
Mela central 

^ i Md 

18'P 

. „»♦ v.° 
%>^|jfNj» \u 58518 

Uv+t+t+C+U***** * «>*♦♦♦❖♦***♦*«««$ 

♦ 

* 
4> 







A TREATISE 

ON 

ELECTRICITY AND MAGNETISM 

MA X WELL 

VOL. II. 





A TREATISE 

ON 

ELECTRICITY AND MAGNETISM 

JAMES CLERK MAXWELL, M.A. 
LL.D. EDIN., D.C.L., F.R.SS. LONDON AND EDINBURGH 

HONORARY FELLOW OF TRINITY COLLEGE 

AND LATE PROFESSOR OF EXPERIMENTAL PHYSICS IN THE UNIVERSITY OF CAMBRIDGE 

VOL. II 

THIRD EDITION 

OXFORD UNIVERSITY PRESS 

LONDON : GEOFFREY CUMBERLEGE 



First Edition 1873 
Second Edition 1881 

Third Edition 1892; Reprinted 1904 

Reprinted pi 
194(i by low 

trc 



CONTENTS 

PART III. 

MAGNETISM. 

CHAPTER I. 

ELEMENTARY THEORY OF MAGNETISM. 
Art* 

371. Properties of a magnet when acted on by the earth 

372. Definition of the axis of the magnet and of the direction of 

magnetic force . 

373. Action of magnets on one another. Law of magnetic force .. 

374. Definition of magnetic units and their dimensions. 

375. Nature of the evidence for the law of magnetic force 

376. Magnetism as a mathematical quantity. 

377. The quantities of the opposite kinds of magnetism in a magnet 

are always exactly equal . 

378. Effects of breaking a magnet. 

379. A magnet is built up of particles each of which is a magnet.. 

380. Theory of magnetic ‘ matter*. 

381. Magnetization is of the nature of a vector . 

382. Meaning of the term 4 Magnetic Polarization' . 

383. Properties of a magnetic particle. 

384. Definitions of Magnetic Moment, Intensity of Magnetization, 

and Components of Magnetization . 

385. Potential Of a magnetized element of volume. 

386. Potential of a magnet of finite size. Two expressions for this 

potential, corresponding respectively to the theory of polariza¬ 

tion, and to that of magnetic ‘ matter * . 

387. Investigation of the action of one magnetic particle on another 

388. Particular cases . 

389. Potential energy of a magnet in any field of force. 

390. On the magnetic moment and axis of a magnet . 

Prijft’ 

1 

1 

2 

3 

4 

4 

4 

5 

5 

6 

7 

8 

8 

9 

9 

10 

11 

13 

15 

17 



CONTENTS. 

Art ^ge 

391. Expansion of the potential of a magnet in spherical harmonics 17 

392. The centre of a magnet and the primary and secondary axes 

through the centre . .. .. 19 

393. The north end of a magnet in this treatise is that which points 

north, and the south end that which points south. Boreal 

magnetism is that which is supposed to exist near the north 

pole of the earth and the south end of a magnet. Austral 

magnetism is that which belongs to the south pole of the 

earth and the north end of a magnet. Austral magnetism 

is considered positive .. .. . 20 

394. The direction of magnetic force is that in which austral mag¬ 

netism tends to move, that is, from south to north, and this 

is the positive direction of magnetic lines of force. A magnet 

is said to he magnetized from its south end towards its north 

end.21 

CHAPTER II. 

MAGNETIC EOKCE AND MAGNETIC INDUCTION. 

395. Magnetic force defined with reference to the magnetic potential 22 

390. Magnetic force in a cylindric cavity in a magnet uniformly 

magnetized parallel to the axis of the cylinder. 23 

397. Application to any magnet . 23 

398. An elongate! cylinder.—Magnetic force. 24 

399. A thin disk.—Magnetic induction. 24 

400. Relation between magnetic force, magnetic induction, and mag¬ 

netization . 25 

401. Line-iutegral of magnetic force, or magnetic potential .. .. 25 

402. Surface-integral of magnetic induction. 20 

403. Solenoidal distribution of magnetic induction . 28 

404. Surfaces and tubes of magnetic induction . 28 

405. Vector-potential of magnetic induction. 29 

406. Relations between the scalar and the vector-potential .. 30 

CHAPTER III. 

MAGNETIC SOLENOIDS AND SHELLS. 

407. Definition of a magnetic solenoid. 33 

408. Definition of a complex solenoid and expression for its potential 

at any point. 34 



CONTENTS. vii 

Art. Aw 

409. The potential of a magnetic shell at any point is the product of 

its strength multiplied by the solid angle its boundary sub¬ 

tends at the point. 35 

410. Another method of proof. 35 

411. The potential at a point on the positive side of a shell of 

strength exceeds that on the nearest point on the negative 

side by 47r4>. 36 

412. Lamellar distribution of magnetism . 36 

413. Complex lamellar distribution. 37 

414. Potential of a solenoidal magnet . 37 

415. Potential of a lamellar magnet . 37 

416. Vector-potential of a lamellar magnet . 38 

417. On the solid angle subtended at a given point by a closed curve 39 

418. The solid angle expressed by the length of a curve on the sphere 40 

419. Solid angle found by two line-integrations . 40 

420. IT expressed as a determinant. 41 

421. The solid angle is a cyclic function. 42 

422. Theory of the vector-potential of a closed curve .. .. .. 43 

423. Potential energy of a magnetic shell placed in a magnetic field 45 

CHAPTER IV. 

INDUCED MAGNETIZATION. 

424. When a body under the action of magnetic force becomes itself 

magnetized the phenomenon is called magnetic induction .. 47 

425. Magnetic induction in different substances . 49 

426. Definition of the coefficient of induced magnetization .. .. 50 

427. Mathematical theory of magnetic induction, Poisson’s method 50 

428. Faraday’s method . 53 

429. Case of a body surrounded by a magnetic medium. 55 

430. Poisson’s physical theory of the cause of induced magnetism .. 57 

CHAPTER V. 

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION. 

431. Theory of a hollow spherical shell..59 

432. Case when k is large. 61 

433. When t = 1   .. .. 61 

434. Corresponding case in two dimensions. (Fig. XV) .. .. 62 

435. Case of a solid sphere, the coefficients of magnetization being 

different in different directions . 63 



CONTENTS. 

Art. Page 

436. The nine coefficients reduced to six' (Fig. XVI). 64 

437. Theory of an ellipsoid acted on by a uniform magnetic force .. 66 

438. Cases of very flat and of very long ellipsoids. 68 

439. Statement of problems solved by Neumann, Kirchhoff, and 

Green*. 72 

440. Method of approximation to a solution of the general problem 
when k is very small. Magnetic bodies tend towards places 

of most intense magnetic force, and diamagnetic bodies tend 

to places of weakest force . 73 

441. On ship's magnetism ..74 

CHAPTER VI. 

wkbeb's theory of induced magnetism. 

442. Experiments indicating a maximum of magnetization .. .. 79 

443. Weber's mathematical theory of temporary magnetization .. 81 

444. Modification of the theory to account for residual magnetization 85 

445. Explanation of phenomena by the modified theory. 87 

446. Magnetization, demagnetization, and remagnetization .. .. 90 

447. Effects of magnetization on the dimensions of the magnet .. 92 

448. Experiments of Joule .. .. ... 93 

CHAPTER VII. 

MAGNETIC MEASUREMENTS. 

449. Suspension of the magnet .95 

450. Methods of observation by mirror and scale. Photographic 

method.    96 

451. Principle of collimation employed in the Kew magnetometer*. 101 

452. Determination of the axis of a magnet and of the direction of 

the horizontal component of the magnetic force.101 

453. Measurement of the moment of a magnet and of the intensity 

of the horizontal component of magnetic force .104 

454. Observations of deflexion.107 

455. Method of tangents and method of sines.109 

456. Observation of vibrations.110 

457. Elimination of the effects of magnetic induction .112 

458. Statical method of measuring the horizontal force.114 

459. Rifilar suspension .115 

460. System of observations in an observatory .119 

461. Observation of the dip-circle.120 



CONTENTS. ix 

Art. Page 

462. J. A. Broun’s method of correction.123 

463. Joule's suspension .. ..124 

464. Balance vertical force magnetometer .126 

CHAPTER VIII. 

ON TERRESTRIAL MAGNETISM. 

465. Elements of the magnetic force .129 

466. Combination of the results of the magnetic survey of a country 130 

467. Deduction of the expansion of the magnetic potential of the 

earth in spherical harmonics ,.   132 

468. Definition of the earth’s magnetic poles. They are not at the 

extremities of the magnetic axis. False poles. They do not 

exist on the earth’s surface.132 

469. Gauss’ calculation of the 24 coefficients of the first four har¬ 

monics .133 

470. Separation of external from internal causes of magnetic force .. 134 

471. The solar and lunar variations.135 

472. The periodic variations.135 

473. The disturbances and their period of 11 years.135 

474. Reflexions on magnetic investigations .136 

PART IV. 

ELECTROMAGNETISM. 

CHAPTER I. 

ELECTROMAGNETIC FORCE. 

475. Orsted's discovery of the action of an electric current on a 

magnet.138 

476. The space near an electric current is a magnetic field .. .. 139 

47?. Action of a vertical current on a magnet.139 

478. Proof that the force due to a straight current of indefinitely 

great length varies inversely as the distance. .. 139 

479. Electromagnetic measure of the current. .. ..140 

480. Potential function due to a straight current. It is a function 

of many values .. .. .HO 



X CONTENTS. 

Art. # 

481. The action of this current compared with that of a magnetic 

shell having an infinite straight edge and extending on one 

side of this edge to infinity.141 

482. A small circuit acts at a great distance like a magnet .. .. 141 

483. Deduction from this of the action of a closed circuit of any form 

and size on any point not in the current itself.142 

484. Comparison between the circuit and a magnetic shell .. .. 142 

485. Magnetic potential of a closed circuit .143 

486. Conditions of continuous rotation of a magnet about a current 144 

487. Form of the magnetic equipotential surface due to a closed 

circuit. (Fig. XVIII).145 

488. Mutual action between any system of magnets and a closed 

current.146 

489. Reaction on the circuit.146 

490. Force acting on- a wire carrying a current and placed in the * 

magnetic field .148 

491. Theory of electromagnetic rotations.149 

492. Action of one electric circuit on the whole or any portion of 

another.151 

493. Our method of investigation is that of Faraday .151 

494. Illustration of the method applied to parallel currents .. .. 152 

495. Dimensions of the unit of current.152 

496. The wire is urged from the side on which its magnetic action 

strengthens the magnetic force and towards the aide on which 

it opposes it.153 

497. Action of an infinite straight current on any current in its 

plane .153 

498. Statement of the laws of electromagnetic force. Magnetic force 

due to a current.155 

499. Generality of these laws.155 

500. Force acting on a circuit placed in the magnetic field .. .. 156 

501. Electromagnetic force is a mechanical force acting on the con¬ 

ductor, not on the electric current itself .157 

CHAPTER II. 

AMP&BE’s INVESTIGATION OF THE MUTUAL ACTION OF ELECTB1C 

CUBBENT8. 

502. Ampere's investigation of the law of force between the elements 

of electric currents.158 

503. His method of experimenting.159 



CONTENTS. xi 

Art. Pago 

504. Ampere’s balance .. ..    159 

505. Amp&re's first experiment. Equ^l and opposite currents neu¬ 

tralize each other.159 

506. Second experiment. A crooked conductor is equivalent to af 

straight one carrying the same current.160 

507. Third experiment. The action of a closed current as an ele¬ 

ment of another current is perpendicular to that element .. 161 

508. Fourth experiment. Equal currents in Bystems geometrically 

similar produce equal forces.162 

509. In all of these experiments the acting current is a closed one .. 163 

510. Both circuits may, however, for mathematical purposes be con¬ 

ceived as consisting of elementary portions, and the action 

of the circuits as the resultant of the action of these elements 163 

511. Necessary form of the relations between two elementary por¬ 

tions of lines.   164 

512. The geometrical quantities which determine their relative 

position ..164 

513. Form of the components of their mutual action .165 

514. Resolution of these in three directions, parallel, respectively, to 

the line joining them and to the elements themselves .. 167 

515. General expression for the action of a finite current on the ele¬ 

ment of another .   167 

516. Condition furnished by Ampere's third case of equilibrium .. 168 

517. Theory of the directrix and the determinants of electrodynamic 

action .169 

518. Expression of the determinants in terms of the components 

of the vector-potential of the current.170 

519. The part of the force which is indeterminate can be expressed 

as the space-variation of a potential .170 

520. Complete expression for the action between two finite currents 171 

521. Mutual potential of two closed currents.171 

522. Appropriateness of quaternions in this investigation .. .. 171 

523. Determination of the form of the functions by Ampfere’s fourth 

case of equilibrium .172 

524. The electrodynamic and electromagnetic units of currents .. 172 

525. Final expressions for electromagnetic force between two ele¬ 

ments .173 

526. Four different admissible forms of the theory.173 

527. Of these Ampere’s is to be preferred .174 



CONTENTS. sii 

CHAPTER III. 

ON THE INDUCTION OF ELECTRIC CURRENTS. 

Art. Page 

528. Faraday's discovery. Nature of his methods.175 

529. The method of this treatise founded on that of Faraday .. .. 176 

530. Phenomena of magneto-electric induction .. .178 

531. General law of induction of currents .179 

532. Illustrations of the direction of induced currents.179 

533. Induction by the motion of the earth .180 

534. The electromotive force due to induction does not depend on 

the material of the conductor .181 

535. It has no tendency to move the conductor .182 

536. Fclici’s experiments on the laws of induction.182 

537. Use of the galvanometer to determine the time-integral of the 

electromotive force .184 

538. Conjugate positions of two coils .185 

539. Mathematical expression for the total current of induction 186 

540. Faraday’s conception of an electrotonic state.187 

541. His method of stating the laws of induction with reference to 

the lines of magnetic force.188 

542. The law of Lenz, and Neumann’s theory of induction .. .. 189 

543. Helmholtz’s deduction of induction from the mechanical action 

of currents by the principle of conservation of energy .. .. 190 

544. Thomson’s application of the same principle.191 

545. Weber’s contributions to electrical science .193 

CHAPTER IV. 

ON THE INDUCTION OP A CURBENT ON ITSELF. 

546. Shock given by an electromagnet.195 

547. Apparent momentum of electricity .. .. ,.195 

548. Difference between this case and that of a tube containing a 

current of water.. .. ## .190 

549. If there is momentum it is not that of the moving electricity.. 196 

550. Nevertheless the phenomena are exactly analogous to those of 
momentum .   j9g 

551. An electric current has energy, which may be called electro- 
kinetic energy .. 

552. This leads us to form a dynamical theory of electric currents197 



CONTENTS. xiii 

CHAPTER V. 

ON THE EQUATIONS OP MpTION OP A CONNECTED SYSTEM. 

Art. Page 

553. Lagrange’s method furnishes appropriate ideas for the study of 

the higher dynamical sciences .199 

554. These ideas must be translated from mathematical into dy¬ 

namical language.199 

555. Degrees of freedom of a connected system .200 

556. Generalized meaning of velocity .201 

557. Generalized meaning of force.201 

558. Generalized meaning of momentum and impulse.201 

559. Work done by a small impulse .203 

560. Kinetic energy in terms of momenta, (Tp)  203 

561. Hamilton’s equations of motion .205 

562. Kinetic energy in terms of the velocities and momenta, (7^) .. 206 

563. Kinetic energy in terms of velocities, (Tj) .206 

564. Relations between Tp and T(-n p and q.207 

565. Moments and products of inertia and mobility .208 

566. Necessary conditions which these coefficients must satisfy .. 209 

567. Relation between mathematical, dynamical, and electrical 

ideas .209 

CHAPTER VI. 

DYNAMICAL THEORY OF ELECTROMAGNETISM. 

568. The electric current possesses energy .211 

569. The current is a kinetic phenomenon .211 

570. Work done by electromotive force.212 

571. The most general expression for the kinetic energy of a system 

including electric currents.213 

572. The electrical variables do not appear in this expression .. 214 

573. Mechanical force acting on a conductor .. .. .215 

574. The part depending on products of ordinary velocities and 

strengths of currents does not exist.. .. 216 

575. Another experimental test .218 

576. Discussion of the electromotive force .220 

577. If terms involving products of velocities and currents existed 

they would introduce electromotive forces, which are not ob¬ 

served .221 



XIV CONTENTS. 

CHAPTER VII. 

THEORY OF ELECTRIC CIRCUITS. 
Art. Page 

578. The electrokinetic energy of a system of linear circuits .. .. 223 

579. Electromotive force in each circuit.224 

580. Electromagnetic force .225 

581. Case of two circuits.226 

582. Theory of induced currents .226 

583. Mechanical action between the circuits.227 

584. All the phenomena of the mutual action of two circuits depend 

on a single quantity, the potential of the two circuits .. .. 228 

CHAPTER VIH. 

EXPLORATION OF THE FIELD BY MEANS OF THE SECONDARY 

CIRCUIT. 

585. The electrokinetic momentum of the secondary circuit .. .. 229 

586. Expressed as a line-integral.230 

58»7. Any system of contiguous circuits is equivalent to the circuit 

formed by their exterior boundary . .. .. 230 

588. Electrokinetic momentum expressed as a surface-integral .. 230 

589. A crooked portion of a circuit equivalent to a straight 

portion.231 

590. Electrokinetic momentum at a point expressed as a vector, 51.. 232 

591. Its relation to the magnetic induction, 33. Equations (A) .. 233 

592. Justification of these names .234 

593. Conventions with respect to the signs of translations and rota¬ 

tions .234 

594. Theory of a sliding piece.235 

595. Electromotive force due to the motion of a conductor .. .. 236 

596. Electromagnetic force on the sliding piece . .. 237 

S’97. Four definitions of a line of magnetic induction .237 

598. General equations of electromotive force, (B).238 

599. Analysis of the electromotive force.240 

600. The general equations referred to moving axes .241 

601. The motion of the axes changes nothing but the apparent value 

of the electric potential.243 



CONTENTS. xv 

Art. Page 

602. Electromagnetic force on a conductor .. .243 

603. Electromagnetic force on an element of a conducting body. 

Equations (C) .244 

CHAPTER IX. 

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD. 

604. Recapitulation.247 

605. Equations of magnetization, (D)  248 

606. Relation between magnetic force and electric currents .. .. 249 

607. Equations of electric currents, (E).250 

608. Equations of electric displacement, (F).252 

609. Equations of electric conductivity, (G).253 

610. Equations of total currents, (H)  253 

611. Currents in terms of electromotive force, (I).253 

612. Volume-density of free electricity, (J)  254 

613. Surface-density of free electricity, (K).254 

614. Equations of magnetic permeability, (L).254 

615. Ampere's theory of magnets.254 

616. Electric currents in terms of electrokinetic momentum .. .. 255 

617. Vector-potential of electric currents .256 

618. Quaternion expressions for electromagnetic quantities .. .. 257 

619. Quaternion equations of the electromagnetic field.258 

Appendix to Chapter IX .259 

CHAPTER X. 

DIMENSIONS OF ELECTRIC UNITS. 

620. Two systems of units .263 

621. The twelve primary quantities.263 

622. Fifteen relations among these quantities.264 

623. Dimensions in terms of [e] and [m].265 

624. Reciprocal properties of the two systems .266 

625. The electrostatic and the electromagnetic systems.266 

626. Dimensions of the twelve quantities in the two systems .. 267 

627. The six derived units .. .267 

628. The ratio of the corresponding units in the two systems .. 267 

629. Practical system of electric units. Table of practical units .. 268 



xvi CONTENTS. 

CHAPTER XL 

ON ENERGY AND STRESS IN THE ELECTROMAGNETIC FIELD, 

Art. Page 

630. The electrostatic energy expressed in terms of the free elec¬ 

tricity and the potential .270 

631. The electrostatic energy expressed in terms of the electromotive 

force and the electric displacement .270 

632. Magnetic energy in terms of magnetization and magnetic 

force .271 

633. Magnetic energy in terras of the square of the magnetic 

force .   271 

634. Electrokinetic energy in terms of electric momentum and electric 

current.272 

635. Electrokinetic energy in terms of magnetic induction and 

magnetic force .273 

636. Method of this treatise.273 

637. Magnetic energy and electrokinetic energy compared .. .. 274 

638. Magnetic energy reduced to electrokinetic energy.275 

639. The force acting on a particle of a substance due to its magnet¬ 

ization .276 

640. Electromagnetic force due to an electric current passing 

through it .276 

641. Explanation of these forces by the hypothesis of stress in a 

medium .278 

642. General character of the stress required to produce the pheno¬ 

mena .279 

643. When there is no magnetization the stress is a tension in the 

direction of the lines of magnetic force, combined with a 

piessure in all directions at right angles to these lines, the 

magnitude of the tension and pressure being A $3, where $ 
Sw 

is the magnetic force.281 

644. Force acting on a conductor carrying a current .282 

645. Theory of stress in a medium as stated by Faraday .. .. 282 

646. Numerical value of magnetic tension .283 

Appendix I .284 

Appendix II.285 



CONTENTS. xvii 

CHAPTER XII. 

CURRENT-SHEETS. 

Art. Paxt? 

647. Definition of a current-sheet.286 

648. Current-function .286 

649. Electric potential .287 

650. Theory of steady currents .287 

651. Case of uniform conductivity.287 

652. Magnetic action of a current-sheet with closed currents .. .. 288 

653. Magnetic potential due to a current-sheet .289 

654. Induction of currents in a sheet of infinite conductivity .. .. 290 

655. Such a sheet is impervious to magnetic action .290 

656. Theory of a plane current-sheet ..  291 

657. The magnetic functions expressed as derivatives of a single 

function.291 

658. Action of a variable magnetic system on the sheet.293 

659. When there is no external action the currents decay, and their 

magnetic action diminishes as if the sheet had moved off with 

constant velocity R .294 

660. The currents, excited by the instantaneous introduction of a 

magnetic system, produce an effect- equivalent to an image of 

that system.295 

661. This image moves away from its original position with velo¬ 

city R.296 

662. Trail of images formed Dy a magnetic system in continuous 

motion.296 

663. Mathematical expression for the effect of the induced currents 297 

664. Case of the uniform motion of a magnetic pole .297 

665. Value of the force acting on the magnetic pole .298 

666. Case of curvilinear motion .299 

667. Case of motion near the edge of the sheet .299 

668. Theory of Arago's rotating disk .300 

669. Trail of images in the form of a helix.303 

670. Spherical current-sheets.304 

671. The vector-potential.305 

672. To produce a field of constant magnetic force within a spherical 

shell .306 

673. To produce a constant force on a suspended coil.306 

674. Currents parallel to a plane  307 

VOL. ii. b 



CONTENTS. xviii 

Art. Page 

675. A plane electric circuit. A spherical shell. An ellipsoidal 

shell .308 

676. A solenoid .. .. .309 

677. A long solenoid .310 

678. Force near the ends.311 

679. A pair of induction coils.311 

680. Proper thickness of wire.312 

681. An endless solenoid.313 

CHAPTER XIII. 

PARALLEL CURRENTS. 

682. Cylindrical conductors.315 

683. The external magnetic action of a cylindric wire depends only 

on the whole current through it.316 

684. The vector-potential.317 

685. Kinetic energy of the current.. .. 317 

686. Repulsion between the direct and the return current .. .. 318 

687. Tension of the wires. Ampere's experiment.318 

688 Self-induction of a wire doubled on itself .320 

689. Currents of varying intensity in a cylindric wire.320 

690. Relation between the electromotive force and the total 

current.*.322 

691. Geometrical mean distance of two figures in a plane .. .. 324 

092. Particular cases .326 

693. Application of the method to a coil of insulated wires .. .. 328 

CHAPTER XIV. 

CIRCULAR CURRENTS. 

694. Potential due to a spherical bowl.331 

695. Solid angle subtended by a circle at any point .. .. 333 

696. Potential energy of two circular currents .334 

697. Moment of the couple acting between two coils .335 

698. Values of P{.336 

699. Attraction between two parallel circular currents.. 336 

700. Calculation of the coefficients for a coil of finite section .. .. 337 

701. Potential of two parallel circles expressed by elliptic integrals 338 



CONTENTS. xix 

Art* ^ Pa^c 

702. Lines of force round a circular current. (Fig. XVIII).. .. 340 

703. Differential equation of the potential of two circles .. .. 341 

704. Approximation when the circles are very near one another .. 342 

705. Further approximation .343 

706. Coil of maximum self-induction .  345 

Appendix I .. 

Appendix II .. 

Appendix III.350 

CHAPTER XV. 

ELECT KOMAGNET1C INSTRUMENTS. 

707. Standard galvanometers and sensitive galvanometers .. .. 351 

708. Construction of a standard coil .352 

709. Mathematical theory of the galvanometer .353 

710. Principle of the tangent galvanometer and the sine galvano¬ 

meter .354 

711. Galvanometer with a single coil .354 

712. Gaugain’s eccentric suspension.356 

713. Helmholtz's double coil. (Fig. XIX) .356 

714. Galvanometer with four coils.357 

715. Galvanometer with three coils. .. 358 

716. Proper thickness of the wire of a galvanometer .359 

717. Sensitive galvanometers.360 

718. Theory of the galvanometer of greatest sensibility.360 

719. Law of thickness of the wire.361 

720. Galvanometer with wire of uniform thickness.364 

721. Suspended coils. Mode of suspension.364 

722. Thomson's sensitive coil.  365 

723. Determination of magnetic force by means of suspended coil 

and tangent galvanometer .366 

724. Thomson s suspended coil and galvanometer combined .. .. 366 

725. Weber's electrodynamometer.367 

726. Joule’s current-weigher.371 

727. Suction of solenoids.372 

728. Uniform force normal to suspended coil.3? 2 

729. Electrodynamometer with torsion-arm.373 



xx CONTENTS. 

CHAPTER XVI. 

ELECTROMAGNETIC OBSERVATIONS. 

Art. Pa8® 

730. Observation of vibrations.374 

731. Motion in a logarithmic spiral.375 

732. Rectilinear oscillations in a resisting medium .376 

733. Values of successive elongations .377 

734. Data and qusesita . .. .. 377 

735. Position of equilibrium determined from three successive elon¬ 

gations .. ..  377 

736. Determination of the logarithmic decrement.378 

737. When to stop the experiment.378 

738. Determination of the time of vibration from three transits 379 

739. Two series of observations .379 

740. Correction for amplitude and for damping .380 

741. Dead beat galvanometer.381 

742. To measure a constant current with the galvanometer .. .. 382 

743. Best angle of deflexion of a tangent galvanometer.382 

744. Best method of introducing the current.383 

745. Measurement of a current by the first elongation.384 

746. To make a series of observations on a constant current.. .. 384 

747. Method of multiplication for feeble currents.385 

748. Measuremen4 of a transient current by first elongation .. .. 386 

749. Correction for damping.   387 

750. Series of observations. Zuriickwerfungsmethode .. .. .. 388 

751. Method of multiplication.390 

CHAPTER XVH. 

COMPARISON OF COILS. 

752. Electrical measurement sometimes more accurate than direct 

measurement.392 

753. Determination of Gx.393 

754. Determination of gx.394 

755. Determination of the mutual induction of two coils .. .. 395 

756. Determination of the self-induction of a coil.397 

757. Comparison of the self-induction of two coils.398 

Appendix to Chapter XVII .399 



CONTENTS. xxi 

CHAPTER XYHI. 

ELECTROMAGNETIC UNIT OF RESISTANCE. 

Art. 

753. Definition of resistance.402 

759. KirclihoiFs method.402 

760. Weber’s method by transient currents.404 

761. His method of observation .405 

762. Weber’s method by damping.405 

763. Thomson's method by a revolving coil.408 

764. Mathematical theory of the revolving coil .409 

765. Calculation of the resistance.410 

766. Corrections .411 

767. Joule’s calorimetric method .411 

CHAPTER XIX. 

COMPARISON OF THE ELECTROSTATIC WITH THE ELECTROMAGNETIC 

UNITS. 

768. Nature and importance of the investigation.413 

769. The ratio of the units is a velocity.414 

770. Current by convection .415 

771. Weber and Kohlrausch's method.416 

772. Thomson's method by separate electrometer and electrodyna¬ 

mometer .417 

773. Maxwell's method by combined electrometer and electrouyna- 

mometer.418 

774. Electromagnetic measurement of the capacity of a condenser. 

J enkin’s method.419 

775. Method by an intermittent current.420 

776. Condenser and Wippe as an arm of Wheatstone’s bridge .. 421 

777. Correction when the action is too rapid.423 

778. Capacity of a condenser compared with the self-induction of 

a coil . .. 425 

779. Coil and condenser combined.427 

780. Electrostatic measure of resistance compared with its electro¬ 

magnetic measure.430 



XXII CONTENTS. 

CHAPTER XX. 

ELECTROMAGNETIC THEORY OF LIGHT. 
Art. Page 

781. Comparison of the properties of the electromagnetic medium 

with those of the medium in the undulatory theory of light 431 

782. Energy of light during its propagation.432 

783. Equation of propagation of an electromagnetic disturbance .. 433 

784. Solution when the medium is a non-conductor .434 

785. Characteristics of wave-propagation .. .. 435 

786. Velocity of propagation of electromagnetic disturbances .. 435 

787. Comparison of this velocity with that of light .436 

788. The specific inductive capacity of a dielectric is the square of 

its index of refraction.437 

789. Comparison of these quantities in the case of paraffin .. .. 437 

790. Theory of plane waves .438 

791. The electric displacement and the magnetic disturbance are in 

the plane of the wave-front, and perpendicular to each other 439 

792. Energy and stress during radiation.440 

793. Pressure exerted by light.441 

794. Equations of motion in a crystallized medium .442 

795. Propagation of plane waves .444 

796. Only two waves are propagated ..  444 

797. The theory agrees with that of Fresnel.445 

798. Relation between electric conductivity and opacity .. .. 445 

799. Comparison with facts .446 

800. Transparent metals.446 

801. Solution of the equations when the medium is a conductor .. 447 

802. Case of an infinite medium, the initial state being given .. 447 

803. Characteristics of diffusion .448 

804. Disturbance of the electromagnetic field when a current begins 

to flow.448 

805. Rapid approximation to an ultimate state .449 

CHAPTER XXI. 

MAGNETIC ACTION ON LIGHT. 

806. Possible forms of the*relation between magnetism and light .. 451 

807. The rotation of the plane of polarization by magnetic action 452 

808. The laws of the phenomena .452 

809. Verdet’s discovery of negative rotation in ferromagnetic media 453 



CONTENTS. xxiii 

Art. Pag. 

810. Kotation produced by quartz, turpentine, &c., independently of 

magnetism .453 

811. Kinematical analysis of the phenomena.454 

812. The velocity of a circularly-polarized ray is different according 

to its direction of rotation.455 

813. Right and left-handed rays .455 

814. In media which of themselves have the rotatory property the 

velocity is different for right and left-handed configurations 456 

815. In media acted on by magnetism the velocity is different for 

opposite directions of rotation .456 

816. The luminiferous disturbance, mathematically considered, is a 

vector.457 

817. Kinematic equations of circularly-polarized light.457 

818. v Kinetic and potential energy of the medium.458 

819. Condition of wave-propagation .459 

820. The action of magnetism must depend on a real rotation about 

the direction of the magnetic force as an axis .459 

821. Statement of the results of the analysis of the phenomenon .. 460 

822. Hypothesis of molecular vortices.401 

823. Variation of the vortices according to Helmholtz's law .. .. 462 

824. Variation of the kinetic energy in the disturbed medium .. 462 

825. Expression in terms of the current and the velocity .. .. 463 

826. The kinetic energy in the case of plane waves .463 

827. The equations of motion.464 

828. Velocity of a circularly-polarized ray .464 

829. The magnetic rotation .465 

830. Researches of Verdet .466 

831. Note on a mechanical theory of molecular vortices.468 

CHAPTER XXII. 

FERROMAGNETISM AND DIAMAGNETISM EXPLAINED BY MOLECULAR 

CURRENTS. 

832. Magnetism is a phenomenon of molecules .471 

833. The phenomena of magnetic molecules may he imitated by 

electric currents.472 

834. Difference between the elementary theory of continuous mag¬ 

nets and the theory of molecular currents.472 

835. Simplicity of the electric theory .473 

836. Theory of a current in a perfectly conducting circuit .. ., 474 

837. Case in which the current is entirely due to induction .. .. 474 



XXIV CONTENTS. 

Art, Page 

83S. Weber's theory of diamagnetism .475 

839. Magnecrystallic induction . ..475 

840. Theory of a perfect conductor.470 

841. A medium containing perfectly conducting spherical molecules 470 

842. Mechanical action of magnetic force on the current which it 

excites.477 

843. Theory of a molecule with a primitive current .477 

844. Modifications of Weber’s theory .478 

845. Consequences of the theory .479 

CHAPTER XXIII. 

THEORIES OF ACTION AT A DISTANCE. 

846. Quantities which enter into Ampere’s formula .480 

847. Relative motion of two electric particles.480 

848. Relative motion of four electric particles. Fechners theory .. 481 

849. Two new forms of Ampere's formula .482 

850. Two different expressions for the force between two electric 

particles in motion .482 

851. These are due to Gauss and to Weber respectively.483 

852. All forces must be consistent with the principle of the con¬ 

servation of energy .483 

853. Weber’s formula is consistent with this principle but that of 

Gauss is not.484 

854. Helmholtz’s deductions from Weber’s formula.484 

855. Potential of two currents.485 

850. Weber’s theory of the induction of electric currents .. .. 480 

857. Segregating force in a conductor.487 

858. Case of moving conductors .488 

859. The formula of Gauss leads to an erroneous result.489 

860. That of Weber agrees with the phenomena .489 

801. Letter of Gauss to Weber.489 

802. Theory of Riemann.490 

863. Theory of 0. Neumann .490 

864. Theory of Betti.491 

865. Repugnance to the idea of a medium .492 

866. The idea of a medium cannot be got rid of .492 



PART III. 

MAGNETISM. 

CHAPTER I. 

ELEMENTARY THEORY OF MAGNETISM. 

371. ] Certain bodies, as, for instance, the iron ore called load¬ 

stone, the earth itself, and pieces of steel which have been 

subjected to certain treatment, are found to possess the following 

properties, and are called Magnets. 

If, near any part of the earth’s surface except the Magnetic 

Poles, a magnet be suspended so as to turn freely about a 

vertical axis, it will in general tend to set itself in a certain 

azimuth, and if disturbed from this position it will oscillate 

about it. An unmagnetized body has no such tendency, but is 

in equilibrium in all azimuths alike. 

372. ] It is found that the force which acts on the body tends 

to cause a certain line in the body, called the Axis of the 

Magnet, to become parallel to a certain line in space, called the 

Direction of the Magnetic Force. 

Let us suppose the magnet suspended so as to be free to 

turn in all directions about a fixed point. To eliminate the action 

of its weight we may suppose this point to be its centre of 

gravity. Let it come to a position of equilibrium. Mark two 

points on the magnet, and note their positions in space. Then 

let the magnet be placed in a new position of equilibrium, 

and note the positions in space of the two marked points on 

the magnet. 

Since the axis of the magnet coincides with the direction 

of magnetic force in both positions, we have to find that line 

VOL. II. B 
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in the magnet which occupies the same position in space before 
and after the motion. It appears, from the theory of the 

motion of bodies of invariable form, that such a line always 

exists, and that a motion equivalent to the actual motion might 
have taken place by simple rotation round this line. 

To find the line, join the first and last positions of each of 

the marked points, and draw planes bisecting these lines at 
right angles. The intersection of these planeB will be the line 

required, which indicates the direction of the axis of the magnet 

and the direction of the magnetic force in space. 
The method just described is not convenient for the practical 

determination of these directions. Wo shall return to this subject 

when we treat of Magnetic Measurements. 

The direction of the magnetic force is found to be different 

at different parts of the earth’s surface. If the end of the axis 
of the magnet which points in a northerly direction be marked, 
it has been found that the direction in which it sets itself in 

general deviates from the true meridian to a considerable extent, 

and that the marked end points on the whole downwards 
in the northern hemisphere and upwards in the southern. 

The azimuth of the direction of the magnetic force, measured 

from the true north in a westerly direction, is called the 

Variation, or the Magnetic Declination. The angle between the 

direction of the magnetic force and the horizontal plane is called 

the Magnetic Dip. These two angles determine the direction 
of the magnetic force, and, when the magnetic intensity is 

also known, the magnetic force is completely determined. The 

determination of the values of these three elements at different 

parts of the earth’s surface, the discussion of the manner in 

which they vary according to the place and time of observation, 

and the investigation of the causes of the magnetic force and its 

variations, constitute the science of Terrestrial Magnetism. 

373.] Let us now suppose that the axes of several magnets 

have been determined, and the end of each which points north 

marked. Then, if one of these magnets be freely suspended and 

another brought near it, it is found that two marked ends repel 

each other, that a marked and an unmarked end attract each 

other, and that two unmarked ends repel each other. 

If the magnets are in the form of long rods or wires, 

uniformly and longitudinally magnetized, (see below, Art. 384,) 
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it ia found that the greatest manifestation of force occurs when 
the end of one magnet is held near the end of the other, and 
that the phenomena can be accounted for by supposing that 
like ends of the magnets repel each other, that unlike ends 
attract each other, and that the intermediate parts of the 
magnets have no sensible mutual action. 

The ends of a long thin magnet are commonly called its Poles. 
In the case of an indefinitely thin magnet, uniformly magnetized 
throughout its length, the extremities act as centres of force, and 
the rest of the magnet appears devoid of magnetic action. In 
all actual magnets the magnetization deviates from uniformity, 
so that no single points can be taken as the poles. Coulomb, 
however, by using long thin rods magnetized with care, succeeded 
in establishing the law of force between two like magnetic 
poles* {the medium between them being air}. 

The repulsion between two like magnetic poles is in the straight 

line joining them, and is numerically equal to the product 
of the strengths of the poles divided by the square of the dis¬ 
tance between them. 

374.] This law, of course, assumes that the strength of each 
pole is measured in terms of a certain unit, the magnitude of 
whioh may be deduced from the terms of the law. 

The unit-pole is a pole which points north, and is such that, 
when placed at unit distance in air from another unit-pole, it 
repels it with unit of force, the unit of force being defined as in 
Art. 6. A pole which points south is reckoned negative. 

If m1 and m2 are the strengths of two magnetic poles, l the 
distance between them, and /the force of repulsion, all expressed 

numerically, then m m 
/ - —p- • 

But if [m], [X] and [JT] be the concrete units of magnetic pole, 

length and force, then 

whence it follows that 

or [m] = [XU7-1 Jtf]. 

• Coulomb, MOn. de VA cad. 1785, p. 608, and in Biot’s Traitt de Physique, tome iii. 
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The dimensions of the unit-pole are therefore f as regards length, 

( — 1) as regards time, and £ as regards mass. These dimensions 

are the same as those of the electrostatic unit of electricity, 
which is specified in exactly the same way in Arts. 41, 42. 

375.] The accuracy of this law may be considered to have 

been established by the experiments of Coulomb with the Torsion 
Balance, and confirmed by the experiments of Gauss and Weber, 

and of all observers in magnetic observatories, who are every day 

making measurements of magnetic quantities, and who obtain 
results which would be inconsistent with each other if the law 

of force had been erroneously assumed. It derives additional 

support from its consistency with the laws of electromagnetic 
phenomena. 

876.] The quantity which we have hitherto called the strength 

of a pole may also be called a quantity of c Magnetism/ provided 

we attribute no properties to ‘ Magnetism ’ except those observed 

in the poles of magnets. 

Since the expression of the law of force between given quan¬ 

tities of 1 Magnetism * has exactly the same mathematical form 

as the law of force between quantities off Electricity * of equal 

numerical value, much of the mathematical treatment of mag¬ 

netism must be similar to that of electricity. There are, however, 
other properties of magnets which must be borne in mind, and 

which may throw some light on the electrical properties of bodies. 

Relation between the Poles of a Magnet. 

377.] The quantity of magnetism at one pole of a magnet is 

always equal and opposite to that at the other, or more generally 
thus:— 

In every Magnet the total quantity of Magnetism (reckoned 
algebraically) ^ zero. 

Hence in a field of force which is uniform and parallel through¬ 

out the space occupied by the magnet, the force acting on the 

marked end of the magnet is exactly equal, opposite and parallel 

to that on the unmarked end, so that the resultant of the forces 

is a statical couple, tending to place the axis of the magnet in a 

determinate direction, but not to move the magnet as a whole in 

any direction. 

This may be easily proved by putting the magnet into a small 

vessel and floating it in water. The vessel will turn in a certain 
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direction, so as to bring the axis of the magnet as near as possible 
to the direction of the earth’s magnetic force, but there will be 

no motion of the vessel as a whole in any direction; so that 
there can be no excess of the force towards the north over that 
towards the south, or the reverse. It may also be shewn from 
the fact that magnetizing a piece of steel does not alter its weight. 
It does alter the apparent position of its centre of gravity, causing 
it in these latitudes to shift along the axis towards the north. 

The centre of inertia, as determined by the phenomena of rota¬ 
tion, remains unaltered. 

378. ] If the middle of a long thin magnet be examined, it 
is found to possess no magnetic properties, but if the magnet be 
broken at that point, each of the pieces is found to have a mag¬ 
netic pole at the place of fracture, and this new pole is exactly 
equal and opposite to the other pole belonging to that piece. It 
is impossible, either by magnetization, or by breaking magnets, or 
by any other means, to procure a magnet whose poles are unequal. 

If we break the long thin magnet into a number of short 
pieces we shall obtain a series of short magnets, each of which 
has poles of nearly the same strength as those of the original 
long magnet. This multiplication of poles is not necessarily a 
creation of energy, for we must remember that after breaking 
the magnet we have to do work to separate the parts, in con¬ 
sequence of their attraction for one another. 

379. ] Let us now put all the pieces of the magnet together as 
at first. At each point of junction there will be two poles 
exactly equal and of opposite kinds, placed in contact, so that 
their united action on any other pole will be null. The magnet, 
thus rebuilt, has therefore the same properties as at first, namely 

two poles, one at each end, equal and opposite to each other, and 
the part between these poles exhibits no magnetic action. 

Since, in this case, we know the long magnet to be made up of 

little short magnets, and since the phenomena are the same as in 

the case of the unbroken magnet, we may regard the magnet, 
even before being broken, as made up of small particles, each of 
which has two equal and opposite poles. If we suppose all 
magnets to be made up of such particles, it is evident that since 
the algebraical quantity of magnetism in each particle is zero, 

the quantity in the whole magnet will also be zero, or in other 

words, its poles will be of equal strength but of opposite kind. 
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Theory of ‘ Magnetic Matter' 

380.] Since the form of the law of magnetic action is identical 

with that of electric action, the same reasons which can be given 
for attiibuting electric phenomena to the action of one ‘ fluid ’ 

or two 4 fluids ’ can also be used in favour of the existence of a 

magnetic matter, or of two kinds of magnetic matter, fluid or 
otherwise. In fact, a theory of magnetic matter, if used in a 

purely mathematical sense, cannot fail to explain the phenomena, 

provided new laws are freely introduced to account for the actual 

facts. 

One of these new laws must be that the magnetic fluids cannot 
pass from one molecule or particle of the magnet to another, but 

that the process of magnetization consists in separating to a 

certain extent the two fluids within each particle, and causing 

the one fluid to be more concentrated at one end, and the other 

fluid to be more concentrated at the other end of the particle. 

This is the theory of Poisson. 
A particle of a magnetizable body is, on this theory, analogous 

to a small insulated conductor without charge, which on the 

two-fluid theory contains indefinitely large but exactly equal 

quantities of the two electricities. When an electromotive force 
acts on the conductor, it separates the electricities, causing them 

to become manifest at opposite sides of the conductor. In a 

similar manner, according to this theory, the magnetizing force 
causes the two kinds of magnetism, which were originally in 

a neutralized state, to be separated, and to appear at opposite 

sides of the magnetized particle. 
In certain substances, such as soft iron and those magnetic 

substances which cannot be permanently magnetized, this mag¬ 

netic condition, like the electrification of the conductor, disappears 
when the inducing force is removed *. In other substances, such 

as hard steel, the magnetic condition is produced with difficulty, 

and, when produced, remains after the removal of the inducing 
force. 

This is expressed by saying that in the latter case there is a 

Coercive Force, tending to prevent alteration in the magnetiza¬ 

tion, which must be overcome before the power of a magnet 

can be either increased or diminished. In the case of the 

* {See foot-note to page } 
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electrified body this would correspond to a kind of electric 

resistance, which, unlike the resistance observed in metals, would 

be equivalent to complete insulation for electromotive forces 
below a certain value. 

This theory of magnetism, like the corresponding theory of 

electricity, is evidently too large for the facts, and requires to be 

restricted by artificial conditions. For it not only gives no 

reason why one body may not differ from another on account of 

having more of both fluids, but it enables us to say what would 

be the properties of a body, containing an excess of one magnetic 

fluid. It is true that a reason is given why such a body cannot 

exist, but this reason is only introduced as an after-thought 
to explain this particular fact. It does not grow out of the 
theory. 

381.] We must therefore seek for a mode of expression which 

shall not be capable of expressing too much, and which shall leave 

room for the introduction of new ideas as these are developed 

from new facts. This, I think, we shall obtain if we begin by 

saying that the particles of a magnet are Polarized. 

Meaning of the term ‘Polarization.’ 

When a particle of a body possesses properties related to a 
certain line or direction in the body, and when the body, re¬ 

taining these properties, is turned so that this direction is 
reversed, then if as regards other bodies these properties of the 

particle are reversed, the particle, in reference to these proper¬ 

ties, is said to be polarized, and the properties are said to 

constitute a particular kind of polarization. 

Thus we may say that the rotation of a body about an axis 

constitutes a kind of polarization, because if, while the rotation 

continues, the direction of the axis is turned end for end, the 
body will be rotating in the opposite direction as regards space. 

A conducting particle through which there is a current of 
electricity may be said to be polarized, because if it were turned 
round, and if the current continued to flow in the same direc¬ 

tion as regards the particle, its direction in space would be 
reversed. 

In short, if any mathematical or physical quantity is of the 

nature of a vector, as defined in Art. 11, then any body or 

particle to which this directed quantity or vector belongs may 
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be said to be Polarized *, because it bas opposite properties in 

the two opposite directions or poles of the directed quantity. 

The poles of the earth, for example, have reference to its 
rotation, and have accordingly different names. 

Meaning of the term i Magnetic Polarization.’ 

382.] In speaking of the state of the particles of a magnet as 

magnetic polarization, we imply that each of the smallest parts 

into which a magnet may be divided has oertain properties 
related to a definite direction through the particle, called its 
Axis of Magnetization, and that the properties related to one end 

of this axis are opposite to the properties related to the other 
end. 

The properties which we attribute to the particle are of the 

same kind as those which we observe in the complete magnet, 
and in assuming that the particles possess these properties, we 

only assert what we can prove by breaking the magnet up into 

small pieces, for each of these is found to be a magnet. 

Properties of a Magnetized Particle. 

383.] Let the element dx dy dz be a particle of a magnet, and 

let us assume that its magnetic properties are those of a magnet 
the strength of whose positive pole is m, and whose length is ds. 

Then if P is any point in space distant r from the positive pole 

and r' from the negative pole, the magnetic potential at P will 

be ™ due to the positive pole, and — ^ due to the negative pole, 

or 
TT ^ ( / \ 
V - — (r -r). rfv ~ '/• C1) 

If ds, the distance between the poles, is very small, we may 

Pu^ r'—r — ds cos e, (2) 

♦ The word Polarization has been used in a sense not consistent with this in 
Optic*, where a ray of light is said to be polarized when it has properties relating 
to its sides, which are identical on opposite sides of the ray. This kind of polarization 
refers to another kind of Directed Quantity, which may be called a Dipolar Quantity, 
in opposition to the former kind, which may be called 8 Unipolar. 

When a dipolar quantity is turned end for end it remains the same as before. 
Tensions and Pressures in solid bodies, Extensions, Compressions, and Distortions 
and most of the optical, electrical, and magnetic properties of crystallized bodies 
are dipolar quantities. 

The property produced by magnetism in transparent bodies of twisting the plane 
of polarisation of the incident light, is, like magnetism itself, a unipolar property. 
The rotatory property referred to in Art. 803 is also unipolar. 
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where « is the angle between the vector drawn from the magnet 
to P and the axis of the magnet *, or in the limit 

Tr m(l8 .. 
V= —COSe. (3) 

Magnetic Moment. 

384. ] The product of the length of a uniformly and longitud¬ 

inally magnetized bar magnet into the strength of its positive 
pole is called its Magnetic Moment. 

Intensity of Magnetization. 

The intensity of magnetization of a magnetic particle is the 
ratio of its magnetic moment to its volume. We shall denote it 
by I. 

The magnetization at any point of a magnet may be defined 
by its intensity and its direction. Its direction may be defined 
by its direction-cosines A, /a, v. 

Components of Magnetization. 

The magnetization at a point of a magnet (being a vector or 

directed quantity) may be expressed in terms of its three com¬ 

ponents referred to the axes of coordinates. Calling these 

A,B,C, A = I\, B = I fji, C = Iv, (4) 

and the numerical value of I is given by the equation 

= <A* + .B* + C* (5) 
385. ] If the portion of the magnet which we consider is the 

differential element of volume dxdydz, and if I denotes the 
intensity of magnetization of this element, its magnetic moment 
is I dxdydz. Substituting this for mds in equation (3), and 

remembering that 

r cos € = \ {£-x) + ii(ri-~y) + v((—z), (6) 

where £, ?jf ( are the coordinates of the extremity of the vector r 

drawn from the point (&, y, z\ we find for the potential at the 

point (£, Q due to the magnetized element at (x, y, z)} 

{A ($- x) + B (ri - y) + C (c- z)} p dx dy dz. (7) 

To obtain the potential at the point (£, C) due to a magnet of 
finite dimensions, we must find the integral of this expression for 

* {The positive direction of the axis i« from the negative to the positive pole.} 
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every element of volume included within the space occupied by 

the magnet, or 

V=fff {A(i-x) + B(r,-y) + C((-z)}±dxdydz. (8) 

Integrated by parts, this becomes 

F = JJA ~ dydz+j'JB 1 dzdx +j J0 1 dxdy 

rrnAA dB dC\ y . 7 -JjjridS + dy + ^dydz. 
where the double integration in the first three terms refers to 

the surface of the magnet, and the triple integration in the 

fourth to the spaco within it. 
If ly m, n denote the direction-cosines of the normal drawn 

outwards from the element of surface dS, we may write, as in 

Art. 21, for the sum of the first three terms 

// (l A + rriB + nC) -dS, \ r 

where the integration is to be extended over the whole surface 

of the magnet. 
If we now introduce two new Bymbols a and p, defined by the 

equations <r = l A + mB + nC, 

yd A dB dCv 

^ dx + dy + dz'9 

the expression for the potential may be written 

F= ffl<lS+JJJ^dxdydz. 

386.] This expression is identical with that for the electric 

potential due to a body on the surface of which there is an 

electrification whose surface-density is <ry while throughout its 

substance there is a bodily electrification whose volume-density 

is p. Hence, if we assume a and p to be the surface- and volume- 
densities of the distribution of an imaginary substance, which 

we have called ‘ magnetic matter,’ the potential due to this 

imaginary distribution will be identical with that due to the 

actual magnetization of every element of the magnet. 

The surface-density cr is the resolved part of the intensity of 

magnetization I in the direction of the normal to the surface 
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drawn outwards, and the volume-density p is the 4 convergence * 

(see Art. 25) of the magnetization at a given point in the 
magnet. 

This method of representing the action of a magnet as due 
to a distribution of 4 magnetic matter' is very convenient, but 

we must always remember that it is only an artificial method 
of representing the action of a system of polarized particles. 

On the Action of one Magnetic Molecule on another. 

387.] If, as in the chapter on Spherical Harmonics, Art. 129 by 

we make d 7d d d 

dh ~ dx+ mdy+ndz’ ^ 

where l, m, n are the direction-cosines of the axis h, then the 

potential due to a magnetic molecule at the origin, whose axis 

is parallel to hu and whose magnetic moment is m1} is 

d m2 
(2) 

where \ is the cosine of the angle between hx and r. 

Again, if a second magnetic molecule whose moment is m2, 

and whose axis is paraUel to h2, is placed at the extremity of 

the radius vector r, the potential energy due to the action of 

the one magnet on the other is 

W-md%- 
W-m*dht~ 

d- 

TOim2 

2 dhxdh2 

2 ^1^2)* 12“ 

(3) 

(4) 

where /x12 is the cosine of the, angle which the axes make with 

each other, and \ly A2 are the cosines of the angles which they 

make with r. 
Let us next determine the moment of the couple with which 

the first magnet tends to turn the second round its centre. 

Let us suppose the second magnet turned through an angle 

dfy in a plane perpendicular to a third axis hs, then the work 

done against the magnetic forces will 
, dW 

and the moment 

of the forces on the magnet in this plane will be 

dW_ 97l|97l2 /dfX^ q\ m 
dcf) r3 ^d<f) 1 d$' (5) 
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The actual moment acting on the second magnet may therefore 
be considered as the resultant of two couples, of which the first 

acts in a plane parallel to the axes of both magnets, and tends to 
increase the angle between them with a couple whose moment is 

^pBin(A,h2), (6) 

while the second couple acts in the plane passing through r and 

the axis of the second magnet, and tends to diminish the angle 
between these directions with a couple whose moment is 

—cos (rhj) sin (rh2), (7) 

where (rht), (rh2), denote the angles between the lines r, 

V5- 
To determine the force acting on the second magnet in a 

direction parallel to a line h3, we have to calculate 

dW __ _ d3 ,1^ /oX 
dh3 ~ m,m* dh.dh.dh, vr' ’ 

|3! K 
== — m2m21==—, by Art. 129 c, 

m ni 
= 3 -Jr* + Kr-n - 5 * by Art. 133, (9) 

= (10) 

If we suppose the actual force compounded of three forces, R, 

H1 and JjT2, in the directions of r, hx and h2 respectively, then the 

force in the direction of hz is 

A3JJ-f ^3 JEfx+ (H) 

are the angles which the axes of the magnets make with r, \p the angle 
between the planes containing r and the axes of the first and second magnet 
respectively, then 

f*i2 3 Xj Ag *« — 2 cos cos + sin sin 02 cog ip. 

Thus the couple acting on the second magnet is equivalent to a couple whose axis 
is r and whose moment —dW/dip tending to increase \j/ is 

tnrviq , . . - . , 
sin 01 am 02 sin 

together with a couple in the plane of r and the axis of the second magnet whose 
moment — d W/d 02 tending to increase 02 is 

— { 2 cos 0X sin 02 + sin 0X cos 02 cos if/} 

These couples arc equivalent to those given by (6) and (7).} 
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Since the direction of A, is arbitrary, we must have 

J? — 3mim2/ AxA2), 

rr __ 3 mim2 , 
ni — ^4 a2* Ho 

3 mlm2 ^ 
Zl Ai- 

(12) 

The force R is a repulsion, tending to increase r; Hx and H2 

act on the second magnet in the directions of the axes of the 

first and second magnets respectively. 

This analysis of the forces acting between two small magnets 

was first given in terms of the Quaternion Analysis by Professor 

Tait in the Quarterly Math. Journ. for Jan. 1860. See also his 

work on Quaternions, Arts. 442-443, 2nd Edition. 

Particular Positions. 

388.] (l) If Ax and A2 are each equal to 1, that is, if the axes 

of the magnets are in one straight line and in the same direction, 

/ulw = 1, and the force between the magnets is a repulsion 

R -f Hx 4* H2 = 
6mlm2 

(13) 

The negative sign indicates that the force is an attraction. 

(2) If Ax and A2 are zero, and fx12 unity, the axes of the magnets 

are parallel to each other and perpendicular to r, and the force 

is a repulsion 3 m.m, 
—(“) 

In neither of these cases is there any couple. 

(3) If Ax = 1 and A2 = 0, then /i12 = 0. (15) 

The force on the second magnet will be ^in the direction 

of its axis, and the couple will be tending to turn it 

Fig. l. 

parallel to the first magnet. This is equivalent to a single force 

acting parallel to the direction of the axis of the second 
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magnet, and cutting r at a point two-thirds of its length 
from m2*. 

Thus in the figure (l) two magnets are made to float on water, 
m2 being in the direction of the axis of ml9 but having its own 
axis at right angles to that of m1. If two points, Ay .5, rigidly 
connected with wij and m2 respectively, are connected by means 
of a string T, the system will be in equilibrium, provided T cuts 
the line mxm2 at right angles at a point one-third of the distance 
from ml to m2. 

(4) If we allow the second magnet to turn freely about its 
centre till it comes to a position of stable equilibrium, W will 
then be a minimum as regards h2i and therefore the resolved 
part of the force due to m2, taken in the direction of ht, will be 
a maximum. Hence, if we wish to produce the greatest possible 
magnetic force at a given point in a given direction by means of 
magnets, the positions of whose centres are given, then, in order 

to determine the proper directions of 
the axes of these magnets to produce 

f this effect, we have only to place a 
J magnet in the given direction at the 

given point, and to observe the direc¬ 
tion of stable equilibrium of the axis 
of a second magnet when its centre is 
placed at each of the other given points. 
The magnets must then be placed with 
their axes in the directions indicated 

by that of the second magnet. 
Of course, in performing this experiment we must take account 

of terrestrial magnetism, if it exists. 
Let the second magnet be in a position of stable equilibrium 

as regards its direction, then since the couple acting on it vanishes, 
the axis of the second magnet must be in the same plane with 
that of the first. Hence 

(fhh2) = (h1r) + (rh2), (16) 

* {in case (3) the first magnet is said to be ‘end on' to the second, and the 
second * broadside on * to the first, we can easily prove by formulae (6) and (7) that if 
the first magnet were * broadside on * to the second the couple on the second would be 
m1 mjr3. Thus the couple when the deflecting magnet is ‘ end on * is twice as great 
as when it is ‘ broadside on/ Gauss has proved that if the law of force were in¬ 
versely as the p*th power of the distance between the poles the couple when the 
deflecting magnet is ‘ end on * would be p times as great as when it is ‘ broadside on/ 
By comparing the couples in these positions we can verify the law of the inverse 
square more accurately than is possible by the torsion balance.} 
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and the couple being 

^r-2 (sin (hi K) - 3 cos (A, r) sin (rkj), (17) 

we find when this is zero 

tan (hxr) = 2 tan (rA2), (18) 

or tan jE^ m2 R = 2 tan i£7/i2' JST2. (19) 

When this position has been taken up by the second magnet 
the value of W becomes ^ 

where h2 is in the direction of the line of force due to ml at m2. 

Hence If = -*** V ^ ^ + ^| * (20) 

Hence the second magnet will tend to move towards places 
of greater resultant force. 

The force on the second magnet may be decomposed into a 
force R, which in this case is always attractive towards the first 

magnet, and a force i/2 parallel to the axis of the first magnet, 
where 

= I ,55 A.. ■ (21) 
r V 3 Aj2 -f 1 ^ v^SA^+l 

In Fig. XIV, at the end of this volume, the lines of force 

and equipotential surfaces in two dimensions are drawn. The 

magnets which produce them are supposed to be two long 

cylindrical rods the sections of which are represented by the 

circular blank spaces, and these rods are magnetized transversely 

in the direction of the arrows. 

If we remember that there is a tension along the lines of force, 

it is easy to see that each magnet will tend to turn in the 

direction of the motion of the hands of a watch. 

That oil the right hand will also, as a whole, tend to move 
towards the top, and that on the left hand towards the bottom 

of tbe page. 

On the Potential Energy of a Magnet placed in 

a Magnetic Field. 

389.] Let V be the magnetic potential due to any system of 
magnets acting on the magnet under consideration. We shall 

call V the potential of the external magnetic force; 

If a small magnet whose strength is m, and whose length 
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is cfo, be placed so that its positive pole is at a point where 

the potential is F, and its negative pole at a point where the 

potential is F', the potential energy of this magnet will be 
m (F~ F), or, if da is measured from the negative pole to the 

positive, dV , 

**4 (*) 
If I is the intensity of the magnetization, and X, ft, v its direc¬ 

tion-cosines, we may write, 

mds = Idxdydz, 

, dV dV dV dV 
and = X-y- + /x —f- 

ds dx dy dz 

and, finally, if Ay jB, C are the components of magnetization, 

A =X/, B = pl, C = vl, 

so that the expression (1) for the potential energy of the element 

of the magnet becomes 

dV 

dy 
+ C^dxdydz. (2) 

To obtain the potential energy of a magnet of finite size, 

we must integrate this expression for every element of the 

magnet. We thus obtain 

w=iif(Aw+B^+o'^'>dxdy'b <3> 
as the value of the potential energy of the magnet with respect 

to the magnetic field in which it is placed. 

The potential energy is here expressed in terms of the com¬ 

ponents of magnetization and of those of the magnetic force 

arising from external causes. 

By integration by parts we may express it in terms of the 

distribution of magnetic matter and of magnetic potential, thus, 

W + F"-///F(S + fy + S)*** « 
where Z, m, n are the direction-cosines of the normal at the 

element of surface dS. If we substitute in this equation the 

expressions for the surface- and volume-density of magnetic 
matter as given in Art. 385, the expression becomes 

w=fj VodS+ jfj Vpdxdydz. (5) 
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We may write equation (3) in the form 

W = — JJJ(Aa + Bft + Cy)dxdydzf (6) 

where a, /3 and y are the components of the external magnetic 
force. 

On the Magnetic Moment and Axis of a Magnet. 

390.] If throughout the whole space occupied by the magnet 
the external magnetic force is uniform in direction and mag¬ 
nitude, the components a, /3, y will be constant quantities, and 
if we write 

JJJAdxdydz=IK) JJJlidxdydz=mK, jJJiCdxdydz~nK, (7) 

the integrations being extended over the whole substance of 

the magnet, the value of W may be written 
W = — K (la + mfi + ny). (8) 

In this expression l, m, n are the direction-cosines of the axis 
of the magnet, and K is the magnetic moment of the magnet. 
If c is the angle which the axis of the magnet makes with the 

direction of the magnetic force the value of W may be written 

W = — K$ cos e (9) 

If the magnet is suspended so as to be free to turn about a 

vertical axis, as in the case of an ordinary compass needle, 
let the azimuth of the axis of the magnet be (f>, and let it be 
inclined at an angle 6 to the horizontal plane. Let the force of 
terrestrial magnetism be in a direction whose azimuth is h and 
dip £ then 

a = £ cos £cos 6, /3 = $ cos Csin 5, y = *£)sinC; (10) 

Z = cos0cos$, m = cos0sin</>, ^ = sin0; (11) 
whence W = —K$ {cos Ccos0cos(<£ — $) + sinCsintf}. (12) 

The moment of the force tending to increase by turning 
the magnet round a vertical axis is 

(JW 
—— = — if*jpcosCcos0sin(<£—5). (13) 

On the Expansion of the Potential of a Magnet in Solid 
Harmonics. 

391.] Let V be the potential due to a unit pole placed at 
the point (£, rj, (). The value of V at the point x3 y, 2 is 

v= {(£-x)2+Oi-yr+(C-zf}~K (t) 
c VOL. II. 
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This expression may be expanded in terms of spherical har¬ 

monics, with their centre at t^ie origin. We have then 

7=70 + 71+72+&c., (2) 

where V0 = ^,r being the distance of (£ ij, () from the origin, (3) 

v_£x+riy+Cz 
~ fjfA * 

Jr_ + + + z2) (P + ^+C2) 
2 2 r6 

&c. 

w 

(5) 

To determine the value of the potential energy when the 
magnet is placed in the field of force expressed by this potential, 

we have to integrate the expression for W in equation (3) of 

Art. 389 with respect to x, y and z, considering £, r?, ( and r as 
constants. 

If we consider only the terms introduced by V0, Vx and V2 the 

result will depend on the following volume-integrals, 

IK =JJJAdxdydz, mK=JJJBdxdydz, nK= JJJCdxdydz; (6) 

L ssJJJAxdxdydz, M — JJJBydxdydz, N~JJJCzdxdydz; (7) 

P=JJJ(Bz + Cy) dxdydz, Q = JJJ(Cx +Az)dxdydz, 

B = JJJ(Ay + Bx)dxdydz. (8) 

We thus find for the value of the potential energy of the 

magnet placed in presence of the unit pole at the point (£, rj, 

r3 

?(2L-M--N) + v*{2M-N-L) + C(2N-L-M) + 3(PiiC+Q(t+Rh) 
r5 

-f &c. 

This expression may also be regarded as the potential energy 

of the unit pole in presence of the magnet, or more simply as 

the potential at the point f, rj, ( due to the magnet. 
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On the Centre of a Magnet and its Primary and 

Secondary Axes. 

392.] This expression may be simplified by altering the direc¬ 

tions of the coordinates and the position of the origin. In the 
first place, we shall make the direction of the axis of x parallel 

to the axis of the magnet. This is equivalent to making 

1=1, m = 0, 71 = 0. (10) 

If we change the origin of coordinates to the point (x\ y', z'), 

the directions of the axes remaining unchanged, the volume- 
integrals IK, mK and nK will remain unchanged, but the others 
will be altered as follows : 

L'=L-lKx', M'=M-mKy', N'=N-nKz'\ (11) 

P'=P~K(mz' + 'ny/), Q'=Q-K(nx'+ lz'), R'=R^K(lif + mx'). (12) 

If we now make the direction of the axis of x parallel to 
the axis of the magnet, and put 

, 2 L—M—N , R 
x = 2K * 

(13) 

then for the new axes M and N have their values unchanged, 
and the value of L' becomes \ (M +Ar). P remains unchanged, 
and Q and R vanish. We may therefore write the potential 

thus, 

ri 
§(v2 -(*)(M-N)+3Pr,C (14) 

We have thus found a point, fixed with respect to the magnet, 
such that the second term of the potential assumes the most 
simple form when this point is taken as origin of coordinates. 
This point we therefore define as the centre of the magnet, and 
the axis drawn through it in the direction formerly defined as 
the direction of the magnetic axis may be defined as the prin¬ 
cipal axis of the magnet. 

We may simplify the result still more by turning the axes of 
y and z round that of x through half the angle whose tangent is 

p 
—r=.• This will cause P to become zero, and the final form 

M—N 
of the potential may be written 

. A^-O(m-N) 
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This is the simplest form of the first two terms of the potential 

of a magnet. When the axes of y and z are thus placed they 

may be called the Secondary axes of the magnet. 
We may also determine the centre of a magnet by finding 

the position of the origin of coordinates, for which the surface- 

integral of the square of the second term of the potential, extended 
over a sphere of unit radius, is a minimum. 

The quantity which is to be made a minimum is, by Art. 141, 

4 (L2 + M* h W2 - MN— NL - LM) + 3 (P2 + Q2 + P2). (16) 

The changes in the values of this quantity due to a change 

of position of the origin may be deduced from equations (11) 

and (12). Hence the conditions of a minimum are 

2 l (2 L — M—JV") + 3 n Q + 3mP = 0, 

2m(2 M—N—L) + 3 i iJ + 3)/ P= 0, 

2 n (2 N—L — M) -f 3 m P 4- 3 l Q = 0. 

If we assume l = 1, m = 0, n = 0, these conditions become 

2 L—M—N = 0, (3 = 0, JS = o, (18) 

which are the conditions made use of in the previous investi¬ 
gation. 

This investigation may be compared with that by which 

the potential of a system of gravitating matter is expanded. In 
the latter case, the most convenient point to assume as the 

origin is the centre of gravity of the system, and the most con¬ 

venient axes are the principal axos of inertia through that point. 

In the case of the magnet, the point corresponding to the 

centre of gravity is at an infinite distance in the direction of 

the axis, and the point which we call the centre of the magnet 

is a point having different properties from those of the centre of 

gravity. The quantities L, M, N correspond to the moments of 
inertia, and P, Q, R to the products of inertia of a material body, 

except that P, if, and N are not necessarily positive quantities. 

When the centre of the magnet is taken as the origin, the 

spherical harmonic of the second order is of the sectorial form, 

having its axis coinciding with that of the magnet, and this 

is true of no other point. 
When the magnet is symmetrical on all sides of this axis, 

as in the case of a figure of revolution, the term involving the 

harmonic of the second order disappears entirely. 

393.] At all parts of the earth s surface, except some parts of 
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the Polar regions, one end of a magnet points towards the 

north, or at least in a northerly direction, and the other in a 

southerly direction. In speaking of the ends of a magnet we 

shall adopt the popular method of calling the end which points 

to the north the north end of the magnet. When, however, we 

speak in the language of the theory of magnetic fluids we shall 

use the words Boreal and Austral. Boreal magnetism is an 

imaginary kind of matter supposed to be most abundant in the 

northern parts of the earth, and Austral magnetism is the ima¬ 

ginary magnetic matter which prevails in the southern regions 

of the earth. The magnetism of the north end of a magnet is 

Austral, and that of the south end is Boreal. When therefore 

we speak of the north and south ends of a magnet we do not 

compare the magnet with the earth as the great magnet, but 

merely express the position which the magnet endeavours to 

take up when free to move. When, on the other hand, we wish 

to compare the distribution of imaginary magnotic fluid in the 

magnet with that in the earth we shall use the more grandilo¬ 

quent words Boreal and Austral magnetism. 

394.] In speaking of a field of magnetic force we shall use 

the phrase Magnetic North to indicate the direction in which 

the north end of a compass needle would point if placed in the 

field of forc& 

In speaking of a line of magnetic force we shall always sup¬ 

pose it to be traced from magnetic south to magnetic north, and 

shall call this direction positive. In the same way the direction 

of magnetization of a magnet is indicated by a line drawn from 

the south end of the magnet towards the north end, and the end 

of the magnet which points north is reckoned the positive end. 

We shall consider Austral magnetism, that is, the magnetism 

of that end of a magnet which points north, as positive. If we 

denote its numerical value by m, then the magnetic potential 

^(7)’ 
and the positive direction of a line of force is that in which V 

diminishes. 



CHAPTER II. 

MAGNETIC FORCE AND MAGNETIC INDUCTION. 

395.] We have already (Art. 385) determined the magnetic 

potential at a given point due to a magnet, the magnetization of 

which is given at every point of its substance, and we have 

shewn that the mathematical result may be expressed either in 

terms of the actual magnetization of every element of the 

magnet, or in terms of an imaginary distribution of ‘ magnetic 

matter/ partly condensed on the surface of the magnet and 

partly diffused throughout its substance. 
The magnetic potential, as thus defined, is found by the same 

mathematical process, whether the given point is outside the 

magnet or within it. The force exerted on a unit magnetic pole 

placed at any point outside the magnet is deduced from the 

potential by the same process of differentiation as in the cor¬ 

responding electrical problem. If the components of this force 

area,/3,y, dV a dV dV 

a = ~dx’ y = ~Tz‘ (1) 

To determine by experiment the magnetic force at a point 

within the magnet we must begin by removing part of the 

magnetized substance, so as to form a cavity within which we 

are to place the magnetic pole. The force acting on the pole 

will depend, in general, on the form of this cavity, and on the 

inclination of the walls of the cavity to the direction of mag¬ 

netization. Hence it is necessary, in order to avoid ambiguity 

in speaking of the magnetic force within a magnet, to specify 

the form and position of the cavity within which the force is to 

be measured. It is manifest that when the form and position 

of the cavity is specified, the point within it at which the 
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magnetic pole is placed must be regarded as no longer within 

the substance of the magnet, and therefore the ordinary methods 
of determining the force become at once applicable. 

396. ] Let us now consider a portion of a magnet in which 

the direction and'intensity of the magnetization are uniform. 
Within this portion let a cavity be hollowed out in the form 

of a cylinder, the axis of which is parallel to the direction of 

magnetization, and let a magnetic pole of unit strength be placed 
at the middle point of the axis. 

Since the generating lines of this cylinder are in the direction 

of magnetization, there will be no superficial distribution of 

magnetism on the curved surface, and since the circular ends of 

the cylinder are perpendicular to the direction of magnetization, 

there will be a uniform superficial distribution, of which the 
surface-density is I for the negative end, and — I for the 

positive end. 
Let the length of the axis of the cylinder be 2 6, and its 

radius a. Then the force arising from this superficial distribu¬ 

tion on a magnetic pole placed at the middle point of the axis 
is that due to the attraction of the disk on the positive side, and 

the repulsion of the disk on the negative side. These two forces 

are equal and in the same direction, and their sum is 

<*> 

From this expression it appears that the force depends, not 

on the absolute dimensions of the cavity, but on the ratio of the 

length to the diameter of the cylinder. Hence, however small 

we make the cavity, the force arising from the surface distribu¬ 

tion on its walls will remain, in general, finite. 

397. ] We have hitherto supposed the magnetization to be 

uniform and in the same direction throughout the whole of the 

portion of the magnet from which the cylinder is hollowed out. 

When the magnetization is not thus restricted, there will in 

general be a distribution of imaginary magnetic matter through 

the substance of the magnet. The cutting out of the cylinder 

will remove part of this distribution, but since in similar solid 

figures the forces at corresponding points are proportional to the 
linear dimensions of the figures, the alteration of the force on 

the magnetic pole due to the volume-density of magnetic matter 

will diminish indefinitely as the size of the cavity is diminished, 
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while the effect due to the surface-density on the walls of the 
cavity remains, in general, finite. 

If, therefore, we assume the dimensions of the cylinder so 

small that the magnetization of the part removed may be 
regarded as everywhere parallel to the axis of the cylinder, and 

of constant magnitude /, the force on a magnetic pole placed at 
the middle point of the axis of the cylindrical hollow will be 
compounded of two forces. The first of these is that due to the 

distribution of magnetic matter on the outer surface of the 
magnet, and throughout its interior, exclusive of the portion 

hollowed out. The components of this force are a, ft and y, 

derived from the potential by equations (1). The second is the 

force Rt acting along the axis of the cylinder in the direction of 

magnetization. The value of this force depends on the ratio of 

the length to the diameter of the cylindric cavity. 

398. ] Case I Let this ratio be very great, or let the diameter 
of the cylinder be small compared with its length. Expanding 

the expression for R in powers of ^ > we find 

t> a tS la2 3a4 „ } 

R = 4i+S“T <3> 

a quantity which vanishes when the ratio of b to a is made 
infinite. Hence, when the cavity is a very narrow cylinder 

with its axis parallel to the direction of magnetization, the 

magnetic force within the cavity is not affected by the surface 

distribution on the ends of the cylinder, and the components of 
this force are simply a, ftf y, where 

__rfF _ dV 
a dx' dy' * dz' 

We shall define the force within a cavity of this form as the 

magnetic force within the magnet. Sir William Thomson has 

called this the Polar definition of magnetic force. When we 

have occasion to consider this force as a vector we shall denote 

it by 
399. ] Case II. Let the length of the cylinder be very small 

compared with its diameter, so that the cylinder becomes a thin 

disk. Expanding the expression for R in powers of -, it becomes 
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the ultimate value of which, when the ratio of a to b is made 

infinite, is 4 it J. 

Hence, when the cavity is in the form of a thin disk, whose 

plane is normal to the direction of magnetization, a unit mag¬ 

netic pole placed at the middle of the axis experiences a force 

4 ttI in the direction of magnetization, arising from the super¬ 

ficial magnetism on the circular surfaces of the disk *. 

Since the components of I are A, B and C, the components of 

this force are 4 nA, 4 ttB, and 4 nC. This must be compounded 

with the force whose components are a, f3y y. 

400.] Let the actual force on the unit pole be denoted by the 

vector S3, and its components by a, b and c, then 

a = a *f 4 7r Af ) 

b=:/3 + 4nB, (6) 

c = y + 4 7r (7. ) 

We shall define the force within a hollow disk, whose plane 

sides are normal to the direction of magnetization, as the Mag¬ 

netic Induction within the magnet. Sir William Thomson has 

called this the Electromagnetic definition of magnetic force. 

The three vectors, the magnetization 3, the magnetic force *£), 

and the magnetic induction 23, are connected by the vector 

equation 33 = £ + 4*3. (7) 

Line-Integral of Magnetic Force. 

401.] Since the magnetic force, as defined in Art. 398, is that 

due to the distribution of free magnetism on the surface and 

through the interior of the magnet, and is not affected by the 

surface-magnetism of the cavity, it may be derived directly from 

the general expression for the potential of the magnet, and the 

* On the force within cavities of other f^rms. 

1. Any narrow crevasse. The force arising from the surface-magnetism is 
4irJcosc in the direction of the normal to the plane of the crevasse, vhere f is the 
angle between this normal and the direction of magnetization. When the crevasse 
is parallel to the direction of magnetization the force is the magnetic force $; when 
the crevasse is perpendicular to the direction of magnetization the force is the 
magnetic induction 93. 

2. In an infinitely elongated cylinder, the axis of which makes an angle t with the 
direction of magnetization, the force arising from the surface-magnetism is 2 irTsin c, 
perpendicular to the axis in the plane containing the axis and the direction of 
magnetization. 

3. In a sphere the force arising from surface magnetism is^ir/in the direction of 
magnetisation. 
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line-integral of the magnetic force taken along any curve from 

the point A to the point B is 

where VA and VB denote the potentials at A and B respectively. 

Surface-Integral of Magnetic Induction. 

402.] The magnetic induction through the surface S is defined 

as the value of the integral 

Q = JJ23 cos tdS, (9) 

where 23 denotes the magnitude of the magnetic induction at the 
element of surface dS, and 6 the angle between the direction of 

the induction and the normal to the element of surface, and the 

integration is to be extended over the whole surface, which may 
be either closed or bounded by a closed curve. 

If a, hy c denote the components of the magnetic induction, and 
ly ra, n the direction-cosines of the normal, the surface-integral 

may be written 

If we substitute for the components of the magnetic induction 

their values in terms of those of the magnetic force, and the 

magnetization as given in Art. 400, we find 

«-//<*• + my3 +ny) dS+4tirJ j(IA+mB+nC) dS. (11) 

We shall now suppose that the surface over which the integra¬ 

tion extends is a closed one, and we shall investigate the value 

of the two terms on the right-hand side of this equation. 

Since the mathematical form of the relation between magnetic 

force and free magnetism is the same as that between electric 

force and free electricity, we may apply the result given in 

Art. 77 to the first term in the value of Q by substituting a, /3, y, 

the components of magnetic force, for X, Y, Z, the components 

of electric force in Art. 77, and M> the algebraic sum of the free 

magnetism within the closed surface, for e, the algebraic sum of 

the free electricity. 

We thus obtain the equation 

la + mfi + ny) dS ~ 4ttM. 

Q= JJ(la + mb + nc)dS. (10) 

(12) 
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Since every magnetic particle has two poles, which are equal 

in numerical magnitude but of opposite signs, the algebraic sum 
of the magnetism of the particle is zero. Hence, those particles 
which are entirely within the closed surface S can contribute 

nothing to the algebraic sum of the magnetism within S. The 
value of M must therefore depend only on thoBe magnetic 
particles which are cut by the surface S. 

Consider a small element of the magnet of length 8 and trans¬ 
verse section &2, magnetized in the direction of its length, so that 
the strength of its poles is m. The moment of this small 

magnet will be ma, and the intensity of its magnetization, being 
the ratio of the magnetic moment to the volume, will be 

m 

¥' 
(13) 

Let this small magnet be cut by the surface S, so that the 
direction of magnetization makes an angle c' with the normal 

drawn outwards from the surface, then if dS denotes the area of 

the section, k2 = dS cost'. (14) 

The negative pole — m of this magnet lies within the surface & 

Hence, if we denote by dM the part of the free magnetism 
within S which is contributed by this little magnet, 

dM = — m = — Ik2, 

= —I cos dS. (15) 

To find M, the algebraic sum of the free magnetism within the 

closed surface S, we must integrate this expression over the 

closed surface, so that 

edS, 

or writing A, B, C for the components of magnetization, and l, m,« 
for the direction-cosines of the normal drawn outwards, 

M — — j J(lA + mB + nC)dS. (16) 

This gives us the value of the integral in the second term on 

the right-hand side of equation (11). The value of Q in that 
equation may therefore be found from equations (12) and (16), 

Q = AttM— 4tM = 0, (17) 

or, the surface-integral of the 'magnetic induction through any 

closed surface is zero, 
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403.] If we assume as the closed surface that of the differ¬ 

ential element of volume dxdydz, we obtain the equation 

da db dc 

dx dy + dz 
0. (18) 

This is the solenoidal condition, which is always satisfied by 

the components of the magnetic induction. 
Since the distribution of magnetic induction is solenoidal, the 

induction through any surface bounded by a closed curve 

depends only on the form and position of the closed curve, and 

not on that of the surface itself. 

404.] Surfaces at every point of which 

la 4* mb + ne =0 (19) 

are called surfaces of no induction, and the intersection of two 

such surfaces is called a line of induction. The conditions that 

a curve, 8, may be a line of induction are 

1 dx ^ 1 dy ^ 1 dz 

a da b ds c ds ’ 
(20) 

A system of lines of induction drawn through every point 

of a closed curve forms a tubular surface called a Tube of 

induction. 
The induction across any section of such a tube is the same. 

If the induction is unity the tube is called a Unit tube of in¬ 

duction. 
All that Faraday* says about lines of magnetic force and 

magnetic sphondyloids is mathematically true, if understood of 

the lines and tubes of magnetic induction. 

The magnetic force and the magnetic induction are identical 

outside the magnet, but within the substance of the magnet they 

must be carefully distinguished. 

In a straight uniformly magnetized bar the magnetic force 

due to the magnet itself is from the end which points north, 

which we call the positive pole, towards the south end or negative 

pole, both within the magnet and in the space without. 

The magnetic induction, on the other hand, is from the 

positive pole to the negative outside the magnet, and from the 

negative pole to the positive within the magnet, so that the lines 

and tubes of induction are re-entering or cyclic figures. 

* JSxp. Res., eerie® xxviii. 
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The importance of the magnetic induction as a physical 

quantity will be more clearly seen \yhen we study electro¬ 

magnetic phenomena. When the magnetic field is explored 
by a moving wire, as in Faraday’s Ey L>. Res. 3076, it is the 

magnetic induction and not the magnetic force which is directly 
measured. 

The Vector-Potential of Magnetic Induction. 

405.] Since, as we have shewn in Art. 403, the magnetic in¬ 

duction through a surface bounded by a closed curve depends on 

the closed curve, and not on the form of the surface which is 

bounded by it, it must be possible to determine the induction 
through a closed curve by a process depending only on the 

nature of that curve, and not involving the construction of a 
surface forming a diaphragm of the curve. 

This may be done by finding a vector 21 related to 23, the 

magnetic induction, in such a way that the line-integral of 

21, extended round the closed curve, is equal to the surface- 

integral of 33, extended over a surface bounded by the closed 

curve. 

If, in Art. 24, we write F\ G, H for the components of 21, and 
<x, 6, c for the components of 33, we find for the relation between 

these components 

_ dH clG . _ (IF dll _ dG dF 

(l ~~ dy dz 3 } dz dx 3 ° ~~ dx dy * 

The vector 21, whose components are F, G, //, is called the 

vector-potential of magnetic induction. 
If a magnetic molecule whose moment is m and the direction 

of whose axis of magnetization is (A, /x, v) be at the origin of 

coordinates, the potential at a point (x, y, z) distance r from 

the origin is, by Art. 387, 

/ x d d 
—m(^A — *f fji- 

c — m (a 

dx 

d2 

dxdz 

d , 1 
+ v — 

' yj r dy dz} 

+ b 
d2 d*v 1 

dy dz V dz2' r 

which, by Laplace’s equation, may be thrown into the form 

d / d d\l d , d cZxl 
77i — (A -v -y~ )-m-j-1 v --Mt ”' 

dxx dz dx' r dy\ dy dz' r 

The quantities a, h may be dealt with in a similar manner. 
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Hence v f ^ cZ \ 1 

_ mfiiz—vy). 

From this expression G and H may be found by symmetry. 

We thus see that the vector-potential at a given point, due to 

a magnetized particle placed at the origin, is numerically equal 

to the magnetic moment of the particle divided by the square 

of the radius vector and multiplied by the sine of the angle 
between the axis of magnetization and the radius vector, and the 

direction of the vector-potential is perpendicular to the plane of 
the axis of magnetization and the radius vector, and is such that 
to an eye looking In the positive direction along the axis of 

magnetization the vector-potential is drawn in the direction of 

rotation of the hands of a watch. 

Hence, for a magnet of any form in which A, J3, C are the 

components of magnetization at the point (x, yy z), the compo¬ 

nents of the vector-potential at the point (£, rj, C), are 

F=fIf(BT,-Cl 
0=Jff(c'^-A^dxdyd‘‘ 

B=f!hA%-Bd£)dxdyi*' 

(22) 

where p is put, for conciseness, for the reciprocal of the distance 

between the points (£, 77, <f) and (x, yy z)y and the integrations are 

extended over the space occupied by the magnet. 

406.] The scalar, or ordinary, potential of magnetic force, 

Art. 385, becomes when expressed in the same notation, 

v=fff(As+stl+cd£>dxdyd‘- (2S> 
Remembering that , and that the integral 

IIfA (a? + w-+ S')dxdyd* 
has the value —4 r, (A) when the point (£, 77, fl is included 

within the limits of integration, and is zero when it is not 

so included, (J.) being the value of A at the point (£, 17, £), 
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we find for the value of the component of the magnetic 
induction, 

= dff_dO 
U di] d( 

=fff\A +**■" 

=- tJII\a -£+Bd£j+c'i\dxdy,k 
-fffA ($ + $ * a?) <*'**• <24> 

The first term of this expression is evidently-7-* » or, a the 
component of the magnetic force. ^ 

The quantity under the integral sign in the second term 

is zero for every element of volume except that in which 

the point (£, r/, () is included. If the value of A at the point 
(£, rf, C) is (j4), the value of the second term is easily proved 

to be 4 7T (A), where (A) is evidently zero at all points outside 

the magnet. 

We may how write the value of the ^-component of the 
magnetic induction 

a = a + 4?r(.4), (25) 

an equation which is identical with the first of those given 

in Art. 400. The equations for b and c will also agree with 

those of Art. 400. 
We have already seen that the magnetic force *£> is derived 

from the scalar magnetic potential V by the application of 

Hamilton's operator V so that we may write, as in Art. 17, 

£=-V7, (26) 

and that this equation is true both without and within the 

magnet. 
It appears from the present investigation that the magnetic 

induction 33 is derived from the vector-potential SI by the 

application of the same operator, and that the result is true 

within the magnet as well as without it. 
The application of this operator to a vector-function produces, 

in general, a scalar quantity as well as a vector. The scalar 

part, however, which we have called the convergence of the 
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vector-function, vanishes when the vector-function satisfies the 

solenoidal condition 

dF <10 dH_ 

rff + dr, + d( ~ • 
(27) 

By differentiating the expressions for F, G, H in equations (22), 

we find that this equation is satisfied by these quantities. 

We may therefore write the relation between the magnetic 

induction and its vector-potential 

S3 = V 2f, 

which may be expressed in words by saying that the magnetic 

induction is the curl of its vector-potential. See Art. 25. 



CHAPTER III. 

MAGNETIC SOLENOIDS AND SHELLS *. 

On Particular Forms of Magnets. 

407.] Ik a long narrow filament of magnetic matter like 

a wire is magnetized everywhere in a longitudinal direction, 
then the product of any transverse section of the filament 

into the mean intensity of the magnetization across it is called 
the strength of the magnet at that section. If the filament 
were cut in two at the section without altering the magnetiza¬ 

tion, the two surfaces, when separated, would be found to have 

equal and opposite quantities of superficial magnetization, each 
of which is numerically equal to the strength of the magnet 
at the section. 

A filament of magnetic matter, so magnetized that its strength 
is the same at every section, at whatever part of its length the 
section be made, is called a Magnetic Solenoid. 

If m is the strength of the solenoid, ds an element of its 

length, 8 being measured from the negative to the positive pole of 
the magnet, r the distance of that element from a given point, 
and € the angle which r makes with the axis of magnetization 

of the element, the potential at the given point due to the 

element is m ds cos e m dr , 
-2- =-o ~j d8* rz rt ds 

Integrating this expression with respect to s, so as to take 

into account all the elements of the solenoid, the potential 

is found to be z 1 1 
V= m{-r, 

\Ti ri 

rT being the distance of the positive end of the solenoid, and ra 

that of the negative end from the point where V is measured. 

* See Sir W. Thomson’s ‘Mathematical Theory of Magnetism,’ Phil. Trans., Juno 
1849 and June I860, or Reprint of Papere on Electrostatics and Magnetism, p. 840. 

you ii. 
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Hence the potential due to a solenoid, and consequently 

all its magnetic effects, depend only on its strength and the 

position of its ends, and not at all on its form, whether straight 
or curved, between these points. 

Hence the ends of a solenoid may be called in a strict sense 
its poles. 

If a solenoid forms a closed curve the potential due to it 
is zero at every point, so that such a solenoid can exert no 

magnetic action, nor can its magnetization be discovered without 
breaking it at some point and separating the ends. 

If a magnet can be divided into solenoids, all of which either 
form closed curves or have their extremities in the outer 

surface of the magnet, the magnetization is said to be solenoidal, 

and, since the action of the magnet depends entirely upon that 
of the ends of the solenoids, the distribution of imaginary 
magnetic matter will be entirely superficial. 

Hence the condition of the magnetization being solenoidal is 
(IA dB dC __ 

dx + dy + dz ~~ 

where A, B, C are the components of the magnetization at any 
point of the magnet. 

408.] A longitudinally magnetized filament, of which the 
strength varies at different parts of its length, may be conceived 

to be made up of a bundle of solenoids of different lengths, 
the sum of the strengths of all the solenoids which pass through 

a given section being the magnetic strength of the filament at 

that section. Hence any longitudinally magnetized filament 
may be called a Complex Solenoid. 

If the strength of a complex solenoid at any section is m, 
then the potential due to its action is 

V = — w^ere m is variable, 

__ m2 fldm^ 
rx r2 J r da 

This shews that besides the action of the two ends, which 
may in this case be of different strengths, there is an action due 

to the distribution of imaginary magnetic matter along the 
filament with a linear density 

dm 

ds 
A = - 
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Magnetic Shells. 

409.] If a thin shell of magnetic matter is magnetized in a 

direction everywhere normal to its surface, the intensity of the 
magnetization at any place multiplied by the thickness of the 
shell at that place is called the Strength of the magnetic shell 
at that place. 

If the strength of a shell is everywhere the same, it is called a 
Simple magnetic shell; if it varies from point to point it may be 
conceived to be made up of a number of simple shells superposed 
and overlapping each other. It is therefore called a Complex 
magnetic shell. 

Let dS be an element of the surface of the shell at Q. and 

the strength of the shell, then the potential at any point, P, due 
to the element of the shell, is 

dV = 4>~^$cose, 
r* 

where e is the angle between the vector QPf or r, and the normal 
drawn outwards from the positive side of the shell. 

But if doa is the solid angle subtended by dS at the point P 

r2d(o = dS cos e, 

wheDce dV=<i>dco, 

and therefore in the case of a simple magnetic shell 

V = <I> GJ, 

or, the potential due to a magnetic shell at any point is the 
product of its strength into the solid angle subtended by its edge 
at the given point *. 

410.] The same result may be obtained in a different way by 
supposing the magnetic shell placed in any field of magnetic 
force, and determining the potential energy due to the position 

of the shell. 
If V is the potential at the element dS, then the energy due 

to this element is 
^ndV dV 

or, the product of the strength of the shell into the part of the 

surface-integral ofdVfdv due to the element dS of the shell. 

* This theorem is due to Gauss, General Theory of Terrestrial Magnetism, § S8. 

D 2 
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Hence, integrating with respect to all such elements, the 

energy due to the position of the shell in the field is equal to 

the product of the strength of the shell and the surface-integral 

of the magnetic induction taken over the surface of the shell. 

Since this surface-integral is the same for any two surfaces 
which have the same bounding edge and do not include between 

them any centre of force, the action of the magnetic shell 

depends only on the form of its edge. 

Now suppose the field of force to be that due to a magnetic 
pole of strength m. We have seen (Art. 76, Cor.) that the 

surface-integral over a surface bounded by a given edge is the 
product of the strength of the pole and the solid angle subtended 

by the edge at the pole. Hence the energy due to the mutual 

action of the pole and the shell is 
4> moi, 

and this, by Green's theorem, is equal to the product of the 

strength of the pole into the potential due to the shell at the 

pole. The potential due to the shell is therefore 4>w. 
411. ] If a magnetic pole m starts from a point on the negative 

surface of a magnetic shell, and travels along any path in space 

so as to come round the edge to a point close to where it started 

but on the positive side of the shell, the solid angle will vary 

continuously, and will increase by in during the process. The 

work done by the pole will be 4^4>m, and the potential at any 

point on the positive side of the shell will exceed that at the 

neighbouring point on the negative side by 4 7r4>. 

If a magnetic shell forms a closed surface, the potential outside 

the shell is everywhere zero, and that in the space within is 

everywhere 47r4>, being positive when the positive side of the 

shell is inward. Hence such a shell exerts no action on any 

magnet placed either outside or inside the shell. 

412. ] If a magnet can be divided into simple magnetic shells, 

either closed or having their edges on the surface of the magnet, 
the distribution of magnetism is called Lamellar. If <f> is the sum 

of the strengths of all the shells traversed by a point in passing 
from a given point to a point (x, y, z) by a line drawn within 

the magnet, then the conditions of lamellar magnetization are 

A _ ^ B = ^, C = —. 
dx ’ dy9 dz' 

The quantity, <£, which thus completely determines the mag- 
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netization at any point may be called the Potential of Magnet¬ 

ization. It must be carefully distinguished from the Magnetic 
Potential. 

413.] A magnet which can be divided into complex magnetic 

shells is said to have a complex lamellar distribution of mag¬ 

netism. The condition of such a distribution is that the lines of 
magnetization njust be such that a system of surfaces can be 

drawn cutting them at right angles. This condition is expressed 
by the well-known equation 

(dC dBv K(dA 
~) = 0, 
dyJ 

Forms of the Potentials of Solenoidal and Lamellar Magnets. 

414.] The general expression for the ‘scalar potential of a 
magnet is 

v=fff(Ad£+,lt+cfydxdydz’ 
where p denotes the potential at (x, y, z), due to a unit magnetic 

pole placed at (£, 77, C), or in other words, the reciprocal of the 

distance between (£, rj, C), the point at which the potential is 

measured, and (x, y> z), the position of the element of the 

magnet to which it is due. 
This quantity may be integrated by parts, as in Arts. 96, 386, 

V = JJp(Al + Bm + Cn) dS -JJ+ ^ + dxdydz, 

where /, m, n are the direction-cosines of the normal drawn out¬ 

wards from dSy an element of the surface of the magnet. 
When the magnet is solenoidal the expression under the 

integral sign in the second term is zero for every point within 

the magnet, so that the triple integral is zero, and the scalar 
potential at any point, whether outside or inside the magnet, is 

given by the surface-integral in the first term. 

The scalar potential of a solenoidal magnet is therefore com¬ 

pletely determined when the normal component of the magnet¬ 
ization at every point of the surface is known, and it is 

independent of the form of the solenoids within the magnet. 
415.] In the case of a lamellar magnet the magnetization is 

determined by <£, the potential of magnetization, so that 
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The expression for V may therefore be written 

,r-///(££+* !+£&*** 
Integrating this expression by parts, we find 

cZjo dp dp -f - +m~f + n 
dx dy d. i)"-///* (S+S+S,)*ed!"i 

The second term is zero unless the point (£, ??, f) is included 

in the magnet, in which case it becomes 4tt(0), where (</>) is the 

value of <p at the point (£, 17, f). The surface-integral may be 
expressed in terms of r, the line drawn from (;x, 3/, z) to (f, ?/, f), 

and 0 the angle which this line makes with the normal drawn 
outwards from dS, so that the potential may be written 

v=yyy^ cos 4 7r (</>), 

where the second term is of course zero when the point (£, r/, £) 
is not included in the substance of the magnet. 

The potential, V9 expressed by this equation, is continuous 

even at the surface of the magnet, where <f> becomes suddenly 
zero, for if we write 

il = f j— (f> cos 0 dS, 

and if I21 is the value of 22 at a point just within the surface, 

and il2 that at a point close to the first but outside the surface, 

il2 = I21 + 47r(</>), 
or V2 == Fr 

The quantity 12 is not continuous at the surface of the magnet. 

The components of magnetic induction are related to 12 by 

tie equation. , da 

a ofe ’ dy ' C dz 

416.] In the case of a lamellar distribution of magnetism we 

may also simplify the vector-potential of magnetic induction. 

Its ^-component may be written 

F=SfhTyi-TJ$d*d«d°- 
By integration by parts we may put this in the form of the 

surface-integral 
dp 

dz 
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The other components of the vector-potential may be written 

down from these expressions by making the proper substitutions. 

On Solid Angles. 

417.] We have already proved that at any point P the 
potential due to a magnetic shell is equal to the solid angle 

subtended by the edge of the shell multiplied by the strength 

of the shell. As we shall have occasion to refer to solid angles 

in the theory of electric currents, we shall now explain how 
they may be measured. 

Definition. The solid angle subtended at a given point by a 

closed curve is measured by the area of a spherical surface 
whose centre is the given point and whose radius is unity, the 

outline of which is traced by the intersection of the radius 

vector with the sphere as it traces the closed curve. This area 
is to be reckoned positive or negative according as it lies on the 

left or the right-hand of the path of the radius vector as seen 
from the given point *. 

Let (£, r/, () be the given point, and let (x. y, z) be a point on 

the closed curve. The coordinates oc, y, z are functions of 8y the 

length of the curve reckoned from a given point. They are 

periodic functions of s, recurring whenever s is increased by the 

whole length of the closed curve. 
We may calculate the solid angle o> directly from the defi¬ 

nition thus. Using spherical coordinates with centre at (f, ?/, £), 

and putting 
x~£=r sin 6 cos <]>, y — i) — r sin 6 sin <£, = r cos 0, 

we find the area of any curve on the sphere by integrating 

a) = f (1 — cos 0) d<p, 

or, using the rectangular coordinates, 

z-i 

tfj-fc-oS-fr-’* f]*' 
dx 1 

r + i 
the. integration being extended round the curve s. 

If the axis of 0 passes once through the closed curve the first 

* [If, while the point at which the solid angle subtended by a given curve is to be 
determined moves about, we suppose the extremity of the radius vector always to travel 
round the curve in the same direction, then the area on the sphere may be taken as 
positive if it is on that side of the sphere where the motion of the end of the radius 
vector looks clockwise when seen from the centre, negative if it is on the other side. [ 
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term is 2 7r. If the axis of z does not pass through it this term 
is zero. 

418. ] This method of calculating a solid angle involves a 
choice* of axes which is to some extent arbitrary, and it does not 

depend solely on the closed curve. Hence the following method, 

in which no surface is supposed to be constructed, may be stated 
for the sake of geometrical propriety. 

As the radius vector from the given point traces out the 
closed curve, let a plane passing through the given point roll on 

the closed curve so as to be a tangent plane at each point of the 

curve in succession. Let a line of unit-length be drawn from 
the given point perpendicular to this plane. As the plane rolls 

round the closed curve the extremity of the perpendicular will 
trace a second closed curve. Let the length of the second 

closed curve be cr, then the solid angle subtended by the first 
closed curve is 

0) = 2 7T — (T. 

This follows from the well-known theorem that the area of a 
closed curve on a sphere of unit radius, together with the 

circumference of the polar curve, is numerically equal to the 

circumference of a great circle of the sphere. 
This construction is sometimes convenient for calculating the 

solid angle subtended by a rectilinear figure. For our own 

purpose, which is to form clear ideas of physical phenomena, 

the following method is to be preferred, as it employs no 

constructions which do not flow from the physical data of the 

problem. 
419. ] A closed curve 8 is given in space, and we have to find 

the solid angle subtended by s at a given point P. 

If we consider the solid angle as the potential of a magnetic 

shell of unit strength whose edge coincides with the closed 

curve, we must define it as the work done by a unit magnetic 

pole against the magnetic force while it moves from an infinite 

distance to the point P. Hence, if <r is the path of the pole as it 

approaches the point P, the potential must be the result of a 

line-integration along this path. It must also be the result 

of a line-integration along the closed curve 8. The proper form 

of the expression for the solid angle must therefore be that of a 

double integration with respect to the two curves 8 and <r. 

When P is at an infinite distance, the solid angle is evidently 
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zero. As the point P approaches, the closed curve, as seen from 

the moving point, appears to open out, and the whole solid 

angle may be conceived to be generated by the apparent motion 
of the different elements of the closed curve as the moving point 
approaches. 

As the point P moves from P to P' over the element dcr, the 

element QQ' of the closed curve, which we denote by ds, will 

change its position relatively to P, and the line on the unit 

sphere corresponding to QQ' will sweep over an area on the 
spherical surface, which we may write 

cZo> = ITcfericr. (1) 

To find 17 let us suppose P fixed while the closed curve is 
moved parallel to itself through a distance d »r equal to PPf but 

in the opposite direction. The relative motion of the point P 

will be the same as in the real case. 
During this motion the element QQ' will generate an area in 

the form of a parallelogram whose sides are parallel and equal 

to QQ' and PP'. If we construct 

a pyramid on this parallelogram as 

base with its vertex at Py the solid 

angle of this pyramid will be the 

increment dco which we are in 

search of. 

To determine the value of this .^ 

solid angle, let 6 and O' be the p\^ 

angles which ds and dcr make with Fig. s. " 
PQ respectively, and let <f> be the 
angle between the planes of these two angles, then the area of 

the projection of the parallelogram ds.dv on a plane perpen¬ 

dicular to PQ or r will be 
ds dcr sin 6 sin 6' sin <£, 

and since this is equal to r2rfco, we find 

du) = Udsd(T = ~ sin 0 sin O' sin <t>dsd<r. (2) 

Hence n = —2 sin 0 sin 0' sin </>. (3) 

420.] We may express the angles 9, 6\ and cj> in terms of r, 

and its differential coefficients with respect to s and <r, for 

c°80=^> cosO' — > and sin6em6'cos <p = r-^~. (4) 
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We thus find the following value for fl2, 

n2 (5) 

A third expression for n in terms of rectangular coordinates 

may be deduced from the consideration that the volume of the 

pyramid whose solid angle is du and whose side is r is 

£ r*d co = l r3 n ds do-. 

But the volume of this pyramid may also be expressed in 

terras of the projections of r, ds, and da on the axes of re, y 
and 2, as a determinant formed by these nine projections, of 

which we must take the third part. We thus find as the value 
ofn,* 

v—y, 
d£ dii d( 
da' d7r’ da9 

dx dy dz 

ds’ ds ’ ds 

This expression gives the value of FI free from the ambiguity of 

sign introduced by equation (5). 

421.] The value of co, the solid angle subtended by the closed 

curve at the point P, may now be written 

co = J*J ndsdo + a>0) (7) 

where the integration with respect to s is to be extended com¬ 

pletely round the closed curve, and that with respect to a from 

A a fixed point on the curve to the point P. The constant o>0 is 

the value of the solid angle at the point A. It is zero if A is at 

an infinite distance from the closed curve. 

The value of co at any point P is independent of the fornS of 

the curve between A and P provided that it does not pass 

through the magnetic shell itself. If the shell be supposed 
infinitely thin, and if P and P' are two points close together, 

but P on the positive and P' on the negative surface of the 

shell, then the curves AP and AP' must lie on opposite sides of 

the edge of the shell, so that PAP' is a line which with the 

infinitely short line P'P forms a closed circuit embracing the 

* {The sign of II is most easily got by considering a simple case, that of a circular 
disk magnetized at right angles to its plane is very convenient for this purpose. ]• 
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edge. The value of at P exceeds that at P' by 41r, that is, by 
the surface of a sphere of radius unity. 

Hence, if a closed curve be drawn so as to pass once through 
the shell, or in other words, if it be linked once with the edge 

of the shell, the value of the 
both curves will be 4 tt. 

integral J'j* Udsda extended round 

This integral therefore, considered as depending only on the 
closed curve 8 and the arbitrary curve AP, is an instance of a 
function of multiple values, since, if we pass from A to P along 
different paths the integral will have different values according 

to the number of times which the curve AP is twined round the 
curve 8. 

If one form of the curve between A and P can be transformed 

into another by continuous motion without intersecting the 
curve s, the integral will have the same value for both curves, 
but if during the transformation it intersects the closed curve 

n times the values of the integral will differ by 4 tit?. 

If 8 and <r are any two closed curves in space, then, if they 
are not linked together, the integral extended once round both 

is zero. 
If they are intertwined n times in the same direction, the 

value of the integral is 4 7iti. It is possible, however, for two 

curves to be intertwined alternately in opposite directions, so 
that they are inseparably linked together 
though the value of the integral is zero. 

See Fig. 4. 
It was the discovery by Gauss of this very 

integral, expressing the work done on a 
magnetic pole while describing a closed curve 

in presence of a closed electric current, and 
indicating the geometrical connexion between 
the two closed curves, that led him to lament the small progress 
made in the Geometry of Position since the time of Leibnitz, 
Euler and Vandermonde. We have now, however, some progress 

to report, chiefly due to Riemann, Helmholtz, and Listing. 
422.] Let us now investigate the result of integrating with 

respect to 8 round the closed curve. 

One of the terms of n in equation (7) is 
£—xdt)dz dr) d Adz.t /Q% 
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If we now write for brevity 

*■=/?£*■ a=/;t*' *=/?$*■ <8> 

the integrals being taken once round the closed curve s, this 

term of II may be written 
dry d?H 
do d£d89 

and the corresponding term of JII ds will be 

chdH 

do d£ 

Collecting all the terms of n, we may now write 

dco r 7 

(dS_dO\dj /dF dH.dv (dG _dJF.dC . 

Vdr, dcUo + \dC dt'do + ^dt dv'do' ( ] 

This quantity is evidently the rate of decrement of a>, the 
magnetic potential, in passing along the curve o, or in other 

words, it is the magnetic force in the direction of do. 
By assuming do successively in the direction of the axes of 

x, y and z, we obtain for the values of the components of the 

magnetic force 
ci a> _ dll dG . 

3f ~ dTr, ~ dC*\ 
dU._ dF _dH I 

dr, “ d( d£ 9 ‘ 

dv_dG dF 
d( ~~ d£ ~~ dr. 

O’) 

The quantities F, G, H are the components of the vector- 

potential of the magnetic shell whose strength is unity, and 

whose edge is the curve s. They are not, like the scalar poten¬ 

tial <w, functions having a series of values, but are perfectly 
determinate for every point in space. 

The vector-potential at a point P due to a magnetic shell 
bounded by a closed curve may be found by the following 

geometrical construction : 

Let a point Q travel round the closed curve with a velocity 

numerically equal to its distance from P, and let a second point 



423.] POTENTIAL OF TWO CLOSED CURVES. 45 

R start from a fixed point A and travel with a velocity the 

direction of which is always parallel to that of Q, but whose 

magnitude is unity. When Q has travelled once round the 

closed curve join AR, then the line AR represents in direction 

and in numerical magnitude the vector-potential due to the 
closed curve at P. 

Potential Energy of a Magnetic Shell placed in a Magnetic Field. 

423.] We have already shewn, in Art. 410, that the potential 

energy of a shell of strength <p placed in a magnetic field whose 

potential is V, is 

** * f/V jdV dV dV^j cf 
M=4,JJ(lS + mTy+ni;)dS- <12> 

where l, m, n are the direction-cosines of the normal to the shell 

drawn outwards from the positive side, and the surface-integral 

is extended over the shell. 
Now this surface-integral may be transformed into a line- 

integral by means of the vector-potential of the magnetic field, 

and we may write 

where the integration is extended once round the closed curve s 
which forms the edge of the magnetic shell, the direction of ds 

being opposite to that of the hands of a watch whon viewed 

from the positive side of the shell. 
If we now suppose that the magnetic field is that due to a 

second magnetic shell whose strength is <//, we may determine 

the value of F directly from the results of Art. 416 or from 

Art. 405. If l\ m', n' be the direction-cosines of the normal to 

the element dS' of the second shell, we have 

where r is the distance between the element dS> and a point on 

the boundary of the first shell. 
Now this surface-integral may be converted into a line-integral 

round the boundary of the second shell; viz. it is 

(14) 
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In like manner 

Substituting these values in the expression for M we find 

<i5) 
where the integration is extended once round s and once round 
s'. This expression gives the potential energy due to the mutual 
action of the two shells, and is, as it ought to be, the same when 
s and s' are interchanged. This expression with its sign re¬ 
versed, when the strength of each shell is unity, is called the 
potential of the two closed curves s and s'. It is a quantity of 
great importance in the theory of electric currents. If we write 
c for the angle between the directions of the elements ds and ds\ 

the potential of s and s' may be written 

f(16) 
It is evidently a quantity of the dimension of a line. 



