the pressure the 

water will begin to flow down again from the cistern. 

To make the mechanical illustration more complete, we have 

only to suppose that the cistern is of moderate depth, so that 

when a certain amount of water is raised into it, it begins to 

overflow. This will represent the fact that the total electro¬ 

motive force due to polarization has a maximum limit. 

267.] The cause of polarization appears to be the existence at 

the electrodes of the products of the electrolytic decomposition 

of the fluid between them. The surfaces of the electrodes are 

thus rendered electrically different, and an electromotive force 

between them is called into action, the direction of which is 

opposite to that of the current which caused the polarization. 

The ions, which by their presence at the electrodes produce 

the phenomena of polarization, are not in a perfectly free state, 

but are in a condition in which they adhere to the surface of the 

electrodes with considerable force. 

The electromotive force due to polarization depends upon the 

density with which the electrode is covered with the ion, but it 

is not proportional to this density, for the electromotive force 

does not increase so rapidly as this density. 
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This deposit of the ion is constantly tending to become free, 

and either to diffuse into the liquid, to escape as a gas, or to be 

precipitated as a solid. 

The rate of this dissipation of the polarization is exceedingly 

small for slight degrees of polarization, and exceedingly rapid 

near the limiting value of polarization. 

268.] We have seen, Art. 262, that the electromotive force 

acting in any electrolytic process is numerically equal to the 

mechanical equivalent of the result of that process on one 

electrochemical equivalent of the substance. If the process 

involves a diminution of the intrinsic energy of the substances 

which take part in it, as in the voltaic cell, then the electro¬ 

motive force is in the direction of the current. If the process 

involves an increase of the intrinsic energy of the substances, 

as in the case of the electrolytic cell, the electromotive force is in 

the direction opposite to that of the current, and this electro¬ 

motive force is called polarization. 

In the case of a steady current in which electrolysis goes on 

continuously, and the ions are separated in a free state at the 

electrodes, we have only by a suitable process to measure the 

intrinsic energy of the separated ions, and compare it with that 

of the electrolyte in order to calculate the electromotive force 

required for the electrolysis. This will give the maximum 

polarization. 

But during the first instants of the process of electrolysis the 

ions when deposited at the electrodes are not in a free state, and 

their intrinsic energy is less than their energy in a free state, 

though greater than their energy when combined in the electro¬ 

lyte. In fact, the ion in contact with the electrode is in a state 

which when the deposit is very thin may be compared with that 

of chemical combination with the electrode, but as the deposit 

increases in density, the succeeding portions are no longer so 

intimately combined with the electrode, but simply adhere to it, 

and at last the deposit, if gaseous, escapes in bubbles, if liquid, 

diffuses through the electrolyte, and if solid, forms a precipitate. 

In studying polarization we have therefore to consider 

(1) The superficial density of the deposit, which we may call 

a. This quantity er represents the number of electrochemical 

equivalents of the ion deposited on unit of area. Since each 

electrochemical equivalent deposited corresponds to one unit of 
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electricity transmitted by the current, we may consider <r as 
representing either a surface-density of matter or a surface- 
density of electricity. 

(2) The electromotive force of polarization, which we may 
call p. This quantity p is the difference between the electric 
potentials of the two electrodes when the current through the 
electrolyte is so feeble that the proper resistance of the electro¬ 
lyte makes no sensible difference between these potentials. 

The electromotive force p at any instant is numerically equal 
to the mechanical equivalent of the electrolytic process going 
on at that instant which corresponds to one electroohemioal 
equivalent of the electrolyte. This electrolytic process, it must 
be remembered, consists in the deposit of the ions on the elec¬ 
trodes, and the state in which they are deposited depends on 
the actual state of the surfaces of the electrodes, which may be 
modified by previous deposits. 

Hence the electromotive force at any instant depends on the 
previous history of the electrodes. It is, speaking very roughly, 
a function of <r, the density of the deposit, such that p = 0 when 
a- as 0, but p approaches a limiting value much sooner than <r 
does. The statement, however, that p is a function of a cannot 
be considered accurate. It would be more correct to say that p 
is a function of the chemical state of the superficial layer of the 
deposit, and that this state depends on the density of the deposit 
according to some law involving the time. 

269.] (3) The third thing we must take into account is the 
dissipation of the polarization. The polarization when left to 
itself diminishes at a rate depending partly on the intensity of 
the polarization or the density of the deposit, and partly on the 
nature of the surrounding medium, and the chemical, mechanical, 
or thermal action to which the surface of the electrode is exposed. 

If we determine a time T such that at the rate at which the 
deposit is dissipated, the whole deposit would be removed in the 
time T\ we may call T the modulus of the time of dissipation. 
When the density of the deposit is very small, T is very large, 
and may be reckoned by days or months. When the density of 
the deposit approaches its limiting value T diminishes very 
rapidly, and is probably a minute fraction of a second. In fact, 
the rate of dissipation increases so rapidly that when the 

strength of the current is maintained constant, the separated 
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gas, instead of contributing to increase the density of the 
deposit, escapes in bubbles as fast as it is formed. 

270. ] There is therefore a great difference between the state 
of polarization of the electrodes of an electrolytic cell when the 
polarization is feeble, and when it is at its maximum value. 
For instance, if a number of electrolytic cells of dilute sulphuric 
acid with platinum electrodes are arranged in series, and if'a 
small electromotive force, such as that of one Daniell's cell, be 
made to act on the circuit, the electromotive force will produce 
a current of exceedingly short duration, for after a very short 
time the electromotive force arising from the polarization of the 
cells will balance that of the Daniell's cell. 

The dissipation will be very small in the case of so feeble a 
state of polarization, and it will take place by a very slow 
absorption of the gases and diffusion through the liquid. The 
rate of this dissipation is indicated by the exceedingly feeble 
current which still continues to flow without any visible separa¬ 
tion of gases. 

If we neglect this dissipation for the short time during which 
the state of polarization is set up, and if we call Q the total 
quantity of electricity which is transmitted by the current 
during this time, then if A is the area of one of the electrodes, 
and or the density of the deposit, supposed uniform* 

Q = A<r. 

If we now disconnect the electrodes of the electrolytic ap¬ 
paratus from the Daniell's cell, and connect them with a 
galvanometer capable of measuring the whole discharge through 
it, a quantity of electricity nearly equal to Q will be discharged 
as the polarization disappears. 

271. ] Hence we may compare the action of this apparatus, 
which is a form of Ritter's Secondary Pile, with that of a 
Leyden jar. 

Both the secondary pile and the Leyden jar are capable of 
being charged with a certain amount of electricity, and of being 
afterwards discharged. During the discharge a quantity of 
electricity nearly equal to the charge passes in the opposite 
direction. The difference between the charge and the discharge 
arises partly from dissipation, a process which in the case of 
small charges is very slow, but which, when the charge exceeds 
a certain limit, becomes exceedingly rapid. Another part of the 
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difference between the charge and the discharge arises from the 

fact that after the electrodes have been connected for a time 

sufficient to produce an apparently complete discharge, so that 

the current has completely disappeared, if we separate the 

electrodes for a time, and afterwards connect them, we obtain 

a second discharge in the same direction as the original dis¬ 

charge. This is called the residual discharge, and is a pheno¬ 

menon of the Leyden jar as well as of the secondary pile. 

The secondary pile may therefore be compared in several 

respects to a Leyden jar. There are, however, certain important 

differences. The charge of a Leyden jar is very exactly pro¬ 

portional to the electromotive force of the charge, that is, to the 

difference of potentials of the two surfaces, and the charge 

corresponding to unit of electromotive force is called the 

capacity of the jar, a constant quantity. The corresponding 

quantity, which may be called the capacity of the secondary 

pile, increases when the electromotive force increases. 

The capacity of the jar depends on the area of the opposed 

surfaces, on the distance between them, and on the nature of the 

substance between them, but not on the nature of the metallic 

surfaces themselves. The capacity of the secondary pile depends 

on the area of the surfaces of the eleotrodes, but not on the 

distance between them, and it depends on the nature of the 

surface of the electrodes, as well as on that of the fluid between 

them. The maximum difference of the potentials of the elec¬ 

trodes in each element of a secondary pile is very small com¬ 

pared with the maximum difference of the potentials of those of 

a charged Leyden jar, so that in order to obtain much electro¬ 

motive force a pile of many elements must be used. 

On the other hand, the superficial density of the charge in the 

secondary pile is immensely greater than the utmost superficial 

density of the charge which can be accumulated on the surfaces 

of a Leyden jar, insomuch that Mr. C. F. Varley*, in describing 

the construction of a condenser of great capacity, recommends a 

series of gold or platinum plates immersed in dilute acid as 

preferable in point of cheapness to induction plates of tinfoil 

separated by insulating material. 

The form in which the energy of a Leyden jar is stored up 

is the state of constraint of the dielectric between the conducting 

♦ Specification of C. F. Varley, c Electric Telegraphs, Jan. 1860. 
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surfaces, a state which I have already described under the name 
of electric polarization, pointing out those phenomena attending 
this state which are at present known, and indicating the im¬ 
perfect state of our knowledge of what really takes place. See 
Arts. 62, 111. 

The form in which the energy of the secondary pile is stored 
up is the chemical condition of the material stratum at the 
surface of the electrodes, consisting of the ions of the electrolyte 
and the substance of the electrodes in a relation varying from 
chemical combination to superficial condensation, mechanical ad¬ 
herence, or simple juxtaposition. 

The seat of this energy is close to the surfaces of the elec¬ 
trodes, and not throughout the substance of the electrolyte, and the 
form in which it exists may be called electrolytic polarization. 

After studying the secondary pile in connexion with the 
Leyden jar, the student should again compare the voltaic battery 
with some form of the electrical machine, such as that described 
in Art. 211. 

Mr. Varley has lately * found that the capacity of one square 
inch is from 175 to 542 microfarads and upwards for platinum 
plates in dilute sulphuric acid, and that the capacity increases 
with the electromotive force, being about 175 for 0.02 of a 
DanielFs cell, and 542 for 1.6 Daniell’s cells. 

But the comparison between the Leyden jar and the secondary 
pile may be carried still farther, as in the following experiment, 
due to Bufff. It is only when the glass of the jar is cold that 
it is capable of retaining a charge. At a temperature below 
100°C the glass becomes a conductor. If a test-tube containing 
mercury is placed in a vessel of mercury, and if a pair of elec¬ 
trodes are connected, one with the inner and the other with the 
outer portion of mercury, the arrangement constitutes a Leyden 
jar which will hold a charge at ordinary temperatures. If the 
electrodes are connected with those of a voltaic battery, no 
current will pass as long as the glass is cold, but if the apparatus 

is gradually heated a current will begin to pass, and will increase 
rapidly in intensity as the temperature rises, though the glass 
remains apparently as hard as ever. 

* Proc. JR. S.} Jan. 12, 1871. For an account of other investigations on this 
subject, see Wiedemanns JSlektridtdt, bd. ii. pp. 744-771. 

+ Annalen der Chemie und Pharmacie, bd. xc. 257 (1854). 
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This current is manifestly electrolytic, for if the electrodes are 

disconnected from the battery, and connected with a galvano¬ 

meter, a considerable reverse current passes, due to polarization 

of the surfaces of the glass. 

If, while the battery is in action the apparatus is cooled, the 

current is stopped by the cold glass as before, but the polari¬ 

zation of the surface remains. The mercury may be removed, 

the surfaces may be washed with nitric acid and with water, and 

fresh mercury introduced. If the apparatus is then heated, the 

current of polarization appears as soon as the glass is sufficiently 

warm to conduct it. 

We may therefore regard glass at 100°C, though apparently a 

solid body, as an electrolyte, and there is considerable reason 

to believe that in most instances in which a dielectric has a 

slight degree of conductivity the conduction is electrolytic. The 

existence of polarization may be regarded as conclusive evidence 

of electrolysis, and if the conductivity of a substance increases as 

the temperature rises, we have good grounds for suspecting that 

the conduction is electrolytic. 

On Constant Voltaic Elements. 

272.] When a series of experiments is made with a voltaic 

battery in which polarization occurs, the polarization diminishes 

during the time the current is not flowing, so that when it 

begins to flow again the current is stronger than after it has 

flowed for some time. If, on the other hand, the resistance of 

the circuit is diminished by allowing the current to flow through 

a short shunt, then, when the current is again made to flow 

through the ordinary circuit* it is at first weaker than its normal 

strength on account of the great polarization produced by the 

use of the short circuit. 

To get rid of these irregularities in the current, which are 

exceedingly troublesome in experiments involving exact mea¬ 

surements, it is necessary to get rid bf the polarization, or at 

least to reduce it as much as possible. 

It does not appear that there is much polarization at the 

surface of the zinc plate when immersed in a solution of sulphate 

of zinc or in dilute sulphuric acid. The principal seat of polari¬ 

zation is at the surface of the negative metal. When the fluid 

in which the negative metal is immersed is dilute sulphuric acid, 



272.] CONSTANT VOLTAIC ELEMENTS. 395 

it is seen to become covered with bubbles of hydrogen gas, 

arising from the electrolytic decomposition of the fluid. Of 

course these bubbles, by preventing the fluid from touching 

the metal, diminish the surface of contact and increase the 

resistance of the circuit. But besides the visible bubbles it is 

certain that there is a thin coating of hydrogen, probably not 

in a free state, adhering to the metal, and as we have seen that 

this coating is able to produce an electromotive force in the 

reverse direction, it must necessarily diminish the electromotive 

force of the battery. 

Various plans have been adopted to get rid of this coating of 

hydrogen. It may be diminished to some extent by mechanical 

means, such as stirring the liquid, or rubbing the surface of 

the negative plate. In Smee’s battery the negative plates are 

vertical, and covered with finely divided platinum from which 

the bubbles of hydrogen easily escape, and in their ascent 

produce a current of liquid which helps to brush off other 

bubbles as they are formed. 

A far more efficacious method, however, is to employ chemical 

means. These are of two kinds. In the batteries of Grove and 

Bunsen the negative plate is immersed in a fluid rich in oxygen, 

and the hydrogen, instead of forming a coating on the plate, 

combines with this substance. In Grove’s battery the plate is 

ofs platinum immersed in strong nitric acid. In Bunsen’s first 

battery it is of carbon in the same acid. Chromic acid is also 

used for the same purpose, and has the advantage of being free 

from the acid fumes produced by the reduction of nitric acid. 

A different mode of getting rid of the hydrogen is by using 

copper as the negative metal, and covering the surface with a 

coat of oxide. This, however, rapidly disappears when it is used 

as the negative electrode. To renew it Joule has proposed to 

make the copper plates in the form of disks, half immersed in the 

liquid, and to rotate them slowly, so that the air may act on the 

parts exposed to it in turn. 

The other method is by using as'the liquid an electrolyte, the 

cation of which is a metal highly negative to zinc. 

In Danielle battery a copper plate is immersed in a saturated 

solution of sulphate of copper. When the current flows through 

the solution from the zinc to the copper no hydrogen appears 

on the copper plate, but copper is deposited on it. When the 
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solution is saturated, and the current is not too strong, the 

copper appears to act as a true cation, the anion S04 travelling 

towards the zinc. 

When these conditions are not fulfilled hydrogen is evolved 

at the cathode, but immediately acts on the solution, throwing 

down copper, and uniting with S04 to form oil of vitriol. When 

this is the case, the sulphate of copper next the copper plate is 

replaced by oil of vitriol, the liquid becomes colourless, and 

polarization by hydrogen gas again takes place. The copper 

deposited in this way is of a looser and more friable structure 

than that deposited by true electrolysis. 

To ensure that the liquid in contact with the copper shall 

be saturated writh sulphate of copper, crystals of this substance 

must be placed in the liquid close to the copper, so that when 

the solution is made weak by the deposition of the copper, more 

of the crystals may be dissolved. 

We have seen that it is necessary that the liquid next the 

copper should be saturated with sulphate of copper. It is still 

more necessary that the liquid in which the zinc is immersed 

should be free from sulphate of copper. If any of this salt 

makes its way to the surface of the zinc it is reduced, and copper 

is deposited on the zinc. The zinc, copper, and fluid then form 

a little circuit in which rapid electrolytic action goes on, and 

the zinc is eaten away by an action which contributes nothing 

to the useful effect of the battery. 

To prevent this, the zinc is immersed either in dilute sulphuric 

acid or in a solution of sulphate of zinc, and to prevent the 

solution of sulphate of copper from mixing with this liquid, the 

two liquids are separated by a division consisting of bladder or 

porous earthenware, which allows electrolysis to take place 

through it, but effectually prevents mixture of the fluids by 

visible currents. 

In some batteries sawdust is used to prevent currents. The 

experiments of Graham, however, shew that the process of 

diffusion goes on nearly as rapidly when two liquids are separated 

by a division of this kind as when they are in direct contact, 

provided there are no visible currents, and it is probable that 

if a septum is employed which diminishes the diffusion, it will 

increase in exactly the same ratio the resistance of the element, 

because electrolytic conduction is a process the mathematical 
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laws of which have the same form as those of diffusion, and 

whatever interferes with one must interfere equally with the 

other. The only difference is that diffusion is always going on, 

whereas the current flows only when the battery is in action. 

In all forms of Daniells battery the final result is that the 

sulphate of copper finds its way to the zinc and spoils the 

battery. To retard this result indefinitely, Sir W. Thomson * 

has constructed DanielFs battery in the following form. 

Fig. 22. 

In each cell the copper plate is placed horizontally at the 

bottom and a saturated solution of sulphate of zinc is poured 

over it. The zinc is in the form of a grating and is placed hori¬ 

zontally near the surface of the solution. A glass tube is placed 

vertically in the solution with its lower end just above the 

surface of the copper plate. Crystals of sulphate of copper are 

dropped down this tube, and, dissolving in the liquid, form a 

solution of greater density than that of sulphate of zinc alone, 

so that it cannot get to the zinc except by diffusion. To retard 

this process of diffusion, a siphon, consisting of a glass tube 

stuffed with cotton wick, is placed with one extremity midway 

between the zinc and copper, and the other in a vessel outside 

the cell, so that the liquid is very slowly drawn off near the 

middle of its depth. To supply its place, water, or a weak 

solution of sulphate of zinc, is added above when required. In 

this way the greater part of the sulphate of copper rising through 

the liquid by diffusion is drawn off by the siphon before it 

reaches the zinc, and the zinc is surrounded by liquid nearly free 

* rroc. It. S., Jan. 19, 1871. 
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from sulphate of copper, and having a very slow downward 

motion in the cell, which still further retards the upward motion 

of the sulphate of oopper. During the action of the battery 

copper is deposited on the copper plate, and S04 travels slowly 

through the liquid to the zinc with which it combines, forming 

sulphate of zinc. Thus the liquid at the bottom becomes less 

dense by the deposition of the copper, and the liquid at the top 

becomes more dense by the addition of the zinc. To prevent 

this action from changing the order of density of the strata, and 

so producing instability and visible currents in the vessel, care 

must be taken to keep the tube well supplied with crystals of 

sulphate of copper, and to feed the cell above with a solution of 

sulphate of zinc sufficiently dilute to be lighter than any other 

stratum of the liquid in the cell. 

Danielle battery is by no means the most powerful in common 

use. The electromotive force of Grove’s cell is 192,000,000, of 

Daniells 107,900,000 and that of Bunsen’s 188,000,000. 

The resistance of Daniell’s cell is in general greater than that 

of Grove’s or Bunsen's of the same size. 

These defects, however, are more than counterbalanced in all 

cases where exact measurements are required, by the fact that 

Daniell’s cell exceeds every other known arrangement in con¬ 

stancy of electromotive force*. It has also the advantage of 

continuing in working order for a long time, and of emitting 

no gas. 

* (When a standard Electromotive force is required a Clark’s oell is now most 
frequently used. For the precautions which must be takeu in the construction and 
use of such cells, see Lord Rayleigh’s paper on ‘The Clark Cell as a Standard of 
Electromotive Force/ Phil. Trans. part ii. 1885.} 
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LINEAR ELECTRIC CURRENTS. 

On Systems of Linear Conductors. 

273. ] Any conductor may be treated as a linear conductor if it 

is arranged so that the current must always pass in the same 

manner between two portions of its surface which are called its 

electrodes. For instance, a mass of metal of any form the surface 

of which is entirely covered with insulating material except at 

two places, at which the exposed surface of the conductor is in 

metallic contact with electrodes formed of a perfectly conducting 

material, may be treated as a linear conductor. For if the 

current be made to enter at one of these electrodes and escape at 

the other the lines of flow will be determinate, and the relation 

between electromotive force, current and resistance will be ex¬ 

pressed by Ohm’s Law, for the current in every part of the mass 

will be a linear function of E. But if there be more possible 

electrodes than two, the conductor may have more than one 

independent current through it, and these may not be conjugate 

to each other. See Arts. 282 a and 282 A 

Ohm's Law. 

274. ] Let E be the electromotive force in a linear conductor 

from the electrode Ax to the electrode A2. (See Art. 69.) Let 

C be the strength of the electric current along the conductor, that 

is to say, let C units of electricity pass across every section in 

the direction Ax A2 in unit of time, and let R be the resistance of 

the conductor, then the expression of Ohm’s Law is 

E=CR. (1) 

Linear Conductors arranged in Series. 

276.] Let A19 A2 be the electrodes of the first conductor and 

let the second conductor be placed with one of its electrodes in 
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contact with A2, so that the second conductor has for its elec¬ 

trodes A.>, A3. The electrodes of the third conductor may be 

denoted by A3 and A4. 

Let the electromotive forces along these conductors be denoted 

by Eu ,E23,E^, and so on for the other conductors. 

Let the resistances of the conductors be 

■®12> -^23» -^34 > 

Then, since the conductors are arranged in series so that the 

same current C flows through each, we have by Ohm’s Law, 

Eu = CRU, E23 = CRm, Eu = CRU, &c. (2) 

If E is the resultant electromotive force, and R the resultant 

resistance of the system, we must have by Ohm’s Law, 

E = OR. (a) 

NOW E = 2?^ + #23 + ^34 + &c., (4) 
the sum of the separate electromotive forces, 

= C (Ru +1?23 + -R34 + &c.) by equations (2). 

Comparing this result with (3), we find 

R = R\2 + R-i3 + I^34 + &C. (5) 

Or, the resistance of a series of conductors is the sum of the 

resistances of the conductors taken separately. 

Potential at any Po'int of the Series. 

Let A and G be the electrodes of the series, B a point between 

them, a, c, and b the potentials of these points respectively. Let 

Rx be the resistance of the part from A to B, R2 that of the part 

from B to C, and R that of the whole from A to C, then, since 

a — b — c~R2C, and a — c = RC, 

the potential at B is 

z __ + 
R ’ 

which determines the potential at B when the potentials at A 
and C are given. 

Resistance of a Multiple Conductor. 

276.] Let a number of conductors ABZ, ACZ, ADZ be arranged 

side by side with their extremities in contact with the same two 

points A and Z\ They are then said to be arranged in multiple 

arc. 
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Let the resistances of these conductors be Rl9 iZ2, Rz respect¬ 

ively, and the currents C19 C2, C3, and let the resistance of the 

multiple conductor be Rt and the total current G. Then, since 

the potentials at A and Z are the same for all the conductors, 

they have the same difference, which we may call E. We then 

E — C]Rl — C2R2 = <73i?3 = CR, 
(7= Cj + Cj + Cj, 

have 

but 

wh<i“e + + v <7) 
Or, the reciprocal of the resistance of a multiple conductor is the 

sum of the reci'jiyrocals of the component conductors. 

If we call the reciprocal of the resistance of a conductor the 

conductivity of the conductor, then we may say that the con¬ 

ductivity of a multiple conductor is the sum of the conductivities 

of the component conductors. 

Current in any Branch of a Multiple Conductor. 

From the equations of the preceding article, it appears that if 

CL is the current in any branch of the multiple conductor, and 

R{ the resistance of that branch, 

C\ = c^, (8) 

where C is the total current, and R is the resistance of the 

multiple conductor as previously determined. 

Longitudinal Resistance of Conductors of Uniform Section. 

277.] Let the resistance of a cube of a given material to a 

current parallel to one of its edges be />, the side of the cube 

being unit of length, p is called the ‘ specific resistance of that 

material for unit of volume.' 

Consider next a prismatic conductor of the same material 

whose length is lf and whose section is unity. This is equi¬ 

valent to l cubes arranged in series. The resistance of the 

conductor is therefore Ip. 

Finally, consider a conductor of length l and uniform section s. 

This is equivalent to s conductors similar to the last arranged in 

multiple arc. The resistance of this conductor is therefore 

R=l±. 
8 

Dd VOL. I. 
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When we know the resistance of a uniform wire we can deter¬ 

mine the specific resistance of the material of which it is made 

if we can measure its length and its section. 

