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EDITORS' PREFACE 

In the nearly thirteen years since the Guggenheim Aeronautical 
Laboratory at the California Institute of Technology was established, 
a large number of scientific and engineering problems in various fields 
related to aeronautics have been investigated under its auspices. The 
results of this activity have appeared in the form of numerous technical 
papers. However, it has been felt for some time that certain of the 
subjects dealt with at the laboratory deserved more systematic treat¬ 
ment. It has also been suggested that aeronautical texts based on the 
staff’s experience in training aeronautical engineers and scientists might 
be of some value. Accordingly, about two years ago an agreement was 
made by the undersigned editors with John Wiley and Sons, Inc., for 
the publication of a series of volumes, covering these two fields, to be 
known as the GALC1T * series. A start was then made on the prep¬ 
aration of material for certain of the monographs of this series, but the 
press of work associated with national emergency defense activities and 
the rapidly changing nature of the GALCIT’S academic courses made 
progress very slow. 

In the spring of 1940 the Lockheed Aircraft Corporation requested 
the California Institute to cooperate in its expansion program by giving 
a course of aeronautical training to a large group of graduate non- 
aeronautical engineers. This program was undertaken during the 
following summer, when it appeared that the material presented, being 
somewhat more general than that given in the regular GALCIT post¬ 
graduate courses, might fill a rather important gap in the aeronautical 
training literature. The lecture notes were accordingly worked over 
into volumes dealing with various aspects of aeronautical engineering. 
This book is one of the series. 

Acknowledgment must be made of the cooperation extended by the 
Lockheed Aircraft Corporation which released much of the information 
originally issued for use in the training course, and whose stimulus was 

* The rather unwieldy title “Guggenheim Aeronautical Laboratory, California 

Institute of Technology” has been abbreviated to the more convenient “GALCIT.” 

This notation has been widely used in aeronautical circles and is employed through¬ 

out the present work. 
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responsible for the preparation of the initial lecture notes on which the 
volumes are based. The Douglas Aircraft Company was also most 
cooperative in furnishing valuable material for incorporation in these 
books. 

Theodore von KArmAn 
Clark B. Millikan 

Editors 

June, 1942 



AUTHORS’ PREFACE 

In selecting the material to be presented in this volume, the authors 
have made no attempt to establish hard and fast rules for the design of 
aircraft structural components. Rather, they have presented most of 
the recognized design criteria and, where such data were available, 
have included experimental evidence as to the exactness of these criteria. 

The treatment of the standard structural problems has been held to 
an absolute minimum since it was felt that the large number of text¬ 
books now available on applied mechanics cover this phase of design 
satisfactorily. Since this is true, it will be found that a large portion of 
this work is made up of controversial material which is presented merely 
as the present best state of knowledge in the hopes that it will inspire 
research men and research organizations to lay out research programs 
designed to fill the gaps in these design criteria. 

The authors gratefully acknowledge the permission given by the 
Materiel Division of the U. S. Army Air Corps to use in this volume a 
great deal of material from Air Corps Technical Report 4313 and, in 
addition, they express their appreciation to Professor J. S. Newell of the 
Massachusetts Institute of Technology who was co-author of the above 
Technical Report with one of the authors of this book. The authors are 
happy to acknowledge their indebtedness to the National Advisory 
Committee for Aeronautics and to the large number of aircraft manu¬ 
facturers who made available extremely valuable research data. They 
are also grateful to the many members of the staff and of the graduate 
school of GALCIT who have given valuable suggestions as to the sub¬ 
ject matter to be presented and who have aided in preparing the manu¬ 
script. Especial credit is given to Mr. C. K. Newby for his aid in pre¬ 
paring the numerous illustrations. 

Ernest E. Sechleb 

Louis G. Dunn 

California Institute of Technology 

June, 1942 

* For this printing, Problems have been added as an appendix. 
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INTRODUCTION 

The first problem confronting the designer of the structural parts of 
an airplane is that of determining just what loads are to be expected on 
his structure and how these loads are to be distributed. Over a period 
of years, the governmental agencies, who have in their power the 
approval of commercial and military aircraft, have established certain 
rules and regulations which they felt covered the various loading condi¬ 
tions of each particular type of airplane. The rules for commercial air¬ 
craft are briefly discussed in Part I and, since these regulations are 
subject to constant revision, the designer should always use the latest 
revision rather than blindly following the load and load factor require¬ 
ments as outlined therein. 

The second need of the designer is to have made available to him 
design methods for structural components subjected to any given com¬ 
bination of loads. Part II is concerned chiefly with this phase of the 
problem. Well-known methods of beam and truss analysis are merely 
outlined and the basic equations are given. A great deal of empirical 
data is also included for which there is no present theoretical justifica¬ 
tion. However, in all cases, these empirical design criteria are accom¬ 
panied by such experimental data as are available in order that the 
designer may judge for himself the probable limits of accuracy of the 
methods. 

Part III of this work gives a short discussion of methods of analysis 
of various structural types used for the major structural items of a 
modem metal airplane. Advantages and disadvantages of each method 
are pointed out in order to aid the designer in making a choice as to the 
type of construction best suited to the type of airplane under consider¬ 
ation and to the available plant facilities, and the type of analysis 
applicable to the chosen construction method. 





PART 1 

PRELIMINARY CONSIDERATIONS IN DESIGN 

CHAPTER 1 

THE AIRPLANE LAYOUT 

1-1. Design Procedures 

In designing an airplane, it is first necessary to know its type and size 

and the purpose for which it is to be designed. These items, in general, 

are determined by the requirements of the prospective purchaser who, 

when he contacts a manufacturer, usually has in mind a definite type of 

airplane which he wishes to have engineered and constructed. In a com¬ 

mercial airplane, for example, his specifications may begin with a gen¬ 

eral description of the airplane as follows: 

(a) Specifications. 

The airplane described herein shall be a two-engine, cantilever mid-wing, all- 
metal monoplane with retractable landing gear. The airplane shall be designed 
and constructed primarily for use in airline operation and shall be suitable for 

night and instrument flying. 
A flight station for a pilot and co-pilot operating side by side shall be provided 

in the forward portion of the fuselage, the pilot being on the left side. The flight 
station shall be isolated from the passenger compartment by a bulkhead with a 
door. 

A passenger compartment shall be provided aft of the flight station providing 
comfortable seats for fourteen passengers, seven on each side, and a folding seat 
for a stewardess. The seat provided for the stewardess shall be located at the 
main door and shall be arranged to fold out of the way. 

The passenger seats shall be upholstered and shall incorporate a combination 

back and seat adjustment, affording maximum comfort. Each seat shall be 
provided with an approved type safety belt conforming to the requirements of 
the U. S. Civil Aeronautics Authority. There shall be fourteen shatterproof 
glass windows in the passenger cabin, seven windows on each side providing best 
practicable vision from each passenger seat. 

Provision for mail and baggage, including hold-down straps, shall be provided 
in the fuselage nose, forward of the pilots1 compartment, and in three spaces 

1 



2 THE AIRPLANE LAYOUT [1-1 

under the flight station and cabin floor. All baggage compartments shall be 
accessible from the left-hand side. 

A lavatory compartment shall be provided, located aft of the passenger com¬ 
partment. Two windows shall be provided in this compartment, one on each 
side. A bulkhead complete with door and lock shall isolate this area from the 
passenger compartment. 

The airplane shall be licensed for a gross weight of not less than 17,500 lb. and a 
useful load of not less than 30 per cent of the gross weight. 

The weight empty shall include the complete airplane with all equipment and 
supplies required in these specifications ready in all respects for air transport 
operation. The weight empty as outlined above shall be determined by actually 
weighing the airplane. 

The airplane, engines, and accessories shall satisfy all the requirements stated 

herein as well as the necessary requirements of the U. 8. Civil Aeronautics 
Authority for an approved “Type Certificate/’ etc. 

Following the general description in the specifications, are such items as per¬ 
formance guarantees, specifications of flying qualities, materials, workmanship, 

finish, maintenance and service requirements. The majority of specifications list 
the engine and the engine accessory weights.* 

The specifications for military aircraft, or aircraft for any other pur¬ 
pose will, in general, follow a trend similar to the above specifications. 
At times aircraft manufacturing companies themselves will write a set 
of specifications consistent with the needs which have been previously 
determined through an extensive survey of the airline operating com¬ 
panies. 

It should be clearly understood that it is not always possible for the 
designer to meet all the requirements of a given set of specifications. In 
fact, it is not at all uncommon to find certain minimum requirements 
unattainable and it is then necessary to compromise. The extent to 
which compromises can be made must be left to the judgment of the 
designer. However, it must be kept in mind, that, to achieve a design 
most adaptable to the specified purpose of the airplane, sound judgment 
must be exercised in considering the value of the necessary modifications 
and compromises. 

The first task of the designer should be to familiarize himself thor¬ 
oughly with the specifications of the airplane upon which the design is to 
be based. Also, if the airplane may be sold to more than one purchaser, 
all available information should be obtained as to possible changes in 
the design which might have to be made in the future. There should be 
no thought of making a general-purpose airplane, suitable for any pur¬ 
chaser or any use, because that is an impossibility. However, it is fre- 

* The above specifications have been obtained from material furnished through the 
courtesy of the Lockheed Aircraft Corporation. 
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quently possible to arrange a design so as to simplify future changes 

without sacrificing either structural or aerodynamic efficiency or taking 

a weight penalty. 

As the next step the designer should familiarize himself with all existing 

airplanes of the same general type as that proposed. If possible, it is 

advisable to collect all comments both positive and negative of pilots, 

passengers, maintenance groups, and operators using this existing equip¬ 

ment. The designer should not blindly copy any existing design just 

because it happens to be available; this hampers progress; but, on the 

other hand, not to take advantage equally of others’ successes and of 

their mistakes is inefficient. 

(b) Preliminary Weight Estimate. The degree of success attained in 

estimating the weight of a new design depends largely on experience 

combined with data on previous airplanes and a knowledge of the pro¬ 

posed types of construction. The first preliminary estimate usually is 

founded upon the calculations involving the useful load consisting of 

crew, passengers, fuel, oil, and cargo. The performance data of the 

specifications give the desired range, speed, and payload. This informa¬ 

tion enables the designer to estimate roughly the necessary fuel and oil, 

the only unknowns in the useful load. Since the useful load ranges from 

25 to 40 per cent of the airplane’s design gross weight, depending upon 

the purpose of the airplane and upon the type and amount of equipment 

installed, the approximate design gross weight can be found by dividing 

the useful load by the assumed percentage. 

In the preliminary estimate it is convenient to consider first a sub¬ 

division of the total gross weight into main groups. The weight empty 

of a multi-engined airplane may be broken down in a very preliminary 

fashion by the following percentages of the design gross weight: 

Wing 13.0 - 17.0% 

Tail 1.5 - 2.5 

Fuselage 8.0 - 13.0 

Main landing gear 5.0 - 8.0 

Tail wheel 0.5 - 0.8 

For tricycle gear: 

Main landing gear 4.0 - 7.0 

Nose wheel 1.5 - 2.5 

Power plant: 15.0 - 27.0 

Engines 10.0 - 20.0 

Engine accessories 1.0 - 2.0 

Power plant controls 0.1 - 0.4 

Propellers 2.0 - 4.0 

Starting system 0.3 - 0.9 

Lubricating system 0.3 - 0.6 

Fuel system 1.5 - 2.5 
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Instruments 0.5 - 1.2 

Surface controls 1.0 - 2.0 

Furnishings 4.0 - 10.0 

Weight per passenger 90.0 -215.0 lb. 

Communicating equipment 2.0- 3.0% 

Electrical equipment 2.0- 3.0 

Possible useful load (food and water) 0.3 - 0.6 

Weight per passenger 3.5 - 9.0 lb. 
De-icer installation 0.06% 

Residual fuel and oil 30 lb. per engine 

It is evident from the given data that the rather wide variation in the 
possible weights makes it desirable to entrust the weight estimation to 
the judgment of experienced personnel. 

With the above information at hand, it is possible to make a pre¬ 
liminary calculation of the required wing- and tail-surface areas. These 
calculations will, in general, be carried out by the senior members of the 
aerodynamics and design departments. They will also furnish a rough 
sketch of the airplane’s profile, and a plan view showing the location of 
passengers, cargo, and fuselage equipment. In addition, the sketch out¬ 
lines the shape and locations of the wings, nacelles, tail surfaces, pro¬ 
pellers, fuel and oil tanks. The locations of these items are first laid out 
to conform with the requirements of the specifications, structure, clear¬ 
ances, available space, and U. S. Civil Aeronautics Authority or military 
regulations. 

If the power plant is not covered in the specifications, a tentative selec¬ 
tion of engines will be made to meet the required power loading based on 
the preliminary weight estimate. As the design progresses a more exact 
analysis becomes possible through a further breakdown of the main 
groups. The methods which have been developed for the detail analysis 
are discussed in section 1-2. 

(c) Performance. Performance calculations are necessary at several 
stages of the design to insure that the performance requirements as set 
forth in the specifications are either being met or approached. After the 
completion of the first preliminary weight estimate from which a tenta¬ 
tive wing area is determined and after the selection of a power plant, a 
set of preliminary performance calculations are made. Since these cal¬ 
culations are of necessity based on empirical formulas established by 
past experience, and are also based upon the judgment of the designer, 
they are useful only to indicate whether the performance specifications 
can be met at all. 

These preliminary calculations may include the following performance 
characteristics: 

1. Maximum velocity at critical altitude 

2. Operating velocity at critical altitude 
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3. Maximum range at specified altitude 

4. Absolute ceiling with partial engine operation 

5. Take-off over 50-ft. obstacle 

6. Landing speed 

As the design progresses more exact performance data are obtained, 
either through suitable wind tunnel tests or by more refined methods 
of calculation or both. A further discussion on performance is given in 
section 2 1. 

(id) Wind Tunnel Tests. That phase of the design which is concerned 
with the performance characteristics of the airplane belongs to the field 
of aerodynamics. However, since the magnitude of the external loads 
are determined by the airplane's performance characteristics it might be 
well to consider briefly the methods by which performance character¬ 
istics are determined. 

When the general dimensions and layout of the airplane are reason¬ 
ably well established by the methods discussed above, it is necessary to 
obtain a more accurate estimate of the performance characteristics of 
the airplane. This can be accomplished by one of two methods: (a) The 
designer may proceed purely on the basis of his present and future cal¬ 
culations and hope that when the airplane is completed and test flown, 
his calculations will not be too far in error. (b) He may carry out suit¬ 
able wind tunnel tests on a scale model of the airplane and obtain the 
desired results within normal engineering accuracy. 

In general, experience has shown that the second method is more satis¬ 
factory. This fact is borne out by the wide use of wind tunnel tests in 
modern aircraft design. Until recently all wind tunnel tests were con¬ 
ducted on models without power or running propellers, but with the 
rapid rise in engine powers in recent years, the corrections, necessary 
because of the effect of power when added to the power-off wind tunnel 
results (in order to obtain corresponding full-scale characteristics), have 
become more of an uncertainty than existed in the past. Prior to this 
condition there existed suitable empirical correction factors for the 
effect of power; these factors have been found through experience to be 
no longer adequate. 'Consequently there has been a growing tendency 
towards power-on wind tunnel tests for all basic airplane designs. 

From the wind tunnel tests it is possible to obtain the lift, drag, and 
propulsive properties of the full-scale airplane. This information en¬ 
ables the designer to calculate all flight speeds, rates of climb, ceiling, 
landing and take-off distances, etc. It should be kept in mind that the 
accuracy of the performance characteristics as obtained from wind 
tunnel tests is governed by the validity of the necessary extrapolations, 
corrections, and adjustments of the original data to cover the full-scale 
airplane. For this reason it requires the ability of an experienced person 
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for the proper handling of this material in its interpretation and its 

actual use. The performance items which have a direct bearing on the 

structural design of the airplane are discussed in section 1-5. 

(e) The Mock-Up. The construction of the mock-up, which is essen¬ 

tially a full-scale reproduction of a certain section of the proposed design, 

is started immediately after the first preliminary three-view drawings 

of the airplane are completed. The extent of the mock-up is a very flex¬ 

ible quantity; it may vary from a reproduction of the cockpit and a sec¬ 

tion of the wing to the complete airplane. The relation of the com¬ 

pleteness of the mock-up to the airplane as a whole is dependent on the 

type of airplane, i.e., the more complicated the design and installation 

problems the more comprehensive will be the required mock-up. 

The essential requirements for the material used in the mock-up are 

that it should lend itself to ease of fabrication, and that it must be suffi¬ 

ciently rigid to withstand the loads imposed upon the structure by the 

necessary installations and crew. Plywood is commonly used. 

The purpose of the mock-up is primarily to facilitate installation, 

accommodation, and accessibility problems. In the design of an airplane 

certain items, which will be discussed in some detail in the following 

paragraphs, have through past experience been found to be extremely 

difficult to determine on the drawing board. 

The cockpit of the airplane is, in general, reproduced with all neces¬ 

sary installations such as controls, instrument panels, windows, and 

seats. It is then possible to ascertain whether the pilot has sufficient 

room to perform his various duties, whether the window arrangement 

meets the required degree of visibility, whether all controls are con¬ 

veniently located, and whether the instrument board is free from glare, etc. 

Controls and control cables of the engines and movable surfaces are 

installed as far as is practicable. In large airplanes the congestion of con¬ 

trol cables becomes a very serious problem. This is particularly true of 

the cables which lie ahead of the main spar. In the mock-up it is then pos¬ 

sible to determine the most convenient location for the individual cables 

and it also is possible to check the satisfactory operation of the controls. 

Conduit lines and ducts generally are completely installed. These 
items usually require cutouts of considerable magnitude in the main 
structure of the wing and fuselage and it is therefore desirable to deter¬ 
mine their locations on the mock-up in order to insure “the least amount 
of destruction” to the main structure. 

For a commercial airplane it is customary to build at least a section of 
the cabin with complete seating arrangement, sleeping berth, and the 
necessary items essential to the comfort of the passenger. These can 
then be examined in regard to required space, accessibility, comfort, and 
ease of operation. 
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In military aircraft, armament, which includes such items as machine 
guns, bomb racks, bomb hoists, and bomb-releasing mechanisms, may 
be installed. The firing angles of the machine guns and the satisfactory 
operation and installation of the bombing equipment are determined 
from these installations. The designer may sometimes install the com¬ 
plete movable control surfaces on the mock-up to facilitate in the design 
of the operating mechanism. 

The above discussion is in no way a complete picture of the various 
functions for which a mock-up is useful, but it should serve to give a 
general idea of its advantages in time-saving and in the solution of the 
difficulties involved in installation problems. As the design progresses 
and compromises become necessary the mock-up will be modified to 
conform to the changes in design. The mock-up will also aid in determin¬ 
ing the feasibility of such changes and compromises as may be felt to be 
necessary. 

1-2. Second Weight Breakdown 

A final weight-empty estimate results from a number of preliminary 
estimates, each based on additional information available as the design 
progresses. With the preliminary weight estimate at hand, as discussed 
in section 1-1(6) and with the first completed three-view drawing show¬ 
ing as much of the equipment and construction as practicable, a more 
accurate weight estimate is possible. In the following discussion of the 
methods developed to attain greater accuracy, each group will be con¬ 
sidered separately. 

(a) The Wing Group. First in order is the wing group, which includes 
the wing panels, ailerons, flaps, struts, wires, fairings, attaching bolts, 
etc. The weight of a wing is one of the most difficult of the various items 
to estimate because it is influenced by a large number of factors, of 
which the major ones are: 

1. Gross (design) weight of the airplane 

2. Wing area 

3. Aspect ratio 

4. Design load factor 

5. Thickness and chord at the root 

6. Taper ratio (root chord/tip chord) 

7. Wing span and thickness ratio (root thickness/tip thickness) 

8. Type of structure 

a. Biplane or monoplane 

b. Landing gear 

c. Flotation gear 

d. Arresting and catapult gear 

e. Armament 
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In a paper by Lipp (reference 1*1) formulas have been devised which 
attempt to give the effects of most of the above items on the weight of a 
modern, all-metal monoplane wing. Lipp attacked the problem by 
dividing it into two parts: (1) the effects of aerodynamic loads and (2) 
the effects of dead loads. In calculating the material necessary to resist 
the air loads, it was found convenient to consider (1) material that, resists 
bending of the wing, (2) shear material, and (3) ribs and other members 
that resist direct pressure. The nomenclature used in the Lipp analysis 
follows: 

u — total wing structural weight 
Ui* • -un = component parts of u 

x = distance of station from tip 
b — span 

Sc = design stress in spar cap material 
Ss = design stress in shear webs 
S'c = design compression stress in ribs 

ki - - - A:3 = dimensionless constants 
K\ - • iv3 = coefficients having dimensions of pounds per cubic 

inch 
t = thickness of wing at x 
f = design load factor 

wx = running lift load (pounds per inch) 
W = gross weight of airplane 

W\ = W minus u 
W2 = non-structural dead weight in wing 

m — root thickness/tip thickness v" " J 
n = root chord/tip chord , - * . : a “ 
r - 2l/b = length of unloaded tip/semi-span 

Subscript T refers to tip and R refers to root of wing 

The assumptions made by Lipp in computing the air load bending 
material were: (1) The skin plus the stiffeners can be replaced by an 
“effective thickness” of skin having the same cross-sectional area. 
(2) The perimeter of the airfoil equals a constant times the chord. 
(3) The wing is a full cantilever type so there are no end loads and the 
only stresses are caused by bending loads. (4) The running load (wx) 
caused by the lift is proportional to the chord. This gives a trapezoidal 
lift distribution which approximates that used by the Civil Aeronautics 
Authority. (5) The total lift is equal to the gross weight of the airplane. 

By a rational beam theory analysis it can be shown that the weight 
of the material resisting the bending loads due to lift is given by an 
equation of the form 
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Ui 
K\ Wb2fm n | [“3 

- I)5 IL2 
m 

SctR(n + 1 )(m — 1) 

(n 

3 (m — 1) 
- D 

- 1) - 

2m + y + log m J + 

11 3m2 m3 * 
— + Zm — + -g !og m [1-1] 

In calculating the weight of the material which resists the air-load 
shear, i.e., the weight of the shear webs, it was assumed that torsion of 
the wing merely redistributes weight among the spars without changing 
the total web weight. The area of the cross section of the web material 
is considered to be equal to the total shear at the particular wing sec¬ 
tion divided by the design shear stress. Again by beam theory analysis, 
the weight of the material resisting the aerodynamic shear loads is 
calculated as 

K2Wb(n + 2)f 

“1 2 S,(n + 1) 
[1-2] 

In addition to the effects of bending and shear, it is logical to add the 
effect of direct air pressure on the structure. Ribs transmit the air 
force to the spar webs and also serve to hold the shape of the wing. 
Therefore, the ribs form the largest part of the pressure material. The 
stresses involved are caused by direct air loads and the shear forces 
transmitted to the spars. The assumptions made in calculating the 
pressure material are: 

1. For the direct crushing material. 
a. The rib weight is proportional to the wing thickness at any sec¬ 

tion times the area of the horizontal section through the rib. 
b. The area of the horizontal section through the rib is propor¬ 

tional to the applied pressure times the wing surface supported 

by the rib. 
2. For the shear transfer material. 

a. The rib weight is proportional to the wing chord times the area 
of a vertical section through the rib. 

b. The area of the vertical section through the rib is proportional 
to the applied pressure times the rib spacing times the chord, or 
is proportional to the applied pressure times the area over which 
it acts. 

c. The average wing chord is proportional to the average wing 
thickness for all wings. 

d. The ratio of the crushing stress to the shear stress in one wing is 
proportional to the same ratio in another wing. 
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Considering all the above factors, the weight of the pressure-resisting 
material is given by 

KzWftR{m + 1) 

Uz 2m S'c 
[1-3] 

Dead weights in the wing can be classified in two groups according to 
their structural or non-structural character. The first of these groups, 
structure, is distributed along the span in approximately the same man¬ 
ner as the aerodynamic load and can be easily included in the calcula¬ 
tions by substituting 

W\ = W — iz (estimated) [1-4] 

into equations 1 • 1 and 1 • 2 instead of W. This is possible because the 
structural weight in a wing will tend to reduce the bending and shear 
stresses introduced by the aerodynamic loadings. This substitution 
would seem at first glance to introduce difficulties into the problem since 
u is unknown. However, u is small compared to W (less than 15 per 
cent) so that a reasonable error in estimating u will result in a much 
smaller error in the final answer, and, if the final value for u differs much 
from the estimated value it is a simple matter to make the necessary 
corrections. 

Non-structural items such as engines and fuel are largely concentrated 
near the wing root. These weights are assumed to be distributed as 
follows: (1) The resultant center of gravity of the highly concentrated 
loads is found (small scattered loads being neglected). (2) A rectangular 
distribution is drawn having the same total weight as the dead loads 
and extending roughly over the region of application of the concentrated 

dead loads. 
The weight of the material to resist the bending stresses induced by 

these dead loads is given by 

K^W^m 

2SMm - l)3 
— (m — 1)(1 + rm — r) + 

(1 -r) 
2 

(m- 1)2 + 

(1 + rm — r)2 

1 — r 
log (—-—)1 \1 + rm — r/J 

[1-5] 

and the weight of the material to resist the shearing stresses set up by 
the dead loads is 

U5 
l-5K2W2fb(l - r) 

S8 
[1-6] 

Note that Ki and K2 are the same as those used in equations 1 * 1 and 
1-2. Minus signs are used since dead loads are opposed to the air 
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loads. This cannot be carried too far, however, since heavy dead weights 
if far outboard may cause the landing loads to become critical. Effects 
of the dead loads on the web weights are neglected. 

By plotting the actual wing weight factor, i.e., u/Wf, against the 
wing span for a large number of airplanes an empirical curve is obtained 

Span - ft. 

Fig. 1*1. Variation of wing weight with span. 

which does not pass through the origin. This indicates that there is a 
certain portion of the wing weight which is independent of span. There¬ 
fore a final term is added to the weight equation which is of the form 

w6 = 0.0075W/ [1-7] 

and the total wing weight is therefore given by 

W = Wi + W2 + «3 + «4 + “8 + «6 [1 ’8] 

and the empirical curve for determining w is given in Fig. 1-1. The 
limits between which present-day airplanes lie is also indicated in this 
figure. The lower range line represents wings having a large amount of 
distributed dead weight outboard and a light, efficient structural design. 
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In the preliminary stages of weight estimating, Fig. 1 • 1 will be suffi¬ 
cient. For more accurate calculations, the constants K\, K2, and Ka 
are determined by means of data collected from an actual wing which 
is as structurally similar as possible. Then, using these values for the 
constants and substituting the new wing data in the equations for 
Mi • • • Me, the weight of the new design may be calculated. 

(b) The Tail Group. The weights of the various tail surfaces are 
dependent upon a number of items similar to those discussed above for 

30 40 60 80 100 200 300 400 600 800 
Surface area - sq. ft 

Fig. 1-2. Tail-surface weights. 

the wing. Type of construction is somewhat more important for these 
surfaces because frequently mixed types of construction are employed. 
For example, it is common practice to make the fixed surfaces all metal 
using a type of construction similar to that used for the wings, and, for 

balance reasons, to make the movable surfaces fabric-covered. In addi¬ 
tion to these factors, tail-surface weights axe greatly influenced by the 
amount of aerodynamic, static, and dynamic balance. The inauguration 
of multiple vertical surfaces has presented additional weight problems 
over and above those present when only one fin and rudder were being 
used. 

No detailed analysis similar to the Lipp wing analysis for the elements 

of the tail group is available; however, the average weight trends for the 
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various members are shown in Fig. 1*2 which was made up by the 
Douglas Aircraft Company on the basis of the study of a large number 
of modern airplane designs and the actual weight breakdown of these 

designs. 
(c) The Fuselage. In general the fuselage structures of commercial 

aircraft are lighter in weight than the military type. This decrease is 
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Fig. 1 • 3. Fuselage weight curve. 

caused by lower design factors and fewer complicated features such as 
gun mounts, bomb bays, and bomb doors. In estimating the fuselage 
structural weight, such relationships as percentage of gross weight, 
weight per inch length, weight per square foot of the side projected area, 
or weight per square foot of lateral area may be compared and the most 
reasonable or coherent value accepted. The weight calculated from the 
fuselage surface area usually proves to be the most accurate for such 
items as skin and doublers and lengthwise stringers. In order to elimi¬ 
nate tedious calculations in using this method, perimeters of the fuselage 
are calculated at various stations along its length and the plating area 
is calculated upon the basis that the sections between these stations are 
frustums of a cone, or that the forward 10 per cent and the aft 25 per 
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cent are conical sections. To aid in this calculation the following equa¬ 
tions are given: 

Area of a cone [1-9] 

Area of a frustum of a cone — ^(pi + P2) 
[110] 

where p = base perimeter of the cone, 
Pi = larger perimeter of the frustum, 
p2 = smaller perimeter of the frustum, 
h = height of the cone or frustum, i.e., a distance between sta¬ 

tions at which the perimeters were calculated. 

The general trend of fuselage weights is shown in Fig. 1-3. In the 
more refined estimates, the fuselage may be broken down into subgroups, 
each item being plotted against some dimension or area or some similar 
reference parameter (see Fig. 1*4). A list of possible subgroups follows. 

Skin and doublers 

Side stringers 

Top and bottom stringers 

Nose wheel provisions 

Frames and bulkheads 

Flooring and floor supports 

Doors, hatches, auxiliary exits, and their frames 

Windows, and their frames 

Nose installation 

Pilot’s enclosure 

Tail cone 

Tail stubs (if integral with the fuselage) 

Emergency tail skid or provision for tail wheel 

Bomb-bay structure and doors 

Miscellaneous installation provisions 

Cabin sealing for pressure installations 

Provision for flotation in fuselage 

Miscellaneous remaining items 

(d) Landing Gear. For conventional gears (two main wheels and a 
tail wheel), the weight of the main landing gear, not including the tail 
wheel, is divided into two parts in order to make a more accurate weight 
estimate. The first part is the chassis structural weight (ft) consisting 
of the structural members which carry the primary stresses and which 
are affected by airplane gross weight, load factor, and landing-gear 
length. The remaining part (ft) includes the wheels, tires, tubes, and 
retracting mechanisms. These latter items are affected primarily by 
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the gross weight and are not so much a function of the load factors and 
the gear length. 

Fio. 1 ■ 4. Fuselage weight breakdown. 

From a consideration of the actual data from a number of models, it 
has been found that the following formulas give a reasonable estimate of 
the two weights discussed above: 

R - 0.0003TP/L 

P - 0.035JF 
[Ml] 
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where It = main chassis structural weight, 
W = airplane’s design gross weight, 
/ = critical design load factor, 
L = distance in feet from the ground line (tire and oleo stat¬ 

ically deflected) to the midpoint between supporting fit¬ 
tings (point where bending moment is taken out), 

P = weight of wheels, tires, and retracting mechanism. 

For the main gear in a tricycle gear system (two main wheels and a 
nose wheel) insufficient data is available for any more accurate estimate 

Fig. 1 -5. Nacelle weights. 

than is given by the percentages of gross weight indicated in section 

1-1(6). 
For the tail and nose wheel, the percentages given in section 1-1(6) 

are as accurate as any data now available. 
(e) Nacelles. The weight of the nacelles is obviously dependent upon 

the size and, consequently, upon the weight of the engines. Figure 1 • 5 
shows the weight of the nacelle group plotted against the as-installed 
engine weight for a large range of power plant weights. Items which may 
cause variation of the nacelle weights from this figure are: (1) Position 
of the nacelle on the wing. (2) Whether or not the landing gear is to be 
housed in the nacelle. (3) Whether or not the nacelle is to be used as a 
part of the wing structure and as such carries part of the stresses coming 
in from the wing loading conditions. In this case a reasonable balance 
must be made between what is strictly speaking wing weight and what 
should legitimately be charged to the nacelle weight. 

(f) Power Plant (less Fuel System). The most important item in the 
power plant weight is that of the engines as installed. The engine’s dry 
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weight determined at the completion of the acceptance test includes the 
following: 

Supercharger 

Integral pumps 

Magnetos and ignition system 

Spark plugs 

Carburetors 

Integral preheaters 

Radio shielding 

The as-installed weight of the engine as received from the manu¬ 
facturer, cleaned and ready for installation in the airplane, with all 
items listed under dry weight and deducting those items listed under 
engine equipment, is the weight listed by airplane manufacturers on the 
weight reports. 

For a multi-engined airplane, experience has shown that the weight 
of the power plant, less fuel system, equals approximately 2.2 lb. per 
normal rated horsepower. It has been found to be divided as follows: 

Lb. peh Rated 

Horsepower 

Engines—as installed 1.46 

Engine accessories 0.15 

Power plant controls 0.03 

Propellers 0.45 

Starting system 0.06 

Lubricating system 0.05 

Total power plant less fuel system 2.20 

All the above discussion is based on present-day, air-cooled, radial 
engines. In line, air-cooled engines will be similar, but for liquid-cooled 
engines, the manufacturer should be consulted for actual weights since 
there is insufficient data available to make any general statements 
regarding the weight breakdown. 

(9) Fuel System, The fuel system weight has been separated from 
the power plant weight because the fuel capacity is dependent upon the 
desired range of the airplane as well as upon the installed horsepower. 
For ordinary wing tanks, the piping, valves, etc., weigh approximately 
0.05 lb. per normal rated horsepower. The weight of the tanks and their 
supports is a function of the capacity of the tanks, and curves have been 
drawn up in Fig. 1-6 showing the average weight of such tanks in both 
military and commercial airplanes. The weight of the tanks in military 
aircraft must obviously be increased over the value given in this graph 
if they are armored or made otherwise bulletproof. 

Propeller cones and attaching nuts 

Integral provisions for controllable pitch 
propeller 

Intercylinder baffles 

Such oil and grease as remain after drain¬ 

ing and external washing 
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Integral tanks will eliminate the weight of the separate tanks and 
their support but will add some weight to the wing structure owing to 
the necessity of completely sealing the structure in that region. When¬ 
ever possible, comparison should be made with existing airplanes, but 
for a first approximation it will be conservative to consider that the 
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Fig. 1-6. Weight of fuel tanka. 

integral tank will weigh 50 per cent of the value given in Fig 1-6 for 
separate tanks. 

(ft) Instruments. The required instruments arc usually listed in the 
specifications. If they are not, they may be divided into three sub¬ 
groups, namely, auto pilot, flight instruments, and engine instruments. 
The weight of the auto pilot ranges from 100 to 175 lb., depending upon 
the size of the airplane. The flight instruments’ weight depends upon 
the amount of equipment specified and the number of duplicated instru¬ 
ments. The weight of this subgroup ranges from 50 to 150 lb. Engine 
instruments weigh from 20 to 60 lb. per engine depending upon the instal¬ 
lation. The above weights include tubing, wiring, and supports. 
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For a more accurate weight estimation of these groups, the weights of 
each individual instrument as obtained from the manufacturer should 
be added up, and a small weight should be added for lines, brackets, wir¬ 
ing, etc. A reasonably complete list of instruments and their weights is 
given in reference 1 • 2. 

(i) Surface Controls. In studying the weight variations of the surface 
controls in various airplanes, it is observed that the larger airplanes 
having side-by-side wheel-column control contain some items which 

Fig. 1*7. Weight of control systems (high-wing airplanes). 

always remain about the same weight (unless the specifications call for 
unusual and elaborate arrangements which must be handled separately). 
These items are as follows: 

Control column (pilot and second pilot) 

Control column support and locks 

Rudder pedals (pilot and second pilot) 

Pedal supports and stops 

45-55 lb. 

5-7 lb. 

20-25 lb. each 

2-3 lb. each 

Regarding the aileron, elevator, rudder, and flap controls, it is reason* 
able to assume that their weight is a function of the wing span. Graphs 
showing this relationship are shown in Figs. 1*7 and 1*8. The weights 
of the tab and booster control systems must obviously depend upon the 
loads which they must carry and this in turn is a function of the areas 
of the surfaces upon which they operate. Figure 1*9 gives the relation¬ 
ship between tab and booster control weight as a function of the tail- 
surface area. 



20 THE AIRPLANE LAYOUT 

O') Furnishings. The furnishing group requires more attention in t 
preliminary estimate since it is highly variable and depends largely up< 
the customer’s needs either actual or imagined. The most satisfacto 
method of making the weight estimate for the furnishings group is 
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Fig. 1-8. Weight of control systems (low-wing airplanes). 
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Fig. 1 ■ 9. Weight of tab control systems. 

sketch the cabin arrangement and then consider each item individually. 
A table of weights giving the weight per square foot of the various mate¬ 
rials used in this group is given in reference 1-2. 

(ft) Communicating Equipment. The amount and type of communi¬ 
cating equipment depends upon the Civil Aeronautics Authority or 
Service requirements which, in turn, are dependent upon the purpose of 
the airplanes and upon additional requirements which may be added to 
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the specification. Unit weights of each piece of equipment may be 
obtained from the manufacturers. For typical commercial passenger 
airplanes the weight of this item may vary from 100 lb. (absolute mini¬ 
mum equipment) to 600 lb. 

(/) Electrical Equipment. Radio and electrical appliances determine 
the electrical power requirements. Such items are those of the gen¬ 
erators (25-40 lb. each) and the batteries (35-90 lb. each) assuming a 
12-volt d-c. system. The remaining items, making up a total of approx¬ 
imately 2.5 per cent of the gross weight, consist largely of wiring and 
conduits and are distributed rather uniformly throughout the airplane. 

If auxiliary power units delivering 110 volts are used, the total weight 
for large aircraft may be appreciably reduced because of a great saving 
in transmission wire weights. However, very little information on this 
system is available and each installation must be considered separately. 

(m) De-Icer Installation. Assume the weight of the de-icer equip¬ 
ment equal to approximately 0.06 per cent of the design gross weight. 

(n) Possible Useful Load. This group consists of food stores (emer¬ 
gency rations) and water. Sometimes these items are included in useful 
load, hence the name, possible useful load. 

The above is a breakdown of the weights which are necessarily fixed 
for any given airplane type. The other weight item to be considered is 
the useful load which will be treated in detail in section 1-4. This dis¬ 
cussion has been made since the items under the weight-empty classifi¬ 
cation are, to a large extent, fixed as to weight and position when the 
airplane has been built whereas the items under useful load are variable 
as to both weight and position and therefore seriously affect the balance 
computations. 

1-3. Arrangement 

It has wisely been said that eC number of the external dimensions of an 
airplane are determined purely by the fact that the outside dimension 
must at least be as large as the inside dimension. In other words cer¬ 
tain necessary arrangements of, the airplane contents are more or less 
fixed and the airplane is essentially built around the contents. It is 
therefore well to consider at this point the items over which the designer 
has some control as to size and location and those over which little or no 
control is possible. For purposes of discussion a commercial transport 
has been used; however, it must be realized that designers of military 
airplanes are faced with as many, or more, similar problems. 

The preliminary weight estimate, as discussed in section 1-1(5), has 
been based on the first three-view drawing of the airplane. After that 
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the designer will be ready to start on a series of arrangement drawings, 
each of which will have to be modified as the design progresses. The 
number of these changes will nevertheless be considerably reduced if 
proper consideration is given to the items mentioned in the following 
sections. 

The three-view drawing consists of a side, front elevation, and plan 
view of the proposed airplane drawn to scale. This drawing will be the 
basis for the detail design of the airplane, and like all other drawings 
should show as much detail as is consistent with clearness. 

The following sections include the main items which must be con¬ 
sidered in order to satisfy the detail requirements for the arrangement 
layout. In general, three things must be considered for each item men¬ 
tioned, namely, its weight, its location, and its relationship to other items 
of equipment, personnel, or structure. Section 1-3(e) contains a typical 
list of the fixed equipment for a particular airplane. 

Since the Civil Aeronautics Authority and the Services have their own 
restrictions regarding the location of certain items in aircraft and the 
safety devices which must be installed, the designer should familiarize 
himself with the regulations applicable to his design and follow them 
implicitly. If he feels that the regulations are wrong, his job is to give 
his opinion to the chief engineer and then to follow the regulations until 
they have been changed or until approval has been obtained to waive the 
regulations in the given case. It might be remarked here that to ac¬ 
complish such a change or waiver is a long, time-consuming process. 

(a) Balance Considerations. Since the location of the center of grav¬ 
ity of the airplane with relation to the center of lift of the lifting surfaces 
is very important; from an aerodynamic standpoint, one of the primary 
considerations which must be kept in mind during the arrangement study 
is the effect the position of each part may have on the center of gravity 
location of the completed airplane. The major weight items may be 
broken down into two main subgroups. 

(1) Weight empty. This includes the weight of 

Wings Furnishings 

Tail Instruments 

Fuselage Surface controls 

Power plant Electrical equipment 

Landing gear Communicating equipment 

This group has been discussed in detail in section 1-2 and will again 
be mentioned in section 1-4. It is necessary only to mention here that 
the sole item in this group which can be appreciably moved in order to 
obtain correct balance is the wing group and, in multi-engined airplanes, 
the power plapt which is attached to the wing. The wings can either be 
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bodily shifted in their position relative to the fuselage or the attachment 
of the wing and fuselage can remain fixed and the wings can be swept 
backward or forward thus giving an effective change in the location of 
the average total lifting force relative to the center of gravity. 

(2) Useful load. This includes the weight of the payload (passengers 
and cargo), fuel and oil, and crew members. 

This group is the most flexible, and therefore the most troublesome 
from a balance standpoint. The number of passengers may vary from 
zero to the complete passenger load, and their position is highly variable 
since it is psychologically undesirable to assign seats to passengers and 
to insist that they remain fixed in any given seat during flight. The same 
is true of the cargo to a somewhat lesser extent since, once it is located, 
its position will not change in flight. The fuel and oil will diminish in 
weight and, unless carefully controlled, the center of gravity of the fuel 
and oil supply may change appreciably, and thus affect balance con¬ 
siderations. The crew members are usually fixed in number and the 
movement of at least the pilot and the second pilot is restricted. More 
detailed considerations of these problems will be discussed in section 1-4. 

(b) Comfort Considerations. The emphasis placed on considerations 
of the comfort of the crew and passengers on an airplane is largely a func¬ 
tion of the proposed length of the longest non-stop flight. Conditions 
which go unnoticed or can be ignored for a flight of an hour or two may 
become very irritating before the end of much longer flights. The major 
items to be considered will be discussed briefly below. 

(1) Noise level. For commercial transport airplanes the noise in the 
cabin should be kept down to a level that will not seriously restrict 
ordinary conversation and particular attention should be paid to the 
elimination of the higher frequency sounds which may become very 
annoying after a period of time. Chief noise sources are the power plant 
and propeller, the ventilating system, and external fittings on the air¬ 
plane. Since most of the important noise sources are outside the cabin, 
the main problem is to keep these noises from entering the cabin or, if 
they do enter to absorb them as rapidly as possible. Prevention of the 
noise entering the fuselage is accomplished by two methods: first, by 
eliminating any openings connecting the outside with the inside of the 
fuselage and second, prevention of a noise source being set up in the 
cabin due to vibration in the structure caused by some external force. 

Absorption of the sound which does enter is carried out by approved 
soundproofing methods utilizing as far as possible the sound-absorption 
properties of seats, wall and floor coverings. 

(2) Propeller location and clearance. The location of the propellers on 
an airplane is a very important factor from the standpoint of comfort* 
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The maximum propeller noise lies in the plane of rotation and the noise 
level drops off very fast as one leaves the plane of rotation in either 
direction. It is therefore advisable to keep any openings which eventu¬ 
ally lead into the fuselage, such as air intake ducts and the like, out of 
this plane of rotation and, if possible, put quantities of sound-absorption 
material in this region. Requirements have been set up by the Civil 
Aeronautics Authority and the Services which make it necessary to keep 
the pilots out of a region given by a conical angle of 5 degrees from the 
plane of rotation of any or all propellers, and it is usually considered good 
practice as well not to put passengers in this region. The logical item 
to put in this volume is, then, either the lavatories in which noise level 
restrictions are not serious (except in so far as the noise may be retrans¬ 
mitted back into the cabin) or, even better, the baggage or cargo com¬ 
partment which, due to the character of its contents, provides consider¬ 
able sound absorption. 

The minimum distance of the propeller tips from any structural ele¬ 
ment such as the side of the fuselage is also very important. If the tips 
of the rotating propeller are too close to the fuselage side a severe vibra¬ 
tion may be set up in the fuselage skin which may act as a sound and 
vibration source into the interior. This interaction has sometimes been 
so severe as actually to cause structural fatigue failure of the skin in that 
region due to the intense vibrations of the sheet covering. In general, it 
is advisable to keep at least 12 in. between the propeller tips and the 
nearest adjacent structure and more space is desirable. 

(3) Vibration. Again the propeller and engines are the chief sources 
of vibration. There are, as well, aerodynamic sources such as tail buffet¬ 
ing, because the tail surfaces are partly in the propeller slipstream or are 
in the wake of some other part of the airplane which causes a turbulent 
disturbance of the air. These causes can usually be eliminated by 
external changes in the aerodynamic shape of the airplane, but the 
propeller and engine vibration are essentially fixed quantities. A new 
type of dynamic suspension engine mount has helped considerably to 
reduce the amount of power plant vibration that is transmitted to the 
remaining structure. Vibration-damping material placed at or near the 
attachment of the wing to the fuselage is also advantageous. 

One of the main things to watch in any sheet-metal structure is the 
tendency of large plate areas to get in resonance with some fluctuating 
energy source. No matter how carefully each sheet panel may be 
designed, there is always the possibility that a few panels in every air¬ 
plane (they may be completely different panels in the next airplane of 
the same type) may go into resonance at some speed of the airplane or 
at some value of the engine r.p.m. The best way of eliminating such 
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trouble is to coat the inside surface of all panels with some material 
with a high damping coefficient. If this method leads to too large a 
weight increase, the offending panels can be broken up by light stiffener 
sections which should be placed so as to divide the panel in unequal, 
odd-shaped areas which will not go into resonance at some higher har¬ 
monic of the panel frequency. 

(4) Vision. At one time it was thought that vision was one of the 
primary considerations in the arrangement of an airplane. For military 
airplanes this is still true and it is also very important that the pilots in 
a commercial transport have good vision. However, from a passenger 
standpoint it is of secondary importance. For passenger visibility, 
the high-wing monoplane is obviously the best. However, such consid¬ 
erations as increased length of landing gear and its attendant increase in 
weight, difficulties of obtaining sufficient head room in the cabin, and 
other such items so far overshadow the vision problem that such con¬ 
structions are seldom used, or if used, have been established by consid¬ 
erations other than that of giving the passengers complete and unob¬ 
structed vision. In fact, it is usually only the passenger on his first or 
second flight over a given portion of the country who is much interested 
in what he is flying over, and there are sufficient places in an airplane 
with good downward vision to accommodate such a person. 

It must again be repeated however, that the pilot’s vision must be 
unrestricted and must not be hampered, particularly at night, by reflec¬ 
tions from his windshields. This is a very troublesome problem and 
must usually be solved in the mock-up since it is impossible to handle 
such problems satisfactorily on the drafting board or in the design 
room. 

(5) Heating and ventilating. In an airplane, as in any confined space 
containing a number of people, heating and ventilation must be con¬ 
sidered. It is therefore necessary to provide first, a source of uncon¬ 
taminated air and second, a source of heat. 

The source of uncontaminated air must be located so that fumes from 
the engines and their exhaust cannot possibly enter the system, and it 
should also be located so that the dynamic pressure due to the forward 
velocity of the airplane can be utilized to force the air through the 
ventilation system. Two logical points on the airplane which satisfy 
these requirements are the nose of the fuselage and the leading edge of 
the wing. Taking air in at the nose of the fuselage encounters difficulties 
because the air ducts tend to run through the region occupied by a large 
number of controls and may further be complicated by a nose wheel 
installation. Also, since the source of heat for this air is the engines, 
considerable ducting or piping must be used to get the air to and from 
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the engines in the wing, or to get the heat from the engines into the 
ventilation system. 

The other method, taking the air in at the leading edge, some distance 
outside the propeller slipstream (to prevent propeller de-icing fluid from 
entering the system) usually provides a simpler air heating and ducting 
arrangement. It has, however, the possible disadvantage that, if the 
intake is not carefully made, serious aerodynamic interference may arise. 

Since a large part of the time the passengers spend in an airplane will 
be at high altitudes where the temperature is very low, it will be neces¬ 
sary to heat the air before it is put into the cabin. As mentioned before, 
the main source of heat is in the exhaust system of the power plant. 
Electrical heating has been suggested, but the large current drain neces¬ 
sary makes a prohibitive load on an already heavily overloaded electrical 
system. Two methods of utilizing the heat in the exhaust gases have 
been used. The first is actually to pass the hot exhaust gases around 
some form of heat exchange unit through which the ventilating air passes. 
This has the major disadvantage that leaks in the system allow exhaust 
gases to pass directly into the cabin ventilation systems which, to say 
the least, is undesirable. The second system uses the exhaust gases as a 
heat source in a liquid boiler and the heated liquid then passes through 
the ventilation system heat exchange unit. The disadvantage of this 
system is the additional weight; however, with modern types of flash 
boilers, containing very little liquid, this weight can be reduced to a 
minimum. 

In laying out the airplane it is necessary to make space provisions for 
the ducts and piping necessary for the ventilation distribution system. 
It must also be realized that this system may be a noise source, either 
because it furnishes a possible opening to outside noises, or because fans 
or other noise sources are present in the system itself. It is also neces¬ 
sary to introduce regulators into the system so that the amount of air 
and of heat may be varied by one of the crew members. Since the power 
and heat sources are dependent upon the airplane’s velocity and the 
engine exhausts, respectively, when on the ground it is necessary to 
provide some ventilation from an outside source. This is usually 
furnished by an air-conditioning system contained in a truck and means 
of attaching this system and proper interconnecting ducting must be 
provided. 

(c) Operating Considerations. It is obvious that provision must be 
made for loading and unloading the airplane’s passengers. However, 
certain problems arise during this simple operation that may be over¬ 
looked by the designer. For an airplane with a tricycle gear, it is pos¬ 
sible for enough passengers to congregate near a rear door to put the 
center of gravity of the airplane behind the rear wheels, and cause the 
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airplane to drop by the tail. This obviously must be prevented. An¬ 
other problem that must be considered is that of providing space for 
overcoats near the passenger loading door. The passengers may want 
these as they leave the ship but they will not need them in flight; there¬ 
fore sufficient space must be provided so that winter wraps for all the 
passengers may be stored. Ease in loading and unloading baggage and 
express should be carefully considered because any difficulty in this 
operation would lead to unnecessary delay on the ground. 

The location of the pilot and second pilot is obvious. In larger crews 
including a navigator and an engineer, the location of each crew member 
should be such as to permit exchange of information readily. Telephone 
communication is, of course, necessary but, in addition, provision should 
be made for the interchange of written messages with a minimum of 
effort. Stewards and stewardesses should be located where they can 
command a view of the outer cabin. The buffet and food and water 
supplies should be so arranged that the stewardess can serve meals to 
all the passengers with a minimum of effort. The space in winch the 
stewardess has to work is very limited; therefore, great care must be 
taken so that there will be little lost motion or time in serving food to 
passengers and crew. 

Airplane maintenance is one of the large items in the cost of operating 
an airline or in the cost of operating Service airplanes. The designer of 
the airplane can cause the maintenance engineer a great deal of unneces¬ 
sary trouble if he does not realize during the layout process that all 
important elements in an airplane must be inspectable, removable, 
repairable, and replaceable with the minimum of effort on the part of 
the ground crew. This means that easily reached and quickly remov¬ 
able access doors must be installed where internal inspection is neces¬ 
sary, and that the use of quickly detachable assemblies should be care¬ 
fully considered. The degree of importance of an airplane part deter¬ 
mines how often it must be inspected and consequently determines the 
amount of time that the designer should give to designing ways and 
means of making inspection and maintenance as simple as possible. 

Safety features which must be considered include a wide range of items 
from adjustable seats for the pilots to prevent fatigue and consequent 
loss in efficiency, to de-icing equipment for the wings, tail surfaces, ailer¬ 
ons, and propellers. A few other items to be considered are: 

(1) Fire extinguisher apparatus at all vulnerable points such as the 
inside of the engine cowlings. These extinguishers are to be operated 
either directly by a fire or by a crew member in connection with a suit¬ 
able fire warning system. 

(2) Emergency exits in passengers' and pilots' cabins. The number 
of these is determined by regulation. 



28 THE AIRPLANE LAYOUT [1-3 

(3) Safety locks on all doors in the airplane. 
(4) Warning signals for flap, tab, and landing-gear positions, etc. 
Cd) Manufacturing Considerations. It must be kept in mind by the 

designer that, no matter how good a design may be, if it cannot be eco¬ 
nomically manufactured by the company considering the design, it is 
useless to that company. From this standpoint, certain arrangements 
which might otherwise appear attractive, may have to be changed owing 
to limitations in shop space, shop tool equipment, or the available 
sources of supply. If the proposed order is large enough, a large expendi¬ 
ture may be justified to correct some of these limitations. However, for 
small orders, the designer should give considerable thought to keeping 
his design suitable to the available manufacturing facilities of his com¬ 
pany. 

(e) Fixed Equipment. It will be impossible in a text such as this to 
give a detailed discussion of all the items which must be considered under 
the fixed equipment group. All that will be done is to list the things for 
which space must be provided and their general location in order that 
the designer will have at least an approximate check list for reference 
purposes. In the classification which follows, a large transport has been 
considered and the operating crew has been assumed to be composed of 
a pilot and second pilot, an engineer, a navigator, and a radio operator. 
For a smaller transport having only a pilot and second pilot, there is 
very little reduction in the number of instruments and controls and 
therefore space must be provided in the pilots’ compartment for most of 
the articles listed below. Of course such items as desks and chairs for the 
engineer, navigator, and radio operator are obviously eliminated in a 
ship having only a pilot and second pilot; however the instrumentation 
and controls are essentially the same. 

1. Pilots, section 
o. Instruments 

Air-speed indicator 
Altimeters 
Bank-and-turn indicator 
Rate-of-climb indicator 
Artificial horizon 
Directional gyro 
Compass 

Clock 
Landing-gear position indicator 
Flap-position indicator 
Marker-beacon indicator 
Compass indicator 
Air-temperature indicator 
Instrument board 

b. Controls 

Aileron 
Rudder 
Elevator 
Flap controls 
Auto pilot 

Flight controls 
Aileron trim tab 
Rudder trim tab 
Elevator trim tab 
Landing-gear retraction control 
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Throttle 

Engine controls 

Propeller pitch control 

Miscellaneous equipment and controls 

Parachute flare release 

Dump valve 

Fire extinguisher 

Telephone 

Loud speaker 

Cabin warning-lamp control 

Brake controls 

Remote controls for radio 

2. Engineer 

a. Instruments 

Air speed 

Altimeter 

Tachometers 

Engine synchronizer 

Manifold pressure 

Oil temperature 

Oil pressure 

Oil quantity 

Fuel pressure 

Fuel quantity 

Thermocouple indicator 

Outside air temperature 

Carburetor air temperature 

Cabin steam-temperature indi¬ 

cator and control 

b. Controls 

Throttle 

Mixture 

Carburetor air 

Carburetor air heat 

Oil temperature 

Cowl flap control 

Auxiliary power plant selector 

Supercharger 

Cross-feed valves 

c. Miscellaneous 

Desk 

Chair 

Writing materials 

Telephone 

Electrical controls 

Running lights 

Passing lights 

Instrument lights 

Landing lights, etc. 

Flight-log container 

Map container 

Exhaust-gas-analyzer indicators 
De-icer pressure gage 

Hydraulic system pressure gage 

Vacuum gage 

Auxiliary power plant instruments 

Auxiliary power plant controls 

Electrical system volts 

Electrical system amps. 

Electrical system watts 

Cabin water-temperature indicator 

and control 

Cabin air-temperature indicator and 

control 

Cabin boiler water-level indicator 

and control 

Tank-selector valves 

Refuel valves and pump 

Fire extinguishers 

Dump valve 

Auto pilot oil pressure 

De-icer air pressure 

Starting 

Electrical 

Loudspeaker 

Maintenance manual 

Wiring diagrams 
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3. Navigator 

Chart table 
Chair 
Navigation equipment 

Drafting machine 
Sextant 
Nautical almanac 
Books 
Charts 
Computers 

Vision for dead reckoning 
Vision for celestial observation 

Telephone and loudspeaker 
Instruments 

Air speed 
Altitude 
Air temperature 
Clock 
Aperiodic compass 
Drift meter 
Ground-speed meter 
Radio-compass indicator 

4. Radio operator 

a. Miscellaneous 

Chair 
Desk 
Writing materials 

Typewriter 
Telephone and loudspeaker 

b, Radio equipment 

Variable frequency transmitter 
Variable frequency receiver 
Beacon receiver 
Combination short- and long-wave receiver for standby use with battery 
High-frequency transmitter airport control 

. High-frequency receiver airport control 
Cone of silence and approach marker receiver 
Instrument landing-glide path and loop receiver 
Facsimile keyer and printer 
Headphones and microphones 
Trailing-wire antenna and retracting mechanism 
Trailing-wire-antenna tuning unit 
Shielded loop antenna 

5. Crew accommodations 

а. Captain’s cabin 

Desk Bed 
Lavatory facilities Wardrobe 

б. Crew cabin 

Bunks Lockers 
Lavatory facilities 

6. Passenger accommodations 

a. Stateroom 

Seats 
Beds 
Toilet 
Bedding storage 

Luggage storage 
Wash basin 
Appointments 
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ft. Main cabin 

Seats, convertible to berths Floor covering 
Bedding Luggage stowage facilities 
Appointments Bedding stowage facilities 

c. Lounge 
Cards 
Magazines 
Cigarettes 
Ash trays 

d. Dining room 

Linens 
Silver 
Dishes 

e. Galley facilities 

Food storage facilities 
Refrigerator 
Refuse container 
Hot plates 
Food preparation facilities 

/. Dressing room facilities 

Chemical toilets 
Toilet paper 
Mirrors 
Towel holder 
First-aid containers 

g. Miscellaneous 

Sickness containers 
Coat hangers 
Ash trays 
Safety belts 
Safety belt signal 

7. Cargo accommodations 

Loading facilities 
Lining 
Tie downs 

8. Power plant 

Engines 
Propellers 
Starting system 
Oil system tanks and lines 

0. Electrical system 

Generators 
Wiring 
Switches 
Conduit 

Bar 
Bar equipment 
Tables 
Chairs 

Storage for equipment 
Tablet* 
Chairs 

Sink and drain 
Steam or electric cooker 
Cupboards and shelves 
Hot-and-cold-water facilities 

Wash basin 
Soap dispensers 
Vanity tables 
Dressing sets 
Sanitary napkin dispenser 

Reading material 
Writing material 
Removable tables 
Rugs and carpets 
Windows and curtains 

Bins for small parcels 
Mail lockers 
Checking facilities 

Accessories 
Fuel and refueling system, tanks and 

lines 
Power plant controls 

Junction boxes 
Auxiliary power plants 
Lamps 
Motors, etc. 
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10. Cabin heating and ventilating 

Ducts 
Boilers 
Radiators 
Reservoirs 
Steam lines 

11. Cabin supercharging system 

Ducts 
Cabin superchargers 

12. Miscellaneous 

Handling equipment 
Cabin fireproofing 
Cabin fire extinguishers 

Water lines 
Blowers, recirculating 
Controls 
Pumps 

Cabin regulators 
Cabin supercharger drive 

De-icing equipment 
Electrical connections 
Heat and ventilating connections 

(f) Summary. The above impressive list should indicate that the 
arrangement of the contents of an airplane is no easy task. It takes the 
combined efforts of the aerodynamicists, structural engineers, and detail 
designers, all working under the critical eye of the head of the weight 
group to arrive at a solution that will be more or less satisfactory to all 
concerned. The use of the mock-up also becomes immediately apparent 
since an attempt to make a location layout on a drawing board for all of 
the items indicated is doomed to failure at the start. Little has been 
said about Service aircraft, but the problems are similar and just as 
difficult although the items requiring consideration are of a different 
character. In general, it can be said that the personnel of a military 
aircraft cannot expect the comfort and luxury which is provided in a 
transport, and more attention can be paid to the problems of armament, 
bomb racks, and other military equipment. It must, however, be 
realized that the efficiency of the crew on a military airplane can very 
easily be greatly lowered if they are not made reasonably comfortable, 
particularly in long flights. 

1-4. Weight and Balance 

Having obtained the information discussed in the previous section, 
the designer is then ready to make up the weight and balance estimate 
of the airplane. The side and plan view of the three-view drawing is 
utilized for this purpose and the centers of gravity of all items are spotted 
on one or both of these figures. Suitable reference axes are then chosen, 
Fig. 1 • 10, from which all horizontal and vertical distances are measured. 

Tables similar to Table 1-1 are then filled out, the final result of this 
tabulation giving the horizontal and vertical location of the center of 
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gravity of the airplane. It is not, however, sufficient to determine this 
location for only one condition, say the completely loaded condition, be¬ 
cause what is of primary importance to the aerodynamicist and the 
designer are the fore-and-aft limits of the center of gravity travel for 

Yi 

Fig. 1 • 10. Assumed axes for balance calculation. 

all possible loading conditions. If this travel is too great for arbitrary 
loading arrangements, it may be necessary to specify such arrangements 
as: (1) order in which fuel tanks should be emptied or filled, (2) amount 
of cargo in each of the cargo compartments for various numbers of 
passengers being carried, (3) amount of ballast necessary to keep the 
center of gravity within the proper limits under certain loading condi¬ 
tions. A detailed discussion of some of the most important considerar 
tions follows. 
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(a) Stability Range. The first important item to consider before 
attempting to fit the useful load into the balance picture is the stability 
range of the airplane. The estimation of this range, a function of the 
aerodynamics department, is determined from wind tunnel tests and 
data obtained from previously flown airplanes of the same type. Stabil¬ 
ity, control, and maneuverability, because of their close relationships to 
the airplane balance, require the center of gravity travel to be limited to 
a prescribed range. 