CHAPTER IV. 

INDUCED MAGNETIZATION. 

424.] We have hitherto considered the actual distribution of 

magnetization in a magnet as given explicitly among the data 

of the investigation. We have not made any assumption as to 

whether this magnetization is permanent or temporary, except in 

those parts of our reasoning in which we have supposed the 

magnet broken up into small portions, or small portions removed 

from the magnet in such a way as not to alter the magnetization 

of any part. 

We have now to consider the magnetization of bodies with 

respect to the mode in which it may be produced and changed. 

A bar of iron held parallel to the direction of the earth’s magnetic 

force is found to become magnetic, with its poles turned the op¬ 

posite way from those of the earth, or the same way as those of 

a compass needle in stable equilibrium. 

Any piece of soft iron placed in a magnetic field is found to 

exhibit magnetic properties. If it be placed in a part of the field 

where the magnetic force is great, as between the poles of a horse¬ 

shoe magnet, the magnetism of the iron becomes intense. If the 

iron is removed from the magnetic field, its magnetic properties 

are greatly weakened or disappear entirely. If the magnetic 

properties,of the iron depend entirely on the magnetic force of 

the field in which it is placed, and vanish when it is removed 

from the field, it is called Soft iron. Iron which is soft in the 

magnetic sense is also soft in the literal sense. It is easy to 

bend it and give it a permanent set, and difficult to break it. 

Iron which retains its magnetic properties when removed from 

the magnetic field is called Hard iron. Such iron does not take 

up the magnetic state so readily as soft iron. The operation of 
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hammering, or any other kind of vibration, allows hard iron 

under the influence of magnetic force to assume the magnetic 
state more readily, and to part with it more readily when the 
magnetizing force is removed * Iron which is magnetically hard 
is also more stiff to bend and more apt to break. 

The processes of hammering, rolling, wire-drawing,and sudden 
cooling tend to harden iron, and that of annealing tends to 
soften it. 

The magnetic as well as the mechanical differences between 
steel of hard and soft temper are much greater than those 

between hard and soft iron. Soft steel is almost as easily mag¬ 
netized and demagnetized as iron, while the hardest steel is the 
best material for magnets which we wish to be permanent. 

Cast iron, though it contains more carbon than steel, is not so 
retentive of magnetization. 

If a magnet could be constructed so that the distribution of its 
magnetization is not altered by any magnetic force brought to 
act upon it, it might be called a rigidly magnetized body. The 

only known body which fulfils this condition is a conducting 

circuit round which a constant electric current is made to flow. 
Such a circuit exhibits magnetic properties, and may therefore 

be called an electromagnet, but these magnetic properties are not 

affected by the other magnetic forces in the field. We shall 
return to this subject in Part IV. 

All actual magnets, whether made of hardened steel or of load¬ 

stone, are found to be affected by any magnetic force which is 
brought to bear upon them. 

It is convenient, for scientific purposes, to make a distinction 
between the permanent and the temporary magnetization, defining 

the permanent magnetization as that which exists independently 
of the magnetic force, and the temporary magnetization as that 

which depends on this force. We must observe, however, that 

this distinction is not founded on a knowledge of the intimate 
nature of the magnetizable substances : it is only the expression 

of an hypothesis introduced for the sake of bringing calculation 

to bear on the phenomena. We shall return to the physical 
theory of magnetization in Chapter VI. 

{Ewing (Phil. Trans., Part ii. 1885) has shewn that soft iron free from vibrations 
forces (0*Dl ****** * larger proportion of its magnetism than the 
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425.] At present we shall investigate the temporary magnet¬ 
ization on the assumption that the magnetization of any particle 
of the substance depends solely on the magnetic force acting on 
that particle. This magnetic force may arise partly from external 
causes, and partly from the temporary magnetization of neigh¬ 
bouring particles. 

A body thus magnetized in virtue of the action of magnetic 
force is said to be magnetized by induction, and the magnetization 
is said to be induced by the magnetizing force. 

The magnetization induced by a given magnetizing force differs 
in different substances. It is greatest in the purest and softest 

iron, in which the ratio of the magnetization to the magnetic 
force may reach the value 32, or even 45*. 

Other substances, such as the metals nickel and cobalt, are 
capable of an inferior degree of magnetization, and all substances 
when subjected to a sufficiently strong magnetic force are found 

to give indications of polarity. 

When the magnetization is in the same direction as the mag¬ 
netic force, as in iron, nickel, cobalt, &c., the substance is called 
Paramagnetic, Ferromagnetic, or more simply Magnetic. When 
the induced magnetization is in the direction opposite to the 
magnetic force, as in bismuth, &c., the substance is said to be 
Diamagnetic. 

In all these diamagnetic substances the ratio of the magnetiza¬ 
tion to the magnetic force which produces it is exceedingly 

small, being only about — case bismuth, which 
is the most highly diamagnetic substance known. 

In crystallized, strained, and organized substances the direction 
of the magnetization does not always coincide with that of the 
magnetic force which produces it. The relation between the 
components of magnetization, referred to axes fixed in the body, 
and those of the magnetic force, may be expressed by a system 
of three linear equations. Of the nine coefficients involved in 

these equations we shall shew that only six are independent. 
The phenomena of bodies of this kind are classed under the name 

of Magnecrystallic phenomena. 
When placed in a field of magnetic force, crystals tend to set 

* Thaten, Nova Acta, Reg. Soc. Sc.f Upsal, 1863. {Ewing (loc. cit.) has shewn 
that it may be as great as 279, and that if the wire be shaken while the magnetizing 
force is applied it may rise to as much aa 1600.} 

YOL. II. £ 
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themselves so that the axis of greatest paramagnetic, or of least 

diamagnetic, induction is parallel to the lines of magnetic force. 

See Art. 436. 

In soft iron, the direction of the magnetization coincides with 

that of the magnetic force at the point, and for small values of 

the magnetic force the magnetization is nearly proportional to it*. 
As the magnetic force increases, however, the magnetization in¬ 

creases more slowly, and it would appear from experiments 

described in Chap. VI, that there is a limiting value of the 
magnetization, beyond which it cannot pass, whatever be the 

value of the magnetic force. 

In the following outline of the theory of induced magnetism, 

we shall begin by supposing the magnetization proportional to 

the magnetic force, and in the same line with it. 

Definition of the Coefficient of Induced Magnetization. 

426. ] Let *£> be the magnetic force, defined as in Art. 398, at 

any point of the body, and let 3 be the magnetization at that 

point, then the ratio of 3 to *£> is called the Coefficient of In¬ 

duced Magnetization. 
Denoting this coefficient by a, the fundamental equation of 

induced magnetism is 
3 = (1) 

The coefficient k is positive- for iron and paramagnetic sub¬ 

stances, and negative for bismuth and diamagnetic substances. 

It reaches the value {1600} in iron, and it is said to be large in 

the ease of nickel and cobalt, but in all other eases it is a very 

small quantity, not greater than 0-00001 

The force »£) arises partly from the action of magnets external 
to the body magnetized by induction, and partly from the 

induced magnetization of the body itself. Both parts satisfy 

the condition of having a potential. 

427. ] Let V be the potential due to magnetism external to 
the body, and let SI be that due to the induced magnetization, 

then if U is the actual potential due to both causes 
U^V+il. (2) 

Let the components of the magnetic force <£>> resolved in the 

* j Lord Rayleigh, Phil. Mag. 2,‘3, p. 225, 1887, has shewn that when the mag¬ 
netizing force is less than of the earth’s horizontal magnetic force, the magnetization 
is proportional to the magnetizing force, and that it ceases to be so when the force is 
greater.} 
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directions of x, y, 0, be a, /3, y, and let those of the magnet¬ 
ization 3 be A, B, 0, then by equation (1), 

-4 = fta, j 

£ = *fi, V (3) 

C = K7. ; 

Multiplying these equations by dta, cfy, dz respectively, and 
adding, we find 

A dx + Bdy + Cdz = k (adx + fidy + ydz). 

But since a, /3 and y are derived from the potential U, we 

may write the second member —KdU. 

Hence, if k is constant throughout the substance, the first 

member must also be a complete differential of a function of x9 
y and z, which we shall call </>, and the equation becomes 

d<p — —KdU, <4) 

where A = , B = dfi, C = d£. (5) 
ax dy dz } 

The magnetization is therefore lamellar, as defined in Art. 412. 

It was shewn in Art. 385 that if p is the volume-density of 

free magnetism, 

fdA dB dCx 
p ~~ 'dx + dy + dz'’ 

which becomes in virtue of equations (3), 

p = 

,da ci/3 dyn 

K 'dx + dy + dz' 

But, by Art. 77, 

da dfi dy 

dx 

Hence (1 + 4 ttk)p = 0, 

whence 
P = o 

throughout the substance, and the magnetization is therefore 

solenoidal as well as lamellar. See Art. 407. 

There is therefore no free magnetism except on the bounding 
surface of the body. If v be the normal drawn inwards from 
the surface, the magnetic surface-density is 

d<p 

dv 

e % 

a (7) 
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The potential 12 due to this magnetization at any point may 

therefore be found from the surface-integral 

a -film. <« 

The value of 12 will be finite and continuous everywhere, and 
will satisfy Laplace’s equation at every point both within and 

without the surface. If we distinguish by an accent the value 

of 12 outside the surface, and if v' be the normal drawn outwards, 

we have at the surface 

di2 dQ! 

dv **" dv 

12' = 12; 

— 4 7rtr, by Art. 78 &, 

4w37 (7)> 

(9) 

= -4WK^, by(4), 

. /^F dily. , . . 

~ + dj)’ by (2)‘ 

We may therefore write the second surface-condition 

.dZl dQ! iIV 
(1 +4W»t)-j— + -y-y + 4 7T »C — = 0. 

ai> tti» av 
(10) 

Hence the determination of the magnetism induced in a 

homogeneous isotropic body, bounded by a surface $, and acted 

upon by external magnetic forces whose potential is V, may be 

reduced to the following mathematical problem. 
We must find two functions 12 and 12' satisfying the following 

conditions: 
Within the surface S, 12 must be finite and continuous, and 

must satisfy Laplace’s equation. 

Outside the surface S, 12' must be finite and continuous, it 

must vanish at an infinite distance, and must satisfy Laplace’s 

equation. 
At every point of the surface itself, 12 = 12', and the derivatives 

of 12,12' and V with respect to the normal must satisfy equation 

(i°). 
This method of treating the problem of induced magnetism 

is due to Poisson. The quantity lc which he uses in his memoirs 

is not the same as *, but is related to it as follows: 

4ttk (fc— 1) -f 3k sc 0. (11) 
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The coefficient k which we have here used was introduced by 
F. E. Neumann. 

428.] The problem of induced magnetism may be treated in 

a different manner by introducing the quantity which we have 

called, with Faraday, the Magnetic Induction. 

The relation between 33, the magnetic induction, £, the mag¬ 
netic force, and 3> the magnetization, is expressed by the 

equation 93 = £ + 4*3. (12) 

The equation which expresses the induced magnetization in 
terms of the magnetic force is 

3 = *£. (13) 

Hence, eliminating 3, we find 

33 = (1 + 47r*f)£ (14) 

as the relation between the magnetic induction and the magnetic 
force in substances whose magnetization is induced by magnetic 
force. 

In the most general case k may be a function, not only of the 
position of the point in the substance, but of the direction of the 
vector £, but in the case which we are now considering k is a 

numerical quantity. 

If we next write M = I + 4itk, (15) 

we may define /x as the ratio of the magnetic induction to the 

magnetic force, and we may call this ratio the magnetic induc¬ 
tive capacity of the substance, thus distinguishing it from k, the 

coefficient of induced magnetization. 

If we write U for the total magnetic potential compounded 

of Vy the potential due to external causes, and 12 that due to 
the induced magnetization, we may express a, 6, c, the com¬ 

ponents of magnetic induction, and a, (3, y, the components of 

magnetic force, as follows : 
dU v 

l='"s = -'‘ a=.| (16> 
dU 

c=My = -M^.j 

The components a, b, c satisfy the adenoidal condition 

da db dc 

dy "1" dz 
(17) 
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Hence, the potential U must satisfy Laplace’s equation 

<PU d2U cini 

dx2 + dy2 + dz2 ~ 0 
(18) 

at every point where n is constant, that is, at every point within 

the homogeneous substance, or in empty space. 

At the surface itself, if v is a normal drawn towards the 

magnetic substance, and v one drawn outwards, and if the 

symbols of quantities outside the substance are distinguished by 

accents, the condition of continuity of the magnetic induction is 

dx 7 dy 
a -7- + b-f 

clv civ 
-f C , + CL 

dv 

dx lfdy ,dz 

dv'+b dv e <iv’= 0 

or, by equations (16), 

dU ,dlT’ 

11 dv +M d/~ 
0. (20) 

/ul', the coefficient of induction outside the magnet, will be 

unity unless the surrounding medium be magnetic or dia¬ 

magnetic. 

If we substitute for U its value in terms of V and X2, and for 

H its value in terms of *, we obtain the same equation (10) as 

we arrived at by Poisson's method. 

The problem of induced magnetism, when considered with 

respect to the relation between magnetic induction and magnetic 

force, corresponds exactly with the problem of the conduction 

of electric currents through heterogeneous media, as given in 

Art. 310. 

The magnetic force is derived from the magnetic potential, 

precisely as the electric force is derived from the electric 

potential. 

The magnetic induction is a quantity of the nature of a flux, 

and satisfies the same conditions of continuity as the electric 

current does. 

In isotropic media the magnetic induction depends on the 

magnetic force in a manner which exactly corresponds with 

that in which the electric current depends on the electromotive 

force. 

The specific magnetic inductive capacity in the one problem 

corresponds to the specific conductivity in the other. Hence 

Thomson, in his Theory of Induced Magnetism {Reprint, 1872, 

p. 484), has called this quantity the permeability of the medium. 
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We are now prepared to consider the theory of induced mag¬ 

netism from what I conceive to be Faraday’s point of view. 

When magnetic force acts on any medium, whether magnetic 

or diamagnetic, or neutral, it produces within it a phenomenon 

called Magnetic Induction. 

Magnetic induction is a directed quantity of the nature of a 

flux, and it satisfies the same conditions of continuity as electric 

currents and other fluxes do. 

In isotropic media the magnetic force and the magnetic in¬ 

duction are in the same direction, and the magnetic induction 

is the product of the magnetic force into a quantity called the 

coefficient of induction, which we have* expressed by g. 

In empty space the coefficient of induction is unity. In bodies 

capable of induced magnetization the coefficient of induction is 

1 + 4ttk = p, where k is the quantity already defined as the co¬ 

efficient of induced magnetization. 

429.] Let p, fjf be the values of fx on opposite sides of a surface 

separating two media, then if V, V' are the potentials in the two 

media, the magnetic forces towards the surface in the two media 

dV , cIV 
are 7 - and -7-7 * 

dv dv 

The quantities of magnetic induction through the element of 

d F d V^ 
surface dS are ix ----- dS and \x dS in the two media respect¬ 

er v d v 

ively reckoned towards dti. 

Since the total flux towards dS is zero, 

dV ,dV' A 
fx —f- fx — 0. 

dv dv 

But by the theory of the potential near a surface of density <r, 

dv ar 
-T- 4* -7-7 =r 0. 
dv dv 

Hence ~t~ (I ■— ^?) + 417 a — 9. 
d v ^ \x ' 

If /q is the ratio of the superficial magnetization to the normal 

force in the first medium whose coefficient is fx, we have 

4 73T K, 
fX-fX 

Hence will be positive or negative according as fx is greater 

or less than \x. If we put fx = 4 ttk -f 1 and \x = 4 ttk -F 1, 
/ 

K — K 

Ki ~ 4wV + l' 
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In this expression k and k' are the coefficients of induced 

magnetization of the first and second media deduced from ex¬ 

periments made in air, and kx is the coefficient of induced 

magnetization of the first medium when surrounded by the 

second medium. 

If k is greater than *, then kx is negative, or the apparent 

magnetization of the first medium is in the opposite direction 

to the magnetizing force. 

Thus, if a vessel containing a weak aqueous solution of a 

paramagnetic salt of iron is suspended in a stronger solution 

of the same salt, and acted on by a magnet, the vessel moves 

as if it were magnetized in the opposite direction from that in 

which a magnet would set itself if suspended in the same place. 

This may be explained by the hypothesis that the solution in 

the vessel is really magnetized in the same direction as the 

magnetic force, but that the solution which surrounds the vessel 

is magnetized more strongly in the same direction. Hence the 

vessel is like a weak magnet placed between two strong ones all 

magnetized in the same direction, so that opposite poles are in 

contact. The north pole of the weak magnet points in the 

same direction as those of the strong ones, but since it is in 

contact with the south pole of a stronger magnet, there is an 

excess of south magnetism in the neighbourhood of its north 

pole, which causes the weak magnet to appeal* oppositely mag¬ 

netized. 

In some substances, however, the apparent magnetization is 

negative even when they are suspended in what is called a 

vacuum. 

If we assume k ~ 0 for a vacuum, it will be negative for 

these substances. No substance, however, has been discovered 

for which k has a negative value numerically greater than — , 

and therefore for all known substances fj. is positive. R 

Substances for which * is negative, and therefore less than 

unity, are called Diamagnetic substances. Those for which k is 

positive, and /u greater than unity, are called Paramagnetic, 

Ferromagnetic, or simply magnetic, substances. 

We shall consider the physical theory of the diamagnetic and 

paramagnetic properties when we come to electromagnetism, 

Arts. 832-845. 
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430.] The mathematical theory of magnetic induction was 

first given by Poisson *. The physical hypothesis on which he 

founded his theory was that of two magnetic fluids, an hypothesis 

which has the same mathematical advantages and physical 
difficulties as the theory of two electric fluids. In order, how¬ 

ever, to explain the fact that, though a piece of soft iron can be 
magnetized by induction, it cannot be charged with unequal 

quantities of the two kinds of magnetism, he supposes that the 
substance in general is a non-conductor of these fluids, and that 

only certain small portions of the substance contain the fluids 

under circumstances in which they are free to obey the forces 

which act on them. These small magnetic elements of the sub¬ 
stance contain each precisely equal quantities of the two fluids, 
and within each element the fluids move with perfect freedom, 

but the fluids can never pass from one magnetic element to 
another. 

The problem therefore is of the same kind as that relating to 
a number of small conductors of electricity disseminated through 

a dielectric insulating medium. The conductors may be of any 

form provided they are small and do not touch each other. 

If they are elongated bodies all turned in the same general 
direction, or if they are crowded more in one direction than 

another, the medium, as Poisson himself shews, will not be 

isotropic. Poisson therefore, to avoid useless intricacy, examines 
the case in which each magnetic element is spherical, and the 

elements are disseminated without regard to axes. He supposes 

that the whole volume of all the magnetic elements in unit of 

volume of the substance is k. 
We have already considered in Art. 314 the electric conduc¬ 

tivity of a medium in which small spheres of another medium 

are distributed. 
If the* conductivity of the medium is fq, and that of the 

spheres we have found that the conductivity of the com¬ 

posite system is 
_ 2Mi 4-+ 

^ ^ ^ (Mj — Mi) 

Putting jUj as 1 and = °c, this becomes 
l *4- 2 k 

rr 
• Mimoiru de 1‘Inetitut, 1824, p. 247. 
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This quantity /j, is the electric conductivity of a medium con¬ 

sisting of perfectly conducting spheres disseminated through a 

medium of conductivity unity, the aggregate volume of the 

spheres in unit of volume being k. 

The symbol fi also represents the coefficient of magnetic in¬ 

duction of a medium, consisting of spheres for which the per¬ 

meability is infinite, disseminated through a medium for which 

it is unity. 

The symbol k, which we shall call Poisson’s Magnetic Co¬ 

efficient, represents the ratio of the volume of the magnetic 

elements to the whole volume of the substance. 

The symbol k is known as Neumann s Coefficient of Magnet¬ 

ization by Induction. It is more convenient than Poisson’s. 

The symbol ju. we shall call the Coefficient of Magnetic Induc¬ 

tion. Its advantage is that it facilitates the transformation of 

magnetic problems into problems relating to electricity and heat. 

The relations of these three symbols are as follows: 

H — 1 3 k 

4 7r K 4 7r(l—&)’ 

1+2]C A ^1 
1-k* ^ = 4^+1- 

If we put k = 32, the value given by Thaten’s* experiments 

on soft iron, we find k = |§|. This, according to Poisson’s 

theory, is the ratio of the volume of the magnetic molecules to 

the whole volume of the iron. It is impossible to pack a space 

with equal spheres so that the ratio of their volume to the whole 

space shall be so nearly unity, and it is exceedingly improbable 

that so large a proportion of the volume of iron is occupied by 

solid molecules, whatever be their form. This Is one reason 

why we must abandon Poisson’s hypothesis. Others will be 

stated in Chapter VI. Of course the value of Poisson’s mathe¬ 

matical investigations remains unimpaired, as they do not rest 

on his hypothesis, but on the experimental fact of induced 

magnetization. 

* Jlecherches mr lei propriety magnttiques dufer, Nova Acta, Upsal, 1863. 



CHAPTER V. 

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION. 

A Hollow Spherical Shell. 

43L] The first example of the complete solution of a problem 

in magnetic induction was that given by Poisson for the case 

of a hollow spherical shell acted on by any magnetic forces 

whatever. 

For simplicity we shall suppose the origin of the magnetic 

forces to be in the space outside the shell. 

If V denotes the potential due to the external magnetic 

system, we may expand V in a series of solid harmonics of the 

form y — C080 + ClS1r + &c.. + Ci8ir' +(1) 

where r is the distance from the centre of the shell, Si is a 

surface harmonic of order it and is a coefficient. 

This series will be convergent provided r is less than the 

distance of the nearest magnet of the system which produces 

this potential. Hence, for the hollow spherical shell and the 

space within it, this expansion is convergent. 

Let the external radius of the shell be a2 and the inner radius 

av and let the potential due to its induced magnetism be XL 

The form of the function X2 will in general be different in the 

hollow space, in the substance of the shell, and in the space 

beyond. If we expand these functions in harmonic series, then, 

confining our attention to those terms which involve the surface 

harmonic St, we shall find that if X2* is that which corresponds 

to the hollow space within the shell, the expansion of ilx must 

be in positive harmonics of the form A1Sir\ because the po¬ 

tential must not become infinite within the sphere whose radius 

is av 
In the substance of the shell, where r lies between ax and a2, 

the series may contain both positive and negative powers of r, 

of the form A% Si r{ + B2 
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Outside the shell, where r is greater than a2, since the series 

must be convergent however great r may be, we must have only 

negative powers of r, of the form 

The conditions which must be satisfied by the function Q are: 

It must be 1° finite, and 2° continuous, and 3° must vanish at 
an infinite distance, and it must 4° everywhere satisfy Laplace's 

equation. 

On account of 1°, Bl = 0. 

On account of 2°, when r = a19 

(A.-Ajaf'+'-B^ 0, (2) 
and when r = a2, 

(A2—A3)a22i+1 + B2—B3 — 0. b (3) 
On account of 3°, A3 = 0, and the condition 4° is satisfied 

everywhere, since the functions are harmonic. 
But, besides these, there are other conditions to be satisfied at 

the inner and outer surfaces in virtue of equation (10), Art. 427. 

At the inner surface where r = a19 

,, * dtlr A dV 
(1 + 4")d7-*!+f*'15“0' 

and at the outer surface where r = a2, 

Kdil,> d£l3 
— 4 17 K — 0. 

dr 

(4) 

<*> 

From these conditions we obtain the equations 
(1 + 4™) {iA^aj2^1 — (i +1)B2} —iA1al2i+1 + inK.iCia1ii*1 = 0, (6) 

(1+4™) {iAia2i+1-(i +1)Bt) +(i +1 )B3+4™i(7iaai<+1 = 0;(7) 
and if we put 

--1-7-r-T7TT-> (8) 
(1 + 4 7TK)(2i-|-l),2-h(4^K)2i(i4-l)(l—(j“) ) 

we find 
, n 2< + lx 

■A-i — —(4ir»c)2i(i+ l)(l ~(~) )W> («) 

^s*=-417Ki[2i+l + 4™(i+l)(l-(J)a,+1)]lV<0,1, (10) 

B% r= 4itKi(2i+ 1 )*h2<+1-^Co (11) 
-5S = ~4™i{2i-fl+4,n,K(i+l)} (a22<+1 —(12) 

These quantities being substituted in the harmonic expansions 

give the part of the potential due to the magnetization of the 

shell. The quantity AT, is always positive, since 1 + 4™ can 
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never be negative. Hence Ax is always negative, or in other 
words, the action of the magnetized shell on a point within it is 

always opposed to that of the external magnetic force, whether 
the shell be paramagnetic or diamagnetic. The actual value of 
the resultant potential within the shell is 

or (1 + 4 7r*c) (2 l)2 r\ (13) 

432. ] When k is a large number, as it is in the case of soft 

iron, then, unless the shell is very thin, the magnetic force 
within it is but a small fraction of the external force. 

In this way Sir W. Thomson has rendered his marine galva¬ 
nometer independent of external magnetic force by enclosing it 
in a tube of soft iron. 

433. ] The case of greatest practical importance is that in 
which i = 1. In this case 

9 (l +4wk) + 2 (47tk)2^1 — 

21=-2(4^)*(l-(^)3)#1C'1, 

At = -4»«[s + 8™(-l(£)^J.»i(7lf 

(14) 

(15) 

B2 = 1 2 7TK Oj8 JBTj Cx , 

jB3 = —47TK (3 -f Siric) (a23 — fltj8) JVjCj. / 

The magnetic force within the hollow shell is in this case 
uniform and equal in magnitude to 

c,+A =--rcr (i6) 
9(l+4w.) + 2(4w«)*(l-(^) ) 

If we wish to determine k by measuring the magnetic force 
within a hollow shell and comparing it with the external mag¬ 

netic force, the best value of the thickness of the shell may be 

found from the equation 
V 91±jhnc 
a./ 2(4 ttk)* { } 

(This value of — makes — +4^1 a maximum, so that for 
1 a2 d,K l C 

a given error in the corresponding error in k is as 

small as possible.} The magnetic force inside the shell is then 

half of its value outside. 
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Since, in the case of iron, x is a number between 20 and 30, 

the thickness of the shell ought to be about the two hundredth 

part of its radius. This method is applicable only when the value 

of k is large. When it is very small the value of Ax becomes 

insensible, since it depends on the square of x. 

For a nearly solid sphere with a very small spherical hollow 

A=- 

A=- 

*,= - 

2 (4 7T k)2 

(3 + 47rx) (3 + 8 7tic) 

. n 
3 + 4 7TX 1 ’ 

3 + 4 ir/c 1 1 

\ 

/ 

(18) 

The whole of this investigation might have been deduced 

directly from that of conduction through a spherical shell, as 

given in Art. 312, by putting kx~ (1 + 4 7r/c) k2 in the expressions 

there given, remembering that Ax and Az in the problem of 

conduction are equivalent to Cx + Ax and Cx + A2 in the problem 
of magnetic induction. 

434,] The corresponding solution in two dimensions is graphi¬ 

cally represented in Fig. XV, at the end of this volume. The 

lines of induction, which at a distance from the centre of the 

figure are nearly horizontal, are represented as disturbed by a 

cylindric rod magnetized transversely and placed in its position 

of stable equilibrium. The lines which cut this system at right 

angles represent the equipotential surfaces, one of which is a 

cylinder. The large dotted circle represents the section of a 

cylinder of a paramagnetic substance, and the dotted horizontal 

straight lines within it, which are continuous with the external 

lines of induction, represent the lines of induction within the 

substance. The dotted vertical lines represent the internal equi¬ 

potential surfaces, and are continuous with the external system. 

It will be observed that the lines of induction are drawn nearer 

together within the substance, and the equipotential surfaces 
are separated farther apart by the paramagnetic cylinder, which, 

in the language of Faraday, conducts the lines of induction 
better than the surrounding medium. 

If we consider the system of vertical lines as lines of induc¬ 

tion, and the horizontal system as equipotential surfaces, we 

have, in the first place, the case of a cylinder magnetized trans- 
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versely and placed in the position of unstable equilibrium 

among the lines of force, which it causes to diverge. In the 

second place, considering the large dotted circle as the section 
of a diamagnetic cylinder, the dotted straight lines within it, 

together with the lines external to it, .represent the effect of a 

diamagnetic substance in separating the lines of induction and 
drawing together the equipotential surfaces, such a substance 

being a worse conductor of magnetic induction than the sur¬ 
rounding medium. 

Case of a Sphere in which the Coefficients of Magnetization are 
Different in Different Directions. 

435.] Let a, /3, y be the components of magnetic force, and 

A, B, C those of the magnetization at any point, then the most 
general linear relation between these quantities is given by the 

equations A = rx a -j- p3 /3 + q2yy j 

B - <ha+r2$+Piy> [ 0) 
C = p2a + g^ + r3y, ) 

where the coefficients r, p, q are the nine coefficients of magnet¬ 

ization. 
Let us now suppose that these are the conditions of magnet¬ 

ization within a sphere of radius a, and that the magnetization 

at every point of the substance is uniform and in the same 

direction, having the components A, By C. 

Let us also suppose that the external magnetizing force is 

also uniform and parallel to one direction, and has for its com¬ 

ponents Ar, F, Z. 

The value of V is therefore 

V=-{Xz+Yy + Zz), (2) 

and that of 12', the potential outside the sphere of the mag¬ 

netization, is by Art. 391, 

il' = ff(Ax + By + Cz). (3) 

The value of 12, the potential within the sphere of the mag¬ 

netization, is 
12 = ^ (Ax + By + Gz). 

O 

(4) 

The actual potential within the sphere is F+ 22, so that we 
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shall have for the components of the magnetic force within the 

sphere a = X-$i:A,' 

P = Y—%-nB, ■ (5) 

y = Z-ir.C. ) 
Hence 

(1+$^)^+ i-*PsB+ $vqiC = r1X+p3Y+q3Z,' 
$Trq3A+(l+$nr,3)B+ = q3X + r2Y+p1Z, ■ 
$*p2A+ $*q.LB+ (1 +fwr3)C = p2X+?1F+r3Z., 

Solving these equations, we find 

A = r'X + V'Y+q'ZA 

B = q3'X + r.;Y + P:Z, 

C — Pi X + q/Y+r3Z, ) 

(6) 

(7) 

where D'r^- rx + |ir (r3 rx-p2q2 + rxr2 -p3q3) + (§ *)2Dt' 

D'Pi= Pi-i* (q* ?a -Pi ri)> 
D'qi = qi-i*(PiP3-qiri)’ 
&C., 

where D is the determinant of the coefficients on the right side 

of equations (6), and U that of the coefficients on the left. 

The new system of coefficients p\ q\ / .will be symmetrical 

only when the system p, q, r is symmetrical, that is, when the 

coefficients of the form p are equal to the corresponding ones of 

the form q. 

436.] *The moment of the couple tending to turn the sphere 

about the axis of x from y towards z is found by considering 

the couples arising from an elementary volume and taking the 

sum of the moments for the whole sphere. The result is 

L = £ 7ra3(yJ5 — /3<7) 

= iPi'Z2~qi P + «-r')YZ+X {q3'Z-p'Y)}. (9) 

* [The equality of the coefficients p and q may be shewn as follows : Let the forces 
acting on the sphere turn it about a diameter whose direction-cosines are A, p, v through 
an angle 80; then, if W denote the energy of the sphere, we have, by Art. 486, 

-8JF- twai{(ZB-YC)\ + (XC-ZA)p + (YA-X3)v}80. 
But if the axes of coordinates be fixed in the sphere we have in consequence of the 
rotation 

8X= (Yv-Z/x)80,e tc. 
Henoe we may put 

-8jr~t*a*(A8X + B8Y+C8Z). 

That the revolving sphere may not become a source of energy, the expression on the 
right-hand of the last equation must be a perfect differential. Hence, since A, B, C 
are linear functions of X, Y, Z, it follows that IF is a quadratic function of X, Y, Z, 
and the required result is at once deduced. 

See also Sir W, Thomson’s Reprint of Paper9 on Electrostatics and Magnetism, 
pp. 480-481.] 
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If we make 

1=0, Y — Foos 0, Z = F sin 0, 

this corresponds to a magnetic force F in the plane of yz, and 
inclined to y at an angle 6. If we now turn the sphere while 
this force remains constant the work done in turning the sphere 

will bej* L d6 in each complete revolution. But this is equal to 

(10) 
Hence, in order that the revolving sphere may not become an 

inexhaustible source of energy, px = gx\ and similarly p,f = q.f 
and pz' = ?3'. 

These conditions shew that in the original equations the co¬ 
efficient of B in the third equation is equal to that of C in the 
second, and so on. Hence, the system of equations is sym¬ 
metrical, and the equations become when referred to the prin¬ 
cipal axes of magnetization, 

c = —^ z. 

The moment of the couple tending to turn the sphere round 
the axis of x is 

4^3 /2 -XYZ. (12) 
(1 + J 7r r2) (1 -f 577 ^3) 

In most cases the differences between the coefficients of 
magnetization in different directions are very small, so that we 
may put, if r represents the mean value of the coefficients, 

i = S’“‘(1Tt5pf’8“29- <ls> 
This is the force tending to turn a crystalline sphere about 

the axis of x from y towards z. It always tends to place the 
axis of greatest magnetic coefficient (or least diamagnetic co¬ 

efficient) parallel to the line of magnetic force. 
The corresponding case in two dimensions is represented in 

Fig. XVI. 
If we suppose the upper side of the figure to be towards the 

north, the figure represents the lines of force and equipotential 
surfaces as disturbed by a transversely magnetized cylinder 

VOL. IL F 
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placed with the north side eastwards. The resultant force tends 

to turn the cylinder from east to north. The large dotted circle 

represents a section of a cylinder of a crystalline substance 
which has a larger coefficient of induction along an axis from 

north-east to south-west than along an axis from north-west to 

south-east. The dotted lines within the circle represent the 
lines of induction and the equipotential surfaces, which in this 

case are not at right angles to each other. The resultant force 

on the cylinder tends evidently to turn it from east to north. 

437.] The case of an ellipsoid placed in a field of uniform and 

parallel magnetic force has been solved in a very ingenious 
manner by Poisson. 

If V is the potential at the point (x, y, z), due to the gravita- 
dV 

tion of a body of any form of uniform density p, then 
Oju 

is the potential of the magnetism of the same body if uniformly 

magnetized in the direction of x with the intensity I = p. 

For the value of 
dV 
~j~ h x ac any point is the excess of the 

value of F, the potential of the body, above V\ tho value of 

the potential when the body is moved ~l>x in the direction 

of x, 
If we supposed the body shifted through tho distance — hxy 

and its density changed from p to —p (that is to say, made of 
dV 

repulsive instead of attractive matter), then — ~ ox would be 

the potential due to the two bodies. 
Now consider any elementary portion of the body containing 

a volume hv. Its quantity is phv, and corresponding to it there 

is an element of the shifted body whose quantity is —phv at a 

distance —hx. The effect of these two elements is equivalent to 

that of a magnet of strength phv and length hx. The intensity 

of magnetization is found by dividing the magnetic moment of 

an element by its volume. The result is phx. 

Hence— hx is the magnetic potential of the body mag- 
fly 

netized with the intensity phx in the direction of xt and — 

is that of the body magnetized with intensity p. 

This potential may be also considered in another light. The 

body was shifted through the distance —hx and made of density 
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—P- Throughout that part of space common to the body in its 
two positions the density is zero, for, as far as attraction is 
concerned, the two equal and opposite densities annihilate each 
other. There remains therefore a shell of positive matter on 
one side and of negative matter on the other, and we may 
regard the resultant potential as due to these. The thickness of 
the shell at a point where the normal drawn outwards makes 
an angle e with the axis of x is 5#cose and its density is p. 
The surface-density is therefore p bx cose, and, in the case in 

which the potential is 
dV 

dx 4 
the surface-density is p cos e. 

In this way we can find the magnetic potential of any body 
uniformly magnetized parallel to a given direction. Now if 
this uniform magnetization is due to magnetic induction, the 
magnetizing force at all points within the body must also be 
uniform and parallel. 

This force consists of two parts, one due to external causes, 
and the other due to the magnetization of the body. If there¬ 
fore the external magnetic force is uniform and parallel, the 
magnetic force due to the magnetization must also be uniform 
and parallel for all points within the body. 

Hence, in order that this method may lead to a solution of 
dV 

the problem of magnetic induction, must be a linear function 

of the coordinates x, y, z within the body, and therefore V must 
be a quadratic function of the coordinates. 

Now the only cases with which we are acquainted in which V 
is a quadratic function of the coordinates within the body are 
those in which the body is bounded by a complete surface of 
the second degree, and the only case in which such a body is of 
finite dimensions is when it is an ellipsoid. We shall therefore 
apply the method to the case of an ellipsoid. 

fi]2 op 

Let + 2=1 0) a2 62 cz ' 
be the equation of the ellipsoid, and let <h0 denote the definite 

integral 
dm L o V (a2 + <p2) (b1 + <j>*) (c* + <px) 

(2) 

* See Thomson and Tati's Natural Philosophy, $ 525, 2nd Edition. 
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Then if we make 

L = iltabcZW> N=*™bc!$)’ (3) 

the value of the potential within the ellipsoid will be 

V0 = — ~ (Lx2 4- My2 4- Xz2) 4- const. 
2 

If the ellipsoid is magnetized with uniform intensity / in a 

direction making angles whose cosines are l, m, n with the axes 

of x, y, z, so that the components of magnetization are 

A ^ II, B = Jm, C = J?i, 

the potential due to this magnetization within the ellipsoid 

will be il as — I (L lx 4* Mmy + Xnz). (5) 

If the external magnetizing force is »£), and if its components 

are X, Y, Z, its potential will be 

V~-(Xx+Yy + Zz). (6) 

The components of the actual magnetizing force at any point 

within the body are therefore 

X + AL, Y+BM, Z + CX. (7) 

The most general relations between the magnetization and 

the magnetizing force are given by three linear equations, 

involving nine coefficients. It is necessary, however, in order 

to fulfil the condition of the conservation of energy, that in 

the case of magnetic induction three of these should be equal 

respectively to other three, so that we should have 

A =k1(X + AL) + k\(Y+BM) + k\(Z + CN),' 

B = k\(X + AL) + k2(Y+BM) + k\(Z+CX)\ (8) 

(7= k'2(X + AL) + k1(Y+BM) + kz(Z+ CN).t 

From these equations we may determine A, B and C in terms 

of X\ Yy Z, and this will give the most general solution of the 
problem. 

The potential outside the ellipsoid will then be that due to 
the magnetization of the ellipsoid together with that due to 

the external magnetic force. 

438.] The only case of practical importance is that in which 

k\ = Kr2 = k 3 = 0. (9) 
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We have then 
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A = r^~X, 
1 — Kj L 

B = _^_Y 
1-K 2M ’ 

l-KaN“‘ I 

If the ellipsoid has two axes equal, and is of the planetary 
or flattened form, a 

L = —47T (-^ — 
ve1 

1 s/\-~e2 . 

-nr n / y 1 —e2 . , 1 — e2\ i 
M — N ~ —2tt (--—sm“1e-— )• / v e3 e- ' 

If the ellipsoid is of the ovary or elongated form, 

a = b = yi —e2c ; 

x.jr— 

In the case of a sphere, when e = 0, 

L = JT=-tir. (15) 

In the case of a very flattened planetoid L becomes in the 

limit equal to — 47t, and M and N become — n2- • 

In the case of a very elongated ovoid L and M approximate 

to the value —2*, while N approximates to the form 

and vanishes when e = 1. 
It appears from these results that— 
(1) When k, the coefficient of magnetization, is very small, 

whether positive or negative, the induced magnetization is 
nearly equal to the magnetizing force multiplied by k, and is 

almost independent of the form of the body. 
(2) When k is a large positive quantity, the magnetization 

depends principally on the form of the body, and is almost 
independent of the precise value of k, except in the case of a 



MAGNETIC PROBLEMS. 70 [438. 
longitudinal force acting on an ovoid so elongated that A* is 

a small quantity though k is large. 
(3) If the value of k could be negative and equal to — we 

should have an infinite value of the magnetization in the case 

of a magnetizing force acting normally to a flat plate or disk. 
The absurdity of this result confirms what we said in Art. 428. 

Hence, experiments to determine the value of k may be made 
on bodies of any form, provided k is very small, as it is in 

the case of all diamagnetic bodies, and all magnetic bodies 

except iron, nickel and cobalt. 
If, however, as in the case of iron, k is a large number, 

experiments made on spheres or flattened figures are not 
suitable to determine k ; for instance, in the case of a sphere 

the ratio of the magnetization to the magnetizing force is as 

1 to 4*22 if k = 30, as it is in some kinds of iron, and if k were 

infinite the ratio would be as 1 to 4*19, so that a very small 

error in the determination of the magnetization would introduce 

a very large one in the value of k. 
But if we make use of a piece of iron in the form of a 

very elongated ovoid, then, as long as Nk is of moderate value 

compared with unity, we may deduce the value of k from a 
determination of the magnetization, and the smaller the value 

of jflT the more accurate will be the value of k. 

In fact, if Nk be made small enough, a small error in the 

value of N itself will not introduce much error, so that we 

may use any elongated body, such as a wire or long rod, instead 

of an ovoid *. 
We must remember, however, that it is only when the 

product i\T* is small compared with unity that this substitution 
is allowable. In fact the distribution of magnetism on a long 

cylinder with fiat ends does not resemble that on a long 

ovoid, for the free magnetism is very much concentrated 

towards the ends of the cylinder, whereas it varies directly as 
the distance from the equator in the case of the ovoid. 

The distribution of electricity on a cylinder, however, is really 

comparable with that on an ovoid, as we have already seen, 
Art. 152. 

These results also enable us to understand why the magnetic 

* {if wires are used tlieir length should be at least 300 times their diameter.] 
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moment of a permanent magnet can be made so much greater 

when the magnet has an elongated form. If we were to 

magnetize a disk with intensity I in a direction normal to 

its surface, and then leave it to itself, the interior particles 

would experience^ constant demagnetizing force equal to 4?ri, 

and this, if not sufficient of itself to destroy part of the mag¬ 
netization, would soon do so if aided by vibrations or changes 
of temperature *. 

If we were to magnetize a cylinder transversely the demag¬ 
netizing force would be only 2 tt I, 

If the magnet were a sphere the demagnetizing force would 
be 17tI. 

In a disk magnetized transversely the demagnetizing force is 

7r-J, and in an elongated ovoid magnetized longitudinally it 
Q? 2 c 

is least of all, being 4 7r — / log —. 
C CL 

Hence an elongated magnet is less likely to lose its magnetism 
than a short thick one. 

The moment of the force acting on an ellipsoid having 

different magnetic coefficients for the three axes which tends 
to turn it about the axis of x, is 

%icdbc (BZ —CY) = \ itahe YZ 
k2-~k:i + k2k3 (M~ N)' 

(1 ~K3JY) 

Hence, if k2 and *c3 are small, this force will depend principally 

on the crystalline quality of the body and not on its shape, pro¬ 

vided its dimensions are not very unequal, but if k2 and /e3 are 

considerable, as in the case of iron, the force will depend 
principally on the shape of the body, and it will turn so as 

to set its longer axis parallel to the lines of force. 
If a sufficiently strong, yet uniform, field of magnetic force 

could be obtained, an elongated isotropic diamagnetic body 

* ■[ The magnetic force in the disk — X + AL 

X 

~i-#Z; 
and since L = — 4ir in this case, the magnetic force is 

X 
1 + 4 ntc 

Thus the magnetic induction through the diak is X, the value it would have in the air 
if the disk were removed.} 
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would also set itself with its longest dimension parallel to the 

lines of magnetic force *. 

439.] The question of the distribution of the magnetization of 

an ellipsoid of revolution under the action of any magnetic 

forces has been investigated by J. Neumann f. Kirchhoff J has 

extended the method to the case of a cylinder of infinite length 
acted on by any force. 

Green, in the 17th section of his Essay, has given an investiga¬ 

tion of the distribution of magnetism in a cylinder of finite 
length acted on by a uniform external force X parallel to its axis. 

Though some of the steps of this investigation are not very 

rigorous, it is probable that the result represents roughly the 

actual magnetization in this most important case. It certainly 
expresses very fairly the transition from the case of a cylinder 

for which k is a large number to that in which it is very small, 
but it fails entirely in the case in which k is negative, as in 

diamagnetic substances. 

Green finds that the linear density of free magnetism at a 

distance x from the middle of a cylinder whose radius is a and 
whose length is 21, is 

V* jpx 

e« —e a 
A = TTKXpa-p— 

ea+e a 

where p is a numerical quantity to be found from the equation 

The following 

0*231863 — 2log w-f 2p =-- 
* TTKpZ 

are a few of tho corresponding values of p and *. 

K P K P 
00 0 11*802 0*07 

336*4 0*01 9*137 0*08 

62*02 0*02 7-517 0*09 

48*416 0*03 6*319 0*10 

29*475 0*04 0*1427 1*00 

20*185 0 05 0*0002 10*00 

14-794 0*06 0*0000 00 

negative imaginary. 

* { Thi» effect depends on the square of *, the forces investigated in $ 440 depend upon 
the first power of #, thus since * is very small for diamagnetic bodies the latter forces 
will, except in exceptional cases, over-power the tendency investigated in this Art.} 

+ C'relic, bd. xxrvii (184c> J CrelU, bd. xlviii (1854). 
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When the length of the cylinder is great compared with its 

radius, the whole quantity of free magnetism on either side of 
the middle of the cylinder is, as it ought to be, 

M — 7ra2*X. 

Of this $ pM is on the flat end of the cylinder*, and the distance 
of the centre of gravity of the whole quantity M from the end 

of the cylinder is ~ • 

When k is very small p is large, and nearly the whole free 
magnetism is on the ends of the cylinder. As k increases p 

diminishes, and the free magnetism is spread over a greater 

distance from the ends. When k is infinite the free magnetism 
at any point of the cylinder is simply proportional to its distance 

from the middle point, the distribution being similar to that of 
free electricity on a conductor in a field of uniform force. 

440.] In all substances except iron, nickel, and cobalt, the 

coefficient of magnetization is so small that the induced mag¬ 

netization of the body produces only a very slight alteration of the 
forces in the magnetic field. We may therefore assume, as a 

first approximation, that the actual magnetic force within the 

body is the same as if the body had not been there. The super¬ 
ficial magnetization of the body is therefore, as a first approx- 

dV d V 
imation, k -7—, where -7- is the rate of increase of the magnetic 

av (iv 
potential due to the external magnet along a normal to the 

surface drawn inwards. If we now calculate the potential due 

to this superficial distribution, we may use it in proceeding to a 

second approximation. 

To find the riiechamcal energy due to the distribution of 

* {The quantity of free magnetism on the curved surface on the positive side of the 
cylinder r>i / .. 

^ J \dx * v—sech — ^* 

The quantity on the flat end, supposing the density to he the same as on the curved 
surface when x — l, is wxXva . vl , 

Thus the total quantity of free magnetism is 

*r a* k X — sech ~ 

When pi/a is large this is equal to 

pi p 
sech — - tanh J 

a 2 

rH)}' 
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magnetism on this first approximation we must find the surface- 

integral „ , rr „dv 
E = iIJ• KV"-'-dS 

dv 

taken over the whole surface of the body. Now we have shewn 

in Art. 100 that this is equal to the volume-integral 

,dVl2 dV\* dTA\ 

*=-*///< ll/JC 
+ 

dy ds\ 
^ dx dy dz 

taken through the whole space occupied by the body, or, if R is 

the resultant magnetic force, 

# = - R2dx dy dz. 

Now since the work done by the magnetic force on the body 

during a displacement hx is Xbx where X is the mechanical 

force in the direction of x> and since 

j X bx + E = constant, 

* — ■$=4 ///«*■*•%*- ‘///‘^^ 
which shews that the force acting on the body is as if every part 

of it tended to move from places where R2 is less to places where 

it is greater, with a force which on every unit of volume is 

d.Rr 

dx 

If k is negative, as in diamagnetic bodies, this force is, as 

Faraday first shewed, from stronger to weaker parts of the 

magnetic field. Most of the actions observed in the case of 

diamagnetic bodies depend on this property. 

Ships Magnetism. 

441.] Almost every part of magnetic science finds its use in 

navigation. The directive action of the earth’s magnetism on 

the compass-needle is the only method of ascertaining the ship’s 

course when the sun and stars are hid. The declination of the 

needle from the true meridian seemed at first to be a hindrance 
to the application of the compass to navigation, but after this 

difficulty had been overcome by the construction of magnetic 

charts it appeared likely that the declination itself would assist 

the mariner in determining his ship’s place. 
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The greatest difficulty in navigation had always been to ascer¬ 

tain the longitude; but since the declination is different at 

different points on the same parallel of latitude, an observation of 

the declination together with a knowledge of the latitude would 

enable the mariner to find his position on the magnetic chart. 

But in recent times iron is so largely used in the construction 

of ships that it has become impossible to use the compass at all 

without taking into account the action of the ship, as a magnetic 

body, on the needle. 

To determine the distribution of magnetism in a mass of iron 

of any form under the influence of the earth’s magnetic force, 

even though not subjected to mechanical strain or other disturb¬ 

ances, is, as we have seen, a very difficult problem. 

In this case, however, the problem is simplified by the following 

considerations. 

The compass is supposed to be placed with its centre at a fixed 

point of the ship, and so far from any iron that the magnetism 

of the needle does not induce any perceptible magnetism in the 

ship. The size of the compass-needJe is supposed so small that 

we may regard the magnetic force at every point of the needle as 

the same. 

The iron of the ship is supposed to be of two kinds only. 

(1) Hard iron, magnetized in a constant manner. 

(2) Soft iron, the magnetization of which is induced by the 

earth or other magnets. 

In strictness we must admit that the hardest iron is not only 

capable of induction but that it may lose part of its so-called 

permanent magnetization in various ways. 

The softest iron is capable of retaining what is called residual 

magnetization. The actual properties of iron cannot be accurately 

represented by supposing it compounded of the hard iron and 

the soft Iron above defined. But it has been found that when a 

ship is acted on only by the earth’s magnetic force, and not 

subjected to any extraordinary stress of weather, the supposition 

that the magnetism of the ship is-due partly to permanent mag¬ 

netization and partly to induction leads to sufficiently accurate 

results when applied to the correction of the compass. 

The equations on which the theory of the variation of the 

compass is founded were given by Poisson in tho fifth volume of 

the Memoires de VInstitvt, p. 533 (1824). 
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The only assumption relative to induced magnetism which is 

involved in these equations is, that if a magnetic force X due to 

external magnetism produces in the iron of the ship an induced 

magnetization, and if this induced magnetization exerts on the 

compass needle a disturbing force whose components are X\ Yf, 

Z\ then, if the external magnetic force is altered in a given ratio, 

the components of the disturbing force will be altered in the 

same ratio. 

It is true that when the magnetic force acting on iron is very 

great the induced magnetization is no longer proportional to the 

external magnetic force, but this want of proportionality is 

insensible for magnetic forces of the magnitude of those due to 

the earth s action. 

Hence, in practice we may assume that if a magnetic force 

whose value is unity produces through the intervention of the 

iron of the ship a disturbing force at the compass-needle whose 

components are a in the direction of x, d in that of y, and g in 

that of 2, the components of the disturbing force due to a force X 

in the direction of x will be aX> dX, and gX. 

If therefore we assume axes fixed in the ship, so that x is 

towards the ship's head, y to the starboard side, and z towards 

the keel, and if X, F, Z represent the components of the earth’s 

magnetic force in these directions, and X', Y\ Z' the components 

of the combined magnetic force of the earth and ship on the 

compass-needle, 

X' = X + aX + &F+c£+P5) 
F=F+dZ + 6r-f/Z+e, V (1) 
Z' = Z+g X + hY+kZ + R.) 

In these equations a, 6, c, d} e, /, g, h, k are nine constant co¬ 

efficients depending on the amount, the arrangement, and the 

capacity for induction of the soft iron of the ship. 

P, Q, and R are constant quantities depending on the per¬ 

manent magnetization of the ship. 

It is evident that these equations are sufficiently general if 

magnetic induction is a linear function of magnetic force, for 

they are neither more nor less than the most general expression 

of a vector as a linear function of another vector. 

It may also be shewn that they are not too general, for, by a 
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proper arrangement of iron, any one of the coefficients may be 
made to vary independently of the others. 

Thus, a long thin rod of iron under the action of a longitudinal 
magnetic force acquires poles, the strength of each of which is 

numerically equal to the cross-section of the rod multiplied by 
the magnetizing force and by the coefficient of induced magnet¬ 
ization. A magnetic force transverse to the rod produces a mucli 

feebler magnetization, the effect of which is almost insensible at 
a distance of a few diameters. 

If a long iron rod be placed fore and aft with one end at a 

distance x from the compass-needle, measured towards the ship’s 
head, then, if the section of the rod is A, and its coefficient of 
magnetization *, the strength of the pole will be ixJ, and, if 

dx^ 
A = ——, the force exerted by this pole on the compass-needle 

will be aX. The rod may be supposed so long that the effect of 

the other pole on the compass may be neglected. 

We have thus obtained the means of giving any required 
value to the coefficient a. 

If we place another rod of section B with one extremity at 

the same point, distant x from the compass toward the head of 
the vessel, and extending to starboard to such a distance that the 

distant pole produces no sensible effect on the compass, the dis¬ 

turbing force due to this rod will be in the direction of x, and 

equal to ?K-~-y or if B = —, the force will be b F. 
x* k 

This rod therefore introduces the coefficient b. 
A third rod extending downwards from the same point will 

introduce the coefficient c. 

The coefficients d, e, f may be produced by three rods 

extending to head, to starboard, and downward from a point 

to starboard of the compass, and g, h, k by three rods in parallel 

directions from a point below the compass. 
Hence each of the nine coefficients can be separately varied 

by means of iron rods properly placed. 
The quantities P, Q, R are simply the components of the 

force on the compass arising from the permanent magnetization 
of the ship together with that part of the induced magnetization 

which is due to the action of this permanent magnetization. 

A complete discussion of the equations (1), and of the relation 
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between the true magnetic course of the ship and the course 

as indicated by the compass, is given by Mr. Archibald Smith in 

the Admiralty Manual of the Deviation of the Compass. 
A valuable graphic method of investigating the problem is 

there given. Taking a fixed point as origin, a line is drawn 

from this point representing in direction and magnitude the 

horizontal part of the actual magnetic force on the compass- 

needle. As the ship is swung round so as to bring her head 

into different azimuths in succession, the extremity of this line 

describes a curve, each point of which corresponds to a par¬ 

ticular azimuth. 

Such a curve, by means of which the direction and magnitude 

of the force on the compass is given in terms of the magnetic 

course of the 6hip, is called a Dygogram. 

There are two varieties of the Dygogram. In the first, the 

curve is traced on a plane fixed in space as the ship turns 

round. In the second kind, the curve is traced on a plane 

fixed with respect to the ship. 

The dygogram of the first kind is the Li mac; on of Pascal; 

that of the second kind is an ellipse. For the construction 

and use of these curves, and for many theorems as interesting 

to the mathematician as they are important to the navigator, 

the reader is referred to the Admiralty Manual of the Deviation, 

of the Compass. 



CHAPTER VI. 

WEBERS THEORY OF INDUCED MAGNETISM. 

442.] We have seen that Poisson supposed the magnetization 

of iron to consist in a separation of the magnetic fluids within 

each magnetic molecule. If we wish to avoid the assumption 

of the existence of magnetic fluids, we may state the same 

theory in another form, by saying that each molecule of the 

iron, when the magnetizing force acts on it, becomes a magnet. 

Weber’s theory differs from this in assuming that the mole- 

cules of the iron are always magnets, even before the appli¬ 

cation of the magnetizing force, but that in ordinary iron 

the magnetic axes of the molecules are turned indifferently in 

every direction, so that the iron as a whole exhibits no magnetic 

properties. 
When a magnetic force acts on the iron it tends to turn the 

axes of the molecules all in one direction, and so to cause the 

iron, as a whole, to become a magnet. 

If the axes of all the molecules were set parallel to each 

other, the iron would exhibit the greatest intensity of mag¬ 

netization of which it is capable. Hence Weber’s theory implies 

the existence of a limiting intensity of magnetization, and the 

experimental evidence that such a limit exists is therefore 

necessary to the theory. Experiments shewing an approach 

to a limiting value of magnetization have been made by Joule*, 

J. Muller f, and Ewing and LowJ. 
The experiments of Beetz § on electrotype iron deposited 

* Annals of Electricity, iv. p. 181, 1888; Phil. Mag. [4] in. p. 32. 
t Pogg, Ixxix. p* 887. 1850. 

$ Phil. Trans. 1889. A. p. 221. 5 p°gB- cxi 189°- 
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under the action of magnetic force furnish the most complete 
evidence of this limit:— 

A silver wire was varnished, and a ^ery narrow line on the 
metal was laid bare by making a fine longitudinal scratch on 

the varnish. The wire was then immersed in a solution of a 

salt of iron, and placed in a magnetic field with the scratch 

in the direction of a line of magnetic force. By making the 

wire the cathode of an electric current through the solution, 

iron was deposited on the narrow exposed surface of the wire, 

molecule by molecule. The filament of iron thus formed was 

then examined magnetically. Its magnetic moment was found 

to be very great for so small a mass of iron, and when a power¬ 

ful magnetizing force was made to act in the same direction 
the increase of temporary magnetization was found to be very 

small, and the permanent magnetization was not altered. A 
magnetizing force in the reverse direction at once reduced the 

filament to the condition of iron magnetized in the ordinary way. 

Weber’s theory, which supposes that in this case the mag¬ 

netizing force placed the axis of each molecule in the same 

direction during the instant of its deposition, agrees very well 

with what is observed. 
Beetz found that when the electrolysis is continued under 

the action of the magnetizing force the intensity of magnet¬ 

ization of the subsequently deposited iron diminishes. The 

axes of the molecules are probably deflected from the line of 
magnetizing force when they are being laid down side by side 

with the molecules already deposited, so that an approximation 

to parallelism can be obtained only in the case of a very thin 
filament of iron. 

If, as Weber supposes, the molecules of iron are already 

magnets, any magnetic force sufficient to render their axes 

parallel as they are electrolytically deposited will be sufficient 

to produce the highest intensity of magnetization in the de¬ 

posited filament 

If, on the other hand, the molecules of iron are not magnets, 

but are only capable of magnetization, the magnetization of the 

deposited filament will depend on the magnetizing force in the 

same way in which that of soft iron in general depends on 

it. The experiments of Beetz leave no room for the latter 
hypothesis. 
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443.] We shall now assume, with Weber, that in every unit 
of volume of the iron there are n magnetic molecules, and that 
the magnetic moment of each is m. If the axes of all the 
molecules were placed parallel to one another, the magnetic 
moment of the unit of volume would be 

M = nm, 

and this would be the greatest intensity of magnetization of 
which the iron is capable. 

In the unmagnetized state of ordinary iron Weber supposes 
the axes of its molecules to be placed indifferently in all 
directions. 

To express this, we may suppose a sphere to be described, 
and a radius drawn from the centre parallel to the direction 
of the axis of each of the n molecules. The distribution of the 
extremities of these radii will represent that of the axes of the 
molecules. In the case of ordinary iron these n points are 

equally distributed over every part of the surface of the sphere, 
so that the number of molecules whose axes make an angle less 
than a with the axis of x is 

-(1-cos a), 

and the number of molecules whoBe axes make angles with that 
of x between a and a-f da is therefore 

n . , 
-sm ada. 

This is the arrangement of the molecules in a piece of iron 
which has never been magnetized. 

Let us now suppose that a magnetic force X is made to 
act on the iron in the direction of the axis of x, and let us 

consider a molecule whose axis was originally inclined a to the 
axis of x. 

If this molecule is perfectly free to turn, it will place itself 
with its axis parallel to the axis of x, and if all the molecules 
did so, the very slightest magnetizing force would be found 

sufficient to develope the very highest degree of magnetization. 
This, however, is not the case. 

The molecules do not turn with their axes parallel to x} and 

this is either because each molecule is acted on by a force 
tending to preserve it in its original direction, or because an 

VOL. II. G 
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equivalent effect is produced by the mutual action of the entire 

system of molecules. 

Weber adopts the former of these suppositions as the simplest, 

and supposes that each molecule, when deflected, tends to return 

to its original position with a force which is the same as that 

which a magnetic force P, acting in the original direction of its 

axis, would produce. 
The position which the axis actually assumes is therefore 

in the direction of the resultant of X and P. 
Let APB represent a section of a sphere whose radius re¬ 

presents, on a certain scale, the force P. 

Let the radius OP be parallel to the axis of a particular 

molecule in its original position. 

Let SO represent on the same scale the magnetizing force X 
which is supposed to act from S towards 0. Then, if the mole¬ 
cule is acted on by the force X in the direction SO, and by a 

force D in a direction parallel to OP, the original direction of 

its axis, its axis will set itself in the direction SP, that of the 

resultant of X and D. 
Since the axes of the molecules are originally in all directions, 

P may be at any point of the sphere indifferently. In Fig. 5, 

in which X is less than P, SP, the final position of the axis, 
may be in any direction whatever, but not indifferently, for 

more of the molecules will have their axes turned towards A 
than towards B. In Fig. 6, in which X is greater than P, the 

axes of the molecules will be all confined within the cone TST 
touching the sphere. 

Hence there are two different cases according as X is less or 
greater than P. 
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Let a = AOP, the original inclination of the axis of a mole¬ 
cule to the axis of x. 

0 = ASP, the inclination of the axis when deflected by 
the force X, 

/3 = /SPO, the angle of deflexion. 
/SO = X *, the magnetizing force. 
OP = P, the force tending towards the original position. 
SP = P. the resultant of X and D. 

m = magnetic moment of the molecule. 
Then the moment of the statical couple due to X, tending to 

diminish the angle 0, is 

mi ~ mX sin0, 

and the moment of the couple due to 1), tending to increase 0, is 

mi = mi sin#. 

Equating these values, and remembering that /3 = a — 0, we find 

Z) Bin a 
tan 0 

X -f D COS a 
(1) 

to determine the direction of the axis after deflexion. 

We have next to find the intensity of magnetization produced 
in the mass by the force X, and for this purpose we must 
resolve the magnetic moment of every molecule in the direction 
of x, and add all these resolved parts. 

The resolved part of the moment of a molecule in the direc¬ 

tion of x is m cos 0. 

The number of molecules whose original inclinations lay 
between a and a + da is n 

-sin ad a. 
2 

We have therefore to integrate 

r rvmn „ . , 
I = / cos 08m acta, (2) 

J o 2 
remembering that 0 is a function of a. 

* {.The force acting on a magnetic pole inside a magnet is indefinite, depending on 
the shape of the cavity in which the pole if placed. The force X is thus indefinite, 
for since we know notning about the shape or disposition of these molecular magnets 
there does not seem any reason for assuming that the force is that in a cavity of one 
shape rather than another. Thus it would seem that unless further assumptions are 
made we ought to put X =» X0 + pi, where X0 is the external magnetic force and p a 
constant, of which all we can say is that it must He between 0 and 4 v. This uncertainty 
about the value of X is the more embarrassing from the fact that in iron I is very 
much greater than X0, so that the term about which there is the uncertainty may be 
much the more important of the two. J 
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We may express both 0 and a in terms of 72, and the ex¬ 

pression to be integrated becomes 

-^~{R* + X*-D*)dR, (3) 

the general integral of which is 

^(W+SX'-SD^ + C. (4) 

In the first case, that in which X is less than D, the limits of 
integration are from 11 = 1)-fX to It — D~X. In tho second 

case, in wrhich X is greater than 7), the limits are from 

72 = X + 7)to 72 = X-7). 

When X is less than I), I = | X. (5) 

2 
When X is equal to D, 7 = -raw. (6) 

3 
1 7)2 

When X is greater than D, 7 == raw (1 — ; (7) 
' 3 A ^ 

and when X becomes infinite, 7 = raw. (8) 

According to this form of the theory, which is that adopted 

by Weber*, as the magnetizing force increases from 0 to 7>, the 

magnetization increases in the same proportion. When the 
magnetizing force attains the value 7), the magnetization is 

two-thirds of its limiting value. When the magnetizing force 

is further increased, the magnetization, instead of increasing 

indefinitely, tends towards a finite limit. 

Fig. 7. 

The law of magnetization is expressed in Fig. 7, where the 

magnetizing force is reckoned from 0 towards the right, and the 

* There is some mistake in the formula given by Weber, Abhandlungen der Kg. 
ftachs-Gesellschaft der Wissena. i. p. 572 (1852), or Pogg„ Ann., lxxxvii. p. 167 (1852), 
as the result of this integration, the steps of which are not given by him. His formula 

r X X* + ^X2!)2 + |H* 

VX2 + i>9 X' + X' 
is 
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magnetization is expressed by the vertical ordinates. Weber s 

own experiments give results in satisfactory accordance with 

this law. It is probable, however, that the value of D is not 
the same for all the molecules of the same piece of iron, so that 

the transition from the straight line from 0 to E to the curve 
beyond E may not be so abrupt as is here represented. 

444.] The theory in this form gives no account of the residual 

magnetization which is found to exist after the magnetizing 
force is removed. I have therefore thought it desirable to 

examine the results of making a further assumption relating to 

the conditions under which the position of equilibrium of a 
molecule may be permanently altered. 

Let us suppose that the axis of a magnetic molecule, if de¬ 

flected through any angle f3 less than 0O, will return to its 

original position when the deflecting force is removed, but that 
if the deflexion exceeds /30, then, when the deflecting force is 

removed, the axis will not return to its original position, but 

will be permanently deflected through an angle >3 — /30, which 

may be called the permanent set of the molecule *. 

This assumption with respect to the law of molecular de¬ 

flexion is not to be regarded as founded on any exact knowledge 

of the intimate structure of bodies, but is adopted, in our 

ignorance of the true state of the case, as an assistance to the 

imagination in following out the speculation suggested by 

Weber. 
Let L = D sin /30, (9) 

then, if the moment of the couple acting on a molecule is 

less than mi, there will be no permanent deflexion, but if it 

exceeds mL there will be a permanent change of the position of 

equilibrium. 
To trace the results of this supposition, describe a sphere 

whose centre is 0 and radius OL = L. 
As long as X is less than L everything will be the same as 

in the case already considered, but as soon as X exceeds L it 
will begin to produce a permanent deflexion of some of the 

molecules. 
Let us take the case of Fig. 8, in which X is greater than L 

but less than D. Through 8 as vertex draw a double cone 

* {The assumption really made by Maxwell seems not to be that in this paragraph, 
but that enunciated in the foot-note to Art. 445.} 
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touching the sphere L. Let this cone meet the sphere D in P 

and Q. Then if the axis of a molecule in its original position 
lies between OA and OP, or between OB and OQ, it will be 

Fig. 8- Fig. 9. 

deflected through an angle less than fi0, and will not be perma- 
nently deflected. But if the axis of the molecule lies originally 
between OP and OQ, then a couple whose moment is greater 

than L will act upon it and will deflect it into the position SP, 

and when the force X ceases to act it will not resume its 

original direction, but will be permanently set in the direction 

OP. 
Let us put 

L = X sin 0O where 6r = PSA or QSB, 

then all those molecules whose axes, on the former hypothesis, 

would have values of 0 between 0O and ir —0O will be made to 

have the value 0O during the action of the force X. 

During the action of the force X, therefore, those molecules 
whose axes when deflected lie within either sheet of the double 

cone whose semivertical angle is 0O will be arranged as in the 

former case, but all those whose axes on the former theory 

would lie outside of these sheets will be permanently deflected, 

so that their axes will form a dense fringe round that sheet of 

the cone which lies towards A. 
As X increases, the number of molecules belonging to the 

cone about B continually diminishes, and when X becomes 

equal to D all the molecules have been wrenched out of their 

former positions of equilibrium, and have been forced into the 

fringe of the cone round A, so that when X becomes greater 

than D all the molecules form part of the cone round A or of 

its fringe. 
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When the force X is removed, then in the case in which X is 

less than L everything returns to its primitive state. When X 
is between L and D, then there is a cone round A whose angle 

AOP = 0o+p0) 
and another cone round B whose angle 

BOQ = eQ-p0. 
Within these cones the axes of the moleculps are distributed 

uniformly. But all the molecules, the original direction of 

whose axes lay outside of both these cones, have been wrenched 

from their primitive positions and form a fringe round the cone 
about A. 

If X is greater than I), then the cone round B is completely 

dispersed, and all the molecules which formed it are converted 

into the fringe round A, and are inclined at the angle 0o + j3o. 

445.] Treating this case in the same way as before*, we find 

* [The results given in the text may be obtained, with one slight exception, by 
the processes given below, the statement of the modified theory of Art. 444 being as 
follows : The axis of a magnetic molecule, if deflected through an angle (i less than /3W, 
will return to its original position when the deflecting force is removed; but when 
the deflexion exceeds /30 the force tending to oppose the deflexion gives way and 
permits the molecule to be deflected into the same direction as those whose deflexion 
is /30, and when the deflecting force is removed the molecule takes up a direction 
parallel to that of the molecule whose deflexion was /30. This direction may be 
called the permanent set of the molecules. 

In the case X>L<2), the expression I for the magnetic moment consists of two 
parts, thefiratofwhich is due to the molecules within the cones AOP, JBOQ, and is to 
be found precisely as in Art. 443, due regard being had to the limits of integration. 
Referring’to Fig. 8 we find for the second part, according to the above statement of 

the theory, 
, . Projection of QP on PA 
2 mn cos Abf x--* 

The two parts together when reduced give the result in the text. 
When X>D, the integral again consists of two parts, one of which is to be taken 

over the cone AOP as in Art. 443. The second part is, (Fig. 9), 

, . Projection of BP on BA 
\ mn oos AbP x —--- 

The value of I in this case, when reduced, differs from the value given in the text 

The effect of this 
12>a ID 

in the third term, viz. : we have then — - - instead of — 
o Jl b A 

change on the table of numerical values given in the text will be that when X' = 6, 
7, 8, the corresponding values of 1 will be 887, 917, 936. These changes do not 
alter the general character of the curve of Temporary Magnetization given in 

Fig. 10. 
The value of V in the case of Fig. 8 is 

CAOP 
sin a cos a d a + I sin a oos ad a 

J AOQ 
Projection of QP on BA ) 

OP ) * 

\ mn if 
+ cos A OP x 

The value of V in the case of Fig. 9 may be found in like manner.] 
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for the intensity of the temporary magnetization during the 

action of the force X, which is supposed to act on iron which 
has never before been magnetized, 

When X is less than Ly I = - M ~ • 
3 jl/ 

When X is equal to i, I = • 
1 3 1) 

When X is between L and D, 

When X is equal to D, 

I=M | 

When X is greater than D, 
2 + 50 

ZM 
m 

I — M 
IX 1_1Z> (7)2- 
3/> + 2 6Z + 

-Z2)! /P-Z2 
~6X-Z) 6X2Z 

Z2 

D2 ij}' 

(2X2-3Xz+z2; 
>}■ 

When X is infinite, / = if. 

When A' is less than Z the magnetization follows the former 

law, and is proportional to the magnetizing force. As soon as 

X exceeds L the magnetization assumes a more rapid rate of 
increase on account of the molecules beginning to be transferred 

from the one cone to the other. This rapid increase, however, 

soon comes to an end as the number of molecules forming the 

negative cone diminishes, and at last the magnetization reaches 

the limiting value M. 
If we were to assume that the values of Z and of D are 

different for different molecules, we should obtain a result in 

which the different stages of magnetization are not so distinctly 

marked. 
The residual magnetization, I', produced by the magnetizing 

force X, and observed after the force has been removed, is as 

follows: 
When X is less than Z, No residual magnetization. 

When X is between Z and Dx 

''=pi-$(»-£)• 

When X is equal to D, 
L2 2 
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When X is greater than D, 

r -1 * {' - is+j-^-% ■ 
When X is infinite, 

If we make 
M = 1000, X = 3, i=5, 

we find the following values of the temporary and the residual 

magnetization:— 

Magnetizing 
Force. 

X 
0 
1 

2 

3 

4 

5 

6 

7 

8 

Temporary 
Magnetization. 

7 
0 

133 

267 

400 

729 

837 

864 

882 

897 

1000 

Residual 
Magnetization. 

r 
0 

0 
0 
0 

280 

410 

485 

537 

575 

810 

These results are laid down in Fig. 10. 

The curve of temporary magnetization is at first a straight 

line from X = 0 to X = L. It then rises more rapidly till 

X = D, and as X increases it approaches its horizontal asymptote. 
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The curve of residual magnetization begins when X = Z, and 

approaches an asymptote whose ordinate = *81 M. 
It must be remembered that the residual magnetism thus 

found corresponds to the case in which, when the external force 

is removed, there is no demagnetizing force arising from the 

distribution of magnetism in the body itself. The calculations 

are therefore applicable only to very elongated bodies magnet¬ 

ized longitudinally. In the case of short thick bodies the 
residual magnetism will be diminished by the reaction of the 
free magnetism in the same way as if an external reversed 

magnetizing force were made to act upon it *. 

446.] The scientific value of a theory of this kind, in which 
we make so many assumptions, and introduce so many adjust¬ 

able constants, cannot be estimated merely by its numerical 

agreement with certain sets of experiments. If it has any value 
it is because it enables us to form a mental image of what takes 

place in a piece of iron during magnetization. To test the 

theory, we shall apply it to the case in which a piece of iron, 

after being subjected to a magnetizing force X0, is again sub¬ 

jected to a magnetizing force Xv 
If the new force Xl acts in the same direction as that in 

which X0 acted, which we-shall call the positive direction, then 

X1, if less than X0, will produce no permanent set of the 
molecules, and when X1 is removed the residual magnetization 

will be the same as that produced by X0. If X1 is greater than 

X0, then it will produce exactly the same effect as if X0 had not 

acted. 

But let us suppose X2 to act in the negative direction, and let 

us suppose X0 = L cosec 0O, and Xx = — L cosec 0r 

* {Consider the case of a piece of iron subjected to a magnetic force in the positive 
direction which increases from zero to a value X0 sufficient to produce permanent 
magnetization, then let the magnetic force diminish again to zero, it is evident that 
on the preceding theory the intensity of magnetization will in consequence of the 
permanent set given to some of the molecular magnets be greater for a given value of 
the magnetizing force when this force is decreasing than when it was increasing. 
Thus the behaviour of the iron in the magnetic field will depend upon its previous 
treatment. This effect has been called hysteresis by Ewing and has been very 
fully investigated by him (see PhiL Trans. Part II, 1885). The theory given in 
Art. 445 will not however explain all the phenomena discovered by Ewing, for if in 
the above case after decreasing the magnetic force we increase it again, the vaIuo of 
the intensity of magnetization for a value Xx<X0 of the magnetic force ought to be 
the same as when the force was first decreased to Xx. Ewing’s researches shew 
however that it is not so. A short account of these and similar researches will be 
given in tbp Supplementary Volume.]■ 
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As Xx increases numerically, 0X diminishes. The first mole¬ 

cules on which Xx Will produce a permanent deflexion are those 
which form the fringe of the cone round A *, and these have an 
inclination when undeflected of 0o-t-/3o. 

As soon as 01 — po becomes less than 0o + po the process of de¬ 
magnetization will commence. Since, at this instant, 01 = 60 + 2 , 
Xly the force required to begin the demagnetization, is less than 
X0, the force which produced the magnetization. 

If the values of D and of L were the same for all the mole¬ 
cules, the slightest increase of X1 would wrench the whole of 

the fringe of molecules whose axes have the inclination B0 + p0 
into a position in which their axes are inclined dx-f/30 to the 
negative axis OB. 

Though the demagnetization does not take place in a manner 
so sudden as this, it takes place so rapidly as to afford some 
confirmation of this mode of explaining the process. 

Let us now suppose that by giving a proper value to the 

reverse force Xx we have on the removal of Xx exactly demag¬ 
netized the piece of iron. 

The axes of the molecules will not now be arranged indiffer¬ 
ently in all directions, as in a piece of iron which has never 
been magnetized, but will form three groups. 

(1) Within a cone of semiangle 0t—po surrounding the posi¬ 

tive pole, the axes of the molecules remain in their primitive 

positions. 
(2) The same is the case within a cone of semiangle 0O — /30 

surrounding the negative pole. 
(3) The directions of the axes of all the other molecules form 

a conical sheet surrounding the negative pole, and are at an 

inclination Oy + fi0. 
When X0 is greater than D the second group i9 absent. When 

Xx is greater than D the first group is also absent. 
The state of the iron, therefore, though apparently demagnet¬ 

ized, is different from that of a piece of iron which has never 

been magnetized. 
To shew this, let us consider the effect of a magnetizing force 

X2 acting in either the positive or the negative direction. The 

first permanent effect of such a force will be on the third group 

* {This assumes that in figs. 8 and 0 P is to the right of C. J 
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of molecules, whose axes make angles = ^4-/% with the nega¬ 

tive axis. 
If the force X2 acts in the negative direction it will begin to 

produce a permanent effect as soon as 02 4- /30 becomes less than 

Ol+/30, that is, as soon as X2 becomes greater than Xx. But if 
Ar2 acts in the positive direction it will begin to remagnetize the 

iron as soon as 02 — fto becomes less than 0,4-/3o, that is, when 

$2 = 0, 4* 2/30, or while Ar2 is still much less than X}. 
It appears therefore from our hypothesis that—. 
When a piece of iron is magnetized by means of a force X0, 

its residual magnetism cannot be increased without the applica¬ 
tion of a force greater than XQ. A reverse force, less than X0, 
is sufficient to diminish its residual magnetization. 

If the iron is exactly demagnetized by the reversed force Xl, 

then it cannot be magnetized in the reversed direction without 
the application of a force greater than Xx, but a positive force 

less than Xx is sufficient to begin to remagnetize the iron in its 
original direction. 

These results are consistent with what has been actually 

observed by Ritchie *, Jacobi f, Mariamni J, and Joule §. 

A very complete account of the relations of the magnetization 

of iron and steel to magnetic forces and to mechanical strains is 
given by Wiedemann in his Galvanismus. By a detailed com¬ 

parison of the effects of magnetization with those of torsion, he 

shews that the ideas of elasticity and plasticity which we derive 

from experiments on the temporary and permanent torsion of 

wires can be applied with equal propriety to the temporary and 

permanent magnetization of iron and steel. 

447.] Matteucci || found that the extension of a hard iron bar 

during the action of the magnetizing force increases its temporary 

magnetism If. This has been confirmed by Wertheim. In the 

case of soft iron bars the magnetism is diminished by extension. 

The permanent magnetism of an iron bar increases when it is 

extended, and diminishes when it is compressed. 

* Phil. Mag. 3,1833. t Pogg., Ann., 31, 867, 1834. 
X Ann. de CAimie et de Physique, 16, pp. 436 and 448, 1846. 
§ Phil. Trans., 1866, p. 287. || Ann. de Chimie et de Physique, 63, p. 885,1858. 
^1 {Villari shewed that this is only true when the magnetizing force is less than a 

certain critical value, but when it exceeds this value an extension produces a 
diminution on the intensity of magnetization ; Pogg., Ann. 126, p. 87, 1865. 

The statement in the text as to the behaviour of Boft iron bars does not hold for 
small strains and low magnetic fields.} 
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Hence, if a piece of iron is first magnetized in one direction, 
and then extended in another direction, the direction of magnet¬ 

ization will tend to approach the direction of extension. If 
it be compressed, the direction of magnetization will tend to 
become normal to the direction of compression. 

This explains the result of an experiment of Wiedemann's. 
A current was passed downward through a vertical wire. If, 

either during the passage of the current or after it has ceased, 

the wire be twisted in the direction of a right-handed screw, the 
lower end becomes a north pole. 

Fig. 11. Fig. 12. 

Here the downward current magnetizes every part of the wire 

in a tangential direction, as indicated by the letters NS. 
The twisting of the wire in the direction of a right-handed 

screw causes the portion A BCD to be extended along the 

diagonal AC and compressed along the diagonal BD. The 

direction of magnetization therefore tends to approach AC and 

to recede from BD> and thus the lower end becomes a north pole 

and the upper end a south pole. 

Effect of Magnetization on the Dimensions of the Magnet 

448.] Joule*, in 1842, found that an iron bar becomes length¬ 

ened when it is rendered magnetic by an electric current in a 

coil which surrounds it. He afterwards f shewed, by placing 
the bar in water within a glass tube, that the volume of the iron 
is not augmented by this magnetization, and concluded that its 

transverse dimensions were contracted. 
Finally, he passed an electric current through the axis of an 

* Sturgeon’s Annah of Electricity, vol. viii. p. 219. 
f ridl. Mag., xxx. 1847. 
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iron tube, and back outside the tube, so as to make the tube 

into a closed magnetic solenoid, the magnetization being at right 

angles to the axis of the tube. The length of the axis of the 

tube was found in this case to be shortened. 
He found that an iron rod under longitudinal pres ure is also 

elongated when it is magnetized. When, however, the rod is 
under considerable longitudinal tension, the effect of magnet¬ 

ization is to shorten it. 
This was the case with a wire of a quarter of an inch 

diameter when the tension exceeded 600 pounds weight. 

In the case of a hard steel wire the effect of the magnetizing 
force was in every case to shorten the wire, whether the wire 

was under tension or pressure. The change of length lasted 

only as long as the magnetizing force was in action, no altera¬ 

tion of length was observed due to the permanent magnetization 

of the steel. 
Joule found the elongation of iron wires to be nearly pro¬ 

portional to the square of the actual magnetization, so that the 
first effect of a demagnetizing current was to shorten the wire *. 

On the other hand, he found that the shortening effect on 

wires under tension, and on steel, varied as the product of the 

magnetization and the magnetizing current. 

Wiedemann found that if a vertical wire is magnetized with 
its south end uppermost, and if a current is then passed down¬ 

wards through the wire, the lower end of the wire, if free, 

twists in the direction of the hands of a watch as seen from 

above, or, in other words, the wire becomes twisted like a 

right-handed screw if the relation between the longitudinal 

current and the magnetizing current is right-handed. 

In this case the resultant magnetization due to the action 

of the current and the previously existing magnetization is in 

the direction of a right-handed screw round the wire. Hence the 

twisting would indicate that when the iron is magnetized it 

expands in the direction of magnetization and contracts in 

directions at right angles to the magnetization. This agrees with 

Joule's results. 

For further developments of the theory of magnetization, see 
Arts. 832-845. 

* ] Shelford Bidwell has shewn that when the magnetizing force is very great, the 
length of the magnet diminishes as the magnetizing force increases. Proo. Moy. 8oc. 
xl. p.109.} 



CHAPTER VII. 

MAGNETIC MEASUREMENTS. 

449.] The principal magnetic measurements are the deter¬ 

mination of the magnetic axis and magnetic moment of a 

magnet, and that of the direction and intensity of the magnetic 

force at a given place. 

Since these measurements are made near the surface of the 

earth, the magnets are always acted on by gravity as well as by 

terrestrial magnetism, and since the magnets are made of steel 

their magnetism is partly permanent and partly induced. The 

permanent magnetism is altered by changes of temperature, by 

strong induction, and by violent blows ; the induced magnetism 

varies with every variation of the external magnetic force. 

The most convenient way of observing the force acting on a 

magnet is by making the nu gnet free to turn about a vertical 

axis. In ordinary compasses this is done by balancing the 

magnet on a vertical pivot. The finer the point of the pivot 

the smaller is the moment of the friction which interferes with 

the action of the magnetic force. For more refined observations 

the magnet is suspended by a thread composed of a silk fibre 

without twist, either single, or doubled on itself a sufficient 

number of times, and so formed into a thread of parallel fibres, 

each of which supports as nearly as possible an equal part of 

the weight. The force of torsion of such a thread is much less 

than that of a metal wire of equal strength, and it may be 

calculated in terms of the observed azimuth of the magnet, 

which is not the case with the force arising from the friction of 

a pivot. 

The suspension fibre can be raised or lowered by turning a 

horizontal screw which works in a fixed nut. The fibre is 

wound round the thread of the screw, so that when the screw 
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is turned the suspension fibre always hangs in the same vertical 

line. 

The suspension fibre carries a small horizontal divided circle 
called the Torsion-circle, and a stirrup with an index, which can 

be placed so that the index coincides with any given division of 

the torsion circle. The stirrup is so shaped that the magnet bar 
can be fitted into it with its axis horizontal, and with any one 
of its four sides uppermost. 

To ascertain the zero of torsion a non-magnetic body of the 

same weight as the magnet is placed 

in the stirrup, and the position of 

the torsion circle when in equi¬ 

librium ascertained. 

The magnet itself is a piece of 

hard-tempered steel. According to 
Gauss and Weber its length ought 

to be at least eight times its greatest 

transverse dimension. This is neces¬ 

sary when permanence of the direc¬ 

tion of the magnetic axis within the 

magnet is the most important con¬ 

sideration. Where promptness of 

motion is required the magnet should 

be shorter, and it may even be ad¬ 

visable in observing sudden altera¬ 

tions in magnetic force to use a bar 

magnetized transversely and sus¬ 

pended with its longest dimension 

vertical *. 
450.] The magnet is provided 

with an arrangement for ascertain¬ 
ing its angular position. For or¬ 

dinary purposes its ends are pointed, 
and a divided circle is placed below 

the ends, by which their positions are read off by an eye placed 

in a plane through the suspension thread and the point of the 

needle. 
For more accurate observations a plane mirror is fixed to the 

magnet, so that the normal to the mirror coincides as nearly as 
* Joule, Proo. Phil. $oc., Manchester, Nov. 29, 1864. 
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possible with the axis of magnetization. This is the method 
adopted by Gauss and Weber. 

Another method is to attach to one end of the magnet a lens 
and to the other end a scale engraved on glass, the distance of 
the lens from the scale being equal to the principal focal length 
of the lens. The straight lire joining the zero of the scale with 
the optical centre of the lens ought to coincide as nearly as 
possible with the magnetic axis. 

As these optical methods of ascertaining the angular position 
of suspended apparatus are of great importance in many physical 
researches, we shall here consider once for all their mathematical 
theory. 

Theory of the Mirror Method. 

We shall suppose that the apparatus whose angular position 
is to be determined is capable of revolving about a vertical axis. 
This axis is in general a fibre or wire by which it is suspended. 
The mirror should be truly plane, so that a scale of millimetres 

may be seen distinctly by reflexion at a distance of several 
metres from the mirror. 

The normal through the middle of the mirror should pass 
through the axis of suspension, and should be accurately 

horizontal. We shall refer to this normal as the line of colli- 
mation of the apparatus. 

Having roughly ascertained the mean direction of the line of 
collimation during the experiments which are to be made, a tele¬ 
scope is erected at a convenient distance in front of the mirror, 
and a little above the level of the mirror. 

The telescope is capable of motion in a vertical plane, it is 
directed towards the suspension-fibre just above the mirror, and 
a fixed mark is erected in the line of vision, at a horizontal 
distance from the object-glass equal to twice the distance of the 
mirror from the object-glass. The apparatus should, if possible, 
be so arranged that this mark is on a wall or other fixed object. 
In order to see the mark and the suspension-fibre at the same 
time through the telescope, a cap may be placed over the object- 
glass having a slit along a vertical diameter. This should be 
removed for the other observations. The telescope is then 
adjusted so that the mark is seen distinctly to coincide with 
the vertical wire at the focus of the telescope. A plumb-line is 

VOL. IX. H 
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then adjusted so as to pass close in front of the optical centre of 
the object-glass and to hang below the telescope. Below the 

telescope and just behind the plumb-line a scale of equal parts 
is placed so as to be bisected at right angles by the plane through 

the mark, the suspension-fibre, and the plumb-line. The sum 

of the heights of the scale and the object-glass from the floor 
should be equal to twice the height of the mirror. The telescope 

being now directed towards the mirror, the observer will see in it 

the reflexion of the scale. If the part of the scale where the 

plumb-line crosses it appears to coincide with the vertical wire of 

the telescope, then the line of collimation of the mirror coincides 

with the plane through the mark and the optical centre of the 
object-glass. If the vertical wire coincides with any other 

division of the scale, the angular position of the line of 

collimation is to be found as follows:— 

Fig. 14. 

Let the plane of the paper be horizontal, and let the various 

points be projected on this plane. Let 0 be the centre of the 

object-glass of the telescope, P the fixed mark: P and the 

vertical wire of the telescope are conjugate foci with respect 
to the object-glass. Let M be the point where OP cuts the 

plane of the mirror. Let MN be the normal to the mirror; then 
OMN = 0 is the angle which the line of collimation makes with 

the fixed plane. Let MS be a line in the plane of OM and MN, 
such that NMS — OMN, then S will be the part of the scale 

which will be seen by reflexion to coincide with the vertical 

wire of the telescope. Now, since MN is horizontal, the pro¬ 

jected angles OMN and NMS in the figure are equal, and 

OMS = 20. Hence OS = OM tan 29. 
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We have therefore to measure OM in terms of the divisions 

of the scale; then, if s0 is the division of the scale which coincides 
with the plumb-line, and s the observed division, 

8 — 80—OM tan 2 0, 

whence 0 may be found. In measuring OM we must re¬ 
member that if the mirror is of glass, silvered at the back, the 
virtual reflecting surface is at a distance behind the front 

surface of the glass = where t is the thickness of the glass, 

and n is the index of refraction. 
We must also remember that if the line of suspension does not 

pass through the point of reflexion, the position of M will alter 
with 0. Hence, when it is possible, it is advisable to make the 
centre of the mirror coincide with the line of suspension. 

Fig. 15. 

It is also advisable, especially when large angular motions 

have to be observed, to make the scale in the form of a concave 

cylindric surface, whose axis is the line of suspension. The 
angles are then observed at once in circular measure without 

reference to a table of tangents The scale should be carefully 
adjusted, so that the axis of the cylinder coincides with the 
suspension-fibre. The numbers on the scale should always run 

from the one end to the other in the same direction so as to 
avoid negative readings. Fig. 15 represents the middle portion 
of a scale to be used with a mirror and an inverting telescope. 

This method of observation is the best when the motions are 
slow. The observer sits at the telescope and sees the image of 
the scale moving to right or to left past the vertical wire of the 
telescope. With a dock beside him he can note the instant at 
which a given division of the scale passes the wire, or the 

division of the scale which is passing at a given tick of the 

H % 
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clock, and he can also record the extreme limits of each 

oscillation. 
When the motion is more rapid it becomes impossible to read 

the divisions of the scale except at the instants of rest at the 

extremities of an oscillation. A conspicuous mark may be 
placed at a known division of the scale, and the instant of 

transit of this mark may be noted. 

When the apparatus is very light, and the forces variable, 
the motion is so prompt and swift that observation through a 

telescope would be useless. In this case the observer looks at 

the scale directly, and observes the motions of the image of the 

vertical wire thrown on the scale by a lamp. 
It is manifest that since the image of the scale reflected by 

the mirror and refracted by the object-glass coincides with the 

vertical wire, the image of the vertical wire, if sufficiently 

illuminated, will coincide with the scale. To observe this the 

room is darkened, and the concentrated rays of a lamp are 

thrown on the vertical wire towards the object-glass. A bright 

patch of light crossed by the shadow of the wire is seen on the 

scale. Its motions can be followed by the eye, and the division 

of the scale at which it comes to rest can be fixed on by the eye 
and read off at leisure. If it bo desired to note the instant of the 

passage of the bright spot past a given point on the scale, a pin 

or a bright metal wire may be placed there so as to flash out at 
the time of passage. 

By substituting a small hole in a diaphragm for the cross-wire 
the image becomes a small illuminated dot moving to right or left 
on the scale, and by substituting for the scale a cylinder revolving 

by clock-work about a horizontal axis and covered with photo¬ 

graphic paper, the spot of light traces out a curve which can be 

afterwards rendered visible. Each abscissa of this curve cor¬ 

responds to a particular time, and the ordinate indicates the 

angular position of the mirror at that time. In this way an 

automatic system of continuous registration of all the elements 

of terrestrial magnetism has been established at Kew and other 

observatories. 
In some cases the telescope is dispensed with, a vertical wire 

is illuminated by a lamp placed behind it, and the mirror is a 

concave one, which forms the image of the wire on the scale as 

a dark line across a patch of light. 
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451. ] In the Kew portable apparatus, the magnet is made in 

the form of a tube, having at one end a lens, and at the other a 

glass scale, so adjusted as to be at the principal focus of the 

lens. Light is admitted from behind the scale, and after passing 

through the lens it is viewed by means of a telescope. 

Since the scale is at the principal focus of the lens, rays from 

any division of the scale emerge from the lens parallel, and if 

the telescope is adjusted for celestial objects, it will shew the 

scale in optical coincidence with the cross-wires of the telescope. 

If a given division of the scale coincides writh the intersection of 

the cross-wires, then the line joining that division with the 

optical centre of the lens must be parallel to the line of colli- 

ination of the telescope. By fixing the magnet and moving the 

telescope, we may ascertain the angular value of the divisions of 

the scale, and then, when the magnet is suspended and the 

position of the telescope known, we may determine the position 

of the magnet at any instant by reading off the division of the 

scale which coincides with the cross-wires. 

The telescope is supported on an arm which* is centred in the 

line of the suspension-fibre, and the position of the telescope is 

read off by verniers on the azimuth circle of the instrument. 

This arrangement is suitable for a small portable magneto¬ 

meter in which the whole apparatus is supported on one tripod, 

and in which the oscillations due to accidental disturbances 

rapidly subside. 

Determination of the Direction of the Axis of the Magnet, 

and of the Direction of Terrestrial Magnetism. 

452. ] Let a system of axes be drawn in a magnet, of which 

the axis of z is in the direction of the length of the bar, and 

x and y perpendicular to the sides of the bar supposed a paral- 

lelopiped. 

Let l, m, n and A, jx, v be the angles which the magnetic axis 

and the line of collimation make with these axes respectively. 

Let M be the magnetic moment of the magnet, let H be the 

horizontal component of terrestrial magnetism, let Z be the 

vertical component, and let 6 be the azimuth in which H acts, 

reckoned from the north towards the west. 

Let ( be the observed azimuth of the line of collimation, let a 

be the azimuth of the stirrup, and p the reading of the index of 



102 MAGNETIC MEASUREMENTS. [452. 

the torsion circle, then a—£ is the azimuth of the lower end of 

the suspension-fibre. 

Let y be the value of a — /3 when there is no torsion, then the 
moment of the force of torsion tending to diminish a will be 

r( a-/3-y), 
where t. is a coefficient of torsion depending on the nature of the 
fibre. 

To determine A*, the angle between the axis of x and the pro¬ 

jection of the line of eollimation on the plane of xz, fix the stirrup 
so that y is vertical and upwards, z to the north and x to the 
west, and observe the azimuth ( of the line of eollimation. Then 

remove the magnet, turn it through an angle 7r about the axiB 

of z and replace it in this inverted position, and observe the 
azimuth C of the line of eollimation when y is downwards and 

x to the east, tt 
faa + j-A., (1) 

<' = a-J + K- (2) 

Hence K = \+\(C~Q- (3) 

Next, hang the stirrup to the suspension-fibre, and place the 
magnet in it, adjusting it carefully so that y may be vertical and 

upwards, then the moment of the force tending to increase a is 

AfJTsinmsin (5 —a — |+ 4,) —r (a — — y); (4) 

where lx is the angle between the axis of x and the projection of 

the magnetic axis on the plane of xz. 

But if (is the observed azimuth of the line of eollimation 

f=a + |-A„ (5) 

80 that the force may be written 

if# sin m. sin (8—(+Ix-K)-t(C+K-^-P-y)- (6) 

When the apparatus is in equilibrium this quantity is zero for 
a particular value of (. 

When the apparatus never comes to rest, but must be observed 

in a state of vibration, the value of { corresponding to the position 

of equilibrium may be calculated by a method which will be 
described in Art. 735. 

When the force of torsion is small compared with the moment 
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of the magnetic force, we may put 5—— K for the sine of 
that angle. 

If we give to p, the reading of the torsion circle, two different 
values, px and p2i and if and are the corresponding values 

ofC. ifff(f2-C1)sinm = r(C1-Ci-/3i + ^2). (?) 
or, if we put 

~—then r = r Mil sin m, (8) 
Ci C2 + p2 

and equation (6) becomes, dividing by Mil sin m, 

e-C+4-A,-/(C+AI-|-/3-y) = 0. (9) 

If we now reverse the magnet so that • y is downwards, and 

adjust the apparatus till y is exactly vertical, and if (' is the 

new value of the azimuth, and 5' the corresponding declination, 

b'-('-l, + K-T'(C-K + l-P-Y) = °, (10) 

whence \ (C+0 + 4 T' K+ C' —2 (0 + y)}. (II) 

The reading of the torsion circle should now be adjusted, so 

that the coefficient of r may be as nearly as possible zero. For 

this purpose we must determine y, the value of a — ft when there 

is no torsion. This may be done by placing a non-magnetic 

bar of the same weight as the magnet in the stirrup, and deter¬ 

mining a — p when there is equilibrium. Since r is small, great 

accuracy is not required. Another method is to use a torsion 

bar of the same weight as the magnet, containing within it a 

very small magnet whose magnetic moment is ~ of that of the 

principal magnet. Since r remains the same, r will become n /, 

and if ^ and (i are the values of ( as found by the torsion bar, 

i±i' = i(C, + Ct')+ Inr'{(,+ ('-2 (p+y)}. (12) 

Subtracting this equation from (11), 

2 (n-1) 08 + y) = (* + \) (f, + £/) - (l + \) ((+ (')• (13) 

Having found the value of /3 + y in this way, the reading of 

the torsion circle, should be altered till 
f+C'-2(0 + y) = O, (14) 

as nearly as possible in the ordinary position of the apparatus. 
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Then, since r is a very small numerical quantity, and Bince its 
coefficient is very small, the value of the second term in the ex¬ 

pression for b will not vary much for small errors in the values 

of r and y, which are the quantities whose values are least ac¬ 
curately known. 

The value of S, the magnetic declination, may be found in this 
way with considerable accuracy, provided it remains constant 

during the experiments, so that we may assume 6' — b. 

When great accuracy is required it is necessary to take 
account of the variations of b during the experiment. For this 

purpose observations of another suspended magnet should be 

made at the same instants that the different values of ( are 
observed, and if tj, rf are the observed azimuths of the second 

magnet corresponding to ( and and if 6 and b' are the corre¬ 
sponding values of 6, then 

5r —5 == 77'—77. (15) 

Hence, to find the ve lue of b we must add to (11) a correction 

i (v-v')- 
The declination at the time of the first observation is therefore 

& = h ((+(' +V -1) + b *'{( + ('—(16) 
To find the direction of the magnetic axis within the magnet 

subtract (10) from (9) and add (15), 

l* = A, + \ (£- O-ifr-O + i t' (£- C + 2Ax- tt). (17) 
By repeating the experiments with the bar on its two edges, 

so that the axis of x is vertically upwards and downwards, we 

can find the value of m. If the axis of collimation is capable of 

adjustment it ought to be made to coincide with the magnetic 
axis as nearly as possible, so that the error arising from the 

magnet not being exactly inverted may be as small as possible*. 

On the Measurement of Magnetic Forces. 

453.] The most important measurements of magnetic force are 

those which determine M, the magnetic moment of a magnet, 

and Hy the intensity of the horizontal component of terrestrial 

magnetism. This is generally done by combining the results of 

two experiments, one of which determines the ratio and the 

other the product of these two quantities. 

The intensity of the magnetic force due to an infinitely small 

* See a Paper on ‘Imperfect Inversion/ by W. Swan. Trans. J2. S. JEdin.f 
▼oL xxi (1855), p. 349. 
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magnet whose magnetic moment is M, at a point distant r from 
the centre of the magnet in the positive direction of the axis of 
the magnet, is ^ M 

R = 2r* 0> 
and is in the direction of r. If the magnet is of finite size but 

spherical, and magnetized uniformly in the direction of its axis, 
this value of the force will still be exact. If the magnet is a 
solenoidal bar magnet of length 2 L, 

^ = 2^(1 + 2^+3^ + &c). (2) 

If the magnet be of any kind, provided its dimensions are all 
small, compared with r, 

R 

where Av A2, &c. are coefficients depending on the distribution 
of the magnetization of the bar. 

Let H be the intensity of the horizontal part of terrestrial 

magnetism at any place. II is directed towards magnetic north. 

Let r be measured towards magnetic west, then the magnetic 

force at the extremity of r will be H towards the north and R 
towards the west. The resultant force will make an angle 6 
with the magnetic meridian, measured towards the west, and 

such that R — H tan 6. (4) 
R 

Hence, to determine jjr we proceed as follows: — 

The direction of the magnetic north having been ascertained, a 

magnet, whose dimensions should not be too great, is suspended as 
in the former experiments, and the deflecting magnet M is placed 

so that its centre is at a distance r from that of the suspended 

magnet, in the same horizontal plane, and due magnetic east. 

The axis of M is carefully adjusted so as to be horizontal and 

in the direction of r. 

The suspended magnet is observed before M is brought near 

and also after it is placed in position. If 0 is the observed 

deflexion, we have, if we use the approximate formula (1), 
M' r3 
~ = ytan^; (5) 

or, if we use the formula (3), 

- —r3 tan$= \+ A, - +A 2 -f &c. (6) 
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Here we must bear in mind that though the deflexion 0 can be 

observed with great accuracy, the distance r between the centres 
of the magnets is a quantity which cannot be precisely determined, 

unless both magnets are fixed and their centres defined by marks. 

This difficulty is overcome thus : 

The magnet M is placed on a divided scale which extends east 

and west on both sides of the suspended magnet. The middle 

point between the ends of M is reckoned the centre of the 

magnet. This point may be marked on the magnet and its 
position observed on the scale, or the positions of the ends may 

be observed and the arithmetical mean taken. Call this 8V and 
let the line of the suspension-fibre of the suspended magnet 

when produced cut the scale at s0, then rl=zs1 — s0, where 

is known accurately and s0 approximately. Let 9X be the deflexion 
observed in this position of M. 

Now reverse M, that is, place* it on the scale with its ends 

reversed, then rx will be the same, but M and Av A3, &c. will 

have their signs changed, so that if 02 is the deflexion to the west, 

-ljtr*ta'ne2= (7) 

Taking the arithmetical mean of (6) and (7), 

J jri3(tall^-tan^)= 1+A2^2 +^4^4 + &C- W 

Now remove M to the west side of the suspended magnet, 

and place it with its centre at the point marked 2 sG — sx on the 

scale. Let the deflexion when the axis is in the first position 

be 03, and when it is in the second 04, then, as before, 

J^r28(tan0S-taI104)=1 + ^2^2 +"447T4 +&C- (9) 

Let us suppose that the true position of the centre of the 

suspended magnet is not s0 but $0 + <r, then 

= r - <r, r2 = r + <r, (10) 

and + = r"|l + + &c.j; (11) 

2 

and since ^ may be neglected if the measurements are carefully 

made, we are sure that we may take the arithmetical mean of 

rx* and r2* for rn. 

Hence, taking the arithmetical mean of (8) and (9), 
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1S i 
-^r8 (tan^-tan^ + tan^—tan 04) = 1 + A2 ~ + &c., (12) 

or, making 1 
(tantfj—tan02 + tan03 —tan04) = D, 

2MDrZ = l + A^ +&c< 

(13) 

454] We may now regal'd D and r as capable of exact 
determination. 

The quantity A2 can in no case exceed 2L2, where L is half 
the length of the magnet, so that when r is considerable com¬ 

pared with L we may neglect the term in A2 and determine 

the ratio of If to M at once. We cannot, however, assume that 
A2 is equal to 2 Z2, for it may be less, and may even be negative 

for a magnet whose largest dimensions are transverse to the axis. 
The term in A4 and all higher terms may safely be neglected. 

To eliminate A2, repeat the experiment, using distances 

ri> r2> rs> &c., let the values of D be Dlf D2, D3, &c., then 
2M / 1 A2\ j. 2AT / 1 .A2\ o p 

D' = ~H t"8 + ^)« D* = ff (n/ + Vp' &C- &C- 
If we suppose that the probable errors of these equations are 

equal, as they will be if they depend on the determination of D 

only, and if there is no uncertainty about r, then, by multiply¬ 
ing each equation by r~3 and adding the results, we obtain one 

equation, and by multiplying each equation by r~5 and adding 

we obtain another, according to the general rule in the theory 

of the combination of fallible measurements when the probable 
error of each equation is supposed the same. 

Let us write 

2 (Dr~8) for Dx rx~z + D2 r2~3 + D3r3"~3 + &c., 

and use similar expressions for the sums of other groups of 
symbols, then the ttaro resultant equations may be written 

O M 

2(Dr~3) = -j~ {2(r~6) + .<422(r~8)}, 

2M 

whence 
2 M 

2 (Dr~5) = ~ {2 (r~*) + A2 2 (r~*% 

g- {2(r~6)2(r~10) — [2(r~8)]2} = 2(Zr~3)2(r“10)-2(Dr-5)2(r'8), 

and A2 {2 (Dr~8) 2 - 2 (Dr~5) 2 (r~8)} 

= 2 (Dr’5) 2 (r~6)- 2 (Dr*3) 2 (r~8). 
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The value of A2 derived from these equations ought to be less 
than half the square of the length of the magnet M. If it is not 
we may suspect some error in the observations. This method 
of observation and reduction was given by Gauss in the 4 First 

Report of the Magnetic Association.* 
When the observer can make only two series of experiments 

2 M 
at distances r, and r„, the values of—and derived from 

, . , H 1 
these experiments are 

0=?^ = 
v u 

AV -I>2r2 

»v—r. 
A _V,’- 

2" AV- 

'AV r 2 r i 
■ D'r* 1 2 rl '2 

If bDx and bD.2 are the actual errors of the observed deflexions 
Dj and Z)2, the actual error of the calculated result Q will be 

r,5bDl — r25bD2 
bD = 

-r<S 

If we suppose the errors bD± and bD2 to be independent, and 

that the probable value of either is bD, then the probable value 

of the error in the calculated value of Q will be b Qy where 

(»«)* = 
10 + r. 10 

(»*>)*• 

If we suppose that one of these distances, say the smaller, is 
given, the value of the greater distance may be determined so as 

to make b Q a minimum. This condition leads to an equation 
of the fifth degree in r*2, which has only one real root greater 

than r22. From this the best value of rt is found to be 

rlS=l-3189ra .* 

If one observation only is taken the best distance is when 

bD x 
”n = v 3 — j f 
D r 

where bD is the probable error of a measurement of deflexion, 

and br is the probable error of a measurement of distance. 

* See Airy’s Magnetism. 

+ {In this case neglecting the term in A9 we have 

and this is a minimum when 
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Method of Sines. 

455.] The method which we have just described may be called 

the Method of Tangents, because the tangent of the deflexion is 
a measure of the magnetic force. 

If the line rx, instead of being measured east or west, is 

adjusted till it is at right angles with the axis of the deflected 
magnet, then jR is the same as before, but in order that the 

suspended magnet may remain perpendicular to r, the resolved 

part of the force H in the direction of r must be equal and 
opposite to R. Hence, if S is the deflexion, 12 = H sin 6. 

This method is called the Method of Sines. It can be applied 

only when R is less than H. 

In the Kew portable apparatus this method is employed. The 

suspended magnet hangs from a part of the apparatus which 

revolves along with the telescope and the arm for the deflecting 
magnet, and the rotation of the whole is measured on the azimuth 

circle. 