The sectional area of small wires is most accurately deter¬ 

mined by calculation from the length, weight, and specific 

gravity of the specimen. The determination of the specific 

gravity is sometimes inconvenient, and in such cases the resist¬ 

ance of a wire of unit length and unit mass is used as the 

* specific resistance per unit of weight/ 

If r is this resistance, l the length, and m the mass of a wire, 

then 72 r 

R = ~. 
m 

On the Dimensions of the Quantities involved in these 
Equations. 

278.] The resistance of a conductor is the ratio of the electro¬ 

motive force acting on it to the current produced. The con¬ 

ductivity of the conductor is the reciprocal of this quantity, or 

in other words, the ratio of the current to the electromotive 

force producing it. 

Now we know that in the electrostatic system of measurement 

the ratio of a quantity of electricity to the potential of the con¬ 

ductor on which it is spread is the capacity of the conductor, 

and is measured by a line. If the conductor is a sphere placed 

in an unlimited field, this line is the radius of the sphere. The 

ratio of a quantity of electricity to an electromotive force is 

therefore a line, but the ratio of a quantity of electricity to 

a current is the time during which the current flows to transmit 

that quantity. Hence the ratio of a current to an electromotive 

force is that of a line to a time, or in other words, it is a 

velocity. 

The fact that the conductivity of a conductor is expressed in 

the electrostatic system of measurement by a velocity may 

be verified by supposing a sphere of radius r charged to 

potential V, and then connected with the earth by the given con¬ 

ductor. Let the sphere contract, so that as the electricity escapes 

through the conductor the potential of the sphere is always 

kept equal to V. Then the charge on the sphere is rV at any 

d 
instant, and the current is — but, since V is constant, 



403 280.] system of linear conductors. 

the current is — ~ V, and the electromotive force through the 
at 

conductor is V. 
The conductivity of the conductor is the ratio of the current 

to the electromotive force, or — ~ > that is, the velocity with 

which the radius of the sphere must diminish in order to main¬ 

tain the potential constant when the charge is allowed to pass 

to ea,rth through the conductor. 

In the electrostatic system, therefore, the conductivity of a 

conductor is a velocity, and so of the dimensions [LT~r\ 
The resistance of the conductor is therefore of the dimensions 

[L-'T]- 
The specific resistance per unit of volume is of the dimension 

of [T], and the specific conductivity per unit of volume is of the 

dimension of JT"1]. 

The numerical magnitude of these coefficients depends only on 

the unit of time, which is the same in different countries. 

The specific resistance per unit of weight is of the dimensions 

[Ir*MT]. 
279. ] We shall afterwards find that in the electromagnetic 

system of measurement the resistance of a conductor is expressed 

by a velocity, so that in this system the dimensions of the resist^ 

ance of a conductor are [LT~1]. 
The conductivity of the conductor is of course the reciprocal 

of this. 

The specific resistance per unit of volume in this system is of 

the dimensions [Z2T~3], and the specific resistance per unit 

of weight is of the dimensions J. 

On Linear Systems of Conductors in general. 

280. ] The most general case of a linear system is that of 

n points, Alt A2,...An, connected together in pairs by 1) 

linear conductors. Let the conductivity (or reciprocal of the re¬ 

sistance) of that conductor which connects any pair of points, 

say Ap and Aq, be called Kp<Ji and let the current from Ap to Aq 
be CPQ. Let Pp and PQ be the electric potentials at the points Av 
and Aq respectively, and let the internal electromotive force, 

if there be any, along the conductor from Ap to Aq be Epq. 
Dd 2 
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The current from Ap to Aq is, by Ohm’s Law, 

Qpq = KPq (Pp — Pq + Epq). ' (1) 

Among these quantities we have the following sets of re¬ 

lations : 

The conductivity of a conductor is the same in either direc¬ 

tion, or Kpq = Kqp. (2) 

The electromotive force and the current are directed quantities, 

so that Epq = - EqP, and Cpq = —Cqp. (3) 

Let P19 P2).,.Pn be the potentials at A19 A2)...An respectively, 

and let Qlf Q2y.Qn be the quantities of electricity which enter 

the system in unit of time at each of these points respectively. 

These are necessarily subject to the condition of ‘ continuity’ 

Qi + Q± ••• + Q» = 0, (4) 

since electricity can neither be indefinitely accumulated nor pro¬ 

duced within the system. 

The condition of ‘ continuity ’ at any point Ap is 

Qp — Cp\ + t'P2 + &c- + Cpn. (5) 

Substituting the values of the currents in terms of equation 

(1), this becomes 

Qp ^ (Kpi + ApiJ -f &c. -f Kpn) IJp — (KPiP\ + Ep2P2 + kc. + KpnPJ 

+ (Kpl^Pl + + A pnEpn). (6) 

The symbol Kpp does not occur in this equation. Let us 

therefore give it the value 

Kpp =: — (^j>i + Ap2 + &c. 4- Apw); (?) 

that is, let Kpp be a quantity equal and opposite to the sum of 

all the conductivities of the conductors which meet in Ap. We 

may then write the condition of continuity for the point Apf 

KP11\ + Kp2P2 + &c. + KppPp + &c. + KpnPn 

= KnEn + &c- + KPnEpn-Qp. (8) 

By substituting 1, 2, &c. n for p in this equation we shall 

obtain n equations of the same kind from which to determine 

the n potentials Plf P2J &c.} 1 

Since, however, if we add the system of equations (8) the 

result io identically zero by (3), (4) and (7), there will be only 

n — 1 independent equations. These will be sufficient to deter¬ 

mine the differences of the potentials of the points, but not 

to determine the absolute potential of any. This, however, 

is not required to calculate the currents in the system. 
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If we denote by I) the determinant 

Kn, — (»-i)> 
k22, .. ....K2(n_ i), 

O) 

K(n-!)>> « 

and by Dpq) the minor of Kpqt we find for the value of Pp — Pn, 

(Pp-Pn) D = (Kn En + &c.-qx)Bp, + (K2l E21 + &c. - Qa) Z),2 + &c. 
+ (* ,1 Enl + &c. + KgnEQ» - Qtf)DP9 + &c. (10) 

In the same way the excess of the potential of any other point, 

say AQy over that of An may be determined. We may then de¬ 

termine the current between Ap and Aq from equation (l), and 

so solve the problem completely. 

281.] We shall now demonstrate a reciprocal property of any 

two conductors of the system, answering to the reciprocal 

property we have already demonstrated for statical electricity 

in Art. 86. 

The coefficient of Qq in the expression for Pp is - ----- • That 

D , D 
of Qp in the expression for Pq is —* 

Now Dpq differs from Dqp only by the substitution of the 

symbols such as Kqp for Kp<}. But by equation (2), these two 

symbols are equal, since the conductivity of a conductor is the 

same both ways. Hence Dpq~Dqp. (11) 

It follows from this that the part of the potential at Ap arising 

from the introduction of a unit current at Aq is equal to the 

part of the potential at Aq arising from the introduction of a 

unit current at Ap. 

We may deduce from this a proposition of a more practical 

form. 

Let A, By G, D be any four points of the system, and let the 

effect of a current Q, made to enter the system at A and leave 

it at B, be to make the potential at C exceed that at D by P. 

Then, if an equal current Q be made to enter the system at G 

and leave it at D, the potential at A will exceed that at B by 

the same quantity P. 

If an electromotive force E be introduced, acting in the con¬ 

ductor from A to P, and if this causes a current C from X to Y, 

then the same electromotive force E introduced into the con¬ 

ductor from X to Y will cause an equal current C from A to B. 
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The electromotive force E may be that of a voltaic battery 

introduced between the points named, care being taken that the 

resistance of the conductor is the same before and after the 

introduction of the battery. 

282 a.] If an electromotive force Em act along the conductor 

ApAq, the current produced along another conductor of the 

system ArAt is easily found to be 

KrtKpq Epq (Arp + D,g A * — A,p) 

There will be no current if 

Drp + D^-Drq-D,p= 0. (12) 

But, by (11). the same equation holds if, when the electromotive 

force acts along ArA$, there is no current in ApAq. On account 

of this reciprocal relation the two conductors referred to are said 

to be conjugate. 

The theory of conjugate conductors has been investigated by 

Kirchhoff, who has stated the conditions of a linear system in 

the following manner, in which the consideration of the potential 

is avoided. 

(1) (Condition of ‘continuity.’) At any point of the system 

the sum of all the currents which flow towards that point is 

zero. 

(2) In any complete circuit formed by the conductors the sum 

of the electromotive forces taken round the circuit is equal to 

the sum of the products of the current in each conductor multi¬ 

plied by the resistance of that conductor. 

We obtain this result by adding equations of the form (1) for 

the complete circuit, when the potentials necessarily disappear. 

*282 &.] If the conducting wires form a simple network and if 

we Suppose that a current circulates round each mesh, then the 

actual current in the wire which forms a thread of each of two 

neighbouring meshes will be the difference between the two 

currents circulating in the two meshes, the currents being 

reckoned positive when they circulate in a direction opposite 

to the motion of the hands of a watch. It is easy to establish 

in this case the following proposition :—Let x be the current, E 
the electromotive force, and R the total resistance in any mesh ; 

let also y, zbe currents circulating in neighbouring meshes 

* [Extracted from notes of Professor Maxwell’s lectures by Mr. J. A. Fleming, B.A., 
St. John’s College. See also a paper by Mr. Fleming in the Phil. Mag., xx. p. 221, 
18S6.] 
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which have, threads in common with that in which x circulates, 
the resistances of those parts being s, t,...; then 

Rx—sy—tz—tkc, = E. 
To illustrate the use of this rule we will take the arrangement 

known as Wheatstone’s Bridge, adopting the figure and notation 
of Art. 347. We have then the three following equations repre¬ 
senting the application of the rule in the case of the three 
circuits OBC} OCA, OAB in which the currents x, y, z respect¬ 
ively circulate, viz. 

(a + fi + y)x — yy —fiz=Ey 
— yx + (b + y + a)y — az~ 0, 
—fix — a2/ + (c + a-f/3)z=0. 

From these equations we may now determine the value of 
z—y the galvanometer current in the branch OA, but the reader 
is referred to Art. 347 et seq. where this and other questions 
connected with Wheatstone’s Bridge are discussed. 

Heat Generated in the System. 

283.] The mechanical equivalent of the quantity of heat 
generated in a conductor whose resistance is R by a current C 
in unit of time is, by Art. 242, 

JH = RC2. (13) 
We have therefore to determine the sum of such quantities as 

RCP for all the conductors of the system. 
For the conductor from Ap to Aq the conductivity is Kpqy 

and the resistance RPqy where 

= 1- (14) 
The current in this conductor is, according to Ohm’s Law, 

C„ = KM-PJ. (15) 

We shall suppose, however, that the value of the current is 
not that given by Ohm’s Law, but Xpqi where 

^ = (16) 
To determine the heat generated in the system we have to 

find the sum of all the quantities of the form 

RpqX2pqi 
or JH= 2 + (17) 

Giving Cpq its value, and remembering the relation between 
and RHi this becomes 

(18) 
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Now since both C and X must satisfy the condition of 

continuity at Apt we have 

Qp = CPi + Cp2 + (19) 
= Xpl + Xp2 +&c. (20) 

therefore 0 = YPl + Yp2 + &c. + !£*. (21) 

Adding together therefore all the terms of (18), we find 

2 (RPQX\q) = 2PpQp + 2H„ . (22) 

Now since i? is always positive and Y2 is essentially positive, 

the last term of this equation must be essentially positive. 

Hence the first term is a minimum when F is zero in every 

conductor, that is, when the current in every conductor is that 

given by Ohm’s Law *. 

Hence the following theorem : 

284.] In any system of conductors in which there are no 

internal electromotive forces the heat generated by currents 

distributed in accordance with Ohm’s Law is less than if the 

currents had been distributed in any other manner consistent 

with the actual conditions of supply and outflow of the current. 

The heat actually generated when Ohm’s Law is fulfilled is 

mechanically equivalent to 2PpQp, that is, to the sum of the 

products of the quantities of electricity supplied at the different 

external electrodes, each multiplied by the potential at which it 

is supplied. 

* { We can prove in a similar way that when there are electromotive forces in the 
different branches the currents adjust themselves so that XRC2^22EC is a minimum, 
where E is the electromotive force in the branch when the current is C. If we express 
this quantity, which we shall call F, in terms of the independent currents flowing round 
the circuits, the distribution of current x,y, z,... among the conductors may be found 
from the equations 

dF dF 

d*=0’ d?m0- 
Thus in the case of Wheatstone’s Bridge considered in Art. 882, 

F** ax2 + by2 + cz2 (p- z)2 + y (y-z)a + a (* -y) •—2 Ex, 

and the equations in that Art. are identical with 

dF dF 

dx m0f dy 
0, dF 

dz 
0. 

This is often the most convenient way of finding the distribution of current among 
the conductors. The reciprocal properties of Art. 281 can be deduced by it with 
great ease.} 
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APPENDIX TO CHAPTER VI. 

The laws of the distribution of currents which are investigated in 
Art. 280 may be expressed by the following rules, which are easily 

remembered. 

Let us take the potential of one of the points, say An> as the zero 
potential, then if a quantity of electricity Qt flows into As the potential 
of a point Ap is shewn in the text to be 

«.• 
The quantities D and Dpt may be got by the following rules.—1) is the 

sum of the products of the conductivities taken (n —* 1) at a time, omitting 

all those tennis which contain the products of the conductivities of 

branches which form closed circuits. I)pa is the sum of the products of 

the conductivities taken (n — 2) at a time, omitting all those terms which 

contain the conductivities of the branches Ap An or A, An, or which 

contain products of conductivities of branches which form closed 

circuits either by themselves or with the aid of Ap An or At An. 

We see from equation (10) that the effect of an electromotive force 

Eqr acting in the branch Aq Ar is the same as the effect due to a sink 

of strength K qr Eqr at Q and a source of the same strength at R, so that 

the preceding rule will include this case. The result of the application 

of this rule can however be stated more simply as follows. If an electro¬ 

motive force Epq act along the conductor Ap Aqy the current produced 

along another conductor A r Aa is 

where D is got by the rule given above, and A = Aj — A2. Where Aj is got 
by selecting from the sum of the products of the conductivities taken 

(w—-2) at a time those products which contain the conductivities of both 

Ap Ar (or the product of the conductivities of branches making 
a closed circuit with Ap A,) and Aq A$ (or the product of the con¬ 

ductivities of branches making a closed circuit with A$ Aq), omitting 

from the terms thus selected all those which contain the conductivities 

of Ar Ati or Ap Aq, or the product of the conductivities of branches 

making closed circuits by themselves or with the help of Ar At or 

Ap Aq; A2 corresponds to A,, the branches Ap Aai Aq Ar being taken 

instead of Ap Ar and Aa Aq respectively. 

If a current enters at P and leaves at Qy the ratio of the current to 

the difference of potential between Ap and Aq is^« 
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Where A' is the sum of the products of the conductivities taken n—2 

at a time, omitting all those terms which contain the conductivity of 

Ap Aq or the products of the conductivities of branches forming a closed 

circuit with it. 

In these expressions all the terms which contain the product of the 

conductivities of branches forming a closed circuit are omitted. 

We may illustrate these rules by applying them to a very important 

case, that of 4 points connected by 6 conductors. Let us call the points 

1, 2, 3, 4. 
Then D = the sum of the product of the conductivities taken 3 at a 

time, leaving out, however, the 4 products Ku Kn, A12 Ku KiX, 

KwKuKiVKn Ku K»; as these correspond to the four closed circuits 

(123), (124), (134), (234). 

Thus 

& = (^i4 + + KM)(Arnhn 4- KnK.# 4- A13A'23) + KUK 24 (AT IS 4- AT„) 
4- KhKu (A 12 *h A23) 4- AwA24 (A12 4- A13) 4- A14AT24Al34. 

Let us suppose that an electromotive force A acta along (23), the current 

through the branch (14) 

At = AT,3 (by definition), 

.A2 = Ajj A4, 

Hence if no current passes through (14), AT13A?4—ArJlA4S=0, this is the 

condition that (23) and (14) may be conjugate. 

The current through (13) 

_ Ar12^144-Ar24 4- Ar„4) 4- KUKU vvr v 
J) -LA14A38* 

The conductivity of the net work when a current enters at (2) and 

leaves at (3) 

D 

<*.« + Ku + KJ(Kn+JCn)+Ku (Kn + A'm) 

If we hare 5 points, the condition that (23) and (14) are conjugate ia 

(X*++KJ + KnKnKie + KMKnK„ 

= XM*v+ ^+ii:),+ 4) + Wa+W«- 
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CONDUCTION IN THREE DIMENSIONS. 

Notation of Electric Currents. 

285.] At any point let an element of area dS be taken normal 
to the axis of x, and let Q units of electricity pass across this 
area from the negative to the positive side in unit of time, 

then, if becomes ultimately equal to u when dS is indefinitely 

diminished, u is said to be the Component of the electric current 
in the direction of x at the given point. 

In the same way we may determine v and w, the components 
of the current in the directions of y and z respectively. 

286.] To determine the component of the current in any other 
direction OR through the given point 0, let l, m, n be the 
direction-cosines of OR; then if we cut off from the axes of 
x, y, z portions equal to 

r r r 
•7 y — j ana — 
cm n 

respectively at A, B and C, the triangle ABC will be normal 
to OR. 

The area of this triangle ABC will be 

and by diminishing r this area may be di¬ 
minished without limit. 

The quantity of electricity which leaves the tetrahedron ABCO 
by the triangle ABC must be' equal to that which enters it 
through the three triangles OBC, OCA, and OAB. 

The area of the triangle OBC is \-3 and the component of 
win 
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the current normal to its plane is u, so that the quantity which 

enters through this triangle in unit time is i r2-^- • 
p mn 

The quantities which enter through the triangles OCA and 

OAB respectively in unit time are 

\ r2 ~ , and $ r* ~ • 
nl cm 

If y is the component of the current in the direction OR, then 

the quantity which leaves the tetrahedron in unit time through 

ABC is 

Since this is equal to the quantity which enters through the 

three other triangles, 

1 T ~y — 1 \ u V w ) 

Imn 7 \ mn nl + lm\* 

multiplying by > we get 

y = /u + mv + (1) 

If we put u2 + v2 + w2 = P, 

and make Z', m', w' such that 

u — ZT, v = mT, and w = n'V ; 

then y = T (ll' + mm' + mi'). (2) 

Hence, if we define the resultant current as a vector whose 

magnitude is T, and whose direction-cosines are Z', m', n\ and if 

y denotes the current resolved in a direction making an angle 6 

with that of the resultant current, then 

y = Tcos 6 ; (3) 

shewing that the law of resolution of currents is the same as 

that of velocities, forces, and all other vectors. 

287.] To determine the condition that a given surface may be 

a surface of flow, let 
F(x, y, z) ~ \ (4) 

be the equation of a family of surfaces any one of which is given 

by making A constant; then, if we make 

d\ cZa 2 cZa 1 /i-\ 

dx dy dz ~~ &2 

the direction-cosines of the normal, reckoned in the direction in 

which A increases, are 

Z=iT 
■m, d A 

m If— y 

dy 
n =jV- (6) 
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Hence, if y is the component of the current normal to the 

surface, , dk ,U d>., 

y=NriE+v^*w~diY <7> 

If y = 0 there will be no current through the surface, and 

the surface may be called a Surface of Flow, because the lines of 

flow are in the surface. 

288.] The equation of a surface of flow is therefore 

dk dk dk ^ . v u + v-hw =z o. (8) 
dx dy dz v ' 

If this equation is true for all values of A, all the surfaces of the 

family will be surfaces of flow. 

289.] Let there be another family of surfaces, whose parameter 

is A', then, if these are also surfaces of flow, we shall have 

dk dk' dk' u +v +w =sQm 
dx dy dz (9) 

If there is a third family of surfaces of flow, whose parameter 

is X", then dx" dx" d\" 

uS+v^+w-£ = °- <10) 
If we eliminate u, v, and w between these three equations, 

we find 

d\ dX dX 
dx' ’ dy dz 
dx' dX' dx' 

= 0; (ii) 
dx ’ dy’ dz 
dx" dx" dx" 

dx dy ’ dz 

II o
 <MA, X'); (12) 

that is, k" is some function of k and A'. 

290.] Now consider the four surfaces whose parameters are A, 

A+ 6A, k'r and A'+6A'. These four surfaces enclose a quadri¬ 

lateral tube, which we may call the tube 6 A . 6 A'. Since this 

tube is bounded by surfaces across which there is no flow, we 

may call it a Tube of Flow. If we take any two sections across 

the tube, the quantity which enters the tube at one section must 

be equal to the quantity which leaves it at the other, and since 

this quantity is therefore the same for every section of the tube, 

let us call it Lbk . 6 A', where L is a function of A and A', the 

parameters which determine the particular tube. 
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291.] If b S denotes the section of a tube of flow by a plane 
normal to cc, we have by the theory of the change of the inde¬ 

pendent variables, 

and by the definition of the components of the current 

udS = Lbk. 5A'. (14) 

Akdk' dkdk\ 
' dy dz dz dy' * 

(13) 

Hence 

Similarly 

■dk_dX _ dk\ \ 
dy dz dz dy ' 

- Ak dk dk dk \ 
V {dz dx dx dz ' 

u = L( 

(15) 

j /dk dk! dk dk \ 1 
U ~~ 'dx dy dy dx ' I 

292.] It is always possible when one of the functions k or A' 

is known, to determine the other so that L may be equal to 
unity. For instance, let us take the plane of yz, and draw upon 
it a series of equidistant lines parallel to y, to represent the 
sections of the family A' by this plane. In other words, let the 
function A' be determined by the condition that when x = 0 
A' as z. If we then make L = 1, and therefore (when x = 0) 

then in the plane (x = 0) the amount of electricity which passes 
through any portion will be 

JJ udydz= ff dkdk'. (16) 

The nature of the sections of the surfaces of flow by the plane 
of yz being determined, the form of the surfaces elsewhere is 
determined by the conditions (8) and (9). The two functions A 
and A' thus determined are sufficient to determine the current at 
every point by equations (15), unity being substituted for L. 

On Lines of Flow. 

293.] Let a series of values of A and of A' be chosen, the suc¬ 
cessive differences in each series being unity. The two series of 
surfaces defined by these values will divide space into a system 
of quadrilateral tubes through each of which there will be a unit 
current. By assuming the unit sufficiently small, the- details of 
the current may be expressed by these tubes with any desired 
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amount of minuteness. Then if any surface be drawn cutting 
the system of tubes, the quantity of the current which passes 
through this surface will be expressed by the number of tubes 
which cut it, since each tube carries a unit current. 

The actual intersections of the surfaces may be called Lines of 
Flow. When the unit is taken sufficiently small, the number of 
lines of flow which cut a surface is approximately equal to the 
number of tubes of flow which cut it, so that we may consider 
the lines of flow as expressing not*only the direction of the 
current but also its strength, since each line of flow through a 
given section corresponds to a unit current. 

On Current-Sheets and Current-Functions. 

294.] A stratum of a conductor contained between two con¬ 
secutive surfaces of flow of one system, say that of A', is called 
a Current-Sheet. The tubes of flow within this sheet are deter¬ 
mined by the function A. If \A and XP denote the values of A 

at the points A and P respectively, then the current from right 
to left across any line drawn on the sheet from A to P is XP—XA*. 

If A P be an element, ds, of a curve drawn on the sheet, the 
current which crosses this element from right to left is 

d A 

ds 
ds. 

This function A, from which the distribution of the current in 
the sheet can be completely determined, is called the Current- 
Function. 

Any thin sheet of metal or conducting matter bounded on 
both sides by air or some other non-conducting medium may be 
treated as a current-sheet, in which the distribution of the 
current may be expressed by means of a current-function. See 
Art. 647. 

Equation of ‘Continuity/ 

295.] If we differentiate the three equations (15) with respect 
to a?, y, z respectively, remembering that L is a function of 

A and A', we find (ju dv dw du dv 

dx dy dz 
= 0. (17) 

* (By the ‘current across AP* is meant the current through the tube of flow 
bounded by the surfaces XA, Aj, A' and A' +1.) 