As an example, assume the stability range of a given airplane when 
landing with the wheels and flaps down, to be from 15 to 30 per cent of 

Max. Forward Max. Aft 
C. G. Limit C. 6. Limit 

Fig. Dll. Fuel tank arrangement. 

the mean aerodynamic chord (m.a.c.) In other words, the maximum 
forward center of gravity (nose-heavy condition) can be no farther for¬ 
ward than 15 per cent of the length of the m.a.c. measured aft of the 
leading edge of the m.a.c. In a similar fashion, the maximum aft center 
of gravity cannot exceed 30 per cent of the m.a.c. Once this range has 
been established, the designer can proceed with the balance study by 
investigating the most advantageous order of filling and emptying the 

fuel tanks. 
(5) Fuel and Oil. Probably the relationship between fuel consump¬ 

tion and balance can best be explained by observing a simple example. 
The locations of the stability range limits, fuel tank centers of gravity, 
and oil tank center of gravity are shown in Fig. 1-11. 

For the sake of explanation let us assume that the airplane which 
contains these tanks is inclined to be nose heavy when carrying the 
desired useful load less fuel and oil. From the diagram, obviously it 
would be most advantageous to fill the tanks from rear to front and 
empty the tanks from front to rear, since fuel in the rear tanks will offset 
the weight of the front fuel and oil which are both on the forward side of 
the mHvimiim forward center of gravity position. To visualize more 
clearly how various loadings are calculated to bring the resulting centers 
of gravity to the extremes of the allowable center of gravity travel, let 
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us consider these limits to be the fulcrums of levers carrying the various 
weights of the airplane. In order to satisfy the stability requirements, 
the airplane must balance upon either one or the other of these fulcrums, 

or at some point between them. 
Ordinarily, the tanks to be emptied last will carry a 45-minute emer¬ 

gency fuel reserve. After the first balance results have been completed, 
the tendency of the airplane to be either nose heavy or tail heavy will be 
noted and this reserve fuel will be assigned to the tank which will offset 
the worst case. At this point it should be clear that the ideal position 
for the center of gravity of the front and rear fuel should be well within 
the forward and aft center of gravity limits. As a matter of fact, to have 
all the centers of gravity of the fuel tanks located midway between the 
limits would be the ideal situation, because additional fuel would better 
the balance by the greatest amount, for either a nose-heavy or tail-heavy 

condition. 
(c) Critical Fuel and Oil Loads. Once the order of fuel consumption 

has been decided, the next step is to determine what condition during 
the consumption of fuel will give the most forward center of gravity and 
the most aft centers of gravity when balancing about each respective 

fulcrum. In addition to the consideration of fuel, the location and weight 
of the oil must be included in the calculations. The Civil Aeronautics 
Authority requires at least 1.0 gal. of oil for each 20 gal. of fuel to be 

carried in our present transports. This ratio may vary with future 
engines and the Army and Navy usually specify their own ratio. 

If we return to Fig. I ll and again assume that the tanks fill from 

rear to front and empty from front to rear, the most nose-heavy balance 
is possible cither when the fuel and oil tanks are filled; or, when the for¬ 
ward tanks are empty, the aft tanks have only the reserve fuel and the 

oil tanks are filled to one-half capacity. It is reasonable to assume that 
no more than one-half the oil will remain when all the fuel except the 
reserve has been consumed. From the diagram it is obvious that the 
most tail-heavy case will be caused by empty oil tanks, empty forward 
tanks, and only the 45-minute reserve fuel remaining in the rear tanks. 

To determine which condition of fuel and oil is critical for the nose- 
heavy balance, assume the airplane’s center of gravity is at the forward 

limit with fuel and oil tanks filled to capacity. Then consider that the 
fuel is consumed from the forward tanks and the aft tanks except the 
reserve in the aft tanks, and that the oil has been reduced to one-half 

the total capacity. With these new conditions, the center of gravity 
travel is calculated. If it is forward, the case with the tanks empty is 

critical and should be used to compute all nose-heavy conditions. If the 
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center of gravity has traveled aft, the case with the tanks full is critical 
and should be used instead. 

For preliminary calculations, it may be assumed that the fuel con¬ 
sumption of the engines is 0.5 lb. per hp. per hr. at 60 per cent power. A 
gallon of fuel weighs 6 lb. and a gallon of oil weighs 7.5 lb. 

(d) Crew. In a large transport airplane, the crew may consist of two 
pilots, one radio operator, one stewardess, and one porter. In large 

military bombers it may number six or more. The crew can consist of 
pilot, co-pilot, radio operator, front gunner, bomber, and possibly two 

rear gunners. In commercial aircraft, the crew for balance purposes is 
assumed to weigh 170 lb. each, except the stewardess, whose weight is 
130 lb. The airlines actually weigh their crew in order to take advantage 
of additional payload if the amount is less than the above total. Each 

member of the crew of a military airplane is considered to weigh 200 lb. 
which includes parachute and flying equipment. 

(e) Passengers. All passengers flying in commercial airplanes are 

assumed to weigh 170 lb. each for balance purposes. However, the air¬ 
lines receive each passenger’s weight and thus are able to know more 
accurately the actual gross weight of the airplane. Each passenger is 

allowed 40 lb. of baggage, but here again each piece is actually weighed 
and recorded in the gross weight of the airplane. 

At present, the airlines object strenuously to assigning passengers 

definite seats. As a result, it is necessary to consider the worst possible 
passenger seating arrangement when calculating balance extremes. One 

of the reasons that passengers are required to be out of the dressing rooms 

and in their seats when landing is that the airplane’s stability range 
when landing is decreased. For this condition, then, various seating 
arrangements must be considered in the balance calculations. On the 
other hand, when cruising, the passengers are allowed freedom of 
motion and not only may take up arbitrary seating arrangements, but 
also may congregate in any dressing rooms which may be provided. In 

a large airplane recently under consideration, there were two dressing 
rooms having a total capacity of nine persons in the aft part of the 
fuselage. Obviously filling both dressing rooms to capacity would hap¬ 
pen only on rare occasions. However, the Civil Aeronautics Authority 

ruled that there was that possibility and that the balance calculations 
should consider the case in which the dressing rooms were filled to 
capacity and the remaining passengers filled the rear seating space in the 

cabin. This ruling imposed a considerable penalty on the main cargo 
load. In order to remove this penalty and to meet the stability require¬ 
ments, it was necessary to move the men’s dressing room to a location 
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forward of the cabin and to restrict the capacity of the women’s dressing 
room to three persons. In this case, the center of gravity travel caused 
by taking the three persons out of the rear dressing room equaled the 
decrease in allowable center of gravity range in landing, making a very 
efficient design. 

(/) Buffet Supplies. Buffet supplies consist of the food and equip¬ 
ment to serve the necessary meals and drinks in flight. For a typical 
transport carrying fourteen persons, the following supplies are required 
in the specifications: 

Buffet Supplies—Standards 

Item 

Weight 

in Pounds 

Food trays—7 6.30 

Dishes—1-lb. per set 7.00 

Three 2-quart thermos bottles 11.30 

Blankets—5 (assumed) 8.80 

Pillows—10 (assumed) 6.00 

Silverware—7-place 1.90 

Stewardess’ bag 32.00 

Wash water—3 gallons 24.90 

Coat hangers—14 1.80 

This total for buffet supplies may vary considerably depending upon 
the type of service for which the airplane is designed. For an airplane 
where most of the flights are short, there will probably be little need for 
much in the way of food supplies. For trips that may cross the United 
States with only one or two stops, the meal problem becomes one of 
great importance and the proper design of buffet equipment may save 
considerable weight. On a transcontinental trip making a number of 
stops, a large amount of food may be carried during one part of the trip 
and little or none on the next part. The effect of this on the balance and 
the center of gravity location must be considered by the designer. 

(g) Cargo. The cargo compartments of most transports are located 
about the cone of the propeller and aft of the passenger cabin. The 
front compartment is restricted to the former location because Civil 
Aeronautics Authority regulations state that the cabin or the pilots’ com¬ 
partment shall not be in the cone of the propeller. It is also a logical 
location for soundproofing reasons as previously discussed. Other 
cargo compartments may be located in the belly of the fuselage aft of the 
wing trailing edge. When a number of small cargo compartments are 
grouped together, the capacities of each are multiplied by their individ¬ 
ual horizontal distance from a reference line. A summation of the 
moments divided by the total capacity of the group gives the location of 
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the resultant center of gravity aft of the reference line. All cargo loads 
are considered acting at this point because any fraction of the total 
cargo is divided among the various compartments of the group in pro¬ 
portion to their capacities. 

At this stage in the design, sufficient information has been obtained 
to make possible a graph showing the maximum and minimum allow¬ 
able cargo in the front cargo compartment with no cargo in the rear. 
This graph should look similar to the one sketched in Fig. 1 • 13. The 
curve for the minimum allowable front cargo is calculated as follows. 

Compute the total weight and resultant, center of gravity of the weight 
empty, buffet supplies, and critical fuel for the tail-heavy condition. To 

Minimum front Resultant Airplane aft 
cargo 

Maximum aft 
C.g. limit 

Fid. 1 • 12. Cargo balance. 

this total, add the passengers seated in the rearmost row of seats in the 
cabin and compute a new total weight and resultant center of gravity. 
If the resultant center of gravity lies forward of the aft limit, no minimum 
front cargo is necessary. If, however, the resultant center of gravity 
lies aft of the aft limit, front cargo will be required to bring the final 
resultant center of gravity forward of the aft limit. If this limit is 
assumed to be a fulcrum, and the airplane is balanced upon it, it is a 
simple matter to calculate the minimum front cargo required (Fig. 1-12). 

By this method, the first point on the curve is calculated. By adding 
passengers to the seats in the second row from the rear of the cabin and 
computing a new total weight and resultant center of gravity, the second 
point of the curve can be plotted. By continuing the process, the com¬ 

plete curve will result. 
The curve for the maximum allowable front cargo is calculated in a 

similar manner. The total weight and resultant center of gravity of the 
weight empty, crew, and fuel is computed, with the fuel supply for the 
critical nose-heavy condition. Then add passengers seated in the front 
row of seats in the cabin and compute a new weight and center of 
gravity position. If the resultant center of gravity lies forward of the 
forward limit, minimum ballast or cargo will be necessary in the rear 
compartment. However, if the center of gravity lies aft of the forward 
limit, front cargo may be added until the resultant center of gravity 
reaches the forward limit. The maximum value gives the first point on 
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the maximum front cargo curve. More passengers are added from front 
to rear until the whole curve is drawn. 

The most desirable minimum allowable front cargo loading for various 
numbers of passengers is shown in Fig. 1 • 13. Here the curve giving the 

amount of passenger baggage for the various numbers of passengers is 
tangent to the curve of minimum allowable front cargo. This condition 
is advantageous in the event of no cargo, because passenger baggage will 
usually be available and therefore ballasting will be unnecessary. How¬ 
ever, ballasting would be necessary if the cargo curve had passed through 

Number of passengers 

Fig. 1 • 13. Allowable limits on cargo load. 

the passenger baggage line. The maximum front cargo curve should be 
fairly high so early splitting of the cargo load will be unnecessary and 
there should be a reasonable gap between the two curves. 

If not limited by capacity, the maximum cargo that can be carried in 

the rear compartment for each number of passengers, after the front 
compartment is filled to capacity, is the difference between the minimum 

allowable front cargo and the maximum capacity of the front cargo 
compartment (Fig. 1 • 13) multiplied by the distance of the front cargo 
center of gravity to the aft limit and divided by the distance of the aft 
limit to the rear cargo center of gravity. 

(h) Adjusting the Center of Gravity Limits. If the maximum and 
minimum front cargo curves are found to be out of reason, they may be 
altered by (1) rearranging items in the fuselage, (2) moving the engines 
forward or aft, (3) moving the complete wing with relation to the fuse¬ 
lage, and (4) sweeping the wings. 

Rearranging the items within the fuselage is the simplest method if 
the required change is not too great. Moving the engines fore and aft is 
in the same category if sufficient room remains behind the engines for an 

aft movement or the nacelles are not so long as to prohibit moving the 
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engines forward because of unreasonable stresses, etc. The intersection 
of the propeller cones with the fuselage must also be considered. 

Moving the complete wing with respect to the fuselage offers no diffi¬ 
culties in the early stages of design, but later may cause a rearrangement 
of fuselage frames. A certain distance must be maintained between the 
wing and the tail, and if the wing position is changed, the fuselage 
weight will change. 

The final decision of moving items or sweeping the wing to arrive at 
the desired cargo loading, will depend upon how many items must be 

relocated and the complications involved. Suppose it is desirable to 
lower the minimum front cargo curve at its peak F pounds. Then the 
total necessary moment decrease will be F pounds times the distance of 
the front cargo center of gravity to the maximum aft limit, L. This 

moment decrease may be obtained by moving an item of weight W 
located in the fuselage a forward distance, d, in which 

d = 
FL 

W 

(i) Summary. It might well be said that the balance criterion is the 
most important single item in determining the arrangement of the useful 
load in an airplane. It may alter the desired seating arrangements, it 
may change the location of the cargo compartments, and may even alter 

the entire external shape of the airplane. It is for this reason, that the 
designer must give a great deal of attention to the accurate determination 
of the center of gravity limits, considering all possible (not only probable) 

arrangements that the useful load may take. 
There is an additional balance condition that must not be neglected, 

although it is not concerned with stability in flight. For an airplane 
with a tricycle type of landing gear, a calculation of the aft center of 
gravity location must be made to see that it does not fall behind the 
center of the main wheels’ ground reaction and thus cause the airplane to 
drop by the tail. For this case, it is assumed that the rear seats are full 
and the aisle is full of passengers crowding towards the exit, the fuel is in 
the critical aft position, and the pilot and second pilot are not in the 

pilots’ compartment. 
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CHAPTER 2 

APPLIED AND DESIGN LOADS 

2-1. Performance and Design Data 

The performance of the airplane is in general the concern of the 
aerodynamicist; however, certain performance characteristics of the 
airplane bear directly upon the work of the stress analyst in so far as 
they determine the load factors for which the airplane is designed. 
Only the performance data of which a knowledge is required in the load 
factor calculations will be briefly discussed in this section. The 
detailed methods of performance calculations will not be touched upon 
as they are covered in aerodynamics courses. 

The nomenclature employed and the given definitions are in accord¬ 
ance with those given in Civil Aeronautics Authority Manuals, CAR 
04 and CAM 04. 

Indicated air speed, V{. For stress analysis purposes all air speeds are 
expressed as indicated air speeds. The “indicated” air speed is defined 
as the speed which would be indicated by a perfect air-speed indicator, 
namely, one which would indicate true air speed at sea level under 
standard atmosphere conditions. The relation between the actual air 
speed Va and the indicated air speed V» is given by the equation: 

where Vi = indicated air speed 
Va = actual air speed 
Po =* standard air density at sea level 
pa = density of air in which Va is attained. 

Design level speed, Vl- The design level speed is the speed of the air¬ 
plane in level flight corresponding to the design power for continuous 
operation reduced to equivalent indicated air speed (f.p.s.) at sea level 
in standard air. If the estimated value of Vl is less than the value of Vl 
as finally determined from flight tests, either Vl or P, the design power, 
must be revised to show correspondence. If Vl is raised to correspond 
with P, it is necessary to revise the structural analysis. If P is revised, 

42 
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the reduced value must be entered on the aircraft operation limitations 
placard as the maximum allowable (except take-off) horsepower. 

Design gliding speed, V e. The design gliding speed, Ve (indicated 

f.p.s.), with power off shall not be less than Vl + Ks(Vm — Vl), ex¬ 
cept that it need not be greater than either Vl 4- 100 m.p.h. or 1.5 Vl, 
whichever is the lower where 

Ke = 0.08 + 
_1850_ 

W + 3000 

W — gross weight of the airplane 
Vm — terminal velocity with power off 

Vm can be estimated from the formula: 

Vm - 29 (Jj* (f.p.s.) 

Sd — estimated total drag area in square feet 
Kg shall not be less than 0.15 

Stalling speed, V,/. The stalling speed of an airplane with high lift 
devices is given by the equation 

W 

p/2(NCz,mai) 
[2-1] 

where Clomx = maximum lift coefficient with flaps. 
Where high lift devices are not employed, the stalling speed F„/ can 

be calculated from the above equation using the appropriate maximum 
lift coefficient. V/ is the indicated air speed at which maximum operation 
of high lift devices is assumed. The value of V/ shall not be less than 

2F»/. 
Design maneuvering speed, Vp, is the indicated air speed at which 

maximum operation of the control surfaces is assumed. Vv can be cal¬ 
culated from the equation 

Vp = V,f + Kp(Vl - V„) [2-2] 

Vp need not be larger than Vl- 
Where 

Kp - 0.15 + 
5400 

W + 3300 

Kp need not be greater than 1.0, but shall not be less than 0.5. The 
equation for Vp is intended to provide for the following factors: 

1. The maneuvering speed cannot be less than the minimum speed 

of level flight. 
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2. Assuming that the size of the control surfaces is governed by the 
necessity for adequate control at the minimum speed, the formula pro¬ 
vides for a reduction of the unit loading on the larger control surface 
area required for low stalling speeds. 

3. The high speed is included in the formula to provide for an increase 
of the unit loading on the control surface area with an increase in high 

speed. 
4. Kv is an empirical factor which provides for the more severe ma¬ 

neuvers likely to be experienced by small airplanes. This factor has 
been chosen in such a manner as to make the control surface loadings 
for average airplanes agree approximately with those known to be satis¬ 
factory from past experience. 

In addition to the above speeds a knowledge of certain design data 
is necessary; a brief discussion of this data is given in the following 
paragraphs. 

Design weight. The design gross weight of the airplane is the maximum 
weight at which it is licensed to fly. Usually this weight condition will 
be critical for most of the airplane’s structure; with the exception of 
certain portions of the airplane, such as engine mounts, nacelles, and 
the forward portion of the fuselage, for which the inertia loads remain 
substantially constant while the airplane as a whole becomes lighter 
from the consumption of fuel and oil. These items may be designed 
by the gust load factors for the minimum weight condition. The mini¬ 
mum weight is defined as the weight empty with standard equipment, 
plus minimum crew, plus fuel of 0.25 lb. per maximum horsepower 
(except take-off), plus a full load of oil. 

Effective wing area. Based upon wind tunnel tests on complete 
models the design effective wing area is taken as that of the complete 
wing without any deduction for that portion blanketed by the fuselage 
or nacelles. For the blanketed portions the wing outline is taken as 
though it were continuous. 

Design wing hading. The design wing loading is defined as the design 
weight of the airplane divided by the design effective wing area. 

Rated horsepower. Engines, as supplied by the manufacturer, are 
usually rated in three ways: 

1. A maximum rating for continuous operation. 
2. A take-off rating which is the power that can be developed for a 

short time without harmful effects on the engine. This time is generally 
sufficient to cover the time required for take-off. 

3. An emergency rating for continuous operation when one or more 
engines has failed. (This applies, of course, to multi-engined airplanes 
only.) 
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The wing load factors are calculated on the basis of the maximum 
rating for continuous operation. 

Design -power loading. Design power loading is defined as the gross 
weight of the airplane divided by the design power. The design power 
being the power which corresponds to the design level speed. 
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Fig. 2-1. Corrected airfoil characteristics. 

Mean aerodynamic chord is an imaginary chord on which all the wing 
area may be considered concentrated without changing the lift or 
'moment of the air forces on the airplane. 

The center of gravity of an airplane is a variable which may travel 
within the stability limits as determined by actual flight tests. In 
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designing the airplane it is necessary to use limiting locations deter¬ 
mined from the wind tunnel tests. Generally these limits are arbitrar¬ 
ily extended in both directions to insure that the full range determined 
from the flight tests will be covered by the analysis. 

In addition to the performance and design data discussed above a 
knowledge of the corrected airfoil characteristics for the particular 
design is necessary. By way of illustration a typical set of airfoil char¬ 
acteristics is shown in Fig. 2-1. 

2-2. Loads and Load Factors 

The airplane will, during its lifetime, be subjected to an infinite 
number of combinations of loads. These loads are essentially of two 
kinds, namely, flight loads which arise from a sudden change in flight 
attitude and those which arise from landing conditions. The former 
may occur through intentional maneuvers executed by the pilot or by 
encountering a “sharp-edged” gust during level flight; in either case 
the resulting force on the airplane is caused by a sudden change in flight 
attitude. 

No single combination of loads, i.e., lift drag, thrust, ground reactions, 
will be critical for all of the airplane's structural elements. It is there¬ 
fore necessary to investigate the flight and landing conditions which will 
include all the critical loadings for the structure. It is not possible to 
predict with exact certainty the worst load conditions which will be 
imposed upon the airplane's structure. However, our knowledge of 
aerodynamics enables us to limit the necessary investigations to a 
number of standard conditions. The Civil Aeronautics Authority has 
published in bulletins CAR 04 and CAM 04, rules by which the 
external loads resulting from each of these standard conditions can be 
calculated. These rules cover all the necessary requirements for com¬ 
mercial airplanes; however, the Army and Navy have additional require¬ 
ments which must be met in the design of military aircraft. Although 
these published rules contain certain arbitrary assumptions and empir¬ 
ical formulas, they have through past experience been proved to be 
adequate and satisfactory. 

(a) Acceleration Forces. The external forces resulting from an accel¬ 
eration of the airplane can be readily illustrated if we consider the lifting 
forces acting on the airplane and the weight of the airplane as con¬ 
centrated forces, Fig. 2*2. During unaccelerated level flight the vector 
sum of all the forces acting on the airplane will be exactly equal to zero, 
i.e., 

L-F = 0 
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In this case, the airplane as regards the external forces may be considered 
as being in static equilibrium. 

Now if upon the airplane is impressed a force of a magnitude nh 
(n>l) the condition of equilibrium will no longer exist and an accel¬ 
eration will occur in the direction of the force nh. 
According to d’Alembert’s principle, every state 
of motion may be considered at any instant as a 
state of equilibrium provided appropriate inertia 
forces are introduced. Newton’s first law states 
that the force acting on a mass is equal to the 
mass times the acceleration. Instead of this we 
can say that the force impressed is in equilibrium 
with the inertia force which is defined as the 
product of the mass and the negative acceleration. Therefore, our prob¬ 
lem of accelerated motion can be treated as one of static equilibrium 
provided we introduce the proper inertia forces. The equation of 
equilibrium then becomes 

nL = F + — a [2-3] 
9 

where a corresponds to the negative acceleration and g is the accelera¬ 
tion of gravity. Now since L is equal to W, it follows that 

L 

./n 
cm __* 

w 
Fig. 2 -2. 

n = 1+- [2-4] 
9 

(ft) Load Factors. The term a/g is generally referred to as the load 
factor increment and n as the limit load factor for the wing. 

The load factor can be defined as that multiplying factor by which the 
steady flight forces are multiplied to obtain the equivalent static effect 
of dynamic forces acting during acceleration of the airplane. The limit 
load factor is the maximum load factor which is to be expected in any 
normal maneuver. A factor of safety is introduced to give a material 
safety factor and to provide some factor of ignorance. Usually this 
factor of safety is 1.5, except in the cases of joints, fittings, and castings 
where higher factors are required. The limit load factor multiplied by 
the factor of safety is generally referred to as the design load factor, i.e., 

n' = design load factor = F.S. X n [2-5] 

As previously stated the external flight loads, or similarly, the load 
factors arise from the effect of maneuvering (controlled by the pilot), or 
from the effects of gusts in rough air. Basically the results are the same, 
namely, to change suddenly the attitude of the airplane without decreas- 
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ing its speed to correspond to the changed attitude. To assure a clear 
understanding of this latter statement consider the lifting force on the 
wing given by the equation 

L = ?ClV2S 

Since Cl is a linear function of the effective angle of attack of the 
airplane, throughout the normal flight range, it means that if the atti¬ 
tude of the airplane is suddenly changed in such a manner that the 
effective angle of attack increases, Cl will increase correspondingly. 
Now, if there is no decrease in the speed 7, the total lifting force L will 
increase in amount corresponding to the increase in Cl, thus causing 
an acceleration of the airplane. The load factor n will be equal to the 
ratio of Cl, corresponding to the changed flight attitude, to the value 
of Cl necessary to maintain level flight at the velocity V. 

If the lifting forces were to be calculated on the assumption that an 
instantaneous change in flight attitude can be attained, load factors as 
high as 30 and even greater would be necessary in designing the airplane’s 
structure. In practice we do not have instantaneous changes, for the 
following reasons: 

1. The human being can only stand acceleration, without injury, cor¬ 
responding to wing loads of approximately twelve times the weight of 
the airplane and even loads of five to six times the weight of the airplane 
are quite uncomfortable. 

2. The rapidity with which a maneuver can be executed is a function 
of the maneuverability of the airplane. Large airplanes are generally 
not required to execute violent maneuvers and are protected from the 
imposition of heavy loads by the inadequacy of the control surfaces to 
produce large, sudden changes in flight attitude. Military aircraft are 
designed for wing loads which are considerably higher than those of com¬ 
mercial airplanes; this is necessary because of the greater maneuvera¬ 
bility required in military aircraft. However, in all cases the airplane 
is protected from loads higher than those for which it is designed, by the 
intentional limitations of the control surfaces and also by the pilot’s 
knowledge of the purpose for which the airplane has been designed and 
the maneuvers which can safely be executed. 

In the rules set forth by the Civil Aeronautics Authority the above 
facts have been properly taken into account. These rules are based on 
years of practical experience combined with extensive tests in which the 
actual accelerations in flight were measured by means of accelerometers 
placed as near as possible to the center of gravity of the airplane. The 
degree of success which has been achieved in the past through the 
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application of these rules in the design of airplanes is sufficient proof of 
the adequacy of these rules. 

(c) Forces on the Airplane Wing in Flight. Inasmuch as the airfoil 
characteristics are always given in absolute (non-dimensional) coeffi¬ 
cients we shall consider the coefficients first. For stress analysis pur¬ 
poses it is convenient to resolve all forces normal and parallel to the 
basic wing chord. The given force coefficients will be, the lift coeffi¬ 
cient, Cl, normal to the relative wind; the drag coefficient, C/>, parallel 
to the relative wind; and the moment coefficient, Cm, about some definite 
point on the wing chord. The magnitudes of the coefficients are func¬ 

tions of the angle of attack a. Resolving these coefficients normal and 
parallel to the wing chord, Fig. 2-3, we have 

Cn = Cl cos a + Cd sin a 

Cc = —Cl sin a + Cn cos a 

cR = {cl + c2c)* = (cl + cdh 

where Cn — the force coefficient normal to the wing chord, positive up¬ 
ward; 

Cc «= the force coefficient parallel to the wing chord, positive 
rearward; 

Cr — the resultant force coefficient. 

If the spars and drag truss are not perpendicular and parallel to the 
wing chord, the resultant force coefficient, Cr, may be resolved parallel 
to the spars and the drag truss respectively, giving C'N and C'c, which 
are not necessarily perpendicular to each other. 

For design purposes it is satisfactory to assume that Cl — Cn = C'N. 
The total lift force on the wing is then given by Cl • Sq (or Cn • Sq or -Sq) 
and the total force parallel to the wing chord by Cc -Sq, where S is the 
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b C.P- 

efifective wing area in square feet and q is the dynamic pressure (q = 
pV2/2). The total twisting moment of the lift forces on a wing is given 
by CmSqc, where c is the wing chord. The moment coefficient, Cm, 
must be given about some definite point on the wing chord. Usually it 

is given about the aerodynamic center. 
..- The aerodynamic center (ax.) may be 

jQvjfeJ defined as that location on the wing chord 
I about which the moment of the air forces 

is substantially independent of Cl, that 
is, the product of Cn times the distance 

to the aerodynamic center in percentage of the wing chord is equal 
to a constant. 

For any point x along the chord, Fig. 2 • 4, the moment coefficient is 
given by the equation 

CMx = CN(x - CP) [2-6] 

Fig. 2 -4. 

where CP is the center of pressure position. CP and x are given in per 
cent of the chord. If x is taken as the distance from the leading edge to 
the aerodynamic center and assuming x = 0.25, then 

CP = 0.25 - ~- 
Cat 

where Cm is the moment coefficient about the quarter chord point. 
(+ Cm gives a moment such as to cause an increase in the angle of 
attack.) 

2-3. Methods of Calculating the Required Load Factors 

The methods which have been adopted by the Civil Aeronautics 
Authority for determining the load factors resulting from the various 
flight conditions are contained in the Civil Air Regulations CAR 04 and 
in Civil Aeronautics Authority Manual CAM 04. 

In order to familiarize the student with the methods of calculation, 
and also to clarify why the particular condition is considered critical, a 
number of the more important conditions will be discussed in detail. 
Since the regulations may change from time to time, it is recommended 
that the student refer to the above bulletins for the latest regulations 
and also for a more complete discussion of the various regulations. 

(a) Gust Load Factor. The limit gust load factors arise from a sudden 
change in flight attitude when an airplane flies into sharp-edged up or 
down air currents acting normal to the flight path. To appreciate more 
fully the effects of these conditions it is necessary to consider the effeot 
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of changes in the angle of attack on the lift coefficient, Cl- In the 
design range of angles of attack, Cl is a linear function of the angle of 
attack, a. As previously stated, the effect of a sudden change in angle 
of attack without any change in speed (at least momentarily) is to in¬ 
crease the total air load on the wing by the ratio of the respective values 
of Cl. For example, if Cl at A, Fig. 2• 5, represents the lift coefficient 
necessary to maintain level flight at the speed V, and 0,* at B represents 
the lift coefficient after a sharp-edged gust, KU, has caused a sudden 
change, A a, in the angle of attack, without a decrease in V, then the 

Fig. 2 -5. Effect of gust on Cl- 

total air load increase is given by (Cl at B)/(Cl at A). Since for small 
angles, the angle in radians is approximately equal to the tangent, we 
have 

and 

A a = 
KU 

V 

ACl = mAa = 
KUm 

V 

where m Is the slope of the lift curve, Cl per radian, corrected for aspect 
ratio. The limit load factor increment, An, is given by the equation 

ACl KUm PV2S pKUVSm KUVSm rn „ 

An ~ Cl ~ V ' 2W ~ 2W 575W [ ‘ * 

where U = gust velocity in feet per second, 
V = indicated air speed in miles per hour, 
K = gust reduction factor (reference 2-2, Kg. llo), 

W = gross weight of airplane in pounds, 
S = design effective wing area in square feet. 

Extensive tests have been conducted on commercial airplanes to 
determine the maximum gust velocities which may be encountered in 
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flight and the resulting accelerations. Based on approximately 6000 
hours of tests, a maximum upward gust velocity of 30 ft. per sec. and 
a maximum downward gust velocity of 30 ft. per sec. were adopted as 
being the most severe gust velocities which need be assumed in design. 
It should be noted that the gust velocity is independent of the airplane’s 
design characteristics; however, the gust load factor is not independent 
of the design characteristics of the airplane. 

May be neglected 

Fig. 2 • 6. Regions covered by Conditions I and II. 

(b) Condition I—Positive High Angle of Attack (H.A.A.). This con¬ 
dition provides for the maximum positive acceleration, or load factor, 
which is likely to occur and is based on either a gust or maneuvering 
condition. For the gust condition it is assumed that, at the design high 
speed, V^ a 30 ft. per sec. up gust is encountered. The maneuvering 
load factor increments are semi-empirical and are based largely on past 
experience. They represent the highest increments of acceleration which 
are to be expected during maneuvers. As it is possible to develop the 
limit load factor for this condition in various flight attitudes, a definite 
range of values of Cl is included, as indicated in Fig. 2-6. The method 
for calculating the load factors for these two flight conditions is given 
below. 

nx « 1 + Ani (shall not be less than 2.50) 
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where ni is the higher value determined from: 

KUVLSm 

AWI‘ = "575W~ 

. L__ , 32,000 If 3.25 1 

”Ifc L°'7 + 1^ + 9200JL(PF/P)°-435J 

where K = gust reduction factor, 
U = gust velocity = 30 f.p.s., 
S = effective wing area in square feet, 

W = gross weight in pounds, 
P = power corresponding to Fj> 

In calculating Ann, two further limiting conditions am, that IF/P 
need not be less than 12 and shall not be greater than 24. 

To provide for flight conditions critical for the front spar or its equiva¬ 
lent, the aerodynamic characteristics Cn, CP, and Cc shall be deter¬ 
mined as follows: 

Cni = ~~~ {ql = dynamic pressure corresponding to FL) 
Ql o 

Cc = value corresponding to GVj, or a value equal to —0.20 CVp 
whichever is the greater negatively. 

CP' = most forward position of the center of pressure between Cl = 

C#! and Cxmax* When CWj exceeds CLmax the CP curve shall 
be extended accordingly. 

The value of Cn required to produce the limit load factor at the high 
speed of the airplane will usually be considerably less than that corre¬ 
sponding to C/max. Condition I is designed to be critical for the front 
spar in bending and compression. For this reason, arbitrary values of 
C'c and CP are assigned, which ordinarily represent a pull-up to the 
limit load factor at a speed lower than Vl. 

Condition Ii—Positive high angle of attack—modified. The smaller of 
the two values of Cc specified in Condition I and the most rearward 

CP position between Cl — CWj and CLraax (Fig. 2*7) shall also be in¬ 
vestigated when Condition I is critical for the rear spar (or its equivalent) 
or if any portion of the front spar (or its equivalent) is likely to be 
critical in tension. Only the wings and wing bracing need be investi¬ 
gated for this condition. (Balancing loads on the tail are not required 

and their effect on the fuselage is not considered.) 
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(c) Condition II—Negative High Angle of Attack. The previous con¬ 
dition provides for the effects of a sudden increase in angle of attack. 
It is equally important to investigate the effects of a sudden decrease 
in angle of attack. The decrease in angle of attack may be sufficiently 
large to carry the wing past the angle of zero lift into the range of 
negative lift, such that the air load on the wing becomes a “down” load. 
From our previous discussion of inertia forces it is obvious that these 

Fig. 2-7. Regions covered by Conditions Ii and IIIi. 

forces will act upward and since they may become greater than the 
weight of the airplane it is necessary to provide for such conditions. 
Since the maneuvering loads are always lower than those which are 
likely to be imposed by gusts, it is sufficient to consider only the load 
factors due to a 30 ft. per sec. down gust when flying at the speed Fl. 
The load factor and coefficients are obtained from the following equa¬ 
tions: 

nn = 1 - Ama 

where Ania is taken from Condition I. 

Cnu 
nn W 

9lS 

Cc = actual value corresponding to C\srn 
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Note: When Cc is positive or has a negative value smaller than 0.02, it 
may be assumed zero. 

Cm = actual value corresponding to Cnu 

The coefficients are graphically illustrated in Fig. 2-6 (Condition II). 
(id) Condition III—Positive Low Angle of Attack. This condition 

represents an upward acceleration of the airplane at its design gliding 
speed Vg. As in Condition I, the applied load factor is considered to be 
produced by either a gust or a maneuver. As the speed Vg is the speed 
at which the airplane will be flown least, and not at all in very turbu¬ 
lent air, the gust load factor formula is based on a gust of 15 ft. per sec. 
and the arbitrary value of the limit acceleration required is less than 
that for Condition I. The load factors and coefficients are obtained 
from the following equations: 

win = 1 + Ariin (shall not be less than 2.0) 

where Awni is the higher value obtained from the following: 

KUVgS 

Lnm---rnwm 

where TJ = 15 ft. per sec. 

Anmb = Anib (Anib is determined in Condition I) 

Cnju =-“ (qg = dynamic pressure corresponding to Vg) 
Qgb 

Cc = actual value corresponding to Cnuv (When Cc is positive or 
has a negative value smaller than 0.02 it may be assumed zero.) 

Cm = the actual value corresponding to Cn nr 

The coefficients to be used are graphically illustrated in Fig. 2*8. 
Condition IIIi—Positive low angle of attack—modified. If the moment 

coefficient of the airfoil section at zero lift has a positive value, or a 
negative value smaller than 0.06, the effects of displaced ailerons on the 
moment coefficient shall be accounted for in Condition III for that por¬ 
tion of the span incorporating ailerons. To cover this point it will be 
satisfactory to combine 75 per cent of the loads acting in Condition III 
with the loads due to a moment coefficient of —0.08 — CMm acting 
over that portion of the wing only which incorporates ailerons. The 
design dynamic pressure for the additional moment forces shall be equal 
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to 0.75 qg. Only the wings and wing bracing need be investigated for 
this condition. (That is, balancing loads on the tail and their transfer 
through the fuselage need not be investigated.) 

(e) Condition IV—Negative Low Angle of Attack. This condition 
allows for the effects of a sudden decrease in angle of attack while flying 
at the speed Vg. Experience has shown that it is sufficient only to con- 

Fig. 2 • 8. • Regions covered by Conditions III and IV. 

sider the effects of a 15 ft. per sec. gust. The load factors are deter¬ 
mined from the following equations: 

ttiv = 1 — Anma 

where Anm0 is taken from Condition III. 

niv W 

",v = U' 

Cc — actual value corresponding to CVIV 

When Ce is positive or has a negative value smaller than 0.02 it may be 
assumed to be zero. 

Cm — the actual value corresponding to Csiv 

The coefficients are graphically illustrated in Fig. 2-8. 
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In addition to the above conditions it is necessary to investigate two 
special conditions, namely, Condition V—inverted flight, and Condi¬ 
tion VI—gliding at the limited diving speed Vg. 

(/) Symmetrical Flight Conditions—With Flaps Down. When flaps 
or similar high lift devices are used on wings, the design conditions must 
be modified to account for their use in flight. These modifications are 
based on the intended use of the flaps and the aerodynamic character¬ 
istics of the wing. The following conditions are considered the minimum 
required to cover a suitable range of symmetrical flight loadings in cases 
where the flaps are used only at relatively low air speeds. 

(1) Condition VII—Positive gust with flaps down. The design speed 
for this condition is Vj which is the restricted speed with flaps down. 
Vf may not be less than 2 V8f, where V8/ is the stalling speed of the air¬ 
plane with flaps down. 

Gust velocity, U = 15 f.p.s. 

nvu = 1 + Anvn (minimum value + 2.0) 

Anvn 
KUVfSrn 

575W 

Cvvii ~ 
nvn W 

QfS 

Cc = actual value corresponding to Cnvn 

Cm = actual value corresponding to CnyII 

Note: The most critical deflection of the flap must be investigated, gen¬ 
erally maximum throw. 

(2) Condition VIII—Negative gust with flaps down. This condition 
provides for the effects of down gust of 15 ft. per sec. at the speed F/. 

n\in = 1 — Anvn (with no lower limiting value) 

^Nyin — 
ftyill W 

QfS 

Cc and Cm correspond to the values for Cn viii 

(3) Condition IX—Dive with flaps down. This condition is a check 
for the maximum rearward chord loads on the wing structure. The 
maximum deflection of the flap is used, and the load factor and the 
magnitude and distribution of normal, chord and moment forces over 
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the wing correspond to the angle of attack at which the greatest rear¬ 
ward chord loads are produced. 

a. Speed 

b. CClx 

c. Cnix 

d. nix 

Vf with no gust factor 

maximum rearward chord coefficient with flaps down 

value of Cjv corresponding to CcIX 

Cvix Of 

wjs 
e. Cmix = value corresponding to CVIX 

Only the wings and wing bracing need be investigated for this con¬ 
dition. That is, balancing loads on the tail and their effect on the 
fuselage need not be computed. 

It is also necessary to investigate a number of conditions in which 
the wing loads are unsymmetrical, e.g., it is assumed that the load on 
one half of the span is different from that on the other. For a detailed 
discussion of these conditions the student is referred to the Civil Aero¬ 
nautics Authority manuals. 

(g) Minimum Weight Requirement. Up to this point all the design 
conditions have been based on the gross weight of the airplane. It is 
also necessary to investigate certain portions of the structure, which 
carry fixed weights, for the effect of gusts when the airplane is flying 
light; because under light load conditions the effect of gusts is more 
severe. (Note: the increment of load factor due to gust is inversely pro¬ 
portional to the wing loading.) The light load conditions in particular 
design engine mounts and the front portions of fuselages. On large air¬ 
planes where most of the fuel is carried in the wings it is generally neces¬ 
sary to investigate the fuselage for some intermediate weight conditions 
in which the fuselage is carrying its maximum load, while the weight of 
the airplane as a whole is less than the gross weight because of the fuel 
which has been consumed. 

The minimum design weight (which gives the highest possible gust load 
factors) is defined as the weight empty of the airplane with standard 
equipment, plus crew, plus fuel of 0.25 lb. per normal rated horsepower, 
plus a full load of oil. 

(h) Distinction between Wing Load Factor and Dead Weight Factor. 
All the lift load factors previously determined are wing load factors. 
They represent the ratio between the wing forces actually necessary to 
sustain the airplane, and the forces built up on the wings when the angle 
of attack is changed without a corresponding change in speed. If the 
resultant air forces on the airplane passed through the center of gravity 
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of the airplane, there would be no tendency toward rotation, except that 
induced by unbalanced moment from thrust and drag. Actually there 
is nearly always a tendency for the airplane to rotate about the center 
of gravity which must be balanced by loads on the horizontal tail. To 
keep the summation of vertical forces equal to zero the force at the 
center of gravity must balance the effect of the wing load plus tail load. 
If all these values are expressed in terms of the airplane weight, then the 
balancing force at the center of gravity is the dead weight, or inertia 
load factor. 

Since the moment about the center of gravity determines the vertical load 
on the horizontal tail, and thus the dead weight load factor, the location 
of the center of gravity is important. On a transport- airplane the center 
of gravity travel may be anywhere within the stability range as deter¬ 
mined by flight tests. It is generally sufficient to investigate the extreme 
forward and aft center of gravity travel. For analysis purposes one must 
rely on wind tunnel data if available, or make a conservative estimate of 
the center of gravity limits. Even when wind tunnel results are avail¬ 
able it is a general practice to allow for limits two or three per cent in 
either direction outside the indicated stability range. The importance 
of the location of the center of gravity becomes clearer when all the 
forces acting on the airplane are taken into account. This point will be 
considered further in the computations for balancing loads on the tail. 

(i) Balancing of the Airplane. The basic design conditions must be 
converted into conditions representing the external loads applied to the 
airplane, before a complete stress analysis can be made. This process is 
known as balancing the airplane and represents a complete static con¬ 
dition in which the fundamental equations 2F = 0, 2H = 0, and 2M 
= 0 must be satisfied. It is a momentary condition of equilibrium. 
Actually there are both angular and linear accelerations acting to change 
the velocity and attitude of the airplane, but as previously stated it is 
customary to represent a dynamic condition, for analysis purposes, as a 
static condition by assigning to each item of mass in the airplane the 
appropriate inertia forces. 

If the direction of the resultant air forces on the airplane is not 
through the center of gravity, there will be an angular acceleration tend¬ 
ing to rotate the airplane. An exact analysis would require the computa¬ 
tion of this angular acceleration and its application to each item of mass 
in the airplane. Instead of this laborious method it is customary to 
eliminate the angular inertia forces by providing the necessary moment 
with a load on the tail surfaces. This is convenient, since the balancing 
lpad can be thought of either as an aerodynamic force on the tail surfaces 
or as a summation of the required balancing inertia forces. In a gust 
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condition it is probable that angular inertia loads resist most of the 
unbalanced couple added by the gust, whereas in a steady pull»up condi¬ 
tion the tail load is mostly a balancing air load from the tail surfaces. 

The following general assumptions are made in balancing the airplane: 
1. Full “power on” is assumed for conditions at VL (I and II). For 

conditions at Vg (III and IV) the propeller thrust is assumed to be zero. 
2. It is assumed that the applied load factors specified for the basic 

flight conditions are wing load factors. A solution is therefore made for 

n, m Applied wing load factor x3F~ Horizontal distance from fwd. C.G to AX. 
nt * Net load factor (n2,= C. 6. fwd. x3a » Horizontal distance from aft C.G. to AX. 

_ . # , „ nu ~ C.G. aft) xs m Horizontal distance from A.C. to 20% of mean 
n3 * Tad toad factor foil chord 
nKim Applied chord load factor h3 *= Vertical distance from AC. to C.G 
n*t* Net chord load factor h4 - Vertical distance from A.C. to line of 
num Propeller thrust factor propeller thrust 
m, - Moment factor 

Load factors and distances ore positive upward and rearward, moments are positive clockwise 

Fig. 2-9. Assumed force system for flight conditions. 

the net load factor acting on the entire airplane. The net load factor is 
then used in connection with each item or group of items in the analysis 
of the fuselage. For balancing purposes the net load factor can be 
assumed to act at the center of gravity of the airplane. When the 
center of gravity is variable, as on a transport airplane, the fore and 
aft limits must be determined and the load factors for the limiting con¬ 
ditions must be computed. 

3. In balancing the airplane we are concerned primarily with tail 
loads. Assuming that it is possible for the stabilizer and elevator loads 
to be acting in opposite directions, the Civil Aeronautics Authority 
recommends that the center of pressure of the loads on the horizontal 
tail be placed at 20 per cent of the mean chord of the entire tail surface. 
This arbitrary location is also considered as the point of application of 
the inertia forces resulting from angular accelerations, thus simplifying 
the balancing process. 

4. The simplifying assumptions are made so that the external forces 
act at only four points on the airplane. The forces consist of: (a) wing 
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lift, wing drag, and wing moment acting at the mean aerodynamic 
center; (b) the weight of the airplane and parasite drag of the airplane 
acting at the center of gravity; (c) the thrust of the propeller acting at 
the center line of thrust; * (d) the tail force acting up or down at 20 per 
cent of the mean tail chord; (e) the chord load acting at the tail surface 
may be neglected. 

A tabular form as shown below is used to simplify the computation of 
the balancing loads for the various flight conditions. 

In the calculations for the tail load factor moments must be taken 
about the center of gravity of the airplane since both the tail coefficient 
and the net load factor through the center of gravity are unknown. 

In using Fig. 2*9 and Table 2*1 the following assumptions and con¬ 
ventions should be employed: 

1. If known distances or forces are opposite in direction from those 
shown in Fig. 2*9, a negative sign should be prefixed before inserting in 
the computations. The direction of unknown forces will be indicated 
by the sign of the value obtained from the equations. A negative value 
of n3 indicates a down load on the tail. For conditions of positive 
acceleration the solution should give a negative value for n2y as the 
inertia load will be acting downward. The convention for mi corre¬ 
sponds to that used for moment coefficients, that is, when the value of 
Cm is negative, mi should also be negative, indicating a diving moment. 

2. All distances should be divided by the mean aerodynamic chord 
before being used in the computations. 

The following explanatory notes refer by number to the items appear¬ 
ing in Table 2*1. 

(3) The wing loading, W/S, should be based on the design wing 
area. 

(5) ni = limit load factor required for the condition being investi¬ 
gated. 

(8) Cc are the values obtained in the load factor calculations. 
(10) The propeller thrust, Fprf should be determined from the follow¬ 

ing equation for conditions at Vl> 

Fpr = 7iZ75HPa/Va (propeller thrust in pounds) 

where Va = actual air speed in miles per hour 
HPa — actual horsepower 

17 = propeller efficiency 

(ID Cm are the values obtained in the load factor calculations. 

* If the line of propeller thrust is within three degrees of the same angle as the 
reference line of the fuselage the difference is neglected. 
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TABLE 2-1 

Balancing Computations 

No. Item 
Vi ~ m.p.h. Vg = m.p.h. 

I II Ill IV 

a) W — gross weight, lb. 

(2) q = 0.00256 F2 

(3) * = (1)/S 
— 

(4) q/s = (2)/(3) 

(5) n\ — applied wing load factor 

(6) Cn = (5)/(4) 

(7) Ci corresponding to Cn 

(8) Cc 

(9) = W X (4) 

(10) nx< =: Fpr/iX) 

(11) Cm = design moment coefficient 

(12) mi - (11) X (4) 

(13) ft3 “ tail load factor 

(14) ri2 = — (5) — (13) = net load factor 

(15) nX2 = — (9) — (10) = chord load factor 

(16) T = (1) X (13) = tail load 

(17) Cmt — moment coefficient of airplane less tail 

(18) ACm - (17) - (11) 

(19) Ami = (18) X (4) 

(20) An-) = (19)/(ar3 - *2) 

(21) AT « (1) X (20) 

(22) V = (16) + (21) 
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(13) The net tail load factor, n3, is found by a summation of mo¬ 
ments about the center of gravity, Fig. 2*9, from which the fol¬ 
lowing equations, for the fore and aft center of gravity posi¬ 

tions, are obtained: 

and 

n3 = —--[mi - nxlh2 - rnx2v ~ + h2)] 
£3 + x2F 

[mi — nXlh2 + n\x2A — nX4(h 4 + h2)] 

Items 1 to 16 of Table 2*1 cover the determination of the balancing 
loads, without considering the moment which may be contributed by 
the fuselage and nacelles. The following explanatory notes refer by 
number to items appearing in Table 2 • 1 which provide for the deter¬ 
mination of tail loads when the fuselage moment effects are taken into 
account. 

(17) Cmt is the total moment coefficient about the center of gravity 
of the airplane less tail, as determined from a wind tunnel test. 
Item 18 provides for cases in which test results are not avail¬ 
able. 

(18) ACm is the increment in moment coefficient due to the fuselage 
and nacelle moments, also based on design wing area and mean 
aerodynamic chord. When test data is not available, ACm can 
be assumed equal to —0.01. 

(22) T* is the tail load considering fuselage and nacelle moment 
effects. 

The above explanatory notes apply only when the setup as shown in 
Fig. 2*9 is used. When the value of Cmt is obtained from wind tunnel 
tests, the tail loads T' may be used in design. However, if the —0.01 
moment increment is used, the design balancing load should be taken 
as either item (16) or (22) whichever is the more severe. 

2-4. Control Surfaces 

In the preceding sections methods have been discussed for calculating 
flight loads on the wings, flight balancing loads on the tail surfaces and 
the inertia (or dead weight) factors to be applied to all the weights in 
the airplane to satisfy the equations of equilibrium SF » 0, 2H = 0, 
and 2M * 0. The balancing load on the tail was assumed to act at 
the 20 per cent point on the mean chord of the horizontal tail. In order 
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to design the tail surfaces it is still necessary to determine the propor¬ 
tion of load on elevator and stabilizer and the direction in which it acts 
on each. Further, the tail surfaces must be investigated for loads im¬ 
posed by the pilot in maneuvering, for the effects of gusts in flight, and 
for the effects of gusts in any direction when the ship is parked or taxi¬ 
ing on the ground. 

(a) Balancing Loads in Flight. The limit load acting on the horizontal 
tail surface is the maximum balancing load calculated from flight con¬ 
ditions I, II, III, IV, VII, or VIII. The distribution of load is according 

to Fig. 2-10. The elevator load, P, is taken as 40 per cent of the total 
tail load, T, with the load directed opposite to that on the stabilizer. 
This means that the stabilizer load would be 140 per cent of the net tail 
load. However, there are cases where 40 per cent of the balancing load 
on the tail corresponds to an elevator load much higher than the pilot 
could apply. In such a case the limit load on the elevator, P, is reduced 
to that corresponding to 150 lb. exerted by the pilot on the controls. 
The load on the stabilizer is still T + P . (Note that there is no reduction 
of load on the stabilizer except that due to the reduction in load P on 
the elevator.) 

Figure 210 represents the distribution of load on an average strip of 
chord of the horizontal surface. 

For loads on the fixed surface, 

total load on fixed surface 
w =- 

1.75 X area of fixed surface 

A constant value of Cn is assumed along the span. The above loading 
designs the forward portion of the stabilizer and the structure trans¬ 
mitting the stabilizer torque to the fuselage. 
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(6) Maneuvering Loads. Horizontal tails must also be designed for 
limit unit loads not less than those corresponding to pull-up speed Vv 
and the following normal force coefficients: 

CN = —0.55 downward 

Cat = +0.35 upward 

VP = V„ + Kp(Vl - V.f) 

V„ = stalling speed with flaps down in miles per hour 

= 19.77 (#/CJM 

CLm&x — maximum lift coefficient for the wing with flaps down 

Vl = maximum level flight high speed in miles per hour 

5400 
Kp = 0.15 + ——7—— but shall not be less than 0.5 

rr g T 5300 

Wg = gross design weight. 

The average limit unit down load over the entire surface is 

—w = —0.55qp and the average limit up load + w = 0.35^. 

qp = 0.002558Fp = dynamic pressure at pull-up speed, Vp in miles 
per hour. 

Where the unit loads obtained by the above equations give elevator 
torques in excess of those corresponding to a 200-lb. load on the controls 

Fua. 2-11. Maneuvering load distribution. 

in the cockpit they may be reduced to those which do correspond to the 
above control load, except in no case shall the average unit load be less 
than 15 lb. per sq. ft. The distribution for this loading condition is 
according to Fig. 211. 

(c) Effect of Tabs on Elevators. When tabs are installed on the 
elevators, either to trim the ship or to aid the pilot in moving the surfaces, 
their effect must be accounted for. Under such conditions the minimum 
limit load over the entire horizontal surfaces shall not be less than that 
corresponding to the torque applied on the elevator when the pilot exerts 
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a force of 200 lb. in addition to the maximum aiding effect from the trim 
tab when fully deflected with relation to the elevator. When the tabs 
aid the pilots the loads are computed as follows: 

1. Determine the normal coefficient, (Cx) for the tab fully deflected, 
assuming the deflection and angle of attack of the elevator to be zero. 
(See N.A.C.A. Technical Report 360.) 

2. Determine the applied unit load, w, on the tab corresponding to 
the normal force coefficient, Cx, and the high speed of the airplane in 
level flight, F/,. 

w - CxQl 

The load distribution is assumed uniform over the tab. 
3. Determine the loading which when distributed over the elevator in 

accordance with Fig. 2*12 will balance the sum of the hinge moments 
produced by the tab load and a force of 200 lb. applied by the pilot. The 
loading over the main surface aft of the hinge line is assumed triangular 
while that over the tab is uniform and in the opposite direction. 

Figure 2-13 shows the loading over the elevator when the tab and 
elevator are deflected in the same direction. Because of the effect erf 
the tab on the surface in front of it this condition will usually design the 
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ribs forward of the tab, and may be critical for the elevator torque 
member. The loads for this condition are obtained as follows: 

1. For all portions of the movable surface except the area between the 
hinge line and the tab, assume the usual distribution of Fig. 2-11, with 
an unknown value of unit loading, w, at the hinge line. 

2. For that portion of the movable surface included between the hinge 
line and the trailing edge of the tab, assume a uniform distribution. 
The unit load is w, the same value as at the hinge line. 

3. Compute the moment about the main hinge line in terms of w, 
and equate this value to the moment produced by a 200-lb. load applied 
in the cockpit by the pilot, to solve for the unknown value of w. 

Fig. 2*13. Load distribution with tabs opposing the pilot. 

Note: All the foregoing values have been given in terms of limit loads. 
Design loads are 1.5 times limit loads. 

(d) Vertical Tail Surfaces. (1) Maneuvering loads. When the 
propeller axes are in the plane of symmetry the vertical surfaces are 
designed for an average normal force coefficient, Cat = 0.45 and for 
speed, Vp) hence the average w = 0Abqv. The load distribution is the 
same as that of Fig. 2-11. 

If the propeller axes are not in the plane of symmetry the vertical sur¬ 
faces must be investigated for the following conditions: (a) The design 
speed shall not be less than the maximum speed in level flight with any 
engine inoperative. (b) The limit load need not be greater than that 
corresponding to a 200-lb. force applied by the pilot except that in no 
case may it be less than 12 lb. per sq. ft. 

(2) Flight gust on vertical tail. The following gust condition shall be 
assumed for the vertical tail: 

Gust speed U «= 30 f.p.s. 
Flight speed = Vl (same as Condition I for wing) 
Average v> = t/Fx,ra/575 where m is the slope of the lift curve for 

vertical surface. [The units of m must be Cl per 
radian corrected for aspect ratio.] 
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An aspect ratio of at least two shall be used. If m for the vertical sur¬ 
faces is not available from wind tunnel tests the following approximate 
formula may be used: 

•-““’‘(r+l/i) 
where VL = m.p.h. 

M = aspect ratio (not less than 2) 

The gust condition applies only to that portion of the vertical surface 
which has a well-defined leading edge. 

The chord distribution shall be that for a symmetrical airfoil where 
data are available. The distribution in Fig. 2 12 may be used for the 
fin where desired. 

(3) Tabs on the rudder. When the propeller axes are in the plane of 
symmetry the loads on the surfaces are such as to balance the load from 
a maximum tab deflection at speed Vl with no force applied by the 
pilot. 

If the propeller axes are not in the plane of symmetry the loads are 
such as to balance the effect of a 200-lb. force applied by the pilot, plus 
the effect of maximum tab deflection, not at the speed Vl, but at a 
reduced speed V'L) corresponding to the maximum speed in level flight 
with one engine inoperative. V'L may be determined by the approxi¬ 
mate formula V'L = 0.97//1 — 1/n)^, where n is the number of engines. 

Loads are distributed along the chord in the same manner as for the 
horizontal surfaces. See Figs. 2 • 12 and 2 • 13. 

(e) Ailerons. Ailerons are inves¬ 
tigated for the following conditions: 

(1) Maneuvering. If the propeller 
axes are in the plane of symmetry 
the ailerons are designed for a normal 
force coefficient, Cn = 0.45 at the 
pull-up speed Vp. 

Then the limit average loading 
w = 0.45gp 

The distribution is according to 
Fig. 2 * 14 which applies for all aileron 
loading conditions. If the propeller 
axes are not in the plane of symmetry, 

the design speed shall not be less than the maximum speed in level 
flight with one engine inoperative. 

The limit unit load in either direction need not exceed that correspond¬ 
ing to an 80-lb. force acting at the stick (or an 80-lb. force acting at the 

Fia. 2 • 14. Aileron load distribution. 
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rim of a control wheel) considered to be resisted by one aileron only, 
except that in no case shall it be lower than 12 lb. per sq. ft. 

(2) Tab effects. Only those airplanes with propeller axes not in the 
plane of symmetry need be checked for the effect of tabs. When a tab 
is installed on one or both ailerons so that it can be used by the pilot to 
assist in moving the ailerons, the limit unit loading over both ailerons 
shall be of sufficient magnitude and in such a direction as to hold the 
ailerons in equilibrium with the tab or tabs deflected to their maximum 
throw. For this condition the loads on the tabs are computed at maxi¬ 
mum level flight speed with one engine inoperative. 

(3) Flying conditions. We must not lose sight of the fact that the 
ailerons are also part of the wing area. They must therefore be checked 
to insure that they meet all the requirements of the symmetrical load 
conditions for the wings. To check this condition reference is made to 
plots of chordwise distribution of pressure for the airfoil. The chord- 
wise distribution varies with the angle of attack and is available in 
N.A.C.A. Reports as a plot of p/q against Cl- 

Values of Cl and q are taken from the wing flight conditions. Having 
these values the pressure across the aileron is obtained. These values 
are limit values. As in all conditions described the design values are 
1.5 times those obtained from the basic data. 

(/) Wing Flaps. Flaps are designed for Conditions VII and VIII 
described in section 2-1. The minimum design speed V/ is 2V8f (twice 
the stalling speed with flaps down). 

The distribution of load over the flap is assumed uniform unless 
wind tunnel data are available to show the actual distribution. For 
aileron type flaps the normal force coefficients may be taken from refer¬ 
ence 2*3. For split flaps for which the upper portion is a fixed part of 
the wing, the value of Cn may be obtained from the empirical relation 

CN = 0.273 + 0.0217 

where 7 is the flap opening in degrees. Where no data on Cn are avail¬ 
able it is assumed to be 1.60, which is a very conservative value. 

(g) Control-Surface Tabs. The loads previously given for control- 
surface tabs are for the purpose of designing the surfaces to which they 
are attached. Actually the tabs themselves may carry higher loads 
when they are partially deflected at higher speeds. For design of the 
tabs only all usable combinations of speed and tab deflection up to the 
design speed Vg must be considered. The loads are considered to be 
uniformly distributed. 

(h) Effect of Horizontal Ground Gusts. For large airplanes it has 
been found that the most severe loads on the tail surfaces may be 
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encountered when the airplane is parked on the ground or taxiing in a 
cross wind. For large airplanes, in addition to the Civil Aeronautics 
Authority requirements it is good practice to assume that the tail sur¬ 
faces may have to withstand a ground gust up to 60-m.p.h. velocity 
applied in any direction up to 30 degrees from either side for the elevator, 
or up to 45 degrees from either side for the rudder. An approximate 
solution is as follows: 

1. Assume that the trailing edge of the movable surface is the leading 
edge of a rectangular flat plate, that the surfaces are locked in neutral, 
and that the wind may come from the rear at any angle up to those 
noted in the preceding paragraph. 

2. Take the normal force coefficient and center of pressure data from 
Fig. 11*12, p. 11:11 of reference 4. 

3. Calculate the average normal force at the value of Cjy for the 
maximum angle of attack (30 degrees for elevator, 45 degrees for rud¬ 
der). Values of CV are 0.895 at 30 degrees and 1.30 at 45 degrees. 

It will be noted that the center of pressure lies between 34 and 35 per 
cent in the range from 30 to 45 degrees angle of attack. It is therefore 
assumed that the distribution is triangular over the entire tail surface 
with the maximum value at the trailing edge. 

Average w = C^q, where q = 0.002558 X 602 
Maximum w at trailing edge = 2 X w 

The values given above are limit loads. Design loads are 1.5 times 
the above values. 