The apparatus is first adjusted so that the axis of the telescope 
coincides with the mean position of the line of collimation of the 

magnet in its undisturbed state. If the magnet is vibrating, 

the true azimuth of magnetic north is found by observing the 
extremities of the oscillation of the transparent scale and making 

the proper correction of the reading of the azimuth circle. 

The deflecting magnet is then placed upon a straight rod 

which passes through the axis of the revolving apparatus at 

right angles to the axis of the telescope, and is adjusted so that 

the axis of the deflecting magnet is in a line passing through the 

centre of the suspended magnet. 

The whole of the revolving apparatus is then moved till the 

line of collimation of the suspended magnet again coincides with 
the axis of the telescope, and the new azimuth reading is 

corrected, if necessary, by the mean of the scale readings at 

the extremities of an oscillation. 
The difference of the corrected azimuths gives the deflexion, 

after which we proceed as in the method of tangents, except 
that in the expression for D we put sin 6 instead of tan 0. 

In this method there is no correction for the torsion of the 

suspending fibre, since the relative position of the fibre, tele¬ 

scope, and magnet is the same at every observation. 

The axes of the two magnets remain always at right angles 
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in this method, so that the correction for length can be more 

accurately made. 
456.] Having thus measured the ratio of the moment of the 

deflecting magnet to the horizontal component of terrestrial 

magnetism, we have next to find the product of these quantities, 

by determining the moment of the couple with which terrestrial 
magnetism tends to turn the same magnet when its axis is 

deflected from the magnetic meridian. 

There are two methods of making this measurement, the 
dynamical, in which the time of vibration of the magnet under 

the action of terrestrial magnetism is observed, and the statical, 

in which the magnet is kept in equilibrium between a measure- 

able statical couple and the magnetic force. 

The dynamical method requires simpler apparatus and is 

more accurate for absolute measurements, but takes up a con¬ 

siderable time; the statical method admits of almost instan¬ 

taneous measurement, and is therefore useful in tracing the 

changes of the intensity of the magnetic force, but requires 
more delicate apparatus, and is not so accurate for absolute 

measurement. 
Method of Vibrations. 

The magnet is suspended with its magnetic axis horizontal, 

and is set in vibration in small arcs. The vibrations are 

observed by means of any of the methods already described. 
A point on the scale is chosen corresponding to the middle of 

the arc of vibration. The instant of passage through this point 

of the scale in the positive direction is observed. If there is 

sufficient time before the return of the magnet to the same 

point, the instant of passage through the point in the negative 

direction is also observed, and the process is continued till n-f-1 

positive and n negative passages have been observed. If the 

vibrations are too rapid to allow of every consecutive passage 

being observed, every third or every fifth passage is observed, 

care being taken that the observed passages are alternately 

positive and negative. 
Let the observed times of passage be T19 jP2, T2n+lt then if 

we put _l (i7, +Ts + Ti + &c. + + iTan+1) = T„+l, 

-(Tg + T^ + fec. +Tiu.a +Tin) = T'n+l; 
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then 3F*+1 is the mean time of the positive passages, and ought 

to agree with Tn+li the mean time of the negative passages, 
if the point has been properly, chosen. The mean of these 

results is to be taken as the mean time of the middle passage. 

After a large number of vibrations have taken place, but 

before the vibrations have ceased to be distinct and regular, 
the observer makes another series of observations, from which 

he deduces the mean time of the middle passage of the second 
series. 

By calculating the period of vibration either from the first 

series of observations or from the second, he ought to be able 

to be certain of the number of whole vibrations which have 

taken place in the interval between the time of middle passage 
in the two series. Dividing the interval between the mean 

times of middle passage in the two series by this number of 
vibrations, the mean time of vibration is obtained. 

The observed time of vibration is then to be reduced to the 

time of vibration in infinitely small arcs by a formula of the 

same kind as that used in pendulum observations, and if the 

vibrations are found to diminish rapidly in amplitude, there 

is another correction for resistance, see Art. 740. These cor¬ 

rections. however, are very small when the magnet hangs by 

a fibre, and when the arc of vibration is only a few degrees. 

The equation of motion of the magnet is 

A ~ + MH sin e + HMr' (0-y) = 0, 

where 6 is the angle between the magnetic axis and the direc¬ 

tion of the force H, A is the moment of inertia of the magnet 

and suspended apparatus, M is the magnetic moment of the 

magnet, H the intensity of the horizontal magnetic force, and 

MHr the coefficient of torsion : r is determined as in Art. 452, 

and is a very small quantity. The value of 0 for equilibrium is 

0o = > a very small angle, 

and the solution of the equation for small values of the ampli¬ 

tude is „ t e = (7cos(2TTy + a) + 0o, 
where T is the periodic time, a a constant, C the amplitude, and 

Ti - —AjlA—- 
~ MB{l + r'y 
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whence we find the value of Jfif, 

MH = 
in2 A 

T2 (l +t) 

Here T is the time of a complete vibration determined from 

observation. A, the moment of inertia, is found once for all for 

the magnet, either by weighing and measuring it if it is of a 

regular figure, or by a dynamical process of comparison with 

a body whose moment of inertia is known. 

M 
Combining this value of MH with that of formerly obtained, 

we get = (MH) (|) = ^07,) Dr>, 

457.] We have supposed that H and M continue constant 

during the two series of experiments. The fluctuations of H 

may be ascertained by simultaneous observations of the bifilar 

magnetometer to be presently described, and if the magnet has 

been in use for some time, and is not exposed during the 

experiments to changes of temperature or to -concussion, the 
part of M which depends on permanent magnetism may be 

assumed to be constant. All steel magnets, however, are capable 

of induced magnetism depending on the action of external 

magnetic force. 

Now the magnet when employed in the deflexion experiments 

is placed with its axis east and west, so that the action of ter¬ 

restrial magnetism is transverse to the magnet, and does not 

tend to increase or diminish if. When the magnet is made 

to vibrate, its axis is north and south, so that the action of 

terrestrial magnetism tends to magnetize it in the direction 

of the axis, and therefore to increase its magnetic moment by 

a quantity k JET, where k is a coefficient to be found by experi¬ 
ments on the magnet. 

There are two ways in which this source of error may 

be avoided without calculating k, the experiments being ar¬ 

ranged so that the magnet shall be in the same condition 

when employed in deflecting another magnet and when itself 
swinging. 

We may place the deflecting magnet with its axis pointing 
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north, at a distance r from the centre of the suspended magnet, 
the line r making an angle whose cosine is Vl with the 
magnetic meridian. The action of the deflecting magnet on the 
suspended one is then at right angles to its own direction, and 

is equal to __ j^ 
R = V2 ■ ■' 

rd 

Here M is the magnetic moment when the axis points north, 

as in the experiment of vibration, so that no correction has to 
be made for induction. 

This method, however, is extremely difficult, owing to the 
large errors which would be introduced by a slight displacement 
of the deflecting magnet, and as the correction by reversing the 
deflecting magnet is not applicable here, this method is not 
to be followed except when the object is to determine the 
coefficient of induction. 

The following method, in which the magnet while vibrating is 

freed from the inductive action of terrestrial magnetism, is due 
to Dr. J. P. Joule*. 

Two magnets are prepared whose magnetic moments are as 
nearly equal as possible. In the deflexion experiments these 
magnets are used separately, or they may be placed simul¬ 
taneously on opposite sides of the suspended magnet to produce 
a greater deflexion. In these experiments the inductive forco 

of terrestrial magnetism is transverse to the axis. 
Let one of these magnets be suspended, and let the other be 

placed parallel to it with its centre exactly below that of the 
suspended magnet, and with its axis in the same direction. The 

force which the fixed magnet exerts on the suspended one is 

in the opposite direction from that of terrestrial magnetism. If 

the fixed magnet be gradually brought nearer to the suspended 

one the time of vibration will increase, till at a certain point 

the equilibrium will cease to be stable, and beyond this point 
the suspended magnet will make oscillations in the reverse 

position. By experimenting in this way a position of the 

fixed magnet is found at which it exactly neutralizes the effect 
of terrestrial magnetism on the suspended one. The two 

magnets are fastened together so as to be parallel, with their 

axes turned the same way, and at the distance just found by 

* Proc. Phil. S., Manchester, March 19, 1867. 

VOL. II. I 
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experiment. They are then suspended in the usual way and 

made to vibrate together through small arcs. 

The lower magnet exactly neutralizes the effect of terrestrial 

magnetism on the upper one, and since the magnets are of equal 

moment, the upper one neutralizes the inductive action of the 
earth on the lower one. 

The value of M is therefore the same in the experiment of 

vibration as in the experiment of deflexion, and no correction for 

induction is required. 

458.] The most accurate method of ascertaining the intensity 

of the horizontal magnetic force is that which we have just 

described. The whole series of experiments, however, cannot be 

performed with sufficient accuracy in much less than an hour, so 

that any changes in the intensity which take place in periods of 

a few minutes would escape observation. Hence a different 

method is required for observing the intensity of the magnetic 

force at any instant. 

The statical method consists in deflecting the magnet by means 

of a statical couple acting in a horizontal plane. If L be the 

moment of this couple, M the magnetic moment of the magnet, 

H the horizontal component of terrestrial magnetism, and 6 the 

deflexion, il/i/ sin 6 — L. 

Hence, if L is known in terms of 6% MH can be found. 

The couple L may be generated in two ways, by the torsional 

elasticity of a wire, as in the ordinary torsion balance, or by the 

weight of the suspended apparatus, as in the bifilar suspension. 

In the torsion balance the mngnet is fastened to the end of a 

vertical wire, the upper end of which can be turned round, and 

its rotation measured by means of a torsion circle. 

We have then 
L — r (a—a0— 0) = MH sin 6. 

Here a0 is the value of the reading of the torsion circle when the 

axis of the magnet coincides with the magnetic meridian, and a 

is the actual reading. If the torsion circle is turned so as to 

bring the magnet nearly perpendicular to the magnetic meridian, 

so that 

0 = l~e', then T(a-a0-^+6')=MH(l-***), 

or MH=T(l + \d/2)(a-a0-~ + $'). 
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By observing 6\ the deflexion of the magnet when in equili¬ 
brium, we can calculate MH provided we know r. 

If we only wish to know the relative value of H at different 
times it is not necessary to know either M or r. 

We may easily determine rin absolute measure by suspending 
a non-magnetic body from the same wire and observing its time 
of oscillation, then if A is the moment of inertia of this body, 

and T the time of a complete vibration, 

4tt2A 
T — rjn 

The chief objection to the use of the torsion balance is that 
the zero-reading a0 is liable to change. Under the constant 
twisting force, arising from the tendency of the magnet to turn 

to the north, the wire gradually acquires a permanent twist, so 
that it becomes necessary to determine the zero-reading of the 
torsion circle afresh at short intervals of time. 

Bifilar Suspension. 

459.] The method of suspending the magnet by two wires or 
fibres was introduced by Gauss and Weber. As the bifilar 
suspension is used in many electrical instruments, we shall 
investigate it more in detail. The general appearance of the 

suspension is shewn in Fig. 16, and Fig. 17 represents the pro¬ 
jection of the wires on a horizontal plane. 

A B and A'B' are the projections of the two wires. 

AA' and BB' are the lines joining the upper and the lower 

ends of the wires. 
a and b are the lengths of the lines A A' and BB'. 
a and p their azimuths. 
W and W' the vertical components of the tensions of the 

wires. 

Q and Q' their horizontal components. 
h the vertical distance between AA' and BB'. 
The forces which act on the magnet are—its weight, the 

couple arising from terrestrial magnetism, the torsion (if any) 

of the wires and their tensions. Of these the effects of mag¬ 
netism and of torsion are of the nature of couples. Hence the 

resultant of the tensions must consist of a vertical force, equal 
to the weight of the magnet, together with a couple. The 

resultant of the vertical components of the tensions is therefore 



116 MAGNETIC MEASUBEMENTS. [459- 

along the line whose projection is 0, the intersection of AA' and 

BB\ and either of these lines is divided in 0 in the ratio of W' 
to W. 

The horizontal components of the tensions form a couple, and 

are therefore equal in magnitude and parallel in direction. 

Calling either of them Q, the moment of the couple which they 

form is L = Q.Pr, (1) 

where PP/ is the distance between the parallel lines AB and 

A'B'. 
To find the value of L we have the equations of moments 

Qh = W.AB= W\ A'B', (2) 

and the geometrical equation 

(AB + A'B')PP'= ah sin (a-0), (3) 
whence we obtain, 

L ~ Q. PI — ~j~ (a — /3). (4) 

If m is the mass of the suspended apparatus, and g the inten¬ 

sity of gravity, w + W = mg. (5) 

If we also write W- W = wm#, (6) 

we find Z = ~(1—w2) mgr ^ sin (a — /3). (7) 

The value of L is therefore a maximum with respect to n 
when v is zero, that is, when the weight of the suspended mass 

is equally borne by the two wires. 

We may adjust the tensions of the wires to equality by ob¬ 

serving the time of vibration, and making it a minimum, or we 

may obtain a self-acting adjustment by attaching the ends of 

the wires, as in Fig. 16, to a pulley, which turns on its axis till 

the tensions are equal. 

The distance between the upper ends of the suspension wires is 

regulated by means of two other pulleys. The distance between 

the lower ends of the wires is also capable of adjustment. 

By this adjustment of the tension, the couple arising from the 

tensions of the wires becomes 

T 1 L = - mg sin (a — /3). 

The moment of the couple arising from the torsion of the 

wires is of the form r (y — /3), 

where r is the sum of the coefficients of torsion of the wires. 
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The wires ought to be without torsion when a = /3, we may 

then make y — a. 
The moment of the couple arising from the horizontal mag¬ 

netic force is of the form 

MH sin (b — 0), 

where b is the magnetic declination, and 6 is the azimuth of the 

Fig. 16. Fig. 37. 

axis of Idle magnet. We shall avoid the introduction of un¬ 

necessary symbols without sacrificing generality if we assume 

that the axis of the magnet is parallel to BB\ or that /3 = 0. 

The equation of motion then becomes 

= if# sin (8 — 0) + ^“7ru/sin(a—0) + r(a —0). (8) 
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There are three principal positions of this apparatus. 
(1) When a is nearly equal to 5. If is the time of 

complete oscillation in this position, then 

4 7r2 A 1 ah rr 
-fir = 4lm^+T+MH • (9) 

(2) When a is nearly equal to 5-f 7r. If 1\A is the time of a 

complete oscillation in this position, the north end of the magnet 

being now turned towards the south, 

4 tt'j A lab 
-jnr = + (10) 

The quantity on the right-hand of this equation may he made 

as small as we please by diminishing a or b} but it must not be 

made negative, or the equilibrium of the magnet will become 

unstable. The magnet in this position forms an instrument by 

which small variations in the direction of the magnetic force 

may be rendered sensible. 

For when 6 — h is nearly equal to 7r, sin (S —0) is nearly equal 

to 0 — b — 7r, and we find 

6 = a- 
MH { 

l^rnn + r-Mli 
4 ft 

r — a). (H) 

By diminishing the denominator of the fraction in the last 

term we may make the variation of 6 very large compared with 

that of 5. We should notice that the coefficient of 6 in this 

expression is negative, so that when the direction of the mag¬ 

netic force turns in one direction the magnet turns in the 

opposite direction. 

(3) In the third position the upper part of the suspension- 

apparatus is turned round till the axis of the magnet is nearly 

perpendicular to the magnetic meridian. 

If we make 

0—$ = £ + 0', and a—6 = f3 — 6\ (12) 
a 

the equation of motion may be written 

A = — Mil cos C +1-<^ mg sin (j3 — 0') + r (/3 — 6'). (13) 

If there is equilibrium when H = H0 and 6' = 0, 

„,rr lab 
—ME0 + --j mg am (3 +fir = 0, (14) 
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and if H is the value of the horizontal force corresponding to a 

small angle B\ 
lab 

/ 7 ~rmg cos /3 4- r \ 

——-4 (15) 
\ -ym£sm/3 + r/3 / 

In order that the magnet may be in stable equilibrium it is 

necessary that the numerator of the fraction in the second 
member should be positive, but the more nearly it approaches 

zero, the more sensitive will be the instrument in indicating 

changes in the value of the intensity of the horizontal com¬ 
ponent of terrestrial magnetism. 

The statical method of estimating the intensity of the force 

depends upon the action of an instrument which of itself 
assumes different positions of equilibrium for different values of 

the force. Hence, by means of a mirror attached to the magnet 

and throwing a spot of light upon a photographic surface moved 
by clock-work, a curve may bo traced, from which the intensity 

of the force at any instant may be determined according to a 

scale, which we may for the present consider an arbitrary one. 

460.] In an observatory, where a continuous system of regis¬ 
tration of declination and intensity is kept up either by eye- 

observation or by the automatic photographic method, the 

absolute values of the declination and of the intensity, as well 

as the position and moment of the magnetic axis of a magnet, 

may be determined to a great degree of accuracy* 

For the declinometer gives the declination at every instant 
affected by a constant error, and the bifilar magnetometer gives 

the intensity at every instant multiplied by a constant coeffi¬ 

cient. In the experiments we substitute for b. b' + 80, where b' 
is the reading of the declinometer at the given instant, and 50 

is the unknown but constant error, so that is the true 

declination at that instant. 
In like manner for H, we substitute CH\ where Hr is the 

reading of the magnetometer on its arbitrary scale, and C is an 

unknown but constant multiplier which converts these readings 

into absolute measure, so that CH' is the horizontal force at a 

given instant. 

The experiments to determine the absolute values of the 

quantities must be conducted at a sufficient distance from the 
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declinometer and magnetometer, so that the different magnets 

may not sensibly disturb each other. The time of every obser¬ 

vation must be noted and the corresponding values of S' and H' 

inserted. The equations are then to be treated so as to find S0, 

the constant error of the declinometer, and C the coefficient to 

be applied to the reading of the magnetometer. When these 

are found the readings of both instruments may be expressed in 

absolute measure. The absolute measurements, however, must 

be frequently repeated in order to take account of changes 

which may occur in the magnetic axis and magnetic moment of 

the magnets. 

4(>1.] The methods of determining the vertical component of 

the terrestrial magnetic force have not been brought to the 

same degree of precision. The vertical force must act on a 

magnet which turns about a horizontal axis. Now a body 

which turns about a horizontal axis cannot be made so sensitive 

to the action of small forces as a body which is suspended by a 

fibre and turns about a vertical axis. Besides this, the weight of 

a magnet is so large compared with the magnetic force exerted 

upon it that a small displacement of the centre of inertia by 

unequal dilatation, &c. produces a greater effect on the position 

of the magnet than a considerable change of the magnetic force. 

Hence the measurement of the vertical force, or the com¬ 

parison of the vertical and the horizontal forces, is the least 

perfect part of the system of magnetic measurements. 

The vertical part of the magnetic force is generally deduced 

from the horizontal force by determining the direction of the 

total force. 

If i be the angle which the total force makes with its hori¬ 

zontal component, i is called the magnetic Dip or Inclination, 

and if H is the horizontal force already found, then the vertical 

force is H tan i, and the total force is II sec i. 
The magnetic dip is found by means of the Dip Needle. 

The theoretical dip-needle is a magnet with an axis which 

passes through its centre of inertia perpendicular to the mag¬ 

netic axis of the needle. The ends of its axis are made in 

the form of cylinders of small radius, the axes of which are 

coincident with the line passing through the centre of inertia. 

These cylindrical ends rest on two horizontal planes and are 

free to roll on them. 
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When the axis is placed magnetic east and west, the needle 

is free to rotate in the plane of the magnetic meridian, and if 

the instrument is in perfect adjustment, the magnetic axis will 

set itself in the direction of the total magnetic force. 

It is, however, practically impossible to adjust a dip-needle so 

that its weight does not influence its position of equilibrium, 

because its centre of inertia, even if originally in the line 

joining the centres of the rolling sections of the cylindrical ends, 

will cease to be in this line when the needle is imperceptibly bent 

or unequally expanded. Besides, the determination of the true 

centre of inertia of a magnet is a very difficult operation, owing 

to the interference of the magnetic force with that of gravity. 

Let us suppose one end of the needle and one end of the 

pivot to be marked. Let a line, real or imaginary, be drawn on 

the needle, which we shall call the Line of Collimation. The 

position of this line is read off on a vertical circle. Let 0 be the 

angle which this line makes with the radius to zero, which we 

shall suppose to be horizontal. Let A be the angle which the 

magnetic axis makes with the line of collimation, so that when 

the needle is in this position the magnetic axis is inclined d-t-A 

to the horizontal. 

Let p be the perpendicular from the centre of inertia on the 

plane on which the axis rolls, then p will be a function of 6, 

whatever be the shape of the rolling surfaces. If both the 

rolling sections of the ends of the axis are circular wo have an 

equation of the form, 

p = e — a sin (0 + a), (1) 

where a is the distance of the centre of inertia from the line 

joining the centres of the rolling sections, and a is the angle 

which this line makes with the line of collimation. 

If'M is the magnetic moment, m the mass of the magnet, and 

g the force of gravity. I the total magnetic force, and i the dip, 

then, by the conservation of energy, when there is stable equi¬ 

librium MI cos (6 +\—i) — mgp (2) 

must be a maximum with respect to 0, or 

MI sin (0 + A — i) = — 

= mga cos (0 + a), 

if the ends of the axis are cylindrical. 

(3) 
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Also, if T be the time of vibration about the position of equi¬ 

librium, 4tt2A / v 
MI+mga sin (0 + a) = - ^ > (4) 

where A is the moment of inertia of the needle about its axis of 
rotation, and 0 is determined by (3). 

I11 determining the dip a reading is taken with the dip-circle 

in the magnetic meridian and with the graduation towards the 
west. 

Let 0l be this reading, then we have 

MI sin ($t -f A — i) = mga cos (01 + a). (5) 

The instrument is now turned about a vertical axis through 
180°, so that the graduation is to the east, and if 02 is the new 

reading, MI bin {d, +K-n + i) = mga cos (02 + a), (6) 

Taking (6) from (5), and remembering that 01 is nearly equal 

to i, and 02 nearly equal to 7r — i, and that A is a small angle, 

such that mga A may be neglected in comparison with MI, 

MI(Ql — 02 + ‘n—2i) = 2mga cos 7 cos a. (7) 

Now take the magnet from its bearings and place it in the 

deflexion apparatus, Art. 453, bo as to indicate its own magnetic 
moment by the deflexion of a suspended magnet, then 

M=ir*HD, (8) 

where D is the tangent of the deflexion. 

Next, reverse the magnetism of the needle and determine its 

new magnetic moment M\ by observing a new deflexion the 

tangent of which is D\ then the distance being the same as before, 

M' = \ rzHD\ (9) 

whence MIY = ATD. (10) 

Then place it on its bearings and take two readings, 03 
and 04, in which 03 is nearly Tt + i, and 04 nearly 

MrI sin (03 -f A' — ir — i) = mga cos (03 + a), (11) 

MI sin (04 + A' + 7) = mgacoa (04 + a), (12) 

whence, as before, 

M'I(63 — 04 — 7r — 2i) == — 2 mga cos i cos a, (13) 

and on adding (7), 

MI{01-$2 + Tt-2i) + M'I (03-04-ir-2i) = 0, (14) 

or D(01~02 + 7r~2i)-f D' (03 — 04 ~ 7r—27) = 0, (15) 



DIP-CIRCLE. 123 462.] 

whence we find the dip 

• _ -P(»i-g, + *)+V(ea-e4-tt) 

2D + 2D' '* c 
where D and 7/ are the tangents of the deflexions produced 

by the needle in its first and second magnetizations respectively. 

In taking observations with the dip-circle the vertical axis 
is carefully adjusted so that the plane bearings upon which the 

axis of the magnet rests are horizontal in every azimuth. The 

magnet being magnetized so that the end A dips, is placed with 
its axis on the plane bearings, and observations are taken with 

the plane of the circle in the magnetic meridian, and with 

the graduated side of the circle east. Each end of the magnet 
is observed by means of reading microscopes carried on an arm 

which moves concentric with the dip-circle. The cross-wires 

of the microscope are made to coincide with the image of a 
mark on the magnet, and the position of the arm is then read 

oft* on the dip-circle by means of a vernier. 
We thus obtain an observation of the end A and another 

of the end B when the graduations are east. It is necessary 

to observe both ends in order to eliminate any error arising 

from the axle of the magnet not being concentric with the dip- 

circle. 
The graduated side is then turned west, and two more ob¬ 

servations are made. 
The magnet is then turned round so that the ends of the axle 

are reversed, and four more observations are made looking at 

the other side of the magnet. 
The magnetization of the magnet is then reversed so that the 

end B dips, the magnetic moment is ascertained, and eight 

observations are taken in this state, and the sixteen observations 

combined to determine the true dip. 
462.] It is found that in spite of the utmost care the dip, 

as thus deduced from observations made with one dip-circle, 
differs perceptibly from that deduced from observations with 

another dip-circle at the same place. Mr. Broun has pointed 

out the effect due to ellipticity of' the bearings of the axle, 

and how to correct it by taking observations with the magnet 

magnetized to different strengths. 
The principle of this method may be stated thus. We shall 

suppose that the error of any one observation is a small 
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quantity not exceeding a degree. We shall also suppose that 

some unknown but regular force acts upon the magnet, dis¬ 

turbing it from its true position. 
If L is the moment of this force, 0O the true dip, and 0 

the observed dip, then 

L = MIsm(0-0o), (17) 

= Ml(e-e0), (is) 
since $—-0O is small. 

It is evident that the greater M becomes the nearer does 
the needle approach its proper position. Now let the operation 
of taking the dip be performed twice, first with the magnetiza¬ 
tion equal to A/j, the greatest that the needle is capable of, 

and next with the magnetization equal to M_>, a much smaller 

value but sufficient to make the readings distinct and the error 
still moderate. Let 6l and 0>, be the dips deduced from these 

two sets of observations, and let L be the mean value of the 

unknown disturbing force for the eight positions of each de¬ 
termination, which we shall suppose the same for both deter¬ 

minations. Then 

L = MJio, - e0) = M2l (02 - e0). (19) 

Hence L = X.M,, <*>) 

If we find that several experiments give nearly equal values 
for X, then we may consider that 0O must be very nearly the 

true value of the dip. 

463.] Dr. Joule has recently constructed a new dip-circle, in 

which the axis of the needle, instead of rolling on horizontal 

agate planes, is slung on two filaments of silk or spiders thread, 

the ends of the filaments being attached to the arms of a 
delicate balance. The axis of the needle thus rolls on two loops 

of silk fibre, and Dr. Joule finds that its freedom of motion is 

much greater than when it rolls on agate planes. 

In Fig. 18, 1STS is the needle, CC' is its axis, consisting of a 

straight cylindrical wire, and PCQ, P'C'Q' are the filaments 

on which the axis rolls. POQ is the balance, consisting of a 

double bent lever supported by a wire, O'O', stretched horizont¬ 

ally between the prongs of a forked piece, and having a counter¬ 

poise E which can be screwed up or down, so that the balance 

is in neutral equilibrium about O'O'. 
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In order that the needle may be in neutral equilibrium as 

the needle rolls on the filaments the centre of gravity must 

neither rise nor fall. Hence the distance OC must remain 
constant as the needle rolls. This condition will be fulfilled 

if the arms of the balance OP ami OQ are equal, and if the 

filaments are at right angles to the ai ms. 
Dr. Joule finds that the needle should not be more than five 

inches long. When it is eight inches long, the bending of the 

needle tends to diminish the 
apparent dip by a fraction of 

a minute. The axis of the 

needle was originally of steel 
wire, straightened by being 

brought to a red heat while 

stretched by a weight, but 

Dr. Joule found that with 

the new suspension it is 

not necessary to use steel 

wire, for platinum and even 

standard gold are hard 

enough. 

The balance is attached to 

a wire O'O'about a foot long 

stretched horizontally be¬ 

tween the prongs of a fork. 

This fork is turned round in 

azimuth by means of a circle 
at the top of a tripod which 

supports the whole. Six 

complete observations of the 
dip can be obtained in one 
hour, and the average error 

of a single observation is a Fi&18 
fraction of a minute of arc. 

It is proposed that the dip-needle in the Cambridge Physical 

Laboratory shall be observed by means of a double image 

instrument, consisting of two totally reflecting prisms placed 

as in Fig. 19 and mounted on a vertical graduated circle, so 

that the plane of reflexion may be turned round a horizontal 

axis nearly coinciding with the prolongation of the axis of 
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the suspended dip-needle. The needle is viewed by means of a 

telescope placed behind the prisms, and the two ends of the 

needle are seen together as in Fig. 20. By turning the prisms 

about the axis of the vertical circle, the images of two lines 

drawn on the needle may be made to coincide. The inclination 
of the needle is thus determined from the reading of the vertical 

circle. 

The total intensity I of the magnetic force in the line of dip 
may be deduced as follows from the times of vibration TXiT2/Tz, 
T4 in the four positions already described, 

4 7r2A fill 1 } 

7 ~ 2M+zm'\t* t* + 27 * t}Y 

The values of M and Mf must be found by the method of 

deflexion and vibration formerly described, and A is the moment 

of inertia of the magnet about its axle. 

The observations with a magnet suspended by a fibre are so 

much more accurate that it is usual to deduce the total force 
from the horizontal force by means of the equation 

I = H sec 0, 

where I is the total force, II the horizontal force, and 6 the dip. 
464.] The process of determining the dip being a tedious one, 

is not suitable for determining the continuous variation of the 

magnetic force. The most convenient instrument for continuous 

observations is the vertical force magnetometer, which is simply 

a magnet balanced on knife edges so as to be in stable 

equilibrium with its magnetic axis nearly horizontal. 

If Z is the vertical component of the magnetic force, M the 
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magnetic moment, and 0 the small angle which the magnetic 
axis makes with the horizon, 

MZcos 0 2= mgaco8(a — 0), 

where m is the mass of the magnet, g the force of gravity, a the 

distance of the centre of gravity from the axis of suspension, 

and a the angle which the plane through the axis and the 
centre of gravity makes with the magnetic axis. 

Hence, for the small variation of vertical force 6Z, there will 

be since 6 is very small a variation of the angular position of 

the magnet 60 such that 

MbZ = mga sin (a — 0) 60. 

In practice this instrument is not used to determine the 

absolute value of the vertical force, but only to register its 

small variations. 
For this purpose it is sufficient to know the absolute value 

of Z when 0 = 0, and the value of • 
a6 

The value of Z, when the horizontal force and the dip an* 

known, is found from the equation Z — //tantf0, where 0O is 

the dip and II the horizontal force. 

To find the deflexion due to a given variation of Zy take a 
magnet and place it with its axis east and west, and with its 

centre at a known distance east or west from the declinometer, 

as in experiments on deflexion, and let the tangent of deflexion 

bo Dv 
Then place it with its axis vertical and with its centre at 

a distance r2 above or below the centre of the vertical force 
magnetometer, and let the tangent of the deflexion produced 

in the magnetometer be Dr Then, if the moment of the 

deflecting magnet is M , 
fj y 

2M=Hr*D1=(^r./D2 

Hence 
r 3 T) 
' 1 JJ) dZ= HrX 

d0 r2?Z>2‘ 

The actual value of the vertical force at any instant is 

where Z0 is the value of Z when 0 = 0. 
For continuous observations of the variations of magnetic 
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force at a fixed observatory the Unifilar Declinometer, the 

Bifilar Horizontal Force Magnetometer, and the Balance Ver¬ 

tical Force Magnetometer are the most convenient instruments. 

At several observatories photographic traces are now pro¬ 

duced on prepared paper moved by clock-work, so that a 

continuous record of the indications of the three instruments 

at every instant is formed. These traces indicate the variation 

of the three rectangular components of the force from their 

standard values. The declinometer gives the force towards 

mean magnetic west, the bifilar magnetometer gives the varia¬ 

tion of the force towards magnetic north, and the balance 

magnetometer gives the variation of the vertical force. The 

standard values of these forces, or their values when these 

instruments indicate their several zeros, are deduced by fre¬ 

quent observations of the absolute declination, horizontal force, 

and dip. 



CHAPTER VIII. 

ON TERRESTRIAL MAGNETISM. 

465.] Our knowledge of Terrestrial Magnetism is derived 

from the study of the distribution of magnetic force on the 

earth;s surface at any one time, and of the changes in that 

distribution at different times. 

The magnetic force at any one place and time is known when 

its three coordinates are known. These coordinates may be 

given in the form of the declination or azimuth of the force, 

the dip or inclination to the horizon, and the total intensity. 

The most convenient method, however, for investigating the 

general distribution of magnetic force on the earth’s surface 

is to consider the magnitudes of the three components of the 

force, 

X — Hcos S, directed due north, \ 
Y = II sin 8, directed due west, > (1) 

Z = i/tan 0t directed vertically downwards, * 

where H denotes the horizontal force, b the declination, and 6 

the dip. 

If V is the magnetic potential at the earth’s surface, and if 

we consider the earth a sphere of radius a, then 

z—l-%. r=——,dJ’ M-dJ. m a at acostaA. dr 

where l is the latitude, \ the longitude, and r the distance 

from the centre of the earth. 

A knowledge of V over the surface of the earth may be 

obtained from the observations of horizontal force alone as 

follows. 

Let be the value of V at the true north pole, then, taking 

VOL. II. K 
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the line-integral along any meridian, we find, 

V=-a[lXdl+V0, (3) 
J f 

for the value of the potential on that meridian at latitude l. 
Thus the potential may be found for any point on the earth’s 

surface provided we know the value of X, the northerly 
component at every point, and V0, the value of V at the pole. 

Since the forces depend not on the absolute value of V but 
on its derivatives, it is not necessary to fix any particular value 

for V0. 
The value of V at any point may be ascertained if we know 

the value of Ar along any given meridian, and also that of Y 
over the whole surface. 

Let K = —a[l Xdl + V0, (4) 
J f 

where the integration is performed along the given meridian 

from the pole to the parallel /, then 

V=r,-u[K FcosMA, (5) 
j Aft 

where the integration is performed along the parallel l from the 
given meridian A0 to the required point. 

These methods imply that a complete magnetic survey of the 

earth’s surface has been made, so that the values of X or of Y 
or of both are known for every point of the earth’s surface at a 

given epoch. What we actually know are the magnetic com¬ 

ponents at a certain number of stations. In the civilized parte 

of the earth these stations are comparatively numerous; in other 

places there are large tracts of the earth’s surface about which 

we have no data. 

Magnetic Survey.* 

466.] Let us suppose that in a country of moderate size, whose 

greatest dimensions are a few hundred miles, observations of the 

declination and the horizontal force have been taken at a con¬ 

siderable number of stations distributed fairly over the country. 

Within this district we may suppose the value of V to be 

represented with sufficient accuracy by the formula 

V = const. — -f* "h ^ 4“ ^^3 A.2 + &c.), (6) 

* (The reader should consult Rucker and Thorpe’s paper ‘A Magnetic Survey of 
the British Isles/ JPhil. Trans., 18&0, A, pp. 53-328.} 
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whence X = At + Btl + B2k, (7) 

Y COS l — A 2 *4" Bty l *f JBg X. ( 8) 

Let there be stations whose latitudes are /3, Z2,... &c. and 
longtitudes X3, X2, &c., and let X and Y be found for each station. 

Let ln = \ 2 (0. and xo = ^ 2 (x)> <9) 

Z0 and A0 may be called the latitude and longitude of the central 
station. Let 

X0=~2(X)f and 3^ cos l0 = - 2 (Fcos Z), (10) 

then XQ and Y0 are the values of X and Y at the imaginary 
central station, then 

X = Xo + B30-g + Ba(A.-Ao), (11) 

Y cos l = IJcosZo + J?^? —Z0) + J?3(X—X0). (12) 

We have w equations of the form (11) and n of the form 
(12). If we denote the probable error in the determination of 
X by £ and in that of F cos l by 17, then we may calculate £ and 
r) on the supposition that they arise from errors of observation 

of H and 5. 
Let the probable error of H be h, and that of 8, A, then since 

dX = cos h .d H—H sin b .ciS, 

£* = h2 cos2h q- A2 H2 sin2 h. 

Similarly 1j2 = sin26 *f A2 IP cos2 6. 

If the variations of X and Y from their values as given 
by equations of the form (11) and (12) considerably exceed the 
probable errors of observation, we may conclude that, they are 

due to local attractions, and then we have no reason to give 
the ratio of £ to tj any other value than unity. 

According to the method of least squares we multiply the 

equations of the form (11) by 77, and those of the form (12) 
by £ to make their probable error the same. We then multiply 
each equation by the coefficient of one of the unknown quan¬ 
tities B19 B2, or JB3 and add the results, thus obtaining three 
equations from which to find Bx, B2, Bb> viz. 

PL = B1b1 + BJ)2i 

rfZ + eQr = Bin*bt + Ba(Pb1 + 7,*h) + Baeh „ 

Q2 = -®2^2 + ^3^V> 
K 2 
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in which we write for conciseness, 

Zq = 2(Z2)~^02, b2 = 2(ZA)-nZ0A0, Z>3 = l(\2)-n\0\ 

P1 = 2(lX)—nl0X0i = 2(ZFcosZ)—nZ0^cosZ0, 

= 2(A X)—nK0X0, Q2 = 2 (A F cos Z)—n\0Y0 cos Z0. 

By calculating 2^, and j53, and substituting in equations 
(11) and (12), we can obtain the values of X and F at any point 

within the limits of the survey free from the local disturbances 

which are found to exist where the rock near the station is 

magnetic, as most igneous rocks are. 
Surveys of this kind can be made only in countries where 

magnetic instruments can be carried about and set up in a great 
many stations. For other parts of the world we must be content 

to find the distribution of the magnetic elements by interpolation 

between their values at a few stations at great distances from 

each other. 

467. ] Let us now suppose that by processes of this kind, 

or by the equivalent graphical process of constructing charts 

of the lines of equal values of the magnetic elements, the values 

of X and F, and thence of the potential V, are known over the 

whole surface of the globe. The next step is to expand V in 

the form of a series of spherical surface harmonics. 

If the earth were magnetized uniformly end in the same 

direction throughout its interior, V would be a harmonic of 

the first degree, the magnetic meridians would be great circles 

passing through two magnetic poles diametrically opposite, the 

magnetic equator would be a great circle, the horizontal force 

would be equal at all points of the magnetic equator, and if 

is this constant value, the value at any other point would 

be H = jET0 cos where V is the magnetic latitude. The vertical 

force at any point would be Z = 2 H0 sin Z', and if 0 is the dip, 

tan 0 would he = 2 tan V. 

In the case of the earth, the magnetic equator is defined to 

be the line of no dip. It is not a great circle of the sphere. 

The magnetic poles are defined to be the points where there 
is no horizontal force, or where the dip is 90°. There are 

two such points, one in the northern and one in the southern 

regions, but they are not diametrically opposite, and the line 

joining them is not parallel to the magnetic axis of the earth. 

468. ] The magnetic poles are the points where the value of V 
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on the surface of the earth is a maximum or minimum, or is 
stationary. 

At any point where the potential is a minimum the north end 
of the dip-needle points vertically downwards, and if a compass- 

needle be placed anywhere near such a point, the north end will 
point towards that point. 

At points where the potential is a maximum the south end 

of the dip-needle points downwards, and in the neighbourhood 

the south end of the compass-needle points towards the point. 
If there are p minima of V on the earth's surface there must 

be p — 1 other points, where the north end of the dip-needle 

points downwards, but where the compass-needle, when carried 
in a circle round the point, instead of revolving so that its north 

end points constantly to the centre, revolves in the opposite 

direction, so as to turn sometimes its north end and sometimes 
its south end towards the point. 

If we call the points where the potential is a minimum true 

north poles, then these other points may be called false north 

poles, because the compass-needle is not true to them. If there 

are p true north poles, there must be p— 1 false north poles, 

and in like manner, if there are 'q true south poles, there must 

be q— 1 false south poles. The number of poles of the same 

name must be odd, so that the opinion at one time prevalent, 

that there are two north poles and two south poles, is erroneous. 

According to Gauss there is in fact only one true north pole 

and one true south pole on the earth’s surface, and therefore 

there are no false poles. The line joining these poles is not 

a diameter of the earth, and it is not parallel to the earth's 

magnetic axis. 

469.] Most of the early investigators into the nature of the 

earth’s magnetism endeavoured to express it as the result of the 

action of one or more bar magnets, the positions of the poles of 

which were to be determined. Gauss was the first to express 

the distribution of the earth’s magnetism in a perfectly general 

way by expanding its potential in a series of solid harmonics, 

the coefficients of which he determined for the first four degrees. 
These coefficients are 24 in number, 3 for the first degree, 5 for 

the second, 7 for the third, and 9 for the fourth. All these 

terms are found necessary in order to give a tolerably accurate 

representation of the actual state of the earth’s magnetism. 
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To find what Part of the Observed Magnetic Force is due 
to External and what to Internal Causes. 

470.] Let us now suppose that we have obtained an expan¬ 
sion of the magnetic potential of the earth in spherical har¬ 

monics, consistent with the actual direction and magnitude 

of the horizontal force at every point on the earth’s surface, 

then Gauss has shewn how to determine, from the observed 
vertical force, whether the magnetic forces are due to causes, 

such as magnetization or electric currents, within the earth s 
surface, or whether any part is directly due to causes exterior 

to the earth’s surface. 
Let V be the actual potential expanded in a double series of 

spherical harmonics. 

V=A1-'+&c. + Ai(-) +. 
La 

~ „ -v+i) 

+*.+/>,(;) +. 

The first series represents the part of the potential due to 
causes exterior to the earth, and the second series represents 
the part due to causes within the earth. 

The observations of horizontal force give us the sum of these 
series when r = a, the radius of the earth. The term of the 

order i is y. . + ft.# 

The observations of vertical force give us 

and the term of the order i in a Z is 

a^=i4r(Hl)5, 

Hence the part due to external causes is 

A — 4-1) 17i + dZi 
2 14* 1 

and the part due to causes within the earth is 

7? 

The expansion of Fhas hitherto been calculated only for the 

mean value of V at or near certain epochs. No appreciable part 
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of this mean value appears to be due to causes external to the 

earth. 

471. ] We do not yet know enough of the form of the ex¬ 

pansion of the solar and lunar parts of the variations of V 
to determine by this method whether any part of these variations 

arises from magnetic force acting from without. It is certain, 

however, as the calculations of MM. Stoney and Chambers have 

shewn, that the principal part of these variations cannot arise 

from any direct magnetic action of the sun or moon, supposing 

these bodies to be magnetic *. 

472. ] The principal changes in the magnetic force to which 

attention has been directed are as follows. 

I. The more Regular Variations. 

(1) The Solar variations, depending on the hour of the day 

and the time of the year. 

(2) The Lunar variations, depending on the moon’s hour angle 

and on her other elements of position. 

(3) These variations do not repeat themselves in different 

years, but seem to bo subject to a variation of longer period 

of about eleven years. 

(4) Besides this, there is a secular alteration in the state of 

the earth’s magnetism, which has been going on ever since 

magnetic observations have been made, and is producing changes 

of the magnetic elements of far greater magnitude than any 

of the variations of small period. 

II. The Disturbances. 

473.] Besides the more regular changes, the magnetic elements 

are subject to sudden disturbances of greater or less amount. 

It is found that these disturbances are more powerful and 

frequent at one time than at another, and that at times of great 

disturbance the laws of the regular variations are masked, though 

* Professor Hornstein of Prague has discovered a periodic change in the magnetic 
elements, the period of which is 26-33 days, almost exactly equal to that of the 
synodic revolution of the sun, as deduced from the observation of sun-spots near his 
equator. This method of discovering the time of rotation of the unseen solid body of 
the sun by its effects on the magnetic needle is the first instalment of the repayment 
by Magnetism of its debt to Astronomy. Anzciger der k. Akad., Wien, June 15, 

1871. See Proc. B. S., Nov. 16, 1871. 
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they are very distinct at times of small disturbance. Hence 
great attention has been paid to these disturbances, and it 

has been found that disturbances of a particular kind are more 
likely to occur at certain times of the day, and at certain 
seasons and intervals of time, though each individual disturb¬ 

ance appears quite irregular. Besides these more ordinary 
disturbances, there are occasionally times of excessive disturb¬ 

ance, in which the magnetism is strongly disturbed for a day 

or two. These are called Magnetic Storms. Individual dis¬ 
turbances have been sometimes observed at the same instant 

in stations widely distant. 
Mr. Airy has found that a large proportion of the disturb¬ 

ances at Greenwich correspond with the electric currents 
collected by electrodes placed in the earth in the neighbourhood, 

and are such as would be directly produced in the magnet if 
the earth-current, retaining its actual direction, were conducted 

through a wire placed underneath the magnet. 
It has been found that there is an epoch of maximum dis¬ 

turbance every eleven years, and that this appears to coincide 

with the epoch of maximum number of spots in the sun. 

474.] The field of investigation into which we are introduced 

by the study of terrestrial magnetism is as profound as it is 

extensive. 
We know that tho sun and moon act on the earth’s magnetism. 

It has been proved that this action cannot be explained by sup¬ 

posing these bodies magnets. The action is therefore indirect. 

In the case of the sun part of it may be thermal action, but 

in the case of the moon we cannot attribute it to this cause. 

Is it possible that the attraction of these bodies, by causing 

strains in the interior of tho earth, produces (Art. 447) changes 

in the magnetism already existing in the earth, and so by a kind 

of tidal action causes the semidiurnal variations ? 

But the amount of all these changes is very small compared 

with the great secular changes of the earth’s magnetism. 

What cause, whether exterior to the earth or in its inner 

depths, produces such enormous changes in the earth’s mag¬ 

netism, that its magnetic poles move slowly from one part of 

the globe to another? When we consider that the intensity of 

the magnetization of the great globe of the earth is quite com¬ 

parable with that which we produce with much difficulty in 
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our steel magnets, these immense changes in so large a body 

force us to conclude that we are not yet acquainted with one 

of the most powerful agents in nature, the scene of whose ac¬ 

tivity lies in those inner depths of the earth, to the knowledge 

of which we have so few means of access*. 

* {Balfour Stewart (uggeated that the diurnal variations are due to eleotric 
current induced in the rarified air in the upper region* of the atmosphere as it moves 
across the earth’s lines of force. Schuster, Phil, Trans, a, 1889, p. 467, hy applying 
Gauss’s method, has lately Hhewn that the greater part of thea© disturbances have 
their origin above the surface of the earth. J 



PART IT. 

ELECTROMAGNETISM. 

CHAPTER I. 

ELECTROMAGNETIC FORCE. 

475.] It had been noticed by many different observers that in 

certain cases magnetism is produced or destroyed in needles by 

electric discharges through them or near them, and conjectures 

of various kinds had been made as to the relation between mag¬ 

netism and electricity, but the laws of these phenomena, and the 

form of these relations, remained entirely unknown till Hans 

Christian Orsted*, at a private lecture to a few advanced stu¬ 

dents at Copenhagen, observed that a wire connecting the ends 

of a voltaic battery affected a magnet in its vicinity. This 

discovery he published in a tract entitled Experimenta circa 

effectum Con flic tus Electriei in A cam Magnetic am, dated 

July 21, 1820. 

Experiments on the relation of the magnet to bodies charged 

with electricity had been tried without any result till Orsted 

endeavoured to ascertain the effect of a wire heated by an 

electric current. He discovered, however, that the current itself, 

and not the heat of the wire, was the cause of the action, and 

that the ‘electric conflict acts in a revolving manner/ that is, 

that a magnet placed near a wire transmitting an electric cur¬ 

rent tends to set itself perpendicular to the wire, and with the 

* See another account of Orsted’s discovery in a letter from Professor Hang teen in 
the Life of Faraday by Dr. Bence Jones, vo). ii. p. 395. 
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same end always pointing forwards as the magnet is moved 

round the wire. 

476. ] It appears therefore that in the space surrounding a 

wire transmitting an electric current a magnet is acted on by 

forces dependent on the position of the wire and on the strength 

of the current. The space in which these forces act may there¬ 

fore be considered as a magnetic field, and we may study it in 

the same way as we have already studied the field in the 

neighbourhood of ordinary magnets, by tracing the course of 

the lines of magnetic force, and measuring the intensity of 

the force at every point. 

477. ] Let us begin with the case of an indefinitely long 

straight wire carrying an electric current. If a man were to 

place himself in imagination in the position of the wire, so that 

the current should flow from his head to his feet, then a magnet 

suspended freely before him would set itself so that the end 

which points north would, under the action of the current, 

point to his right hand. 

The lines of magnetic force are everywhere at right, angles to 

planes drawn through the wire, and are 

therefore circles each in a plane perpen¬ 

dicular to the wire, which passes through 

its centre. The pole of a magnet which 

points north, if carried round one of these 

circles from left to right, would experience 

a force acting always in the direction of 

its motion. The other pole of the same 

magnet would experience a force in the 

opposite direction. 

478. ] To compare these forces let the 

wire be supposed vertical, and the current 

a descending one, and let a magnet be 

placed on an apparatus which is free to 

rotate about a vertical axis coinciding 

with the wire. It is found that under 

these circumstances the current has no effect in causing the 

rotation of the apparatus as a whole about itself as an axis. 

Hence the action of the vertical current on the two poles of the 

magnet is such that the statical moments of the two forces 

about the current as an axis are equal and opposite. Let 7^ 

Fig. 21. 
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and be the strengths of the two poles, rx and r2 their dis¬ 

tances from the axis of the wire, Tx and T.z the intensities of the 

magnetic force due to the current at the two poles respectively, 

then the force on mx is m1?71, and since it is at right angles to 

the axis its moment is mxTxrSimilarly that of the force on 

the other pole is m2T2r2i and since thelre is no motion observed, 

frnlTlrl + m,T2r2 — 0. 

But we know that in all magnets 

ml + m 2 — 0. 

Hence t r __ t „ 
-M'l — ^2r2J 

or the electromagnetic force due to a straight current of infinite 

length is perpendicular to the current, and varies inversely as the 

distance from it 

479. ] Since the product Tr depends on the strength of the 

current it may be employed as a measure of the current. This 

method of measuioment is different from that founded upon 

electrostatic phenomena, and as it depends on the magnetic 

phenomena produced by electric currents it is called the Elec¬ 

tromagnetic system of measurement. In the electromagnetic 

system if i is the current, Tr ~2i 

480. ] If the wire be taken for the axis of z, then the rectangular 

components of T are 

X=-2i.y„, r=2i~, Z=0. 
r r1 

Here Xdx + Ydy + Zdz is a complete differential, being that of 

2itan~1~ +C. 
x 

Hence the magnetic force in the field can be deduced from a 

potential function, as in several former instances, but the potential 

is in this case a function having an infinite series of values whose 

common difference is 47ri. The differential coefficients of the 

potential with respect to the coordinates have, however, definite 

and single values at every point. 

The existence of a potential function in the field near an 

electric current is not a self-evident result of the principle of 

the conservation of energy, for in all actual currents there is 

a continual expenditure of the electric energy of the battery in 

overcoming the resistance of the wire, so that unless the amount 
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of this expenditure were accurately known, it might be suspected 

that part of the energy of the battery was employed in caus¬ 

ing work to be done on a magnet moving in a cycle. In fact, 

if a magnetic pole, m, moves round a closed curve which em¬ 

braces the wire, work is actually done to the amount of 4 irmz. 

It is only for closed paths which do not embrace the wire that 

the line-integral of the force vanishes. We must therefore for 

the present consider the law of force and the existence of a 

potential as resting on the evidence of the experiment already 

described. 

481. ] If we consider the space surrounding an infinite straight 

line we shall see that it is a cyclic space, because it returns into 

itself. If we now conceive a plane, or any other surface, com¬ 

mencing at the straight line and extending on one side of it 

to infinity, this surface may be regarded as a diaphragm which 

reduces the cyclic space to an acyclic one. If from any fixed 

point lines be drawn to any other point without cutting the 

diaphragm, and the potential be defined as the line-integral of 

the force taken along one of these lines, the potential at any 

point will then have a single definite value. 

The magnetic field is now identical in all respects with that 

due to a magnetic shell coinciding with this surface, the strength 

of the shell being i. This shell is bounded on one edge by the 

infinite straight line. The other parts of its boundary are at an 

infinite distance from the part of the field under consideration. 

482. ] In all actual experiments the current forms a closed 

circuit of finite dimensions. We shall therefore compare the 

magnetic action of a finite circuit with that of a magnetic shell of 

which the circuit is the bounding edge. 

It Las been shewn by numerous experiments, of which the 

earliest are those of Ampfere, and the most accurate those of 

Weber, that the magnetic action of a small plane circuit at 

distances which are great compared with the dimensions of the 

circuit is the same as that of a magnet whose axis is normal 

to the plane of the circuit, and whose magnetic moment is 

equal to the aim of the circuit multiplied by the strength of 

the current*. 

* {Ampfere, TKtorie des phtnom&nes tlectrodynamiques, 1826; Weber, EleJctrody- 
namisohe Maashestimmungtn (Abhandlungen der koniglich Sachs. GesclUchaft zu 
Leipzig, 1850-1852.)} 
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If the circuit be supposed to be filled up by a surface bounded 

by the circuit and thus forming a diaphragm, and if a magnetic 

shell of strength i coinciding with this surface be substituted for 

the electric current, then the magnetic action of the shell on all 

distant points will be identical with that of the current. 

483. ] Hitherto we have supposed the dimensions of the circuit 

to be small compared with the distance of any part of it from 

the part of the field examined. We shall now suppose the circuit 

to be of any form and size whatever, and examine its action at 

any point P not in the conducting wire itself. The following 

method, which has important geometrical applications, was in¬ 

troduced by Ampfere for this purpose. 

Conceive any surface S bounded by the circuit and not passing 

through the point P. On this surface draw two series of lines 

crossing each other so as to divide it into elementary portions, 

the dimensions of which are small compared with their distance 

from P, and with the radii of curvature of the surface. 

Round each of these elements conceive a current of strength 

% to flow, the direction of circulation being the same in all the 

elements as it is in the original circuit. 

Along every line forming the division between two contiguous 

elements two equal currents of strength i flow in opposite direc¬ 

tions. 

The effect of two equal and opposite currents in the same place 

is absolutely zero, in whatever aspect we consider the currents. 

Hence their magnetic effect is zero. The only portions of the 

elementary circuits which are not neutralized in this wray are 

those which coincide with the original circuit. The total effect 

of the elementary circuits is therefore equivalent to that of the 

original circuit. 

484. ] Now since each of the elementary circuits may be con¬ 

sidered as a small plane circuit whose distance from P is great 

compared with its dimensions, we may substitute for it an 

elementary magnetic shell of strength i whose bounding edge 

coincides with the elementary circuit. The magnetic effect of 

the elementary shell on P is equivalent to that of the elementary 

circuit. The whole of the elementary shells constitute a mag¬ 

netic shell of strength i, coinciding with the surface S and 

bounded by the original circuit, and the magnetic action of 

the whole shell on P is equivalent to that of the circuit. 
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It is manifest that the action of the circuit is independent 

of the form of the surface S, which was drawn in a perfectly 

arbitrary manner so as to fill it up. We see from this that the 

action of a magnetic shell depends only on the form of its edge 

and not on the form of the shell itself. This result we obtained 

before, in Art. 410, but it is instructive to see how it may be 

deduced from electromagnetic considerations. 

The magnetic force due to the circuit at any point is therefore 

identical in magnitude and direction with that due to a magnetic 

shell bounded by the circuit and not passing through the point, 

the strength of the shell being numerically equal to that of the 

current. The direction of the current in the circuit is related to 

the direction of magnetization of the shell, so that if a man were 

to stand with his feet on that side of the shell which we call the 

positive side, and which tends to point to the north, the current 

in front of him would be from right to left. 

485.] The magnetic potential of the circuit, however, differs 

from that of the magnetic shell for those points which are in the 

substance of the magnetic shell. 

If a) Is the solid angle subtended at the point P by the mag¬ 

netic shell, reckoned positive when the positive or austral side 

of the shell is next to P, then the magnetic potential at any 

point not in the shell itself is oxp, where (f> is the strength of the 

shell. At any point in the substance of the shell itself we may 

suppose the shell divided into two parts whose strengths are 

<and (f)2, where </>3 -f cf>2 = </>, such that the point is on the 

positive side of </>j and on the negative side of </>2. The potential 

at this point is 
a)(<^l+02)-47r^2- 

On the negative side of the shell the potential becomes 

<f> (co—47r). In this case therefore the potential is continuous, 

and at every point has. a single determinate value. In the case 

of the electric circuit, on the other hand, the magnetic potential 

at every point not in jhe conducting wire itself is equal to to), 
where i is the strength of the ^current, and a> is the solid angle 

subtended by a circuit at the point, and is reckoned positive 

when the current, as seen from P, circulates in the direction 

opposite to that of the hands of a watch. 

The quantity in is a.function having an infinite series of values 

whose common difference is ini* The differential coefficients of 
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iai with respect to the coordinates have, however, single and de¬ 

terminate values for every point of space. 
486.] If a long thin flexible solenoidal magnet were placed in 

the neighbourhood of an electric circuit, the north and south 

ends of the solenoid would tend to move in opposite directions 

round the wire, and if they were free to obey the magnetic force 

the magnet would finally become wound round the wire in a 

closed coil. If it were possible to obtain a magnet having only 

one pole, or poles of unequal strength, such a magnet would be 

moved round and round the wire continually in one direction, 

but since the poles of every magnet are equal and opposite, this 

result can never occur. Faraday, however, has shewn how to 

produce the continuous rotation of one pole of a magnet round 

an electric current by making it possible for one pole to go round 

and round the current while the other pole does not. That this 

process may be repeated indefinitely, the body of the magnet 

must be transferred from one side of the current to the other 

once in each revolution. To do this without interrupting the 

flow of electricity, the current is split into two branches, so that 

when one branch is opened to let the magnet pass the current 

continues to flow through the other. Faraday used for this 

purpose a circular trough of mercury, as shewn in Fig. 23, 

Art. 491. The current enters the trough through the wire ABy 
it is divided at By and after flowing through the arcs BQP and 

BRP it unites at P, and leaves the trough through the wire PO, 

the cup of mercury 0, and a vertical wire beneath 0, down which 

the current flows. 

The magnet (not shewn in the figure) is mounted so as to be 

capable of revolving about a vertical axis through 0, and the 

wire OP revolves with it. The body of the magnet passes 

through the aperture of the trough, one pole, say the north 

pole, being beneath the plane of the trough, and the other above 

it. As the magnet and the wire OP revolve about the vertical 

axis, the current is gradually transferred from the branch of the 

trough which lies in front of the magnet to that which lies 

behind it, so that in every complete revolution the magnet 

passes from one side of the current to the other. The north pole 

of the magnet revolves about the descending current in the 

direction N.E.S.W., and if <*>, <*/ are the solid angles (irrespective 

of sign) subtended by the circular trough at the two poles, the 
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work done by the electromagnetic force in a complete revolution 

is mi(4 7r~6D—a)'), 

where m is the strength of either pole, and i the strength of the 

current *. 

487.] Let us now endeavour to form a notion of the state of 

the magnetic field near a linear electric circuit. 

Let the value of co, the solid angle subtended by the circuit, 

be found for every point of space, and let the surfaces for which 

co is constant be described. These surfaces will be the equipo¬ 

tential surfaces. Each of these surfaces will be bounded by the 

circuit, and any two surfaces, o)1 and o>2, will meet in the circuit 

at an angle i (o^ — <*>2) t* 

* [This problem may be discussed as follows : Referring to Fig. 23, Art. 491, let 
us take OP in any position and introduce imaginary balancing currents i along BO 
and x, y along OB. As the magnet attached to OP is carried thrombi a complete 
revolution no work is done on the south pole by the current 7, supposed to pass along 
ABOZ, that pole describing a closed curve which does not embrace the current. 
The north pole however describes a closed curve which does embrace the current, and 
the work done upon it is 4 irwi. We have now to estimate the effects of the currents 
x in the circuit BPOB and y in the circuit BRPOli. The potential of the north 
pole which is below the planes of those circuits will be 

~ mxaJd + my (co —a#) and, of the south, - mx w'd —my {— a/ + a/#), 

where <ufl and <v'0 denote the solid angles subtended at the two poles by BOP, and w, 

co those subtended by the circular trough. The resultant potential is 

m y (co + a/) — m i (ojq -f a/^). 

Hence as OP revolves from OP in the direction NESW back to OP again the 
potential will change by —mi (co + a/). The work done by the currents is therefore 
that given in the text] 

{The following is a slightly different way of obtaining this result:—The currents 
through the wires and the mercury trough are equivalent to a circular current i — x 
round the trough, a current i round the circuit FOB and a current i through AB, BO, 
and the vertical wire OZ. The circular current will evidently not produce any force 
tending to make either pole travel round a circle co-axial with the circuit of the 
current. The North pole threads the circuit AB, BO, and the vertical OZ, once in 
each revolution, the work done on it is therefore 4 it im. If Cl and H' are the numerical 
values of the solid angle subtended by the circuit BOB at the north and south poles of 
the magnet respectively, then the potential energy of the magnet and circuit is 
— mi (H 4- H'). Hence if 0 is the angle FOB, the work done on the magnet in a com¬ 
plete revolution is 

r2w a 
— I mi(Cl + Cl') d$ = —mi(to + «'). 

Jo d$ 
Hence the whole work done on the magnet is 

to 1 { 4 v — (o» + a/) } }. 

t (This can be deduced as follows:—Consider a point P on the surface co, near the line 
of intersection of the two equipotential surfaces, let 0 be a point on the line of 
intersection near P, then describe a sphere of unit radius with centre 0. The solid 
angle subtended at P by the circuit will be measured by the area cut off the unit 
sphere by the tangent plane at O to the surface <ul5 and by an irregularly shaped cone 
determined by the shape of the circuit at some distance from O. Now consider a 
point Q on the second surface «u2 near to 0f the solid angle subtended by the circuit at 
this point will be measured by the area out off the unit sphere with centre 0 by the 

VOL. II. L 
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Figure XVIII, at the end of this volume, represents a section 

of the equipotential surfaces due to a circular current. The small 

circle represents a section of the conducting wire, and the hori¬ 

zontal line at the bottom of the figure is the perpendicular to the 

plane of the circular current through its centre. The equipotential 

surfaces, 24 of which are drawn corresponding to a series of values 

of (*> differing by - * are surfaces of revolution, having this line for 

their common axis. They are evidently oblate figures, being 

flattened in the direction of the axis. They meet each other in 

the line of the circuit at angles of 15°. 

The force acting on a magnetic pole placed at any point of an 

equipotential surface is perpendicular to this surface, and varies 

inversely as the distance between consecutivo equipotential sur¬ 

faces. The closed curves surrounding the section of the wire in 

Fig. XVIII are the lines of force. They are copied from Sir W. 

Thomson’s Paper on ‘ Vortex Motion*/ See also Art. 702. 

Adlan of an Electric Circuit on any Magnetic System,. 

488.] We are now able to deduce the action of an electric 

circuit on any magnetic system in its neighbourhood from the 

theory of magnetic shells. For if we construct a magnetic shell, 

whose strength is numerically equal to the strength of the 

current, and whose edge coincides in position with the circuit, 

while the shell itself does not pass through any part of the 

magnetic system, the action of the shell on the magnetic system 

will be identical with that of the electric current. 

Reaction of the Magnetic System on the Electric Circuit. 

489.] From this, applying the principle that action and reac¬ 

tion are equal and opposite, we conclude that the mechanical 

action of the magnetic system on the electric circuit is identical 

with its action on a magnetic shell having the circuit for its edge. 

The potential energy of a magnetic shell of strength </> placed 

tangent plane to at 0 and by an irregularly shaped cone which, if P and Q are 
very close together, will be the same as before. Thus the difference between the solid 
angles is the area of the lune between the ta.igent planes, and this area is twice the 
ungle between the tangent planes, that is twice the angle at which w1 and <va intersect, 
thus the angle between the surfaces is \ (ft>j — a>2) r. 

* Tram. R. S. Bdin.f vol. xxv. p. 217, (1869). 
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in a field of magnetic force of which the potential is V, is, by 

Art. 410, 

-♦//(' 
ndV dV dV 
{l - r + m — + n ) d S, 

dx dy 

where Z, m, n are the direction-cosines of the normal drawn 

from the positive side of the element cZ$ of the shell, and the 

integration is extended over the surface of the shell. 

Now the surface-integral 

N — ff (la + rab + nc) dS, 

where a, b, c are the components of the magnetic induction, re¬ 

presents the quantity of magnetic induction through the shell, 

or, in the language of Faraday, the number of lines of magnetic 

induction, reckoned algebraically, which pass through the shell 

from the negative to the positive side, lines which pass through 

the shell in the opposite direction being reckoned negative. 

Remembering that the shell does not belong to the magnetic 

system to which the potential V is due, and that the magnetic 

force is therefore equal to the magnetic induction, we have 

dV 7 dV dV 
a — = _ T- , c = — 7- 3 

dx dy dz 

and we may write the value of M, 

M=z ~ </>iVr. 

If represents any displacement of the shell, and Xx the 

force acting on the shell so as to aid the displacement, then by 

the principle of conservation of energy, 

X^ h- bM — 0, 

xx^<t>dN or 
dxx * 

We have now determined the nature of the force which cor¬ 

responds to any given displacement of the shell. It aids or 

resists that displacement accordingly as the displacement in¬ 

creases or diminishes N, the number of lines of induction which 

pass through the shell. 

The same is true of the equivalent electric circuit. Any dis¬ 

placement of the circuit will be aided or resisted according as 

it increases or diminishes the number of lines of induction which 

pass through the circuit in the positive direction. 
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We must remember that the positive direction of a line of 
magnetic induction is the direction in which the pole of a magnet 

which points north tends to move along the line, and that a line 
of induction passes through the circuit in the positive direction, 

when the direction of the line of induction is related to the 

direction of the current of vitreous electricity in the circuit as 

the longitudinal to the rotational motion of a right-handed 

screw. See Art. 23. 

490.] It is manifest that the force corresponding to any dis¬ 

placement of the circuit as a whole may be deduced at once from 

the theory of the magnetic shell. But this is not all. If a 

portion of the circuit is flexible, so that it may be displaced 

independently of the rest, we may make the edge of the shell 

capable of the same kind of displacement by cutting up the 

surface of the shell into a sufficient number of portions con¬ 

nected by flexible joints. Hence we conclude that if by the 
displacement of any portion of the circuit in a given direction 

the number of lines of induction which pass through the circuit 

can be increased, this displacement will be aided by the electro¬ 

magnetic force acting on the circuit. 
Every portion of the circuit therefore is acted on by a force 

urging it across the lines of magnetic induction so as to include 
a greater number of these lines within the embrace of the circuit, 

and the work none by the force during this displacement is 

numerically equal to the number of the additional lines of in¬ 
duction multiplied by the strength of the current. 

Let the element ds of a circuit, in which a current of strength 

i is flowing, be moved parallel to itself through a space bx, it will 

sweep out an area in the form of a parallelogram whose sides are 

parallel and equal to ds and bx respectively. 

If the magnetic induction is denoted by 93, and if its 
direction makes an angle € with the normal to the parallel¬ 

ogram, the value of the increment of If corresponding to the 

displacement is found by multiplying the area of the parallel¬ 
ogram by 93 cos The result of this operation is represented 

geometrically by the volume of a parallelopiped whose edges 

represent in magnitude and direction bx, ds, and 93, and it 

is to be reckoned positive if when we point in these three 

directions in the order here given the pointer moves round 

the diagonal of the parallelopiped in the direction of the hands 
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of a watch*. The volume of this parallelopiped is equal to 
X 8x. 

If 0 is the angle between ds and 23, the area of the parallelo¬ 
gram whose sides are ds and 23 is cZtS.23sin0, and if rj is the 

angle which the displacement 6x makes with the normal to this 

parallelogram, the volume of the parallelopiped is 
ds. 23 sin 0. hx cos = b X,. 

Now Xhx — ihN = iris.23sin Obxcos >7, 
and X = i ds. 23 sin 0 cos rj 

is the force which urges ds, resolved in the direction bx. 

The direction of this force is therefore perpendicular to the 
parallelogram, and its magnitude is equal to- i . ds. 33 sin 0. 

This is the area of a parallelogram whose sides represent in 

magnitude and direction ids and 23. The force acting on ds is 

therefore represented in magnitude by the area of this parallel 

ogram, and in direction by a normal to its plane drawn in the 

direction of the longitudinal motion of a right-handed screw, the 

handle of which is turned from the direction of the current ids 
to that of the magnetic induction 23. 

We may express in the language of 
Quaternions, both the direction and 

the magnitude of this force by saying 

that it is the vector part of the result 

of multiplying the vector ids, the 

element of the current, by the vector 

33, the magnetic induction. 

491.] We have thus completely de¬ 

termined the force which acts on any 

portion of an electric circuit placed 

in a magnetic field. If the circuit is 

moved in any way so that, after assuming various forms and 

positions, it returns to its original place, the strength of the 

current remaining constant during the motion, the whole amount 

of work done by the electromagnetic forces will be zero. Since 

this is true of any cycle of motions of the circuit, it follows that 

it is impossible to maintain by electromagnetic forces a motion 

of continuous rotation in any part of a linear circuit of constant 

strength against the resistance of friction, &c. 

* {In this rule d a is drawn in the direction of i and the observer is supposed to be 
at that corner of the parallelopiped from which dx} da and 3) are drawn.] 

Copper 

Zinc 

Fig. 22. 
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It is possible, however, to produce continuous rotation provided 
that at some part of the course of the electric current the current 

passes from one conductor which slides or glides over another. 
When in a circuit there is sliding contact of a conductor over 

the surface of a smooth solid or a fluid, the circuit can no longer 

be considered as a single linear circuit of constant strength, but 
must be regarded as a system of two or of some greater number 

of circuits of variable strength, the current being so distributed 

among them that those for which N is increasing have currents 

in the positive direction, while those for which N is diminishing 
have currents in the negative direction. 

Thus, in the apparatus represented in Fig. 23, OP is a move- 
able conductor, one end of which rests in a cup of mercury 0, 

while the other dips into a 
circular trough of mercury 

concentric with 0. 
The current i enters along 

AB, and divides in the cir¬ 

cular* trough into two parts, 

one of which, x, flows along 

the arc BQP, while the other, 

y, flows along BRP. These 

currents, uniting at P, flow 

along the moveable conductor 
PO and the electrode 0Z to the zinc end of the battery. The 
strength of the current along PO and OZ is x + y or i. 

Here we have two circuits, ABQPOZ, the strength of the 

current in which is x, flowing in the positive direction, and 

ABRP0Z9 the strength of the current in which is y, flowing in 

the negative direction. 
Let 8 be the magnetic induction, and let it be in an upward 

direction, normal to the plane of the circle. 

While OP moves through an angle 6 in the direction opposite 

to that of the hands of a watch, the area of the first circuit 

increases by \ OP2.0, and that of the second diminishes by the 

same quantity. Since the strength of the current in the first 

circuit is x, the work done by it is \x. OP2.6..93, and since the 

strength of the second is —y, the work done by it is £y.OP2.0.8. 

The whole work done is therefore 

\(x+y)OP2.6%3 or \i.0P2.08, 
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depending only on the strength of the current in PO. Hence, if 

i is maintained constant, the arm OP will be carried round and 

round the circle with a uniform force whose moment is \ i. 07^.33. 

If, as in northern latitudes, 8 acts downwards, and if the current 

is inwards, the rotation will be in the negative direction, that is, 

in the direction PQBR. 
492.] We are now able to pass from the mutual action of 

magnets and currents to the action of one circuit on another. 

For we know that the magnetic properties of an electric circuit 

Cl9 with respect to any magnetic system il/2, are identical with 

those of a magnetic shell Sl, whose edge coincides with the cir¬ 

cuit, and whose strength is numerically equal to that of the 

electric current. Let the magnetic system M2 be a magnetic 

shell $2, then the mutual action between and is identical 

with that between and a circuit C2, coinciding with the edge 

of and equal in numerical strength, and this latter action is 

identical with that between (7, and C2. 

Hence the mutual action between two circuits C\ and C., is 

identical with that between the corresponding magnetic shells 

and S2. 
We have already investigated, in Art. 423, the mutual action 

of two magnetic shells whose edges are the closed curves sy and 

If we make 

where c is the angle between the directions of the elements dsy 
and ds2, and r is the distance between them, the integrations being 

extended one round s2 and one round su and if we call M the 

potential of the two closed curves s1 and #2, then the potential 

energy due to the mutual action of two magnetic shells whose 

strengths are iy and i2 bounded by the two circuits is 

iy i2 M, 

and the force X, which aids any displacement hx> is 

. . dM 

The whole theory of the force acting on any portion of an 

electric circuit due to the action of another electric circuit may 

be deduced from this result. 

493.] The method which we have followed in this chapter is 

that of Faraday. Instead of beginning, as we shall do, following 
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Ampfere, in the next chapter, with the direct action of a portion 

of one circuit on a portion of another, we shew, first, that a 

circuit produces the same effect on a magnet as a magnetic shell, 

or, in other words, we determine the nature of the magnetic field 

due to the circuit. We shew, secondly, that a circuit when 

placed in any magnetic field experiences the same force as a 

magnetic shell. We thus determine the force acting on the 

circuit placed in any magnetic field. Lastly, by supposing the 

magnetic field to be due to a second electric circuit we determine 

the action of one circuit on the whole or any portion of the 

other. 

494. ] Let us apply this method to the case of a straight 

current of infinite length acting on a portion of a parallel straight 

conductor. 

Let us suppose that a current i in the first conductor is flowing 

vertically downwards. In this case the end of a magnet which 

points north will point to the right-hand of a man (with his feet 

downwards) looking at it from the axis of the current. 

The lines of magnetic induction are therefore horizontal circles, 

having their centres in the axis of the current, and their positive 

direction is north, east, south, west. 

Let another descending vertical current be placed due west of 

the first. The lines of magnetic induction due to the first current 

are here directed towards the north. The direction of the force 

acting on the second circuit is to be determined by turning the 

handle of a right-handed screw from the nadir, the direction of 

the current, to the north, the direction of the magnetic induction. 

The screw will then move towards the east, that is, the force 

acting on the second circuit is directed towards the first current, 

or, in general, since the phenomenon depends only on the relative 

position of the currents, two parallel circuits conveying currents 

in the same direction attract each other. 

In the same way we may shew that two parallel circuits 

conveying currents in opposite directions repel one another. 

495. ] The intensity of the magnetic induction at a distance r 

from a straight current of strength i is, as we have shewn in 

Art. 479, i 
r 

Hence, a portion of a second conductor parallel to the first, and 
carrying a current i' in the same direction, will be attracted 
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towards the first with a force 

r 

where a is the length of the portion considered, and r is its 

distance from the first conductor. 

Since the ratio of a to r is a numerical quantity independent 

of the absolute value of either of these lines, the product of two 

currents measured in the electromagnetic system must be of the 

dimensions of a force, hence the dimensions of the unit current 

are [i] = [F*] = 

496. ] Another method of determining the direction of the 

force which acts on a circuit is to consider the relation of the 

magnetic action of the current to that of other currents and 

magnets. 

If on one side of the wire which carries the current the mag¬ 

netic action due to the current is in the same or nearly the same 

direction as that due to other currents, then, on the other side of 

the wire, these forces will be in opposite or nearly opposite 

directions, and the force acting on the wire will be from the side 

on which the forces strengthen each other to the side on which 

they oppose each other. 

Thus, if a descending current is placed in a field of magnetic 

force directed towards the north, its magnetic action will be to 

the north on the west side, and to the south on the east side. 

Hence the forces strengthen each other on the west side and 

oppose each other on the east side, and the circuit will therefore 

be acted on by a force from west to east. See Fig. 22, p. 149. 

In Fig. XVII at the end of this volume the small circle 

represents a section of the wire carrying a descending current, 

and placed in a uniform field of magnetic force acting towards 

the left-hand of the figure. The magnetic force is greater below" 

the wire 'than above it. It will therefore be urged from the 

bottom towards the top of the figure. 

497. ] If two currents are in the same plane but not parallel, 

we may apply thi^ principle. Let one of the conductors be an 

infinite straight wire in the plane of the paper, supposed hori¬ 

zontal. On the right side of the current* the magnetic force acts 

* {The right side of the current is the right of an observer with his back against 
she paper placed so that the current enters at his head and leaves at his feet, j 
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downwards and on the left side it acts upwards. The same is 

true of the magnetic force due to any short portion of a second 

current in the same plane. If the second current is on the right 

side of the first, the magnetic forces will strengthen each other on 

its right side and oppose each other on its left side. Hence the 

circuit conveying the second current will be acted on by a force 

urging it from its right side to its left side. The magnitude of 

this force depends only on the position of the second current and 

not on its direction. If the second circuit is on the left side of the 

first it will be urged from left to right. 

Fig. 24. 

Relation between the electric current and the lines of magnetic induction indicated 
by a right-handed screw. 

Hence, if the second current is in the same direction as the first 

its circuit is attracted ; if in the opposite direction it is repelled ; 

if it flows at right angles to the first and away from it, it is urged 

in the direction of the first current; and if it flows towards the 

first current, it is urged in the direction opposite to that in which 

the first current flows. 

In considering the mutual action of two currents it is not 

necessary to bear in mind the relations between electricity and 

magnetism which we have endeavoured to illustrate by means of 

a right-handed screw. Even if we have forgotten these relations 

we shall arrive at correct results, provided we adhere consistently 

to one of the two possible forms of the relation. 
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498.] Let us now bring together the magnetic phenomena of 

the electric circuit so far as we have investigated them. 

We may conceive the electric circuit to consist of a voltaic 

battery, and a wire connecting its extremities, or of a thermo¬ 

electric arrangement, or of a charged Leyden jar with a wire 

connecting its positive and negative coatings, or of any other 

arrangement for producing an electric current along a definite 

path. 

The current produces magnetic phenomena in its neighbour¬ 

hood. 

If any closed curve be drawn, and the line-integral of the 

magnetic force taken completely round it, then, if the closed curve 

is not linked with the circuit, the line-integral is zero, but if it 

is linked with the circuit, so that the current i flows through the 

closed curve, the line-integral is 4 7ri, and is positive if the direction 

of integration round the closed curve would coincide with that 

of the hands of a watch as seen by a person passing through it 

in the direction in which the electric current flows. To a person 

moving along the closed curve in the direction of integration, and 

passing through the electric circuit, the direction of the current 

would appear to be that of the hands of a watch. We may 

express this in another way by saying that the relation between 

the directions of the two closed curves may be expressed by 

describing a right-handed screw round the electric circuit and a 

right-handed screw round the closed curve. If the direction of 

rotation of the thread of either, as we pass along it, coincides with 

the positive direction in the other, then the line-integral will be 

positive, and in the opposite case it wrill be negative. 

499.] Note.—The line-integral 4 7ri depends solely on the 

quantity of the current, and not on any other thing whatever. It 

does not depend on the nature of the conductor through which 

the current is passing, as, for instance, whether it be a metal 

or an electrolyte, or an imperfect conductor. We have reason 

for believing that even when there is no proper conduction, but 

merely a variatipn of electric displacement, as in the glass of a 

Leyden jar during charge or discharge, the magnetic effect of the 

electric movement is precisely the same. 

Again, the value of the line-integral 4 7ri does not depend on 

the nature of the medium in which the closed curve is drawn. 

It is the same whether the closed curve is drawn entirely through 
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air, or passes through a magnet, or soft iron, or any other sub- 

stance, whether paramagnetic or diamagnetic. 

500.] When a circuit is placed in a magnetic field the mutual 

action between the current and the other constituents of the field 

depends on the surface-integral of the magnetic induction through 

any surface bounded by that circuit. If by any given motion of 

the circuit, or of part of it, this surface-integral can be increased, 

there will be a mechanical force tending to move the conductor 

or the portion of the conductor in the given manner. 

The kind of motion of the conductor which increases the surface- 

integral is motion of the conductor perpendicular to the direction 

of the current and across the lines of induction. 

Fig. 25. 

Kelationa between the positive directions of motion and of rotation indicated by 
three right-handed screws. 

If a parallelogram be drawn, whose sides are parallel and pro¬ 

portional to the strength of the current at any point, and to the 

magnetic induction at the same point, then the force on unit of 

length of the conductor is numerically equal to the area of this 
parallelogram, and is perpendicular to its plane, and acts in the 

direction in which the motion of turning the handle of a right- 

handed screw from the direction of the current to the direction 

of the magnetic induction would cause the screw to move. 

Hence we have a new electromagnetic definition of a line of 
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magnetic induction. It is that line to which the force on the 

conductor is always perpendicular. 

It may also be defined as a line along which, if an electric 

current be transmitted, the conductor carrying it will experience 

no force. 

501.] It must be carefully remembered, that the mechanical 

force which urges a conductor carrying a current across the lines 

of magnetic force, acts, not on the electric current, but on the 

conductor which carries it. If the conductor be a rotating disk 

or a fluid it will move in obedience to this force, and this motion 

may or may not be accompanied by a change of position of the 

electric current which it carries. [But if the current itself be free 

to choose any path through a fixed solid conductor or a network 

of wires, then, when a constant magnetic force is made to act on 

the system, the path of the current through the conductors is not 

permanently altered, but after certain transient phenomena, called 

induction currents, have subsided, the distribution of the current 

will be found to be the same as if no magnetic force were in 

action.]* 

The only force which acts on electric currents is electromotive 

force, which must be distinguished from the mechanical force 

which is the subject of this chapter. 

* (Mr. Hall has discovered {Vh.il. Mag. ix. p. 225, x. p. 301, 1880) that a steady 
magnetic field does slightly alter the distribution of currents in most conductors, bo 
that the statement in brackets muBt be regarded as only approximately true, j 



CHAPTER II. 

ampere’s investigation of the mutual action of 

ELECTRIC CURRENTS. 

502.] WE have considered in the last chapter the nature of 

the magnetic field produced by an electric current, and the 

mechanical action on a conductor carrying an electric current 

placed in a magnetic field. From this we went on to consider 

the action of one electric circuit upon another, by determining 

the action on the first due to the magnetic field produced by 

the second. But the action of one circuit upon another was 

originally investigated in a direct manner by Ampere almost 

immediately after the publication of Orsted’s discovery. We 

shall therefore give an outline of Ampere s method, resuming 

the method of this treatise in the next chapter. 

The ideas which guided Ampbre belong to the system which 

admits direct action at a distance, and we shall find that a 

remarkable course of speculation and investigation founded on 

those ideas has been carried on by Gauss, Weber, F. E. Neumann, 

Riemann, Betti, C. Neumann, Lorenz, and others, with very 

remarkable results both in the discovery of new facts and in the 

formation of a theory of electricity. See Arts. 846-866. 

The ideas which I have attempted to follow out are those of 

action through a medium from one portion to the contiguous 

portion. These ideas were much employed by Faraday, and the 

development of them in a mathematical form, and the com¬ 

parison of the results with known facts, have been my aim in 

several published papers. The comparison, from a philosophical 

point of view, of the results of two methods so completely 

opposed in their first principles must lead to valuable data for 

the study of the conditions of scientific speculation. 
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503. ] Ampere’s theory of the mutual action of electric currents 

is founded on four experimental facts and one assumption. 

Ampere’s fundamental experiments are all of them examples 

of what has been called the null method of comparing forces. 

See Art. 214. Instead of measuring the force by the dynamical 

effect of communicating motion to a body, or the statical method 

of placing it in equilibrium with the weight of a body or the 

elasticity of a fibre, in the null method two forces, due to the 

same source, are made to act simultaneously on a body already 

in equilibrium, and no effect is produced, which shews that these 

forces are themselves in equilibrium. This method is peculiarly 

valuable for comparing the effects of the electric current when it 

passes through circuits of different forms. By connecting all the 

conductors in one continuous series, we ensure that the strength 

of the current is the same at every point of its course, and since 

the current begins everywhere throughout its course almost at 

the same instant, we may prove that the forces due to its action 

on a suspended body are in equilibrium by observing that the 

body is not at all affected by the starting or the stopping of the 

current. 

504. ] Ampere's balance consists of a light frame capable of 

revolving about a vertical axis, and carrying a wire which forms 

two circuits of equal area, in the same plane or in parallel 

planes, in which the current flows in opposite directions. The 

object of this arrangement is to get rid of the effects of terrestrial 

magnetism on the conducting wire. When an electric circuit 

is free to move it tends to place itself so as to embrace the 

largest possible number of the lines of induction. If these lines 

are due to terrestrial magnetism, this position, for a circuit in 

a vertical plane, will be when the plane of the circuit is mag¬ 

netic east and west, and when the direction of the current is 

opposed to the apparent course of the sun. 

By rigidly connecting two circuits of equal area in parallel 

planes, in which equal currents run in opposite directions, a 

combination is formed which is unaffected by terrestrial mag¬ 

netism, and is therefore called an Astatic Combination, see Fig. 
26. It is acted on, however, by forces arising from currents or 

magnets which are so near it that they act differently on the two 
circuits. 

505. ] Ampere s first experiment is on the effect of two equal 
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currents close together in opposite directions. A wire covered 

with insulating material is doubled on itself, and placed near one 

of the circuits of the astatic balance. When a current is made 
to pass through the wire and the balance, the equilibrium of the 
balance remains undisturbed, shewing that two equal currents 

close together in opposite directions neutralize each other. If, 
instead of two wires side by side, a wire be insulated in the 

middle of a metal tube, and if the current pass through the wire 
and back by the tube, the action outside the tube is not only 
approximately but accurately null. This principle is of great 
importance in the construction of electric apparatus, as it affords 

the means of conveying the current to and from any galvano¬ 

meter or other instrument in such a way that no electromagnetic 
effect is produced by the current on its passage to and from the 

instrument. In practice it is generally sufficient to bind the 

wires together, care being taken that they are kept perfectly 

insulated from each other, but where they must pass near any 

sensitive part of the apparatus it is better to make one of the 

conductors a tube and the other a wire inside it. See Art. 683. 

506.] In Ampfere’s second experiment one of the wires is bent 

and crooked with a number of small sinuosities, but so that in 

every part of its course it remains very near the straight wire. 

A current, flowing through the crooked wire and back again 

through the straight wire, is found to be without influence on 

the astatic balance. This proves that the effect of the current 

running through any crooked part of the wire is equivalent to 
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the same current running in the straight line joining its ex¬ 
tremities, provided the crooked line is in no part of its course far 
from the straight one. Hence any small element of a circuit is 
equivalent to two or more component elements, the relation 
between the component elements and the resultant element 
being the same as that between component and resultant 
displacements or velocities. 

507.] In the third experiment a conductor capable of moving 
only in the direction of its length is substituted for the astatic 
balance. The current enters the conductor and leaves it at fixed 

points of space, and it is found that no closed circuit placed in 
the neighbourhood is able to move the conductor. 

The conductor in this experiment is a wire in the form of a 
circular arc suspended on a frame which is capable of rotation 
about a vertical axis. The circular arc is horizontal, and its 
centre coincides with the vertical axis. Two small troughs are 
filled with mercury till the convex surface of the mercury rises 
above the level of the troughs. The troughs are placed under 
the circular arc and adjusted till the mercury touches the wire, 
which is of copper well amalgamated. The current is made to 
enter one of these troughs, to traverse the part of the circular 

arc between the troughs, and to escape by the other trough. 
Thus part of the circular arc is traversed by the current, and the 
arc is at the same time capable of moving with considerable 

VOL. 11. M 
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freedom in the direction of its length. Any closed currents or 

magnets may now be made to approach the moveable conductor 

without producing the slightest tendency to move it in the 

direction of its length. 
508.] In the fourth experiment with the astatic balance two 

circuits are employed, each similar to one of those in the 

balance, but one of them, C, having dimensions n times greater, 
and the other, A, n times less. These are placed on opposite 

sides of the circuit of the balance, which we shall call JB, so that 
they are similarly placed with respect to it, the distance of C 

from B being n times greater than the distance of B from A. 

Fig. 28. 

The direction and strength of the current is the same in A and 

(7. Its direction in B may be the same or opposite. Under 

these circumstances it is found that B is in equilibrium under 

the action of A and (7, whatever be the forms and distances of 

the three circuits, provided they have the relations given above. 

Since the actions between the complete circuits may be 
considered to be due to actions between the elements of the 

circuits, we may use the following method of determining the 
law of these actions. 

Let Av Bx, , Fig. 28, be corresponding elements of the three 

circuits, and let A2, B21 C2 be also corresponding elements in 
antoher part of the circuits. Then the situation of Bx with 

respect to A 2 is similar to the situation of Gx with respect to i?2, 
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but the distance and dimensions of Cx and B2 are n times the 

distance and dimensions of Bl and A2, respectively. If the law 
of electromagnetic action is a function of the distance, then the 
action, whatever be its form or quality, between Bl and A2, may 

be written F=B,. AJ(B^A2) ab, 

and that between Cx and B2 

F'~ C}. B2f(G1B2)hc, 

where a, b, c are the strengths of the currents in A> B, C. But 

nBx = CXi nA2 = J32, nBx A2 = Cx B2i and a = c. Hence 

F'= n2Bx. A„J(nBl AJ ab, 

and this is equal to F by experiment, so that we have 

n2f(n J.'jB,) =/(ITg1); 
or, the force varies inversely as the square of the distance *. 

509.] It may be observed with reference to these experiments 

that every electric current forms a closed circuit. The currents 
used by Ampere, being produced by the voltaic battery, were of 
course in closed circuits. It might be supposed that in the case 
of the current of discharge of a conductor by a spark we might 
have a current forming an open finite line, but according to the 
views of this book even this case is that of a closed circuit. No 

experiments on the mutual action of unclosed currents have been 
made. Hence no statement about the mutual action of two 
elements of circuits can be said to rest on purely experimental 
grounds. It is true we may render a portion of a circuit 
moveable, so as to ascertain the action of the other currents 
upon it, but these currents, together with that in the moveable 
portion, necessarily form closed circuits, so that the ultimate 

result of the experiment is the action of one or more closed 
currents upon the whole or a part of a closed current. 

610.] In the analysis of the phenomena, however, we may re¬ 

gard the action of a closed circuit on an element of itself or of 
another circuit as the resultant of a number of separate forces, 

depending on the separate parts into which the first circuit may 
be conceived, for mathematical purposes, to be divided. 

* {Another proof that this experiment leads to the law of the inverse square is 
given in Art. 523, and the reader will probably find it simpler and more convincing 
than the preceding.} 

M % 
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This is a merely mathematical analysis of the action, and is 
therefore perfectly legitimate, whether these forces can really act 
separately or not. 

511. ] We shall begin by considering the purely geometrical 
relations between two lines in space representing the circuits, 
and between elementary portions of these lines. 

Let there be two curves in space in each of which a fixed 
point is taken, from which the arcs are measured in a defined 

direction along the curves. Let 
A, A' be these points. Let PQ 

and P'Q' be elements of the two 
curves. 

Let APz=s, A'P'=8', I 

PQ = ds, P'Q'= d/,) ( ' 

and let the distance PP' be de¬ 
noted by r. Let the angle P'PQ 

be denoted by 6, and PP'Q' by 0\ and let the angle between the 
planes of these angles be denoted by rj. 

The relative position of the two elements is sufficiently de¬ 
fined by their distance r and the three angles 0, 6', and ?/, for if 

these be given their relative position is as completely determined 
as if they formed part of the same rigid body. 

512. ] If we use rectangular coordinates and make xt y, z the 
coordinates of P} and x', y', z' those of P\ and if we denote by 
/, m, n and by V, m', n' the direction-cosincs of PQ, and of P'Q' 
respectively, then 

dx __ ; dy __ dz 

ds ~~ 1 ds m’ ds 

dx dy' , dz' 

ds'~ ’ ctf ’ ds' 

and l (oc — x) + m (y'~ y) + n(z'—z) = r cos 9, 
l\x' — x) 4- m'(y' — y) 4- n'(z' — z) = — r cos 0', 

IV 4- mm' 4- 7m' — cos e, 
(3) 

where e is the angle between the directions cf the elements 
themselves, and 

cos e = — cos 0 cos 0' + sin 6 sin 6' cos rj. 

Again, r2 = (x' - xf + (y -y)2+ {z'- zf, 

0) 

(«) 
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whence / / dx , , <ly . , ,dz 
-(* -(y -y)~r. ~(z -*)* * 

== — T COS 0. 

Similarly r : 

— r cos 0'; 

and differentiating r — with respect to 

d2r dr dr 
r -f-_ 

ds ds' ds da' 

dxdx' dy dy' 

ds ds ds ds 

~ ~ (IV -f mm' + un), 

— — cos e. 

dz dz' 

ds ds'5 

We can therefore express the three angles 0, 0', and >/, and the 
auxiliary angle * in terms of the differential coefficients of r with 
respect to s and s' as follows, 

cos 0 = — 
ds 

, dr 
cos 0' = - 

as 

d*r 
COS f = — r -7-j-7 

dsds 

d2r 
sin 0 sin 0' cos rj = — r 7-, - 

as as 

cos € = — r 
dr dr 

ds ds 

513.] We shall next consider in what way it is mathematically 
conceivable that the elements PQ and P'Q' might act on each 
other, and in doing so we shall not at first assume that their 
mutual action is necessarily in the line joining them. 

We have seen that we may suppose each element resolved into 
other elements, provided that these components, when combined 
according to the rule of addition of vectors, produce the original 
element as their resultant. 

We shall therefore consider ds as resolved into cos 8ds — a 

in the direction of r, and * & 

sin 8ds = P in a direction \/_ 
perpendicular to r in the p a V 
plane P’PQ. Kg‘30' 

We shall also consider ds' as resolved into cos 8'ds' ~ a in 
the direction of r reversed, sin 0'cos rjds' = ft' in a direction 
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parallel to that in which 0 was measured, and sin<9'sin?jcZa' = y 

in a direction perpendicular to a and 0\ 

Let us consider the action between the components a and 0 on 
the one hand, and a\ 0\ y on the other. 

(1) a and a' are in the same straight line. The force between 

them must therefore be in this line. We shall suppose it to be 

an attraction = A aa'i i\ 

where A is a function of r, and i, i' are the intensities of the 
currents in ds and ds' respectively. This expression satisfies 
the condition of changing sign with i and with i\ 

(2) 0 and 0' are parallel to each other and perpendicular to 

the line joining them. The action between them may be written 

B00'ii'. 
This force is evidently in the line joining 0 and 0\ for it must 

be in the plane in w hich they both lie, and if we were to measure 
0 and 0' in the reversed direction, the value of this expression 

would remain the same, which shews that, if it represents a force, 

that force has no component in the direction of 0, and must 
therefore be directed along r. Let us assume that this expression, 

when positive, represents an attraction. 

(3) 0 and / are perpendicular to each other and to the line 

joining them. The only action possible between elements so 

related is a couple whose axis is parallel to r. We are at present 

engaged wTith forces, so we shall leave this out of account *, 

(4) The action of a and 0>, if they act on each other, must be 

expressed by Ca0'ii'. 

The sign of this expression is reversed if we reverse the 

direction in which we measure 0', It must therefore represent 

either a force in the direction of 0', or a couple in the plane 

of a and 0\ As we are not investigating couples, we shall take 
it as a force acting on a in the direction of 0'. 

There is of course an equal force acting on 0' in the opposite 

direction. 

* ^ It might be objected that we have no right to assume there is no force in this 
case, inasmuch as such a rule aB that there was a force on £ at right angles to both j8 and 
7', and in the direction to which would be brought by a right-handed screw through 
90° round j9, would indicate a force which would satisfy the condition of reversing if 
either of the components were reversed but not if both. The reason for assuming that 
such a force does not exist, is that the direction of the force would be determined 
merely by the direction of the currents, and not by their relative position. Thus for 
example, it would change from a repulsive to an attractive force between the elements, 
if in Pig. 80 P' were to the left instead of the right of P.j 
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We have for the same reason a force 

Cay'ii' 

acting on a in the direction of /, and a force 

Cfia'ii' 

acting on fl in the direction opposite to that in which fi is measured. 

514.] Collecting our results, we find that the action on ds is 
compounded of the following forces, 

X — (Aaa + in the direction of r,j 

Y = C(aft' — a j3)ii' in the direction of /i, l (9) 

and Z — Gay it' in the direction of /. J 

Let us suppose that this action on ds is the resultant of three- 
forces, Rii'dsds' acting in the direction of r, Sii'dsds' acting in 

the direction of ds, and S'ii'dsds' acting in the direction of ds ; 
then in terms of 0, 6\ and 77, 

R — A + 2 (7 cos 0 cos 0'-f B sin 0 dud'cost], 

S = -Ccos6', S'=Ccosd. J (10' 

In terms of the differential coefficients of r 

. ^ndrdr T1 d2r 
R = A + 2(7^-"-".- JSr——, 

ds ds ds ds 

s = c dr 

cf?’ ds 

In terms of lf m, n, and l\ m\ n\ 

(») 

72 = —(A -f 2G+B')~(lg+ttitj -f- n() (2'f-f m'rj + n'Q + -f mm' + nn'), 

S^c'-m+m'v + n'C), S,= C1-(l£+mrl + nC), 

where £, rj, { are written for x — xt yf — y, and z' — z respectively. 

515.] We have next to calculate the force with which the 

finite current s' acts on the finite current s. The current s 

extends from A, where s — 0, to P, where it has the value s. 

The current s extends from A', where s'— 0, to F, where it 

has the value s'. The coordinates of points on either current 

are functions of s or of s'. 

If F is any function of the position of a point, then we shall 

use the subscript ^ o) to denote the excess of its value at P over 

that at A, thus 7^ o) = FP-FA. 

Such functions necessarily disappear when the circuit is closed. 



168 ampere’s theory. [5-6- 
Let the components of the total force with which A'P' acts on 

AP be ii'X, ii' Y. and ii'Z. Then the component parallel to X 
d2X 

of the force with which da' acts on da will be ii' -7—.-.dads'. 
dads 

Hence 
<PX 
dads' 

R±+Sl + ST. 
r 

(13) 

Substituting the values of Ii, S, and S' from (12), remembering 

that dv 
l'£ + m'rj 4- n'( - (14) 

and arranging the terms with respect to Z, m, n, we find 

+ m\-(A + 2C+B)li£,£„ + C^ + 

+ n\-(A + 2C+B)^(i+C1^ + • (15) 

Since J, jB, and 6Y are functions of r, we may write 

P =j*(A+2C+B) Idr, Q =J*Odr, (16) 

the integration being taken between r and »: because A, B, Zf 

vanish when r = co * 

Hence ^+P)I = _di> and (7 — — 
dQ 

(17) 
dr ' dr 

516.] Now we know, by Ampere’s third case of equilibrium, 

that when s' is a closed circuit, the force acting on da is per¬ 

pendicular to the direction of da, or, in other words, the com¬ 

ponent of the force in the direction of da itself is zero. Let us 

therefore assume the direction of the axis of a; so as to be 

parallel to da by making l = 1, m = 0, n == 0. Equation (15) 

then becomes 

££-^-$+<*+c>7- (18) 

To find > the force on da referred to unit of length, we 

must integrate this expression with respect to a'. Integrating 

the first term by parts, we find 

dX 
da = (Pe - Q)w, o)-jf (2 Pr-B-C)l^M. (19) 
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When / is a closed circuit this expression must be zero. The 
first term will disappear of itself. The second term, however, 

will not in general disappear in the case of a closed circuit 
unless the quantity under the sign of integration is always zero. 
Hence, to satisfy Ampere’s condition, we must put 

P = ~(B + C). (20) 

517.] We can now eliminate P, and find the general value of 
dX 

da ’ dX _ (i 

da l 

■4 TO/ 
Jo 

z. O'f+TOTJ + + Q[ 
* r ' «) 

•' B —Cm'f—l'n 

2 
ds’- •/ Jo 2 r 

ds. (21) 

When s' is a closed circuit the first term of this expression 
vanishes, and if we make 

/v B~C 

a ~ K 2 " V 

SO 

r-f 

ds\ 

ds, 1 

t (22) 
2 r 

B-Crn't-l'-n 
f r 

where the integration is extended round the closed circuit s', we 

dX may write 

Similarly 

ds 

clY 

ds 

- — my —njf; 

— Tia — l) 

d4-=if. 
ds 

ma. ) 

(23) 

The quantities a, ft', y are sometimes called the determinants 
of the circuit s referred to the point P. Their resultant is called 

by Ampere the directrix of the electrodynamic action. 

It is evident from the equation, that the force whose com¬ 

ponents are ds, ds, and ds is perpendicular both to ds 
ds ds ds 

and to this directrix, and is represented numerically by the area 

of the parallelogram whose sides are ds and the directrix. 

In the language of quaternions, the resultant force on ds is the 

vector part of the product of the directrix multiplied by ds. 

Since we already know that the directrix is the same thing as 
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the magnetic force due to a unit current in the circuit s', we 

shall henceforth speak of the directrix as the magnetic force due 
to the circuit. 

518.] We shall now complete the calculation of the components 
of the force acting between two finite currents, whether closed 
or open. 

Let pbea new function of r, such that 

P=if” (B-C)dr, (24) 

then by (17) and (20) 
d2 d 

A+^=<r~i(Q + p)-~«i + e), (25) 

and equations (11) become 

» dp d2 x 
R = — cos e + r -7——/ (Q + p), 

dr 

a dQ 
S'- 

ds da' 

dQ 

ds 

(26) 

With these values of the component forces, equation (13) 

becomes 

d2X _ dp £ > d2 n v jdQ j,dQ 

dids' ~ C0Sedr r + + 1 dd + 1 ds ’ 

dr L 
= COS € -r~ 4- 

dx 

1 "dsdS™ 

*mtrm 
dsds 

+ l 
dp vdp 

ds' ds 
(27) 

519.] Let. 

F — f Ipde, 0 = / mpds, 11 ~ f npds, (28) 
Jo Jo Jo 

r*' /V /V 

F=j I'pctf, G' = / m'pds\ 
Jo 

= / n'pds'. 
'0 

(29) 

These quantities have definite values for any given point of 

space. When the circuits are closed, they correspond to the 

components of the vector-potentials of the circuits. 

Let L be a new function of r, such that 

L — [ r(Q + p)dr> (30) 
Jo 

and let M be the double integral 

p cos e ds ds (31) 
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which, when the circuits are closed, becomes their mutual poten¬ 
tial, then (27) may be written 

d2X _ d2 ulM dL ) 

dsds'~ dsds'ldx dx+ * ) ( ' 
520.] Integrating, with respect to s and s\ between the given 

limits, we find 
dM d 

X = 
dx dx^ppf ~~ ^Ap/ ~~ ^A'p + Laa’)> 

4- Fp* — 1* a*—Fp + FA, (33) 
where the subscripts of L indicate the distance, ry of which the 

quantity L is a function, and the subscripts of Zand F indicate 

the points at which their values are to be taken. 

The expressions for Y and Z may be written down from this. 

Multiplying the three components by dxy dy, and dz respectively, 
we obtain 

Xdx+ Ydy + Zdz — DM-D(LPP,-Lap*—La*p + Laa) 

-(F'dx + G'dy + H'dz)[P_A) 

+ (Fdx 4 G dy 4 H dz)^A^ (34) 
where D is the symbol of a complete differential. 

Since Fdx+ Gdy + Ildz is not in general a complete dif¬ 

ferential of a function of xy yy zy Xdx+ Ydy + Zdz is not in 

general a complete differential for currents either of which is not 
closed. 

521. ] If, however, both currents are closed, the terms in L, F, 

G, Hy F9 G\ H' disappear, and 

Xdx 4 Ydy 4- Zdz = DM, (35) 

where if is the mutual potential* of two closed circuits carrying 

unit currents. The quantity M expresses the work done by the 

electromagnetic forces on either conducting circuit when it is 

moved parallel to itself from an infinite distance to its actual 

position. Any alteration of its position, by which if is increased, 

will be assisted by the electromagnetic forces 

It may be shewn, as in Arts. 490, 596, that when the motion 

of the circuit is not parallel to itself the forces acting on it are 
still determined by the variation of if, the potential of the one 

circuit on the other. 
522. ] The only experimental fact which we have made use of 

in this investigation is the fact established by Ampere that the 

action of a closed circuit on any portion of another circuit is 

perpendicular to the direction of the latter. Every other part of 
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the investigation depends on purely mathematical considerations 

depending on the properties of lines in space. The reasoning 

therefore may be presented in a much more condensed and 

appropriate form by the use of the ideas and language of the 
mathematical method specially adapted to the expression of such 

geometrical relations—the Quaternions of Hamilton. 
This has been done by Professor Tait in the Quarterly Journal 

of Mathematics, 1866, and in his treatise on Quaternions, § 399, 

for Ampere’s original investigation, and the student can easily 
adapt the same method to the somewhat more general investi¬ 
gation given here. 

523. ] Hitherto we have made no assumption with respect to 

the quantities A, B, CY, except that they are functions of r, the 

distance between the elements. We have next to ascertain the 

form of these functions, and for this purpose we make use of 
Ampere s fourth case of equilibrium, Art. 508, in which it is 

shewn that if all the linear dimensions and distances of a system 

of two circuits be altered in the same proportion, the currents 

remaining the same, the force between the two circuits will 
remain the same. 

Now the force between the circuits for unit currents is -7— * 
ax 

and since this is independent of the dimensions of the system, it 

must be a numerical quantity. Hence M itself, the coefficient 

of the mutual potential of the circuits, must be a quantity of the 

dimensions of a line. It follows, from equation (31), that p must 

be the reciprocal of a line, and therefore by (24), B—C must be 

the inverse square of a line. But since B and C are both 

functions of r, B — C must be the inverse square of r or some 
numerical multiple of it. 

524. ] The multiple we ^dopt depends on our system of 

measurement. If we adopt the electromagnetic system, so 

called because it agrees with the system already established for 

magnetic measurements, the value of M ought to coincide with 

that of the potential of two magnetic shells of strength unity 

whose boundaries are the two circuits respectively. The value 
of if in that case is, by Art. 423, 

M= dads', (36) 

the integration being performed round both circuits in the positive 
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direction. Adopting this as the numerical value of AT, and 
comparing with (31), we find 

P^l’ and B-C = p- (37) 

525.] We may now express the components of the force on ds 

arising from the action of ds' in the most general form consistent 
with experimental facts. 

The force on ds is compounded of an attraction 

R ii'ds ds’— -Xyt? ~ 2r Tif>) U'ds*' + r f ?> **'<&d*' r~ da da dsJ ds ds 
in the direction of r, 

8 ii'ds ds' = —ii'ds ds' in the direction of ds, 
ds ’ 

, dQ 
and &fii'dsds — ~ ii'ds ds in the direction of ds\ 

ds 

where Q = j Cdr, and since C is an unknown function of r, we 

know only that Q is some function of r. 

526.] The quantity Q cannot be determined, without assump¬ 

tions of some kind, from experiments in which the active current 

forms a closed circuit. If we suppose with Ampere that the 

action between the elements ds and ds' is in the line joining 

them, then 8 and S' must disappear, and Q must be constant, or 

zero. The force is then reduced to an attraction whose value is 

Bn dsds = (d-s ^ - 2r ™ dsds. (39) 

Ampere, who made this investigation long before the magnetic 

system of units had been established, uses a formula having a 

numerical value half of this, namely 

'jj'd ds'- 
1/1 dr dr 

r2 ^ 2 <is ds' 

Here the strength of a current is measured in what is called 

electrodynamic measure. If i, i' are the strengths of the currents 

in electromagnetic measure, and j9 j' the same in electrodynamic 

measure, then it is plain that 
jj'~ 2 ii\ or j = V2i. (41) 

Hence the unit current adopted in electromagnetic measure is 

greater than that adopted in electrodynamic measure in the ratio 

of \/2 to 1. 
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The only title of the electrodynamic unit to consideration is 

that it was originally adopted by Ampbre, the discoverer of the 

law of action between currents. The continual recurrence of •J2 

in calculations founded on it is inconvenient, and the electro¬ 

magnetic system has the great advantage of coinciding numeri¬ 

cally with all our magnetic formulae. As it is difficult for the 

student to bear in mind whether he is to multiply or to divide 

by v/2. we shall henceforth use only the electromagnetic system, 

as adopted by Weber and most other writers. 

Since the form and value of Q have no effect on any of the 

experiments hitherto made, in which the active current at least 

is always a closed one, we may, if we please, adopt any value of 

Q which appears to us to simplify the formulae. 