416 CONDUCTION IN THREE DIMENSIONS. 

The corresponding equation in Hydrodynamics is called the 
Equation of 4 Continuity.’ The continuity which it expresses is 
the continuity of existence, that is, the fact that a material sub¬ 
stance cannot leave one part of space and arrive at another, 
without going through the space between. It cannot simply 
vanish in the one place and appear in the other, but it must 
travel along a continuous path, so that if a closed surface be 
drawn, including the one place and excluding the other, a 
material substance in passing from the one place to the other 
must go through the closed surface. The most general form of 
the equation in hydrodynamics is 

d(Pu) cf(pv) d (pw) dp _ n /ltA 

~W+ ~d?T di “ ; (} 
where p signifies the ratio of the quantity of the substance to 
the volume it occupies, that volume being in this case the 
differential element of volume, and (pu), (pv), and (pttj signify 
the ratio of the quantity of the substance which crosses an 
element of area in unit of time to that area, these areas being 
normal to the axes of x, y, and 0 respectively. Thus understood, 
the equation is applicable to any material substance, solid or 
fluid, whether the motion be continuous or discontinuous, pro¬ 
vided the existence of the parts of that substance is continuous. 
If anything, though not a substance, is subject to the condition 
of continuous existence in time and space, the equation will 
express this condition. In other parts of Physical Science, as, 
for instance, in the theory of electric and magnetic quantities, 
equations of a similar form occur. We shall call such equations 
‘ equations of continuity ’ to indicate their form, though we may 
not attribute to these quantities the properties of matter, or 
even continuous existence in time and space. 

The equation (17), which we have arrived at in the case of 
electric currents, is identical with (18) if we make p = 1, that is, 
if we suppose the substance homogeneous and incompressible. 
The equation, in the case of fluids, may also be established by 
either of the modes of proof given in treatises on Hydrody¬ 
namics. In one of these we trace the course and the deforma¬ 
tion of a certain element of the fluid as it moves along. In the 
other, we fix our attention on an element of space, and take 
account of all that enters or leaves it. The former of these 

methods cannot be applied to electric currents, as we do not 
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know the velocity with which the electricity passes through the 

body, or even whether it moves in the positive or the negative 

direction of the current. All that we know is the algebraical 

value of the quantity which crosses unit of area in unit of time, 

a quantity corresponding to (pu) in the equation (18). We have 

no means of ascertaining the value of either of the factors p 

or uy and therefore we cannot follow a particular portion of 

electricity in its course through the body. The other method of 

investigation, in which we consider what passes through the 

walls of an element of volume, is applicable to electric currents, 

and is perhaps preferable in point of form to that which we 

have given, but as it may be found in any treatise on Hydro¬ 

dynamics we need not repeat it here. 

Quantity of Electricity which passes through a given Surface. 
296.] Let T be the resultant current at any point of the 

surface. Let dS be an element of the surface, and let t be the 

angle between T and the normal to the surface drawn outwards, 

then the total current through the surface will be 

the integration being extended over the surface. 

As in Art. 21, we may transform this integral into the form 

+ | + (»> 

in the case of any closed surface, the limits of the triple integra¬ 

tion being those included by the surface. This is the expression 

for the total efflux from the closed surface. Since in all cases of 

steady currents this must be zero whatever the limits of the 

integration, the quantity under the integral sign must vanish, 

and we obtain in this way the equation of continuity (17). 

E e vol. 1. 



CHAPTER VIII. 

RESISTANCE AND CONDUCTIVITY IN THREE DIMENSIONS. 

On the most General Relations between Current and 

Electromotive Force. 

297.] Let the components of the current at any point be u, 

vf w. 
Let the components of the electromotive intensity be X, F, Z. 
The electromotive intensity at any point is the resultant force 

on a unit of positive electricity placed at that point. It may arise 

(1) from electrostatic action, in which case if V is the potential, 

dV v__dV 

dx5 r~ dy' 
X = 7- dY. 

Z~ dz} 0) 

or (2) from electromagnetic induction, the laws of which we 

shall afterwards examine; or (3) from thermoelectric or electro¬ 

chemical action at the point itself, tending to produce a current 

in a given direction. 

We shall in general suppose that X, F, Z represent the com¬ 

ponents of the actual electromotive intensity at the point, what¬ 

ever be the origin of the force, but we shall occasionally examine 

the result of supposing it entirely due to variation of potential. 

By Ohm’s Law the current is proportional to the electro¬ 
motive intensity. Hence X, F, Z must be linear functions of u> 

VyW. We may therefore assume as the equations of Resistance, 

X = Rxu + Qz v + P, w, \ 

Y = h u + R2v + Qxw, > (2) 

Z = u + P1 v + R^w. ) 

We may call the coefficients R the coefficients of longitudinal 
resistance in the directions of the axes of coordinates. 

The coefficients P and Q may be called the coefficients of 

transverse resistance. They indicate the electromotive intensity 

in one direction required to produce a current in a different 
direction. 
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If we were at liberty to assume that a solid body may be 

treated as a system of linear conductors, then, from the recipro¬ 

cal property (Art. 281) of any two conductors of a linear system, 

we might shew that the electromotive force along z required 

to produce a unit current parallel to y must be equal to the 

electromotive force along y required to produce a unit current 

parallel to z. This would shew that = Q1, and similarly we 

should find ij = <22, and 7^ = Q3. When these conditions are 

satisfied the system of coefficients is said to be Symmetrical. 

When they are not satisfied it is called a Skew system. 

We have great reason to believe that in every actual case the 

system is symmetrical*, but we shall examine some of the con¬ 

sequences of admitting the possibility of a skew system. 

298. ] The quantities v, w may be expressed as linear 

functions of X, Y, Z by a system of equations, which we may 

call Equations of Conductivity, 

u = T^X+jpgF+g*#, \ 

* =q9X + rg7+PlZ, V (3) 

w = p2X + q1Y+r3Z; ' 

we may call the coefficients r the coefficients of Longitudinal 

conductivity, andjp and q those of Transverse conductivity. 

The coefficients of resistance are inverse to those of conduc¬ 

tivity. This relation may be defined as follows : 

Let [PQP] be the determinant of the coefficients of resistance, 

and [pqr] that of the coefficients of conductivity, then 

[PQR] = P^ + Q&Q, +R1RiR3-PlQ,Rl~P2QtR,-P3Q3Rs, (4) 

[pqr] = plp2pi + qxq2qi+rlrir.,~px(hri -p2q,r2-p3q3r3, (5) 

[PQR] [pqr] = 1, (6) 

[PQR]Pi = (P2%~QiRi>> [Mr] Pi = (7) 
&c. &c. 

The other equations may be formed by altering the symbols, 

P, Q, P, pf g, r, and the suffixes 1, 2, 3 in cyclical order. 

Rate of Generation of Heat. 

299. ] To find the work done by the current in unit of time 

in overcoming resistance, and so generating heat, we multiply 

the components of the current by the corresponding components 

* {See note to Art. 303.} 

e e 2 
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of the electromotive intensity. We thus obtain the following ex¬ 
pressions for W, the quantity of work expended in unit of time: 

W = Xu+ Yv + Zw; (8) 

= Rxu2 + R2v2 + RBw2 + (i? + Qx)vw + (P2 + Q2)wu + (Pd + Q3)uv ; (9) 

= Y2++(ft+?i) YE+(p2+q2)zx+(ft+Sa)xr. (10) 

By a proper choice of axes, (9) may be deprived of the terms 

involving the products of w, v, or else (10) of those involving 

the products of X, F, Z. The system of axes, however, which 

reduces W to the form 

Rx u2 + R2v2 + Rz w2 

is not in general the same as that which reduces it to the form 

r, X2 + r2Y2 + rzZ2. 

It is only when the coefficients Pl,P2,Pz are equal respectively 
to Q19 Q2, Qz that the two systems of axes coincide. 

If with Thomson * we write 

P=S+T, Q — S—T; 1 
and p = 8 + t, q — s~t; j 

then we have 

[PQR] = RlR2R, + 2SlS2Sz-S12Rl-S2R2-S2Rz 1 

+ 2 (Bx T2Tz + 8ZTZTX + Tx rT2) + Rx T* + R2T2 + RZT2;f 

and [PQR]rl = R2Rz-S2 + T1\ ) 

[PQR]s1 = T2Tz + S2Sz-RxS1> V 

[PQR]t1 = R1Tl + S2Tz + SzT2. > 

If therefore we cause Sx, S2, Sz to disappear, the coefficients 8 
will not also disappear unless the coefficients T are zero. 

Condition of Stability. 

300.] Since the equilibrium of electricity is stable, the work 

spent in maintaining the current must always be positive. The 

conditions that W must be positive are that the three coefficients 

JS,, iL, Ro, and the three expressions 

4 RA-(Pl+Ql)\] 
4RZR^(P2+Q2)2A (14) 

4 Rx R2—(-^ + Qz)2>' 
must all be positive. 

There are similar conditions for the coefficients of conductivity. 

(11) 

(12) 

(13) 

* Tram. B. S. Min.,. 1853-4, p. 166. 



302.] EQUATION OF CONTINUITY. 421 

Equation of Continuity in a Homogeneous Medium. 

301.] If we express the components of the electromotive force 

as the derivatives of the potential V, the equation of continuity 

du dv duo __ ^ 

dx dy dz ~~ 

becomes in a homogeneous medium 

d2V d2V d2V d2V d2V 

dx2 + T'ldyi + r$ dz2 + 28j + 2®2 5“7~ +2®: 

d2V 

3 dxdy 

(15) 

: 0.(16) 
dydz 1 ~ 2dzdx 

If the medium is not homogeneous there will be terms arising 

from the variation of the coefficients of conductivity in passing 

from one point to another. 

This equation corresponds to Laplace’s equation in a non¬ 

isotropic medium. 

302.] If we put 

t>a] = r,r2r3 + 2 e, s283 - rx82 - r.2s2 - r3e2, (l 7) 

and [AB] = A^A^ + 2 B^B^-A^-A^B2-A3B2, (18) 

where [rs] Ax = r,r,-8, 

[rs] B, = s2s3-r. 
®i. ) 

'1!P J 
(19) 

and so on, the system A, B will be inverse to the system r,8,and 

if we make 

Alx2 + A2y2 + Azz2 + 2B1yz+2B2zx + 2B<ixy=z [AB]p2} (20) 
we shall find that 

is a solution of the equation * 

£.1 
47r p 

(21) 

* {Suppose that by the transformation 

a?—a X + b Y+c Z, 
y *= a' X + b' Y+cf Z, (i) 
z » a"X + b"F+c"Z, 

the left-hand side of (16) becomes 

d*V d*V d2V 

dx* + rfr* + dz*‘ 
(2) 

For this to be the case, we see that 

must be identical with 

(a£ + a'V + a"(f + (b£ + b'rj + b"0* 4 (<?£ + c'i? + c"0a. 

which we shall nail 17. 
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In the case in which the coefficients T are zero, the coefficients 

A and B become identical with the coefficients R and 8 of Art. 

299. When T exists this is not the case. 

In the case therefore of electricity flowing out from a centre 

in an infinite, homogeneous, but not isotropic, medium, the equi- 

potential surfaces are ellipsoids, for each of which p is constant. 

The axes of these ellipsoids are in the directions of the prin¬ 

cipal axes of conductivity, and these do not coincide with the* 

principal axes of resistance unless the system is symmetrical. 

By a transformation of the equation (16) we may take for the 

axes of x, y, z the principal axes of conductivity. The coefficients 

of the forms s and B will then be reduced to zero, and each co¬ 

efficient of the form A will be the reciprocal of the corresponding 

coefficient of the form r. The expression for p will be 

xA y2 z2 __ /)2 

ri T<> r3~rir2r3 

303.] The theory of the complete system of equations of re¬ 

sistance and of conductivity is that of linear functions of three 

variables, and it is exemplified in the theory of Strains*, and in 

other parts of physics. The most appropriate method of treating 

it is that by which Hamilton and Tait treat a linear and vector 

function of a vector. We shall not, however, expressly introduce 

Quaternion notation. 

The coefficients Tlf T2, may be regarded as the rectangular 

components of a vector T, the absolute magnitude and direction 

» If we eliminate £, tj, { by the equations 

dU dV dU 

or x ** a (a£ + a'rj + a"£) +b (b£ + b'rj + b"C) + c (cX + c'ij + ) 

y — a' (a£ + a/rj + +6' (&£ + &?] + b"Q + cr (c£ + c'rj + c"Q, J (3) 
* - a"(a£ + a'v4-a"Q + b"(b£ + b'rj +b"C) + c"(c£ + </rl + c"(> * 

we get, since the system AB is inverse to the system m, 

XI *» Axx* + + A^z* + 2Bxyz + .... 

But from equations (1) and (3) we see that 

X - a£ + a'rj + a"£, 
Y= bt + b’Tj + V'C, 
Z ** ci + c'r) + c"(; 

hence U= X*+Y* + Z>. 

But by (2) V -~-satisfies the differential equation, hence 1 f*/U 

VX*+Y3 + Z* 
must satisfy it. 

See Thomson and Tait’s Natural Philosophy, $ 164. 
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of which are fixed in the body, and independent of the direction 

of the axes of reference. The same is true of t}y t2> tz, which are 

the components of another vector t. 
The vectors T and t do not in general coincide in direction. 

Let us now take the axis of z so as to coincide with the vector 

1\ and transform the equations of resistance accordingly. They 

will then have the form 

X — Rxn 4- >S3v + S2iv — Tv, j 

T = + R2v + w -f Tu, i (23) 

Z = S2u + S1v + R3w. ) 

It appears from these equations that we may consider the 

electromotive intensity as the resultant of two forces, one of them 

depending only on the coefficients R and &, and the other 

depending on T alone. The part depending on R and S is 

related to the current in the same way that the perpendicular 

on the tangent plane of an ellipsoid is related to the radius 

vector. The other part, depending on T, is equal to the product 

of T into the resolved part of the current perpendicular to the 

axis of T, and its direction is perpendicular to T and to the 

current, being always in the direction in which the resolved 

part of the current would lie if turned 90° in the positive direc¬ 

tion round T. 

If we consider the current and T as vectors, the part of the 

electromotive intensity due to T is the vector part of "the product, 

T x current. 

The coefficient T may be called the Rotatory coefficient. We 

have reason to believe that it does not exist in any known 

substance. It should be found, if anywhere, in magnets, which 

have a polarization in one direction, probably due to a rotational 

phenomenon in the substance *. 

304.] Assuming then that there is no rotatory coefficient, we 

shall shew how Thomson’s Theorem given in Arts. 100a-100 e 

may be extended to prove that the heat generated by the 

currents in the system in a given time is a unique minimum. 

To simplify the algebraical work let the axes of coordinates be 

chosen so as to reduce expression (9), and therefore also in this 

* { Mr. Hall's discovery of the action of magnetism on a permanent electric current 
(Phil. Mag. ix. p. 225; x. p. 301, 1880) may be described by saying that a conductor 
placed in a magnetic field has a rotatory coefficient. See Hopkinson (Phil. Mag. x. 
p. 430, 1880.)} 
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case expression (10), to three terms; and let us consider the 

general characteristic equation (16) which then reduoes to 

dW d*V dW 
r, — + r2 -j-7 + ra a. (24) 

Also, let a, 6, c be three functions of yt z satisfying the 

ri dx* T 2 dy* ^ *dz2 

condition da db dc 
(26) 

and let 

dx dy dz ~ 

dV l y 

a~~r'dx + 'i 

7 dV 1 

0; 

b=-r*Jj+v’ 

dr 
° = -r‘& +w-l 

f- (26) 

Finally, let the triple-integral 

W = JJJ (R^ + R^ + RsC^dxdydz (27) 

be extended over spaces bounded as in the enunciation of Art- 

100 a; such viz. that over certain portions V is constant or else 

the normal component of the vector a, b, c is given, the former 

condition being accompanied by the further restriction that the 

integral of this component over the whole bounding surface 

must be zero: then W will be a minimum when 

u — 0, v = 0, W = 0 

For we have in this case 

M
 II ii , r8J?£ 

and therefore, by (26), 

w=///(’•■£ 

I2 dV 
+ r2 -T- 

I cfy 

2 dF| 

+r>* 
)dxdydz 

Iff ^ + ^ ^ 
■2 Ilf’(* s+ ” IF+“ S 

But since 
du dv. dw __ 

dx + dy + dz ’ 

(28) 

(29) 

the third term vanishes by virtue of the conditions at the limits. 

The first term of (28) is therefore the unique minimum value 

of W. 
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305.] As this proposition is of great importance in the theory 

of electricity, it may be useful to present the following proof of 

the most general case in a form free from analytical operations. 

Let us consider the propagation of electricity through a con¬ 

ductor of any form, homogeneous or heterogeneous. 

Then we know that 

(1) If we draw a line along the path and in the direction of 

the electric current, the line must pass from places of high 

potential to places of low potential. 

(2) If the potential at every point of the system be altered in 

a given uniform ratio, the current will be altered in the same 

ratio, according to Ohm's Law. 

(3) If a certain distribution of potential gives rise to a certain 

distribution of currents, and a second distribution of potential 

gives rise to a second distribution of currents, then a third 

distribution in which the potential is the sum or difference of 

those in the first and second will give rise to a third distribution 

of currents, such that the total current passing through a given 

finite surface in the third case is the sum or difference of the 

currents passing through it in the first and second cases. For, 

by Ohm’s Law, the additional current due to an alteration of 

potentials is independent of the original current due to the 

original distribution of potentials. 

(4) If the potential is constant over the whole of a closed 

surface, and if there are no electrodes or intrinsic electromotive 

forces within it, then there will be no currents within the closed 

surface, and the potential at any point within it will be equal 

to that at the surface. 

If there are currents within the closed surface they must 

either form closed curves, or they must begin and end either 

within the closed surface or at the surface itself. 

But since the current must pass from places of high to places 

of low potential, it cannot flow in a closed curve. 

Since there are no electrodes within the surface,the current 

cannot begin or end within the closed surface, and since the 

potential at all points of the surface is the same, there can be 

no current along lines passing from one point of the surface to 

another. 

Hence there are no currents within the surface, and therefore 

there can be no difference of potential, as such a difference would 
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produce currents, and therefore the potential within the closed 

surface is everywhere the same as at the surface. 

(5) If there is no electric current through any part of a closed 

surface, and no electrodes or intrinsic electromotive forces 

within the surface, there will be no currents within the surface, 

and the potential will be uniform. 

We have seen that the currents cannot form closed curves, or 

begin or terminate within the surface, and since by the hypo¬ 

thesis they do not pass through the surface, there can be no 

currents, and therefore the potential is constant. 

(6) If the potential is uniform over part of a closed surface, 

and if there is no current through the remainder of the surface, 

the potential within the surface will be uniform for the same 

reasons. 

(7) If over part of the surface of a body the potential of every 

point is known, and if over the rest of the surface of the body 

the current passing through the surface at each point is known, 

then only one distribution of potential at points within the body 

can exist. 

For if there were two different values of the potential at any 

point within the body, let these be in the first case and in 

the second case, and let us imagine a third case in which the 

potential of every point of the body is the excess of potential in 

the first case over that in the second. Then on that part of the 

surface for which the potential is known the potential in the 

third case will be zero, and on that part of the surface through 

which the currents are known the currents in the third case will 

be zero, so that by (6) the potential everywhere within the surface 

will be zero, or there is no excess of over V2, or the reverse. 

Hence there is only one possible distribution of potentials. 

This proposition is true whether the solid be bounded by one 

closed surface or by several. 

On the Approaoimate Calculation of the Resistance of a 
Conductor of a given Form. 

306.] The conductor here considered has its surface divided 

into three portions. Over one of these portions the potential is 

maintained at a constant value. Over a second portion the 

potential has a constant value different from the first. The 

whole of the remainder of the surface is impervious to electricity. 
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We may suppose the conditions of the first and second portions 

to be fulfilled by applying to the conductor two electrodes of 

perfectly conducting material, and that of the remainder of the 

surface by coating it with perfectly non-conducting material. 

Under these circumstances the current in every part of the 

conductor is simply proportional to the difference between the 

potentials of the electrodes. Calling this difference the electro¬ 

motive force, the total current from the one electrode to the other 

is the product of the electromotive force by the conductivity of 

the conductor as a whole, and the resistance of the conductor is 

the reciprocal of the conductivity. 

It is only when a conductor is approximately in the circum¬ 

stances above defined that it can be said to have a definite 

resistance or conductivity as a whole. A resistance coil, con¬ 

sisting of a thin wire terminating in large masses of copper, 

approximately satisfies these conditions, for the potential in 

the massive electrodes is nearly constant, and any differences 

of potential in different points of the same electrode may be 

neglected in comparison with the difference of the potentials of 

the two electrodes. 

A very useful method of calculating the resistance of such 

conductors has been given, so far as I know, for the first time, 

by Lord Rayleigh, in a paper 4 On the Theory of Resonance * * . 

It is founded on the following considerations. 

If the specific resistance of any portion of the conductor be 

changed, that of the remainder being unchanged, the resistance 

of the whole conductor will be increased if that of the portion 

is increased, and diminished if that of the portion is diminished. 

This principle may be regarded as self-evident, but it may 

easily be shewn that the value of the expression for the re¬ 

sistance of a system of conductors between two points selected 

as electrodes, increases as the resistance of each member of the 

system increases. 

It follows from this that if a surface of any form be described 

in the substance of the conductor, and if we further suppose this 

surface to be an infinitely thin sheet of a perfectly conducting 

substance, the resistance of the conductor as a whole will be 

diminished unless the surface is one of the equipotential surfaces 

in the natural state of the conductor, in which case no effect will 

* Phil. Trans., 1871, p. 77. See Art. 102 a. 
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be produced by making it a perfect conductor, as it is already in 

electrical equilibrium. 

If therefore we draw within the conductor a series of surfaces, 

the first of which coincides with the first electrode, and the last 

with the second, while the intermediate surfaces are bounded by 

the non-conducting surface and do not intersect each other, and 

if we suppose each of these surfaces to be an infinitely thin sheet 

of perfectly conducting matter, we shall have obtained a system 

the resistance of which is certainly not greater than that of the 

original conductor, and is equal to it only when the surfaces we 

have chosen are the natural equipotential surfaces. 

To calculate the resistance of the artificial system is an opera¬ 

tion of much less difficulty than the original problem. For the 

resistance of the whole is the sum of the resistances of all 

the strata contained between the consecutive surfaces, and the 

resistance of each stratum can be found thus : 

Let dS be an element of the surface of the stratum, v the 

thickness of the stratum perpendicular to the element, p the 

specific resistance, E the difference of potential of the perfectly 

conducting surfaces, and d C the current through d S, then 

dC = E—dS, (1) 
p V 

and the whole current through the stratum is 

c-EJfhds- <2> 
the integration being extended over the whole stratum bounded 

by the non-conducting surface of the conductor. 

Hence the conductivity of the stratum is 

§=//£<“• (s> 
and the resistance of the stratum is the reciprocal of this 

quantity. 

If the stratum be that bounded by the two surfaces for which 

the function F has the values F and F+ d F respectively, then 

dF ^=v^=r(-)+r-y+f-)7 v \}dx) \dy> \dz> J’ 
and the resistance of the stratum is 

dF 

If IV FdS 
P 

(4) 

(5) 
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To find the resistance of the whole artificial conductor, we 

have only to integrate with respect to F, and we find 

dF 
*1 = (6) 

The resistance R of the conductor in its natural state is 

greater than the value thus obtained, unless all the surfaces we 

have chosen are the natural equipotential surfaces. Also, since 

the true value of R is the absolute maximum of the values of Rx 
which can thus be obtained, a small deviation of the chosen 

surfaces from the true equipotential surfaces will produce an 

error of R which is comparatively small. 

This method of determining a lower limit of the value of the 

resistance is evidently perfectly general, and may be applied to 

conductors of any form, even when p, the specific resistance, 

varies in any manner within the conductor. 

The most familiar example is the ordinary method of deter¬ 

mining the resistance of a straight wire of variable section. In 

this case the surfaces chosen are planes perpendicular to the 

axis of the wire, the strata have parallel faces, and the resistance 

of a stratum of section S and thickness ds is 

dRx = (7) 

and that of the whole wire of length 8 is 

R,=f£g’ m 
where 5 is the transverse section and is a function of a. 

This method in the case of wires whose section varies slowly 

with the length gives a result very near the truth, but it is 

really only a lower limit, for the true resistance is always 

greater than this, except in the case where the section is per¬ 

fectly uniform. 

807.] To find the higher limit of the resistance, let us suppose 

a surface drawn in the conductor to be rendered impermeable to 

electricity. The effect of this must be to increase the resistance 

of the conductor unless the surface is one of the natural surfaces 

of flow. By means of two systems of surfaces we can form a 

set of tubes which will completely regulate the flow, and the 

effect, if there is any, of this system of impermeable surfaces 

must be to increase the resistance above its natural value. 
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The resistance of each of the tubes may be calculated by the 

method already given for a fine wire, and the resistance of the 

whole conductor is the reciprocal of the sum of the reciprocals 

of the resistances of all the tubes. The resistance thus found is 

greater than the natural resistance, except when the tubes follow 

the natural lines of flow. 

In the case already considered, where the conductor is in the 

form of an elongated solid of revolution, let us measure x along 

the axis, and let the radius of the section at any point be b. 