2-5. Landing Conditions 

In addition to the flight loads it is necessary to consider the effects of 
landing loads on the airplane's structure. An infinite number of landing 
attitudes are possible; however, for purposes of analysis a limited number 
of attitudes, which are so designed as to give the most severe condition 
for the possible range of landing attitudes, are investigated. The main 
landing conditions, for a conventional tail-wheel gear, which must be 
considered are level landing, three-point landing, side-drift landing, one- 
wheel landing, and landing with brakes. 

For a landing with zero angle of roll, two attitudes are investigated, 
namely, level landing in which the resultant of the ground reactions 
passes through the center of gravity with the thrust axis horizontal, and 
the three-point landing condition, i.e., the wheels and tail wheel strike 
the ground simultaneously. These conditions are assumed to cover the 
complete range for the following reasons: 



2-5] LANDING CONDITIONS 71 

1. If the resultant of the ground reaction lies aft of the center of 
gravity, the airplane will “nose over.” 

2. If the tail wheel strikes the ground first the ground reaction will 
produce a rotation causing the wheels to touch before the reaction on the 
tail wheel can fully develop. 

The nosing-over condition is considered somewhat irregular and is 
consequently covered by special requirements which assume that damage 
to the airplane is unavoidable. However, the requirements provide 
for a structure of sufficient strength to prevent serious injury to the 
crew and passengers. 

In the three-point landing attitude it is also necessary to consider the 
case in which the pilot lands with brakes on. 

If the angle of roll is not zero, the limiting conditions are: 
1. A three-point landing attitude with a side, rearward, and vertical 

reaction component acting on one wheel only. Each component being 
of the magnitude nW, where n is specified in CAR 04, and W is the 
gross weight. Assuming all forces to be acting on one wheel means that 
the airplane is in the three-point landing attitude with one wheel and 
tail wheel just off the ground. 

2. An attitude in which the propeller axis is horizontal and all reac¬ 
tion forces act on one wheel. The vertical component is nW, the side 
component is zero, and the rearward component is such as to cause the 
resultant of the ground reaction to pass through the center of gravity. 
These two conditions cover the range in which the angle of roll is not 
zero. 

Airplanes with a nose-wheel-type landing gear are investigated for 
the following landing conditions: 

1. Three-wheel landing with vertical reactions 
2. Three-wheel landing with inclined reactions 
3. Two-wheel landing with vertical reactions—nose up 
4. Two-wheel landing with inclined reactions—nose down 
5. Two-wheel landing with brakes—nose down 
6. Side-drift landing 
7. Side-drift landing with brakes 
8. One-wheel landing * 

These conditions represent for a nose-wheel-type gear the possible 
critical attitudes in which the airplane may be landed. A detailed dis¬ 
cussion of these landing conditions is given in the Civil Aeronautics 
Authority bulletins CAR 04 and CAM 04. 

The reaction forces are caused by upward accelerations, for, at the 
instant the airplane touches the ground it has a vertical and horizontal 
component of velocity. The vertical component in particular becomes 
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zero during a very short interval of time which indicates the existence 
of an upward acceleration and consequently a downward inertia force. 
The magnitude of the acceleration forces depends upon the weight of 
the airplane, the magnitude of the vertical component of velocity, and 
the efficiency of the shock absorbing unit in prolonging the period of 
upward acceleration. The lift forces on the wings and tail surfaces are 
small and are conservatively neglected. 

2-6. Summary of Loads and Loading Conditions 

In sections 2-1 to 2-5 we have discussed the loads and load factors 
for which the airplane’s structure must be designed. The next step in 
the design procedure is to calculate the shears, bending moments, and 
torsional moments acting on the wings, tail surfaces and the fuselage. 
Since the distributed external loads are in general not uniform, a semi- 
graphical method of integration gives the most convenient method of 
calculation. Calculating the shears and bending moments on the tail 
surfaces and fuselage offers no difficulty for the external loads are either 
concentrated or distributed loads in pounds per unit area. The wing 
calculations are discussed below. 

(a) Wing—Shears and Moments. The normal shears and bending 
moments acting on the wing structure can be considered as due to two 
sources, namely, the aerodynamic forces and the dead weight items. 
The latter include the structural weight of the wings and the weights of 
such items as are either attached to or housed in the wing structure. 
Because the load factors for the air forces are not the same as those for 
the dead weight items it is necessary to calculate the design shears and 
moments due to each source separately. 

Consider a wing plan form as indicated in Fig. 2 • 15a with a corre¬ 
sponding Cn distribution as shown in Fig. 2-156. Dividing the span 
into a convenient number of elements, we can represent the total lifting 
force acting on one span by an equation of the form 

i»n 

L - q ^2 M>i [2*8] 

where the summation extends over one-half span and 

Cm = mean value of Cn over the increment of span A&,•, 
Ci = mean chord length over the increment of span A6,-. 

Now the air-load shear, <S*+i, at any station bk+i is equal to the total 
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lifting force acting on the wing outboard of this station, and is given by 
the equation 

i=k 

Sk+i = q ^ CHt Ci Abi [2-9] 
1 

It is convenient first to calculate the air-load shears and moments for 
a unit load factor, generally referred to as the basic air-load shears and 

Fig. 2*15. Determination of air-load shear curve. 

moments. The air-load shears and moments for any one of the flight 
conditions can then be obtained by merely multiplying the basic air 
loads by the appropriate load factor. The given Cn curve will be for 
an arbitrary value of q, which is not necessarily the value which satisfies 
the condition that for a unit load factor the total lifting force equals the 
weight of the airplane. Since the Cn distribution is assumed to be the 
same for all values of <?, the value of q' which satisfies the above con¬ 
dition can be obtained by equation 2*8, namely: 

[2-10] 
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Substituting the value of q' for q in equation 2*9 the basic air-load 
shear at any station can be calculated. 

The normal bending moment, Mk+u any station bk+i is equal to 
the area under the shear curve to the right of this station and can be 
expressed as 

This equation gives the basic air-load bending moment at any station. 
The design shear or bending moment due to the air loads can be obtained 
from the calculated basic shear and bending moment values by multiply- 

ACJ ~YC— Elastic axis 

c„ 
Fig. 2 • 16. Forces and moments causing wing torsion. 

ing by the appropriate load factor for the particular condition which is 
being investigated. 

The shears and moments due to the dead weight items are also cal¬ 
culated for a unit load factor. The design values are obtained by 
multiplying by the appropriate net load factor. The actual design shears 
and bending moments will be the algebraic sum of the air load and the 
dead weight design shears and bending moments. Since the inertia 
forces of the dead weight items oppose the aerodynamic forces the signs 
of the dead weight shears and bending moments will be opposite to those 
due to the aerodynamic forces. 

The above methods of calculation would be exact if the variation of 
the chord width, the C& distribution and the shear were linear between 
two consecutive stations. This will in general not be true for Cn, the 
shear, and for the chord near the wing tips. The deviation from a 
linear variation will in general be small, and if the stations are taken 
reasonably close together the results will be sufficiently accurate for 
practical purposes. 

The torsional moments can also be considered as being due to aero¬ 
dynamic forces and dead weight items. The aerodynamic forces acting 
on the wing are as shown in Fig. 2*16, where Cmu is the moment coeffi¬ 
cient about the aerodynamic center. Let us first consider the torsional 
moments, due to these forces, in a plane parallel to the longitudinal 
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axis of the airplane and about an axis which coincides with the locus of 
the aerodynamic centers. 

Consider an element of area A Si a distance ;rz- from station bk, as 
shown in Fig. 2*17. The torsional moment at this station due to the 
air forces acting on A Si is 

A Mth — Cmc q A SiCi — Cn q A Si yi [2* 12] 

If the angle between the locus of the aerodynamic centers and the 
perpendicular to the longitudinal axis of the airplane is assumed con¬ 
stant and equal to /3 then, 

yi — Xi tan p 

Substituting this value of yi in equation 2*12 gives 

A MTk = Cm a q A S^i — Cn q A Si Xi tan p 

and the torsional moment at station bk due to the air forces on the sur¬ 
face to the right of this station is 

i—k j—k 

MTk = Cm„ q ASi Ci- q tan 0 CNi ASi [2-13] 
i - 1 i = 1 

Now the expression 
i~k 

q y] Cn{ AS; Xi 
i— i 

is just equal to the air-load bending M* at the station bk, hence we can 
write 

i~ k 

MTk - CMa q ^2 ASi ~ tan £ [2-14] 
i^l 

where Mrk will be the design torsional moment due to the air forces if 
q and Mk are design values. 
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Since the weight and positions of all dead weight items will be known 
and also the design net load factors, the design torsional moments due 
to these items can be readily calculated. The actual design torsional 
moments will be the algebraic sum of the air load and dead weight 
torsional moments. 

In the analysis of the shear stresses due to torsion it is necessary to 
calculate the torsional moments about the elastic axis of the wing, i.e., 
the locus of the shear centers of the wing cross sections. However, the 
elastic axis will not be known until the wing structure is designed and, 
furthermore, its position changes with a change in wing structure. It 
is, therefore, desirable first to calculate the torsional moments about a 
fixed axis, which is not dependent on the wing structure. The torsional 
moments can then later be transferred to the elastic axis. For example, 
if at the station bk the elastic axis is a distance ye (Fig. 2-16) aft of the 
aerodynamic center, the actual design torsional moment about the elas¬ 
tic axis will be 

Mr = Mrk + Sjc Ve [2-15] 

where Mrk and S* are the actual design values due to the aerodynamic 
forces and the dead weight items. 

(6) Margins of Safety. In the strength calculations of the airplane's 
structure it is necessary to have some standard method by which it will 
be possible to express quantitatively the relation between the load which 
will be imposed upon a given structural element and the amount it is 
capable of carrying safely. In airplane design it is customary to express 
the relation by means of a margin of safety which is defined as 

or 

M.S. - 
Allowable load 

Actual load 

^ g __ Allowable stress ^ 

Actual stress 

In determining margins of safety it is necessary to have a clear under¬ 
standing of what is meant by allowable load or stress. It simply means 
that it is the ultimate load to which the particular element can be sub¬ 
jected, as, for example: 

1. If buckling is the design criteria, then the buckling load is the 
ultimate load, i.e., the allowable load on a column is the load which 
causes buckling. 

2. If the load is pure tension, the allowable load is the ultimate tensile 
load or the load corresponding to the yield point stress, depending on 
the design condition. 
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3. If the load is pure shear the same conditions as in 2 apply. 

4. For cases of combined loading, i.e., shear plus compression, or shear 

plus tension, the ultimate load is either the buckling load, if buckling is 

the design criteria, or the ultimate load which the material can carry 

under the combined loading conditions. 

The Civil Aeronautics Authority in “Strength of Aircraft Elements,” 

ANC-5, specifies that at the limit load factor the stress shall not exceed 

the yield point of the material. Hence, for a material in which the yield 

point stress is less than two-thirds of the ultimate stress the allowable 

stress would be the yield point stress and the actual stress would be that 

corresponding to the limit load factor. If the yield point stress is greater 

than two-thirds of the ultimate stress the margin of safety would be 

based on the ultimate stress and design load factor. In addition to the 

above requirement, certain minimum margins of safety are specified. 

All castings must show a 100 per cent margin; all fittings, 20 per cent; all 

parts subjected to shock loads, 100 per cent; and for aluminum alloys 

and steel parts in bearing subjected to reversed stresses, a 50 per cent 

margin. The Army and Navy have their own requirements for minimum 

margins. 

REFERENCES FOR CHAPTER 2 

2-1. Civil Air Regulations, Part 04. 

2'2. Civil Aeronautics Manual 04. 

2-3. E. N. Jacobs and R. M. Pinkerton, “Pressure Distribution over a Symmetrica' 

Airfoil Section with Trailing Edge Flap," N.A.C.A. Tech. Rep. 360. 

2-4. K. D. Wood, Technical Aerodynamics, McGraw-Hill, 1935. 



PART II 

METHODS OF STRUCTURAL ANALYSIS 

CHAPTER 3 

STRESS-STRAIN RELATIONSHIPS FOR STABLE STRUCTURES 

3-1. Fundamental Considerations 

The first problem confronting an engineer who is designing a load¬ 
carrying structure is the determination of the actual loads acting on 
the various component parts of that structure. The second problem 
is that of determining the loads which these component parts can carry 
without exceeding certain limiting criteria. These criteria may be (a) 
the amount of load causing failure or complete collapse of the part; 
(b) the amount of load which will cause the part to deform permanently; 
(c) the amount of load possible before the part will deflect a certain 
limiting amount. The first problem, that of determining the loads on 
an airplane structure, has been discussed in Part I; the second problem 
will form the basis for Part II. 

(a) Stress. It is obvious that load alone is not a good criterion for 
determining the strength of a structural element for, if the part is large 
in cross section, physical reasoning tells us that it will carry a greater 
load than a similar, but smaller, member. The strength properties are 
then in some way connected with the applied load and the cross-sectional 
area of the member. The simplest form of this relationship can be seen 
in the case of a vertical, hanging member carrying a weight, P. (See 
Fig. 3 • la.) If we make a cut through the member perpendicular to the 
direction of the applied load P, such as section A-A, and assume that 
the cross-sectional area of the member at this section is A, then we can 
define a value <r such that 

The value <r is known as the normal stress in the rod due to the load P. 
The term normal stress arises from the fact that the two portions of the 

78 
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member could be held together by tension links which act perpendicular 
to the cut surface (see Fig. 3-16). 

It is frequently the naive assumption of engineers that the above 
equation giving the value of the normal stress in a tension member 
indicates the only stress which might cause failure. A little study will 
show that through any given point in a loaded body there are an infinite 
number of possible stresses and that it is possible to define completely 
only the stress at a point relative to a given plane of reference. In 
mathematical language this means that a stress is a tensor quantity 
which, to be completely defined, 
must have given the magnitude, 
direction, and a plane of reference 
as compared to a vector quantity 
which is completely determined if 
the magnitude and direction are 
specified. 

To illustrate this point further, 
let us consider a cross section B-B 
through the tension member. Now 
if, as in Fig. 3 • lc, tension links are 
placed perpendicular to the cut sur¬ 
face, it is immediately apparent that 
the relative position of the upper and lower portions will change unless 
an additional force, S, is brought into play. Thus, we have in addition 
to the normal forces acting perpendicular to the surface B-B, a force 
acting parallel to this surface. This is known as a shear force and, 
again it is referred to the area over which it acts giving rise to a shearing 
stress. 

(o) (b) (c) 

Fig. 3 1. 

where A in this case is the cross-sectional area of a section through the 
member parallel to the plane B-B. 

The normal stress in the example above is known as a tensile stress 
since the forces necessary to keep the cross sections together are tension 
forces. If the picture were inverted, in other words, if the member were 
supporting a dead weight P acting on top of it, then the normal stress 
would be known as a compressive stress, and the direction of the shear 
force S for any cross section would be reversed. 

Certain relationships between the various stresses can be determined 
by the conditions of equilibrium of an element of a loaded member. 
Consider a unit element with the coordinate system indicated in Fig. 
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3-2a. Now consider the stresses acting parallel to the .XT-plane (Fig, 
3*2fr). We see that there are two normal stresses ax and ay and two 
shearing stresses rxy and ryx. From the condition that the element must 
be in equilibrium we can say that 

(c) (d) 

Fig. 3 -2. Coordinate axes for stresses. 

Similarly (Fig. 3*2c and Fig. 3-2d), 

TXt — Tzx 

ryz Tzy 

[3-4] 

[3-5] 

So that, for the complete three-dimensional case we see that there are 
a total of six possible stresses which can act in any element. These are: 

<rx = normal stress acting parallel to the X-axis. 
cv = normal stress acting parallel to the F-axis. 
ax = normal stress acting parallel to the Z-axis. 
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txv = shearing stress acting on the face of the element which is per¬ 
pendicular to the X-axis; the direction of this stress being 
parallel to the F-axis. It also refers to an equal stress acting 
on the face of the element which is perpendicular to the F- 
axis, the stress acting parallel to the X-axis. 

TVg = shearing stress referred to the FZ-plane and defined similarly 
to that above. 

rtx = shearing stress referred to the ArZ-plane. 

If now we have such a system of stresses referred to a given set of 
orthogonal axes, the question arises as to what the stresses will be if 

referred to a plane at an angle 0 to one of the axes. Consider a cross 
section parallel to the XF-plane with stresses ax, <ry, and rxy, and assume 
it is desired to determine the stresses acting on a surface which makes 
an angle 0 with the F-axis. See Fig. 3-3. Consider the element to be 
of unit thickness and let the dimensions of the cross section be as indi¬ 
cated. Then, since a force is equal to the stress times the cross-sectional 
area over which it acts, we can write the equilibrium conditions of the 
element as follows: 

<VAs = <rxAy cos 0 + (rvAx sin 0 + rxyAy sin 0 + rxyAx cos 0 [3*6] 

r&y'As = —<rxAy sin 0 + <ryAx cos 0 + TxyAy cos 0 — rxyAx sin 0 [3*7] 

since 
Ay/As * cos 0 and Ax/As = sin 0 

ov * cos2 0 + <jy sin2 0 + 2rxy sin 0 cos 0 

r*/y/ * (—a* + <fv) sin 0 cos 0 + tXj,(cos2 0 — sin2 0) 
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By considering a section perpendicular to the F'-axis it can also be 
shown that 

<V = ox sin2 0 + av cos2 0 + 2rxy sin 0 cos 0 

These equations may be written in the form 

oX' — °X cos 26 + txv sin 20 [3-8] 
z z 

av> ~ + ------- cos 20 + rxy sin 26 [3-9] 
z z 

Tx>y> = — gjn 20 -(- TXy cos 26 [3 • 10] 
z 

The angle 6 at which the shear stress tx>v> is zero is given by the 
equation 

tan 2[3-11] 
<TX O y 

Now, since tan 20 — tan 2(0 + 90°), we see that two perpendicular direc¬ 
tions can be found for which the shearing stress is zero. These directions 
are called principal directions and the corresponding normal stresses, 
principal stresses. If we designate the principal stresses by o\ and o2 
and substitute 

0\ == Ox1 $2 ^ Oy* Tx'y* = 0 

into equations 3*8 to 3*10 inclusive using the relationship of equation 
3-11, we obtain 

Ox + Oy , ^ j(0X - <Ty)2 , 2 r„ 
Oi = —2— + \-4-+ T*V [3- !2] 

Ox+Oy / (0X Cy)2 2 
02 -—2-\-4-[3-13] 

If, in equation 3-10 we set <rx = <rit ay = <r2, and rxy = 0, it is easily 
seen that the absolute value of the maximum shear is equal to 

[3-14] 

The above relationships can be shown graphically by what is known 
as Mohr’8 circle. See Fig. 3-4. Let us assume that on a given cross 
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section of a stressed element there are acting the stresses axy <ryy and rxy. 
On a set of orthogonal axes representing normal and shearing stresses 
lay off <rx and rxyy locating point A. Sim¬ 
ilarly locate point B by laying off <ry 
and rxy. Then pass a circle having its 
origin on the a-axis through points A 
and B. Any diameter of this circle 
now represents the complete stress pic¬ 
ture of a given plane in the stressed 
member. For example, at an angle 9 
from the original plane, we find the posi¬ 
tion where the shearing stress is zero, 
and the only stresses acting are the 
principal stresses. Likewise, 45 degrees 
from this position we find the position 
where the value of the shearing force is a maximum, and has the value 

<ii — <r2 

Example. Consider an element of a stressed member which, analysis shows, is 

subjected to the stresses shown in Fig. 3*5a. A rectangular set of axes representing 

a and r are drawn (the same scale must be used for both axes) and points A and B 

Fig. 3 -5. Mohr’s circle analysis. 

are located from the known values of <rx, <rv, and r®y. (See Fig. 3 • 56.) The value of 

<ry is laid off as a negative value since it is a compression stress. A line is drawn 

between A and B, intersecting the axis at C. Using C as a center and CA as a radius, 

a circle is drawn which is the Mohr's circle for the given stress state. From this 

can be seen that at an angle 6 = 18° 49' from the original element axes there are 
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principal stresses of 23,500 lb. per sq. in. and —8500 lb. per sq. in., respectively. At 
45 degrees to the direction of the principal stresses there will be found the maximum 
shear stress, in this case equal to 16,000 lb. per sq. in. 

The above discussion has been based on the assumption that the 
stress field was uniform throughout the part under consideration. In 
most structural and machine design members this is not true and the 
stress varies from point to point in the member. We will now study 
the effect of this variation in the equilibrium conditions of an element 
and will discuss only the two-dimensional case since the equations for 

Fig. 3 • 6. Equilibrium diagram. 

the three-dimensional problem can be derived by analogy. Consider the 
element shown in Fig. 3 • 6 in which the stresses vary as one progresses 

from one side of the element to the other. Writing the equilibrium 
equation for the forces in the X-direction we get 

(ax + ~ dxj dy - axdy + (rxy + dy'jdx - rxydx = 0 
dx 

which reduces to 

do's . dTxy _ ~ 
dx + dy 

[3*15] 

Similarly, for the forces in the F-direction 

dTxy . dffy _ 
dx dy 

[3-16] 

Equations 3-15 and 3-16 are known as the equations of equilibrium in 
two dimensions. 
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For the general three-dimensional case, it can be shown that the equa¬ 
tions of equilibrium are 

dflg , dTxy | dJxz ^ q 
dx dy dz 

, dTyz __ q 
dx dy dz 

drXz dryz d(jg __ 

dx dy dz 

[3*17] 

Any stress state in an elastic body must satisfy these equilibrium 
equations but, as will be shown later, satisfying the equilibrium equa¬ 
tions is not always sufficient because, as }ret, no deformation considera¬ 
tions have entered the analysis. 

(b) Strain. If a material such as rubber is subjected to a tensile or a 
compressive load, it is immediately obvious that it deflects in the direc¬ 
tion of the applied load. The same is true of all materials although for 
those materials used in construction, the deformations are so small they 
can only be measured with very sensitive instruments. 

For a member of length L, subjected to a load P, the deformation is, 
up to a certain limit, directly proportional to the load. The unit strain, 
that is, the deformation per unit length is then given by 

t = j = K~ = Ka [3-18] 
Ld A 

where e = unit strain in inches per inch in the direction of the applied 
load 

e = total deformation in the length L 

K = a constant which is a function of the material 

The constant K is usually written in the form l/E where E is known 
as the Young’s modulus or modulus of elasticity of the material, and 
equation 3 • 18 becomes 

g _ P 

E ~ AE 
[3-19] 

Similarly, to a shearing stress there is related a shearing strain which is 
given by an angle, since the shearing stress will tend to distort the sides 
of any rectangular element as in Fig. 3 • 7. Again, up to a certain limiting 
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value, the shearing strain is proportional to the shearing stress and the 
equation is of the form 

T _ S 

G~AG 
[3*20] 

where y = unit shearing strain 
S = shearing force 
r = shearing stress 

G = shearing modulus which is a constant for any material below 
a certain stress limit 

Let us return to the consideration of rubber. Since its deformations 
under load are large enough to be visible, if a block of rubber is com- 

77777777777777777/77 

Fig. 3 -8. Normal strain. 

pressed by a vertical load, it will not only shorten in the direction of the 
applied load but it will also tend to expand in the horizontal direction. 
(See Fig. 3-8.) The ratio of the two unit deformations is known as 
Poisson’s ratio or 

— = /X [3-21] 

where = total horizontal deformation divided by the width of the 
specimen 

e, = total vertical deformation divided by the length of the 
specimen 

Considering now the completely general case of the unit cube acted 
upon by the six possible stresses <rx, <ry, <rz, rxy, ryzy rzxy the general stress- 
strain relationships can be shown to be of the form 
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«* = % \?Z ~ vfcy + **)] 

7Xy 7V* TZX ro 

y*V “ ^ > Tyz — ^ > yzx — ^ [3*23] 

In the above, the stresses are taken as positive when in the direction 
shown in Fig. 3-2. 

Equations 3*22 and 3*23 are only true when the material is isotropic 
and homogeneous; however, most engineering structural materials, al¬ 

though made up of a mixture of crystalline elements satisfy these con¬ 
ditions sufficiently so that the equations may be used with negligible 
errors. 

It would appear from equations 3-22 and 3*23 that there are three 
constants necessary to determine the stress-strain relationships of any 
given material, the Young’s modulus, E; the shear modulus, G; and the 
Poisson’s ratio, m- It can be shown, however, that these are not mu¬ 
tually independent for any one can be expressed as a function of the 
other two by the equation, 

E 

G = 2(1 + M) [3-24] 

With the use of equations 3-22 and 3-23 and the differential relar 
tionship between deformation and unit strain it is possible to determine 
another set of equations which must be satisfied by any stress system 
in an elastic body. Since these equations essentially determine the fact 
that the deformations in any one element are compatible with the 
deformations in all adjacent elements, they are known as the com¬ 
patibility equations. 
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Consider deformations u, v, w parallel to the X-, F-, and Z-axes, 
respectively, then, if a two-dimensional element is subjected to <rx and 
<rv stresses it will deform as shown in Fig. 3* 9a. The total change in 
length in the X-direction is 

, du _ du , 
u H-dx — u = — ax 

dx dx 

and the unit deformation ex is equal to the total deformation divided by 
the original length of the specimen; and similarly for ty and tz giving 
rise to the equations 

du dx du 

Cj dx dx dx 

[3-25] 

Now, if the element is considered to be acted upon by shear stresses 
in addition to the normal stresses shearing deformations as in Fig. 3*96 
occur. Since all deformations are assumed small compared to the size 
of the element, we can write, neglecting second order terms 

__ dudy _ du 

71 dy dy dy 
and 

dv dx dv 

72 dx dx dx 

[3-26] 
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By performing suitable differentiations and combining, the six equa¬ 
tions shown above may be reduced to three, namely, 

b2 Try d2 tx . d2 

bxby 

d2 

by bz 

&2y zx 

dz dx 

dyz 

S2 

lb2" 

d2 

+ 

+ 

dx 
~ + ,2 ' 

dx2 

d2 eg 

dy2 

d2 tx 

dz2 

[3-27] 

By separately combining the stress-strain equations 3*22 with the 
equilibrium equations 3*17 and the compatibility equations 3*27, two 
sets of three equations may be obtained. One of these sets gives the 
relationships which must be satisfied by the stress and the other those 
which must be satisfied by the strains in order that any assumed stress 
or strain pattern fulfils all the requirements for validity in an elastic 
body. 

For any problem in an actual structure there is one additional set of 
requirements that must be fulfilled. This consists of the stress and 
deformation conditions at the boundary of the body which must con¬ 
form to the applied loads and external 
restraints of the specific problem. These con¬ 
ditions are known as the boundary conditions 
of the problem. 

(c) Stress-Strain Curves. To determine the 
usefulness of any material for structural 
purposes, it is necessary to know the elastic 
properties of that material. These properties 
are determined by applying known loads to a 
sample of the material and measuring its 
elongation by means of suitable testing and 
measuring equipment. The simplest test is a 
tension test of the material in which a pure 
tensile load is applied to a specimen and the elongation of a given original 
length of the specimen is measured. If this elongation is divided by the 
length over which it has been measured, the unit elongation is obtained 
which can be plotted against the stress, or the load divided by the cross 
section of the specimen. We will now examine a few typical examples 
of such curves. 

(1) Soft iron. The stress-strain curve for soft iron is similar to that 
shown in Fig. 3-10. It will be noticed that for low stresses, the unit 

e in ./in. 

Fig. 3 * 10. Stress-strain 
curve for soft iron. 
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elongation is directly proportional to the stress. This region is known 
as the Hooke’s law regime and corresponds to the straight line portion 
of the stress-strain curve shown. The slope of this part of the curve 
gives the modulus of elasticity, E, of the material since, from equation 
3*19 

e 

At some stress value, shown as point A on the diagram, the curve 
deviates from the straight line, indicating that the strain is no longer 
proportional to the stress. This is then appropriately called the pro¬ 
portional limit of the material. 

If loading is continued, a point will be found at which the strain will 
increase with no increase in stress, i.e., the stress-strain curve has a 
horizontal tangent. This stress, shown at point By is known as the 
yield point of the material. 

Continued increase of the load on the member produces an ever- 
increasing rate of elongation and finally the specimen ruptures. This 
stress value, point C on the curve, is the ultimate stress which the material 
is able to stand under loading conditions similar to those applied during 
the tests. 

It is well to mention here that nearly all the simple equations of 
stress and strain developed in applied mechanics, elementary structures, 
and machine design assume a linear relationship between the applied 
stress and the unit elongation. They are therefore strictly speaking 
valid only up to the proportional limit stress of any material. Small 
deviations between calculated and actual values would be expected for 
stresses up to the yield point, and, after the yield point stress has been 
exceeded, a number of the simple stress and deflection equations become 
very inaccurate. 

If, at any stress below the proportional limit, the load is removed 
from the specimen, the deformation will return to zero. However, if the 
specimen is loaded to stress greater than the proportional limit and the 
load is then removed, the deformation will not return to zero, but the 
specimen will have a permanent set or will be permanently deformed. 
For example, consider that a stress corresponding to point D in the curve 
has been reached and the load is removed. Instead of the material going 
back to its original state, the stress-strain curve from point D to zero 
stress will be approximately parallel to the original straight line region 
all the way to zero stress, giving rise to a permanent elongation in the 
specimen equal to the permanent unit strain, epi times the length of 
the member. 
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(2) Steels and aluminum alloys. It is a characteristic of the stress- 
strain curves of a number of common structural materials that they 
have no true yield point, that is, no point on the curve has a horizontal 
tangent. This is true of all the aluminum alloys and the alloy steels. 
In order to establish a design value corresponding to the yield point, 
a point on the curve corresponding to a given permanent set is arbi¬ 
trarily defined as the yield point. In aircraft design the yield point of 

Fig. 3*11. Stress-strain Fig. 3 12. Stress-strain 

curve for aluminum alloys curve for high strength 

and common steels. steels. 

any material is defined as that point corresponding to a unit permanent 
set of 0.2 per cent or, in other words, 

c = 0.002 

Typical curves for aluminum alloys and high strength steels are shown 
in Figs. 3-11 and 3-12 and the important points on these curves are 
indicated. 

Design values for the material properties of aircraft structural 
materials can be found in various handbooks. Among these are ANC-5 
(Reference 3-1), Army Handbook for Airplane Designers, and a number 
of other handbooks (References 3-2 to 3*4). 

The conceptions of stress and strain are simple; however, it is very 
common for a designer to forget that, for a given material, increasing 
the stress also increases the deformation. This may not be important 
in short machine members, but in parts such as wing beams in an air¬ 
plane with a span of 100 ft., the total deformation due to stressing the 
material may be considerable. As an example consider an aluminum 
alloy (Young’s modulus 10.3 X 106 lb. per sq. in.) having a yield point 
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of 40,000 lb. per sq. in. which is used to fabricate a member 50 ft. 
long. If the stress in the member is made equal to the yield point, the 
total deformation will be 

ah 40,000 X 50 X 12 „ oo . 
c — — a — 2.33 m. 

E 10.3 X 106 

which deformation may cause alignment difficulties, interferences, or 
other troubles unless the designer is careful. 

If the above material is improved in strength by cold working or by 
any other means so that it can be stressed to 60,000 lb. per sq. in. before 
reaching the yield point, it must be realized that not only will the struc¬ 
ture made now of this stronger material be able to carry more load, but 
it will also deflect 50 per cent more. In other words, the price the 
designer has to pay in order to utilize high strength materials is that of 
providing for the large deflections which come from high stresses. The 
only material property which will affect a change in the relationship 
between unit stress and unit strain is Young’s modulus, and the only 
way this can be changed is by going to a different material. Unfor¬ 
tunately a limit is soon reached in this direction because the various 
steels have the highest modulus (approximately 30.0 X 106 lb. per sq. 
in.) of any material which is available in sufficient quantities to be used 
as a structural material. This modulus is about three times as high as 
that for the aluminum alloys; however, steel is approximately three 
times as heavy as the aluminum alloys so little actual gain can be made 
in reducing the deformations by using the high modulus steels as con¬ 
struction materials. 

In summary, the designer is again reminded that high stresses mean 
high unit deformations, so whenever analysis shows that a part is sub¬ 
ject to high stresses, it is well to check whether or not the attendant 
deformations may cause trouble. This is particularly true of long mem¬ 
bers where the deformations may be a matter of inches (or even feet as 
for wing beams under bending, as is not uncommon) and may therefore 
introduce clearance and interference problems of major importance. 

3-2. Load, Shear, and Moment Relationships in Beams 

A beam is, by definition, a member that is long compared to its cross- 
sectional dimensions and that can not only withstand axial loads but 
also has a resistance against bending. The general case, therefore, con¬ 
sists of a structural member loaded with forces and moments which may 
either come from other structural members attached to the beam in 
question or from directly applied loads and moments. 
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The basic assumption that is made in beam analysis is that the 
complete system of forces and moments is in equilibrium. This not only 
applies to the beam as a whole but to every individual element of the 
beam. In order to set up a basis for discussion, certain sign conventions 
will be established which will be used consistently throughout the 
analysis which follows. It is well to remember that there are no restric- 

7 lb./in 

Loading +20 lb. 

(b) 

20 fb' Shears 
4 M 
♦ +100 in.lb +100 in.lb. 

lb. 

(cO 

Fig. 3 -13. 

tions on sign conventions; it is only necessary to be consistent once a 
particular convention has been established. Consider the beam loaded 
as shown in Fig. 3 • 13a which leads to the shear and moment diagrams 
of Fig. 3*136 and c. 

From this figure it will be seen that the established ^gn convention is 
as follows: 
а. Loads. Loads and reactions are considered positive when acting 

upward. This is in contradiction to the usual civil engineering concep¬ 
tion, but nearly all loads on an aircraft structure in normal operation 
act upward, hence the decision as to sign. 

б. Shears. The shear on any section will be considered positive if the 
summation of the loads on all portions of the beam to the left of that 
section acts upward. 
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c. Moments. The moment on any section will be considered positive 
if it is such as to cause compressive stresses in the upper fibers of the 
beam at that section. Let us now consider an infinitesimal length of a 
beam, as shown in Fig. 3 ■ 14, and write the equilibrium equations of the 

moments and forces. From the fact 
that the summation of vertical 
forces must equal zero we have 

S + p(x) dx - (S + dS) = 0 

which gives 

£-*> I3'28! 
or, that the rate of change of shear 
along any beam is equal to the load 

increment over that portion. Taking the summation of moments 
around A, we obtain 

M + dM - (S + dS)dx + p(x) dx ■ ~ - M - 0 

which gives 

[3*29] 

since dSdx and p(x) (dx)2/2 are of second order and may be neglected. 
This indicates that the rate of change of the bending moment is equal 
to the shear. Differentiation of equation 3-29 leads to 

d2M dS 

m ~v[x) [3*30] 

From these last two equations it can be immediately inferred that 
(a) when the shearing force is zero, the bending moment is a minimum 
or maximum, and (6) when the distributed loading p(x) is zero, the 
bending moment curve is linear. 

3-3. Bending Stresses and Bending Deflections. 

Let us now consider a beam initially straight and of uniform cross 
section, Fig. 3-15a, subjected to pure bending in the .XT-plane. For 
our problem we assume: 

a. That the centroidal axis of the beam, i.e., the line connecting the 
centers of gravity of the cross sections, coincides with the X-axis. 

b. That transverse planes (YZ) remain plane. 
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c. That Hooke’s law holds, i.e., <r = Ee where a = unit stress, 6 = 

the unit strain and E is Young's modulus. 
Let Fig. 3*156 represent a unit length of the beam after it has been 

subjected to the bending moments M and let 

It = radius of curvature, 
c0 = extension in a unit length along the centroidal axis, i.e., 

eX( ) = extension in a unit length parallel to the beam axis for 
arbitrary y. 

Fig. 3-15. Beam analysis notation. 

From simple geometrical relations we have 

R-y l + «: *(y) 

This gives 
L0 R 1 + e0 

1 + «*,„) = (1 + «o) (l - = 1 + «0 

Now e0 « 1 and y<£R 

R R 

<o y . 

R 11 
equation can be written as 

Hence, — is of second order and may be neglected, and the above 
R 

<*(„) = «o 
R 

[3-31] 

From the stress-strain relationships, equation 3-22, 

tx~E "*■<r*^ 
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However, since there are no external forces acting in the 7- or Z-direc- 
tion we have 

<ry = <rz — 0 

Hence 

Substituting equation 3*32 in equation 3-31 gives 

E 
*x = E = Ec0 - —y 

[3-32] 

[3*33] 

Now consider the section ABCD, Fig. 3-15c. The resultant of the 
stresses ax must be equal to the resultant of the axial loads, and the 
resultant moment of the stresses <sx must be in equilibrium with the 
bending moment M and, since for pure bending there is no axial load, 

I oxdA = 0 
Ja 

/ axydA = 
Ja 

[3-34] 

[3-35] 

Using equation 3-33 we have 

I oxdA = Etn f dA-~ f ydA = 0 
Ja Ja E Ja 

By the definition of the center of gravity of an area, / ydA = 0, and 
Ja 

consequently, since E I dA is not equal to zero 
Ja 

e0 = 0 

This means that all fiber elements lying on a straight line through the 
center of gravity of the cross section and normal to the plane of bending 
remain unstrained. This fine is called the neutral axis. 

The moment of the stresses about the neutral axis is, from equations 
3 * 33 and 3 * 35 

— f <rxyd.A = ~ f tfdA = M 
Ja KJa 

The expression JtfdA is known as the moment of inertia I, hence 

El 1 M 

m~-r or 
[3-36] 
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Also from equation 3*33, since e0 = 0, 

97 

V* 

-'Ey 

R~ 

ffx 

Ey 

substituting this value of \/R in equation 3-36 wc obtain for the bend¬ 
ing stress the following relation: 

<?x = 

My 

I 
[3*37] 

Equation 3-36 can be used directly to determine the relation between 
the deflection y in the direction of the F-axis and the applied bending 
moment M. The curvature 1/R, of a line y = y(x) is given by the 
equation 

l 

R 
[3*38] 

where y is measured positive upward and — is positive if the deflection 

curve is concave if seen from above. Substituting the value for ~~ from 
R 

equation 3-36 in equation 3*38 the differential equation for the deflec¬ 
tion curve becomes: 

M\* , MAT 
dx2 EIl+\dx). 

[3-39] 

If we confine ourselves to small deflections, the second order term 

may be neglected and the differential equation becomes 

d2y 
EI-J-M [3-40] 

From the relations of equations 3 ■ 29, 3-30, and 3-40 we can imme¬ 
diately write the following relations between the distributed load p(x), 
the shear force S, and the deflection y. 

d_ 

dx 

dx? 

dM 

dx 
= S 

d2M dS 

~ " Tx ~ 

[3-41] 

[3-42] 
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The above three equations arc of fundamental importance in the calcu¬ 
lation of beam deflections for they enable us to calculate the deflection 
of a beam if either the moment, M, the shear force, S, or the load, p(x), 
is given. 

Since all the equations relating to the problems of bending of beams 
have been derived on the basis of certain specific assumptions it might 
be well to consider the limitations of these equations. The first of these 
assumptions is that the deformations are small compared with the 
physical dimensions of the beam. Too great deviations from this 
assumption will tend to destroy the validity of equations 3*31 and 3*40. 

The assumption of a linear stress-strain relation breaks down if bending 

(■*— b —H 

is continued l>eyond the proportional limit of the material. The longi¬ 
tudinal fiber stress will no longer be proportional to the longitudinal 
strains, and the distributions of stress will not be in accordance with 
equation 3*37. If the stress-strain curve is the same in compression as 
in tension, the stress distribution beyond the proportional limit will 
be as indicated in Fig. 3 • 16a. Since the stress-strain diagram is the 
same in compression and tension, the neutral axis will continue to pass 
through the center of gravity of the cross section. If the proportional 
limit is much lower, say, in compression than in tension, the stress dis¬ 
tribution, after exceeding the compressive yield stress, will be as shown 
in Fig. 3 • 166. It is seen that not only is the stress non-linear, but the 
neutral axis shifts toward the tension side. This shift of the neutral axis 
is a direct consequence of the condition that the resultant moment of 
the stresses must be in equilibrium with the bending moment M. A 
simple rectangular beam has been chosen as an illustration; however, 
the above discussion applies in general to a beam of any uniform cross sec¬ 
tion. Equation 3-36, which defines the curvature of the beam, is also 
based on a linear stress relation and any deviation from this relationship 

will cause inaccuracies in the curvature calculation and consequently 
in the bending deflection calculations. 

The bending equations as derived are valid if the beam has one or more 
planes of symmetry. If a beam has only one plane of symmetry, it is 



3-3] BENDING STRESSES AND BENDING DEFLECTIONS 99 

necessary that the bending couple lie in this plane. In this case the 
neutral axis will be perpendicular to the plane of symmetry and will 
pass through the center of gravity of the cross-sectional area. The effect 
of bending couples in planes other than the plane of symmetry will be 
discussed later. 

So far, we have considered the distribution of longitudinal stresses 
and the deflections due to bending loads. We will now consider a few 

Fig. 3 -17. 

of the elementary methods of calculating the bending moments, reac¬ 
tions, and shearing forces on a beam when certain external loads are 
given. Consider a beam, Fig. 3-17a, subjected to a system of external 
loads as shown. The unknown reactions RA and Rb are assumed to 
act in the positive direction, the results of the calculations showing 
whether or not that assumption is correct. 

Taking moments about A, 

-Ma + 
p(x) L2 

4* Mb 4" Rb L — 0 
2 
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Rb = — 
p(x) L Mb — Ma 

[3'43] 

Taking moments about B, 

-Ma - ^4^ + Mb - Ra L = 0 

and 

Ra = — 
p(x) L Ma — Mb 

[3-44] 

If Ma = Mb = 0, this indicates that the assumed direction of the reac¬ 
tions was wrong, and that they act in the negative direction or down¬ 
ward. It should be noted that the total vertical force on the beam 

2Fv = p(x) L + Ra + Rb = 0 

The expression for the reactions, Ra and RB} indicate that each con¬ 
sists of two parts, one due to the distributed loading p(x) and the other 
due to the concentrated moments Ma and Mb- Hence for any system 
of lateral loading the reactions can be written in the form 

Ra = R'a + 
Mb - Ma 

L 

Rb 
Ma - Mb 

Rb 1——z- 

[3-45] 

Where R'a and R’r are the reactions due to the lateral loading alone. 
The shear load diagram is Fig. 3-176. The bending moment at a dis¬ 
tance x from A is given by 

x2 
Mx = p{x) — + Ma + Rax 

Substituting the value of Ra from equation 3-44 we have 

p(x) Lx , . . x2 , (Ma — Mb)x 
Ms = - y-~- + p(x) - + Ma - --- [3-463 

The above expression is shown graphically in Fig. 3-17c. The second 
two terms on the right-hand side of equation 3-46 represent the effects 
of the end moments alone. If we plot these two expressions, we obtain 
the straight line AB in Fig. 3-17d. ' The first two terms on the right- 
hand side of equation 3 • 46 give the parabola due to the uniform loading. 
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If, therefore, we plot the parabola with its sign reversed, then the 
difference of the two curves will be equal to the bending moment. By 
this device, changes in the end moments can be investigated without 
completely redrawing the diagram. If, as is sometimes done, the line 
A B is considered as a new zero axis, the moments as read from this 
axis will have the opposite sign. This is indicated in Fig. 3 • 17d. The 
bending moment on a beam due to the lateral loading alone, assuming 
the beam pin-jointed at each support, is sometimes referred to as the 

free bending moment. 
In most of the practical problems which occur in airplane design, 

the distributed load p(x) is not a uniform load, neither can it be readily 

expressed analytically. For this reason then we shall consider the 
general case in which the distributed load is irregular. Many cases 
also arise in which the reaction points are not co-linear, i.e., all reac¬ 
tions do not Ue in the same plane. An example of this is an elevator 
spar; for under load the stabilizer undergoes a certain deflection and, 
since the hinge brackets of the elevator are attached to the stabilizer 
spar, it is necessary to analyze the elevator spar, assuming the hinge 
reaction to lie in the plane of the deflected stabilizer spar. 

The general case of continuous beams can be most readily treated 
by the method of end slopes and deflections, hence we shall first con¬ 
sider the equations involving end slopes and end deflections. Consider, 
for example, a simply supported beam as shown in Fig. 8 • 18, with any 
irregular lateral loading which, with no end moments, produces a mo¬ 
ment Mo at a distance x from the center, Mo being the free bending 
moment. For convenience, the origin has been placed at the center of 
the span. If we now apply end moments Mx and Mb we have, from 
equation 3*40 

d?y _ Mx H- Mb 

lb? ~ 2 
Mb - Mx 

x — Mo 
L 

[3*47] 
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Integrating over the span from —Lj2 to L/2 we obtain 

If we now let ow let 
(dy\ 

ia — yrj-j — slope of 

Ma + Mb 
M0dx [3*48] 

slope of the deflection curve at A, and 

iu = ( “ ) = slope of the deflection curve at B 
\dx/B 

the equation becomes 

777 T /* • \ MA+MB 
EI (iiB-iA) = f 2Mqdx = (Ma + Mb) hj2-1 [3-49] 

2 4/ _ L/2 

where /I is the area of the bending moment diagram for M0 alone from 
A to B. The above equation gives us directly the difference in slopes 
between A and B. The area under the free bending moment curve can 
be determined either analytically or graphically. 

If the reaction points A and B lie distances ija and yB) respectively, 
from the beam reference axis, the effect can be determined as follows. 
It is easily seen that 

d2y d ( dy \ 

Hence, multiplying equation 3*47 by x and integrating between — L/2 
and L/2 we have 

\^j) -yB + L-(*M) +V4i 
L 2 \dx/B JD + 2 Wa V \ 

Mb ~ Ma j2 
rL/2 

— / M0 x dx 
•/—L/2 

which gives 

EI [| (iA + is) ~ y\ « —■ -12- — L2-Ix [3- 

where 

y = vb - ya /L/2 

Mo xdx = Ax 
L/2 

Adding EI (iB — u) L/2 to each side of equation 3*50 and applying 
equation 3*49 we obtain the following expression for the slope at B: 

E I(iBL - £) = 
(Ma + 2Mb) L2 

Ax — 
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or 

+ [3. 51] 

In a similar manner it can be shown that 

„ T . 2 Ma + Mf, A (2x 
E1 iA —-L-I 

6 2 \ 
2£ A_>EIy 
,L “ V + ~L~ 

[3-52] 

A and x majr be obtained analytically or graphically. It is necessary 
that appropriate signs be given to A and x. With a distributed up 

Non-uniform loading, p(x}„ 
A B 

-M 

Jjlllll llillll iiiiiiiii iiiiiiiii 

■ a ■ 

i mt m m m 

K 

Free bending moment diogram 

VL w 

Bending moment diagram 

Fig. 3 19. 

_L 
Mc 

T 

load p(x), M0 is positive everywhere and consequently A is positive; 
x is positive when the centroid of the bending moment (Mo) area 
lies to the right of the center of the beam. For a uniform load p(x), 
x = 0 and 

j _ pfc) 
12 

In order to determine the equations for a continuous beam let us 
consider a beam, Fig. 3-19, supported at the three points A, B, and C, 
and subjected to a given distributed load p(x). It is evident that the 
reactions at the supports cannot be determined, and the question arises 
as to whether or not the bending moment diagram for the beam can 
be determined from pure statics. We can calculate from pure statics the 
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moments at A and C due to the external loading, but for the moments 
between A and C we have to consider the elastic behavior of the beam. 
If we consider the moment at B as the unknown, we can write a relation 
between the slope at B, the lateral loading on AB, and the moments 

at A and B, from equation 3-51. 

%B 
1 Ma + 2Mb j A i 

Eh 6 Ll 2 

. Elm' 

Lx . 
[3-53] 

and, considering the bay BC, from equation 3-52 we have 

lB Eh - 
2 Mb "I* Me 

L2 
_ A% (2h_ A 

2 \L2 ) 
+ 

El2y21 
[3-54] 

Since the slopes are equal we can equate the above two equations which 

gives 

MaLx 

h +2Ma (f:+f) + 
McL 2 

3A2(2x2 A (yx y2\ 
[3-55] 

where yx is the height of B above A and y2 is the height of C above B. 
The quantities Ax, A2, Xi, and x2 are as shown in Fig. 3-19. If the 
reactions are at the same level, the last term on the right-hand side of 

equation 3-55 vanishes. If the beam extends over more than three 

supports the intermediate moments can be obtained by a repeated appli¬ 
cation of the above equation. When the moment at B is determined 

the reactions can be obtained from pure statics, i.e., the section AB of 

the beam can be regarded as a single bay beam with the moment 
Mb applied at B. The reaction at A can then be obtained and in a 
similar manner, the reaction at C can be obtained. The reaction at B 
can then be determined from the equilibrium equation 2Fv = 0. 

3-4. Shearing Stresses and Shearing Deflections 

In equation 3-30 was shown the relation between the shearing force 
S, the bending moment M, and the distributed load p(x); and the 
distribution of the bending stress has just been discussed. The distri¬ 

bution of the shearing stresses, which are produced by the shearing 
force S, are of considerable importance in airplane design. Their dis- 



3-4] SHEARING STRESSES AND SHEARING DEFLECTIONS 105 

tribution will now be considered in detail. We shall begin our investi¬ 
gation by considering the simple case of a beam of rectangular cross 
section. Let Fig. 3-20a represent a section of a rectangular beam of 
width b and depth h. The coordinate system is so placed that the 
X-axis coincides with the centroidal axis of the beam and the F-axis 
is parallel to the direction of the shearing force S. The plane of the 
applied bending moment is parallel to the XT-plane. For our problem 
we shall assume first, that the shearing stress rxy is parallel to the shear¬ 
ing force S and secondly, that the distribution of rxy is uniform across 
the width, b, of the beam. If the height of the beam, h, is large com- 

y 

4 

(b) 
Fia. 3'20. Shear stresses in beams. 

pared to the width, b, use of the equilibrium conditions yields a distri¬ 
bution of the shearing stresses which, although not absolutely correct, 

contains errors which are negligible in nearly all practical engineering 
problems. 

Although the calculation below refers to the distribution of the hori¬ 
zontal shearing stresses, it is well to remember that there are equal ver¬ 
tical shearing stresses acting in the beam and vice versa. Thus, if the 
shearing force <S in Fig. 3 • 20a gives rise to vertical shearing stresses rxy, 
there will be equal horizontal shearing stresses, ryx, acting in each ele¬ 
ment. This was shown in equation 3-3 and can further be proven by 
writing the equilibrium equation for the beam element shown in Fig. 
3-206. The distribution of the horizontal shearing stress tvx can easily 
be calculated from the conditions of equilibrium of the element mm'pp', 
Fig. 3-21, cut from the beam by the two cross-section planes mn and 
m'n' a distance dx apart. Fig. 3-21c represents the element mm'pp' as 
a free body with the horizontal forces shown. (Vertical forces are 
omitted in the figure.) Upon the left face the moment is M and the 

variable unit compressive stress is <r* 
My 

I ' 
The force upon the 
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differential area bdy is 

face mp is 

My 

I 

- j ryMy=- ffydA 
* •Syo * •'vo 

where the minus sign indicates a compression force on the surface in 

question. 

/ M M+dM 

f 

bdy and the total horizontal force on the 

'•/i/2 

B—PL^ h6 2 dyi 

% 

yzzzzzzzA 
-Vo 

(b) 

(c) 

Similarly, the total force acting to the left upon the face m'p' is given by 

M + dM fh/2 
-=— / ydA 

The shearing force on the surface ppf is ryx bdx. Since the free body is 
in equilibrium, the summation of the horizontal forces is equal to zero, 

that is 
M + dM fh/2 , M rn,, , 
--- / ydA + -r I ydA + ryx bdx = 0 

* fc/yo / */j/0 

from which 
1 dM rh/2 
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Since 

from equation 3 • 29 we have 

dM 

dx 
= S 

Hence 

_r -i/1 
** bid* 

S \h2 2] 

= 2/Lt-H 

ybdy [3-56] 

[3-57] 

and it is seen that the shearing stresses rxy are not uniformly distributed, 
but have a parabolic distribution over the depth of the beam. The 
shearing stress is zero when y0 = h/2 and reaches a maximum when 
2/o = 0, i.c., at the neutral axis, and is then equal to 

Txym&x gJ 2bh L J 

Since the quantity S/bh is the average unit shearing stress, the maxi¬ 
mum shearing stress is 1.5 times greater than the average. The dis¬ 
tribution of the shearing stress is shown in Fig. 3-21d. 

A beam of rectangular cross 
section was chosen to begin the 
investigation of the distribution 
of the shearing stress because of 
the simple manner in which these 
calculations can be carried out. 
Let us now consider the distribu¬ 
tion of the shearing stresses in an 
I beam as shown in Fig. 3 -22. 
For the distribution of the shear¬ 
ing stresses over the web cross 
section the same assumptions are 
made as for the beam of rectan¬ 
gular cross section. These as¬ 
sumptions were that the shearing 
stresses rxy are parallel to the 
shearing force S and are uniformly 
distributed over the web thick¬ 
ness b\. In order then to calculate the distribution of the shearing 
stresses txv over the web we can use equation 3-56. The moment of 
the shaded area with respect to the neutral axis is 

r 'h/ 2 h (hi ' 2 
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Substituting the above expression in equation 3-56 we obtain for the 
distribution of the shearing stress the following equation. 

S f b 

~ 2bxI L4 
hi) + &i [3-60] 

Again as in the case of the beam of rectangular cross section, the distri¬ 
bution of the shearing stress is parabolic over the web cross section. 
The maximum value of rxy occurs when y0 = 0 and the minimum value 
when 7/o = Ai/2; the values are given by the equations 

[b(h2 - hi) + bxh\] [3-60a] 

(h2 - hi) [3-606] 

In calculating the distribution of the shearing stresses over the flanges 
we can no longer assume that rxy is uniformly distributed across the 
width b of the flanges. For example, along the free surface up the 
horizontal shearing stress tvx is zero, and since txv = ryx it means that 
the vertical shearing stress is zero at the surface np. However, across 
the section mn the shearing stress is not zero but is equal to rxl/mln as 

calculated above. Hence, the as- 
~ .T sumption of uniform stress in the 

fy U --Z-direction is no longer valid and 
the distribution of the shearing 
stress at the junction of the web 

0 ^ dx L- and flange cannot be calculated by 
Fiq 3 23 our elementary theory. As regards 

the magnitude of the vertical shear¬ 
ing stresses txv across the flange cross section we can conclude that, since 
txv is zero at both the upper and lower free surface of the flange, rxym&x 

will be small as h\ approaches h. When the web thickness, b\, is very 
small compared to the flange width, 6, there is no great difference between 
rxymax and rxl/mln, and the distribution of the shearing stress in the web 
is practically uniform. 

In the discussion on beam deflections, only the displacement of the 
beam axis due to bending moment was considered. An additional de¬ 
flection will be produced by the shearing force since any shearing force 
must be accompanied by a shearing deformation. Considering the rec¬ 
tangular beam of Fig. 3-20, the shearing stress at the neutral axis is 
equal to 3S/2bh from equation 3-58 and the shearing strain is then 

Fig. 3 -23. 

y P-61] 
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where dyx is the displacement of the neutral axis in a distance dx, due 
to the shearing stress t. (See Fig. 3 • 23.) Differentiating with respect 
to x gives the curvature of the neutral axis due to shear, or 

Ai = 3 dS 

dx2 ~ 2bhG dx 

3 

2 bhG P(X) = 2AGP(X) 
[3-62] 

This must be added to the curvature due to bending, equation 3*40, 
which gives 

A 
dx2 

— + — p(x) 
El 2AGPK > 

-If 
Ell 

„ ,3 El ' 
M + -~p(x)_ [3-63] 

This equation can then be integrated to determine the total deformation 
of the neutral axis due to both bending and shear. In general, the 
influence of the shear in the total deflection is small in most normal 
beams. However, if the beam becomes short and heavily loaded, the 
shearing deflections may predominate. 

For beams with sections other than rectangular, the general form of 
equation 3 • 56 

[3-56a] 

must be used in the derivation of equation 3-63. For simple cross 
sections, such as circles and ellipses, the result will be to change merely 
the constant in the last term of equation 3 • 63 to a different value. For 
example, for beams of circular cross section, equation 3*63 becomes 

d2y _ 1 

dx2 ~ El . 

4 £/ 

+ 3 AG 
[3-63a] 

3-6. Beams with One Axis of Symmetry 

In the previous discussion we have dealt with beams in which the 
bending moment was applied in one of the two principal planes of bend¬ 
ing. As for bending by transverse loads, we have only discussed the case 
in which they are in a plane of symmetry of the beam. From this 
symmetry, it can be concluded that the plane of the deflection curve 
coincides with the plane of the loads. We must now consider the more 
general case in which the beam has only one axis of symmetry and the 
loads are applied in a plane perpendicular to the plane of symmetry of 
the beam. Examples of beams having such cross sections are shown 
in Fig. 3*24. Let us consider now the position of the vertical plane in 
which the shear load S must be applied to produce simple bending. 
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By simple bending we mean that bending takes place with no rotation 
of the cross section. 

In order to calculate the position of the plane in which S must be 
applied to satisfy the condition of no rotation of the cross section, it is 

necessary to consider the shear distribution over the cross section. 
For our calculations, consider the section as shown in Fig. 3*25 with a 
coordinate system as indicated. The. X-axis lies in the neutral plane 
of the section. As previously mentioned, if the flanges are thin, the 
vertical shearing stress rxy will be small over the cross-sectional area of 

the flange. For our purpose we shall assume that it is sufficiently small 
so that it can be considered to be zero, i.e., the web carries the entire 
vertical shear. However, the horizontal shearing stresses rxx = rzx can¬ 
not be considered as zero. To calculate the distribution of these stresses 
consider a section as shown in Fig. 3*256 cut from the flange by two 
adjacent cross sections a distance dx apart and cut by two vertical planes 
parallel to the web, a distance dz apart. The force acting on the rear 
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face of the element is equal to <rxtdz and, since ax =-— , axtdz = 
* z 

■ dz. Similarly, the force on the front face of the element is 

f dax 
i*x + — dx 
\ dx 

Ix'j tdz = — ^ 
dx / I* 

These forces must be in equilibrium with the shearing forces or 

dz + rzxtdx (m + — dx 
\ dx 

^ Y dz — (rzx + di ^ tdx = 0 

which gives 
y dM 

Iz dx 

i r dM j s r 
[3-64] 

since — = S is independent of z. Also, since in this example y is a 
dx 

constant, we can see that the shear stress rxz is proportional to the dis¬ 
tance w from the edge of the flange and is y 
therefore not uniformly distributed over 1 ‘ 
the flange width. At the junction of the rn_ n 
flange and web the distribution of the 1 f * 
shearing stress is complicated, and in our a, 

approximate calculation we assume that .2 
equation 3 • 64 holds to the center line of z -o-t 
the web. We further assume that equation *r 
3 • 56 holds to the center line of the flange. i rXy 

Let us now calculate the position of the tXz * 
plane in which it is necessary to apply the 
shear force S in order to comply with 

Fig <3 • 26 
the condition that there shall be no rota¬ 
tion of the cross section. Consider a beam in which the cross section is a 
simple channel, as shown in Fig. 3 -26, subjected to a vertical shearing 
force S. If the vertical shearing force on the section acts downward, 
then in accordance with our sign convention, the shearing stress from 
m to n is given by 

fhj _ ~Sh 
Tx‘~ ij 2dZ~ 21, Z + C 
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The boundary condition at z = b, i.e., at m, is 

rxl - 0 
Hence 

and the shearing stress along the flange is given by 

(b-z) 

From n to 0 the shearing stress is given by the equation (see equation 
3-56) 

- _ -jj - Sy* ' - 

Now, when y = A/2, rxy is equal to the value of txz at z = 0 since the 
shear flux, given by the product of the shearing stress times the thick¬ 

ness, must be a constant value at 
the comer. Therefore, at y = A/2, 

i^aLU 1 \ «a, irr i=\ 
^ Hence 

/7 H. J 
--7 And the shearing stress along the 
— y web is 

*_^_„ 7" e _Js Since the Z-axis is an axis of sym- 

Fig. 3 27. Shear distribution in a chan- shear distribution over 
nel section. the lower half will be similar to 

that over the upper half. The distri¬ 
bution of the shear intensity over the cross section is shown in Fig. 
3-27. We can show that the resultant of the vertical forces is equal 
to S, that is, 

„ s f"Yu . ** ,\,, St r h‘i »*1 
R- - mJ-J?+t - *)ay - r. L t+12J 
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Now / for the channel section is 

113 

Hence Rv = S. 
The moment of the horizontal forces about the point 0, Fig. 3 • 27, is 

M = 
sh rb 
12 JO 

(b-z) 
Sh2b2t 

4/* 

Substituting the value of lt in the above equation gives 

M = 
Sh2b2t 

Now assume the vertical plane in which the shearing force must be 
applied, to conform with the requirement that there shall be no rotation 
of the cross section, is at a distance e from the point 0, then 

and 

[3-65] 

From this equation we see that as the ratio of h/b —* oo, e —* 0, and as 
h/b —*■ 0, e —»6/2. Hence the shear center (i.e., the point of intersection 
of the axis of symmetry with the vertical plane in which the shear 
force must be applied to cause simple bending) of any channel section 
lies between the values e — 0 and e — 6/2. Our discussion so far has 
been limited to the case in which one of the principal axes is an axis of 
symmetiy. The method as given above is also applicable to unsym- 
metrical sections. It is only necessary that the shear be applied alter¬ 
nately in the plane of the principal axes. In this manner two planes 
can be calculated in which the shear must be applied to cause simple 
bending. The intersection of these two planes gives the shear center of 
the section. 
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3-6. Torsion 

In pure bending only the stress components at right angles to the 
cross section are different from zero, whereas in the case of pure torsion 
of a straight bar, the components of shear stress in the plane of the 

cross section are the important items. 
(a) Torsion of Bars with Solid Cross Section. If, to a cylindrical 

bar of circular cross section, as shown in Fig. 3 • 28a, are applied couples 
acting in planes perpendicular to the cylinder axis, we have a case of 
pure torsion. It has been shown by experiment, that during twisting 
of the bar all circular sections remain circular and that their radii and 

Fig. 3 ■ 28. Notation for the torsion problem. 

the distances between them do not change, provided the angle of twist 
is small. In the analysis of circular bars it is further assumed that all 
plane sections perpendicular to the axis of the bar remain plane and each 
element on the cross section has the same angular rotation; that is all 
diameters remain straight. Therefore, the cross section of the bar will 
only rotate with respect to some arbitrary reference cross section. 