Thus Ampere assumes that the force between two elements is 

in the line joining them. This gives Q — 0, 

Rii'dsds'— 4 -r> — 2 r iidsds, 8 = 0, S'= 0. (42) 
rz'dsds anas ' 

Orassmann * assumes that two elements in the same straight 

line have no mutual action. This gives 

n __ 1 o l_d2L. 
V- 2r 2 rdsds’’ 2r2ds'' 

We might, if we pleased, assume that the attraction between 

two elements at a given distance is proportional to the cosine of 

the angle between them. In this case 

1 dr 
~ 2r2 ds' 

(43) 

Q = - R — i cos f, 
r2 

S = - 
1 dr 

r^ds' ’ 
S'= 

1 dr 

r^ds 
44) 

Finally, we might assume that the attraction and the oblique 

forces depend only on the angles which the elements make with 

the line joining them, and then we should have 

2 _ _ 1 dr dr „ _ 2 dr 2 dr 

M ^r*d8dd’ *-~r2<287’ *~?ds‘ 

527.] Of these four different assumptions that of Ampere is 

undoubtedly the best, since it is the only one which makes the 

forces on the two elements not only equal and opposite but in 

the straight line which joins them. 

* Pogg., Ann. 64, p. 1 (1845). 



CHAPTER III. 

ON THE INDUCTION OF ELECTRIC CURRENTS. 

528.] The discovery by Orsted of the magnetic action of an 

electric current led by a direct process of reasoning to that of 

magnetization by electric currents, and of the mechanical action 

between electric currents. It was not, however, till 1831 that 

Faraday, who had been for some time endeavouring to produce 

electric currents by magnetic or electric action, discovered the 

conditions of magneto-electric induction. The method which 

Faraday employed in his researches consisted in a constant 

appeal to experiment as a means of testing the truth of his ideas, 

and a constant cultivation of ideas under the direct influence of 

experiment. In his published researches we find these ideas 

expressed in language which is all the better fitted for a nascent 

science, because it is somewhat alien from the style of physicists 

who have been accustomed to establish mathematical forms of 

thought. 

The experimental investigation by which Ampere established 

the laws of the mechanical action between electric currents is one 

of the most brilliant achievements in science. 

The whole, theory and experiment, seems as if it had leaped, 

full grown and full armed, from the brain of the c Newton of elec¬ 

tricity/ It is perfect in form, and unassailable in accuracy, and 

it is summed up in a formula from which all the phenomena may 

be deduced, and which must always remain the cardinal formula 

of electro-dynamics. 

The method of Ampfere, however, though cast into an inductive 

form, does not allow us to trace the formation of the ideas which 

guided it. We can scarcely believe that Ampfere really dis¬ 

covered the law of action by means of the experiments which he 
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describee. We are led to suspect,what,indeed, he telle us himself*, 

that he discovered the law by some process which he has not 
shewn us, and that when he had afterwards built up a perfect 
demonstration he removed all traces of the scaffolding by which 

he had raised it. 
Faraday, on the other hand, shews 11s his unsuccessful as well 

as his successful experiments, and his crude ideas as well as his 
developed ones, and the reader, however inferior to him in induc¬ 
tive power, feels sympathy even more than admiration, and is 

tempted to believe that, if he had the opportunity, ho too would 

be a discoverer. Every student should therefore read Amp&re’s 

research as a splendid example of scientific style in the statement 

of a discovery, but he should also study Faraday for the cultiva¬ 

tion of a scientific spirit, by means of the action and reaction 
which will take place between the newly discovered facts as 

introduced to him by Faraday and the nascent ideas in his own 

mind. 
It was perhaps for the advantage of science that Faraday, 

though thoroughly conscious of the fundamental forms of space, 

time, and force, was not a professed mathematician. He was 

not tempted to enter into the many interesting researches in pure 
mathematics which his discoveries would have suggested if they 

had been exhibited in a mathematical form, and he did not feel 

called upon either to force his results into a shape acceptable 
to the mathematical taste of the time., or to express them in 

a form which mathematicians might attack. He was thus 

left at leisure to do his proper work, to coordinate his ideas 

with his facts, and to express them in natural, untechnical 
language. 

It is mainly with the hope of making these ideas the basis of 
a mathematical method that I have undertaken this treatise. 

529.] We are accustomed to consider the universe as made up 

of parts, and mathematicians usually begin by considering a 

single particle, and then conceiving its relation to another par¬ 

ticle, and so on. This has generally been supposed the most 
natural method. To conceive of a particle, however, requires 
a process of abstraction, since all our perceptions are related to 

extended bodies, so that the idea of the all that is in our con¬ 

sciousness at a given instant is perhaps as primitive an idea as 
* Thdorie des pfanom&nes jfalectroclynamiqueg, p. 9, 
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that of any individual thing. Hence there may be a mathematical 

method in which we proceed from the whole to the parts instead 

of from the parts to the whole. For example, Euclid, in his 

first book, conceives a line as traced out by a point, a surface 

as swept out by a line, and a solid as generated by a surface. 

But he also defines a surface as the boundary of a solid, a line 

as the edge of a surface, and a point as the extremity of a line. 

In like manner we may conceive the potential of a material 

system as a function found by a certain process of integration 

with respect to the masses of the bodies in the field, or we may 

suppose these masses themselves to have no other mathematical 

meaning than the volume-integrals of where is the 

potential. ^71 

In electrical investigations we may use formulae in which the 

quantities involved are the distances of certain bodies, and the 

electrifications or currents in these bodies, or we may use formulae 

which involve other quantities, each of which is continuous 

through all space. 

The mathematical process employed in the first method is in¬ 

tegration along lines, over surfaces, and throughout finite spaces, 

those employed in the second method are partial differential 

equations and integrations throughout all space. 

The method of Faraday seems to be intimately related to the 

second of these modes of treatment. He never considers bodies 

as existing with nothing between them but their distance, and 

acting on one another according to some function of that distance. 

He conceives all space as a field of force, the lines of force being 

in general curved, and those due to any body extending from it 

on all sides, their directions being modified by the presence of 

other bodies. He even speaks * of the lines of force belonging to 

a body as in some sense part of itself, so that in its action on 

distant bodies it cannot be said to act where it is not. This, 

however, is not a dominant idea with Faraday. I think he 

would rather have said that the field of space is full of lines 

of force, whose arrangement depends on that of the bodies in the 

field, and that the mechanical and electrical action on each body is 

determined by the lines which abut on it. 

* Exp. JRes., vol. ii. p. 293 ; vol. iii. p. 447. 

VOL. II. N 
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PHENOMENA OF MAGNETO-ELECTRIC INDUCTION*. 

530.] 1. Induction by Variation of the Primary Current. 

Let there be two conducting circuits, the Primary and the 

Secondary circuit. The primary circuit is connected with a 

voltaic battery by which the primary current may be produced, 

maintainrd, stopped, or reversed. The secondary circuit includes 

a galvanometer to indicate any currents which may be formed in 

it. This galvanometer is placed at such a distance from all parts 

of the primary circuit that the primary current has no sensible 

direct influence on its indications. 

Let part of the primary circuit consist of a straight wire, and 

part of the secondary circuit of a straight wire near and parallel 

to the first, the other parts of the circuits being at a greater 

distance from each other. 

It is found that at the instant of sending a current through 

the straight wire of the primary circuit the galvanometer of the 

secondary circuit indicates a current in the secondary straight 

wire in the opposite direction. This is called the induced current. 

If the primary current is maintained constant, the induced current 

soon disappears, and the primary current appears to produce no 

effect on the secondary circuit. If now the primary current is 

stopped, a secondary current is observed, which is in the mme 

direction as the primary current. Every variation of the 

primary current produces electromotive force in the secondary 

circuit. When the primary current increases, the electromotive 

force is in the opposite direction to the current. When it di¬ 

minishes, the electromotive force is in the same direction as the 

current. When the primary current is constant, there is no elec¬ 

tromotive force. 

These effects of induction are increased by bringing the two 

wires nearer together. They are also increased by forming 

them into two circular or spiral coils placed close together, 

and still more by placing an iron rod or a bundle of iron wires 

inside the coils. 

2. Induction by Motion of the Primary Circuit. 

We have seen that when the primary current is maintained 

constant and at rest the secondary current rapidly disappears. 

* Road Faraday’s Experimental Itesearcfies, Series i and ii. 
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Now let the primary current be maintained constant, but let 

the primary straight wire be made to approach the secondary 

straight wire. During the approach there will be a secondary 

current in the opposite direction to the primary. 

If the primary circuit be moved away from the secondary, 

there will be a secondary current in the same direction as the 

primary. 

3. Indwtion by Motion of the Secondary Circuit. 

If the secondary circuit be moved, the secondary current is 

opposite to the primary when the secondary wire is approaching 

the primary wire, and in the same direction when it is receding 

from it. 

In all cases the direction of the secondary current is such that 

the mechanical action between the two conductors is opposite to 

the direction of motion, being a repulsion when the wires are 

approaching, and an attraction when they are receding. This 

very important fact was established by Lenz *. 

4. Induction by the Relative Motion of a Magnet and the 

Sec o ndary Circu it. 

If we substitute for the primary circuit a magnetic shell, 

whose edge coincides with the circuit, whose strength is numer¬ 

ically equal to that of the current in the circuit, and whose 

austral face corresponds to the positive face of the circuit, then 

the phenomena produced by the relative motion of this shell and 

the secondary circ'uit are the same as those observed in the case 

of the primary circuit. 

531. ] The whole of these phenomena may be summed up in 

one law. When the number of lines of magnetic induction 

which pass through the secondary circuit in the positive direction 

is altered, an electromotive force acts round the circuit, which 

is measured by the rate of decrease of the magnetic induction 

through the circuit. 

532. ] For instance, let the rails of a railway be insulated from 

the earth, but connected at one terminus through a galvano¬ 

meter, and let the circuit be completed by the wheels and axle 

of a railway carriage at a distance x from tho terminus. 

Neglecting the height of the axle above the level of the rails, 

* Pogg., Ann. xxxi. p. 483 (1834). 
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the induction through the secondary circuit is due to the 

vertical component of the earth's magnetic force, which in 

northern latitudes is directed downwards. Hence, if b is the 

gauge of the railway, the horizontal area of the circuit is bx> 

and the surface-integral of the magnetic induction through it is 

Z bx, where Z is the vertical component of the magnetic force 

of the earth. Since Z is downwards, the lower face of the 

circuit is to be reckoned positive, and the positive direction of 

the circuit itself is north, east, south, west, that is, in the 

direction of the sun’s apparent diurnal course. 

Now let the carriage be set in motion, then x will vary, and 

there will be an electromotive force in the circuit whose value 

If x is increasing, that is, if the carriage is moving away from 

the terminus, this electromotive force is in the negative direction, 

or north, west, south, east. Hence the direction of this force 

through the axle is from right to left. If x were diminishing, 

the absolute direction of the force would bo reversed, but since 

the direction of the motion of the carriage is also reversed, the 

electromotive force on the axle is still from right to left, the 

observer in the carriage being always supposed to move face 

forwards. In southern latitudes, where the south end of the 

needle dips, the electromotive force on a moving body is from 

left to right. 

Hence we have the following rule for determining the electro¬ 

motive force on a wire moving through a field of magnetic force. 

Place, in imagination, your head and feet in the positions occupied 

by the ends of a compass-needle which point north and south 

respectively ; turn your face in the forward direction of motion, 

then the electromotive force due to the motion will be from left 

to right. 

533.] As these directional relations are important, let us take 

another illustration. Suppose a metal girdle laid round the 

earth at the equator, and a metal wire laid along the meridian 

of Greenwich from the equator to the north pole. 

Let a great quadrantal arch of metal be constructed, of which 

one extremity is pivoted on the north pole, while the other is 

carried round the equator, sliding on the great girdle of the 

earth, and following the sun in his daily course. There will 
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then be an electromotive force along the moving quadrant, 

acting from the pole towards the equator. 

The electromotive force will be the same whether we suppose 

the earth at rest and the quadrant moved from east to west, or 

whether we suppose the quadrant 

at rest and the earth turned from 

west to east. If we suppose the 

earth to rotate, the electromotive 

force will be the same whatever 

be the form of the part of the cir¬ 

cuit fixed in space of which one 

end touches one of the poles and 

the other the equator. The cur¬ 

rent in this part of the circuit is 

from the pole to the equator. 

The other part of the circuit, 

which is fixed with respect to the 

earth, may also be of any form, 

and either within or without the 

earth. In this part the current is from the equator to either 

pole. 

534.] The intensity of the electromotive force of magneto¬ 

electric induction is entirely independent of the nature of the 

substance of the conductor in which it acts, and also of the 

nature of the conductor which carries the inducing current. 

To shew this, Faraday * made a conductor of two wires of 

different metals insulated from one another by a silk covering, 

but twisted together, and soldered together at one end. The 

other ends of the wires were Connected with a galvanometer. 

In this way the wires were similarly situated with respect to 

the primary circuit, but if the electromotive force were stronger 

in the one wire than in the other it would produce a current 

which would be indicated by the galvanometer. He found, 

however, that such a combination may be exposed to the most 

powerful electromotive forces due to induction without the 

galvanometer being affected. He also found that whether the 

two branches of the compound conductor consisted of two 

metals, or of a metal and an electrolyte, the galvanometer was 

not affected f. 

N 

S 

Fig. 31. 

Exp. Res., 195. f lb., 200. 
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Hence the electromotive force on any conductor depends only 

on the form and the motion of that conductor, together with the 

strength, form, and motion of the electric currents in the field. 

535.] Another negative property of electromotive force is that 

it has of itself no tendency to cause the mechanical motion of 

any body, but only to cause a current of electricity within it. 

If it actually produces a current in the body, there will be 

mechanical action due to that current, but if we prevent the 

current from being formed, there will be no mechanical action on 

the body itself. If the body is electrified, howrever, the electro¬ 

motive force will move the body, as we have described in 

Electrostatics. 

536.] The experimental investigation of the laws of the induc¬ 

tion'of electric currents in fixed circuits may be conducted with 

considerable accuracy by methods in which the electromotive 

force, and therefore the current, in the galvanometer circuit is 

rendered zero. 

For instance, if we wish to shew that the induction of the coil 

A on the coil X is equal to that of B upon F, we place the first 

pair of coils A and X at a sufficient distance from the second 

pair B and Y. We then connect A and B with a voltaic battery, 

so that we can make the same primary current flow through A 

in the positive direction and then through B in the negative 

direction. We also connect X and F with a galvanometer, so 

that the secondary current, if it exists, shall flow in the same 

direction through X and F in series. 
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Then, if the induction of A on X is equal to that of B on F, 

the galvanometer will indicate no induction current when the 

battery circuit is closed or broken. 

The accuracy of this method increases with the strength of the 

primary current and the sensitiveness of the galvanometer to in¬ 

stantaneous currents, and the experiments are much more easily 

performed than those relating to electromagnetic attractions, 

where the conductor itself has to be delicately suspended. 

A very instructive series of well-devised experiments of this 

kind is described by Professor Felici of Pisa*. 

I shall only indicate briefly some of the laws which may be 

proved in this way. 

(1) The electromotive force of the induction of one circuit on 

another is independent of the area of the section of the conductors 

and of the material of which they are made f. 

For we can exchange any one of the circuits in the experiment 

for another of a different section and material, but of the same 

form, without altering the result. 

(2) The induction of the circuit A on the circuit X is equal to 

that of X upon A. 

For if we put A in the galvanometer circuit, and X in the bat¬ 

tery circuit, the equilibrium of electromotive force is not disturbed. 

(3) The induction is proportional to the inducing current. 

For if we have ascertained that the induction of A on X is 

equal to that of B on F, and also to that of C on Z, we may make 

the battery current first flow through A, and then divide itself in 

any proportion between B and C. Then if we connect A"reversed, 

F and Z direct, all in series, with the galvanometer, the electro¬ 

motive force in X will balance the sum of the electromotive forces 

in F and Z. 

(4) In pairs of circuits forming systems geometrically similar 

the induction is proportional to their linear dimensions. 

For if the three pairs of circuits above mentioned are all 

similar, but if the linear dimension of the first pair is the sum 

of the corresponding linear dimensions of the second and third 

pairs, then, if A, B, and C are connected in series with the 

* Annales de Chimie, xxxiv. p. 64 (3852), find 1Xuovo Ciwento, ix. p. 345 (1859). 
*f* {This statement is not necessarily strictly true if one or more of the materials is 

magnetic, for in this case the distribution of the lines of magnetic force are disturbed 
by tlie magnetism induced in the wires. J 
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battery, and if X reversed, Y and Z are in series with the gal¬ 

vanometer, there will be equilibrium. 

(5) The electromotive force produced in a coil of ?t windings 

by a current in a coil of m windings is proportional to the 

product m n. 

537.] For experiments of the kind we have been considering 

the galvanometer should be as sensitive as possible, and its needle 

as light as possible, so as to give a sensible indication of a very 

small transient current. The experiments on induction due to 

motion require the needle to have a somewhat longer period of 

vibration, so that there may be time to effect certain motions 

of the conductors while the needle is not far from its position 

of equilibrium. In the former experiments, the electromotive 

forces in the galvanometer circuit were in equilibrium during 

the whole time, so that no current passed through the galvano¬ 

meter coil. In those now to be described, the electromotive forces 

act first in one direction and then in the other, so as to produce 

in succession two currents in opposite directions through the 

galvanometer, and we have to show that the impulses on the 

galvanometer needle due to these successive currents are in certain 

cases equal and opposite. 

The theory of the application of the galvanometer to the 

measurement of transient currents will be considered more at 

length in Art. 748. At present it is sufficient for our purpose to 

observe that as long as the galvanometer needle is near its 

position of equilibrium the deflecting force of the current is 

proportional to the current itself, and if the whole time of action 

of the current is small compared with the period of vibration of 

the needle, the final velocity of the magnet will be proportional 

to the total quantity of electricity in the current. Hence, if two 

currents pass in rapid succession, conveying equal quantities of 

electricity in opposite directions, the needle will be left without 

any final velocity. 

Thus, to shew that the induction currents in the secondary 

circuit, due to the closing and the breaking of the primary circuit, 

are equal in total quantity but opposite in direction, we may 

arrange the primary circuit in connexion with the battery, so 

that by touching a key the current may be sent through the 

primary circuit, or by removing the finger the contact may be 

broken at pleasure. If the key is pressed down for some time, 
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the galvanometer in the secondary circuit indicates, at the time 

of making contact, a transient current in the opposite direction 

to the primary current. If contact be maintained, the induction 

current simply passes and disappears. If we now break contact, 

another transient current passes in the opposite direction through 

the secondary circuit, and the galvanometer needle receives an 

impulse in the opposite direction. 

But if we make contact only for an instant, and then break 

contact, the two induced currents pass through the galvanometer 

in such rapid succession that the needle, when acted on by the 

first current, has not time to move a sensible distance from its 

position of equilibrium before it is stopped by the second, and, on 

account of the exact equality between the quantities of these 

transient currents, the needle is stopped dead. 

If the needle is watched carefully, it appears to be jerked 

suddenly from one position of rest to another position of rest 

very near the first. 

In this way wre prove that the quantity of electricity in the 

induction current, when contact is broken, is exactly equal and 

opposite to that in the induction current when contact is made. 

538.] Another application of this method is the following, 

which is given by Felici in the second series of his Researches. 

It is always possible to find many different positions of the 

secondary coil B, such that the making or the breaking of contact 

in the primary coil A produces no induction current in JS. The 

positions of the two coils are in such cases said to be conjugate 

to each other. 

Let B1 and B2 be two of these positions. If the coil B be 

suddenly moved from the position Bx to the position J?2, the 

algebraical sum of the transient currents in the coil B is exactly 

zero, So that the galvanometer needle is left at rest when the 

motion of B is completed. 

This is true in whatever way the coil B is moved from Bx to 

B2, and also whether the current in the primary coil A be 

continued constant, or made to vary during the motion. 

Again, let B' be any other position of B not conjugate to A, 

so that the making or breaking of contact in A produces an 

induction current when B iB in the position B'. 

Let the contact be made when B is in the conjugate position 

JB1, there will be no induction current. Move B to B\ there 
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will b© an induction current due to the motion, but if B is 

moved rapidly to B\ and the primary contact then broken, the 

induction current due to breaking contact will exactly annul the 

effect of that due to the motion, so that the galvanometer needle 

will be left at rest. Hence the current due to the motion from a 

conjugate position to any other position is equal and opposite to 

the current due to breaking contact in the latter position. 

Since the effect of making contact is equal and opposite to that 

of breaking it, it follows that the effect of making contact when 

the coil B is in any position B' is equal to that of bringing the 

coil from any conjugate position B1 to Br while the current is 

flowing through A. 

If the change of the relative position of the coils is made by 

moving the primary circuit instead of the secondary, the result is 

found to be the same. 

539.] It follows from these experiments that the total induction 

current in B during the simultaneous motion of A from A} to A29 

and of B from B} to i?2, while the current in A changes from yx 

to y2, depends only on the initial state A19 BXi yv and the final 

state A2, B2, y2, and not at all on the nature of the intermediate 

states through which the system may pass. 

Hence the value of the total induction current must be of the 

form 

where F is a function of A, B, and y. 

With respect to the form of this function, we know, by Art. 

536, that when there is no motion, and therefore A1 = A2 and 

B\~ B2, the induction current is proportional to the primary 

current. Hence y enters simply as a factor, the other factor 

being a function of the form and position of the circuits A and B. 

We also know that the value of this function depends on the 

relative and not on the absolute positions of A and B, so that it 

must be capable of being expressed as a function of the distances 

of the different elements of which the circuits are composed, and 

of the angles which these elements make with each other. 

Let M be this function, then the total induction current may 

be written 
G{Miyi-M2y2}, 

where C is the conductivity of the secondary circuit, and M1, y, 

are the original, and Ms, y2 the final values of M and y. 
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These experiments, therefore, shew that the total current of 

induction depends on the change which takes place in a certain 

quantity, My, and that this change may arise either from 

variation of the primary current y, or from any motion of the 

primary or secondary circuit which alters M. 

540.] The conception of such a quantity, on the changes of 

which, and not on its. absolute magnitude, the induction current 

depends, occurred to Faraday at an early stage of his Researches *. 

He observed that the secondary circuit, when at rest in an electro¬ 

magnetic field which remains of constant intensity, does not 

shew any electrical effect, whereas, if the same state of the field 

had been suddenly produced, there would have been a current. 

Again, if the primary circuit is removed from the held, or the 

magnetic forces abolished, there is a current of the opposite kind. 

He therefore recognised in the secondary circuit, when in the 

electromagnetic field, a ‘peculiar electrical condition of matter/ 

to which he gave the name of the Electrotonic State. He after¬ 

wards found that he could dispense with this idea by means of 

considerations founded on the lines of magnetic force f, but even 

in his latest Researches J, he says, ‘ Again and again the idea of an 

electrotonic state § has been forced on my mind/ 

The whole history of this idea in the mind of Faraday, as 

shewn in his published Researches, is well worthy of study. By 

a course of experiments, guided by intense application of thought, 

but without the aid of mathematical calculations, he was led to 

recognise the existence of something which we now know to be a 

mathematical quantity, and which may even be called the funda¬ 

mental quantity in the theory of electromagnetism. But as he 

was led up to this conception by a purely experimental path, he 

ascribed to it a physical existence, and supposed it to be a 

peculiar condition of matter, though he was ready to abandon 

this theory as soon as he could explain the phenomena by any 

more familiar fmttns of thought. 

Other investigators were long afterwards led up to the same 

idea by a purely mathematical path, but, so far as I know, none 

of them recognised, in the refined mathematical idea of the 

potential of two circuits, Faraday’s bold hypothesis of an electro¬ 

tonic state. Those, therefore, who have approached this subject 

* 2£xp. Res., series i. 00. 
f lb., series ii, 242. 

t lb., 3269. 
$ lb., 60, 1114, 1661, 1729, 1733. 
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in the way pointed out by those eminent investigators who first 

reduced its laws to a mathematical form, have sometimes found 

it difficult to appreciate the scientific accuracy of the statements 

of laws which Faraday, in the first two series of his Researches 

has given with such wonderful completeness. 

The scientific value of Faraday s conception of an electrotonic 

state consists in its directing the mind to lay hold of a certain 

quantity, on the changes of' which the actual phenomena de¬ 

pend. Without a much greater degree of development than 

Faraday gave it, this conception does not easily lend itself to 

the explanation of the phenomena. We shall return to this 

subject again in Art. 584. 

541.] A method which, in Faraday’s hands, was far more 

powerful is that in which he makes use of those lines of mag¬ 

netic force which were alwrays in his mind’s eye when con¬ 

templating his magnets or electric currents, and the delineation 

of* which by moans of iron filings he rightly regarded * as a most 

valuable aid to the experimentalist. 

Faraday looked on these lines as expressing, not only by their 

direction that of the magnetic force, but by their number and 

concentration the intensity of that force, and in his later 7£e- 

searches f he shews how to conceive of unit lines of force. 1 

have explained in various parts of this treatise the relation 

between the properties which Faraday recognised in the lines of 

force and the mathematical conditions of eloctric and magnetic 

forces, and how Faraday’s notion of unit lines and of the number 

of lines -within certain limits may be made mathematically 

precise. See Arts. 82, 404, 490. 

In the first series of his Researches J he shews clearly how the 

direction of the current in a conducting circuit, part of which is 

moveable, depends on the mode in which the moving part cuts 

through the lines of magnetic force. 

In the second series § he shews how the phenomena produced 

by variation of the strength of a current or a magnet may be ex¬ 

plained, by supposing the system of lines of force to expand from 

or contract towards the wire or magnet as its power rises or falls. 

1 am not certain with what degree of clearness he then held 

the doctrine afterwards so distinctly laid down by him ||, that 

f lb., 3122. t lb., 114. 
H lb., 8082, 3087, 3113. 

* Evjh lies., 3284. 
$ lb., 238. 
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the moving conductor, as it cuts the lines of force, sums up the 

action due to an area or section of the lines of force. This, 

however, appears no new view of the case after the investigations 

of the second series * have been taken into account. 

The conception which Faraday had of the continuity of the 

lines of force precludes the possibility of their suddenly starting 

into existence in a place where there were none before. If, there¬ 

fore, the number of lines which pass through a conducting 

circuit is made to vary, it can only be by the circuit moving 

across the lines of force, or else by the lines of force moving 

across the circuit. In either case a current is generated in the 

circuit. 

The number of the lines of force which at any instant pasvs 

through the circuit is mathematically equivalent to Faraday s 

earlier conception of the electrotonic state of that circuit, and it 

is represented by the quantity My, 

It is only since the definitions of electromotive force. Arts. 69, 

274, and its measurement have been made more precise, that 

we can enunciate completely the true law of magneto-electric 

induction in the following terms :— 

The total electromotive force acting round a circuit at any 

instant is measured by the rate of decrease of the number of 

lines of magnetic force which pass through it. 

When integrated with respect to the time this statement 

becomes:— 

The time-integral of the total electromotive force acting round 

any circuit, together with the number of lines of magnetic force 

which pass through the circuit, is a constant quantity. 

Instead of speaking of the number of lines of magnetic force, 

we may speak of the magnetic induction through the circuit, 

or the surface-integral of magnetic induction extended over any 

surface bounded by the circuit. 

We shall return again to this method of Faraday. In the mean¬ 

time we must enumerate the theories of induction which are 

founded on other considerations. 

Lenz's Law. 

542.] In 1834, Lenzf enunciated the following remarkable 

relation between the phenomena of the mechanical action of 

* Exp. Res,, 217, Ac. + Pogg., Ann. xxxi. p. 483 (1834). 
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electric currents, as defined by Amp&re’s formula, and the in¬ 

duction of electric currents by the relative motion of con¬ 

ductors. An earlier attempt at a statement of such a rela¬ 

tion was given by Ritchie in the Philosophical Magazine for 

January of the same year, but the direction of the induced 

current was in every case stated wrongly. Lenz’s law is as 

follows:— 

If a constant current flows in the primary circuit A, and if, by 

the motion of A, or of the secondary circuit B, a current is 

induced in B, the direction of this induced current will be such 

that, by its electromagnetic action on Af it tends to oppose the 

relat ive motion of the circuits. 

On this law F. E. Neumann * founded his mathematical theory 

of induction, in which he established the mathematical laws of the 

induced currents due to the motion of the primary or secondary 

conductor. He shewed that the quantity M, which we have called 

the potential of the one circuit on the other, is the same as the 

electromagnetic potential of the one circuit on the other, which 

we have already investigated in connection with Ampere’s formula. 

We may regard F. E. Neumann, therefore, as having completed 

for the induction of currents the mathematical treatment which 

Ampere had applied to their mechanical action. 

543.] A step of still greater scientific importance was soon 

after made by Helmholtz in his Essay on the Conservation of 

Force f, and by Sir W. Thomson J, working somewhat later, but 

independently of Helmholtz. They shewed that the induction of 

electric currents discovered by Faraday could be mathematically 

deduced from the electromagnetic actions discovered by Orsted 

and Ampere by the application of the principle of the Conservation 

of Energy. 

Helmholtz takes the case of a conducting circuit of resistance 

.ft, in which an electromotive force A, arising from a voltaic or 

thermoelectric arrangement, acts. The current in the circuit at 

any instant is /. He supposes that a magnet is in motion in the 

neighbourhood of the circuit, and that its potential witli respect 

to the conductor is V, so that, during any small interval of time 

* Beilin AJcad1845 and 1847. 
f Read before the Physical Society of Berlin, July 28, 1847. Translated in 

Taylor’s ‘Scientific Memoirs,’ part ii. p. 114. 
t Trans. Brit. Ass., 1848, and Phil. Mag., Dec. 1851. See also his paper on 

‘Transient Electric Currents/ Phil, Mag., June 1853. 
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dt, the energy communicated to the magnet by the electromagnetic 

dV 
action is I — dt. 

dt 

The work done in generating heat in the circuit is, by Joule’s 

law, Art. 242, PRdt, and the work spent by the electromotive 

force A, in maintaining the current I during the time dt, is Aldt. 

Hence, since the total work done must be equal to the work spent, 

Aldt = PRdt + I~dt, 
dt 

whence we find the intensity of the current 

, dV 
A-m 

R 

Now the value of A may be what we please. Let, therefore, 

A = 0, and then l dV 

I = ~ rW' 
or, there will be a current due to the motion of the magnet, equal 

d V 
to that due to an electromotive force-• 

dt 
The whole induced current during the motion of the magnet 

from a place where its potential is 1 \ to a place -where its po¬ 

tential is K, is r \ rdV i 

and therefore the total current is independent of the velocity or 

the path of the magnet, and depends only on its initial and final 

positions. 

Helmholtz in his original investigation adopted a system of 

units founded on the measurement of the heat generated in the 

conductor by the current. Considering the unit of current as 

arbitrary, the unit of resistance is that of a conductor in which 

this unit current generates unit of heat in unit of time. The 

unit of electromotive force in this system is that required to 

produce the unit of current in the conductor of unit resistance. 

The adoption of this system of units necessitates the introduction 

into the equations of a quantity a, which is the mechanical 

equivalent of the unit of heat. As we invariably adopt either 

the electrostatic or the electromagnetic system of units, this factor 

does not occur in the equations here given. 

544.] Helmholtz also deduces the current of induction when a 
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conducting circuit and a circuit carrying a constant current are 

made to move relatively to one another*. 

Let iZj, i?2 be the resistances, T1, Z> the currents, Alt A2 the 

external electromotive forces, and V the potential of the one 

* {The proofs given in Arts. 543 and 544 are not satisfactory, as they neglect any 
variations which may occur in the currents and also any change which may occur in the 
Kinetic Energy due to the motion of the circuits. It is in fact as impossible to deduce 
the equations of induction of two circuits from the principle of the Conservation of 
Energy alone as it would be to deduce the equations of motion of a system with two 
degrees of freedom without using any principle beyond that of the Conservation of 

Energy. 
If we apply the principle of the Conservation of Energy to the case of two currents, 

we get one equation, which we may deduce as follows :—LetX, M, Abe the coefficient 
of self-induction of the first circuit, the coefficient of mutual induction of the two 
circuits and the self-induction of the second circuit respectively (Art. 578). Let Ta 
be the Kinetic Energy due to the currents round the circuits, and let the rest of the 
notation be the same as in Art. 544. Then (Art. 578) 

Te = i LI* + MIJ2 + i NI,\ 

,dT, ,dT'sr + dT'si __*/a 
dx 

dx, (i) 

where x is a coordinate of any type helping to fix the position of the circuit. 
Since Te is a homogeneous quadratic function of Jlf Ja, 

dTe 
2 Tt « 11 ^ 4- J3 ^ , 

hence 28T.= 8/,^* + + 

Subtracting (1) from (2), we get 

?T. „*T. ..dT., 

JT,. 

r 

! IlSdTt 
+ 7,8 

<11, 
-2^8, 

ax 

(2) 

(3) 

But—* is the force of type x acting on the system, hence, since we suppose no 

external force acts on the system, ' dx 
dx will be the increase in Kinetic Energy 

Tm due to the motion of the system, hence (3) gives, 

*(Te + rm) - a« 
dTe 

dl, / *dT> 
di., ■ w 

The work done by the batteries in a time dt is 

Z] dt-\- A2 12 d t. 

The heat produced in the same time is by Joule’s Law, 

*,/,*) 8 £. 
By the Conservation of Energy the work done by the batteries must equal the heat 

produced in the circuit plus the increase in the energy of the system, hence 

A, lldt + A2I2dt = (R1I2 + E2I2)dt + d(7\+Tm\ 
Substituting for $(T, + Tm) from (4) we get 

t- l . -.y d dTe ) i _ _ d dTe \ 

or 7, |(L71 + Jf/S)| + 7a j + =0. (5 

The equations of induction are the two quantities inside the brackets equated to 
zero, the principle of the Conservation of Energy however only shows that the left- 
hand side of (5) is zero, not that each bracket is separately zero. A rigid proof of the 
equations of induced currents is given in Art. 581.} 
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circuit on the other due to unit current in each, then we have, 

as before, „ ^ ^ dV 
AJ1 + A2I2 = I-W, + + hh-jjj- ■ 

If we suppose lx to be the primary current, and I2 so much less 

than I1, that it does not by its induction produce any sensible 

A 
alteration in J1, so that we may put Ix — , then 

a2-i1 
dV 

dt 

R* ’ 

a result which may be interpreted exactly as in the case of the 

magnet. 

If we suppose I2 to be the primary current, and Ix to be very 

much smaller than /2, we get for Jt, 

A = 
dt 

R, 
This shews that for equal currents the electromotive force of 

the first circuit on the second is equal to that of the second on 

the first, whatever be the forms of the circuits. 

Helmholtz does not in this memoir discuss the case of induc¬ 

tion due to the strengthening or weakening of the primary current, 

or the induction of a current on itself. Thomson * applied the 

same principle to the determination of the mechanical value of 

a current, and pointed out that when work is done by the mutual 

action of two constant currents, their mechanical action is iw- 

creased by the same amount, so that the battery has to supply 

double that amount of work, in addition to that required to main¬ 

tain the currents against the resistance of the circuits j\ 

545.] The introduction, by W. Weber, of a system of absolute 

units for the measurement of electrical quantities is one of the 

most important steps in the progress of the science. Having 

already, in conjunction with Gauss, placed the measurement of 

magnetic quantities in the first rank of methods of precision, 

Weber proceeded in his Electrodynamk Measurements not only 

to lay down sound principles for fixing the units to be employed, 

* Mechanical Theory of Electrolysis, Phil. Ma$., Dec. 1851. 
t Nichol’s Cyclopaedia of Physical Science, ed. 1860, Article * Magnetism, Dyna¬ 

mical Relations of/ and Reprint, § 571. 

VOL. II. 0 
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but to make determinations of particular electrical quantities 

in terms of these units, with a degree of accuracy previously 

unattempted. Both the electromagnetic and the electrostatic 

systems of units owe their development and practical applica¬ 

tion to these researches. 

Weber has also formed a general theory of electric action from 

which he deduces both electrostatic and electromagnetic force, 

and also the induction of electric currents. We shall consider 

this theory, with some of its more recent developments, in a 

separate chapter. See Art. 846. 



CHAPTER IV. 

ON THE INDUCTION OF A CURRENT ON ITSELF. 

546. ] Faraday has devoted the ninth series of his Researches 

to the investigation of a class of phenomena exhibited by the 

current in a wire which forms the coil of an electromagnet. 

Mr. Jenkin has observed that, although it is impossible to pro¬ 

duce a sensible shock by the direct action of a voltaic system 

consisting of only one pair of plates, yet, if the current is made 

to pass through the coil of an electromagnet, and if contact is 

then broken between the extremities of two wires held one in 

each hand, a smart shock will be felt. No such shock is felt on 

making contact. 

Faraday shewed that this and other phenomena, which he de¬ 

scribes, are due to the same inductive action which he had already 

observed the current to exert on neighbouring conductors. In 

this case, however, the inductive action is exerted on the same 

conductor which carries the current and it is so much the more 

powerful as the wire itself is nearer to the different elements of 

the current than any other wire can be. 

547. ] He observes,however*, that ‘the first thought that arises 

in the mind is that the electricity circulates with something like 

momentum or inertia in the wire.’ Indeed, when we consider 

one particular wire only, the phenomena are exactly analogous 

to those of a pipe full of water flowing in a continued stream. If 

while the stream is flowing we suddenly close the end of the pipe, 

the momentum of the water produces a sudden pressure, which is 

much greater than that due to the head of water, and may be 

sufficient to burst the pipe. 

If the water has the means of escaping through a narrow jet 

when the principal aperture is closed, it will be projected with a 

Ecp. Kes., 1077. 
0 2 
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velocity much greater than that due to the head of water, and 

if it can escape through a valve into a chamber, it will do so, 

even when the pressure in the chamber is greater than that due 

to the head of water. 

It is on this principle that the hydraulic ram is constructed, 

by which a small quantity of water may be raised to a great 

height by means of a large quantity flowing down from a much 

lower level. 

548. ] These effects of the inertia of the fluid in the tube depend 

solely on the quantity of fluid running through the tube, on its 

length, and on its section in different parts of its length. They 

do not depend on anything outside the tube, nor on the form into 

which the tube may be bent, provided its length remains the 

same. 

With a wire conveying a current this is not the case, for 

if a long wire is doubled on itself the effect is very small, if 

the two parts are separated from each other it is greater, if it 

is coiled up into a helix it is still greater, and greatest of all if, 

when so coiled, a piece of soft iron is placed inside the coil. 

Again, if a second wire is coiled up with the first, but insu¬ 

lated from it, then, if the second wire does not form a closed 

circuit, the phenomena are as before, but if the second wire forms 

a closed circuit, an induction current is formed in the second 

wire, and the effects of self-induction in the first wire are re¬ 

tarded. 

549. ] These results shew clearly that, if the phenomena are 

due to momentum, the momentum is certainly not that of the 

electricity in the wire, because the same wire, conveying the same 

current, exhibits effects which differ according to its form ; and 

even when its form remains the same, the presence of other bodies, 

such as a piece of iron or a closed metallic circuit, affects the 

result. 

550. ] It is difficult, however, for the mind which has once 

recognised the analogy between the phenomena of self-induction 

and those of the motion of material bodies, to abandon altogether 

the help of this analogy, or to admit that it is entirely superficial 

and misleading. The fundamental dynamical idea of matter, as 

capable by its motion of becoming the recipient of momentum 

and of energy, is so interwoven with our forms of thought that, 

whenever we catch a glimpse of it in any part of nature, we feel 
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that a path is before us leading, sooner or later, to the complete 

understanding of the subject. 

551. ] In the case of the electric current, we find that, when the 

electromotive force begins to act, it does not at once produce the 

full current, but that the current rises gradually. What is the 

electromotive force doing during the time that the opposing re¬ 

sistance is not able to balance it ? It is increasing the electric 

current. 

Now an ordinary force, acting on a body in the direction of its 

motion, increases its momentum, and communicates to it kinetic 

energy, or the power of doing work on account of its motion. 

In like manner the unresisted part of the electromotive force 

has been employed in increasing the electric current. Has the 

electric current, when thus produced, either momentum or kinetic 

energy ? 

We have already shewn that it has something very like mo¬ 

mentum, that it resists being suddenly stopped, and that it can 

exert, for a short time, a great electromotive force. 

But a conducting circuit in which a current has been set up 

has the power of doing work in virtue of this current, and this 

power cannot be said to be something very like energy, for it 

is really and truly energy. 

Thus, if the current be left to itself, it will continue to circulate 

till it is stopped by the resistance of the circuit. Before it is 

stopped, however, it will have generated a certain quantity of 

heat, and the amount of this heat in dynamical measure is equal 

to the energy originally existing in the current. 

Again, when the current is left to itself, it may be made to 

do mechanical work by moving magnets, and the inductive effect 

of these motions will, by Lenz’s law, stop the current sooner than 

the resistance of the circuit alone would have stopped it. In this 

way part of the energy of the current may be transformed into 

mechanical work instead of heat. 

552. ] It appears, therefore, that a system containing an electric 

current is a seat of energy of some kind ; and since we can form 

no conception of an electric current except as a kinetic pheno¬ 

menon*, its energy must be kinetic energy, that is to say, the 

energy which a moving body has in virtue of its motion. 

We have already shewn that the electricity in the wire cannot 

* Faraday, Exp. Res. 288. 
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be considered as the moving body in which we are to find this 

energy, for the energy of a moving body does not depend on 

anything external to itself, whereas the presence of other bodies 

near the current alters its energy. 

We are therefore led to enquire whether there may not be some 

motion going on in the space outside the wire, which is not oc¬ 

cupied by the electric current, but in which the electromagnetic 

effects of the current are manifested. 

I shall not at present enter on the reasons for looking in one 

place rather than another for such motions, or for regarding 

these motions as of one kind rather than another. 

What I propose now to do is to examine the consequences of 

the assumption that the phenomena of the electric current are 

those of a moving system, the motion being communicated from 

one part of the system to another by forces, the nature and laws 

of which we do not yet even attempt to define, because we can 

eliminate these forces from the equations of motion by the method 

given by Lagrange for any connected system. 

In the next five chapters of this treatise I propose to deduce 

the main structure of the theory of electricity from a dynamical 

hypothesis of this kind, instead of following the path which has 

led Weber and other investigators to many remarkable discoveries 

and experiments, and to conceptions, some of which are as beau¬ 

tiful as they are bold. I have chosen this method because I wish 

to shew that there are other ways of viewing the phenomena 

which appear to me more satisfactory, and at the same time are 

more consistent with the methods followed in the preceding parts 

of this book than those which proceed on the hypothesis of direct 

action at a distance. 



CHAPTER V. 

ON THE EQUATIONS OF MOTION OF A CONNECTED SYSTEM, 

553. ] In the fourth section of the second part of his Meranique 
Aimlytique, Lagrange has given a method of reducing the 
ordinary dynamical equations of the motion of the parts of a 
connected system to a number equal to that of the degrees of 
freedom of the system. 

The equations of motion of a connected system have been 
given in a different form by Hamilton, and have led to a great 
extension of the higher part of pure dynamics *. 

As we shall find it necessary, in our endeavours to bring 
electrical phenomena within the province of dynamics, to have 
our dynamical ideas in a state fit for direct application to 
physical questions, we shall devote this chapter to an exposition 
of these dynamical ideas from a physical point of view. 

554. ] The aim of Lagrange was to bring dynamics under the 
power of the calculus. He began by expressing the elementary 
dynamical relations in terms of the corresponding relations of 
pure algebraical quantities, and from the equations thus obtained 
he deduced his final equations by a purely algebraical process. 
Certain quantities (expressing the reactions between the parts of 
the system called into play by its physical connexions) appear in 
the equations of motion of the component parts of the system, 
and Lagrange’s investigation, as seen from a mathematical point 
of view, is a method of eliminating these quantities from the 
final equations. 

In following the steps of this elimination the mind is exer¬ 
cised in calculation, and should therefore be kept free from the 

* See Professor Cayley’s ‘ Report on Theoretical Dynamics,’ British A8sociationt 
1857; and Thomson and Tait’s Natural Philosophy. 
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intrusion of dynamical ideas. Our aim, on the other hand, is to 
cultivate our dynamical ideas. We therefore avail ourselves of 

the labours of the mathematicians, and retranslate their results 

from the language of the calculus into the language of dynamics, 
so that our words may call up the mental image, not of some 
algebraical process, but of some property of moving bodies. 

The language of dynamics has been considerably extended by 

those who have expounded in popular terms the doctrine of the 
Conservation of Energy, and it will be seen that much of the 

following statement is suggested by the investigation in Thomson 
and Tait’s Natural Philosophy, especially the method of begin¬ 

ning with the theory of impulsive forces. 
I have applied this method so as to avoid the explicit con¬ 

sideration of the motion of any part of the system except the 
coordinates or variables, on which the motion of the whole 
depends. It is doubtless important that the student should be 
able to trace the connexion of the motion of each part of the 

system with that of the variables, but it is by no means 
necessary to do this in the process of obtaining the final equa¬ 

tions, which are independent of the particular form of these 
connexions. 

The Variables. 

555.] The number of degrees of freedom of a system is the 

number of data which must be given in order completely to 

determine its position. Different forms may be given to these 
data, but their number depends on the nature of the system 

itself, and cannot be altered. 

To fix our ideas we may conceive the system connected by 
means of suitable mechanism with a number of moveable pieces, 

each capable of motion along a straight line, and of no other 

kind of motion. The imaginary mechanism which connects 
each of these pieces with the system must be conceived to be 

free from friction, destitute of inertia, and incapable of being 

strained by the action of the applied forces. The use of this 

mechanism is merely to assist the imagination in ascribing 

position, velocity, and momentum to what appear, in Lagrange’s 

investigation, as pure algebraical quantities. 

Let q denote the position of one of the moveable pieces as 

defined by its distance from a fixed point in its line of motion. 
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We shall distinguish the values of q corresponding to the dif¬ 

ferent pieces by the suffixes lt 2, &c. When we are dealing with 
a set of quantities belonging to one piece only we may omit the 
suffix. 

When the values of all the variables (q) are given, the position 

of each of the moveable pieces is known, and, in virtue of the 

imaginary mechanism, the configuration of the entire system is 
determined. 

The Velocities. 

556.] During the motion of the system the configuration 
changes in some definite manner, and since the configuration at 
each instant is fully defined by the values of the variables (q), 

the velocity of every part of the system, as well as its configura¬ 

tion, will be completely defined if we know the values of the 
variables (</), together with their velocities 

or, according to Newton's notation, j). 

The Forces. 

557.] By a proper regulation of the motion of the variables, 
any motion of the system, consistent with the nature of the con¬ 
nexions, may be produced. In order to produce this motion by 

moving the variable pieces, forces must be applied to these pieces. 
We shall denote the force whioh must be applied to any 

variable qr by Fr. The system of forces (F) is mechanically 

equivalent (in virtue of the connexions of the system) to the 
system of forces, whatever it may be, which really produces the 
motion. 

The Momenta. 

558.] When a body moves in such a way that its configura¬ 

tion, with respect to the force which acts on it, remains always 

the same, (as, for instance, in the case of a force acting on a 
single particle in the line of its motion,) the moving force is 

measured by the rate of increase of the momentum. If F is 

the moving force, and p the momentum, 

F- dC. 
dt 

whence P -/i Fdt. 

The time-integral of a force is called the Impulse of the force; 
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so that we may assert that the momentum is the impulse of the 

force which would bring the body from a state of rest into the 

given state of motion. 
In the case of a connected system in motion, the configuration 

is continually changing at a rate depending on the velocities (q\ 

so that we can no longer assume that the momentum is the 

time-integral of the force which acts on it. 

But the increment hq of any variable cannot be greater than 
q ht, where ht is the time during which the increment takes 

place, and q is the greatest value of the velocity during that 

time. In the case of a system moving from rest under the action 

of forces always in the same direction, this is evidently the final 

velocity. 

If the final velocity and configuration of the system are given, 

we may conceive the velocity to be communicated to the system 

in a very small time ht, the original configuration differing from 

the final configuration by quantities hqu hq2, &c., which are less 
than q^t, q2ht, &c., respectively. 

The smaller we suppose the increment of time ht, the greater 

must be the impressed forces, but the time-integral, or impulse, 

of each force will remain finite. The limiting value of the im¬ 

pulse, when the time is diminished and ultimately vanishes, is de¬ 

fined as the instantaneous impulse, and the momentum p, corre¬ 

sponding to any variable q} is defined as the impulse corresponding 

to that variable, when the system is brought instantaneously 

from a state of rest into the given state of motion. 

This conception, that the momenta are capable of being 
produced by instantaneous impulses on the system at rest, is 

introduced only as a method of defining the magnitude of the 

momenta, for the momenta of the system depend only on the 

instantaneous state of motion of the system, and not on the 
process by which that state was produced. 

In a connected system the momentum corresponding to any 

variable is in general a linear function of the velocities of all the 

variables, instead of being, as in the dynamics of a particle, 

simply proportional to the velocity. 

The impulses required to change the velocities of the system 

suddenly from qx, q2) &c. to j/, q2i &c. are evidently equal to 

Pi—Pn Pz—Pz* the changes of momentum of the several 
variables. 
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Work done by a Small Impulse. 

559.] The work done by the force F1 during the impulse is 

the space-integral of the force, or 

W=fF,dq„ 

~fFi qxdt. 

If qf is the greatest and q" the ]east value of the velocity qx 

during the action of the force, W must be less than 

and greater than 

<h JFor (P1-P1), 

qfjFcU or 

If we now suppose the im Fdt to be diminished without 

limit, the values of q( and q" will approach and ultimately 

coincide with that of q19 and we may write p{ —px = hpx, so 

that the work done is ultimately 

or, the work done by a very small impulse is ultimately the 

product of the impulse and the velocity. 

Increment of the Kinetic Energy. 

560.] When work is done in setting a conservative system in 

motion, energy is communicated to it, and the system becomes 
capable of doing an equal amount of work against resistances 

before it is reduced to rest. 

The energy which a system possesses in virtue of its motion 

is called its Kinetic Energy, and is communicated to it in the 

form of the,work done by the forces which set it in motion. 

If T be the kinetic energy of the system, and if it becomes 
T+bT, on account of the action of an infinitesimal impulse 
whose components are bpx, bp2, &c., the increment bT must be 

the sum of the quantities of work done by the components of the 
impulse, or in symbols, 

87’= qybpi + ii 8/>2 + &c.( 
= 2 (qbp). (1) 

The instantaneous state of the system is completely defined if 
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the variables and the momenta are given. Hence the kinetic 

energy, which depends on the instantaneous state of the system, 

can be expressed in terms of the variables (q), and the momenta 

(p). This is the mode of expressing T introduced by Hamilton. 

When T is expressed in this way we shall distinguish it by the 
suffix p, thus, Tp. 

The complete variation of Tp is 

\ _.dT„ , 

The last term may be written 

. *“>• 
which diminishes with bty and ultimately vanishes with it when 

the impulse becomes instantaneous. 

Hence, equating the coefficients of bp in equations (l) and (2), 

we obtain d T 

4- (3) 
or, the velocity corresponding to the variable q in the differ¬ 

ential coefficient of Tp with respect to the corresponding 
momentum p. 

We have arrived at this result by the consideration of im¬ 

pulsive forces. By this method we have avoided the considera¬ 

tion of the change of configuration during the action of the 

forces. But the instantaneous state of the system is in all 

respects the same, whether the system was brought from a state 

of rest to the given state of motion by the transient application 

of impulsive forces, or whether it arrived at that state in any 
manner, however gradual. 

In other words, the variables, and the corresponding velocities 

and momenta, depend on the actual state of motion of the system 

at the given instant, and not on its previous history. 

Hence, the equation (3) is equally valid, whether the state of 

motion of the system is supposed due to impulsive forces, or to 

forces acting in any manner whatever. 

We may now therefore dsrniss the consideration of impulsive 

forces, together with the limitations imposed on their time of 

action, and on the changes of configuration during their action. 
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Hamilton'8 Equations of Motion. 

561.] We have already shewn that 

dTt 

dp *=?■ (4) 

Let the system move in any arbitrary way, subject to the 

conditions imposed by its connexions, then the variations of 

p and q are 1 

bp= ftU, hq = qht. (5) 

„ dT dp . 
H“00 15f^=-SU61' 

__ dp 

dt 
bq, (6) 

and the complete variation of Tv is 

f8») dp 

dp 

dt * dq (7) 

But the increment of the kinetic energy arises from the work 

done by the impressed forces, or 

bTp=Z(Fbq). ' (8) 

In these two expressions the variations bq are all independent 

of each other, so that we are entitled to equate the coefficients 

of each of them in the two expressions (7) and (8). We thus 

obtain dpr . dTv 

dq/ F' = tt + (9) 

where the momentum pr and the force Fr belong to the vari¬ 

able q*. 
There are as many equations of this form as there are 

variables. These equations were given by Hamilton. They 

shew that the force corresponding to any variable is the sum 

of two parts. The first part is the rate of increase of the 

momentum of that variable with respect to the time. The 

second part is the rate of increase of the kinetic energy per unit 

of increment of the variable, the other variables and all the 

momenta being constant. 

* {This proof does not Beem conclusive as 5g is assumed to be equal to ([Si, that ia 

to ? St, so that all we can legitimately deduce from (7) and (8) is 

~ i \ dt dqr V iipr $ 
: 0. 
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The Kinetic Energy expressed in Terms of the Momenta and 

Velocities. 

562.] Let jOj, p2, &c. be the momenta, and qlt q,, &c. the 

velocities at a given instant, and let p^ p2, &c., q2, &c- 

another system of momenta and velocities, such that 

Pi = np1, qx = nqx, &c. (10) 

It is manifest that the systems p, q will be consistent with 

each other if the systems p, q are so. 

Now let n vary by 5 n. The work done by the force Fx is 

= M\nhn. (U) 

Let n increase from 0 to 1, then the system is brought from 

a state of rest into the state of motion (q, p)y and the whole work 

expended in producing this motion is 

(o1p1^q2p2-\‘&c.)j ndn, (12) 

But 
/' J 0 

ndn — \, 

and the work spent in producing the motion is equivalent to the 

kinetic energy. Hence 

Tpt'i “ i "hi>2?2'b^c*)> (13) 

where TPi denotes the kinetic energy expressed in terms of the 

momenta and velocities. The variables qlt q2i &c. do not enter 

into this expression. 

The kinetic energy is therefore half the sum of the products of 

the momenta into their corresponding velocities. 

When the kinetic energy is expressed in this way we shall 

denote it by the symbol T^r It is a function of the momenta 

and velocities only, and does not involve the variables them¬ 

selves. 

563.] There is a third method of expressing the kinetic energy, 

which is generally, indeed, regarded as the fundamental one. 

By solving the equations (3) we may express the momenta in 

terms of the velocities, and then, introducing these values in (13), 

we shall have an expression for T involving only the velocities 

and the variables. When T is expressed in this form we shall 

indicate it by the symbol T4. This is the form in which the 

kinetic energy is expressed in the equations of Lagrange. 
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564.] It. is manifest that, since Tp, T(l, and TP>1 are three 

different expressions for the same thing, 

Tp + T,-2Tp, = 0, 
or Tp + Tq &c. = 0. (14) 

Hence, if all the quantities />, q, and q vary, 

(~f-q1)bPl + (^-g2)bPl + &c. 

+ (dT»+dTj 
[ dq 1 + dqi 

,<1T, iT, 
(15) 

The variations hj) are not independent of the variations hq 

and hq, so that we cannot at once assert that the coefficient 

of each variation in this equation is zero. But we know, from 

equations (3), that 
d T 

= (16) 

so that the terms involving the variations hp vanish of them¬ 

selves. 

The remaining variations hq and hq are now all independent, 

so that we find, by equating to zero the coefficients of hq{, &c., 

dT dT 

»=&• <i7> 
or, the components of momentum are the differential, coefficients 
of Ty with respect to the corresponding velocities. 

Again, by equating to zero the coefficients of hq11 &c., 

dTp dT, , v 

d(h d(h 
or, the differential coefficient of the kinetic energy with respect to 
any variable r/3 is equal in magnitude but opposite in sign when 

T is expressed as a function of the velocities instead of as a 

function of the momenta. 

In virtue of equation (18) we may write the equation of 

motion (9), 

or 

p _dPi d^J 
1 dt dql 

F = ddf> 
1 dt dqx 

dTj 

d<h 

(19) 

(20) 

which is the form in which the equations of motion were given 

by Lagrange. 
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565.] In the preceding investigation we have avoided the con¬ 

sideration of the form of the function which expresses the 
kinetic energy in terms either of the velocities or of the 

momenta. The only explicit form which we have assigned to 

lfcw Tp4=i(plq1+j->2q.2 + &c.), (21) 

in which it is expressed as half the sum of the products of the 

momenta each into its corresponding velocity. 

We may express the velocities in terms of the differential 

coefficients of Tp with respect to the momenta, as in equation (3), 

™ v / dTn dT„ n \ ,/ dTp 
dpx dpt 

+ &c.) 

This shews that Tp is a homogeneous function of the second 

degree of the momenta px> p2, &c. 

We may also express the momenta in terms of Tand we 
find irn jrji 

which shews that T^ is a homogeneous function of the second 

degree with respect to the velocities qx, &c. 

If we write 
d2T<} d2Tj 

Pn for -j—L Py> for —, &c. 
11 dqf dqxdq> Pn for -jji, 

d2T 

Qu {ov~dj^ 
Q12for ^ p-, &c.; 
^12 — d]h dp> — ’ 

then, since T\ and Tp are functions of the second degree of 

q and p respectively, both the P’s and the Q’s will be functions 

of the variables q only, and independent of the velocities and 

the momenta. We thus obtain the expressions for I7, 

2^ = ^Jl^]2 + 2^12?1?2+ (24) 

2Tp = Qnlh2 + 2 Qnpx pt + &c. (25) 

The momenta are expressed in terms of the velocities by the 

linear equations ^ = pn^ + P12j2 + &c, (26) 

and the velocities are expressed in terms of the momenta by the 

linear equations ^ _ QuPi + Qu v% + &c. (27) 

In treatises on the dynamics of a rigid body, the coefficients 

corresponding to Pn, in which the suffixes are the same, are 

called Moments of Inertia, and those corresponding to P12, in 

which the suffixes are different, are called Products of Inertia. 
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We may extend these names to the more general problem which 

is now before us, in which these quantities are not, as in the 

case of a rigid body, absolute constants, but are functions of 

the variables qv q2, &c. 

In like manner we may call the coefficients of the form Qn 

Moments of Mobility, and those of the form Qvl Products of 

Mobility. It is not often, however, that we shall have occasion 

to speak of the coefficients of mobility. 

566.] The kinetic energy of the system is a quantity essen¬ 

tially positive or zero. Hence, whether it be expressed in terms 

of the velocities, or in terms of the momenta, the coefficients 

must be such that no real values of the variables can make T 
negative. 

There are thus a set of necessary conditions which the values 

of the coefficients P must satisfy. These conditions are as 

follows: 

The quantities Pn, P12, &c. must all be positive. 

Then—1 determinants formed in succession from the deter¬ 

minant 

4. 4 ^13 >* •• -4 

*^12* 4. 4,- -4 

4, 4> P -4 

4 4. P -viw r * ■ ...4 
by the omission of terms with suffix 1, then of terms with either 

1 or 2 in their suffix, and so on, must all be positive. 

The number of conditions for n variables is therefore 2 n— 1. 

The coefficients Q are subject to conditions of the same kind. 

567.] In this outline of the fundamental principles of the 

dynamics of a connected system, we have kept out of view the 

mechanism by which the parts of the system are connected. We 

have not even written down a set of equations to indicate how 

the motion of any part of the system depends on the variation 

of the variables. We have confined our attention to the variables, 

their velocities and momenta, and the forces which act on the 

pieces representing the variables. Our only assumptions are, 

that the connexions of the system are such that the time is not 

explicitly contained in the equations of condition, and that 

the principle of the conservation of energy is applicable to 

the system. 

VOL II. P 
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Such a description of the methods of pure dynamics is not un¬ 

necessary, because Lagrange and most of his followers, to whom 

we are indebted for these methods, have in general confined them¬ 

selves to a demonstration of them, and, in order to devote their 

attention to the symbols before them, they have endeavoured to 

banish all ideas except those of pure quantity, so as not only to 

dispense with diagrams, but even to get rid of the ideas of velocity, 

momentum, and energy, after they have been once for all sup¬ 

planted by symbols in the original equations. In order to be 

able to refer to the results of this analysis in ordinary dynamical 

language, we have endeavoured to retranslate the principal equa¬ 

tions of the method into language which may be intelligible with¬ 

out the use of symbols. 

As the development of the ideas and methods of pure mathe¬ 

matics has rendered it possible, by forming a mathematical theory 

of dynamics, to bring to light many truths which could not have 

been discovered without mathematical training, so. if we are to 

form dynamical theories of other sciences, we must have our 

minds imbued with these dynamical truths as well as with 

mathematical methods. 

In forming the ideas and words relating to any science, which, 

like electricity, deals with forces and their effects, we must keep 

constantly in mind the ideas appropriate to the fundamental 

science of dynamics, so that we may, during the first develop¬ 

ment of the science, avoid inconsistency with what is already 

established, and also that when our views become clearer, the 

language we have adopted may be a help to us and not a 

hindrance. 



CHAPTER VI. 

DYNAMICAL THEORY OF ELECTROMAGNETISM. 

568. ] We have shewn, in Art. 552, that, when an electric 

current exists in a conducting circuit, it has a capacity for doing 

a certain amount of mechanical work, and this independently of 

any external electromotive force maintaining the current. Now 

capacity for performing work is nothing else than energy, in 

whatever way it arises, and all energy is the same in kind, how¬ 

ever it may differ in form. The energy of an electric current is 

either of that form which consists in the actual motion of matter, 

or of that which consists in the capacity for being set in motion, 

arising from forces acting between bodies placed in certain posi¬ 

tions relative to each other. 

The first kind of energy, that of motion, is called Kinetic energy, 

and when once understood it appears so fundamental a fact of 

nature that we can hardly conceive the possibility of resolving 

it into anything else. The second kind of energy, that depending 

on position, is called Potential energy, and is due to the action 

of what we call forces, that is to say, tendencies towards change 

of relative position. With respect to these forces, though we may 

accept their existence as a demonstrated fact, yet we always feel 

that every explanation of the mechanism by which bodies are set 

in motion forms a real addition to our knowledge. 

569. ] The electric current cannot be conceived except as a 

kinetic phenomenon. Even Faraday, who constantly endeavoured 

to emancipate his mind from the influence of those suggestions 

which the words ‘ electric current' and ‘ electric fluid ’ are too apt 

to carry with them, speaks of the electric current as ‘ something 

progressive, and not a mere arrangement 

* Exp, Res., 283. 
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The effects of the current, such as electrolysis, and the transfer 
of electrification from one body to another, are all progressive 

actions which require time for their accomplishment, and are 
therefore of the nature of motions. 

As to the velocity of the current, we have shewn that we know 
nothing about it, it may be the tenth of an inch in an hour, or 

a hundred thousand miles in a second*. So far are we from 

knowing its absolute value in any case, that we do not even 

know whether what we call the positive direction is the actual 
direction of the motion or the reverse. 

But all that we assume here is that the electric current involves 

motion of some kind. That which is the cause of electric currents 
has been called Electromotive Force. This name has long been 

used with great advantage, and has never led to any inconsist¬ 

ency in the language of science. Electromotive force is always 
to be understood to act on electricity only, not on the bodies in 
which the electricity resides. It is never to be confounded with 

ordinary mechanical force, which acts on bodies only, not on the 

electricity in them. If we ever come to know the formal rela¬ 

tion between electricity and ordinary matter, we shall probably 

also know the relation between electromotive force and ordinary 
force. 

570.] When ordinary force acts on a body, and when the body 

yields to the force, the work done by the force is measured by 

the product of the force into the amount by which the body 

yields. Thus, in the case of water forced through a pipe, the 

work done at any section is measured by the fluid pressure at 

the section multiplied into the quantity of water which crosses 
the section. 

In the same way the work done by an electromotive force is 

measured by the product of the electromotive force into the 
quantity of electricity which crosses a section of the conductor 
under the action of the electromotive force. 

The work done by an electromotive force is of exactly the 
same kind as the work done by an ordinary force, and both are 
measured by the same standards or units. 

Part of the work done by an electromotive force acting on a 

conducting circuit is spent in overcoming the resistance of the 

circuit, and this part of the work is thereby converted into heat. 

* Exp. Res., 1648. 
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Another part of the work is spent in producing the electromag¬ 

netic phenomena observed by Ampere, in which conductors are 

made to move by electromagnetic forces. The rest of the work 
is spent in increasing the kinetic energy of the current, and the 

effects of this part of the action are shewn in the phenomena of 

the induction of currents observed by Faraday. 
We therefore know enough about electric currents to recognise, 

in a system of. material conductors carrying currents, a dynamical 

system which is the seat of energy, part of which may be kinetic 
and part potential. 

The nature of the connexions of the parts of this system is 
unknown to us, but as we have dynamical methods of investiga¬ 

tion which do not require a knowledge of the mechanism of the 

system, we shall apply them to this caso. 

We shall first examine the consequences of assuming the most 
general form for the function which expresses the kinetic energy 

of the system. 
571.] Let the system consist of a number of conducting circuits, 

the form and position of which are determined by the values of 

a system of variables &c., the number of which is equal 

to the number of degrees of freedom of the system. 

If the whole kinetic energy of the system were that due to the 

motion of these conductors, it would be expressed in the form 

T = \ (xlocv)x* + &c. 4-(#ia2) + 

where the symbols &c. denote the quantities which we 

have called moments of inertia, and (xt x2), &c. denote the pro¬ 

ducts of inertia. 

If X' is the impressed force, tending to increase the coordinate 

x, which is required to produce the actual motion, then, by 

Lagrange’s equation, d dT_dT_ 

citdx dx ~~ 

When T denotes the energy due to the visible motion only, we 

shall indicate it by the suffix w, thus, Tm. 

But in a system of conductors carrying electric currents, part 

of the kinetic energy is due to the existence of these currents. 

Let the motion of the electricity, and of anything whose motion 

is governed by that of the electricity, be determined by another 

set of coordinates y^y^ &c., then T will be a homogeneous func¬ 

tion of squares and products of all the velocities of the two sets 



214 ELECTROKINETICS. [572. 

of coordinates. We may therefore divide T into three portions, 

in the first of which, Tm> the velocities of the coordinates x only 
occur, while in the second, Te> the velocities of the coordinates 
y only occur, and in the third, Tme, each term contains the pro¬ 

duct of the velocities of two coordinates of which one is an x 

and the other a y. 

We have therefore T = T +T ±T . 

where Tm~\ (xxxj.) xx2 + &c.-f (xxx2)xxx2 + &c., 

= 4 (Vi yi)vi + &c*+(2/1 y^)hy%+&c,# 
A»e = {Xl 2/l) ^1^1 + &C* 

572.] In the general dynamical theory, the coefficients of 
every term may be functions of all the coordinates, both x and 

y. In the case of electric currents, however, it is easy to see 

that the coordinates of the class y do not enter into the co¬ 
efficients. 

For, if all the electric currents are maintained constant, and 

the conductors at rest, the whole state of the field will remain 
constant. But in this case the coordinates y are variable, though 

the velocities y are constant. Hence the coordinates y cannot 

enter into the expression for T7, or into any other expression of 

what actually takes place. 

Besides this, in virtue of the equation of continuity, if the 

conductors are of the nature of linear circuits, only one variable 
is required to express the strength of the current in each 

conductor. Let the velocities yvy2, &c. represent the strengths 
of the currents in the several conductors. 

All this would be true, if, instead of electric currents, we had 

currents of an incompressible fluid running in flexible tubes. 

In this case the velocities of these currents would enter into the 
expression for jP, but the coefficients would depend only on the 

variables x, which determine the form and position of the tubes. 

In the case of the fluid, the motion of the fluid in one tube 

does not directly affect that of any other tube, or of the fluid in 

it. Hence, in the value of T6, only the squares of the velocities 

y% and not their products, occur, and in Tme any velocity y is 

associated only with those velocities of the form x which belong 

to its own tube. 

In the case of electrical currents we know that this restriction 

does not hold, for the currents in different circuits act on each 
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other. Hence we must admit the existence of terms involving 

products of the form and this involves the existence of 
something in motion, whose motion depends on the strength of 
both electric currents y, and y2. This moving matter, whatever 

it is, is not confined to the interior of the conductors carrying the 

two currents, but probably extends throughout the whole space 
surrounding them. 

573.] Let us next consider the form which Lagrange’s equa¬ 

tions of motion assume in this case. Let X' be the impressed 

force corresponding to the coordinate x, one of those which 

determine the form and position of the conducting circuits. This 

is a force in the ordinary sense, a tendency towards change of 
position. It is given by the equation 

, _ d dT __ dT 

dt dx dx 

We may consider this force as the sum of three parts, corre¬ 

sponding to the three parts into which we divided the kinetic 

energy of the system, and we may distinguish them by the same 

suffixes. Thus X' = X'm + X\ + X'me. 

The part X'm is that which depends on ordinary dynamical 
considerations, and we need not attend to it. 

Since Te does not contain x, the first term of the expression for 

X\ is zero, and its value is reduced to 

X' dL 
dx 

This is the expression for the mechanical force which must be 

applied to a conductor to balance the electromagnetic force, and 

it asserts that it is measured by the rate of diminution of the 

purely electrokinetic energy due to the variation of the co¬ 

ordinate x. The electromagnetic force, Xe) which brings this 

external mechanical force into play, is equal and opposite to 

X\, and is therefore measured by the rate of increase of the 
electrokinetic energy corresponding to an increase of the co¬ 

ordinate x. The value of Xe, since it depends on squares and 

products of the currents, remains the same if we reverse the 

directions of all the currents. 

The third part of X' is 

X' = d dT™ dT™ 

™ dt <Lx dx 
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The quantity Tme contains only products of the form xy, so that 
dT 

is a linear function of the strengths of the currentsy. The 

first term, therefore, depends on the rate of variation of the 
strengths of the currents, and indicates a mechanical force on 

the conductor, which is zero when the currents are constant, and 
which is positive or negative according as the currents are in¬ 
creasing or decreasing in strength. 

The second term depends, not on the variation of the currents, 
but on their actual strengths. As it is a linear function with 
respect to these currents, it changes sign when the currents 
change sign. Since every term involves a velocity x, it is zero 
when the conductors are at rest. There are also terms arising 

dT 
from the time variations of the coefficients of y in ——: these 

remarks apply also to them. 

We may therefore investigate these terms separately. If the 

conductors are at rest, we have only the first term to deal with. 
If the currents are constant, we have only the second. 

574.] As it is of great importance to determine whether any 
part of the kinetic energy is of the form T^, consisting of pro¬ 
ducts of ordinary velocities and strengths of electric currents, it 
is desirable that experiments should be made on this subject with 

great care. 
The determination of the forces acting on bodies in rapid 

motion is difficult. Let us therefore attend to the first term, 
which depends on the variation of the strength of the current. 

If any part of the kinetic energy depends on the product of 
an ordinary velocity and the strength of a current, it will 

probably be most easily observed when the velocity and the 
current are in the same or in opposite directions. We therefore 
take a circular coil of a great many windings, and suspend it by 

a fine vertical wire, so that its windings are horizontal, and the 

coil is capable of rotating about a vertical axis, either in the 
same direction as the current in the coil, or in the opposite 

direction. 

We shall suppose the current to be conveyed into the coil by 
means of the suspending wire, and, after passing round the 

windings, to complete its circuit by passing downwards through 

a wire in the same line with the suspending wire and dipping 
into a cup of mercury. 
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Since the action of the horizontal component of terrestrial 

magnetism would tend to turn this coil round a horizontal axis 

when the current flows through it, we shall suppose that the 
horizontal component of terrestrial magnetism 

is exactly neutralized by means of fixed 

magnets, or that the experiment is made at 

the magnetic pole. A vertical mirror is 

attached to the coil to detect any motion in 
azimuth. 

Now let a current be made to pass through 

the coil in the direction N.E.S.W. If elec¬ 

tricity were a fluid like water, flowing along 
the wire, then, at the moment of starting 

the current, and as long as its velocity is 

increasing, a force would require to be supplied 
to produce the angular momentum of the fluid 

in passing round the coil, and as this must be 

supplied by the elasticity of the suspending 
wire, the coil would at first rotate in the 

apposite direction or W.S.E.N., and this 

would be detected by means of the mirror. 

On stopping the current there would be another 

movement of the mirror, this time in the same direction as that 
of the current. 

No phenomenon of this kind has yet been observed. Such an 

action, if it existed, might be easily distinguished from the 

already known actions of the current by the following pecu¬ 
liarities. 

(1) It would occur only when the strength of the current 

varies, as when contact is made or broken, and not when the 

current is constant. 

All the' known mechanical actions of the current depend on 

the strength of the currents, and not on the rate of variation. 
The electromotive action in the case of induced currents cannot 

be confounded with this electromagnetic action. 
(2) The direction of this action would be reversed when that 

of all the currents in the field is reversed. 

All the known mechanical actions of the current remain the 

same when all the currents are reversed, since they depend on 

squares and products of these currents. 

u 
Fig. 33. 
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If any action of this kind were discovered, we should be able 

to regard one of the so-called kinds of electricity, either the 

positive or the negative kind, as a real substance, and we should 
be able to describe the electric current as a true motion of this 
substance in a particular direction. In fact, if eleotrical motions 

were in any way comparable with tho motions of ordinary 
matter, terms of the form Tme would exist, and their existence 

would be manifested by the mechanical force Xm6. 
According to Fechner’s hypothesis, that an electric current 

consists of two equal currents of positive and negative elec¬ 

tricity, flowing in opposite directions through the same con¬ 

ductor, the terms of the second class Tme would vanish, each 

term belonging to the positive current being accompanied by an 

equal term of opposite sign belonging to the negative current, 

and the phenomena depending on these terms would have no 

existence. 

It appears to me, however, that while we derive great ad¬ 
vantage from the recognition of the many analogies between the 

electric current and a current of material fluid, we must carefully 
avoid making any assumption not warranted by experimental 

evidence, and that there is, as yet, no experimental evidence to 

shew whether the electric currenjt is really a current of a material 

substance, or a double current, or whether its velocity is great or 

small as measured in feet per second. 

A knowledge of these things would amount to at least the 

beginnings of a complete dynamical theory of electricity, in 

which we should regard electrical action, not, as in this treatise, 

as a phenomenon due to an unknown cause, subject only to the 

general laws of dynamics, but as the result of known motions of 

known portions of matter, in which not only the total effects and 

final results, but the whole intermediate mechanism and details of 

the motion, are taken as the objects of study. 

575.] The experimental investigation of the second term of 
(IT 

namely is more difficult, as it involves the observation 

of the effect of forces on a body in rapid motion. 

The apparatus shewn in Fig. 34, which I had constructed in 

1861, is intended to test the existence of a force of this kind. 

The electromagnet A is capable of rotating about the horizontal 

axis BB\ within a ring which itself revolves about a vertical axis. 
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Let Ay By C be the moments of inertia of the electromagnet 

about the axis of the coil, the horizontal axis BB\ and a third 

axis CC' respectively. 

Let 0 be the angle which CC' makes with the vertical, <f> the 

azimuth of the axis BB\ and \f/ a variable on which the motion 

of electricity in the coil depends. 

Fig. 34. 

Then the kinetic energy T of the electromagnet may be written 

2 T = A<fi2 sin'2 6 + Bb2 + C<j>2 cos2 0 + Z?(<£sin0 + >^)2, 

where E is a quantity which may be called the moment of inertia 

of the electricity in the coil. 

If © is the moment of the impressed force tending to increase 

6, we have, by the equations of dynamics, 

d2$ 
0 = B — {(ji—(?) (p2 sin 0 cos 6 + E(p cos 6(<p sind + f)}. 

By making 'P, the impressed force tending to increase \p, equal 

to zero, we obtain sin 6 -f ^ = y, 
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sin 6 = 

a constant, which we may consider as representing the strength 

of the current in the coil. 

If C is somewhat greater than A ; 0 will be zero, and the equi¬ 

librium about the axis BB' will be stable when 

Ky 
JC-Aji' 

This value of 6 depends on that of y, the electric current, and 

is positive or negative according to the direction of the current. 

The current is passed through the coil by its bearings at B 

and B\ which are connected with the battery by means of springs 

rubbing on metal rings placed on the vertical axis. 

To determine the value of 0, a disk of paper is placed at C, 

divided by a diameter parallel to BBr into two parts, one of which 

is painted red and the other green. 

When the instrument is in motion a red circle is seen at C 
when 6 is positive, the radius of which indicates roughly the 

value of 0. When 0 is negative, a green circle is seen at 0. 

By means of nuts working on screws attached to the electro¬ 

magnet, the axis GO' is adjusted to be a principal axis having 

its moment of inertia just exceeding that round the axis A, so as 

to make the instrument very sensitive to the action of the force 

if it exists. 

The chief difficulty in the experiments arose from the dis¬ 

turbing action of the earth's magnetic force, which caused the 

electromagnet to act like a dip-needle. The results obtained 

were on this account very rough, but no evidence of any change 

in 0 could be obtained even when an iron core was inserted in 

the coil, so as to make it a powerful electromagnet. 

If, therefore, a magnet contains matter in rapid rotation, the 

angular momentum of this rotation must be very small com¬ 

pared with any quantities which we can measure, and we have 

as yet no evidence of the existence of the terms Tme derived from 

their mechanical action. 

576.] Let us next consider the forces acting on the currents of 

electricity, that is, the electromotive forces. 

Let Y be the effective electromotive force due to induction, 

the electromotive force which must act on the circuit from 

without to balance it is F'= — Y, and, by Lagrange's equation, 

rfT dT 
dt dy dy 
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Since there are no terms in T involving the coordinate y, the 

second term is zero, and Y is reduced to its first term. Hence, 

electromotive force cannot exist in a system at rest, and with 

constant currents. 

Again, if we divide Y into three parts, 1^, Yey and Ym§, 
corresponding to the three parts of Ty we find that, since Tm 
does not contain y, = 0. 

We also find Y = — ~ • 

dT ^ ^ 
Here ^is a linear function of the currents, and this part of 

the electromotive force is equal to the rate of change of this 

function. This is the electromotive force of induction dis¬ 

covered by Faraday. We shall consider it more at length 

afterwards. 

577.] From the part of T, depending on velocities multiplied 

by currents, we find Y^ = — — —t— * 

d T 
Now • i8 a linear function of the velocities of the con- 

dy 
ductors. If, therefore, any terms of T^ have an actual existence, 

it would be possible to produce an electromotive force indepen¬ 

dently of all existing currents by simply altering the velocities 

of the conductors. For instance, in the case of the suspended 

coil at Art. 574, if, when the coil is at rest, we suddenly set it in 

rotation about the vertical axis, an electromotive force would be 

called into action proportional to the acceleration of this motion. 

It would vanish when the motion became uniform, and be re¬ 

versed when the motion was retarded. 

Now few scientific observations can be made with greater pre¬ 

cision than that which determines the existence or non-existence 

of a current by means of a galvanometer. The delicacy of this 

method far exceeds that of most of the arrangements for 

measuring the mechanical force acting on a body. If, therefore, 

any currents could be produced in this way they would be de¬ 

tected, even if they were very feeble. They would be distin¬ 

guished from ordinary currents of induction by the following 

characteristics. 

(1) They would depend entirely on the motions of the con¬ 

ductors, and in no degree on the strength cf currents or magnetic 

forces already in the field. 
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(2) They would depend not on the absolute velocities of the 

conductors, but on their accelerations, and on squares and 

products of velocities, and they would change when the accelera¬ 

tion becomes a retardation, though the absolute velocity is the 

same. 

Now in all the cases actually observed, the induced currents 

depend altogether on the strength and the variation of currents 

in the field, and cannot be excited in a field devoid of magnetic 

force and of currents. In so far as they depend on the motion 

of conductors, they depend on the absolute velocity, and not on 

the change of velocity of these motions. 

We have thus three methods of detecting the existence of the 

terms of the form Tm, none of which have hitherto led to any 

positive result. I have pointed them out with the greater care 

because it appears to me important that we should attain the 

greatest amount of certitude within our reach on a point bearing 

so strongly on the true theory of electricity. 

Since, however, no evidence has yet been obtained of such 

terms, I shall now proceed on the assumption that they do not 

exist, or at least that they produce no sensible effect, an assump¬ 

tion which will considerably simplify our dynamical theory. 

We shall have occasion, however, in discussing the relation of 

magnetism to light, to shew that the motion which constitutes 

light may enter as a factor into terms involving the motion 

which constitutes magnetism. 



CHAPTER VII. 

THEORY OF ELECTRIC CIRCUITS. 

578.] We may now confine our attention to that part of the 

kinetic energy of the system which depends on squares and 

products of the strengths of the electric currents. We may call 

this the Electrokinetic Energy of the system. The part de¬ 

pending on the motion of the conductors belongs to ordinary 

dynamics, and we have seen that the part depending on products 

of velocities and currents does not exist. 

Let Au A2, &c. denote the different conducting circuits. Let 

their form and relative position be expressed in terms of the 

variables xv x.,, &c. the number of which is equal to the number 

of degrees of freedom of the mechanical system. We shall call 

these the Geometrical Variables. 

Let yl denote the quantity of electricity which has crossed 

a given section of the conductor Aj since the beginning of the 

time t. The strength of the current will be denoted byjq, the 

fluxion of this quantity. 

We shall call i/x the actual current, and yl the integral cur¬ 

rent. There is one variable of this kind for each circuit in the 

system. 

Let T denote the electrokinetic energy of the system. It is 

a homogeneous function of the second degree with respect to the 

strengths of the currents, and is of the form 

T = \ + \ L2y‘z + ka.-\- Mnyxy2+kc,., (1) 

where the coefficients L, M, &c. are functions of the geometrical 

variables xx, x2, &c. The electrical variables yl, y2 do not enter 

into the expression. 

We may call LX) L2i &c. the electric moments of inertia of the 

circuits At, A2, &c., and Mn the electric product of inertia of the 

two circuits Ax and At. When we wish to avoid the language of 
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the dynamical theory, we shall call L] the coefficient of self- 

induction of the circuit A,, and M12 the coefficient of mutual 

induction of the circuits Ax and A2. M12 is also called the poten¬ 
tial of the circuit Al with respect to A2. These quantities depend 

only on the form and relative position of the circuits. We shall 

find that in the electromagnetic system of measurement they are 

quantities of the dimension of a line. See Art. G27. 

By differentiating T with respect to yx we obtain the quantity 

px, which, in the dynamical theory, may be called the mo¬ 
mentum corresponding to yv In the electric theory we shall 

call px the electrokinetic momentum of the circuit Ax. Its 

value is pi = Z, yx + MVJ2 + &c. 

The electrokinetic momentum of the circuit Ax is therefore 

made up of the product of its own current into its coefficient 

of self-induction, togethor with the sum of the products of the 
currents in the other circuits, each into the coefficient of mutual 

induction of Ax and that other circuit. 

Electromotive Force. 

579,] Let 2? be the impressed electromotive force in the circuit 

A, arising from some cause, such as a voltaic or thermo-electric 

battery, which would produce a current independently of mag¬ 
neto-electric induction. 

Let R be the resistance of the circuit, then, by Ohm s law, an 
electromotive force Ry is required to overcome the resistance, 

leaving an electromotive force E—Ry available for changing the 

momentum of the circuit. Calling this force Y\ we have, by 
the general equations, 

Y' = - — 
dt dy9 

but since T does not involve y, the last term disappears. 

Hence, the equation of electromotive force is 

or 

The impressed electromotive force E is therefore the sum of 

two parts. The first, By, is required to maintain the current y 

against the resistance /£. The second part is required to 
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increase the electromagnetic momentum p. This is the electro¬ 
motive force which must be supplied from sources independent 
of magneto-electric induction. The electromotive-force arising 

ctx) 
from magneto-electric induction alone is evidently — or, 

the rate of decrease of the electrokiratic momentum of the cir¬ 

cuit. 

Electromagnetic Force. 

580.] Let Xr be the impressed mechanical force arising from 
external causes, and tending to increase the variable x, By the 

general equations ^ dT (}T 

dt djtc dx 
X' = 

Since the expression for the electrokinetic energy does not 
contain the velocity (x), the first term of the second member 
disappears, and we find 

dT 

dx 
X'z 

Here X' is the external force required to balance the forces 

arising from electrical causes. It is usual to consider this force 
as the reaction against the electromagnetic force, w hich we shall 
call X, and which is equal and opposite to X‘. 

Hence Y-(lT 

X ~~ dx 9 

or, the electromagnetic force tending to increase any variable is 

equal to the rate of increase of the electrokinetic energy per unit 

increase of that variable, the currents being maintained consta nt. 

If the currents are maintained constant by a battery during a 

displacement in which a quantity, If7, of work is done by electro¬ 
motive force, the electrokinetic energy of the system will be at 
the same time increased by W. Hence the battery will be 
drawn upon for a double quantity of energy, or 2 /F, in addition 

to that which is spent in generating heat in the circuit. This 
was first pointed out by Sir W. Thomson*. Compare this 

result with the electrostatic property in Art. 93. 

* Nicholas Cyclopaedia of the Physical Sciences, ed. 1860, article ‘ Magnetism, 
Dynamical Relations of/ 

VOL. II, 
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Case of Two Circuits. 

581.] Let Aj be called the Primary Circuit, and A2 the 

Secondary Circuit. The electrokinetic energy of the system 

may be written 

T - i Ly? + My-ly2+\ Ny22, 

where L and N are the coefficients of self-induction of the 

primary and secondary circuits respectively, and M is the co¬ 

efficient of their mutual induction. 

Let us suppose that no electromotive force acts on the 

secondary circuit except that due to the induction of the primary 

current. We have then 

E2 = H2y2 + Jt (MyJ + Ny2) = 0. 

Integrating this equation with respect to t, we have 

R2y2 + My14- Ny2 = C, a constant, 

where y2 is the integral current in the secondary circuit. 

The method of measuring an integral current of short duration 

will be described in Art. 748, and it is easy in most cases to 

ensure that the duration of the secondary current shall be very 

short. 

Let the values of the variable quantities in the equation at the 

end of the time t be accented, then, if y2 is the integral current, 

or the whole quantity of electricity which flows through a section 

of the secondary circuit during the time t, 

R2y2 = My1 + Ny2 - (M'y1'' + N'y'). 

If the secondary current arises entirely from induction, its 

initial value y2 must be zero if the primary current is constant, 

and the conductors are at rest before the beginning of the time t. 

If the time t is sufficient to allow the secondary current to die 
away, y2\ its final value, is also zero, so that the equation becomes 

R2y2= My1—M'yl'. 

The integral current of the secondary circuit depends in this 

case on the initial and final values of Myx. 

Induced Currents. 

582.] Let us begin by supposing the primary circuit broken, 

or yx = 0, and let a current y{ be established in it when contact 

ia made. 
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The equation which determines the secondary integral current 

is R2y2 = -M'y'. 

When the circuits are placed side by side, and in the same 
direction, M' is a positive quantity. Hence, when contact is 
made in the primary circuit, a negative current is induced in 
the secondary circuit. 

When the contact is broken in the primary circuit, the primary 
current ceases, and the induced integral current is y2i where 

= M»v 
The secondary current is in this case positive. 

If the primary current is maintained constant, and the form 
or relative position of the circuits altered so that M becomes M\ 

the integral secondary current is y2, where 

Rty2=(M-M')yv 

In the case of two circuits placed side by side and in the same 
direction M diminishes as the distance between the circuits in¬ 
creases. Hence, the induced current is positive when this 
distance is increased and negative when it is diminished. 

These are the elementary cases of induced currents described 
in Art. 530. 

Mechanical Action between the Two Circuits. 

583.] Let x be any one of the geometrical variables on which 
the form and relative position of the circuits depend, the electro¬ 
magnetic force tending to increase x is 

If the motion of the system corresponding to the variation of 

x is such that each circuit moves as a rigid body, L and N will 
be independent of x, and the equation will be reduced to the form 

. .dM 

dx 

Hence, if the primary and secondary currents are of the same 
sign, the force X, which acts between the circuits, will tend to 
move them so as to increase M. 

If the circuits are placed side by side, and the currents flow 
in the same direction, M will be increased by their being 
brought nearer together. Hence the force X is in this case an 
attraction. 

Q3 
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584.] The whole of the phenomena of the mutual action of 

two circuits, whether the induction of currents or the mechanical 

force between them, depend on the quantity M, which we have 

called the coefficient of mutual induction. The method of calcu¬ 

lating this quantity from the geometrical relations of the circuits 

is given in Art. 524, but in the investiga¬ 

tions of the next chapter we shall not 

assume a knowledge of the mathematical 

form of this quantity. We shall consider 

it as deduced from experiments on in¬ 

duction, as, for instance, by observing 

the integral current when the secondary 

circuit is suddenly moved from a given 

position to an infinite distance, or to 

any position in which we know that 

M = 0. 

Note.— [There is a model in the Cavendish 

Laboratory designed by Maxwell which illustrates 

very clearly the laws of the induction of currents. 

It is represented in Fig. 84 a, P and Q are two 

disks, the rotation of P represents the primary 

current, that of Q the secondary. These disks 

are connected together by a differential gearing. 

The intermediate wheel carries a fly-wheel the 

moment of inertia of which can be altered by 

moving weights inwards or outwards. The resistance 

of the secondary circuit is represented by the friction 

of a string passing over Q and kept tight by an 

elastic band. If the disk P is set in rotation (a 

current started in the primary) the disk Q will turn 

in the opposite direction (inverse current when the primary is started). When the 

velocity of rotation of P becomes uniform, Q is at rest (no current in the 

secondary when the primary current is constant); if the disk P is stopped, Q 

commences to rotate iri the direction in which P was previously moving (direct 

current in the secondary on breaking the circuit). The effect of an iron core in 

increasing the induction can be illustrated by increasing the moment of inertia of the 

fly-wheel. | 



CHAPTER VIII. 

EXPLORATION OF THE FIELD BY MEANS OF THE SECONDARY 

CFRCUIT. 

585.] We have proved in Arts. 582, 583, 584 that the electro¬ 

magnetic action between the primary and the secondary circuit 

depends on the quantity denoted by M, which is a function of 

the form and relative position of the two circuits. 

Although this quantity If is in fact the same as the potential 

of the two circuits, the mathematical form and properties of 

which we deduced in Arts. 423, 492, 521, 539 from magnetic 

and electromagnetic phenomena, we shall here make no reference 

to these results, but begin again from a new foundation, without 

any assumptions except those of the dynamical theory as stated 

in Chapter VH. 

The electrokinetic momentum of the secondary circuit consists 

of two parts (Art. 578), one, Mily depending on the primary 

current ix, while the other, JSri2, depends on the secondary current 

ir We are now to investigate the first of these parts, which 

we shall denote by p, where 

p-Mir (1) 

We shall also suppose the primary circuit fixed, and the 

primary current constant. The quantity p, the electrokinetic 

momentum of the secondary circuit, will in this case depend only 

on the form and position of the secondary circuit, so that if any 

closed curve be taken for the secondary circuit, and if the direc¬ 

tion along this curve, which is to be reckoned positive, be chosen, 

the value of p for this closed curve is determinate. If the 

opposite direction along the curve had been chosen as the 

positive direction, the sign of the quantity p would have been 

reversed. 
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586. ] Since the quantity p depends on the form and position 

of the circuit, we may suppose that each portion of the circuit 

contributes something to the value of p, and that the part con¬ 
tributed by each portion of the circuit depends on the form and 

position of that portion only, and not on the position of other 

parts of the circuit. 

This assumption is legitimate, because we are not now con¬ 

sidering a current, the parts of which may, and indeed do, act on 

one another, but a mere circuity that is, a closed curve along 
which a current may flow, and this is a purely geometrical 

figure, the parts of which cannot bo conceived to have any 
physical action on each other. 

We may therefore assume that the part contributed by the 

element ds of the circuit is Jds, where J is a quantity depend¬ 

ing on the position and direction of the element ds. Hence, the 
value of p may be expressed as a line-integral 

P=Jjds, (2) 

where the integration is to be extended once round the circuit. 

587. ] We have next to determine the form of the quantity J. 

In the first place, if ds is reversed in direction, J is reversed in 
sign. Hence, if two circuits A BCE and AECD 

have the arc AEC common, but reckoned in 
opposite directions in the two circuits, the sum 

of the values of p for the two circuits ABCE 

and AECD will be equal to the value of p for 

the circuit ABCD, which is made up of the two circuits. 

For the parts of the line-integral depending on the arc AEC 

are equal but of opposite sign in the two partial circuits, so that 

they destroy each other when the sum is taken, leaving only 
those parts of the line-integral which depend on the external 

boundary of ABCD. 

In the same way we may shew that if a surface bounded by a 
closed curve be divided into any number of parts, and if the 

boundary of each of these parts be considered as a circuit, the 

positive direction round every circuit being the same as that 

round the external closed curve, then the value of p for the 

closed curve is equal to the sum of the values of p for all the 
circuits. See Art. 483. 

588.] Let us now consider a portion of a surface, the dimen- 

1 if 1 
c 

Fig. 35. 
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sions of which are so small with respect to the principal radii of 
curvature of the surface that the variation of the direction of the 

normal within this portion may be neglected. We shall also 

suppose that if any very small circuit be carried parallel to 

itself from one part of this portion to another, the value of p for 

the small circuit is not sensibly altered. This will evidently be 

the case if the dimensions of the portion of surface are small 

enough compared with its distance from the primary circuit. 

If any closed curve he drawn on this portion of the surface, 

the value of p will he proportional to its area. 
For the areas of any two circuits may be divided into small 

elements all of the same dimensions, and having the same value 
of p. The areas of the two circuits are as the numbers of these 

elements which they contain, and the values of p for the two 

circuits are also in the same proportion. 

Hence, the value of p for the circuit which bounds any 

element dS of a surface is of the form 

IdS, 

where 7 is a quantity depending on the position of dS and on 

the direction of its normal. We have therefore a new expression 

for p, rr 
p=JJldS, (3) 

where the double integral is extended over any surface bounded 

by the circuit. 

589.] Let A BCD be a circuit, of which AC is an elementary 

portion, so small that it may be considered 

straight. Let APB and CQB be small equal 

areas in the same plane, then the value of p will p 
be the same for the small circuits APB and CQB, o 

or p(APB) = p{CQB). 

Hence p(APBQCD) = p(ABQCD) +p(APB), 

— p(ABQCD) +p(CQB), 

= p (A BCD), S‘ ' 

or the value of p is not altered by the substitution of the crooked 

line APQC for the straight line AC, provided the area of the 

circuit is not sensibly altered. This, in fact, is the principle 

established by Ampere’s second experiment (Art. 506), in which 

a crooked portion of a circuit is shewn to be equivalent to a 

Fig. 36. 
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straight portion provided no part of the crooked portion is at a 

sensible distance from the straight portion. 
If therefore we substitute for the element ds three small 

elements, dx, dy, and dz, drawn in succession, so as to form a 

continuous path from the beginning to the end of the element ds, 

and if Fdx, Gdy, and Hdz denote the elements of the line- 
integral corresponding to dx} dy, and dz respectively, then 

Jds = Fdx + Gdy-f Hdz. (4) 

590.] We are now able to determine the mode in which the 

quantity J depends on the direction of the element da. For, 

by (4)> r „dx ndy TTdz 
/= F-r- + G~f 5) 

ds ds ds 

This is the expression for the resolved part, in the direction of 

ds, of a vector, the components of which, resolved in the direc¬ 

tions of the axes of x, y, and z, are F, G, and II respectively. 

If this vector be denoted by 2(, and the vector from the origin 

to a point of the circuit by p, the element of the circuit will be 

dp, and the quaternion expression for Jds will be 

-S.8Idp. 

We may now write equation (2) in the form 

-/( p 
j-,dx _dy TTdz\ .. rd, + 0I + **)*■ 

or P = -Js.Kdp. 

(6) 

(7) 
The vector SI and its constituents F\ G, H depend on the 

position of ds in the field, and not on the direction in which 

it is drawn. They are therefore functions of x, y, z, the co¬ 

ordinates of ds, and not of lf m, n, its direction-cosines. 

The vector 21 represents in direction and magnitude the time- 

integral of the electromotive intensity which a particle placed at 

the point (x, y, z) would experience if the primary current were 

suddenly stopped. We shall therefore call it the Electrokinetic 

Momentum at the point (x, 3/, z). It is identical with the 

quantity which we investigated in Art. 405 under the name 

of the vector-potential of magnetic induction. 

The electrokinetic momentum of any finite line or circuit is 
the line-integral, extended along the line or circuit, of the 
resolved part of the electrokinetic momentum at each point of 
the same. 
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591.] Let us next determine the value of p for the elementary 
rectangle A BCD, of which the sides are dy and dz, the positive 
direction being from the direction of the 
axis of y to that of z. 

Let the coordinates of 0, the centre of 
gravity of the element, be x0, y09 z0, and 
let O0, H{) be the values of G and of H 

at this point. 

The coordinates of A, the middle point 
of the first side of the rectangle, are y0 

and z0—~dz. The corresponding value of G is 

1 dG , 
G = G0 - - dz 4 &c., (8) 

and the part of the value of p which arises from the side A is 

approximately G0 dy~^~dydz. (9) 

Fig. 37. 

Similarly, for B, 
j j 1 dH 

JI»dz+2 dydydz' 

- 0,dy - ldydz. 

for 1), -H.tdz+\-~dydz. 
2 ay 

Adding these four quantities, we find the value of p for the 

rectangle, viz. dll dO,J , 

<10> 

If we now assume three new quantities, ay b, c, such that 
dH dG 

a~ dy dz 

b-dF 
dH 

1 ~ dz dx 

dG dF 

dx dy 

and consider these as the constituents of a new vector 33, then 
by Theorem IV, Art. 24, we may express the line-integral of 21 
round any circuit in the form of the surface-integral of 33 over a 

surface bounded by the circuit, thus 

+ e§ + Hfi)d*=Jf(l*+mb+™)dS, (11) 
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or 21 cos eds =//: T.fBcoarjdS, (12) 

where € is the angle between 21 and ds, and that between 
8 and the normal to dSf whose direction-cosines are l, m, n, 

and T. 2t, T.® denote the numerical values of 2( and ®. 
Comparing this result with equation (3), it is evident that the 

quantity I in that equation is equal to 8 cos r,/, or the resolved 

part of 8 normal to dS. 

592. ] We have already seen (Aits. 490, 541) that, according to 

Faraday s theory, the phenomena of electromagnetic force and 

induction in a circuit depend on the variation of the number of 
lines of magnetic induction which pass through the circuit. 

Now the number of these lines is expressed mathematically 

by the surface-integral of the magnetic induction through any 

surface bounded by the circuit. Hence, we must regard the 
vector 8 and its components a, b, c as representing what we 

are already acquainted with as the magnetic induction and its 

components. 

In the present investigation we propose to deduce the pro¬ 

perties of this vector from the dynamical principles stated in 

the last chapter, with as few appeals to experiment as possible. 
In identifying this vector, which has appeared as the result of 

a mathematical investigation, with the magnetic induction, the 

properties of which we learned from experiments on magnets, 

we do not depart from this method, for we introduce no new 

fact into the theory, we only give a name to a mathematical 

quantity, and the propriety of so doing is to be judged by the 

agreement of the relations of the mathematical quantity with 

those of the physical quantity indicated by the name. 
The vector 8, since it occurs in a surface-integral, belongs 

evidently to the category of fluxes described in Art. 12. The 

vector 21, on the other hand, belongs to the category of forces, 

since it appears in a line-integral. 

593. ] We must here recall to mind the conventions about 

positive and negative quantities and directions, some of which 
were stated in Art. 23. We adopt the right-handed system of 

axes, so that if a right-handed screw is placed in the direction of 

the axis of x, and a nut on this screw is turned in the positive 

direction of rotation, that is, from the direction of y to that of z, 

it will move along the screw in the positive direction of x. 
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We also consider vitreous electricity and austral magnetism 

as positive. The positive direction of an electric current, or 
of a line of electric induction, is the direction in which positive 

electricity moves or tends to move, and the positive direction of 

a line of magnetic induction is the direction in which a compass 
needle points with that end which turns to the north. See 

Fig. 24, Art. 498, and Fig. 25, Art. 501. 

The student is recommended to select whatever method ap¬ 
pears to him most effectual in order to fix these conventions 

securely in his memory, for it is far more difficult to remember 

a rule which determines in which of two previously indifferent 

ways a statement is to be made, than a rule which selects one 
way out of many. 

594.] We have next to deduce from dynamical principles the 

expressions for the electromagnetic force acting on a conductor 

carrying an electric current through the magnetic field, and for 

the electromotive force acting on the electricity within a body 

moving in the magnetic field. The mathematical method which 

we shall adopt may be compared with the experimental method 

used by Faraday* in exploring the field by means of a wire, 

and with what we have already done in Art. 490, by a method 

founded on experiments. What we have now to do is to 

determine the effect on the value of p, the electrokinetic 
momentum of the secondary circuit, due to given alterations 

of the form of that circuit. 
Let AA\ BB' be two parallel straight conductors connected 

by the conducting arc C, which may be of any form, and by 

a straight conductor A By which is capable of sliding parallel 

to itself along the conducting rails AA' and BB\ 

* Exp. Res., 3082, 3087, 3113. 
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Let the circuit thus formed be considered as the secondary 

circuit, and let the direction ABC be assumed as the positive 
direction round it. 

Let the sliding piece move parallel to itself from the position 

AB to the position A'B'. We have to determine the variation 

of p, the electrokinetic momentum of the circuit, due to this 
displacement of the sliding piece. 

The secondary circuit is changed from ABC to A'B'C, hence, 

by Art. 587, p (A’FC)-p (ABC) = p (AA'B'B). (13) 

We have therefore to determine the value of p for the parallel-* 

ogram A A'B'B. If this parallelogram is so small that we may 
neglect the variations of the direction and magnitude of the 
magnetic induction at different points of its plane, the value 

of p is, by Art. 591, 33 cos rj. AA'B'B, where 33 is the magnetic 

induction, and the angle which it makes with the positive 

direction of the normal to the parallelogram AA'B'B. 

We may represent the result geometrically by the volume of 

the parallelepiped, whose base is the parallelogram AA'B'B, 

and one of whose edges is the line AM, which represents in 

direction and magnitude the magnetic induction 33. If the 
parallelogram is in the plane of the paper, and if AM is drawn 

upwards from the paper, or more generally, if the directions of 

the circuit AB, of the magnetic induction AM, and of the dis¬ 

placement A A', form a right-handed system when taken in this 

cyclical order, the volume of the parallelepiped is to be taken 

positively. 

The volume of this parallelepiped represents the increment of 

the value of p for the secondary circuit due to the displacement 

of the sliding piece from AB to A B'. 

Electromotive Force acting on the Sliding Piece. 

595.] The electromotive force produced in the secondary 

circuit by the motion of the sliding piece is, by Art. 579, 

(14) 

If we suppose A A' to be the displacement in unit of time, 

then AAf will represent the velocity, and the parallelepiped will 
dry 

represent and therefore, by equation (14), the electromotive 

force in the negative direction BA. 
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Hence, the electromotive force acting on the sliding piece AB, 
in consequence of its motion through the magnetic field, is 

represented by the volume of the parallelepiped, whose edges 
represent in direction and magnitude—the velocity, the mag¬ 

netic induction, and the sliding piece itself, and is positive when 

these three directions are in right-handed cyclical order. 

Electromagnetic Force acting on the Sliding Piece. 

596. ] Let i2 denote the current in the secondary circuit in the 

positive direction ABC, then the work done by the electro¬ 

magnetic force on AB while it slides from the position AB to 

the position A'B' is [M' — M) ix i2, where M and M' are the 

values of Mn in the initial and final positions of AB. But 

ix is equal to p'~p, and this is represented by the 

volume of the parallelepiped on AB, AM, and AA'. Hence, if 

we draw a line parallel to AB to represent the quantity AB .i2, 
the parallelepiped contained by this line, by AM, the magnetic 

induction, and by A A', the displacement, will represent the 

work done during this displacement. 

For a given distance of displacement this will be greatest 

when the displacement is perpendicular to the parallelogram 

whose sides are AB and AM. The electromagnetic force is 

therefore represented by the area of the parallelogram on AB 
and AM multiplied by i2, and is in the direction of the normal 

to this parallelogram, drawn so that AB, AM, and the normal 

are in right-handed cyclical order. 

Four Definitions of a Line of Magnetic Induction. 

597. ] If the direction A A', in which the motion of the sliding 

piece takes place, coincides with AM, the direction of the mag¬ 

netic induction, the motion of the sliding piece will not call 

electromotive force into action, whatever be the direction of AB, 
and if AB carries an electric current there will be no tendency 

to slide along A A'. 
Again, if AB, the sliding piece, coincides in direction with 

AM, the direction of magnetic induction, there will be no elec¬ 

tromotive force called into action by any motion of AB, and 

a current through AB will not cause AB to be acted on by 

mechanical force. 
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We may therefore define a line of magnetic induction in four 
different ways. It is a line such that 

(1) If a conductor be moved along it parallel to itself it will 

experience no electromotive force. 
(2) If a conductor carrying a current be free to move along 

a line of magnetic induction it will experience no tendency to 
do so. 

(3) If a linear conductor coincide in direction with a line of 
magnetic induction, and be moved parallel to itself in any direc¬ 
tion, it will experience no electromotive force in the direction of. 
its length. 

(4) If a linear conductor carrying an electric current coincide 
in direction with a line of magnetic induction it will not ex¬ 
perience any mechanical force. 

General Equations of Electromotive Intensity. 

598.] We have seen that E, the electromotive force due to in¬ 

duction acting on the secondary circuit, is equal to — ~~ , where 
az 

p 
rdzs 

=f(Ft+0t + H“£)d>- <■> 

To determine the value of E, let us differentiate the quantity 

under the integral sign with respect to £, remembering that if the 
secondary circuit is in motion, x, y, and z are functions of the 
time. We obtain 

E = ~ 
CsdFdx dGdy 

J v dt ds + dt ds 

f( dJU dx dGdy 
J ' dx ds dx ds 

+ - 
dH dz v 7 

aras)* 
dH dz^dx 

TJTtd8 

-/( 

-/< 

-p 

dF dx dGdy 

dy ds + dy ds^~ 

dF dx dGdy 

dz ds dz ds dz ds 

~"FWt + a 

dx dsJ 

dH dz\ 

dy ds' 

dHdz\dz 7 

)®* 

d2z 
(2) 

Now consider the second line of the integral, and substitute 

This from equations (A), Art. 591, the values of ~~ and 
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line then becomes, 
dy 1dz dFdx dFdy dFdz^dx 7 

lie —~r b -7- + —7— + — ^ 4- — 7-W(fo, 
cb cte 

which we may write 

dx ds dy ds dz ds ' dt 

-/( 
dy ,dz dF^dx , 

c*-‘*+ *)$*■ 

Treating the third and fourth lines in the same way, and col- 

dx dv dz 
lecting the terms in ^ > and > remembering that 

/< 
dFdx „ d?x x 7 

77 + Fri—)d8 = F- (3) ds dt 1 " dsdtJ'"'* * eft 

and therefore that the integral, when taken round the closed 
curve, vanishes, 

/> dy ,dz dF.dx 7 
E=f(cl-bdi -*)** 

/V e&Z (Z (? v <7?V , 

/V, do; of?/ dH\dz 1 
+J(bdi-ai-^t)d8d8- 

We may write this expression in the form 

*=/(p;l + es + 4> 
dy 

where P = c 

<2 

dt 

dz 

:adt C 

R = b~~a 
dt 

dz dF dy \ 

dt dt dx’ 

dx dO dy 

dt dt dy’ ‘ 

dy _ dH dy 

dt dt dz / 

(4) 

(5) 

Equations of 
Electromotive (B) 

Intensity. 

The terms involving the new quantity ^ are introduced for 

the Bake of giving generality to the expressions for P, Q, 72. 