Let one set of impermeable surfaces be the planes through the 

axis for each of which <£ is constant, and let the other set be 

surfaces of revolution for which 

yl = #2, (9) 

where \f/ is a numerical quantity between 0 and 1. 

Let us consider a portion of one of the tubes bounded by the 

surfaces </> and <£ -f d <f>, \j/ and ^ -f d yj/, x and x + dx. 

The section of the tube taken perpendicular to the axis is 

ydyd(f> = £ b2d\(/d(f). (10) 

If 0 be the angle which the tube makes with the axis 

tan 0 = (11) 

The true length of the element of the tube is dx sec 0, and its 

true section is £ b2 d \j, d <p cos 0, 

so that its resistance is 

(12) 

Let ^ =f fadx, and B dx, (13) 

the integration being extended over the whole length, x, of the 

conductor, then the resistance of the tube d^d(\> is 

and its conductivity is 
dxlrdj) 

2 (A + \j/B) * 

To find the conductivity of the whole conductor, which is the 

sum of the conductivities of the separate tubes, we must inte¬ 

grate this expression between <p = 0 and </> = 2tr, and between 

U/O/ 

ptfd+dj> 
sec 20 = 2 l 

b2d\l/dc() (1 + *; 
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y\r = 0 and ^ = 1. The result is 

I 7T- / jBv 

Bf ~ + a)* (14) 
which may be less, but cannqt be greater, than the true con¬ 

ductivity of the conductor. 

When — is always a small quantity ~ will also be small, and 
d* ~^ ~ ^ -J A 

we may expand the expression for the conductivity, thus 

1 7T / B B2 . R3 „ \ 

R'~A(* ^A + *A* *^+&c*)- 
(15) 

The first term of this expression, ~, is that which we should 

have found by the former method as the superior limit of the 

conductivity. Hence the true conductivity is less than the first 

term but greater than the whole series. The superior value of 

the resistance is the reciprocal of this, or 

JL B2 1_B* 
12 A2 24 A3 

— &c.). (16) 

If, besides supposing the flow to be guided by the surfaces <f> 

and we had assumed that the flow through each tube is 

proportional to we should have obtained as the value of 

the resistance under this additional constraint 

R"= 1 (A + iB)* 
7T 

(17) 

which is evidently greater than the former value, as it ought to 

be, on account of the additional constraint. In Lord Rayleigh’s 

paper this is the supposition made, and the superior limit of the 

resistance there given has the value (17), which is a little 

greater than that which we have obtained in (16). 

308.] We shall now apply the same method to find the cor¬ 

rection which must be applied to the length of a cylindrical 

conductor of radius a when its extremity is placed in metallic 

contact with a massive electrode, which we may suppose of a 

different metal. 

For the lower limit of the resistance we shall suppose that an 

infinitely thin disk of perfectly conducting matter is placed be¬ 

tween the end of the cylinder and the massive electrode, so as to 

bring the end of the cylinder to one and the same potential 

* Lord Rayleigh, Theory of Sound) ii. p. 171. 
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throughout The potential within the cylinder will then be a 

function of its length only, and if we suppose the surface of the 

electrode where the cylinder meets it to be approximately plane, 

and all its dimensions to be large compared with the diameter of 

the cylinder, the distribution of potential will be that due to a 

conductor in the form of a disk placed in an infinite medium. 

See Arts. 151, 177. 

If E is the difference of the potential of the disk from that of 

the distant parts of the electrode, C the current issuing from the 

surface of the disk into the electrode, and p the specific re¬ 

sistance of the electrode; then if Q is the amount of electricity 

on the disk, which we assume distributed as in Art. 151, we see 

that the integral over the disk of the electromotive intensity is 

pr C = i . 1 7r Q = 2 7by Art. 151, 
IT 

2 

= la E. (18) 

Hence, if the length of the wire from a given point to the 

electrode is L, and its specific resistance p, the resistance from 

that point to any point of the electrode not near the junction is 

R = p 

and this may be written 

+ (19) 
7T cr V pi' 

where the second term within brackets is a quantity which 

must be added to the length of the cylinder or wire in calcu¬ 

lating its resistance, and this is certainly too small a correction. 

To understand the nature of the outstanding error we may 

observe, that whereas we have supposed the flow in the wire up 

to the disk to be uniform throughout the section, the flow from 

the disk to the electrode is not uniform, but is at any point in¬ 

versely proportional (Art. 151) to the minimum chord through 

that point. In the actual case the flow through the disk will not 

be uniform, but it will not vary so much from point to point 

as in this supposed case. The potential of the disk in the 

actual case will not be uniform, but will diminish from the 

middle to the edge. 

309.] We shall next determine a quantity greater than the 
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true resistance by constraining the flow through the disk to be 

uniform at every point. We may suppose electromotive forces 

introduced for this purpose acting perpendicular to the surface 

of the disk. 

The resistance within the wire will be the same as before, but 

in the electrode the rate of generation of heat will be the sur¬ 

face-integral of the product of the flow into the potential. The 

C 
rate of flow at any point is > and the potential is the same as 

that of an electrified surface whose surface-density is cr, where 

2 71 (T = —~ 9 (20) 
7rtr ' 

p being the specific resistance. 

We have therefore to determine the potential energy of the 

electrification of the disk with the uniform surface-density a. 

*The potential at the edge of a disk of uniform density cr 

is easily found to be 4aa. The work done in adding a strip of 

breadth da at the circumference of the disk is 2ita(rda. iacr, 

and the whole potential energy of the disk is the integral of this, 

or P = — a3tr2. (21) 

In the case of electrical conduction the rate at which work is 

done in the electrode whose resistance is R' is C2R\ But from 

the general equation of conduction the current across the disk 

per unit area is of the form 
_ 1 dV 

P dv 

27r 
or —r 0*. 

The rate at which work is done is, if Vis the potential of the disk, 

and ds an element of its surface, 

=—f 7r a2J 
Vds 

2CP 

7ra2 <t 

4tt 

since = v<rd8. 

= -r P (hy (20)). 

We have therefore 

C*P' = ~P, 
p 

(22) 

* See a Paper by Profeuor Cayley, London Math. Soc. Proc. vi. p. 88. 

VOL. X. F £ 
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whence, by (20) and (21), 

R' = V 
3n‘za * 

and the correction to be added to the length of the cylinder is 

this correction being greater than the true value. The true cor- 
r 

rection to be added to the length is therefore — an, where n is a 

7T 8 9 
number lying between - and —• or between 0-785 and 0-849. 

* 3 7T 

* Lord Rayleigh, by a second approximation, has reduced the 

superior limit of n to 0-8282. 

* Phil. Mag* Nov. 1872, p. 344. Lord Rayleigh bubsequently obtained -8242 as the 
superior limit. See London Math. Soc. Proc. vii. p. 74, also Theory of Sound vol ii 
Appendix A. p. 291. 



CHAPTER IX. 

CONDUCTION THROUGH HETEROGENEOUS MEDIA. 

On the Conditions to he Fulfilled at the Surface of Separation 

between Two Conducting Media. 

310.] There are two conditions which the distribution of 

currents must fulfil in general, the condition that the potential 

must be continuous, and the condition of * continuity * of the 

electric currents. 

At the surface of separation between two media the first of 

these conditions requires that the potentials at two points on 

opposite sides of the surface, but infinitely near each other, 

shall be equal. The potentials are here understood to be 

measured by an electrometer put in connexion with the given 

point by means of an electrode of a given metal. If the 

potentials are measured by the method described in Arts. 222, 

246, where the electrode terminates in a cavity of the conductor 

filled with air, then the potentials at contiguous points of 

different metals measured in this way will differ by a quantity 

depending on the temperature and on the nature of the two 

metals. 

The other condition at the surface is that the current through 

any element of the surface is the same when measured in either 

medium. 

Thus, if Vx and V2 are the potentials in the two media, then at 

any point in the surface of separation 

V^V2i (1) 
and if uXi v19 w1 and u2, v2f w2 are the components of currents in 

the two media, and l, m, n the direction-cosines of the normal to 

the surface of separation 

uxl + vxm + wxn = u2l + v2m -f w2n. (2) 

In the most general case the components u, v9 w are linear 

F f 2 
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functions of the derivatives of V, the forms of which are given 

in the equations 
u = rxX+p3Y+q2Zy \ 

v = q3X + r2Y+ptZ, V (3) 

w = p2X + q1Y+r3Z, ' 

where X, T, Z are the derivatives of V with respect to xf y> z 

respectively. 

Let us take the case of the surface which separates a medium 

having these coefficients of conduction from an isotropic medium 

having a coefficient of conduction equal to r. 

Let X', F, Z' be the values of X, 7, Z in the isotropic medium, 

then we have at the surface 

V — V\ (4) 

or Xdx+ Ydy + Zdz = X'dx+ Y'dy + Z'dz, (5) 

when Idx + mdy + ndz = 0. (6) 

This condition leads to 

X' = X -f 47t<tZ, F = F+ 4 7r<rm, Z' = Z + 4'7r<r7l, (7) 

where <r is the surface-density. 

We have also in the isotropic medium 

vf = rX\ v' = rF, w' = rZ\ (8) 

and at the boundary the condition of flow is 

u'£ + v'm 4* w'w = vl + vm + wn, (9) 

or r(lX + mY + nZ+ Ana) 

=l(r1X+p3Y+q2Z) + m(q3X + r.iY+p1Z) + n(p2X+ qlY+r3Z),( 10) 

whence 

4 Tr<rr = {l(r1 — r) + mq3 + np2}X + {lp3 + m(r2 — r) + nq1}Y 

+ {lq2 + mpl + 7i(r3-r)}Z. (11) 

The quantity <r represents the surface-density of the charge 

on the surface of separation. In crystallized and organized sub¬ 

stances it depends on the direction of the surface as well as on 

the force perpendicular to it. In isotropic substances the coeffi¬ 

cients p and q are zero, and the coefficients r are all equal, 

so that 

4w<r = (^ — l) (IX + mY+nZ), (12) 

where rx is the conductivity of the substance, r that of the 

external medium, and i, m, n the direction-cosines of the normal 

drawn towards the medium whose conductivity is r. 

When both media are isotropic the conditions may be greatly 

simplified, for if k is the specific resistance per unit of volume, 
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and if v is the normal drawn at any point of the surface of 

separation from the first medium towards the second, the con¬ 

dition of continuity is 

i (H) 
kl dv k2 dv ' 

If 01 and 02 are the angles which the lines of flow in the first 

and second media respectively make with the normal to the 

surface of separation, then the tangents to these lines of flow are 

in the same plane with the normal and on opposite sides of it, 

anfl /c1 tan 01 = k2 tan B2. (15) 

This may he called the law of refraction of lines of flow. 

311.] As an example of the conditions which must be fulfilled 

when electricity crosses the surface of separation of two media, 

let us suppose the surface spherical and of radius a, the specific 

resistance being kx within and k2 without the surface. 

Let the potential, both within and without the surface, be ex¬ 

panded in solid harmonics, and let the part which depends 

on the surface harmonic 8t be 

V1 = (AjT*B1r^i+l^) Si9 (1) 
F2 = (A2r< + £2r-(^))^, (2) 

within and without the sphere respectively. 

At the surface of separation where r = a we must have 

F1=F2( and 
1 1 dr k2 dr 

From these conditions we get the equations 

(Ai-AJaP+' + Bi-Bt** 0, j 

These equations are sufficient, when we know two of the four 

quantities Av A2, Bx, B2> to deduce the other two. 

Let us suppose Ax and Bx known, then we find the following 

expressions for A2 and JS2, 

a _ {^+1) + k2i} A1 + (fci~-fc2)(i+1)51tt'(2<+1) . 

(2i+ 1) ’ 

2 ^(2^+1) * / 
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In this way we can find the conditions which each term of the 

harmonic expansion of the potential must satisfy for any number 

of strata bounded by concentric spherical surfaces. 

312.] Let us suppose the radius of the first spherical surface 

to be al9 and let there be a second spherical surface of radius a2 

greater than ax, beyond which the specific resistance is kz. If 

there are no sources or sinks of electricity within these spheres 

there will be no infinite values of V, and we shall have Bl = 0. 

We then find for As and i?3, the coefficients for the outer 

medium, 

Azkxk2(2i + 1)2= [{M<+ 1)4-k2i] {k2(i + l) + ^3^} 

-63A;1A;2(2i + 1)*= j~i(A;2 —l) + &2'i) «22'+l 

+ — k2) {kii + ki{i + 1)} a12i+,J Ar 

The value of the potential in the outer medium depends partly 

on the external sources of electricity, which produce currents 

independently of the existence of the sphere of heterogeneous 

matter within, and partly on the disturbance caused by the 

introduction of the heterogeneous sphere. 

The first part must depend on solid harmonics of positive 

degrees only, because it cannot have infinite values within the 

sphere. The second part must depend on harmonics of negative 

degrees, because it must vanish at an infinite distance from the 

centre of the sphere. 

Hence the potential due to the external electromotive forces 

must be expanded in a series of solid harmonics of positive 

degree. Let A2 be the coefficient of one of these, of the form 

AA**. 
Then we can find Al9 the corresponding coefficient for the 

inner sphere by equation (6), and from this deduce A2i 

and J?8. Of these B3 represents the effect on the potential in 

the outer medium due to the introduction of the heterogeneous 

sphere. 

Let us now suppose &3 = so that the case is that of a hollow 

shell for which k = k2> separating an inner from an outer portion 

of a medium for which k = kx. 
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If we put 

0 =---;-—— ’ 

{2%+l)ikik2 + %{%+\)(k2-k1)*(\- (-1) ) 

then A1 = k-Jc2( 2 i + l)2 CAa, ' 

A„ = L(2i+ 1) (L (i + l) + k2i)CA3, 
B2 = k2i(2 i+ 1) <i+1 Cb4,, (7) 

The difference between ,43 the undisturbed coefficient, and At 
its value in the hollow within the spherical shell, is 

A3-A1=(k2-k1)H(i + l)(l-Q)2<+y)CA3. (8) 

Since this quantity iB always of the same sign as whatever 

be the values of kx and k.ly it follows that, whether the spherical 

shell conducts better or worse than the rest of the medium, the 

electrical action in the space occupied by the shell is less than it 

would otherwise be. If the shell is a better conductor than the 

rest of the medium it tends to equalize the potential all round 

the inner sphere. If it is a worse conductor, it tends to prevent 

the electrical currents from reaching the inner sphere at all. 

The case of a solid sphere may be deduced from this by 

making ax = 0, or it may be worked out independently. 

313.] The most important term in the harmonic expansion is 

that in which i = 1, for which 

G 

9tA+2fe-V(l-CJ)) 
(9) 

Al — 9k1k2CA3, A2 = 3k2(2kl + k2)CAa, 
B2 = 3k2(k1-k2)a1iC,A3, B3 = {k2-k1)(2k1 + k2)(a23-a13)CAa./ 

The case of a solid sphere of resistance k2 may be deduced 

from this by making a, = 0. We then have 

. _ 3 k2 
2~ V+2F2 

K-K B.. 

■^3> ^2 — 

a3A3. ) 
(10) 

kx+ 2k2 

It is easy to shew from the general expressions that the value 

of in the case of a hollow sphere having a nucleus of re¬ 

sistance &!, surrounded by a shell of resistance is the same as 



440 CONDUCTION IN HETEROGENEOUS MEDIA. [314* 

that of a uniform solid sphere of the radius of the outer surface, 

and of resistance K, where 

jr __ (2 + k2) a2s -f (k^ — k2) a,3 . /1 ]) 

(2kl + k2)a23~~2(k1~k2)al* *' 

314.] If there are n spheres of radius aY and resistance 

placed in a medium whose resistance is k2> at such distances 

from each other that their effects in disturbing the course of 

the current may be taken as independent of each other, then 

if these spheres are all contained within a sphere of radius a2, 

the potential at a great distance r from the centre of this sphere 

will be of the form 

F = (-dr + nB ~)cos 6, (12) 

where the' value of B is 

B = A_!a* a. (13) 
2 kx + k2 

The ratio of the volume of the n small spheres to that of the 

sphere which contains them is 

(14) 
na, 

P = -773 ' 

The value of the potential at a great distance from the sphere 

may therefore be written 

V=A(r+pati £*) cos 0. (15) 

Now if the whole sphere of radius a2 had been made of a 

material of specific resistance K> we should have had 

cos 0. (16)' 

That the one expression should be equivalent to the other, 

jr — 2 kx + k2 -fp (fcj — k2) 7 /j 7\ 

2k1+k2~-2p(k1—k2) 2* 

This, therefore, is the specific resistance of a compound medium 

consisting of a substance of specific resistance k2, in which are 

disseminated small spheres of specific resistance kl9 the ratio of 

the volume of all the small spheres to that of the whole being p. 

In order that the action of these spheres may not produce effects 

depending on their interference, their radii must be small com¬ 

pared with their distances, and therefore p muBt be a small 

fraction. 
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This result may be obtained in other ways, but that here given 
involves only the repetition of the result already obtained for a 
single sphere. 

When the distance between the spheres is not great compared 
k —k. 

with their radii, and when —* is considerable, then other 
£ + fC2 

terms enter into the result, which we shall not now consider. 
In consequence of these terms certain systems of arrangement of 
the spheres cause the resistance of the compound medium to be 
different in different directions. 

Application of the Principle of Images. 

315.] Let us take as an example the case of two media 
separated by a plane surface, and let us suppose that there is 
a source S of electricity at a distance a from the plane surface in 
the first medium, the quantity of electricity flowing from the 
source in unit of time being S. 

If the first medium had been infinitely extended the current 
at any point P would have been in the direction SP9 and the 

E SJc 
potential atPwould have been - .whereE — —, and r. = SP. 

rx 4 7T 
In the actual case the conditions may be satisfied by taking 

a point 7, the image of S in the second medium, such that 18 
is normal to the plane of separation and is bisected by it. Let 
r2 be the distance of any point from 7, then at the surface of 
separation 

drx 

dv 
dr,2 
dv 

(1) 

(2) 

Let the potential at any point in the first medium be that 
due to a quantity of electricity E placed at Sy together with an 
imaginary quantity E2 at 7, and let the potential V2 at any 
point of the second medium be that due to an imaginary 
quantity Et at S, then if. 

y=E + Ez y El, (3) 
1 r-j r8 2 

the superficial condition gives 

P + E2 = Ev 

ifcj dv k2dv 

and the condition 
0) 

(«) 
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(6) give. 

-l™» = <7> 

The potential in the first medium is therefore the same as 

would be produced in air by a charge E placed at S, and a 

charge E2 at I on the electrostatic theory, and the potential in 

the second medium is the same as that which would be produced 

in air by a charge E1 at 8. 

The current at any point of the first medium is the same as 

would have been produced by the source 8 together with a 

k —k 
source ~_I 8 placed at I if the first medium had been infinite, 

and the current at any point of the second medium is the same 

2k S 
as would have been produced by a source jj—~— placed at 8 if 

the second medium had been infinite. 

We have thus a complete theory of electrical images in the 

case of two media separated by a plane boundary. Whatever 

be the nature of the electromotive forces in the first medium, 

the potential they produce in the first medium may be found by 

combining their direct effect with the effect of their image. 

If we suppose the second medium a perfect conductor, then 

k2 — 0, and the image at I is equal and opposite to the source 

at S. This is the case of electric images, as in Thomson’s theory 

in electrostatics. 

If we suppose the second medium a perfect insulator, then 

k2 = go , and the image at I is equal to the source at 8 and of 

the same sign. This is the case of images in hydrokinetics 

when the fluid is bounded by a rigid plane surface *. 

316.] The method of inversion, which is of so much use in 

electrostatics when the bounding surface is supposed to be that 

of a perfect conductor, is not applicable to the more general case 

of the surface separating two conductors of unequal electric 

resistance. The method of inversion in two dimensions is, how- 

* {A similar investigation will give the electric field due to a charge of electricity 
at S placed in a dielectric whose specific inductive capacity is Klf this dielectric being 
separated by a plane face from another dielectric whose specific inductive capacity is 
Ka. Vx and V% will represent the potentials in this case if the charge « a and if 
Kt hx - 1 - Ka lcv) 
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ever* applicable, as well as the more general method of trans¬ 

formation in two dimensions given in Art. 190 *. 

Conduction through a Plate separating Two Media. 

317.] Let us next consider the effect of a plate of thickness 

A B of a medium whose 

resistance is and 

separating two media 

whose resistances are -j— 

kx and &8, in altering * * 

the potential due to a 

source S in the first 

medium. 

The potential will be 

equal to that due to a system of charges placed in air at certain 

points along the normal to the plate through S, 
Make 

Fig. 24. 

AI=SA, BIX = SB, AJl — BI^J.B, AJt= I2Aybc.; 
then we have two series of points at distances from each other 

equal to twice the thickness of the plate. 

318.] The potential in the first medium at any point P is 

E I , Ix I2 . 

ps + pi + pi;+ pi, + &e-’ 

that at a point P' in the second 

E' I' I' Li 
P'S + P'1+ fix + n2 + &c- 

+ + 77,+ &c" (9) 
and that at a point P" in the third 

F'S + wh\ + FT2 + &c" 
where /, P, &c. represent the imaginary charges placed at the 

points /, &e., and the accents denote that the potential is to be 

taken within the plate. 

* See Kirchhoff, Pogg. Ann. Ixiv. 497, and lxvii. 844; Quincke, Pogg. xcvii. 382; 
Smith, Proe. JR. S. JSdiru, 1869-70, p. 79. Holzmuller, JEivfilhrung in die Theorie 
der isogonalen Verwandsohaften, Leipzig, 1882. Guebhard, Journal de Physique, 
t. i. p. 483, 1882. W. G. Adama, Phil. Mag. iv. 50, p. 548, 1876; G. C. Pouter and 
O. J. Lodge, Phil. Mag. iv. 49, pp. 385,453; 50, p. 475, 1879 and 1880; O. J. Lodge, 
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Then, by Article 315, we have from the conditions for the 

surface through A, 

T ^2 jp 

IssT£&T' 
E= 2\ E. (n) 

For the surface through B we find 
k — h 2 hr. 

T '_ 3 ^2 TP' 

^~k3+k/' 
E'= * E. 

to% to% 
(12) 

Similarly for the surface through A again, 

r /_ K~K Tf 1r 2 Jfcj J , 
(13) 

and for the surface through B, 
r / r, 

+V1’ 
r ^^37' (14) 

If we make p = and 
wj T* & 2 

t ^3 ^2 

P~h+K 
we find for the potential in the first medium, 

v= 7s ~ p FI+ (1~p2) p'7IX + p'(1 “p2)pp' W,+ &a 
+ (15) 

For the potential in the third medium we find 

r= <' -^{k + W,+'•+ TT. *•••}*• ‘I6> 
* {These expressions may be reduced to definite integrals by the relation 

J0(bt)e~atcH 
Va*+ b* j 0 

where J0 denotes Bessel’s function of zero order. 
Hence if we take S as the origin of coordinates, and the normal to the plate as 

the axis of a, 

J„(yt)e dt, H 
IV, 

where 0 is the thickness of the plate, 

and so on. Substituting these values in (16), we see that V equals 

E{l+p') (1-p) dt. 

Jo l—pf/e~2ct 
The values of this when y « 0, x « 2 no when n is an integer can easily be found. J 
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If the first medium is the same as the third, then kx =* kz and 

p = p\ and the potential on the other side of the plate will be 

K=<i-p.)4L + J^ + to, + |£ + 4 (1r, 

If the plate is a very much better conductor than the rest of 

the medium, p is very nearly equal to 1. If the plate is a nearly 

perfect insulator, p is nearly equal to — 1, and if the plate differs 

little in conducting power from the rest of the medium, p is a 

small quantity positive or negative. 

The theory of this case was first stated by Green in his 

‘Theory of Magnetic Induction’ (Essay, p. 65). His result, 

however, is correct only when p is nearly equal to 1 *. The 

quantity g which he uses is connected with p by the equations 

2 p k^ — Ic.-j, 3 g kx kv 

3 p kj + 2 k2 2 + g k}~h lc2 

27TK 
If we put p = — , we shall have a solution of the problem 

of the magnetic induction excited by a magnetic pole in an 

infinite plate whose coefficient of magnetization is k. 

On Stratified Conductors. 

319.] Let a conductor be composed of alternate strata of 

-thicknesses c and c' of two substances whose coefficients of con¬ 

ductivity are different. Required the coefficients of resistance 

and conductivity of the compound conductor. 

Let the planes of the strata be normal to 0. Let every symbol 

relating to the strata of the second kind be accented, and let 

every symbol relating to the compound conductor be marked 

with a bar thus, X. Then 

X = Ar = X\ (c + c')u = cu + c'u', 

F= Y = F, (c+c')v = cv + c'v'; 

(1c -f c') Z = cZ+c'Zf, w — iv = wf. 