The boundary conditions at the free surface require that the resultant 
shear stress at the outer boundary be tangent to the boundary. This 
means that the resultant shearing stress at any given point on the outer 
boundary will be perpendicular to the radius vector drawn from the axis 
of the bar to the given point. 

Since all sections remain plane and circular sections remain circular, 
we can conclude that the stress conditions on any inner circular boundary 
will be the same as on the outer boundary. Hence, the lines of shearing 
stress are concentric circles. Lines of shearing stress are defined as the 
curves drawn on the cross section of a twisted bar, in such a manner, 
that the resultant shearing stress at any point on the curve is in the 
direction of the tangent to the curve at the same point. 
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The magnitude of the shearing stresses, r, and the angle of twist, 0, 
per unit length, for a given torsional moment, Mt} can be obtained in the 
following manner. Consider an element of length dx cut from the shaft, 
Fig. 3-286. The element will be in a state of pure shear and the shear¬ 
ing strain at the outer boundary is given by 

_ dd/ _ dip 

7 “ ad ~ Kdx 

For a constant torque the angle of twist is proportional to the length; 
and dip/dxy the angle of twist per unit length, is a constant. Denoting 
the angle of twist per unit length by 0, we have 

7 = R 6 

According to our assumptions, the shearing strain at any inner bound¬ 
ary will be proportional to the distance of the boundary from the center. 
Hence, at any distance r from the center the shearing strain is 

7 r = rd 

Since the linevS of shearing stress are circles, the resultant shear stress 
at any given point on the cross section will be perpendicular to the 
radius vector drawn from the axis of the bar to this point. Hence the 
shearing force TrdAf Fig. 3-28c, produces a moment rrrdA about the 
axis of the bar and the total moment produced by the shearing stresses 
distributed over the cross section of the bar is 

Mt = f Tr rdA [3-66] 
Jo 

This moment, which is produced by the shearing stress, must be 
in equilibrium with applied couple. 

From equation 3-20, we have 

yr = % = r6 [3-67] 

Substituting for rr in equation 3 • 66 gives 

Mt — Gd [Rr*dA = GdJ 
Jo 

where J is the polar moment of inertia of the cross section. The angle 
of twist per unit length is given by 

Mt 

GJ 
[3-68] 
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Substituting this value of 6 in equation 3 • 67 gives 

Mt r 
[3-69] 

The above equation indicates, that for a given bar of circular cross 
section and a given torsional moment, the shear stress is proportional 
only to the distance from the center of the cross section. Hence, the 
lines of constant shear are parallel to the lines of shearing stress. 

The next simplest case is that of a bar of elliptical cross section as 
shown in Fig. 3 -29a. Again on the outer boundary the resultant stress 
is tangent to the boundary. However, the lines of shearing stress are 

not parallel to the outer boundary, but form ellipses, each having a 
different eccentricity, as shown in Fig. 3-296. 

A solution of this problem can be readily obtained; however, the 
theoretical treatment is beyond the scope of this text, and only the 
results will be given here. The stress components, rxg and rzy, are 
given by the following two equations, 

_ 2Mty 

Tzt ~ ir a b3 
[3-70] 

T*„ = 
2Mjz 

ir a3 b 
[3-71] 

The twist per unit length is given by the equation, 

Mt(a2 + b2) 

v a3 b3 G 
[3-72] 

The maximum shearing stress is at the outer boundary, and it can 
easily be proved that this maximum occurs at the ends of the minor 
axis of the ellipse. Substituting y = b in equation 3-70, we have for 
the absolute value of the maximum shear stress, 

2Mt 

ir ab2 
T — [3-73] 
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The lines of constant shear, as shown in Fig. 29c, are also ellipses, each 
having a different length of axis but the same eccentricity. 

In the above two cases we were able, due to the simplicity of the 
cross sections, to determine the lines of shearing stress and were con¬ 
sequently able to determine the shear stresses and the lines of constant 
shear. Consider now a bar of a rectangular cross section, Fig. 3 -30a. 
The condition that the resultant shear stress at the boundary be tangent 
to the boundary still holds. However, due to the sharp discontinuities 

Fia. 3 • 30. Torsion in rectangular bars. 

in the boundary, the lines of shearing stress will no longer be parallel to, 
or have the general shape of, the boundary. 

In bars having cross sections in which the boundaries are discon¬ 
tinuous, or in bars of irregular cross section, it is possible to study the 
distribution of the shear stress over the cross section by means of the 
membrane analogy. It was first pointed out by L. Prandtl, that if a 
membrane with outlines similar to the cross section of the twisted bar, 
be stretched at the edges with a uniform tension q per unit length and 
subjected to a uniform pressure p per unit area, then for small deflec¬ 
tions the equation of equilibrium of the membrane will be identical to 
that of the torsion problem, provided we put 

- = 2G9 
q 

This analogy is of great importance in the solution of torsion problems, 
both analytically and experimentally. The important relations between 
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the deflected surface of the membrane and the twisted bar are as 
follows: 

1. Contour lines of the deflected membrane surface correspond to 
lines of shearing stress of the twisted bar. 

2. The tangent to a contour line at a given point on the membrane 
surface gives the direction of the resultant shear at the corresponding 
point on the cross section of the bar. 

3. The maximum slope of the membrane at any point, with respect 
to the plane of its edges, is equal in magnitude to the shear stress at the 
corresponding point on the cross section of the twisted bar. 

4. Twice the volume included between the deflected surface of the 
membrane and the plane of its edges is equal to the applied torsional 
moment acting on the twisted bar. 

On the basis of the above relations we can now consider the twisted 
bar of rectangular cross section. The contour lines of the corresponding 
membrane surface will be as indicated in Fig. 3-306. Near the center 
the lines of shearing stress are nearly circular, and as the boundary is 
approached they tend to take the shape of the boundary. 

It can be readily seen that the slopes at the contours along the line 
nn' will be greater than the slopes on the corresponding contours along 
the line mm,'. From this we can conclude that the shear stress at any 
point along the nn' will be greater than the shear stress at the corre¬ 
sponding points along mm'. The maximum slope, and hence the maxi¬ 
mum shear stress, will occur at n and n'. Since the membrane slope is 
zero at the four corners and at the center of the cross section, the shear 
stress will be zero at these points. 

Where an analytic expression can be obtained for the equation of 
equilibrium of the deflected membrane, it is possible to calculate the 
distribution of the shear stress over the cross section of the twisted 
bar. If the cross section of the bar is such that it does not lend itself 
to an analytic expression, the membrane slopes can be obtained experi¬ 
mentally. In the experimental methods it is customary to employ a 
soap film stretched over a hole, cut in a thin plate, having the same 
shape as the cross section of the bar. A uniform pressure is applied to 
one side of the membrane surface and the slopes measured, generally, 
by optical methods. 

For a bar of rectangular cross section the shear stresses and the twist 
per unit length can be calculated analytically. The following equations 
are obtained for the maximum shear stress and the twist per unit 
length, 

T, Mt 

aab2 
[3-74] 
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pGab3 
[3-75] 

where a is the longer side and a and 0 are functions of the ratio a/6. 
The values of a and 0 as a function of the ratio a/6 are shown in Fig. 
3-31. As the ratio of a/6 becomes large, a —> 0 —* 0.333, therefore, in 
thin-walled sections, the 
Although the above equa¬ 
tions have been derived for 
a rectangular bar, they are 
equally applicable to the 
type of sections shown in 
Fig. 3-32. For the T-sec¬ 
tion and channel section 
the results are only approx¬ 
imate, for at the junction 
of the web and flanges 
there will be stress concen¬ 
trations, the magnitude of 
which will depend upon the radius of the fillets. Approximate values 
of the shear stresses and angular twist per unit length are obtained by 
assuming that the section, which consists of a number of connected 
rectangular elements, can be replaced by the same number of separate 

a/b 
Fig. 3*31. a and 0 in equations 3 • 74 and 3 • 75. 

Fig. 3 -32. 

bars of narrow rectangular cross section. For example, based on the above 
assumptions the following equations can be derived for the ^-section, 

(ojb? -f- Q-zb^G 

For the web the shear stress is 
'_ZMth 

(ai&i + flfc&a) 

[3-76] 

t = 6j 6 G — [3-77] 
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If the maximum shear stress in the flange is desired, b% in the numerator 

is replaced by &2- If = b2 = b, then 

b2(a i + 0,2) 

b'\o\ + (12)0 

and it is seen that the results are the same as for a rectangle whose sides 
are b and a = ax + a2. The same method can be extended to the 
channel section or any other section whose cross section consists of a 
number of rectangular cross sections. 

_ (b) Torsion of Hollow, Thin-Walled Sec- 
tions. The conditions which were discussed 

/f / for the solid circular section are also appli- 
// ^ cable to the case of a hollow circular cylinder. 
11 ] ] Consider the hollow circular cylinder shown 
11 -J I in Fig. 3• 33; the applied torque must now be 
\\ 1 J resisted by the wall of a thickness li2 — Ri 

VV / / and we have 

Fig. 3 -33. 

rRi 

= / Tr- 
Jr, 

In the case of thin-walled cylinders we can introduce instead of the 
quantities R\ — R2 and rr, a mean radius R} a thickness t, and a mean 
shear stress r. Then the torsional moment is given by 

Mt = 27T R2 tr 

and from equation 3 • 67 
2ir R2 t 

T Mt 

GR = 2w Rz tO 

[3*78] 

[3-79] 

Since 2tc R31 = J} the polar moment of inertia of a thin annular ring of 
radius R and thickness t, the above equations are similar to those devel¬ 
oped for the solid circular bar. 

For a thin-walled section of arbitrary shape our problem is somewhat 
simplified, for we can say that the lines of shearing stress follow in 
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general the shape of the section, that is, we know that on the inner and 
outer boundaries the resultant shearing stress must be tangent to the 
boundaries; hence, we can assume that the resultant of the average 

shear stress across the wall thickness will be tangent to the median line. 
Based on the above assumptions, and using average shear stresses, we 
can in a very simple manner derive the equations defining the average 

shear stress across the wall thickness and the angular rotation of the 
cross section per unit length. Consider an arbitrary cross section of 

Fig. 3 • 34. Torsion in thin-walled sections. 

uniform wall thickness as shown in Fig. 3 34. The moment produced 
about any arbitrary axis 0 by the shear force rtAs will be 

AMq = rtAsd 

where d is the perpendicular distance from the shear force to the axis. 
The total moment produced by the shear forces rtAs about this axis is 
the summation, taken around the curve C defined by the median line 

of the section, of the moments due to the individual elements. This 
summation can be expressed as 

M0 = 2 rtAsd 

Now, rt is a constant, and can be factored out of the summation. Also, 
Asd is twice the area of the triangle shown in Fig. 3'34. Hence, 

Mq = rt 2 Asd = 2Art 

where A is the total area bounded by the curve C. 
Since the axis was arbitrarily chosen, it is obvious that 2AIt expresses 

the moment about any axis due to the distribution of shear stress over 
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the cross section. This moment must be in equilibrium with the applied 
torsional moment; hence, 

Mt = 2 Air 
or 

[3-80] 

where A is the area bounded by the median line of the section. 
If the thickness is variable, we can still determine the average shear¬ 

ing stress r from the above equation; however, r will no longer be a 
constant around the boundary. From the equilibrium conditions of an 
element of the cross section it follows that 

r\t\ = T2t2 = constant [3-81] 

This equation resembles the equation of continuity in fluid mechanics, 
that is, 

qS = constant 

where q is the flow velocity and S the cross-sectional area. The product 
of rt is therefore commonly referred to as the shear flow, and we say 
that the shear flux across the wall thickness at any point on the periphery 
is a constant. 

Assuming that plane sections remain plane, the relationship between 
the applied torque and the angle of twist per unit length can be obtained 
from the energy relationships which follow. (Strain energy is discussed 
in detail in Chapter 4.) 

The strain energy per unit length * U = \Mt 0. 
The strain energy per unit volume = U = /G. 
If p is the perimeter of the cross section, then equating the two ener¬ 

gies gives 

Mte = — pt 

Substituting from equation 3*80 for r we have 

a _ MtP 
4 A2Gt 

or 

2AG 

It should be noted that the above equations are only applicable to thin- 
walled sections, i.e., the thickness is small compared to the cross-sec¬ 
tional dimensions. 

[3-82] 

[3-83] 
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Let us now consider the case in which the cross section, of the member 
of arbitrary cross section, has more than two boundaries. If we take, 
for example, a cross section as shown in Fig. 3 -35, we have from equa¬ 
tion 3*80 

Mt = 2Ail\Ti + 2^42^2t2 [3*84] 

and from equation 3 -83 

tiPi + T3p3 38 2GdAi [3*85] 

T2P2 — T3P3 = 2GQA2 [3*86] 

The shear flow across any junction is a constant, that is, going back 
to the hydrodynamic analogy, we can say that the volume of fluid flow- 

Fig. 3-35. Torsion in doubly connected cross sections. 

ing into the junction per unit time must equal the volume of fluid flow¬ 
ing out per unit time. For example, at the junction m, we can write 

t\T\ — £373 = <2t2 

or in general we can write 
i-n 

5> = 0 [3-87] 
t^l 

It is readily seen that this equation satisfies the conditions of equilib¬ 
rium at any junction. 

These four equations, 3-84 to 3*87, are sufficient to determine the 
shear stresses, r 1, r2, r3, and the angle of twist per unit length. The 
same type of analysis can be extended to sections with any number of 
boundaries. 

The particular problems of torsion discussed in this section are those 
which are most frequently encountered in airplane design. 
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CHAPTER 4 

TRUSS AND FRAME ANALYSIS 

4-1. Truss Analysis 

A truss consists of an arrangement of straight bars connected in such 
a manner as to divide the area enclosed by the perimeter of the truss, 
into a system of triangular spaces, Fig. 4-3a. Since the rigidity or 
stability of a truss is accomplished by triangulation of its members, it is 
generally assumed that all external loads and reactions applied at the 
joints are resisted by pure axial loads, which are commonly referred to 
as the primary loads. This would be true if the controidal axes of all 
members, at a joint, intersected at a common point and if the members 
were freely pinned together at the joints. In practice, pin-connected 
trusses are very seldom encountered; the common types of joints are 
either welded or gusset joints. Since the rigidity of such joints is a func¬ 
tion of the elastic properties of the material and the particular type of 
construction employed at the joints, they are called elastically con¬ 
strained joints. If such a truss is loaded at the joints, the joints will 
offer a certain amount of bending resistance to strain deformation and 
these induced bending loads will introduce secondary tension and com¬ 
pression stresses in the members in addition to the primary stresses. 
However, the analyses of such trusses are generally made under the 
assumption that all joints are pin-connected, which means that second¬ 
ary loads are neglected and the members of the truss are designed for the 
primary loads only. If external loads are introduced at points other than 
the joints, the loads must be resisted by bending and the effects of bend¬ 
ing on the member must be taken into account. In the following dis¬ 
cussion on truss analysis we shall consider pin-connected trusses only; 
however, in the discussion on frame analysis the bending stiffness of the 
members will be taken into account. 

From an analysis point of view, trusses can conveniently be divided 
into two classes, those which are statically determinate and those which 
are statically indeterminate. Consider, for example, the simple truss 
structure shown in Fig. 4 * 1 in which the loads in each member can be 
determined from purely statical considerations. Now if a fourth mem¬ 
ber CD is introduced, Fig. 4-2, the loads in each member can no longer 

124 
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be found from statical considerations alone. In this case it is necessary 
to consider the elastic properties of the members. The first truss is 
therefore statically determinate, while the second one is statically in¬ 
determinate. 

In addition to the above classification, consideration should also be 
given to the geometrical configuration of the members. Here again 
trusses can be divided into two groups, namely, plane trusses and space 
trusses. In the former group the axes of all members lie in the same 
plane whereas in the latter group the axes may lie in different planes so 

Fig. 4-1. Statically determinate Fig. 4-2. Statically indeterminate 
truss. truss. 

that a three-dimensional figure is formed. In the majority of cases it 
will be possible to divide a space truss into a system of plane trusses, each 
of which is then calculated separately. Certain members may be com¬ 
mon to two or more plane trusses and, if this is true, the loads obtained 
from the separate determinations should be added algebraically. 

Since the determination of the loads in the members of a statically 
determinate truss, under the action of a given system of external loads, 
is covered in detail in elementary texts on applied mechanics, no detailed 
description of basic principles is intended in the following discussion, 
but merely a review of the more useful methods and their application. 
The following three methods are most commonly used; the particular 
one employed in any given problem will depend on the circumstances and 
the nature of the problem. These methods are as follows: (1) Calcula¬ 
tion of the loads by resolution of forces at each junction or node. From 
the equilibrium equations 2Fv = 0, 2Fh = 0 the unknown forces in 
each member can be calculated. (2) The load in each member is 
determined graphically by means of a stress diagram. This method is 
quite useful in complicated truss systems inasmuch as it is self-checking. 

(3) Calculation of the loads in each member by taking sections of the 
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truss and calculating the loads in the “cut” members from the equi¬ 
librium equations SAT = 0, 2FV = 0, 2FA = 0. 

(а) Method of Resolution of Forces. Consider the simple truss 
shown in Fig. 4* 3a subjected to the external forces W\ and W2. To 
obtain the loads in members 1-2 and 1-5, resolve the forces in each 
member into their vertical and horizontal components and from the 
equilibrium equation XFV = 0, solve for the vertical component of force 
in each member in terms of the known external force W\. In this par¬ 
ticular case, member 1-2 has no vertical component, hence the vertical 
component of member 1-5 is equal to Wi. In the same manner from 
the equilibrium equation 2F& = 0, solve for the horizontal component 
of force in each member in terms of the external force W\. Then, in 
general, from the two equations 2Fv = 0 and 2Fh = 0 the load in each 
member can be calculated. Since there are only two distinct equilibrium 
equations for each node, it is necessary that there be only two members 
of each node in which the loads are not known, or one member and one 
reaction, or two reactions. The above method is advantageous in the 
simpler cases. 

(б) Method of Stress Diagram. In drawing stress diagrams a type of 
notation, known as “Bow's notation,” is particularly useful. Consider¬ 
ing again the truss shown in Fig. 4■ 3a, letters A, B, C, Z), E, F, G, and 
H are placed in all the spaces of the frame, and in the spaces between 
external forces. Note that the reactions arc treated as external forces. 
For each member or force separating two spaces in the truss diagram 
there corresponds a line joining two points in the stress diagram, Fig. 
4*36. The stress diagram must be started at a node where there are no 
more than two unknown forces. The reactions R\ and R2 are calculated 
from the equilibrium conditions of the frame as a whole. In Fig. 4* 3a 
we could begin at node 1 or 3 but not at 2. Beginning at node 1, we 
draw ab downwards parallel to W\, and of a length representing Wi to a 
suitable scale. Through a we draw a line parallel to 1-5 and through b 
a line parallel to 1-2. These lines intersect in g and abg is the stress 
diagram for point 1. The lengths ag and bg give the magnitude of the 
forces in 1-5 and 1-2. Proceed now to point 5 and draw a line parallel 
to 5-4 through a, and through g a line parallel to 5-2. These lines inter¬ 
sect in /. The magnitudes of af and gf give the loads in 5-4 and 5-2, 
respectively. We now go to point 2. 

At b draw be vertically downwards representing W2. Through f draw 
a line parallel to 2-4 and through c a line parallel to 2-3; these lines 
intersect in e. Going to point 3, draw a line parallel to R\ through c in 
the direction of R\ and equal to R\, Since 3-4 is normal to 2-3 and R\y 
the load in 3-4 is zero and d and e coincide. Now considering point 4, 
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through d draw a line parallel to Rt in the direction of Ri and equal in 
magnitude to R\. Since the two reactions are equal, c and h coincide. 
Furthermore, since R2 is vertical and is equal to the external forces, h 
must be vertically below a. The stress diagram was really completed 
after the point 3 was considered, for all the reactions and forces in the 
members at point 4 were then known. However, a check of whether the 
stress diagram closes is obtained by considering all points. 

Fig. 4 • 3. Truss notation and force diagram. 

If at any stage no node can be found having two or less unknown 
forces it is necessary to calculate the loads in some of the members by 
the method of sections in order that the diagram may be continued. 

The direction of the forces in the members can be found by the follow¬ 
ing rule. If we pass round a node always in the clockwise direction, the 
direction of the lines in the stress diagram will give the direction of the 
forces. Thus passing clockwise from A to B around 1 the force Wi is 
downwards and ab is drawn downward; passing on from B to 0 we see 
that bg is to the right, hence the force in 1-2 at 1 is to the right and is a 
tension force. In a similar manner the direction of the forces can be 
determined at any node. The above method is advantageous in the case 
of a complicated truss. 
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(c) Method of Sections. This method is particularly advantageous if 
it is only desired to determine the load in certain members. Assume, 
for example, that the loads in members 2-3, 2-4, and 4-5 are desired. 
Cutting the truss along the line ran, Fig. 4 *3a, the loads in the cut mem¬ 
bers are found by considering the equilibrium of one part of the structure 
under the external loads on this part and the forces in the cut members. 
For instance if the load in member 5-4 is desired it is only necessary to 

take moments about point 2. 
As previously pointed out, the equations of pure statics are not suffi¬ 

cient for determining the loads which occur in a statically indeterminate 

truss. It should in no way be construed that the equations of statics 
are no longer valid, but it merely means that there are more unknowns 
that can be solved for by the available number of equations of statics. 

It is evident from the analysis of statically determinate trusses, that the 
load distribution between the various members is not a function of the 
size of the members or their elastic properties, but merely a function of 
their geometrical configuration. This assumes, of course, that the 

members are sufficiently strong to carry the loads and any elongation of 
the members does not materially alter the geometry of the truss. In 

the truss, shown in Fig. 4 • 2, any one of the members may be removed 
and the truss will still be capable of carrying an external load P. This 
means, that essentially we have three trusses, namely, ABC, ADC, or 

BDCj each one being capable of carrying the load. Actually the load 
will be divided between the various members according to their relative 
stiffnesses and their geometrical configurations. Structures of this type 
are termed redundant and are of considerable importance in airplane 
design. It is not necessarily the arrangement of members only that 
gives rise to redundancies, for reactions and stiff joints may equally well 

cause a redundancy. A redundancy of members can easily be detected 
if an attempt is made to solve the structure by pure statics. The max¬ 
imum number of statically determined reactions, for a plane body, is 
three, hence if more than three reactions are present in any plane body, 
the reactions will constitute a redundancy. 

One of the properties common to all statically indeterminate structures 
is that a state of self-strain may be set up in the members without the 

application of an external load. For example, the shortening of member 
AC, Fig. 4-2, would produce a state of strain in the other members. As 
will be shown later in the analysis this particular property of statically 
undeterminate structures is of considerable importance in the solution 

of such problems. Statically determinate structures are incapable of 
self-strain; for instance the shortening of a member in a determinate 



TRUSS ANALYSIS 

truss would merely alter the geometry of the structure and would produce 
no strain in the other members. 

(d) Work and Strain Energy. Work is defined as the product of force 
and distance. If a constant force P moves through a distance 8 then 
the work done will be P8y provided 8 is the component of displacement 
in the direction of the force. If the force is not constant, the work done 

will be given by Pd8. Consider, for example, a straight bar, Fig. 

4* 4a, gradually loaded at one end. During application of the load, the 
bar will stretch and, if the final load is P, and the corresponding deforma- 

(o) (b) 

Fig. 4 * 4. Strain energy due to tension load. 

tion is 8, the work, W, done by the external force will be equal to the 
area OABy Fig. 4-46, or 

dj 

= V [4-1] 

If we consider a prismatical bar of length L and cross-section area A, 
the deflection will be 

AE 
[4-2] 

i equation 4 • 1 we have 

P2L 
[4-3] W = —- 

2 AE 

S2AE 
[4-4] w =- 

2L 

The first equation gives the work in terms of the external load P, and the 
second equation gives the work in terms of the deflection S. 
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During the process of loading, the bar has been strained and has 
absorbed strain energy. If it is assumed that the deformation 8 is purely 
elastic, then by the law of conservation of energy the external work done 
by the force in moving through the distance 8, must be equal to the 
internal work or the strain energy U absorbed by the bar. Hence we 
may write 

ef . Tr w P2L &2AE 
Strain energy = U = W = —— = ——— [4-5] 

2AL 2L 

Although the load application was restricted to a gradual one, the 
principle holds for sudden applications as well. A sudden application 
of load will produce kinetic energy in the form of vibrations. However, 
after these initial vibrations have been damped out, the state of strain 
will be the same as that resulting from a gradual application of the load. 
This assumes that all deformations are elastic, i.e., the bar obeys Hooke’s 
law at all. times. 

It also follows from the law of conservation of energy, that for any 
elastic system, the work done by the external forces is equal to the total 
strain energy of the system. Hence, if to any truss system we apply a 
system of external loads, Plf P2, • • • Pn which produce only axial loads 
in the truss members, the total strain energy in the system will be 

U = 
Pih P*h 

2 + 2 
+ ••• + 

PnK 
2 

[4-6] 

where the summation extends over all the members of the truss, and 

Pi = load in member i due to the external loads P, 
Li — length of member i, 
Ai = cross-section area of member i} 
Ei = Young’s modulus for member i, 
8n = displacement of Pn in the direction of Pn. 

(e) Strain Energy of Bending. So far we have considered only the 
strain energy due to axial loads. In applying pure bending to an elastic 
body a certain amount of external work is done which must equal the 
strain energy absorbed by the body. Consider, for example, an element 
of length dxy Fig. 4* 5a, cut from a bent beam. For a given bending 
moment M and the corresponding angular deflection dd, the increment 
of work done by the applied moment will be equal to the area OAB, 
Fig. 4-56, or 

dU 
MdS 

2 
[4-7] 
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For small angles we can write 

131 

dx 
n 

. , „ „„ 1 M 
and from equation 3 • 36 — = — 

It El 

Fig. 4-5. Strain energy due to bending. 

Substituting these relations in equation 4 • 7 we have 

M2dx 
dU = 

2E1 

The total strain energy of bending for a beam of length L is then 

/lM2 
— dx [4-7a] 

By substituting for M the relation given by equation 3*40, the total 
strain energy of bending can also be written as 

U dx [4-8] 

(/) Strain Energy of Shear and Torsion. Consider an element of 
length L subjected to the shearing loads P as indicated in Fig. 4 • 6a. For 
simplicity we assume the origin to be the reference point from which dis¬ 
placements are measured. Then, for a given shear force P and the 
corresponding shearing strain 7, the work done by the external force is 
equal to the area OAB, Fig. 4 • 6b, or 

PB 
C/ = — 

Substituting the relations 
B r P 
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in the above equation we have 

U ~ 
P2L 
2 AG 

or 

U - 
AG S2 

2L 

[4-1 

[4-9] 

[4-10] 

The strain energy of an elastic bar subjected to couples in planes per¬ 
pendicular to its longitudinal axis can be derived in a similar manner. If 

Fig. 4-6. Strain energy due to direct shear and torsion. 

ip is the angular twist, 6 the angular twist per unit length and C the 
torsional rigidity of the bar, then the relation between the applied 
torque Mt, the unit angular twist 0 and the angular twist ip is, by defi¬ 
nition, 

A = Mt _ dip 

C dx 

For a bar of length L subjected to a constant torque Mt} the total work 
done by the applied torque is equal to the area OAB} Fig. 4 • 6c, or 

TJ _ MtL0 
2 

and from the above relations we have 

-# [4-11] 

[4-12] 

If the applied torque is not constant over the length of the bar, the 
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difference in angular twist of two elements a distance dx apart will be 

dx and we can write: 
dx 

dcp Mt , 
— dx = — dx 
dx C 

The strain energy of the differential length dx will be 

Hence, the total strain energy is 

[4-13] 

For example, for a bar of circular cross section the torsional rigidity is 
JGy see equation 9*3, hence the total energy for a constant torque is 

or 
2JG 

U = 
d2JGL 

[4-12a] 

(g) Principle of Superposition. Before considering in detail the 
methods for calculating redundant structures it will be necessary to give 
some consideration to the derivation of certain general theorems relating 
to the strain energy of elastic bodies. However, the validity of these 
theorems is based on the applicability of the principle of superposition. 
Therefore, it is desirable that the student have a clear understanding of 
what is meant by the principle of superposition before we consider the 
general energy theorems. 

If the bar shown in Fig. 4* 4a is subjected to a tension load Pi + p* 
the strain deformation, Fig. 4 • 7 a, will be 

(Pi + P2)L = P1L P^L 
AE AE + AE 

5i + 52 [4-14] 

where 5i and 52 are the strain deformations due to the loads Pi and P2 
acting separately. This relation, that the strain deformation due to the 
load Pj + P2 is equal to the sum of the deformations of Pi and P2 acting 
separately, is called the principle of superposition. The above relation 
only holds if the deformations are elastic, for if the strain is not a linear 
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function of the load, i.e., if Hooked law does not hold, the strain de¬ 
formation due to Pi + P2 will no longer be equal to the sum of the 
strain deformations due to Pi and P2 acting separately. For example, if 
the deformation increases at a greater rate than the load, Fig. 4 • 7b, then 
8 will be greater than 8X + 52. 

The principle of superposition is of fundamental importance in the 
strain energy theory. It means, that for any structure in which all the 
members obey Hooke’s law, and the deflections are linear functions of 
the applied loads, we can calculate the total deflection at any point, due 

Fig. 4*7. Effect of Hooke’s law on principle of superposition. 

to a system of loads, by adding algebraically the deflections due to each 
of the loads acting separately. 

(h) Maxwell’s Reciprocal Theorem. Before we can proceed with the 
derivation of a general method for calculating the load distribution in a 
statically indeterminate structure, it will be necessary to prove a general 
theorem, the proof of which was first given by Maxwell. Consider the 
structure shown in Fig. 4*8, subjected to a load Pa at A in the direction 
6a and a load P& at B in the direction 8*>. The structure is held in equi¬ 
librium by the reactions Ru R2) P3, and P4 which are considered to be 
fixed, hence they do no work. We assume that all the members in the 
structure obey Hooke’s law of deformation and that the work done by 
the external forces acting on the structure depends only on the end 
positions. As a consequence of the first assumption it follows that the 
displacement of any point in any given direction, produced by an applied 
load at any other point in any given direction, will be proportional to the 
applied load. If by the first subscript we designate the point at which 
the displacement occurs, and by the second subscript the cause of the 
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displacement, then the displacements due to the loads may be written 
as follows: 

The displacement at A in a direction 6a due to the load Pa = 8aa- 
The displacement at A in a direction 6a due to the load Pb = 8ab. 
The displacement at B in a direction db due to the load Pa = 5ba. 
The displacement at B in a direction 6b due to the load Pb = 8bb. 

Assume that we apply the load Pa first, then the external work done 
by this force will be Padaa/2. The load Pa causes the point B to deflect 
an amount 8ba, but since there is no external load at this point no work is 
done. Let us now apply the load Pb, then the external work done at 

point B will be Pbhbb/2. The load Pb produces a displacement Sab at 
the point A and since the load Pa already exists, the external work done 
at point A by Pa due to the application of Pb is Pa50&. The work done at 

each point by these forces is represented graphically by the shaded areas 
of Fig. 4*9. The total work done is, therefore, 

Ut = $Pa8aa + 1^6^66 + Pa$ab [4 • IS] 
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In a similar manner it can be shown that if we apply the load Pb first 
and then Pa that the external work done will be as illustrated graphi¬ 
cally by the shaded areas of Fig. 4 • 10, and the total work done will be 

U2 = hPbhb + hPataa + Pbha [4-16] 

Since we postulated that the work done by the external forces is a func¬ 
tion only of the final loads and displacements, it follows that the energy 
state given by U\ is equal to that given by U2} for the final deflections 
will be the same for each, being independent of the order in which the 
loads are applied. By equating these two expressions for the work we 
have 

PJab = Pbha [4-17] 

The physical meaning of equation 4-17 is, that the force Pa acting 
through the displacement produced by the load Pb at A, in the direction 0tt, 

Fig. 4 10. 

does the same amount of work as the force Pb acting through the displace¬ 
ment produced by Pa at B, in the direction 0b- This particular relationship 
is known as Maxwell's reciprocal theorem. Maxwell's theorem is not 
restricted to loads only, but may be extended to include the following 
theorem for moments. 

If Ma and Mb are moments applied to A and B, respectively, then the 
moment Ma acting through the angular displacement produced at A, by the 
moment Mb does the same amount of work as the moment Mb acting through 
the angular displacement produced, at B, by the moment Ma. 

If Pa = Pb it follows from equation 4*16 that 

5ab ~ 5 ba [4*18] 

This means that the component of displacement at A, in the direction 
Bay due to an application of a load at B, in the direction $b, is equal in 
magnitude to the component of displacement at B, in the direction 6by 
due to the application of an equal load at A, in the direction The 
relation expressed by equation 4-17 is particularly useful in calculating 
deflections. 

(i) Castigliano’s Theorem. It has been shown, equation 4 • 5, that the 
strain energy of an elastic body can be expressed as either a quadratic 
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function of the external load, or as a quadratic function of the displace¬ 
ment. From the energy expressions for a few of the loading conditions 
for which the deflections are known, it can readily be shown that the 
derivative of the strain energy with respect to the applied load gives 
the deflection of the point at which the load is applied, in the direction 
of the applied load. For example, in the case of a rod subjected to pure 
tension, equation 4-3, 

dU d(P2L/2AE) __ PL _ 

dP = dP A E ~ Sp 
[4-19] 

For a simple beam loaded at the center, we obtain from equation 4-7 for 
the strain energy due to bending 

V,™ 
9G£7 

From this the deflection at the center is 

dU _ PL* _ 
dP ~ 48£7 " P 

Castigliano’s theorem is a more general statement of these results and 
can be stated as follows: 

The partial derivative of the strain energy, expressed in terms of the 
external loadsj of any elastic system with respect to any one of the external 
loads, gives the displacement of the systemy at this loady in the direction of 

the load. 
Consider, for example, a structure subjected to a system of external 

loads, Pi, P2, • * • Pny then the elastic energy stored in the system will be 

U - |[Pi5i + P2S2 + • • • + Pnh] [4-20] 

Now if to each external load is added an increment of load AP, the 
deflections at each load will increase by an amount A5. Correspond¬ 
ingly the strain energy of the system will be increased by an amount 
AC/, and the new energy in the system can be expressed as 

17 + AC/ - $[(Pi + APi) («i + ASj) + (Pa + AP2) (S2 + A52) + • • • 

+ (Pn + APn) (5n + A8„)] [4-21] 

Now subtracting equation 4-20 from equation 4-21 and neglecting 

second order terms gives 

AU = $[PiA«x + P2AS2 + • • • PnA8n] 

+ KAPi«i + AP2S2 + • • • + APnSn] [4-22] 
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From the reciprocal theorem, equation 4-17, it follows that, P\A8t = 
APi$i or, in general, PnASn = APn5n, hence 

AU = AP^i + A P2<52 + • • • + APn8n [4*23] 

If an increment of load AP; is added to the load Pi only, that is, all other 
loads in the system remain constant, then all the terms in equation 4-23 
vanish except the term AP^ and it follows that 

AU dU 

A Pi “ dPi 
[4-24] 

If this theorem is applied to the general expression for the strain energy 

Fia. 4 11. Example of statically determinate truss. 

in a truss structure, equation 4 • 6, we obtain the following expression for 
the component of deflection of the load P& in the direction of Pk 

dU = vA PiLi dP± 

dPk AiEi dPk 
[4-25] 

The derivative dPi/dPk is the rate of change of the load in member i due 
to the application of the load P*. Numerically this derivative is equal 
to the change produced in the load carried by member i due to an appli¬ 
cation of a unit load at K in the direction of P&. This fact is particu¬ 
larly useful in calculating deflections in general. Assume, for instance, 
that it is desired to calculate the component of displacement of B, Fig. 
4*11, due to the load P, in any direction. In order to apply Castigli- 



4-1] TRUSS ANALYSIS 139 

ano’s theorem it is only necessary to introduce a fictitious load P/ in the 
direction in which the component of displacement is desired and to eval¬ 
uate the derivative dU/dPj. Since, actually the load P> is non-existent, 
it is set equal to zero in the expression for the derivative dU/dP>, i.e., 

/dfA 'PthdPi 
\dPf)pt - o A iEi dPf 

[4-26] 

The loads Pi are those due to P only since P/ = 0 and the derivative 
OPi/dPf is evaluated by applying a unit load in the direction of Pj and 
calculating the loads in each member due to this unit load. 

Example. Consider the truss system shown in Fig. 4 11. The cross-section areas 

and the lengths of the members are as indicated in the figure. Young’s modulus 

E — 30 X 106 lb. per sq. in. is the same for all members. It is desired to calculate at 

the point B, the vertical displacement and the component of displacement at an angle 

of 45 degrees to the horizontal. Equations 4-25 and 4-26 can be conveniently evalu¬ 

ated in a tabular form as shown below. Column 5 is obtained by applying a unit 

load at point B in the direction of P and column 8 by applying a unit load at an angle 

of 45 degrees to the horizontal. In each case, when the unit load is applied, all other 

external loads are zero. 

1 2 3 4 5 G 7 8 9 

9 U EiAi Pi 
, 

*21 
an 

PjU 

A {Ei 

PiU (dPj\ 

AiEi \dPk) 

an 

. an 

PiU (BPi\ 

AiEi \dPfJ 

AB 100 30 X 10fi 0 0 0 0 0.707 

BC 100 30 X 10« 1000 1 0.333 X 10’2 0.333 X 10-2 0.707 0.236 X 10 "2 

CD 100 30 X 106 1000 1 0.333 X 10 -2 0.333 X 10-2 0.707 0.236 X 10 “2 

CA 141“. 4 00 X 10« -1414 -1.414 0.333 X 10-2 0.472 X 10 -2 -1.0 0.333 X 10-2 

X^PiLjdPj 

p ZfAiEidPk 

^PiLjdPj 

S/ - 2mJ A iEi dPf 
i= 1 

= 1.138 X 10~2 in. 

= 0.805 X lO-2 in. 

So far we have applied Castigliano’s theorem only to statically 
determinate trusses. It is apparent from equation 4-24 that in order to 
calculate the deflection or its components at any point it is necessary 
that the loads in all members be calculable in terms of the external loads. 
Therefore, in a statically indeterminate truss it would be impossible to 
calculate the deflections by means of equation 4 • 25 or equation 4 • 26. If, 
on the other hand, at any joint the deflection is known, the magnitude of 
the external load can be calculated. In particular, redundant reactions 
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can be calculated when the reactions are either fixed so that their dis¬ 
placements are zero, or if their motion is restricted to a finite known 
magnitude. In such cases, the strain energy is expressed in terms of 
known external loads and the unknown reactions, which can be con¬ 
sidered as external loads. The magnitudes of the unknown reactions 
can then be calculated by means of equation 4-25. 

0‘) Castigliano’s Second Theorem. In redundant members we can 
apply Castigliano’s general theorem to obtain a theorem which is known 
as Castigliano’s second theorem. Consider for example the member 

(a) (b) 
Fig. 4-12. 

AB} Fig. 4* 12a, in any truss system which is subjected to external loads 
Pi, P2, P3, • • • Pn• Now let us replace the member A B by two external 
forces Pa and P&, Fig. 4-126, equal in magnitude to the force in the 
member AB. If by U' we designate the work done by the external loads 
including Pa and P5, then U' will be equal to the strain energy of the 
system excluding member AB. The total strain energy of the system 
in terms of the external loads will be given by 

l - V 

"'-Z 
faK + + y,I\ + ••• + viPn? 

[4-27] 

Where ■ ,v are constants depending only upon the geometrical 
configuration of the system. 

By Castigliano’s theorem 

= component of displacement of A in the direction of Pa 

— = component of displacement of B in the direction of Pb 
aPb 
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If the original unstrained distance between A and B be denoted by L, 
and the final distance between A and B be denoted by L', then 

From equation 4 • 27 

[4*28] 

dlT SIT ^ fa+ft)[qiP0 + ftP6 + 7<Pi + ; • -+viPn]Li 

dPa dP b 4^ AiEi 

Now let Pa = Pb ~ Pabf where Pab is the tension load in member AB, 
then 

dlP_ __ (gj + Pi) [cXjPgb + 0jPab + 7\Pl + • • • + HPn]Lj 

dPab~ 4-f AiEi [ ] 

Since Pa = Pb = Paby the right-hand side of equations 4*29 and 4*30, 
are identical we can write 

dUL ^ dJJf dU' 
dPab dPa dPb 

Substituting this relation in equation 4-28 gives 

[4*31] 

If the original unstrained length of the member AB was L — X, i.e., the 
member was too short by an amount X, then the final length of AB due 

to the load Pab will be 

L,-<£-*>( l+£f) 
But the final length of member AB must equal the final distance between 
A and B, hence L\ = L' and 

[4-32] 

Expanding the right-hand side of equation 4-32, we have 

— + ~ (L — X) = X 
dPab aek 

Pab 
AE 

(L-\) 
dll 

dP7b 

But 
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where u is the strain energy of the member AB, hence, 

[4-1 

d(V + u) 

dPab 
= X 

Since ([/' + u) is the total strain energy of the system including member 
AB, we have 

dU_ 

dPab 
= X [4-33] 

This equation states, that the partial derivative of the total strain energy 
with respect to the load in a redundant member is equal to the original 
lack of fit, X, of this member. 

For a perfect fit X = 0 and we obtain the equation 

^ = 0 
&P ab 

[4-34] 

This equation is generally referred to as the principle of least work, since 
it is the condition that the force, Pab, in the bar be such as to make the 
strain energy of the system a minimum. 

In a truss system having only a few members the above equations can 
be applied directly. However in a complicated truss system a direct 
application of these equations becomes very laborious since it necessi¬ 
tates carrying through the calculations for the load in each member in 
terms of the unknown load in the redundant member and the known 

external loads. 
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By an application of the above principle a system of equations can be 
derived which simplifies to some extent the calculations of statically 
indeterminate truss systems. Consider for example the redundant 
truss, Fig. 4 • 13a, in which member BD is the redundant member. Let 
us replace this member by a force X, equal to that in the bar, at each 
node point as shown in Fig. 4 • 13b. If for X we substitute a known force, 
say, a unit force which we designate by x, then the load in each member 
may be considered as being produced by two sources, namely, the ex¬ 
ternal load P and the unit force x each acting separately. If by Pei 
we designate the force produced in member i, while P alone is acting 
and by Xi the force produced while x alone is acting, then when P and X 
are both acting the force P* in member i will be 

Pi — pRi + [4*35] 

The total strain energy of the system including the redundant member 
BD is 

(PE{ + XjX)2 Lj 
2Ai Ei 

[4-36] 

where the summation extends over all the members including the 
redundant member 

and 
dU _ vA (PSi + XjX) XjLj 

dX Lj AiEi 

But for a perfect fit, equation 4 ■ 34 

d_U 

dX 
= 0 

Hence 

»«i 

■ {Pm + XjX) XjLj 

Ai Ei 
= 0 

Writing Q,- = —— and solving for X from the above equation we have 
Ai Ei 

S Psi x>Qi 

X 
*=1 

T xiQi 
T^i 

[4-38] 

The same method is applicable to a system with any number of redundan¬ 
cies, for example in the case of two redundancies with the corresponding 
forces X and Y, the load in any member i can be expressed by 

Pi — Pti + %iX + ViY 
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Then the total strain energy is 

U-T,J 
(PEi + XiX + VlY)2 Li 

2AiEi 

and by equation 4-34 

dU = 

dX 
= ^ iLgi 

(Pk; 4- t,X + ytY) XiLi 

[4-39] 
t — n 

-E 
C^i + + ?/,F) y<Li 

In the general case a system of equations linear in the unknown forces 
Xy Y- • • is obtained, and since the number of equations will equal the 
number of unknowns, the unknown forces can be calculated. 

From equation 4*39 we can obtain for X and Y the following expres¬ 
sions 

[4-40] 
) (S^vvS PexViQij (i= n \ 2 / i — ti \ / t — n \ 

^xiyiQ)" (£^Q)(Sfy^Q) 
i—n \ / i— n \ / t — n \ j t — n \ 

Ep^W “ (E^yl Ep"*<o0 

(E***) -(2>2Q)(X>) 
[4-41] 

Examples. 4*1. Given the truss shown in Fig. 4 -14 with dimensions as indicated 
Required to compute the load in each member. 

Assuming BD to be the redundant member, equation 4-38 can be readily evaluated 

in a tabular form as shown below. 

B-D 25.98 0.866 X 10~« 0 

6 7 

PE&iQi x\Qi 

0.288 X 10-8 0.167 X 10-8 
-0.577 X 10-3 0.333 X 10-8 

0 0.866 X 10-« 
-0.289 X 10^8 1.366 X 10-« 

X * force in BD * — 
2 PsiXjQi 0.289 X 10-* 

2 xfQi “ 1.366 X 10-* 

Hie positive sign obtained for X means that the assumed sign of x was correct. 
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After the value of X has been computed, the loads in the other members can be 
calculated from the relation: 

Pi = Pea + Xxi 

These values have been listed in column 8. It is important that consistent sign 
notation be used throughout. 

Area of A8- 2 so. in. 
BC - / sq. in. 

" BO = / sq. in. 

E = SO x J0b fb. /sq. in. 

Area of AB 2 so. in. 
" ” BC / sg in 
” " BO I sq in 
" " BE / sq. in. 

E-30 x 10 6 ib. / sq. in. 

4*2. Given the truss shown in Fig. 4*15, with dimensions as indicated. Required to 
compute the load in each member. 

Consider EB and DB to be the redundant members and let Xi be the force due to 
the unit load in DB and be the force due to the unit load in EB. The terms of 
equations 4*40 and 4*41 are evaluated in a tabular form as indicated below. 
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Substituting the numerical values of the summations in equations 4*40 and 4*41 gives 

X = 3941b., Y « 1141b. 

The load in any member will be given by 

Pi - PEi + Xxi + Yyi 

It should be noted that although the addition of redundant members redistributes 

the loads in the structure, it does not necessarily decrease the loads in the original 

members. Thus without members BD and BE the load in member AB is 1000 lb.; 

however, when these members are added, the load in AB increases to 1071 lb. 

If more than two redundancies occur in a truss system the calculations 
become quite laborious. In present-day metal aircraft construction only 
the engine mounts arc statically indeterminate trusses which have, in 
general, only one or two redundant members. 

Castigliano’s second theorem is useful in calculating induced strains in 
the members of a statically indeterminate structure due to either a mis¬ 
fit of a certain member or variable temperatures. Since a redundant 
structure has the property of self-strain, it is apparent that the stresses 
in the members of a loaded truss may be varied by intentional misfits in 
certain members. This idea is sometimes employed to obtain a better 
distribution of stresses. 

4-2. Frames 

Before proceeding with the analysis of frames it might be well to con¬ 
sider the difference between a truss and a frame. As previously pointed 
out, the stability of a truss is accomplished by triangulation of its mem¬ 
bers, which are assumed to carry only axial loads. In a frame structure 
the bending stiffness of the joints as well as the bending stiffness of mem¬ 
bers may be relied upon to provide the necessary requirements for stabil¬ 
ity. The members of a frame may be subjected to axial, shear, and 
bending loads. It is not to be implied that any structure in which the 
members are triangulated is necessarily a truss; in general, if any one 
member is bending resistant the structure is considered to be a frame. 
The difference lies essentially in the assumption as to the manner in 
which the external loads are resisted rather than the geometrical con¬ 
figuration of the members. 

In the analysis of frame structures we can apply Castigliano’s theorem 
as well as the so-called least-work principle. So far we have been dealing 
only with axial or concentrated forces and linear displacements. In the 
following discussion we shall consider forces and displacements to have 
their generalized meaning, that is, they are to include couples and angu- 
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lar displacements respectively. Consider for example a section of a 
beam, Fig. 4-16, subjected to an external couple M. Now any couple 
may be replaced by two equal and opposite forces so that M = Ph, and 

if we indicate by the subscripts a and b their points of application, we 
have from equation 4‘31 

and 

but 

dU dU 

dPa dPt, 

dU 

dP 
= 8a + h 

1 dU 8a + 8b 

h dP h 

1 dU _ dU _ dU 8a + 8b 

h dP “ d(Ph) ~ dM "" h 

Since in the theory of the bending of beams we assume that all cross sec¬ 

tions remain plane, we have 

dU 8a -f* 8b 

dM = h 
[4-42] 

where ^ is the angular displacement of the end cross section related to a 
plane perpendicular to the longitudinal axis of the beam. Hence, if an 
external couple M is applied to one end of a horizontal beam, then equa¬ 
tion 4 *42 will yield the slope of the deflection curve at that end. 

(a) (b) 

Fia. 4*17. Statically indeterminate beam. 

The foregoing relation can be used to investigate redundant internal 
couples. Consider a loaded beam resting on three supports (Fig. 4 • 17a). 
The moment at B is redundant. Let us cut the beam at B (Fig. 4 • 176), 
and replace the internal moment at B by an equal external couple, M. 
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We can now consider the system as two separate beams subjected to 
end couples as shown. Now if U\ = strain energy of beam AB, and 
t/2 — strain energy of beam BC, we can apply equation 4*42 and 
obtain 

0i = 
dUA 

dM 
$2 = aih 

dM 

where 0i and 02 represent the slope at B. But inasmuch as the beam, 
and hence the deflection curve, is continuous 

0i = —02 

and 
dUt dU2 _ Q 

dM + dM 

or 
djUi + U2) 

dM 

But U\ + U2 = U where U is total strain energy of the beam. Hence, 

where M is a redundant internal couple. The application of the energy 
equation to frame structure will be illustrated in the following examples: 

Example 4 3. Consider the beam of Fig. 4* 18. It is subjected to a uniformly dis¬ 

tributed upward load, w} and is fixed at A, so that either the moment at A or the ten¬ 

sion in BC is statically indeterminate. If we replace the member BC by the tension 

load T acting as shown, we can then write, for the moment at any point X on the beam 

M = 
wx2 

IT Tx cos 60° 
wx2 Tx 

2 2 

Let Ai be the cross-sectional area of the beam, A2 the cross-sectional area of the 

tension member BC, E\ the modulus of elasticity of the beam, and E2 the modulus 

of elasticity of BC. 
We can now write for the strain energy in bending from B to A 

^ _i_ /w2L5 
" SEiI V 5 

and for the strain energy in compression in AB 

rr P2L (T cos 30°)2L 3T2L 

2 wTL4 
+ 

T2L*^ 
4 
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Hence, the total strain energy in the beam will be 

U - Ui + U2 
1 / w2JJ* 

SEiI \ 5 

2 wTIA T2L3\ 3 T2L 

4 + ' 3 / + SAxEi 

From Castigliano’s first theorem, the component of the deflection of B in the direction 

of T will be 
dU TL3 wL* 6 TL 

h ~ dT ~ 12EJ lOEiI + SAiEi 

From a consideration of the deformation in BC due to the axial load T, we can also 

write 
PL TL esc 60° 2TL 

AE A2E2 V3^2#2 

and, since fa is equal and opposite to Si, 

fa = —52 
or 

TL? wL* 67T, -2ITL 
12J&i/ I6JS1/ 8Ai^i *v^3A2^2 

from which 
wl? 

T_IMfi* 

12E\I AA1E1 v^3A2-^2 

This result can also be obtained by considering the total energy of the system and 
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applying the principle of least work. The strain energy of the beam has already been 
obtained. The strain energy of the tension member BC is 

_ T2L esc 60° __ T2L 

2 A 2E2 VsA^Ei 

Hence the total strain energy of the system can be written 

u = —- (— 
8EiI\ J 

U = Ui + Ui + Ui 

vW _ 2wTL* TH?\ 

5 4 + 3 > 

ZT2L T*L 

&AiE\ V3^2^2 

Fig. 4*19. Rectangular frame. 

If we consider the member BC to be redundant, then by the principle of least work 

from which 

wL* TLZ 3 TL 2 TL 

MEiI + 12EJ + ^AXEX + V3A2E2 ~ 

JL ._g_ + .1. 
12EiI IA1E1 y/sAiEi 

which is identical to the result previously obtained. 
The problem could have been solved equally well by considering Ma as the redun¬ 

dancy, solving for the total energy of the system in terms of Ma and writing 

This, then, would yield the expression for Ma- 
Example 4'4* Given the frame shown in Fig. 4* 19a. Assume E and I constant for all 

members. From the symmetry of the frame we can assume that the deflections 0i and 
0s due to the horizontal load P will be equal. This means that in the free-body dia- 
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gram (Fig. 41 • 196), the horizontal loads at C and D must be the same and hence equal 

to P/2. This determines the horizontal reactions at A and B and we have Ha — Hb 
= P/2. Inasmuch as members AD and BC arc subjected to the same loading condi¬ 

tions, we can also write: Ma — Mb. Similarly, Me — Mb = M. The foregoing 

assumes identical end conditions at A and B. 
The strain energy for member AD can be written 

This also gives the strain energy in member BC. 
For CD, we can write 

ih=jl(m—~~ *y rfx 
2EI \ ]j J 

nil be 

i rn/ p \2 i cl/ oM \2 

U-W' + U'-EiJo {M~2y) + + 2klJ. (M-Tr 

The total strain energy will be 

From the principle of least work 

dU 

dM 
= 0 

Hence 

and 

J2_ 

El 
(Mh - ^ + {ML - 2ML+^ML) = 0 

M - ■ 
Ph 

K) (1) 

Taking moments about A (Fig. 4- 19a) 

Substituting (1) for M 

M - y + Ma = o 

K) 
It is also evident from Fig. 4* 196, that the vertical reactions will be 

Hence 

Va = Vb = 
2 M 

(directions as indicated) 

Example 4 Given a circular frame, Fig. 4 • 20a, subjected to a tangential-running 
shear load of magnitude w sin <p lb. per in., where <p is measured as indicated. It is 
assumed that the tangential shear acts at the centroid of the frame and that El is a 
constant. Required to compute the bending moment at any point. 
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From the free-body diagram, Fig. 4 • 206, the moment at any point on the ring at an 

angle 0 is 

Me = M + PR(l — cos 0) — / wR sin <p [1 — cos {6 — <p)]Rd<p 
•'O 

— M + PR(l — cos 6) — wR2 ( 1 — cos 0 — - sin i 

The bending energy from C to B is 

2E1 

And from the principle of least work we have 

(o) 

Fig. 4-20. Circular frame notation. 

Substituting the expression for the moment Me in the above two expressions we have 

respectively, 

1.5708M + 0.5708P# - 0.0708wR2 = 0 

0.570SAf + 0.3562PR - 0.0520rf = 0 

Solving these two equations simultaneously we obtain 

M » - 0.019iy/22, P * 0.1762ic/2 

Substituting these values of M and P in the equation for M, the moment at any 

point can be calculated in terms of w and R, which will be known quantities in a 

given structure. 
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CHAPTER 5 

THE PROBLEM OF INSTABILITY 

6-1. Columns with Stable Cross Sections 

Short, heavy sections under compression loads obey the laws discussed 
in Chapter 3, and such sections will suffer permanent set when the 
normal compressive stress passes the compressive yield point of the 
material; failure of the section will occur when the compressive stress 
has reached the ultimate compressive stress of the material. If, on the 
other hand, we consider a very long, slender rod subjected to a compres¬ 
sion load along its axis, experience tells us that it will suffer a lateral, 
bending deformation and cease to carry additional load at a stress 
which is much below the yield point or ultimate stress of the material. 
Such a structural element is known as a long column and the failure is 

one of instability in a direction perpen¬ 
dicular to the direction of applied load. 

In one way or another, structural 
elements whose failure is of the column 
type make up a large percentage of the 
stress-carrying portions of an airplane. 
It is therefore desirable to review the 
various forms of column failure and the 
theoretical and empirical methods which 
are used to calculate the allowable loads 
for such structural elements. Consider¬ 
ation will first be given to columns hav¬ 
ing cross sections which are not subject 
to local instability or torsional failure 
and, in a later section, the effects of these 
phenomena will be investigated. 

Stated in words, long column failure can be expressed as follows: 
When the elastic energy of a rod under a compressive load is greater 
when the rod is bent in a direction perpendicular to its axis (Fig. 5 • 16) 
than it is when the rod is straight (Fig. 5* la) then the rod will remain 
straight. When the energy in the bent condition is less than it is in the 
straight condition, the rod will stay in the bent condition and will be 

154 

I L 

Li 
P 

(a) 

Fig. 5 1. Column notation. 
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said to have suffered column failure. When the two energies are equal, 
we have a condition of neutral equilibrium and the compressive load 
giving rise to this condition is known as the critical column load for the 
section. An energy method of determining the critical column load may 
be used but, in this case, the use of the differential equation relating the 
curvature to the bending moment, equation 3 • 40, is simpler. 

(a) The Euler Column Formula. Considering the column shown in 
Fig. 5*16, the moment at any cross section is given by 

My = —Pw 

This is substituted into equation 3*40, giving 

d?w 
El —r = -Pw 

dy2 

which equation has a solution of the form 

w = A cos \l— v + B sin \ — y 
\El \ V.T 

inJEl 
'El 

[5-1] 

[5-2] 

The constants A and B must be so adjusted that they satisfy the bound¬ 
ary conditions of the problem. At 

which yields B — 0, leaving 

w = A cos 

( dw\ 

»- "• wL-0 

Jly [5-3] 

At the ends of the column y = db ~,w = 0 and this is satisfied if 
it 

A = 0 

which indicates that the straight column is stable or has the lowest energy 
state. Equation 5-3 is also satisfied when 

cos 
P L 

or when 

which can be reduced to 

El 2 

P_L m 

El 2 ~ 

ir2 El 

L2 

= 0 

x 

= 2 

= PB [5-4] 
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where Pe is known as the critical column load for a long column. If the 
ends are not free to rotate, this equation times a constant can be shown 
to apply, the general equation being 

Pe = 
Ctt2 FA 

L2 
[5-5] 

where C is the end fixity coefficient and depends upon the end restraint. 
For pin-ended columns C = 1.0, and for columns having the ends com¬ 
pletely restrained from rotation, G = 4.0, other restraints giving coeffi¬ 
cients between these two values. The critical column stress is obtained 
by dividing the load by the cross-sectional area or 

PE Ct2 El Ctt2 E . _ 

n " T ’ W " (T/rt> [ 1 
where p = the radius of gyration of the cross section which is equal to 

VI/A. 
Considering an example in which C = 1.0, E = 107 lb. per sq. in., the 

curve of ag versus L/p is as shown in curve (a) of Fig. 5 • 2. Equation 5 • 6 

is valid only as long as the material is in the Hooke’s law range, that is, 
as long as there is a linear relationship between 07? and the strain. As 
soon as any portion of the cross section is subjected to a stress beyond the 
proportional limit of the material, one should expect to find deviations 
from the Euler curve. 

(b) Reduced Modulus Curve. When the Euler buckling stress 
becomes greater than the proportional limit of the material, any 
tendency of the column to buckle will cause the outer fibers on the con¬ 
cave side to have an increased compressive stress due to bending, and 
these fibers will be acting at an increased dist ance away from the propor¬ 
tional limit. On the other hand, fibers on the convex side will be acting 
under a reduced compressive stress which will tend to bring their stress 
level nearer to the Hooke’s law regime. Therefore, in order to use 
equation 5-6 for stresses above the proportional limit, it is necessary to 
determine some effective value of E. K&rm&n (reference 5-1, p. 156) 
suggests the use of a reduced modulus given by the equation 

2?r = 
4 EEW 

(Ve + Ve,)2 
[5-7] 

where E„ is the tangent modulus of elasticity at the stress and E is the 
modulus of elasticity in the Hooke’s law range. This reduced modulus 
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equation is derived on the assumption that the cross section is rectangu¬ 
lar; however, it is sufficiently exact for engineering purposes for most 
stable cross-sectional shapes. Considering a typical material with the 
stress-strain curve shown in Fig. 5*3, the reduced modulus is calculated 

L/P 
Fia. 5-2. Comparison of different column curves. 

in Table 5-1. In this 
from the equation 

table the L/p corresponding to a»c is calculated 

[5-8] 

in which <r,e is the critical stress in the short column range. The maxi¬ 

mum value of <r.c will be the ultimate compressive strength, <suc of the 
material and curve (b), which corresponds to Table 5-1, will be ter¬ 
minated by a horizontal line through this stress value. 
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TABLE 51 

&8C B. Er (L/P)er (L/p)e„ 

20,000 10.0 X 10® 10.0 X 106 69.9 69.9 

25,000 9.8 X 106 9.9 X 10® 62.6 62.2 
30,000 8.5 X 106 9.2 X 10® 55.0 52.6 

35,000 4.0 X 106 6.0 X 10® 41.0 33.6 
40,000 1.5 X 106 N—

i1 

X
 

©
 

27.8 19.3 

45,000 0.6 X 10® 1.5X10® 18.4 11.4 

50,000 0.3 X 10s 0.9 X 10® 13.1 7.7 

60,000 0.15 X 106 0.5 X 10® 8.8 5.0 

(c) Tangent Modulus Curve. For specimens in which extreme care 
n manufacturing and testing is used, it is possible to check experimen- 

esUnit strain 

Fig. 5 -3. Typical stress-strain curve of dural. 

tally the reduced modulus curve very closely. However, for columns in 
which ordinary workmanship and care in testing are used, the experi¬ 
mental points in the short column regime will generally fall somewhat 
below the reduced modulus curve. For this reason, it is quite often 
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found that the use of the tangent modulus directly in equation 5 • 6 gives 
somewhat better agreement with the experimental points. If this 
is done, curve (c) in Fig. 5-2 is obtained, the values of (L/p)e9 in Table 
5 • 1 being obtained from the equation 

(L/p)k=xJK [5-9] 
'°sc 

As can be seen, this curve is somewhat more conservative than the 
reduced modulus curve, this conservatism usually being sufficient to 
take care of small inaccuracies in the specimen and the methods of load¬ 
ing. Representative values of the tangent modulus for 17ST, 17SRT, 
24ST, and 24SRT aluminum alloys can be found in a paper by Howland 
(reference 5-2). Reference 5-3 gives a very complete discussion of the 
tangent modulus curve as compared with experimental test data from 
a number of aluminum-alloy sections. 