They disappear from the integral when extended round the 

closed circuit. The quantity ^ is therefore indeterminate as far 

as regards the problem now before us, in which the electro¬ 

motive force round the circuit is to be determined. We shall 

find, however, that when we know all the circumstances of the 

problem, we can assign a definite value to and that it re¬ 

presents, according to a certain definition, the electric potential 

at the point (x, y, z). 
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The quantity under the integral sign in equation (5) re¬ 

presents the electromotive intensity acting on the element ds 

of the circuit. 

If we denote by T. the numerical value of the resultant of 
P, Q, and 12, and by e, the angle between the direction of this 

resultant and that of the element ds, we may write equation (5), 

e=!t■ Scosccfo. (6) 

The vector Q is the electromotive intensity at the moving 
element ds. Its direction and magnitude depend on the position 

and motion of ds, and on the variation of the magnetic field, but 
not on the direction of ds. Hence we may now disregard the 

circumstance that ds forms part of a circuit, and consider it 

simply as a portion of a moving body, acted on by the electro¬ 

motive intensity (5. The electromotive intensity has already 

been defined in Art. 68. It is also called the resultant electrical 

intensity, being the force which would be experienced by a unit 

of positive electricity placed at that point. We have now ob¬ 
tained the most general value of this quantity in the case of 

a body moving in a magnetic field due to a variable electric 

system. 

If the body is a conductor, the electromotive force will pro¬ 
duce a current; ii it is a dielectric, the electromotive force will 

produce only electric displacement. 

The electromoti ve intensity, or the force on a particle, must be 

carefully distinguished from the electromotive force along an arc 

of a curve, the latter quantity being the line-integral of the 
former. See Art. 69. 

599.] The electromotive intensity, the components of which are 

defined by equations (B), depends on three circumstances. The 

first of these is the motion of the particle through the magnetic 

field. The part of the force depending on this motion is ex¬ 

pressed by the first two terms on the right of each equation. It 

depends on the velocity of the particle transverse to the lines of 

magnetic induction. If @ is a vector representing the velocity, 

and 33 another representing the magnetic induction, then if (§x is 

the part of the electromotive intensity depending on the motion, 
F.@33, (7) 

or, the electromotive intensity is the vector part of the product 

of the magnetic induction multiplied by the velocity, that is to 
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say, the magnitude of the electromotive intensity is represented by 
the area of the parallelogram, whose sides represent the velocity 
and the magnetic induction, and its direction is the normal to 
this parallelogram, drawn so that the velocity, the magnetic in¬ 
duction, and the electromotive intensity are in right-handed 
cyclical order. 

The third term in each of the equations (B) depends on the 

time-variation of the magnetic field. This may be due either 
to the time-variation of the electric current in the primary 
circuit, or to motion of the primary circuit. Let be the part 

of the electromotive intensity which depends on these terms. 
Its components are 

dF dG . dH 

~dt’ ~ir &nd~dt’ 
d%{ 

and these are the components of the vector, — — or — 2f. 

Hence, <£*=-«. (8) 

The last term of each equation (B) is due to the variation of 
the function V in different parts of the field. We may write 

the third part of the electromotive intensity, which is due to this 

cause, @3 = -^*. (9) 

The electromotive intensity, as defined by equations (B), may 
therefore be written in the quaternion form, 

g ©53-21-(10) 

On the Modification of the Equations of Electromotive Intensity 

when the Axes to which they are referred are moving in Space. 

600.] Let x\ y\ z' be the coordinates of a point referred to a 

system of rectangular axes moving in space, and let x, y, z be the 
coordinates of the same point referred to fixed axes. 

Let the components of the velocity of the origin of the moving 

system be u, v, w, and those of its angular velocity o>1? o>2, <*>3 

referred to the fixed system of axes, and let us choose the fixed 
axes so as to coincide at the given instant with the moving 

ones, then the only quantities which will be different for the two 

systems of axes will be those differentiated with respect to the 

fix 
time. If — denotes a component velocity at a point moving 

™ dx dx' 
in rigid connexion with the moving axes, and and -7- those 

VOL. II. E 
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of any moving point, having the same instantaneous position, 

referred to the fixed and the moving axes respectively, then 

dx _ bx /.v 

dt~~bt+ dt’ ( 
with similar equations for the other components* 

By the theory of the motion of a body of invariable form, 

U + 6>23-0>32/, 

= V + (jo%X — u)j0, (2) 

bx 
It 

by 

bt 

bz 
b+ 

Since Pis a component of a directed quantity parallel to xt if 
dFr dF 
dt va^ue ~dt re^errec^ m0V*Dg axes, it may be 

shewn that 

dF' dFbx dFby dFbz n u dF 
dt ~~ dx bt + dy bt + dz bt + 0)3 0)2 + dt 

dF dF 
Substituting for and -j- their values as deduced from the 

equations (A) of magnetic induction, and rediembering that, by (2), 

(3) 

d bx _ 

dxbt~~ 
we find 

dF' _ dFbx 

dt ~~ dx b t 

If we now put 

^d bx 

dx bt 

dF 

dt ' 

d by d bz 

dx bt ~~ "°3’ dx bt ~~ a>2’ (4) 

5 dGby d by dHbz 

* dx bt * dx bt + dx bt 

, Tjdbz 

+ dxbt 

by 7 bz dF 

■cu + bu + ~dt• (5) 

- vlx 4. rhy 4. j/6s 
-Fu + GTt + Hu’ (6) 

d'V by , bz dF 

dx ~CU + bbi + dt ' (?) 

The equation for P, the component of the electromotive inten¬ 
sity parallel to x, is, by (B), 

dt dx’ W 

inferred to the fixed axes. Substituting the values of the quanti¬ 
ties as referred to the moving axes, we have 

p z= — f) — 
dt °dt 
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Jy_„dy' hdz' dr d(* + <V) 
C dt dt dt dx 9 

for the value of P referred to the moving axes. 
601.] It appears from this that the electromotive intensity is 

expressed by a formula of the same type, whether the motions 
of the conductors be referred to fixed axes or to axes moving in 
space, the only difference between the formula being that in 
the case of moving axes the electric potential must be changed 
into -h 4''. 

In all cases in which a current is produced in a conducting 
circuit, the electromotive force is the line-integral 

+ + *£)*• co) 
taken round the curve. The value of 4* disappears from this 
integral, so that the introduction of VP/ has no influence on its 
value. In all phenomena, therefore, relating to closed circuits 
and the currents in them, it is indifferent whether the axes 
to which we refer the system be at rest or in motion. See 
Art. 668. 

On the Electromagnetic Force acting on a Conductor which 
carries an Electric Current through a Magnetic Field. 

602.] We have seen in the general investigation, Art. 583, that 
if xv is one of the variables which determine the position and 
form of the secondary circuit, and if Xl is the force acting on 

the secondary circuit tending to increase this variable, then 
_ dM 

1 v2* 

Since ix is independent of xli we may write 

Mil — P ~J(J 
ydx 

ds 
+ 0 

dy 

ds 

(0 

(2) 

and we have for the value of Xl 

Now let us suppose that the displacement consists in moving 
every point of the circuit through a distance b x in the direction 
of a?, bx being any continuous function of s, so that the different 

parts of the circuit move independently of each other, while the 

circuit remains continuous and closed. 
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Also let X be the total force in the direction of x acting on 

the part of the circuit from 8 = 0 to 8 = s, then the part corre- 

dX 
spending to the element ds will be d8. We shall then have 

ids 

the following expression for the work done by the force during 
the displacement, 

where the integration is to be extended round the closed curve, 
remembering that hx is an arbitrary function of s. We may 

therefore perform the differentiation with respect to b x in the 
same way that we differentiated with respect to t in Art’. 598, 
remembering that 

dx 

dhx 
We thus find 

= 1, 
dy 

dhx 
= 0, and 

dz 

dhx 
= 0. 

flF*xd8 = }>^)*xd8+i2f£jFbx)d8. 

(*) 

(6) 

The last teim vanishes when the integration is extended 
round the closed curve, and since the equation must hold for all 
forms of the function hx, we must have 

d X dy 

an equation which gives the force parallel to x on any unit 

The forces parallel to y and z are 
dY . , dz dxx 

dZ . /, dx dy y 

element of the circuit. 

ds 

. /7 dx 

ds a ds )• 

(8) 

(9) 

The resultant force on the element is given in direction and 

magnitude by the quaternion expression i2V, dpS3, where i2 is the 
numerical measure of the current, and dp and 23 are vectors 

representing the element of the circuit and the magnetic in¬ 

duction, and the multiplication is to be understood in the Hamil¬ 
tonian sense. 

603.] If the conductor is to be treated not as a line but as a 

body, we must express the force on the element of length, and the 

current through the complete section, in terms of symbols denoting 

the force per unit of volume, and the current per unit of area. 

Let X, Y9 Z now represent the components of the force referred 
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to unit of volume, and u, v, w thoBe of the current referred to 

unit of area. Then, if 8 represents the section of the conductor, 

which we shall suppose small, the volume of the element 
2/ doc 

ds will be Sds, and u = ~ ^ • Hence, equation (7) will become 

XSds rY/ 7. 
—-— — S(vc~wb), (10) 

or 

Similarly 

and 

X = vc —wb. 

Y — wa — w, • 
X = — w., 

(Equations of 
Electromagnetic 

Force.) 
(C) 

Here X, F, X are the components of the electromagnetic force 
on an element of a conductor divided by the volume of that 

element; u, v, w are the components of the electric current 

through the element referred to unit of area, and a, 6, c are the 

components of the magnetic induction at the element, which are 
also referred to unit of area. 

If the vector g represents in magnitude and direction the force 

acting on unit of volume of the conductor, and if 6 represents 
the electric current flowing through it, 

g = F.<593. (11) 

[The equations (B) of Art. 598 may be proved by the following method, derived 
from Professor Maxwell’s Memoir on A Dynamical Theory of the Electromagnetic 
Field. Phil. Trans. 1865, pp. 459-512. 

The time variation of — p may be taken in two parts, one of which depends and the 
other does not depend on the motion of the circuit. The latter part is clearly 

-/(' 
dF , d(l dH ,\ 
-dz^-dy^-dz). 

To find the former,let us consider an arc 5 s forming part of a circuit, and let us 
imagine this arc to move along rails, which may be taken as parallel, with velocity v 
whose components are x, y, i, the rest of the circuit being meanwhile supposed 
stationary. We may then suppose that a small parallelogram is generated by the 

moving arc, the direction*cosines of the normal to which are 

ny — mi Iz — nx mar. — ly K n, v = - - v bin 9 vsintf 

where Z, w», n are the direction-cosines of 5s, and 0 is the angle between v and 5s. 
To verify the signs of A, ft, v we may put m **= — 1, x*=v\ they then become 

0, 0, —1 as they ought to do with a right-handed system of a^es. 
Now let a, 6, c be the component* of magnetic induction, we then have, due to the 

motion of 5* in time 5 tt 
5p ss (aA + bfj. + cv) v 51 5s sin 6. 

If we suppose each part of the circuit to move in a similar manner the resultant 
effect will be the motion of the oircuit as a whole, the currents in the rails forming a 
balance in each case of two adjacent arcs. The time variation of — p due to the 

motion of the circuit is therefore 

~J*{a (ny—mi) + two similar terms} ds 

taken round the circuit 

■a J'(cy—bi) dx + two similar integrals. 

The results in Art. 602 for the components of electromagnetic foroe may be deduced 
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from the above expression for dp; viz. let the arc 3s be displaced in the direction 
V, m't ri through a distance 8s', then 

3p = { V (cm—bn) + two similar terms} ds ds'. 

Now let X be the ar-component of the force upon the arc «, then for unit current we 
find by Art. 696, dx ^ 

ds dx 
am cm —bn.] 

Equations of the Electromagnetic Field, 

(if we assume that electric currents always flow in closed circuits, we can without 
introducing the vector-potential deduce equations which will determine the state of 
the electromagnetic field. 

For let i be the strength of the current round any circuit which we shall assume 
to be at rest. The electrokinetic energy T due to tins current is 

4- mb + nc) dS, 

where dS is an element of a surface bounded by the current. 

d dT 
Hence — — — the total electromotive force round the circuit tending to increase t 

equals 

-//<■ 
da db dcx , v 

+ mJT+nM)d6< dt 

hence if X, Y, Z are the components of the electromotive intensity 

r r ,da db do. 

/< (Xdx + Ydy + Zdz) -JJ«t 
ao acx 

+mdt +ndi>d8; (i) 
sj ~ - 

but by Stokes* Theorem the left-hand side of this equation is equal to 

TC\%(dZ dY\ (dX dZx / dY dX\} 

dz ) + m\ dz dx) + H \ dx dy )/ 

Equating this integral to the right-hand side of equation (1), we obtain, since the 
surface closing up the current is quite arbitrary, 

dZ dY da 

dy dz dt 1 

dX dZ db 

dz dx ~~ dt* 

dY dX _do 

dx dy dt * 
These with the relations 

4 it u 

4 rrv 

dy d& 

dy dz * 

da dy 

dz ~~ dx* 

u 

. d0 da 
4rrw = -5-y-, 

dx dy 

X Y 
v w a a 

Z 

a 

In a conductor whose specific resistance is cr; 

X dX KdY KdZ 
or U » --— V —  -— f « = — — 

4 it dt * ivdt 4ir dt 
in an insulator whose specific inductive capacity is K} are sufficient to determine the 
state of the electromagnetic field. The boundary conditions at any surface are that 
the magnetic induction normal to the surface should be continuous, and that the 
magnetic force parallel to the surface should also be continuous. 

This method of investigating the electromagnetic field has the merit of simplicity. 
It has been strongly supported by Mr. Heaviside. It is not however so general as 
the method in the text, which could be applied even if the currents did not always 
flow in closed circuits.} 



CHAPTER, IX. 

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD. 

604.] In our theoretical discussion of electrodynamics we 

began by assuming that a system of circuits carrying electric 

currents is a dynamical system, in which the currents may be 

regarded as velocities, and in which the coordinates corresponding 

to these velocities do not themselves appear in the equations. 

It follows from this that the kinetic energy of the system, in 

so far as it depends on the currents, is a homogeneous quadratic 

function of the currents, in which the coefficients depend only 

on the form and relative position of the circuits. Assuming 

these coefficients to be known, by experiment or otherwise, 

we deduced, by purely dynamical reasoning, the laws of the 

induction of currents, and of electromagnetic attraction. In 

this investigation we introduced the conceptions of the electro- 

kinetic energy of a system of currents, of the electromagnetic 

momentum of a circuit, and of the mutual potential of two 

circuits. 

We then proceeded to explore the field by means of various 

configurations of the secondary circuit, and were thus led to 

the conception of a vector 21, having a determinate magnitude 

and direction at any given point of the field. We called this 

vector the electromagnetic momentum at that point. This 

quantity may be considered as the time-integral of the electro¬ 

motive intensity which would be produced at that point by the 

sudden removal of all the currents from the field. It is 

identical with the quantity already investigated in Art. 405 

as the vector-potential of magnetic induction. Its components 

parallel to x, y, and z are F, 0, and H. The electromagnetic 

momentum of a circuit is the line-integral of 21 round the circuit. 
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We then, by means of Theorem IV, Art. 24, transformed the 

line-integral of 21 into the surface-integral of another vector, 33, 
whose components are a, 6, c, and we found that the phenomena 

of induction due to motion of a conductor, and those of electro¬ 
magnetic force can be expressed in terms of 33. We gave to 

33 the name of the magnetic induction, since its properties are 
identical with those of the lines of magnetic induction as 

investigated by Faraday. 

We also established three sets of equations: the first set, 

(A), are those of magnetic induction, expressing it in terms of 
the electromagnetic momentum. The second set, (B), are those 

of electromotive intensity, expressing it in terms of the motion 

of the conductor across the lines of magnetic induction, and 

of the rate of variation of the electromagnetic momentum. 

The third set, (0), are the equations of electromagnetic force, 
expressing it in terms of the current and the magnetic in¬ 
duction. 

The current in all these cases is to be understood as the 

actual current, which includes not only the current of con¬ 
duction, but the current due to variation of the electric dis¬ 
placement. 

The magnetic induction S3 is the quantity which we have 

already considered in Art. 400. In an unmagnetized body it 

is identical with the force on a unit magnetic pole, but if the 

body is magnetized, either permanently or by induction, it is 

the force which would be exerted on a unit pole, if placed in 

a narrow crevasse in the body, the walls of which are per¬ 

pendicular to the direction of magnetization. The components 
of 33 are a, b, c. 

It follows from the equations (A), by which a> b, c are defined, 

da db dc __ 

dx dy + dz~~ 

This was shewn at Art. 403 to be a property of the magnetic 
induction. 

605.] We have defined the magnetic force within a magnet, 

as distinguished from the magnetic induction, to be the force 

on a unit pole placed in a narrow crevasse cut parallel to the 

direction of magnetization. This quantity is denoted by «£), and 

its components by a, J3t y. See Art. 398. 



606.] EQUATIONS OF THE ELECTROMAGNETIC FIELD. 249 

If 3 is the intensity of magnetization, and A, B> C its 
components, then, by Art. 400, 

a = a 4- 4 it A, \ 
ft = -f- 4 7T 5, r (Equations of Magnetization.) (D) 
C y + 4 7r C. ) 

We may call these the equations of magnetization, and they 
indicate that in the electromagnetic system the magnetic in¬ 
duction 35, considered as a vector, is the sum, in the Hamiltonian 
sense, of two vectors, the magnetic force Jp, and the magnetiza¬ 
tion 3 multiplied by 4 7r, or 

© = £ + 4*3. 

In certain substances, the magnetization depends on the mag¬ 
netic force, and this is expressed by the system of equations of 
induced magnetism given at Arts. 426 and 435. 

606.] Up to this point of our investigation we have deduced 
everything from purely dynamical considerations, without any 
reference to quantitative experiments in electricity or magnetism. 
The only use we have made of experimental knowledge is to 
recognise, in the abstract quantities deduced from the theory, 
the concrete quantities discovered by experiment, and to denote 
them by names which indicate their physical relations rather 
than their mathematical generation. 

In this way we have pointed out the existence of the electro¬ 
magnetic momentum 21 as a vector whose direction and mag¬ 
nitude vary from one part of space to another, and from this we 
have deduced, by a mathematical process, the magnetic induction, 
33, as a derived vector. We have not, however, obtained any 
data for determining either 21 or © from the distribution of 
currents in the field. For this purpose we must find the mathe¬ 
matical connexion between these quantities and the currents. 

We begin by admitting the existence of permanent magnets, 
the mutual action of which satisfies the principle of the 
conservation of energy. We make no assumption with respect 
to the laws of magnetic force except that which follows from 
this principle, namely, that the force acting on a magnetic pole 
must be capable of being derived from a potential. 

We then observe the action between currents and magnets, 
and we find that a current acts on a magnet in a manner 
apparently the same as another magnet would act if its strength, 
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form, and position were properly adjusted, and that the magnet 

acts on the current in the same way as another current. These 

observations need not be supposed to be accompanied by 
actual measurements of the forces. They are not therefore to 
be considered as furnishing numerical data, but are useful only 

in suggesting questions for our consideration. 
The question these observations suggest is, whether the mag¬ 

netic field produced by electric currents, as it is similar to that 

produced by permanent magnets in many respects, resembles it 

also in being related to a potential ? 

The evidence that an electric circuit produces, in the space 

surrounding it, magnetic effects precisely the same as those 

produced by a magnetic shell bounded by the circuit, has been 

stated in Arts. 482-485. 

We know that in the case of the magnetic shell there is a 

potential, which has a determinate value for all points outside 

the substance of the shell, but that the values of the potential 

at two neighbouring points, on opposite sides of the shell, differ 

by a finite quantity. 

If the magnetic field in the neighbourhood of an electric 

current resembles that in the neighbourhood of a magnetic shell, 

the magnetic potential,, as found by a line-integration of the 

magnetic force, will be the same for any two lines of integration, 

provided one of these lines can be transformed into the other by 

continuous motion without cutting the electric current. 

If, however, one line of integration cannot be transformed 

into the other without cutting the current, the line-integral of 

the magnetic force along the one line will differ from that along 

the other by a quantity depending on the strength of the 

current. The magnetic potential due to an electric current is 

therefore a function having an infinite series of values with 

a common difference, the particular value depending on the 

course of the line of integration. Within the substance of the 

conductor, there is no such thing as a magnetic potential. 

607.] Assuming that the magnetic action of a current has 

a magnetic potential of this kind, we proceed to express this 
result mathematically. 

In the first place, the line-integral of the magnetic force round 

any closed curve is zero, provided the closed curve does not 

surround the electric current. 
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In the next place, if the current passes once, and only once, 

through the closed curve in the positive direction, the line- 
integral has a determinate value, which may be used as a 
measure of the strength of the current. For if the closed curve 

alters its form in any continuous manner without cutting the 

current, the line-integral will remain the same. 

In electromagnetic measure, the line-integral of the magnetic 
force round a closed curve is numerically equal to the current 

through the closed curve multiplied by 4 7r. 

If we take for the closed curve the rectangle whose sides 

are dy and dz} the line-integral of the magnetic force round the 

parallelogram is , d„ 

and if u, v, w arc the components of the flow of electricity, the 

current through the parallelogram is 

udydz. 

Multiplying this by 4 7r, and equating the result to the line- 

integral, we obtain the equation 

with the similar equations 

dy dp 

dy~~ dz ’ 

da dJL, 
dz dx 

d$ da 
dx dy’’ 

(Equations of /t^\ 
Electric Currents.) \^J) 

which determine the magnitude and direction of the electric 

currents when the magnetic force at every point is given. 

When there is no current, these equations are equivalent to 

the condition that 

adx + fidy+ ydz = — Di2, 

or that the magnetic force is derivable from a magnetic poten¬ 

tial in all points of the field where there are no currents. 
By differentiating the equations (E) with respect to x, t/, and z 

respectively, and adding the results, we obtain the equation 

du dv dw ___ 

dx ^ dy *** dz~~ * 

which indicates that the current whose components are u, v, w 

is subject to the condition of motion of an incompressible fluid, 

and that it must necessarily flow in closed circuits. 
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This equation is true only if we take u, v, and w as the com¬ 
ponents of that electric flow which is due to the variation of 
electric displacement as well as to true conduction. 

We have very little experimental evidence relating to the 

direct electromagnetic action of currents due to the variation of 
electric displacement in dielectrics, but the extreme difficulty 
of reconciling the laws of electromagnetism with the existence 

of electric currents which are not closed is one reason among 

many why we must admit the existence of transient currents 
due to the variation of displacement. Their importance will be 
seen when wo come to the electromagnetic theory of light. 

608.] We have now determined the relations of the principal 

quantities concerned in the phenomena discovered by Orsted, 
Ampere, and Faraday. To connect these with the phenomena 

described in tho former parts of this treatise, some additional 
relations are necessary. 

When electromotive intensity acts on a material body, it pro¬ 
duces in it two electrical effects, called by Faraday Induction 
and Conduction, the first being most conspicuous in dielectrics, 
and the second in conductors. 

In this treatise, static electric induction is measured by what 

we have called the electric displacement, a directed quantity or 

vector which we have denoted by 2), and its components by 

/> 9> h. 
In isotropic substances, the displacement is in the same 

direction as the electromotive intensity which produces it, and 

is proportional to it, at least for small values of this intensity. 
This may be expressed by the equation 

where K 
Art. 68. 

-K% 
4 7r 

(Equation of Electric 
Displacement.) 

is the dielectric capacity of the substance. 

(F) 

See 

Xn substances which are not isotropic, the components /, <7, h 
of the electric displacement 2) are linear functions of the com¬ 
ponents P, Q, It of the electromotive intensity 

The form of the equations of electric displacement is similar 
to that of the equations of conduction as given in Art. 298. 

These relations may be expressed by Baying that K is, in 

isotropic bodies, a scalar quantity, but in other bodies it is a 
linear and vector function, operating on the vector 



CUBBENTS OF DISPLACEMENT. 253 6t i.] 

609. ] The other effect of electromotive intensity is conduction. 
The laws of conduction as the result of electromotive intensity 

were established by Ohm, and are explained in the second part of 
this treatise, Art. 241. They may be summed up in the equation 

if =sr C (5, (Equation of Conductivity.) (G) 

where @ is the electromotive intensity at the point, jf is the 
density of the current of conduction, the components of which 

are p, g, and r, and G is the conductivity of the substance, 

which in the case of isotropic substances, is a simple scalar 
quantity, but in other substances becomes a linear and vector 

function operating on the vector @. The form of this function 

is given in Cartesian coordinates in Art. 298. 
610. ] One of the chief peculiarities of this treatise is the 

doctrine which it asserts, that the true electric current (£, that 

on which the electromagnetic phenomena depend, is not the 
same thing as if, the current of conduction, but that the time- 

variation of 2), the electric displacement, must be taken into 

account in estimating the total movement of electricity, so that 

we must write, 

(£ = St -f 2), (Equation of True Currents.) (H) 

or, in terms of the components, 
df 

u=?+i' 

v = *Uj’- (h*) 
dh 

w = r+ -?-• 

611.] Since both If and 3) depend on the electromotive intensity 

(§, we may express the true current S in terms of the electro¬ 

motive intensity, thus 

or, in the case in which C and K are constants, 

1 rrdP \ 

u = CP + — K-jt > 
47r at 

v=cQ + ±-Kd£,\ (-1*) 

1 vdR 
w = CR + -Kw-) 
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612. ] The volume-density of the free electricity at any point 

is found from the components of electric displacement by the 

equation = +dg dh 

p dx dy dz' 

613. ] The surface-density of electricity is 

<T = If -f* 7YIQ + 71 h 7Tb CJ + 71 Jl , (K) 
where Z, m, 71 are the direction-cosines of the normal drawn from 

the surface into the medium in which /, g, h are the components 

of the displacement, and Z', m', 71 are those of the normal drawn 

from the surface into the medium in which they are/, </, h\ 
614] When the magnetization of the medium is entirely 

induced by the magnetic force acting on it, we may write the 

equation of induced magnetization, 

© - (L) 
where /x is the coefficient of magnetic permeability, which may 

be considered a scalar quantity, or a linear and vector function 
operating on <£), according as the medium is isotropic or not. 

615.] These may be regarded as the principal relations among 

the quantities we have been considering. They may be com¬ 

bined so as to eliminate some of these quantities,’ but our object 
at present is not to obtain compactness in the mathematical 

formulae, but to express every relation of which we have any 

knowledge. To eliminate a quantity which expresses a useful 

idea would be rather a loss than a gain in this stage of our 

enquiry. 

There is one result, however, which we may obtain by com¬ 
bining equations (A) and (E), and which is of very great im¬ 

portance. 

If we suppose that no magnets exist in the field except in the 

form of electric circuits, the distinction which we have hitherto 

maintained between the magnetic force and the magnetic in¬ 

duction vanishes, because it is only in magnetized matter that 
these quantities differ from each other. 

According to Ampfere’s hypothesis, which will be explained in 

Art. 833, the properties of what we call magnetized matter are 

due to molecular electric circuits, so that it is only when we 
regard the substance in large masses that our theory of mag¬ 

netization is applicable, and if our mathematical methods are 

supposed capable of taking account of what goes on within the 
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individual molecules, they will discover nothing but electric 
circuits, and we shall find the magnetic force, and the magnetic 
induction everywhere identical. In order, however, to be able 
to make use of the electrostatic or of the electromagnetic system 
of measurement at pleasure we shall retain the coefficient 

remembering that its value is unity in the electromagnetic 
system. 

616.] The components of the magnetic induction are by 

equations (A), Art. 591, 
_dH_dG \ 

a dy dz 5 
h^dF_dH 

~~ dz ~~ dx* 

dO _ dF # 
~~ dx ~~ dy 

The components of the electric current are by equations (E). 

Art. 607, given by dy d0 
4tjU = 

dy 

da 

*V ~ dz ~ dx 

4 71W : 
d(3 da 

dx ~~ dy' J 

According to our hypothesis, a, 6, c are identical with /za, /z/3, 
fiy respectively. We therefore obtain {when /z is constant} 

If we write 

and* 

we may write equation (1), 

d2G d2F d2F d2H 
(1) dxdy dy2 dz1 dzdx 

■ dF dG dH 
(2) II 

su
 

«
l +

 

+
 

m ,d2 d2 d2s 

'dx2 + dy2 + dz2'’ 
r(3) 

Similarly, 

4^=£+v2^ 

4 vp v — ^- + V2G, 
dy 

4tihw = ^ + V2H.] 

(4) 

* The negative sign is employed here in order to make our expressions consistent 

with those in which Quaternions are employed. 
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If we write F' — y<ixdydz,\ 

6' = yJ'JJ'^dxdydz, - 

E=IX ffjvdxdydz\ 

X= hfff~rdxdydz’ 

(5) 

(6) 

where r is the distance of the given point from the element 
(x, y, z) and the integrations are to be extended over all space, 
then 

F= F- <h \ 
dx' 

G = O'— p, 
dy 

dz / 

(?) 

The quantity x disappears from the equations (A), and it is 
not related to any physical phenomenon. If we suppose it to be 

zero everywhere, J will also be zero everywhere, and equations 
(5), omitting the accents, will give the true values of the 
components of 21. 

617.] We may therefore adopt, as a definition of 21, that it 
is the vector-potential of the electric current, standing in the 

same relation to the electric current that the scalar potential 

stands to the matter of which it is the potential, and obtained 
by a similar process of integration, which may be thus de¬ 
scribed :— 

From a given point let a vector be drawn, representing in 

magnitude and direction a given element of an electric current, 

divided by the numerical value of the distance of the element 

from the given point. Let this be done for every element of 

the electric current. The resultant of all the vectors thus 

found is the potential of the whole current. Since the current 
is a vector quantity, its potential is also a vector. See Art. 422. 

When the distribution of electric currents is given, there is 
one, and only one, distribution of the values of 21, such that 21 
is everywhere finite and continuous, and satisfies the equations 

V22l=47rMS, £.V2l = 0, 
and vanishes at an infinite distance from the electric system. 
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This value is that given by equations (5), which may be written 

in the quaternion form 

21 = fxJJJ^dxdydz. 

Quaternion Expressions for th,e Electromagnetic Equations. 

618.] In this treatise we have endeavoured to avoid any 
process demanding from the reader a knowledge of the Calculus 
of Quaternions. At the same time wo have not scrupled to 
introduce the idea of a vector when it was necessary to do so. 
When we have had occasion to denote a vector by a symbol, 
we have used a German letter, the number of different vectors 
being so great that Hamilton’s favourite symbols would have 
been exhausted at once. Whenever therefore a German letter 
is used it denotes a Hamiltonian vector, and indicates not only 
its magnitude but its direction. The constituents of a vector 
are denoted by Roman or Greek letters. 

The principal vectors which we have to consider are 

Symbol of Constituent*. 
V ector. 

The radius vector of a point . p x y z 

The electromagnetic momentum at a point 21 F G H 

The magnetic induction . 23 a b c 

The (total) electric current. ($ u v tv 

The electric displacement . 3) / g lb 

The electromotive intensity . 6 FQR 

The mechanical force . ft X YZ 

The velocity of a point . ® or /> sc y z 

The magnetic force . «£) a [3 y 

The intensity of magnetization  . 3 ABC 

The current of conduction.. St p q r 

We have also the following scalar functions: 
The electric potential vk. 

The magnetic potential (where it exists) SI. 

The olectric density e. 
The density of magnetic ‘ matter5 m. 

Besides these we have the following quantities, indicating 
physical properties of the medium at each point:— 

G, the conductivity for electric currents. 
Ky the dielectric inductive capacity, 
ft, the magnetic inductive capacity. 

VOL. ii. s 
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These quantities are, in isotropic media, mere scalar functions 

of /?, but in general they are linear and vector operators on the 

vector functions to which they are applied. K and y, are certainly 

always self-conjugate, and C is probably so also. 
619.] The equations (A) of magnetic induction, of which the 

first is, _ dll dO 

a ~~ dy dz 9 

may now be written S3 = F.V 21, 
where V is the operator 

. d . d 7 d 

?dx dy * dz* 

and V indicates that the vector part of the result of this operation 

is to be taken. 

Since 21 is subject to the condition S.V 21 = 0, V21 is a pure 

vector, and the symbol V is unnecessary. 
The equations (B) of electromotive force, of which the first is 

^ . 7. dF dV 
P =. cy—b: -j -j- , 

dx’ 

become (§ = V. @23 — 21 — 

The equations (C) of mechanical force, of which the first is 

X = cv—bw + eP~m , * 
dx 

become 5= F@33 -f 

The equations (I)) of magnetization, of which the first is 

a = a 4- 4 7r A, 

become 33 = *£) + 4 tt% 

The equations (E) of electric currents, of which the first is 

dy d)3 
4 7TU = -j-j-y 

dy dz 

become 4 7r@ = lr. V<£). 

The equation of the current of conduction is, by Ohm’s Law, 

£ = (?£ 

That of electric displacement is 

4 7r 

4 71 u = 

become 

* {In the Tst and 2nd editions of this work was written for P in this equation. 

The correction is due to Prof. G. F. Fitzgerald Trana. 22. 8, Dublin, 1883.} 
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The equation of the total current, arising from the variation of 
the electric displacement as well as from conduction, is 

«=« + ©. 
When the magnetization arises from magnetic induction, 

» = 
We have also, to determine the electric volume-density, 

e = S.V$. 
To determine the magnetic volume-density, 

m = 8. V3. 
When the magnetic force can be derived from a potential, 

£ = -VO. 

APPENDIX TO CHAPTER IX. 

The expressions (5) are not in general accurate if the electromagnetic 

field contains substances of different magnetic permeabilities, for in that 

case, at the surface of separation of two surfaces of different magnetic 

permeabilities, there will in general be free magnetism ; this will con¬ 

tribute terms to the expression for the vector potential which are 

given by equations (22), p. 30. The boundary equations at the surface 

separating two media whose magnetic permeabilities are fix and p2, and 

where F1, //, and F2, G2, II2 denote the values of the components of 

the vectcr potential on the two sides of the surface of separation, l, my n 

the direction cosines of the normal to this surface ; are (1), since the 

normal induction is continuous, 

fdHx dG,s 
\ + m(dF' 

_d//,> 
l + H 

rdG, dF^ 

' dy dz ' ) + mVrf7 dx > ^ dx dy > 

■dH_, dG2> , . fd F^ _dll^ 
) + n\ ,i 

a
. 

_dj\- 

dy dz > ' V dz dx * ^dx dy ■ 

and (2), since the magnetic force along the surface is continuous, 

l,dH, dG,n 1 (dff, dG2. 

p, ' dy dz ) v dv dz ' 

__ 1 /dF1 dlljK 1 /dH 
fa^dz dx ' fjL^'dz 

m 
_ 1 ,dG, dF 

fa'dx dy) Wa 
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The expressions (5) do not in general satisfy both these surface conditions. 

It is therefore best to regard F, G, II as given by the equations 

V^F = 47TfJU 

V'lG — 4 TTfJV 

V2// = 4TTfJ.IV 

and the preceding boundary conditions.} 

[It does not appear legitimate to assume that in equations (B) 

represents the electrostatic potential when the conductors are moving, 

lor in deducing those equations Maxwell leaves out the term 

~^(FdIi + 07ft+ffd£)’ 
since it vanishes when integrated round a closed circuit. If we insert this 

term, then ¥ is no longer the electrostatic potential but is the sum of 

this potential, and d , . 

+ H-,- 
at at dt 

This has an important application to a problem which has attracted 

much attention, that of a sphere rotating with angular velocity co about 

a vertical axis in a uniform magnetic field where the magnetic force is 

vertical and equal to c. Equations (B) become in this case, supposing 

the sphere to have settled down into a steady state, 

„ d* 

cooy—i 
dy 

Since the sphere is a conductor and in a steady state, and since 

“T ’ 9 ~ are components of the current, 

dP dQ dR _ 

dx dy ^ dz ^ ’ 

, <P V d2 V d2 

hence C“ = da? + dif + U' 

This equation has usually been interpreted to mean that throughout the 

sphere there is a distribution of electricity whose volume density is 

— ca)/27r, but this is only legitimate if we assume that ¥ is the 

electrostatic potential. 

If in accordance with the investigation by which equations (B) were 

deduced we assume that, being the electrostatic potential, 

„ dx dy dz 

»=•+* *+«*+**• 
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or in this case ¥ = b + u^x—Fy), 

then, aii.ce <P df\ 

W + djf + dgOv*® *y) ~ 2(<ir “dy)’ 

we see that since 
= 2 c, 

<£*¥ cP* d5* 
~d^ + df+~dzi~ 2c<0’ 
c?2 4> c/2 <t> d2 <P 

dxl dy2 ^ dz2, ^ ’ 

that is, there is no distribution of free electricity throughout the 

volume of the sphere. 

There is therefore nothing in the equations of the electromagnetic 

field which would lead us to suppose that a rotating sphere contains free 

electricity. 

Equations of the Electromagnetic Field expressed in 

Polar and Cylindrical Co-ordinates. 

If F\ G, H are the components of the vector potential along the 

radius vector, the meridian and a parallel of latitude respectively, 

a, h, c the components of the magnetic induction, a, /3, y the components 

of the magnetic force, and u> v, w the components of the current in those 

directions, then we can easily prove that 

* = ?ar*\rolT,i“ea>- Ure)\' 

47JU 

b=rin6\^~dr(r8inenf 

ln0Ue{rsiu6^-TCm\’ 

47TV’. 

r2 sin 

1 {da d . . \ 

r sin 6 (d<f> dr ) 

a 1 ( d . \ da) 

r\drK ' dd\ 

If Py Q, R are the components of the electromotive intensity alon<> 

the radius vector, the meridian and a parallel of latitude, 

S = - sin **> ~UrQ)\' 
db_1_ UP d, 

dt r aiu 0 \ d<f> 

dc \{d dPl 

rUr^-Je]' 

■ ~(rsin OR)^ , 

dt 
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If the cylindrical co-ordinates are p, 0, z} and if F\ G, II are the com¬ 

ponents of the vector potential parallel to p, 0, z; a) bf c the components 

of the magnetic induction, a, J3, y the components of the magnetic force, 

and u, v, w the components of the current in these directions, then 

dF_dH 

b ~ dz dp ’ 

1 id . dFI 

PWpG) ddy 

4 TTU = 
1 idy d 

P 
da 

4 7TV — - ■ :- 

Ue-rF®]’ 
dy 

dp 

4 Trio ■ 
1 ( d 
p )dp(p® dk' 

If F, Q, K are the components of the electromotive intensity parallel 

to p, 0, 2, 



CHAPTER X. 

DIMENSIONS OF ELECTRIC UNITS. 

620, ] Every electromagnetic quantity may be defined with 

reference to the fundamental units of Length, Mass, and Time. 

If we begin with the definition of the unit of electricity, as 

given in Art. 65, we may obtain definitions of the units of every 

other electromagnetic quantity, in virtue of the equations into 

which they enter along with quantities of electricity. The 

system of units thus obtained is called the Electrostatic System. 

If, on the other hand, we begin with the definition of the unit 

magnetic pole, as given in Art. 374, wc obtain a different system 

of units of the same set of quantities. This system of units is 

not consistent with the former system, and is called the Electro¬ 

magnetic System, 

We shall begin by stating those relations between the different 

units which are common to both systems, and we shall then 

form a table of the dimensions of the units according to each 

system. 

621. ] We shall arrange the primary quantities which we have 

to consider in pairs. In the first three pairs, the product of the 

two quantities in each pair is a quantity of energy or work. In 

the second three pairs, the product of each pair is a quantity of 

energy referred to unit of volume. 

First Three Pairs. 

Electrostatic Pair. 
Symbol. 

(1) -Quantity of electricity.e 

(2) Electromotive force, or electric potential . . E 



264 DIMENSIONS OF UNITS. [622. 

Magnetic Pair. Symbol. 

(3) Quantity of free magnetism, or strength of a pole m 

(4) Magnetic potential ...... 12 

Electrokinetic Pair. 

(5) Electrokinetic momentum of a circuit . . . p 

(6) Electric current.C 

Second Three Pairs. 

Electrostatic Pair. 

(7) Electric displacement (measured by surface-density) 2) 

(8) Electromotive intensity . . . . . (5 

Magnetic Pair. 

(9) Magnetic induction ...... 33 
(10) Magnetic force. 

Electrokinetic Pair. 

(11) Intensity of electric current at a point . . S 

(12) Vector potential of electric currents . . .21 

622. The following relations exist between these quantities. [L2Ml 
“m r * 
1 -I 

r r» i. •, /> 1 1 -*■** 1 [iu ~1 

LT2 ’ we ^ave 
uie ionowmg equuwous .01 dimensions : J 

[«£'] = [»n] = |>C] = [^J, (1) 

[®e]=[8« = [®a] = [^J. (2) 

Secondly, since e, £>, and 21 are the time-integrals of O', E, 
and @ respectively, 

EI-KMU-m <•> 
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Thirdly, since E, il9 and p are the line-integrals of »£), 

and 21 respectively, 

KHSHfl-w* «> 
Finally, since e, (7, and m are the surface-integrals of 2), (5, 

and 33 respectively, 

(5) 

623.] These fifteen equations are not independent, and in 

order to deduce the dimensions of the twelve units involved, we 

require one additional equation. If, however, we take either 

e or to as an independent unit, we can deduce the dimensions of 

the rest in terms of either of these. 

<*> w -w -m- 

<2> M =[S = [?]- 

m n 

72'J = 

(*) «a (6) icq = [a] = [|] =[^]- 

P> M <i] -[a-]' 

<») m = [f3=[«-■]■ 

<•> m =[S =©]■ 

<io> =[s] •!“]■ 

<") m -[»]-[£]■ 

<12> rn “[“] =[?]■ 
* [We have also [ * ] - [£].] 
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624. ] The relations of the first ten of these quantities may be 

exhibited by means of the following arrangement:— 

e, 3), «£), C and 12. E, S3, m and p. 

m and p, S3, E. C and 12, <£), 3), e. 
The quantities in the first line are derived from e by the same 

operations as the corresponding quantities in the second line are 

derived from m. It will be seen that the order of the quantities 

in the first line is exactly the reverse of the order in the second 

line. The first four of each line have the first symbol in the 

numerator. The second four in each line have it in the de¬ 

nominator. 

All the relations given above are true whatever system of 

units we adopt. 

625. ] The only systems of any scientific value are the electro¬ 

static and the electromagnetic systems. The electrostatic system 

is founded on the definition of the unit of electricity, Arts. 41, 

42, and may be deduced from tbe equation 

which expresses that the resultant electric intensity © at any 

point, due to the action of a quantity of electricity e at a 

distance L, is found by dividing e by Lz. Substituting in the 

equations of dimensions (1) and (8), we find 

'LMi r , «i 

1— —
1

 

*
 

_
1 

II —
1 

k
 £ 

‘ 
c
- 

whence [e] = [tfAfiT-1], m = [tfM*], 

in the electrostatic sj^stem. 

The electromagnetic system is founded on a precisely similar 

definition of the unit of strength of a magnetic pole, Art. 374, 

leading to the equation m 

— [ms\L m-m- 
and [e] = [i*Jf*], [m] = 

in the electromagnetic system. From these results we find the 

dimensions of the other quantities. 
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Table of Dimensions. 

Quantity of electricity . . 

Line-integral of electro-) 

motive intensity ) 

Quantity of magnetism 

Electrokinetic momentum 
of a circuit 

Electric current 1 

Magnetic potential j 

Dimensions in 
Symbol Electrostatic Electromagnetic 
• * System. System. 

. e [ItMiT->] [iU/i], 

. E [JJ Mi T^1] [U Mi T^}. 

• j™j [/Jil/i] [£* Jfl Z*-1]. 

• [Z4/i r-<]. 

Electromotive intensity . 

“5“} . . . . ® [L-lMl]. 

Electromotive intensity . ... (£ T~l~\ [IA T~2]. 

Magnetic induction. SB 71/1 27-1]. 

Magnetic force. <£) [Z* if* T7”2] [Z~* if* 27"1]. 

Strength of current at a point S [Z~^ if* T“2] [Z~* J/& I7-1]. 

Vector potential. 21 [L* 77-1]. 

627.] We have already considered the products of the pairs of 

these quantities in the order in which they stand. Their ratios 

are in certain cases of scientific importance. Thus 

Electrostatic Electromagnetic 
Symbol. System. 

= capacity of an accumulator . , q 

i coefficient of self-induction \ 

System. 

[?]- 

~ = < of a circuit, or electro- >. L 

i magnetic capacity ) 

3) __ f specific inductive capacity ) ^ 

(£ \ of dielectric ) ’ 

SB 
jr = magnetic inductive capacity . . fx 

E 
= resistance of a conductor . . . . R 

specific resistance of a 

substance 

628.] If the units of length, mass, and time are the same in the 

two systems, the number of electrostatic units of electricity con- 
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tained in one electromagnetic unit is numerically equal to a certain 

velocity, the absolute value of which does not depend on the mag¬ 

nitude of the fundamental units employed. This velocity is an im¬ 

portant physical quantity, which we shall denote by the symbol v. 

Number of Electrostatic Units in one Electromagnetic Unit. 

For e, C\ 12, 2), <£>, <£,.v. 

For m, p, E, 33, 6, 21,.— 

For electrostatic capacity, dielectric inductive capacity, and 

conductivity, v2. 

For electromagnetic capacity, magnetic inductive capacity, 

and resistance. ~ • 

Several methods of determining the velocity v will be given 

in Arts. 768-780. 

In the electrostatic system the specific dielectric inductive 

capacity of air is assumed equal to unity. This quantity is 

therefore represented by ~ in the electromagnetic system. 

In the electromagnetic system the specific magnetic inductive 

capacity of air is assumed equal to unity. This quantity is 

therefore represented by ^ in the electrostatic system. 

Practical System of Electric Units. 

629.] Of the two systems of units, the electromagnetic is of 

the greater use to those practical electricians who are occupied 

with electromagnetic telegraphs. If, however, the units of 

length, time, and mass are those commonly used in other scientific 

work, such as the m&tre or the centimetre, the second, and the 

gramme, the units of resistance and of electromotive force will 

be so small that to express the quantities occurring in practice 

enormous numbers must be used, and the units of quantity and 

capacity will be so large that only exceedingly small fractions of 

them can ever occur in practice. Practical electricians have there¬ 

fore adopted a set of electrical units deduced by the electromagnetic 

system from a large unit of length and a small unit of mass. 

The unit of length used for this purpose is ten million of 

mbtres, or approximately the length of a quadrant of a meridian 
of the earth. 
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The unit of time is, as before, one second. 

The unit of mass is 10~n grammes, or one hundred millionth 
part of a milligramme. 

The electrical units derived from these fundamental units 
have been named after eminent electrical discoverers. Thus the 

practical unit of resistance is called the Ohm, and is represented 
by the resistance-coil issued by the British Association, and 
described in Art. 340. It is expressed in the electromagnetic 

system by a velocity of 10,000,000 metres per second. 

The practical unit of electromotive force is called the Volt, 

and is not very different from that of a Daniell’s cell. Mr. 

Latimer Clark has recently invented a very constant cell, whose 
electromotive force is almost exactly 1-454 Volts. 

The practical unit of capacity is called the Farad. The 

quantity of electricity which flows through one Ohm under the 

electromotive force of one Volt during one second, is equal to the 
charge produced in a condenser whose capacity is one Farad by 

an electromotive force of one Volt. 

The use of thete names is found to be more convenient in 
practice than the constant repetition of the words 'electro¬ 

magnetic units,’ with the additional statement of the particular 
fundamental units on which they are founded. 

When very large quantities are to be measured, a large unit is 

formed by multiplying the original unit by one million, and 

placing before its name the prefix mega. 
In like manner by prefixing micro a small unit is formed, one 

millionth of the original unit. 

The following table gives the values of these practical units in 

the different systems which have been at various times adopted. 

Fundamental 

Units. 

Practical 

System. 

B. A. Report, 

1863. 
Thomson. Weber. 

Length, Earth's Quadrant, Mt tre, Centimetre, Millimetre, 

Time, Second, Second, Second, Second, 

Mam. 10~u Gramme. Gramme. Gramme. Milligramme. 

Resistance Ohm 10’ 10s* 10“> 

Electromotive force Volt 10' 10* 10'1 

Capacity Farad 10-7 10-® 10-w 

Quantity Farad 
(charged to a Volt.) 

io-a j 10-1 10 



CHAPTER XL 

ON ENERGY AND STRESS IN THE ELECTROMAGNETIC FIELD. 

Electrostatic Energy. 

630. ] The energy of the system may be divided into the 

Potential Energy and the Kinetic Energy, 

The potential energy due to electrification has been already 

considered in Art. 85. It may be written 

F = iS(e'P), (1) 

where e is the charge of electricity at a place where the electric 

potential is 'I', and the summation is to be extended to every 

place where there is electrification. 

If /, g, h are the components of the electric displacement, the 

quantity of electricity in the element of volume dxdydz is 

' = $c + ddy+d^dxd'jd‘’ <2) 

Wmi IIJ& + % + %)****. M 
where the integration is to be extended throughout all space. 

631. ] Integrating this expression by parts, and remembering 

that when the distance, r, from a given point of a finite elec¬ 

trified system becomes infinite, the potential 4' becomes an 

infinitely small quantity of the order r l, and that /, g, h become 

infinitely small quantities of the order r~2, the expression is 

reduced to 

W 
d* 

) dx dy dz, (4) 

where the integration is to be extended throughout all space. 
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If we now write P, Q, R for the components of the electro- 
dty dty 

motive intensity, instead of — 5 and — > we find 
dz 

W=i JjJ(Pf+Qr, + Rh)dxdy dz* (5) 

Hence, the electrostatic energy of the whole field will be the 

same if we suppose that it resides in every part of the field where 
electrical force and electrical displacement occur, instead of being 

confined to the places where free electricity is found. 

The energy in unit of volume is half the product of the electro¬ 

motive force and the electric displacement, multiplied by the 

cosine of the angle which these vectors include. 

In Quaternion language it is — £ S. @3). 

Magnetic Energy. 

f632.] We may treat the energy due to magnetization in a way 

similar to that pursued in the case of electrification, Art. 85. If 

A, P, C are the components of magnetization and a, ft, y the 

components of magnetic force, the potential energy of the system 

of magnets is then, by Art. 389, 

— ^ ff f (6) 

the integration being extended over the space occupied by mag¬ 

netized matter. This part of the energy, however, will be 

included in the kinetic energy in the form in which we shall 

presently obtain it. 

633.] We may transform this expression when there are no 

electric currents by the following method. 

We know that da db dc 

dx + dy * dz (?) 

* {This expression for the electrostatic energy was deduced in the first volume on 
the assumption that the electrostatic force could be derived from a potential function. 
This proof will not hold when part of the electromotive intensity is due to 
electromagnetic induction. If however we take the view that this part of the 
energy arises from the polarized state of the dielectric and is per unit volume 

—— (f'tjrg* + A2), the potential energy will then only depend on the polarization 
oirK 
of the dielectric no matter how it is produced. Thus the energy will, since 

f - P, “ Q. « R, l*K i*K Q, 
4 it K 

be equal to \ (P/*+ Qg + Kh) per unit volume.} 
+ See Appendix I at the end of this Chapter. 
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d£l d£l 
P — --xr. ’ y=- (8) 

Hence, by Art. 97, if 

dQ. __ 

a ~ ~ dx’ ** dy ’ ^ ~ dz 

as is always the case in magnetic phenomena where there are no 

currents, JJJ(aa + b/3 + cy)dxdyds=0, (9) 

the integral being extended throughout all space, or 

fff {{a + 4vA)a+(l3 + 4TrB)l3 + (y+4TiC)y} dxdydz = 0. (10) 

Hence, the energy due to a magnetic system 

— i JjI(Aa + Bfi + Cy) dxdydz = -1-Jjj'(a2 + /32 + y2) dxdydz, 

- ™ Jj'J#2 dxdydz. (II) 

Electrokinetic Energy. 

634] We have already, in Art. 578, expressed the kinetic 

energy of a system of currents in the form 

T=n(pi\ (12) 
where p is the electromagnetic momentum of a circuit, and i is 
the strength of the current flowing round it, and the summation 

extends to all the circuits. 

But we have proved, in Art. 590, that p may be expressed as 

a line-integral of the form 

*=./>£<13> 
where F, G> H are the components of the electromagnetic mo¬ 
mentum, 91, at the point (x,y7z)% and the integration is to be ex¬ 

tended round the closed circuit 8. We therefore find 

T=i2if(Fd£+od£+H^y,. (14) 
If u, v, w are the components of the density of the current at 

any point of the conducting circuit, and if 8 is the transverse 
section of the circuit, then we may write 

— i~ = vS, i~ — wSy (15) 
ds ds ds v 7 

and we may also write the volume 

Sds «= dxdydz, 



ELBOTBOKINETIC ENEBGT. 273 

and we now find 

T = \ jjj(Fu + Gv + Hw)dxdydz 

where the integration is to be extended to every part of space 

whei^e there are electric currents. 
635. ] Let us now substitute for uy v, w their values as given 

by the equations of electric currents (E), Art. 607, in terms of 
the components a, y of the magnetic force. We then have 

r=USSY(| - S)+<! - d£>+<f - t>\dxd',d°-{u) 
where the integration is extended over a portion of space in¬ 

cluding all the currents. 
If we integrate this by parts, and remember that, at a great 

distance r from the system, a, /3, and y are of the order of 
magnitude r“8, {and that at a surface separating two media, Ft 

Gy H, and the tangential magnetic force are continuous,} we find 
that when the integration is extended throughout all space, the 

expression is reduced to 

rn 1 rrri /dH dG v n(dF dHs rdG dF rf, 7 , 

1 = i-JjJH 3y-76-> +S'-Wy+'))"»*■ {w) 
By the equations (A), Art. 591, of magnetic induction, we may 

substitute for the quantities in small brackets the components 

of magnetic induction a, 6, c, so that the kinetic energy may be 
written 

2T = — fj j\aa + bfi + cy)dxdydzi (19) 

where the integration is to be extended throughout every part of 

space in which the magnetic force and magnetic induction have- 
values differing from zero. 

The quantity within brackets in this expression is the product 

of the magnetic induction into the resolved part of the magnetic 
force in its own direction. 

In the language of quaternions this may be written more simply, 

-5.8$, 
where 33 is the magnetic induction, whose components are a, b, c, 
and <£) is the magnetic force, whose components are a, y. ' 

636. ] The electrokinetic energy of the system may therefore 
be expressed either as an integral to be taken where there are 

electric currents, or as an integral to be taken over every part of 
VOL. II. T 
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the field in which magnetic force exists. The first integral, 
however, is the natural expression of the theory which supposes 

the currents to act upon each other directly at a distance, while 
the second is appropriate to the theory which endeavours to 

explain the action between the currents by means of some 

intermediate action in the space between them. As in this 
treatise we have adopted the latter method of investigation, 

we naturally adopt the second expression as giving the most 

significant form to the kinetic energy. 
According to our hypothesis, we assume the kinetic energy to 

exist wherever there is magnetic force, that is, in general, in 

every part of the field. The amount of this energy per unit of 

volume is — - 8. S3 and this energy exists in the form of some 
8 7T 

kind of motion of the matter in every portion of space. 

When we come to consider Faraday’s discovery of the effect 

of magnetism on polarized light, we shall point out reasons for 

believing that wherever there are lines of magnetic force, there 

is a rotatory motion of matter round those lines. See Art. 821. 

Magnetic and Electrokinetic Energy compared* 

637.] We found in Art. 423 that the mutual potential energy 

of two magnetic shells, of strengths and </>', and bounded by 

the closed curves s and s' respectively, is 

dads', 

where € is the angle between the directions of ds and ds\ and r 

is the distance between them. 

We also found in Art. 521 that the mutual energy of two 

circuits s and s\ in which currents i and i' flow, is 

COS € 
ds ds'. 

If i, i' are equal to <p> 4/ respectively, the mechanical action 

between the magnetic shells is equal to that between the cor¬ 

responding electric circuits, and in the same direction. In the 

case of the magnetic shells the force tends to diminish their 

mutual potential energy, in the case of the circuits it tends to 

increase their mutual energy, because this energy is kinetic. 

It is impossible, by any arrangement of magnetized matter, to 
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produce a system corresponding in all respects to an electric 

circuit, for the potential of the magnetic system is single valued 

at every point of space, whereas that of the electric system is 

many-valued. 

But it is always possible, by a proper arrangement of infinitely 
small electric circuits, to produce a system corresponding in all 

respects to any magnetic system, provided the line of integration 
which we follow in calculating the potential is prevented from 

passing through any of these small circuits. This will be more 
fully explained in Art. 833. 

The action of magnets at a distance is perfectly identical with 

that of electric currents. We therefore endeavour to trace both 
to the same cause, and since we cannot explain electric currents 
by means of magnets, we must adopt the other alternative, and 
explain magnets by means of molecular electric currents. 

638.] In our investigation of magnetic phenomena, in Part III 

of this treatise, we made no attempt to account for magnetic 

action at a distance, but treated this action as a fundamental 

fact of experience. We therefore assumed that the energy of a 

magnetic system is potential energy, and that this energy is 

diminished when the parts of the system yield to the magnetic 

forces which act on them. 

If, however, we regard magnets as deriving their properties from 

electric currents circulating within their molecules, their energy 

is kinetic, and the force between them is such that it tends to 

move them in a direction such that if the strengths of the cur¬ 

rents were maintained constant the kinetic energy would increase. 
This mode of explaining magnetism requires us also to abandon 

the method followed in Part III, in which we regarded the magnet 
as a continuous and homogeneous body, the minutest part of 
which has magnetic properties of the same kind as the whole. 

We must now regard a magnet as containing a finite, though 
very great, number of electric circuits, so that it has essentially 
a molecular, as distinguished from a continuous structure. 

If we suppose our mathematical machinery to be so coarse 

that our line of integration cannot thread a molecular circuit, 
and that an immense number of magnetic molecules are contained 
in our element of volume, we shall still arrive at results similar 
to those of Part III, but if we suppose our machinery of a finer 
order, and capable of investigating all that goes on in the 

t 2 
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interior of the molecules, we must give up the old theory of 

magnetism, and adopt that of Amp&re, which admits of no 

magnets except those which consist of electric currents. 

We must also regard both magnetic and electromagnetic 

energy as kinetic energy, and we must attribute to it the proper 

sign, as given in Art. 635. 

In what follows, though we may occasionally, as in Art. 639, 

&c.} attempt to carry out the old theory of magnetism, we shall 

find that we obtain a perfectly consistent system only when we 

abandon that theory and adopt Ampere’s theory of molecular 

currents, as in Art. 644. 

The energy of the field therefore consists of two parts only, 

the electrostatic or potential energy 

W= i JJJ ( Jf + Qg + Rh) dx dy dz, 

and the electromagnetic or kinetic energy 

T = ia a + M + cy) dxdydz. 

ON THE FORCES WHICH ACT ON AN ELEMENT OF A BODY 

PLACED IN THE ELECTROMAGNETIC FIELD. 

Forces acting on a Magnetic Element. 

*639.] The potential energy of the element dxdydz of a body 

magnetized with an intensity whose components are A, B, (7, 

and placed in a field of magnetic force whose components are 

A is — (Aa + Bfi + Cy)dxdydz. 

Hence, if the force urging the element to move without rotation 

in the direction of x is X1 dxdydz, 

X, = A^+B^+Cp, 
1 dx dx dx (i) 

and if the moment of the couple tending to turn the element 

about the axis of x from y towards z is Ldxdydz, 

L = By—Cfi. (2) 

The forces and the moments corresponding to the axes of y 

and z may be written down by making the proper substitutions. 

640.] If the magnetized body carries an electric current, of 

which the components are u, vt wy then, by equations (G), Art 603, 

* See Appendix II at the end of this Chapter. 
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there will be an additional electromagnetic force whose com¬ 
ponents are X21 Y2) Z2, of which Xt is given by 

X2 — vc — wb. (3) 

Hence, the total force, Xt arising from the magnetism of the 

molecule, as well as the current passing through it, is 

X=A~ +B^+Cp+ve-tob. (4) 
ax ax dx v 1 

The quantities a, 6, c are the components of magnetic induction, 

and are related to a, y9 the components of magnetic force, by 
the equations given in Art. 400, 

a — a -f 4 7r A} 1 

b = p + ivB, ■ (5) 
e = y + 4 7i £7. j 

The components of the current, v, u\ can be expressed in 

terms of a, f}y y by the equations of Art. 607, 
dy dp v 

4 71 U = f-y- » 
dy dz 

A da dy . 

- as - 3E - r (6) 
. (i/3 (ia 

4,r”’=£-s;-i 
Hence 

* = ♦<*-»£♦<•-»£♦<- & ♦•<£- a 

= +?/<i +cjr12Tx{a2+f3‘i+^\' {7) 

By Art. 403, 
da db dc _ ^ 

dy + dz~~ 

Multiplying this equation, (8), by a, and dividing by 4 7r, we 

may add the result to (7), and we find 

x=rM|M + £M}. w 

also, by (2), ;((6-/3)y-(c-y)/3), 

= _(6y_c/3)) (11) 

where X is the force referred to unit of volume in the direction 

of x, and L is the moment of the forces (per unit volume) about 

this axis. 
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On the Explanation of these Forces by the Hypothesis of a 

Medium in a State of Stress. 

641.] Let us denote a stress of any kind referred to unit of 

area by a symbol of the form Fh1e, where the first suffix, hy 

indicates that the normal to the surface on which the stress is 

supposed to act is parallel to the axis of h, and the second 

suffix, indicates that the direction of the stress with which 

the part of the body on the positive side of the surface acts on 

the part on the negative side is parallel to the axis of h 
The directions of h and k may be the same, in which case the 

stress is a normal stress. They may be oblique to each other, in 

which case the stress is an oblique stress, or they may be perpen¬ 

dicular to each other, in which case the stress is a tangential 

stress. 

The condition that the stresses shall not produce any tendency 

to rotation in the elementary portions of the body is 

p — p 

In the case of a magnetized body, however, there is such a 

tendency to rotation, and therefore this condition, which holds 

in the ordinary theory of stress, is not fulfilled. 

Let us consider the effect of the stresses on the six sides of 

the elementary portion of the body dxdydz, taking the origin 

of coordinates at its centre of gravity. 

On the positive face dydz, for which the value of x is \ dx, 
the forces are— 

d r 
Parallel to x, \ dx) dydz = X+x, \ 

dP 
Parallel to y, (£„•+ i dx) dydz = Y+x, ► 

dP 
Parallel to z, (i^ + i -~dx) dydz = Z+x. j 

(12) 

The forces acting on the opposite side, — X_x, —Y_x, and 

— Z_x> may bo found from these by changing the sign of dx. 

We may express in the same way the systems of three forces 

acting on each of the other faces of the element, the direction 

of the force being indicated by the capital letter, and the face on 

which it acts by the suffix. 
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If Xdxdydz is the whole force parallel to x acting on the 
element, 

X dxdydz = X+x + X+v + X+! + X_x + X_v + X_Zt 

dPxx . dP„x _ dli 
(•a?+ dx dy dz 

dp d p d 7 

) dxdydz, 

whence X= 55*- + Ty*"* dz f~ <13> 

If L dxdydz iB the moment of the forces about the axis of x 
tending to turn the element from y to z, 

Ldxdydz = i dy(Z+y~ Z_v)-\dz(Y+z—Y_,), 

= {Pvz~Pzy) dxdydz, 

whence L = Pyz-Pzu. (14) 

Comparing the values of X and Z given by equations (9) and 
(11) with those given by (13) and (14), we find that, if we make 

Pxx = ~{aa-h(a* + /3* + y*)'1,\ 
4 77 

lU = ~ {bp-Ha' + P + f)}, 
4 7T 

= ^ {cy-H*2+P2+y2)}, 

Fvt~ i7tby’ 

llx = r- Ca, 
4tt 

^ = 4/ft 

K - 4-c^> 

p 1 
^=4~ay- 

(15) 

the force arising from a system of stress of which these are the 

components will be statically equivalent, in its effects on each 

element of the body, to the forces arising from the magnetiza¬ 

tion and electric currents. 

642.] The nature of the stress of which these are the com¬ 

ponents may be easily found, by making the axir of x bisect 

the angle between the directions of the magnetic force and 

the magnetic induction, and taking the axis of y in the plane 

of these directions, and measured towards the side of the 

magnetic force. 
If we put $ for the numerical value of the magnetic force, 

33 for that of the magnetic induction, and 2 € for the angle 

between their directions, 
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a = Jp cob (, (3 = — Jp sin e, y = 0, ) 

a = $ cose, b = — ©sine, c=0;j 

p~ = ^( + 33£cos2e- 

Jt
J II ~ (—S3 § sin2 € - 

p„ = 

pv.--= p — p = J = 0, 

P*V - — 93«£)COSesine, 
47T 

ii -— 93 43 cose sine. 
4 7T ^ 

(16) 

(17) 

Hence, the state of stress may be considered as compounded 

of— 

(1) A pressure equal in all directions = ~ ,£)2. 
8 7T 

(2) A tension along the line bisecting the angle between the 

directions of the magnetic force and the magnetic induction 

= — 93f) cos2 e« 
4 7T * 

(3) A pressure along the line bisecting the exterior angle 

between these directions = — 93 $ sin2 e. 
47r 

(4) A couple tending to turn every element of the substance 

in the plane of the two directions from the direction of magnetic 

induction to the direction of magnetic force = — 93<£) sin 2 c. 
4 7T 

When the magnetic induction is in the same direction as the 

magnetic force, as it always is in fluids and non-magnetized 

solids, then c = 0, and making the axis of x coincide with the 

direction of the magnetic force, 

p„= r-=- (is) 

and the tangential stresses disappear. 

The stress in this case is therefore a hydrostatic pressure 

~ Sf1, combined with a longitudinal tension 95 $ along the 

lines of force. 
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643.] When there is no magnetization, 33 = and the stress 
is still further simplified, being a tension along the lines of 

force equal to combined with a pressure in all directions 

at right angles to the line of force, numerically equal also to 

— «£)2. The components of stress in this important case are 

Pix=^(a*-(3>-y% 

= 8^ 
2-y2~a2), 

pr = p. 

p — p - -* *m - -*• vtr. - 

The ^-component of the force arising from these stresses on an 

element of the medium referred to unit of volume is 

d p , p i d p 
dx ** dy vx^ dz 

:±Lda~adl-y‘h 
4 7r ( dx dx dx 

1 A a dfi dy\ 

) 1C dp da) I C dy da) 

3 47t\a~dy ^~dy\ + 4tt\a~dz ^ y dz\ ’ 

1 /da dyx 1 Q(dp dav __ 1 /da d/3 dyx 1 /da dyx 1 /d/3 dav 

~~ 47ra'-d& "** dv dz' + 477^^dz dx' 4ir ^dsc d?/' 

da d/3 dy 

S + % + 5* “ 4”"' 

da dy 

d£ da; 

dp da 

= 4 7T V, 

= 4 7TW, 
dz~d;!/ ’ 

where m is the density of austral magnetic matter referred to 

unit of volume, and v and w are the intensities of electric 

currents perpendicular to y and z respectively. Hence, 
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Similarly 

X — am + Vy — wfi. 

Y = fim + Wa—Uy, 

Z= ym + ufi—va. 

(Equations of 
Electromagnetic 

Force.) 
(20) 

644.] If we adopt the theories of Ampere and Weber as to 

the nature of magnetic and diamagnetic bodies, and assume that 

magnetic and diamagnetic polarity are due to molecular electric 
currents, we get rid of imaginary magnetic matter, and find that 

everywhere m = 0, and 

da d/3 dy 

dx dy dz 
(21) 

so that the equations of electromagnetic force become 

X = vy — wfi, \ 
Y = rva — uy, > (22) 
Z — uj3 — Va. ) 

These are the components of the mechanical force referred 

to unit of volume of the substance. The components of the 

magnetic force are a, /3, y, and those of the electric current are 
uy vy w. These equations are identical with those already 

established. (Equations (C), Art. 603.) 

645.] In explaining the electromagnetic force by means of 

a state of stress in a medium, we are only following out the 

conception of Faraday*, that the lines of magnetic force tend 

to shorten themselves, and that they repel each other when 

placed side by side. All that we have done is to express the 

value of the tension along the lines, and the pressure at right 

angles to them, in mathematical language, and to prove that the 

state of stress thus assumed to exist in the medium will actually 

produce the observed forces on the conductors which carry 

electric currents. 
We have asserted nothing as yet with respect to the mode 

in which this state of stress is originated and maintained in the 

medium. We have merely shewn that it is possible to conceive 

the mutual action of electric currents to depend on a particular 

kind of stress in the surrounding medium, instead of being 

a direct and immediate action at a distance. 

Any further explanation of the state of stress, by means of 

the motion of the medium or otherwise, must be regarded as 

* Exp. Res., 3266, 3267, 3268. 
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a separate and independent part of the theory, which may stand 

or fall without affecting our present position. See Art. 832. 

In the first part of this treatise, Art. 108, we shewed that the 

observed electrostatic forces may be conceived as operating 

through the intervention of a state of stress in the surrounding 

medium. We have now done the same for the electromagnetic 

forces, and it remains to be seen whether the conception of 

a medium capable of supporting these states of stress is consistent 

with other known phenomena, or whether we shall have to put 

it aside as unfruitful. 

In a field in which electrostatic as well as electromagnetic 

action is taking place, we must suppose the electrostatic stress 

described in Part I to be superposed on the electromagnetic 

stress which we have been considering. 

646.] If we suppose the total terrestrial magnetic force to be 

10 British units (grain, foot, second), as it is nearly in Britain, 

then the tension along the lines of force is 0*128 grains weight 

per square foot. The greatest magnetic tension produced by 

Joule* by means of electromagnets was about 140 pounds 

weight on the square inch. 

* Sturgeon b Annul* of Electricity, vol. v. p. 187 (1840); or Philosophical Magazine, 
Dec. 1851. 
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[The following note, derived from a letter written by Professor Clerk Maxwell to 
Professor Chryatal, iB important in connexion with Arte. 389 and 632 :— 

In Art. 389 the energy due to the presence of a. magnet whose mag¬ 

netization components are Al, Blt Ciy placed in a field whose magnetic 

force components are a,2, /32, y2, is 

—f/J\A i + Pi + Cl y2) dxdydz, 
where the integration is confined to the magnet in virtue of At, BX) Cx 
being zero everywhere else. 

But the whole energy is of the form 

— (A + Ai) (<h + «2) + &c.} dxdydz, 
the integration extending to every part of space where there are mag¬ 

netized bodies, and Aa, 2?a, 6Ya denoting the components of magnetization 

at any point exterior to the magnet. 

The whole energy thus consists of four parts :— 

-\fff (A, «, + &c.)dxdydz, (1) 
which is constant if the magnetization of the magnet is rigid; 

-\///{Aia1 + &c.) dxdydz, (2) 
which is equal, by Green’s Theorem, to 

. — h/ff(A,*t+&c-)dxdydz, (3) 

and — \fff (A 2S + &C.) dxdydz, (4) 

which last we may suppose to arise from rigid magnetizations and there¬ 

fore to be constant. 

Hence the variable part of the energy of the moveable magnet, as 

rigidly magnetized, is the sum of the expressions (2) and (3), viz., 

—/// (/l, ai + Blj32+C\ ya) dx dy dz. 

Remembering that the displacement of the magnet alters the values of 

aa, /3a, y,2, but not those of Alf Blf C\, we find for the component of the 

force on the magnet in any direction <f> — 

If instead of a magnet we have a body magnetized by induction, the 

expression for the force must be the same, viz., writing AY = #ca, &c., 

In this expression a is put for 4- a2, &c., but if either the magnetized 

body be small or k be small we may neglect ax in comparison with aa, 

and the expression for the force becomes, as in Art. 440, 

i fffK (a2 + P' + /) dxdydz. 

The work done by the magnetic forces while a body of small inductive 
capacity, magnetized inductively, is carried off to infinity is only half 
of that for the same body rigidly magnetized to the same original 
strength, for as the induced magnet is carried off it loses its strength.] 
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[Objection has been taken to the expression contained in Art. 639 for 
the potential energy per unit volume of the medium arising from mag¬ 
netic forces, for the reason that in finding that expression in Art. 389 we 
assumed the force components a, /3, y to be derivable from a potential, 
whereas in Arts. 639, 640 this is not the case. This objection extends 
to the expression for the force X, which is the space variation of the 
energy. The purpose of this note is to bring forward some considerations 
tending to confirm the accuracy of the text.] 

{The force on a piece of magnetic substance carrying a current may for 
convenience of calculation be divided into two parts, (i) the force on the 
element in consequence of the presence of the current, (2) the force 
due to the magnetism in the element. The first part will be the same 
as the force on an element of a non-magnetic substance, the components 
being respectively, 

yv—fiw* (u, v, w being components 

aw —yw, - of current, a, /3, y those 

fiu — av, (of magnetic force. 

To calculate the second force imagine a long narrow cylinder cut out 
of the magnetic substance, the axis of the cylinder being parallel to the 

direction of magnetization. 
If I is the intensity of magnetization the force parallel to x on the 

magnet per unit volume is 
da 

1s’ 

or, if A, B, C are the components of /, 
.da _ da n da 

A -y + By+C — y 
dx dy dz 

da „/d/3 A__\ , n(dy 

The total force on the element parallel to x is therefore 

yv-^w+Ad£+B(^-^w)+C(^+^v), 

or 

1. e. 

v(y+4hC)-w{I3+4ttB)+A^+B^ + G-£;, 
* 

, , . da dp „dy vc-vb + A^+B^ + C-, 

the expression in the text.} 



CHAPTER XII. 

CURRENT-SHEETS. 

647. ] A current-sheet is an infinitely thin stratum of con¬ 

ducting matter, bounded on both sides by insulating media, so 

that electric currents may flow in the sheet, but cannot escape 

from it except at certain points called Electrodes, where currents 

are made to enter or to leave the sheet. 

In order to conduct a finite electric current, a real sheet must 

have a finite thickness, and ought therefore to bu considered 

a conductor of three dimensions. In many cases, however, it is 

practically convenient to deduce the electric properties of a real 

conducting sheet, or of a thin layer of coiled wire, from those of 

a current-sheet as defined above. 

We may therefore regard a surface of any form as a current- 

sheet. Having selected one side of this surface as the positive 

side, we shall always suppose any lines drawn on the surface to 

bo looked at from the positive side of the surface. In the case 

of a closed surface we shall consider the outside as positive. See 

Art. 294, where, however, the direction of the current is defined 

as seen from the negative side of the sheet. 

The Current-function. 

648. ] Let a fixed point A on the surface be chosen as origin, 

and let a line be drawn on the surface from A to another point 

P. Let the quantity of electricity which in unit of time crosses 

this line from left to right be 0, then <p is called the Current- 

function at the point P. 

The current-function depends only on the position of the 

point P and is the same for any two forms of the line AP, 
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provided this line can be transformed by continuous motion 
from one form to the other without passing through an electrode. 

For the two forms of the line will enclose an area within which 

there is no electrode, and therefore the same quantity of 

electricity which enters the area across one of the lines must 

issue across the other. 

If s denote the length of the line AP, the current across tls 

from left to right will be 

If <f> is constant for any curve, there is no current across it. 

Such a curve is called a Current-line or a Stream-line. 

649.] Let \fs be the electric potential at any point of the sheet, 

then the electromotive force along any element ds of a curve 

will be d\I/ 7 
-r- ds, 

provided no electromotive force oxists except that which arises 

from differences of potential. 

If \j/ is constant for any curve, the curve is called an Equi- 

potential Line. 

650.] We may now suppose that the position of a point on 

the sheet is defined by the values of (f> and \f/ at that point. 

Let dsx be the length of the element of the equipotential line \j/ 

intercepted between the two current lines <j) and <f> + d<f), and let 

ds2 be the length of the element of the current line <£ intercepted 

between the two equipotential lines and \{f + d\l/. We may 

consider ds} and ds2 as the sides of the element dcf)d\l/ of the 

sheet. The electromotive force — d\j/ in the direction of ds2 

produces the current d(f> across dsx. 

Let the resistance of a portion of the sheet whose length 

is and whose breadth is dsXi be 

ds2 

where <r is the specific resistance of the sheet referred to unit of 

area, then ds9 7 
d+ = v^d<j>, 

dsT __ ds2 

d(p d\// 

651.] If the sheet is of a substance which conducts equally 

well in all directions, dsx is perpendicular to dsr In the case 

whence 
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of a sheet of uniform resistance a is constant, and if we make 
^ = air’, we shall have g8i 

be 2 bfa* 

and the stream-lines and equipotential lines will cut the surface 
into little squares. 

It follows from this that if fa and fa' are conjugate functions 
(Art, 183) of <f> and fa, the curves fa may be stream-lines in the 

sheet for which the curves xj// are the corresponding equi¬ 
potential lines. One case, of course, is that in which fa = fa 

and fa' = —fa In this case the equipotential lines become 

current-lines, and the current-lines equipotential lines*. 

If we have obtained the solution of the distribution of electric 

currents in a uniform sheet of any form for any particular case, 
we may deduce the distribution in any other case by a proper 

transformation of the conjugate functions, according to the 
method given in Art. 190. 

652.] We have next to determine the magnetic action of a 

current-sheet in which the current is entirely confined to the 
sheet, there being no electrodes to convey the current to or from 
the sheet. 

In this case the current-function $ has a determinate value at 

every point, and the stream-lines are closed curves which do not 

intersect each other, though any one stream-line may intersect 
itself. 

Consider the annular portion of the sheet between the stream¬ 
lines <f> and <j> + b<f>. This part of the sheet is a conducting cir¬ 

cuit in which a current of strength b(f> circulates in the positive 

direction round that part of the sheet for which <f> is greater 

than the given value. The magnetic effect of this circuit is the 

same as that of a magnetic shell of strength b<p at any point not 

included in the substance of the shell. Let us suppose that the 

shell coincides with that part of the current-sheet for which <f> 

has a greater value than it has at the given stream-line. 

By drawing all the successive stream-lines, beginning with 
that for which <f> has the greatest value, and ending with that 

for which its value is least, we shall divide the current-sheet 

into a series of circuits. Substituting for each circuit its corre¬ 

sponding magnetic shell, we find that the magnetic effect of the 

* See Thomson, Camb. Math. Joum., vol. iii. p. 286. 
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current-sheet at any point not included in the thickness of the 

sheet is the same as that of a complex magnetic shell, whose 

strength at any point is where C is a constant. 

If the current-sheet is bounded, then we must make C + ~ 0 

at the bounding curve. If the sheet forms a closed or an in¬ 

finite surface, there is nothing to determine the value of the 

constant C. 

653.] The magnetic potential at any point on either side of 

the current-sheet is given, as in Art. 415, by the expression 

X> = JJ — (f) cos OdS, 

where r is the distance of the given point from the element of 

surface dS, and 6 is the angle between the direction of r, and 

that of the normal drawn from the positive side of dS. 

This expression gives the magnetic potential for all points not 

included in the thickness of the current-sheet, and we know 

that for points within a conductor carrying a current there is no 

such thing as a magnetic potential. 

The value of 12 is discontinuous at the current-sheet, for 

if is its value at a point just within the current-sheet, 

and I22 its value at a point close to the first but just outside 

the current-sheet, 
X22 = ilj 4- 4 7r</), 

where </> is the current-function at that point of the sheet. 

The value of the component of magnetic force normal to the 

sheet is continuous, being the same on both sides of the sheet. 

The component of the magnetic foreg parallel to the current¬ 

lines is also continuous, but the tangential component per¬ 

pendicular to the current-lines is discontinuous at the sheet, if 

s is the length of a curve drawn on the sheet, the component of 

magnetic force in the direction of ds is, for the negative side, 

d£1** , . , . . . d dr(f> 
— —7—• 5 and for the positive side, — -7-^ —-—4 ir 

ds r ds ds ds 
The component of the magnetic force on the positive 

therefore exceeds that on the negative side by — 4 7T 
d<j> 
ds 

side 

At a 

given point this quantity will be a maximum when ds i& per¬ 

pendicular to the current-lines. 

VOL. II. u 
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On the Induction of Electric Currents in a Sheet of 

Infinite Conductivity. 

654.] It was shewn in Art. 579 that in any circuit 

+ jRi, 

where E is the impressed electromotive force, p the electro- 

kinetic momentum of the circuit, R the resistance of the circuit, 

and i the current round it. If there is no impressed electro¬ 

motive force and no resistance, then 
dp 

Tt 
0, or p is constant. 

Now p, the electrokinetic momentum of the circuit, was 

shewn in Art. 588 to be measured by the surface-integral of 

magnetic induction through the circuit. Hence, in the case 

of a current-sheet of no resistance, the surface-integral of mag¬ 

netic induction through any closed curve drawn on the surface 

must be constant, and this implies that the normal component 

of magnetic induction remains constant at every point of the 

current-sheet. 

655.] If, therefore, by the motion of magnets or variations 

of currents in the neighbourhood, the magnetic field is in any 

way altered, electric currents will be set up in the current-sheet, 

such that their magnetic effect, combined with that of the 

magnets or currents in the field, will maintain the normal 

component of magnetic induction at every point of the sheet 

unchanged. If at first there is no magnetic action, and no 

currents in the sheet, then the normal component of magnetic 

induction will always be zero at every point of the sheet. 

The sheet may therefore be regarded as impervious to mag¬ 

netic induction, and the lines of magnetic induction will be 

deflected by the sheet exactly in the same way as the lines 

of flow of an electric current in an infinite and uniform con¬ 

ducting mass would be deflected by the introduction of a 

sheet of the same form made of a substance of infinite re¬ 

sistance. 

If the sheet forms a closed or an infinite surface, no magnetic 

actions which may take place on one side of the sheet will 

produce any magnetic effect on the other side. 
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Theory of a Plane Current-sheet, 

656.] We have seen that the external magnetic action of 

a current-sheet is equivalent to that of a magnetic shell whose 

strength at any point is numerically equal to <p, the current- 

function. When the sheet is a plane one, we may express all 

the quantities required for the determination of electromagnetic 

effects in terms of a single function, P, which is the potential 

due to a sheet of imaginary matter spread over the" plane with 

a surface-density <£. The value of P is of course 

P = JJ~dx dy', 0) 

where r is the distance from the point (x, y, z) for which P is 

calculated, to the point (x\ y\ 0) in the plane of the sheet, at 

which the element d-afdy' is taken. 

To find the magnetic potential, we may regard the magnetic 

shell as consisting of two surfaces parallel to the plane of xyy the 

first, whose equation is z — i e, having the surface-density - , and 
c 

the second, whose equation is z — — \c, having the surface- 

density 

The potentials due to these surfaces will be 

-P , ,x and ~-P , c\ 
c ('-*) V + ~z) 

c 
respectively, where the suffixes indicate that z — ^ is put for c 

in the first expression, and z -f L for z in the second. Expanding 
£ 

these expressions by Taylor’s Theorem, adding them, and then 

making c infinitely small, we obtain for the magnetic potential 

due to the sheet at any point external to it, 

657.] The quantity P is symmetrical with respect to the 

plane of the sheet, and is therefore the same when —3 is 

substituted for 0. 

£ly the magnetic potential, changes sign when — 0 is put for z. 
At the positive surface of the sheet 

dP n , 
X2 =-- - — 2 7T d). 

dz 
U 2 

(3) 



292 CURRENT-SHEETS. [657- 

At the negative surface of the sheet 

a = - = - 2v<f>. 
dz («) 

Within the sheet, if its magnetic effects arise from the mag¬ 

netization of its substance, the magnetic potential varies con¬ 

tinuously from 27T<f> at the positive surface to —27r<f> at the 

negative surface. 

If the sheet contains electric currents, the magnetic force within 

it does not satisfy the condition of having a potential. The mag¬ 

netic force within the sheet is, however, perfectly determinate. 

The normal component, 

d£l d2P 

^ dz ~~ dz2 5 

is the same on both sides of the sheet and throughout its 

substance. 

If a and f3 be the components of the magnetic force parallel to 

x and to y at the positive surface, and a', ft' those on the negative 

surface, d(j> 
O H ' a — ~ 2 7r 7 - = — a , 

dx 
d<b , 

^-2^ = -/*'. 

(6) 

(7) 

(8) 

Within the sheet the components vary continuously from a 

and /3 to a and 

. dll dO d£l \ 

dy dz dx 

dF dH __ dSl 

dz dx dy ’ 

dG_ dF _ _<Ul 

dx dy ~~ dz 

which connect the components F, £r, H of the vector-potential 

due to the current-sheet with the scalar potential 12, are satisfied 

if we make d p dP 
F=~, G = h=0. (9) 

dy dx 

We may also obtain these values by direct integration, thus 

for F {we have by Art. 616 if /x is everywhere equal to unity}, 

If1- dx'dtf. 
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Since the integration is to be estimated over the infinite plane 

sheet, and since the first term vanishes at infinity, the expression 

is reduced to the second term ; and by substituting 

d 1 „ d 1 

dy t °l dy' r9 

and remembering that </> depends on x' and y\ and not on x, y, c, 

- 
■UJ , . 

= djriyw- 
If il' is the magnetic potential due to any magnetic or electric 

system external to the sheet, we may write 

and we shall then have 

F, dP' 

F=w 

dz. 

G'= 
dl1' 

dx 
H'= 0, 

(10) 

(11) 

for the components of the vector-potential due to this system. 

658.] Let us now determine the electromotive intensity at any 

point of the sheet, supposing the sheet fixed. 

Let X and F be the components of the electromotive intensity 

parallel to x and y respectively, then, by Art. 598, we have 

{writing^ for 
x — ±r+r)- d\f/ 

dx9 

d\[/ 

(12) 

(13) 

If the electric resistance of the sheet is uniform and equal to <r, 

X = (TU, Y == (TV, (14) 

where u and v are the components of the current, and if <f> is 

the current-function, 

d<l> dd> 
u = r* 

dy 
v — — 

dx 
(15) 

But, by equation (3), 2 7r<£ = — 
dP 
dz 

at the positive surface of the current-sheet. Hence, equations 

(12) and (13) may be written 

* <PP 

2 7idydz 

a d2P 

2 7jdxdz 

-m^-% 

~(P + P') — 
dxdt' ’ dy’ 

(16) 

(17) 
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where the values of the expressions are those corresponding to 

the positive surface of the sheet. 

If we differentiate the first of these equations with respect to x, 

and the second with respect to y, and add the results, we obtain 

Mj' + <l2i' _ 0 
dx~ dy2 

(18) 

The only value of \j/ which satisfies this equation, and is finite 

and continuous at every point of the plane, and vanishes at an 

infinite distance, is ^ = 0 (19) 

Hence the induction of electric currents in an infinite plane 

sheet of uniform conductivity is not accompanied with differences 

of electric potential in different /arts of the sheet. 

Substituting this value of and integrating equations (16), 

(17), we obtain a dP dP dJy 

Since the values of the currents in the sheet are found by 

differentiating with respect to x or y, the arbitrary function of z 

and t will disappear. We shall therefore leave it out of account. 

If we also write for — > the single symbol R> which represents 

a certain velocity, the equation between P and ly becomes 

DdP dP dP' 
R-—■= . + (21) 

dz dt 1 dt 

659.] Let us first suppose that there is no external magnetic 

system acting on the current-sheet. We may therefore suppose 

Pf = 0. The case then becomes that of a system of electric 

currents in the sheet left to themselves, but acting on one 

another by their mutual induction, and at the same time losing 

their energy on account of the resistance of the sheet. The 

result is expressed by the equation 

RdP_dP (22\ 
dz dt 9 

the solution of which is P = F {x, y, (z-f-i?£)}. (23) 

* Hence, the value of P at any point on the positive side 

* [The equations (20) and (22) are proved to be true only at the surface of the 
sheet for which z « 0. The expression (23) satisfies (22) generally, and therefore 
also at the surface of the sheet. It also satisfies the other conditions of the problem, 
and is therefore a solution. 'Anyother solution must differ from this by a system 
of closed currents, depending on the initial state of the sheet, not due to any external 
cause, and which therefore must decay rapidly. Hence, since we assume an eternity 
of past time, this is the only solution of the problem.’ See Professor Clerk Maxwell’s 
Paper, Royal Soo. Proc.f xx. pp. 160-168.] 
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of the sheet whose coordinates are x9 y9 z, and at a time t, is 

equal to the value of P at the point x. y, (z + lit) at the instant 
when t = 0. 

If therefore a system of currents is excited in a uniform plane 

sheet of infinite extent and then left to itself, its magnetic effect 

at any point on the positive side of the sheet will be the same 

as if the system of currents had been maintained constant in 
the sheet, and the sheet moved in the direction of a normal from 

its negative side with the constant velocity JR. The diminution 

of the electromagnetic forces, which arises from a decay of the 

currents in the real case, is accurately represented by the 

diminution of the forces on account of the increasing distance in 
the imaginary case. 

660.] Integrating equation (21) with respect to £, wc obtain 

P + ly (21) 

If we suppose that at first P and ly are both zero, and that 

a magnet or electromagnet is suddenly magnetized or brought 

from an infinite distance, so as to change the value of P' 
suddenly from zero to P\ then, since the time-integral in 

the second member of (24) vanishes with the time, we must 

have at the first instant P = — P' at the surface of the sheet. 

Hence, the system of currents excited in the sheet by the 
sudden introduction of the system to which Pr is due, is such 

that at the surface of the sheet it exactly neutralizes the 

magnetic effect of this system. 

At the surface of the sheet, therefore, and consequently at all 

points on the negative side of it, the initial system of currents 

produces an effect exactly equal and opposite to that of the 
magnetic system on the positive side. We may express this 

by saying that the effect of the currents is equivalent to that 

of an image of the magnetic system, coinciding in position 

with that system, but opposite as regards the direction of its 

magnetization and of its electric currents. Such an image is 

called a negative image. 

The effect of the currents in the sheet at a point on the 

positive side of it is equivalent to that of a positive image of 

the magnetic system on the negative side of the sheet, the 

lines joining corresponding points being bisected at right angles 

by the sheet. 
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The action at a point on either side of the sheet, due to the 

currents in the sheet, may therefore be regarded as due to an 

image of the magnetic system on the side of the sheet opposite 

to the point, this image being a positive or a negative image 

according as the point is on the positive or the negative side of 

the sheet. 

661. ] If the sheet is of infinite conductivity, R = 0, and the 

right-hand side of (24) is zero, so that the image will represent 

the effect of the currents in the sheet at any time. 

In the case of a real sheet, the resistance R has some finite 

value. The image just described will therefore represent the 

effect of the currents only during the first instant after the 

sudden introduction of the magnetic system. The currents will 

immediately begin to decay, and the effect of this decay will be 

accurately represented if we suppose the two images to move 

from their original positions, in the direction of normals drawn 

from the sheet, with the constant velocity R. 

662. ] We are now prepared to investigate the system of 

currents induced in the sheet by any system, M, of magnets or 

electromagnets on the positive side of the sheet, the position and 

strength of which vary in any manner. 

Let P', as before, be the function from which the direct action 

of this system is to be deduced by the equations (3), (9), &e., 

then 
dP' 
dt 

bt vrill be the function corresponding to the system re- 

, t. dM w 
presented by of. This quantity, which is the increment of 

M in the time bt, may be regarded as itself representing a 

magnetic system. 

If we suppose that at the time t a positive image of the system 

dM 

dt 
bt is formed on the negative side of the sheet, the magnetic 

action at any point on the positive side of the sheet due to this 

image will be equivalent to that due to the currents in the sheet 

excited by the change in M during the first instant after the 

change, and the image will continue to be equivalent to the 

currents in the sheet, if, as soon as it is formed, it begins 

to move in the negative direction of z with the constant 

velocity R. 

If we suppose that in every successive element of the time an. 
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image of this kind is formed, and that as soon as it is formed 

it begins to move away from the sheet with velocity R, we shall 

obtain the conception of a trail of images, the last of which is 

in process of formation, while all the rest are moving like a 

rigid body away from the sheet with velocity R. 

663.] If P' denotes any function whatever arising from the 

action of the magnetic system, we may find P, the corresponding 

function arising from the currents in the sheet, by the following 

process, which is merely the symbolical expression for the theory 

of the trail of images. 

Let PT denote the value of P (the function arising from the 

currents in the sheet) at the point (x, y, z + Rt), and at the time 

t — r, and let PT' denote the value of P/ (the function arising 

from the magnetic system) at the point (x, y, — (;z + Rt)), and at 

the time t — r. Then 

dPT __ dPr _dp 

dr dz dt 

and equation (21) becomes 

dp_dp; 
dr dt 

(25) 

(26) 

and we obtain by integrating with respect to r from t — 0 

to r —- qc , l*dP' 

1 J, ji‘,r <27> 

as the value of the function P, whence we obtain all the pro¬ 

perties of the current-sheet by differentiation, as in equations 

(3), (9), &C* 

664.] As an example of the process here indicated, let us take 

* {This proof may be arranged as follows : let be the value of P at the time t — r 
at the point x, y, — (* + R r), the rest of the notation being the same as in the text. 
Then since is a function of x, y> z + Ur, t~r we have 

d%T _ 
dr dz dt 1 

and since by the footnote on page 294 equation (21) is satisfied at all points in the 

field and not merely in the plane, we have 

d$r _ dFr 
dr dt 

hence 

y poi 
9Jr. 

' dFr 
df ° 

but since P has the same value at any point as at the image of the point in the plane 
sheet, - Pr, 

dP'r. ) 

-jrdTl 
Pr=-t hence 
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the caao of a single magnetic pole of strength unity, moving 

with uniform velocity in a straight line. 

Let the coordinates of the pole at the time t be 

= 0, £=<; + «>*. 

The coordinates of the image of the pole formed at the time 

t — T are 

£ = u (t — r), i] — 0, f = — (c + tl> (t — r) -f It r), 

and if r is the distance of this image from the point (.r, y, 0), 

r8 = (rr — u (/. -~r))2 + ?/2 + (z + c + U> (£ — t) + 2ir)2. 

To obtain the potential due to the trail of images we have to 

calculate _ d r 

dt /<> 

If we write 

f 

(It 
r 

Q* = u2 + (Zi- 

--- = — ilog {Qr + u(ic—u<) + (i2—U')(3 + c + w>i)}, 

■W>)2, 

'0 T Q 
+ a term infinitely great which however will disappear on differ¬ 

entiation with regard to t, the value of r in this expression being 

found by making r = 0 in the expression for r given above. 

Differentiating this expression with respect to i, and putting 

t = 0, we obtain the magnetic potential due to the trail of 

images, 

Q 
\v (z + c) — \\x 

■ u2 — n>2 -f Un> 

12 = Q Qr + \\x + (R — w)(z + c) 
By differentiating this expression with respect to x or 0, we 

obtain the components parallel to x or z respectively of the 

magnetic force at any point, and by putting x = 0, z = c, and 

r — 2c in these expressions, we obtain the following values of 

the components of the force acting on the moving pole itself, 

X= - h 
n> 

4- 71 - 
4c*Q + R-\v( Q Q(Q + 

i* 

u:_1 
it-\»)r 

~ J 5n> __ 

*?IQ ~Q(Q + It-\\>)t ' 

665.] In these expressions we must remember that the motion 

is supposed to have been going on for an infinite time before the 

* {These expressions may be written in the simpler forms 

1 R u 
X- - 

tc'QQ + li-xo 
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time considered. Hence we must not take tt> a positive quan¬ 
tity, for in that case the pole must have passed through the 
sheet within a finite time. 

If we make u = 0, and tu negative, X = 0, and 

z l n> 
4 c2 R + m ’ 

or the pole as it approaches the sheet is repelled from it. 

If we make tt) = 0, we find Q2 = u2 4- R 

Y- 1 11 ^ ay-1 u2 
4 c*Q(Q + M) 

The component X represents a retarding force acting on the 

pole in the direction opposite to that of its own motion. For a 

given value of R, X is a maximum when u — 1-27 JK. 

When the sheet is a non-conductor, R — cc and X = 0. 

When the sheet is a perfect conductor, R = 0 and X = 0. 

The component Z represents a repulsion of the pole from.the 
sheet. It increases as the velocity u increases, and ultimately 

becomes ~ when the velocity is infinite. It has the same 

value when R is zero. 

666. ] When the magnetic pole moves in a curve pai*allel to 

the sheet, the calculation becomes more complicated, but it is 

easy to see that the effect of the nearest portion of the trail of 

images is to produce a force acting on the pole in the direction 

opposite to that of its motion. The effect of the portion of the 

trail immediately behind this is of the same kind as that of a 

magnet with its axis parallel to the direction of motion of the 

pole at some time before. Since the nearest pole of this magnet 

is of the same name with the moving pole, the force will consist 

partly of a repulsion, and partly of a force parallel to the former 

direction of motion, but backwards. This may be resolved into 
a retarding force, and a force towards the concave side of the 

path of the moving pole. 

667. ] Our investigation does not enable us to solve the case 

in which the system of currents cannot be completely formed, on 

account of a discontinuity or boundary of the conducting sheet. 

It is easy to see. however, that if the pole is moving parallel 

to the edge of the sheet, the currents on the side next the edge 

will be enfeebled. Hence the forces due to these currents will 

be less, and there will not only be a smaller retarding force, but, 
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since the repulsive force is least on the side next the edge, the 

pole will be attracted towards the edge. 

Theory of Arago’s Rotating Disk. 

668.] Arago discovered * that a magnet placed near a rotating 

metallic disk experiences a force tending to make it follow the 

motion of the disk, although when the disk is at rest there is 

no action between it and the magnet. 
This action of a rotating disk was attributed to a new kind 

of induced magnetization, till Faraday f explained it by means 

of the electric currents induced in the disk on account of its 

motion through the field of magnetic force. 

To determine the distribution of these induced currents, and 

their effect on the magnet, we might make use of the results 

already found for a conducting sheet at rest acted on by a 

moving magnet, availing ourselves of the method given in 

Art. 600 for treating the electromagnetic equations when re¬ 

ferred to a moving system of axes. As this case, however, has 

a special importance, we shall treat it in a direct manner, be¬ 

ginning by assuming that the poles of the magnet are so far 

from the edge of the disk that the effect of the limitation of the 

conducting sheet may be neglected. 

Making use of the same notation as in the preceding articles 

(656-667), we find {equations 13, § 598, writing t// for for 

the components of the electromotive intensity parallel to x and y 

respectively, dy d\jr \ 

°U= ydt~dx’ 

dx dsj, ' 

aV=~ydt ~dy’ 

where y is the resolved part of the magnetic force normal to 
the disk. 

If we now express n and v in terms of <£, the current-function, 

(2) 

and if the disk is rotating about the axis of z with the angular 
velocity a>, dy dx 

dt = mX> dt=-wy• <3> 

* Annak* de Chimie et de Physique. Tome 32, pp. 213-223, 1826. 
f JSxp. Res.t 81. 
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Substituting these values in equations (1), we find 

d<f> d\f/ 
<r~r~ = yu)X — 

dy , 

d<t> 

dx 

d\\f 

dy 

301 

(4) 

(5) 

Multiplying (4) by x and (5) by y, and adding, we obtain 

Multiplying (4) by y and (5) by —xy and adding, we obtain 

V(J± +v d*\ = xd±-vif. /7) 
' dx ' dy' dy ^ dx 

If we now express these equations in terms of r and 0, where 

x = r cos 0, y = r sin 0, (8) 

they become 
d<t> 2 d\j/ 

dO r dr 0) 

d,(j> d\j/ 

aT dr^Jo' 
(10) 

Equation (10) is satisfied if we assume any arbitrary function 

X of r and 0, and make d\ 
<P = 

* 

d 0 

dx. 
dr 

Substituting these values in equation (9), it becomes 

d / d\\ 

oo 
(12) 

(13) 

Dividing by o-r2, and restoring the coordinates x and y, this 

becomes d\ , ^ 

dx2* dy* «y 

This is the fundamental equation of the theory, and expresses 

the relation between the function, x> and the comnonent, y, of 

the magnetic force resolved normal to the disk. 

Let Q be the potential, at any point on the positive side of the 

disk, due to imaginary attracting matter distributed over the 

disk with the surface-density x* 

At the positive surface of the disk 

dQ 
dz -~2,rx- 

(15) 



302 CURRENT-SHEETS. [668. 

Hence the first member of equation (14) becomes 

d*x , <^\„_±_d (d*Q , #Q\. 
~dxl dy2 2 7vdz'dx2 dy*' 

But since Q satisfies Laplace’s equation at all points external 

to the disk, d2Q d2Q d*Q 

rf? + cfc*’ (17) 

and equation (14) becomes 

<r cZ3Q , . 
2i d?'~UY’ ( ) 

Again, since Q is the potential due to the distiibution the 

potential due to the distribution <p, or , will be • From 
of 0 ft 

this we obtain for the magnetic potential due to the currents in 

the disk, d2Q .n. 
^ll~~d~ddz’ ^ 

and for the component of the magnetic force normal to the 

disk due to the currents, 

y - _ _-2 = (20) 
y1 dz dOdz2 * ' 

If il2 is the magnetic potential due to external magnets, and 

if we write T), 7 /ft,v 
7 = -Jn2ds9 (21) 

the component of the magnetic force normal to the disk due to 

the magnets will be n pr 

»-sr <**> 
We may now write equation (18), remembering that 

v =-yi+y2> 
- d2p/ /9o. 

2 ff dz6 '*de ~dz2~-i* dz* * ( ' 

Integrating twice with respect to 2, and writing JS for — , 

^dz-^dd)*-^ * ^ 

If the values of P and Q are expressed in terms of r, the dis¬ 

tance from the axis of the disk, and of £ and ( two new variables 

such that r> d 

Ob 

, U 
2C= £-0, 

CD 
(25) 



ARAGO’S DISK. 303 669.] 

equation (24) becomes, by integration with respect to C, 

Q=J^P'dC (26) 

669.] The form of this expression taken in conjunction with 

the method of Art. 662 shews that the magnetic action of the 

currents in the disk is equivalent to that of a trail of images of 

the magnetic system in the form of a helix. 

If the magnetic system consists of a single magnetic pole of 

strength unity, the helix will lie on the cylinder whose axis is 

that of the disk, and which passes through the magnetic pole. 

The helix will begin at the position of the optical image of the 

pole in the disk. The distance, parallel to the axis, between 

R 
consecutive coils of the helix will be 277 — • The magnetic effect 

of the trail will be the same as if this helix had been magnetized 

everywhere in the direction of a tangent to the cylinder perpen¬ 

dicular to its axis, with an intensity such that the magnetic 

moment of any small portion is numerically equal to the length 

of its projection on the disk. 

The calculation of the effect on the magnetic pole would be 

complicated, but it is easy to see that it will consist of— 

(1) A dragging force, parallel to the direction of motion of 

the disk. 

(2) A repulsive force acting from the disk. 

(3) A force towards the axis of the disk. 

When the pole is near the edge of the disk, the third of these 

forces may be overcome by the force towards the edge of the 

disk, indicated in Art. 667 * 

All these forces were observed by Arago, and described by 

him in the Annales cle Ch 'nnie for 1826. See also Felici, in 

Tortolini’s Annals, iv, p. 173 (1853), and v, p. 35; and E. 

Jochmann, in Crelies Journal, lxiii, pp. 158 and 329 ; also in Pogg. 

Ann. cxxii, p. 214 (1864). In the latter paper the equations 

necessary for determining the induction of the currents on 

themselves are given, but this part of the action is omitted in 

the subsequent calculation of results. The method of images 

given here was published in the Proceedings of the Royal Society 

for Feb. 15, 1872. 

a is the distance of a pole from the axis of (he disk, c its height above the disk, 
we can prove that for small values of o», the dragging force on the pole is m acv/S c2 It, 
the repulsive force m2a2«*/8cai2a, the force towards the axis m2a or/l ell2, j 
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Spherical Current-Sleet. 

670.] Let <\> be the current-function at any point Q of a 

spherical current-sheet, and let P be the potential at a given 

point, due to a sheet of imaginary 

matter distributed over the sphere 

with surface-density 0, it is re¬ 

quired to find the magnetic po¬ 

tential and the vector-potential of 

the current-sheet in terms of P. 

Let a denote the radius of the 

sphere, r the distance of the given 

point from the centre, and p the 

reciprocal of the distance of the 

given point from the point Q on the sphere at which the current- 

function is <f>. 

The action of the current-sheet at any point not in its sub¬ 

stance is identical with that of a magnetic shell whose strength 

at any point is numerically equal to the current-function. 

The mutual potential of the magnetic shell and a unit pole 

placed at the point P is, by Art. 410, 

12 -Jf^tdS. 
da 

Since p is a homogeneous function of the degree 

dp _ 

1 in rand a, 

dp 

“da+rdr = ~P, 

dp id,. 

0t da = - adr(l,r)’ 

and a= 

Since r and a are constant throughout the surface-integration, 

But if P is the potential due to a sheet of imaginary matter 

of surface-density 0, ^ ^ 

and 12, the magnetic potential of the current-sheet, may be 

expressed in terms of P in the form 

1 d 
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671.] We may determine F\ the ^-component of the vector- 

potential, from the expression given in Art. 416, 

JJ <iC ' 

where £, r/, ( are the coordinates of the element dS, and l, m, n 
are the direction-cosines of the normal. 

Since the sheet is a sphere, the direction-cosines of the normal 

y 
m = ~) 

a a 

so that 

%- 

= {*(v-y)-y(C-z)}^, 

__ z dp y dp 
a d,y a dz 

Multiplying by <f>dS> and integrating over the surface of the 
sphere, we find 

Similarly 

f- 1 _ yd?' 
a dy a dz 

& __ x dP z dP 

a dz a dx 9 

jj __ y dP x dP 

a dx a dy * a dx a dy * 

The vector 21, whose components are Fy (?, JET, is evidently 

perpendicular to the radius vector r, and to the vector whose 

components are > and • If we determine the lines 

of intersection of the spherical surface whose radius is r, with 

the series of equipotential surfaces corresponding to values of P 
in arithmetical progression, these lines will indicate by their 
direction the direction of 21, and by their proximity the magni¬ 
tude of this vector. 

In the language of Quaternions, 

21 = -F.pVP. 
a 

VOL. II. X 
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672.] If we assume as the value of P within the sphere 
»* i 

P=A(-)T" 
where Ti is a spherical harmonic of degree then outside the 

8Phere ™ n m 

The current-function (f> is since 4 7r^>, given 

by the equation 

47r a 

The magnetic potential within the sphere is 

v 7 a va' 

and outside &'= i- A (-) K. a v r/ * 

For example, let it be required to produce, by means of a wire 
coiled into the form of a spherical shell, a uniform magnetic 

force M within the shell. The magnetic potential within the 
shell is, in this case, a solid harmonic of the first degree of the 

f°rm 12 — — Mr cos 0, 

where M is the magnetic force. Hence A = \dlMt and 

<f> = ~ if a cos 0. 
8 Tk 

The current-function is therefore proportional to the distance 

from the equatorial plane of the sphere, and therefore the 

number of windings of the wire between any two small circles 

must be proportional to the distance between the planes of these 

circles. 
If N is the whole number of windings, and if y is the strength 

of the current in each winding, 

<p = J Ny cos 0. 

Hence the magnetic force within the coil is 

3 a 

673.] Let us next find the method of coiling the wire in order 

to produce within the sphere a magnetic potential of the form of 

a solid zonal harmonic of the second degree, 

£1 = — 3- A ~ (# cos2<9 — $). 
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Here 

If the whole number of windings is i\T, the number between 

the pole and the polar distance 0 is iiVsin*0. 
The windings are closest at latitude 45°. At the equator the 

direction of winding changes, and in the other hemisphere the 
windings are in the contrary direction. 

Let y be the strength of the current in the wire, then within 
the shell 4 * 7*2 

& = 008*0-*). 

Let us now consider a conductor in the form of a plane closed 

curve placed anywhere within the Bhell with its plane perpen¬ 
dicular to the axis. To determine its coefficient of induction we 

d f2 
have to find the surface-integral of — ^ over the plane bounded 

by the curve, putting y = 1. 