We muBt first determine u, u/ v, v/ Z and Z' in terms of 

X, Y and w from the equations of resistance, Art. 297, or those 

* See Sir W. Thomson's ‘Note on Induced Magnetism in a Plate/ Camb. and 

Dab. Math. JoumNot. 1845, or Deprint, art. ix. § 156. 
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of conductivity, Art. 298. If we put D for the determinant of 

the coefficients of resistance, we find 

ur.6D ~ JR2X—QSY+ /C0q2D, 

vr2D = R1F— I\X + wp^D^ 

Zr3 = —jpjX-ftF+w. 

Similar equations with the symbols accented give the values 

of w', v' and Z. Having found u, v and w in terms of X, F and 

Z, we may write down the equations of conductivity of the 
c (*/ 

stratified conductor. If we make h — — and A' = — , we find 
rs ^3 

_hp1 + h'p1' 

Pl~ h + h’ ’ 

_hpt+h'p2' 
P*~ h + h' ’ 

_cp3 + c>/ 

_hq1 + h'q1' 
- h + h' ’ 

- _ 2 "b h q2 
92 ~ h+h' ’ 

hh'(<h-9l) (?2“?20 
Pz~ c + c' (h + h') (c + c') ’ 

cqs + c'q3' hh'(pl-pl')(pa-pa‘) 
9a - c + c' “ (h + h') (c + c) 

cr, 4- c'r/ xi — * t hh'(p2-p2') (q2-q2) 
1 c + c' (h + h') (c+c') ’ 

_cr2 + c'r2' 1 1 

2 c + c' (h + h!) (c + c') 

c + c' 

r*~hThr 

320.] If neither of the two substances of which the strata are 

formed has the rotatory property of Art. 303, the value of any 

P or p will be equal to that of its corresponding Q or q. From 

this it follows that in the stratified conductor also 

Pi = 9l> = Pb-9 3’ 

or there is no rotatory property developed by stratification, 

unless it exists in one or both of the separate materials. 

321.] If we now suppose that there is no rotatory property, 

and also that the axes of x, y and z are the principal axes, then 

the p and q coefficients vanish, and 

* _ CTi + c'ri ctj+fV 
1 c + c' * 2 C + c' ’ 

c-f c' 
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If we begin with both substances isotropic, but of different 

conductivities r and r\ then, since r. — , 
’ 13 c + c(cr' + c'r) 

the result of stratification will be to make the resistance greatest 

in the direction of a normal to the strata, and the resistances 

in all directions in the plane of the strata will be equal. 

322.] Take an isotropic substance of conductivity r, cut it 

into exceedingly thin slices of thickness a, and place them 

alternately with slices of a substance whose conductivity is 8, 

and thickness kxa. 
Let these slices be normal to x. Then cut this compound 

conductor into very much thicker slices, of thickness by normal 

to y, and alternate these with slices whose conductivity is 8 and 

thickness k2b. 

Lastly, cut the new conductor into still thicker slices, of 

thickness c, normal to z, and alternate them with slices whose 

conductivity is 8 and thickness k3c. 

The result of the three operations will be to cut the substance 

whose conductivity is r into rectangular parallelepipeds whose 

dimensions are a, b and c, where b is exceedingly small compared 

with c, and a is exceedingly small compared with b, and to 

embed these parallelepipeds in the substance whose conductivity 

is 8, so that they are separated from each other kxa in the 

direction of x, k2b in that of y, and k3c in that of z> The 

conductivities of the conductor so formed in the directions of 

x, 3/, and z are to be found by three applications in order of the 

results of Art. 321. We thereby obtain 

{1 -i- kx {1 4- k,^ (1 4~ k3)} t Hh (k2 4- kg -I- kcjc^)s 

1_ (1+£2)(14*3) (V + 8) " ~6’ 

_ (1 4- fc2 4- k2k3)r 4- (kx 4- k3 4- kx k2 4- kx k3 4* kxk2k3) 8 
2~~ (1 + k3){k2r + (l 4-&14-A1&2)8} 

__ (1 j- k3) (r 4 (^| 4 k2 4- kx k2)s)_ 

3 “ k3r 4- (1 4- kx 4- k2 4- k2k3 + k3kx + kxk2 4- kxk2k^8 ’ 

The accuracy of this investigation depends upon the three 

dimensions of the parallelepipeds being of different orders of 

magnitude, so that we may neglect the conditions to be fulfilled 

at their edges and angles. If we make kx, k2 and k3 each unity, then 

3r-f 5s 
-a 

2r-f bs 

2r-f 6a 
-—8, 
r + 7& 

r< 
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If r = 0, that is, if the medium of which the parallelepipeds 

are made is a perfect insulator, then 

ri = |s, r2=£s, 

If r s= 00 , that is, if the parallelepipeds are perfect conductors, 

ri = f *2 = = 2s- 

In every case, provided kx = &2 = fc3, it may be shewn that 

r1? r2 and r3 are in ascending order of magnitude, so that the 

greatest conductivity is in the direction of the longest dimensions 

of the parallelepipeds, and the greatest resistance in the direction 

of their shortest dimensions. 

323.] In a rectangular parallelepiped of a conducting solid, 

let there be a conducting channel made from one angle to the 

opposite, the channel being a wire covered with insulating 

material, and let the lateral dimensions of the channel be so 

small that the conductivity of the solid is not affected except on 

account of the current conveyed along the wire. 

Let the dimensions of the parallelepiped in the directions of 

the coordinate axes be <z, b} c, and let the conductivity of 

the channel, extending from the origin to the point (abc), be 

abcK. 
The electromotive force acting between the extremities of the 

channel is aX + bY+cZ, 

and if C be the current along the channel 

V = Kobe (aX+bY+cZ). 

The current across the face be of the parallelepiped is beu> and 

this is made up of that due to the conductivity of the solid and 

of that due to the conductivity of the channel, or 

bcu = be (rxX+jp3F+ q2Z) + Kabo (aX+bY4- cZ\ 

or u = (rx + Ka2) X+(p3 + Kab) Y 4- (q2 4- Kca) Z, 

In the same way we may find the values of v and w. The 

coefficients of conductivity as altered by the effect of the channel 

will be 

rx-f jK'a2, r2 + Kb2, rz + Kc2, 

pt 4- Kbc, p2 4- Kcay p3 -f Kab, 

qx 4* Kbc, q2 + Kca, q3 + Kab. 

In these expressions, the additions to the values of plt &c., due 

to the effect of the channel, are equal to the additions to the 
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Fig. 25. 

values of qv &c. Hence the values of px and qx cannot be 

rendered unequal by the introduction of linear channels into 

every element of volume of the solid, and therefore the rotatory 

property of Art. 303, if it does not exist previously in a solid, 

cannot be introduced by such means. 

324.] To construct a framework of linear conductors which 

shall have any given coefficients of conductivity forming a 

symmetrical system. 

Let the space be divided into equal small cubes, of which let 

the figure represent one. Let the coordin¬ 

ates of the points 0, X, M, 2V, and their poten- 

tials be as follows :— / 

x y z Potential Lk-'- 

o ooo x+y+z \/°\~i/L' 
Z o 1 1 X k- 

M 1 0 1 y 
N 1 1 0 Z. 

Let these four points be connected by six conductors, 

OL, OM, ON, MN, NL, LM, 

of which the conductivities are respectively 

A, B, C, P, Q, R. 

The electromotive forces along these conductors will be 

Y+Z, Z+X, X + Y, Y-Z, Z-X, X — Y, 

and the currents 

A (Y+Z), B(Z+X), C(X + Y), P(Y-Z), Q(Z-X), R(X-Y). 

Of these currents, those which convey electricity in the positive 

direction of x are those along LM, LN, 0M and ON, and the 

quantity conveyed is 

u = (B + C+Q + R)X + (G-R)Y +(B-Q)Z. 

Similarly 

v = (C-R)X +(G+A + R + P)Y+(A-P)Z- 

w=(B-Q)X +(A-P)Y +(A + B + P + Q)Z-, 

whence we find by comparison with the equations of conduction. 

Art. 298, 

4A = r2 + rs-r, + 2plt 

4 B = r3 + r, — r2 + 2p2, 

4C = r, + r2-r3+2p3, 

4 P — r2 + rr 

r3 + ri~ri~2P2. 
ri + ri-*3-22V 

VOL. I. 



CHAPTER X. 

CONDUCTION IN DIELECTRICS, 

325.] We have seen that when electromotive force acts on a 

dielectric medium it produces in it a state which we have called 

electric polarization, and which we have described as consisting 

of electric displacement within the medium in a direction which, 

in isotropic media, coincides with that of the electromotive force, 

combined with a superficial charge on every element of volume 

into which we may suppose the dielectric divided, which is 

negative on the side towards which the force acts, and positive 

on the side from which it acts. 

When electromotive force acts on a conducting medium it also 

produces what is called an electric current. 

Now dielectric media, with very few, if any, exceptions, are 

also more or less imperfect conductors, and many media which 

are not good insulators exhibit phenomena of dielectric induction. 

Hence we are led to study the state of a medium in which 

induction and conduction are going on at the same time. 

For simplicity we shall suppose the medium isotropic at every 

point, but not necessarily homogeneous at different points. In 

this case, the equation of Poisson becomes, by Art. 83, 

where K is thef specific inductive capacity/ 

The ‘ equation of continuity9 of electric currents becomes 

dAdVs d AdV^ d AdV^ dp _ , 

dxdx' dy'r dy' dz^r dz' dt ~~ 9 

where r is the specific resistance referred to unit of volume. 

When K or r is discontinuous, these equations must be trans 

formed into those appropriate to surfaces of discontinuity. 
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In a strictly homogeneous medium r and K are both constant, 

so that we find 

dW d?V d2V A p dp 

da? + dyi+ dz*~ *%K~r dt’ ^ 

whence p = Ce Kr ; (4) 
Kr _i 

or, if we put T = — > p = Ce T. (5) 
47r 

This result shews that under the action of any external elec¬ 

tric forces on a homogeneous medium, the interior of which is 

originally charged in any manner with electricity, the internal 

charges will die away at a rate which does not depend on the 

external forces, so that at length there will be no charge of 

electricity within the medium, after which no external forces 

can either produce or maintain a charge in any internal portion 

of the medium, provided the relation between electromotive 

force, electric polarization and conduction remains the same. 

When disruptive discharge occurs these relations cease to be 

true, and internal charge may be produced. 

On Conduction through a Condenser. 

826.] Let G be the capacity of a condenser, R its resistance, 

and E the electromotive force which acts on it, that is, the 

difference of potentials of the surfaces of the metallic electrodes. 

Then the quantity of electricity on the side from which the 

electromotive force acts will be CE, and the current through the 

substance of the condenser in the direction of the electromotive 

force will be ~ • 
It 

If the electrification is supposed to be produced by an electro¬ 

motive force E acting in a circuit of which the condenser forms 

part, and if represents the current in that circuit, then 

dQ_E ,rdE 
H-R + Cdt‘ (6) 

Let a battery of electromotive force E0 whose resistance 

together with that of the wire connecting the electrodes is rx 

be introduced into this circuit, then 

dQ __ E0 — E _ E dE 

dt ~~ rx ~~ R + dt 

Gg a 

(7) 
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Hence, at any time tx, 

E{=El)^En R 
h. 

-(l-<f*)wher = (8) 
°R + r 

Next, let the circuit rx be broken for a time t2i putting rx 

infinite, we get from (7), f 

E( = E2) = Exe £ where T2 = CR. (9) 

Finally, let the surfaces of the condenser be connected by 

means of a wire whose resistance is r3 for 

putting E0 = 0, rx = r3 in (7), we get 

CRr, 

a time t3, then 

.£*(= Es) = E.,e T» where jT3 = (10) 
R + r3 

If Qa is the total discharge through this wire in the time t3> 
fij?2 h _ L* in 

QZ=E0 ,-5--- (1 (11) 
0 (R + r,) (R + r3) v v y 

In this way we may find the discharge through a wire which 

is made to connect the surfaces of a condenser after being charged 

for a time tv and then insulated for a time t2. If the time of 

charging is sufficient, as it generally is, to develop the whole 

charge, and if the time of discharge is sufficient for a complete 

discharge, the discharge is 
rm _h 

Q3 = Eo715—^-re c*. (12) 
3 0 (li 4- rf) (R 4- r3) v 

327.] In a condenser of this kind, first charged in any way, 

next discharged through a wire of small resistance, and then 

insulated, no new electrification will appear. In most actual 

condensers, however, we find that after discharge and insulation 

a new charge is gradually developed, of the same kind as the 

original charge, but inferior in intensity. This is called the 

residual charge. To account for it we must admit that the 

constitution of the dielectric medium is different from that which 

we have just described. We shall find, however, that a medium 

formed of a conglomeration of small pieces of different simple 

media would possess this property. 

Theory of a Composite Dielectric. 

328.] We shall suppose, for the sake of simplicity, that 'the 

dielectric consists of a number of plane strata of different 

materials and of area unity, and that the electric forces act in 

the direction of the normal to the strata. 
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Let alt a2i &c. be the thicknesses of the different strata. 

Xit X2, &c. the resultant electrical forces within the strata. 

Pi>P2> &c* currents due to conduction through the strata. 

fi » f2 > the electric displacements. 

uu u2i &c. the total currents, due partly to conduction and 

partly to variation of displacement. 

Ti> r*> the specific resistances referred to unit of volume. 

K1, K2, &c. the specific inductive capacities. 

klt k2, &c. the reciprocals of the specific inductive capacities. 

E the electromotive force due to a voltaic battery, placed in 

the part of the circuit leading from the last stratum towards the 

first, which we shall suppose good conductors. 

Q the total quantity of electricity which has passed through 

this part of the circuit up to the time t. 

H0 the resistance of the battery with its connecting wires. 

cr12 the surface-density of electricity on the surface which 

separates the first and second strata. 

Then in the first stratum we have, by Ohm's Law, 

X1 = rlpl. (1) 

By the theory of electrical displacement, 

X1=z4n(* 
By the definition of the total current, 

^=^+-db (3) 
with similar equations for the other strata, in each of which the 

quantities have the suffix belonging to that stratum. 

To determine the surface-density on any stratum, we have an 

equation of the form a .f 9 (4) 

and to determine its variation we have 

dt -Pi-Ptr (5) 

By differentiating (4) with respect to £,and equating the result 

to (5), we obtain 

dfi df2 /n, 
Pi+ g=P2 + jt=V', say, (6) 

or, by taking account of (3), 

ux = u2 = &c. = u. (7) 

That is, the total current u is the same in all the strata, and is 

equal to the current through the wire and battery. 
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We have also, in virtue of equations (1) and (2), 

ri 1 

1 dXx 

rx A 4^^ dt 

from which we may find Xt by the inverse operation on u, 

x> = (i + : d\-1 -) U. 
'r, 4vk1cU' 

The total electromotive force E is 

E — axXx + &2E2 4* &c., 

(8) 

(9) 

(10) 

or £ = {«h(^ + iii|)"'+o!(i + j^|)"'+So-}*, (11) 

an equation between E, the external electromotive force, and u, 
the external current. 

If the ratio of r to k is the same in all the strata, the equation 
reduces itself to 

Ty r dE , . , . 

h + 47k~dt = ^lTl + a*T* + &c*) U> (12) 

which is the case we have already examined in Art. 326, and in 

which, as we found, no phenomenon of residual charge can take 
place. 

If there are n substances having different ratios of r to k, the 

general equation (11), when cleared of inverse operations, will be 

a linear differential equation, of the nth order with respect to E 

and of the (n — l)th order with respect to u, t being the in¬ 

dependent variable. 

From the form of the equation it is evident that the order of 

the different strata is indifferent, so that if there are several 

strata of the same substance we may suppose them united into 

one without altering the phenomena. 

329.] Let us now suppose that at first /1,/2i &c. are all zero, 

and that an electromotive force E0 is suddenly made to act, and 

let us find its instantaneous effect. 

Integrating (8) with respect to t, we find 

Q = Judt = ^ Jx^t + j^ Xx + const. (13) 

Now, since Xl is always in this case finite,^X}dt must be 

insensible when t is insensible, and therefore, since X^ is origin¬ 

ally zero, the instantaneous effect will be 

Xx = 4-nkxQ. (14) 
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Hence, by equation (10), 

Eq = 4 7r(Vi + V2+ &*•)& (15) 

and if G be the electric capacity of the system as measured in 

this instantaneous way, 

E0 4 7t (kx ax + Jc2a2 + &c.) 
(16) 

This is the same result that we should have obtained if we had 

neglected the conductivity of the strata. 

Let us next suppose that the electromotive force E0 is con¬ 

tinued uniform for an indefinitely long time, or till a uniform 

current of conduction equal to p is established through the 

system. 

We have then Xx — rxpy etc., and therefore by (10), 

E0 = (r1a1 + r2a2 + &c.)jp. (17) 

If R be the total resistance of the system, 

E 
R- ~-=rxal + r,iai + kc.. (18) 

In this state we have by (2), 

■f ^*i 

f'=m?' 

so that (19) 

If we now suddenly connect the extreme strata by means of a 

conductor of small resistance, E will be suddenly changed from 

its original value E0 to zero, and a quantity Q of electricity will 

pass through the conductor. 

To determine Q we observe that if X{ be the new value of Xx, 

then by (13), X,'= X, + (20) 

Hence, by (10), putting E = 0, 

0 ~ (tx Xj 4“ &C. 4* 4 it kx 4“ 4“ &C.) (21) 

or 0 — E0 + gQ. (22) 

Hence Q~—CE0 where C is the capacity, as given by 

equation (16). The instantaneous discharge is therefore equal 

to the instantaneous charge. 

Let us next suppose the connexion broken immediately after 
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this discharge. We shall then have u = 0, so that by equation (8), 

= Xy 1 , (23) 

where X/ is the initial value after the discharge. 

Hence, at any time ty we have by (23) and (20) 

xx=E^~^kxcy *. 

The value of E at any time is therefore 

4 irky ink? 

= — 4ira^C') e 'x -f —47ra2/c2(7) e ra *-4-&c. > (24) 

and the instantaneous discharge after any time t is EC. This is 

called the residual discharge. 

If the ratio of r to k is the same for all the strata, the value 

of E will be reduced to zero. If, however, this ratio is not the 

same, let the terms be arranged according to the values of this 

ratio in descending order of magnitude. 

The sum of all the coefficients is evident!}' zero, so that when 

t — 0, E = 0. The coefficients are also in descending order of 

magnitude, and so are the exponential terms when t is positive. 

Hence, when t is positive, E will be positive * so that the residual 

discharge is always of the same sign as the primary discharge. 

When t is indefinitely great all the terms disappear unless any 

of the strata are perfect insulators, in which case rx is infinite for 

that stratum, and R is infinite for the whole system, and the 

final value of E is not zero but 

E - EQ(l-^T;alk1C). (25) 

Hence, when some, but not all, of the strata are perfect in¬ 

sulators, a residual discharge may be permanently preserved in 

the system. 

330.] We shall next determine the total discharge through a 

wire of resistance R0 kept permanently in connexion with the 

extreme strata of the system, supposing the system first charged 

by means of a long-continued application of the electromotive 

force E. 

* {This is perhaps more easily seen if we write (24) as 
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At any instant we have 

E = a1r1p1 + a2r2^2 + &c. + ii0u = 0, (26) 

and also, by (3), u — p1 + <~~* (27) 

Hence (i2 + R0)u = a^ -f a2r2~| + &c. (28) 

Integrating with respect to t in order to find Q, we get 

(R + B0)Q = «1r1(/1/--/])^a2r2(/2,-/2) + &c., (29) 

where/x is the initial, and// the final value offv 

In this case// = 0, and by (2) and (20) fY = 2?0 (— C) • 

Hence (R + R0)Q = ~ + &c.) + E0CR, (30) 

= J > (31) 

where the summation is extended to all quantities of this form 

belonging to every pair of strata. 

It appears from this that Q is alwaj^s negative, that is to say, 

in the opposite direction to that of the current employed in 

charging the system. 

This investigation shews that a dielectric composed of strata 

of different kinds may exhibit the phenomena known as electric 

absorption and residual discharge, although none of the sub¬ 

stances of which it is made exhibit these phenomena when 

alone. An investigation of the cases in which the materials are 

arranged otherwise than in strata would lead to similar results, 

though the calculations would be more complicated, so that we 

may conclude that the phenomena of electric absorption may be 

expected in the case of substances composed of parts of different 

kinds, even though these individual parts should be micro¬ 

scopically small*. 

It by no means follows that every substance which exhibits 

this phenomenon is so composed, for it may indicate a new kind 

of electric polarization of which a homogeneous substance may 

* {Rowland and Nichols have fibewn that crystals of Iceland Spar which are very 
homogeneous shew no Electric Absorption, Phil. Mug. xi. p. 414, 1881. Mur&oka 
found that while paraffin and xylol shewed no residual charge when separate, a layer 
of xylol on a layer of paraffin did. Wxed. Ann. 40, 881, 1890.} 
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be capable, and this in some cases may perhaps resemble electro¬ 

chemical polarization much more than dielectric polarization. 

The object of the investigation is merely to point out the true 

mathematical character of the so-called electric absorption, and 

to shew how fundamentally it differs from the phenomena of 

heat which seem at first sight analogous. 

33 L] If we take a thick plate of any substance and heat it 

on one side, so as to produce a flow of heat through it, and if 

we then suddenly cool the heated side to the same temperature 

as the other, and leave the plate to itself, the heated side of the 

plate will again become hotter than the other by conduction 

from within. 

Now an electrical phenomenon exactly analogous to this can 

be produced, and actually occurs in telegraph cables, but its 

mathematical laws, though exactly agreeing with those of heat, 

differ entirely from those of the stratified condenser. 

In the case of heat there is true absorption of the heat into 

the substance with the result of making it hot. To produce a 

truly analogous phenomenon in electricity is impossible, but we 

may imitate it in the following way in the form of a lecture- 

room experiment. 

Let A1, A2f &c. be the inner conducting surfaces of a series of 

condensers, of which B0, B2i &c. are the outer surfaces. 

Fig. 26* 

Let Ax, A29 &c. be connected in series by connexions of resist¬ 

ances B, and let a current be passed along this series from left to 

right. 

Let us first suppose the plates BQ, Bl9 B2, each insulated and 

free from charge. Then the total quantity of electricity on each 
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of the plates B must remain zero, and since the electricity on the 
plates A is in each case equal and opposite to that of the opposed 
surface they will not be electrified, and no alteration of the 
current will be observed. 

But let the plates B be all connected together, or let each be 
connected with the earth. Then, since the potential of Al is 
positive, while that of the plates B is zero, Ax will be positively 
electrified and Bx negatively. 

If P1} i^, &c. are the potentials of the plates Au A2y &c., and C 
the capacity of each, and if we suppose that a quantity of elec¬ 
tricity equal to Q0 passes through the wire on the left, Qr through 
the connexion Jtl9 and so on, then the quantity which exists on 
the plate Ax is Q0—Qli and we have 

Q0-Q1 = 

Similarly Qx - Q2 =s CP2, 
and so on. 

But by Ohm’s Law we have 

R1 
dQi 
dt ' 

p-p3 — R dQz 
2 dt 

We have supposed the values of C the same for each plate, 
if we suppose those of R the same for each wire, we shall have 
a series of equations of the form 

Qo-*Q1+Q2 = ltc^, 
Qi-*Qa+Q, = Xo£jl*- 

If there are n quantities of electricity to be determined, and 
if either the total electromotive force, or some other equivalent 
condition be given, the differential equation for determining any 
one of them will be linear and of the nth order. 

By an apparatus arranged in this way, Mr. Varley succeeded 
in imitating the electrical action of a cable 12,000 miles long. 

When an electromotive force is made to act along the wire on 
the left hand, the electricity which flows into the system is at 
first principally occupied in charging the different condensers 
beginning with Aly and only a very small fraction of the current 

appears at the right hand till a considerable time has elapsed. 

If galvanometers be placed in circuit at Ru R2> &c. they will be 
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affected by the current one after another, the interval between 

the times of equal indications being greater as we proceed to the 

right. 

332.] In the case of a telegraph cable the conducting wire 

is separated from conductors outside by a cylindrical sheath 

of gutta-percha, or other insulating material. Each portion 

of the cable thus becomes a condenser, the outer surface of 

which is always at potential zero. Hence, in a given portion 

of the cable, the quantity of free electricity at the surface 

of the conducting wire is equal to the product of the potential 

into the capacity of the portion of the cable considered as a 

condenser. 

If aj, a2 are the outer and inner radii of the insulating sheath, 

and if K is its specific dielectric capacity, the capacity of unit of 

length of the cable is, by Art. 126, 

K m 
c=-7T' 0) 

2I<’ 
Let v be the potential at any point of the wire, which we may 

consider as the same at every part of the same section. 