(d) Johnson Parabolic Formula. The Johnson column equation 
approximates the tangent modulus curve in the intermediate region 
between the very short and the Euler long columns. Graphically it is 
represented by a parabola which is tangent to the Euler curve at the 
proportional limit and has its vertex (at L/p = 0) at a point correspond¬ 
ing to a stress equal to twice the proportional limit. If this end point is 
defined as the crushing strength of the section, <jCC) the Johnson equation 
gives for the critical short column stress 

*co 1=5 *80 — *cc 
<rUL/pf 
4Ct*E 

[5-10] 

Using the stress-strain curve of Fig. 5 3 in which the proportional 
limit is 20,000 lb. per sq. in., corresponding to acc = 40,000 lb. per sq. 
in., equation 5 • 10 is plotted as curve (d) in Fig. 5 • 2. The curve indi¬ 
cates that the Johnson parabola gives a good approximation to the 
tangent modulus curve, and a somewhat conservative approximation to 
the reduced modulus curve, in the range of L/p > 20. In general, the 
maximum value of the crushing strength is taken as the yield point of 
the material, although experimental evidence may at times indicate 
that a somewhat higher value is justified. 

For sections in which local buckling or torsional failures take place 
before the yield point of the material is reached, the crushing strength 
is defined as the end point of the curve, projected to L/p - 0, drawn 
through data obtained from tests on columns of the section in question, 
and having L/p values between 20 and 50. Since there are two basic 
unknown quantities in equation 5-10, the crushing strength, acc, and 
the end fixity coefficient, C, the complete parabola can be drawn for the 
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short column range, if a8C can be accurately determined for two L/p 
values. As can be seen from Fig. 5*2, it is necessary to use care not to 
take L/p values which are too small for this determination, since there is 
the danger of obtaining points on the high left-hand portion of the modi¬ 
fied modulus curve. Too small L/p test values will lead to a parabola 
which is non-conservative in the intermediate range. 

(e) Straight Line Equation. Another method of approximating the 
column curves in the short column range is by the use of a straight line. 
The straight line is, in general, drawn tangent to the Euler curve and 
has an equation of the form 

(too * °sc = <4^1 - ) [5-11] 

in which cr'c and k are chosen so as to give the best agreement with the 
experimental evidence. The value of C is determined by finding the 
Euler curve to which the straight line is tangent. To determine experi¬ 
mentally the constants in equation 5-11 it is necessary to have accurate 
test values of a8C for two values of L/p, since the independent unknowns 

in equation 5*11 are occ and k/'s/c. Since it is known that, at the point 
of tangency of the straight line equation and the Euler curve, the value 
of aco is the same for both curves and the slope of the two curves is 
identical, one can derive an equation for C of the form. 

27r2E(k/Vc)2 

thus completely determining all the factors in equation 5*11. 
For columns with inherently stable cross sections, the straight line may 

be used over nearly the entire range from L/p = 0 to the point where it 
becomes tangent to the Euler curve. For sections which may be subject 
to local buckling, the straight line is usually terminated by a horizontal 
line through a value of <t8C = <rcc as previously defined. The maximum 
value of <Tcc for such sections is generally taken as the yield point of the 
material and, if local buckling of the section occurs before the yield point 
is reached, the critical buckling value is taken as the crushing strength. 
A typical straight line curve is drawn as curve (e) in Fig. 5 • 2. Reference 
5*3 also gives a valuable discussion of the straight line equation as com¬ 
pared to column test data. 

The straight line equation will give a better approximation than the 
Johnson parabola for stable sections such as round or rectangular bars 
or sheet sections with relatively heavy walls. Sections of this type will 
tend to follow the tangent or reduced modulus curves nearly up to the 



5-1] COLUMNS WITH STABLE CROSS SECTIONS 161 

ultimate compressive strength of the material, and a straight line equa¬ 
tion can generally be made to closely approximate the test points for the 
smaller L/p values. 

(/) Other Short Column Curves. It is readily apparent that for any 
given set of experimental data a curve could be drawn which might 
possibly give a better approximation than any of those discussed above. 
However, the percentage increase in accuracy obtained usually does not 
justify such a procedure and the lack of generality in such a method 
makes correlation with other data very difficult. For purposes of 
uniformity it is therefore suggested that a designer use one of these four 
curves (Euler long column, tangent modulus, Johnson parabolic, or 
straight line) in reducing column test data and, if possible, to choose 
that one which can be defined by a minimum number of test points. 
For certain stable sections, it is felt that more attention should be given 
to the tangent modulus curve, since it can be determined analytically 
and only needs a few experimental points to indicate its accuracy. 

Columns having cross sections falling into the stable classification, 
(not subject to local instability) can be analyzed by means of the 
general Euler equation 

^ C^E 
(L/p)2 

[5-12] 

in which E is the effective modulus of elasticity of the material at the 
stress aE. Complete discussions of equation 5-12 are available in a 
number of references (reference 5*1, 5-3, and others) and will not be 
presented here. The chief question confronting the designer is the 
choice of the proper value of E to use in the development of the column 
curve in the short column regime. 

Experimental evidence seems to indicate that, for most cross sections, 
the use of the tangent modulus for the material (tested in compression) 
in equation 5*12 gives good agreement with the experimentally deter¬ 
mined short column failing stresses. Reference 5*3 gives the results of 
tests on two aluminum-alloy //-section columns and Figs. 5*4 and 5*5 
show the agreement of the test data with the calculated' curve in which 
E was taken as the tangent modulus of the material as determined by 
compression tests. 

Figure 5*6 shows the result of applying this method to heavy-walled, 
barrel- and rectangular-shaped tubes tested by the Boeing Aircraft 
Company. For the determination of the tangent modulus curve in 
this figure, an average tension stress-strain curve had to be used inas¬ 
much as a compression stress-strain curve of the material was not avail¬ 
able. In view of this fact, the agreement of the test points with the 
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calculated curve is quite satisfactory. Similar agreement is found in 
tests on round tubes acting as columns. 

0 20 40 60 80 100 120 140 160 180 

Fia. 5-6. Test points and calculated curves for 27-section. 

In the light of considerable experimental evidence, it is, therefore, 
suggested that the tangent modulus curve be used in the short column 
range for sections which are not subject to local instability. Section 
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5 • 3 will discuss the column properties of sections subject to local instabil¬ 
ity and will treat the torsional failure of columns. 

If a number of tests are made on a series of similar columns in which 
there is a variation in the material yield point, the test data can be made 

Lo/g 

Fig. 5*6. Column curve for barrel and rectangular sections. 

to lie on one curve if the results are plotted using the non-dimensional 
parameters 

6 
ffcyp 

where (jcyp = compressive yield point of the material 
Lq = effective free length = L/y/C 

In all the above it has been assumed that the column has been con¬ 
centrically loaded, that is, that the line of application of the load has 
been through the neutral axis of the cross section. If this is not true, 
the problem is essentially no longer a stability problem but becomes one 
which should be more accurately considered as a beam problem, in which 
the beam is subjected to end load and applied end moments. It will, 
however, be briefly discussed at this point. 

Let us consider a column supporting a load which is applied a distance, 
e, from the neutral axis of the cross section. It can be shown that the 
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maximum bending moment is at the center of the column and has a 
magnitude 

Mmex = Pe sec @4) 
and that the maximum compressive stress at that point is 

P[. , ee (L [P 

[5-13] 

[5-14] 

where c = distance of outermost fiber on the compression side from the 
neutral axis 

p = minimum radius of gyration 

It is readily apparent that the solution of the above equation involves 
either the use of a trial and error or a graphical method since the value 
P occurs in the secant term. 

For relatively short struts, the secant term can be written as 

(L IT\ 
\2p * AE/ 

and, when L/p approaches 0, the value of the secant approaches 1.0. 
Thus, for struts with a small value of L/p, the maximum stress becomes 

CTcmax a(1 + p2) 
[5-15] 

where the limit of ffCmax is usually taken as the yield point of the mate¬ 

rial. 

6-2. Instability of Flat Sheet Subjected to Loads in the Plane of the 
Sheet 

A monocoque or semi-monocoque structure consists primarily of a thin 
shell which may be reinforced by a network of stiffener members. This 
reinforced shell is then subjected to a variety of loads, some of which may 
produce compressive or shearing stresses acting in the plane of the sheet. 

The aeronautical engineer, in the design of such structures carrying 
compression or shear, or both, must, in general, choose between one of 
two design criteria. Under certain circumstances it may be desirable 
that he proportion the sheet so that it will not wrinkle or buckle before a 
given load is being carried by the structure. In other instances, his most 
important problem is the prevention of collapse or total failure of the 
structure until the maximum design load has been reached. In semi- 
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monocoque structure he must not only proportion flat, curved, or cor¬ 
rugated sheets to carry the loads desired, but he must also provide stif¬ 
fening members and other reinforcements to furnish the required local 
strength or stiffness, or to distribute loads locally concentrated. 

At times the designer may be seriously interested in the stresses caus¬ 
ing local buckling or wrinkling of the sheet covering of the wing, tail 
surfaces, and fuselage. He may wish to know whether or not the buck¬ 
ling or wrinkling deformations of portions of such structures under 
normal flying loads will be sufficient to affect adversely the aerodynamic 
efficiency, the handling characteristics, the covering attachment and 
adjacent structure, or the appearance. In the interior of the structure, 
such sheet wrinkling may cause a redistribution of stress which may be 
important from the standpoint of accurate design analysis. For example, 
to provide for the effects of shear lag between wing spar and wing cover¬ 
ing, or to determine when the web of a spar ceases to be shear resistant 
and starts to act as a tension field, the stress analyst must know the inten¬ 
sity of stress at which buckles form. The material in this section will 
deal with the stresses which produce wrinkles in smooth, flat sheet. 

It has been found that if a plane sheet is supported along the edges by 
stiffeners or other adjacent structure, it will continue to carry additional 
load beyond that causing buckling. From the standpoint of the ultimate 
design strength, therefore, the stress analyst is interested in the ultimate 
load which such a sheet panel can support. In addition, it may be impor¬ 
tant to know when some portion of the buckled sheet has reached a stress 
corresponding to the yield point of the material so as to be able to deter¬ 
mine where the first permanent deformation of the structure will occur. 
These and related problems will be discussed in detail in other chapters. 

The stresses causing buckling of a flat sheet depend upon the type of 
loading to which the sheet is subjected, the panel dimensions, the 
material, and the method of support of the edges of the sheet. A simply 
supported edge is one that is constrained to remain straight throughout 
its length, but is free to rotate about the median line of the edge as an 
axis. Various experimental methods of providing an approximation to 
this type of edge support have been used. Holding the edges in C/- or 
F-shaped grooves, between round rods, or in a slotted tube, all seem to 
give reasonably good simulations of a simply supported edge condition. 
A clamped edge is not only constrained to remain straight throughout its 
length but is also restrained against any rotation. A sheet clamped 
between heavy flat plates simulates this condition. A free edge, as the 
name implies, is not restrained in any way. 

Consider a sheet panel as shown in Fig. 5 • 7, loaded with a compressive 
load of P lb. acting parallel to the sheet elements in the middle plane of 
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the sheet (z = 0), and uniformly distributed across the edges y = 0 and 
y = a. This load, P, will then give rise to a uniformly distributed stress 
a lb. per sq. in., acting along the edges y — 0, a. There are no external 
loads applied to the edges x = 0, b. 

Without going into the mathematical derivation of the problem, which 
can be found in detail in references 5 *1, 5 -4, and others, it will be suffi- 

Fig. 5-7. Notation for flat sheet under compression. 

cient to say that the differential equation of such a loaded plate can be 
expressed by the equation 

Et2 / d4w d4w d4w\ 

12(1 — p2) \dx4 + dx2dy2 dy4 / 
[5-16] 

This equation is based upon the equilibrium conditions in a plate 
under external loads. The general equation, which is given in Refer¬ 
ence 5*1, page 305, considers both normal pressures and all edge stresses, 
while equation 5*16 considers only one edge stress, i.e., 

cy = —<r; (tx « 0; rxy = 0; p ~ 0 
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It can be shown (see references above), if the four edges of the panel 
are simply supported, that a deflection pattern of the sheet of the form 

. nirx . rrnry 
w = Wq sin —— sin- 

b a 
[5-17] 

not only will satisfy the boundary conditions of the problem, i.e., that 

J „ , d2w , d2w 
at x = 0, b; w = 0 and —5 + y —j = 0 

dx2 dy2 

. . . d2w , d2w 
y = 0,a; w = 0 and ^ + M ^ = 0 

but also corresponds to the deflection pattern having the smallest internal 
energy. Incidentally, it also agrees with the experimentally determined 
deflection shape of such a plate under a compression load as indicated. 

Substituting equation 5 17 into equation 5-16 yields the following 
equation for a which corresponds to the critical buckling stress of the 
flat plate: 

(a mb\2 ir2E /A2 

\mb+ a) 12(1 - y2) \b) 
[5-18] 

in which m is the number of half waves in the length direction (the 
analysis showing that n = 1 gives the smallest value of the buckling 
stress). Putting this equation into the form 

in which 

[5-19] 

we can plot a curve of K as a function of the a/b ratio of the sheet as 
shown by the central curve of Fig. 5-8 (edges y = 0, a; x — 0, b simply 
supported). 

Any change in the end fixity of such a flat plate merely changes the 
value of K in equation 5 ’19, the form of the equation remaining the 
same. Figure 5-8 gives the values of the coefficient if as a function of 
the edge support and the a/b ratio. These are the theoretical curves, 
and the experimental data that have been collected are in reasonable 
accord with the theoretical values. (Note: Some of these curves have 
been plotted from data given in reference 5-1 in which a value of y = 
0.25 was used. Using this value for the Poisson’s ratio instead of 
y = 0.30 introduces an error of approximately 2 per cent, which is, in 
general, within the desired accuracy of engineering calculations.) 
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When the edges of the sheet are attached to other structural members 
of the airplane, the support given to the sheet is, in general, different 

Fig. 6*8. Values of K versus a/b for various edge conditions. 

from that given by the theoretical edge conditions mentioned above. 
Two of these cases will be briefly discussed. 

(a) Edges x = 0, b completely restrained from bending deformation 
but elastically restrained in rotation. Edges y = 0, a simply supported. 
In this case, the two edges of the sheet parallel to the load are held 
straight but are allowed to rotate against an elastic restraint. This 
corresponds to a stiffener edge support in which the stiffener has an 
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infinite bending rigidity, but a finite torsional rigidity. Zero torsional 
rigidity would correspond to the case of the plate with four sides simply 
supported and infinite torsional rigidity would correspond to the case of 
the plate with the two loaded edges simply supported and the other two 
edges clamped. Intermediate values of the rotational restraint would 
lead to cases between these two limits. The equations are similar to 
those previously discussed, namely, 

ir2E (t V 

A12(1-m2)W 
[5-20] 

in which 
K - fnc (a/6, C) [5-21] 

where C = torsional edge restraint corresponding to 

d2w 
Mi = c — 

dx by 
[5-22] 

in which Mt = twisting moment in support due to edge rotation. 
The general problem in which the bending rigidity as well as the tor¬ 

sional rigidity of the edge support is considered has been investigated in 
detail by Chwalla (reference 5 ■ 5). The problem has also been treated by 
Dunn (reference 5*6), assuming infinite bending rigidity and finite 
torsional rigidity of the edge support. For this condition curves, giving 
K as a function of the a/6 ratio and the rotational edge restraint, are 
shown in Fig. 5-9. 

The curves shown in Fig. 5 ■ 9 are for a plate elastically supported along 
the two edges parallel to the applied load. If a continuous sheet and 
stiffener panel are considered, the sheet on each side of the stiffener will 
transmit bending moments to the stiffener. It can be shown that, for 
symmetrical buckling, these moments will have the same sense. From 
these considerations it is evident that, for a continuous sheet, the effec¬ 
tive torsional rigidity will be one-half of that obtained for an isolated 
panel in the evaluation of a. The torsional rigidity C of the longitudinal 
stiffening elements can be determined either by the methods given in 
Chapter 3 or experimentally by the relation: 

in which Mt is the applied torsional moment and 6 is the unit angular 

deflection. 
(6) Edges, x = 0, 6, completely free in rotation but elastically re¬ 

strained in deformation. Edges, y * 0, a, simply supported. 
This case corresponds to a plate having the loaded edges simply sup¬ 

ported, and the edges parallel to the load attached to beams having a 
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finite bending rigidity but zero torsional rigidity. This problem has been 
treated by a number of investigators, and the results have been summar¬ 
ized by Timoshenko (reference 5-1, p. 347). The curves plotted in Fig. 

Fig. 5*9. Effect of stiffener torsional rigidity on sheet buckling. 

5-10 will aid in the solution of problems of this type, 
involved are 

rmr 

The variables 

[5-23] 

El 

bD bt<p2 

[5-24] 

[5-25] 

in which D 
12(1 - m2) 

El = bending rigidity of the edge supports, 
A = area of the edge supports, and the other terms are the 

same as previously defined. 



5-2] INSTABILITY OF FLAT SHEET 171 

It can be seen from the above equations that a trial and error method 
of solution will be necessary for any specific solution. 

In general, any given sheet-stiffener structure will combine the above 

two conditions. A method of treating this combined problem is given 

by Chwalla (reference 5-5); however, a reasonably close approximation 

to the critical buckling stress can usually be obtained by judiciously 
taking into account the effects of the two restraints discussed in a and b 
above. In this manner it may be possible to avoid the cumbersome 

mathematics involved in the exact solution of the problem. 
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0 1.0 2.0 3.0 4.0 5.0 

% 
Fia. 5*11. Value of K for sheets under shear loads. 

The general expression for the shearing stress at the onset of buckling 
has the same form as equation 5*19, namely, 

Tcr = K 12(1 - 7) (D [5'26] 

in which rcr = intensity of uniformly distributed shearing stress at 
start of buckling in pounds per square inch, 

b = short dimension of the rectangular sheet in inches, 
a = long dimension of the rectangular sheet in inches, 

and the other terms have been previously defined. Figure 5-11 gives 
the values of if as a function of the a/b ratio for the two cases which are 
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of the most general interest, i.e., four sides simply supported and four 
sides clamped. A number of investigators have indicated that the experi¬ 
mental values for the critical shearing stress are considerably lower than 
those given by the theoretical curve. Cox (reference 5 • 7) finds reason¬ 
ably good agreement between theory and experiment for plates which 
are nearly square, but finds serious discrepancies for plates with large 
a/6 ratios. The observations seem to indicate that initial buckles or 
wrinkles in the plate are more detrimental to the buckling load in shear 
than they are to the buckling load of plates subjected to compression. 

5-3. Columns with Thin Walls 

Stiffeners, or other members used to carry compression loads, are 
frequently made by forming sheet into channels, hat-sections, U-y J-, or 

fa) fbj 

Fig. 5-12. Two t ypes of angle cross sections. 

Z-sections, and the design of these members is essentially a problem of 
their strength as columns. Such sections arc subject to three major 
types of failure. First, if the material is sufficiently thick, they may fall 
into the class of columns having a stable cross section and, as such, can 
be analyzed by the methods discussed in section 5-1. Second, if the 
material is relatively thin, portions of the cross section may be subject 
to local buckling, and the crushing strength of the column will largely 
depend upon the stability properties of the various parts of the cross 
section. Third, open sections are subject to a torsional type of failure 
in which induced shearing stresses tend to cause the colutnn to fail by 
twisting. 

(a) Bent-Up Sheet Angle Sections. We will consider first of all the 
simplest of bent-up sections, namely, an equal-legged angle. If the 
cross section of the angle is as shown in Fig. 5-12a, with very heavy 
walls and short outstanding legs, it will tend to fail as an Euler column 
if long and, in the short column range, will follow one of the short 
column curves discussed in section 5-1. On the other hand, if the 
section is made up of long thin legs, as in Fig. 5 • 126, it is possible that 
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at some value of L/p the allowable stress given by one of the column 
curves will be higher than the stress which will cause the legs to buckle 
and go into the wave state. Experiments show that for such sections, if 
one calculates the stress causing failure by column action and the stress 
which would cause buckling of the legs (assuming three sides simply 
supported and the fourth free), that value which is the lower will be in 

W- inches 

Fig. 5-13. Experimental agreement with calculated column stresses for equal¬ 
legged angle. 

close agreement with the experimentally determined failing stress. Fig¬ 
ure 5 • 13 shows a plot of such results (see reference 5-8), and it can be 
seen that the agreement of the experimental results with the two theoret¬ 
ical curves is excellent. 

(6) Channel and Equal-Legged Z-sections. The next most complex 
sections are those of the formed sheet channel or equal-legged Z-section 
(Fig. 5-14). These sections are subject to four possible types of failure 
depending upon their cross-sectional dimensions and their length. They 
are: (1) column failure about the axis F-F, (2) column failure about 
the axis X-X, (3) plate buckling (local failure), (4) torsional failure. 

Again, the first two forms of failure are covered in section 6-1, and 
the fourth will be discussed later. The plate buckling of this type of 
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section has been treated theoretically by Parr and Beakley (reference 
5*9), and in a somewhat more general manner by Lundquist (reference 
5*10). The theoretically predicted loads agree reasonably well with 

Y 

Fig. 5*14. Notation for channel and Z-section. 

those obtained in experimental tests. The theoretical results are given 
in the form of the usual plate stability equation: 

acr _ KPE (~J [5-27] 

in which Kf = a function of bw/bp and tw/h, 

E = Young’s modulus of the material in pounds per square 
inch, 

tp = thickness of the flange in inches, 
tw = thickness of the web, or back, in inches, 
bp = width of flange in inches, 
bw = width of web in inches. 

A plot of Kp versus bw/bp is shown in Fig. 5 • 15. This figure applies to 
the Z-section as well as to the channel. The dotted curves in Fig. 5*15 
are those derived by Lundquist and the solid curve is that suggested by 
Parr and Beakley and it is seen that, over the useful range of bw/bp, the 
values of Kp as given in references 5*9 and 5-10 are essentially the same. 

Equation 5*27 is valid only so long as <rcr is below the proportional 
limit of the material. When acr exceeds the proportional limit, a factor 
must be introduced which takes into account the reduction in E for 
stresses above <tpl- The general equation is, therefore, 

*cr = r, Kfe(^J [5-28] 

or 

Ccr/V = m(^)2 [5-28a] 
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where 77 == 1.0 for stresses below the proportional limit. Lundquist in 
reference 5*11 summarizes the methods of determining rj for cross sec¬ 
tions which are subject to local buckling. On the basis of assumed para¬ 
bolic short column curves with values of acc equal to the yield point, 
curves of <rcr versus (Tcr/v for materials with various yield points have 
been plotted in Figs. 5-16 and 5-17. 

0 • 1.0 2.0 3.0 4.0 5.0 

Fig. 5*15. Value of K> versus bw/by for channel or Z-section. 

Few data for checking this method are available, but Table 5*2 shows 
the results of checking tests from various sources with the method out¬ 
lined above. Unfortunately, the columns tested by Parr and Beakley, 
although they showed plate buckling, were of such a length that the 
effect of torsional instability was apparent in the test results. Additional 
tests are now in progress which will add more values to Table 5*2; 
however, this table indicates that, with one exception, the predicted 
values are conservative. The degree of conservatism in the last group of 
specimens is somewhat doubtful since the values of ayp and E had to be 
estimated. The test values in all cases have been taken as the end point 
(L/p - 0) of the curve faired through the plotted points of <r8C versus 
L/p and are, therefore, the values to be used for the crushing strength 
(fee in the Johnson formula. 
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The above theoretical treatment holds for channels and Z’s whose 
length is two to three times the width of the largest cross-sectional 
dimension. For shorter lengths, the effect of the rapidly rising portion 
of the stability buckling curve (Fig. 5-8) for small a/b ratios becomes 
apparent. This is shown in Fig. 5 • 18 in which are plotted the results of 
tests made at Massachusetts Institute of Technology on a % by by 
0.032 channel section. At values of L/p less than 15, the effect of small 
a/b ratios on the value of the buckling coefficient K becomes apparent, 
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Fig. 5 18. Experimental and calculated column curve for channel section. 

as is shown by the calculated buckling stress for the outstanding legs. 
The back of this particular section at no time goes into the wave state. 
It must also be mentioned that part of the rise in buckling stress for 
small L/p values is due to the shape of the reduced modulus curve as a 
function of the critical stress. The above curve indicates that it is 
possible to build up a complete column curve in the short column range, 
which is in good agreement with the test results, by using the plate 
buckling value for the crushing strength, and then using a Johnson 
parabola up to the Euler regime. 

(c) Square and Rectangular Tubes with Thin Walls. Lundquist 
(reference 5*11) has developed a solution for the buckling of thin 
rectangular tubes under edge compression. The method considers the 
interaction of the two walls of the tube on each other during buckling 
and the results are given in the usual buckling equation notation: 

<rcr — K 
tr2E 

12(1 - M2) 
[5-29] 
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where the dimensions of the tube are as shown in Fig. 5-19 below. 
Curves of K versus b/h for three values of tb/(h are shown in Fig. 5-20. 

Fkj. 5*19. Rectangular section notation. 

b/h 

Fig. 5*20. Values of K for rectangular sections. 

As discussed previously for the channel sections for stresses above the 
proportional limit, the general equation is 

aJL - v — — (lA2 
V ~ 12(1 — m2) \h ) 

[5-29a] 
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and Figs. 5 • 16 or 5-17 must bo used to determine acr. Data obtained 
from one manufacturer on square 17ST tubes having E = 107 lb. per 
sq. in. and ayv = 46,000 lb. per sq. in. are shown in Table 5*3. 

TABLE 5-3 

No. 
tb t h 

(in.) 

b = h 

(in.) 
K Ocr/v 

°rr 

(lb./sq. in.) 

Test Fail¬ 

ing Stress 

(lb./sq. in.) 

1 0.040 4.0 4.0 3,020 3,620 12,500 

2 0.040 3.0 4.0 •0,430 6,430 16,140 

3 0.041 2.0 4.0 15,200 15,200 23,170 

4 0.040 1.0 4.0 52,700 38,000 45,600 

As can be seen in the last two columns of Table 5*3, the stress at which 
buckling occurs is not the stress at which the tube loses its load-carrying 
ability. In open sections such as channels or angles, buckling of the 
plate sections destroys the section properties of the column, and failure 
will follow almost immediately unless column end fixities provide 

TABLE 5 4 * 

No. 

Buckling 

Stress 

(lb./sq. in.) 

O'er/ acr — 

<7 yp/°rr 
wt/b * 

Wr 

(in.) 

Effec¬ 

tive 

Area 

(sq. in.) 

Pcale 
(lb.) 

^ave 
(lb./sq. in.) 

°test 
(lb./sq. in.) 

1 3,620 13.25 0.107 0.428 0.1370 6,300 9,840 12,500 

2 6,430 7.46 0.135 0.405 0.1296 5,960 12,410 16,140 

3 15,200 3.16 0.210 0.420 0.1376 6,330 19,300 23,170 

4 38,000 1.26 0.450f 0.450 0.1440 6,620 41,400 45,600 

* wjb values taken from Fig. 6 • 2. 
f From upper curve in Fig. 6 • 2 since the edge stress is only a small amount greater than the buckling 

stress. 

additional restraints. For a section such as a square or rectangular 
tube, the comers remain essentially straight and are stabilized by the 
fact that the section is closed. In this case, the comers will probably 
carry a stress near the yield point of the material, and the problem 
becomes one of effective width of sheet acting with the comers. (Note: 
The whole problem of the effective width is discussed in detail in Chapter 
6.) If it is assumed then that the comers carry a stress equal to the 
yield point, results as shown in Table 5 • 4 are obtained for the same tubes. 
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Table 5*4 indicates much better agreement between experimental and 
predicted failing stresses, even though the predicted stresses are still 
quite conservative. However, this is explainable by the fact that the 

corners of the tube were formed to a rather sharp radius and, because of 
this cold working, probably had a yield point considerably in excess of the 
46,000 lb. per sq. in. found for the average material in the tube. In 

general, the conclusion that can be drawn from the above and other 
similar data is that equation 5-29a probably gives reasonable agreement 
with the test buckling stresses in thin-walled rectangular tubes, but, 

because the section is closed and self-stabilizing, the crushing strength 
of the column should be calculated on the basis of two effective widths at 
each corner carrying the yield point of the material. Similar results are 
shown in tests made at Massachusetts Institute of Technology, data 

for which are given in Table 5*5. 

TABLE 5-5 * 

t'b — th 
(in.) 

h = b 
(in.) 

K 

• 

(Tcr/ri 
O'er 

(lb./sq. in.) 

Calc. 
Fniling 
Stress 

(lb./sq. in.) 

Test 
Failing 
Stress 

(lb./sq. in.) 

0.031 0.9375 4.0 39,600 33,000 38,700f 42,250 
0.016 0.8125 4.0 14,040 14,040 18,950 22,200 
0.016 0.6875 4.0 19,600 19,600 23,300 24,000 
0.016 0.5625 4.0 29,210 27,800 35,600f 32,200 

* E = 107 lb. per sq. in.; <ryp — 41,000 lb. per sq. in. 

+ Using upper curve in Fig. 6 • 2. 

For tut)cs with relatively large radius corners, the following assump¬ 
tions seem to check the experimental values within reasonable limits: 

(1) Assume that the corners will carry the yield point stress of the 
material, or the buckling stress of a circular lube with the same R/t 
ratio, whichever is the lower. (2) Assume that the flat plate regions 

are acting as buckled flat plates with an edge stress equal to the stress 
in the circular comers. The width of the flat plate to be used in the 

buckling equation is to be taken from the points of tangency of the 

comer arcs. 
Although the experimental agreement for such sections is not perfect, 

a check of a large number of specimens indicates that the method will 
give at least a first approximation to the crushing strength of such sec¬ 
tions and can be used for determining the short column curve for stmts 
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having cross sections of this type. It is advisable, however, to supple¬ 
ment these calculations with a limited number of actual tests inasmuch 
as the range of dimensions over which this method is accurate is not well 
established. 

(d) General Thin-Wailed Shapes. No theoretical treatment is avail¬ 
able for determining the crushing strength of general sections made up 
of circular arcs and straight segments, or even of sections made up of a 
series of straight line segments of different lengths (Fig. 5-21). The 

A 
L=P- 

/Q| 

(b) 

(d) 

Fig. 5*21. Miscellaneous stiffener sections. 

most, accurate method of determining the column curve for such sections 
is by actually testing sufficient lengths of each section in compression 
and then fairing the column curve through the test points. For most 
sections a Johnson parabola will fit the test points very well in the range 
between L/p = 20 and the Euler curve and is, therefore, satisfactory for 
design use. Since this is true, it is only necessary to determine carefully 
the short column strength for two L/p values, and from these results, 
the unknown quantities, acc and C in the Johnson equation can be 
determined. The effectiveness of this method is shown in Fig. 5-22, 
data for which were taken from reference 5 • 14. The test values for the 
two L/p’s considered were 

L/p L/p ffte 
29.50 32,000 43.24 27,470 
31.48 29,960 44.50 27,750 
32.55 29,000 45.85 27,050 

Average 31.24 30,320 44.53 27,420 
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Fig. 5 *22. Column curve for ^-section. 

These data yield the two Johnson equations: 

30 320 = ff i 3124)8 
30,320 C 4,-' X 10.3 X 10” 

which gives 

07 .on- gg (44.53)2 
’ C 4ir2 X 10.3 X 108 

ccc - 33,150 lb. per sq. in. 

C = 0.932 

The parabola shown in Fig. 5-22 was calculated on the basis of o-cc= 
33,000 lb. per sq. in. and C = 1.0 and shows excellent agreement with 
the remainder of the test values. The agreement is particularly good 
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when one considers the possible variations in materials and section 
properties of such bent-up sheet sections. A similar method has been 
used to determine the column curves for the sections shown in Fig. 5*23, 
which were tested by the Glenn L. Martin Company. The test points for 
L/p values of approximately 40 and 65 were used to determine the values 
of (Tcc and C in the Johnson parabolas which have been drawn on the 
figure. The other test points were spotted on the chart and show good 

agreement except for L/p values of 10. This method immediately gives 
the short column curve for the section and the effective end fixity of 
the test. Corrections to other end fixities are easily made since the 
crushing stress remains constant, and is not a function of end fixity. 

The other correction which may be necessary for the short column 
curves is that of reducing the allowable stresses to take into account the 
difference between the strength of the material actually tested and the 
minimum allowable strengths for the given alloy. It is suggested that 
the crushing strength be reduced in the manner described in section 
6-2(c). 

In summary, the suggested procedure for test and analysis would be as 
follows: 

(1) Test specimens of at least two lengths, giving failing strengths for 
L/p values lying between L/p = 20 and the appropriate Euler column 
curve. If the test is carried out on pin-ended specimens, test L/p values 
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should be approximately 20-25 and 40-45: and if on flat-ended speci¬ 
mens, they should be approximately 25-35 and 65-75 (for aluminum 
alloy). 

(2) Solve for acc and C in the Johnson parabolic equation, using the 
known values of <rsc and L/ p. These values are then acc test and CtCHt. 

(3) Reduce crcc tC8t by the methods of section 6-2(c) to take account of 
the minimum specified yield point of the material. This will give 

&cc design* 

(4) Substitute the allowable end fixity value, Cdesign and acc design) in 
the Johnson equation, giving the final design formula: 

&8r. design &cc design 

2 
vcc design {L/pf 

47T A Cdesign 
[5-30] 

A number of empirical methods of determining the crushing strength 
of bent-up sheet sections have been proposed. Most of these have little 
or no theoretical background but seem to work satisfactorily over at 
least a limited range of section types. It must, however, be kept in mind 
that these methods, until they have been checked theoretically, or by a 
very large number of systematically selected test specimens, should only 
be used as a first approximation to the actual crushing strength of a 
particular cross section. For the final answer, it will usually be necessary 
to make at least a few column tests in the short column regime. 

(1) Sections made up of flat elements. For sections made up of flat 
elements, one method of predicting the crushing strength of the cross 

section is to calculate the buckling loads 
3 for each element of the cross section, add 

these loads, and set the total equal to the 
crushing strength of the section. Take, for 
example, a general cross section such as 
shown in Fig. 5*24. Element (1) is con¬ 
sidered as a plate simply supported on 
three sides with the fourth free and the 
appropriate value of K is used in the buck¬ 

ling equation. From Fig. 5 -8, K\ = 0.50 (assuming L = 5Z>i) and the 
buckling load is given by 

_ . r 0.50 7r2E //A2! tSi 

Pl Al L 12(1 - M2) \bj J = 0A52E 6, 

© 

© 

© 

Fia 5 -24. 

Elements (2) and (3) are considered as flat plates simply supported on 
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four sides and the coefficient for this case will be K2— 4.0. 
load for (2) is, therefore, 

1*2 — A.2 £ 

similarly for element (3) 

P, 

4tt2 E 

12(1 

Air2 E 

'-m-i 
M2) W J 

3.617JST 

, T Air2E (t3\21 

3 ~ As 12(1 - U2) \b j J “ SM7E 

The buckling 

If the buckling stresses for any section, which are given by the brack¬ 

eted quantities above, are greater than the yield point of the material, 
the yield point stress should be used to determine the load carried by 

that section. However, some discretion must be used in this matter as 

can be shown by considering element (4). If it is short, as indicated, 
the buckling stress will be very high, and one might expect it to carry a 

load equal to P4 = 64£4<%,. However, unless some other part of the sec¬ 

tion remains active up to the yield point stress, it is obvious that element 

(4) will fail at a stress equal to that in element (3), and its critical load 
will be 

P4 = M4<r3 

The crushing load for the section is then given by 

Pcc = Pl+P2"f^3+^4 

and the crushing stress is equal to 

Vcc ~ Pcc/A total 

It can be seen that this method is exact for the case of the equal¬ 

legged angle because it was essentially by this method that the plate- 

buckling curve of Fig. 5-13 was calculated. The method is also exact 

for channel sections when the buckling stress of the back and the legs is 

the same, that is, when bw/bf =v/8 = 2.83. For a number of other 

sections, the errors seem sufficiently small so that the method can be 

used in preliminary design calculations. 

Example 1. Consider the channel section shown in Fig. 5*18. 

aw = 3.617 X 10.3 X 106 X (0.032/0.715)2 = 74,600 lb. per sq. in. which is greater 

than 39,000 lb. per sq. in. 

Pw = 0.715 X 0.032 X 39,000 = 892 lb. 

<rF = 0.452 X 10.3 X 10° X (0.032/0.483)2 = 20,420 lb. per sq. in. 

P* ~ 2 X 0.483 X 0.032 X 20,420 = 632 lb. 

PT * 892 + 632 - 1524 lb. = Pcc 
<rcc = 1524/(0.715 + 2 X 0.483)0.032 - 28,320 lb. per sq. in. 

Test value = 28,500 lb. per sq. in. 
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Example 2. Let us consider the bent-up £-sect ion, Fig. 5-25, the test results for 
which are shown in Fig. 5 • 22. For this analysis, center-line dimensions will be used 
throughout. 

<ri s= <T6 = 40,000 lb. per sq. in. 
<T2 = 3.617 X 10.3 X 106 X (0.036/0.714)2 > 40,000 lb. per sq. in., therefore use 
<T2 = <r4 = 40,000 lb. per sq. in. 
<r3 - 3.617 X 10.3 X 106 X (0.036/1.464)2 = 22,500 lb. per sq. in. 
Pi = pb « 0.138 X 0.036 X 40,000 = 199 lb. 
P2 = Pi = 0.714 X 0.036 X 40,000 = 10291b. 
P3 - L464 X 0.036 X 22,500 = 11861b. 

Pcc « 3642 lb. 
<rcc = 3642/0.1139 = 32,0001b. per sq. in. 

as compared to a test value of 33,000 11). per sq. in. 

Fig. 5 -25. Fig. 5 -26. 

Table 5*6 gives the predicted and test results for a series of lipped 
channels, Fig. 5*26, tested by the General Aviation Corporation. The 

A 

—£7.2/—d 

Fig. 5 • 27. Stainless steel section. 

agreement between predicted and test results is, with few exceptions, 
satisfactory. Since the tests were made on columns with a finite L/p 

value, and the predicted crushing strength is to be used at L/p » 0, the 
method is somewhat more conservative than Is indicated in Table 5*6. 
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The same method has been used to check the test results of the Budd 
stainless steel stiffeners shown in Table 5*7. This was a symmetrical 
section formed in two halves and welded along the flange A (Fig. 5-27). 
Since the bonding between the two flanges was very good, in calculating 
the crushing strength of the section it has been assumed that the allow¬ 
able stress in the outstanding flanges was twice that which could be 
supported by a single flange. Inasmuch as variations in material thick¬ 
ness were sometimes as high as 10 per cent, the agreement between pre¬ 
dicted and calculated crushing strengths is reasonably satisfactory. 
The method of calculation is as follows: 

E = 26.0 X 10° lb. per sq. in. 

<rVp = 140,000 lb. per sq. in. 

(rcr/l = 2X 0A52E(tA/bA)2 = 2.350(*/6a)2 X 107 

The factor 2 is assumed to account for the stiffening effect of the welding 
at section A. 

acrn = 3.617E(t/bB)2 = 9.4050/M2 X 107 

and similarly for ocrc and acri), whenever these stresses are less than aup. 
The plot of column stresses versus L/p for the section shown in Fig. 

5*27 agreed very well with a Johnson parabolic short column curve. 
However, with certain types of sections made from very thin material, 
plate buckling may occur for a considerable portion of the cross section 
even before the various elements of that portion would buckle individu¬ 
ally. In these cases, the experimental points would not be expected 
to agree with any of the short column curves discussed at the beginning 
of this section. This occurs in the section shown in Fig. 5*28. The 
region between points A and B buckled as a stiffened plate at a very low 
load, but the remainder of the section was sufficiently strong to keep the 
column from collapsing. In this case the short column curve drawn 
through the test points could be analyzed as consisting of two parts as 
indicated in the figure. Curve A shows the load-carryifig ability of the 
stiffened plate A-B, while curve B gives the short column curve for the 
remainder of the section. The sum of these two values yields a short 
column curve of the same shape as that given by the experimental points. 
It is felt that the short column curves for such sections will have to be 
determined by experimental methods as no approximate methods of 
analysis are available. It is interesting to note, however, that the crush¬ 
ing strength of this section, calculated by the method outlined above, 
lies on the experimental curve faired through L/p = 0. 
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(2) Combined cvrved and flat-element sections. Comparatively few data 
are available on the crushing strength of columns whose cross sections 
are combinations of curved and flat-sheet elements. Tests on curved 
sheet panels under compression indicate that the failure of such sections 

Fjg. 5*28. Column curve breakdown for stainless steel section. 

is very rapid when the critical stress is reached. If the edges of the 
curved panel are supported, there seems to be some evidence that, 
unlike the flat-sheet panel, the edge stress cannot be carried much 
beyond the stress causing buckling of the center part of the curved panel. 
On the basis of this evidence, it is suggested that the estimation of the 
crushing strength of such sections be obtained in the following manner: 
First, if no flat area of the panel goes into the wave state before the 
weakest curved element becomes unstable, the crushing stress will be 
equal to the stress causing buckling of the weakest curved section. 
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Second, if certain fiat elements buckle before the weakest curved section 
becomes unstable, then the total load carried by the section will be 
the sum of the buckling loads of the flat portions which have buckled, 
plus the critical buckling stress of the weakest curved portion times 
the remaining unbuckled area of the cross 
section. For example, consider the section 
shown in Fig. 5 • 29. Section (1) is calculated 
on the basis of a plate simply supported on 
three sides with the fourth free. Critical 
buckling stress is <rcri. Section (2) (to point 
of tangency of curved portion) is calculated 
on the basis of four simply supported edges. 
Critical buckling stress is acrr Section (3) is 
calculated from equation 8 • 2 or, the critical 
stress is determined from Fig. 8 • 2. Critical 
buckling stress is acrr Then, if acrz < <rcri and <7cra < <jcri5, the crushing 
stress will be equal to 

Fig. 5 -29. 

aCr3(2Ai -f- 2A-2 + A3) 

(2A\ + 2A2 + A3) 
Ocr3 

If Vert < 0cr3 and <7cr2 > Vcr# the crushing stress will be equal to 

_ 2(JcrxA \ + (TcrJ<2A2 + A3) 

(2A % + 2.4 2 + A3) 

If < o'er* and acr2 < acrv the crushing stress will be equal to 

_ 2<Jct\A 1 ~j~ 2(TcriA2 ~f“ O'er,<^3 

(2Ai + 2A.2 + A3) 

The limiting value of any of the above stresses is to be taken as the yield 
point of the material. 

Numerous other methods have been proposed for estimating the crush¬ 
ing strength of bent-up sheet sections; however, it is felt that the above 
methods will, in general, give as good approximation as any. It must 
again be pointed out, nevertheless, that the methods are only approxi¬ 
mations, and the values obtained should not be used for final design pur¬ 
poses unless checked by experimental tests on the sections. In order to 
obtain a first approximation to the short column curve of the section, the 
crushing strength as determined above is substituted in the Johnson 
column equation with the proper end fixity coefficient. 

(e) Extruded Shapes. For simple sections such as plain angles and 
channels without bulbs, an estimation of the crushing strength can be 
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made in the manner described in (a) and (b) above. In general, extru¬ 
sions have relatively large fillets in the corners and these will tend to 
increase the effective side fixity of the plate elements and thus raise the 
buckling load of these elements. Therefore, if the method described 
previously for sheet sections is used for analysis, the resulting predicted 
crushing strength may be considerably lower than that which the sec¬ 
tions actually develop. 

For sections having bulbs (sec Fig. 5 -30) no rational methods of 
analysis are available, and recourse must be had to testing enough lengths 
of the sections to determine the coefficients in the short column equation. 

Fig. 5-30. Typical extruded bulb section stiffeners. 

Methods have been suggested in which it was assumed that the bulb 
supplied simple support to the edge of the sheet to which it was attached, 
and the section was analyzed as a series of flat or curved elements in a 
manner similar to that described for bent-up sheet sections. However, 
unless justified by experimental evidence, such methods should be used 
with a great deal of caution. 

A number of companies have developed methods of determining the 
crushing strengths of extruded and formed sheet sections. These 
methods appear to be satisfactory for the particular sections considered, 
but are not sufficiently general in character to be offered as general 
design methods. It may be possible at some later date to obtain and 
correlate sufficient data so that crushing strengths may be calculated for 
such sections, but at present new sections should be checked by experi¬ 
mental tests in order to eliminate the possibility of unknown factors 
influencing the column strength values. 

If sections such as these are to be used as stiffening members on sheet 
construction, the column curve which is important is that obtained 
when the stiffener section is restricted to fail in the same manner as it 
does when attached to the sheet. For this reason column curves of 
asymmetrical sections tested alone are, in general, of little use for pre¬ 
dicting their behavior when attached to sheet structures. 
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5-4. The Torsional Instability of Columns 

In all the above it has been assumed that failure of the column was 
due to a bending instability, that is, that the deflected column axis lay 
in a plane through the neutral axis of the section. There is, however, a 
type of failure which may occur in certain sections in which failure occurs 
by a twisting of the central portion of the column relative to the two 
ends. This is called torsional instability since it occurs only in those 
sections which have a low torsional rigidity. 

Wagner (references 5 15 and 5 16) presented the first discussion of 
this type of failure, and the analysis was expanded by Kappus (reference 
5*17). Lundquist and Fligg (reference 5-18) discuss this problem and 
give detailed calculations for certain special types of sections. The 
general equation for the failing stress of a concentrically loaded column 
subject to twisting failure is (using the notation of Lundquist and Fligg) 

*bt » j{(1J + ^ E CBT) [5-31] 

where get — the critical torsional failing stress of the concentrically 
loaded column, 

Ip — the polar moment of inertia of the cross section about the 
axis of rotation, 

GJ = torsional rigidity of the section, 
E = the Young's modulus of the material, 

Lq = the effective length of the column, 
Cut — the torsion-bending constant, which is dependent upon 

the location of the axis of rotation and the dimensions 
of the cross section. 

A complete discussion of the derivation of equation 5-31 is omitted 
owing to space limitation, and the designer is referred to the papers indi¬ 
cated above for the underlying assumptions and methods of derivation. 

For columns tested alone, i.e., not attached to sheet, twisting failure 
will occur by a rotation of the sections of the column about the shear 
center of the cross section. A method of determining the shear center 
of thin, flat-sheet cross sections is given in Chapter 3 and for other sec¬ 
tions in references 5*19 and 5*20 in addition to the references given 
a&ove. For column sections attached to plates as stiffening elements, 
the center of rotation may no longer be at the shear center of the section 
due to restraints introduced by the sheet. As a first approximation, it 
may be assumed that the section rotates about some point in the plane 
of the sheet. The method would then be to calculate the critical tors- 



196 THE PROBLEM OF INSTABILITY [5-4 

ional buckling stress for a number of assumed locations for the center 
of rotation and to take that location giving the lowest critical stress. 

The value of the torsion-bending constant, Cur, may be calculated 
either analytically or graphically. Considering a general section such as 
that shown in Fig. 5-31a, the value of Cbt is given by the expression 

Cut = /nrdA - jfttufclJ* [5-32] 

where w is the circumferential wrarping and is given by the equation 

du [5-32a] 

In the above expression the cross-sectional warping rn-n has been 
neglected. Since n, at the most, is equal to t/2, the warping rn-n will, 

Fig. 5-31. Notation for torsion column failure. 

in general, be small compared to the circumferential warping and may 
be neglected. 

In evaluating the warping, w, the following sign conventions have been 
adopted. We arbitrarily choose a direction of rotation, then the circum¬ 
ferential coordinate u is taken positive in the direction of rotation. Also 
the positive sense of rotation indicates the positive direction of the tan¬ 
gent to the circumferential coordinate u. When looking in the positive 
tangential direction, the positive normal n points to the right and a line 
drawn from 0 in the positive n direction indicates the positive rt direc¬ 
tion. The angle a is measured in the positive sense of rotation, i.e., from 
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+X to + Y. As an illustration consider the channel section shown in 

Fig. 5 • 31fc, and let us first calculate Cbt about the point 0. 
Choose the origin of u at 0 then, 

from 1 to 2, rt = 0 

from 2 to 3, rt = +«/2, du is negative and w = —au/2 
from 1 to 4, n = 0 
from 4 to 5, n = +a/2, du is positive and w = au/2 

from which 

fwdA = 
at j rb 

u du + ~fu du = 0 
Ja ' ~2 J0 2 Jo 

hence 

Cbt — 
a2t f u2 du 

a2t 
H—-~ 

fh 2 j a2b*t I ?r du =-- 
4 j 0 4 , Jo 6 

Now let us calculate Cbt about the point 0\. Again taking the origin 
of u at 0 we have, 

from 1 to 2, rt 
from 2 to 3, rt 
from 1 to 4, rt 

from 4 to 5, rt 

+c, du is negative, and w = — cu 
+a/2, du is negative, and w — —au/2 — ac/2 

+c, du is positive, and w = cu 

+a/2, du is positive, and w — au/2 + ac/2 

from which 

and 
/ w dA = 0 

/o/2 2/ /'5 

u2 du + ~ J (u + c)2 du 

art 

12 c2(a + 66) + 262(6 + 3c) 

The integral ^/*w dA will not be zero if, for example, the origin of u is 

taken at point 2. However, the algebraic sum of the two integrals of 
equation 5 *32 will always be constant for a given axis of rotation, i.e., the 

expression for Car is invariant with respect to the origin of the circum¬ 

ferential coordinate u. The origin of the rectangular coordinates XY 
must of course be taken at the axis of rotation. Assume, for example, 
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that the center of rotation of the section shown in Fig. 5-31c is at the 
point 0 then Cbt is evaluated as follows: 

Taking the origin of u at point 4, then from 4 to 3 

r% = r + d cos 8 + b sin 8 

ru fe 
4-3 = / rt da — r I (r + d cos 8 + b si 

Jo Jo 

From 3 to 2 

sin 8) dS 

= r[r8 + d sin 8 — b cos 8 + b] 

rt = r — d 

W3-2 = ^4-3 + / (r ~ d) du = r2tt + 2r6 + (r - d)w 

From 2 to 1 

Hence 

rt = 0 

W2-1 = W3-2 |«=& = r2ir + b (3r - d) 

Cj3T = ^w2cM — dA j 

= /r3 /* [r0 + d sin 8 — b cos 6 + b]2 d0 
Jo 

+ £ /* [r27r + 2rfc + (r — d)w]2 dw 
Jo 

+ t f [r2^ + b(3r — d)]2 du 
Jo 

— jr2£y N + d sin 0 — 6 cos 0 + fc] dO 

+ t f [r27r + 2rb + (r — d)u\ du 
Jo 

+ t f [r*ir + b (3r — d)] du 
Jo 

where A is the total cross-section area of the section. It can be seen, for 
example, that if the origin of the circumferential coordinate u is taken at 
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point 1 the resulting expression for Cht would be considerably simplified, 
since the warping from 1 to 2 would be zero. 

Since nearly all extruded angle sections, when used as sheet stiffeners, 
are subject to torsional failure, this problem is very important from the 
standpoint of the designer. Unfortunately, however, very little specific 
information is available on the subject and few experimental checks on 
predicted critical column loads for torsional failure of these sections are 
available. Some work has been carried out by Dunn at GALCIT on 
this subject (reference 5 *6) and more research is now in progress. Until 
more exact methods of analysis are available, however, designers should 
be cognizant of the fact that nearly all open-section stiffeners may be 
subject to torsional instability under end load and they should check 
each section by the method indicated above or by experimental tests to 
determine the allowable critical stresses and the mode of failure of the 
section. 

As the stress on any column approaches its ultimate strength, the 
cross section undergoes distortions which may be local or may extend 
over the length of the member. Such distortion of the section causes a 
shift of the axis of resistance of the member from the axis of loading, 
thus creating moments due to the eccentricity of the axial load. These 
moments cause the member to deflect with the result that a shear is 
developed on the affected sections whose magnitude is P(sin i) where i 
represents the slope of the deflected section and P the axial load on the 
column. Such shear stresses produce forces on the elements of an open 
section which may cause it to rotate as a whole or which may aggravate 
the bending of the deflected elements. Where a stiffener is fastened to 
a sheet, these forces are normally insufficient to cause the combination 
of sheet and stiffener to rotate about the center of twistiof the stiffener, 
but they may suffice to bend the elements of the stiffener itself and 
cause it to fail in a combination of bending and twisting. 

Figure 5 ‘32 shows representative shapes of stiffeners and the direc¬ 
tion of the shear forces acting on their elements when the load is applied 
eccentrically. A study of this figure shows why sections suph as channels 
sometimes fail by the legs bowing inward or outward if they do not fail 
by twisting as a whole. When bending subjects one leg to compression 
and the other to tension, the section tends to twist as a whole as shown 
at (a). When the eccentricity is along the other axis, the tendency is to 
fail by bending the outstanding portions inward or outward owing to the 
shear forces, as shown in (b) to (/), the direction depending upon whether 
the point of loading is on one side or the other of the centroid and on 
whether such flanges as may be used bend inward or outward. Sketches 
(e) and (/) do not present an entirely true picture of the shear forces acting 
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since they axe unsymmetrical sections. They would tend to deflect about 
both of the axes shown owing to a moment in the plane of either, the 
axes not being principal axes for these sections. 

of toad t of toad | 
LJ 1 U u 

(a) (b) 
Tendency to twist Tendency to bend about 

center of bock and cause 
legs to collapse inward. 

Centroid 

c Point 
of toad 

Moment about center of bock re¬ 
duced by forces on flanges and 
Stiffness of outstanding iegs is 
increased by the flanges. 

Centroid■ r Point 
of load 

i'-' / 

Tendency same as(b)-Greater 
bending is partially compen¬ 
sated Tor by greater stiffness 
of flanae. 

(e) (f) 
No tendency to twist Tendency to twist 

Fia. 5'32. Induced stresses in stiffener sections. 

From the above, it is seen that open-section stiffeners may fail because 
of secondary moments and shears induced in them by eccentricity of the 
loading or by bending of the stiffener and the material to which it is 
attached. Since in some stiffeners the principal axes are not parallel and 
perpendicular to the sheet to which they are attached, these sections will 
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tend to buckle about an axis which is not parallel to the sheet. The skin 
reduces this tendency so the effective L/p is greater than the minimum, 
but the exact effect is difficult to evaluate. It should also be noted that 
tests of certain sheet-stiffener combinations made on flat panels will not 
indicate the true strength of such combinations in a wing or fuselage 
where bending of the structure produces a curvature in the panel which, 
with unsymmetrical sections, causes them to rotate and produce second¬ 
ary bending and torsional effects, thereby inducing failure at stresses 
which may be materially below those obtained on the flat panel. In 
developing stiffener types this feature should be considered since it is not 
always possible to predict the magnitudes of the secondary shears and 
moments developed by such accidental but unavoidable eccentricities. 
Hence, it is impossible to determine the stresses produced in the stiffener 
by them. Effort should therefore be made to avoid unstable shapes 
wherever possible. 

The use of curved elements instead of all flat ones appears to stabilize 
some shapes of stiffeners and cause them to develop high crushing 
stresses. It is probable that they restrict the buckling of the flat sheet 
to one direction, that is, it must buckle so that its tendency is to reduce 
the radius of the contiguous curved sheet but not to increase it, thereby 
causing it to develop higher stress intensities before failure. 

Closed stiffener sections offer distinct advantages over open sections 
because of their increased stability at high loads or when they are bent 
owing to the distortion of the sheet or structure to which they are 
attached. It is appreciated that such sections are subject to corrosion 
difficulties but, from the standpoint of strength, they are superior to the 
open section which, when once deflected, develops internal shear or com¬ 
pressive forces tending to twist it or to deflect it still further. 

Designers should consider all the above effects in determining the 
allowable stresses to be used with such sections, since tests made on the 
stiffener alone or on isolated stiffened panels may give appreciably lower 
strength properties due to the instability of the elements of the section 
than will be developed when the stiffener is attached to the structure; 
assuming, of course, that the method of attachment tends to stabilize 
the critical elements. On the other hand, stiffener sections which are 
unsymmetrical may be expected to fail at lower stresses in an actual 
structure than in a test. As normally used they are constrained, by the 
material to which they are attached, to a plane which does not contain 
one of the principal axes of the section, so they are forced to bend in a 
direction normal to that plane as well. Such stiffeners roll over readily 
and may not develop as high loads when part of a structure subject to 
secondary deformations as when tested on a panel under a direct com¬ 
pressive load. 
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CHAPTER 6 

THE ULTIMATE STRENGTH OF STIFFENED FLAT SHEET 

6-1. The Ultimate Load for Rectangular Isotropic Flat Plates in Com¬ 
pression 

Inasmuch as the sheets used as aircraft structural elements are gen¬ 
erally quite thin, the buckling stresses of these sheet elements are neces¬ 
sarily low. The designer is therefore confronted with the problem of 
using sheet metal in the buckled or wave state, and of determining the 
stress distribution and allowable stresses in such buckled plates. Up to 
the; critical buckling load, the direct compressive stress on the loaded 
edges of a plate is uniformly distributed. After buckling occurs, the 
central portion of the plate, due to its curvature, can carry little or no 
additional load; however, the edges of the plate, being constrained to 
remain straight owing to their being supported, can and do carry an 
increasing amount of stress. A stress-distribution pattern, which is in 
reasonable agreement with the experimental data, is given by the equa¬ 
tion 

Oc * ^ £ (o’se 4“ O’er) (o’ac O'er) COS [6* 1] 

in which a8C — stress at the supported edges of the sheet, 
vcr = critical buckling stress of the plate as determined by 

equation 5 • 19. (See Fig. 6*1.) 

The total load which the plate carries can be obtained by integrat¬ 
ing the above compression stress over the entire width of the panel, or 

P*h = t f 0cdx = ^ (a,e + aer) = + —) [6-2] 

In order to simplify the calculations, especially when dealing with plate- 
stiffener analyses, the conception of an “effective width” of sheet was 
introduced by K&rm&n. In this method, it is assumed that there is a 
uniform compressive stress equal to a8e acting on a width of plate equal 
to we, directly adjacent to the supported edges. The value of we is 
adjusted so that 2aeewet is equal to the total load carried by the plate. 

203 



204 ULTIMATE STRENGTH OF STIFFENED FLAT SHEET [6-1 

Thus, for a sheet having the distribution given by equation 6*1, the 
effective width can be determined from equation 6-2, since 

or 

Fig. 6*1. Compressive stress distribution in a buckled flat plate. 

This is usually put in the form of the ratio 

?-o25(i+s) 
This ratio has been plotted as a function of <r„/a„ in Fig. 6-2 and is 
shown as the upper curve in that figure. 

At some value of the edge stress a,e, certain portions of the sheet have 
combined stresses exceeding the yield point of the material. If the edge 
stress is increased beyond this point, it seems reasonable to assume that 
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the stress distribution given by equation 6 • 1 will no longer hold and that 
the effective width will deviate from the value given by equation 6*4. 
These assumptions are borne out by experimental evidence. Thus, for 
any given panel, subjected to a compression load in its plane, the fol¬ 
lowing order of events would occur with regard to the we/b ratio. (1) Be¬ 
fore buckling, the effective active sheet would equal the entire panel 
width, or wjb = constant = 0.5. (2) After buckling occurs, and until 

I 2 3 4 6 8 10 20 3 0 40 60 60100 200 300 500 

®se/«cr 

Fig. 6-2. Curve for determining the effective width. 

some point in the sheet has reached the yield point, the we/b ratio will 
follow the curve given by equation 6*4. (3) At some value of <T9e/orcr, 
the stress distribution on the loaded edges will depart from that given 
by equation 6-1 and the effective width will deviate from the value 
given by equation 6-4. The deviation will increase as more and more 
of the sheet goes into the plastic regime. (4) As the value of (T6e/<rcr 
continues to increase, sufficient material in the plate will eventually be 
stressed beyond the yield point that the plate can carry no additional 
load. This will correspond to the ultimate load-carrying ability of the 

buckled sheet. 
The curves shown in Fig. 6*2 for regimes 1 and 2 have been justified 

by a large number of compression tests on panels. The ultimate load 
value (item 4, above) has also been determined experimentally and an 
empirical curve has been suggested by Sechler on the basis of a large 
number of tests made at GALCIT, Massachusetts Institute of Tech- 
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nology and elsewhere. The empirical curve giving the end points of 
the various we/b curves is shown as the lower curve in Fig. 6*2 marked 

ultimate curve. 
Regime 3, inasmuch as the plate has a relatively high deformation, 

making necessary a large deflection theory analysis, coupled with the 

fact that portions of the sheet are in the plastic regime, has not as yet 

been amenable to theoretical treatment. For this reason a family of 

empirical curves is suggested, these curves being based on a conservative 
empirical analysis of all of the available experimental information. The 

suggested empirical equation for the we/b ratio is 

where 

~ = 0.25 (l + (--) 
b \ G 8e* \ff8e' 

[6-5] 

n = 0.37 — 
G yp 

[6-6] 

The family of curves given by this equation is plotted in Fig. 6-2 for 

various values of the (Tae/<ryp ratio. An indication of the agreement with 
experimental data is shown in Fig. G • 3 for t/b ratios of 0.005, 0.0064, 

and 0.008, respectively. These curves indicate that the values of we/b 
given by equation G • 5 are in reasonably good agreement with the experi¬ 

mental data and are conservative. 
It must again be mentioned that these curves are purely empirical in 

nature and are subject to change as more theoretical and experimental 
data are obtained oh the transition regime. Care must be exercised in the 

use of Fig, 6-2 for very small values of a8e/acr. The empirical curves 
become increasingly conservative as the value of the G8e/Gcr approaches 

1.0, since, for very small values of this ratio, the value of we/b obviously 
follows the upper curve for some distance before dropping down to the 
appropriate <r,«/<rcr value. Additional experimental data are necessary 

before a more accurate determination of the we/b ratio in this region is 

possible. 
A number of theoretical investigations have been made on the stress 

distribution in a flat plate after buckling. Two theoretical treatments 
are contained in references 6 • 1 and 6 • 2. 