Now 12 = 
47T 

and 
d£l 87r ,r 

■ ~~j = —<2 Nz. 
dz 5cr 

Hence, if S is the area of the closed curve, its coefficient of 
induction is q _ 

M= P-tNSz. 
5 a2 

If the current in this conductor is y, there will be, by Art. 583, 
a force Z, urging it in the direction of z, where 

„ ,dM Sir 
NSyy', 

and, since this is independent of x, y, zy the force is the same in 
whatever part of the shell the circuit is placed. 

674.] The method given by Poisson, and described in Art. 437, 
may be applied to current-sheets by substituting for the body, 

supposed to be uniformly magnetized in the direction of z with 
intensity /, a current-sheet having the form of its surface, and 
for which the current-function is 

* = (1) 

The currents in the sheet will be in planes parallel to that of ocy> 
and the strength of the current round a slice of thickness dz will 
be Idz. 
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The magnetic potential due to this current-sheet at any point 

a = -4?; (2) 
outside it will be 

{where V is the gravitation potential due to the sheet when 

the surface-density is unity.} 
At any point inside the sheet it will be 

dV 
12^-4tt Iz-I~- (3) 

dz 

The components of the vector-potential are 
dV dV 

G = H = 0. (4) 
dy dx 

These results can be applied to several cases occurring in 

practice. 
675.] (l) A plane electric circuit of any form. 

Let V be the potential due to a plane sheet of any form of 
which the surface-density is unity, then, if for this sheet we 

substitute either a magnetic shell of strength I or an electric 

current of strength I round its boundary, the values of 12 and of 

Fs Gy H will be those given above. 
(2) For a solid sphere of radius a, 

V = ~ when r is greater than a, 

2 7T 
V = — (3 a2 — r2) when r is less than a. 

*> 

(5) 

and V = ~ (3 a2 — r2) when r is less than a. (6) 
O 

Hence, if such a sphere is magnetized parallel to z with inten¬ 
sity /, the magnetic potential will be 

4 7T Q/ 

12 = — I — z outside the sphere, (7) 

4 TT 
and —Iz inside the sphere. (8) 

o 
If, instead of being magnetized, the sphere is coiled with wire 

in equidistant circles, the total strength of current between two 

small circles whose planes are at unit distance being /, then out¬ 

side the sphere the value of 12 is as before, but within the sphere 

n = -^iz. (9) 

This is the case already discussed in Art. 672. 

(3) The case of an ellipsoid uniformly magnetized parallel to 
a given line has been discussed in Art. 437. 

If the ellipsoid is coiled with wire in parallel and equidistant 

planes, the magnetic force within the ellipsoid will be uniform. 
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(4) A Cylindric Magnet or Solenoid. 

676.] If the body is a cylinder having any form of section and 

bounded by planes perpendicular to its generating lines, and if 

Vx is the potential at the point (xy y} z) due to a plane area of 

surface-density unity coinciding with the positive end of the 

solenoid, and V2 the potential at the same point due to a plane 

area of surface-density unity coinciding with the negative end, 

then, if the cylinder is uniformly and longitudinally magnetized 

with intensity unity, the potential at the point (x, y, z) will be 

.Q = Vr — Vv (10) 

If the cylinder, instead of being a magnetized body, is uni¬ 

formly lapped with wire, so that there are n windings of wire in 

unit of length, and if a current, y, is made to flow through this 

wire, the magnetic potential outside the solenoid is as before, 

LL = ny{ (11) 

but within the space bounded by the solenoid and its plane ends 

12 = ny( — 47T-S+ Vx — V2\ (12) 

The magnetic potential is discontinuous at the plane ends of 

the solenoid, but the magnetic force is continuous. 

If rv r2, the distances of the centres of inertia of the positive 

and negative plane ends respectively from the point (x, yy z), are 

very great compared with the transverse dimensions of the 

solenoid, we may write 

Vi = ~-’ K = 03) 
71 '2 

where A is the area of either section. 

The magnetic force outside the solenoid is therefore very small, 

and the force inside the solenoid approximates to a force parallel 

to the axis in the positive direction and equal to 4 ny. 

If the section of the solenoid is a circle of radius a, the values 

of Vx and V2 may be expressed in the series of spherical har¬ 

monics given in Thomson and Tait’s Natural Philosophy, 

Art. 546, Ex. II., 
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In these expressions r is the distance of the point (cr, y, z) 
from the centre of one of the circular ends of the solenoid, and 

the zonal harmonics, Pu &c., are those corresponding to the 
angle 6 which r makes with the axis of the cylinder. 

The differential coefficient with respect to z of the first of these 

expressions is discontinuous when $ = ~ > but we must remember 

that within the solenoid we must add to the magnetic force 

deduced from this expression a longitudinal force tuny. 
677.] Let us now consider a solenoid so long that in the part 

of space which we consider, the terms depending on the distance 

from the ends may be neglected. 
The magnetic induction through any closed curve drawn 

within the solenoid is \isnyA\ where A' is the area of the 

projection of the curve on a plane normal to the axis of the 

solenoid. 

If the closed curve is outside the solenoid, then, if it encloses 

the solenoid, the magnetic induction through it is 4 7my A, 

where A is the area of the section of the solenoid. If the dosed 
curve does not surround the solenoid, the magnetic induction 

through it is zero. 
If a wire be wound n' times round the solenoid, the coefficient 

of induction between it and the solenoid is 

M =s Piston'A* (16) 
By supposing these windings to coincide with n windings of 

the Bolenoid, we find that the coefficient of self-induction of unit 

of length of the solenoid, taken at a sufficient distance from its 

extremities, is Zs=r4irnM„ (17) 
Near the endB of a solenoid we must take into account the 

terms depending on the imaginary distribution of magnetism on 

the plane ends of the solenoid. The effect of these terms is to 

make the coefficient of induction between the solenoid and a 

circuit which surrounds it less than the value 4mtAt which it 

has when the circuit surrounds a very long solenoid at a great 

distance from either end. 

Let us take the case of two circular and coaxal solenoids of 

the same length l. Let the radius of the outer solenoid be cv 

and let it be wound with wire so as to have nt windings in unit 

of length. Let the radius of the inner solenoid be <?2, and let the 

number of windings in unit of length be ti2, then the coefficient 
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of induction between the solenoids, if we neglect the effect of 

the ends, is M=Gg, (18) 

where G = 4 Tl7bx, (19) 

and q = 7rc2ln2. (20) 

678.] To determine the effect of the positive end of the 

solenoid we must calculate the coefficient of induction on the 

outer solenoid due to the circular disk which forms the end of 

the inner solenoid. For this purpose we take the second ex¬ 

pression for Vy as given in equation (15), and differentiate it 

with respect to r. This gives the magnetic force in the direction 

of the radius. We then multiply this expression by 2‘nr2djxi 
z 

and integrate it with respect to fx from /ut = 1 to fx =. ——.. • — • 
Vz2 -f c2 

This gives the coefficient of induction with respect to a single 

winding of the outer solenoid at a distance z from the positive 

end. We then multiply this by dz and integrate with respect to 

z from z~l to z — 0. Finally, we multiply the result by nxn2, 

and so find the effect of one of the ends in diminishing the 

coefficient of induction. 
Wo thus find for M, the value of the coefficient of mutual in¬ 

duction between the two cylinders, 
M = 4 TT2n1n2clJi(l — 2c1a), (21) 

where a ~ \ — 1 ^ 

li 

1.3.5 

1.3 

2.4 

1 C.> 

1 c9 

2.3 Cj 

2.4.6 4.5c- 
4 ' I 

2 
& ( ^ + 25^) + &c, (22) 

where r is put, for brevity, instead of -cx2. 

It appears from this, that in calculating the mutual induction 

of two coaxal solenoids, we must use in the expression (20) 

instead of the true length l the corrected length l — 2c1a, in 

which a portion equal to ac* is supposed to be cut off at each 

end. When the solenoid is very long compared with its ex¬ 

ternal radius, 
a = i 

c 2 
1 12. 

2 ‘ 
C1 

iia + Skc. (23) 

679.] When a solenoid consists of a number of layers of wire 

of such a diameter that there are n layers in unit of length, the 

number of layers in the thickness dr is ndr, and we have 

G = iTrJn2dr9 and g = Ttljn2r2dr. (24) 
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If the thickness of the wire is constant, and if the induction 
take place between to external coil whose outer and inner radii 

are x and y respectively, and an inner coil whose outer and inner 
radii are y and 0, then, neglecting the effect of the ends, 

Og = £ 7T2 In2 n22{x~ y) (y*—08). (25) 

That this may be a maximum, x and 0 being given, and y 
variable, 

X = $y-iyi- (26) 

This equation gives the best relation between the depths of 
the primary and secondary coil for an induction-machine 

without an iron core. 

If there is an iron core of radius 0, then 0 remains as before, 
but r 

g = irl n2(r2 + 4Tncz2)dr, (27) 

= 7Z + 47TKZ2(y — z)>). (28) 

If y is given, the value of z which gives the maximum value 

of g is 127TK 

1 2 7T K -f" 1 
(29) 

When, as in the case of iron, k is a large number, z~\y> nearly. 

If we now make x constant, and y and 0 variable, we obtain 

the maximum value of Ogf k being large, 

x:y :z:: 4:3:2. (30) 

The coefficient of self-induction of a long solenoid whose outer 

and inner radii are x and having a long iron core whose 

radius is 0, is per unit length 

-f47r/c02)c£r + 7rJ ^(r2* 

= | ir2n*(%—y)2(x2 + 2xy + 3y2 + 24:irKZ2). (31) 

680.] We have hitherto supposed the wire to be of uniform 
thickness. We shall now determine the law according to which 

the thickness must vary in the different layers in order that, for 

a given value of the resistance of the primary or the secondary 

coil, the value of the coefficient of mutual induction may be a 

maximum. 

Let the resistance of unit of length of a wire, such that n 
windings occupy unit of length of the solenoid, be pn\ 
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The resistance of the whole solenoid is 

R = 2 7rplJ n*rdr. (32) 

The condition that, with a given value of R, G may be a 
. dG ndR . 

maximum is -7~~ = G , where G is some constant. 
dr dr 

This gives n2 proportional to ~, or the thickness of the wire of 

the exterior coil must be proportional to the square root of the 
radius of the layer. 

In order that, for a given value of R, g may be a maximum 

n2= C (r + - ) • (33) 

Hence, if there is no iron core, the thickness of the wire of the 

interior coil should be inversely as the square root of the radius of 
the layer, but if there is a core of iron having a high capacity for 

magnetization, the thickness of the wire should be more nearly 
directly proportional to the square root of the radius. 

An Endless Solenoid. 

681.] If a solid be generated by the revolution of a plane area 

A about an axis in its own plane, not cutting it, it will have the 

form of a ring. If this ring be coiled with wire, so that the 

windings of the coil are in planes passing through the axis of 

the ring, then, if n is the whole number of windings, the current- 

function of the layer of wire is <p =—nyO, where 6 is the 
2 7T 

angle of azimuth about the axis of the ring. 

if a is the magnetic potential inside the ring and 12' that 

outside, then &-&'= _ 4w$ + (7 = - 2ny0 + C. 

Outside the ring, 12' must satisfy Laplace’s equation, and must 
vanish at an infinite distance. From the nature of the problem 

it must be a function of 6 only. The only value of 12' which 

fulfils these conditions is zero. Hence 

12'= 0, 12 = -2 nyd + C. 

The magnetic force at any point within the ring is perpen¬ 

dicular to the plane passing through the axis, and is equal to 

2^y~f where r is the distance from the axis. Outside the ring 

there is no magnetic force. 
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If the form of a closed curve be given by the coordinates z, r, 

and 6 of its tracing point as functions of a, its length from a 

fixed point, the magnetic induction through the closed curve 

may be found by integration round it of the vector-potential, 

the components of which are 

*=>»>■“. 6 = >»,$, o. 

We thus find 2%rl'Er 
zdr 

r da 
ds 

taken round the curve, provided the curve is wholly inside the 

ring. If the curve lies wholly without the ring, but embraces it, 

the magnetic induction through it is „ fz'dr',, n 
2nV, ?3?* = 2n>a‘ 

(*** % di** 
where a is the linear quantity j ds\ and the accented 

coordinates refer not to the closed curve, but to a single winding 

of the solenoid. 

The magnetic induction through any closed curve embracing 

the ring is therefore the same, and equal to 2 nya. If the closed 

curve does not embrace the ring, the magnetic induction through 

it is zero. 

Let a second wire be coiled in any manner round the ring 

not necessarily in contact with it, so as to embrace it n' times. 

The induction through this wire is 2 nn'ya, and therefore 

M, the coefficient of induction of the one coil on the other, is 

JM= 2nn a. 

Since this is quite independent of the particular form or 

position of the second wire, the wires, if traversed by electric 

currents, will experience no mechanical force acting between 

them. By making the second wire coincide with the first, we 

obtain for the coefficient of self-induction of the ring-coil 

L — 2 n2a. 



CHAPTER XIIL 

PARALLEL CURRENTS. 

Cylindrical Conductors. 

682.] In a very important class of electrical arrangements the 

current is conducted through round wires of nearly uniform 

section, and either straight, or such that the radius of curvature 

of the axis of the wire is very great compared with the radius of 

the transverse section of the wire. In order to be prepared to 

deal mathematically with such arrangements, we shall begin 

with the case in which the circuit consists of two very long 

parallel conductors, with two pieces joining their ends, and we 

shall confine our attention to a part of the circuit which is so far 

from the ends of the conductors that the fact of their not being 

infinitely long does not introduce any sensible change in the 

distribution of force. 

We shall take the axis of z parallel to the direction of the 

conductors, then, from the symmetry of the arrangements in the 

part of the field considered, everything will depend on H} the 

component of the vector-potential parallel* to z. 

The components of magnetic induction become, by equations 

(A), dH 
a — 

dy 

, dH 

i=~di’ 00 
C = 0. 

For the sake of generality we shall suppose the coefficient of 

magnetic induction to be y, bo that a =ya, b = yfi, where a and 

/3 are the components of the magnetic force. 
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The equations (E) of electric currents, Art. 607, give 

U : 0, V = 0, 4tTW = -7- (3) 
d/3 da 

dx dy 
683.] If the current is a function of r, the distance from the 

axis of z, and if we write 

x = r cos 0, and y = r sin 0, (4) 
and /3 for the magnetic force, in the direction in which 0 is 
measured perpendicular to the plane through the axis of 0, we 

have dp. 1 „ id 
4’irw — -7—f- - p = - — (pr). 

ti iy* 'V’ /v» ///>. ' (5) 
If (7 is the whole current flowing through a section bounded 

by a circle in the plane xyy whose centre is the origin and whose 
radius is r, /»*• 

C = / 2 7Trwdr~\fir. (6) 

It appears, therefore, that the magnetic force at a given point 
due to a current arranged in cylindrical strata, whose common 
axis is the axis of 2, depends only on the total strength of the 

current flowing through the strata which lie between the given 
point and the axis, and not on the distribution of the current 
among the different cylindrical strata. 

For instance, let the conductor be a uniform wire of radius a, 
and let the total current through it be C, then, if the current is 
uniformly distributed through all parts of the section, w will be 
constant, and C _ 7ru,a2# 

The current flowing through a circular section of radius r, 
r being less than a, is (?'= irwr2. Hence at any point within the 
wire, 2 O' „ r 

p — ~ = 2(7--. 
r a1 (8) 

Outside the wire p ~ 2*. 
r (9) 

In the substance of the wire there is no magnetic potential, for 
within a conductor carrying an electric current the magnetic 
force does not fulfil the condition of having a potential. 

Outside the wire the magnetic potential is 

12 = -2(70. (10) 

Let us suppose that instead of a wire the conductor is a metal 

tube whose external and internal radii are ax and a2, then, if C is 
the current through the tubular conductor, 

0 = irw(a12^a22). (11) 



CYLINDRICAL CONDUCTORS. 317 

The magnetic force within the tube is zero. In the metal of the 

tube, where r is between ax and av 

r' 

and outside the tube, /3 = 2?, 
r 

the same as when the current flows through a solid wire. 

684.] The magnetic induction at any point is b = ja/3, and 

since, by equation (2), dff 
6 =-r~» (14) 

' = -JvPdr. 
The value of H outside the tube is 

A — 2fx0C\og r, (16) 

where jut0 is the value of fi in the space outside the tube, and A is 

a constant, the value of which depends on the position of the 

return current. 

In the substance of the tube, 

H = A- 2^o Clog a\ + - -/C--2(a,2-r2+ 2a42log^)- (17) 
al ~a2 al 

In the space within the tube H is constant, and 

B=A-ZNC\oga, + llC(l+J^r,hg^)- (18) 
Uj U/2 U-J 

685.] Let the circuit be completed by a return current, flowing 

in a tube or wire parallel to the first, the axes of the two currents 

being at a distance b. To determine the kinetic energy of the 

system we have to calculate the integral 

T = \J'JJHwdxdydz. (19) 

If we confine our attention to that part of the system which 
lies between two planes perpendicular to the axes of the con¬ 

ductors, and distant l from each other, the expression becomes 

T = \ljjllwdxdy. (20) 

If we distinguish by an accent the quantities belonging to the 

return current, we may write this 

- = JJHw'dx'dy' -f JJE'wdxdy 4-JJHwdxdy 4 JJH'w'dx'dy'. (21) 
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Since the action of the current on any point outside the tube 
is the same as if the same current had been concentrated at the 

axis of the tube, the mean value of H for the section of the 

return current is ,4 — 2/x0Clog6, and the mean value of H' for 

the section of the positive current is A'— 2pt0(71og&. 
Hence, in the expression for T\ the first two terms may be 

written AC'- 2MoC'(?'log&, and A'C- 2fx0CCriogb. 

Integrating the two latter terms in the ordinary way, and 

adding the results, remembering that (7-f C"= 0, we obtain the 

value of the kinetic energy T. Writing this \LC2t where L is 
the coefficient of self-induction of the system of two conductors, 

we find as the value of L for length l of the system 

If the conductors are solid wires, a2 and a/ are zero, and 

7 = 2 Mo log ~7 + i (m + mV (23) 

It is only in the case of iron wires that we need take account 

of the magnetic induction in calculating their self-induction. In 

other cases we may make /u0, p, and all equal to unity. The 

smaller the radii of the wires, and the greater the distance 

between them, the greater is the self-induction. 

To find the Repulsion, X, between the Two Port ions of Wire. 

686.] By Alt. 580 we obtain for the force tending to increase 6, 

X 
" a 

l 

1 ^ fi2 

— 2Mo'g^r2> (24) 

which agrees with Ampfere’s formula, when pt0 = 1, as in air. 

687.] If the length of the wires is great compared with the 

distance between them, we may use the coefficient of self- 

induction to determine the tension of the wires arising from the 
action of the current. 

* {it the wireB are magnetic, the magnetism induced in them will disturb the 
magnetic field and we cannot apply the preceding reasoning. Equation* (22), (28) 
and (25) are only strictly true when * jr * nQ. J 
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If Z is this tension, 

In one of Ampere’s experiments the parallel conductors con¬ 

sist of two troughs of mercury connected with each other by a 

floating bridge of wire. When a current is made to enter at the 

extremity of one of the troughs, to flow along it till it reaches 

one extremity of the floating wire, to pass into the other trough 

through the floating bridge, and so to return along the second 

trough, the floating bridge moves along the troughs so as to 

lengthen the part of the mercury traversed by the current. 

Professor Tait has simplified the electrical conditions of this 

experiment by substituting for the wire a floating siphon of glass 

filled with mercury, so that the current flows in mercury through¬ 

out its course. 

This experiment is sometimes adduced to prove that two 
elements of a current in the same straight line repel one another, 

and thus to shew that Ampere’s formula, which indicates such 

a repulsion of collinear elements, is more correct than that of 
Grassmann, which gives no action between two elements in the 

same straight line; Art. 52G. 
But it is manifest that since the formulae both of Ampere and 

of Grassmann give the same results for closed circuits, and since 

we have in the experiment only a closed circuit, no result of the 

experiment can favour one more than the other of these theories. 
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In fact, both formula© lead to the very same value of the 
repulsion as that already given, in which it appears that 6, 

the distance between the parallel conductors, is an important 
element. 

When the length of the conductors is not very great compared 

with their distance apart, the form of the value of L becomes 

somewhat more complicated. 

688. ] As the distance between the conductors is diminished, 

the value of L diminishes. The limit to this diminution is when 

the wires are in contact, or when b = -f a/. In this case if 

M0 = M = /= 1, 

Z=2Z{log(^aA2 + *}. (26) 

This is a minimum when a, = a,', and then 

L = 21 (log 4 -f $), 
= 2Z (1*8863), 

= 3*7726 l. (27) 

This is the smallest value of the self-induction of a round wire 

doubled on itself, the whole length of the wire being 2 L 

Since the two parts of the wire must be insulated from each 

other, the self-induction can never actually reach this limiting 

value. By using broad flat strips of metal instead of round 

wires the self-induction may be diminished indefinitely. 

On the Electromotive Force required to produce a Current of 

Varying Intensity along a Cylindrical Conductor. 

689. ] When the current in a wire is of varying intensity, the 

electromotive force arising from the induction of the current on 

itself is different in different parts of the section of the wire, 

being in general a function of the distance from the axis of the 

wire as well as of the time. If we suppose the cylindrical 

conductor to consist of a bundle of wires all forming part of the 

same circuit, so that the current is compelled to be of uniform 

strength in every part of the section of the bundle, the method of 

calculation which we have hitherto used would be strictly 

applicable. If, however, we consider the cylindrical conductor 

as a solid mass in which electric currents are free to flow in 

obedience to electromotive force, the intensity of the current will 

not be the same at different distances from the axis of the 
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cylinder, and the electromotive forces themselves will depend on 
the distribution of the current in the different cylindric strata of 
the wire. 

The vector-potential H, the density of the current w, and the 
electromotive intensity at any point, must be considered as func¬ 

tions of the time and of the distance from the axis of the wire. 
The total current, (7, through the section of the wire, and the 

total electromotive force, E, acting round the circuit, are to be 
regarded as the variables, the relation between which we have to 
find. 

Let us assume as the value of H) 

H ~ S + T0 + 2>2 + &c. + Tnr2* + ... 

where S, T0, T19 &c. are functions of the time. 
Then, from the equation 

d2II ldH 
dr2 r dr 

47tw, 

(i) 

(2) 

we find — vw = Tx + &c. +n2Tnr2"-2+_ (3) 

If p denotes the specific resistance of the substance per unit of 

volume, the electromotive intensity at any point is pw, and this 

may be expressed in terms of the electric potential and the 
vector-potential H by equations (B), Art. 598, 

d* dH 

dt ’ 

d* . dS . dTn . dTXr 

pW = ~d^~ (4) 

or _,w=„+_ + -o + rA!r2+&c. + ^r2. 
dt dt dt (5) 

Comparing the coefficients of like powers of r in equations 
(3) and (5), 

T. 

Hence we may write 

T0= T9 3P1=5 

VOL. II. 

7T/dV dS dT0s 

p'dz + dt + **)■ (6) 

7: 1 dT1 
p22 dt (7) 

77 1 dTn . W_1 # 
pn'z dt (8) 

dS _ d* 

dt ~ dz’ (9) 

irdT TTn 1 dnT 

p dt ’ 1%~ PK{n\f dt" 
(10) 
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690.] To find the total current (7, we must integrate w over 

the section of the wire whose radius is a, 

G: „r 
Jo 

vjrdr. (11) 

Substituting the value of 7tw from equation (3), we obtain 

0 = - (Txa2 + &c. + tiTna2n+ ...). (12) 

The value of H at any point outside the wire depends only on 

the total current 0, and not on the mode in which it is distri¬ 

buted within the wire. Hence we may assume that the value of 
H at the surface of the wire is AC, where A is a constant to be 

determined by calculation from the general form of the circuit. 

Putting H = AC when r = a. we obtain 

AC = S+T0 + T1a* + Sn. + T9a" + .... (13) 

7T (&' 

If we now write — = a, a is the value of the conductivity of 

unit of length of the wire, and we have 

7 
(n\f dt 

G = -(a^ + 
dt 

2“2<^ + &c + na'd'T + &c) T T /„ 4\9 + OtUj j 

AC- 

12.22 dt2 

t2 d2T d*T 
-S =T+a-J + ^+kt,+ (^~ +&c. 

(14) 

(15) 

To eliminate T from these equations we must first reverse the 

series (14). We thus find 

dl 
1 dt: 

n . 1 ^C 1 2 
■C+U^-*a 

d2C 
' m dt8 

„ ^C . 
’?s?hra4 ^4 -f&e. 

We have also from (14) and (15) 

,dAT _d*T . 

a + w+Scc- 

td*C 

,. dc <w\- . . 2d2r . 8rfsr , 
*(J3(-s)+c = W3F + **ar + « 

From the last two equations we find 

dC dS\_dC , J*C . . „d3C 

dt 

If l is the whole length of the circuit, R its resistance, and E 

the electromotive force due to other causes than the induction of 

the current on itself, 
dS E l 

R’ M 

a(A'dt~TJ+C+h a~dtt ~ A“2^+ iV“3^ ~+&c-= °- 0< 

dt r 
E=RC+l(A + \)jf 

. PcPC . l3d3C . l*d*C „ /10. 

'^Rdt3+J^Ridt3~mR3dt*+&0, '18' 



VARIABLE CURRENT. 828 690.] 

The first term, 22(7, of the right-hand member of this equation 
expresses the electromotive force required to overcome the resist¬ 
ance according to Ohm's law. 

dc 
The second term, l{A + expresses the electromotive force 

which would be employed in increasing the electrokinetic mo¬ 
mentum of the circuit, on the hypothesis that the current ifr-ef- 
uniform strength at every point of the section of the wire. 

The remaining terms express the correction of this value, 
arising from the fact that the current is not of uniform strength 
at different distances from the axis of the wire. The actual 
system of currents has a greater degree of freedom than the 
hypothetical system, in which the current is constrained to be 
of uniform strength throughout the section. Hence the electro¬ 
motive force required to produce a rapid change in the strength 
of the current is somewhat less than it would be on this 
hypothesis. 

The relation between the time-integral of the electromotive 
force and the time-integral of the current is 

fEdt = Iljcdt + l{A + \)C-+ &c. (19) 

If the current before the beginning of the time has a constant 
value C0i and if during the time it rises to the value Cly and 
remains constant at that value, then the terms involving the 
differential coefficients of C vanish at both limits, and 

JEdt = Rjcdt +1 (A + *)(£, - Cu), (20) 

the same value of the electromotive impulse as if the current had 
been uniform throughout the wire *. 

* {If the currents flowing through the wire are periodic and vary as e***, the 
equation corresponding to (18) when /x is no longer assumed to be unity may be written 

E \R 12 H ISO £> 

'2/ 48 

Thus the system behaves as if the resistance were 

1 dC 
* dt' 

jR + 

and the self-induction 

1 1 
12 R *180 jB5 

+... 

U + h2 48 B* 

Thus the effective resistance is increased when the currents are oscillatory, and 
the self-induction is diminished. As Maxwell points out, this effect is due to the 
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On the Geometrical Mean Distance of Two Figures in a Plane*. 

691.] In calculating the electromagnetic action of a current 
flowing in a straight conductor of any given section on the 

* Trims. B. S. Edin.j 1871-2. 

alteration in the distribution of the current. When the current is alternating it is no 
longer equally distributed over the section of the conductor, but has a tendency 
to leave the middle and crowd towards the surface of the conductor, since by doing 
so it diminishes the self-induction and therefore the Kinetic Energy. The inertia of 
the system, in accordance with a general law of dynamics, makes the current tend to 
distribute itself so that while fulfilling the condition that the whole flow across any 
cross section is given, the Kinetic Energy is as small as possible; and this tendency 
gets more and more powerful as the rapidity with which the momentum of the system 
is reversed is increased. An inspection of equation { 22 }, Art. 685, will show that the 
self-induction of a system, and therefore the Kinetic Energy for a given current, is 
diminished by making the current denser near the surface of the wire than inside, 
for this corresponds to the case of the current flowing through tubes, and equation { 22 j 
shows that the self-induction for tubes is less than for solid wires of the same radius. 
As the rush of the current towards the side of the tube leaves it a smaller area to 
flow through, we can readily understand the increase in the resistance to alternating 
as c unpared with steady currents. As this subject is one of great importance some 
further results arc given here, the proofs of which will be given in the Supplementary 
Volume. See also Rayleigh, Phil. Mai/. XXL p. 381. 

The relation between the current and the electromotive force is expressed by the 

equation 3? Cp inaJ„ (jn<i) rfC 

l 2 va1 J0'{ina) ^ 

where =*= 4irfirp/p, and J0 is Bessel’s function of zero order. 
Since by the differential equation satisfied by this function 

we have 

Jq 1*0 
Jo t*) 

J*&) 

1 
+ - + 

•VOO 

d 
--l~ar;y log JVC*), 

Jo (A) * * djr 
* - 2 + 2x*Sa + 2xiSi + 2 x*S6 + ..., 

where $3, are the sums of the reciprocals of the squares, fourth and sixth 
powers ... of the roots of the equation 

r 1-— +- — 
2.4 2.4.4.6 

Hence by Newton’s method we find 

St- 

$4 = 

2.4.6.4.6.8 
+ ... -0. 

x 

1 

12’ 

48’ 

J 

lvSO ’ 
13 

8640 ’ 
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current in a parallel conductor whose section is also given, we 

have to find the integral 

JJJJl°g r dx ty dx'dy\ 

where dxdy is an element of the area of the first section, dx' dy' 
an element of the second section, and r the distance between 

these elements, the integration being extended first over every 

element of the first section, and then over every element of the 

second. 

Hence substituting in equation (1) this value for 
inaJ0(ina) 

E 

l 5 

Cp 

■nau 

0\ina) 1 
1 « L } /ir/ipaM^ 1 

\ 12 V p ) 180 V p 7 

13 
i Cp j. 

p 1 n‘ip3p'2a* 

2 48 f? + 8640 

we get 

} 
V*pSp*a* | 

" j ’ 
which agrees with (18) when /a=*1. This series is not convenient if na is large, but 
in that case JJ(ina) «= —ij0(ina) ; Heine’s Kugelfunctionen, p. 248, 2nd Edition. 
Hence when the rate of alternation is bo rapid that ppa%/p is a large quantity, 

E Cp . , 

j-^ran + AxPC; 

and since 4 
it pip 

E j^c + iPc(A + J-r>L-). 
I 2rraz ' 2 italp' 

Thus the resistance per unit length is 

StEOLy 
l2*aaJ 

and increases indefinitely as p increases. 
The self-induction per unit length is 

[ + x/t 
PH 

2 v a2p 

and approaches the limit A when p is infinite. 
The magnetic force at a point inside the wire may be shown to be 

2 C Jq (tar) 

a Jq (inu) 

When na is large, 
Jq (ina) « — i - 

V it 2 n a 

so that if r = a—x, the magnetic force at a distance x from the surface of the wire is 

2 C 

\/a (a—x) 

Thus if n be very large, the magnetic force, and therefore the intensity of the 
current, diminishes very rapidly as we recede from the surface, so that the inner 

portion of the wire is free from magnetic force and current. Since occurs 
in n, these effects will be much more apparent in iron wires than in those made of 
non-magnetic metals.} 
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If we now determine a line J2, such that this integral is equal 

to -djulglog-R, 

where Ax and A2 are the areas of the two sections, the length of 

R will be the same whatever unit of length we adopt, and 
whatever system of logarithms we use. If we suppose the 

sections divided into elements of equal size, then the logarithm 

of i£, multiplied by the number of pairs of elements, will be 

equal to the sum of the logarithms of the distances of all the 

pairs of elements. Here R may be considered as the geometrical 

mean of all the distances between pairs of elements. It is 

evident that the value of R must be intermediate between the 

greatest and the least values of r. . 
If Ra and Rb are the geometrical mean distances of two figures, 

A and J9, from a third, C, and if RA+B is that of the sum of the 

two figures from C, then 

(A + B) log Ra+b = A log Ra + B log Rb. 

By means of this relation we can determine R for a compbund 

figure when we know R for the parts of the figure. 

Examples * 

(1) Let R be the mean distance from the point 0 to the line 
AB. Let OP be perpendicular to AB, then 

AB (log R + 1) = AP log OA + PB log OB + OPAOB. 

o 

Fig. 41. 

(2) For two lines (Fig. 42) of lengths a and 6 drawn perpen¬ 

dicular to the extremities of a line of length c and on the same 

side of it: _ 
a6(2logiJ + 3) = (c2— (a —6)2)log vV-f (a — b)2+ c2logc 

■f (a2 — c2) log -/a2 + c2 4- (b2 — c2) log a/62 4* c2 

—c(a—6) tan”"1-—- + actan^1- + ftctan*”1-* 
v 1 c ' c c 

{In these Examples all the logarithms are Napierian.} 
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Fig. 42. 

(3) For two lines, PQ and RS (Fig. 43), whose directions 
intersect at 0; 
PQ. ES(2 log R 4 3) = log PR (2 OP. OR sin2 0 - PP2 cos 0) 

4 log (2 OQ. 0$ sin2 0 — cos 0) 
- log PS (2 OP. OS sin20 - PS2 cos 0) 
— \ogQR(20Q.OR sin20 —QP2 cosO) 

- sin 0 {OP2. SPR - OQ2. + OP2. - OS2. PSQ}. 
& 

(4) For a point 0 and a rectangular area A BCD (Fig. 44). 

Let OP, OQ, OP, 0$, be perpendiculars on the sides, then 

.4P. ^1P(2 logP-F 3) = 2 . OP. OQlog 0.A -f- 2 . OQ. OR log OB 
4 2. OR.OSlogOC+2^08. OP log OD 
4 OP2.2XL4 4 OQ2. AOB 
4 OR2.BOC+OS2.COD. 

(5) It is not necessary that the two figures should be different, 

for we may find the geometrical mean of the distances between 

every pair of points in the same figure. Thus, for a straight line 

of length a, log R = log a - f, 

or R — ae~*, 

R = 0-22313ct. 
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(6) For a rectangular area whose sides are a and 6, 

log.fi = log ✓«*+'&» - ip log aJ1 + ^2 - * ~2loS t\J1 + p 

When the rectangle is a square, whose side is a, 

log R = log a + i log 2 + ~ — f 

= 0*44705a. 

(7) The geometrical mean distance of a point from a circular 

line is equal to the greater of the two quantities, its distance 

from the centre of the circle, and the radius of the circle. 
(8) Hence the geometrical mean distance of any figure from a 

ring bounded by two concentric circles is equal to its geometrical 

mean distance from the centre if it is entirely outside the ring, 

but if it is entirely within the ring 

log# 
a* log a, — a22 log a2 

-I, 
— a2 

where and a2 are the outer and inner radii of the ring. R is 

in this case independent of the form of the figure within the 

ring. 
(9) The geometrical mean distance of all pairs of points in the 

ring is found from the equation 

log R = log ax — 
(a/ — a22)2 h a. 

, a, . 3 a22 — a,2 

For a circular area of radius a, this becomes 

logi? = loga—£, 

or R — ae~*, 
R= 0-7788a. 

For a circular line it becomes 

= a. 

{For an elliptic area whose semi-axes are a, 6, 
a, + b 

log R = log - 

693.] In calculating the coefficient of self-induction of a coil 

of uniform section, the radius of curvature being great compared 

with the dimensions of the transverse section, we first determine 

the geometrical mean of the distances of every pair of points of 
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the section by the method already described, and then we 

calculate the coefficient of mutual induction between two linear 

conductors of the given form, placed at this distance apart. 

This will be the coefficient of self-induction when the total 

current in the coil is unity, and the current is uniform at all 

points of the section. 

But if there are n windings in the coil we must multiply the 
coefficient already obtained by n2, and thus we shall obtain the 

coefficient of self-induction on the supposition that the windings 

of the conducting wire fill the whole section of the coil. 
But the wire is cylindric, and is covered with insulating 

material, so that the current, instead of being uniformly dis¬ 

tributed over the section, is concentrated in certain parts of it, 

and this increases the coefficient of self-induction. Besides this, 

the currents in the neighbouring wires have not the same action 

on the current in a given wire as a uniformly distributed 

current. 

The corrections arising from these considerations may be de¬ 

termined by the method of the geometrical mean distance. They 

are proportional to the length of the whole wire of the coil, and 

may be expressed as numerical quantities, by which we must 

multiply the length of the wire in order to obtain the correction 

of the coefficient of self-induction. 

Let the diameter of the wire be d. It is covered with in¬ 

sulating material, and wound into a coil. We shall suppose 

that the sections of the wires are in square order, as in Fig. 45, 

o o o 
o o o 
o o o 

Fig. 45. 

and that the distance between the axis of each wire and that of 

the next is D, whether in the direction of the breadth or the 

depth 6f the coil. D is evidently greater than d. 
We have first to determine the excess of self-induction of unit 
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of length of a cylindric wire of diameter d over that of unit of 

length of a square wire of side D, or 
0, JR for the square 

2 °g ii for the circle 

= 2(lo8§ + *log2 + f-¥) 

= 2 (log^ + 0-1380606) . 

The inductive action of the eight nearest round wires on the 
wire under consideration is lees than that of the corresponding 

eight square wires on the square wire in the middle by 2x 

(-01971)* 
The corrections for the wires at a greater distance may be 

neglected, and the total correction may be written 
/t D x 

2 (log+ 0-11835). 

The final value of the self-induction is therefore 

L = ri*M + 2/(log6“ 4- 0-11835)* 

where n is the number of windings, and l the length of the wire, 

M the mutual induction of two circuits of the form of the mean 

wire of the coil placed at a distance JR from each other, where R 
is the mean geometrical distance between pairs of points of the 

section. D is the distance between consecutive wires, and d the 

diameter of the wire. 

* {To get this result notice that the mean distance for the round wires is the 
distance between their centres, the mean distance for two square wires placed side by 
side is *99401 D, the mean distanoe for two squares corner to corner 10011 x V 2 Z>. 
See Maxwell, Trans. R. 8. Edinburgh, p. 788, 1871-72. Mr. Chree who has kindly 
re-calculated this correction finds that taking MaxweU’s numbers as they stand it is 
2 x *019885 instead of 2 x -019071* The work is as follows : 

For 8 square wires 

8 log* I*-4 log* (*99401 D) + 4 logl0 (L001V2 D). 
For 8 round wires 

8 log,, R^i logK i> + 4 logu V2 D ; 
hence 

8 loglc p- -0085272; 

and 

8 log, ~-1 - .019685. 

This makes the total correction 

2 {log,^+0-118425}- 

It is possible however that in calculating this correction Maxwell may have used 
values for the mean distances, correct to more places of decimals than those given in 
his paper.} 



CHAPTER XIV. 

CIRCULAR CURRENTS. 

Magnetic Potential due to a Circular Current. 

694.] The magnetic potential at a given point, due to a 

circuit carrying a unit current, is numerically equal to the solid 

angle subtended by the circuit at that point; see Arts. 409, 485. 
When the circuit is circular, the solid angle is that of a cone 

of the second degree, which, when the given point is on the axis 

of the circle, becomes a right cone. When the point is not on 

the axis, the cone is an elliptic cone, and its solid angle is 

numerically equal to the area of the spherical ellipse which it 

traces on a sphere whose radius is unity. 

This area can be expressed in finite terms by means of elliptic 

integrals of the third kind. We shall find it more convenient to 

expand it in the form of an infinite serit ^ of spherical harmonics, 

for the facility with which mathe¬ 

matical operations may be performed 

on the general term of such a series 

more than counterbalances the trouble 

of calculating a number of terms 

sufficient to ensure practical accuracy. 

For the sake of generality we shall 

assume the origin at any point on the 

axis of the circle, that is to say, on 

the line, through the centre perpen¬ 

dicular to the plane of the circle. 

Let 0 (Fig. 46) be the centre of the 

circle, C the point on the axis which 

we assume as origin, II a point on 

the circle. 

Describe a sphere with C as centre, and CH as radius. The 

z 



CIRCULAR CURRENTS. 332 [694. 

circle will lie on this sphere, and will form a small circle of the 

sphere of angular radius a. 

Let CH = c, 
OC — b — c cos a, 
OH — a = c sin a. 

Let A be the pole of the sphere, and Z any point on the axis, 

and let CZ — z. 
Let R be any point in space, and let CR — r, and ACR = 0, 
Let P be the point where CR cuts the sphere. 

The magnetic potential due to the circular current is equal to 

that due to a magnetic shell of strength unity bounded by the 

current* As the form of the surface of the shell is indifferent, 

provided it is bounded by the circle, we may suppose it to coin¬ 

cide with the surface of the sphere. 
We have shewn in Art. 670 that if V is the potential due to 

a stratum of matter of surface-density unity, spread over the 

surface of the sphere within the small circle, the potential a> due. 

to a magnetic shell of strength unity and bounded by the same 

circle is \ d 

We have in the first place, therefore, to find V. 
Let the given point be on the axis of the circle at Z, then the 

part of the potential at Z due to an element dS of the spherical 

surface at P is dS 

ZP 
This may be expanded in one of the two series of spherical 

harmonics, dS riz „ Tiz' 0 ) 
~ + %~ + &c- + + &c-| ’ 

or ^jpo + i>? + &c. + /^ + &c.j, 

the first series being convergent when z is less than c, and the 
second when 0 is greater than c. 

Writing dS = — c2dnd(j), 
and integrating with respect to <f> between the limits 0 and 2ir, 
and with respect to fx between the limits cos a and 1, we find 

or 

V = 2 TIC 

c2 r= 2W- 
Z 

if P0dix + &c. + *f + 
coi a ^ ■ 001 a 3 

{ T P0d^ + &Q. + -.r Pidy. + SmX . 
w co* a ^wia 3 

(i) 

(O 
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By the characteristic equation of I], 

i(i+iw+_[(1_,,)_.]=„ 

/>„=±=4dB 
.L ^(^+l 

Hence f — ... . i 
1(1+ l)dfx 

This expression fails when i = 0, but since = 1, 

x = 1 — M- 

(2) 

(3) 

As the function ~ occurs in every part of this investigation 

we shall denote it by the abbreviated symbol P-. The values of 

P- corresponding to several values of i are given in Art. 698. 

We are now able to write down the value of V for any point 

Ry whether on the axis or not, by substituting r for z, and 

multiplying each term by the zonal harmonic of 0 of the same 

order. For V must be capable of expansion in a series of zonal 

harmonics of 6 with proper coefficients. When 0 = 0 each of 

the zonal harjnonics becomes equal to unity, and the point R 

lies on the axis. Hence the coefficients are the terms of the 

expansion of V for a point on the axis. We thus obtain the 

two series 

1 — cos a + &c. + 

(i* ( 
or V'~ 2ir — ; 1 — cos a + &c. + 

r l 

695.] We may now find w, the magnetic potential of the 

circuit, by the method of Art. 670, from the equation 

— (5) 
We thus obtain the two series 

<0 = — 2 7:11 — cos a -f &c. 4- T~.P'(a)]i(0) + &c.|, (6) 

or «'= 2ITsin2a if (a)ij(0) + &c. + ~ ~ if(a)i>(0)+ &c.J . (6') 

The series (6) is convergent for all values of r less than c, and 

the series (6') is convergent for all values of r greater than c. 

At the surface of the sphere, where r = c, the two Beries give 

the same value for a> when 0 is greater than a, that is, for points 

V = 2i;c | 
sin2 a r* 

i(i + 

sin2a c* 

aTLma)m + &^, (4) 
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not occupied by the magnetic shell, but when 0 is less than a, 
that is, at points on the magnetic shell, 

ft>'= a> + 4ir. (7) 

If we assume 0, the centre of the circle, as the origin of co¬ 

ordinates, we must put a = and the series become 

= — 2 ir | l + - + Ac. + (- r*‘*j 
c iy ' 7 2.4...2s c2a+1 

+ (8) 

-+»*{«?w 
where the orders of all the harmonics are odd * 

On the Potential Energy of two Circular Currents. 

696.] Let us begin by supposing the two magnetic shells 

which are equivalent to the currents to be portions of two 

concentric spheres, their radii being 
^^ Cj and c2i of which cx is the greater 

jr (Fig. 47), Let us also suppose 

\ that the axes of the two shells 

j r —-\ c0*110^, an(l f^at is the angle 
/ r-\—~ \ J subtended by the radius of the 

\ \ ° J j first shell, and a2 the angle sub- 
\ \ J J tended by the radius of the second 
\ / s^ejj a|. cen^re (j 

y Let a), be the potential due to 

^ the first shell at any point within 

Fig. 47. it, then the work required to carry 

the second shell to an infinite dis¬ 

tance is the value of the surface-integral 

* The value of the solid angle subtended by a circle may be obtained in a more 
direct way as follows :— 

The solid angle subtended by the circle at the point Z in the axis is easily shewn 
be . r — cooscu 

.) = 2ir (l BZ~)' 

Expanding this expression in spherical harmonics, we find 

o) m 2 r{(cosa +1) + (P4(a) cosa — P0(a))- + Ac. + (P*(a) coso—Pj>x(a))^ + Ac.], 

t c » 
2 w { (P0(«)cosa -P, (a))- + Ac. + (P< (a) cosa - Pi+1 (a))~iTi + Ac.], 

for the expansions of a> for points on the axis for which z is less than c and greater 
than c respectively. These results can easily be shewn to coincide with those in the 
text. 
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extended over the second shell. Hence 

= 4ir8sin2a1c24jiJ/(a1) f ij(0)djua + &c.+ ~rP'(a1) f i?(0)<fy2 + &c.|» 
'*1 c Jpa ' J 

or, substituting the value of the integrals from equation (2), 

Art. 694, 

= 4^sin^sin^2c2{i^'(«1)^'W + &c- + ^T) ^ WW + &-]•* 

697.] Let us next suppose that the axis of one of the shells is 

turned about C as a centre, so that it now makes an angle 0 with 

the axis of the other shell (Fig. 48). We have only to introduce 

the zonal harmonics of 8 into this expression for M, and we find 
for the more general value of Mt 

M = 4 v2 sin2 a, sin2 a2o22 ji&J* (a,) if(a2) P, (0) + &c. 

This is the value of the potential energy due to the mutual 
action of two circular currents of unit strength, placed so that 

the normals through the centres of the 

circles meet in a point C at an angle 

0, the distances of the circumferences 

of the circles from the point C being 

ct and c2, of which c} is the greater. 
If any displacement dx alters the 

value of M, then the force acting in 

the direction of the displacement is 
dM 

dx 
Fig. 48. 

For instance, if the axis of one of the shells is free to turn 

about the point (7, so as to cause 8 to vary, then the moment of 

the force tending to increase 8 is 0, where 

dM 
0 = 

d$ 

* {This is easily proved by expressing the zonal harmonic 1\ (0), which occurs in 
the expression for cu, in equation (6) as the sum of a series of zonal and tesseral 
harmonics, with Qa for axis, and then using the formula 

N~ f 2 ncfdnt. 
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Performing the differentiation, and remembering that 

dm 
dd 

= —ein 6J^'(d), 

where if has the same signification as in the former equations, 

0 = - 4it2sin2a,sin2 a2sin 0c2ji-if (ctj)if (a2) if (0) + &c. 

698. ] As the values of Pf occur frequently in these calculations 

the following table of values of the first six degrees may be 

useful. In this table m stands for cos 0, and v for sin 0. 

Jf=l, 
p;= 3Mi 

^'=*fi(V-3)= l<V(M2-f*'2), 

V(2 Hm2 + 1) = 15(m4~|mV+|i;4), 

^1m(33/x4-~3°m2 + 5) = 21m(m4 —f/^2^2 + fv4). 

699. ] It is sometimes convenient to express the series for J/ in 

terms of linear quantities as follows :— 

Let a be the radius of the smaller circuit, b the distance of its 

plane from the origin, and c = Va2 -f b2. 

Let A, By and C be the corresponding quantities for the larger 

circuit. 

The series for M may then be written, 

M = 1.2.n2^ a2 cos 0 

A2B 
-f 2.3.7r2-^-*a26(cos2^— £sin20) 

-f 3.4,a2ft*_ ja2^ ^cos3sin20 cos 0) 

+ &C. 

If we make 6 = 0, the two circles become parallel and on the 

same axis. To determine the attraction between them we may 

differentiate M with respect to b. We thus find 

dM 

db ~ ^ 

tA2a2 

Cv 

B 
2.3 — + 2.3. 

(7 
6 + &c. 
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700.] In calculating the effect of a coil of rectangular section 
we have to integrate the expressions already found with respect 
to A, the radius of the coil, and B, the distance of its plane from 
the origin, and to extend the integration over the breadth and 
depth of the coil. 

In some cases direct integration is the most convenient, but 
there are others in which the following method of approximation 
leads to more useful results. 

Let P be any function of x and y, and let it be required to 

find the value of P where 
r+hx r+lv__ /+tx r+ty 

/ Pdx dy. 
-J* J-iy 

In this expression P is the mean value of P within the limits 
of integration. 

Let PQ be the value of P when x = 0 and y = 0, then, ex¬ 
panding P by Taylor’s Theorem, 

n n dR dll qd2P0 n 

+ ^ + +&c- 

Integrating this expression between the limits, and dividing 

the result by xy, we obtain as the value of P, 

* ™ c S? ■+ »• 3?) -+ JOS?+1 
In the case of the coil, let the outer and inner radii be A 4* £ £, 

and A — 1 £ respectively, and let the distances of the planes of the 
windings from the origin lie between P + i*? and B~\r)y then 
the breadth of the coil is 17, and its depth £ these quantities 

being small compared with A or C. 
In order to calculate the magnetic effect of such a coil we may 

write the successive terms of the series (6) and (6') of Art. 695 as 
follows:— 

n B, - 2A2—P* A2 2 \ 

~ n A2 ( . ,2 P\ - ,4B2-A2 2 

G«= 8»^{l+A 
/ 2 26 354\ . 
(t*-7?5 + -77T )**+ 

4fl2-42 , \ 
i, + -J 

„ . 4jB2 —3^4* 
f2+A 1 

VOL. II. 
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6, = + ^^i{C*(8B2-l2A2)+35AiB2(6A2-iB2)} 

+ ^A2{A'-12A2B2 + *B% 

ftc*j &C. j 

9i = »«s + iWs> 

gi=2itaib +^^6^, 

<73 = s»a*(6»-*a*)+ |f*(2&*-3a*) + 

&C., &c. 

The quantities G0, C?2, &c. belong to the large coil. The 
value of o> at points for which r is less than C is 

co = —2 * + 2 (?0— GlrPl (0)—' G^P^ (0)—&c. 

The quantities <72, &c. belong to the small coil. The value 
of co' at points for which r is greater than c is 

= 9i ~a Pi (e) + 92 J3 h W + &c- 

The potential of the one coil with respect to the other when 

the total current through the section of each coil is unity is 

m=Gi9\Pi (°) + Gz9zh (6) + &c- 

To find M by Elliptic Integrals. 

701.] When the distance of the circumferences of the two 
circles is moderate as compared with the radius of the smaller, 
the series already given do not converge rapidly. In every case, 
however, we may find the value of M for two parallel circles by 

elliptic integrals. 
For let b be the length of the line joining the centres of the 

circles, and let this line be perpendicular to the planes of the 
two circles, and let A and a be the radii of the circles, then 

i 

the integration being extended round both carves. 
In this case, 

r2 = A2 + a* + 6s — 2Aa cos (<f>—<f>'), 

« = <£—<£', d» = ad<p, d»' = Ad<f>', 
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M 
pin p2v 

Jo Jo 

Aa cos (</> — <t>') d<t>d(f>' 

V -42 + a2-f 62 — 2J.acos (<#> — <f/) 

c — 2 where _ _ 
-/(-4 -f a)2 + 62 

and F and E are complete elliptic integrals to modulus c. 
From this, remembering that 

dE ' 

and that c is a function of b, we find 

If r* and r2 denote the greatest and least values of r, 

rx2 = (A 4- «)2 + &2» r22 == (-4. — a)2 + &2> 

7* 
and if an angle y be taken such that cos y = — > 

= {2#V-(1 + sec2y)tfY}, 
dM o sm y 

^ VAa 

where Fy and Ey denote the complete elliptic integrals of the 
first and second kind whose modulus is sin y. 

If ^4 = a, cot y = ~~ 5 and 
A d 

J If 

-- = ~2ircosy {2Fy — (1 4* sec2y) jEy}. 

dM 
The quantity — represents the attraction between two 

parallel circular circuits, the current in each being unity. 

On account of the importance of the quantity M in electro¬ 
magnetic calculations the values of log (M/ 4-tr </ Aa), which is a 
function of c and therefore of y only, have been tabulated for 
intervals of 6' in "the value of the angle y between 60 and 90 
degrees. The table will be found in an appendix to this 
chapter. 
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Second Expression for M. 

An expression for M, which is sometimes more convenient, is 
fjf*__ ^ 

got by making c1 = —-- > in which case 
ri + r2 

*M= 8vi/Ia-L {FicO-Sfa)}. 
Sci 

To draw the Lines of Magnetic Force for a Circular Current. 

702.] The lines of magnetic force are evidently in planes, 
passing through the axis of the circle, and in each of these lines 

the value of M is constant. 

Calculate the value of Ke = 
sin# 

(Fmin$ — E% in#)' 
from Legendre’s 

tables for a sufficient number of values of 0. 

Draw rectangular axes of x and z on the paper {the origin 

being at the centre of the circle and the axis of z the axis of the 

circle}, and, with centre at the point x = i a (sin 0 + cosec 0), 

draw a circle with radius \ a (cosec 0 — sin 0). For all points 
of this circle the value of c2 will be sin 0. Hence, for all points of 

this circle, 

TUT . Sir 1 A A l M2Ke M = 8 Tts/Aa —=> and A = -—--- 
VKb M** a 

Now A is the value of x for which the value of M was found. 

Hence, if we draw a line for which x = A, it will cut the circle 

in two points having the given value of M. 

Giving M a series of values in arithmetical progression, the 

values of A will be as a series of squares. Drawing therefore a 

series of lines parallel to z, for which x has the values found for 

A, the points where these lines cut the circle will be the points 

where the corresponding lines of force cut the circle. 

* [The second expression for M may be deduced from the first by means of the 
following transformations in Elliptic Integrals :— 

If 

then 

1—c* « ~——, or c 
1 +cx 

2Vci 

1+V 

E(c) = £(<=,) - (!-«,) ^(0.3 
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If we put m = 8 ira, and M = nm, then 
A = & = n^K^a. 

We may call the index of the line of force. 

The forms of these lines are given in Fig. XVIII at the end of 
this volume. They are copied from a drawing given by Sir W. 

Thomson in his paper on 4 Vortex Motion’.* 
703.] If the position of a circle having a given axis is re¬ 

garded as defined by b, the distance of its centre from a fixed 
point on the axis, and a, the radius of the circle, then My the 

coefficient of induction of the circle with respect to any system 
whatever of magnets or currents, is subject to the following 

equation, d2M , d2M IdM n ^ d2M d2M 

da8 + db2 a da 
= 0. 

To prove this, let us consider the number of lines of magnetic 

force cut by the circle when a or b is made to vary. 

(1) Let a become a + $a, b remaining constant. During this 
variation the circle, in expanding, sweeps over an annular 

surface in its own plane whose breadth is ha. 

If V is the magnetic potential at any point, and if the axis of 

y be parallel to that of the circle, then the magnetic force per- 

dV 
pendicular to the plane of the ring ~ ^ * 

To find the magnetic induction through the annular surface 
we have to integrate f2* „ dV 

aha^ dO, 
dy 

where 0 is the angular position of a point on the ring. 

But this quantity represents the variation of M due to the 

variation of a, or a. Hence 
da 

dM n2v 

-Jo a 
dV 

da~ J0“dydd- (2) 
(2) Let b become b + hb, while a remains constant. During 

this variation the circle sweeps over a cylindric surface of radius 

a and length bb, {and the lines of force which pass through this 

surface are those which cease to pass through the circle}. 
The magnetic force perpendicular to this surface at any point 

dV 
is — 

dr 
where r is the distance from the axis. Hence 

dO. 
dM _ r2ir dV 

db~J o a 'dr 
Tram. B. 8. Edin., vol. xxv. p. 217 (1869). 

(3) 
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/« dy 
riw fry 

de- 

dd. 

drdy 
dO, 

Differentiating equation (2) -with respect to a, and (3) with 
respect to b, we get 

diM_ fiwdVJa /*' d*V 
da* ' 
d*M _ r2w 

db2 ~J0 adrdy' 
d2M d*M _ r*wdV 
da* + ~J0 

Hence 
dy 

•bjr w 

Transposing the last term we obtain equation (1). 

« 
(5) 

(6) 

Coefficient of Induction of Two Parallel Circles when the 
Distance between the Arcs is small compared with the 
Radius of either Circle. 

704.] We might deduce the value of M in this case from the 
expansion of the elliptic integrals already given when their 
modulus is nearly unit}’'. The following method, however, is a 
more direct application of electrical principles. 

First Approximation. 

Let a and a-f c be the radii of the circles and b the distance 
between their planes, then the shortest distance between their 
circumferences is given by 

r = /c2 + b2. 

We have to find the magnetic induction through the one circle 
due to a unit current in the other. 

We shall begin by supposing the two circles to be in one 
plane. Consider a small element ds of the circle whose radius is 
a-fc. At a point in the plane of the circle, distant p from the 
centre of 8 s, measured in a direction making an angle 6 with the 
direction of ds, the magnetic force due to 8s is perpendicular to 
th plane and equal to i 

z sin 6 ds. 
P 

To calculate the surface integral of this force over the space 
which lies within the circle of radius a we must find the value 
of the integral ,-oem * 

U,L I. 
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where r1# r2 are the roots of the equation 

r2 —2 (a + c) sin 0r+c2 + 2ac 

viz. 

0, 

and 

r, = (a + c) sin 0 + V*(a + c)2sin2 6—c2—2ac, 

r2 = (a + c)Bin#—-/(a + c)2 sin2 0—c2 — 2ac, 

• 2 a c2 + 2ac 
“ * = U+3p- 

When c is small compared to a we may put 

rx =*= 2 a sin 0, 

r2 = c/sin 0. 

Integrating with regard to p we have 

2 6s j* log (~ sin2#) . sin0c£# = 

2 6s j^cos 6 ^2 — log sin2 #) j -f 2 log tan ^ 

= 2 6 s (logfl — — 2)» nearly. 

We thus find for the whole induction 

if«e= 4 7ra(log. — -2). 

Since the magnetic force at any point, the distance of which 
from a curved wire is small compared with the radius of curva¬ 
ture, is nearly the same as if the wire had been straight, we can 
(Art. 684) calculate the difference between the induction through 
the circle whose radius is a — c and the circle A by the formula 

Mqji Mao = 47ra {loga c — log, r}. 

Hence we find the value of the induction between A and a 

t'0 Mjta = 47ra (log^Sa—log#r —2) 

approximately, provided r the shortest distance between the 
circles is small compared with a. 

705.] Since the mutual induction between two windings of 
the same coil is a very important quantity in the calculation of 
experimental results, I shall now describe a method by which the 
approximation to the value of M for this case can be carried to 

any required degree of accuracy. 
We shall assume that the value of AT is of the form 

Sa 
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/i»2 oj8 / 
where A = a-f -H A2 — + dL3-g +^3'—3- + &c. 

(I d (X“ d< 
+ a-(«-3) [xKAn + x'i~2yiA'n + x*~*y*A"n +...} +&c., 

and 5 = ~2a + BlX + B^ + B./t + B,- + Ba'%£ + &c., 

where a and a + x are the radii of the circles, and y the distance 
between their planes. 

We have to determine the values of the coefficients A and B. 
It is manifest that only even powers of y can occur in these 

quantities, because, if the sign of y is reversed, the value of M 
must remain the same. 

We get another set of conditions from the reciprocal property 
of the coefficient of induction, which remains the same whichever 

circle we take as the primary circuit. The value of M must 

therefore remain the same when we substitute a + x for a, and 

—x for x in the above expressions. 
We thus find the following conditions of reciprocity by equat¬ 

ing the coefficients of similar combinations of x and y, 

Ax = 1-A1% Bx = 1-2-jBj, 

— A2 A%9 Bs — •+■ A 2 B2—B29 

A.;= -AJ-~A'y Bi= A'-B'-B'; 

( - )M„ = A2 + (n - 2) A3 + (U~21)^~-3) A, + &c. + An, 

(~)nBn = — - + J— A1-—n^2 + &c. + (-)MB_1 
' n n— 1 1 n—2 2 ' 

+ B2 + (n-2)Bs + *)<»-*>Bt + &c. + Bn. 

From the general equation of M, Art. 703, 
d*M <PM_l_d¥_ Q 

dxl dy* a + x dx ~ ’ 
we obtain another set of conditions, 

2 ^2 4* 2 A!2 = Aj, 

2A2 + 2A 2*f6 A $ 4“ 2 A g — 2^2) 
n(n— l)An + (n +1)nAH^+ 1.2A'n + 1.2A'n+1~ nAH, 

*(n-l)(n-2)A'n+n(n-l)A'„+1 + 2.3A"n + 2.3A"a+1 
= (n^2)A'n, See.; 

4A2+ Ax = 2B2 4-2B'i- B\ = 4j4'2, 

64#4-3.A2 = 2B'2 + iB2 + 2B'2 = 6^'3+3.4'2, 

* 1*\ Chree finds that this equation should be 
(n-2)(n-8)A',, + (n-l)C»-2)X,+1 + 8.4A". + 8.4A",+i = C»-2)A'.}. 
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(2 n— 1) + (2n + 2) — (2 n — 1) -4 * + (2fo + 2) A n+1 

= n(n—2)Bu + (n + l)n£a+1 + 1.2 £'„ + 1.2 B'n+1. 

Solving these equations and substituting the values of the 

coefficients, the series for M becomes 

*** . i 8a (, , Xx xz+3f *3 + 3xy2 } 

xP—Oxy2 
-f 4 7ra {-2-i 

x 3 x2—y2 

a 16a2 48 a3 
-+ &c 

To find the form of a coil for which the coefficient of self- 

induction is a maximum, the total length and thickness of 

the wire being given. 

706.] Omitting the corrections of Art. 705, we find by Art. 693 

L = 47m2a (log ^ — 2)1 

where n is the number of windings of the wire, a is the mean 

radius of the coil, and It is the geometrical mean distance of the 
transverse section of the coil from itself. See Art. 691. If this 

section is always similar to itself, R is proportional to its linear 

dimensions, and n varies as It2. 

Since the total length of the wire is 2Tran,, a varies inversely 

as n. Hence 
dn 

n 
and 

da 

a 
2 

dR 

R 9 

and we find the condition that L may be a maximum 

i 8a 7 

log if = *• 

If the transverse section of the channel of the coil is circular, 
of radius c, then, by Art. 692, 

whence 

and log 
8 a 1 s 

4 > 

a = 3*22c; 

* [This result may be obtained directly by the method suggested in Art. 704, 
vis. by the expansions of the elliptic integrals in the expression for M found in 
Art. 701. See Cayley’s Elliptic Functions, Art. 75.] 
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or, the mean radius of the coil should be 3-22 times the radius of 

the transverse section of the channel of the coil in order that 

such a coil may hare the greatest coefficient of self-induction. 

This result was found by Gauss *. 

If the channel in which the coil is wound has a square trans¬ 

verse section, the mean diameter of the coil should be 3-7 times 

the side of the square section of the channel. 

* JFerke, Gottingen edition, 1867, bd. v. p. 622. 
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Table of the values of log 
M 

4 it V A a 
(Art. 701). 

The Logarithms are to base 10. 

W M loe * , W * . 
41r^Aa 4 w \/ Aa 

60° O' 1*4994783 63° 30' 1*5963782 67° 0' 1-6927081 
6' 1*6022651 36' 1-6991329 6' 1-6954642 

12' 1-5050505 42' 1*6018871 12' 1-6982209 
18' 1-5078345 48' 1-6046408 18' 1-7009782 
24' 1*5106173 54' 1-6073942 24' 1*7037362 
30' 1*6133989 64° 0' 1*6101472 30' 1-7064949 
36' 1*5161791 6' 1*6128998 36' 1*7092544 
42' 1*5189582 12' 1*6156522 42' 1-7120146 
48' 1-5217361 18' T-6184042 48' T-7147756 
54' 1*5245128 24' 1-6211560 54' 1-7175375 

61° 0' 1*5272883 30' 1-6239076 68° 0' 1-7203003 
6' 1*5300628 36' 1-6266589 6' 1-7230640 

12' 1-5328361 42' 1*6294101 12' 1*7258286 
18' 1*5356084 48' 1-6321612 18' 1-7285942 
24' 1*5383796 54' 1*6349121 24' 1-7313609 
30' 1*5411498 65° 0' 1*6376629 30' T-7341287 
36' 1-5439190 6' 1*6404137 36' 1*7368975 
42' T-5466872 12' 1*6431645 42' 1*7396675 
48' 1-5494545 18' 1*6459153 48' T-7424387 
64' 1-6522209 24' 1*6486660 54' 1*7452111 

62° 0' 1-5549864 30' 1*6514169 69° 0' 1*7479848 
6' 1-5577510 36' 1*6541678 6' 1*7507597 

12' 1-5605147 42' 1*6569189 12' T-7535361 
18' T-5632776 48' 1*6596701 18' 1*7563138 
24' T-5660398 54' 1*6624215 24' T-7590929 
30' T-5688011 66° 0' 1*6651732 30' 1*7618735 
36' 1-571561,8 6' 1*6679250 36' 1*7646556 
42' T-5743217 12' 1*6706772 42' 1*7674392 
48' 1-5770809 18' 1*6734296 48' 1*7702245 
54' 1-57983J14 24' 1*6761824 54' 1*7730114 

63° ’O' 1-5825973 i 30' 1*6789356 

©
 

© ©
 1*7758000 

6' 1-5853546 36' 1*6816891 6' T-7785903 
12' T-5881113 42' 1*6844431 12' T-7813823 
18' T-5908675 48' 1*6871976 18' T-7841762 
24' 1-5936231 54' 1*6899526 24' 1*7869720 
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W M log M 
4 w^/Aa 4 vVAa & 4 wa/Acl 

70° 30' 1*7897696 75° 0' r*9185141 79° 30' •0576136 
36- 1-7925692 6' 1-9214613 36' •0609037 
42' 1*7953709 12' T-9244 135 42' •0642054 
48' 1*7981745 18' 1*9273707 48' •0675187 
54' 1-8009803 24' T-9303330 54' •0708441 

71° 0' T-8037882 30' T-9333005 80° 0' •0741816 
6' 1-8065983 36' 1*9362733 6' •0775316 

12' 1-8094107 42' 1-9392515 12' •0808944 
18' T-8122253 48' 1*9422352 18' •0842702 
24' 1-8150423 54' 1*9452246 24' •0876592 
30' T-8178617 76° 0' 1-9482196 30' •0910619 
36' 1*8206836 6' T-9512205 36' •0944784 
42' 1*8235080 12' 1*9542272 42' •0979091 
48' 1*8263349 18' 1*9572400 48' •1013542 
54' 1-8291645 24' 1-9602590 54' •1048142 

72° O' T-8319967 30' 1*9632841 81° 0' •1082893 
6' 1*8348316 36' T-9663157 6' •1117799 

12' 1*8376693 42' T-9693537 12' •1152863 
18' T-8405099 4 8' r-9723983 18' •1188089 
24' 1*8433534 54' 1*9754497 24' •1223481 
30' 1-8461998 

V
 

©
 

o 

1*9785079 30' •1259043 
36' 1-8490493 6' 1-9815731 36' •1294778 
42' 1-8519018 12' 1-9846454 42' •1330691 
48' T-8547575 18' 1-9877249 48' •1366786 
54' T-8576164 24' 1*9908118 54' •1403067 

73° 0' T-8604785 30' r*9939062 82° O' •1439539 
6' 1-8633440 36' T-9970082 6' •1476207 

12' T-8662129 42' *0001181 12' •1513075 
18' 1-8690852 48' •0032359 18' •1550149 
24' T-8719611 54' •0063618 24' •1587434 
30' 1-8748406 

V
 ©
 

0
 0
0

 *0094959 30' •1624935 
36' 1-8777237 6' •0126385 36' •1662658 
42' T-8806106 12' •0157896 42' • 1700609 
48' T-8835013 18' *0189494 48' • 1738794 
54' 1-8863958 24' •0221181 54' •1777219 

74° 0' T-8892943 30' •0252959 83° 0' •1815890 
6' T-8921969 36' *0284830 6' • 1854815 

12' T-8951036 42' •0316794 12' •1894001 
18' T-8980144 48' •0348855 18' •1933465 
24' T-9009295 54' •0381014 24' •1973184 
30' T-9038489 79° 0' *0413273 30' •2013197 
36' T-9067728 6' •0445633 36' •2053502. 
42' T-9097012 12' •0478098 42' •2094108 
48' T-9126341 18' •0510668 48' •2135026 
54' T-9155717 24' *0543347 54' •2176259 
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l0..K. w M ■ 
M i— m.... 

4 v V' Aa 
log - * 

4t </Aa 4 # A a 

00
 o O
 

•2217823 86° 0' •3139097 
o

 
o 00 
00 •4385420 

6' •2259728 6' •3191092 6' •4465341 
12' •2301983 12' •3243843 12' •4548064 
18' •2344600 18' •3297387 18' •4633880 
24' •2387591 24' •3351762 24' •4723127 
30' •2430970 30' •3407012 30' •4816206 
36' •2474748 36' •3463184 36' •4913595 
42' •2518940 42' •3520327 42' •5015870 
48' •2563561 48' •3678495 48' •5123738 
54' •2608626 54' •3637749 54' •5238079 

85° O' •2654152 00
 

-si
 o CD
 

•3698153 89° 0' •5360007 
6' •2700156 6' •3759777 6' •5490969 

12' •2746655 12' •3822700 12' •5632886 
18' •2793670 18' •3887006 18' •5788406 
24' •2841221 24' •3952792 24' •5961320 
30' •2889329 30' •4020162 30' •6157370 
36' •2938018 36' •4089234 36' •6385907 
42' •2987312 42' •4160138 42' •6663883 
48' •3037238 48' •4233022 48' •7027765 
54' •3087823 54' •4308053 54' •7586941 
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In the very important case of two circular coaxal coils Lord Rayleigh 

haa suggested in the use of the foregoing tables a very convenient 

formula of approximation. The formula, applicable to any number of 

variables, occurs in Mr. Merrifield’s Report on Quadratures and Inter¬ 

polation to the British Association, 1880, and is attributed to the late 

Mr. H. J. Purkiss. In the present instance the number of variables is 

four. 

Let n, n' be the number of windings in the coils, 

a, a the radii of their central windings. 

b the distance between their centres. 

2 A, 2 h' the radial breadths of the coils. 

21c, 2W the axial breadths. 

Also let f(at a', b) be the coefficient of mutual induction for the central 

windings. Then the coefficient of mutual induction of the two coils is 

(f(a + ht a , b)+f(a — h, a', 6) 

+/(«,<*' + *', b)+f{a,a'-h',b) 

i nn'\ +/(«, «'> 6 + k) +/(a, a', b — k) 

+/(a,a7, b + Jc')+f(a, a , b — Ic/) 

{ -2f(a,a',b). ] 

{appendix III. 

Self-induction of a circular coil of rectangular section. 

If a denote the mean radius of a coil of n windings whose axial 

breadth is b and radial breadth is c, then the self-induction, as calculated 

by means of the series of Art. 705, has been shown by Weinstein Wied. 

Ann. xxi. 329 to be 

Z = 4xn*(aA-f /*), 

where, writing x for b/c, 

k=log t + U ~ T “ 5log (1++15?log (1+*) 

+ log (1 + ^) + | (*“) tan-’ar, 

/*= 9^ [(log^- ilog(1+Xs))(1 + 3a?)+3-45as* 

221 
+ -00" — L6ir*s + 3*2aD8tan,~1fic 

“ To hbgt1+**> + log(1+i>]*} 



CHAPTER XV. 

ELECTROMAGNETIC INSTRUMENTS. 

Galvanometers. 

707.] A Galvanometer is an instrument by means of which an 

electric current is indicated or measured by its magnetic action. 

When the instrument is intended to indicate the existence of 

a feeble current, it is called a Sensitive Galvanometer. 

When it is intended to measure a current with the greatest 

accuracy in terms of standard units, it is called a Standard Galva¬ 

nometer. 

All galvanometers are founded on the principle of Schweigger’s 

Multiplier, in which the current is made to pass through a wire, 

which is coiled so as to pass many times round an open space, 

within which a magnet is suspended, so as to produce within this 

space an electromagnetic force, the intensity of which is indicated 

by the magnet. 

In sensitive galvanometers the coil is so arranged that its 

windings occupy the positions in which their influence on the 

magnet is greatest. They are therefore packed closely together 

in order to be near the magnet. 

Standard galvanometers are constructed so that the dimensions 

and relative positions of all their fixed parts may be accurately 

known, and that any small uncertainty about the position of the 

moveable parts may introduce the smallest possible error into the 

calculations. 

In constructing a sensitive galvanometer we aim at making the 

field of electromagnetic force in which the magnet is suspended as 

intense as possible. In designing a standard galvanometer we 

wish to make the field of electromagnetic force near the magnet 

as uniform as possible, and to know its exact intensity in terms 

of the strength of the current. 
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On Standard Galvanometers. 

708.] In a standard galvanometer the strength of the current 

has to be determined from the force which it exerts on the sus¬ 

pended magnet. Now the distribution of the magnetism within 
the magnet, and the position of its centre when suspended, are not 
capable of being determined with any great degree of accuracy. 
Hence it is necessary that the coil should be arranged so as to 
produce a field of force which is very nearly uniform throughout 

the whole space occupied by the magnet during its possible motion. 
The dimensions of the coil must therefore in general be much 
larger than those of the magnet. 

By a proper arrangement of several coils the field of force within 

them may be made much more uniform than when one coil only 

Fig. 49. 

is used, and the dimensions of the instrument may be thus reduced 

and its sensibility increased. The errors of the linear measure¬ 
ments, however, introduce greater uncertainties into the values 

of the electrical constants for small instruments than for large 

ones. It is therefore best to determine the electrical constants 
of small instruments, not by direct measurement of their 

dimensions, but by an electrical comparison with a large 

standard instrument, of which the dimensions are more ac¬ 
curately known; see Art. 752. 

In all standard galvanometers the coils are circular. The 

channel in which the coil is to be wound is carefully turned. 



MEASUREMENT OE THE COIL. 353 709.] 

Its breadth is made equal to some multiple, of the diameter 

of the covered wire. A hole is bored in the side of the channel 

where the wire is to enter, and one end of the covered wire is 

pushed out through this hole to form the inner connexion of the 

coil. The channel is placed on a lathe, and a wooden axis is 

fastened to it; see Fig. 49. The end of a long string is nailed 

to the wooden axis at the same part of the circumference as the 

entrance of the wire. The whole is then turned round, and the 

wire is smoothly and regularly laid on the bottom of the channel 

till it is completely covered by n windings. During this process 

the string has been wound n times round the wooden axis, and 

a nail is driven into the string at the nth turn. The windings 

of the string should be kept exposed so that they can easily 

be counted. The external circumference of the first layer of 

windings is then measured and a new layer is begun, and so on 

till the proper number of layers has been wound on. The use 

of the string is to count the number of windings. If for any 

reason we have to unwind part of the coil, the string is also 

unwound, so that we do not lose our reckoning of the actual 

number of windings of the coil. The nails serve to distinguish 

the number of windings in each layer. 

The measure of the circumference of each layer furnishes a 

test of the regularity of the winding, and enables us to calculate 

the electrical constants of the coil. For if we take the arithmetic 

mean of the circumferences of the channel and of the outer layer, 

and then add to this the circumferences of all the intermediate 

layers, and divide the sum by the number of layers, we shall 

obtain the mean circumference, and from this we can deduce 

the mean radius of the coil. The circumference of each layer 

may be measured by means of a steel tape, or better by means 

of a graduated wheel which rolls on the coil as the coil revolves 

in the process of winding. The value of the divisions of the tape 

or wheel must be ascertained by comparison with 1. straight scale. 

709.] The moment of the force with which a unit current in 

the coil acts upon the suspended apparatus may be expressed by 

the senes ^ ^ sin g + sin $ ^ + &c > 

where the coefficients G refer to the coil, and the coefficients g to 

the suspended apparatus, 0 being the angle between the axis of 

the coil and that of the suspended apparatus; see Art. 700. 

VOL. 11. a a 
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When the suspended apparatus is a thin uniformly and longi¬ 

tudinally magnetized bar magnet of length 21 and strength unity, 

suspended by its middle, 

gl = 2l, & = (), 03 ?= 2Z3, &c. 

The values of the coefficients for a bar magnet of length 21 

magnetized in any other way are smaller than when it is 

magnetized uniformly. 

710.] When the apparatus is used as a tangent galvanometer, 

the coil is fixed with its plane vertical and parallel to the direction 

of the earth’s magnetic force. The equation of equilibrium of 

the magnet is in this case 

m0j JET cos 0 = my sin 0 {Glg1 + G2g2E2' ($) + &,£.}, 
where mgl is the magnetic moment of the magnet, H the hori¬ 

zontal component of the terrestrial magnetic force, and y the 

strength of the current in the coil. When the length of the 

magnet is small compared with the radius of the coil the terms 

after the first in G and g may be neglected, and we find 

y — tv cot 0. 
Gi 

The angle usually measured is the deflexion, 6, of the magnet 

which is the complement of 0, so that cot 0 = tan d. 

The current is thus proportional to the tangent of the deflexion, 

and the instrument is therefore called a Tangent Galvanometer. 

Another method is to make the whole apparatus moveable 

about a vertical axis, and to turn it till the magnet is in 

equilibrium with its axis parallel to the plane of the coil. If 

the angle between the plane of the coil and the magnetic meridian 

is 5, the equation of equilibrium is 

mgxHmih - my {Oxgx-%(?3</3 + &c.}, 

whence y = ; 

H 
: sin b. 

c.) 
Since the current is measured by the sine of the deflexion, the 

instrument when used in this way is called a Sine Galvanometer. 

The method of sines can be applied only when the current is so 

steady that we can regard it as constant during the time of ad¬ 

justing the instrument and bringing the magnet to equilibrium. 

711.] We have next to consider the arrangement of the coils 

of a standard galvanometer. 

The simplest form is that in which there is a single coil, and 

the magnet is suspended at its centre. 
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Let A be the mean radius of the coil, £ its depth, rj its breadth, 

and n the number of windings, the values of the coefficients are 

r 2irn ( 
G' = -A- j 

p 
i+A ji 

II p
 

r vn 

6?4 = 0, &c. 

The principal correction is that arising from G2- The series 

^i9i + Osg3P9' (&) 
becomes approximately 

Gi (1 ~ 3 Ji ~ (cos2 e -1 sin2 (9)) • 

The factor of correction will differ most from unity when the 

magnet is uniformly magnetized and when $ = 0. In this case it 
12 

becomes 1 ~ 3 * It vanishes when tan 0 = 2, or when the de¬ 

flexion is tan~1i, or 26° 34'. Some observers, therefore, arrange 

their experiments so as to make the observed deflexion as near 

this angle as possible. The best method, however, is to use a 

magnet so short compared with the radius of the coil that the 

correction may be altogether neglected. 

The suspended magnet is carefully adjusted so that its centre 

shall coincide as nearly as possible with the centre of the coil. 

If, however, this adjustment is not perfect, and if the coordinates 

of the centre of the magnet relative to the centre of the coil 

are x, y, z3 z being measured parallel to the axis of the coil, 

the factor of correction is 

0+i^F-V* 
When the radius of the coil is large, and the adjustment of the 

magnet carefully made, we may assume that this correction is 

insensible. 

* {The couple on the bar magnet when its axis makes an angle 0 with that of the 

coil is mi [8in$ {(5^ + (22* — (z2 + y*))} + 3 co»0G^z^/x^ + y2]. 

Since Gx + (?3 } (22s — (x2 + y3)) is the force at x, y, z parallel to the axis of the coil and 

Str8s-v/ja + y* 

is the force at right angles to the axis. Thus when the arrangement is used as a sine 

galvanometer the factor of correction is 

X + f (2r* — (x2 + y9)) which is equal to X — ~ ~ {22* — (x2 + y2) } }. 

A & % 
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Gaugain's Arrangement. 

712. ] In order to get rid of the correction depending on G3 

Gaugain constructed a galvanometer in which this term was 

rendered zero by suspending the magnet, not at the centre of the 

coil, but at a point on the axis at a distance from the centre 

equal to half the radius of the coil. The form of .G3 is 

r __ A2(B2-IA*) 

and, since in this arrangement B = \A, Gz = 0. 

This arrangement would be an improvement on the first form 

if we could be sure that the centre of the suspended magnet is 

exactly at the point thus defined. The position of the centre of 

the magnet, however, is always uncertain, and this uncertainty 

introduces a factor of correction of unknown amount depending 

on G2 and of the form (1 — ® ), where 2 is the unknown excess 

of distance of the centre of the magnet from the plane of the 

2 
coil. This correction depends on the first power of . Hence 

Gaugain's coil with eccentrically suspended magnet is subject to 

far greater uncertainty than the old form. 

Helmholtz's Arrangement. 

713. ] Helmholtz converted Gaugain's galvanometer into >a 

trustworthy instrument by placing a second coil, equal to the 

first, at an equal distance on the other side of the magnet. 

By placing the coils symmetrically on both sides of the magnet 

we get rid at once of all terms of even order. 

Let A be the mean radius of either coil, the distance between 

their mean planes is made equal to Ay and the magnet is suspended 

at the middle point of their common axis. The coefficients are 

n _ 167T71 1 

1 = J75 A 
G2 = 0, 
<r, = 0-0512 - 

3 V5A‘ 
(31P-36,2), 

Gt = 0, 

-0-73728 
6 V5Ar> 

■where n denotes the number of windings in both coils together. 
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It appears from these results that if the section of the channel 

of the <p coils be rectangular, the depth being £ and the breadth 

rjy the value of #3, as corrected for the finite size of the section, 

will be small, and will vanish, if £2 is to rj2 as 36 to 31. 

It is therefore quite unnecessary to attempt to wind the coils 

upon a conical surface, as has been done by some instrument 

makers, for the conditions may be satisfied by coils of rectangular 

section, which can be constructed with far greater accuracy than 

coils wound upon an obtuse cone. 

The arrangement of the coils in Helmholtz's double galvano¬ 

meter is represented in Fig. 53, Art. 725. 

The field of force due to the double coil is represented in 

section in Fig. XIX at the end of this volume. 

Galvanometer of Four Coils. 

714.] By combining four coils we may get rid of the coefficients 

G2y G4> G5y and G0. For by any symmetrical combination 

we get rid of the coefficients of even orders. Let the four coils 

be parallel circles belonging to the same sphere, corresponding 

to angles 0, </>, tt — </>, and 71 — 0. 

Let the number of windings on the first and fourth coils be n, 

and the number on the second and third pn. Then the condition 

that 63 = 0 for the combination gives 

n sin20ij'(0) +pn aia2$ (cf>) = 0, (1) 

and the condition that G5 = 0 gives 

n &in26Pf(0)+pn sin2(f>P5' (<f)) = 0. (2) 

Putting sin20 = x and sin2</> = yy (3) 

and expressing Pf and Pf (Art. 698) in terms of these quantities, 

the equations (1) and (2) become 

4a; — 5x2-f 4/ay —5_py2 = 0, (4) 

8a; — 28 a:2 + 21a;3 + 8/?y — 28/>y2-f 21 py* = 0. (5) 

Taking twice (4) from (5), and dividing by 3, we get 

6x* — 7xz + Spy2 — 7/?y3 = 0. 
Hence, from (4) and (6), 

__ a; 5a; — 4 __ x2 7x — 6 

P ~ 2/4-51/ ~~ 21*6-72/’ 

and we obtain 
_ i 7x~6 1 _ 32 7x~6 

y ~~ 7 5x — 4 * p~~ 49x(5x —4)a* 
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Both x and y are the squares of the sines of angles and must 

therefore lie between 0 and 1. Hence, either x is between 0 and 

in which case y is between ? and 1, and l/p between oo and £|, 

or else x is between 4 and 1, in which case y is between 0 and 

and 1/p between 0 and J 

Galvanometer of Three Coils. 

715.] The moat convenient arrangement is that in which x = 1. 

Two of the coils then coincide and form a great circle of the 

sphere whose radius is C. The number of windings in this 

compound coil is 64. The other two coils form small circles of 

the sphere. The radius of each of them is V* C. The distance 

of either of them from the plane of the first is C. The number 

of windings on each of these coils is 49. 

The value of GL is —g- . 

This arrangement of coils is represented in Fig. 60. 

Since in this three-coiled galvanometer the first term after 

(?! which has a finite 

value is (r7, a large por¬ 

tion of the sphere on 

whose surface the coils 

lie forms a field of force 

sensibly uniform. 

If we could wind the 

wire over the whole 

of a spherical surface, 

as described in Art. 672, 

we should obtain a field 

of perfectly uniform 

force. It is practically 

impossible, however, to 

distribute the windings 

on a spherical surface 

with sufficient accuracy, even if such a coil were not liable to 

the objection that it forms a closed surface, so that its interior is 

inaccessible. 

By putting the middle coil out of the circuit, and making the 

eurrent flow in opposite directions through the two side coils, we 

obtain a field of force which exerts a nearly uniform action iq 

Fig. 50. 
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the direction of the axis on a magnet or coil suspended within it, 

with its axis coinciding with that of the coils; see Art, 673. For 

in this case all the coefficients of odd orders disappear, and since 

/x = Pf — f/x(7/a2—3) = 0. 

Hence the expression (6), Art. 695, for the magnetic potential 

near the centre of the coil becomes, there being n windings in 

each of the coils, 

On the Proper Thickness of the Wire of a Galvanometer, the 

External Resistance being* given. 

716.] Let the form of the channel in which the galvanometer 

coil is to be wound be given, and let it be required to determine 

whether it ought to be filled with a long thin wire or with a 

shorter thick wire. 

Let l be the length of the wire, y its radius, y + b the radius 

of the wire when covered, p its specific resistance, g the value of 

G for unit of length of the wire, and r the part of the resistance 

which is independent of the galvanometer. 

The resistance of the galvanometer wire is 

R = p-P 

The volume of the coil is 

V=Trl(y + bf. 
The electromagnetic force is yG, where y is the strength of the 

current and q __ gi 

If E is the electromotive force acting in the circuit whose 

resistance is R + r, = y (R + r). 

The electromagnetic force due to this electromotive force is 

E 
G 

'£ + / 

which we have to make a maximum by the variation of y and l. 

Inverting the fraction, we find that 

pi r 

*91? + gl 

is to be made a minimum. Hence 

nPdy _ rdl 
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or 

If the volume of the coil remains constant 

dl n dy 
+ 2 = 0. 

I y + b 

Eliminating dl and dy, we obtain 

Py+h_r 

V y* ~~ l ' 

r _ y + b 

Hence the thickness of the wire of the galvanometer should 

be such that the external resistance is to the resistance of the 

galvanometer coil as the diameter of the covered wire to the 

diameter of the wire itself. 

On Sensitive Galvanometers. 

717. ] In the construction of a sensitive galvanometer the aim 

of every part of the arrangement is to produce the greatest 

possible deflexion of the magnet by means of a given small 
electromotive force acting between the electrodes of the coil. 

The current through the wire produces the greatest effect when 

it is placed as near as possible to the suspended magnet. The 

magnet, however, must be left free to oscillate, and therefore 

there is a certain space which must be left empty within the 

coil. This defines the internal boundary of the coil. 
Outside of this space each winding must be placed so as to 

have the greatest possible effect on the magnet. As the number 

of windings increases, the most advantageous positions become 

filled up, so that at last the increased resistance of a new 

winding diminishes the effect of the current in the former 

windings more than the new winding itself adds to it. By 
making the outer windings of thicker wire than the inner ones 

we obtain the greatest magnetic effect from a given electromotive 

force. 

718. ] We shall suppose that the windings of the galvanometer 
are circles, the axis of the galvanometer passing through the 

centres of these circles at right angles to their planes. 

Let r sin 0 be the radius of one of these circles, and r cos $ the 

distance of its centre from the centre of the galvanometer, then, 

if l is the length of a portion of wire coinciding with this circle, 
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and y the current which flows in it, the magnetic force at the 
centre of the galvanometer resolved 
in the direction of the axis is 

If we write r2 = #2sin0, (1) I ( ^ \ I 

this expression becomes 

Hence, if a surface be constructed, /s\ /XX 
similar to those represented in section / / \X^ yl \ \ 
in Fig. 51, whose polar equation is / ( _y / ] 

r2 = #/ sin0, (2) l x. J I 

where xx is any constant, a given length \ y 
of wire bent into the form of a circular X^_ 

arc will produce a greater magnetic 51 
effect when it lies within this surface 
than when it lies outside it. It follows from this that the outer 

surface of any layer of wire ought to have a constant value of xy 
for if x is greater at one place than another a portion of wire 

might be transferred from the first place to the second, so as to 

increase the force at the centre of the galvanometer. 

The whole force due to the coil is yO, where 

<») 
the integration being extended over the whole length of the 

wire, x being considered as a function of L 
719.] Let y be the radius of the wire, its transverse section 

will be tty2. Let p be the specific resistance of the material 

of which the wire is made referred to unit of volume, then the 

resistance of a length l is —r>, and the whole resistance of the 

coil is rdl 

*-£/£■ <4> 

where y is considered a function of L 
Let F2 be the area of the quadrilateral whose angles are the 

sections of the axes of four neighbouring wires of the coil by a 
plane through the axis, then Y*l is the volume occupied in the 

coil by a length l of wire together with its insulating covering, 
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and including any vacant space necessarily left between the 

windings of the coil. Hence the whole volume of the coil is 

V=fY2dl, (8) 

whei^e Y is considered a function of L 
But since the coil is a figure of revolution 

F= ».//- sin $ dr d$, (6) 

or, expressing r in terms of xt by equation (1), 

V =r. 2v j Jsc2 (sin 0)*dxd$. (7) 

Now (sin 0)* dd is a numerical quantity, call it N, then 

V=\Nx?-%, (8) 

where V0 is the volume of the interior space left for the 
magnet. 

Let us now consider a layer of the coil contained between the 

surfaces x and x + dx. 
The volume of this layer is 

dV = Nx*dx = Y*dl, (9) 

where dl is the length of wire in this layer. 

This gives us dl in terms of dx. Substituting this in equations 

(3, and (4), we find (10) 

dB=iriT$- <“> 
where dO and dR represent the portions of the values of 0 and 

of R due to this layer of the coil. 

Now if E be the given electromotive force, 

E = y (R + r), 

where r is the resistance of the external part of the circuit, 

independent of the galvanometer, and the force at the centre is 

,<? = £ ® 
We have therefore to make ^ a maximum, by properly 

adjusting the section of the wire in each layer. This also neces¬ 

sarily involves a variation of Y because F depends on y. 
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Let G0 and J?0 be the values of G and of jR + r when the given 
layer is excluded from the calculation. We have then 

R + r R0 + dR’ ' 1 

and to make this a maximum by the variation of the value of y 
for the given layer we must have 

— dC 
&_Gp+dG 0 
d R0 + dR~ R + r’ (l3) 

Since dx is very small and ultimately vanishes, will be 

sensibly, and ultimately exactly, the same whichever layer is 

excluded, and we may therefore regard it as constant. We have 
therefore, by (10) and (11), 

ptf2/, Ydy, R+r A A / v 
~ = —7*— = constant. (14) TryydY' 0 v ' 

constant. 

If the method of covering the wire and of winding it is such 
that the space occupied by the metal of the wire bears the same 

proportion to the space between the wires whether the wire is 
thick or thin, then 

Ydy 

and we must make both y and F proportional to x, that is to 
say, the diameter of the wire in any layer must be proportional 
to the linear dimension of that layer. 

If the thickness of the insulating covering is constant and 

equal to 6, and if the wires are arranged in square order, 

Y = 2(y+b), (16) 
and the condition is 

^&t*)=coMUnt (16) 

In this case the diameter of the wire increases with the dia¬ 

meter of the layer of which it forms part, but not at do great a 
rate. 

If we adopt the first of these two hypotheses, which will be 
nearly true if the wire itself nearly fills up the whole space, then 

wennypat 7=W. 
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where a and ft are constant numerical quantities, and {by (10) 

and (11)} 

0 = 

.R = iV p 1 A h 
TT a4/3* 'a X' 9 

where a is a constant depending upon the size and form of the 
free space left inside the coil. 

Hence, if we make the thickness of the wire vary in the same 

ratio as r, we obtain very little advantage by increasing the ex¬ 

ternal size of the coil after the external dimensions have become 

a large multiple of the internal dimensions. 

720.] If increase of resistance is not regarded as a defect, as 

when the external resistance is far greater than that of the 
galvanometer, or when our only object is to produce a field of 

intense force, we may make y and Y constant. We have then 

G 
N , 
Y A (X d)y 

Yly- n 
~(x3—as), 

where a is a constant depending on the vacant space inside the 

coil. In this case the value of G increases uniformly as the 

dimensions of the coil are increased, so that there is no limit to 

the value of G except the labour and expense of making the 
coil. 

On Suspended Coils. 

721.] In the ordinary galvanometer a suspended magnet is 

acted on by a fixed coil. But if the coil can be suspended with 

sufficient delicacy, we may determine the action of the magnet, 

or of another coil on the suspended coil, by its deflexion from 
the position of equilibrium. 

We cannot, however, introduce the electric current into the 

coil unless there is metallic connexion between the electrodes of 

the battery and those of the wire of the coil. This connexion 

may be made in two different ways, by the Bifilar Suspension, 
and by wires in opposite directions. 

The bifilar suspension has already been described in Art. 459 

as applied to magnets. The arrangement of the upper part of 

the suspension is shewn in Fig. 54. When applied to coils, the 

two fibres are no longer of silk but of metal, and since the 
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torsion of a metal wire capable of supporting the coil and 

transmitting the current is much greater than that of a silk 

fibre, it must be taken specially into account. This suspension 

has been brought to great perfection in the instruments con¬ 
structed by M. Weber. 

The other method of suspension is by means of a single wire 

which is connected to one extremity of the coil. The other ex¬ 
tremity of the coil is connected to 

another wire which is made to hang 

down, in the same vertical straight 

line with the first wire, into a cup 
of mercury, as is shewn in Fig. 56, 

Art. 726. In certain cases it is 
convenient to fasten the extremities 

of the two wires to pieces by which 

they may be tightly stretched, care 
being taken that the line of these 

wires passes through the centre of 

gravity of the cpil. The apparatus 
in this form may be used when the 

axis is not vertical; see Fig. 52. 
722.] The suspended coil may be used as an exceedingly 

sensitive galvanometer, for, by increasing the intensity of the 

magnetic force in the field in which it hangs, the force due to 

a feeble current in the coil may be greatly increased without 

adding to the mass of the coil. The magnetic force for this 

purpose may be produced by means of permanent magnets, or 

by electromagnets excited by an auxiliary current, and it may 

be powerfully concentrated on the suspended coil by means of 

soft iron armatures. Thus, in Sir W. Thomson’s recording 

apparatus, Fig, 52, the coil is suspended between the opposite 

poles of the electromagnets N and S, and in order to concentrate 

the lines of magnetic force on the vertical sides of the coil, 

a piece of soft iron, D, is fixed between the poles of the magnets. 

This iron becoming magnetized by induction, produces a very 

powerful field of force, in the intervals between it and the two 

magnets, through which the vertical sides of the coil are free to 

move, so that the coil, even when the current through it is very 

feeble, is acted on by a considerable force tending to turn it 

about its vertical axis. 
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723.] Another application of the suspended coil is to determine, 
by comparison with a tangent galvanometer, the horizontal com¬ 

ponent of terrestrial magnetism. 
The coil is suspended so that it is in stable equilibrium when 

its plane is parallel to the magnetic meridian. A current y is 
passed through the coil and causes it to be deflected into a new 
position of equilibrium, making an angle 6 with the magnetic 
meridian. If the suspension is bifilar, the moment of the couple 
which produces this deflexion is Fnin 6, and this must be equal 
to Hyg cos 0, where H is the horizontal component of terrestrial 
magnetism, y is the current in the coil, and g is the sum of the 
areas of all the windings of the coil. Hence 

F 
Hy = — tan 0. 

£ 
If A is the moment of inertia of the coil about its axis of sus¬ 

pension, and T the time of a half vibration, when no current is 
passing, 

FT2 = tt2A , 

and we obtain tan*. 

If the same current passes through the coil 

galvanometer, and deflects the magnet through an 
of a tangent 

angle <f>, 

H 

1 

G 
tan0, 

where G is the principal constant of the tangent galvanometer, 
Art. 710. 

From these two equations we obtain 

u — ?L /AGt&nO _ ^ /A tan 6 tan </> 
W7M’ y~T\/ -Qg- 

This method was given by F. Kohlrausch *. 

724.] Sir William Thomson has constructed a single instrument 
by means of which the observations required to determine H and 

y may be made simultaneously by the same observer. 

The coil is suspended bo as to be in equilibrium with its plane 
in the magnetic meridian, and is deflected from this position 

when the current flows through it. A very small magnet is sus¬ 
pended at the centre of the coil, and is deflected by the current 

in the direction opposite to that of the deflexion of the coil. Let 

Pogg., Ann. cxxxviii, pp. 1-10, Aug. 1865. 
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the deflexion of the coil be 0, and that of the magnet <f>, then the 
variable part of the energy of the system is 

— Hygsin0—myG sin(O — ty — Hm cos<#> —-Pcos0. 

Differentiating with respect to 0 and <£, we obtain the equa¬ 

tions of equilibrium of the coil and of the magnet respectively, 

— Hyg co80 — myOcoB (0 — 4>) + FamO = 0, 

myG cob (0 — <f>) + if?n8in(f> = 0. 

From these equations we find, by eliminating H or y, a quad¬ 

ratic equation from which y or H may be found. If m, the 

magnetic moment of the suspended magnet, is very small, we 
obtain the following approximate values, 

// = 
T 

— AG sin0 cos(0—<£) ^ mG cos (0 — <£) 

<7 cos 0 sin # cos 0 

, m sin <f> 
_4- £ —-- . 
Gg cos 0 cos (0 — <£) 9 cos ^ 

— sin 0 sin </> 

In these expressions G and g are the principal electric con¬ 

stants of the coil, A its moment of inertia, T its half-time of vibra¬ 

tion, m the magnetic moment of the magnet, H the intensity of 

the horizontal magnetic force, y the strength of the current, 0 

the deflexion of the coil, and <f> that of the magnet. 

Since the deflexion of the coil is in the opposite direction to 

the deflexion of the magnet, these values of H and g will always 

be real. 

Weber e Electrodynamometer. 

725.] In this instrument a small coil is suspended by two 

wires within a larger coil which is fixed. When a current is 

made to flow through both coils, the suspended coil tends to place 

itself parallel to the fixed coil. This tendency is counteracted 

by the moment of the forces arising from the bifilar suspension, 

and it is also affected by the action of terrestrial magnetism on 

the suspended coil. 

In the ordinary use of the instrument the planes of the two 

coils are nearly at right angles to each other, so that the mutual 

action of the currents in the coils may be as great as possible, 

and the plane of the suspended coil is nearly at right angles to 

the magnetic meridian, so that the action of terrestrial magnetism 

may be as small as possible. 
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Let the magnetic azimuth of the plane of the fixed coil be a, 

and let the angle which the axis of the suspended coil makes 

with the plane of the fixed coil be 0 + /3, where /3 is the value 

of this angle when the coil is in equilibrium and no current is 
flowing, and 0 is the deflexion due to the current. The equation 

of equilibrium is, yx being the current in the fixed, y2 that in the 

moveable coil, 

Ggyxy2 008 (0 +$-#072 fiin (O + P + a)~Fain0 = 0. 

Let us suppose that the instrument is adjusted so that a and p 
are both very small, and that Hgy2 is small compared with F. 
We have in this case, approximately, 

+nnfl_ G9y>Y2™sP H9risin(a + /3) HGg^y.f G*(fy*y*BMp 

F F ~ F* F'A 

If the deflexions when the signs of y2 and y2 are changed are 

as follows, ^ when yL is + and y2 +, 

^3 "b n > 

^4 » — » -H 5 

then we find 
F 

yi7i ~ * Gg co8 (3 (tan 01 + tan ^-tan ea-t&n d*)- 

If it is the same current which flows through both coils we may 
put yxy2 = y2, and thus obtain the value of y. 

When the currents are not very constant it is best to adopt 

this method, which is called the Method of Tangents. 

If the currents are so constant that we can adjust p, the angle 

of the torsion-head of the instrument, we may get rid of the 
correction for terrestrial magnetism at once by the method of 
sines. 

In this method p is adjusted till the deflexion is zero, so that 

If the signs of yx and y2 are indicated by the suffixes of p as 

before, 
F&inpi = —F sin/33 = — Ggyxy2 +Hgy28ma, 

Fsin/32 = —Fsin/i4 = — Ggyxy2-Hgy2sin a, 
F 

and 7i y% = - (sin px + sin p2 - sin p.6 - sin pj. 

This is the method adopted by Mr. Latimer Clark in his use 

of the instrument constructed by the Electrical Committee of 



Pig. 63. 

B b VOL, H* 
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the British Association. We are indebted to Mr. Clark for the 

drawing of the electrodynamometer in Fig. 53, in which Helm- 

holtzs arrangement of two coils is adopted both for the fixed 

and lor the suspended coil *. The torsion-head of the instrument, 

by which the bifilar suspension is adjusted, is represented in 

Fig. 54. The equality of the tensions of the suspension wires is 

ensured by their being attached to the extremities of a siik 

Fig. 54. 

thread which passes over a wheel, and their distance is regulated 

by two guide-wheels, which can be set at the proper distance. 

The suspended coil can be moved vertically by means of a screw 

acting on the suspension-wheel, and horizontally in two directions 

by the sliding pieces shewn at the bottom of Fig. 54. It in 

adjusted in azimuth by means of the torsion-screw, which 

turns the torsion-head round a vertical axis (see Art. 459). The 

azimuth of the suspended coil is ascertained by observing the 

* In the actual instrument, the wires conveying the current to and from the coils 
are not spread out as displayed in the figure, but are kept as close together as pos¬ 

sible, so as to neutralize each other’s electromagnetic action. 
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reflexion of a scale in the mirror, shewn just beneath the axis of 
the suspended coil. 

The instrument originally constructed by Weber is described 
in his Elektrodynamiache Maasbestimmungen. It was intended 
for the measurement of small currents, and therefore both the 

fixed and the suspended coils consisted of many windings, and 
the suspended coil occupied a larger part of the space within 
the fixed coil than in the instrument of the British Association, 
which was primarily intended as a standard instrument, with 
which more sensitive instruments might be compared. The 
experiments which he made with it furnish the most complete 
experimental proof of the accuracy of Ampfere’s formula as 

applied to closed currents, and form an important part of the 
researches by which Weber has raised the numerical deter¬ 
mination of electrical quantities to a very high rank as regards 
precision. 

Weber s form of the electrodynamometer, in which one coil is 
suspended within another, and is acted on by a couple tending 
to turn it about a vertical axis, is probably the best fitted for 
absolute measurements. A method of calculating the constants 
of such an arrangement is given in Art. 700. 

726.] If, however, we wish, by means of a feeble current, to 
produce a considerable electromagnetic force, it is better to place 
the suspended coil parallel to the 
fixed coil, and to make it capable of 
motion to or from it. 

The suspended coil in Dr. Joule's 
current-weigher, Fig. 55, is horizontal, 
and capable of vertical motion, and the 
force between it and the fixed coil is 

estimated by the weight which must 
be added to or removed from the coil 
in order to bring it to the same relative 
position with respect to the fixed coil 
that it has when no current passes. 

The suspended coil may also be fastened to the extremity of 
the horizontal arm of a torsion-balance, and may be placed 
between two fixed coils, one of which attracts it, while the other 
repels it, as in Fig. 56. 

By arranging the coils as described in Art, 729, the force 

B b % 



372 ELECTROMAGNETIC INSTRUMENTS. [728. 

acting on the suspended coil may be made nearly uniform within 
a small distance of the position of equilibrium. 

Another coil may be fixed to the other extremity of the arm 
of the torsion-balance and placed between two fixed coils. If 
the two suspended coils are similar, but with the current flowing 

Fig. f>6. 

in opposite directions, the effect of terrestrial magnetism on the 
position of the arm of the torsion-balance will be completely 
eliminated. 

727. ] If the suspended coil is in the shape of a long solenoid, 
and is capable of moving parallel to its axis, so as to pass into 
the interior of a larger fixed solenoid having the same axis, then, 

if the current is in the same direction in both solenoids, the sus¬ 
pended solenoid will be sucked into the fixed one by a force which 

will be nearly uniform as long as none of the extremities of the 
solenoids are near one another. 

728. ] To produce a uniform longitudinal force on a small coil 

placed between two equal coils of much larger dimensions, we 
should make the ratio of the diameter of the large coils to the 

distance between their planes that of 2 to V3. If we send the 
same current through these coils in opposite directions, then, in 

the expression for c*>, the terms involving odd powers of r dis¬ 
appear, and since sin2a = $ and cos2a = the term involving r4 

disappears also, and we have, by Art. 715, as the variable part of 6>, 

; {s £ P2(e)-1± ~P6 (6) + &c.J, 
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which indicates a nearly uniform force on a small suspended coil. 

The arrangement of the coils in this case is that of the two outer 

coils in the galvanometer with three coils, described at Art. 715. 

See Fig. 50. 

729.] If we wish to suspend a coil between two coils placed 

so near it that the distance between the mutually acting wires is 

small compared with the radii of the coils, the most uniform 

force is obtained by making the radius of either of the outer coils 

exceed that of the middle one by of the distance between the 

planes of the middle and outer coils. This follows from the 

expression proved in Art. 705 for the mutual induction between 

two circular currents *. 

* {In this case, if M is the mutual potential energy of the inside and one of the 
outside coils, theD, using the notation of Art. 705, the variation in the force for a 
displacement y will, since the coils are symmetrically placed, be proportional to 
dyM/dy%. The moBt important term in this expression is d3log r/dy3, which vanishes 
when 3 x3 } 



CHAPTER XVI. 

ELECTROMAGNETIC OBSERVATIONS. 

730.] So many of the measurements of electrical quantities 

depend on observations of the motion of a vibrating body that 

we shall devote some attention to the nature of this motion, and 

the best methods of observing it. 

The Small oscillations of a body about a position of stable 

equilibrium are, in general, similar to those of a point acted on 

by a force varying directly as the distance from a fixed point. 

In the case of the vibrating bodies in our experiments there 

is also a resistance to the motion, depending on a variety of 

causes, such as the viscosity of the air, and that of the suspension 

fibre. In many electrical instruments there is another cause of 

resistance, namely, the reflex action of currents induced in con¬ 

ducting circuits placed near vibrating magnets. These currents 

are induced by the motion of the magnet, and their action on the 

magnet is, by the law of Lenz, invariably opposed to its motion. 

This is in many cases the principal part of the resistance. 

A metallic circuit, called a Damper, is sometimes placed near 

a magnet for the express purpose of damping or deadening its 

vibrations. We shall therefore speak of this kind of resistance 

as Damping. 

In the case of slow vibrations, such as can be easily observed, 

the whole resistance, from whatever causes it may arise, appears 

to be proportional to the velocity. It is only when the velocity 

is much greater than in the ordinary vibrations of electro¬ 

magnetic instruments that we have evidence of a resistance 

proportional to the square of the velocity. 

We have therefore to investigate the motion of a body subject 

to an attraction varying as the distance, and to a resistance 

varying as the velocity. 
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731.] The following application, by Professor Tait*, of the 
principle of the Hodograph, enables us to investigate this kind 
of motion in a very simple manner by means of the equiangular 
spiral. 

Let it be required to find the acceleration of a particle which 
describes a logarithmic or equiangular spiral with uniform angular 

velocity a> about the pole. 
The property of this spiral is, that the tangent PT makes 

with the radius vector PS a constant angle a. 
If v is the velocity at the point P, then 

v.sin a = o>. SP. 

Hence, if we draw SP' parallel to PT and equal to SP, the 
velocity at P will be given both in magnitude and direction by 

v = - A SP'. 
Sin a 

K 

Hence P' will be a point in the hodograph. But SP' is SP 
turned through a constant angle 7r —a, so that the hodograph 
described by P' is the same as the original spiral turned about 

its pole through an angle tt — a. 