Let Q be the tota1 quantity of electricity which has passed 

through that section since the beginning of the current. Then 

the quantity which at the time t exists between sections at x 

and at £ + 3#, is 

Q-(Q+<Hbx)’ °r ~d£bx’ 
and this is, by what we have said, equal to cvbx. 

Hence cv = — . 

Again, the electromotive force at any section is — — ? and by 

Ohm’s Law, dv _ ,dQ 

dx dt ^ ^ 

where k is the resistance of unit of length of the conductor, and 

is the strength of the current Eliminating Q between (2) 

and (3), we find 
dv d2v 

C c dt ~~ dx2 

This is the partial differential equation which must be solved 
in order to obtain the potential at any instant at any point of 
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the cable. It is identical with that which Fourier gives to 

determine the temperature at any point of a stratum through 

which heat is flowing in a direction normal to the stratum. In 

the case of heat c represents the capacity of unit of volume, or 

what Fourier denotes by <7D, and k represents the reciprocal of 

the conductivity. 

If the sheath is not a perfect insulator, and if kx is the resist¬ 

ance of unit of length of the sheath to conduction through it in 

a radial direction, then if px is the specific resistance of the 

insulating material, it is easy to shew that 

The equation (2) will no longer be true, for the electricity is 

expended not only in charging the wire to the extent represented 

hy cv, but in escaping at a rate represented by v/k^. Hence the 

rate of expenditure of electricity will be 

d2Q dv 1 ._v 

~'dxdt ~Cdt + klV’ ^ 

whence, by comparison with (3), we get 

kdv _<Pv k 

C dt~ da? kx ’ ( ' 

and this is the equation of conduction of heat in a rod or ring 

as given by Fourier *. 

333.] If we had supposed that a body when raised to a high 

potential becomes electrified throughout its substance as if elec¬ 

tricity were compressed into it, we should have arrived at equa¬ 

tions of this very form. It is remarkable that Ohm himself, 

misled by the analogy between electricity and heat, entertained 

an opinion of this kind, and was thus, by means of an erroneous 

opinion, led to employ the equations of Fourier to express the 

true laws of conduction of electricity through a long wire, long 

before the real reason of the appropriateness of these equations 

had been suspected. 

Mechanical Illustration of the Properties of a Dielectric, 

334.] Five tubes of equal sectional area A, B, Cy D and P are 

arranged in circuit as in the figure. A} B, G and D are verti¬ 

cal and equal, and P is horizontal. 

* Thioiie de la Chaleur, Art. 106. 
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The lower halves cf A, By C, D are filled with mercury, their 
upper halves and the horizontal tube P are filled with water. 

A tube with a stopcock Q connects the lower part of A and B 
with that of C and 2), and a piston P is made to slide in the 
horizontal tube. 

Let us begin by supposing that the level of the mercury in the 
four tubes is the same, and that it is indicated by A0, B0i C0,D0, 

that the piston is at P0, and that 
the stopcock Q is shut. 

Now let the piston be moved 
from P0 to Px, a distance a. Then 
since the sections of all the tubes 
are equal, the level of the mercury 
in A and G will rise a distance a, 

or to Ax and 6*15and the mercury 
in B and D will sink an equal 

distance a, or to B1 and Dx. 
The difference of pressure on 

the two sides of the piston will 

be represented by 4 a. 

This arrangement may serve to 
represent the state of a dielectric 
acted on by an electromotive force 
4 a. 

The excess of water in the tube 
D may be taken to represent a 

positive charge of electricity on one side of the dielectric, and 
the excess of mercury in the tube A may represent the negative 
charge on the other side. The excess of pressure in the tube P 
on the side of the piston next D will then represent the excess of 
potential on the positive side of the dielectric. 

If the piston is free to move it will move back to P0 and be 
in equilibrium there. This represents the complete discharge of 
the dielectric. 

During the discharge there is a reversed motion of the liquids 
throughout the whole tube, and this represents that change of 
electric displacement which we have supposed to take place in a 
dielectric. 

I have supposed every part of the system of tubes filled with 
incompressible liquids, in order to represent the property of all 
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electric displacement that there is no real accumulation of elec¬ 
tricity at any place. 

Let us now consider the effect of opening the stopcock Q while 
the piston P is at PT. 

The levels of Ax and Dx will remain unchanged, but those of 
B and G will become the same, and will coincide with P0 
and C0. 

The opening of the stopcock Q corresponds to the existence of 
a part of the dielectric which has a slight conducting power, but 
which does not extend through the whole dielectric so as to form 
an open channel. 

The charges on the opposite sides of the dielectric remain 
insulated, but their difference of potential diminishes. 

In fact, the difference of pressure on the two sides of the 
piston sinks from 4 a to 2 a during the passage of the fluid 
through Q. 

If we now shut the stopcock Q and allow the piston P to 
move freely, it will come to equilibrium at a point Pv and the 
discharge will be apparently only half of the charge. 

The level of the mercury in A and B will be £a above its 
original level, and the level in the tubes C and D will be \a 

below its original level. This is indicated by the levels A2, B2> 

c,,d2. 
If the piston is now fixed and the stopcock opened, mercury 

will flow from B to C till the level in the two tubes is again at 
P0 and C0. There will then be a difference of pressure = aon 
the two sides of the piston P. If the stopcock is then closed and 
the piston P left free to move, it will again come to equilibrium 
at a point Ps, half way between P2 and P0. This corresponds to 
the residual charge which is observed when a charged dielectric 
is first discharged and then left to itself. It gradually recovers 
part of its charge, and if this is again discharged a third charge 
is formed, the successive charges diminishing in quantity. In 
the case of the illustrative experiment each charge is half of 
the preceding, and the discharges, which are £, &c. of the 
original charge, form a series whose sum is equal to the original 
charge. 

If, instead of opening and closing the stopcock, we had allowed 
it to remain nearly, but not quite, closed during the whole ex¬ 

periment, we should have had a case resembling that of the 
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electrification of a dielectric which is a perfect insulator and yet 

exhibits the phenomenon called r electric absorption.’ 

To represent the case in which there is true conduction 

through the dielectric we must either make the piston leaky, 

or we must establish a communication between the top of the 

tube A and the top of the tube D. 
In this way we may construct a mechanical illustration of the 

properties of a dielectric of any kind, in which the two elec¬ 

tricities are represented by two real fluids, and the electric 

potential is represented by fluid pressure. Charge and discharge 

are represented by the motion of the piston P, and electromotive 

force by the resultant force on the piston. 



CHAPTER XI, 

THE MEASUREMENT OF ELECTRIC RESISTANCE. 

335.] In the present state of electrical science, the deter¬ 

mination of the electric resistance of a conductor may be con¬ 

sidered as the cardinal operation in electricity, in the same 

sense that the determination of weight is the cardinal operation 

in chemistry. 

The reason of this is that the determination in absolute 
measure of other electrical magnitudes, such as quantities of 
electricity, electromotive forces, currents, &e., requires in each 
case a complicated series of operations, involving generally 
observations of time, measurements of distances, and deter¬ 

minations of moments of inertia, and these operations, or at 

least some of them, must be repeated for every new deter¬ 
mination, because it is impossible to preserve a unit of elec¬ 
tricity, or of electromotive force, or of current, in an unchange¬ 
able state, so as to be available for direct comparison. 

But when the electric resistance of a properly shaped con¬ 
ductor of a properly chosen material has been once determined, 
it is found that it always remains the same for the same 
temperature, so that the conductor may be used as a standard 
of resistance, with which that of other conductors can be 

compared, and the comparison of two resistances is an operation 
which admits of extreme accuracy. 

When the unit of electrical resistance has been fixed on, 
material copies of this unit, in the form of ‘ Resistance Coils/ 
are prepared for the use of electricians, so that in every part 
of the world electrical resistances may be expressed in terms 

of the same unit. These unit resistance coils are at present 
the only examples of material electric standards which can 
be preserved, copied, and used for the purpose of measure¬ 

ment *. Measures of electrical capacity, which are also of great 

♦ {The Clark's cell as a standard of Electromotive Force may now claim to be an 
exception to this statement.} 

VOL. I. H h 
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importance, are still defective, on account of the disturbing in¬ 
fluence of electric absorption. 

336. ] The unit of resistance may be an entirely arbitrary one, 
as in the case of Jacobi’s Etalon, which was a certain copper 
wire of 22-4932 grammes weight, 7*61975 metres length, and 
0*667 millimetres diameter. Copies of this have been made 
by Leyser of Leipsig, and are to be found in different places. 

According to another method the unit may be defined as the 
resistance of a portion of a definite substance of definite 
dimensions. Thus, Siemens unit is defined as the resistance of 
a column of mercury of one metre in length, and one square 
millimetre in section, at the temperature of 0°C. 

337. ] Finally, the unit may be defined with reference to the 
electrostatic or the electromagnetic system of units. In practice 
the electromagnetic system is used in all telegraphic operations, 
and therefore the only systematic units actually in use are those 
of this system. 

In the electromagnetic system, as we shall shew at the proper 
place, a resistance is a quantity of the dimensions of a velocity, 
and may therefore be expressed as a velocity. See Art. 628. 

338. ] The first actual measurements on this system were 
made by Weber, who employed as his unit one millimetre per 
second. Sir W. Thomson afterwards used one foot per second 
as a unit, but a large number of electricians have now agreed 
to use the unit of the British Association, which professes to 
represent a resistance which, expressed as a velocity, is ten 
millions of metres per second. The magnitude of this unit is 
more convenient than that of Weber’s unit, which is too small. 
It is sometimes referred to as the B.A. unit, but in order to 
connect it with the name of the discoverer of the laws of 
resistance, it is called the Ohm. 

339. ] To recollect its value in absolute measure it is useful 
to know that ten millions of metres is professedly the distance 
from the pole to the equator, measured along the meridian of 
Paris. A body, therefore, which in one second travels along 
a meridian from the pole to the equator would have a velocity 
which, on the electromagnetic system, is professedly represented 
by an Ohm. 

I say professedly, because, if more accurate researches should 
prove that the Ohm, as constructed from the British Associa* 
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tion’s material standards, is not really represented by this 

velocity, electricians would not alter their standards, but would 

apply a correction *. In the same way the metre is professedly 

one ten-millionth of a certain quadrantal arc, but though this is 

found not to be exactly true, the length of the metre has 

not been altered, but the dimensions of the earth are expressed 

by a less simple number. 

According to the system of the British Association, the ab¬ 

solute value of the unit is originally chosen so as to represent 

as nearly as possible a quantity derived from the electromagnetic 

absolute system. 

340.] When a material unit representing this abstract quantity 

has been made, other standards are constructed by copying 

this unit, a process capable of extreme 

accuracy—of much greater accuracy 

than, for instance, the copying of foot- 

rules from a standard foot. 

These copies, made of the most 

permanent materials, are distributed 

over all parts of the world, so that 

it is not likely that any difficulty will 

be found in obtaining copies of them 

if the original standards should be lost. 

But such units as that of Siemens 

can without very great labour be re¬ 

constructed with considerable accuracy, 

so that as the relation of the Ohm to 

Siemens unit is known, the Ohm can 

be reproduced even without having a 

standard to copy, though the labour is 

much greater and the accuracy much 

less than by the method of copying. 

Finally, the Ohm may be reproduced 

by the electromagnetic method by which 

it was originally determined. This method, which is con¬ 

siderably more laborious than the determination of a foot from 

* {Lord Rayleigh’s and Mrs. Sidgwick’s experiments have shewn that the British 
Association Unit is only *9&67 earth quadrants a second, it is thus smaller than was in¬ 
tended by nearly 1*3 per cent. The Congress of Electricians at Paris in 1884 adopted 
a new unit of resistance, the * Legal Ohm,' which is defined as the resistance at 0°C. of 
a column of mercury 106 centimetres long and 1 square millimetre in cross section.) 

H h 2 
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the seconds pendulum, is probably inferior in accuracy to that 

last mentioned. On the other hand, the determination of 

the electromagnetic unit in terms of the Ohm with an amount 

of accuracy corresponding to the progress of electrical science, 

is a most important physical research and well worthy of 

being repeated. 

The actual resistance coils constructed to represent the Ohm 

were made of an alloy of two parts of silver and one of platinum 

in the form of wires from -5 millimetres to «8 millimetres 

diameter, and from one to twTo metres in length. These wires 

were soldered, to stout copper electrodes. The wire itself was 

covered with two layers of silk, imbedded in solid paraffin, 

and enclosed in a thin brass case, so that it can be easily 

brought to a temperature at which its resistance is accurately 

one Ohm. This temperature is marked on the insulating sup¬ 

port of the coil. (See Fig. 28.) 

On the Forms of JResistance Coils. 

341.] A Resistance Coil is a conductor capable of being easily 

placed in the voltaic circuit, so as to introduce into the circuit 

a known resistance. 

The electrodes or ends of the coil must be such that no appre¬ 

ciable error may arise from the mode of making the connexions. 

For resistances of considerable magnitude it is sufficient that 

the electrodes should be made of stout copper wires or rods well 

amalgamated with mercury at the ends, and that the ends should 

be made to press on flat amalgamated copper surfaces placed in 

mercury cups. 

For very great resistances it is sufficient that the electrodes 

should be thick pieces of brass, and that the connexions should 

be made by inserting a wedge of brass or copper into the interval 

between them. This method is found very convenient. 

The resistance coil itself consists of a wire well covered with 

silk, the ends of which are soldered permanently to the electrodes. 

The coil must be so arranged that its temperature may be 

easily observed. For this purpose the wire is coiled on a tube 

and covered with another tube, so that it may be placed in 

a vessel of water, and that the water may have access to 

the inside and the outside of the coil. 
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To avoid the electromagnetic effects of the current in the coil 

the wire is first doubled back on itself and then coiled on the 

tube, so that at every part of the coil there are equal and 

opposite currents in the adjacent parts of the wire. 

When it is desired to keep two coils at the same temperature 

the wires are sometimes placed side by side and coiled up 

together. This method is especially useful when it is more 

important to secure equality of resistance than to know the 

absolute value of the resistance, as in the case of the equal arms 

of Wheatstone’s Bridge (Art. 347). 

When measurements of resistance were first attempted, a resist¬ 

ance coil, consisting of an uncovered wire coilei in a spiral 

groove round a cylinder of insulating material, was much used. 

It was called a Rheostat. The accuracy with which it was 

found possible to compare resistances was soon found to be 

inconsistent with the use of any instrument in which the 

contacts are not more perfect than can be obtained in the 

rheostat. The rheostat, however, is still used for adjusting 

the resistance where accurate measurement is not required. 

Resistance coils are generally made of those metals whose 

resistance is greatest and which vary least with temperature. 

German silver fulfils these conditions very well, but some 

specimens are found to change their properties during the lapse 

of years. Hence, for standard coils, several pure metals, and 

also an alloy of platinum and silver, have been employed, and 

the relative resistance of these during several years has been 

found constant up to the limits of modern accuracy. 

342.] For very great resistances, such as several millions of 

Ohms, the wire must be either very long or very thin, and the 

construction of the coil is expensive and difficult Hence 

tellurium and selenium have been proposed as materials for 

constructing standards of great resistance. A very ingenious 

and easy method of construction has been lately proposed by 

Phillips *. On a piece of ebonite or ground glass a fine pencil¬ 

line is drawn. The ends of this filament of plumbago are con¬ 

nected to metallic electrodes, and the whole is then covered with 

insulating varnish. If it should be found that the resistance 

of such a pencil-line remains constant, this will be the best 

method of obtaining a resistance of several millions of Ohms. 

* Phil. Mag., July, 1870. 
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343.] There are various arrangements by which resistance 

coils may be easily introduced into a circuit. 

For instance, a series of coils of which the resistances are 1, 2, 

4, 8, 16, &c., arranged according to the powers of 2, may be 

placed in a box in series. 

The electrodes consist of stout brass plates, so arranged on 

the outside of the box that by inserting a brass plug or wedge 

between two of them as a shunt, the resistance of the corre¬ 

sponding coil may be put out of the circuit. This arrangement 

was introduced by Siemens. 

Each interval between the electrodes is marked with the 

resistance of the corresponding coil, so that if we wish to make 

Fig. 29. 

the resistance in the box equal to 107 we express 107 in the 

binary scale as 64 + 32 + 8 + 2+1 or 1101011. We then take the 

plugs out of the holes corresponding to 64, 32, 8, 2 and 1, and 

leave the plugs in 16 and 4. 

This method, founded on the binary scale, is that in which 

the smallest number of separate coils is needed, and it is also 

that which can be most readily tested. For if we have another 

coil equal to 1 we can test the quality of 1 and l', then that of 

1 4* V and 2, then that of 1 + 1' + 2 and 4, and so on. 

The only disadvantage of the arrangement is that it requires 

a familiarity with the binary scale of notation, which is not 

generally possessed by those accustomed to express every number 

in the decimal scale. 

844.] A box of resistance coils may be arranged in a different 

way for the purpose of measuring conductivities instead of 

resistances. 
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The coils are placed so that one end of each is connected with 

a long thick piece of metal which forms one electrode of the box, 

and the other end is connected with a stout piece of brass plate 

as in the former case. 

The other electrode of the box is a long brass plate, such that 

by inserting brass plugs between it and the electrodes of the 

coils it may be connected 

to the first electrode through 

any given set of coils. The 

conductivity of the box is 

then the sum of the conduc¬ 

tivities of the coils. 

In the figure, in which the 

resistances of the coils are 

1, 2, 4, &c., and the plugs are inserted at 2 and 8, the con¬ 

ductivity. of the box is | -f J = f , and the resistance of the box is 

therefore £ or 1*6. 

This method of combining resistance coils for the measurement 

of fractional resistances was introduced by Sir W. Thomson 

under the name of the method of multiple arcs. See Art. 276. 

On the Comparison of Resistances. 

345.] If E is the electromotive force of a battery, and R the 

resistance of the battery and its connexions, including the gal¬ 

vanometer used in measuring the current, and if the strength of 

the current is I when the battery connexions are closed, and 

Ilt I2 when additional resistances rv r, are introduced into the 

circuit, then, by Ohm’s Law, 

E=IR== J2 (11 +r,) = J2 (R + r2). 

Eliminating Ey the electromotive force of the battery, and R 

the resistance of the battery and its connexions, we get Ohm’s 

formula r1 __ (/—/,) J2 

This method requires a measurement of the ratios of 7, Ix and 

J2, and this implies a galvanometer graduated for absolute 

measurements. 

If the resistances rx and r2 are equal, then Ix and I2 are equal, 

and we can test the equality of currents by a galvanometer 

which is not capable of determining their ratios. 

But this is rather to be taken as an example of a faulty 

Fig. 30. 
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method than as a practical method of determining resistance. 

The electromotive force E cannot be maintained rigorously 

constant, and the internal resistance of the battery is also 

exceedingly variable, so that any methods in which these are 

assumed to be even for a short time constant are not to be 

depended on. 

346.] The comparison of resistances can be made with extreme 

accuracy by either of two methods, in which the result is in¬ 

dependent of variations of R and E. 

c 

Fig. 31. 

The first of these methods depends on the use of the differ¬ 

ential galvanometer, an instrument in which there are two coils, 

the currents in which are independent of each other, so that 

when the currents are made to flow in opposite directions they 

act in opposite directions on the needle, and when the ratio of 

.these currents is that of m to n they have no resultant effect on 

the galvanometer needle. 

Let Jls /2 be the currents through the two coils of the gal¬ 

vanometer, then the deflexion of the needle may be written 

b = m/j—nl2. 

Now let the battery current I be divided between the coils of 

the galvanometer, and let resistances A and B be introduced 

into the first and second coils respectively. Let the remainder 

of the resistances of the coils and their connexions be a and £ 

respectively, and let the resistance of the battery and its con¬ 

nexions between C and B be r, and its electromotive force E. 
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Then we find, by Ohm’s Law, for the difference of potentials 

between C and D, 

and since 

IJ(A + a)^I2(B+p)^E^Ir9 

71 + 72 = 7, 

I^E 
B + f3 

h = E 
A + a 

7 = 7: 
A+a + B + p 

D - D > ^ ~ 7) 

where D = (^4 +a)(B + l3) A r (A + a -f-7? + /3). 

The deflexion of the galvanometer needle is therefore 

8 = {m(B + fi) — n(A + a)}, 

and if there is no observable deflexion, then we know that the 

quantity enclosed in brackets cannot differ from zero by more 

than a certain small quantity, depending on the power of the 

battery, the suitableness of the arrangement, the delicacy of the 

galvanometer, and the accuracy of the observer. 

Suppose that B has been adjusted so that there is no apparent 

deflexion. 

Now let another conductor A' be substituted for A, and let 

A' be adjusted till there is no apparent deflexion. Then evi¬ 

dently to a first approximation A' = A. 
To ascertain the degree of accuracy of this estimate, let the 

altered quantities in the second observation be accented, then 

m(B + p)-n(A + a) = ^b, 

m(B + i3)-n(A' + a) = ~b'. 

Hence n(A'—A) = ^5— S'. 

If b and b', instead of being both apparently zero, had been 

only observed to be equal, then, unless we also could assert that 

E = E\ the right-hand side of the equation might not be zero. 

In fact, the method would be a mere modification of that already 

described. 

The merit of the method consists in the fact that the thing 

observed is the absence of any deflexion, or in other words, the 

method is a Null method, one in which the non-existence of a 

force is asserted from an observation in which the force, if it 

had been different from zero by more than a certain small 

amount, would have produced an observable effect. 



474 MEASUREMENT OF RESISTANCE. [346. 

Null methods are of great value where they can be employed, 

but they can only be employed where we can cause two equal 

and opposite quantities of the same kind to enter into the 

experiment together. 

In the case before us both b and b' are quantities too small to 

be observed, and therefore any change in the value of E will not 

affect the accuracy of the result. 

The actual degree of accuracy of this method might be ascer¬ 

tained by making a number of observations in each of which A' 
is separately adjusted, and comparing the result of each observa¬ 

tion with the mean of the whole series. 

But by putting A' out of adjustment by a known quantity, 

as, for instance, by inserting at A or at B an additional resist¬ 

ance equal to a hundredth part of A or of B, and then observing 

the resulting deviation of the galvanometer needle we can esti¬ 

mate the number of degrees corresponding to an error of one per 

cent. To find the actual degree of precision we must estimate 

the smallest deflexion which could not escape observation, and 

compare it with the deflexion due to an error of one per cent. 

*If the comparison is to be made between A and B, and if the 

positions of A and B are exchanged, then the second equation 

becomes jy 
m(A+iS) — n(B + a) = -^b', 

whence (m-f n) (B — A) = ™ 6 — b'. 
E E 

If m and n, A and B, a and /3, E and Ef are approximately 

equal, then 

B~A=L2l%(A + a)(A+a + 2r) (?-*')■ 

Here b — S' may be taken to be the smallest observable deflexion 

of the galvanometer. 

If the galvanometer wire be made longer and thinner, retaining 

the same total mass, then n will vary as the length of the wire 

and a as the square of the length. Hence there will be a mini- 

, c (A + a) (A + a + 2 v) . 
mum value of --—-1 when 

n 

* This investigation is taken from Weber’s treatise on Galvanometry. Gottingen 
Transactions, x. p. 65. 
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If we suppose r, the battery resistance, negligible compared 

with At this gives a — i ^ . 

or, the resistance of each coil of the galvanometer should be 

one-third of the resistance to be measured. 

We then find 

If we allow the current to flow through one only of the coils 

of the galvanometer, and if the deflexion thereby produced is A 

(supposing the deflexion strictly proportional to the deflecting 

force), then 

3 nE. 

A -f a + r 

Hence 
B-A 

A 

if r = 0 and a ■. 

2 5-6' 

3 A 

In the differential galvanometer two currents are made to 

produce equal and opposite effects on the suspended needle. The 

force with which either current acts on the needle depends not 

only on the strength of the current, but on the position of the 

windings of the wire with respect to the needle. Hence, unless 

the coil is very carefully wound, the ratio of m to n may change 

when the position of the needle is changed, and therefore it is 

necessary to determine this ratio by proper methods during each 

course of experiments if any alteration of the position of the 

needle is suspected. 

The other null method, in which Wheatstone’s Bridge is used, 

requires only an ordinary- galvanometer, and the observed zero 

deflexion of the needle is due, not to the opposing action of 

two currents, but to the non-existence of a current in the wire. 

Hence we have not merely a null deflexion, but a null current 

as the phenomenon observed, and no errors can arise from want 

of regularity or change of any kind in the coils of the galvano¬ 

meter. The galvanometer is only required to be sensitive enough 

to detect the existence and direction of a current, without in any 

way determining its value or comparing its value with that of 

another current. 