As a comparison, the curve given by the equation for the effective 

width suggested by Marguerre (reference 6-1). 

We 

b 

1 j* kr 
[6-7] 
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6-2. Stiffened Flat Panels Under Compression Loads 

In order to support more load than can be carried by a flat sheet alone, 
it is common practice to attach to the sheet, stiffening members which 
run parallel to the direction of the compressive stress. If the stiffeners 
have a comparatively low bending rigidity, their chief function will be to 
delay the buckling of the flat sheet beyond the point where it would have 
wrinkled with no stiffening present. This case has been treated by 
Timoshenko (reference 6*3, p. 371) and is handled as a stability prob¬ 

lem. The equation for the critical buckling stress has the same form as 
that for the flat plate alone, namely, 

= K 
r2E 

12(1 - M2) 
[6-11] 

However, in this case, the factor K is not only a function of the dimen¬ 
sions of the plate but is also dependent upon the number and the bend¬ 
ing rigidities of the stiffeners. 

Such a type of construction may be used where it is desirable to delay 
the buckling of relatively large unsupported panels from aerodynamic 
considerations rather than from the standpoint of strength. This would 
be the case where minimum gages over large areas give sufficient struc¬ 
tural strength but are subject to buckling deformations at loads within 
the normal flying regime. The reference given above contains sufficient 
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information so that it may be used by designers in the solution of piob- 
lems of this type. 

Normally, stiffened sheet structural elements, which are part of the 
main structure of an airplane, are so proportioned that the stiffeners 
remain essentially straight even though the sheet between them has 
buckled. Under these circumstances the stress distribution over the 
loaded edges of the stiffened panel will be as shown in Fig. 6-4. The 
stiffeners are subjected to a uniform compressive stress over their area, 
but the compressive stress in the sheet is a maximum at the point of 

Fig. 6 *5. Stiffened sheet reduced to effective columns. 

attachment of sheet and stiffener and falls off towards the center of the 
sheet owing to the relief in stress caused by buckling. The total load 
carried by such a stiffened panel will then be 

n m /*6/2 

Ptotal ~ GalAat ^ J <Tcdx [6-12] 

where Ptotai = total load carried by the stiffened panel in pounds, 
n = number of stiffeners in the panel, 
m = number of sheets in the panel, 

Aat = area of each stiffener in square inches, 
<r8t = stress in the stiffeners in pounds per square inch, 

<rc = direct compressive stress in the sheet at any point 
“x” in pounds per square inch, 

aatAat = total load carried by the n stiffeners in pounds, 

total load carried by the m sheets in pounds. 
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For a continuous panel with uniform stiffener size, and spacing, and 
with one line of attachment between sheet and stiffener, the use of the 

(a) Edges in V-grooves or slotted tubes 
Ptot-(3Ast + 8 W9t) ®st 

(b) Different edqe width 
Ptot * (3 Asf ♦ 4 life/ ♦ 4 1Ve2t) <js, 

(C) 

If 2We, < b2 Pper stiffener *(Asf + 2We,t+ 2We,t) ffst 
If 2Wez > bz Pper stiffener - (Ast + 2Weit + bzt) ast 

(d) 

If W€/ 4 bf P edge stiffener - (Ast *+ We,t + We2f) &st 
If We, > bj P edge stiffener * (ASf + b,t + Wezt) <jst 

Fig. 6*6. Effective columns for various sheet-stiffener combinations. 

effective width conception allows a simplification of equation 6*12 into 

the form 
Ptotal = n <r,t (A,t + 2wet) [6-13] 

where 2we is the effective width of sheet acting with each stiffener. The 
effective load distribution will be as shown in Fig. 6-5. A number of 
possible combinations of sheet and stiffener are shown in Fig. 6-6 and 
the appropriate equations for determining the total load carried are 
indicated. The values of w, may be obtained from Fig. 6-2 in which 
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<Tse — <r8t unless buckling takes place between the sheet-stiffener attach¬ 
ment points as discussed below. 

In all the above it has been implicitly assumed that there is a con¬ 
tinuous line of connection between sheet and stiffener and, except for 
structures in which scam welding is used, this assumption is not true. 
Generally, the connection between the stiffeners and sheet is made a 
finite distance apart by spot welds or rivets. If this spacing becomes 
large compared to the sheet thickness, Euler or short column failure of 
the sheet may take place between fastening points, and the stress in the 
edge of the sheet will no longer be equal to the stress in the stiffeners. 
This problem will be treated in detail at the end of this section. 

(a) Prediction of the Load-Carrying Ability of a Stiffened Panel from 
Stiffener-Column Curves. If the axis of the least radius of gyration of 
the stiffener section is parallel to the sheet to which the stiffener is 
attached, it is possible to predict the load-carrying ability of a stiffened 
flat panel directly from the stiffener column curves. This is true because 
the stiffener tested alone tends to fail in the same direction as when it is 
attached to the flat sheet, and it is only necessary to modify the column 
curve of the stiffener to take into account the effect of the attached sheet. 
In order to use this method it is necessary to know (1) the crushing 
strength of the stiffener section, (2) the type of short column curve which 
the stiffener will follow when restrained to buckle in a plane perpendicu¬ 
lar to the sheet to which it will be attached, (3) the Euler column curve 
(primarily the effective end fixity) of the stiffened panel, and (4) the 
effect of attached sheet on the column properties of the stiffener. (Note: 
For the present it will be assumed that the stiffener is not subject to 
torsional instability. This problem will be treated later.) 

This method which is essentially that suggested by Lundquist (refer¬ 
ence 6-4) can best be illustrated by an example. The test values 
quoted were taken from reference 6 • 5. Consider the panel shown below 
stiffened with the channel section indicated (Fig. 6-7) where 

Aq = 0.0566 sq. in. 
Po = 0.160 in. 

<Typ — 36,000 lb. per sq. in. 

The crushing strength of the channel section can be found from Fig. 
5 • 15 and 5 • 16. From Fig. 5 • 15 

bw/bF - 0.715/0.4825 = 1.482 
Kf - 0.747 (0 035 V 

r~—-) - 40,500 lb. per sq. in. 
0.4825/ 
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and from Fig. 5*16, with 

<jyv = 36,000 lb. per sq. in. 
acr = 29,400 lb. per sq. in. - acc = crushing strength at L/p = 0. 

It will be assumed that the effective end fixity of the panels (they were 
tested flat ended) was equal to 2.0. A more careful analysis of the test 

r0032 

om 

Aq- 0.0566 sq. in. 
p0 = 0.160 in. 
oyp~ 36,000 /b./sq. in. 

Fig. 6-7. Experimental test panel. 

results indicates that there was an apparent change in end fixity of the 
specimens ranging from approximately 1.8 for those with 0.020-in. to 

l/p 
Fig. 6*8. Column curve for stiffener alone. 

approximately 2.2 for those with 0.051-in. sheet. An average of 2.0 will 
suffice to indicate the method. 

Considering a crushing strength of 29,400 lb. per sq. in., an end fixity 
of 2.0, and a Johnson parabola between the crushing strength and the 
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Euler column curve, the column curve for the section is as shown in 
Fig. 6*8. For the channel without sheet, 12 in. long, L/p0 = 12/0.16 
= 75.0 and a8C = 23,300 lb. per sq. in. 

Column tests on 12-in. lengths of this channel showed an average fail¬ 
ing stress of 23,000 lb. per sq. in. 

To determine the effective width of sheet acting with the stiffener, 
assume as a first approximation that 23,300 lb. per sq. in. is the stress on 
the edge of the sheet. Then, from Fig. 6-2, with 

<rcr = 3.617# - 3.617 X 10.3 X 106 2710 lb. per sq. in. 

and 
(Jae/Vcr = 8.6 Gsc/Vyp = 0.65 We/b = 0.167 

we - 0.167 X 3.75 = 0.626 in. 

For the center stiffeners the new effective col¬ 
umn is as shown in Fig. 6-9. The radius of 
gyration of this new section can be found from 
Fig. 6 • 10 in which 

S/p0 = 0.172/0.160 = 1.08 
t/A0 = 0.032/0.0566 = 0.57 

be « 1.252 

7252- 

Fig. 6-9. Effective col¬ 
umn for center stiffeners. 

This gives 

(pi/po)2 = 0.89 

Pi = 0.151 and the new L/pi = 79.5 

From the column curve in Fig. 6-8, the new critical column stress is 

aCOl = 22,650 lb. per sq. in. 

Repeating the process using 22,650 lb. per sq. in as the new value of 

<r8§, we obtain from Fig. 6 • 2 

O’aeAcr ~ 8.3 

VbJcvp — 0.63 

and from Fig. 6*10 

be « 1.274 

p2 = 0.150 

from which 

<rco% = 22,500 lb. per sq. in. 

we/b = 0.170 

= 0.637 in. 

Wpo)2 = 0.88 

L/p2 — 80.0 
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Further repetition is unnecessary, and the effective column will be one 
having 1.274 in. of sheet acting with the channel and capable of sup¬ 
porting a stress equal to 22,500 lb. per sq. in. 

7.0 

1.5 

1.0 ^ 
Q> 

0.5 

Fig. 6*10. Chart for determining (p/p0)2 

For the edge stiffeners there is one effective width acting on the panel 
side, while there is a 0.375-in. length extending beyond the rivet line on 
the outside. (Figure 6*11.) The buckling stress of this free edge is 
given by 

o'er = 0.4522? 0 = 0.452 X 10.3 X 106 (~02 = 33,900 lb. per sq. in. 

This stress is higher than the allowable column stress for the combined 
section, therefore the whole 0.375-in. length of sheet will be included in 
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the effective area. The effective column is then as shown. From Fig. 
6 • 10, since bc for the edge stiffeners is less than be for the center stiffeners, 
it would be concluded that the edge stiffeners could carry a somewhat 
higher stress than the central columns. Conditions of the test, however, 
were such that the panel was loaded with 
uniform strain; therefore, up to the time 
of failure of the center stiffeners, all 
straight stiffener sections would carry the 
same stress. Upon failure of the central 
stiffeners, the sudden reduction in their 
load-carrying ability would tend to over¬ 
load the edge stiffeners and probably col¬ 
lapse the panel. It is therefore conservative to assume that the entire 
effective panel fails at 22,500 lb. per sq. in. 

The effective panel area is then 

0.375 -* We > 

F=f 

Fig. 6*11. Effective column for 

end stiffeners. 

From stiffeners Ai = 4 X 0.0566 = 0.2264 sq. in. 
From free edges on sides A2 = 2 X 0.375 X 0.032 = 0.0224 sq. in. 
From effective widths A3 = 6 X 0.637 X 0.032 = 0.1222 sq. in. 

A0 = 0.3710 sq. in. 

And the total load-carrying ability of the panel should be 

jPtotal = 0.3710 X 22,500 - 8350 lb. 

The test loads carried by two panels of this type were 8450 lb. and 
7570 lb., respectively, averaging 8010 lb. 

Additional panels in this series have been checked with the results 
shown in Table 6-1. For the panels with 0.020 sheet, the edge beyond 

TABLE 61 

Length 
(L in.) 

Sheet 
Thickness 

(/ in.) 

No. 
Stiffeners 

(n) 

Effec. 
Width 

(«’e in.) 

Effec. 
L/p 

Column Stress 
(vco Ib./sq. in.) 

Effec. Area 

(Ae sq. in.) 

Predicted 
Load 

(Pp lb.) 

Teat Loads 
(Pt lb.) 

12 0.020 4 0.469 76.2 23,200 0.2913 6,700 0,470 
12 0.032 4 0.037 80.0 22,500 0.3710 3,35p 7,570 
12 0.051 4 0.990 92.3 20,250 0.5077 11,490 12,500 13,200 

18 0.020 3 0.861 120.0 14,100 0.2528 3,560 3,280 3,270 
18 0.032 3 1.181 133.0 11,450 0.3484 4,300 3,830 

18 0.051 3 1.855 104.5 0,5863 4,050 4,890 

the rivet line buckles at 13,250 lb. per sq. in., and the effective material 
acting at the given column-failing stress was determined from the equa¬ 

tion 

w'e - 0.375 
13,250 
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Table 6-1 shows good agreement between predicted and test loads, 
particularly if one considers the fact that the following assumptions 
were necessary in making the calculations: (1) end fixity assumed con¬ 
stant = 2.0; (2) average value of aup = 36,000 lb. per sq. in. assumed 
for all material; (3) nominal thicknesses were assumed for all sheet stock. 

The above method works equally well for stainless steel as can be seen 
from Table 6*2. The test results were taken at random from reference 
6 • 6. For these specimens, the crushing strength of 120,000 lb. per sq. in. 
was taken from tests on a scries of columns consisting of the stiffener plus 
the sheet across the open legs as shown in type D in Fig. 6*12. This 
was considered as the basic stiffener, and effective widths were taken as 
acting on either side of this section for central stiffeners and on one side 
for edge stiffeners. The value of end fixity used in the calculation, 
C = l.o, was determined from flat end tests of the basic stiffener tested 
alone. 

For the specimens of Table 6-2 the end stiffeners with the smallest 
amount of effective sheet had the lowest critical column stress. In cal¬ 
culating the predicted failing load, it has therefore been assumed that 
the inside stiffeners failed at the same stress as that causing column fail¬ 
ure of the edge stiffeners. This is a conservative assumption and may 
explain the fact that the predicted values are, with one exception, lower 
than the tast values. This procedure is recommended in design, how¬ 
ever, since the degree of conservatism is, in general, not excessive. 

TABLE 6-2 

Type 
Spec. 

Length 
(Lin.) 

Eff. 
Width 

(u>e in.) ! 

Col. Stress 
(o,c lb./sq. in.) 

Eff. Area 
(A„ sq. in.) 

Predict. 
Load 

(Pp lb.) 

Test 
Load 

(Pt lb.) 

(Pp - Pt)/Pt 

(%) 

A 9.24 0.448 106,310 0.317 33,710 33,010 +2.1 
A 13.83 0.556 89,300 0.325 29,010 30,480 -4.5 
A 18.48 0.716 65,800 0.337 22,180 23,020 -3.6 
B 9.22 0.352 106,320 0.310 32,970 36,230 -9.0 
B 13.85 0.422 89,200 0.315 28,100 28,240 -0.5 
B 18.48 0.536 65,750 0.324 21,300 21,650 -1.6 
C 9.24 0.283 106,250 0.411 43,700 47,680 -8.4 
C 13.86 0.328 89,000 0.415 36,950 39,930 -7.5 
C 18.46 0.398 65,350 I 0.423 27,630 29,760 -7.2 

This method has also been used to analyze a series of stiffened panels 
tested at GALCIT (reference 6-7). These panels were stiffened by the 
bulb-angle stiffeners A and B, Fig. 6*13, the stiffener spacing being 5 in. 
in every case. As shown in the figure, there was a 2^-in. width of sheet 
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- m 1 
Y-b‘S.462—j •+—b*5.462-+^ 

1 1“ I 
--6.33-- 

l 1 
--6.33-- 

r 
Type A 

- 

^b.3347^ 
i 1 L 1 

"—4.22-- 

I I 
■*—4.22- r 

Type B 

Yb'iU0~\ Ybsmo~\ 

HI-II-II-ST 
-2.8/ -r—2.8/ 4*—2.81 ■ 

Type C 

All sheets - 0.0/8" 
Stiffener gage= 0.029 

Ao* 0.095 
Po = 0.223 
s =0.288 

Gyp-158,500 Ib/sq.in 
crcc -120,000 ib/sq. in. 
C = 1.6 

Fig. 6-12. Stainless steel test panels. 

%% we, we, % r 

Tf 
—5-4-—5* 

i— O\-0.i25R | 
I _ y-0.125 /■■■ 

U25 \ a Y- 1 
\ 0.418 V r-0.0625 

^T~ 
V-m-\' ' 

'Cp—0J09R 

WO.OS/ 

A0 * 0260 sq.m. 
Po * 0388 sq.m. . 
oj?c» 40,000Ibjsq.in. 

Stiffener A 

r 
0.706 f—0.06 f 

\-0f8h\ 
T 

/!« = 0.150 sq. in. 
Pa • 0.565 sq./n. . 
Ccc- 30,500 lb/sq./n. 

Stiffener B 

Fig. 6 13. Aluminum-alloy test panels. 
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beyond the first and last stiffeners, and the free edge of this sheet was 
supported in slotted tubes. Table 6-3 shows the agreement between 
the calculated and test values of the ultimate load-carrying ability of 
the panels. In calculating the results shown in Table 6-3, the crushing 
strengths of the sections were taken from short column test results, and a 
Johnson curve with a fixity equal to 3.0 was taken for the short column 
range. 

The first group of specimens indicates that the method gives somewhat 
conservative results for all lengths tested. The specimens stiffened with 
bulb angle B show good agreement for the shorter lengths of panel and 
increasingly poor agreement as the panels become longer. This differ¬ 
ence in action between stiffeners A and B is probably due to the differ¬ 
ence in torsional rigidities of the two sections. Section A has a torsional 
rigidity 3.2 times as great as section B although the areas differ by a 
factor of only 1.75. Section .4 is so torsionally rigid that the buckling 
of the 0.040 sheet caused very litt le rotation of the stiffener and thus had 
a negligible effect on the column strength of the effective section. On 
the other hand, the sheet buckling tended to rotate stiffener B suffi¬ 
ciently to cause a combined flat plate and torsional failure of the effective 
column. The rotation would be small for very short panels where end 
effects have a stabilizing action on the stiffener, and would tend to reach 
a nearly constant value as the length of the column increased. 

The above phenomenon frequently occurs for extruded bulb angles 
and other extruded open sections. As yet- there are no theoretical or 
empirical methods available for predicting the magnitude of this effect 
of sheet buckling on the column strength of the stiffeners. Qualitatively, 
one can say that whenever light, open sections are used to stiffen rela¬ 
tively heavy sheets, the buckling of the flat sheet will tend to reduce the 
allowable column stress of the effective stiffener. With closed sections 
and heavy extrusions on thin sheet, the change in column strength of the 
stiffener due to sheet buckling is negligible. 

Considerable research is being carried out on this subject, and correc¬ 
tion factois, taking into account the torsional strength of the stiffener 
and the bending stiffness of the sheet, may be available in the near 
future; however, at present it is advisable to check any stiffened panel 
design incorporating torsionally weak sections by a few tests to determine 
the magnitude of this effect. A preliminary treatment of this problem is 
given in reference 6-7. The torsional strength of the stiffener will also 
have an influence on the critical buckling load of the sheet, thus changing 
the calculated effective width. The effect of this change in effective 
width on the total strength of the panel is relatively small and can, in 
general, be neglected. The change in the buckling load of flat panels,, 
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elastically supported in torsion along two edges, can be determined 
from Fig. 5*9. 

(6) Allowable Design Values from Stiffened Panel Tests. The proper 
analysis of test data, from a series of panels tested under compression, is 
essentially a reversal of the above outlined procedure. At the conclusion 
of the test program, the data available usually include the variation of 
the total load carried by the panel as a function of the panel length. Con¬ 
sidering the first set of panels in Table 6-3, the designer would have, in 
addition to the dimensions of the panel, the information given in columns 
1 and 2 of Table 6*4, which data were obtained in compression tests 
of the panel shown in Fig. 6-18. 

The simplest analysis would be to determine merely the average stress 
carried by the test specimen. If this is done, the total load is divided by 
the total area giving the values in column 3, Table 6*4. Unfortunately, 
these values cannot be used for design purposes for several reasons. 
First, the effect of the supported sheet edges is included in the test load 
and unless the width of the side panels is equal to the stiffener spacing, 
the stress distribution over the test panel is not the same as that over a 

continuous panel. 
Second, the end fixity of the test specimens will not, in general, be the 

same as that given to a similar panel in an actual structure. To make a 
correction for end fixity, it is necessary to put the results in the form of 
stress versus L/p and, in this case, the effective p is unknown. As will 
be discussed later, carefully machined panels, tested flat ended, usually 
have an end fixity coefficient close to 3.0, and if this is assumed to hold, 
it might be possible to solve the Johnson column equation 

(L/p)2 

4C 7r2 E 

for two values oi L and obtain <rcc and an effective value of p. If this is 
done, however, no check is possible on the correctness of the assumption 
that C = 3.0 and, for some sections, this assumption may be consider¬ 
ably in erro*\ 

The third item which will be difficult to take into account will be the 
correction for the difference between the material properties of the test 
specimen and the specified minimum properties of the material. Unless 
the crushing strength of the effective column, or at least the crushing 
strength of the stiffener section, is known, it is impossible to determine 
whether or not the failure is a function of yield point or is only dependent 
upon the modulus of elasticity of the material. It is therefore difficult 
to determine what correction will be necessary to account for variation 
in material properties. 
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The next simplest, and a considerably more exact, method would be 
to assume that some reasonable amount of sheet was acting with each 
stiffener, and then calculate the failing stress of the effective columns. 
The assumption that an effective width of sheet equal to 151 acts on each 
side of the rivet line seems to give a good average value suitable for a 
number of design purposes. 

Figure 6 * 14 shows the effective material which leads to an effective 
area of Ae = (2 X 0.725 + 3 X 1.20)0.040 + 3 X 0.260 = 0.982 sq. in. 
The p of the stiffener plus the effective sheet is obtained from Fig. 6*10 

tfb-a&hj 

r tuff 2=1 
|[i n 

h-L20 

"T 
^0.60-+jg|«- 

Fig. 6 14. 

and is equal to 0.390 in. This gives L/p values as shown in column 5, 
Table 6*4. 

The column failing stresses as a function of L/p are plotted in Fig. 
6*15, and it is found that the test points can be matched by a Johnson 
parabola in which 

<rcc = 41,150 lb. per sq. in. 

C = 3.75 

A short column curve is now available which can be corrected for design 
purposes without difficulty. 

Let us assume that the material in the test panel had an experimentally 
obtained compressive yield point of 44,000 lb. per sq. in. and an E of 
10.3 X 10° lb. per sq. in., and that the minimum specified values for 
this material were 42,000 lb. per sq. in. and 10.3 X 106 lb. per sq. in., 
respectively. The material correction factors on the crushing strength 
are then, from Fig. 6-20 and 6-21 (sec (c) of this section for detailed 
discussion of material correction factors), 

Kx - 1.00 K2 = 0.966 

and the design crushing strength is then 

<rcc design = 1-00 X 0.966 X 41,150 = 39,750 lb. per sq. in. 

The coefficient of end fixity for design is usually specified as 1.5 and, 
with these two values, it is possible to obtain the design short column 
using a Johnson parabola with <rcc = 39,750 lb. per sq. in. and Q * 1.5. 
This is shown as the dotted curve in Fig. 6 • 15, and the design values 
for the various lengths are shown in column 6, Table 6-4. Column 7 



222 ULTIMATE STRENGTH OF STIFFENED FLAT SHEET [6-2 

shows the total load carried by the effective column as a function of its 
length. 

The third method of analysis is one in which the effetive width is 
not assumed but is calculated from Fig. 6-2. Inasmuch as the effective 
width is a function of the column stress, and the allowable column stress 
is dependent upon the amount of sheet acting with the stiffener, this 
method is essentially one of trial and error. A column stress is assumed, 

% 
Fig. 6*15. Correction of test points to design column curve. 

the effective area is calculated, and the total load in the panel is found 
by the product of these two values. If this load is equal to that carried 
by the panel, the correct column stress has been chosen. Knowing the 
effective width, the new p for the column can be found from Fig. 6*10. 
This gives sufficient data (see columns 8 to 12 inclusive, Table 6*4) to 
plot (Too versus L/p which has been done for this example in Fig. 6-16. 
The experimental points are matched by a Johnson parabola having 
<Tcc = 43,700 lb. per sq. in. and C = 3.3. 

This column curve cannot be corrected directly as was done in Fig. 
6-15 since a reduction in stress value changes the effective width acting 
with the stiffener and consequently the radius of gyration of the com¬ 
bined section. A trial and error method of solution is used in which the 
allowable stresses as a function of the column length are determined. 
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The first step is to correct the crushing strength, and this is done by the 
equation 

ffcednsiffn = 43,700 X 0.966 = 42,200 lb. per sq. in. 

The design value of end fixity is again taken as 1.5, and the short 
column range will be assumed to follow the Johnson equation 

<*co 42,200 - 
42,200a (L/p)2_ 

4 X 1.5 X ir2 X 10.3 X 106 
= 42,200 - 2.881 (L/p)2 

L/P 

Fia. 6 ■ 16. Test column curve. 

As an example consider a 25-in.-long column. The stiffener properties 
are, from Fig. 6 • 13 

A0 = 0.260 po = 0.388 S/Po =1.13 t/A0 = 0.154 

Assume a new value of p, say p = 0.390 in., then 

L/p = 64.1 a sc, = 42,200 — 11,830 = 30,370 lb. per sq. in. = <rM 

<T„e/<Tcr = 12.75 ase/avp = 0.723 from Fig. 6 2 

we/b - 0.137 we — 0.685 be — 2we = 1.370 in. 

Since design values are being sought, the specified yield point is used 
in the ratio crae/<xyp. From Fig. 6 • 10, or the corresponding equation, 

(p/po)2 = 1-010 p - 0.390 in. L/p = 64.1 

and further approximations are unnecessary. 
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L~inches 

Fig. 6*17. Design values for effective column. 

Therefore, for a column 25 in. long: 

Critical failing stress = 30,370 lb. per sq. in. 
Effective sheet = 2we = 1.370 in. 
Effective radius of gyration = 0.390 in. 
Effective area == 0.315 in. 
Total load carried by one stiffener and its effective sheet = 

9,570 lb. 

This has been carried out for a series of lengths and the results plotted 
in Fig. 6-17. For the lengths considered previously, the pertinent re¬ 
sults have been entered in Table 6-4, columns 12 to 15 inclusive. 
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As can be seen from columns 6, 7, 14, and 15, the last two methods 
give results which are in reasonable agreement. In this example the 
method using 2we = 3(M would be conservative if used for design, 
since the allowable stresses and the effective column load are both 

Fig. 6 18. 

smaller than the corresponding values found by the exact method. The 
good agreement between the two methods in the above example is 
largely due to the fact that the actual effective widths of sheet acting 
with the stiffener is close to 30J, ranging from 24.8^ for the 12-in. length 
to 36.21 for the 27-in. length. This, however, is not always the case. 

For low values of allowable column stress due to a low crushing 
strength of the stiffener section or to a very long column length, the 
effective width of sheet acting with the stiffener will, in general, be con- 

r ^ T 

Fig. 6 19. 

siderably over SOL To illustrate this fact, consider the stiffener sheet 
combination shown in Fig. 6-19, 

where stiffener Aq = 0.057 sq. in., 
Po = 0.269 in., 

<Tcc = 25,000 lb. per sq. in. 

Assuming a column length of 20 in., the exact calculation yields the 
following values: 

Allowable column stress = 18,780 lb. per sq. in. 
Effective sheet = 2we = 1.590 in. = 63.6£ 
Effective column area = 0.0968 sq. in. 
Load per column = 1820 lb. 

On the basis of 301 the effective column area is only 0.0757 sq. in. 
which is 21.8 per cent lower than the probable actual effective area. 
This would be important in a structure under bending in which the area 
of the various elements would be used to calculate the moment of inertia 
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and the position of the neutral axis of the cross section. Furthermore, 
assuming the same load-carrying ability of the effective stiffener, the 
allowable stress on the basis of 30£ would be 1820/0.0757 = 24,050 lb. 
per sq. in., a value which is very near the crushing strength of the sec¬ 
tion. Although this value is purely a fictitious allowable stress which 
is correct if the design calculations are based on 30$ effective width 
(correct only from an allowable stress standpoint, not from the stand¬ 
point of moment of inertia and neutral axis position) the fact that it is 
almost as high as the crushing strength of the section may lead to erro¬ 
neous conclusions in the analysis of test data on such panels. 

(c) Correction to Standard Material Properties. Owing to the fact 
that there is a rather wide scatter in the mechanical properties of differ¬ 
ent lots of the same material, it is necessary to reduce all test data so 
that the results will apply to a material having the minimum specified 
properties. The failure of stiffened panels is a complex phenomenon in 
which parts of the composite structure may collapse owing to buckling, 
and other portions may fail because they are subjected to stresses beyond 
the yield point of the material. 

Considering that failure in a stiffened panel takes place as some form of 
column failure of an effective column section, several stress regimes are 
of importance. If the failing stress of the effective column is very low, 
indicating that the column lies within the Kuler or long column regime, 
failing stress is almost entirely dependent upon the value of the Young’s 
modulus of the material and is independent of the other mechanical 
properties such as yield point and ultimate strength. Thus, any correc¬ 
tion made to the test results should be in the form of a factor taking into 
account the difference between the Young’s modulus of the test material 
and that specified for design. In most cases this variation is negligible 
for any one material specification. It is believed that the most satis¬ 
factory correction is one in which the test results are corrected in the 
direct ratio of the two moduli for all stresses up to the proportional 
limit, and this correction being linearly reduced to zero as the yield point 
of the material is approached. The equation will be 

O’ design == Aj (Ttest 

where K\ is inversely proportional to E test/E specified up to the pro¬ 
portional limit with a linear variation between the proportional limit 
and the yield point becoming equal to 1.0 at the latter stress value. 
This is shown in Fig, 6 • 20. It has been assumed that the proportional 
limit of any material is equal to one-half the yield point stress which is 
in reasonable agreement with most of the materials now being used for 
aircraft structural design. 
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Above the material proportional limit, the effect of the material yield 
point on failure becomes more and more pronounced. If the failing 
stress on a test specimen is equal to the yield point of the material in 
the test specimen, it is logical to assume that for any material having 
a different yield point, the test stresses would be changed by a factor 
which is a function of the two yield points. This problem has been 

<5 test 
<5 test yield point 

Fia. 6-20. Chart, for Young’s modulus correction. 

treated in detail by Epstein (see reference 6-8), and a correction factor 
curve has been given. The equation is 

G design “ G test 

where K2 is given in Fig. 6 *21. This correction factor has been derived 
in reference 6*8 on the basis of a straight line short column equation. 
Analysis shows, however, that it is conservative to use this correction 
factor for the Johnson parabolic and the tangent modulus short column 

curves. 
Therefore, any stress values obtained in tests should be corrected in 

the following manner: 

G design 3=5 K\K2 G test 

where Ki takes into account the variation of the Young’s modulus and 
K2 corrects for the value of the material yield point. 

In all the above, the values of yield point and Young’s modulus should 
be taken from compression tests on the material. However, such com¬ 
pression material properties are not available in many cases. Reference 
6*8 gives approximate relationships between the tensile properties and 
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the compressive properties of the more important aluminum alloys. The 
use of these relationships makes possible the correction of experimental 
tests for changes in material properties from the properties of the mate¬ 
rial obtained in a tension test. However, errors of unknown magnitude 
are introduced by the use of such tension values; therefore, every effort 
should be made to obtain the compressive mechanical properties of the 
material. 

Fia. 6-21. Chart for yield point correction. 

(d) Effective End Fixity of Experimental Panel Tests. The best 
method of determining the end fixity of any series of experimental panel 
tests would be to test sufficient specimen lengths so that the complete 
column curve for the section could be drawn. For preliminary design 
work this procedure is seldom justified and knowledge of an approximate 
end fixity for analysis purposes would be of considerable Value. 

Experience has shown that the short column curves of a large per¬ 
centage of stiffened sheet panels can be approximated by the Johnson 
parabola 

Vsc &cc 
ojq/p)2 
4 Ci?E 

If this is rewritten in the form 

Oje _ . _ Occ(L/p)2 

<rca 4 C v2 E 
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and (r8c/<rcc is plotted against crcc(L/p)2 for any given material, the result 
is a straight line whose slope is dependent upon the fixity coefficient C. 
This has been done in Fig. 6*22, and a number of experimental test 
results have been spotted on the curve. All these tests were made flat 
ended, with the ends of the specimens carefully milled flat and parallel. 
Although there is considerable scatter, as would be expected since a 
variety of stiffener shapes and sheet thicknesses have been included, 

Fio. 6 • 22. Effective end fixity of panels tested flat ended. 

Fig. 6-22 shows that 75 per cent of the test points lie within ±5 per 
cent of the curve for C = 3.0. If is therefore suggested that for a rough 
analysis of a stiffened panel tested flat ended that C = 3.0 be used as 
a good average value of the panel end fixity. 

For more precise results at least two panels in the short column range 
should be tested, and with known values of <r8C and L/p the values of 
ace and C can be calculated from the Johnson equation. As mentioned 
previously in Chapter 5, care should be exercised not to test specimens 
which are too short. If this is done, the stresses given for small L/p 
values cannot be approximated by the parabolic column curve. 

(e) Effect of Rivet Spacing on the Strength of Stiffened Panels. In 
all of the above discussion of stiffened panels it has been assumed that 
the stiffener and the sheet have been continuously connected. As will be 
shown, this assumption is only valid for seam welding or for riveted and 
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spot-welded connections when the rivets or spot welds arc placed very 
close together. For large rivet or spot-weld spacings, it will be necessary 
to introduce a correction into the effective width calculation in order to 
take into account the effect of sheet buckling between connection points. 

The work of Howland (reference 6-9) indicates that it is satisfactory 
to assume that the sheet between rivets acts as a column with fixed ends, 
the column lengths being taken as the rivet spacing. Since, up to the 
time the sheet buckled between rivets, the sheet and stiffener will carry 
the same stress (if they are of materials having the same value of E), the 
stiffener stress at which buckling will occur between rivets is given by 
the Euler equation for sheet buckling (two sides fixed, two sides free) 

4tt2E 

°sm ~ (l - m2)(Wp)2 

where IIS — rivet spacing in inches 
p = radius of gyration of the sheet 

Substituting the value of p in equation 6-14, we obtain 

7T2 E t2 

" 3(1 - n2)(RS)2 

[6-14] 

[6-15] 

where t is the sheet thickness. For aluminum alloys, assuming E = 
10.3 X 106 lb. per sq. in. and n = 0.3, the equation reduces to 

tfstiff = 37.28 X 106 [6*16] 

This is plotted in Fig. 6*23 for any given rivet spacing, RSy and sheet 
thickness t. The critical value of the stiffener stress at which buckling 
will occur between rivets can be obtained from this figure. 

Equation 6-15 above is valid only so long as the value of cr8tiff is 
less than, or equal to, the proportional limit of the material. Above 
that stress value, E no longer is constant and must be taken as the 
value of E for the stress in question. In order to correct for the change 
in E above the proportional limit, Newell (reference 6*10) suggests the 
use of the Johnson parabolic curve for the short column range. If this 
is done, the limiting value of <r8tiff will be the yield point of the material, 
and the value of E will be modified above a stress value equal to one- 
half of the yield point. Since there is very little evidence to justify 
any other method, and also because this method would appear to give 

conservative results, it should be used for design purposes. Curves for 
several values of yield point have been included in Fig. 6-23. 
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Up to the point where the sheet buckles between rivets, the effective 
width of sheet acting with the stiffener can be determined from Fig. 6 • 2 

in which 

&8e ^ ^atifT 

After the sheet buckles, it is reasonable and conservative to assume 
that the sheet will carry the load it was carrying just before buckling 

Fig. 6*23. Chart for determining sheet buckling between rivets. 

but will not be able to carry additional load. The load which the sheet 
can carry is given by the equation 

Therefore 
Pah — 2we <T8e t 

2we[ t — 2we2 O’gtiffjj t 

[6*17] 

[6-18] 

Wet wei - [6-19] 

where toe, = effective width of sheet at time of buckling between rivets, 
o-gtiff, = stiffener stress at time of sheet buckling between rivets, 

we% = effective width of sheet at any higher stress, 

The buckling of the sheet between rivets may have a detrimental 
effect on the panel strength other than that caused by a reduction of the 
effective width. If the sheet buckles at a relatively low stress, it no 
longer offers support to the part of the stiffener to which it is attached 
but actually introduces loads into the stiffener at the rivet or attach* 
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ment points. These loads are tensile loads in the rivets and when carried 
into the stiffener may precipitate early local failure of the stiffener sec¬ 
tion. For this reason early sheet buckling between rivets should be 
avoided particularly when the part of the stiffener attached to the sheet 
may be subject to local failure. 

It may be of interest to know at what stiffener stress permanent set 
will take place in the sheet which has buckled between stiffeners. This 

0 1.0 2.0 3.0 4.0 
Rivet spacing-inches 

Fig. 6 • 24. Desirable and undesirable rivet spacings. 

has also been investigated by Howland in reference 6*9 and an equation 
of the form given below has been derived. 

E \(<r8hRS2 _ ttA2 ttH2' 

<r"tiff ~ RS2 L \ 2ir 2? < 6/ + 3 . 
[6-20] 

where <r8tiff = the stiffener stress 
<rah = total stress in the sheet due to bending and direct com¬ 

pression 

Permanent set in the sheet would be expected to occur, whenever <r8h 
became greater than the proportional limit of the material. If we 
assume that the sheet and stiffener will have the same elastic properties, 
permanent set in both would occur when <rstiff = <r8h = Putting 
these values into equation 6 • 20, we get 

ms? = 

= 0.304 a2k 

E 
or 0.023 

OpL 

E 
[6-21] 
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This equation yields curves as shown in Fig. 6*24 for various values of 
<tvl. The region betwen the two sets of curves indicates that the 
stiffener stress would be less than the sheet stress in order to cause 
permanent set to occur in the sheet, whereas the region outside of the 
curves indicates that a stiffener stress higher than the sheet stress would 
be necessary. This is better illustrated in Fig. 6*25 in which the stiff- 

Rivet spacing-inches 

Fia. 6-25. Rivet spacing to cause permanent set in sheet. 

ener stress to cause permanent set in the buckled sheet is plotted against 
rivet spacing. 

6-3. The Ultimate Strength of Flat Panels Under Shear 

In the analysis of the wing beams of airplanes, the designer is faced 
with several problems which, in general, are not present in civil engineer¬ 
ing structural design. The civil engineer endeavors to make the web 
sheet of all beams thick enough so that the web will not buckle before 
the design load is reached on the structure. Buckling in this case is 
therefore considered as failure and the shearing stress causing buckling 
determines the allowable maximum shear that can be applied. For the 
solution of problems of this type, the discussion given in section 5-2 
applies, in which the critical shearing stress is given by 

Tcr = K 12(1 - M2) (0 [6,22] 

where b = the narrow dimension of the shear panel, 
K = a function of the type of support given to the sheet edges 

The value of K can be obtained from Fig. 6*11. 
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For very thin sheets, the buckling stress given by equation 6-22 is 
extremely low and, in the interest of making efficient use of all available 
material, the aircraft engineer raises the question of how much addi¬ 
tional shear can be carried by such a buckled plate before (a) some 
portion of the sheet has a total stress equal to the yield point of the 
material, thus giving rise to permanent deformations; or (b) the ulti¬ 
mate strength of the structure is reached. 

The aircraft designer would further like to know the effect of this 
web buckling and the additional load above buckling in the loads, in 
the beam flanges, and in any web-stiffening members which may be used. 

This problem has been the sub¬ 
ject of considerable research (see 
references 6*11 to 6* 16 inclusive). 
No attempt will be made to dis¬ 
cuss each reference in detail but 
a short indication of the develop¬ 
ment of the various theoretical 
ideas and their agreement with 
practice will be given. 

Consider a beam having a relatively thick web under the action of 
shear and bending. See Fig. 6-26. For such a section, the usual bend¬ 
ing moment and shear equations of applied mechanics are valid, namely, 

T0\[ 

... 

Fig. 6 • 26. Stress distribution in a thick- 
webbed beam. 

Mxy VQ 
<*x = -f- and r = —■ 

1 lb 

where Mx = bending moment at any value 
y = distance from neutral axis to the fiber under the normal 

stress <rT, 
I = moment of inertia of the cross section, 
V = applied shearing force, 
Q = static moment of the section above the plane for which r 

is determined, about the neutral axis, 
b = thickness of the section at which r is determined; for the 

web, b = t. 

These equations have been discussed,in Chapter 3. Considering an ele¬ 
ment of the web on the neutral axis, so that bending stresses are absent, 
we see that if an element is considered whose sides are parallel and per¬ 
pendicular to the shear force, the stress pattern is given by uniform 
shearing stresses on the four faces of the element—element (a) Fig. 
6 *26. However, the same result and system can be represented by an 
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element at 45 degrees to the direction of applied shear by pure normal 

stresses <rc and at of equal magnitude in wliieh 

<rc = 0t = t 

See element (6) Fig. 6*26. For web plates which are thick, this stress 
distribution (plus the bending stresses) will hold up to stress values 
approaching the yield point of the material, at which time plastic flow 

will enter the picture. 
If now, we assume that the web plate in the beam is very thin, the 

above discussion of the principal stress patterns takes on new signifi¬ 
cance. Considering the normal stresses, we see that one of them is a 

compressive stress against which thin 
J y plates have a very low resistance. 
I The tendency will then be for the 

rp plate to buckle in a direction perpen- 
dicular to the compressive stress at 

II a value of the applied shear which 
“ becomes less and less as the web be- 

, . ,. comes thinner and thinner, the limit- 
Fig. 6*27. Stress distribution in thin- . , . - , . - 

webbed beams. ln* casc bcm« for a sheet of zero 
thickness. (See Fig. 6*27.) In this 

case, the sheet buckles upon the application of any shear load and can 
only resist shear by means of the tensile stresses at 45 degrees. With 
such a stress pattern, it is obvious that the tensile stresses will tend to 
pull the two beam flanges together, thus necessitating vertical members 
to counteract this tendency (shown dotted in Fig. 6 -27). 

The limiting case of a web having no compressive strength has been 
treated in detail by Wagner (reference 6 13) and beams approximating 

this are known as Wagner beams. . . 
Wagner assumes that the web buckles /}.-f- 
immediately upon the application of ~T 

the shear load and that the only stresses ^ \\^s V' rv \\\ \ 
resisting the shear forces are the ten- /_ 
sile stresses which act at approximately r * m 
45 degrees. Considering infinitely rigid „ „ , 

„ , Q , Fig. 6*28. Notation for vertical web 
parallel span flanges and vertical stiffeners 

stiffeners (Fig. 6-28), the following 
equations for this limiting case can be shown to apply. 

Diagonal tension stress developed in the web 

Fig. 6*28. Notation for vertical web 

stiffeners. 
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Axial force in the tension flange 

Vx V 
F* ~ ~h ~ 2 c°ta 

Axial force in the compression flange 

Vx 
Fe=-j-Y2cot« 

[6-24] 

[6-25] 

[6-26] 

Axial force in the vertical stiffeners 

d 
Fv = —V~ tan a 

h 

where V = applied shear load, 
h = effective web height, 
t = web thickness, 

d = vertical stiffener spacing, 
a = angle of web buckles, theo- 

retically 45 degrees for this 

case, but practically usu- Fig. 6-29. Notation for oblique 
ally Somewhat less. web stiffeners. 

For the case of non-vertical struts and external loads acting at the strut 
points (Fig. 6*29) the equations are: 

27 1 
<*t = [6 • 27] 

ht sin 2a (1 — tan a cot /?) 

if the struts have infinite bending stiffness in the plane of the web, and 

VL + Vn 1 
GtTtC ht sin 2a(l — tan a cot fi) 2 dt sin2 a 

for struts with zero bending rigidity in the plane of the web. 

T, M V, X pT = ~— - (cot a — cot p) 
h 2 

Fc = 

Fv 

M V, L 
—— — - (cot« — cot p) 

VL -f- Vr d tan a 1 
T.C 

1 T Pn 

2 h tan /3 (1 — tan a cot /3) sin /3 

[6-28] 

[6-29] 

[6-30] 

[6-31] 
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where V = total shear on the section considered, 
M = total moment on the section considered, 
Vl = shear in bay to left of strut considered, 
Vr = shear in bay to right of strut considered, 
Pn = external load applied at the strut, 

P — angle between web and stiffener, 
Subscripts T and C, such as for atT, °tc indicate the stresses or 

loads at the end of the strut on the tension flange or compres¬ 
sion flange of the beam respectively. 

In all the above it has been assumed that the flanges are infinitely stiff 
in bending. If, however, they can deform in the web direction, there 
will be a tendency to unload the sheet between verticals owing to this 
deflection. This effect can be taken into account by a correction factor 
which is a function of the flange moments of inertia and the beam dimen¬ 
sions. The correction factor is given by 

where 

1 __ o**max _ wd sinh wd + sin wd 
R iavo 2 cosh wd — cos wd 

wd = 1.25 dyj t 

Cla + Ir)h 
Sill OL 

[6-32] 

[6*33] 

and (Ttavi) = average sheet tensile stress given by equations 6-23, G-27 
and 6-28, 

<rtina.x — maximum tensile stress developed in the sh(»et, 
Ic = moment of inertia of compression flange about its own 

neutral axis, 
It — moment of inertia of tension flange about its own neutral 

axis. 

The correction factor R can be found either from equations 6 • 32 and 6 • 33 
or from Figs. 6 • 30 and 6*31. It is only applied to the sheet tensile stress 
and to that portion of the flange load arising from the sheet tension. The 
end load in the verticals, since it is independent of the tensile stress dis¬ 
tribution between panels, is not affected. 

To summarize the pure tension field case, it has been assumed: (a) The 
sheet carries the entire shear load, i.e,, no shear load is carried by the 
flanges, (b) The flanges are pinned to the verticals and are pin-connected 
at the fixed end of the beam (in the case of the cantilever beam). This 
leads to the assumption that (c) There is no gusset or Vierendeel truss 
action at the connection of the verticals to the flanges, (d) The sheet 
immediately goes into the wave state and supports the applied shear 
entirely by means of the diagonal tension field. 
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On the basis of these assumptions, equations 6*23 to 6-31 have been 
derived and would be expected to give reasonable predicted stresses for 
deep beams with very thin webs, In actual practice, the equation found 
to be the most in error is that giving the compression load in the web 
stiffeners which gives values which may be two to five times too high. 

The other equations give reasonable first approximations for web thick¬ 
nesses up to 0,030 in. Every result will again be conservative, the degree 
of conservatism increasing rapidly with increasing web thickness and 
increasing flange stiffness. The degree of conservatism can be seen in 
the more accurate analysis which follows. 

Since the Wagner equations always lead to designs which are ultra¬ 
conservative and hence too heavy, a more accurate investigation of the 
true stress condition in such beams is called for. A number of investiga¬ 
tors have worked on this subject and all have arrived at essentially the 
same conclusions; however, very little published work is available. 
References 6*16, 6*17 and 6*18 contain a limited discussion of the 
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incomplete tension field problem and reference 6*16 contains some 
experimental data. 

The method discussed below summarizes the theoretical work that 
has been done and is checked by a number of tests made by various air¬ 
craft companies (see references 6*19-6*23 inch). In this method, the 
total shear carried by the beam is considered to be made up of these 
items: (a) The shear carried by the flanges due to their small but finite 
shear stiffness, (b) The shear carried by the web as a shear-resistant 
member, i.e., before it buckles, (c) The shear carried by the web in the 
buckled state, due to the diagonal tension field. 

To account for the shear carried by the flanges, a method suggested 
by Green (reference 6 -21) is used, in which it is assumed that the shear 
flow is uniform between the flanges and that this shear flow is equal to 
the value conventionally calculated for such a beam at the flange rivet 
line by the equation 

where q = shear flow in web in pounds per inch, 
V = total shear in pounds, 
Q = static moment of the flange about the neutral axis of the 

beam, 
7 = moment of inertia of the entire beam cross section when V 

is not greater than the buckling strength; and equals the 
moment of inertia of the flange material only when V is 
the shear resisted by a diagonal tension field. 

The shear resisted by the web plate only, would then be given by 

where h 

Vw = 
V 

I/Qh 
[6-35] 

effective depth of the web, taken as the distance between the 
centroids of the flange rivets. 

At the buckling stress of the web, the shear carried by the web is 

equal to 
Vcr = Tcrht [6'36] 

and the stress distribution on a unit element of the end vertical (point 
of shear application) is as shown in Fig. 6*32, in which 

<rCl — 0^ = rcr 

The value of rcr is given by equation 6-22 where K is obtained from 
Fig. 511. It is conservatively assumed that the shear panels in such 
beams correspond to panels simply supported on all four edges. 
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Above the critical buckling stress, it is assumed that the compressive 
stress remains constant at the value rcr and that any additional shear 

is carried by an increase in the value of only. 
The stress pattern for this case is as shown in Fig. 
6-33 and the shear carried by the tension field 
only is 

Vt = <rt2 h t sin a cos a [6*37] 4] I 
<*>■1 
%u 

Fig. 6*32. 

Cci 
Fig. 6 -33. 

where a = angle of tensional diagonal or the angle 
of plate buckling. The total average tensile 
stress is then 

= o-f, + <rtl — <rk + [6-38] 

Because of the deformation of the flanges under the action of the 
tension field, the correction term given by equation 6-32 must be applied 
to atr Also, since some material is removed by the flange and vertical 
attaching rivets, a rivet correction factor must be applied to <r*avo to 
obtain the maximum value. This rivet factor is given by 

* p _ rivet spacing — rivet diameter 

rivet spacing 

The maximum value of the tensile stress is then 

from which 

and 

[6*39] 

[6*40] 

[6-41] 

[6-42] 

When the maximum tensile stress equals the tensile yield point of the 
material, atyV) the value of the web shear above buckling is given by 

Vtv = CrRht sin a cos a [6-43] 

and when it is equal to the ultimate tensile strength, aut8) the correspond¬ 
ing shear is 

Vtu — (fuis — “7^ CrRht sin a cos a [6*44] 

The total shear carried by the beam for cr<max = <rtyp and <r*max = <rut8, 
respectively, is then 

r„=(Vcr + Vtv)^ [6-45] 



6-3] 

and 

ULTIMATE STRENGTH OF FLAT PANELS 243 

Fu = (Fcr + Vtu) 
I 

Qh 
[6-46] 

The above equations are all based on vertical web-stiffening members. 
In the event the stiffeners are not at 90 degrees to the flanges, equations 

Fig. 6-34. Definition of £ for oblique web stiffeners. 

6*43 and 6*44 should be multiplied by a correction factor equal to 
(1 — tan a cot 0) where 0 is the upright angle, measured as shown in 
Fig. 6 • 34. Also, for oblique stiffeners it is found that the diagonal tension- 

field angle, a, is always equal to 0/2, and it can be assumed that R = 1.0; 
so only for these cases, the equations become 

r<
|e

*
 

II 

f Ter) 
\ivp c'J 1 Crht- 

— COS 0 

sin /3 
[6-47] 

II
 ( TcA 

vuts cj | Crht- 
— cos|3 

sin 0 
[6-48] 

The one unknown in equations 6*43 and 6*44 which is troublesome 
is the diagonal tension-field angle a. As yet, the dependence of this 
angle upon the various physical parameters of the beam assembly is 
unknown. Figure 6*35 shows test values of a for the beams tested by 
the Consolidated Aircraft Corporation, plotted against h/d. Consider- 
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able scatter is evidenced, but the use of the curve should give a reason¬ 
able approximation since changes in a only make secondary changes 
in the value of Vty and Vtu- 

Fia. 6-36. Typiral test beam. 

To illustrate the method, beam No. 242, reference 0-21, will be cal¬ 
culated in detail. This beam is shown in Fig. 6*36 and the pertinent 
data are: 

Effective web height 
Web thickness 
Web-stiffener spacing 
Rivet factor 
Height/depth ratio 
Tension-field angle 

= h = 9.12 in. 
= t = 0.052 in. 
= d = 8.5 in. 
= Cr = 0.841 
= h/d = 1.07 
= 31.8° from Fig. 6*35 (ac¬ 

tual test showed a = 
35.8°) 

Stress distribution factor = li == 0.876 from equations 
6-32 and 6-33 or Figs. 

Tensile yield of material 
Tensile ultimate of material 
Flange static moment 
Flange moment of inertia about beam n.a. 
Correction for flange shear 

6-30, 6-31 
= (Ttyp = 43,6501b. per sq. in. 
= futs = 62,100 lb. per sq. in. 
= Q - 7.675 in.3 
= I - 79.46 in.4 
- I/Qh - 1.135 

From the above data, the following items can be calculated; 
From Fig. 5*11, the buckling constant 

K - 8.41 
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TCr 

and 

V X 10.3 X 106 /0.052V 

12(1 - 0.32)~ \ 8.5 / 
2930 lb. per sq. in. 

Vcr = 2930 X 9.12 X 0.052 = 1390 lb. 

from equation 6-43 

(2930\ 

43,650_0l4l/0 841 X 
0.876 X 9.12 X 0.052 X 0.5270 X 0.8499 = 6270 lb. 

and from equation 6 -44 

Vlu = (62,100-^) 0.841 X 

0.876 X 9.12 X 0.052 X 0.5270 X 0.8499 = 9160 lb. 

The total shear carried by the beam at the yield point stress, is then 
from equation 6-45 

Vy = (1390 + 6270)1.135 = 8690 lb. 

and the ultimate shear load that can be supported is, from equation 6 * 46, 

Vu = (1390 + 9160)1.135 = 11,970 lb. 

The test values were 7000 lb. (by visual inspection) and 12,100 lb., 
respectively, with the failure occurring as web tension. 

The beam considered is somewhat of a limiting case, being shallow 
and having a relatively thick web, but it was chosen to illustrate the 
magnitude of the factors which were neglected in the earlier Wagner 
tension field equations. In the example above it can be seen that the 
total shear carried by the beam is made up of 

(a) 1420 lb. or 11.9%, carried by the flanges 
(b) 1390 lb. or 11.6%, carried by the web in pure shear before buck¬ 

ling. 
(c) 9160 lb. or 76.5%, carried by the diagonal tension field set up 

after the web buckles 

The pure tension field analysis ignores all but item (c) thus leading to a 
web which is too conservative by the amounts indicated in items (a) and 

(b). 
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The result of using this method in seven beams tested by the Consoli¬ 
dated Aircraft Corporation is shown in Table 6-5. All these beams 
actually failed in web tension. The agreement between predicted and 
test ultimate shear loads is very good and indicates that the method is 
able to predict tensile failure in the web of such beams within very close 
limits. The agreement between predicted and test loads at yield point 
is not so good; however, the test loads were obtained merely from visual 
observation and would therefore not be expected to be too accurate. 

A check on a beam tested by the Douglas Aircraft Company (Refer¬ 
ence 6*22) and on one tested by the Vultec Aircraft, Incorporated 
(reference 6*23) also shows good agreement between predicted and test 
ultimate loads. Because complete data is lacking in these reports, 
certain items had to be estimated; however, the estimates could be made 
with a reasonable degree of accuracy. The results of the analyses fol¬ 
low. 

Douglas Beam 

h = 27.5 in. (estimated) 

d = 4.5 in. 

t = 0.091 in. (nominal) 

*uta = 63,300 lb. per sq. in. 

h/d - 6.11 

a = 39.5 

K = 5.51 

Cr = 0.555 

R = 0.98 (estimated) 

I/Qh = 1.06 (estimated) 

rcr = 21,000 lb. per sq. in. 

Vcr = 52,600 lb. per sq. in. 

Viu « 17,000 lb. 

Vu = 73,800 lb. 

=81,200 lb. 

M.S. = + 10.0% 

Vultee Beam No. 26 

= 11.50 in. 

= 4.75 in. 

= 0.040 in. (nominal) 

= 62,500 lb. per sq. in. (estimated) 

= 2.42 

= 35.6 from Fig. 6 -35 

= 6.35 from Fig. 5-11 

= 0.750 

= 1.00 (estimated) 

= 1.10 (estimated) 

= 4,200 lb. per sq. in. 

= 1,9301b. 

= 9,280 lb. 

= 12,330 lb. 

= 13,1001b. 

= 6.5% 

Checks on several other beams tested by Vultec Aircraft, Incorporated 
indicate that the method gives agreement between predicted and test¬ 
failing load3 that is reasonable and conservative. 

In view of the above experimental checks, it is felt that the method is 
satisfactory for the determination of the load at which web failure can 
be expected in a thin-web beam. Additional complete test data is, of 
course, desired in order to determine the possible experimental scatter 
limits which are to be expected with the use of this design method. A 
limited amount of test data indicates that the method is very conserva¬ 
tive for stiffener spacings which are greater than the spar depth. This is, 
however, practically never true in present designs. 
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The next problem is the determination of the loads on the flange 
rivets. These are easily calculated from the equations developed above. 
The rivet load per inch at web buckling is equal to 

V’r, = y JfT [6-49] 

where V'rr = rivet load in pounds per inch at web-buckling load, 
Ip = moment of inertia of flanges about the beam neutral axis, 
It — total moment of inertia of the beam cross section, 
Other terms are as previously defined. 

cosc*/sincy 

For the shear load carried above buckling by the tension field, the 
rivet load is made up of horizontal and vertical components. These 
are (see Fig. 6*37) 

y' 
Pt sin a = Ylu, Pt = [6 • 50] 

sin a 
where 

and 

[6*51] 

K 

T7/ Pt cos a ^ . Tr, Vtu 
Vh =-—-= Pt sm a == Vlu = — 

cos a/sin a h 

Pt sin a 

cos a/sin a 
= Pt 

sin2 a 

cos a 
= Vi tan a = -~ tan a 

[6*52] 

[6-53] 

The total rivet load per inch is then given by 

P* - UK +V„)2 +v?r 
[6-54] 
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A check of this method is shown in Table 6 • 6. Several beams which 
failed owing to causes other than rivet failure are included to show that 
equation 6*54 can be used to predict whether or not rivet failure is likely 
to occur. Detailed calculations for these beams are not given; however, 
they follow the procedure outlined previously in this section. Table 6*6 
indicates that the method will definitely show whether or not flange 
rivet failures are to be expected in any beam assembly. As can be 
readily seen, it can also be used to determine the shear load at which 
rivet failure will occur. Beam No. 200 in Table 6-6 is a limiting case in 
which rivet failure and vertical stiffener failure should occur at approxi¬ 
mately the same shear load. In the test panel, the stiffener failed first. 

Timoshenko (reference 6*3, p. 382) discusses the problem of buckling 
under shearing stresses of plates stiffened by ribs, where the plates and 
ribs buckle simultaneously. The designer is referred to this work for 
the design parameters involved. Generally, however, the web stiffeners 
are sufficiently stiff so that the web sheet will buckle between stiffeners 
without immediately causing them to fail. This is the case which will be 
considered here. 

If the uprights between the spar flanges were not attached to the web, 
it would be possible, from a study of equations 6*26 or 6 * 31, to deter¬ 
mine the stresses in these uprights and, from the column properties of 
the section, to determine the allowable stresses. The shear stress up to 
the point of web buckling would introduce no load in these members and 
their load would only consist of the vertical component of the tension 
field load on the flanges, correctly proportioned between the verticals 
present. 

Riveting these members to the beam web makes such simple considera¬ 
tions impossible. Here a certain part of the sheet must be considered to 
be working with the vertical in resisting the tendency for the beam 
flanges to come together. The amount of sheet to be considered is un¬ 
known and it probably varies between the flange and the center of the 
sheet. In addition to the axial load applied to the stiffener by the 
tension field, there is also a load which arises from the fact that the 
stiffener, where riveted to the web, tends to break up the web buckles 
which, otherwise, would form a continuous pattern across the beam web. 
These sheet waves tend to deform the stiffener torsionally and in bending 
and to precipitate early failure due to localized stress conditions. 

In view of the complexity of the problem, no satisfactory theoretical 
analysis for determining the design or allowable stresses in the web- 
stiffening members of tension-field beams has as yet been developed. A 
series of over fifty parallel flange beams with formed sheet stiffeners on 
one side of the web, which failed due to stiffener failure, have been 
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studied and an empirical equation has been developed for such cases. 
The equation is 

Vtuv = 0.023# y/j,Uha/d) [6-55] 

in which Vtuv = the total web shear above Vcr which can be carried be¬ 
fore stiffener failure occurs. 

Je = the effective torsional moment of inertia of the stiffener 
which, for formed sheet stiffeners is taken as 

Je = h (developed width) ^tiff = £ At%tm [6-56] 

For other stiffener sections this factor must be determined by test. 
Equation 6-55 is only for beams having parallel flanges and web 

stiffeners which are perpendicular to these flanges. Methods of taking 
into account non-parallel flanges and oblique web stiffeners will be dis¬ 
cussed later. 