The acceleration of P is represented in magnitude and direction 

by the velocity of P' multiplied by the same factor, spn 

* Proc. B.S. Edin.t Dec. 16, 1867. 
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Hence, if we perform on SP/ the same operation of turning it 

through an angle ir — a into the position SP"> the acceleration of 

P will be equal in magnitude and direction to 

~rSP",' 
Sima 

where SP" is equal to SP turned through an angle 27r—2 a. 

If we draw PF equal and parallel to SP/\ the acceleration 
2 

will be —— PF, which we may resolve into 
sima 

sima 
PS and PK. 

sira 

The first of these components is a central acceleration towards 

S proportional to the distance. 
The second is in a direction opposite to the velocity, and since 

PK = 2 cos aP'S = 
„ sin a cos a 
2 -v, 

U) 
this acceleration may be written 

U) cos a 
- 2 —T-V. 

sm a 

The acceleration of the particle is therefore compounded of two 

parts, the first of which is due to an attractive force //r, directed 

towards S, and proportional to the distance, and the second is 

— 2kv, a resistance to the motion proportional to the velocity, 

where 
or cos a 

m =., and k = <*> ~— • 
Sima Sin a 

If in these expressions we make a = the orbit becomes a 

circle, and we have /x0 = w02t and k = 0. 

Hence, if the force at unit distance remains the same, /x=/i0, and 

<x> = <*>0 sin a, 

or the angular velocity in different spirals with the same law of 

attraction is proportional to the sine of the angle of the spiral. 

732.] If we now consider the motion of a point which is the 
projection of the moving point P on the horizontal line ZF, we 

shall find that its distance from S and its velocity are the hori¬ 

zontal components of those of P. Hence the acceleration of 

this point is also an attraction towards S, equal to m times its 

distance from S, together with a retardation equal to 2 k times 
its velocity. 
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We have therefore a complete, construction for the rectilinear 

motion of a point, subject to an attraction proportional to the 

distance from a fixed point, and to a resistance proportional to 
the velocity. The motion of such a point is simply the hori¬ 

zontal part of the motion of another point which moves with 

uniform angular velocity in a logarithmic spiral. 

733. ] The equation of the spiral is 
0 cot a 

To determine the horizontal motion, we put 

cp = x = a + r sin <£, 

where a is the value of x for the point of equilibrium. 

If we draw BSD making an angle a with the vertical, then 

the tangents BX, DF, GZ, &c. will be vertical, and X, F, Zy &c. 

will be the extremities of successive oscillations. 

734. ] The observations which are made on vibrating bodies 
are— 

(1) The scale-reading at the stationary points. These are 

called Elongations. 

(2) The time of passing a definite division of the scale in the 

positive Or negative direction. 

(3) The scale-reading at certain definite times. Observations 

of this kind are not often made except in the case of 

vibrations of long period * 

The quantities which we have to determine are— 

(1) The scale-reading at the position of equilibrium. 

(2) The logarithmic decrement of the vibrations. 

(3) The time of vibration. 

To determine the Reading at the Position of Equilibrium 
from Three Consecutive Elongations. 

735.] Let xv x2, xz be the observed scale-readings, correspond¬ 

ing to the elongations Xy F, Z} and let a be the reading at the 

position of equilibrium, Sy and let rx be the value of SB, 

— sin a, 

x2 — a = — rx sin a e~vcotay 
—a = rL sinae“2,rcot\ 

* See Gauds and W. Weber, 2%esulfate dts magnetischen Vereinst 1880. Chap. II. 
pp. 84-60. 
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From these values we find 

(«!-<*) (*>“<*) 

whence a = 

= (os, -a)2, 

^+^3-2*2 ' 

When a;3 does not differ much from ^ we may use as an 

approximate formula 
a = 2^ + ^). 

To determine the Logarithmic Decrement. 

736.] The logarithm of the ratio of the amplitude of a vibration 

to that of the next following is called the Logarithmic Decrement. 

If we write p for this ratio, 

L = kgio P, k = l°ZeP- 

L is called the common logarithmic decrement, and A the 

Napierian logarithmic decrement. It is manifest that 

A = L logfl 10 = 7T cot a. 

Hence a = cot”*1»> 
IT 

which determines the angle of the logarithmic spiral. 

In making a special determination of A we allow the body to 

perform a considerable number of vibrations. If is the ampli¬ 

tude of the first, and cn that of the 7ith vibration, 

A 
1 

n~~ 1 

If we suppose the accuracy of observation to be the same for 
small vibrations as for large ones, then, to obtain the best value 

of A, we should allow the vibrations to subside till the ratio of ct 

to cn becomes most nearly equal to e, the base of the Napierian 

logarithms. This gives for n the nearest whole number to - + 1. 
A 

Since, however, in most cases time is valuable, it is best to take 

the second set of observations before the diminution of amplitude 
has proceeded so far. 

737.] In certain cases we may have to determine the position 

of equilibrium from two consecutive elongations, the logarithmic 
decrement being known from a special experiment. We have then 
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Time of Vibration. 

738.] Having determined the scale-reading of the point of 

equilibrium, a conspicuous mark is placed at that point of the 

scale, or as near it as possible, and the times of the passage of 

this mark are noted for several successive vibrations. 

Let us suppose that the mark is at an unknown but very 
small distance x on the positive side of the point of equilibrium, 

and that t2 is the observed time of the first transit of the mark 

in the positive direction, and t29tzy &c. the times of the following 
transits. 

If T be the time of vibration {i. e. the time between two 

consecutive passages through the position of equilibrium}, and 

Pv P,, &c. the times of transit of the true point of equilibrium, 

tx = Pl+*, *, = £+-, P.~P = P,-P, = T, 
i i Vl v0 1 1 J 1 

where v19 v2, &c. are the successive velocities of transit, which we 
may suppose uniform for the very small distance x. 

If p is the ratio of the amplitude of a vibration to that of the 
next in succession, i ~ 1 x T •A' JL 

v —-and — — —p— • 
P vx 

If three transits are observed at times t1,t2)t3, we find 
X _ ^ — 2l2 + <3 

V1 (p+lf 
The time of vibration is therefore 

T — (<! —2^2 + f3). 

The time of the second passage of the true point of equili¬ 

brium is (n—l )2 
P, = i (*,+ ^2 + t3)-}^-^(t1-2t2 + t3). 

Three transits are sufficient to determine these three quantities, 
but any greater number may be combined by the method of 

least squares. Thus, for five transits, 

7’= is (2£6 + £4 —2£3— 2£4 + £5) —-j(2 — 1 + ^2)‘ 

The time of the third transit is, 

h = 4(£i+2£2-f 2 + 2 £4 -f 6) — (tj — 2 £2 + 2 £3 — 2 £4 *f £5) ^ ^ ^ |2 • 

739.] The same method may be extended to a series of any 

number of vibrations. If the vibrations are so rapid that the 
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time of every transit cannot be recorded, we may record the 
time of every third or every fifth transit, taking care that the 

directions of successive transits are opposite. If the vibrations 

continue regular for a long time, we need not observe during the 
whole time. We may begin by observing a sufficient number of 

transits to determine approximately the time of vibration, T, 

and the time of the middle transit, P, noting whether this transit 
is in the positive or the negative direction. We may then either 

go on counting the vibrations without recording the times of 
transit, or we may leave the apparatus un watched. We then 

observe a second series of transits, and deduce the time of 

vibration T and the time of middle transit P\ noting the 
direction of this transit. 

If T and T', the times of vibration as deduced from the two 

sets of observations, are nearly equal, we may proceed to a 
more accurate determination of the period by combining the 
two series of observations. 

Dividing P7—P by P, the quotient ought to be very nearly 

an integer, even or odd according as the transits P and P are 
in the same or in opposite directions. If this is not the case, 

the series of observations is worthless, but if the result is very 

nearly a whole number n, we divide P' — P by n, and thus find 
the mean value of T for the whole time of swinging. 

740.] The time of vibration P thus found is the actual mean 

time of vibration, and is subject to corrections if we wish to 

deduce from it the time of vibration in infinitely small arcs and 
without damping. 

To reduce the observed time to the time in infinitely small 
arcs, we observe that the time of a vibration from rest to rest of 
amplitude c is in general of the form 

T = T1(1+kc1), 

where #c is a coefficient, which, in the case of the ordinary pen¬ 

dulum, is ^4. Now the amplitudes of the successive vibrations 

are c, cp~\ cp~'2,,..cp1~*, so that the whole time of n vibrations is 
. /1 2 n 2. 

= IU” + *JfcrL). 
whe e T is the time deduced from the observations. 

Hence, to find the time 1\ in infinitely small arcs, we have 
approximately, «qy-c.2} 

n ,,2-l j 
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To find the time T0 when there is no damping, we have Art. 731 
T0 = Tx sin a 

_ rp ^ 

V,F+a** 
741.] The equation of the rectilinear motion of a body, attracted 

to a fixed point (by a force proportional to the distance} and 
resisted by a force varying as the velocity, is 

d2x n, dx _, . . . 

dF+2kdi+<0(®-°) = °> (1> 

where x is the coordinate of the body at the time t, and a is the 

coordinate of the point of equilibrium. 

To solve this equation, let 
x — a — erkty ; (2) 

then +(<»2 —&2) y = 0 ; (3) 

the solution of which is 

y — Ccos ( -/w3 — k2t + a), when Jc is less than o ; (4) 

y = A +Bt, when k is equal to a>; (5) 
and y = (7' cos h (v'/s* — <o2£ + a'), when k is greater than o>. (6) 

The value of x may be obtained from that of y by equation (2). 

When k is less than a>, the motion consists of an infinite series of 

oscillations, of constant periodic time, but of continually de¬ 
creasing amplitude. As k increases, the periodic time becomes 

longer, and the diminution of amplitude becomes more rapid. 

When k (half the coefficient of resistance) becomes equal to or 

greater than w, (the square root of the acceleration at unit 

distance from the point of equilibrium,) the motion ceases to be 

oscillatory, and during the whole motion the body can only 
once pass through the point of equilibrium, after which it 

reaches a position of greatest elongation, and then returns 

towards the point of equilibrium, continually approaching, but 

never reaching it. 

Galvanometers in which the resistance is so great that the 

motion is of this kind are called dead heat galvanometers. 
They are useful in many experiments, but especially in tele¬ 

graphic signalling, in which the existence of free vibrations 

would quite disguise the movements which are meant to be 

observed. 
Whatever be the values of k and a>, the value of a, the scale¬ 

reading at the point of equilibrium, may be deduced from five 
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scale-readings, py q, r, 6*, t, taken at equal intervals of time, by 
the formula 

__ q (rs — qt) 4- r (pt — r2) -f « f gr—ps) 

(p — 2q -frj (r — 2s 4- £) — (g—2r-f s)2 

On the Observation of the Galvanometer, 

742.] To measure a constant current with the tangent galvano¬ 

meter, the instrument is adjusted with the plane of its coils 

parallel to the magnetic meridian, and the zero reading is taken. 

The current is then made to pass through the coils, and the 

deflexion of the magnet corresponding to its new position of 
equilibrium is observed. Let this be denoted by <f>. 

Then, if H is the horizontal magnetic force, G the coefficient 
of the galvanometer, and y the strength of the current, 

H 
y = q tan </). (1) 

If the coefficient of torsion of the suspension fibre is tMII (see 

Art. 452), we must use the corrected formula 

y — qt (tan 04- r</>sec</>). (2) 

Best value of the Deflexion. 

743.] In some galvanometers the number of windings of the 

coil through which the current flows can be altered at pleasure. 

In others a known fraction of the current can be diverted from 

the galvanometer by a conductor called a Shunt. In either case 

the value of G, the effect of a unit-current on the magnet, is 
made to vary. 

Let us determine the value of G, for which a given error in the 

observation of the deflexion corresponds to the smallest error of 

the deduced value of the strength of the current. 

Differentiating equation (1), we find 

dy 

d(p 
H 
G 

= T, sec2<p. (3) 

Eliminating G, ~ sin 2 </>. (4) 

This is a maximum for a given value of y when the deflexion 

is 45°. The value of G should therefore be adjusted till Gy is 
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as nearly equal to H as is possible ; so that for strong currents it 
is better not to use too sensitive a galvanometer. 

On the Bed Method of applying the Current. 

744.] When the observer is able, by means of a key, to make 

or break the connexions of the circuit at any instant, it is 

advisable to operate with the key in such a way as to ‘make 
the magnet arrive at its position of equilibrium with the least 

possible velocity. The following method was devised by Gauss 
for this purpose. 

Suppose that the magnet is in its position of equilibrium, and 

that there is no current. The observer now makes contact for a 

short time, so that the magnet is set in motion towards its new 
position of equilibrium. He then breaks contact. The force is 

now towards the original position of equilibrium, and the motion 

is retarded. If this is so managed that the magnet comes to rest 
exactly at the new position of equilibrium, and if the observer 

again makes contact at that instant and maintains the contact, 

the magnet will remain at rest in its new position. 

If we neglect the effect of the resistances and also the 

inequality of the total force acting in the new and the old 

positions, then, since we wish the new force to generate as much 

kinetic energy during the time of its first action as the original 

force destroys while the circuit is broken, we must prolong the 

first action of the current till the magnet has moved over half 

the distance from the first position to the second. Then if the 

original force acts while the magnet moves over the other half 

of its course, it will exactly stop it. Now the time required to 
pass from a point of greatest elongation to a point half way to 

the position of equilibrium is one-third of the period, from rest 

to rest. 
The operator, therefore, having previously ascertained the time 

of a vibration from rest to rest, makes contact for one-third of 

that time, breaks contact for another third of the same time, 

and then makes contact again during the continuance of the ex¬ 

periment. The magnet is then either at rest, or its vibrations are 

so small that observations may be taken at once, without waiting 

for the motion to die away. For this purpose a metronome 

may be adjusted so as to beat three times for each vibration of 

the magnet. 
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The rule is somewhat more complicated when the resistance is 

of sufficient magnitude to be taken into account, but in this case 

the vibrations die away so faBt that it is unnecessary to apply 

any corrections to the rule. 
When the magnet is to, be restored to its original position, the 

circuit is broken for one-third of a vibration, made again for an 

equal time, and finally broken. This leaves the magnet at rest 

in its former position. 

If the reversed reading is to be taken immediately after the 

direct one, the circuit is broken for the time of a single vibra¬ 
tion and then reversed. This brings the magnet to rest in the 

reversed position. 

Measurement by the First Swing. 

745.] When there is no time to make more than one observa¬ 

tion, the current may be measured by the extreme elongation 

observed in the first swing of the magnet. If there is no re¬ 

sistance, the permanent deflexion <f> is half the extremo elongation. 

If the resistance is such that the ratio of one vibration to the 
next is p, and if 60 is the zero reading, and 6X the extreme 

elongation in the first swing, the deflexion, <p, corresponding 
to the point of equilibrium is 

0 = L+p * 
In this way the deflexion may be calculated without waiting 

for the magnet to come to rest in its position of equilibrium. 

To make a Series of Observations. 

746.] The best way of making a considerable number of 

measures of a constant current is by observing three elongations 

while the current is in the positive direction, then breaking 

contact for about the time of a single vibration, so as to let the 

magnet swing into the position of negative deflexion, then 
reversing the current and observing three successive elongations 

on the negative side, then breaking contact for the time of a 

single vibration and repeating the observations on the positive 

side, and so on till a sufficient number of observations have been 

obtained. In this way the errors which may arise from a change 

in the direction of the earth's magnetic force during the time of 
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observation are eliminated. The operator, by carefully timing 
the making and breaking of contact, can easily regulate the 
extent of the vibrations, so as to make them sufficiently small 
without being indistinct. The motion of the magnet is graphi¬ 
cally represented in Fig. 58, where the abscissa represents the 
time, and the ordinate the deflexion of the magnet. If 9l...0e 
be the observed algebraical values of the elongations, the de¬ 
flexion is given by the equation 

8<f> — + 2 02 “h $3 — $4 — 2 05 — 9q . 

Method of Multiplication. 

747.] In certain cases, in which the deflexion of the galva¬ 
nometer magnet is very small, it may be advisable to increase 
the visible effect by reversing the current at proper intervals, so, 

as to set up a swinging motion of the magnet. For thispurpose 
after ascertaining the time, T, of a single vibration {i. e. one 
from rest to rest} of the magnet, the current is sent in the 
positive direction for a time T, then in the reverse direction for 
an equal time, and so on. When the motion of the magnet has 
become visible, we may make the reversal of the current at the 

observed times of greatest elongation. 
Let the magnet be at the positive elongation 0O, and let the 

current be sent through the coil in the negative direction. The 
point of equilibrium is then — <#>, and the magnet will swing to 

a negative elongation 6lt such that 

— P (<#> + 01) ~ (0o + ^)> 
or — pOj^ = 0O + (p -f 1) p. 

Similarly, if the current is now made positive while the 
magnet swings to 02, 

p 02 = — 0X -f (p 4- 1) (p, 

or p202 = 0o + (p+ 1)24>; 

and if the current is reversed n times in succession, we find 

(-1 r o,=/>-"«o + pf_\ (1 - p~n) 

0 c VOL. II. 
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whence we may find </> in the form 

If n is a number so great that p~" may be neglected, the ex¬ 

pression becomes ^ __ j 
<t> = 0* 

P+ 1 
The application of this method to exact measurement requires 

an accurate knowledge of p, the ratio of one vibration of the 

magnet to the next under the influence of the resistances which 

it experiences. The uncertainties arising from the difficulty of 

avoiding irregularities in the value of p generally outweigh the 
advantages of the large angular elongation. It is only where 

we wish to establish the existence of a very small current by 
causing it to produce a visible movement of the needle that this 

method is really valuable. 

On the Measurement of Transient Currents. 

748.] When a current lasts only during a very small fraction 

of the time of vibration of the galvanometer-magnet, the whole 
quantity of electricity transmitted by the current may be 

measured by the angular velocity communicated to the magnet 

during the passage of the current, and this may be determined 

from the elongation of the first vibration of the magnet. 

If we neglect the resistance which damps the vibrations of the 

magnet, the investigation becomes very simple. 

Let y be the intensity of the current at any instant, and Q the 

quantity of electricity which it transmits, then 

Q=Jydt. (1) 

Let M be the magnetic moment, A the moment of inertia of the 

magnet and suspended apparatus, and $ the angle the magnet 

makes with the plane of the coil, 

<72 0 
A + MH sin 0 = MGy cos 0. (2) 

If the time of the passage of the current is very small, we may 

integrate with respect to t during this short time without re¬ 
garding the change of 0, and we find 

A 
dO 

dt 
MG cos 6 + C = MGQ cos 60 + C. (3) 
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This shews that the passage of the quantity Q produces an angular 
momentum MGQ cos 60 in the magnet, where $0 is the value of 6 
at the instant of passage of the current. If the magnet is 
initially in equilibrium, we may put 0o = 0, C = 0. 

The magnet then swings freely and reaches an elongation $l. 
If there is no resistance, the work done against the magnetic 
force during this swing is Mil (1 — cos 0X). 

The energy communicated to the magnet by the current is 

Equating these quantities, we find 

^=2^(1-, 
dt A 

whence ^ — 2 A / 
dt /\/ A 

0MH„ 
= 2-^-(l~Cos^), 

sin \ 6X 

= Q by (3). (5) 

But if T be the time of a single vibration of the magnet from 
rest to rest, 

r = 7rV/ MB’ (6) 

and we find 
„ HTn . .. 
Q = a - 2 sin 4 9V 

Or 7T 

where If is the horizontal magnetic force, G the coefficient of 
the galvanometer, T the time of a single vibration, and 6X the 

first elongation of the magnet. 
749.] In many actual experiments the elongation is a small 

angle, and it is then easy to take into account the effect of re¬ 
sistance, for we may treat the equation of motion as a linear 
equation. 

Let the magnet be at rest at its position of equilibrium, let an 
angular velocity v be communicated to it instantaneously, and 

let its first elongation be 0X. 
The equation of motion is 

0 = Ca'^^^sinaqtf, (6) 

dO 
~ - = C'co1sec/3e‘"h,i£Un^cos(a;1^4'/3). (9) 

When t = 0, 0 = 0, and C o)x = V. 

c c z 
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When <Djt + j3 — 
2 

d = Ce-$-^$coBl3'=dv (10) 

Hence 
V tanp 

0l = — e ^ 1 cos /3. 
a). (H) 

Now by Art. (741) = <u2 = aq2sec2/3, 
jA. 

(12) 

, a A IT 
tan p = —» Wj = — , 

7T 1 2 

(13) 

and by equation (5) v — -j- Q. (14) 

Hence 
_ QG vV + \2 

°'-'H Tx 6 
(15) 

and Q -S" Tl0l ^tan-1 ~ 
v n /—5-r, ew A, (16) 

which gives the first elongation in terms of the quantity of 

electricity in the transient current, and conversely, where Tx 
is the observed time of a single vibration as affected by the 

actual resistance of damping. When \ is small we may use 
the approximate formula 

Q = ^(l + iA)<V (17) 

Method of Recoil. 

750.] The method given above supposes the magnet to be at 

rest in its position of equilibrium when the transient current is 

passed through the coil. If we wish to repeat the experiment 
we must wait till the magnet is again at rest. In certain cases, 

however, in which we are able to produce transient currents of 
equal intensity, and to do so at any desired instant, the follow¬ 
ing method, described by Weber*, is the most convenient for 
making a continued series of observations. 

Suppose that we set the magnet swinging by means of a tran¬ 
sient current whose value is Q0. If, for brevity, we write 

G f 7T2 -f A2 — - tan-1 ~ 
_p ir A — 

II Tt 
then the first elongation 

ei = KQo = ai (say). 

(18) 

(19) 

* Gauss & Weber, Retaliate des Magnetitchen Vereins, 1888, p. 98. 
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The velocity instantaneously communicated to the magnet at 

starting is ^*4. <*, 

When it returns through the point of equilibrium in a negative 

direction its velocity will be 

v1 — —ve~K. (21) 

The next negative elongation will be 

(22) 
When the magnet returns to the point of equilibrium, its velocity 

wil1 bc v2 = i>0e-2\ (23) 

Now let an instantaneous current, whose total quantity is 

— Q, be transmitted through the coil at the instant when the 

magnet is at the zero point. It will change the velocity v.A into 

v-i-v, where Mg 
v = -j- Q- (24) 

If Q is greater than Q0e~2x, the new velocity will be negative 

and equal to 

The motion of the magnet will thus be reversed, and the next 

elongation will be negative, 

63 = -K(Q-Q0e~2A) = = + (25) 

The magnet is then allowed to come to its positive elongation 

04 =s — 03e~x = dY = erx(KQ — a1e~‘2x)> (26) 

and when it again reaches the point of equilibrium a positive 

current whose quantity is Q is transmitted. This throws the 

magnet back in the positive direction to the positive elongation 

05=KQ + O,e~*x; (27) 

or, calling this the first elongation of a second series of four, 

a2 = KQ (1 — «-2A) + a1e“4A. (28) 

Proceeding in this way, by observing two elongations + and —, 

then sending a negative current and observing two elongations 
— and -f, then sending a positive current, and so on, we obtain 

a series consisting of sets of four elongations, in each of which 

= <r\ (29) 
a — c 

vn _ (a-b)e~iK+d-c' m - —1 +e~x-—> (3°) and 
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If n series of elongations have been observed, then we find the 

logarithmic decrement from the equation 

m-i(6j 
2 (a)-2(c) 1 

and Q from the equation 

KQ(l + e-K)(2n-l) 

= 2«(a-&—c + d)( 1 + e"2 A) — (0^ — bj — (dn — cn) e~ 

(31) 

(32) 

Fig. 59. 

The motion of the magnet in the method of recoil is graphi¬ 

cally represented in Fig. 59, where the abscissa represents the 

time, and the ordinate the deflexion of the magnet at that time. 

See Art. 760. 

Method of Multiplication. 

751.] If we make the transient current pass every time that 

the magnet passes through the zero point, and always so as 

to increase the velocity of the magnet, then, if 01% fl2, &c. are 
the successive elongations, 

$2 “—^Q—® (33) 
03 = +KQ-e~*92. (34) 

The ultimate value to which the elongation tends after a great 

many vibrations is found by putting 0n = — 0n~l9 whence wo find 

e = ±T-L^KQ. (35) 

If \ is small, the value of the ultimate elongation may be 

large, but since this involves a long continued experiment, and a 

careful determination of A, and since a small error in A intro¬ 

duces a large error in the determination of Q, this method is 

rarely useful for numerical determination, and should be re¬ 

served for obtaining evidence of the existence or non-existence 

of currents too small to be observed directly. 

In all experiments in which transient currents are made 
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to act on the moving magnet of the galvanometer, it is essential 

that the whole current should pass while the distance of the 

magnet from the zero point remains a small fraction of the 

total elongation. The titne of vibration should therefore be 

large compared with the time required to produce the current, 

and the operator should have his eye on the motion of the 

magnet, so as to regulate the instant of passage of the current 

by the instant of passage of the magnet through its point of 

equilibrium. 

To estimate the error introduced by a failure of the operator 

to produce the current at the proper instant, we observe that 

the effect of an impulse in increasing the elongation varies as 

e*14111 * cos (c/) -f y3),* 

and that this is a maximum when </> ~ 0. Hence the error 

arising from a mistiming of the current will always lead to 

an under-estimation of its value, and the amount of the error 

may be estimated by comparing the cosine of the phase of the 

vibration at the time of the passage of the current with unity. 

* {lliave not succeeded in verifying this expression; using the notation of Art.748. 
I find that the elongation when the impulse is applied at $ bears to the elongation 
produced by the same impulse when <f> =* 0 the ratio 

A o>i 
i , , -4‘M>tan£! 

r+ Muy i’ 
where <p has been assumed to be so small that its squares and higher powers may be 
neglected, j 



CHAPTER XVir. 

COMPARISON OF COILS, 

Experimental Determination of the Electrical Constants 

of a Coil. 

752.] We have seen in Art. 717 that in a sensitive galvano¬ 

meter the coils should be of small radius, and should contain 

many windings of the wire. It would be extremely difficult 

to determine the electrical constants of such a coil by direct 

measurement of its form and dimensions, even if we could 

obtain access to every winding of the wire in order to measure 

it. But in fact the greater number of the windings are not only 

completely hidden by the outer windings, but we are uncertain 

whether the pressure of the outer windings may not have 

altered the form of the inner ones after the coiling of the wire. 

It is better therefore to determine the electrical constants of 

the coil by direct electrical comparison with a standard coil 

whose constants are known. 

Since the dimensions of the standard coil must be determined 

by actual measurement, it must be made of considerable size, 

so that the unavoidable error of measurement of its diameter 

or circumference may be as small as possible compared with the 

quantity measured. The channel in which the coil is wound 

should be of rectangular section, and the dimensions of the 

section should be small compared with the radius of the coil. 

This is necessary, not so much in order to diminish the cor¬ 

rection for the size of the section, as to prevent any uncertainty 

about the position of those windings of the coil which are 

hidden by the external windings * 

* Large tangent galvanometers are sometimes made with a single circular con¬ 
ducting ring of considerable thickness, which is sufficiently stiff to maintain its form 

without any support. This is not a good plan for a standard instrument. The dis¬ 
tribution of the current within the conductor depends on the relative conductivity 
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The principal constants which we wish to determine are— 
(1) The magnetic force at the centre of the coil due to a 

ujlit-current. This is the quantity denoted by f?1 in Art. 700. 

(2) The magnetic moment of the coil due to a unit-current. 
This is the quantity gx. 

753.] To determine Gl. Since the coils of the working galva¬ 
nometer are much smaller than the standard coil, we place the 
galvanometer within the standard coil, so that their centres 

coincide, the planes of both coils being vertical and parallel 
to the earth's magnetic force. We have thus obtained a differ¬ 

ential galvanometer one of whose coils is the standard coil, for 

which the value of G\ is known, while the constant of the other 
coil is (?/, the value of which we have to determine. 

The magnet suspended in the centre of the galvanometer coil 

is acted on by the currents in both coils. If the strength of the 
current in the standard coil is y, and that in the galvanometer 
coil /, then, if these currents flowing in opposite directions pro¬ 
duce a deflexion 5 of the magnet, 

II tan 5 = G/y'— G^y, (l) 
where H is the horizontal magnetic force of the earth. 

If the currents are so arranged as to produce no deflexion, we 
may find (?/ by the equation 

= (2) 
We may determine the ratio of y to y in several ways. Since 
the value of Gx is in general greater for the galvanometer than 

for the standard coil, we may arrange the circuit so that the 

whole current y flows through the standard coil, and is then 

divided so that ^ flows through the galvanometer and resistance 

coils, the combined resistance of which is jR*, while the re¬ 
mainder y— y flows through another set of resistance coils whose 

combined resistance is R2. 
of its various parts. Hence any concealed flaw in the continuity of the metal may 
cause the main stream of electricity to flow either close to the outside or close to the 
inside of the circi ir ring. Thus the true path of the current becomes uncertain. 
Besides this, when the current flows only once round the circle, especial care is 
necessary to avoid any action on the suspended magnet due to the current on its 
way to or from the circle, because the current in the electrodes is equal to that in 
the circle. In the construction of many instruments the action of this part of the 
current seems to have been altogether lost sight of. 

The most perfect method is to make one of the electrodes in the form of a metal 
tube, and the other a wire covered with insulating material, and placed inside the 
tube and concentric with it. The external action of the electrodes when thus arranged 
is zero, by Art. 683. 
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We have then, by Art. 276, 

(3) 
y R,+Ra 

or , = \ 2> 
V -tty 

(0 

and G'=R'tRiGv 
lt2 (5) 

If there is any uncertainty about the actual resistance of the 

galvanometer coil (on account, say, of an uncertainty as to its 

temperature) we may add resistance coils to it, so that the resist¬ 

ance of the galvanometer itself forms but a small part of Rx, and 

thus introduces but little uncertainty into the final result. 

754] To determine gl1 the magnetic moment of a small coil 

due to a unit current flowing through it, the magnet is still sus¬ 

pended at the centre of the standard coil, but the small coil 

is moved parallel to itself along the common axis of both coils, 

till the same current, flowing in opposite directions round the 

coils, no longer deflects the magnet. If the distance between 

the centres of the coils is r, we have now (Art. 700) 

- 2‘Ja +3“i+4fl +&c‘ (G) 

By repeating the experiment with the small coil on the oppo¬ 

site side of the standard coil, and measuring the distance between 

the positions of the small coil, we eliminate the uncertain error 

in the determination of the position of the centres of the magnet 

and of the small coil, and we get rid of the terms in f/2, (/4, &c. 

If the standard coil is so arranged that we can send the 

current through half the number of windings, so as to give 

a different value to 6r1, we may determine a new value of r, and 

thus, as in Art. 454, we may eliminate the term involving g3. 

It is often possible, however, to determine g% by direct measure¬ 

ment of the small coil with sufficient accuracy to make it avail¬ 

able in calculating the value of the correction to be applied to 

g, in the equation i n 
= 2£f, (7) 

tfa = — ^wa2(6a2+3f2-2ija), by Art. 700. where 
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Comparison of Coefficients of Induction. 

755.] It is only in a small number of cases that the direct 
calculation of the coefficients of induction from the form and 
position of the circuits can be easily performed. In order to 

attain a sufficient degree of accuracy, it is necessary that the 
distance between the circuits should be capable of exact measure¬ 
ment. But when the distance between the circuits is suffi¬ 

cient to prevent errors of measurement from introducing large 

errors into the result, the coefficient of induction itself is neces¬ 
sarily very much reduced in magnitude. Now for many experi¬ 

ments it is necessary to make the coefficient of induction large, 
and we can only do so by bringing the circuits close together, 
so that the method of direct measurement becomes impossible, 

and, in order to determine the coefficient of induction, we must 
compare it with that of a pair of coils arranged so that their 
coefficient may be obtained by 
direct measurement and calcu¬ 
lation. 

This may be done as follows : 

Let A and a be the standard 
pair of coils, B and b the coils to 
be compared with them. Con¬ 

nect A and B in one circuit, 

and place the electrodes of the 
galvanometer, (?, at P and Q, 

so that the resistance of PAQ 

is JR, and that of QBP is £}, K 
being the resistance of the galvanometer. Connect a and b in 

one circuit with the battery. 
Let the current in A be I, that in B, y, and that in the gal¬ 

vanometer, x— y, that in the battery circuit being y. 

Then, if Mx is the coefficient of induction between A and a, and 

M2 that between B and b, the integral induction current through 

the galvanometer at breaking the battery circuit is 

Mt _ Ml 
.*-i'=y s K V <») 

1+R + ~S 

By adjusting the resistances R and S till there is no current 
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through the galvanometer at making or breaking the battery 

circuit, the ratio of M2 to may be determined by measuring 

that of S to JR. 
* [The expression (8) may be proved as follows: Let L2, 

N and F be the coefficients of self-induction of the coils A, B) ah 

and the galvanometer respectively. The kinetic energy T of the 

system is then approximately, 

\L1&+\L2s*+\Y(K-y)2+\Ny* + M1xy + M2fy. 

The dissipation function F\ i. e. half the rate at which the 

energy of the currents is wasted in heating the coilB, is (see Lord 

Rayleigh’s Theory of Sound, vol. i. p. 78) 

\x2R+lfS+b (x-yfK + \y2Q> 

where Q is the resistance of the battery and battery coils. 

The equation of currents corresponding to any variable x is 

then of the form ddT _ dT dF _ 

dtdx^fx dx * 

where £ is the corresponding electromotive force. 

Hence we have 

Lxx + T {x—y) -+ Mx y + Rx -f K (x—y) — 0, 

\v—y) + M2y + Sj-K (x~y) = 0. 

These equations can be at once integrated in regard to t. Ob¬ 

serving that x, x, y, y, y are zero initially, if we write x — y~z 

we find, on eliminating y, an equation of the form 

Az + Bz + Cz=.Dy + Ey. (8') 

A short time after battery contact the current y will have 

become steady and the current i will have died away. Hence 

Cz = Ey. 

This gives the expression (8) above, and it shews that when 

the total quantity of electricity passing through the galvano¬ 

meter is zero we must have E = 0, or M2R — MlS = 0. The 

equation (8') further shews that if there is no current whatever in 

the galvanometer we must also have D = 0, or M2 Lx — 0.]f 

* [The investigation in square brackets, taken from Mr. Fleming's notes of Professor 
Clerk MaxweU's Lectures, possesses a melancholy interest as being part of the last 
lecture delivered by the Professor. In Mr. Fleming’s notes the plan of the experi¬ 
ment differs from that given in the text in having the battery and galvanometer 
interchanged.] 

f { Unless the condition M2 Lx — MlL2 — 0 is approximately fulfilled the unsteadiness 
caused in the zero of the galvanometer by the transient currents prevents our 
determining with accuracy whether there is or is not a * kick * of the galvanometer on 
dosing the battery circuit, j 
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Comparison of a Coefficient of Self-Induction with a, Coefficient 

of Mutual Induction. 

756.] In the branch AF of Wheatstone’s Bridge let a coil be 
inserted, the coefficient of self-induction of which we wish to 

find. Let us call it L. 

In the connecting wire between A and the battery another 
coil is inserted. The coefficient of mutual induction between 
this coil and the coil in AF is M. It 

may be measured by the method 
described in Art. 755. 

If the current from A to F is x, 
and that from A to H is y, that from 
Z to Ay through J9, will be x + y. 
The external electromotive force from 

A to F is 

+ + (9) 

The external electromotive force 
along All is 

A-H = Qy. (10) 

If the galvanometer placed between F and II indicates no 
current, either transient or permanent, then by (9) and (10), 

since H—F= 0, Px = Qy, (11) 

and 
Tdx Ttr/dx dy\ 

(12) 

whence (13) 

Since L is always positive, M must be negative, and therefore 

the current must flow in opposite directions through the coils 

placed in P and in B. In making the experiment we may 
either begin by adjusting the resistances so that 

PS = QRy (14) 

which is the condition that there may be no permanent current, 
and then adjust the distance between the coils till the galvano¬ 

meter ceases to indicate a transient current on making and 
breaking the battery connexion ; or, if this distance is not 

capable of adjustment, we may get rid of the transient current 

by altering the resistances Q and S in such a way that the ratio 

of Q to S remains constant. 
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If this double adjustment is found too troublesome, we may 

adopt a third method. Beginning with an arrangement in 

which the transient current due to self-induction is slightly 

in excess of that due to mutual induction, we may get rid of 

the inequality by inserting a conductor whose resistance is W 

between A and Z, The condition of no permanent current 

through the galvanometer is not affected by the introduction of 

W. We may therefore get rid of the transient current by ad¬ 

justing the resistance of W alone. When this is done the value 

of L is 

*=-(> + £ + -rV- <i5> 

Comparison of the Coefficients of Self-Induction of Two Coils. 

757.] Insert the coils in two adjacent branches of Wheatstone’s 

Bridge. Let L and N be the coefficients of self-induction of the 

coils inserted in P and in R respectively, then the condition of 

no galvanometer current is Fig. 61, 

(•P*+Is)'% = &(**+s%), (is) 

whence PS = QR, for no permanent current, (17) 

L N 
and p = j£> for no transient current. (18) 

Hence, by a proper adjustment of the resistances, both the 

permanent and the transient currents can be got rid of, and then 

the ratio of L to N can be determined by a comparison of the 

resistances. 



APPENDIX TO CHAPTER XVII. 

{The method of measuring the coefficient of self-induction of a coil is 

described in the following extract from Maxwell's paper on a Dynamical 

Theory of the Electromagnetic Field, Phil. Trans. 155, pp. 475-477. 

i On the Determination of Coefficients of Induction by the Electric 

Balance. 

The electric balance consists of six conductors joining four points 

A, Cy D} Ey two and two. 

D 

Fig. 62. 

One pair, AC, of these points is connected through the battery B. The 

opposite pair, 1)E, is connected through the galvanometer G. Then if the 

resistances of the four remaining conductors are represented by P> Q, R, S} 

and the currents in them by xy x~z, y, and y-+-z, the current through 

G will be z. Let the potentials at the four points be A, C, D, E. Then 

the conditions of steady currents may be found from the equations 

Px = A~ I), Q(x—z) = D—Cy \ 

Ky = A-E, S{y + z) = E-C, > (21) 

Gz = D—E. B(x+y) = -A + C+F.) 

Solving these equations for z, we find 

!/> + i+i+ l+B(p+i)(«+ s) +e() + s1 

+ ?@s(i,+«+*+J)} = ,(A-p)- <22> 
In this expression F is the electromotive force of the battery; z the 

current through the galvanometer when it has become steady; P, Q, R} S, 
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the resistances in the four arms; B that of the battery and electrodes, 

and G that of the galvanometer. 

(44) If PS = QR, then s = 0, and there will be no steady current, but 
a transient current through the galvanometer may be produced on 
making or breaking circuit on account of induction, and the indications of 

the galvanometer may be used to determine the coefficients of induction, 

provided we understand the actions which take place. 

We shall suppose PS = QR, so that the current z vanishes when 

sufficient time is allowed, and 

x(P+Q)-y(R+S)~ ^P+Q)^R+S)+B^F+Q+It + Sy (23) 

Let the induction coefficients between P} Q, R, S be given by the 

following Table, the coefficient of induction of P on itself being pt between 

P and Q} h, and bo on. 

P Q R s 
p P h k l 

Q h 9 m n 

R k m r 0 

S l n 0 8 

Let g be the coefficient of induction of the galvanometer on itself, and let 

it be out of reach of the induction influence of P, Q, Rt S (as it must bo 

in order to avoid direct action of P, Q, P, S on the needle). Let Xy Yy Z 
be the integrals of x, yy z with respect to t. At making contact x, y, z 

are zero. After a time z disappears, and x and y reach constant values. 
The equations for each conductor will therefore be 

PX -f- (jt) + A) x + (k + V) y — J* A dt —J*.JD dty \ 

Q{X—Z)+(h + q) x + (m + n)y = f I)dt~fCdt,) (24) 

RT+ (k + wi) x + (r + o) y = f Adt — fEdt, j 

S ^)+ (Z + n) x 4* (o + y := J'Rdt —J* Cdtf' 

GZ — /Ddt-fEdt. 

Solving these equations for Z we find, 

9 
Q 

r 8 
R +S 

i) + «i 
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Now let the deflexion of the galvanometer by the instantaneous current 

whose intensity {total quantity} is Z be a. 

Let the permanent deflexion produced by making the ratio of PS to 

QRy p instead of unity, be 6. 

Also let the time of vibration of the galvanometer needle from rest to 

rest be T. Then calling the quantity 

T~^~R^S+hiT~l^+k^li~p) + l^li+Q) 

~ m (J+5)+M(^r-+ °(l-Ji) = T- <26> 

we find 
Z 2 sin \ &T __ t 

z tan 0 7r p — 1 
(27) 

In determining r by experiment it is best to make the alteration in 

the resistance in one of the arras by means of the arrangement described 

by Mr. Jenkin in the Report of the British Association for 1863, by 

which any value of p from 1 to 1*01 can be accurately measured. 

We observe {a}, the greatest deflexion {throw} due to the impulse of 

induction when the galvanometer is in circuit, when the connexions are 

made, and when the resistances are so adjusted as to give no permanent 

current. 

We then observe {>3}, the greatest deflexion {throw} produced by the 

permanent current when the resistance of one of the arms is increased in 

the ratio of p to 1, the galvanometer not being in circuit till a little while 

after the connexion is made with the battery. 

In order to eliminate the effects of resistance of the air, it is best 
to vary p till /3 = 2 a nearly: then 

T = T- (p- 
IT 

2 sin £ a 

tan i/d 

If all the arms of the balance except P consist of resistance coils 

of very fine wire of no great length and doubled before being coiled, the 

induction coefficients belonging to these coils will be insensible, and 

r will be reduced to v/P. The electric balance therefore affords the 

means of measuring the self-induction of any circuit whose resistance 

is known/ 

D d VOL. II. 



CHAPTER XVIII. 

ELECTROMAGNETIC UNIT OF RESISTANCE. 

On the Determination of the Resistance of a Coil in 

Electromagnetic Measure. 

758. ] The resistance of a conductor is defined as the ratio of 

the numerical value of the electromotive force to that of the 

current which it produces in the conductor. The determination 

of the value of the current in electromagnetic measure can be 

made by means of a standard galvanometer, when we know the 

value of the earth’s magnetic force. The determination of the 

value of the electromotive force is more difficult, as the only case 

in which we can directly calculate its value is when it arises 

from the relative motion of the circuit with respect to a known 

magnetic system. 

759. ] The first determination of the resistance of a wire in 

electromagnetic measure was made by Kirchhoff *. He employed 

two coils of known form, A1l and 

A2, and calculated their coeffi¬ 

cient of mutual induction from 

the geometrical data of their 

form and position. These coils 

were placed in circuit with a 

galvanometer, G, and a battery, 

B, and two points of the circuit, 

P, between the coils, and Q, between the battery and galvano¬ 

meter, were joined by the wire whose resistance, R, was to 

be measured. 

When the current is steady it is divided between the wire and 

the galvanometer circuit, and produces a certain permanent 

* * Bestimmung der Constanten, von welcher die Intensitat inducirter elektriacher 
Strome abhangt.’ Pogg., Ann,, Ixxvi (April 1849). 
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deflexion of the galvanometer. If the coil Ax is now removed 

quickly from A2 and placed in a position in which the coeffi¬ 

cient of mutual induction between Ax and A2 is zero (Art. 538), 

a current of induction is produced in both circuits, and the 

galvanometer needle receives an impulse which produces a certain 

transient deflexion * 

The resistance of the wire, R, is deduced from a comparison 

between the permanent deflexion, due to the steady current, and 

the transient deflexion, due to the current of induction. 

Let the resistance of QGAXP be K, of PA%BQ, B, and of 

PQ> It. 
Let Z, M and N be the coefficients of induction of At and A2. 

Let x be the current in £?, and y that in B, then the current 

from P to Q is x— y. 
Let E be the electromotive force of the battery, then 

(K-f ii)#—i2y-f (Lx + My) = 0, (1) 

-Rx + (B + R)y + ~(Mx + Ify) = E. (2) 

When the currents are constant, and everything at rest, 

(K + R)x-Ry — 0. (3) 

If M now suddenly becomes zero on account of the separation 

of A1 from A2, then, integrating with respect to t> 

(K + R)x-Ry-My — 0, (4) 

—Rx + (B + R) y~Mx — J'Edt = 0 ; (5) 

v n f (J5 •+• R) y -f Rod 
whence * = + ' « 

Substituting the value of y in terms of x from (3), we find 

x_M (B+R)(K + R) + R* 
x~ R {B + R)(K + R)-R* ( ) 

Mi 2 R2 . I .. 

~R r + (B + R)(K + R) + kc]' W 

* {instead of removing the coil Alf it is more convenient to reverse the current 
through A%\ in this case the quantity of electricity passing through the ballistic 
galvanometer is twice that in the text. Kirchhoff’s method has been used by Messrs. 
Glazebrook, Sargant and Dodds to determine a resistance in absolute measure. Phil. 
Tran*. 1883, pp. 223-268.) 

D d 2 
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When, as in KirchhofFs experiment, both B and K are large 

compared with i2, this equation is reduced to 

® _ it. 
x ~~ R 

Of these quantities, x is found from the throw of the galvano¬ 

meter due to the induction current. See Art. 748. The per¬ 

manent current, x, is found from the permanent deflexion due 

to the steady current; see Art. 746. M is found either by 

direct calculation from the geometrical data, or by a comparison 

with a pair of coils, for which this calculation has been made; 

see Art. 755. From these three quantities R can be determined 

in electromagnetic measure. 

These methods involve the determination of the period of 

vibration of the galvanometer magnet, and of the logarithmic 

decrement of its oscillations. 

Weber s Method by Transient Currents *. 

760.] A coil of considerable size is mounted on an axle, so as 

to be capable of revolving about a vertical diameter. The wire 

of this coil is connected with that of a tangent galvanometer so 

as to form a single circuit, Let the resistance of this circuit 

be 22. Let the large coil be placed with its positive face per¬ 

pendicular to the magnetic meridian, and let it be quickly 

turned round half a revolution. There will be an induced 

current due to the earth’s magnetic force, and the total quantity 

of electricity in this current in electromagnetic measure will be 

Q = 2Jii-’ (i) 

where gx is the magnetic moment of the coil for unit current, 

which in the case of a large coil may be determined directly, by 

measuring the dimensions of the coil, and calculating the sum of 

the areas of its windings. H is the horizontal component of 

terrestrial magnetism, and R is the resistance of the circuit 

formed by the coil and galvanometer together. This current 

sets the magnet of the galvanometer in motion. 

If the magnet is originally at rest, and if the motion of the 

coil occupies but a small fraction of the time of a vibration of 

* Elekt. Maaib.; or Pogg., Ann., lxzxii. pp. 337-369 (1851). 
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the magnet, then, if we neglect the resistance to the motion of 

the magnet, we have, by Art. 748, 

HTn • 
tv — 2 sin i 6, 
(JT TT 

(2) 

where G is the constant of the galvanometer, T is the time of 

vibration of the magnet, and 0 is the observed elongation. 

From these equations we obtain 

R = 7rGg 
1 

1 jTsin £6 (3) 

The value of IJ does not appear in this result, provided it is 

the same at the position of the coil and at that of the galvano¬ 

meter. This should not be assumed to be the case, but should 

be tested by comparing the time of vibration of the same 

magnet, first at one of these places and then at the other. 

761.] To make a series of observations Weber began with the 

coil parallel to the magnetic meridian. He then turned it with 

its positive face north, and observed the first elongation due to 

the negative current. He then observed the second elongation 

of the freely swinging magnet, and on the return of the magnet 

through the point of equilibrium he turned the coil with its 

positive face south. This caused the magnet to recoil to the 

positive side. The series was continued as in Art. 750, and the 

result corrected for resistance. In this way the value of the 

resistance of the combined circuit of the coil and galvanometer 

was ascertained. 

In all such experiments it is necessary, in order to obtain 

sufficiently large deflexions, to make the wire of copper, a metal 

which, though it is the best conductor, has the disadvantage of 

altering considerably in resistance with alterations of tempera¬ 

ture. It is also very difficult to ascertain the temperature of 

every part of the apparatus. Hence, in order to obtain a result 

of permanent value from such an experiment, the resistance of 

the experimental circuit should be compared with that of a 

carefully constructed resistance-coil, both before and after each 

experiment. 

Webers Method by observing the Decrement of the Oscillations 

of a Magnet. 

762.] A magnet of considerable magnetic moment is suspended 

at the centre of a galvanometer coil. The period of vibration 
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and the logarithmic decrement of the oscillations is observed, 

first with the circuit of the galvanometer open, and then with 

the circuit closed, and the conductivity of the galvanometer coil 

is deduced from the effect which the currents induced in it by 

the motion of the magnet have in resisting that motion. 

If T is the observed time of a single vibration, and A the Na¬ 

pierian logarithmic decrement for each single vibration, then, if 

we write tt f . 
w = ji’ v11 

and a = 7p (2) 

the equation of motion of the magnet iB of the form 

<f> = Ge~at cos (a>t -f /3). (3) 

This expresses the nature of the motion as determined by 

observation. We must compare this with the dynamical 

equation of motion. 

Let M be the coefficient of induction between the galvano¬ 

meter coil and the suspended magnet. It is of the form 

M = GigxPi(6) + G2g3P2{6) + &.c., (4) 

where Ol9 (?2, &c. are coefficients belonging to the coil, g19 g2, &c. 

to the magnet, and Px (0), &c. are zonal harmonics of 

the angle between the axes of the coil and the magnet. See 

Art. 700. By a proper arrangement of the coils of the galvano¬ 

meter, and by building up the suspended magnet of several 

magnets placed side by side at proper distances, we may cause 

all the terms of M after the first to become insensible compared 
7r 

with the first. If we also put <f> = - — 0, we may write 

M — Gra sin$, (5) 

where G {= Gx} is the principal coefficient of the galvanometer, 

m is the magnetic moment of the magnet, and <f> is the angle 

between the axis of the magnet and the plane of the coil, which, 

in this experiment, is always a small angle. 

If L is the coefficient of self-induction of the coil, and R its 

resistance, and y the current in the coil, 

^(Ly + M) + By=0, (6) 

or L^jr + Ry + Gmcos#^- — 0. (7) 
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The moment of the force with which the current y acts on the 

magnet is y » or £my cos <#>. The angle <fr is in this experi¬ 

ment so small, that we may suppose cos<£ = 1. 

Let us suppose that the equation of motion of the magnet 

when the circuit is broken is 

(8) 

where A is the moment of inertia of the suspended apparatus, 

expresses the resistance arising from the viscosity of the air. 

and of the suspension fibre, &c., and 0$ expresses the moment 

of the force arising from the earth's magnetism, the torsion of 

the suspension apparatus, &c. tending to bring the magnet to 

its position of equilibrium. 

The equation of motion, as affected by the current, will be 

A 
d2<f> 

~dt2 
+ +C<t> = Gmy. (») 

To determine the motion of the magnet, we have to combine 

this equation with (7) and eliminate y. The result is 

(4+*k^+4+c)*+02"'s=°’ <,o> 
a linear differential equation of the third order. 

We have no occasion, however, to solve this equation, because 

the data of the problem are the observed elements of the motion 

of the magnet, and from these we have to determine the value 

of K 

Let a0 and a>0 be the values of a and <*> in equation (3) when 

the circuit is broken. In this case R is infinite, and the equation 

(10) is reduced to the form (8). We thus find 

B = 2Aa,y C=A{a2 + »2). (11) 

— (a-f io>), where i = V — 1, 

Solving equation (10) for J£, and writing 

d 

dt 

we find 

D 6r2m2 a + i<a 
K = 

(12) 

A a2 — a>* -f 2 iau) —* 2 a0(a + ioj) + a02 + <«>0‘ 
-j +L(a + im). (13) 
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Since the value of u> is in general much greater than that of a, 

the best value of R is found by equating the terms in i«, 

(Pm2 , r * a)2 — <*>02x t . 
j-—:j+U(aa-a0--a---). (14) R = 

2 A(a — a0) ' " a—a,, 

We may also obtain a value of R by equating the terms not 

involving i, but as these terms are small, the equation is useful 

only as a means of testing the accuracy of the observations! 

From these equations we find the following testing equation, 

6r2m2 { a2 + co2 — ae2 — a>02} 

- LA 1 (a- aoy + 2 (a - a0)2(a>2 + a,02) + (a>2 -a>02)2 }• 05) 

Since LA on2 is very small compared with G2m2, this equation 

co2 — ooQ2 = a2 — a2; (16) 

and equation (14) may be written 

G27YL2 
R = .-,+2 La. (17) 

2 A (a a0) 

In this expression G may be determined either from the linear 

measurement of the galvanometer coil, or better, by comparison 

with a standard coil, according to the method of Art. 763. A is 

the moment of inertia of the magnet and its suspended ap¬ 

paratus, which is to be found by the proper dynamical method, 

to, a)0, a and a0, are given by observation. 

The determination of the value of m, the magnetic moment of 

the suspended magnet, is the most difficult part of the investiga¬ 

tion, because it is affected by temperature, by the earth’s 

magnetic force, and by mechanical violence, so that great care 

must be taken to measure this quantity when the magnet is in 

the very same circumstances as when it is vibrating. 

The second term of i£, that which involves L, is of less im¬ 

portance, as it is generally small compared with the first term. 

The value of L may be determined either by calculation from 

the known form of the coil, or by an experiment on the extra- 

current of induction. See Art. 766. 

Thomson's Method by a Revolving Coil. 

763.] This method was suggested by Thomson to the Com¬ 

mittee of the British Association on Electrical Standards, and 

the experiment was made by MM. Balfour Stewart, Fleeming 

Jenkin, and the author in 1863 * 

* See Report of the British Association for 1868, pp. 111-176. 
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A circular coil is made to revolve with uniform velocity about 

a vertical axis. A small magnet is suspended by a silk fibre at 

the centre of the coil. An electric current is induced in the coil 

by the earth’s magnetism, and also by the suspended magnet. 

This current is periodic, flowing in opposite directions through 
the wire of the coil during different parts of each revolution, but 

the effect of the current on the suspended magnet is to produce 

a deflexion from the magnetic meridian in the direction of the 

rotation of the coil. 

764.] Let U be the horizontal component of the earth’s mag¬ 

netism. 

Let y be the strength of the current in the coil. 
g the total area inclosed by all the windings of the wire. 

0 the magnetic force at the centre of the coil due to unit-, 

current. 

L the coefficient of self-induction of the coil. 

M the magnetic moment of the suspended magnet. 

0 the angle between the plane of the coil and the mag¬ 

netic meridian. 

<f> the angle between the axis of the suspended magnet and 

the magnetic meridian. 

A the moment of inertia of the suspended magnet. 

MHt the coefficient of torsion of the suspension fibre. 

a the azimuth of the magnet when there is no torsion. 

R the resistance of the coil. 

The kinetic energy of the system is 

T = \Ly2— Hgy sin Q~MGy&m(Q—(})) + MH cos (f> 4- J A <f>2. (1) 

The first term, iLy2, expresses the energy of the current as 

depending on the coil itself. The second term depends on the 

mutual action of the current and terrestrial magnetism, the 

third on that of the current and the magnetism of the suspended 

magnet, the fourth on that of the magnetism of the suspended 

magnet and terrestrial magnetism, and the last expresses the 

kinetic energy of the matter composing the magnet and the 

suspended apparatus which moves with it. 

The {variable part of the} potential energy of the suspended 

apparatus arising from the torsion of the fibre is 

r = T (<f>2—2(f) a). (2) 
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The electromagnetic momentum of the current is 

dT 
p = — = Ly — Hg sin d — MO sin (0 — </>), 

and if R is the resistance of the coil, the equation of the 

current is 

R'+dir,=°- w 
or, since 0 = (5) 

(R + L^)y ~ Rgu coa 0 +MG(uj--<j>)cos (6--<(>). (6) 

765.] It is the result alike of theory and observation that <£, 

the azimuth of the magnet, is subject to two kinds of periodic 

variations. One of these is a free oscillation, whose periodic 

time depends on the intensity of terrestrial magnetism, and is, 

in the experiment, several seconds. The other is a forced 

vibration whose period is half that of the revolving coil, and 

whose amplitude is, as we shall see, insensible. Hence, in 

determining y, we may treat </> as sensibly constant. 

We thus find 

y = (-R cos 0 + Lo, sin 0) (7) 

+ + 
- {j?cos(0-~<£)+ i<*>sin(0 — <£)}, 

The last term of this expression soon dies away when the 

rotation is continued uniform. 

The equation of motion of the suspended magnet is 

jSlT_d_r + dv= 0, (.0) 
dtd$ d<t> d<t> 

whence A<j> — MGy cos (0 — 4)) +MH (sm<f) + r((j) — a)) = 0. (11) 

Substituting the value of y, and arranging the terms ac¬ 

cording to the functions of multiples of 0, then we know from 

observation that 

4> = 4>q -f be~lt cos nt 4- c cos 2 (O — fi), (12) 

where 0O is the mean value of </>, and the second term ex¬ 

presses the free vibrations gradually decaying, and the third the 

forced vibrations arising from the variation of the deflecting 

current. 
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Beginning with the terms in (11) which do not involve 6, and 

which must collectively vanish, we find approximately 

jffjtcu2 C0S + Lm sin ^ + GMR\ 
= 2MH{am<t>0 + r(4>0~a)). (13) 

SinceLtan<f>0is generally small compared with(7$r, {and OMsec<f> 
with ffII,} the solution of the quadratic (13) gives approximately 

v Oga> , OM 2Lr2L ^ 
K =-7-\1+jH BeC<#,«" Ga^Oa ~ 1 )*“**« 

2 tan <f)0 (1 -f r 
u v sin <£/ 

Gg^Gg 

-^)^“1)fcan4<#’o}- (14) 

If we now employ the leading term in this expression in 

equations (7), (8), and (11)*, we shall find that the value of n in 

. /EM ™ 
equation (12) is sec </>0. That of c, the amplitude of 

the forced vibrations, is ^sin<f>0. Hence, when the coil 
(O* 

makes many revolutions during one free vibration of the 

magnet, the amplitude of the forced vibrations of the magnet 

is very small, and we may neglect the terms in (11) which 

involve c. 

766. ] The resistance is thus determined in electromagnetic 

measure in terms of the velocity go and the deviation <p. It 

is not necessary to determine H, the horizontal terrestrial mag¬ 

netic force, provided it remains constant during the experiment. 

M 
To determine we must make use of the suspended magnet 

H 

to deflect the magnet of the magnetometer, as described in 

Art. 454. In this experiment M should be small, so that this 

correction becomes of secondary importance. 

For the other corrections required in this experiment see the 

Report of the British Association for 1863, p. 168. 

Joule's Calorimetric Method. 

767. ] The heat generated by a current y in passing through a 

conductor whose resistance is R is, by Joule’s law, Art. 242, 

h = jfny*dt, (1) 

* | It is shorter and as accurate to put L «* 0 in equation (6) and substitute the 

corresponding value of 7 in (11).} 
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where J is the equivalent in dynamical measure of the unit of 

heat employed. 

Hence, if R is constant during the experiment, its value is 

This method of determining R involves the determination of 

A, the heat generated by the current in a given time, and of y2, 

the square of the strength of the current. 

In Joule's expeximents *, k was determined by the rise of 

temperature of the water in a vessel in which the conducting 

wire was. immersed. It was corrected for the effects of radiation, 

&c. by alternate experiments in which no current was passed 

through the wire. 

The strength of the current was measured by means of a 

tangent galvanometer. This method involves the determination 

of the intensity of terrestrial magnetism, which was done by the 

method described in Art. 457. These measurements were also 

tested by the current weigher, described in Art. 726, which 

measures y2 directly. The most direct method of measuring 

j*y2dt, however, is to pass the current through a self-acting 

electrodynamometer (Art. 725) with a scale which gives readings 

proportional to y2, and to make the observations at equal in¬ 

tervals of time, which may be done approximately by taking 

the reading at the extremities of every vibration of the in¬ 

strument during the whole course of the experiment f. 

* Report on Standards of Electrical Resistance of the British Association for 1867, 
pp. 474-522. 

+ (For the relative merits of the various methods of finding the absolute measure of 
a resistance the reader is referred to a paper by Lord Rayleigh, Phil. Mag. Nov. 1882. 
An excellent method not given in the text, due to Lorentz, is fully described by Lord 
Rayleigh and Mrs. Sidgwick in the Phil. Trans. 1883, Part I, pp. 295-322. The 
reader should also consult the paper by the same authors entitled * Experiments to 
determine the value of the British Association Unit of Resistance in Absolute Measure/ 
Phil. Trans. 1882, Part II, pp. 661-697.} 



CHAPTEK XIX. 

COMPARISON OF THE ELECTROSTATIC WITH THE ELECTRO¬ 

MAGNETIC UNITS. 

Determination of the Number of Electrostatic Units of 

Electricity in one Electromagnetic Unit. 

768.] The absolute magnitudes of the electrical units in both 

systems depend on the units of length, time, and mass which we 

adopt, and the mode in which they depend on these units is 

different in the two systems, so that the ratio of the electrical 

units will be expressed by a different number, according to the 

different units of length and time. 

It appears from the table of dimensions, Art. 628, that the 

number of electrostatic units of electricity in one electro¬ 

magnetic unit varies inversely as the magnitude of the unit of 

length, and directly as the magnitude of the unit of time which 

we adopt. 

If, therefore, we determine a velocity which is represented 

numerically by this number, then, even if we adopt new units 

of length and of time, the number representing this velocity will 

still be the number of electrostatic units of electricity in one 

electromagnetic unit, according to the new system of measure¬ 

ment. 

This velocity, therefore, which indicates the relation between 

electrostatic and electromagnetic phenomena, is a natural quan¬ 

tity of definite magnitude, and the measurement of this quantity 

is one of the most important researches in electricity. 

To shew that the quantity we are in search of is really a 

velocity, we may observe that in the case of two .parallel currents 

the attraction experienced by a length a of one of them is, by 

Art. 686, 

F = 2CC^t 
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where G, Gf are the numerical values of the currents in electro¬ 

magnetic measure, and b the distance between them. If we 

make b = 2 a, then ]? __ qq' 

Now the quantity of electricity transmitted by the current V 
in the time t is Ct in electromagnetic measure, or nCt in electro¬ 

static measure, if n is the number of electrostatic units in one 

electromagnetic unit. 

Let two small conductors be charged with the quantities of 

electricity transmitted by the two currents in the time t, and 

placed at a distance r from each other. The repulsion between 

them will be CC'nH- 
F --- 

r2 

Let the distance r be so chosen that this repulsion is equal to 

the attraction of the currents, then 

CC'nH2 

Hence 
r- 

r = nt 

or the distance r must increase with the time t at the rate n. 
Hence n is a velocity, the absolute magnitude of which is the 

same, whatever units we assume. 

769.] To obtain a physical conception of this velocity, let us 

imagine a plane surface charged with electricity to the electro¬ 

static surface-density cr, and moving in its own plane with a 

velocity v. This moving electrified surface will be equivalent 

to an electric current-sheet, the strength of the current flowing 

through unit of breadth of the surface being <rv in electrostatic 

measure, or -o-v in electromagnetic measure, if n is the number 

of electrostatic units in one electromagnetic unit. If another 

plane surface parallel to the first is electrified to the surface- 

density </, and moves in the same direction with the velocity v\ 
it will be equivalent to a second current-sheet. 

The electrostatic repulsion between the two electrified surfaces 

is, by Art. 124, 2iroV for every unit of area of the opposed 

surfaces. 

The electromagnetic attraction between the two current- 

sheets is, by Art. 653, 2irun' for every unit of area, u and u' 

being the surface-densities of the currents in electromagnetic 

measure. 



77°.] MAGNETIC FORCE DUE TO MOVING CHARGE. 415 

But u = - <tv, and u' = -o-V, bo that the attraction is 
n n 

, w' 
2 W— • 

The ratio of the attraction to the repulsion is equal to that of 

v\f to n2. Hence, since the attraction and the repulsion are 

quantities of the same kind, n must be a quantity of the same 

kind as v, that is, a velocity. If we now suppose the velocity 

of each of the moving planes to be equal to n, the attraction 

will be equal to the repulsion, and there will be no mechanical 

action between them. Hence we may define the ratio of the 

electric units to be a velocity, such that two electrified surfaces, 

moving in the same direction with this velocity, have no 

mutual action. Since this velocity is about 300000 kilometres 

per second, it is impossible to make the experiment above 

described. 

770.] If the electric surface-density and the velocity can be 

made so great that the magnetic force is a measurable quantity, 

we may at least verify our supposition that a moving electrified 

body is equivaleht to an electric current. 

We may assume* that an electrified surface in air would 

begin to discharge itself by sparks when the electric force 2ira 
reaches the value 130. The magnetic force due to the current¬ 

'll/ 
sheet is 2tt (r —• The horizontal magnetic force in Britain is 

about 0-175, Hence a surface electrified to the highest degree, 

and moving with a velocity of 100 metres per second, would act 

on a magnet with a force equal to about one-four-thousandth 

part of the earth’s horizontal force, a quantity which can be 

measured. The electrified surface may be that of a non-con¬ 

ducting disk revolving in the plane of the magnetic meridian, 

and the magnet may be placed close to the ascending or descending 

portion of the disk, and protected from its electrostatic action by 

a screen of metal. I am not aware that this experiment has 

been hitherto attempted f. 

* Sir W. Thomson, R. S. Proc. or Reprint, Art. xix. pp. 247-259. 
f {Thin effect was discovered by Prof. Rowland in 1876. For subsequent ex¬ 

periments on this subject see Rowland and Hutchinson, Phil. Mag. 27. 445 (1887); 
Rontgen, Wied. Ann. 40. 98 ; Himfitedt, Wied. Ann. 40. 720.} 
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I. Comparison of Units of Electricity. 

771.] Since the ratio of the electromagnetic to the electro- 

static unit of electricity is represented by a velocity, we shall 

in future denote it by the symbol v. The first numerical 
determination of this velocity was made by Weber and Kohl- 

rausch *. 
Their method was founded on the measurement of the same 

quantity of electricity, first in electrostatic and then in electro¬ 

magnetic measure. 
The quantity of electricity measured was the charge of a 

Leyden jar. It was measured in electrostatic measure as the 

product of the capacity of the jar into the difference of potential 

of its coatings. The capacity of the jar was determined by 
comparison with that of a sphere suspended in an open space at 

a distance from other bodies. The capacity of such a sphere is 

expressed in electrostatic measure by its radius. Thus the 
capacity of the jar may be found and expressed as a certain 

length. See Art. 227. 

The difference of the potentials of the coatings of the jar was 
measured by connecting the coatings with the electrodes of an 

electrometer, the constants of which were carefully determined, 

so that the difference of the potentials, E, became known in 
electrostatic measure. 

By multiplying this by e, the capacity of the jar, the charge of 

the jar was expressed in electrostatic measure. 

To determine the value of the charge in electromagnetic 

measure, the jar was discharged through the coil of a galvano¬ 

meter. The effect of the transient current on the magnet of the 
galvanometer communicated to the magnet a certain angular 
velocity. The magnet then swung round to a certain deviation, 

at which its velocity was entirely destroyed by the opposing 
action of the earth’s magnetism. 

By observing the extreme deviation of the magnet the quantity 

of electricity in the discharge may be determined in electro¬ 

magnetic measure, as in Art. 748, by the formula 

Q = g - 2 Sin\e, 

* Elektrodynamisehe MaatbesUmmungen; and Pogg., Ann., xoax (Aug. pp. 10-25, 
1856). 
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where Q is the quantity of electricity in electromagnetic measure. 

We have therefore to determine the following quantities:— 

//, the intensity of the horizontal component of terrestrial 

magnetism ; see Art. 4 5G. 

tr, the principal constant of the galvanometer; see Art. 700. 

T, the time of a single vibration of the magnet; and 

0, the deviation due to the transient current. 

The value of v obtained by MM. Weber and Kohlrausch was 

v — 310740000 metres per second. 

The property of solid dielectrics, to which the name of Electric 

Absorption has been given, renders it difficult to estimate 

correctly the capacity of a Leyden jar. The apparent capacity 

varies according to the time which elapses between the charging 

or discharging of the jar and the measurement of the potential, 

and the longer the time the greater is the value obtained for the 

capacity of the jar. 

Hence, since the time occupied in obtaining a reading of 

the electrometer is large in comparison with the time during 

which the discharge through the galvanometer takes place, it 

is probable that the estimate of the discharge in electrostatic 

measure is too high, and the value of v, derived from it, is 

probably also too high. 

II. ‘ v ’ expressed as a Resistance. 

772.] Two other methods for the determination of v lead to 

an expression of its value in terms of the resistance of a given 

conductor, which, in the electromagnetic system, is also ex¬ 

pressed as a velocity. 

In Sir William Thomson’s form of the experiment, a constant 

current is made to flow through a wire of great resistance. The 

electromotive force which urges the current through the wire1 is 

measured electrostatically by connecting the extremities of the 

wire with the electrodes of an absolute electrometer, Arts. 217, 

218. The strength of the current in the wire is measured in 

electromagnetic measure by the deflexion of the suspended coil 

of an electrodynamometer through which it passes, Art. 725. 

The resistance of the circuit is known in electromagnetic measure 

by comparison with a standard coil or Ohm. By multiplying 

the strength of the current by this resistance we obtain the 

VOL. ii. e e 
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electromotive force in electromagnetic measure, and from a 

comparison of this with the electrostatic measure the value of 

v is obtained. 

This method requires the simultaneous determination of two 

forces, by means of the electrometer and electrodynamometer re¬ 

spectively, and it is only the ratio of these forces which appears 

in the result. 

773.] Another method, in which these forces, instead of being 

separately measured, are directly opposed to each other, wTas 

employed by the present writer. The ends of the great resistance 

coil are connected with two parallel disks, one of which is 

moveable. The same difference of potentials which sends the 

current thvough the great resistance, also causes an attraction 

between these disks, At the same time, an electric current 

which, in the actual experiment, was distinct from the primary 

current, is sent through two coils, fastened, one to the back of the 

fixed disk, and the other to the back of the moveable disk. The 

current flows in opposite directions through these coils, so that 

they repel one another. By adjusting the distance of the two 

disks the attraction is exactly balanced by the repulsion, while 

at the same time another observer, by means of a differential 

galvanometer with shunts, determines the ratio of the primary 

to the secondary current. 

In this experiment the only measurement which must be re¬ 

ferred to a material standard is that of the great resistance, 

which must be determined in absolute measure by comparison 

with the Ohm. The other measurements are required only for 

the determination of ratios, and may therefore be determined in 

terms of any arbitrary unit. 

Thus the ratio of the two forces is a ratio of equality. 

The ratio of the two currents is found by a comparison of 

resistances when there is no deflexion of the differential gal¬ 

vanometer. 

The attractive force depends on the square of the ratio of the 

diameter of the disks to their distance. 

The repulsive force depends on the ratio of the diameter of the 

coils to their distance. 

The value of v is therefore expressed directly in terms of the 

resistance of the great coil, which is itself compared with the 

Ohm. 
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The value of v, as found by Thomson’s method, was 28-2 
Ohms*; by Maxwell’s, 28*8 Ohms f. 

III. Electrostatic Capacity in Electromagnetic Measure. 

774.] The capacity of a condenser may be ascertained in 

electromagnetic measure by a comparison of the electromotive 

force which produces the charge, and the quantity of electricity 

in the current of discharge. By means of a voltaic battery a 

current is maintained through a circuit containing a coil of 

great resistance. The condenser is charged by putting its elec* 

trodes in contact with those of the resistance coil. The current 

through the coil is measured by the deflexion which it produces 

in a galvanometer. Let be this deflexion, then the current is, 

by Art. 74 2, U 
tan*, 

where H is the horizontal component of terrestrial magnetism, 

and 0 is the principal constant of the galvanometer. 

If R is the resistance of the coil through which this current is 

made to flow, the difference of the potentials at the ends of the 

coilie E=Ry, 

and the charge of electricity produced in the condenser, whose 

capacity in electromagnetic measure is (7, will be 

Q = EC. 
Now lot the electrodes of the condenser, and then those of the 

galvanometer, be disconnected from the circuit, and let the 

magnet of the galvanometer be brought to rest at its position 

of equilibrium. Then let the electrodes of the condenser be 

connected with those of the galvanometer. A transient current 

will flow through the galvanometer, and will cause the magnet to 

swing to an extreme deflexion 0. Then, by Art. 748, if the dis¬ 

charge is equal to the charge, 

n H T . . 
Q = - 2 sm £ 0. 

tr 7t 

We thus obtain as the value of the capacity of the condenser in 

electromagnetic measure 

c- ^l2sin£^ 
71 R tan (j) 

* Report of British Association, 1869, p. 434. 

+ Phil, Trans,, 1868. p. 643 ; and Report of British Association, 1869, p. 436. 

Ee2 
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The capacity of the condenser is thus determined in terms of 

the following quantities :— 

7, the time of vibration of the magnet of the galvanometer 

from rest to rest. 

jR, the resistance of the coil. 

6, the extreme limit of the swing produced by the discharge. 

</>, the constant deflexion due to the current through the coil JR. 

This method was employed by Professor Fleeming Jenkin in deter¬ 

mining the capacity of condensers in electromagnetic measure *. 

If c be the capacity of the same condenser in electrostatic 

measure, as determined by comparison with a condenser whose 

capacity can be calculated from its geometrical data, 

e = v2C. 

Hence r R\ 
tan cb 

T 2sin"H* 

The quantity v may therefore be found in this way. Jt 

depends on the detemiination of R in electromagnetic measure, 

hut as it involves only the square root of JR, an error in this 

determination will not affect the value of v so much as in the 

methods of Arts. 772, 773. 

Ii * termittent Current* 

775.] Tf the wire of a battery-circuit be broken at any point, 

and the broken ends connected with the electrodes of a condenser, 

the current will flow into the condenser with a strength which 

diminishes as the difference of the potentials of the plates of the 

condenser increases, so that when the condenser has received 

the full charge corresponding to the electromotive force acting 

on the wire the current ceases entirely. 

If the electrodes of the condenser are now disconnected from 

the ends of the wire, and then again connected with them in the 

reverse order, the condenser will discharge itself through the 

wire, and will then become recharged in the opposite way, so 

that a transient current will flow through the wire, the total 

quantity of which is equal to two charges of the condenser. 

By means of a piece of mechanism (commonly called a Com¬ 

mutator, or wippe) the operation of reversing the connexions of 

the condenser can be repeated at regular intervals of time, each 

interval being equal to 7. If this interval is sufficiently long to 

* Rtjport of British Association, 1887, pp. 483-488. 
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allow of tho complete discharge of the condenser, the quantity of 

electricity transmitted by the wire in each interval will be 2 EC, 

where E is the electromotive force, and C is the capacity of the 

condenser. 

If the magnet of a galvanometer included in the circuit is 

loaded, so as to swing so slowly that a great many discharges 

of the condenser occur in the time of one free vibration of the 

magnet, tho succession of discharges will act on the magnet like 

2 EC 
a steady current whose strength is --^T- 

If the condenser is now removed, and a resistance coil substi¬ 

tuted for it, and adjusted till the steady current through the 

galvanometer produces the same deflexion as the succession of 

discharges, and if Ii is the resistance of the whole circuit when 

this is the case, E 2 EC 
(1) 11 ~ * 

II 

T _ 
or 

2 6' (2) 

We may thus compare the condenser with its commutator in 

motion to a wire of a certain electrical resistance, and we may 

make use of the different methods of measuring resistance de¬ 

scribed in Arts. 3 15 to 357 in order to determine this resistance. 

776.] For this purpose we may substitute for any one of the 

wires in the method of the Differential Galvanometer, Art. 346, 

or in that of Wheatstones Bridge, Art. 347, a condenser with its 

commutator. Let us suppose that in either case a zero deflexion 

of the galvanometer has been obtained, first with tho condenser 

and commutator, and then with a coil of resistance Rx in its 

T 
place, then the quantity - ^ will be measured by the resistance 

of the circuit of which the coil Rx forms part, and which is 

completed by the remainder of the conducting system including 

the battery. Hence the resistance, R, which we have to calcu¬ 

late, is equal to Rx, that of the resistance coil, together with R>; 

the resistance of the remainder of the system (including the 

battery), the extremities of the resistance coil being taken as the 

electrodes of the system. 

In the cases of the differential galvanometer and Wheatstone's 

Bridge it is not necessary to make a second experiment by 

substituting a resistance coil for the condenser. The value of 
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the resistance required for this purpose may be found by calcu¬ 

lation from the other known resistances in the system. 

Using the notation of Art. 347, and supposing the condenser 

and commutator substituted for the conductor AC in Wheat¬ 

stone’s Bridge, and the galvanometer inserted in OA, and that 

the deflexion of the galvanometer is zero, then we know that the 

resistance of a coil, which placed in AC would give a zero de¬ 

flexion, is 
b = y = JL. (3) 

f* 1 
The other part of the resistance, R2, is that of the system of 

conductors AO, GO\ AB, BC and OB, the points A and C being 

considered as the electrodes. Hence 

E — (y + g) + ca(y + a) + ya(c + a) > 
2 (c + a)(y + «) + /3(^+tt + y + a) (4) 

In this expression a denotes the internal resistance of the battery 

and its connexions, the value of which cannot be determined 

with certainty; but by making it small compared with the 

other resistances, this uncertainty will only slightly affect the 

value of E2. 
The value of the capacity of the condenser in electromagnetic 

measure is T 

c~ 2 +it,)% * (6) 

* -[As this method is of great importance in measuring the capacity of a condenser 
in electromagnetic measure, we subjoin a somewhat fuller investigation of it, adapted 
to the case when the cylinder has a guard-ring. 

The arrangement employed in this measurement is represented in the annexed 

figure. 

XA-*- 
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777.] If the condenser has a large capacity, and the commu¬ 
tator is very rapid in its action, the condenser may not be fully 

ABCD is a Wheatstone’s Bridge with the galvanometer at G, and the battery 
between B and C. The arm AB is broken at R and 8, which are two poles of a 
commutator, which alternately come into contact with a spring Pt connected with the 
middle-plate, H, of the condenser. The plate without the guard-ring is connected to 8. 
The points C and B are connected respectively with L and M, the two poles of a 
commutator, which alternately come into contact with a spring Q, attached to the 
guard-ring of the condenser. The system is arranged so that when the commutators 
are working the order of events is as follows : 

I. P on S. Condenser discharged. 
Guard-ring discharged. 
Condenser begins to charge. II. 

III. 

IV. 

V. 

Q on M. 
P on jR. 
Q on M. 
P on R. 
Q on L. 
P on S. 
Q on L. 
P on 8. 
Q on M. 

Condenser completely charged to potential (A)~{B). 
Guard-ring charged to potential (C)-{B). 
Condenser begins discharging. 

Condenser discharged. 
Guard-ring discharged. 

Thus, when the commutators are working, there will, owing to the flow of electricity 
to the condenser, be a succession of momentary currents through the galvanometer. 
The resistances are so adjusted that the effect of these momentary currents on the 
galvanometer just balances the effect due to the steady current, and there is no 
deflexion of the galvanometer. 

To investigate the relation between the resistances when this is the case, let us 
suppose that when the guard-ring and condenser are charging 

x = current through BO, 

y ~ current through AR, 

z ■* current through A D, 

to ae current through CL. 

Thus, if a, b, a, y are the resistances in the arms BC> AC, AD, BD, CD 
respectively, L the coefficient of self induction of the galvanometer, and B ihe 
electromotive force of the battery, we have from circuits ADC and BCD respectively, 

Lz + (b + 7 + a)z + (b + y)y + ytc — yx «= 0, (1) 

(a + y + /3)x — {y + 0)y — yz — (y + &)w — B «= 0. (2) 

Now it is evident that the currents are expressed by equations of the following 

kind> *_*.**. 

Z = i, +ia, 
where xx and express the steady currents when no electricity is flowing into the 

oondenser, and i9 are of the form Ae~Kt, Be"**, and express the variable parts of 

the currents due to the charging of the condenser; y and iv will be of the form C'e 1, 

De~~^1 ; t in all these expressions is the time which has elapsed since the condenser 
commenced to charge. 

Equations (1) and (2) will thus contain constant terms, and terms multiplied by 

e—and the latter must separately vanish, hence we have 

Lz3 + (i + 7 + a)ia + (6 + y)y + yw—yx2 = 0, (8) 

(a + 7 + 0)£2-(7 + 0)y-7i^-(7 + 0)w - 0. (4) 

Let Z, Xbe the quantities of electricity which have passed through the galvano¬ 
meter and battery respectively, in consequence of the charging of the condenser, and 
Y and W the charges in the condenser and guard-ring. Then integrating equations 
(3) and (4) over a time extending from just before the condenser began to charge 
until it is fully charged, remembering that at each of these times r2 — 0, we get 

(& + 7 + a)£-f (6 + 7) Y+y W-yX~ 0, 

(a + 7 + 0) X— (7 + 0) Y—yZ—(y + &) 1V^ 0; 
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discharged at each reversal. The equation of the electric current 

during the discharge is 

Q + R/'d® +EC= 0, (6) 

where Q is the charge, G the capacity of the condenser, R2 the 
resistance of the rest of the system between the electrodes of the 
condenser, and E the electromotive force due to the connexion 

with the battery. 
t 

Hence Q=(Q* + EC)e W-EC, (7) 

where Q0 is the initial value of Q. 

hence eliminating X, 

2 (6 + 7 + «- 7’ ) + r(6 + T- + Wy —'!_ = 0. 
\ a + y -+■ V a -f 7 + a + y + # 

In practice the battery resistance is very small indeed compared with /3, b or 7, so 
that the third term may he neglected in comparison with the second, and we get, 
neglecting the battery resistance, 

Z ----7“ Y. 

b + 7 + a-~—7 
7+ & 

If [A], {Bj, \ D) denote the potentials of A> It, D when the conderiBer is fully 

charged, C the capacity of the condenser, then 

r-ctUM*}]. 
But 

\A\ -{B} ^ {A}{!)} 

a+0'±tn±yj 
7 

The right-hand side of this equation is evidently zl, the steady current through the 
galvanometer, wo that 

Y-Ci^a + e^^Ll), (5) 

Z = -i,bC 
a + j9 

7 
(b + a + 7) 

7 (6) 
h + 7 + a- 

7 + 0 

If the condenser is charged n times per second, the quantity of electricity which 
passes in consequence through the galvanometer per second is nZ. If the galvano¬ 
meter needle remains undeflected, the quantity of electricity which passes through the 
galvanometer in unit time must be zero. But this quantity is nZ + zx, so that 

nZ + zx = 0. 

Substituting this relation in equation (6), we get 

\ i_ -_t_ 

q ^ t (j + &)(b + a + y) 
nb& j ya 

(Jj + a + 7) 

From this equation, if we know the resistances and the speed, we can calculate the 
capacity. See J. J. Thomson and Searle, “A Determination of ‘ r,* ” Phil. Trans. 1890, 
A, p. 583. } 
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If r is the time during which contact is maintained during 

each discharge, the quantity in each discharge is 

By making c and y in equation (4) large compared with /3. a, 

or a, the time represented by RJJ may be made so small com¬ 

pared with t, that in calculating the value of the exponential 

expression we may use the value of C in equation (5). We 

thus find 
o T 

R7 T' 

where Rl is the resistance which must be substituted for the 

condenser to produce an equivalent effect. R2 is the resistance 

of the rest of the system, T is the interval between the begin¬ 

ning of a discharge and the beginning of the next discharge, and 

t is the duration of contact for each discharge. We thus obtain 

for the corrected value of C in electromagnetic measure 
4> 7?j4 li2 t 

T 1 4- fi 

(,0) 

IV. Comparison of the Electrostatic Capacity of a Condenser with 

the Electromagnetic Capacity of Self-induction of a Coil. 

778.] If two points of a conducting circuit, between which the 

resistance is R, are connected with the electrodes of a condenser 

whose capacity is (7, then, when an 

electromotive force acts on the circuit, // 

part of the current, instead of passing 

through the resistance R, will be em- V \ 

ployed in charging t^he condenser. P 1 / 

The current through R will therefore 

rise to its final value from zero in a \ / 

gradual manner. It appears from the V / 

mathematical theory that the manner NVa//j 

in which the current through R rises 

from zero to its final value is expressed ]Pig' 65' 

by a formula of exactly the same kind as that which expresses 

the value of a current urged by a constant electromotive force 

through the coil of an electromagnet. Hence we may place 
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a condenser and an electromagnet in two opposite members of 

Wheatstone's Bridge in such a way that the current through the 

galvanometer is always zero, even at the instant of making or 

breaking the battery circuit. 

In the figure, let I\ Q, R, S be the resistances of the four 

members of Wheatstones Bridge respectively. Let a coil, 

whose coefficient of self-induction is L, be made part of the 

member AH, whose resistance is Q, and let the electrodes of a 

condenser, whose capacity is C} be connected by pieces of small 

resistance with the points F and Z, For the sake of simplicity, 

we shall assume that there is no current in the galvanometer 6?, 

the electrodes of which are connected to F and H. We have 

therefore to determine the condition that the potential at F may 

be equal to that at H. It is only when we wish to estimate the 

degree of accuracy of the method that we require to calculate 

the current through the galvanometer when this condition is not 

fulfilled. 

Let x be the total quantity of electricity which has passed 

through the member AF, and 2 that which has passed through 

FZ at the time t, then x—z will be the charge of the condenser. 

The electromotive force acting between the electrodes of the 

(Jiz 
condenser is, by Ohm’s law, R so that if the capacity of the 

condenser is C, dz 
x—z — RC • 

at (1) 

Let y be the total quantity of electricity which has passed 

through the member AH, the electromotive force from A to II 

must be equal to that from A to F\ or 

Q 
dy 
dt 

dx 
M (2) 

Since there is no current through the galvanometer, the 

quantity which has passed through HZ must be also y, and 

Wefind qdy j-dz 
sTt=Rdt* 

(3) 

Substituting in (2) the value of x, derived from (1), and com¬ 

paring with (3), we find as the condition of no current through 

the galvanometer 

« 
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The condition of no final current is, as in the ordinary form of 

Wheatstone’s Bridge, QR — SP (5) 

The additional condition of no current at making and breaking 

the battery connexion is r 
g = 110. (6) 

Here ~ and EC are the time-constants of the members Q and 

R respectively, and if, by varying Q or Ry we can adjust the 

members of Wheatstone’s Bridge till the galvanometer indicates 

no current, either at making and breaking the circuit, or when 

the current is steady, then we know that the time-constant of 

the coil is equal to that of the condenser. 

The coefficient of self-induction, Z, can be determined in 

electromagnetic measure from a comparison with the coefficient 

of mutual induction of two circuits, whose geometrical data are 

known (Art. 75G). It is a quantity of the dimensions of a line. 

The capacity of the condenser can be determined in electro¬ 

static measure by comparison with a condenser whose geomet¬ 

rical data are known (Art. 229). This quantity is also a length, c. 

The electromagnetic measure of the capacity is 

C = (7) 

Substituting this value in equation (6), we obtain for the 

value of v1 
v2 = jQR, (8) 

where c is the capacity of the condenser in electrostatic measure, 

L the coefficient of self-induction of the coil in electromagnetic 

measure, and Q and R the resistances in electromagnetic measure. 

The value of vt as determined by this method, depends on the 

determination of the unit of resistance, as in the second method, 

Arts. 772, 773. 

V. Combination of the Electrostatic Capacity of a Condenser 

with the Electromagnetic Capacity of Setf- induction of a 

Coil. 

779.] Let C be the capacity of the condenser, the surfaces of 

which are connected by a wire of resistance R. In this wire let 

the coils L and L' be inserted, and let L denote the sum of their 

capacities of self-induction. The coil If is hung by a bifilar 
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suspension, and consists of two parallel coils in vertical planes, 

between which passes a vertical axis which carries the magnet M, 
the axis of which revolves in a hori¬ 

zontal plane between the coils L'L\ 

The coil L has a large coefficient 

of self-induction, and is fixed. 

The suspended coil IJ is protected 

from the currents of air caused by 

the rotation of the magnet by 

enclosing the rotating parts in a 

hollow case. 

The motion of the magnet causes 

currents of induction in the coil, 

and these are acted on by the 

magnet, so that the plane of the 

suspended coil is deflected in the 

direction of the rotation of the 

magnet. Let us determine the strength of the induced currents, 

and the magnitude of the deflexion of the suspended coil. 

Let x be the charge of electricity on the upper surface of the 

condenser C, then, if E is the electromotive force which produces 

this charge, we have, by the theory of the condenser, 

x=zCE. (1) 

We have also, by the theory of electric currents, 

Rx + ^ (Lx + M cos 0)-\-E = 0, (2) 

where M is the electromagnetic momentum of the circuit L\ 

when the axis of the magnet is normal to the plane of the coil, 

and 6 is the angle between the axis of the magnet and this 

normal. 

The equation to determine x is therefore 

nTd?x . dO 

LLdt^CRii+x = CM&medt' (3) 

If the coil is in a position of equilibrium, and if the rotation 

of the magnet is uniform, the angular velocity being n, 

0 = nt. (4) 

The expression for the current consists of two parts-, one of 

which is independent of the term on the right-hand of the 

equation, and diminishes according to an exponential function 
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of the time. The other, which may be called the forced current, 

depends entirely on the term in 6, and may be written 

x = A sin 6 -f B cos 0. (5) 

Finding the values of A and B by substitution in the equation 

(3), we obtain 

-MCn 
RCn cos 6 — (1 — GLri1) sin 6 

R2 C~7i2 + (1 — GLri1)2 

The moment of the force with which the magnet acts on the 

coil //, in which the current x is flowing, being the reverse of 

that acting on the magnet the coil being by supposition fixed, is 

. d /lir ^ . ndx 

~XdO M C°S ^ ~ M 8m 6It 

Integrating this expression with respect to t for one revolution, 

and dividing by the time, we find, for the mean value of 0, 

- _ JPB&rP 
0 ” * R*C*n*+'(1 -CZn2)2 * 

If the coil has a considerable moment of inertia, its forced 

vibrations will be very small, and its mean deflexion will be 

proportional to 0. 

Let Dl% D2, D3 be the observed deflexions corresponding to 

angular velocities nl9 n2f ti3 of the magnet, then in general 

P-g = (“- CLnY + JPC*. (9) 

where IJ is a constant. 

Eliminating P and R from three equations of this form, 

we find 

If n2 is such that CLn2 = 1, the value of ^ will be a minimum 

for this value of n. The other values of n should be taken, one 

greater, and the other less, than n2. 

The value of CX, determined from equation (10), is of the 

dimensions of the square of a time. Let us call it r2. 

If Cg be the electrostatic measure of the capacity of the con¬ 

denser, and Lm the electromagnetic measure of the self-induction 
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of the coil, both C6 and Lm are lines, and the product 

C,Lm — vlC,L, = v2CmLm = v2t2 ; (11) 

and v2 = -4-~> (12) 
T“ 

where r2 is the value of C2L2, determined by this experiment. 

The experiment here suggested as a method of determining v is 

of the same nature as one described by Sir W. R. Grove, 

Phil. Mag., March 1868, p. 184. See also remarks on that 

experiment, by the present writer, in the number for May 1868, 

pp. 360-363. 

VI. Electrostatic Measurement of Resistance. (See Art. 355.) 

780.] Let a condenser of capacity C be discharged through a 

conductor of resistance R, then, if x is the charge at any instant, 

x ^dx 
0) 

Hence x — sc0e HV, (2) 

If, by any method, we can make contact for a short time, 

which is accurately known, so as to allow the current to flow 

through the conductor for the time t, then, if E0 and E1 are the 

readings of an electrometer put in connexion with the condenser 

before and after the operation, 

RC(logtE0-\ogtE1) = t. (3) 

If C is known in electrostatic measure as a linear quantity, R 

may be found from this equation in electrostatic measure as the 

reciprocal of a velocity. 

If R9 is the numerical value of the resistance as thus deter¬ 

mined, and Rm the numerical value of the resistance in electro¬ 

magnetic measure, 
v 

Since it is necessary for this experiment that R should be 

very great, and since R must be small in the electromagnetic 

experiments of Arts. 763, &c., the experiments must be made on 

separate conductors, and the resistance of these conductors com¬ 

pared by the ordinary methods. 



CHAPTER XX. 

ELECTROMAGNETIC THEORY OF LIGHT. 

781.] In several parts of this treatise an attempt has been 

made to explain electromagnetic phenomena by means of me¬ 

chanical action transmitted from one body to another by means 

of a medium occupying the space between them. The undu- 

latory theory of light also assumes the existence of a medium. 

We have now to shew that the properties of the electromagnetic 

medium are identical with those of the luminiferous medium. 

To fill all space with a new medium whenever any new phe¬ 

nomenon is to be explained is by no means philosophical, but if 

the study of two different branches of science has independently 

suggested the idea of a medium, and if the properties which 

must be attributed to the medium in order to account for 

electromagnetic phenomena are of the same kind as those which 

we attribute to the luminiferous medium in order to account for 

the phenomena of light, the evidence for the physical existence 

of the medium will be considerably strengthened. 

But the properties of bodies are capable of quantitative 

measurement. We therefore obtain the numerical value of some 

property of the medium, such as the velocity with which a 

disturbance is propagated through it, which can be calculated 

from electromagnetic experiments, and also observed directly in 

the case of light. If it should be found that the velocity of 

propagation of electromagnetic disturbances is the same as the 

velocity of light, and this not only in air, but in other trans¬ 

parent media, we shall have strong reasons for believing that 

light is an electromagnetic phenomenon, and the combination of 

the optical with the electrical evidence will produce a conviction 

of the reality of the medium similar to that which we obtain, in 

the case of other kinds of matter, from the combined evidence 

of the senses. 
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782.] When light is emitted, a certain amount of energy is 

expended by the luminous body, and if the light is absorbed by 

another body, this body becomes heated, shewing that it has re¬ 

ceived energy from without. During the interval of time after 

the light left the first body and before it reached the second, it 

must have existed as energy in the intervening space. 

According to the theory of emission, the transmission of 

energy is effected by the actual transference of light-corpuscules 

from the luminous to tin* illuminated body, carrying with them 

their kinetic energy, together with any other kind of energy of 

which they may be the receptacles. 

According to the theory of undulation, there is a material 

medium which fills the space between the two bodies, and it is 

by the action of contiguous parts of this medium that the 

energy is passed on, from one portion to the next, till it reaches 

the illuminated body. 

The luminiferous medium is therefore, during the passage of 

light through it, a receptacle of energy. In the undulatory 

theory, as developed by Huygens, Fresnel, Young, Green, &e., 

this energy is supposed to be partly potential and partly kinetic. 

The potential energy is supposed to be due to the distortion of 

the elementary portions of the medium. We must therefore 

regard the medium as elastic. The kinetic energy is supposed 

to be due to the vibratory motion of the medium. We must 

therefore regard the medium as having a finite density. 

In the theory of electricity and magnetism adopted in this 

treatise, two forms of energy are recognised, the electrostatic 

and the electrokinetic (see Arts. 630 and 636), and these are 

supposed to have their seat, not merely in the electrified or 

magnetized bodies, but in every part of the surrounding space, 

where electric or magnetic force is observed to act. Hence our 

theory agrees with the undulatory theory in assuming the 

existence of a medium which is capable of becoming a receptacle 

of two forms of energy*. 

* * For iny own part, considering the relation of a vacuum to the magnetic force 
and the general character of magnetic phenomena external to the magnet, 1 am more 
inclined to the notion that in the transmission of the force there is such an action, 
external to the magnet, than that the effects are merely attraction and repulsion at a 
distance. Buch an action may be a function of the aether; for it is not at all unlikely 
that, if there be an aether, it should have other uses than simply the conveyance of 
radiations.’—Faraday’s Experimental Jiesearchest 3075. 
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783.] Let us next determine the conditions of the propagation 

of an electromagnetic disturbance through a uniform medium, 

which we shall suppose to be at rest, that is, to have no motion 

except that which may be involved in electromagnetic disturb- 

ances. 

Let C be the specific conductivity of the medium, K its specific 

capacity for electrostatic induction, and /x its magnetic ‘perme¬ 

ability \ 

To obtain the general equations of electromagnetic disturb¬ 

ance, we shall express the true current (£ in terms of the vector 

potential 21 and the electric potential 'P. 

The true current @ is made up of the conduction current 5? 

and the variation of the electric displacement 2), and since both 

of these depend on the electromotive intensity we find, as in 

Art. 611, 
<£ = (£ + 

i'a)* <•) 

But since there is no motion of the medium, we may express 

the electromotive intensity, as in Art. 599, 

(S = - 2( - V*. (2) 

Hence «= - (C+ i Jr|)(^ +V*). (3, 

But we may determine a relation between (£ and 21 in a 

different way, as is shewn in Art. 616, the equations (4) of 

which may be written 

4tt/xS= V22l + V/, 

where 
r_dF dG dlj 

~~ dx + dy + dz ' 

Combining equations (3) and (4), we obtain 

+ K —) (^+V'J')+V221 + VJ= 0, 
dt' >• dt 

which we may express in the form of three equations ns follows 

(4) 

(5) 

(6) 

r. r, ,r d\ /dF d'i, _!,T7 dJ \ 
n (4,C+KS) + s)+v»r+ . = o,) 

dt' ' dt 

fi(4-nC + Kjj) + 

dx} dx 

dt)+vte+'^- = o\ 
dt> V dt ’ dy> ' ' dy 

/„ r, rrd\ ,dH d'i\ „„Tr dJ „(4.c+jrs)(-,r+ )+v«//+E = o. 

(7) 

dt' v dt dz ) ' * ' dz 

These are the general equations of electromagnetic disturbances. 

vol rr r f 
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If we differentiate these equations with respect to x, y, and z 
respectively, and add, we obtain 

m(4*C+St|)("-V^) = °. (8) 

If the medium is a non-conductor, C = 0, and V2^, which is 

proportional to the volume-density of free electricity, is inde¬ 

pendent of t. Hence J must be a linear function of t, or a 

constant, or zero, and we may therefore leave J and out of 

account in considering periodic disturbances. 

Propagation of Undulations in a Non-conducting Medium. 

784.] In this case, <7=0, and the equations become 

d*F __ 

A fl <w + F~0’ 

r r d20 „ 

+ V‘G ~ °- 

+ = 0. 

(9) 

The equations in this form are similar to those of the motion 

of an incompressible elastic solid, and when the initial conditions 

are given, the solution can be expressed in a form given by 

Poisson*, and applied by Stokes to the Theory of Diffraction f. 

Let us write F= 
VKl 

(10) 

If the values of F, 0, H, and of are given at 

(‘very point of space at the epoch (t — 0), then we can determine 

their values at any subsequent time, t, as follows. 

Let 0 be the point for which we wish to determine the value 

of F at the time t. With 0 as centre, and with radius Vt, 
describe a sphere. Find the initial value of I5’at every point of 

the spherical surface, and take the mean, F, of all these values. 

dF 
Find also the initial values of -Jf at every point of the spherical 

dF 
surface, and let the mean of these values be —r~ • 

dt 

* Mim. de VAcad., tom. iii, p. ISO, et seq. 
f Cambridge Transactions, vol. ix. pp. 1-02 (1849). 
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Then the value of F at the point 0, at the time t, is 

Similarly «-&so+‘f-V dV on 

785. ] It appears, therefore, that the condition of things at 

the point 0 at any instant depends on the condition of things 

at a distance Vt and at an interval of time t previously, so 

that any disturbance is propagated through the medium with 

the velocity V. 

Let us suppose that when t is zero the quantities 21 and 21 are 

zero except within a certain space S. Then their values 0 at 

the time t will be zero, unless the spherical surface described 

about 0 as centre with radius Vt lies in whole or in part 

within the space S. If 0 is outside the space S there will be no 

disturbance at 0 until Vt becomes equal to the shortest distance 

from 0 to the space 8. The disturbance at 0 will then begin, 

and will go on till Vt is equal to the greatest distance from 0 to 

any part of S. The disturbance at 0 will then cease for ever. 

786. ] The quantity V, in Art. 784, which expresses the 

velocity of propagation of electromagnetic disturbances in a 

non-conducting medium is, by equation (10), equal to 
V K fx 

If the medium is air, and if we adopt the electrostatic system 

of measurement, K = 1 and f* = —, so that V = v% or the tr 
velocity of propagation is numerically equal to the number of 

electrostatic units of electricity in one electromagnetic unit. If 

we adopt the electromagnetic system, K = ~ and /x = I, so that 

the equation V = v is still true. 

On the theory that light is an electromagnetic disturbance, 

propagated in the same medium through which other electro¬ 

magnetic actions are transmitted, V must be the velocity of 

light, a quantity the value of which has been estimated by 

several methods. On the other hand, v is the number of 

electrostatic units of electricity in one electromagnetic unit, and 

f f % 
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the methods of determining this quantity have been described in 

the last chapter. They are quite independent of the methods of 

finding the velocity of light. Hence the agreement or dis¬ 

agreement of the values of V and of v furnishes a test of the 

electromagnetic theory of light. 

787.] In the following table, the principal results of direct 

observation of the velocity of light, either through the air or 

through the planetary spaces, are compared with the principal 

results of the comparison of the electric units :— 

Velocity of Light (metres per second). Ratio of Electric Units (mbtres 
per second). 

Fizeau .314000000 Weber.310740000 

Aberration, &c„ andj 308000000 Maswell ...288000000 

Foucault .298360000 Thomson ...282000000 

It is manifest that the velocity of light and the ratio of the 

units are quantities of the same order of magnitude. Neither of 

them can be said to be determined as yet with such a degree of 

accuracy as to enable us to assert that the one is greater or less 

than the other. It is to be hoped that, by further experiment, 

the relation between the magnitudes of the two quantities may 

be more accurately determined. 

In the meantime our theory, which asserts that these two 

quantities are equal, and assigns a physical reason for this 

equality, is certainly not contradicted by the comparison of 

these results such as they are. 

* {In the following table, taken from a paper by E. B. Rosa, Phil. Mag. 28, p. 815, 
1839, the determinations of ‘ v * corrected for the error in the B. A. unit are given:— 

1856 Weber and Kohlrausch ... ... 3*107 x 1010 (cm. per second) 
1868 Maxwell . 2*842 x 1010 
1869 W. Thomson and King ... ... 2*808 xl0,# 
1872 M°Kichan . 2*896 x 1010 
1879 Ayrton and Perry ... . 2*960 xlO10 
1880 Shi da   2*955 x 1010 
1883 J. J. Thomson . 2*968 x 1010 
1884 KlemenSifi .8 019 xlO10 
1888 Himstedt . 3*009 xlO10 
1889 W. Thomson. 3*004 xlO10 
1889 E. B. Rosa . 2*9993 x 1010 
1890 J. J. Thomson and Searle ... ... 2*9955 xlO10 

Velocity of Light in Aib. 
Cornu (1878) . 3*003 x 1010 
Michelson (1879). 2*9982 x 1010 
Michelson (1882). 2*9976 x 10w 

( 2*99615 ) 
Newcomb (1885). ... ] 2 99682 l x 1010} 

( 2*99766 ) 
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788. ] In other media than air, the velocity V is inversely 

proportional to the square root of the product of the dielectric 

and the magnetic inductive capacities. According to the undu- 

latory theory, the velocity of light in different media is inversely 

proportional to their indices of refraction. 

There are no transparent media for which the magnetic 

capacity differs from that 'of air more than by a very small 

fraction. Hence the principal part of the difference between 

these media must depend on their dielectric capacity. According 

to our theory, therefore, the dielectric capacity of a transparent 

medium should be equal to the square of its index of refraction. 

But the value of the index of refraction is different for light 

of different kinds, being greater for light of more rapid vibra¬ 

tions. We must therefore select the index of refraction which 

corresponds to waves of the longest periods, because these are 

the only waves whose motion can be compared with the slow 

processes by which we determine the capacity of the dielectric. 

789. ] The only dielectric of which the capacity has been 

hitherto determined with sufficient accuracy is paraffin, for 

which in the solid form MM. Gibson and Barclay found * 

K = 1-975. (12) 

Dr. Gladstone has found the following values of the index 

of refraction of melted paraffin, sp. g. 0-779, for the lines A, I) 

and H 

Temperature A T> 11 

54°C 1-4306 1-4357 1-4499 

57°C 1-4294 1 -4343 1-4493 ; 

from which I find that the index of refraction for waves of infinite 

length would be about 1-422. 

The square root of K is 1-405. 

The difference between these numbers is greater than can be ac¬ 

counted for by errors of observation, and shews that our theories 

of the structure of bodies must be much improved before we 

can deduce their optical from their electrical properties. At the 

same time, I think that the agreement of the numbers is such 

that if no greater discrepancy were found between the numbers 

derived from the optical and the electrical properties of a con¬ 

siderable number of substances, we should be warranted in 

* Phil. Trans, 1871, p. 573. 
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concluding that the square root of K, though it may not be 

the complete expression for the index of refraction, is at least 

the most important term in it *. 

Plane Waves. 

790.] Let us now confine our attention to plane waves, the 

fronts of which we shall suppose normal to the axis of z. All 

the quantities, the variation of which constitutes such waves, are 

functions of 0 and t only, and are independent of x and y. Hence 

the equations of magnetic induction, (A), Art. 591, are reduced to 

dG ’ dF c = 0, (13) a = b 
dz dz 

or the magnetic disturbance is in the plane of the wave. This 

agrees with what we know of that disturbance which constitutes 

light. 

Putting /ia, fjifi and py for a, b and c respectively, the equa¬ 

tions of electric currents, Art. 607, become 

4 TlfJiU — ■ 

4 7TfJLV = 

db __ d2F 

dz dz*’ 

da __ d~G 

dz dz*’ 

(14) 

47rpw = 0. 1 
Hence the electric disturbance is also in the plane of the wave, 

and if the magnetic disturbance is confined to one direction, say 

that of x, the electric disturbance is confined to the perpendicular 

direction, or that of y. 

But we may calculate the electric disturbance in another way, 

for if /, g, h are the components of electric displacement in a 

non-conducting medium, 

u 
_df 

~~ dt ’ 
_dg 

~ dt ’ 

dh 

W~ dt' 
(15) 

* [In a paper read to the Royal Society on June 14, 1877, Hr. J. Hopkinson gives 
the results of experiments made for the purpose of determining the specific inductive 
capacities of various kinds of glass. These results do not verify the theoretical con¬ 
clusions arrived at in the text, the value of IT being in each case in excess of that of 
the square of the refractive index. In a subsequent paper to the Royal Society, read 
on Jan. 0, 1881, Hr. HopkinBon finds that, if poo denote the index of refraction for 
waves of infinite length, then K » p2<x> for hydrocarbons, but for animal and vegetable 
oils Ar>p2oo.] 

{Under electrical vibrations with a frequency of about twenty-five millions per 
second K the specific inductive capacity of glass, according to the experiments of J. J. 
Thomson, Proc. Roy. Soc., June 20, 1889, and Blondlot, Camples Rendu*, May 11, 
1891, p. 1058, approximates to p3. Lecher (Wied. Ann. 42, p. 342) came to the 
opposite conclusion that the divergence under such circumstances was greater than for 
steady forces, j 
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If P} Q, R are the components of the electromotive intensity, 

f=r*p’ * = (16) 

and since there is no motion of the medium, equations (B), 

Art. 598, become 

„ dF „ dG dll , v 

Q=~di’ R=- di- <17> 

„ K d2F K d20 Kd2H , . 
Hence u = - — -j- , v = -— -v~, w = -~-^ • (18) 

4 it «i2 4 it dt 4 7r dt~ 

_dF 

dt' 

K d2F 

4 it cii2 w=-r,SF- (,8> 
Comparing these values with those given in equation (14), we find 

d*F ■ d2F \ 

d2=Kltdt*’ 
d-G „ <PG 
dz2 ~ K,X dt2 ’ ( (19^ 

„ rr d2H 

°~K'xdti / 

The first and second of these equations are the equations of 

propagation of a plane wave, and their solution is of the well- 

known form 

F = f1(z-Vt)+fi(z+Vt),) , 

G=f3(z-Vt)+f4(z+Vt)S ’ ^ 

The solution of the third equation is dys 

H=A + Bt, (21) 

where A and B are functions of z. II is 

therefore either constant or varies directly ** 

with the time. In neither case can it 

take part in the propagation of waves. 