347.] Wheatstone’s Bridge consists essentially of six con¬ 

ductors connecting four points. An electromotive force E is 

made to act between two of the points by means of a voltaic 
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battery introduced between B and C. The current between the 

other two points 0 and A is measured by a galvanometer. 

Under certain circumstances this current 

becomes zero. The conductors BC and 

0A are then said to be conjugate to each 

other, which implies a certain relation 

between the resistances of the other four 

conductors, and this relation is made use 

of in measuring resistances. 

If the current in OA is zero, the 

potential at 0 must be equal to that 

at A. Now when we know the potentials at B and C we 

can determine those at 0 and A by the rule given in Art. 275, 

provided there is no current in OA, 

By + C (3 . Bb + Cc 

whence the condition is ip = 

where b, c, fi, y are the resistances in CA, AB, BO, and OC re¬ 

spectively. 

To determine the degree of accuracy attainable by this method 

we must ascertain the strength of the current in OA when this 

condition is not fulfilled exactly. 

Let A, B, C and 0 be the four points. Let the currents along 

BG, CA and AB be x, y and z, and the resistances of these 

conductors a, b and c. Let the currents along OA, OB and OC 
be £,rj, £ and the resistances a, fi and y. Let an electromotive 

force E act along BC. Required the current £ along OA. 
Let the potentials at the points A, B,C and 0 be denoted by 

the symbols A, B, C and 0. The equations of conduction are 

ax = B — C + E, a£ = 0-A} 
by = C—A, /3rj = 0 — B, 
cz = A —B, 

with the equations of continuity 

£+y-z = 0, 
7)+Z — X = 0, 

C+x—y = 0. 

By considering the system as made up of three circuits 0BC> 
OCA and OAB, in which the currents are x, y, z respectively, 

A 

Fig. 32. 
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and applying KirchhofTs rule to each cycle, we eliminate the 

values of the potentials 0, A, B, C, and the currents £, ?j, £ and 

obtain the following equations for x, y and z, 

(a + fi + y)x — yy ' —/3z = E, 
— yX + (h + y + a)y — az =0, 

— fix — ay +(c + a + /3)0 = 0. 

Hence, if we put 

D = a + /3 + y — y — £ 

—y &+y+a —a > 

— /3 —a c + a + /3 

E 
we find £ = j^(bp-cy), 

E 
and z = £ {(b + y) (c + ($) + a (b + c + p + y)}. 

348.] The value of D may be expressed in the symmetrical 

form, 

D — abc + bc(fi + y) + ca (y -f a) 
4- ab(a + p) + (a -f b -f c)(j3y + ya + a/3) *, 

or, since we suppose the battery in the conductor a and the 

galvanometer in a, we may put B the battery resistance for a 
and G the galvanometer resistance for a. We then find 

D = BG (b+ c + ft + y) +B (b + y)(c + ft) 
+ G(b + c)(p + y) + bc(p + y) + fly (b + c). 

If the electromotive force E were made to act along CM, the 

resistance of OA being still a, and if the galvanometer were 

placed in BG, the resistance of BG being still a, then the value 

of D would remain the same, and the current in BG due to the 

electromotive force E acting along OA would be equal to the 

current in OA due to the electromotive force E acting in BC. 
riut if we simply disconnect the battery and the galvanometer, 

and without altering their respective resistances connect the 

battery to 0 and A and the galvanometer to B and C, then in 

the value of D we must exchange the values of B and G. If D' 

be the value of D after this exchange, we find 

= (G-B) {(b + c)(fi + y)-<b + y){p + c)}, 
= (B-G){(b-fi3)(c-y)}. 

* {P is the sum of the products of the resistances taken 3 at a time, leaving out 
the product of any three that meet in a point. ]■ 
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Let us suppose that the resistance of the galvanometer is 

greater than that of the battery. 

Let us also suppose that in its original position the galvano¬ 

meter connects the junction of the two conductors of least 

resistance 0, y with the junction of the two conductors of 

greatest resistance 6, c, or, in other words, we shall suppose that 

if the quantities 6, c, y, 0 are arranged in order of magnitude, 

b and c stand together, and y and 0 stand together. Hence the 

quantities 6 — 0 and c — y are of the same sign, so that their 

product is positive, and therefore D — D' is of the same sign as 

B-G. 

If therefore the galvanometer is made to connect the junction 

of the two greatest resistances with that of the two least, and jf 

the galvanometer resistance is greater than that of the battery, 

then the value of D will be less, and the value of the deflexion 

of the galvanometer greater, than if the connexions are ex¬ 

changed. 

The rule therefore for obtaining the greatest galvanometer 

deflexion in a given system is as follows: 

Of the two resistances, that of the battery and that of the 

galvanometer, connect the greater resistance so as to .join the two 

greatest to the two least of the four other resistances. 

349.] We shall suppose that we have to determine the ratio of 

the resistances of the conductors AB and AC, and that this is to 

be done by finding a point 0 on the conductor BOG, such that 

when the points A and 0 are connected by a wire, in the course 

of which a galvanometer is inserted, no sensible deflexion of the 

galvanometer needle occurs when the battery is made to act 

between B and C. 
The conductor BOC may be supposed to be a wire of uniform 

resistance divided into equal parts, so that the ratio of the resist¬ 

ances of BO and OC may be read off at once. 

Instead of the whole conductor being a uniform wire, we may 

make the part near 0 of such a wire, and the parts on each side 

may be coils of any form, the resistances of which are accurately 

known. 

We shall now use a different notation instead of the sym¬ 

metrical notation with which we commenced. 

Let the whole resistance of BAC be i£. 

Let c = mR and b = (1 — m) R. 
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Let the whole resistance of BOG be S. 

Let /3 = nS and y = (1 — n) S. 
The value of n is read off directly, and that of m is deduced 

from it when there is no sensible deviation of the galva¬ 

nometer. 

Let the resistance of the battery and its connexions be B, and 

that of the galvanometer and its connexions G. 
We find as before 

D= G{BR + BS + RS}+m(l-m)R2(B + S) + n(l-n)S2(B + R) 
+ (m + n— 2 mn) BRSy 

and if £ is the current in the galvanometer wire 

ERS 
D 

(n — m). 

In order to obtain the most accurate results we must make 

the deviation of the needle as great as possible compared with 

the value of (n — m). This may be done by properly choosing 

the dimensions of the galvanometer and the standard resistance 

wire. 

It will be shewn, when we come to Galvanometry, Art. 716, 

that when the form of a galvanometer wire is changed while 

its mass remains constant, the deviation of the needle for unit 

current is proportional to the length, but the resistance increases 

as the square of the length. Hence the maximum deflexion is 

shewn to occur when the resistance of the galvanometer wire is 

equal to the constant resistance of the rest of the circuit. 

In the present case, if 5 is the deviation, 

h = G \/(?£. 

where G is some constant, and G is the galvanometer resistance 

which varies as the square of the length of the wire. Hence we 

find that in the value of D, when 5 is a maximum, the part 

involving G must be made equal to the rest of the expression. 

If we also put m = n, as is the case if we have made a correct 

observation, we find the best value of G to be 

G^n(l-n) (R + 8). 
This result is easily obtained by considering the resistance 

from A to 0 through the system, remembering that BC, being 

conjugate to AO, has no effect on this resistance. 

In the same way we should find that if the total area of the 
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acting surfaces of the battery is given, since in this case E is 

proportional to VB, the most advantageous arrangement of 

the battery is when RS 
B = R + S' 

Finally, we shall determine the value of 8 such that a given 

change in the value of n may produce the greatest galvanometer 

deflexion. By differentiating the expression for £ with respect 

to 8 we find it is a maximum when 

v 71(1—n)' B + R' 
If we have a great many determinations of resistance to make 

in which the actual resistance has nearly the same value, then it 

may be worth while to prepare a galvanometer and a battery for 

this purpose. In this case we find that the best arrangement is 

8 = R, B ~ lR} (?=2n(l—n) R, 
and if n = G = 

On the Use of Wheatstone!8 Bridge. 

350.] We have already explained the general theory of Wheat¬ 

stone’s Bridge, we shall now consider some of its applications. 

The comparison which can be effected with the greatest 

exactness is that of two equal resistances. 

Let us suppose that /3 is a standard resistance coil, and that 

we wish to adjust y to be equal in resistance to p. 

Two other coils, b and c, are prepared which are equal or 

nearly equal to each other, and the four coils £re placed with 
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their electrodes in mercury cups so that the current of the 

battery is divided between two branches, one consisting of ft 
and y and the other of b and c. The coils b and c are connected 

by a wire PJB, as uniform ill its resistance as possible, and fur¬ 

nished with a scale of equal parts. 

The galvanometer wire connects the junction of ft and y with 

a point Q of the wire PR, and the point of contact Q is made 

to vary till on closing first the battery circuit and then the 

galvanometer circuit, no deflexion of the galvanometer needle 

is observed. 

The coils ft and y are then made to change places, and a new 

position is found for Q. If this new position is the same as 

the old one, then we know that the exchange of ft and y has 

produced no change in the proportions of the resistances, and 

therefore y is rightly adjusted. If Q has to be moved, the 

direction and amount of the change will indicate the nature 

and amount of the alteration of the length of1 the wire of y, 

which will make its resistance equal to that of ft. 
If the resistances of the coils b and c, each including part of 

the wire PR up to its zero reading, are equal to that of b and c 
divisions of the wire respectively, then, if x is the scale reading 

of Q in the first case, and y that in the second, 

c + x _ P c-f-2/ _ y 
b-x~ y’ b-y~ p’ 

whence y2 
= 1 + 

(6 + c) (y—x) 
P* (c + x) (b—y)' 

Since 6—y is nearly equal to c + x, and both are great with 

respect to x or y> we may write this 

“d ’'='3(1+2!rf)' 
When y is adjusted as well as we can, we substitute for b and c 

other coils of (say) ten times greater resistance. 

The remaining difference between ft and y will now produce 

a ten times greater difference in the position of Q than with 

the original coils b and c, and in this way we can continually 

increase the accuracy of the comparison. 

The adjustment by means of the wire with sliding contact 

vol. i. I i 
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piece is more quickly made than by means of a resistance box, 

and it is capable of continuous variation. 

The battery must never be introduced instead of the galvano¬ 

meter into the wire with a sliding contact, for the passage of a 

powerful current at the point of contact would injure the surface 

of the wire. Hence this arrangement is adapted for the case in 

which the resistance of the galvanometer is greater than that of 

the battery. 

When y the resistance to be measured, a the resistance of the 

battery, and a the resistance of the galvanometer, are given, 

the best values of the other resistances have been shewn by 

Mr. Oliver Heaviside (Phil. Mag., Feb, 1873) to be 

C = V'tta, 

On, the Measurement of Small Resistances. 

351.] When a short and thick conductor is introduced into a 

circuit its resistance is so small compared with the resistance 

occasioned by unavoidable faults in the connexions, such as 

want of contact or imperfect soldering, 

that no correct value of the resistance 

can be deduced from experiments made 

in the way described above. 

The object of such experiments is 

generally to determine the specific 

resistance of the substance, and it is 

resorted to in cases when the substance 

cannot be obtained in the form of a 

long thin wire, or when the resistance 

to transverse as well as to longitudinal conduction has to be 

measured. 

Sir W. Thomson* has described a method applicable to such 
oases, which we may take as an example of a system of nine 
conductors. 

* Froc. It. SJune 6, 1861. 
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The most important part of the method consists in measuring 

the resistance, not of the whole length of the conductor, but of 

the part between two marks on the conductor at some little 

distance from its ends. 

The resistance which we wish to measure is that experienced 

by a current whose intensity is uniform in any section of the 

conductor, and which flows in a direction parallel to its axis. 

Now close to the extremities, when the current is introduced 

by means of electrodes, either soldered, amalgamated, or simply 

pressed to the ends of the conductor, there is generally a want of 

uniformity in the distribution of the current in the conductor. 

At a short distance from the extremities the current becomes 

sensibly uniform. The student may examine for himself the 

investigation and the diagrams of Art. 193, where a current is 

introduced into a strip of metal with parallel sides through one 

of the sides, but soon becomes itself parallel to the sides. 

The resistances of the conductors between certain marks 8f S' 

and T, T are to be compared. 

The conductors are placed in series, and with connexions as 

perfectly conducting as possible, in a battery circuit of small 

resistance. A wire SVT is made to touch the conductors 

at S and T\ and S'V'T' is another wire touching them at S' 
and T. 

The galvanometer wire connects the points V and V7 of these 

wires. 

The wires SVT and S'V'T' are of resistance so great that the 

resistance duo to imperfect connexion at S, Z7, S' or T may be 

neglected in comparison with the resistance of the wire, ^ 

i i % 
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F, F are taken so that the resistances ih the branches of either 
wire leading to the two conductors are nearly in the ratio of the 
resistances of the two conductors. 

Call H and F the resistances of the conductors SS' and TT. 
„ A and C those of the branches $F and VT. 
„ P and R those of the branches S'V' and V'T, 
„ Q that of the connecting piece S'T. 
„ B that of the battery and its connexions. 
„ 0 that of the galvanometer and its connexions. 

The symmetry of the system may be understood from the 
skeleton diagram. Fig. 34. 

The condition that B the battery and 0 the galvanometer 
may be conjugate conductors is, in this case *, 

F 
C 

H ^fR P^ Q 
A + ^G A>P + Q + R-Q‘ 

Now the resistance of the connector Q is as small as we can 
make it. If it were zero this equation would be reduced to 

F H 
A’ 

and the ratio of the resistances of the conductors to be compared 
would be that of G to A, as in Wheatstone’s Bridge in the 
ordinary form. 

In the present case the value of Q is small compared with P 
or with R, so that if we select the points V} V' so that the 

* {This may easily be deduced by the rule given in the Appendix to Chap, vi*} 
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ratio of R to 0 is nearly equal to that of P to A, the last term 

of the equation will vanish, and we shall have 

F:H: :C: A. 

The success of this method depends in some degree on the 

perfection of the contact between the wires and the tested con¬ 

ductors at S, S', T and T. In the following method, employed 

by Messrs. Matthiessen and Hockin *, this condition is dispensed 

with. 

352.] The conductors to be tested are arranged in the manner 

already described, with the connexions as well made as possible, 

and it is required to compare the resistance between the marks 

SS' on the first conductor with the resistance between the marks 

TT on the second. 

Two conducting points or sharp edges are fixed in a piece of 

insulating material so that the distance between them can be 

accurately measured. This apparatus is laid on the conductor to 

be tested, and the points of contact with the conductor are then 

at a known distance SS'. Each of these contact pieces is con¬ 

nected with a mercury cup, into which one electrode of the 

galvanometer may be plunged. 

The rest of the apparatus is arranged, as in Wheatstone's 

Bridge, with resistance coils or boxes A and C, and a wire PR 
with a sliding contact piece Q, to which the other electrode o 

the galvanometer is connected. 

Now let the galvanometer be connected to S and Q, and let 

Ax and Cx be so arranged, and the position of Q, (viz. Q1?) so 

determined, that there is no current in the galvanometer wire. 

Then we know that XS A +PQ 

SF^C^T&R9 
where XS, PQV &c. stand for the resistances in these conductors. 

From this we get 

XS _ A^PQt 
XY~ A^C^PR* 

Now let the electrode of the galvanometer be connected to S', 

and let resistance be transferred from C to A (by carrying re¬ 

sistance coils from one side to the other) till electric equilibrium 

of the galvanometer wire can be obtained by placing Q at some 

* Laboratory. Matthiessen and Hockin on Alloys. 



MEASUREMENT OF RESISTANCE. 486 [352. 

point of the wire, say Q2. Let the values of C and A be now 

C9 and A2, and let 

A2 + C2+ PR = A1 + Cl + PR = R. 

Then we have, as before 

XS' A2 + PQ2 
R ‘ 

Whence 
SS' _A2^A1^-QlQ2 
Ary““ r 

In the same way, placing the apparatus on the second 

conductor at TT' and again transferring resistance, we get, 

when the electrode is in T', 

and when it is in T, 

Whence 

XT_An + PQ9 
XY~ R ’ 

XT _ Ai + PQi 
R 

TT A4-A3 + Q3Q4 
xr “ f* 

We can now deduce the ratio of the resistances SS' and T'l\ 
for 

SS' At-A^+Q.Qt 
rT~AA-At + Q&' 

When great accuracy is not required we may dispense with 

the resistance coils A and (7, and we then find 

s&_q,q2 
FT Q,Q4 

The readings of the position of Q on a wire of a metre in 

length cannot be depended on to less than a tenth of a milli¬ 

metre, and the resistance of the wire may vary considerably in 

different parts owing to inequality of temperature, friction, &c. 

Hence, when great accuracy is required, coils of considerable 

resistance are introduced at A and G, and the ratios of the 

resistances of these coils can be determined more accurately 

than the ratio of the resistances of the parts into which the wire 

is divided at Q. 
It will be observed that in this method the accuracy of the 

determination depends in no degree on the perfection of the 

contacts at S, S' or T\ T. 
This method may be called the differential method of using 
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Wheatstone’s Bridge, since it depends on the comparison of 

observations separately made. 

An essential condition of accuracy in this method is that the 

resistance of the connexions should continue the same during 

the course of the four observations required to complete the 

determination. Hence the series of observations ought always 

to be repeated in order to detect any change in the resistances *. 

On the Comparison of Great Resistances. 

353. ] When the resistances to be measured are very great, 

the comparison of the potentials at different points of the system 

may be made by means of a delicate electrometer, such as the 

Quadrant Electrometer described in Art. 219. 

If the conductors whose resistances are to be measured are 

placed in series, and the same current passed through them by 

means of a battery of great electromotive force, the difference 

of the potentials at the extremities of each conductor will be 

proportional to the resistance of that conductor. Hence, by 

connecting the electrodes of the electrometer wTith the extre¬ 

mities, first of one conductor and then of the other, the ratio of 

their resistances may be determined. 

This is the most direct method of determining resistances. It 

involves the use of an electrometer whose readings may be 

depended on, and we must also have some guarantee that the 

current remains constant during the experiment. 

Four conductors of great resistance may also be arranged 

as in Wheatstone’s Bridge, and the Bridge itself may consist of 

the electrodes of an electrometer instead of those of a galvano¬ 

meter. The advantage of this method is that no permanent 

current is required to produce the deviation of the electrometer, 

whereas the galvanometer cannot be deflected unless a current 

passes through the wire. 

354. ] When the resistance of a conductor is so great that the 

current which can be sent through it by any available electro¬ 

motive force is too small to be directly measured by a galvano¬ 

meter, a condenser may be used in order to accumulate the 

electricity for a certain time, and then, by discharging the 

condenser through a galvanometer, the quantity accumulated 

* {For another method of comparing small resistances, see Lord Rayleigh, Pro¬ 
ceedings of the Cambridge Philosophical Society, vol. v. p. 50. j 
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may be estimated. This is Messrs. Bright and Clark’s method 

of testing the joints of submarine cables. 

355.] But the simplest method of measuring the resistance of 

such a conductor is to charge a condenser of great capacity and 

to connect its two surfaces with the electrodes of an electrometer 

and also with the extremities of the conductor. If E is the 

difference of potentials as shewn by the electrometer, S the 

capacity of the condenser, and Q the charge on either surface, 

R the resistance of the conductor and x the current in it, then, 

by the theory of condensers, 

Q = SE. 
By Ohm’s Law, E = Rx} 

and by the definition of a current, 

Hence — Q = RS> 
tit 

t 

and Q = 

where Q0 is the charge at first when t — 0. 
l_ 

Similarly E = E0e 

where E0 is the original reading of the electrometer, and E the 

same after a time t. From this we find 

S{logeE0-log<E] ’ 

which gives R in absolute measure. In this expression a 

knowledge of the value of the unit of the electrometer scale is 

not required. 

.If Sy the capacity of the condenser, is given in electrostatic 

measure as a certain number of metres, then R is also given in 

electrostatic measure as the reciprocal of a velocity. 

If S is given in electromagnetic measure its dimensions are 

T* 
and R is a velocity. 

Since the condenser itself is not a perfect insulator it is 

necessary to make two experiments. In the first we determine 

the resistance of the condenser itself, R0> and in the second, 

that of the condenser when the conductor is made to connect its 
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surfaces. Let this be R\ Then the resistance, JS, of the 

conductor is given by the equation 

1__ J_I_ 

R ~~ R'~~ R0 
This method has been employed by MM. Siemens. 

Thomson's* Method for the Determination of the Resistance 
of a Galvanometer. * 

356.] An arrangement similar to Wheatstone's Bridge has 

been employed with advantage by Sir W. Thomson in de¬ 

termining the resistance of the galvanometer when in actual 

use. it was suggested to Sir W. Thomson by Mance’s Method. 

See Art. 357. 

Let the battery be placed, as before, between B and G in the 

figure of Article 347, but let the galvanometer be placed in CA 
instead of, in OA. If bfi — cy is zero, then the conductor OA is 

conjugate to BG, and, as there is no current produced in OA by 

the battery in BG} the strength of the current in any other 

conductor is independent of the resistance in OA. Hence, if the 

galvanometer is placed in CA its Reflexion will remain the 

same whether the resistance of 0 A is small or great. We 

therefore observe whether i&e deflexion of the galvanometer 

remains the same when 0 and A are joined by a conductor 

• Proe. R. S.t Jan. 19, 1871. 
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of small resistance, as when this connexion is broken, and if, by 

properly adjusting the resistances of the conductors, we obtain 

this result, we know that the resistance of the galvanometer is 

where c, y, and fi are resistance coils of known resistance. 

It will be observed that though this is not a null method, 

in the sense of there being no current in the galvanometer, it is 

so in the sense of the fact observed being the negative one, that 

the deflexion of the galvanometer is not changed when a certain 

contact is made. An observation of this kind is of greater 

value than an observation of the equality of two different 

deflexions of the same galvanometer, for in the latter case there 

is time for alteration in the strength of the battery or the 

sensitiveness of the galvanometer, whereas when the deflexion re¬ 

mains constant, in spite of certain changes which we can repeat 

at pleasure, we are sure that the current is quite independent of 

these changes. 

The determination of the resistance of the coil of a galvano¬ 

meter can easily be effected in the ordinary way of using 

Wheatstone’s Bridge by placing another galvanometer in OA. 
By the method now described the galvanometer itself is em¬ 

ployed to measure its own resistance. 

Mances * Method of Determining the Resistance of a Battery. 

357.] The measurement of the resistance of a battery when in 

action is of a much higher order of difficulty, since the resistance 

of the battery is found to change considerably for some time 

after the strength of the current through it is changed. In 

many of the methods commonly used to measure the resistance 

of a battery such alterations of the strength of the current 

through it occur in the course of the operations, and therefore 

the results are rendered doubtful. 

In Mance’s method, which is free from this objection, the battery 

is placed in BC and the galvanometer in CA. The connexion 

between 0 and B is then alternately made and broken. 

Now the deflexion of the galvanometer needle will remain un¬ 

altered, however the resistance in OB be changed, provided that 

OB and AC are conjugate. This may be regarded as a particular 

* Proc. B. 8,f Jan. 19, 1871. 
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case of the result proved in Art. 347, or may be seen directly on 
the elimination of z and 0 from the equations of that article, 
viz. we then have 

(aa — cy) x + (cy+ ca + cb + ba)y = Ea. 
If y is independent of xt and therefore of 0, we must have 

aa = cy. The resistance of the battery is thus obtained in terms 
of c, y, a. 

When the condition a a =■ cy is fulfilled, the current y through 
the galvanometer is given by 

Ea Ey 

y ~~ cb 4- a{a 4- b •+ c) * ab + y(a 4 b 4- c) 

To test the sensibility of the method let us suppose that 
the condition cy = aa is nearly, but not accurately, fulfilled, 

Fig. 38. 

and that y0 is the current through the galvanometer when 
0 and B are connected by a conductor of no sensible resistance, 
and 2/, the current when 0 and B are completely disconnected. 

To find these values we must make 0 equal to 0 and to ao in 
the general formula for y, and compare the results. 

The general value for y is 
cy + 0y + ya + a0 „ 

1) Ei 

where D denotes the same expression as in Art. 348. Putting 
0 = o, we get 

yE 

, ~~ at 4* y(a 4 b + c) 4- c(aa — cy) 
a 4-c 

= y + aPProximafcely> 
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putting = co , we get 

Vi== - 
E 

7 a& (aa-cy)fe 
a + i> + c +-i —-—LL-, 

y (y+a)y 

b(cy — aa) y2 

v y(y + a) A* 

From these values we find 

2/o-g/i _ « cy-aa . 

y y(c + a)(a + y) 

The resistance, c, of the conductor AB should be equal to a, 

that of the battery; a and y should be equal and as small 

as possible ; and b should be equal to a + y. 

Since a galvanometer is most sensitive when its deflexion is 

small, we should bring the needle nearly to zero by means of 

fixed magnets before making contact between 0 and B. 