The torsional moment of inertia has been taken as the influencing 
factor rather than the bending moment of inertia since a study of the 
failures of such beams indicates that nearly always the stiffener has not 
failed as an Euler or short column, but has twisted. This twisting is due 
to the high local stresses set up by the sheet-wave pattern. As indicated 
above, the effective torsional moment of inertia of formed sheet stiffeners 
is taken as equal to that for the equivalent flat sheet rectangle. Insuffi¬ 
cient data are available at the present time to check this value for bulb 
angles and other extruded sections and for closed sections but, in lieu of 
other information, it is suggested that this value be obtained from a 
torsion test on the particular stiffener. The accuracy of this equation 
for such sections is unknown and it therefore must be used with caution. 

The agreement of the values of Vtu as predicted by this equation with 
those obtained from tests on beams which failed owing to stiffener col¬ 
lapse is shown in Table 6*7. Considerable scatter is noticed and it is 
possible that additional theoretical study and experimentation will indi¬ 
cate modifications of equation 6*55 which will make it more accurate. 
However, the equation does give, for the first time, some means of de¬ 
termining the shear load at which failure in the web stiffeners may be 
expected and, in general, it will be found that the predicted loads will 
be within ± 10 per cent of those wrhich a test panel will develop. 

As mentioned previously, all the beams in Table 6*7 had eccentric 
vertical stiffeners, i.e., stiffeners on only one side of the web plate. Six 
specimens were tested which had stiffeners on both sides of the web plate, 
arranged as indicated in Fig. 6-38. By calculating the shear load for 
stiffener failure as before, results are obtained as shown in Table 6*8. 
Here the effective torsional moment of inertia of the pair of stiffeners was 
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TABLE 6-7 

3eam 
No. 

t 
(in.) 

h 
(in.) 

d 
(ir.) 

Je 
(in.4X!05) 

VM 
(lb.) 

K = 

r/Qh 
Vuu/K 

(lb.) 
r„ 
db.) 

Test 
Vtu 
Ob.) 

Predic. 
Vtu 
(lb.) 

43 0.030 12.00 12.0 2.32 5.600 1.119 5,010 190 4,820 4,810 
45 0.030 12.00 12.0 10.41 iTJKttlll 1.119 6,530 190 mm® 7,940 
47 0.030 rasa 12.0 2.40 6,400 1.119 5,720 190 5,530 4,860 
48 0.014 34.62 8.0 2.40 10,200 1.055 9,670 80 9,590 8,750 
49 0.030 18.66 15.0 2.32 5,850 1.098 5,330 160 5,170 5,990 
51 0.030 18.66 15.0 3.80 7,950 1.098 7,240 160 7,080 7,070 
52 0.0395 28.81 18.0 2.40 9,000 1.061 8,480 360 8,120 8,350 
53 0.0305 18.84 15.0 7.28 8,600 1.098 7,840 170 7,070 
54 ! 0.040 28.75 18.0 3.26 9,750 1.061 9,190 370 8,820 9,280 
55 0.030 18.80 15.0 5.93 8,950 1.098 8,160 160 8,000 | 8,230 
56 10.80 10.0 2 67 6,570 1.118 5,880 120 5,760 4,640 
57 0.025 18.76 9.0 2.66 8,250 1.067 7,730 220 7,510 7,020 
ero r\ % a a n 1 A 1 A APA 1 1 O AAA A^TA PA 
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taken as twice the value obtained for one stiffener using equation 6-56. 
These few tests indicate that the method is conservative when pairs of 
stiffeners are used and may, at times, become very conservative. For 
specimens 44 and 99 the agreement is satisfactory, whereas for specimen 

Beam No.44,99,126,/69 Beam No./78 Beam No.172 

Fig. 6-38. Stiffener arrangements on test beams. 

128 the predicted load is 45 per cent too low. The.se are insufficient data 
to draw any general conclusions and Table 6-8 is given merely to indi¬ 
cate possible trends. 

TABLE 6-8 

Beam 
No. 

t 
(in.) 

h 
(in.) 

d 
(in.) 

j, 
(in.4 X 106) 

VuU 
(lb.) 

K = 
I/Qh 

Vuit/K 
(lb.) 

Vcr 
(lb.) 

Test 
Vlu 
(lb.) 

Predic. 
Vlu 
(lb.) 

44 ; 0.080 12.00 12 4.G5 7,500 1.119 6,710 190 6,520 6,060 
99 0.0395 28.81 18 6.10 12,550 1.061 11,820 360 11,460 11,400 

128 0.041 28.75 9 8.27 26,300 1.061 24,790 1,370 23,420 16,080 
169 0.0395 28.81 18 6.46 16,000 1.061 15,070 360 14,710 11,640 
172 0.030 11.87 12 4.94 8,400 1.108 7,580 190 7,390 6,140 
178 0.030 11.87 12 4.94 9,250 1.108 8,350 190 8,160 6,140 

If the web stiffeners are not perpendicular to the flange but inclined 
at an angle 0, equation 6 • 55 should be multiplied by a correction factor 
which is a function of the stiffener angle. A limited number of tests 
indicate that reasonable results are obtained by an equation of the form 

Vmy = 0.023E\/ Je(th2/d) v/08/9O]i [6-57] 

when fi is measured in degrees. Table 6-9 indicates the agreement be¬ 
tween predicted and test loads for stiffener angles of 60 to 120 degrees. 
There are too few specimens to determine an exact correlation factor 
but it is felt that equation 6-57 will give results for design purposes 
which are conservative. 
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It is very likely that there are certain classes of stiffeners in which the 
stiffener failure is more dependent upon the bending stiffness (EIe) than 
the torsional stiffness (GJC). For the tests discussed above, correlation 
with the moments of inertia of the vertical stiffeners gave less satisfac¬ 
tory agreement and more experimental scatter than that obtained from 
equation 6 • 55. Several authors give discussions of the vertical stiffeners 
treated as columns, but no very satisfactory method is suggested for 
obtaining the shear load producing stiffener failure. To determine this 
properly a series of tests should probably be run on specimens which 
have vertical stiffeners which are torsionally strong but weak in bending. 

To determine the size of rivets to use for attaching the verticals to the 
flanges, one must know the loads in the verticals at their point of attach¬ 
ment to the flanges. No one as yet has made an exact study of this 
problem and experimental data are meager and confusing. As a first 
approximation one can use the results of Wagner and Lahde (reference 
6*16) which were obtained in brass specimens. They develop, from test 
data, an equation of the form 

where Av = area of the vertical stiffeners to give a compression stress 
in the stiffener equal to ay 

and the other terms are as previously defined. 
The results led to a set of curves representing equation 6-58 which 

have been replotted in Fig. 6 • 39. Actually the stress in the stiffener will 
vary as one goes from the spar flange to the center of the sheet owing to 
gusset interaction in the corner between the vertical and the flange and 
to effective width phenomena on both members. A limited amount of 
test data indicates that the compressive stress in the stiffener at the web 
center line will be from 50 to 60 per cent higher than it is at the flange 
rivet line as given by Fig. 6 -39. 

The stresses in the beam flanges can be considered to be made up of 
three major items. These are: (a) the primary beam bending stresses, 
(b) compression and tension stresses due to the components of the 
diagonal tension field acting parallel to the flanges, and (c) secondary 
bending stresses in the flanges due to the components of the diagonal 
tension field acting perpendicular to the flanges. 

The primary beam bending stresses can be determined by the usual 
beam equation 

[6‘59] 
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Actually, up to the point of web buckling, the total moment of inertia 
including that of the web should be used in the above equation; how¬ 
ever, it is generally not too conservative to neglect the contribution of 
the web to the bending resistance and to assume that tension and com¬ 
pression loads in the flanges resist the entire bending moment. If hi is 
the distance between the centers of gravity of the two flanges, it is 

Fig. 6-39. Chart for determining web stiffener areas. 

easily seen that the end loads in the tension and compression flanges, 
respectively, are 

{Pt.Ji-±T [6-60] 
h\ 

For the end load in the flanges due to the diagonal tension field, con¬ 
sider the stress distribution on the end vertical. It can readily be seen 
that the only stress contributing to the flange end load is <r*3 since the 
horizontal components of atl and <rc cancel each other. The horizontal 
force per unit height is equal to 

P'h 
Vt 

h tan a 
[6-61] 

where Vt = shear carried by the web in diagonal tension and the total 
horizontal force on the end vertical is 

Pyh = Vt cot a [6 • 62] 

which is to be divided between the upper and lower flanges; giving 

(Pi,ch = Vi cot a [6- 63] 
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Thus, the total end load in the tension and compression flanges is 
given by the sum of equations 6*60 and 0-03, namely, 

M 
Pt,c= ±T~ Invoice [6-64] 

hi 

The secondary bending stresses in the beam are due to the vertical 
component of the diagonal tension field. The unit distributed load on 
the flanges tending to bring them together is given by equation 6*53, 

K 
vt 

tan a pounds per inch [6 • 65] 

If this running load is placed on the flange and the flange bending mo¬ 
ments are calculated as though the flange acted as a continuous beam 
supported on the verticals, the secondary bending moments are given by 

Mvb = yzV'v d2 at the verticals [6-66] 
and 

Mvb — d2 midway between the verticals [6*07] 

Tests show that the actual secondary bending moment is nearly con¬ 
stant between uprights and can conservatively be given by 

Mvb = 0.10C V'v d2 = 0.10C 7* d2 tan a [6 • 68] 
h 

where C is a factor depending upon the flexibility of the flanges and is 
given by the curve in Fig. 6*31. This equation is checked by a fewT 
tests and, until a more detailed analysis is available, is suggested for 
design purposes. 

If the flanges arc not parallel, equation 6 • 64 gives only the horizontal 
components of the flange loads. Taking into consideration the vertical 
components of the flange forces we have, for the total web shear 

VWl = Vw — (Pt tan 6t + Pc tan $c) [6-69] 

where VWl = web shear for non-parallel flanges, 
Vw = web shear for parallel flanges. 

(See Fig. 6-40.) This equation is only approximate and should not be 
used for highly tapered flanges or where the end vertical is very rigidly 
attached to the flanges. No test data are available to check the accuracy 
of this equation and it is suggested that tests be run to determine the 
importance of this factor in the design of such beams. 
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The shear deflections of incomplete tension field beams are usually 
sufficiently great that they cannot be neglected. In order to determine 

Fiq. 6 • 40. Beam with tapering spar caps. 

these deflections, it is necessary to have some means of determining an 

effective shear modulus for the assembly. The analysis of Wagner and 

Fio. 6-41. Effective shear modulus chart. 

Lahde leads to an equation for the effective shear modulus which has 
the form 

where Ge = effective shear modulus. The suggested value of Ge/E to 
use for design is shown in Fig. 6-41 which is taken from reference 6-16 
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6-4. The Use of Corrugated Sheet 

When stiffening members are connected to flat plates in order to raise 
the allowable compressive load, certain design conditions may call for so 
small a stiffener spacing that consideration must be given to the use of 
some form of continuous stiffening member. This logically leads to the 
use of corrugated sheet attached to the flat sheet, forming a structural 
element which is very resistant to compressive loads applied parallel to 
the corrugation axis. Consideration will first be given to the crushing 
strength and column properties of corrugated sheet alone (without being 
attached to smooth sheet), and then the allowable strength of various 
combinations of corrugated and flat sheet will be studied. 

There are obviously a very large number of different types of corruga¬ 
tions; however, a few of these have become more or less standardized 
and these will be discussed in some detail. The strength properties of the 
corrugations alone will first be treated and then consideration will be 
given to the effect of attaching such corrugated sheets to flat sheet. 

(a) ANC Circular Arc Corrugations. The oldest standardized type of 
corrugation is that made up of a series of circular arcs of equal radii. 
See Fig. 6 • 42a. This has boon very widely used and considerable in¬ 
formation is available on its strength properties. One pitch/depth ratio 
has been established as standard; however, others have been used. 
The standard ratio is equal to 3}^, which gives rise to the following 
properties of the corrugation: 

P/D = pitch/depth ratio = 3l/$ 
1 = moment of inertia per unit width = 0.158£D2 in.4 per in. 
p = radius of gyration of cross section = 0.359D in. 

Kw = developed width/corrugated width = 1.228 
R = radius of the circular elements = 0.282P in. 

The geometrical properties for other pitch/depth ratios have been cal¬ 
culated and are given in graphical form in Fig. 6-43. 

Research on the failure of cylindrical shells under axial compression 
indicates that a first approximation to the failure stress of such cylinders 
can be obtained from an equation of the form (see section 8-1) 

°cr = KEt [6.71] 

Since this type of corrugation is made up of a series of cylindrical ele¬ 
ments, it seems reasonable to assume that the crushing stress of the sec¬ 
tion (failure stress of a specimen that is so short that column action is 
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negligible) could be given by an equation similar to equation 6*71. The 
theoretical treatment of the problem is as yet incomplete so the value of 
the constant K will be determined by a correlation of the available 
experimental information. 

The test data contained in references 6-24 to 6*27 inclusive have been 
studied, corrected to standard material properties by means of the 

/"WV' 'WV 
(d) fe) 

Fig. 6-42. Typical corrugation sections. 

methods suggested in reference 6-8, and are plotted in Fig. 6*44. Inas¬ 
much as it is very difficult to obtain uniform stress distribution on cor¬ 
rugated panels during static testing, it was felt that a conservative design 
curve would be a mean curve through the test points rather than a curve 
through the lowest of the test values. These faired mean curves have 
been replotted in Fig. 6*45, giving the allowable crushing strengths of 
the standard circular arc corrugation as a function of the R/t ratio and 
the material Sometimes values shown in Fig. 6*46 are higher than 
those given in ANC-5, and until the values shown in this figure are 
accepted, the design values shown in ANC-5 must be used, at least for 
commercial airplanes. 
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Since the subject of specified allowables has come up with regard to 
allowable design stresses on corrugations, it might be well to digress for 
a moment and clarify the whole problem of usable design allowables. 
The curves given in this text are those obtained by a very careful correla¬ 
tion of all of the test data that could be gathered by the authors. It is 
realized that considerable data has been missed in this survey; how¬ 
ever, it is felt that the test points presented give a representative picture 

Standard corrugation. 
P/O'-H, I'O.WtD*. P'0.359D 

K„*I228, R.0 282P 

_P_ pitch 

D depth 

Fig. 6*43. Properties of standard circular arc corrugations. 

of the latest test values available. On the other hand, certain govern¬ 
mental organizations have, in the interest of standardization, set up 
design rules and allowable design stresses for a number of the more 
important structural elements of an airplane. The design values speci¬ 
fied by the various purchasing or inspection agencies must, of course, be 
used in structural analyses unless it is desired to ask for waivers on the 
basis of new theoretical or experimental information. It should be 
remembered that to change specification handbooks such as ANC-5 and 
the Army Designer's Handbook requires considerable time and effort, 
and they therefore contain values which may be in error in the light of 
newer information. The purpose of the curves and the design values 
given in this text is not to contradict the design allowables set up by the 
ANC committees, but to attempt to present a correlation and study of 



262 ULTIMATE STRENGTH OF STIFFENED FLAT SHEET [6-4 

what may be newer material than that considered when ANC-5 was 
written. 

The crushing strength values given in Fig. 6 • 44 have all been deter¬ 
mined by taking the end point (L/p = 0) of a Johnson parabola repre- 
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senting the closest approximation to the experimental failing stresses 
plotted against L/p. In all cases investigated it was found that the use 
of a parabolic short column curve gave as good agreement between the 
Euler curve and an L/p value of approximately 20 as any other type of 
short column curve and was therefore used throughout the study. The 
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short column curve for any circular arc corrugation with a P/D ratio 
equal to 3J^ would then be determined by a Johnson parabola having a 
value of the crushing strength <rcc taken from Fig. 6-45 and an end 
fixity value determined by the particular structural design or by some 
specified maximum value. 
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0 
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Fig. 6*45. Design curves for acc. 

For comparison purposes only, the curve given by the equation 

(Ter = 0.14E — 

is also plotted in Fig. 6-45. The value of the constant equal to 0.14 
was picked so that the curve would go through the lower points of the 
17ST curve. Considering this curve, the form of the others seems 
reasonable since a deviation from any curve having the equation of the 
form of equation 6-71 would be expected at stress values above the 
proportional limit of the material, because the value of E is no longer 
constant. More deviation would be expected for materials having lower 
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yield point values, and this is borne out by the experimental curves 

shown. 
It is to be expected that the crushing strength values obtained by the 

use of Fig. 6*45 would not be correct for pitch/depth ratios other than 
3Unfortunately, however, there are very few data which would 
give the variation of the crushing strength as the P/D ratio changes. 
References 6*28 and 6*20 contain a limited number of tests on corru¬ 
gations with P/D ratios differing from the standard and Table 6*10 
shows the comparative crushing strength values. 

TABLE 6-10 

Material P/D R/T (Tec 
(lb./sq. in.) 

(Tec 
P/D - 3] 

(lb./sq. in.) 
Ratio Reference 

17ST 6.11 49.6 19,200 24,500 0.78 6.28 
24SRT-Alc 2.40 12.1 48,400 51,000 0.95 6.29 (575) 
24SRT-Alc 2.40 15.2 40,900 47,400 0 86 6.29 (575) 
24ST-Alc 2.40 12.1 34,300 40,300 0.85 6.29 (472) 
24SRT-A1C 2.40 15.2 42,700 47,400 0.90 6.29 (472) 
24SRT-Alc 2.40 12.1 51,300 51,000 1.01 6.29 (472) 

These points have been plotted in Fig. 6*46. The curve given is 
tentative and is given merely as a possible trend of this variation. 
That the curve is not universally true for all circular arc corrugations is 
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Fig. 6*46. Effect of P/D on aCc (dural). 

demonstrated by tests on stainless steel (which will be discussed later) 
showing a considerably different tendency. 

Data on circular arc stainless steel corrugations are meager and some¬ 
what inconclusive. The experimental test results of reference 6-6 have 
been plotted as column curves in Fig. 6-47, each curve corresponding 
to a constant value of R/t and P/D. The end points (L/p = 0) of 
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these curves have been rcplotted in Fig. 6 • 48, giving the variation of the 
crushing strength of such stainless steel corrugations as a function of the 
radius/thiekness and the pitch/depth ratios. These data indicate that 
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Fig. 6*47. Column curves for stainless corrugations. 

there is a tendency for the crushing strength to increase as the pitch/ 
depth ratio increases. That this is not a conclusive statement is indi¬ 
cated by the one point for a P/D ratio equal to 6-29 from reference 
6-28. Even though the material used for this test had a much lower 
ultimate strength than that used for the tests of reference 6-6, the dif¬ 
ference in ultimate strength could hardly account for the great reduc¬ 
tion indicated in the crushing strength. 
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The design curve of the Edw. G. Budd Manufacturing Company, Air¬ 
craft Division (reference 6-30, discussed in detail later), using the proper 
value of the ultimate tensile strength is shown dotted in Fig. 6-48, and, 
at least for this series of tests, indicates that it may give very non¬ 
conservative predicted crushing strengths. Since, as will be shown later, 
the Budd curve gives predicted crushing strengths which are in good 
agreement with test values for other corrugation shapes, the discrepancy 

R/t 
Fig. 6*48. Effect of P/D on acc (stainless steel). 

shown in Fig. 6-48 may be due to reasons other than an inherent fault 
in the design curve. These may be (1) because the flat region at the 
point of tangency of the circular arcs has been ignored, or (2) the possi¬ 
bility of poor alignment of the loaded edges of the specimens or of non¬ 
parallel motion of the testing machine heads during loading. 

The main conclusion that can be drawn from the above study of the 
existing data on the crushing strength of circular arc corrugations is that 
although considerable test data are available, the data are incomplete 
and at times contradictory. It is felt that using Fig. 6-45, for the 
crushing strength of standard corrugations with P/D = 3J^, is satis¬ 
factory, and that if this value is used in the Johnson parabolic equation 
with the proper end fixity coefficient, short column allowable stresses 
will be obtained which are suitable for design. Much additional data 
are needed to determine completely the effect of all the variables on the 
strength of such corrugations. 
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(b) Flat-Topped or Omega Corrugations. When circular arc corruga- 
gations are formed, there is nearly always a short length of straight sec¬ 
tion near the point of tangency of the two arcs. This is due to the 
natural springback of the material after the forming operation. This 

Lockheed Section LS 191 

(a) 

Lockheed Sections LS 194 
(b) (c) 

t 0.040 0.051 0.064 
r 0.330 0.354 0.310 
R U01 1.085 1.060 

Lockheed Section LS 193 
(d) 

t 0.025 0.032 0.040 0.051 0.064 
fyf 36.8 28.6 22.6 11.5 /3.8 

Douglas Medium Series 

Fig. 649. Typical omega corrugations. < 

flat section has a lower buckling stress than the circular arc portion and 
failure usually starts in this region and proceeds into the curved parts 
of the corrugation. In order to eliminate this feature, and also to 
attempt to use more efficiently the material in the corrugation, corruga¬ 
tions having the forms shown in Fig. 6 -49 have recently been the subject 
of considerable research. This type of corrugation primarily consists of 
a large semicircular portion connected by a flat region which is just long 
enough to give room for riveting the corrugation to sheet or structure. 
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Since the ends of the semicircular section are immediately adjacent to a 
region which has undergone severe forming, these ends are well sup¬ 
ported, and the corrugation should develop the full strength of the 
curved section. 

Figure 6*50 shows the results of tests on a number of corrugations of 
this type, giving the crushing strength as a function of the R/t ratio. 
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All tests shown were made on 24SRT Alclad material, and the test 
points have been corrected for the minimum material properties using 
the method of reference 6*8. No difference in crushing strengths could 
be distinguished between the various types of cross sections shown on 
Fig. 6-49. The complete test reports can be found in references 6*31 
to 6-34, inclusive, and reference 6-37. The value of <rCe plotted was 
always taken as the end point of the Johnson parabola which gave the 
closest approximation to the test points. 

(c) Corrugations of Flat or Composite Sections. A number of cor¬ 
rugation shapes consisting of flat elements have been tried as flat sheet 
reinforcement. A typical shape of such a corrugation in dural is shown 
in Fig. 6-51 along with its appropriate column curve as determined by 
test (reference 6-35). This curve is for the material as tested and has 
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L/p 

Flot pitch ratio w/f 

Fig. 6*62. Design curve for flat elements in stainless steel corrugations. 
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not been reduced for minimum material properties. Although such a 
section alone shows a relatively high crushing strength, when attached 
to sheet, the sheet buckling (particularly sheet buckling between rivets) 

0 10 70 30 40 50 60 70 80 

R/t 
Fia. 6-53. Design curve for circular elements in stainless steel corrugations. 

has a tendency to precipitate failure in the flat sides of the corrugation. 
This will bo shown in the discussion of corrugation plus sheet assemblies. 

Stainless steel lends itself very well to corrugation design. The Edw. 
G. Budd Manufacturing Company, Aircraft Division (reference 6*30), 

has developed design curves for 
stainless steel shapes from which 
the crippling stress of any formed 
shape of stainless steel may be de¬ 
termined. These curves are shown 
in Figs. 6 • 52 and 6 • 53. The method 
of using these curves will be illus¬ 
trated by an example. Coasider 

the stiffener shape shown in Fig. 6-54 made of stainless steel with an 
ultimate tensile strength of 185,000 lb. per sq. in. Then for 

0.0/0 

Q./Qr- 

Fig. 6 *54. 

(1) w/t - 0.20/0.010 - 20 
<rCCl = 74,000 lb. per sq. in. 
<rcc/<ruts - 0.40 (Fig. 6-52) 

(2) R/t = 0.10/0.010 * 10 

qcc% = 166,500 lb. per sq. in. 
(rcc/*ut8 = 0.90 (Fig. 6*53) 



THE USE OF CORRUGATED SHEET 271 6-4] 

(3) w/t - 0.50/0.010 = 50 

o'cca = 59,750 lb. per sq. in. 

Qcclvutt = 0.322 

(4) R/t = 0.50/0.010 = 50 
<rCC4 = 94,000 lb. per sq. in. 

^Cc/^UtB ^ 0.508 

In the use of these curves, it is assumed that each section will carry a 
load given by the crushing strength shown in Figs. 6 *52 or 6 *53 times 
the area of the section, except that the section will fail when the weakest 
curved portion exceeds its crushing strength. On this basis the crushing 
load of the section shown would be equal to the sum of the loads shown 
below. 

(1) PCCl = 74,000^! 

(2) PCCi = 94,000 A2 since the weakest curved section, (4), has 
a crushing strength of this value. 

(3) PCC3 = 59,570^3 

(4) Pec, = 94,000,4 4 
and 

P cc — Pccx + Pcc2 + P ccj + P cc, 

<*cc =: Pcc!A.total 

A check of this method against a number of experimental tests on 
various shapes of stainless steel corrugations indicates good agreement 
between the predicted and test values. The method has frankly no 
theoretical basis, but as it seems to agree with actual test values, it is 
suitable for design purposes unless very unusual shapes are used for the 
corrugations. 

(d) Corrugations Attached to Flat Sheet—General Analysis Method. 
Combinations of corrugation plus flat sheet will be analyzed by the same 
method as that used for flat sheet plus stiffeners, i.e., by the determina¬ 
tion of the amount of sheet acting with the corrugation as an effective 
column. The pitch of the corrugation corresponds to the width of un¬ 
supported sheet which in turn will determine the buckling stress of the 
sheet. The appropriate column stress for the corrugation alone will, in 
general, give the value of a8e, the sheet edge stress. With proper con¬ 
sideration of the effect of rivet spacing, material properties, etc., an 
effective width of sheet can be calculated and the combined cross section 
treated as a column. The examples which follow will illustrate the 
method. 
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(e) Flat Sheet with Circular Arc Corrugations. Reference 6-26 gives 
data on a number of tests using the standard circular arc corrugation 
attached to flat sheet. Consider a test panel with the following speci¬ 
fications (specimen 26, Table 6 11): 

Panel 11.38 in. wide and 8 in. long tested in flat end compression. 
Corrugation—pitch = 2.69 in., depth = 0.75 in., radius = 0.79 in., 

thickness = 0.0255 in., R/t = 31.0, material = 24SRT Ale., area = 
0.3483 sq. in. 

Sheet—thickness = 0.0235 in., material = 24SRT Ale. 
Crushing strength of the corrugation from Fig. 6*45—<rcc = 33,400 

lb. per sq. in. 
It is assumed that the short column failing stress for a length of 8 in. is 

equal to the crushing strength of the section. It is also to be noted here 
that a change in the corrugation thickness or in the amount of effective 
sheet acting with it. has so little effect on the radius of gyration of the 
cross section that it can be neglected. 

Critical buckling stress of the sheet is 

(7t.r = 3.62 X 10.3 X 10° X (0.0235/2.69)2 = 2850 lb. per sq. in. 

Since exact values of the material yield point are not given it will be 
assumed that acyp = 46,000 lb. per sq. in. Then 

^sc/^cr = &cc/&cr ^ H»7 ^scj^cyp == 0.73 

and from Fig. 6*2 

wjb = 0.128 and we — 0.345 in. 

There are four corrugations in the panel, therefore the sheet area is 

A*h = 8 X 0.345 X 0.0235 = 0.0648 sq. in. 

and the total area is 

A total “ Ash A cor == 0.0648 + 0.3483 = 0.4131 sq. in. 

This is acting under the stress of 33,400 lb. per sq. in. giving a pre¬ 
dicted load that the panel should carry of 

Pprcd = 0.4131 X 33,400 - 13,800 lb. 

as compared to the experimentally determined failing load of 

Pexp - 14,575 lb. 

Table 6*11 shows the comparison for the other panels tested in this 
series. It will be noted that except for those panels which failed due to 
rivet failure, the method generally gives conservative estimates of the 
load that can be carried. The degree of conservatism is rather large, 
but it is felt that this is probably due to variations in actual material 
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properties of the specimens tested. For example, the range of yield 
points of the material was from 46,670 to 52,830 lb. per sq. in. (specific 
values for each panel were not taken) which would account for a con¬ 
siderable increase in load which could be carried by some of the test 
panels. 

The same analysis method is used for a series of stainless steel speci¬ 
mens made up of circular arc corrugations spot-welded to flat stainless 
sheet. Data for these specimens are given in reference 6-28, and the 
comparison between calculated and test values of the yield point and 
modulus were used throughout the calculations. 

(/) Flat Sheet Reinforced with Flat Top Corrugations. Table 6 13 
shows the agreement between calculated and experimental values of the 
effective width, column stress, and ultimate load for a series of panels 

TABLE 6 13 

Spec. 
No. 

L 

(in.) 
tc 

(in.) 
u 

(in.) 

Predicted Values Test, Values 

We 
(in.) 

Oco 

(lb./sq. in.) 
F*CO 

(lb.) 
We 

(in.) 
°co 

(lb./sq. in.) 
PCO 

(lb.) 

220\A 12 0.032 0.040 0.420 41,300 28,050 0.350 43,350 28,500 
2201B 12 0.032 0.040 0.420 41,300 28,050 0.303 45,700 29,300 
2202A 12 0.032 0.051 0.570 41,300 32,900 0.595 41,900 33,750 
2202B 12 0.032 0.051 0.570 41,300 32,900 0.538 44,350 34,650 
2204B 12 0.064 0.051 0.477 49,330 63,200 0.263 48,300 57,600 
2212A 18 0.032 0.040 0.440 39,360 26,250 0.460 37,320 25,100 
2212 B 18 0.032 0.040 0.440 39,360 26,250 0.363 43,300 27,800 
2217 A 24 0.032 0.040 0.475 36,500 24,750 0.478 40,300 27,350 
2221B 24 0.032 0.040 0.475 36,500 24,750 0.445 40,700 27,200 
2218 A 24 0.032 0.051 0.G45 36,500 29,200 0.690 31,700 38,800 
2218 B 24 0.032 0.051 0.645 36,500 29,200 0.665 38,600 31,150 
2224A 24 0.064 0.051 0.555 42,370 55,000 0.441 41,350 52,300 
2224B 24 0.064 0.051 0.555 42,370 55,000 0.500 41,350 53,350 
2225A 12 0.064 0.051 0.477 49,330 63,200 0.255 50,600 55,100 
2225B 12 0.064 0.051 0.477 49,330 63,200 0.735 48,100 

t. 

66,600 

Both predicted and test values corrected to ercyp = 46,000 lb. per sq. in. 

tc * corrugation thickness. 
tg « sheet thickness. 

«rco -» critical column stress of corrugation plus the effective width of sheet. 

Pco ** critical column load corresponding to vco- 

consisting of flat-top corrugations (Fig. 6 • 49a) attached to flat sheet. 
Data for this table were taken from reference 6-31. For this series of 
tests actual stresses in the corrugations were measured, making it 
possible to determine the load carried by the sheet and from this, the 
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experimental value of the effective width. Stress-strain curves were also 
taken for all specimens making possible a correction for material proper¬ 
ties. The calculation for specimen 2201A will be carried out in detail to 
show the method. 

Corrugation—pitch = 2)^ in., t — 0.032 in., R/t = 31.3, material = 
24SRT Ale., area = 0.545 sq. in., <rcc = 43,000 lb. per sq. in. from Fig. 
6-50. 

Specimen is 12 in. long corresponding to an L/p = 33.5 and, using 
an end fixity coefficient of 3.0 and acc as given above in the parabolic 
column equation, we get aco = 41,300 lb. per sq. in. 

The cover sheet is 0.040 in. thick, 24ST Ale. The buckling stress for 

6 = P = 2Yi m• is ac.r = 9540 lb. per sq. in. 
The rivet spacing on these specimens was 1.0 in. and, from Fig. 6*23, 

the sheet would buckle between rivets at a stress of 

arb = 31,500 lb. per sq. in. (for ayp = 37,000 lb. per sq. in.) 

The effective width ratio at this stress is obtained from Fig. 6-2, in 
which 

G’se/^’cr ^ &rb/&cr ^ 3.30 Grb/^yp ^ 0.85 (^e/fr)(7r5 5=5 0.22 

The effective width ratio at the critical column stress, vco, is 

(we/b)aco = 0.222 X 31,500/41,300 = 0.168 

giving an effective width of 

we = 0.168 X 2.5 * 0.420 in. 

This gives an effective sheet area (4 corrugations = 8 effective widths) 
of 

A8h = 8 X 0.420 X 0.040 = 0.134 sq. in. 

making a total area of 

A total = A Cor + Ash = 0.545 + 0.134 = 0.679 sq. in. 

which should support a load of 

P pred = <rco X A total « 41,300 X 0.679 = 28,050 lb. 

The panel actually tested carried a load of 30,600 lb. with a stress 
in the corrugation at that load of 48,300 lb. per sq. in. The material 
in the corrugation has a compressive yield point of 52,600 lb. per sq. in. 
with a minimum specified of 46,000 lb, per sq. in. Using Fig. 6*21 

Gtest/&cyp ^ 0.92 crcl/p/46,000 855 1.14 K *= 0.898 
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giving a corrected value of the allowable corrugation stress of 

<rCOteat = 48,300 X 0.898 = 43,350 lb. per sq. in. 

The measured effective width 

-latest = (Pec — (rcoAcoJ/Zvcot (these values from test data) == 0.350 in. 

It is felt that the agreement shown in Table 6*13 is satisfactory, the 
variation between the predicted and test values being of the same order 
as the variation between identical specimens and that the method is satis¬ 
factory for use with flat-top or omega corrugations. 

A number of other corrugation-sheet combinations from references 
6-31 to 6*34 inclusive have been checked by this method and show 
agreement as good as or better than that shown in Table 6*13. It is 
therefore felt that this method is suitable for predicting the allowable 
loads on such stiffened sheets. In general it will be found that the cal¬ 
culated effective widths at low corrugation stresses will be smaller than 
those measured in tests. This is probably due to the not inconsiderable 
support given to the skin by the rivets and the flat attachment area of 
these corrugations. However, at failure the calculated and measured 
effective widths are in reasonably good agreement, and the method is 
therefore satisfactory for design purposes. 

(g) Flat and Composite Section Corrugations Plus Sheet. Data from 
reference 6-35, for the corrugation shown in Fig. 6-51 attached to flat 
sheet, have been checked by the effective width method given above. 
The results are indicated in Table 6 • 14. Here, for the first time, we see 
non-conservative predicted loads for the combination, but it is felt that 
this is not a fault of the method but of the corrugation. Such sections 
seem to be very sensitive to the buckling of the sheet to which they are 
attached, and particularly to the buckling of the sheet between rivets. 
If the sheet is very light, it will have little effect on the corrugation; but 
if it is heavy (thickness equal to or greater than that of the corrugation), 
the formation of waves in the flat sheet will tend to distort the flat sides 
of the corrugation and precipitate failure at loads below those predicted 
by the effective column curves. That this is borne out t)y the tests is 
indicated by the fact that for the 0.032 sheet attached to these 0.040 
corrugations, the test load averaged 7.6 per cent lower than the predicted 
loads; for the 0.025 sheet it was 2.4 per cent lower; and for the 0.020 sheet 
it was only 0.9 per cent lower than the test loads. This indicates that 
the heavier sheet tended to reduce the predicted column load of the sec¬ 
tion, probably by deforming the flat sides of the section and causing 
them to buckle at loads below their normal critical buckling loads. 
Where sheet buckling between rivets was delayed by smaller rivet spac- 
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ing, as in specimen 14, the predicted and test loads were almost exactly 
alike. Although this one specimen docs not give conclusive evidence 
that smaller rivet spacing would solve the problem, it is entirely possible 
that it would aid in bringing up the allowable strength of such corruga¬ 
tion-sheet combinations. 

In stainless steel, consider the corrugation-sheet, combination shown 
in Fig. 6*55, taken from reference 6*36. It can be shown that the con¬ 

trolling section for the corrugation is the curved portion having a 
measured R/t ratio of 29.0. For this section 

and 

&CC 

Guts 

0.671 

acc = 185,000 X 0.671 = 124,100 lb. per sq. in. 

The area of the corrugation is 0.7849 sq. in., which gives a crushing 
load for the corrugation of 

PCCc « 124,100 X 0.7849 - 97,400 lb. 

For the sheet, the following breakdown will hold: 

No. 
Elements 

w w/t Vcc/GutS 
| 

* 

GCC P 

2 0.26 31.25 0.512 94,600/2 190 
2 1.40 0.0914 16,900 380 
4 1.75 218.8 0.0732 13,500 755 
3 1.50 187.5 0.0854 15,800 565 

Crushing strength of sheet 1890 lb. 
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Total crushing strength of the section is then 

Pcc = 97,400 + 1890 = 99,290 lb. 

with an average crushing stress of 

99,290 
One — 

0.7849 + 0.1284 
= 99,290/0.9033 = 108,800 lb. per sq. in. 

The section tested had an L/\/Cp value of 20 (assuming C — 2.0). 
The column stress for this L/VCp value, obtained from a parabolic 
short column equation, is 

<rc„ = 108,800 
108~80Q2 2Q2 

4tt2 X 2.6 X 107 

= 104,190 lb. per sq. in. 

leading to a predicted load for a panel of this length of 

Pco = 104,190 X 0.9033 = 94,200 lb. 

The test panel carried a load of 93,100 lb., indicating an error of 1.1 
per cent. Other tests of the same character gave similar results. 

Tests have been made by the Edw. G. Budd Manufacturing Company, 
Aircraft Division, on a number of different stiffener and corrugation 
shapes formed from stainless steel. Flat section, curved section, and 
composite corrugations have been tested and, in nearly all cases, the 
failing loads predicted through the use of Figs. 6*52 and 6-53 have 
agreed reasonably well with the test-failing loads. For such sections, 
the use of nominal sheet thickness and other dimensions of the corruga¬ 
tion is not advised, but rather an attempt should be made to obtain 
these values by direct measurement of the cross section. This is due to 
the fact that the spring-back after forming may lead to cross-section 
radii which are considerably different from those specified in the draw¬ 
ing, which, in turn, lead to incorrect values of crcc/<rw*fi for these elements. 
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CHAPTER 7 

PLATES UNDER NORMAL PRESSURE 

7-1. Unstiffened Flat Panels 

The problem of determining the deflections and stresses of plates 

subjected to pressures normal to the plane of the plate has concerned 
structural designers for a number of years. In general it has been 

possible to classify the plate into one of two limiting classes. The first 

class is that of thick plates, in which the loads are almost entirely 

resisted by bending moments in¬ 
duced in the elements of the plate 

and in which the deflections are small 

compared to the thickness of the 
plate. The second classification is 

that of the very thin plate in which 

it can be assumed that the plate 

elements have no bending stiffness 
and in which the deflection is gen¬ 

erally large compared to the plate 

thickness. Since the analysis of 

this second class is based on what 
is known as a membrane theory, 

such plates will be called membranes 

in the discussion which follows. 

The plates which are used in air¬ 

craft structures usually f all in a range 

which is between the two limits mentioned above, that is,’ the deflections 

and stresses cannot be calculated entirely by a consideration of either 

the thick plate bending theory or the membrane theory alone, but 
both must be considered together. This regime will be called the thin 

plate regime. The theoretical treatment of these three regimes will 

be discussed as parts (a), (b), and (c), respectively, of this section. 

Unfortunately very few experimental data are available to check the 

theoretical results; however, wherever possible, an attempt will be 

made to give the approximate accuracy which can be expected from each 

of the theoretical treatments. 

Fig. 7-1. Axis notation. 
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(a) Thick Plate Analysis. A very complete discussion of the theoret¬ 
ical treatment of thick plates under various loading conditions and with 
different forms of support for the plate edges is given in reference 7-1. 
In every case, the analysis has resulted in equations similar to those 
given below for the deflections, moments, and shearing forces of uni¬ 
formly loaded plates as a function of the applied loading. The assumed 
reference axes are as shown in Fig. 7 1. For a thick plate loaded with 
a uniformly distributed lateral pressure the maximum deflection is 
given by 

pb4 
Wtnax — a ^3 [7-1] 

b a 

x ~ 2’ V = 2 

The maximum moments in planes parallel to XZ- 
respectively, are 

- M>! 

and FZ-axes, 

[7-2] 

b a 

y-~2 

[7-3] 

b a 

x ~ 2’ V = 2 

and the maximum shearing forces are 

&maz = yPb [7-4] 

b a 

X ~ 2’ y = 2 

Qvma* = 'll Pb [7-5] 

b 
x = 2’ y = a 

The maximum vertical reactive forces along the sides x 
sides y = 0, a, respectively, are 

= 0, b and the 

F*ma% = SPb [7-6] 

b a 

2 y 2 

F»ma* " Pb [7-7] 

a 
x - 2’ y " a 
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and the value of the vertical reaction at the comer of the plate is 

R = wb2 [7*8] 

where p = the uniformly distributed load on the plate in pounds per 
square inch, 

a = the plate length in the F-dircction in inches, 
b — the plate width in the X-dircction in inches, 
E = Young’s modulus in pounds per square inch, 

which values, when placed in equations 7*1 to 7*8 inclusive, yield 
deflections in inches, bending moments in inch pounds per inch, 

2 
% 

Fig. 7*2. Coefficients for uniformly loaded simply supported plate. 

shears in pounds per inch, and comer reactions in pounds. Figure 7 • 2 
gives the values for the coefficients as functions of the a/b ratio of the 
plate for all four edges simply supported. Figure 7-3 gives the coeffi¬ 
cients for the deflections and moments for a uniformly loaded plate 
having all four edges built in (the data for this figure were taken from 
reference 7-2). Figure 7-4 contains similar information for a plate 
with four built-in edges and loaded with a concentrated load at the 
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center. Reference 7 • 1 contains numerous other similar data for plates 
having various edge conditions and types of load distributions. 

From the bending moment equations, equations 7-2, 7-3, and the 
other equations on Figs. 7*3 and 7-4, it is possible to determine the 

Fig. 7 * 3. Coefficients for plate having built-in edges and uniformly loaded. 

bending stresses from the usual beam equation, a — Me/1. If a unit 
strip is considered parallel to the X-axis, the moment of inertia is given by 

thus 
Mxc 6 Mx 

^ = ]-w lyy v 

and similarly 
my 
e 

[7-9] 

<Ty - [7-10] 
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The value of the shearing stresses can likewise be determined from the 
equations of shearing force, equations 7-4 and 7*5. 

In the derivation of the above equations, it has been assumed that 
the center plane of the plate is not stressed and that the energy of the 
external forces is entirely balanced by the bending energies of the 
deflected plate. In order to meet the assumptions made in this anal- 

-0.12 

-0.13 

-0.14 

(3 

-0.15 

-0.16 

-0.17 _ _ __-___ 
1.0 J.2 1.4 1.6 1.8 2.0 

% 

iM-/3P 

Fig. 7 • 4. Coefficients for plate having built-in edges and a concentrated load at the 
center. 

ysis, it is necessary that the deflections of the plate be small compared 
to the thickness. One author (see reference 7-3) has set the allowable 
limit of the deflections for validity of the thick plate equations as 
one-twentieth of the plate thickness although for mdst engineering 
problems, the calculated deflections, moments, and stresses are prob¬ 
ably sufficiently accurate even though the deflections may reach con¬ 
siderably more than the above figure. The controlling element is 
whether or not the deflected middle surface is a developable surface 
or not. If developable, it is only necessary that the deflections be small 
compared to the width or length of the plate; if not developable, the 
deflection should be small compared to the thickness. 

Limited test data indicate that the thick plate equations as given 
by Timoshenko (reference 7-1) give reasonable values for the heavier 
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plates used in aircraft. The item which is chiefly in error is that of 
the deflection at low loads, since it is very difficult to obtain initially 
flat plates as structural elements. Therefore, low loads have a tendency 
to straighten out any initial waviness in the plate causing considerable 
error in the measured deflections. Measured stresses appear to be in 
reasonably good agreement with those calculated, at least up to the 
proportional limit of the materials, and the equations would not be 
expected to hold beyond that stress value. 

(6) Membrane Analysis. For plates which are so thin that they 
can be considered to have no bending rigidity, the problem is one of 
determining the deflection and stresses in a flexible membrane under 
pressure forces. The forces resisting the pressures will be forces in the 
plane of the membrane and uniformly distributed across its thickness. 

The problem of the stresses and deflections in membranes has been 
treated by Hencky and Foppl (references 7-4 and 7*5) and is sum¬ 
marized by Heubert and Sommer in reference 7*6. There is also a 
discussion of their work in reference 7-1. Since the equations of Foppl 
seem to give better agreement with the limited test values over a wider 
range of pressure and also, since they give larger and therefore more 
conservative values, it is suggested that they be used for design of such 
membranes until more accurate test data are available. The equations 
as derived by Foppl for a rectangular membrane under a uniformly 
distributed pressure, p, are as follows: 

For the deflection in the center of the panel 

3 Ipa 
w = niciyjJt 

a b 

x ~ 2’ V = 2 

and for the stress in the center of the panel 

[7-11] 

[7-12] 

[7-13] 
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For the stresses in the center of the short sides of the rectangle, the fol¬ 
lowing equations hold: _ 

3 
<7* = \ v4 [7-14] 

b 
y =0, a 

X = 2’ 

II 1 2 771 
P2E?- [7-15] 

b 
y = 0, a 

X ~ 2’ 

and for those in the center of the long sides, 

<rx = n6 yj 
1 2rfl2 

"L fi 
[7-16] 

x = 0, 5; 
a 

V = 2 

GV = n7 yj 
1 
P E? [7-17] 

x = 0, 6; 
a 

V = 2 

where the values of nj, n2 • • • n7 are coefficients which are functions of 
the a/b ratio as given in Fig. 7-5 and the other terms are as previously 
defined. 

The only available experimental information is that plotted in Fig. 
7*6, which was taken from reference 7 * 6. The test specimen used was 
an aluminum-alloy plate 23.6 by 23.6 in. by 0.055 in. thick. The 
Young’s modulus of the material was 10.5 X 106 lb. per sq. in. and the 
edges of the plate were clamped. The plate was subjected to a uniform 
pressure by hydraulic means. The experimental value for the deflection 
as a function of the pressure is shown in Fig. 7 • 6 as compared with the 
theoretical curves of Foppl and Hencky. This figure indicates that, up 
to a pressure of approximately 30 lb. per sq. in. the deflection given by 
equation 7-11 is conservative, being very conservative at very low 
pressures. This effect would be expected, however, since the plate had 
all four edges clamped and a certain resistance to deflection is introduced 
by the small but finite bending rigidity of the plate. It is further inter- 
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esting to note that the theoretical curve of Foppl does not become non¬ 
conservative until a pressure which gives a stress of approximately 
31,000 lb. per sq. in. in the sheet, which is above the proportional limit 
of the material. This is also shown by the curve in Fig. 7*6 giving the 
permanent strain as a function of the pressure. 

It is obvious from the results of the one test shown above that for 
reasonable pressures such as those which are being considered for 

% 
Fig. 7-5. Coefficients for uniformly loaded membrane. 

pressurized cabins (5 to 15 lb. per sq. in.) more data are needed as 
differences of 100 per cent in deflections may be expected between the 
theoretical and the experimental values. There is also a complete 
lack of information regarding the effect of plate-stiffening members for 
either the thick plate or the membrane analysis. 

(c) Thiu Plate Analysis. When discussing the problems of the 
thin plate it is first necessary to determine the region covered by this 
classification. For purposes of analysis it will be assumed that the 
thick plate equations (equations 7 • 1 to 7 *8, etc.) hold for plate deflec¬ 
tions equal to one-fifth of the plate thickness. This is four times the 
value assumed by Moness (references 7-3 and 7*7); however, limited 
tests indicate that the thick plate equations will probably hold satis¬ 
factorily up to deflections of this order of magnitude. The membrane 
equations, 7*11 to 7 17 inclusive, will be assumed to be valid when 
the maximum deflection is equal to or greater than ten times the thick* 
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ness of the plate. Putting these limiting values into the appropriate 
equations yields the curves shown in Fig. 7*7. For b/t ratios and pres¬ 
sures, p, which give points below the thick plate curves, the thick plate 

equations will apply. For plate dimensions and pressures giving points 
above the appropriate membrane curve, the membrane equations will 
apply. Between these two regimes is the regime of the thin plates, 
which unfortunately includes most of the plate dimensions and pressures 
encountered in aircraft design. 
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Moness has suggested deflection and maximum stress curves for the 
region between the thick plate and membrane regime. These curves, 
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Fig. 7-7. Limiting regions for membrane and thick plate theories. 

which are shown in Figs. 7-8 to 7-10 inclusive, are to be used merely 
to determine trends since they have not been checked experimentally. 
It is suggested that for any particular structural problem a limited 
number of tests be made on panels under pressure to determine the 
stress and deflection level and that the curves be used to determine 
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the effect of variations in the parameters of the problem. The edge 
condition coefficient, which has been assumed in the derivation of 

Figs. 7-8 to 7*10, is an average between that for a simply supported 
plate and that for a plate with clamped edges. 

Figure 7*8 gives the deflection of thin plates as a function of the a/b 
and the b/t ratios of the plate and the applied pressure. To determine 
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To find max. stress, <5mqj,, in rectangular 
dural sheet under uniform load 
p Ib./sg. in. 

T Find ratio of deflection to thickness%, 
from fig. 7.8 

2* At this 7f,go up to the given % curve, 
then to the right to given b/2t} read 

on slant lines. 
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Fia. 7-9. Chart for determining maximum stress parallel to short sides. 
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2t 

I 2 3 4 5 6 7 8910 15 20 0.4 0.6 0.8 U) 
w. 
t 

Fig. 7*10. Chart for determining maximum stress parallel to long sides. 
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the stresses one must first find the w/t ratio from Fig. 7-8 and then enter 
either Fig. 7*9 or 7* 10 depending upon whether it is desired to find the 
maximum stress parallel to the short sides, or that parallel to the long 
sides of the plate. In either, the maximum stress occurs in the center of 
the plate and is a tensile stress made up of a combination of the mem¬ 
brane tensile stress and that due to bending. The transverse stress (that 
parallel to the short side) is always higher than the longitudinal stress; 
however, the longitudinal stresses may become important if they are 
added to stresses arising from loading conditions other than normal 
pressure. 

The designer is again reminded that these curves are as yet not 
checked by experimental evidence and therefore should be used to 
indicate trends rather than to give exact deflection and stress values. 
It must also be realized that the equations developed in this section 
apply only for plate-edge supports which are infinitely rigid in a direc¬ 
tion perpendicular to the plane of the plate. The effect of elastically 
supported plate edges will be discussed in the next section. 

7-2. Stiffened Flat Plates Subjected to Normal Pressure 

For large flat areas subjected to normal pressures, it is obvious that 
some steps must be taken to reduce the deflections of and the stresses in 

such surfaces. Increasing the plate 
thickness may lead to prohibitive 
weights, therefore the designer would 
like to know the effect of adding 
stiffening members to the surface. 
We shall first consider a square panel, 
Fig. 7*11, which is divided up into 
square panels by stringers equally 
spaced in the two directions. It will 
be assumed that both pairs of 
stringers are the same size and are 
continuous. This last assumption 
makes it necessary either to put the 
two sets of stringers on opposite sides 
of the sheet or to provide adequate 
clips to carry the stringer stresses 
across any joints which may be 
necessary. 

It is assumed in the following 

Fig. 7-11. Notation for stiffened 
square panels. 

discussion (which is due to Moness, reference 7*7) that the outer bound¬ 
aries, x = 0, 6, and y = 0, b, are infinitely rigid as compared to the 
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stringers and plate. It can be shown that the deflection of the stringers 
within one span is small compared with the maximum stringer deflection 
referred to the boundaries and for purposes of analyzing the sheet one 
can therefore analyze each panel individually as though the stringer in 
that span were rigid. Thus, for example, the total deflection of the center 
of panel A in Fig. 7*11 would be equal to the sheet deflection calculated 
as though the boundaries of that panel were rigid, plus the deflection of 
the stringers forming the panel boundaries. 

The load on each stringer is then the vertical component, Tv, of the 
tension in the sheet, T} Fig. 7*12. Since, for membranes, and also 
approximately for thin plates, this tension is constant, the value of Tv 

Fig. 7-12. Loads on stiffeners. 

is a function of the slope of the sheet from point to point along the 
stiffener. Thus, it is a maximum at the center of each span and a mini¬ 
mum at the points between the two sets of stringers. Moness assumes a 
sine wave loading distribution for the stringers and the equations and 
curves wThich follow are based on his analysis. 

By using the above assumptions, the maximum stringer deflection 
in a square plate broken up into square panels is given by the equation 

^max — 
5 pb5 

768 NEI 
[7-18] 

where N = the number of bays along each side, 
p = the applied pressure, pounds per square inch, 
I = moment of inertia of the stringers, inches.4 

For aluminum alloys, this reduces to 

7 = 6.31X10-10|^(-A_) [7-19] 
IV Ywmax/ 

& 

which equation is plotted in Figs. 7 • 13 and 7 • 14. 
Although equation 7-19 above allows one to choose a stringer that 

will permit any predetermined value of the maximum deflection, it does 
not say that the stringer will be strong enough to carry the load imposed 
upon it. The following equation gives the necessary section modulus for 
the stringer such that the stress will remain at a given value of trnl]liw. 

r_lp b3 

C 16 N ffaiiow 

This equation has been plotted in Figs. 7 • 15 and 7 • 16. 

[7-20] 
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The above equations have been based on the assumption that the 
stringers were pin-ended at the boundaries. If they are completely 
fixed, the following values hold: 

For deflection 7fixed = } 7pinncd 

For stress (^) = |(|) 
' fixed & ' pinned 

[7-21] 

[7-22] 

Fio. 7-13. Stiffener moment of inertia—square panels—stiffeners simply supported— 
deflection limiting. 

In a practical design, some factor between these two values will 
probably be more accurate than either. The exact choice of the factor 
must lie with the designers’ analysis of each specific structure. Actually, 
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the values of the moment of inertia used above should include any 
sheet which is rigidly attached to and which would act with any stringer 

subjected to bending loads. 

b-in. 

Fig. 7*14. Expanded scale for Fig. 7*13. 

The next problem to be considered is that of reinforcing rectangular 
panels, Fig. 7 • 17. If it is assumed that the small panels have the same 
length to width ratio as the main panel, i.e., a/b = La/Lbt then, if no 
support is to be given the long stringers by the short ones, as was true 
for the square panels discussed above, the short stringers must be very 
much lighter than the long stringers. This becomes obvious when one 
remembers that the deflection of such a beam is proportional to the fourth 
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power of the beam length and also, that the loading on the short beam 
is smaller because the sheet slope is smaller on the short stringers than 
it is on the long stringers. For example, if La/Lb = 2 = a/b, then to 

0 10 20 30 40 50 60 
b-in 

Fio. 7 • 15. Stiffener moment of inertia. Strength limiting. 

have the short stringers deflect as far under load as the long stringers, 
it can be shown that It is of the order of 10 per cent of Ia. 

where Ia = moment of inertia of long stringers, and 
lb = moment of inertia of short stringers. 

For the above reason, a different method of analysis is used for the 
rectangular panels. In this method, it is assumed, that the short 
stringers are approximately the same size as the long stringers and can 
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therefore be considered to be infinitely rigid as compared with the long 
stringers. Under this assumption, the deflection of the panel will be 
only that coming from the deflection of the long stringers between the 

0 

0.005 

0.010 

0.015 

0.020 
c 
i 

0.025 

0.030 

ft 
0.035 

0.040 

0045 
0 5 10 15 20 

b - in < 

Fig. 7*16. Expanded scale for Fig. 7 • 15. 

short stringers plus the sheet deflection in each bay. If, then, we have 
the original large panel divided into a number of equal-sized bays, it is 
necessary only to analyze one bay since all others will be like it, except 
those bays having one edge on the outer boundary, which bays will 
have less total deflection and, in general, less stress. 

The same assumptions as to loading are made for the rectangular 
system as was done for the square system. Thus, a long stringer is 
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analyzed as though it were a beam on a number of supports (the sup¬ 
ports being the short stringers) and loaded with a sinusoidal load 
coming from the vertical component of the sheet tension. Carrying 
through the analysis, Moness arrives at an equation for the moment 

of inertia of the long stringers, based on allowable deflections, of the 

following form 
‘ ' \3 

T 1 4 « 

Ia 2v3EaPwst 

(^-0.75)(—) 
\b / M^total' 

~1+W2-0.75)(^Y] 
b Xb / \«)total/ J 

[7-23] 

where w,t — maximum deflection of the long stringer between the 

short stringer, 
wth = sheet deflection measured from lowest point of long 

stringer, 

Wtotai = + W't (see Fig. 7-18.) 

To simplify calculations, equation 7 • 23 is rewritten as 

la - faK [7-23a] 
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where 
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4 "2SEa‘V 
[7-24] 

1+4 

(•„,)(«. Y 
\b_/ Vftotal/ 

4r(S-o-78)(—T 6 \6 / Wtotal/ J 

[7-25] 

Equations 7.24 and 7-25 are plotted in Figs. 7 19 and 7*20, respec¬ 
tively. 

In the above calculation, the fact that the short stringers do have some 
slight deflection is taken into account by first calculating the long 

Fig. 7 18. Deflection notation. 

stringer deflection on the basis of a pin-ended beam and then dividing 
the resultant moment of inertia by four. If the long stringer'were 
truly fixed at the short stringer, the divisor would be five and the addi¬ 
tional 20 per cent increase in Ia allows for the effect of short stringer 
deflection. Equation 7*23 above contains the proper factor, i.e., one- 
fourth. 

The long stringers must, of course, be checked for stress. When the 
relationship between the section modulus, l'a/c, and the stringer proper¬ 
ties is established, the following equation results. 

4 _ . *2 E w^t _ f „ 

C lwailow ® 
[7-26] 

where K\ = 1/c. Figure 7-21 gives the curves of Ki as functions of 

Wjt/df ctf and crallow- 
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For the short stringers, the loading conditions are somewhat different 
since they carry a sinusoidal load coming from the sheet, plus concen¬ 
trated loads from the long stringers. If the deflection of the short 

0 5 10 15 20 25 30 
a 

Fig. 7 *19. Moment of inertia of long stringer —deflection limiting. 

stringers is restricted to a value equal to wal then the equation of the 
moment of inertia of the short stringer can be shown to be 
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where rj is a function of the a/b ratio and the number of bays into which 
the short side is divided. Lb is the total width of the short side of the 
panel. Values of 77 are plotted in Fig. 7*22. The above equation 
(equation 7*27) is for pin-ended stringers. If the short stringers are 

1.0 

0.8 

0.6 
—|o 

u_ 

0.4 

0.2 

0 

fixed at the outer boundary, it is suggested that the following relationship 

be used 
I ̂

pinned 4*^6fixed 
[7 * 28] 

To check the strength of the short stringer, the following equation for 
the moment of inertia holds 

4- 
48 E u{t 

5 Callow <£>6 

[7-29] 

where values of jli are given in Fig. 7-23. Again, the above equation is 
for pin-ended stringers and, for those with fixed ends at the boundaries, 

the following equation will hold 

A- - P'3°J 
The designer is again cautioned that the equations presented in this 

section are theoretical and have not been entirely checked by experi¬ 
ment. However, they should give reasonable first approximations 
for the stiffener and sheet sizes, and will definitely give trends as the 
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parameters involved are changed. Thus, a limited amount of experi¬ 
mental testing plus the curves and equations given above should 

% 
Fig. 7*22. Value of tj in equation 7-27. 

% 
Fig. 7-23. Value of n in equation 7*29. 

provide a designer with fairly accurate information over a considerable 

range of panel and stiffener sizes. 
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7-3. Cylindrical Bodies Subjected to Internal Pressure 

The problem of bodies subjected to a uniform internal pressure arises 
in airplanes having the fuselage pmssurized for high altitude flying. 
In such ships, an attempt is made to keep the pressure inside the cabin 
at a comfortable level for the passengers, no matter how high the air¬ 
plane may be flying. Thus, there is a pressure differential across the 
fuselage skin with an internal pressure higher than that outside. 

To analyze the effect of this pressure on the structure, one uses the 
well-known equations for the longitudinal and hoop stress of a cylinder 
under internal pressure. The longitudinal stress is equal to 

force pvR2 pR 

area 2 irRt 21 
and the hoop st ress is 

2 Rp pR 

Ch ~ ~2t ~ T 

The above equations are those which would result if the fuselage were 
circular in cross section; however, it is a simple matter to put in the 
proper factors for other cross-sectional shapes. In fact, for fuselages 
which are pressurized, a definite attempt is made to keep the cross 
section circular because that is the shape which any flexible cylinder 
would take under pressure and, also, because the circular cross section 
leads to the lowest value of the hoop tension, <jh. 

The stresses given by equations 7-31 and 7-32 must, of course, be 
combined with any other stresses arising from the normal loading 

conditions of the fuselage. For example, the total longitudinal skin 
stress arising from a combination of the pressure stress and the bending 
stress would be given by the equation 

pR M . 

K'~ ¥±Sftsml1 • [7 "] 

where M is the bending moment in the section and 6 is the angle around 
the section measured from the vertical. 

Section 7-1 gives equations that will enable the designer to estimate 
the deflections of the sheet panels of the fuselage since, in general, the 
radius of curvature of such fuselage sections is so large that individual 
panels can be assumed to be flat. Similarly section 7-2 gives equations 
for determining the probable loads that the internal pressures will apply 

to the stiffeners of the section. 

[7-31] 

[7-32] 
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One of the important considerations is the effect of the longitudinal 
and hoop tensions on sheet joints in the fuselage structure. The addi¬ 
tional loads on such joints must be provided for by increasing the joint 
strength either with larger or more numerous rivets. 

For pressurized fuselages having double curvature, the following 

relationship between the stress and the pressure holds. 

Qit . erf 

ift+irrp [7 34] 

where Hi = radius of curvature in the longitudinal direction, 
R2 = radius of curvature in the circumferential direction. 