791.] It appears from this that the 

directions, both of the magnetic and the 

electric disturbances, lie in the plane of 

the wave. The mathematical form of the 

disturbance therefore agrees with that of ksss? 

the disturbance which constitutes light, 

being transverse to the direction of pro- Fig. 07. 

pagation. 

If we suppose G = 0, the disturbance will correspond to a 

plane-polarized ray of light. 

The magnetic force is in this case parallel to the axis of y and 

Fig. 67. 
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equal to - - — > and the electromotive intensity is parallel to the 

dF 
axis of x and equal to-- • The magnetic force is therefore in a 

(It 

plane perpendicular to that which contains the electric intensity. 

The values of the magnetic force and of the electromotive inten¬ 

sity at a given instant at different points of the ray are represented 

in Fig. 67, for the case of a simple harmonic disturbance in one 

plane. This corresponds to a ray of plane-polarized light, but 

whether the plane of polarization corresponds to the plane of the 

magnetic disturbance, or to the plane of the electric disturbance, 

remains to be seen. See Art. 797. 

Energy and Stress of Radiation. 

792.] The electrostatic energy per unit of volume at any point 

of the wave in a non-conducting medium is 

\/p = f p2 
o 77 

KdF- 
8tt dt 

The electrokinetic energy at the same point is 

I . 1 ,, 1 dF* 
„ bB = -— b2 = - • 
Bit 8 7T ^ 8 TtfJL az 

(22) 

(23) 

In virtue of equation (20) these two expressions are equal for a 

single wave, so that at every point of the wave the intrinsic 

energy of the medium is half electrostatic and half electrokinetic. 

Let p be the value of either of these quantities, that is, either 

the electrostatic or the electrokinetic energy per unit of volume, 

then, in virtue of the electrostatic state of the medium, there 

ia a tension whose magnitude is p, in a direction parallel to x, 

combined with a pressure, also equal to p, parallel to y and z. 

See Art. 107. 

In virtue of the electrokinetic state of the medium there is a 

tension equal to p in a direction parallel to y, combined with a 

pressure equal to p in directions parallel to x and z. See 

Art. 643. 

Hence the combined effect of the electrostatic and the electro- 

kinetic stresses is a, pressure equal to 2p in the direction of the 

propagation of the wave. Now 2 p also expresses the whole 

energy in unit of volume. 

Hence in a medium in which waves are propagated there is a 
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pressure in the direction normal to the waves, and numerically 

equal to the energy in unit of volume. 

793.] Thus, if in strong sunlight the energy of the light which 

falls on one square foot is 83-4 foot pounds per second, the mean 

energy in one cubic foot of sunlight is about 0*0000000882 of a 

foot pound, and the mean pressure on a square foot is 0*0000000882 

of a pound weight. A flat body exposed to sunlight would ex¬ 

perience this pressure on its illuminated side only, and would 

therefore be repelled from the side on which the light falls. It 

is probable that a much greater energy of radiation might be 

obtained by means of the concentrated rays of the electric lamp. 

Such rays falling on a thin metallic disk, delicately suspended 

in a vacuum, might perhaps produce an observable mechanical 

effect. When a disturbance of any kind consists of terms in¬ 

volving sines or cosines of angles which vary with the time, the 

maximum energy is double of the mean energy. Hence, if P is the 

maximum electromotive intensity and ft the maximum magnetic 

force which are called into play during the propagation of light, 

K 
— P2 = “ ft2 = mean energy in unit of volume. (24) 

With Pouillet’s data for the energy of sunlight, as quoted by 

Thomson, Trans. R. 8. TJ., 1854, this gives in electromagnetic 

measure 

P = 60000000, or about 600 Darnell’s cells per mhtre ;* 

ft = 0*193, or rather more than a tenth of the horizontal mag¬ 

netic force in Britain f. 

* {I have not been able to verify these numbers, if we assume v =» 3 x 1010, the 
mean energy in one c. o. of sunlight is, according to Pouillet’s data, as quoted by 
Thomson, 3-92 xlO'6, ergs, the corresponding values of jP and 0 as given by (24) are 

in C. G. S. units 
JP = 9*42 x 10* or 9-42 volts per centimetre, 
0 — .0314 or rather more than a sixth of the earth’s horizontal magnetic force. J 

f {We may regard the forces exerted by the incident light on the reflecting surface 
from a different point of view. Let us suppose that the reflecting surface is metallic, 
then when the light falls on the surface the variation of the magnetic force induces 
currents in the metal, and these currents produce opposite inductive effects to the 
incident light so that the inductive force is screened off’ from the interior of the metal 
plate, thus the currents in the plate, and therefore the intensity of the light, rapidly 
diminish as we recede from the Burface of the plate. The currents in the plate are 
accompanied by magnetic forces at right angles to them, the corresponding mechanical 
force is at right angles both to the current and the magnetic force, and therefore parallel 
to the direction of propagation of the light. If the light were passing through a non¬ 
absorbent medium this mechanical force would be reversed after half a wave length, 
and when integrated over a finite time and distance would have no resultant effect. 
When however the currents rapidly die away as we recede from the surface, the 
effects due to the currents close to the surface are not counterbalanced by the effects 
of those at some distance away from it, so that the resultant effect does not vanish. 
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Propagation of a Plane Wave in a Crystallized Medium. 

794.] In calculating, from data furnished by ordinary electro¬ 

magnetic experiments, the electrical phenomena which would 

result from periodic disturbances, millions of millions of which 

We can calculate the magnitude of this effect in the following way. Let us 
consider the case of light incident normally on a metal plate which we shall take as 
the plane of xy. Let a be the specific resistance of the material. Let the vector 
potential of the incident ray be given by the equation 

F = Aei Ox-«), 

of the reflected ray by 

of the refracted ray by 

then in the air 

F' = A'ei(^+at)t 

F" «= A"e«' CfX"®'*); 

(PF 1_(PF 

dz% * V2 dP ’ 

where V is the velocity of light in air, hence 

„ P . 
“ V* 

(PF Airy dF 
in the metal 

and therefore 

thus 

a * 

a 

dz1 cr dt 

4nyxp 
— 2»7i3, say ; a 

»(!-»). 
F" =» A"e~HI ei(pt~niK 

The vector potential at the Burface is continuous, hence 

A + A' « A". 

The magnetic force parallel to the surface is also continuous, and hence 

z . a A" 
a (A —A ) —-, 

f1 
.n 2 A 

1 + 
ay 

or, since a!/a is very large, we may write this as 

A" - 2 A 
ay 

2Ayp if 
V*/2n 

so that in the metal the real part of the vector potential is 

F” = e~n,coB (pt—nz + $). 
V^2n 

I dF" 
The intensity of the current is-, that is, 

a dt 

2Ayf 

a V+fin 
dF" 

The magnetic induction — is 
dz 

* sin (pt — nz + f). 

2 A yp f 
--e “* |cob (pt—nz + f) —sin (pt—nz + f) 

V</% 
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occur in a second, we have already put our theory to a very 

severe test, even when the medium is supposed to be air or 

vacuum. But if we attempt to extend our theory to the case 

of dense media, we become involved not only in all the ordinary 

difficulties of molecular theories, but in the deeper mystery of 

the relation of the molecules to the electromagnetic medium. 

To evade these difficulties, we shall assume that in certain 

media the specific capacity for electrostatic induction is different 

in different directions, or in other words, the electric displace¬ 

ment, instead of being in the same direction as the electromotive 

intensity, and proportional to it, is related to it by a system of 

linear equations similar to those given in Art. 297. It may be 

shewn, as in Art. 436, that the system of coefficients must be 

The mechanical force per unit volume parallel to z is the product of these two 
quantities, 

- e~ 2nt{ £ 8in 2 (P* - nz + T) ~ i (1 ~C08 2 (pt — nz + f)) }. 

The mean value of this is expressed by the non-periodic term and is equal to 

Integrating this expression with respect to z from z ■» 
force on the plate per unit area 

A9p?p* A*pp* 

* * TnW 

0 to z oo, we find that the 

A similar investigation will show that when we have absorption there is a force on 
the absorbing medium from the places where the light is strong to those where it is 
faint. In the case of sunlight the effect seems small, if the absorption however were 
caused by a very rare gas, the pressure-gradient might be large enough to produce very 
considerable effects, and it has been suggested that this cause is one of the agents at 
work in causing comets’ tails to be repelled by the sun. When the electric vibrations 
are such as are produced in Hertz’s experiments the magnetic forces are very much 
greater than those in sunlight, and the effect ought to be capable of detection, if the 
vibrators could be kept at work anything like continuously. 

We also get mechanical forces whose mean value at any point is not zero when we 
have stationary vibrations. We may take as an example of the stationary vibrations 
the reflected and incident waves in the above example. 

In the air the vector potential is, remembering that a/ais small, 

A ti &~ a,) + A' ei a,>, 

or, taking the real part, since A + A' -» 0 approximately, 

2 A sinjpf sin az, 

I <PF a9 A 
The current is-— ** -— sinpt sin az. 

4 TTfJL dzl « 2itjx 

The magnetic induction is 2.4a sin pt cos az; 

the mechanical force is therefore 

A9 a3 
—— (1 — cos 2 pt) sin az cos az, 
2ir p 

A9 a9 
and the mean value of this is -— sin az cos az.} 

2it/a 1 
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symmetrical, so that, by a proper choice of axes, the equations 

become 

g = i 47r 
h = k.6r, 

4tt a 

where Ar and A"3 are the principal inductive capacities of the 

medium. The equations of propagation of disturbances are therefore 

d2F d*F cPG d2H ,d*F d-* x \ dgjP c/2Gv _ cPff ,r ✓d**’ dr*\' 

dy2 dz2 dxdy dzdx lf ' dt2 dxdV 
dAG (PG _ </27i _ d2F r (<P(} d2*, 

dzl dx2 dydz dxdy - v dt2 dydtJ 

tPH d2H_ d2F _ d2G R (PH d 

dx2 + dy2 dzdx dydz dt- + dzdt' / 

795.] If /, m, ?i are the direction-cosines of the normal to the 

wave-front, and V the velocity of the wave, and if 

lx -f my + nz — Vt = w, (5) 

and if we write jF", G"f 11", ^" for the second differential coeffi¬ 

cients of F, Gr, H, ^ respectively with respect to w, and put 

where a, 6 c are the three principal velocities of propagation, 

the equations become 

(m2 + n*-~) F"-ImG"-nlH" + V*" ~ = o,\ 
v a-J cr 

, w I 
-1mF'+(n* + V-Z) G"-mnH" + = OA (5) 

-nlF"-mnG" + (P + m2-V-)II"+ VW * = 0. 
c c / 

796.] If we write 

m2 . n2 _ TT 

V2-a2 + K2—62 + F2-c2 _ t/’ 

we obtain from these equations 

Ff7(FT"- ?*") = 0, \ 

FC^FtT-m*") = 0, i (7) 
= 0. i 

Hence, either F = 0, in which case the wave is not propagated 

at all; or,T7 =0, which leads to the equation for F given by 

Fresnel; or the quantities within brackets vanish, in which case 

the vector whose components are F'\ G", H" is normal to the 

wave-front and proportional to the electric volume-density. 
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Since the medium is a non-conductor, the electric density at 

any given point is constant, and therefore the disturbance in¬ 

dicated by these equations is not periodic, and cannot constitute 

a wave. We may therefore consider 4'" = 0 in the investigation 

of the wave. 

797.] The velocity of the propagation of the wave is therefore 

completely determined from the equation U — 0, or 
l2 m2 n2 

W-a* + F2~-P + W-? = °* 
There are therefore two, and only two, values of V2 corresponding 

to a given direction of wave-front. 

If X, fjiy v are the direction-cosines of the electric current whose 

components are u, v, w, 

(9) 

then lA + mp. + nv = 0 ; (10) 

or the current is in the plane of the wave-front, and its direction 

in the wave-front is determined by the equation 

\(b2-cl) + — (c2—a2) + - (a2-i2) = 0. (11) 
X fJL V ' 

These equations are identical with those given by Fresnel if we 

define the plane of polarization as a plane through the ray per¬ 

pendicular to the plane of the electric disturbance. 

According to this electromagnetic theory of double refraction 

the wave of normal disturbance, which constitutes one of the 

chief difficulties of the ordinary theory, does not exist, and no 

new assumption is required in order to account for the fact that 

a ray polarized in a principal plane of the crystal is refracted 

in the ordinary manner*. 

Relation between Electric Conductivity and Opacity. 

798.] If the medium, instead of being a perfect insulator, is a 

conductor whose conductivity per unit of volume is (7, the dis¬ 

turbance will consist not only of electric displacements but of 

currents of conduction, in which electric energy is transformed 

into heat, so that the undulation is absorbed by the medium. 

If the disturbance is expressed by a circular function, we may 

wn^e F = e~pz cos (nt — qz), (1) 

See Stokes' ‘ Report on Double Refraction,’ Brit A$soc. Report, 1862, p. 258. 
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for this will satisfy the equation 
d*F vd*F dF 

provided q2—p2 = nKn2, 

and 2 pq = 
The velocity of propagation is 

F= 

(2) 

(3) 
0) 

(«) 

(6) 
and the coefficient of absorption is 

p = 2ttMCF. 

Let JK be the resistance {to a current along the length of the 
plate}, in electromagnetic measure, of a plate whose length is l, 
breadth 6, and thickness z, 

* = <’> 

The proportion of the incident light which will be transmitted by 
this plate will be l v 

e~iT‘ = (8) 

799. ] Most transparent solid bodies are good insulators, and all 
good conductors are very opaque. There are, however, many ex¬ 
ceptions to the law that the opacity of a body is the greater, the 
greater its conductivity. 

Electrolytes allow an electric current to pass, and yet many of 
them are transparent. We may suppose, however, that in the 
case of the rapidly alternating forces which come into play 
during the propagation of light, the electromotive intensity acts 
for so short a time in one direction that it is unable to effect 
a complete separation between the combined molecules. When, 
during the other half of the vibration, the electromotive intensity 
acts in the opposite direction it simply reverses what it did 
during the first half. There is thus no true conduction through 
the electrolyte, no loss of electric energy, and consequently no 
absorption of light. 

800. ] Gold, silver, and platinum are good conductors, and yet, 
when formed into very thin plates, they allow light to pass 
through them*. From experiments which I have made on a 
piece of gold leaf, the resistance of which was determined by 
Mr. Hockin, it appears that its transparency is very much 

* j[Wien (Wied. Ann. 85, p. 48) has verified the conclusion that the transparency 
of thin metallic films is much greater than that indicated by the preceding theory.} 
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greater than is consistent with our theory, unless we suppose 

that there is less loss of energy when the electromotive forces 

are reversed for every semivibration of light than when they act 

for sensible times, as in our ordinary experiments. 

801. ] Let us next consider the case of a medium in which the 

conductivity is large in proportion to the inductive capacity. 

In this case we may leave out the term involving K in the 

equations of Art. 783, and they then become 

4,^=0,' 

V*<?+4WMcl?=0,l (1) 

V2H+4n^C~ = 0. 
dt / 

Each of these equations is of the same form as the equation of 

the diffusion of heat given in Fourier’s Trait4 de la Chaleur. 
802. ] Taking the first as an example, the component F of the 

vector-potential will vary according to time and position in the 

same way as the temperature of a homogeneous solid varies 

according to time and position, the initial and the surface 

conditions being made to correspond in the two cases, and the 

quantity 47being numerically equal to the reciprocal of the 

thermometric conductivity of the substance, that is to say, the 

number of units of volume of the substance which would be 

heated one degree by the heat which passes through a unit cube 

of the substance, two opposite faces of which differ by one degree 

of temperature, while the other faces are impermeable to heat*. 

The different problems in thermal conduction, of which Fourier 

has given the solution, may be transformed into problems in the 

diffusion of electromagnetic quantities, remembering that F, G, H 

are the components of a vector, whereas the temperature, in 

Fourier’s problem, is a scalar quantity. 

Let us take one of the cases of which Fourier has given a com¬ 

plete solution f, that of an infinite medium, the initial state of 

which is given. 

* See Maxwell's Theory of Beat, p. 235 first edition, p. 255 fourth edition. 
f TraiU de la Chaleur, Art. 384. The equation which determines the temperature, 

v, at a point (x, y, z) after a time t} in terms off (a, 0, 7),. the initial temperature at 
the point (a, &, 

v ■ 

where Jc is the thermometrio conductivity. 

7 h w 

Iff 
dadpdy (a-z)*+(p-y)* + (y- 

4 kt / (“, 0.7). 
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The state of any point of the medium at the time t is found 

by taking the average of the state of every part of the medium, 

the weight assigned to each part in taking the average being 

tt ijl C r3 

e —, 

where r is the distance of that part from the point considered. 

This average, in the case of vector-quantities, is most conveniently 

taken by considering each component of the vector separately. 
803. ] We have to remark in the first place, that in this problem 

the thermal conductivity of Fourier’s medium is to be taken in¬ 

versely proportional to the electric conductivity of our medium, 

so that the time required in order to reach an assigned stage in 
the process of diffusion is greater the higher the electric con¬ 

ductivity. This statement will not appear paradoxical if we 

remember the result of Art. 655, that a medium of infinite con¬ 

ductivity forms a complete barrier to the process of diffusion of 

magnetic force. 
In the next place, the time requisite for the production of an 

assigned stage in the process of diffusion is proportional to the 

square of the linear dimensions of the system. 
There is no determinate velocity which can be defined as the 

velocity of diffusion. If we attempt to measure this velocity by 

ascertaining the time requisite for the production of a given 

amount of disturbance at a given distance from the origin of 

disturbance, we find that the smaller the selected value of the 

disturbance the greater the velocity will appear to bo, for how¬ 

ever great the distance, and however small the time, the value 

of the disturbance will differ mathematically from zero. 

This peculiarity of diffusion distinguishes it from wave- 

propagation, which takes place with a definite velocity. No 

disturbance takes place at a given point till the wave reaches 

that point, and when the wave has passed, the disturbance 
ceases for ever. 

804. ] Let us now investigate the process which takes place 

when an electric current begins and continues to flow through a 

linear circuit, the medium surrounding the circuit being of finite 

electric conductivity. (Compare with Art. 660.) 

When the current begins, its first effect is to produce a current 

of induction in the parts of the medium close to the wire. The 

direction of this current is opposite to that of the original current, 
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and in the first instant its total quantity is equal to that of the 
original current, so that the electromagnetic effect on more 
distant parts of the medium is initially zero, and only rises to 
its final value as the induction-current dies away on account 
of the electric resistance of the medium. 

But as the induction-current close to the wire dies away, a new 
induction-current is generated in the medium beyond, so that the 
space occupied by the induction-current is continually becoming 
wider, while its intensity is continually diminishing. 

This diffusion and decay of the induction-current is a pheno¬ 
menon precisely analogous to the diffusion of heftt from a part of 
the medium initially hotter or colder than the rest. We must 
remember, however, that since the current is a vector quantity, 
and since in a circuit the current is in opposite directions at 
opposite points of the circuit, we must, in calculating any given 
component of the induction-current, compare the problem with 
one in which equal quantities of heat and of cold are diffused 
from neighbouring places, in which case the effect on distant 
points will be of a smaller order of magnitude. 

805.] If the current in the linear circuit is maintained con¬ 
stant, the induction-currents, which depend on the initial change 
of state, will gradually be diffused and die away, leaving the 
medium in its permanent state, which is analogous to the 
permanent state of the flow of heat. In this state we have 

V2jF = V2G = V2H = 0 (2) 
throughout the medium, except at the part occupied by the 
circuit, in which {when /x = 1} 

V2F=z 4ttu9 x 

V20 = 47tv, > (3) 
V2H =r 4 7TW. j 

These equations are sufficient to determine the values of F\ G, H 
throughout the medium. They indicate that there are no 
currents except in the circuit, and that the magnetic forces 
are simply those due to the current in the circuit according 
to the ordinary theory. The rapidity with which this per¬ 
manent state is established is so great that it could not be 
measured by our experimental methods, except perhaps in the 
case of a very large mass of a highly conducting medium such 
as copper. 

Note.—In a paper published in Poggendorffs Annalen, July 
VOL. XL g g 
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1867, pp. 243-263, M. Lorenz has deduced from KirchhofFs 

equations of electric currents (Pogg. Ann. cii. 1857), by the addi¬ 

tion of certain terms which do not affect any experimental result, 

a new set of equations, indicating that the distribution of force 

in the electromagnetic field may be conceived as arising from 

the mutual action of contiguous elements, and that waves, con¬ 

sisting of transverse; electric currents, may be propagated, with a 

velocity comparable to that of light, in non-conducting media. 

He therefore regards the disturbance which constitutes light as 

identical with these electric currents, and he shews that con¬ 

ducting media must be opaque to such radiations. 

These conclusions are similar to those of this chapter, though 

obtained by an entirely different method. The theory given in 

this chapter was first published in the Phil. Trans, for 1865, 

pp. 459-512. 



CHAPTER XXL 

MAGNETIC ACTION ON LIGHT. 

806.] The most important step in establishing a relation 

between electric and magnetic phenomena and those of light 

must be the discovery of some instance in which the one set 

of phenomena is affected by the other. In the search for such 

phenomena we must be guided by any knowledge we may have 

already obtained with respect to the mathematical or geometrical 

form of the quantities which we wish to compare. Thus, if we 

endeavour, as Mrs. Somerville did, to magnetize a needle bv 

means of light, we must remember that the distinction between 

magnetic north and south is a mere matter of direction, and 

would be at once reversed if we reversed certain conventions 

about the use of mathematical signs. There is nothing in mag¬ 

netism analogous to those phenomena of electrolysis which 

enable us to distinguish positive from negative electricity, by 

observing that oxygen appears at one pole of a cell and hy¬ 

drogen at the other. 

Hence we must not expect that if we make light fall on one 

end of a needle, that end will become a pole of a certain name, 

for the two poles uo not differ as light does from darkness. 

We might expect a better result if we caused circularly- 

polarized light to fall on the needle, right-handed light falling 

on one end and left-handed on the other, for in some respects 

these kinds of light may be said to be related to each other in 

the same way as the poles of a magnet. The analogy, however, 

is faulty even here, for the two rays when combined do not 

neutralize each other, but produce a plane polarized ray. 

Faraday, who was acquainted with the method of studying 

the strains produced in transparent solids by means of polarized 

light, made many experiments in hopes of detecting some action 

on polarized light while passing through a medium in which 
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electrolytic conduction or dielectric induction exists *. He was 

not, however, able to detect any action of this kind, though the 
experiments were arranged in the way best adapted to discover 

effects of tension, the electric force or current being at right 

angles to the direction of the ray, and at an angle of forty-five 
degrees to the plane of polarization. Faraday varied these 

experiments in many ways without discovering any action on 

light due to electrolytic currents or to static electric induction. 
He succeeded, however, in establishing a relation between 

light and magnetism, and the experiments by which ho did 

so are described in the nineteenth series of his Experimental 

Researches. We shall take Faraday's discovery as our starting- 

point for further investigation into the nature of magnetism, and 

we shall therefore describe the phenomenon which he observed. 

807. ] A ray of plane-polarized light is transmitted through a 

transparent diamagnetic medium, and the plane of its polariza¬ 

tion, when it emerges from the medium, is ascertained by ob¬ 

serving the position of an analyser when it cuts off the ray. 

A magnetic force is then made to act so that the direction of 

the force within the transparent medium coincides with the 

direction of the ray. The light at once reappears, but if the 

analyser is turned round through a certain angle, the light is 

again cut off. This shews that the effect of the magnetic force is 

to turn the plane of polarization, round the direction of the ray as 

an axis, through a certain angle, measured by the angle through 

which the analyser must be turned in order to cut off the light. 

808. ] The angle through which the plane of polarization is 

turned is proportional— 

(1) To the distance which the ray travels within the medium. 

Hence the plane of polarization changes continuously from its 
position at incidence to its position at emergence. 

(2) To the intensity of the resolved part of the magnetic force 

in the direction of the ray. 
(3) The amount of the rotation depends on the nature of the 

jnedium. No rotation has yet been observed when the medium 

is air or any other gas f. 

* Experimental Researches, 951-954 and 2216-2220. 
+ { Since this was written the rotation in gases has been observed and measured by 

H. Becquerel, Compt. Rendus, 88, p. 709; 90, p. 1407; Kundt and Rontgen, Wied. Ann., 
6, p.882; 8,p. 278; Bichat, Compt. Rendus, 88, p. 712; Journal de Physique, 9, p. 275, 
1880.} 
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These three statements are included in the more general one, 

that the angular rotation is numerically equal to the amount by 
which the magnetic potential increases, from the point at which 

the ray enters the medium to that at which it leaves it, multi¬ 

plied by a coefficient, which, for diamagnetic media, is generally 

positive. 
809. ] In diamagnetic substances, the direction in which the 

plane of polarization is made to rotate is {generally} the same 
as the direction in which a positive current must circulate round 

the ray in order to produce a magnetic force in the same direc¬ 
tion as that which actually exists in the medium. 

Verdet, however, discovered that in certain ferromagnetic 

media, as, for instance, a strong solution of perchloride of iron 

in wood-spirit or ether, the rotation is in the opposite direction 
to the current which would produce the magnetic force. 

This shews that the difference between ferromagnetic and dia¬ 

magnetic substances does not arise merely from the ‘magnetic 
permeability ’ being in the first case greater, and in the second 

less, than that of air, but that the properties of the two classes 

of bodies are really opposite. 

The power acquired by a substance under the action of mag¬ 

netic force of rotating the plane of polarization of light is not 

exactly proportional to its diamagnetic or ferromagnetic mag- 
netizability. Indeed there are exceptions to the rule that the 

rotation is positive for diamagnetic and negative for ferro¬ 

magnetic substances, for neutral chromate of potash is diamag¬ 
netic, but produces a negative rotation. 

810. ] There are other substances, which, independently of the 

application of magnetic force, cause the plane of polarization to 
turn to the right or to the left, as the ray travels through the 

substance. In some of these the property is related to an axis, 

as in the case of quartz. In others, the property is independent, 
of the direction of the ray within the medium, as in turpentine, 

solution of sugar, &c. In all these substances, however, if the 
plane of polarization of any ray is twisted within the medium like 

a right-handed screw, it will still be twisted like a right-handed 

screw if the ray is transmitted through the medium in the 

opposite direction. The direction in which the observer has to 

turn his analyser in order to extinguish the ray after intro¬ 

ducing the medium into its path, is the same with reference to. 
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the observer whether the ray comes to him from the north or 

from the south. The direction of the rotation in space is of 
course reversed when the direction of the ray is reversed. But 

when the rotation is produced by magnetic action, its direction 
in space is the same whether the ray be travelling north or 
south. The rotation is always in the same direction as that of 

the electric current which produces, or would produce, the actual 

magnetic state of the field, if the medium belongs to the positive 
class, or in the opposite direction if the medium belongs to the 
negative class. 

It follows from this, that if the ray of light, after passing 
through the medium from north to south, is reflected by a 

mirror, so as to return through the medium from south to north, 
the rotation will be doubled when it results from magnetic 
action. When the rotation depends on the nature of the medium 

alone, as in turpentine, &c., the ray, when reflected back through 

the medium, emerges polarized in the same plane as when 
it entered, the rotation during the first passage through the 

medium having been exactly reversed during the second. 

811.] The physical explanation of the phenomenon presents 
considerable difficulties, which can hardly be said to have been 

hitherto overcome, either for the magnetic rotation, or for that 
which certain media exhibit of themselves. We may, however, 

prepare the way for such an explanation by an analysis of the 
observed facts. 

It is a well-known theorem in kinematics that two uniform 
circular vibrations, of the same amplitude, having the same 

periodic time, and in the same plane, but revolving in opposite 

directions, are equivalent, when compounded together, to a 
rectilinear vibration. The periodic time of this vibration is 

equal to that of the circular vibrations, its amplitude is double, 

and its direction is in the line joining the points at which two 
particles, describing the circular vibrations in opposite directions 

round the same circle, would meet. Hence if one of the circular 

vibrations has its phase accelerated, the direction of the recti¬ 
linear vibration will be turned, in the same direction as that 

of the circular vibration, through an angle equal to half the 
acceleration of phase. 

It can also be proved by direct optical experiment that two 

rays of light, circularly-polarized in opposite directions, and of 
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the same intensity, become, when united, a plane-polarized ray, 

and that if by any means the phase of one of the circularly - 

polarized rays is accelerated, the plane of polarization of the 

resultant ray is turned round half the angle of acceleration of 

the phase. 

812. ] We may therefore express the phenomenon of the rota¬ 

tion of the plane of polarization in the following manner:— 

A plane-polarized ray falls on the medium. This is equivalent 

to two circularly-polarized rays, one right-handed, the other 

left-handed (as regards the observer). After passing through 

the medium the ray is still plane-polarized, but the plane of 

polarization is turned, say, to the right (as regards the observer). 

Hence, of the two circularly-polarized rays, that which is right- 

handed must have had its phase accelerated with respect to the 

other during its passage through the medium. 

In other words, the right-handed ray has performed a greater 

number of vibrations, and therefore has a smaller wave-length, 

within the medium, than the left-handed ray which has the same 

periodic time. 

This mode of stating what takes place is quite independent of 

any theory of light, for though we use such terms as wave¬ 

length, circular-polarization, &c., which may be associated in our 

minds with a particular form of the undulatory theory, the 

reasoning is independent of this association, and depends only 

on facts proved by experiment. 

813. ] Let us next consider the configuration of one of these 

rays at a given instant. Any undulation, the motion of which 

at each point is circular, may be represented by a helix or screw. 

If the screw is made to revolve about its axis wdthout any 

longitudinal motion, each particle will describe a circle, and at 

the same time the propagation of the undulation will be re¬ 

presented by the apparent longitudinal motion of the similarly 

situated parts of the thread of the screw. It is easy to see that 

if the screw is right-handed, and the observer is placed at that 

end towards which the undulation travels, the motion of the 

screw will appear to him left-handed, that is to say, in the 

opposite direction to that of the hands of a watch. Hence such 

a ray has been called, originally by French writers, but now by 

the whole scientific world, a left-handed circularly-polarized ray. 

A right-handed circularly-polarized ray is represented in like 
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manner by a left-handed helix. In Fig. 68 the right-handed 

helix A, on the right-hand of the figure, represents a left-handed 

ray, apd the left-handed helix B, 

on the left-hand, represents a 

right-handed ray. 

814.] Let us now consider two 

such rays which have the same 

wave-length within the medium. 

They are geometrically alike in 

all respects, except that one is 

the perversion of the other, like 

its image in a looking-glass. One 

of them, however, say A9 has 

a shorter period of rotation than 

the other. If the motion is en¬ 

tirely due to the forces called 

into play by the displacement, 

this shews that greater forces are 

called into play by the same dis- 

Fls*68* placement when the configuration 

is like A than when it is like B. Hence in this case the left- 

handed ray will be accelerated with respect to the right-handed 

ray, and this will be the case whether the rays are travelling 

from N to 8 or from S to jV. 

This therefore is the explanation of the phenomenon as it is 

produced by turpentine, &c. In these media the displacement 

caused by a circularly-polarized ray calls into play greater 

forces of restitution when the configuration is like A than when 

it is like B. The forces thus depend on the configuration alone, 

not on the direction of the motion. 

But in a diamagnetic medium acted on by magnetism in the 

direction &0T, of the two screws A and By that one always 

rotates with the greatest velocity whose motion, as seen by an 

eye looking from S to JV, appears like that of a watch. Hence 

for rays from S to N the right-handed ray B will travel 

quickest, but for rays from N to 8 the left-handed ray A will 

travel quickest. 

816.] Confining our attention to one ray only, the helix B 
has exactly the same configuration, whether it represents a ray 

from S to N or one from N to S. But in the first instance the 
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ray travels faster, and therefore the helix rotates more rapidly. 

Hence greater forces are called into play when the helix is going 
round one way than when it is going round the other way. 

The forces, therefore, clo not depend solely on the configuration 

of the ray, but also on the direction of the motion of its indi¬ 
vidual parts. 

816. ] The disturbance which constitutes light, whatever its 

physical nature may be, is of the nature of a vector, perpen¬ 
dicular to the direction of the ray. This is proved from the 

fact of the interference of two rays of light, which under certain 

conditions produces darkness, combined with the fact of the 

non-interference of two rays polarized in planes perpendicular 
to* each other. For since the interference depends on the angular 

position of the planes of polarization, the disturbance must be 
a directed quantity or vector, and since the interference ceases 

when the planes of polarization are at right angles, the vector 

representing the disturbance must be perpendicular to the line 

of intersection of these planes, that is, to the direction of 

the ray. 

817. ] The disturbance, being a vector, can be resolved into 

components parallel to x and y, the axis of z being parallel to 

the direction of the ray. Let £ and tj be these components, then, 

in the case of a ray of homogeneous circularly-polarized light, 

£=r cos0, 77=rsin0, (1) 

where 0 — nt — qz + a. (2) 

In these expressions, r denotes the magnitude of the vector, 

and 0 the angle which it makes with the direction of the axis 

of x. 

The periodic time, r, of the disturbance is such that 

nr = 27r. (3) 

The wave-length, A, of the disturbance is such that 

gA=2 7r. (4) 

71 
The velocity of propagation is - • 

The phase of the disturbance when t and z are both zero is a. 

The circularly-polarized light is right-handed or left-handed 

according as q is negative or positive. 

Its vibrations are in the positive or the negative direction of 
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rotation in the plane of (x, y), according as n is positive or 

negative. 
The light is propagated in the positive or the negative direc¬ 

tion of the axis of 2, according as n and q are of the same or of 

opposite signs. 

In all media n varies when q varies, and is always of the 

same sign with ~ • 

Hence, if for a given numerical value of n the value of — is 

greater when n is positive than when n is negative, it follows 

that for a value of g, given both in magnitude and sign, the 

positive value of n will be greater than the negative value. 

Now this is what is {generally} observed in a diamagnetic 

medium, acted on by a magnetic force, y, in the direction of z. 

Of the two circularly •‘polarized rays of a given period, that is 

accelerated of which the direction of rotation in the plane of 

j-, y is positive. Hence, of two circularly-polarized rays, both 

left-handed, whose wave-length within the medium is the same, 

that has the shortest period whose direction of rotation in the 

plane of xy is positive, that is, the ray which is propagated in 

the positive direction of z from south to north. We have there¬ 

fore to account for the fact, that when in the equations of the 

system q and r are given, two values of n will satisfy the 

equations, one positive and the other negative, the positive 

value being numerically greater than the negative. 

818.] We may obtain the equations of motion from a con¬ 

sideration of the potential and kinetic energies of the medium. 

The potential energy, F, of the system depends on its configura¬ 
tion, that is, on the relative position of its parts. In so far as it 

depends on the disturbance due to circularly-polarized light, it 

must be a function of r, the amplitude, and g, the coefficient of 

torsion, only. It may be different for positive and negative 

values of q of equal numerical value, and it probably is so in 

the case of media which of themselves rotate the plane of 
polarization. 

The kinetic energy, T7, of the system is a homogeneous 

function of the second degree of the velocities of the system, 

the coefficients of the different terms being functions of the 
coordinates. 



819.] Let us consider the dynamical condition that the ray 

may be of constant intensity, that is, that r may be constant. 

Lagrange's equation for the force in r becomes 

d dT dT dV A , . 

dt dr ITr + dr ' 

Since r is constant, the first term vanishes. We have therefore 

the equation dT dV ^ ,n. dT dV_ 

dr dr 9 

in which q is supposed to be given, and we are to determine the 

value of the angular velocity 0, which we may denote by its 

actual value, n. 
The kinetic energy, T, contains one term involving n2; other 

terms may contain products of n with other velocities, and the 

rest of the terms are independent of n. The potential energy, 

V, is entirely independent of n. The equation (6) is therefore of 

the form 2 + Bn + 0 = 0. (7) 

This being a quadratic equation, gives two values of n. It 

appears from experiment that both values are real, that one is 

positive and the other negative, and that the positive value is 

numerically the greater. Hence, if A is positive, both B and C 

are negative; for, if nx and n2 are the roots of the equation, 

A (tIj 4- 712) + B = 0. (8) 

The coefficient, B, therefore, is not zero, at least when magnetic 

force acts on the medium. We have therefore to consider the 

expression Bn, which is the part of the kinetic energy involving 

the first power of nf the angular velocity of the disturbance. 

820.] Every term of T is of two dimensions as regards 

velocity. Hence the terms involving n must involve some 

other velocity. This velocity cannot be r or y, because, in the 

case we consider, r and q are constant. Hence it is a velocity 

which exists in the medium independently of that motion which 

constitutes light. It must also be a velocity related to n in 

such a way that when it is multiplied by n the result is a scalar 

quantity, for only scalar quantities can occur as terms in the 

value of Tf which is itself scalar. Hence this velocity must be 

in the same direction as 7^, or in the opposite direction, that is, 

it must be an angular velocity about the axis of 0. 

Again, this velocity cannot be independent of the magnetic 

force, for if it were related to a7 direction fixed in the medium, 
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the phenomenon would be different if we turned the medium 

end for end, which is not the case. 
We are therefore led to the conclusion that this velocity is an 

invariable accompaniment of the magnetic force in those media 

which exhibit the magnetic rotation of the plane of polarization. 
821.] We have been hitherto obliged to use language which is 

perhaps too suggestive of the ordinary hypothesis of motion in 

the undulatory theory. It is easy, however, to state our result 

in a form free from this hypothesis. 

Whatever light is, at each point of space there is something 

going on, whether displacement, or rotation, or something not 
yet imagined, but which is certainly of the nature of a vector 

or directed quantity, the direction of which is normal to the 

direction of the ray. This is completely proved by the pheno¬ 
mena of interference. 

In the case of circularly-polarized light, the magnitude of this 

vector remains always the same, but its direction rotates round 

the direction of the ray so as to complete a revolution in the 

periodic time of the wave. The uncertainty which exists as to 

whether this vector is in the plane of polarization or perpen¬ 

dicular to it, does not extend to our knowledge of the direction 

in which it rotates in right-handed and in left-handed circularly- 

polarized light respectively. The direction and the angular 
velocity of this vector are perfectly known, though the physical 

nature of the vector and its absolute direction at a given instant 
are uncertain. 

When a ray of circularly-polarized light falls on a medium 

under the action of magnetic force, its propagation within the 

medium is affected by the relation of the direction of rotation 

of the light to the direction of the magnetic force. From this 
we conclude, by the reasoning of Art. 817, that in the medium, 

when under the action of magnetic force, some rotatory motion 
is going on, the axis of rotation being in the direction of the 
magnetic force; and that the rate of propagation of circularly- 

polarized light, when the direction of its vibratory rotation and 
the direction of the magnetic rotation of the medium are the 

same, is different from the rate of propagation when these 
directions are opposite. 

The only resemblance which we can trace between a medium 

through which circularly-polarized light is propagated, and a 
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medium through which lines of magnetic force pass, is that in 
both there is a motion of rotation about an axis. But here the 

resemblance stops, for the rotation in the optical phenomenon is 

that of the vector which represents the disturbance. This vector 

is always perpendicular to the direction of the ray, and rotates 
about it a known number of times in a second. In the magnetic 

phenomenon, that which rotates has no properties by which its 

sides can be distinguished, so that we cannot determine how 
many times it rotates in a second. 

There is nothing, therefore, in the magnetic phenomenon 
which corresponds to the wave-length and the wave-propagation 
in the optical phenomenon. , A medium in which a constant 

magnetic force is acting is not, in consequence of that force, 

filled with waves travelling in one direction, as when light is 
propagated through it. The only resemblance between the 

optical and the magnetic phenomenon is, that at each point of 
the medium something exists of the nature of an angular velocity 

about an axis in the direction of the magnetic force. 

On the Hypothesis of Molecular Vortices. 

822.] The consideration of the action of magnetism on polar¬ 

ized light leads, as we have seen, to the conclusion that in a 

medium under the action of magnetic force something belonging 

to the same mathematical class as an angular velocity, whose 

axis is in the direction of the magnetic force, forms a part of the 

phenomenon. 

This angular velocity cannot be that of any portion of the 

medium of sensible dimensions rotating as a whole. We must 

therefore conceive the rotation to be that of very small portions 
of the medium, each rotating on its own axis. This is the 

hypothesis of molecular vortices. 

The motion of these vortices, though, as we have shewn 

(Art. 575), it does not sensibly affect the visible motions of 

large bodies, may be such as to affect that vibratory motion on 
which the propagation of light, according to the undulatory 

theory, depends. The displacements of the medium, during 

the propagation of light, will produce a disturbance of the 

yortices, and the vortices when so disturbed may react on the 

medium^o as to affect the mode of propagation of the ray* 



462 MAGNETIC ACTION ON LIGHT. [824. 

823.] It is impossible, in our present state of ignorance as to 

the nature of the vortices, to assign the form of the law which 
connects the displacement of the medium with the variation of 

the vortices. We shall therefore assume that the variation of 

the vortices caused by the displacement of the medium is subject 
to the same conditions which Helmholtz, in his great memoir 

on Vortex-motion*, has shewn to regulate the variation of the 

vortices of a perfect liquid. 
Helmholtz’s law may be stated as follows:—Let P and Q be 

two neighbouring particles in the axis of a vortex, then, if in 

consequence of the motion of the fluid these particles arrive at 

the points ly, Q', the line P'Q' will represent the new direction of 
the axis of the vortex, and its strength will be altered in the 

ratio of P'Q' to PQ. 
Hence if a, /3, y denote the components of the strength of a 

vortex, and if £, rj, ( denote the displacements of the medium, 

the values of a, /3, y will become 

. dA >Rdi , ?€ 
a dx dy ^ dz ’ 

dy 

dx & = P+a jL + P +yjz 
I drf 

dy 

dr] 

dz ' 
0) 

f , d( ,ad( , d( 
y=y + adx+!*dy+ydz- 

We now assume that the same condition is satisfied during 

the small displacements of a medium in which a, /3, y represent, 

not the components of the strength of an ordinary vortex, but 

the components of magnetic force. 
824.] The components of the angular velocity of an element 

of the medium are 

COi 1 d (dS_drl \ 
* dzy ‘ dt ydy 

_ 1 d (dj 

d (dr) 

dC 
)> (2) 

= *-i( :)• 

dx 

dJ 
dt^dx dy 

The next step in our hypothesis is the assumption that the 

kinetic energy of the medium contains a term of the form 

2 C (cuoj + /3co2 -f yo>3). (3) 

* Crelles Journal, vol. lv. (1858), pp. 25-55. Translated by Tait, Phil, Mag., 
June, pp. 485-511, 1867. 
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This is equivalent to supposing that the angular velocity acquired 

by the element of the medium during the propagation of light is 
a quantity which may enter into combination with that motion 
by which magnetic phenomena are explained. 

In order to form the equations of motion of the medium, we 
must express its kinetic energy in terms of the velocity of its 

parts, the components of which are £, 17, (. We therefore 
integrate by parts, and find 

2 CJ*(aa)i + + y^ii) dxdydz 

= cJJ (yo-p()dydz + cfJ'(a(-y£)dzdx + C jj (f3£-ar,)dxdy 

+0!SS\d%-~i) +’(!“- <4> 

The double integrals refer to the bounding surface, which may 

be supposed at an infinite distance. We may therefore, while 

investigating what takes place in the interior of the medium, 

confine our attention to the triple integral. 

825.] The part of the kinetic energy in unit of volume, ex¬ 

pressed by this triple integral, may be written 

ivC (£u + riv-b(w)9 (5) 

where u, v, w are the components of the electric current as given 
in equations (E), Art. 607. 

It appears from this that our hypothesis is equivalent to the 

assumption that the velocity of a particle of the medium whose 

components are f, 97, £ is a quantity which may enter into 

combination with the electric current whose components are 

w, v, w. 
826.] Returning to the expression under the sign of triple 

integration in (4), substituting for the values of a, /S, y, those 

of a, /3', y, as given by equations (1), and writing 

d . d n d d 

dh °r a dx + dy dz (6) 

the expression under the sign of integration becomes 

_4- • 33_^3\ 4.• 
(^ dh dy dz' **dhSdz dx' dl3dx dyH 

In the case of waves in planes normal to the axis of z the 
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d d 
displacements are functions of z and t only, so that ^ = y , 

and this expression is reduced to 

(d2£. d2v 
(8) ^dzl ' dz2 

The kinetic energy per unit of volume, so far as it depends on 

the velocities of displacement, may now be written 

T=JP(?+n*+f‘)+C,(gi-gf), (») 
where p is the density of the medium. 

827.] The components, X and F, of the impressed force, re¬ 

ferred to unit of volume, may be deduced from this by Lagrange’s 

equations, -Art. 564* We observe that by two successive inte¬ 

grations by parts in regard to z, and the omission of the double 

integrals at the bounding surface, it may be shewn that 

//fv<'ixdydz 
Hence 

dT _ <Pn 

d£~Uydz2dt' 

The expressions for the forces are therefore given by 

y ^ d3V 
X=p-<W~2GydzHt' 

Y = 
d3£ 

(10) 

dt2 Wdi' (11) 

These forces arise from the action of the remainder of the 

medium on the element under consideration, and must in the case 
of an isotropic medium be of the form indicated by Cauchy, 

+ ^. si+*<=•. >dz2 

d2rj 

Y = A°1&+Aiw*+&G- 

(12) 

(13) 

828.] If we now take the case of a circularly-polarized ray for 

which £ = r cos (rd — qz), *j = r sin (nt—qz), (14) 

we find for the kinetic energy in unit of volume 

T— \pr2n2—Cy7aq2n; (15) 

and for the potential energy in unit of volume 

V — \r2(A0q2—A1qi + &c.) 

= WQ, (16) 
where Q is a function of q2. 
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The condition of free propagation of the ray given in Art. 819, 

equation (6), is dT dV ^ 

(18) 
dr dr 

which gives pn2 — 2Cyq2n = Qf 
whence the value of n may be found in terms of q. 

But in the case of a ray of given wave-period, acted on by 

magnetic force, what we want to determine is the value of 
d<, 

dy 
Differ- when n is constant, in terms of ~~ , when y is constant, 

entiating (18) ( n 

(2 pn — 2Cyq2)dn~-f 4 Cyqri) dq — 2Cq2ndy = 0. (19) 

We thus find =-^9. (20) 
dy pn—Cyq*dn 

829.] If A is the wave-length in air, v the velocity in air, and 
i the corresponding index of refraction in the medium, 

qk = 2 Tri, nk = 2ttv. (21) 

Hence 
dq 

du 
q 1 /. 

= -U- 
n 4)}- 

The change in the value of q, due to magnetic action, is in 
every case an exceedingly small fraction of its own value, so 
that we may write dq 

? = ? 0 + dy ‘ 
(22) 

where g0is the value of <7 when the magnetic force is zero. The angle, 
0, through which the plane of polarization is turned in passing 

through a thickness c of the medium, is half the sum of the posi¬ 
tive and negative values of q c, the sign of the result being changed, 
because the sign of q is negative in equations (14). We thus obtain 

dq 
6 = — c y 

d 1 

Vp 
1 ( crp( ■4) d\' 

(23) 

(24) 

1—2 7tC> 
vpk 

The second term of the denominator of this fraction is approx¬ 

imately equal to the angle of rotation of the plane of polarization 
during the passage of the light through a thickness of the medium 

equal to j- timesj half a wave-length {in the medium}. It is 

therefore in all actual cases a quantity which we may neglect in 
comparison with unity. 

VOL. 11. H h 
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Writing 
4 tPC 
-= m, 

Vp 
(25 

we may call m the coefficient of magnetic rotation foi the 

medium, a quantity whose vfilue must be determined by ol .ner¬ 

vation. It is found to be positive for most diamagnetic, and 
negative for some paramagnetic media. We have therefore as 

the final result of our theory 

? /. 
6 = mey^ (i-\ 

di \ 
dk'* 

(2 (>) 

where 6 is the angular rotation of the plane of polarizai ion, 

m a constant determined by observation of the medium, y the 

intensity of the magnetic force resolved in the direction of the 

ray, c the length of the ray within the medium, A the wave-length 

of the light in air, and i its index of refraction in the medium*. 
830.] The only test to which this theory has hitherto been 

subjected is that of comparing the values of 6 for different kinds 

of light passing through the same medium and acted on by the 

same magnetic force. 
This has been done for a considerable number of media by M. 

Verdet f, who has arrived at the following results :— 
(1) The magnetic rotations of the planes of polarization of 

the rays of different colours follow approximately the law of the 

inverse square of the wave-length. 

(2) The exact law of the phenomena is always such that the 

product of the rotation by the square of the wave-length in¬ 

creases from the least refrangible to the most refrangible end 

of the spectrum. 
(3) The substances for which this increase is most sensible are 

also those which have the greatest dispersive power. 
He also found that in the solution of tartaric acid, which of 

itself produces a rotation of the plane of polarization, the mag¬ 

netic rotation is by no means proportional to the natural rotation. 

In an addition to the same memoir J Verdet has given the 

results of very careful experiments on bisulphide of carbon and 

on creosote, two substances in which the departure from the 

* | Rowland (Phil. Mag. xi. p. 254,1881) has shown that magnetic rotation of the 
plane of polarization would be produced if the Hall effect (Yol. 1, p. 423) existed in 
dielectrics.} 

t Recherches sur les propriety optiques d^velopp<$es dans les corps transparent* 
par l'action du magnetism©, 4me partie. Comptes Rendus, t. lvi. p. 630 (6 April, 1863). 

% Comptes Rendus, Ivii. p. 670 (19 Oct., 1863). 
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law of the inverse square of the wave-length was very apparent. 
He has also compared these results with the numbers given by 
three different formulae, 

^ i2 f. v di\ 
(I) d = mcy-2(i-A-jr-J; 

(II) « = 

(III) 0 = mey 

The first of these formula, (I), is tliat which we have already 

obtained in Art. 829, equation (26). The second, (II), is that 
which results from substituting in the equations of motion, 

eprj 
Art. 827, equations (10), (11), terms of the form and 

a3£ C * instead of and 
• dzzdt 

dt* ’ 

dz*dt 
I am not aware that this form of 

the equation has been suggested by any physical theory. The 
third formula. (Ill), results from the physical theory of M. C. 
Neumann*, in which the equations of motion contain terms of 

the form ~~ and — ^ ~ f. 
dt dt 

It is evident that the values of 0 given by the formula (III) are 
not even approximately proportional to the inverse square of 
the wave-length. Those given by the formulae (I) and (II) 
satisfy this condition, and give values of 0 which agree tolerably 

well with the observed values for media of moderate dispersive 
power. For bisulphide of carbon and creosote, however, the 
values given by (II) differ very much from those observed. 

Those given by (I) agree better with observation, but, though 
the agreement is somewhat close for bisulphide of carbon, the 
numbers for creosote still differ by quantities much greater than 
can be accounted for by any errors of observation. 

* 1 Explicare tentatur quomodo fiat ufc lucis planum polarizationis per vires elec- 
tricas vel magneticas declinetur.* Halis Saxovum, 1868. 

t These three forms of the equations of motion were first suggested by SirG. B. Airy 
(PMl. Mag,, June 1846, p. 477) as a means of analysing the phenomenon then recently 
discovered by Faraday. Mao Cullagh had previously suggested equations containing 

terms of the form — in order to represent mathematically the phenomena of quartz. 

These equations were offered by Mac Cullagh and Airy. * not as giving a mechanical 
explanation of the phaenomena, but as showing that the phaenomena may be explained 
by equations, which equations appear to be such as might possibly be deduced from 
some plausible mechanical assumption, although no such assumption hasyet been made.’ 

h h a 
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Magnetic Rotation of the Plane of Polarization (from Verdet). 

Bisulphide of Carbon at 24°*9 C. 

Lines of the spectrum C D E F G 
Observed rotation 592 768 1000 1234 1704 
Calculated by I. 589 760 .1000 1234 1713 

„ II. 606 772 1000 1216 1640 

„ HI. 943 967 1000 1034 1091 

Rotation of the ray JE = 25°-28'. 

Creosote at 246 3 0. 

LineR of the spectrum a D E F G 
Observed rotation 673 758 1000 1241 1723 
Calculated by I. 617 780 1000 1210 1603 

„ II. 628 789 1000 1200 1565 
„ HI. 976 993 1000 1017 1041 

Rotation of the ray E — 21°*58'. 

We are so little acquainted with the details of the molecular 
constitution of bodies, that it is not probable that any satisfactory 
theory can be formed relating to a particular phenomenon, such 

as that of the magnetic action on light, until, by an induction 
founded on a number of different cases in which visible pheno¬ 
mena are found to depend upon actions in which the molecules 

are concerned, we learn something more definite about the 
properties which must be attributed to a molecule in order to 
satisfy the conditions of observed facts. 

The theory proposed in the preceding pages is evidently of a 
provisional kind, resting as it does on unproved hypotheses 
relating to the nature of molecular vortices, and the mode in 

which they are affected by the displacement of the medium. 

We must therefore regard any coincidence with observed facts 

as of much less scientific value in the theory of the magnetic 

rotation of the plane of polarization than in the electromagnetic 
theory of light, which, though it involves hypotheses about the 

electric properties of media, does not speculate as to the consti¬ 
tution of their molecules. 

831.] Notk.—The whole of this chapter may be regarded as an 
expansion of the exceedingly important remark of Sir William 

Thomson in the Proceedings of the Royal Society, June 1856:— 
‘ the magnetic influence on light discovered by Faraday depends 
on the direction of motion of moving particles. For instance, in 

a medium possessing it, particles in a straight line parallel to 
the lines of magnetic force, displaced to a helix round this line 

as axis, and then projected tangentially with such velocities as 
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to describe circles, will have different velocities according as 

their motions are round in one direction (the same as the 

nominal direction of the galvanic current in the magnetizing 

coil), or in the contrary direction. But the elastic reaction of 

the medium must be the same for the same displacements, 

whatever be the velocities and directions of the particles ; that 

is to say, the forces which are balanced by centrifugal force of 

the circular motions are equal, while the luminiferous motions 
are unequal. The absolute circular motions being therefore 

either equal or such as to transmit equal centrifugal forces to 

the particles initially considered, it follows that the luminiferous 
motions are only components of the whole motion; and that a 

less luminiferous component in one direction, compounded with 

a motion existing in the medium when transmitting no light, 

gives an equal resultant to that of a greater luminiferous motion 
in the contrary direction compounded with the same non- 

luminous motion. I think it is not only impossible to conceive 

any other than this dynamical explanation of the fact that 

circularly-polarized light transmitted through magnetized glass 

parallel to the lines of magnetizing force, with the same quality, 

right-handed always, or left-handed always, is propagated at 

different rates according as its course is in the direction or is 

contrary to the direction in which a north magnetic pole is 

drawn; but I believe it can be demonstrated that no other 

explanation of that fact is possible. Hence it appears that 

Faraday’s optical discovery affords a demonstration of the 

reality of Ampere’s explanation of the ultimate nature of mag¬ 

netism ; and gives a definition of magnetization in the dynamical 

theory of heat. The introduction of the principle of moments 

of momenta (“the conservation of areas”) into the mechanical 
treatment of Mr. Rankine’s hypothesis of “molecular vortices,” 

appears to indicate a line perpendicular to the plane of resultant 

rotatory momentum (“ the invariable plane ”) of the thermal 
motions as the magnetic axis of a magnetized body, and 

suggests the resultant moment of momenta of these motions 

as the definite measure of the “ magnetic moment.” The ex¬ 
planation of all phenomena of electro-magnetic attraction or 

repulsion, and of electro-magnetic induction, is to be looked 

for simply in the inertia and pressure of the matter of which 

the motions constitute heat. Whether this matter is or is not 
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electricity, whether it is a continuous fluid interpermeating the 

spaces between molecular nuclei, or is itself molecularly grouped; 

or whether all matter is continuous, and molecular hetero- 

geneousnoss consists in finite vortical or other relative motions 

of contiguous parts of a body; it is impossible to decide, and 

perhaps in vain to speculate, in the present state of science/ 

A theory of molecular vortices, which I worked out at con¬ 

siderable length, was published in the Phil. Mag. for March, 

April, and May, 18GL Jan. and Feb. 18G2. 

I think wo have good evidence for the opinion that some 

phenomenon of rotation is going on in the magnetic field, that 

this rotation is performed by a great number of very small 

port' - of matter, each rotating on its own axis, this axis 

being j -rallel to the direction of the magnetic force, and that 

the rotations of these different vortices are made to depend 

on one mother by means of some km * of mechanism connecting 

them. 

The attempt which I then made to imagine a working model 

of this mechanism must bo taken for no more than it really is, 

a demonstration that mechanism may be imagined capable of 

producing a connexion mechanically equivalent to the actual 

connexion of the parts of the electromagnetic field. The problem 

of determining the mechanism required to establish a given 

species of connexion between the motions of the parts of a 

system always admits of an infinite number of solutions. Of 

these, some may be more clumsy or more complex than others, 

but all must satisfy the conditions of mechanism in general. 

The following results of the theory, however, are of higher 

value:— 

(1) Magnetic force is the effect of the centrifugal force of the 

vortices. 

(2) Electromagnetic induction of currents is the effect of the 

forces called into p!u\ when the velocity of the vortices is 

changing. 

r3) Electromotive force arises from the stress on the con¬ 

ning mechanism. 

^ 4) Electric displacement arises from the elastic yielding of 

the connecting mechanism. 



CHAPTER XXII. 

FERItOMAGNETISM AND DIAMAGNETISM EXPLAINED BY 

MOLECULAR CURRENTS. 

On Electromagnetic Theories of Magnetism. 

832.] We have seen (Art. 380) that the action of magnets on 

ono another can be accurately represented by the attractions and 

repulsions of an imaginary substance called ‘magnetic matter.’ 

We have shewn the reasons why we must not suppose this 

magnetic matter to move from one part of a magnet to another 

through a sensible distance, as at lirst sight it appears to do 

when we magnetize a bar, and wo were led to Poisson’s hypo¬ 

thesis that, the magnetic matter is strictly confined to single 

molecules of the magnetic substanco, so that a magnetized 

molecule is one in which the opposite kinds of magnetic .matter 

are more or less separated towards opposite poles of the molecule, 

but so that no part of either can ever be actually separated from 

the molecule (Art. 430). 

These arguments completely establish the fact, that mag¬ 

netization is a phenomenon, not of large masses of iron, but 

of molecules, that is to say, of portions of the substance s. 

small that we cannot by any mechanical method cut one of 

them in two, so as to obtab a north pole separate from a 

south pole. But the nature of a magnetic molecule is by no 

means determined without further investigation. We have aeon 

(Art. 442) that there are strong reasons for believing that the 

act of magnetizing iron or steel does not consist in imparting 

magnetization to the molecules of which it is composed, but 

that these molecules are already magnetic, even in unmagnetized 

iron, but with their axes placed indilforently in all directions, 
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and that the act of magnetization consists in turning the 

molecules so that their axes are either rendered all parallel to 
one direction, or at least are deflected towards that direction. 

833. ] Still, however, we have arrived at no explanation of the 

nature of a magnetic molecule, that is, we have not recognized 
its likeness to any other thing of which we know more. We 

have therefore to consider the hypothesis of Ampfere, that the 

magnetism of the molecule is due to an electric current con¬ 
stantly circulating in some closed path within it. 

It is possible to produce an exact imitation of the action of 

any magnet on points external to it, by means of a sheet of 
electric currents properly distributed on its outer surface. But 

the action of the magnet on points in the interior is quite 

different from the action of the electric currents on corresponding 

points. Hence Ampere concluded that if magnetism is to be 

explained by means of electric currents, these currents must 

circulate within the molecules of the magnet, and must not flow 
from one molecule to another. As we cannot experimentally 

measure the magnetic action at a point in the interior of a 

molecule, this hypothesis cannot be disproved in the same way 

that wre can disprove the hypothesis of currents of sensible 
extent within the magnet. 

Besides this, we know that an electric current, in passing from 

one part of a conductor to another, meets with resistance and 

generates heat; so that if there were currents of the ordinary 

kind round portions of the magnet of sensible size, there would 

be a constant expenditure of energy required to maintain them, 

and a magnet would be a perpetual source of heat. By confining 

the circuits to the molecules, within which nothing is known 

about resistance, we may assert, without fear-of contradiction, 
that the current, in circulating within the molecule, meets with 
no resistance. 

According to Ampfere’s theory, therefore, all the phenomena 
of magnetism are due to electric currents, and if we could 

make observations of the magnetic force in the interior of a 

magnetic molecule, we should find that it obeyed exactly the 
same laws as the force in a region surrounded by any other 

electric circuit. 

834. ] In treating of the force in the interior of magnets, we 

have supposed the measurements to be made in a small crevasse 
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hollowed out of the substance of the magnet, Art. 395. We 

were thus led to consider two different quantities, the magnetic 
force and the magnetic induction, both of which are supposed 

to be observed in a space from which the magnetic matter is 

removed. We were not supposed to be able to penetrate into 
the interior of a magnetic molecule and to observe the force 
within it. 

If we adopt Ampere’s theory, we consider a magnet, not as a 
continuous substance, the magnetization of which varies from 

point to point according to some easily conceived law, but as a 

multitude of molecules, within each of which circulates a system 
of electric currents, giving rise to a distribution of magnetic force 

of extreme complexity, the direction of the force in the interior 

of a molecule being generally the reverse of that of the average 
force in its neighbourhood, and the magnotic potential, where it 
exists at all, being a function of as many degrees of multiplicity 

as there are molecules in the magnet. 
835.] But we shall find, that, in spite of this apparent com¬ 

plexity, which, however, arises merely from the coexistence of a 

multitude of simpler parts, the mathematical theory of magnetism 

is greatly simplified by the adoption of Ampere’s theory, and 
by extending our mathematical vision into the interior of the 

molecules. 
In the first place, the two definitions of magnetic force are 

reduced to one, both becoming the same as that for the space 

outside the magnet. In the next place, the components of the 

magnetic force everywhere satisfy the condition to which those 

of induction are subject, namely, 

<■> 

In other words, the distribution of magnetic force is of the 

same nature as that of the velocity of an incompressible fluid, 

or, as we have expressed it in Art. 25, the magnetic force has no 

convergence. 
Finally, the»' three vector functions—the electromagnetic mo¬ 

mentum, the magnetic force, and the electric current—become 
more simply related to each other. They are all vector functions 

of no convergence, and they are derived one from the other in 

order, by the same process of taking the space-variation which 

is denoted by Hamilton by the symbol V. 
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836. ] But we are now considering magnetism from a physical 

point of view, and we must enquire into the physical properties 
of the molecular currents. We assume that a current is circu¬ 

lating in a molecule, and that it meets with no resistance. If L 
is the coefficient of self-induotion of the molecular circuit, and M 
the coefficient of mutual induction between this circuit and some 

other circuit, then if y is the Current in the molecule, and y that 

in the other circuit, the equation of the current y is 

$-t(Ly + My') = -Ry; (2) 

and since by the hypothesis there m no resistance, R = 0, and 

we get by integration 
Ly + My~ constant, = Zy0, say, (3) 

Let us suppose that the area of the projection of the molecular 

circuit on a plane perpendicular to the axis of the molecule is A, 

this axis being defined as the normal to the plane on which the 

projection is greatest. If the action of other currents produces a 

magnetic force, X, in a direction whose inclination to the axis of 

the molecule is d) the quantity My becomes XA cos 6, and we 
have as the equation of the current 

L y + XA cos 0 = Ay0, (4) 

where y0 is the value of y when X = 0. 

It appears, therefore, that the strength of the molecular current 

depends entirely on its primitive value y0, and on the intensity 

of the magnetic force due to other currents. 

837. ] If We suppose that there is no primitive current, but 

that the current is entirely due to induction, then 

XA 
y =-- COS A (5) 

The negative sign shews that the direction of the induced 

current is opposite to that of the inducing current, and its 
magnetic action is such that in the interior of the circuit it 
acts in the opposite direction to the masmH ic force. In other 

words, the molecular current acts like a small magnet whose 

poles are turned towards the poles of the same name of the 
inducing magnet. 

Now this is an action the reverse of that of, the molecules 
of iron under magnetic action. The molecular currents in iron* 

therefore, are not excited by induction. But in diamagnetic 
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substances an action of this kind is observed, and in fact this 

is the explanation of diamagnetic polarity which was first given 
by Weber. 

Weber'8 Theory of Diamagnetism 

838.] According to Weber’s theory, there exist in the molecules 

of diamagnetic substances certain 'channels round which an 

electric current can circulate without resistance. It is manifest 

that if we suppose these channels to traverse the molecule in 

every direction, this amounts to making the molecule a perfect 

conductor. 

Beginning with the assumption of a linear circuit within the 

molecule, we havo the strength of the current given by equa¬ 

tion (5). 
The magnetic moment of the current is the product of its 

strength by the area of the circuit, or yA, and the resolved part 

of this in tho direction of the magnetizing force is y A cos 6> or, 

by (s), 

If the*' 
axes • 

aver a ,xe 
izatimi * 

XA2 _ 
—IT cos~ 

(0 

ii■** •< such molecules in unit of volume, and if their 

! inbuted indifferently in all directions, then the 
\'aim of cos20 will be and the intensity of magnet- 

f the substance will be 

t nXA2 
-i—r— (?) L 

Neumann’s coefficient of magnetization is therefore 

. nA2 
* = -1 —f * * (*) 

The magnetization of the substanee is therefore in the opposite 

direction to the magnetizing force or. in ottao words, tho 

substance is diamagnetic. It is also exactly proportional to 

the magnetizing force, and does not tend to a finite limit, as 

in the case of ordinary magnetic induction. See Arts. 442, &c. 

839.] If the directions of the axes of the molecular channels 

are arranged, not indifferently in all directions, but with a pre¬ 

ponderating number in certain directions, then the sum 
A2 

CO820 

extended to all the molecules will have different values according 

to the direction of the line from which 0 is measured, and the 
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distribution of these values in different directions will be similar 

to the distribution of the values of moments of inertia about 

axes in different directions through the same point. 

Such a distribution will explain the magnetic phenomena 

related to axes in the body, described by Pliicker, which Faraday 

has called Magne-cry^tallic phenomena. See Art. 435. 

840. ] Let us now consider what would be the effect, if, instead of 

the electric current being confined to a certain channel within the 

molecule, the whole molecule were supposed a perfect conductor. 

Let us begin with the case of a body the form of which is 

acyclic, that is to say, which is not in the form of a ring or 
perforated body, and let us suppose that this body is everywhere 

surrounded by a thin shell of perfectly conducting matter. 

We have proved in Art. 654, that a closed sheet of perfectly 
conducting matter of any form, originally free from currents, 

becomes, when exposed to external magnetic force, a current- 

sheet, the action of which on every point of the interior is such 
as to make the magnetic force zero. 

It may assist us in understanding this case if we observe that 

the distribution of magnetic force in the neighbourhood of such 
a body is similar to the distribution of velocity in an incom¬ 
pressible fluid in the neighbourhood of an impervious body of 

the same form. 
It ila obvious that if other conducting shells are placed wJthin 

the first, since they are not exposed to magnetic force, no 

currents will be excited in them. Hence, in a solid of perfectly 

conducting material, the effect of magnetic force is to generate a 

system of currents which are entirely confined to the surface of 
the body. 

841. ] If the conducting body is in the form of a sphere of radius 

r, its magnetic moment may be shewn { by the method given in 
Art. 672} to be 

and if a number of such spheres are distributed in a medium, so 

that in unit of volume the volume of the conducting matter is 

k\ then, by putting /cA= 00, &2 = 1, and p^k' in equation (17), 

Art. 314, we find the coefficient of magnetic permeability, taking 

it as the reciprocal of the resistance in that article, viz. 
2-2 k' 

<») 
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whence we obtain for Poisson’s magnetic coefficient 

Tc = —\k\ (10) 
and for Neumann’s coefficient of magnetization by induction 

3 k' 
4 r 2 -f // 1 7 

Since the mathematical conception of perfectly conducting 

bodies leads to results exceedingly different from any phenomena 
which we can observe in ordinary conductors, let us pursue the 

subject somewhat further. 

842.] Returning to the case of the conducting channel in the 

form of a closed curve of area A, as in Art. 836, we have, for 
the moment of the electromagnetic force tending to increase the 

angle Q, dM 
yy-de=-yXAsm9 (12) 

X2A2 
=—sin 0 cos 0» (13) 

This force is positive or negative according as 0 is less or 

greater than a right angle. Hence the effect of magnetic force 

on a perfectly conducting channel tends to turn it with its axis 

at right angles to the line of magnetic force, that is, so that the 
plane of the channel becomes parallel to the lines of force. 

An effect of a similar kind may be observed by placing a 

penny or a copper ring between the poles of an electromagnet. 

At the instant that the magnet is excited the ring turns its 

plane towards the axial direction, but this force vanishes as 

soon as the currents are deadened by the resistance of the 

copper *. 

843.] We have hitherto considered only the case in which the 

molecular currents are entirely excited by the external magnetic 
force. Let us next examine the bearing of Weber’s theory of 

the magneto-electric induction of molecular currents on Amp&re’s 
theory of ordinary magnetism. According to Ampfere and Weber, 

the molecular currents in magnetic substances are not excited by 

the external magnetic force, but are already there, and the 

molecule itself is acted on and deflected by the electromagnetic 

action of the magnetic force on the conducting circuit in which 
the current flows. When Ampere devised this hypothesis, the 

induction of electric currents was not known, and he made no 

* See Faraday, Exp. Ree., 2310, &c. 
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hypothesis to account for the existence, or to determine the 

strength, of the molecular currents. 

We are now, however, bound to apply to these currents the 

same laws that Weber applied to his currents in diamagnetic 

molecules. We have only to supple that the primitive value 

of the current y, when no magnetic force acts, is not zero but 

y0. The strength of the current when a magnetic force, Xt 
acts on a molecular current of alrea A1 whose axis is inclined 

at an angle 0 to the line of magnetic force, is 

XA 
7 ~7o-j^coaO, (14) 

and the moment of the couple tending to turn the molecule so as 

to increase 0 is X2A2 
- y0XA sin 6 + — jr- sin 2 0. (15) 

Hence, putting ^ 
Ay0 = m, t— = By (16) 

in the investigation in Art. 443, the equation of equilibrium 

becomes X sin 9 - BX2 sin 0 cos 0 = D sin (a -6). (17) 

The resolved part of the magnetic moment of the current 
in the direction of X is 

XX2 
yA cos 0 = y0A cos 6-y— ooa2d, (18) 

= TOCOS# (1— BXoobO). (19) 

844.] These conditions differ from those in Weber’s theory of 

magnetio induction by the terms involving the coefficient B. If 

BX is small compared with unity, the results will approximate 

to those of Weber’s theory of magnetism. If BX is large com¬ 

pared with unity, the results will approximate to those of Weber’s 
theory of diamagnetism. 

Now the greater y0, the primitive value of the molecular 

current, the smaller will B become, and if X is also large, thiB 

will also diminish B. Now if the current flows in a ring channel, 
JR 

the value of L depends on log — > where R is the radius of the 

mean line of the channel, and r that of its section. The smaller 

therefore the section of the channel compared with its area, 

the greater will be L, the coefficient of self-induction, and the 

more nearly will the phenomena agree with Weber’s original 

theory. There will be this difference,, however, that as X, the 
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magnetizing force, increases, the temporary magnetic moment 

will not only reach a maximum, but will afterwards diminish as 

X increases. 

If it should ever be experimentally proved that the temporary 

magnetization of any substance first increases, and then diminishes 

as the magnetizing force is continually increased, the evidence of 

tho existence of these molecular currents would, I think, be 

raised almost to the rank of a demonstration *. 

845.] If the molecular currents in diamagnetic substances are 

confined to definite channels, and if the molecules are capable of 

being deflected like those of magnetic substances, then, as the 

magnetizing force increases, the diamagnetic polarity will always 

increase, but, when the force is great, not quite so fast as the 

magnetizing force. The small absolute value of the diamagnetic 

coefficient shews, however, that the deflecting force on each 

molecule must be small compared with that exerted on a mag¬ 

netic molecule, so that any result due to this deflexion is not 

likely to be perceptible. 

If, on the other hand, the molecular currents in diamagnetic 

bodies are free to flow through the whole substance of the mole¬ 

cules, the diamagnetic polarity will be strictly proportional to 

the magnetizing force, and its amount will lead to a deter¬ 

mination of the whole space occupied by the perfectly conducting 

masses, and, if we know the number of the molecules, to the 

determination of the size of each. 

♦ {No indication of thia effect has as yet been found, though Prof. Ewing has 
sought for it in very intense magnetic fields. See Ewing and Low ‘ On the Magneti¬ 
sation of Iron and other Magnetic Metals in very Strong Fields/ Phil. Tram, 1889, 
A. p. 221.} 



CHAPTER XXIII. 

THEORIES OF ACTION AT A DISTANCE. 

On the Explanation of Ampere's Formula given by Gauss 
and Weber. 

846. ] The attraction between the elements ds and ds' of two 
circuits, carrying electric currents of intensity i and i\ is, by 
Ampere’s formula, 

ii'dsds*, „drdrx 
<» 

ii'dsds' /^ d2r dr dr N . 

“ (2) 

the currents being estimated in electromagnetic units. See 
Art. 526. 

The quantities, whose meaning as they appear in these ex¬ 

pressions we have now to interpret, are 

dr dr . d2r 

008e’ HW and dsds'’ 

and the most obvious phenomenon in which to seek for an 
interpretation founded on a direct relation between the currents 
is the relative velocity of the electricity in the two elements. 

847. ] Let us therefore consider the relative motion of two 
particles, moving with constant velocities v and v' along the 
elements ds and dsf respectively. The square of the relative 
velocity of these particles is 

u2 = v2 — 2 n>'cose + v'2\ (3) 

and if we denote by r the distance between the particles, 

<>r dr ,dr 

<)t ~~ Vds ds'* (4) 
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•t/^r\z „ ,drdr ,0/dr^2 

(«) =”’(*) - 
S2r „c^r , d2r d'2r 
3?=^rf?.+ 2ro«S*- + '!3P’ <6> 

where the symbol d indicates that, in the quantity differentiated, 
the coordinates of the particles are to be expressed in terms of 
the time. 

It appears, therefore, that the terms involving the product w' 
in the equations (3), (5), and (6) contain the quantities occur¬ 

ring in (1) and (2) which we have to interpret. We therefore 

2 Wr 
endeavour to express (l) and (2) in terms of — , and — • 

But in order to do so we must get rid of the first and third 
terms of each of these expressions, for they involve quantities 
which do not appear in the formula of Ampere. Hence we 
cannot explain the electric current as a transfer of electricity in 
one direction only, but we must combine two opposite streams 
in each current, so that the combined effect of the terms in¬ 

volving v2 and v'2 may be zero. 
848.] Let us therefore suppose that in the first element, ds, 

we have one electric particle, e, moving with velocity v, and 

another, el9 moving with velocity vlt and in the same way two 
particles, d and e\, in da\ moving with velocities vf and v\ 

respectively. 
The term involving v2 for the combined action of these 

particles is 2 (v*ee') = (v2e + v*ex) (e' + e\). (7) 

Similarly 2 (t/W) = ty2e'+ v\2e\) (e + «,); (8) 

an(l 2 (w'ee') = (ve + v^) (v'e'+v\e'1). (9) 

In order that 2 (v2ee') may be zero, we must have either 

e' + e'jrrO, or v2e + v12c1=0. (10) 

According to Fechner’s hypothesis, the electric current con¬ 
sists of a current of positive electricity in the positive direc¬ 
tion, combined with a current of negative electricity in the 
negative direction, the two currents being exactly equal in 

numerical magnitude, both as respects the quantity of electricity 
in motion and the velocity with which it is moving. Hence 

both the conditions of (10) are satisfied by Fechner’s hypo¬ 

thesis. 

VOL. II. 
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But it is sufficient for our purpose to assume, either— 

That the quantity of positive electricity in each element is 
numerically equal to the quantity of negative electricity ;*or— 

That the quantities of the two kinds of electricity are in¬ 

versely as the squares of their velocities. 
Now we know that by charging the second conducting wire 

as a whole, we can make e' + e\ either positive or negative. 

Such a charged wire, even without a current, according to this 
formula, would act on the first wire carrying a current in which 

v2e + v2e1 has a value differing from zero. Such an action has 

never been observed. 

Therefore, since the quantity e'+e\ may be shewn experi¬ 

mentally not to be always zero, and since the quantity v*e + v2^ 
is not capable of being experimentally tested, it is better for 

these speculations to assume that it is the latter quantity which 

invariably vanishes. 

849.] Whatever hypothesis we adopt, there can be no doubt 
that the total transfer of electricity, reckoned algebraically, 

along the first circuit, is represented by 

ve + v1el = cids, 

where c is the number of units of statical electricity which are 

transmitted by the unit electric current in the unit of time; so 

that we may write equation (9) 

*2 (wW) — c2 ii'ds ds'. (11) 

Hence the sums of the four values of (3), (5), and (6) become 

2 (ee'u2) = — 2 c2 ii'd,8 ds'cos e, (12) 

(13) 

’ 2 (ee'r^) = 2 cHi'dsdz'r^,, (14) 

and we may write the two expressions (1) and (2) for the 

attraction between ds and ds' 

£>')]• (15) 

and (16) 

850.] The ordinary expression, in the theory of statical electri¬ 

city, for the repulsion of two electrical particles e and ef is ^ * 
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and 
2(*>\ _ (e + e,)(e' + e\), 

V <y*2/ 
(17) 

which gives the electrostatic repulsion between the two elements 
if they are charged as wholes. 

Hence, if we assume for the repulsion of the two particles 
either of the modified expressions 

we may deduce from them both the ordinary electrostatic 
forces, and the forces acting between currents as determined by 
Ampfere. 

851. ] The first of these expressions, (18), was discovered by 
Gauss f in July 1835, and interpreted by him as a fundamental 
law of electrical action, that 4 Two elements of electricity in a 

state of relative motion attract or repel one another, but not in 

the same way as if they are in a state of relative rest/ This 
discovery was not, so far as I know, published in the lifetime 
of Gauss, so that the second expression, which was discovered 
independently by W. Weber, and published in the first part of 
his celebrated EleJctrodynamieche Maasbestimmungen J, was the 

first result of the kind made known to the scientific world. 
852. ] The two expressions lead to precisely the same result 

when they are applied to the determination of the mechanical 
force between two electric currents, and this result is identical 
with that of Ampere. But when they are considered as ex¬ 
pressions of the physical law of the action between two elec¬ 
trical particles, we are led to enquire whether^hey are consistent 

with other known facts of nature. 
Both of these expressions involve the relative velocity of the 

particles. Now, in establishing by mathematical reasoning 

the well-known principle of the conservation of energy, it is 
generally assumed that the force acting between two particles 
is a function of the distance only, and it is commonly stated 

* {For an account of other theories of this kind see Report on Electrical Theories, 
by J. J. Thomson, jB. A. Report, 1885, pp. 97-155.} 
t Werke (Gottingen edition, 1867), voL y. p. 616. 
t Abh. Leibnisens Gee., Leipzig (1846), p. 816. 
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that if it is a function of anything else, such as the time, or the 

velocity of the particles, the proof would not hold. 
Hence a law of electrical action, involving the velocity of the 

particles, has sometimes been supposed to be inconsistent with 

the principle of the conservation of energy. 

853.] The formula of Gauss is inconsistent with this principle, 
and must therefore be abandoned, as it leads to the conclusion 

that energy might be indefinitely generated in a finite system by 
physical means. This objection does not apply to the formula 

of Weber, for he has shewn* that if we assume as the potential 

energy of a system consisting of two electric particles, 

the repulsion between them, which is found by differentiating 
this quantity with respect to r, and changing the sign, is that 

given by the formula (19). 

Hence the work done on a moving particle by the repulsion 

of a fixed particle is \j/0 — \j/ly where i^0 and x/q are the values of 

\f/ at the beginning and at the end of its path. Now x/r depends 

only on the distance, r, and on the velocity resolved in the 

direction of r. If, therefore, the particle describes any closed 

path, so that its position, velocity, and direction of motion are 

the same at the end as at the beginning, x/q will be equal to \fr0> 

and no work will be done on the whole during the cycle of 

operations. 
Hence an indefinite amount of work cannot be generated by 

a particle moving in a periodic manner under the action of the 

force assumed by Weber. 
854.] But Helmholtz, in his very powerful memoir on the 

‘Equations of Motion of Electricity in Conductors at Rest’f, 
while he shews that Weber’s formula is not inconsistent with 

the principle of the conservation of energy, as regards only the 
work done during a complete cyclical operation, points out that 

it leads to the conclusion, that two electrified particleB, which 

move according to Weber’s law, may have at first finite velo¬ 

cities, and yet, while still at a finite distance from each other, 

they may acquire an infinite kinetic energy, and may perform 

an infinite amount of work. 

* Pogg. Ann., lxxiii. p. 229 (1848). 
f CrelU't Journal, 72. pp. 57-129 (1870). 
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To this Weber* replies, that the initial relative velocity of 

the particles in Helmholtz’s example, though finite, is greater 

than the velocity of light; and that the distance at which the 

kinetic energy becomes infinite, though finite, is smaller than 

any magnitude which we can perceive, so that it may be 

physically impossible to bring two molecules so near together. 

The example, therefore, cannot be tested by any experimental 
method. 

Helmholtz f has therefore stated a case in which the distances 

are not too small, nor the velocities too great, for experimental 

verification. A fixed non-conducting spherical surface, of radius 
a, is uniformly charged with electricity to the surface-density <r. 
A particle, of mass m and carrying a charge e of electricity, 

moves within the sphere with velocity v. The electrodynamic 
potential calculated from the formula (20) is 

iTtaare (l — -~2) > (21) 

and is independent of the position of the particle within the 
sphere. Adding to this F, the remainder of the potential energy 

arising from the action of other forces, and \mvl, the kinetic 

energy of the particle, we find as the equation of energy 

i (m — | ^2-f 4 7ra<re+ F = const. (22) 

Since the second term of the coefficient of v2 may be increased 

indefinitely by increasing a, the radius of the sphere, while the 
surface-density <r remains constant, the coefficient of v2 may be 

made negative. Acceleration of the motion of the particle 

would then correspond to diminution of its viva, and a body 

moving in a closed path and acted on by a force like friction, 
* always opposite, in direction to its motion, would continually 

increase in velocity, and that without limit. This impossible 

Tesult is a necessary consequence of assuming any formula for the 

potential which introduces negative terms into the coefficient of v\ 

865.] But we have now to consider the application of Weber’s 
theory to phenomena which can be realised. We have seen how 

it gives Ampere’s expression for the force of attraction between 

* Elektr. Maasb. inbeeonclere uber dag Princip der Erhaltung der Energie. 
+ Berlin Monatsbericht, April 1872, pp. 247-256 j Phil. Mag., Dec. 1872, Supp., 

pp. 580—537. 
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two elements of electric currents. Tte potential of one of these 

elements on the other is found by taking the sum of the values 

of the potential \fr for the four combinations of the positive and 

negative currents in the two elements. The result is, by 

"br 
equation (20), taking the sum of the four values of — 

2 
9 

., A dr dr 
— %% as as - -7- -7-7 > 

r as as 
(23) 

and the potential of one closed current on another is 

(24) 

r /*COS € 
where M — 1 —— da da\ as in Arts. 423, 524. 

In the case of closed currents, this expression agrees with that 
which we have already (Art. 524) obtained *. 

Weber"8 Theory of the Induction of Electric Currents. 

856.] After deducing from Ampere’s formula for the action 

between the elements of currents, his own formula for the action 
between moving electric particles, Weber proceeded to apply his 

formula to the explanation of the production of electric currents 

by magneto-electric induction. In this he was eminently suc¬ 

cessful, and we shall indicate the method by which the laws of 

induced currents may be deduced from Weber’s formula. But 

we must observe, that the circumstance that a law deduced from 

the phenomena discovered by Amp&re is able also to account for 

the phenomena afterwards discovered by Faraday does not give 

so much additional weight to the evidence for tl^e physical truth 

of the law as we might at first suppose. 

For it has been shewn by Helmholtz and Thomson (see Art. 

543), that if the phenomena of Ampere are true, and if the 

principle of the conservation of energy is admitted, then the 
phenomena of induction discovered by Faraday follow of 

necessity. Now Weber’s law, with the various assumptions 

about the nature of electric currents which it involves, leads 

by mathematical transformations to the formula of Ampfere. 

* In the whole of this investigation Weber adopt! the electrodynamio system*of 
units. In this treatise we always use the electromagnetic system.The electromag¬ 
netic unit of current is to the electrodynamio unit in the ratio of y^2 to 1. Art. 526. 
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Weber’s law is also consistent with the principle of the con¬ 
servation of energy in so far that a potential exists, and this 

is all that is required for the application of the principle 

by Helmholtz and Thomson. Hence we may assert, even 

before making any calculations on the subject, that Weber’s 

law will explain the induction of electric currents. The fact, 

therefore, that it is found by calculation to explain the induction 

of currents, leaves the evidence for the physical truth of the law 
exactly where it was. 

On the other hand, the formula of Gauss, though it explains 

the phenomena of the attraction of currents, is inconsistent with 

the principle of the conservation of energy, and therefore we 

cannot assert that it will explain all the phenomena of induction. 

In fact, it fails to do so, as we shall see in Art. 859. 
857.] We must now consider the electromotive force tending 

to produce a current in the element ds', due to the current in ds, 

when ds is in motion, and when the current in it is variable. 
According to Weber, the action on the material of the con¬ 

ductor of which dsr is an element, is the sum of all the actions 

on the electricity which it carries. The electromotive force, on 

the other hand, on the electricity in ds', is the difference of the 
electric forces acting on the positive and the negative electricity 

within it. Since all these forces act in the line joining the 
elements, the electromotive force on ds' is also in this line, and 

in order to obtain the electromotive force in the direction of ds' 

we must resolve the force in that direction. To apply Weber’s 
formula, we must calculate the various terms which occur in it, 

on the supposition that the element ds is in motion relatively to 

ds', and that the currents in both elements vary with the time. 

The expressions thus found will contain terms involving vl,vv\ 
v'2, v, i/, and terms not involving v or v', all of which are multiplied 

by ee'. Examining, as we did before, the four values of each 
term, and considering first the mechanical force which arises 

from the sum of the four values, we find that the only term 

which we must take into account is that involving the product 

w'ee'. 
If we then consider the force tending to produce a current in 

the second element, arising from the difference of the action of 

the first, element on the positive and the negative electricity of 

the second element, we find that the only term which we have 
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to examine is that which involves vee\ We may write the four 

terms included in 1(vee'), thus 
e' (ve + v^) and e\ (ve + vxe^). 

Since er + e\ = 0, the mechanical force arising from these terms 

is zero, but the electromotive force acting on the. positive elec¬ 
tricity e' is (ve + v^), and that acting on the negative electricity 
e\ is equal and opposite to this. 

858.] Let us now suppose that the first element ds is moving 
relatively to ds' with velocity V in a certain direction, and let us 

A A 

denote by Vds and Vds\ the angles between the direction of V 

and those of ds and of ds' respectively, then the square of the 
relative velocity, u, of two electric particles is 

A A 

u2 = v2 + v'2 + F2~2w' cos e + 2 Vv cos Vds— 2 Vv' cos Vds'. (25) 

The term in w' is the same as in equation (3). That in v, on 
which the electromotive force depends, is 

A 

2 Vv cos Vds. 
We have also for the value of the time-variation of r in this 

(26) 
case 5r dr ,dr dr 

M ~ V d*> + V da' + dt' 
<)v . . dv 

where ^ refers to the motion of the electric particles, and to 

that of the material conductor. If we form the square of this 
quantity, the term involving vv\ on which the mechanical force 

depends, is the same as before, in equation (5), and that involving 

v, on which the electromotive force depends, is 
dr dr 

2 v - • 
ds dt 

Differentiating (26) with respect to t, we find 

<Pr 

W2 

A2r d2r „w , , 0 ^ / ,9 d2r dvdr . dv'dr , . 

- v d# + m deW +V + dtde + did? ^ 
dvdr t ,dv'dr d dr , d dr d2r * 

dsds dsds ds d ds dt dt2 
We find that the term involving vv' is the same as before in (6). 

The terms whose sign alters with that of v are 37and 2v^-^~~m 
0 dtdsdsdt 

* (In the 1st and 2nd editions the terms 2 c ~ + 2 o' 4^,were omitted; since 
1 dt dt dt dt 

however % « + o'—~ it would seem that they ought to be included, they 
dt i dt as atj 

do not however affect the result when the circuits are dosed.} 
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859.] If we now calculate by the formula of Gauss (equation 
(18)), the resultant electrical force in the direction of the second 
element ds\ arising from the action of the first element ds, we 

obtain j a a a a 

^ ds da'i F(2 cos Vela — 3 cos Vr cos rds) cos r da'. (28) 

As in this expression there is no term involving the rate of 
‘ variation of the current i, and since we know that the variation 
of the primary current produces an inductive action on the 
secondary circuit, we cannot accept the formula of Gauss as a 
true expression of the action between electric particles. 

860.] If, however, we employ the formula of Weber, (19), we 

obtain l , dr di . d dr .drdr\ dr 

(rdsM +2ldsdt-ldsdt)ds” <29> 
_ d Adrdrx i, d2r dr d2r dr\ 7 .... 

d?dt &)****' ^ 
If we integrate this expression with respect to 8 and s', we 

obtain for the electromotive force on the second circuit 
d . f fl dr dr , . ffl , dlr dr 

dt lJJ r ds ds' 8 + lJJ r ( ds di ds 

Now, when the first circuit is closed, 

jPr 

dads' 

1 dr dr 

d2r dr 

ds'dt ds 
)dsds'. (31) 

h yds = 0 

d2r 
+ 

cose 

rr cos e 

r dads' T dsds' 

But JJ dads'— M, by Arts. 423, 524. (33) 

Since the second term in equation (31) vanishes if both 
circuits are closed, we may write the electromotive force on the 
second circuit d 

-UiM)> (34) 
which agrees with what we have already established by experi¬ 
ment; Art. 539. 

da. (32) 

On Weber's formula, considered as resulting from an Action 
transmitted from one*Electric Particle to the other with a 
Constant Velocity. 

861.] In a very interesting letter of Gauss to W. Weber* he 

* March 19, 1845, Werke, bd. v. 829. 
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refers to the electrodynamic speculations with which he had been 

occupied long before, and which he would have published if he 

could then have established that which he considered the real 

keystone of electrodynamics, namely, the deduction of the force 
acting between electric particles in motion from the consideration 

of an action between them, not instantaneous, but propagated in 

time, in a similar manner to that of light. He had not succeeded 

in making this deduction when he gave up his electrodynamic 

researches, and he had a subjective conviction that it would be 

necessary in the first place to form a consistent representation of 

the manner in which the propagation takes place. 
Three eminent mathematicians have endeavoured to supply 

this keystone of electrodynamics. 
862.] In a memoir presented to the Royal Society of Gottingen 

in 1858, but afterwards withdrawn, and only published in 
PoggendorfFs Annalen, bd. cxxxi. pp. 237-263, in 1867, after the 

death of the author, Bernhard Riemann deduces the phenomena 
of the induction of electric currents from a modified form of 

Poisson's equation 

AW dW d2V 1 d2’V 

dx2 + dy2 + dz2 + “ a2 dt2 * 

where V is the electrostatic potential, and a a velocity. 

This equation is of the same form as those which express the 

propagation of waves and other disturbances in elastic media. 
The author, however, seems to avoid making explicit mention of 

any medium through which the propagation takes place. 

The mathematical investigation given by Riemann has been 

examined by Clausius*, who does not admit the soundness of 

the mathematical processes, and shews that the hypothesis that 
potential is propagated like light does not lead either to the 
formula of Weber, or to the known laws of electrodynamics. 

868.] Clausius has also examined a far more elaborate investi¬ 

gation by C. Neumann on the 4 Principles of Electrodynamics ’ f. 
Neumann, however, has pointed oxxtt that his theory of the 

transmission of potential from one electric particle to another 
is quite different from that proposed by Gauss, adopted by 

Riemann, and criticized by Clausius, in which the propagation 

is like that of light. There is, on the contrary, the greatest 

* Pogg., bd. cxzzv. p. 612. + Tubingen, 1868. 
t Mathefmtitche Annalen, i. 817* 
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possible difference between the transmission of potential, accord¬ 

ing to Neumann, and the propagation of light. 
A luminous body sends forth light in all directions, the in¬ 

tensity of which depends on the luminous body alone, and not 

on the presence of the body which is enlightened by it. 

An electric particle, on the other hand, sends forth a potential, 

the value of which, — > depends not only on e, the emitting 

particle, but on e, the receiving particle, and on the distance r 

between the particles at the instant of emission. 
In the case of light the intensity diminishes as the light is 

propagated further from the luminous body ; the emitted potential 

flows to the body on which it acts without the slightest alteration 

of its original value. 
The light received by the illuminated body is in general only 

a fraction of that which falls on it; the potential as received by 

the attracted body is identical with, or equal to, the potential 
which arrives at it. 

Besides this, the velocity of transmission of the potential is 

not, like that of light, constant relative to the eether or to space, 

but rather like that of a projectile, constant relative to the 

velocity of the emitting particle at the instant of emission. 

It appears, therefore, that in order to understand the theory of 

Neumann, we must form a very different representation of the 

process of/the transmission of potential from that to which we 

have been accustomed in considering the propagation of light. 
Whether it can ever be accepted as the ‘ construirbar Vorstellung’ 

of the process of transmission, which appeared necessary to 

Gauss, I cannot say, but I have not myself been able to 

construct a consistent mental representation of Neumann’s 
theory. 

864.] Professor Betti *, of Pisa, has treated the subject in a 

different way. He supposes the closed circuits in which the 
electric currents flow to consist of elements each of which is 

polarized periodically, that is, at equidistant intervals of time. 

These polarized elements act on one another as if they were 

little magnets whose axes are in the direction of the tangent to 

the circuits. The periodic time of this polarization is the same 

in all electric circuits. Betti supposes the action of one polarized 

* Nuovo Cimmto, xxvii (1868). 
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element on another at a distance to take place, not instan¬ 

taneously, but after a time proportional to the distance between 
the elements. In this way he obtains expressions for the action 

of one electric circuit on another, which coincide with those 
which are known to be true. Clausius, however, has, in this 
case also, criticized some parts of the mathematical calculations 

into which we shall not here enter. 
865. ] There appears to be, in the minds of these eminent men, 

some prejudice, or & priori objection, against the hypothesis of a 

medium in which the phenomena of radiation of light and heat 

and the electric actions at a distance take place. It is true that 
at one time those who speculated as to the causes of physical 

phenomena were in the habit of accounting for each kind of 
action at a distance by means of a special aethereal fluid, whose 

function and property it was to produce these actions. They 

filled all space three and four times over with aethers of different 
kinds, the properties of which were invented merely to ‘ save 

appearances/ so that more rational enquirers were willing rather 

to accept not only Newton’s definite law of attraction at a 

distance, but even the dogma of Cotes*, that action at a 
distance is one of the primary properties of matter, and that 
no explanation can be more intelligible than this fact. Hence 

the undulatory theory of light has met with much opposition, 

directed not against its failure to explain the phenomena, but 

against its assumption of the existence of a medium in which 

light is propagated. 

866. ] We have seen that the mathematical expressions for 

electrodynamic action led, in the mind offGauss, to the con¬ 

viction that a theory of the propagation of electric action in 

time would be found to be the very keystone of electrodynamics. 
Now we are unable to conceive of propagation in time, except 

either as the flight of a material substance through space, or as 
the propagation of a condition of motion or stress in a medium 

already existing in space. In the theory of Neumann, the 

mathematical conception called Potential, which we are unable 
to conceive as a material substance, is supposed to be projected 

from one particle to another, in a manner which is quite inde¬ 

pendent of a medium, and which, as Neumann has himself 

pointed out, is extremely different from that of the propagation 

* Preface to Newton's Prinoipia, 2nd edition. 
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of light. In the theories of Riemann and Betti it would appear 

that the action is supposed to be propagated in a manner some¬ 

what more similar to that of light. 

But in all of these theories the question naturally occurs:— 

If something is transmitted from one particle to another at a 

distance, what is its condition after it has left the one particle 

and before it has reached the other ? If this something is the 

potential energy of the two particles, as in Neumann’s theory, 

how are we to conceive this energy as existing in a point of 

space, coinciding neither with the one particle nor with the 

other ? In fact, whenever energy is transmitted from one body 

to another in time, there must be a medium or substance in 

which the energy exists after it leaves one body and before 

it reaches the other, for energy, as Torricelli* remarked, ‘is a 

quintessence of so subtile a nature that it cannot be contained 

in any vessel except the inmost substance of material things.’ 

Hence all these theories lead to the conception of a medium in 

which the propagation takes place, and if we admit this medium 

as an hypothesis, I think it ought to occupy a prominent place 

in our investigations, and that we ought to endeavour to con¬ 

struct a mental representation of all the details of its action, and 

this has been my constant aim in this treatise. 

* Lezioni Accademiche (Firenze, 1715), p. 25. 
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Trans., 1848, brought this arrangement into public notice, with due acknowledgment 
of the original inventor, Mr. S. Hunter Christie, who had described it in his paper on 
* Induced Currents/ Phil Trans., 1833, under the name of a Differential Arrange¬ 
ment. See the remarks of Mr. Latimer Clark in the Society of Telegraph Engineers, 
May 8,1872. 
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Condenser, capacity of, 50, 87, 90, 102, 
196, 227-229, 771, 774-780. 

Conduction, 29, 241-254. 
Conduction, linear, 273-284. 
— superficial, 294. 
— in solids, 285-834. 
— electrolytic, 255- 265. 
-— in dielectrics, 825-334. 
Conductivity, equations of, 298, 609. 
— and opacity, 798. 
Conductor, 29, 80, 86. 
Conductors, systems of electrified, 84 -94. 
Confocal quadric surfaces, 147-154, 192. 
Conjugate circuits, 538, 759. 
— conductors, 282, 347. 
— functions, 182-206. 
— harmonics, 136. 
Conservation of energy, 93, 242,262, 543. 
Constants, principal, of a coil, 700, 753, 

754. 
Contact force, 246. 
Continuity in time and space, 7. 
— equation of, 85, 295. 
Convection, 55, 238, 248. 
Convergence, 26. 
Copper, 51, 860, 862, 761. 
Cotes, Roger, 865. 
Coulomb, C. A., 38, 74, 215, 223, 373. 
Coulomb’s law, 79, 80. 
Crystal, conduction in, 297. 
— magnetic properties of, 435, 436, 438. 
— propagation of light in a, 794-797. 
Cumming, James, 252. 
Curl, 25. 
Current, electric, 230. 
— best method of applying, 744. 

= “n’l 294' 647-681- 
— induced, 582. 
— steady, 232. 
— thermoelectric, 249-254. 
— transient, 282, 530, 536, 587, 582, 

748, 768, 760, 771, 776. 
Current-weigher, 726. 
Cyclic region, 18,118, 481. 
Cylinder, electrification of, 189. 
— magnetization of, 486, 438, 439. 
— currents in, 682-690. 
Cylindric coils, 676-681. 

Damped vibrations, 732-742, 762. 
Damper, 730. 
Daniell’s cell, 232, 272. 
Dead beat galvanometer, 741. 
Decrement, logarithmic, 736. 
Deflexion, 453, 743. 
Delambre, J. B. J., 3. 
Dellmann, E., 221. 
Density, electric, 64. 
— of a current, 286. 
—■ measurement of, 223. 
Diamagnetism, 429, 440, 888. 

Dielectric, 52, 109, 111, 229, 825-384, 
866-370, 784. 

Diffusion of magnetic force, 801. 
Dimensions, 2, 42, 88, 278, 620-629. 
Dip, 461. 
Dipolar, 173, 381. 
Directed quantities (or vectors), 10. 
Directrix, 517. 
Discharge, 55. 
Discontinuity, 8. 
Disk, 177. 
— Arago’s, 668, 669. 
Displacement, electric, 60, 75, 76, 111, 

328-334, 608, 783, 791. 
Dygogram, 441. 

Earnshaw, S., 116. 
Earth, magnetism of, 466-474. 
Electric brush, 56. 
— charge, 31. 
— conduction, 29. 
— convection, 211, 238, 248, 255, 259. 
— current, 230. 
— discharge, 55-57. 
— displacement, 60, 75, 76, 111, 828- • 

334, 608, 783, 791. 
— energy, 84. 
— glow, 55. 
— induction, 28. 
— machine, 207. 
— potential, 70. 
— spark, 57. 
— tension, 48, 59, 107, 108, 111. 
— wind, 55. 
Electrode, 287. 
Electrodynamic system of measurement, 

526. 
Electrodynamometer, 725. 
Electrolysis, 236, 265-272. 
Electrolyte, 237, 255. 
Electrolytic conduction, 255-272, 363, 

799. 
— polarization, 257, 264-272. 
Electromagnetic force, 475, 680, 588. 
— measurement, 495. 
— momentum, 585. 
— observations, 730-780. 
— and electrostatic units oompared, 768- 

,780. 
— rotation, 491. 
Electromagnetism, dynamical theory of, 

568-577. 
Electrometers, 214-220. 
Electromotive force, 49, 69, 111, 241, 

246-254, 858, 569, 579. 
Electrophorus, 208. 
Electroscope, 33, 214. 
Electrostatic measurements, 214-229. 
— polarization, 59, 111. 
— attraction, 103-111. 
— system of units, 620, &c. 
Electrotonic state, 540. 
Elongation, 734. 
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Ellipsoid, 150, 802, 487, 430. 
Elliptic integrals, 149, 437, 701. 
Energy, 6, 85, 630-688, 782, 792. 
Equations of conductivity, 298, 609. 
— of continuity, 86. 
— of electric currents, 607. 
— of total currents, 610. 
— of electromagnetic force, 608. 
— of electromotive force, 598. 
— of Laplace, 77. 
— of magnetic induction, 591. 
— of magnetization, 400, 605. 
— of Poisson, 77. 
— of resistance, 297. 
Equilibrium, points of, 112-117. 

False magnetic poles, 468. 
Farad, 629. 
Faraday, M., his discoveries^2, 55, 236, 

255, 630, 531, 534, 546, 668, 806. 
— his experiments, 28, 429, 530, 668. 
— his methods, 87, 82, 122, 493, 528, 

529, 641, 592, 594, 604. 
— his speculations, 54, 60, 83, 107, 109, 

245, 429, 502, 640, 547, 569, 645, 782. 
Fechner, G. T., 231, 274, 848. 
Felici, R., 636-539, 669. 
Ferrers, 128, 140. 
Ferromagnetic, 425, 429, 844. 
Field, electric, 44. 
— electromagnetic, 585-619. 
— of uniform force, 672. 
First swing, 745. 
Fizeau, H. L., 787. 
Fluid, electric, 86, 87. 
— incompressible, 61, 111, 295, 329, 334. 
— magnetic, 380. 
Flux, 12. 
Force, electromagnetic, 475, 680, 583. 
— electromotive, 49, 111, 233, 241, 246- 

254, 358, 569, 579, 596, 598. 
— mechanical, 69, 98,103-111,174, 580, 

602. 
— measurement of, 6. 
— acting at a distance, 108. 
— lines of, 82, 117-128, 404. 
Foucault, L., 787. 
Fourier, J. B. J., 2 248, 832,838, 801- 

805. 

Galvanometer, 240, 707. 
'— differential, 846. 
— sensitive, 717. 
— standard, 708. 
— observation of, 742-751. 
Gases, electric discharge in, 55-77, 870. 
— resistance of, 869. 
Gassiot, J. P., 67. 
Gaugain, J. M., 866, 712. 
Gauge electrometer, 218. 
Gauss, C. F., 18, 70, 131, 140, 144, 409, 

421, 454, 459, 470, 706, 783, 744, 851. 
Geometric mean distance, 691-693. 
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— theorem, 96. 
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Grove, Sir W. R., 272, 779. 
Guard-ring, 201, 217, 228. 
Gutta-percha, 51, 367. 

Hamilton, Sir W. Rowan, 10, 561. 
Hard iron, 424, 444. 
Harris, Sir W. Snow, 88, 216. 
Heat, conduction of, 801. 
— generated by the current, 242, 288, 

299. 
— specific, of electricity, 258. 
Heine, 128, 140. 
Helix, 813. 
Helmholtz, H., 202, 421, 543, 713, 823, 

854. 
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Holtz, W., electrical machine, 212. 
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Hydraulic ram, 660. 
Hyposine, 151. 

Idiostatic electrometers, 218. 
Images, electric, 119, 165-181, 189. 
— magnetic, 818. 
«— moving, 662. 
Imaginary magnetic matter, 380. 
Induced currents, 628-562. 
— in a plane sheet, 656-669. 
— Weber's theory of, 856. 
Induced magnetization, 424-448. 
Induction, electrostatic, 28, 75, 76, 111. 
— magnetic, 400. 
Inertia, electrio, 550. 
— moments and products of, 565. 
Insulators, 29. 
Inversion, electric, 162-181, 188, 316. 
Ion, 287, 255. 
Iron, 424. 
— perchloride of, 800. 
Irreconcileable curves, 20, 421. 

Jacobi, M. H., 336. 
Jenkin, Fleeming, 768, 774. 
Jenkins, William, 546. See Phil, Mag. 

1834, pt. U, p. 851. 
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* Keystone of electrodynamics,’ 861. 
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Kinetics, 553-665. 
Kirchhoff, Gustav, 282, 8X6, 439, 758. 
Kohlrausoh, Rudolph, 265,365, 723,771. 

Lagrange’s (J. L.) dynamical equations, 
553-565. 

Larne, G., 17, 147. 
Lamellar magnet, 412. 
Laplace. F. S., 70. 
Laplace s coefficients, 128-146. 
— equation, 26, 77, 801. 
— expansion, 135. 
Legendre** coefficient, 139. 
Leibnitz, G. W., 18, 424. 
Lenz, E., 265, 580, 642. 
Light, electromagnetic theory of, 781-806. 
— and magnetism, 806-831. 
Line-density, 64, 81. 
— -integral, 16-20. 
— of electric force, 69, 622. 
— of magnetic force, 401, 481, 498, 499, 

590, 606, 607, 622. 
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— of flow, 22, 293. 
— of electric induction, 82, 117-123. 
— of magnetic induction, 404, 489, 629, 

541, 697, 702. 
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Liouville, J., 178, 176. 
Listing, J. B., 18, 23, 421. 
Lorenz, L., 806 n. 
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Ma^necry stall ic phenomena, 426, 435, 
839. 

Magnet, its properties, 371. 
— centre and principal axes, 392. 
— direction of axis, 372-390. 
— magnetic moment of, 384, 390. 
— potential energy of, 389. 
Magnetic action of light, 806. 
— disturbances, 473. 
— force, law of, 374. 
-direction of, 372, 452. 
-intensity of, 463. 
— induction, 400. 
— 4 matter/ 380. 
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— poles, 468. 
— survey, 466. 
— variations, 472. 
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— AmpWs theory of, 638, 883. 
— Poisson’s theory of, 429. 
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Measurement, theory of, 1. 
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— vortices, 822. 
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— electrokinetic, 678, 585. 
Mossotti, O. F., 62. 
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Pluck er, J ulius, 839. 
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441, 632. 
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— magnetic of the earth, 468 
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23, 27, 86, 37, 63, 68-81, 281, 374,394, 
417, 489, 498. 
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Potential, vector-, 405, 422, 590, 617, 
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netic, 620-629. 
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— electrokinematic, 281, 348. 
— electromagnetic, 536. 
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— magnetic, 421, 423. 
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— resistance, 277, 627. 
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— electrokinetic, 641, 645, 646. 
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— J oule’s, 463. 
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Suspension, Thomson's, 721. 
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Tables of coefficients of a coil, 700. 
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•— of electromotive force, 858. 
— of magnetic rotation, 880. 
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tion, 445. 
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Tangent galvanometer, 710. 
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Theory of action at a distance, 103, 641- 

646, 846-866. 
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