In this method of measuring the resistance of the battery, the 

current in the galvanometer is not in any way interfered with 

during the operation, so that we may ascertain the resistance of 

the battery for any given strength of current in the galvanometer 

so as to determine how the strength of the current affects 

the resistance *. 

If y is the current in the galvanometer, the actual current 

through the battery is x0 with the key down and x1 with the 

key up, where 

the resistance of the battery is 

a 

and the electromotive force of the battery is 

E = y(b + c + -a(b + y))- 

The method of Art. 356 for finding the resistance of the galva¬ 

nometer differs from this only in making and breaking contact 

* [In the Philosophical Magazine for 1877, vol. i. pp. 515-525, Mr. Oliver Lodge 
has pointed out as a defect in M&nce’s method that as the electromotive force of the 
battery depends upon the current passing through the battery, the deflexion of the 
galvanometer needle cannot be the same in the two cases when the key is down or up, 
if the equation aa «* cy is true. Mr. Lodge describes a modification of Manoea 
method which he has employed with success.] 
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between 0 and A instead of between 0 and B, and by exchanging 

a and /3, a and b, we obtain for this case 

y0-y. _ g cy—bj3 

V y(c + /3)(/3 + y)' 

On the Comparison of Electromotive Forces. 

358.] The following method of comparing the electromotive 

forces of voltaic and thermoelectric arrangements, when no 

current passes through them, requires only a set of resistance 

coils and a constant battery. 

Let the electromotive force E of the battery be greater than 

that of either of the electromotors to be compared, then, if a 

Fig. 89. 

sufficient resistance, Rx, be interposed between the points Ax, 

Bx of the primary circuit EBXAXE, the electromotive force from 

Bx to Ax may be made equal to that of .the electromotor Ex. 

If the electrodes of this electromotor are now connected with 

the points Ax, Bl no current will flow through the electromotor. 

By placing a galvanometer Ox in the circuit of the electro¬ 

motor Elt and adjusting the resistance between Ax and Bx 

till the galvanometer (?, indicates no current, we obtain the 

e,u.Uo» X, = R,C, 

where Rl is the resistance between Ax and jBJ9 and C is the 

strength of the current in the primary circuit. 

In the Bame way, by taking a second electromotor E2 and 

placing its electrodes at A2 and B29 so that no current is 

indicated by the galvanometer 029 

E2 = r2c, 
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where Rz is the resistance between A2 and Bv If the observa¬ 

tions of the galvanometers G1 and G2 are simultaneous, the 

value of (7, the current in the primary circuit, is the same in 

both equations, and we find 

El:E/:: Rt. 

In this way the electromotive forces of two electromotors may 

be compared. The absolute electromotive force of an electro¬ 

motor may be measured either electrostatically by means of 

the electrometer, or eiectromagnetically by means of an absolute 

galvanometer. 

This method, in which, at the time of the comparison, there 

is no current through either of the electromotors, is a modi¬ 

fication of PoggendorfFs method, and is due to Mr. Latimer 

Clark, who has deduced the following values of electromotive 
forces: 

Concentrated 
•oJution of Volt*. 

Daniell I. Amalgamated Zinc H2S04 + 4 aq. Cu S04 Copper • 1070 

II. ,, H,S04 +12 aq. Cu S04 Copper « 0-978 

III. „ HtS04+12aq. Cu (NO,), Copper « LOO 
Bunsen I. „ „ „ HNO, Carbon >=1964 

IL „ „ „ *p. g, L38 Carbon * 1-888 
Grove „ HaSO, + 4 aq. HNO, Platinum -=1966 

A Volt is an electromotiie force equal to 100,000,000 units of the centimetre- 
gramme-second system. 



CHAPTER XII. 

ON THE ELECTRIC RESISTANCE OF SUBSTANCES. 

359.] There are three classes in which we may place different 
substances in relation to the passage of electricity through them. 

The first class contains all the metals and their alloys, some 
sulphurets, and other compounds containing metals, to which we 
must add carbon in the form of gas-coke, and selenium in the 

crystalline form. 
In all these substances conduction takes place without any 

decomposition, or alteration of the chemical nature of the sub¬ 

stance, either in its interior or where the current enters and 
leaves the body. In all of them the resistance increases as the 

temperature rises *. 
The second class consists of substances which are called elec¬ 

trolytes, because the current is associated with a decomposition 

of the substance into two components which appear at the elec¬ 
trodes. As a rule a substance is an electrolyte only when in 
the liquid form, though certain colloid substances, such as glass 
at 100° C, which are apparently solid, are electrolytes f. It would 

appear from the experiments of Sir B. C. Brodie that certain 

gases are capable of electrolysis by a powerful electromotive 
force. 

In all substances which conduct by electrolysis the resistance 
diminishes as the temperature rises. 

The third class consists of substances the resistance of which 
is so great that it is only by the most refined methods that the 

passage of electricity through them can be detected. These are 
called Dielectrics. To this class belong a considerable number 
of solid bodies, many of which are electrolytes when melted, 
some liquids, such as turpentine, naphtha, melted paraffin, &c., 

* {Carbon is an exception to this statement; and Feusaner has lately found that 

the resistance of an alloy of manganese and copper diminishes as the temperature 

increases.} 

f { W. Koblrausch has shown that the haloid salts of silver conduct electrolytic&lly 

when solid, Wied. Ann. 17. p. 042, 1882.} 
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and all gases and vapours. Carbon in the form of diamond, and 
selenium in the amorphous form, belong to this clasB. 

The resistance of this class of bodies is enormous compared 
with that of the metals. It diminishes as the temperature rises. 
It is difficult, on account of the great resistance of these sub¬ 
stances, to determine whether the feeble current which we can 
force through them is or is not associated with electrolysis. 

On the Electric Resistance of Metals. 

360.] There is no part of electrical research in which more 
numerous or more accurate experiments have been made than in 
the determination of the resistance of metals. It is of the utmost 
importance in the electric telegraph that the metal of which the 
wires are made should have the smallest attainable resistance. 
Measurements of resistance must therefore be made before select¬ 
ing the materials. When any fault occurs in the line, its position 
is at once ascertained by measurements of resistance, and these 
measurements, in which so many persons are now employed, 
require the use of resistance coils, made of metal the electrical 
properties of which have been carefully tested. 

The electrical properties of metals and their alloys have been 
studied with great care by MM Matthiessen, Vogt, and Hockin, 
and by MM. Siemens, who have done so much to introduce exact 
electrical measurements into practical work. 

It appears from the researches of Dr. Matthiessen, that the 
effect of temperature on the resistance is nearly the same for a 
considerable number of the pure metals, the resistance at 100°C 
being to that at p°C in the ratio of 1*414 to 1, or 100 to 70*7. 
For pure iron the ratio is 1*6197, and for pure thallium 1*458. 

The resistance of metals has been observed by Dr. C. W. 
Siemens * through a much wider range of temperature, extending 
from the freezing-point to 350°C, and in certain cases to 1000°C. 
He finds that the resistance increases as the temperature rises, 
but that the rate of increase diminishes as the temperature rises. 
The formula, which he finds to agree very closely both with the 
resistances observed at low temperatures by Dr. Matthiessen and 
with his own observations through a range of 1000°C, is 

r = + 

* Proe. Z.S., April 27, 1871. 
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where T is the absolute temperature reckoned from — 273°C, and 
a, fi, y are constants. Thus, for 

Platinum.r = 0*039369 7^ + 0*00216407 T-0*2413*, 

Copper.r = 0*026577 7*+ 0*003! 443 7-0-22751, 

Iron.r = 0*072545 71 + 0*0038133 7- 1-23971. 

From data of this kind the temperature of a furnace may 
be determined by means of an observation of the resistance of 
& platinum wire placed in the furnace. 

Dr. Matthiessen found that when two metals are combined to 
form an alloy, the resistance of the alloy is in most cases greater 
than that calculated from the resistance of the component metals 
and their proportions. In the case of alloys of gold and silver, 
the resistance of the alloy is greater than that of either pure gold 
or pure silver, and, within certain limiting proportions of the 
constituents, it varies very little with a slight alteration of the 
proportions. For this reason Dr. Matthiessen recommended an 
alloy of two parts by weight of gold and one of silver as a 
material for reproducing the unit of resistance. 

The effect of change of temperature on electric resistance is 
generally less in alloys than in pure metals. 

Hence ordinary resistance coils are made of German silver, 
on account of its great resistance and its small variation with 
temperature. 

An alloy of silver and platinum is also used for standard 
coils. 

361.] The electric resistance of some metals changes when the 
metal is annealed; and until a wire has been tested by being 
repeatedly raised to a high temperature without permanently 
altering its resistance, it cannot be relied on as a measure of 
resistance. Some wires alter in resistance in course of time 
without having been exposed to changes of temperature. Hence 
it is important to ascertain the specific resistance of mercury, a 
metal which being fluid has always the same molecular structure, 
and which can be easily purified by distillation and treatment 

* { Mr. Callender’s recent researches in the Cavendish Laboratory on the Resistance 
of Platinum have shown that these expressions do not acoord with the facts at high 
temperatures. Siemens* formula for platinum requires the temperature coefficient of 
the resistance to become constant at high temperatures and eaual to -0021; while the 
experiments seem to indicate a much slower rate of increase it not a decrease at very 
high temperatures. H. L. Calendar, * On the Practical Measurement of Temperature/ 
Phil Trans. 173 A. pp. 131-230.} 

VOL. I. K k 
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with nitric acid. Great care has been bestowed in determining" 
the resistance of this metal by W. and C. F. Siemens, who intro¬ 
duced it as a standard. Their researches have been supplemented 
by those of Matthiessen and Hockin. 

The specific resistance of mercury was deduced from the 
observed resistance of a tube of length l containing a mass 
w of mercury, in the following manner. 

No glass tube is of exactly equal bore throughout, but if a 
small quantity of mercury is introduced into the tube and 
occupies a length A of the tube, the middle point of which is 
distant x from one end of the tube, then the area 8 of the section 

(j 
near this point will be 8 = where C is some constant. 

A 

The mass of mercury which fills the whole tube is 

w = p [adx^pC'2 (7) - j 
j r VA;n 

where n is the number of points, at equal distances along the 
tube, where A has been measured, and p is the mass of unit of 
volume. 

The resistance of the whole tube is 

R = l-dx = ^ 2(A)-, 
J 8 C wn 

where r is the specific resistance per unit of volume. 

Hence wR = rp2 (A) 2 
w VA '71* 

gives the specific resistance of unit of volume. 

To find the resistance of unit of length and unit of mass we 

must multiply this by the density. 

It appears from the experiments of Matthiessen and Hockin 

that the resistance of a uniform column of mercury of one metre 

in length, and weighing one gramme at 0°C,is 13*071 B.A. units, 

whence it follows that if the specific gravity of mercury is 

13-595, the resistance of a column of one metre in length and 

one square millimetre in section is 0*96146 B.A. units. 

362.] In the following table R is the resistance in B.A. units 

of a column one metre long and one gramme weight at 0°C, and 

v is the resistance in centimetres per second of a cube of one 
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centimetre, according to the experiments of Matthiessen* as¬ 
suming the B.A. unit to be -98677 Earth quadrants. 

Silver. 

Specific 
gravity. 

, 10-50 hard drawn 

j?. 
0-1689 

r. 

1588 

Percentage 
increment of 
resistance for 
1°C at *20°C. 

0-377 

Copper .... , 8*95 hard drawn 0*1469 1620 0-388 

Gold. 19*27 hard drawn 0-4150 2125 0-365 

Lead. 11-391 pressed 2-257 19584 0-387 

Mercuryf. . . 13-595 liquid 13-071 94874 0-072 

Gold 2, Silver l 15-218 hard or annealed 1 *668 18326 0-065 

Selenium at 100°C crystalline form 6 x 1018 1-00 

On the Electric Resistance of Electrolytes. 

363.] The measurement of the electric resistance of electrolytes 

is rendered difficult on account of the polarization of the elec¬ 

trodes, which causes the observed difference of potentials of 

the metallic electrodes to be greater than the electromotive force 

which actually produces the current. 

This difficulty can be overcome in various ways. In certain 

cases we can get rid of polarization by using electrodes of proper 

material, as, for instance, zinc electrodes in a solution of sulphate 

of zinc. By making the surface of the electrodes very large 

compared with the Bection of the part of the electrolyte whose 

resistance is to be measured, and by using only currents of short 

duration in opposite directions alternately, we can make the 

measurements before any considerable intensity of polarization 

has been excited by the passage of the current. 

Finally, by making two different experiments, in one of which 

the path of the current through the electrolyte is much longer 

than in the other, and so adjusting the electromotive force that 

the actual current, and the time during which it flo» s,are nearly 

the same in each case, we can eliminate the effect of polarization 

altogether. 

• Phil. Mag., May, 1865. 
t { More recent experiments have given a different value for the specific resistance 

of mercury. The following are recent determinations of the resistance in B.A. units 
of a column of mercury one metre long and one square millimetre in cross section 
at 0°C:— 

Lord Rayleigh and Mrs. Sidgwick, Phil. Tram. Part I. 1883. . .95412, 
G lose brook and Fitzpatrick, Phil. Tram. A. 1888 .95852, 
Hutchinson and Wilkes, Phil. Mag. (5). 28.17. 1889 . . -95841.} 

E k 2 
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364.] In the experiments of Dr. Paalzow* the electrodes were 

in the form of large disks placed in separate flat vessels filled 

with the electrolyte, and the connexion was made by means of 

a long siphon filled with the electrolyte and dipping into both 

vessels. Two such siphons of different lengths were used. 

The observed resistances of the electrolyte in these siphons 

being R1 and R2, the siphons were next filled with mercury, and 

their resistances when filled with mercury were found to be 

Rf and R/. 

The ratio of the resistance of the electrolyte to that of a mass 

of mercury at 0°C of the same form was then found from the 

formula _ R,-R2 

p ~ iv-li/' 
To deduce from the values of p the resistance of a centimetre 

in length having a section of a square centimetre, we must 

multiply them by the value of r for mercury at 0°C. Sec 

Art. 361. 

The results given by Paalzow are as follow :— 

Mixtures of Sulphuric Acid and Water. 

h2so4 

Temp. 

... 15°C 

Resistance compared 
with mercury. 

96950 

H2S04 + 14H20... ... 19°C 14157 

H2S04 + 13 H20... ...22°C 13310 

H2S04 + 499 H20... ...22°C 184773 

Sulphate of Zinc and Water. 

ZnS04+ 33 H20... ...23°C 194400 

ZnS04 + 24 H20... ...23°C 191000 

ZnS04+ 107 H20... ...23°C 354000 

Sulphate of Copper and Water. 

CuS04+ 45 H20... ...22°C 202410 

CuS04+ 105 H20... ...22°C 339341 

Sulphate of Magnesium and Water. 

MgS04+ 34 H20.22°C 199180 

MgS04+ 107 H20.22°C 324600 

Berlin Monatsbericht, July, 1868. 
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Hydrochloric Acid and Water. 
m Resistance compared 

with mercury. 

HC1 + io H20.23°C 13626 

H Cl + 500 H20.23°C 86679 

365.] MM. F. KohlrauBch and W. A. Nippoldt* have de¬ 

termined the resistance of mixtures of sulphuric acid and water. 

They used alternating magneto-electric currents, the electro¬ 

motive force of which varied from £ to of that of a Grove’s 

cell, and by means of a thermoelectric copper-iron pair they re¬ 

duced the electromotive force to of that of a Grove’s cell. 

They found that Ohm’s law was applicable to this electrolyte 

throughout the range of these electromotive forces. 

The resistance is a minimum in a mixture containing about 

one-third of sulphuric acid. 

The resistance of electrolytes diminishes as the temperature 

increases. The percentage increment of conductivity for a rise 

of 1 C is given in the following table:— 

Resistance of Mixtures of Sulphuric Acid and Water at 22°C in 
terms of Mercury at 0°C. MM. Kohlrausch and Nippoldt. 

Specific gravity 
at 18°5. 

Percentage 
of h3so4. 

Resistance 
at 22°C 

(Hg = 1). 

Percentage 
increment of 
conductivity 

for 1°C. 

0-9985 0*0 746300 0*47 

1-00 0*2 465100 0*47 
1*0504 8*3 34530 0*653 

1*0989 14*2 18946 0*646 

1*1431 20*2 14990 0*799 

1*2045 28*0 13133 1*317 
1*2631 35*2 13132 1*259 

1*3163 41*5 14286 1*410 

1*3597 46*0 15762 1*674 
1*3994 50*4 17726 1*582 
1*4482 55*2 20796 1*417 
1*5026 60*3 25574 1*794 

On the Electrical Resistance of Dielectrics. 

366.] A great number of determinations of the resistance 
of gutta-percha, and other materials used as insulating media, 

* Pogg., Ann. cxxxviii. pp. 280, 370, 1869. 
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in the manufacture of telegraphic cables, have been made in 

order to ascertain the value of these materials as insulators. 

The tests are generally applied to the material after it has 

been used to cover the conducting wire, the wire being used 

as one electrode, and the water of a tank, in which the cable is 

plunged, as the other. Thus the current is made to pass through 

a cylindrical coating of the insulator of great area and small 

thickness. 

It is found that when the electromotive force begins to act, 

the current, as indicated by the galvanometer, is by no means 

constant. The first effect is of course a transient current of 

considerable intensity, the total quantity of electricity being 

that required to charge the surfaces of the insulator with the 

superficial distribution of electricity corresponding to the electro¬ 

motive force. This first current therefore is a measure not of 

the conductivity, but of the capacity of the insulating layex\ 

But even after this current has been allowed to subside the 

residual current is not constant, and does not indicate the true 

conductivity of the substance. It is found that the current 

continues to decrease for at least half an hour, so that a 

determination of the resistance deduced from the current will 

give a greater value if a certain time is allowed to elapse than 

if taken immediately after applying the battery. 

Thus, with Hoopers insulating material the apparent resist¬ 

ance at the end of ten minutes was four times, and at the 

end of nineteen hours twenty-three times that observed at the 

end of one minute. When the direction of the electromotive 

force is reversed, the resistance falls as low or lower than at 

first ai*d then gradually rises. 

These phenomena seem to be due to a condition of the gutta¬ 

percha, which, for want of a better name, we may call polariza¬ 

tion, and which we may compare on the one hand with that of 

a series of Leyden jars charged by cascade, and, on the other, 

with Ritter’s secondary pile, Art. 271. 

If a number of Leyden jars of great capacity are connected 

in series by means of conductors of great resistance (such as wet 

cotton threads in the experiments of M. Gaugain); then an 

electromotive force acting on the series will produce a current, 

as indicated by a galvanometer, which will gradually diminish 

till the jars are fully charged. , 
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The apparent resistance of such a series will increase, and 

if the dielectric of the jars is a perfect insulator it will increase 

without limit. If the electromotive force be removed and con¬ 

nexion made between the ends of the series, a reverse current 

will be observed, the total quantity of which, in the case of 

perfect insulation, will be the same as that of the direct current. 

Similar effects are observed in the case of the secondary pile, 

with the difference that the final insulation is not so good, 

and that the capacity per unit of surface is immensely greater. 

In the case of the cable covered with gutta-percha, &c., it is 

found that after applying the battery for half an hour, and then 

connecting the wire with the external electrode, a reverse 

current takes place, which goes on for some time, and gradually 

reduces the system to its original state. 

These phenomena are of the same kind with those indicated 

by the ‘residual discharge’ of the Leyden jar, except that the 

amount of the polarization is much greater in gutta-percha, &c. 

than in glass. 

This state of polarization seems to be a directed property 

of the material, which requires for its production not only 

electromotive force, but the passage, by displacement or other¬ 

wise, of a considerable quantity of electricity, and this passage 

requires a considerable time. When the polarized state has 

been set up, there is an internal electromotive force acting 

in the substance in the reverse direction, which will continue 

till it has either produced a reversed current equal in total 

quantity to the first, or till the state of polarization has quietly 

subsided by means of true conduction through the substance. 

The whole theory of what has been called residual discharge, 

absorption of electricity, electrification, or polarization, deserves 

a careful investigation, and will probably lead to important 

discoveries relating to the internal structure of bodies. 

367.] The resistance of the greater number of dielectrics di¬ 

minishes as the temperature rises. 

Thus the resistance of gutta-percha is about twenty times 

as great at 0°C as at 24°C. Messrs. Bright and Clark have 

found that the following formula gives results agreeing with 

their experiments. If r is the resistance of gutta-percha at 

temperature T centigrade, then the resistance at temperature 

T+1 will be R = r x C\ 
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where G varies between 0-8878 and 0-9 for different specimens of 

gutta-percha. 

Mr. Hockin has verified the curious fact that it is not until 

some hours after the gutta-percha has taken its final temperature 

that the resistance reaches its corresponding value. 

The effect of temperature on the resistance of india-rubber 

is not so great as on that of gutta-percha. 

The resistance of gutta-percha increases considerably on the 

application of pressure. 

The resistance, in Ohms, of a cubic metre of various specimens 

of gutta-percha used in different cables is as follows * 

Name of Cable. 

Red Sea. -267 x 1012 to -362 x 1012 

Malta-Alexandria. 1*23 x 1012 

Persian Gulf. 1-80 x 1012 

Second Atlantic.. . 3-42 x 1 0]2 

Hooper’s Persian Gulf Core 74*7 x 1012 

Gutia-perchaat 24°C. 3*53 xl()12 

368.] The following table, calculated from the experiments of 

M. Buff', described in AH. 271, shews the resistance of a cubic 

metre of glass in Ohms at different temperatures. 

Temperature. Resistance. 

200°C 227000 

250° 13900 

300° 1480 

350° 1035 

400° 735 

369.] Mr. C. F. Varleyf has recently investigated the con¬ 

ditions of the current through rarefied gases, and finds that 

the electromotive force E is equal to a constant 2?0 together with 

a part depending on the current according to Ohm’s Law, thus 

E = E0 + RC. 

For instance, the electromotive force required to cause the 

current to begin in a certain tube was that of 323 Daniell’s 

cells, but an electromotive force of 304 cells was just sufficient 

to maintain the current. The intensity of the current, as 

measured by the galvanometer, Was proportional to the number 

* Jenkin's Cantor Lectures. f Proc. K S.f Jan. 12, 1871. 
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of cells above 301. Thus for 305 cells the deflexion was 2, 

for 306 it was 4, for 307 it was 6, and so on up to 380, or 

304 + 76 for which the deflexion was 150, or 76 x L97. 

From these experiments it appears that there is a kind of 

polarization of the electrodes, the electromotive force of which 

is equal to that of 301 Danielis cells, and that up to this 

electromotive force the battery is occupied in establishing this 

state of polarization. When the maximum polarization is 

established, the excess of electromotive force above that of 

304 cells is devoted to maintaining the current according to 

Ohm’s Law. 

The law of the current in a rarefied gas is therefore very 

similar to the law of the current through an electrolyte in 

which we have to take account of the polarization of the 

electrodes. 

In connexion with this subject we should study Thomson’s 

results, that the electromotive force required to produce a 

spark in air was found to be proportional not to the dis¬ 

tance, but to the distance together with a constant quan¬ 

tity. The electromotive force corresponding to this constant 

quantity may be regarded as the intensity of polarization of the 

electrodes. 

370.] MM. Wiedemann and Ruhlmann have recently* investi¬ 

gated the passage of electricity through gases. The electric 

current was produced by Holtz’s machine, and the discharge 

took place between spherical electrodes within a metallic vessel 

containing rarefied gas. The discharge was in general dis¬ 

continuous, and the interval of time between successive dis¬ 

charges was measured by means of a mirror revolving along 

with the axis of Holtz’s machine. The images of the series of 

discharges were observed by means of a heliometer with a 

divided object-glass, which was adjusted till one image of each 

discharge coincided with the other image of the next discharge. 

By this method very consistent results were obtained. It 

was found that the quantity of electricity in each discharge 

is independent of the strength of the current and of the material 

of the electrodes, and that it depends on the nature and density 

of the gas, and on the distance and form of the electrodes. 

* Berichte der K&nigl. Sachs. Oeselhchafi, Leipzig, Oct. 20, 1871. 
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These researches confirm the statement of Faraday* that 

the electric tension (see Art. 48) required to cause a disruptive 

discharge to begin at the electrified surface of a conductor is 

a little less when the electrification is negative than when it 

is positive, but that when a discharge does take place, much 

more electricity passes at each discharge when it begins at a 

positive surface. They also tend to support the hypothesis 

stated in Art. 57, that the stratum of gas condensed on the 

surface of the electrode plays an important part in the phe¬ 

nomenon, and they indicate that this condensation is greatest at 

the positive electrode. 

* Exp, Res.y 1501. 

END OF VOL. I. 
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