As in all stress conditions in which there are a number of stresses 

acting at one point, the maximum normal stresses and shears should be 
determined either graphically by the use of Mohr’s circle or by the com¬ 

bined stress equations (see Chapter 3). 
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CHAPTER 8 

THE ANALYSIS OF CYLINDRICAL STRUCTURES 

8-1. Compressive Strength of Thin-Walled, Unstiffened Circular 
Cylinders and Curved Plates 

(a) General. A circular cylindrical structure tested under a com¬ 
pressive load acting parallel to its axis may fail in one of three ways. 
If the cylinder is short and has relatively thick walls, it may fail owing 
to the stresses passing the ultimate compressive strength of the 
material. This is a typical material failure and is only a function of 
the mechanical properties of the material. 

If the cylinder is very long, and has a small diameter, failure may take 
place as a column, the laws of this failure corresponding to those govern¬ 
ing one of the types of column failure discussed in Chapter 5. The 
ultimate strength of such a structure will thus be dependent primarily 
upon the L/p of the section and the Young’s modulus of the material. 

There is a third type of failure which will be found in structures 
having dimensions corresponding to those in modern semi-monocoque 
design. In this case, the cylinder will be comparatively short, of large 
diameter and thin-walled. For such a structure the failure is one of 
local instability of the thin section comprising the cylinder walls. 

(b) Buckling of Circular Cylinders. A number of investigators (see 
references 8 -1 to 8-3 and others) have made theoretical analyses of the 
problem and all have arrived at an equation for the critical buckling 
stress of the form 

o cr = KEt/R [8-1] 

in which ocr = critical buckling stress, 
t = cylinder wall thickness, 

R = cylinder radius, 
E = Young’s modulus for the material. 

The term K is a constant for any given analysis and varies between a 
value of 0.643 and 0.414 depending upon the buckled wave form chosen 
for the analytical solution. It is interesting to note that the lowest 
value, K = 0.414 (which shows the best agreement with experimental 
results), corresponds to a buckled wave form which is never found in 

309 



310 THE ANALYSIS OF CYLINDRICAL STRUCTURES [8-1 

practice. The equation for the critical stress is seen to be independent 
of length, it being assumed by all of the investigators that the cylinder 
was long compared to the wave length of the buckles. 
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Fia. 8-1. Test results on unstiffened cylinders. 

Numerous experiments have been carried out on circular cylinders 
under axial compression in order to determine empirically the value of 
K (see references 8 • 4 to 8 • 8). All the investigations have shown that K 
is a function of the R/t ratio of the cylinder, only approaching the 
theoretical value for very low values of the radius/thickness ratio and 
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decreasing to a small percentage (15 to 20 per cent) of the theoretical 
value for very high R/t ratios. Donnell (reference 8*6) attempted to 
explain the discrepancy between theory and experiment on the basis of 
the inaccuracies and initial deformations inherent in any experimental 
test specimen. Subsequent experimental and theoretical research indi¬ 
cates that only a small percentage of the difference between the two 
values of K can be explained in this manner. Some recent work on the 
buckling of spherical shells (reference 8*9) indicates that the wave form 
assumed by previous investigators was not correct, and that it is theoret¬ 
ically possible to obtain a much lower value for K than has been obtained 
in the past. 

Kanemitsu and Nojima (reference 8 • 10) have experimentally deter¬ 
mined the wave pattern at the start of buckling and have verified the 
conclusions reached above. They have also collected all the available 
experimental data on circular cylinders under axial compression, added to 
these data in order to cover not only a large range of R/t ratios but also 
a large range of L/R ratios, and have proposed an empirical equation 
for the critical buckling stress. The equation they suggest is 

This equation appears to give satisfactory agreement with the experi¬ 
mentally determined values within the ranges of 500 < R/t < 3000, 
and 0.10 ^ L/R < 2.5, the value of acr/E remaining essentially con¬ 
stant for values of L/R greater than 2.5 for a constant value of R/t 
The equation has been checked by experiments carried out on brass, dural, 
and steel cylinders with greatly varying physical dimensions, and it is 
therefore felt satisfactory for design purposes. Examples of the agree¬ 
ment between equation 8*2 and experimental tests are shown in Fig. 
8*1. 

Figure 8-2 shows a graphical presentation of equation 8-2 in which 
(Scr/E is plotted against L/R for constant values of the R/t ratio. 

(c) Ultimate Load in Circular Cylinders. Since the theoretical calcula¬ 
tions lead to an equation giving the stress at which buckling occurs in an 
axially loaded cylinder, the question naturally arises as to whether or not 
it is possible to exceed the buckling stress in such a structure. Experiments 
show that in all cases of complete cylinders, the load at buckling is also 
the ultimate load that can be carried by the specimen since the buckling 
of such specimens is catastrophic in nature, large axial deformations 
suddenly taking place. Equation 8-2 can therefore be taken as the 
ultimate stress which a circular cylinder subjected to axial compression 
can carry. 
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(d) Curved Plates Under Axial Compression (Buckling). Consider 
a portion of a circular cylinder with simply supported edges (Fig. 8-3) 
and subjected to a compression stress acting parallel to the elements of 
the cylindrical surface. This has been treated by Redshaw (reference 

L _ Length 
R Radius 

Fia. 8*2. Length effect on critical stress of circular cylinders. 

8-11) who arrived at an equation for the critical buckling stress of the 
form 

&crt 6(i - ix2) (yf^1 m2)^ + 

4,4 
Tit 

2,2\ 
+ 

t H- 

64 b2 
[8-3] 

It can be seen that if (b/t)2 is large compared to R/l, the formula reduces 
to that for the complete cylinder, the form of which is indicated in equa¬ 
tion 8-1; and if (b/t)2 is small compared with R/t, the equation reduces 
to the equation for the buckling stress of the flat plate. 
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If the first term is multiplied into the bracket, the equation becomes 

E -4 J 

3(1 - M2) 
+ 

30(1 - m2)2 

It can be seen that the first term under the radical is the square of the 
theoretical value of the <rcr/E ratio for a complete cylinder; the second 
term is one-fourth of the square of the acr/E ratio for a simply supported 
fiat plate, and the last term outside the 
radical is one-half the acr/E ratio for 
the simply supported flat plate. Thus, 
the equation can be written 

(f)„ ■ 

[8-1] 

buckling stress ratio 
of the simply sup¬ 
ported curved plate, 

Fig. 8-3. 

= buckling stress ratio of a complete cylinder with an R/t 
ratio equal to that of the curved plate, and 

— buckling stress ratio of a simply supported flat plate 
with the same t/b ratio as the curved plate. 

Inasmuch as the theoretical value of (<rcr/E)c has been proven incorrect 
by experimental evidence, it is suggested that the value of (acr/E)c as 
given by equation 8-2 be used in the above expression. The theoretical 

value of (i<jcr/E)f is shown by experiments to be correct; therefore this 
value will be taken from equation 5 • 19. * 

Considering a cylindrical panel with a length equal to 2.5 times its 
radius of curvature, equation 8-4 has been plotted in Fig. 8*4. Values 
of (o,cr/E)c were taken from Fig. 8-2 for an L/R ratio of 2.5; however, 
Fig. 8-4 should be reasonably accurate down to L/R values of 1.5 and 
would under any circumstances be conservative for L/R values less 
than 2.5. This figure indicates that for t/b ratiqs greater than 0.02, 
the effect of curvature on the buckling stress of the panel is very small 
and can probably be neglected for R/t ratios greater than 750. 
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Wenzek (reference 8 • 12) suggests an equation for the critical buck¬ 
ling stress of an edge-supported curved sheet of the form 

where the notation is the same as that used above. It can readily be 
seen that this will give higher values of the critical buckling stress for the 

_ curved plate than the equation used by Redshaw. Equation 8-5 has 
been plotted in Fig. 8-4 (dotted curves) and shows a considerable in- 
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crease in predicted buckling stress, especially for large t/b and small R/t 
ratios. 

Experimental evidence to prove or disprove either of the above 
equations is very meager. A limited number of test values are given 
by both Redshaw and Wenzek; however, the panels reported on by 
Redshaw were stiffened both longitudinally and radially, and those 
investigated by Wenzek were tested in 
caisson form in which three panels were 
tested simultaneously, being joined at 
their edges by a longitudinal connecting 
stiffener (see Fig. 8-5). 

Since the length of the test specimens 
in reference 8*11 was not given, and 
since (acr/E)e is dependent upon the 
L/R ratio, these specimens have not 
been checked as to agreement with 
either equation. Table 8 • 1 shows the 
dimensions of the specimens tested by 
Wenzek and the test buckling stresses 
as compared with the predicted buck¬ 
ling stresses given by equations 8 • 4 and 8 • 5. Owing to the type of plate 
edge support, it has been assumed (as was done by Wenzek) that 

Fig. 8 • 5. Cross section of test 
specimen. 

rather than to use a constant equal to 3.62 which would correspond to 
the simply supported case. The first two predicted values are found 
by considering the value of (<rcr/E)c taken from Fig. 8-2 whereas the 
last column in the table shows the values predicted by Wenzek using 
the equation 

[8-7] 

assuming no variation in the constant with either R/t or L/R. 
Examination of Table 8 • 1 shows that both equations 8 • 4 and 8 • 5 give 

predicted values of the critical stress which are much lower than that 
found experimentally. Agreement is good for very small values of 
<P = b/R, but for values of <p greater than 10 degrees the predicted values 
are only approximately 50 per cent of the test values. On the other 
hand, the predicted values using the equation 
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show reasonable agreement throughout the range of specimens tested. 
This may or may not be accidental since it has been definitely proven 
that for a complete cylinder a constant value of K is non-conservative 
for L/R values greater than about 0.4 for all values of R/t. The only 
real conclusions that can be drawn from this limited number of tests 
are: 

1. Equations 8*4 and 8*5, using equation 8*2 for (<rcr/E)CJ will give 
conservative estimates of the buckling stress of supported circular plates, 
equation 8*4 giving the most conservative values. 

2. Considerably more test work must be carried out before any 
definite statement can be made as to the validity of any method of 
predicting the buckling stress for such cylindrical plates, and 

3. It is felt that the equation (<rer/E)c = 0.3 t/R should be used with 
caution even though it shows good agreement with experiment in this 
particular use. 

(e) Ultimate Compressive Strength of Curved Plates. Unlike the 
complete cylinder, it might be expected that a curved plate with sup¬ 
ported edges would carry a considerable amount of load beyond that 
causing buckling. This conclusion would be drawn from considerations 
similar to those applying to edge-supported flat plates tested under 
compression in which the ultimate load they can carry is higher than 
the buckling load because the supported edges can be loaded to stresses 
above the buckling stress. In other words, the primary question is 
whether or not the effective width method of analysis will apply to 
curved sheets as well as to flat plates. 

From physical reasoning it would be expected that for curved plates 
in which there was little curvature, i.e., R large, the results would ap¬ 
proach those for flat plates; and for curved plates in which b/R ap¬ 
proached 2w, the complete cylinder, the results would approach those for 
complete cylinders under compression. As will be shown later, tests 
confirm these conclusions. 

The method shown below for calculating the ultimate load-carrying 
ability of simply supported curved plates under axial compression is 
essentially based on the above considerations and upon physical analogy. 
It checks reasonably well with the few tests which are available; how¬ 
ever, it is felt that much more experimental and theoretical work is 
necessary before the question of the ultimate strength of such structural 
elements can be considered solved. The basic assumptions made are: 

1. That the edges carry a stress equal to the yield-point stress dis¬ 
tributed over an effective width found from the lower, or failure, curve 
of Fig. 6 • 2. This essentially assumes that the edges act as the supported 
edges of a flat plate under its ultimate load. In using Fig. 6 • 2 <r8e = ayp 
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and o'er 858 the buckling stress of a flat panel of the same developed width 
as the curved panel, or 

Ocr - 3.62#Q 

2. That the center of the panel, of width equal to (6 — 2we) carries 
the critical buckling stress of a circular cylinder having the same thick¬ 
ness and radius as the panel. This stress is found from equation 8 • 2 and 
Fig. 8 • 2. The equation of the total load is then of the form 

•Pfotal ~ 2wc tOyp + (b 2we) toCTc [8*8] 

A number of tests made at Massachusetts Institute of Technology 
have been checked by equation 8 -8 with the results shown in Table 8 -2. 
The first specimen has been calculated in detail to show the method. 

Example. 

t ~ 0.020 in. b = 12 in. R - 30 in. L = 6 in. 

Gctf = 3.62E(t/b)2 = 3.62 X 107 X (0.020/12)2 = 100 lb. per sq. in. 

o*d<TcTf — vyp/vcrj — 36,000/100 — 360 

we/b = 0.026 from Fig. 6.2 

we - 0.026 X 12 = 0.312 in. 

Load carried by the edges 

Pe - 2 X 0.312 X 36,000 X 0.020 = 450 lb. 

R/t « 30/0.020 = 1500 L/R « 6/30 = 0.20 

cTcrc = 17.0 X 10"5 X E = 1700 lb. per sq. in. from Fig. 8.2 

b — 2we = 12 — 0.624 = 11.376 in. 

Load carried by the center 

Pc = 11.376 X 1700 X 0.020 - 3871b. 

Total load carried by the panel 

/“total = 450 + 387 - 837 lb. 

as compared with a test load of 950 lb., a difference of 12 per cent. This method has 
been used on all the specimens in Table 8*2. The agreement between predicted and 
test values is good throughout; particularly so since the value of E and ayp were 
assumed constant equal to 107 lb. per sq. in. and 36,000 lb. per sq. in., respectively, 
and nominal thicknesses were used for the sheets. 
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Using equation 8 • 8, a graphical method of determining the ultimate 
load has been established resulting in the curves of Fig. 8*6. The 
failure curve of Fig. 6 • 2 has been approximated by the equation 

which holds very well throughout the useful design range. To calculate 
the curves in Fig. 8*6, values of ayp = 36,000 lb. per sq. in. and E— 

E * I07 fb./sq, in. 
cryp »36,000 Ib./sq. in, 

Pt°t°l/Pcrc 

L _ Length 
R Radius 

Fig. 8-6. Ultimate load of a simply supported curved sheet panel. 

10.4 X 106 lb. per sq. in. have been used. The final equation is of the 
form 
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where Ptotai = total axial compression load that can be carried by a 
simply supported curved panel; 

Per, = load carried by a curved panel at buckling, assuming 
that the curved panel will buckle at the same load as 
a complete cylinder of the same wall thickness and 
radius. Found from equation 8-2 and Fig. 8-2. 

The other terms have been previously defined. Thus, Fig. 8-G gives 
immediately the value of Pt0tai/PCrc from the known dimensions of the 
panel. This curve may be modified as additional test data are made 
available; however, on the basis of the agreement shown in Table 8*2, 
it would seem to give reasonable and conservative results for dural speci¬ 
mens within the limits covered. It will be noticed that Ptotai/Pcr,. 
approaches 1.0 for large b/i and small L/R ratios, corresponding to large 
b and small R values, which would indicate an approach towards a 
complete cylinder. 

Wenzek (reference 8-12) gives another equation for calculating the 
ultimate load for curved plates. His equation, however, gives predicted 
values of the ultimate load which are not even of the same order of 
magnitude as those found in the Massachusetts Institute of Technology 
tests and has therefore not been discussed here. 

8-2. Stiffened Cylinders under Compression 

There are very few data on complete stiffened cylinders tested under 
axial compression loads. Most of the experimentation has been carried 
out on cylinders under bending and this problem will be discussed in 

section 8-3. A few systematic series of axial compression tests on 
complete cylinders with axial and circumferential stiffeners would be 
of great value in correlating the stiffened panel data which will be dis¬ 
cussed in the remainder of this section. 

For stiffened curved plates under compression we will consider such 
a curved plate having stiffeners parallel to its axis and subjected to a 
compression load acting parallel to the stiffeners. The problem will 
be to determine the compression load which will cause complete failure 
of the plate and its stiffeners. To do this, a method will be used which 
is essentially the same as that used in section 8-1 for determining the 

ultimate compressive strength of unstiffened curved plates, that is, an 
effective width of sheet, 2wG) based on the critical column stress of the 
stiffener will be calculated from the flat panel effective width curve, 
Fig. 6-2. The allowable column stress, <rco, for the stiffener plus its 
effective width of sheet will then be calculated with the use of Fig. 6*15 
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and the effective column area (stiffener plus sheet) will be assumed to 
carry this stress. The center of the sheet, of width (b — 2we), will be 
assumed to carry the critical buckling stress of a curved plate, acrcf 
which can be found from Fig. 8*2 knowing the R/t and L/R ratios of 

Fig. 8-7. Stress distribution <rco > <rcrc. 

the panel. However, if <rcrc is higher than <rc0, it will be assumed that 

aco will apply across the entire panel. See Figs. 8 • 7 and 8-8. 
A number of curved, stiffened panels have been tested at Massa¬ 

chusetts Institute of Technology (reference 8 • 13) and the test loads have 

ru-1 

Fig. 8’8. Stress distribution <rro < o>rc. 

been checked against the loads predicted by the method indicated above. 
Typical results are shown in Table 8 • 3 and, to illustrate the method, 
one panel will*be calculated in detail. Consider the panel shown in 
Fig. 8-9, stiffened with channel section stiffeners having the column 
properties shown in Fig. 6-8. To determine the effective width of sheet 
acting with the stiffener, the flat panel effective width curve, Fig. 6 2, 
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is used. The critical buckling stress of a flat panel 5.625 in. wide and 
0.019 in. thick is 

C-UJXIMXM*©' 

= 425 lb. per sq. in. 

Fig. 8 • 9. Test panel. 

The column failing stress for the 12-in. long stiffener alone is, from Fig. 

6-8. 
L 12 

P “ 0.160 
75.0 

<rc0 = 23,420 lb. per sq. in. 

The stress at which buckling occurs between rivets is given by Fig. 
6-23 as 

Thus 
<7>j, = 22,000 lb. per sq. in. 

Orb 

Ocr 

Orb 

<Typ 

22,000 

425 

22,000 

36,000 

= 51.8 

= 0.61 

and, from Fig. 6-2 
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At the column stress, <rC0) this will be reduced to 

325 

(tL- ° 104 = 0.0976 23,420 

giving an effective width of 

we = 0.0976 X 5.625 = 0.549 in. 

Then, from Fig. 6 • 10 with 

S 0.1655 , _ t 0.019 „„„„ 

po ~ 0.160 ' A0~ 0.0566 “ ' 

we get 

This gives 
(a)!= »• 

be = 2 we = 1.098 

944 and pi = 0.1554 

- = 77.2 
Pi 

leading to a new column stress of 

aCoi = 23,070 lb. per sq. in. 

A repetition of the method modifies these values slightly to give, for the 
final effective column values 

we = 0.558 in. crC0 = 23,060 lb. per sq. in. 

h -1.116 -0.019 

Thus, for the center stiffener, we have an effective column as shown in 
Fig. 8-10 with a critical column stress of 
<rco = 23,060 lb. per sq. in. 

For the end stiffeners, the buckling 
stress of the sheet beyond the rivet line 
is given by 

= 0.452 X 10.3 X 106 X 

= 11,950 lb. per sq. in. 

p====3 T 

Fig. 8 • 10. Effective column 
for center stiffeners. 

Which gives an effective width for a column stress of 23,060 lb. per sq. in 
of 
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So the end columns have an effective cross section as shown in Fig. 8*11. 
The column failing stress as given by Fig. 6-8 will be slightly higher 
than that for the center stiffener but it will be assumed that failure 

of the center stiffener will precipitate 
-|am 

.. f—— 

i /> era 
am (-0.0/9 

■- 1] f 

Fig. 8-11. Effective column for end 
stiffeners. 

The effective material acting at the 
stress of 23,060 lb. per sq. in. is then 

Aco = 3 X 0.0566 

+ (2 X 0.194 + 4 X 0.558) 0.019 

= 0.1698 + 0.0498 = 0.2196 sq. in. 

which will carry a total load of 

Pco « 0.2196 X 23,060 = 5060 lb. 

For the center of the panels, of width 

(1b - 2we) ~ (5.625 — 1.116) = 4.409 in. 

the critical stress of the curved panel is given by Fig. 8 • 2, we have 

80 R 

t 0.0.9-431°- I -S- #'150 
from which 

acrc = 525 lb. per sq. in. 

Thus, the two center sheet portions will carry a load of 

?C = 2 X 4.409 X 0.019 X 525 = 90 lb. 

and the total panel failing load would be predicted as 

Ptotal “ Pco H~ Pc 5150 lb. 

This panel in test actually carried 4340 lb. 
Table 8-3 gives the comparison between predicted and test failing 

loads of 32 panels having lengths of from 12 to 18 in., radii from 80 to 
10 in. and sheet thicknesses of 0.019, 0.033, and 0.052 in. The agree¬ 
ment, although not perfect, is good when one considers the type of panel 
tested. The channel stiffeners used are noted for being a very ineffi¬ 
cient section, being subject to early local buckling as well as being very 
weak in torsion. It will be noted that the three stiffener panels show 
poorer correlation than those having four stiffeners and this is felt to 
be caused by the tendency for plate buckling to distort the edge stiff- 
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eners. Two stiffener panels, which were also tested, showed very poor 
agreement between predicted and test loads. In the four stiffener 
panels, the effect of the end stiffeners is reduced to a minimum. Also, 
nominal gages and average values of material properties have been 
used throughout the calculations which should lead to some scatter 
in the results. In view of the above, it is felt that the method is useful 
for design purposes; however, more test data is needed to check its 
absolute accuracy. This is particularly true for sections having small 

curvature (large values of R) since for this series of tests, the experi¬ 
mental values indicated that such sections were weaker than the corre¬ 
sponding flat panels. Whether this is generally true, or whether it was 
caused by experimental conditions of the particular test, should be 
checked by additional experimentation. 

The only other test data available are six panels tested by Consoli¬ 
dated, (reference 8-14) three of the panels being flat and the other three 
curved to a 10.8-in. radius. The panels were stiffened with hat-shaped 
stiffeners and had the major dimensions shown in Fig. 8*12. The R/t 
value of these panels was 10.8/0.040 = 270 which is considerably out of 
the proven range of equation 8 • 2. However, the use of this equation 
gives reasonable agreement with the test loads carried by the panel. 
The same procedure as that outlined above was used to calculate the 
predicted loads on these specimens with the results shown in Table 8*4. 
The agreement shown in this table is good if it is considered that nominal 
gages and material properties were used and that equation 8*2 has been 
probably used beyond its range of exact validity. 
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The main conclusion that can be drawn from the study of the data on 
stiffened curved shells is that much more experimentation is necessary 
in this subject. Systematic series of tests should be made, particularly 

TABLE 8-4 

No. L 
(in.) 

ffcrc 
(lb./sq. in.) 

a) 
J’flat 
(lb.) 

(2) 
Pc 

(lb.) 

Curved Panel Loads 
(3) 

Predicted 
flb.) 

Test 
(lb.) 

1 11 13,000 22,865 10,000 32,865 29,530 
2 18 12,580 21,575 9,420 30,995 29,070 
3 22 12,410 22,240 9,400 31,640 29,480 

(!) /'flat from tests on flat panels. 
(2) Pc is total load carried by the sheet not inrluded in the effective widths subjected to the stress oCrc- 

(3) ^predicted = ^llat + ^c- 

on large radius sections, with sufficient variation in stiffener size, stiff¬ 
ener spacing, and sheet thicknesses so that the obvious gaps in this 
important problem may be filled. 

8-3. The Failure of Stiffened Cylindrical Structures under Pure 
Bending 

Stiffened shells as used in metal aircraft construction consist pri¬ 
marily of the following elements: (a) the sheet-metal covering, (b) the 
longitudinal stiffening elements, and (c) the transverse stiffening 
elements, generally referred to as ribs, bulkheads, or frames. 

The functions of the sheet-metal covering are, first, to provide an 
aerodynamic surface upon which the air force acts (wings and control 
surfaces) and second, a covering for the contents of the airplane. In 
addition to the above functions the sheet covering is so designed that it is 
a load-resisting element and as such can be considered as part of the 
primary structure. In general, part of the load acting on an airplane 
structure will be compressive in nature. Since thin sheet is weak in 
compression it is necessary to provide stiffening elements which must 
fulfil one or both of two requirements, namely, (a) add additional strength 
in resisting compressive loads, (b) maintain the aerodynamic shape of 

the airplane. 
In a fuselage, for example, the first is accomplished by attaching 

stiffening members to the sheet parallel to the axis of the cylinder; and 



330 THE ANALYSIS OF CYLINDRICAL STRUCTURES [8-3 

the second, by placing members of the proper shape perpendicular to 
the cylinder axis. These latter members also act as supports for the 
longitudinal members. In the following discussion the terms longi¬ 
tudinal and frame will be used to denote the above two classes of mem¬ 
bers respectively. 

If a cylindrical structure of this type is subjected to, say, compressive 
loads parallel to its axis, it may fail in one of four distinct ways. The 
types of failure may be conveniently classified as material failure, local 
instability, panel instability, and general instability. 

In general, the bending stress distribution is, for purposes of analysis, 
assumed to be in accord with the elementary beam theory. Where 
buckling of the sheet occurs, appropriate modifications are made in 
calculating section properties to allow for the reduction in the load¬ 
carrying ability of the buckled sheet. Hence, the first type of failure 
offers no difficulty to the designer, as it is only necessary that the 
ultimate strength of the material be known in order to determine the 
strength of the structure as a whole. 

Local instability generally occurs in sections having wide and thin 
flanges, and it is characterized by an instability failure of some small 
portion of either a frame or longitudinal. This collapse of part of the 
stiffening member will precipitate its failure as a column and may also 
cause premature failure of the whole surrounding structure. The 
length of the portion of the member involved in local buckling is of 
the same order of magnitude as its cross-sectional dimensions, and the 
local buckling stress is not, in general, a function of the total length of 
the member. The buckling stress of such sections can be calculated by 
the methods given in section 5-3. 

A panel instability failure is defined as one which will occur over a 
length of structure equal to one frame spacing and which is not caused 
by local instability spreading to adjacent members. This type of 
failure will occur in a structure having relatively heavy frames and light 
longitudinals, the structure tending to act as a number of isolated, 
axially stiffened cylinders, each of which is one frame spacing in length. 
Failure will occur by some form of instability of the longitudinals, the 
magnitude of the failure load being dependent upon the column or 
torsional strength of the longitudinals, modified by the effect of the 
attached buckled sheet. The only function of the frames in this case will 
be to determine the end fixity coefficient of the longitudinals. In the 
past, the designs of stiffened shell structures have been based almost 
entirely on failures of the panel type. Although an accurate theoretical 
treatment of the strength properties of curved stiffened panels is not yet 
available, it has been possible by experimental methods (see section 
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6-2) to design structures in which failures tended to fall in the panel 
instability classification. 

The general instability type of failure will occur in a structure which 
has frames and longitudinals of such a size that both will fail simulta¬ 
neously under the critical load. In other words, collapse takes place 
in such a manner as to destroy the load-carrying properties of all three 
structural elements: sheet, frames, and longitudinals. 

The first three types of failure may occur regardless of the size of the 
airplane. In smaller airplanes (gross weight of 25,000 lb. or less) the 
frame sizes are determined by local loading conditions and practical 
manufacturing considerations, rather than from a standpoint of sta¬ 
bility. These considerations lead to frames which are sufficiently rigid 
to preclude the possibility of general instability failures. As airplane 
sizes increase, the above considerations do not require a proportionate 
increase in frame sizes; consequently, the relative dimensions of the 
three structural elements may be very small compared to the external 
dimensions of the structure. Since general instability is a function of 
the stiffness of the structure as a whole, its occurrence in large airplanes 
is quite likely and should be investigated. 

A complete and exact theoretical treatment of the general instability 
of stiffened cylinders is probably unattainable. However, a number 
of simplified treatments have been given. Since the validity of the 
results obtained from a theoretical treatment of the problem will depend 
on how closely the basic assumptions resemble the actual physical 
conditions, it might be desirable to consider the basic assumptions 
underlying these treatments. 

Of the two possible types of failure which fall into the class of general 
instability, one occurs under bending loads and is characterized by a 
general flattening of the cylinders. This type of failure has been 
discussed for unstiffened and stiffened cylinders in references 8*19 and 
8*17, respectively. Both theory and experiment indicate that for 
general flattening to occur, the length diameter ratio of the cylinder 
must be so large that it is completely out of the raaige of aircraft 
structures. 

The second class of failure, for which two theoretical treatments are 
available, is that in which the wave form of the buckle is multi-lobed 
in nature and has, in general, a wave length less than the total length of 
the cylinder. This buckling form corresponds to the usual “diamond- 
shaped” wave pattern which is observed in the failure of unstiffened 
cylinders under compressive loads. 

One method of investigation distributes the stiffnesses of the longi¬ 
tudinals and frames over the entire cylinder, forming an unstiffened 
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orthotropic cylinder, which is then treated as a simple unstiffened 
cylindrical shell. The thickness and stiffness of this shell in the longi¬ 
tudinal direction differ from that in the circumferential direction by 
amounts depending upon the areas and stiffness of the longitudinals 
and the frames respectively. 

A second method that can be used is to consider the sheet, the longi¬ 
tudinals, and frames as components of a statically indeterminate truss 
system. The longitudinals and frames, each with its proper effective 
width of sheet, form the normal load-resisting members, whereas a 
suitable amount of sheet in each panel acts as a tension diagonal to 
transmit the shear forces. 

A theoretical treatment of the problem has been given by Taylor 
(reference 8-15), Dschou (reference 8-16), and Hoff (reference 8*17). 
The first two authors have used the method of distributing the stiff¬ 
nesses to form an orthotropic cylinder, whereas Hoff distributes only 
the longitudinals and does not distribute the stiffness of the frames, 
but considers the frames as local elastic supports for the longitudinal 
elements of the shell. 

The results of these simplified treatments have been checked experi¬ 
mentally, and it was found that they do not give values sufficiently 
accurate for design purposes. 

The result of an experimental investigation, reference 8*20, on this 
problem, which was carried out at the California Institute of Tech¬ 
nology under the sponsorship of the Civil Aeronautics Authority, will 
be discussed in the remaining part of this section. 

For a systematic experimental investigation it is necessary first 
to consider the variables involved in the problem of general instability. 
These variables may be divided into two classes—those dealing with 
the geometry of the structure, and those which involve the sectional 
properties of the stiffening elements as well as the sheet covering. The 
geometrical variables are as follows: the longitudinal spacing 6, the frame 
spacing dy the diameter and length of the cylinder. The second group 
of variables includes the section properties of the longitudinals and 
frames, and the thickness of the sheet covering. 

By a systematic variation of these variables it is possible to determine 
experimentally a suitable parameter for predicting the loads at which 
a stiffened cylindrical shell will fail by general instability. Investigating 
first the geometrical variables, 6 and df it was found that the reciprocal 
of the maximum unit compressive strain at failure varied as y/bd. The 
next question is, in what manner do the radius R and the section param¬ 
eters px and py influence the design parameter sought for. By analogy 
with the buckling of unstiffened cylinders it can be expected that for 
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identical values of b, d, px and py the reciprocal of the critical values of the 
unit strain varies linearly with R. This surmise was checked experi¬ 
mentally and found to be correct. Hence it was concluded that the 
design parameter has the form 

f{px> Py) 
From dimensional reasoning it follows that the function/^*, pv) must have 
the dimensions of the % power of the length. The simplest assumption 
for the function which determines the influence of the section parameters, 
px and py, is that it depends only on the geometrical mean value y/pxpy. 
Thus the design parameter appears in the form 

\/bd r, n 4lbd 
f _ y>4 ** 0r . /-yj- 
KPxPy) V PxPy ' Pxpy 

Hence, the maximun unit strain at failure is given by an equation of 
the form 

Ky^py 

E' ” It 

where a = maximum compressive stress at failure in pounds per square 
inch, 

E' = effective modulus of elasticity in pounds per square inch, 
ps = radius of gyration of a longitudinal together with a portion 

of sheet covering in inches4, 
py — same quantity for the circumferential frames in inches4, 
R = radius in inches, 
b = longitudinal spacing in inches, 
d = frame spacing in inches. 

Concerning the width of sheet to be used with the longitudinals and 
frames, it has been pointed out, reference 8 • 18, that the effective width 
associated with buckling phenomena is not necessarily that based on 
the load-carrying ability of the sheet, but is proportion^ to the rate of 
increase of the apparent stress to the rate of increase of the actual 
stress. Assuming that for our purpose the effective width as given by 
equation 6*7 is sufficiently accurate, then the apparent stress cra is 

cra = 
2we(r8t 

The effective width, w*, for stability is then, 
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This gives an effective width which is two-thirds of that based on the 
load-carrying ability of the sheet. However, the influence on the nu¬ 
merical value of px is quite small. For the specimens tested it was found 
that the difference was of the order of 3 per cent. Although an effective 
width as given by equation 8-11 was used in the experimental work it is 
felt that either value is sufficiently accurate for all practical purposes. 

The amount of sheet acting with the frames is difficult to evaluate by 
analytical methods; trial calculations indicated that the best results 
were obtained if the total width of sheet between frames was used. For 
this reason then it is recommended that the entire width of sheet be used 
in calculating py. 

The results of the experiments arc shown in Fig. 8 • 13 where <t/E' is 

plotted as a function of 1 /R yfpxPy pxpy/bd. In the majority of tests 
the frames had a solid rectangular cross section, Fig. 8-13, and were 
therefore not subject to local instability. Where frames, such as the 
channel section, are subject to local instability the failing load may be as 
much as 60 per cent lower than that given by the solid curve of Fig. 
8*13 since the channel does not develop the strength corresponding to 
the calculated value of py. This can be illustrated by considering the 
behavior of an open-section column subjected to an axial load. Since 
the initial failure of the frame occurs over a relatively short length, the 
discussion will be confined to short columns. For columns having stable 
cross sections, i.e., columns which are not subject to local instability, 
the critical buckling stress is given with reasonable accuracy by the 
Johnson parabola, namely, 

™ ■''[*-4[8'121 

In section 5-3, it was shown that for columns which fail by local insta¬ 
bility, the buckling stress can be calculated by the equation 

= 7^2] [8>13] 

If the crushing stress is lower than the yield-point stress the column 
will not develop the stress given by equation 8 • 12, but will fail at some 
lower stress given by equation 8-13. For columns which fail by local 

instability a reduced effective radius of gyration, peff, can be calculated 
in such a manner that if peg is substituted in equation 8 • 12 the resulting 
stresses would correspond to the values given by equation 8 • 13. This 
requires that for any column length the value of ptg be such that, 
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from which it follows that 

Peff — 
4t 2CV/- 

[8-14] 

It is reasonable to assume that the frame behaves in a similar manner 
and that a reduced effective radius of gyration can be calculated. In 

Fig. 8-13. Design curve for general instability of stiffened cylinders. 

applying the above method to three specimens, in which general insta* 
bility failure was precipitated by local instability of the frames, the 
resulting values of peg were such as to bring the experimental values in 
good agreement with the curve of Fig. 8 • 13. The length L was taken as 

the distance between longitudinals. 
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The experimentally derived parameter, J£/Vpxpv y/bd/pxpV} is the 
ratio between the radius and a quantity having the dimensions of a 

length defined by V"pxpy y/pxpy/bd. 
By analogy with the buckling of unstiffened cylinders, it appears that 

this length is proportional to some extent to an “equivalent” thickness 
of the reinforced cylindrical structure. 

The failing stress of ail unstiffened cylindrical shell of radius R is 
given by 

a_ _ Kt 

E' “ R 
[8-15] 

Replacing the thickness t by the radius of gyration p of a strip of the 
shell of unit width, equation 8-15 can be written in the form 

<t Ky/l2 p 

E' = R 
[8*16] 

For purposes of comparison the failing stress of the stiffened cylinders 
can be written in the form 

1' 

K'Vl2 [8-17] 

where Kf is a numerical constant. 
By introducing the geometrical mean value y/pxpV9 it can be assumed 

that the influence of the anisotropy of the structure is approximately 
taken into account. Then by comparison of equations 8*16 and 8-17 
an effective radius of gyration can be defined as 

K' 

Pe = 
K 

[8 * 18] 

where <p = can be considered as a correction factor to the 

ratio 
y/PxPy 

R 
Now d/px is the slenderness ratio of the longitudinal 

considered as a column between two frames and similarly b/py is the 
slenderness ratio of the frame considered as a column between two 
longitudinals. If we define the geometrical mean value of these two 
slenderness ratios by X, that is, 
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then the correction factor can be expressed as 

K' 1 

V ~ K V\ 
[8-20] 

It is evident that if the stiffened shell were to be considered as an 
equivalent shell in which all the materials are uniformly distributed, 

— 

then the appropriate parameter to be used is —~~ • The appropriate 
R 

parameters, which enter into the problem of buckling of a truss, are the 

slenderness ratios which appear in the quantity X = a/-— • 
* PxPy 

Since the experimentally derived relation involves both parameters, 

^~^cPy and X, it indicates that a stiffened cylinder cannot be treated 
it 

either as an equivalent cylinder of uniform thickness or as a cylindrical 
truss. 

If we assume a value of K = 0.3, which is a reasonable average value 
cr 

for unstiffened cylinders in the range of involved, and use for Kr the 
a* 

values obtained from the experiments, then the numerical values of <p 
can be calculated. The average slenderness ratio X varies from 280 to 
26 and the values of <p corresponding to these limiting cases are v = 
0.259 and <p = 0.865. The lower limit is for a specimen with 10.12-in. 
longitudinal and 16-in. frame spacing, whereas the upper limit corre¬ 
sponds to a specimen with 2.53-in. longitudinal and 2.0-in. frame spacing. 
These results indicate that for structures in which the stiffening ele¬ 
ments are widely spaced it is necessary that a multiplying factor much 
smaller than unity be applied to the quantity VPxPyy whereas in close 
spacings the factor is of the order of one. 

If a reinforced cylinder fails by panel instability, the buckling stress 
should always be lower than the stress necessary to cause a general 
instability failure. This is obvious, for in order that panel instability 
may occur, it is necessary that the frame be sufficiently rigid to main¬ 
tain closely the shape of the structure at the frame. If the frame is not 
sufficiently rigid, the frame will fail before the panel instability stress is 
reached, resulting in a general instability type of failure. The test 
results shown in Fig. 8-13 confirm the above statement. 

For any given stiffened cylindrical structure it is necessary to de¬ 
termine the type of failure which gives the lowest failing stress. This 
stress is then the allowable design stress. Since the designer will have 
the necessary data to compute the numerical value of the parameter, 
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the general instability stress can be immediately obtained from the 
curve of Fig. 8-13. 

In view of the fact that general instability causes a complete collapse 
of the structure it is recommended that allowance be made for ample 
margins, and the allowable stress should never exceed the boundary line 
indicated in Fig. 8 • 13. 

8-4. Buckling of Thin-Walled Cylinders under Torsion 

The buckling of thin-walled circular cylinders subjected to couples 
in planes perpendicular to the axis of the cylinder have been investi¬ 
gated both theoretically and experimentally by Donnell, reference 8-21, 
and experimentally by Lundquist, reference 8*22. The theoretical 
treatment, reference 8*21, considers two-edge support conditions, one 
in which the edges of the cylinder, at the ends, are clamped and one in 
which the edges are simply supported. The torsional shear stress at 
which buckling occurs is obtained from a solution of the differential 
equations of equilibrium of an element of the cylinder wall. This 
critical shear stress is very nearly expressed by the following two 
equations: 

El2 
4.6+a J7.8+1.671 

Te“(l-M2)i2 

Et2 
2.8+A J 2.6+1.401 

Tc-(1 -n2)l2 

(Clamped edges) 

(Simply [8'211 
supported edges) 

where rc = buckling shear stress in pounds per square inch, 
t = wall thickness in inches, 
l = cylinder length in inches, 
d = diameter in inches. 

Comparing the experimental results with the theoretical curves, 
Fig. 8*14, it is seen that the average of the experimental values is about 
75 per cent of the theoretical, with a minimum of 60 per cent for the 
metal cylinders. Since the observed wave form after buckling checks 
closely with that predicted by theory, the discrepancies between the 
theoretical and experimental values of the critical shearing stresses are 
attributed to initial imperfections of the test specimens. Some of the 
discrepancy may also be due to the fact that clamped edge conditions 
are quite difficult to attain experimentally. However, most of it is 
probably due to initial imperfections, that is, departure from a true 
cylindrical form. 
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If the right-hand side of equations 8*21 is multiplied by 0.60 we 
obtain the minimum buckling shear stress which may be expected for 
an actual cylinder. Taking p = 0.3 we have, 

(Clamped edges) 

[8-22] 

(Simply supported edges) 

These equations are represented graphically by the broken lines, 
Fig. 8-14, and are recommended for design purposes. Since they are 
based on the minimum results from all available tests on metal cylinders 
they should give values which are always on the conservative side. 
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PART III 

APPLIED STRESS ANALYSIS 

CHAPTER 9 

WINGS AND CONTROL SURFACES 

The preliminary design considerations and the calculations of the 
external loads acting on the airplane’s structure were discussed in Part 
1. Part II was concerned with some of the fundamental problems of 
strength of materials and in particular with buckling phenomena. In 
Part III we will consider the distribution of the external loads to the 
various structural components, methods of stress calculation, and the 
application of the material discussed in Parts I and II. The student 
should realize that no two designs are alike and that in every design a 
number of special problems arise which are peculiar to this particular 
design. It is not the intention to treat such detailed problems here, but 
rather to limit the discussion to the more generalized methods of 
analysis. 

9-1, Wings 

Inasmuch as the material of Part II was primarily concerned with 
the behavior of thin-wall metal structures, only metal semi-monocoque 
structures will be treated in this chapter. An extensive treatment of 
other types of structures is given in reference 9*1. 

In the design of a wing structure it is necessary to consider first the 
location of such items as control systems, cooling ducts, electrical instal¬ 
lations, fuel and oil tanks. If due consideration is not given to the 
location of these items, it will invariably be necessary to cut large and 
numerous holes through some of the important stress-carrying elements 
of the wing. Since all cutouts must be reinforced, it has been found 
that the additional weight due to the reinforcements will frequently 
cause an otherwise light structure to become so heavy as to fall in the 
classification of a structurally inefficient design. It has been found in 

342 



9-1] WINGS 343 

practice that the most efficient wing structure can be realized if the above 
items are laid out first and the wing designed around them. This allows 
for the proper location of all items with the least amount of interference. 

The structural members of a wing must be capable of resisting shear, 
bending and torsional loads. From a design standpoint the members 
resisting each of these loads can be considered separately. 

(a) Shear-Carrying Members. The air loads act direetty on the 
sheet covering which transmits the loads to the ribs. The ribs transmit 
the loads in shear to the spar webs and distribute the load between them 
in proportion to the web stiffnesses. 

In the past it has been customary to design wings with three or more 
spars. The use of several spars permits a reduction in rib stresses and 
also provides a better support for the spanwise bending material. How¬ 
ever, the available space in the wing will be greatly reduced if more than 
two beams are used. The housing of fuel tanks and landing gears 
(when retracted) inside the wing requires a large amount of space. This 
space requirement is the main reason for the growing tendency toward 
a two-spar wing construction. A two-spar wing construction usually 
consists of a main spar, located near the center of pressure, and a 
secondary spar which is so located that the control surface and flap 
hinge brackets can be attached to it. It also serves as the closing member 
of the torsion-resistant shell. 

Spars can be divided into two general types, namely, (1) incomplete 
tension field beams, (2) truss-type teams. The two primary conditions 
which determine the over-all efficiency of a spar are its construction 
cost and its efficiency as a load-carrying member. 

Construction cost should include both the cost of construction of the 
spar and also the assembly cost. By assembly is meant the attachment 
of the sheet covering and spanwise stiffening elements to the spars. 
The incomplete tension field beam is particularly adaptable to mass 
production because of the simplicity of its component parts. For 
example, the web requires a simple cutting operation in which several 
webs can be cut simultaneously by merely stacking the sheet. For the 
spar caps and vertical stiffeners extrusions or bent-up sections are used. 
The necessary tooling for production is relatively simple and inexpensive. 
Construction of a truss-type spar requires considerably more time 
because of the larger number of individual parts and because more 

elaborate tooling is necessary. 
Since shear web beams divide the internal volume of a wing into a 

number of closed cells care must be taken to avoid difficulty with inac¬ 
cessible rivets when the outer covering is applied. This problem is not 
too serious and can generally be worked out satisfactorily. The ease 
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with which ribs may be attached to the webs will offset the difficulty of 
applying the outer skin. 

The load-carrying ability of a spar should not be judged purely on a 
strength-weight ratio basis, but due consideration should be given to 
rigidity and the ability to carry load after sustaining a certain amount of 

damage. Because of the high degree of redundancy present in an incom¬ 
plete tension field beam it will carry load even when severely damaged. 
On the other hand a truss-type spar has no or a small degree of redun¬ 
dancy; which means, that if any one member in the spar fails, its load¬ 
carrying ability will be destroyed. Static tests have shown that incom¬ 
plete tension field beams have a better strength-weight ratio and are 

Fig. 9-1. Center section spar showing various types of construction. 

much stiffer than the truss-type beams. Shear stiffness of the spars is 
important, because large deflections will cause deep shear wrinkles which 
may become permanent, in the leading edge of the wing. An extensive 
comparison between incomplete tension field beams and truss-type 
beams is given in reference 9*2. A center section spar showing the 
various types of spar construction is shown in Fig. 9*1. 

It is generally considered that the classical tending theory when 
applied to thin-wall structures gives results which are sufficiently 

accurate for design purposes. However, the direct application is only 
valid when all elements of the structure are subjected to loads which 
are below the stability limit. It has already been indicated in Part II, 
that in the design of thin-wall structures, we make use of the fact that 
such structures are capable of carrying an increased load after certain 
elements of the structure are subjected to loads beyond their stability 
limit. In such cases it is necessary to make certain modifications in the 

calculations. In the following discussions on load distribution in thin- 
wall structures it will be indicated when such modifications are neces¬ 

sary. 
In calculating the distribution of the shear load between the spars it 

is necessary to consider the shear in the leading edge section and in the 
bending material between the spars. In other words, it is necessary to 

calculate the shear flow over the entire cross section. The general equa- 
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tions for calculating the shear flow over a thin-wall structure can be 
derived from the following considerations. Consider a thin-wall cylinder 
of uniform cross section as shown in Fig. 9 • 2 in which X and Y are the 
principal axes; the calculation of principal axes is discussed in section 
9-2(6). The Z-axis coincides with the line connecting the centers of 
gravity of the cross sections. The shear loads Sx and Sv are parallel to 
the principal axes and pass through the shear center of the section. In 
the wall of this section there will be longitudinal shear stresses which we 
will denote by r. To find the magnitude of these stresses and the corre- 

Fig. 9*2. Notation for cylinder analysis. 

sponding shear flows let us consider an element of length dzy Fig. 9-26, 
lying between two planes, mnm'n' and opo'p'} normal to the surface of 

the section and a distance ds apart. 
If r is the average shear stress across the wall thickness, then the force 

on the face opo'p' is t\r\dz and on the face mnm'n' the force is <2r2^- 

The normal stresses produce the forces jT<r* dA and £("-+^dz)iA 

on the faces mom'o' and npn'p1, respectively. 
For equilibrium, the sum of the forces on the element must equal 

zero, hence 

(*in — t2T2)dz — j~dzj dA + J"atdA — Q 
or 

<iti — t2r2 — dA = 0 dA = 0 [9-13 
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According to the bending theory the normal stresses are distributed 
linearly across the cross section, namely, 

Mxy Myx 
-H r 

where Mx = bending moment about the Ar-axis in inch-pounds, 
My = bending moment about the F-axis in inch-pounds, 
Ix = moment of inertia about the X-axis in inches4, 
Iy = moment of inertia about the F-axis in inches4. 

From equation 9 • 2 we have 

[9*2] 

da* y dMx x dMy - ^ —* i 
dZ Ix dz Iy dz 

but from equation 3 * 29. 

c\Mx 
dz 

hence 

dMy 
Sy and —- = Sx 

dz 

Sy .8, 
= TV + “ x 

da z 

dZ IX° ' Iy 

Substituting these values in equation 9*1 gives 

tin — 12*2 — j~ f ydA - f xdA = 0 
lx Ja 1 v Ja 

The first integral is the static moment of the shaded area, Fig. 9 • 2a, 
with respect to the X-axis and the second integral is the static moment 
of the same area with respect to the F-axis. Denoting these static 
moments by Qx and Qy respectively, the above equation can be written as 

hn - t2r2 -(j^Sy + ^ SXJ = 0 [9-3] 

If the wall thickness t is uniform between y\ and y2 we can write for 
the static moments 

rfX 2 

yds and Qy = t / xds h=t r 
jX\ 

then the shear flow at y2 is given by 

tr2 - In - t ("yds - J-1 Pxds 
lx Jy\ ly Jx\ 

and the shear stress at y2 by 

r^-r r** lx Jy\ ly Jx\ 

[9*4] 

[9-4a] 
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At the junction of two or more walls we have the equilibrium condition 
that, 

i—n 

2 [9'5] 
i= 1 

where is the shear flow at the junction in the ith wall and must be 
given its assumed sign. It should also be noted that the shear stress or 
shear flows in the direction of the longitudinal axis are equal to the shear 
stresses or shear flows in a plane perpendicular to the longitudinal axis, 
see section 3-1. 

Equations 9 • 3, 9 • 4, and 9 • 5 guarantee only the equilibrium but do not 
define the absolute magnitude of the shear flow, since to the shear flow 
around the cell may be added a constant shear flow and the resultant 
shear flow will be likewise in accordance with equations 9 • 3,9 • 4, and 9 • 5. 
Therefore, there are still as many unknowns as there are cells. Hence, 
for any cross section which has more than two boundaries the above 
equations are not sufficient to determine the shear flow over the cross 
section. By using equation 3-83 in conjunction with equations 9-3 or 
9 • 4 and 9 • 5 all unknowns can be determined. As an illustrative example 
consider the section shown in Fig. 9-3 subjected to a vertical shear load 
S only. For our present calculations we are interested only in torsion-free 
bending. Torsion will be discussed later. To realize a condition of torsion- 
free bending it is necessary that the shear load be applied through the 
shear center. It is therefore assumed that the shear load passes through 
the shear center. The section is symmetrical about the X-axis, hence 
X and Y are principal axes. 

The shear stresses at the neutral axis are denoted by ri, r2, and r3 for 
the leading edge, the front spar and the rear spar, respectively. The 
assumed direction of the shear flow is indicated in Fig. 9 * 3; if the actual 
shear flow is in a direction opposite from the assumed shear flow it will 
be indicated by a minus sign in the? final expressions for the shear stresses. 

From equation 9*4 the shearing stress in the circular section from E 
to A is 

y = R sin p} ds = Rdp 

(cos P — 1) 
s n 

~Tl I Jo 
R2 sin j6 dfi 

SR2 
ro a = ri —r [9*6] 
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The shear stress in the front spar from the neutral axis to A is 

V s n 
tf = t2 - j J ydy = t2 - 

21 

TFa ~ T2 ~ 
SR2 
21 

[9-7] 

s r , 
Tft = r3 - jJ ydy = t3 

2/ 

TRb = T3 ~ 
SJi2 
8/ 

[9-8] 

The shear stress from B to A is 

VK25 
s 

R/2 

‘•B 

l'y*> 

R(y - R/2) = 10.04(2/ - R/2), ds = 10.04dy 

10 04 a P a 2 r2\ 
" ~rsJB„vdy ~,Si ~5 02/ v~t) 

From equation 9 • 5, we have at the junction B, 

t,UB = Ir trb 
Hence , e SR2 rnnSf „ R2\ 

= 1.5r3 — 0.188 —- 5.02 - ( y2 —— ) 

, „ „„r SR2 
t,a = 1.5r3 — 3.95—— [9-9] 
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At A we have 
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to toa + tp rpA + t8 t8a =0 [9 • 10] 

Substituting for the shear stress the values given by equations 9 • 6,9 • 7, 
and 9 • 9 and the corresponding sheet thicknesses, gives 

SR1* 
T\ -f* 2t2 -f* 1.5t3 — 5.95 — ■ = 0 [9-11] 

In section 3-6, equation 3*83, it was shown that for a hollow circular 
section 

rp = 2 AGO 

If r is not constant around the perimeter p then rp must be replaced 
by the equivalent line integral around the perimeter, namely, 

- 2CAt or y . 2(7.40 [9-12] 

In torsion-free bending the angular twist per unit length 0 is zero and 
we can write, 

t*-0 [9-13] 
/' 

In taking the line integral around any cell the sign of both r and ds 
should agree with the convention adopted in setting up the correspond¬ 
ing shear expressions. Observing this rule we have for the front cell 

ST?2 
= 1.57rx — T2 — 0.403 —j~ = 0 [9-14] 

around the rear cell //*-R rC rA 

rds = / rp dy + / rs ds + / tr dy + / 7$ ds = 0 
.//> J-R/2 Jb 

Substituting for the shear stresses and noting that ds = 10.04dy gives 

-2/ (’>-%)* 

+ 

2 fR I" 1.5r3 — 0. 
«/«/2 L 

Stf2 rnnSf , 
188 — - 5.02 -U2 

ft2 

4 )]10J 

Dp2 
Tg — 8.04t$ ~f“ 9.23 ~ = 0 

10.04dy 

[9-15] 
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It follows from equations 9 • 11, 9 • 14, and 9 • 15 

[9-1 

n = 1.16 
SR2 

t2 = 1.42 
SR2 

r3 = 1.33 
SR2 

From equations 9-6 to 9-9 we have 

n„SR2 n nn SR2 
t0a = 0.16 , tFa = 0.92 —, trb 

Substituting the above values in the equations for r0, tf, tr, and r8 the 
distribution of the shear stress over the cross section can be calculated, 
and it is shown in Fig. 9-4. 

In all the above calculations it has been assumed that the shear 
rigidity is the same for all members. This is not always true, for if any 
one of the members buckle its shear rigidity decreases. If the rigidities 
are different, equation 9 • 13 should be replaced by, 

[9-16] 

The appropriate value for G can then be used for each member of a cell. 
Having calculated the shear distribution, the horizontal position of 

the shear center can be calculated. By definition, the shear center lies at 
the intersection of the X-axis and the vertical plane in which the shear 
load S must be applied to produce torsion-free bending. 

Taking moments about the center of the front shear web, we have 

M 
/*/2 

t,QTQ R2 dp 

= 2SR% r 

I Jo 

rA pR/2 

l I 0.9996R t8r8ds — 10R I trTR dy 
Jb Jo 

~ A3-c 
* Jr/2 

(0.16 + cos $)dp — 20.0 I (3.06/22 — 5.02y2)dy 
R/2 

I? /*^/2 
- KM* / (1.33/i2 

1 Jo 
W)dy 

- -0.338 
SR4 

The moment of inertia of the section about the z-axis is 0.355fi3 and if 
x is the distance from the front spar to the shear center (see Fig. 9-2) 
then, 

Sx = 
0.338SR 

0.355 

x * 0.953R 
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The variation of the shear flow tr along the walls depends on the 
amount of bending stress carried by the wall and the shear flows coming 
into the walls at junctions with other walls. Therefore, the influence of 
the span wise stiffening elements cannot be neglected; however, the exact 
calculations of wing sections with stiffening elements arc rather tedious 
and involved. It has been pointed out in reference 9*3 that the cal¬ 
culated position of the shear center for simple wing sections, such as the 
above example, do not check the experimentally observed position by 
approximately plus or minus 5 per cent of the chord length. 

Fig. 9*4. Shear distribution in a wing. 

Due consideration should also be given to the decrease in the shear 
rigidity due to buckling. The theoretical shear stiffness of a diagonal 
tension field (reference 9*4) is 

Ge = 0.625G 

The conditions of a pure tension field are not realized in the majority of 
structures and Ge may be much less for combined compression and shear. 
Therefore, the above value can only be used as a first approximation. 
Figure 6*41 gives a somewhat more accurate approximation for the value 
of Ge which is based essentially on the ratio of r/rcr. It is sometimes 
more convenient to work with an effective thickness rather than a 
reduced shear modulus. For example, if the spar web is in a buckled 
state its thickness can be replaced by a thickness te given by the equation 

When corrugations are riveted to sheet the shear flow in the corruga* 
tion-sheet combination must be considered. For such a combination an 
effective sheet thickness can be obtained from the following considera¬ 
tions. One wave of the corrugated panel together with the sheet riveted 
to it forms a cell to which the general equations may be applied. The 
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shear flow in the equivalent sheet of thickness te must be the same as 
that in the corrugation and sheet together, that is, 

— tgTa J~ tqTq 

where the subscript s refers to the sheet covering and c to the corruga¬ 
tion. The shear deformation in the equivalent sheet must be the same 
as in the sheet covering, or 

Te _ 
G Ga 

For the cell between the sheet and corrugation we can write from equa¬ 
tion 9-16 

T&P8 Tcpc _ 

~G* ~ Gc ~ 

From these three equations it follows that 

te 
Ga , Gc Pa 

G 8 + G pc c 
[9-17] 

where Ga, p8 and Gc, pc are the effective shear moduli and perimeters of 
the sheet and corrugation, respectively. 

In general, the corrugations will not be in a buckled state and Gc will 
be equal to (?, whereas the sheet will be buckled and a reduced shear 
modulus must be used. 

If both stringers and corrugations are riveted to the outer sheet, as 
shown in Fig. 9-56, equation 9-3 together with equations 9-5 and 9*16 
should be used for determining the shear flow. Exactly the same pro¬ 
cedure is followed as in the given example, except that the shear flow 
It is used in the calculations rather than the shear stress r. In so far as 
the sheet-stringer combination is concerned, the stringer, plus the effec¬ 
tive width of sheet acting with the stringer, is considered to be concen¬ 
trated at the stringer and to carry only axial loads whereas the inter¬ 
mediate sheet panels serve to take up shear stresses only. This means 
that, in calculating the static moments, only the area of the stringer plus 
the effective width of sheet is taken into account. It is also obvious that 
the integrals are replaced by summations. The sheet-corrugation com¬ 
bination is treated as an equivalent sheet according to equation 9 • 17. 

It should be realized that the standard formulas for bending and shear 
stresses in a beam do not hold near an abrupt discontinuity in the beam 
cross section or near discontinuous loads. However, the errors due to 
the use of the elementary theories become negligible at some distance 
away from the discontinuity if this distance is of the same order cf 
magnitude as the cross-sectional dimensions of the beam. The above 
methods of calculation are therefore only valid at some distance away 
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from any discontinuity in the structure or loading. Cutouts are the 
most troublesome; they are frequently quite large and it is difficult to 
estimate how far they influence the behavior of the structure. 

It is recommended, reference 9 • 5, that when large discontinuities of 
the spanwise material exist, the direct load be determined for each 

(a) Three spar - AH bending material 
concentrated at the spars 

(b) Two spar - Distributed bending materia/* 
corrugations and stringers 

(d) Multi-spar - Distributed bending material 

Fig. 9-5. Typical wing structures. 

element of the wing (spar flanges, corrugations, etc.) at a certain wing 
station, using the formula 

pi = <ri dAi 
M\ yi dAi 

h 
Applying the same procedure to the same element at a station x inches 
from the previous one will produce the load 

j t M2 2/2 dA2 
P2 88 ~ j 

where M\ and M2, I\ and I%> dAi and dA2 are the total moments, the 
moments of inertia of the wing cross section and the areas of the ele- 
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ments respectively, at the respective stations. The calculations of 
normal stresses due to bending are discussed in section 9-1(6). The 
difference between p\ and p2 divided by the distance x gives the shear 
flow acting upon the element between the two stations. Obviously if pi 
is equal to p2 the shear flow is zero, and when this is true for all longi¬ 
tudinal elements there will be no shear flow in the bending material and 
the shear load is entirely resisted by the shear webs. 

The designer should not assume too sudden a transfer of shear to 
newly added material and should investigate the ability of the plating 
and of the rivets to transfer the load to the added material. Sudden 
discontinuities of the spanwise material may easily result in premature 
failure. 

(6) Bending Material. In the consideration of bending material it is 
convenient to classify wing structures according to the disposition of the 
bending-load resistant material: (1) All bending material is concentrated 
in the spar caps. (2) The bending material is distributed around the 
periphery of the profile. 

A typical wing cross section in which the bending material is con¬ 
centrated in the spar caps is schematically illustrated in Fig. 9 • 5a. The 
number of spars may vary from one to any number—the practical limi¬ 
tations of a multi-spar construction has been discussed in the previous 
section. 

Each of these types has certain distinct advantages over the other and 
a choice of the particular type to be employed in any design depends 
largely on the purpose for which the airplane is designed and on the avail¬ 
able tools and materials. Some of the advantages that can be claimed 
for the first type are: simplicity of construction, hence requires less tool¬ 
ing and labor and lends itself to rapid mass production. Because of the 
concentration of materials, the spar caps can be so designed that buck¬ 
ling occurs near the ultimate stress of the material; this allows the use of 
higher allowable stresses. The analysis of such structures is also much 
simpler than that of the second type. 

One of the principal disadvantages of the concentrated spar-cap type 
is that the sheet-metal covering will buckle at a very low load. The 
load-carrying ability of the covering in so far as bending is concerned, is 
therefore negligible, which means that we have a certain amount of 
material which is not being utilized. Furthermore, the airplane will be 
operating at all times with the sheet covering in a wave state having 
relatively large amplitudes. This results in a serious disturbance of the 
airflow over the wing profile and causes an increase in drag. It is also 
necessary to consider the possibility of fatigue failures due to the local 
bending stress in the buckled sheet. 
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In the second type, the distributed bending material consists of stiff¬ 
ening elements running in a spanwise direction. These elements may 
be either corrugations or stringers attached to the sheet or a combination 
of both. A few sketches are shown in Figs. 9 • 5b to 9 • 5d to illustrate the 
various combinations of stiffening members used in wing construction. 

The wing-bending loads which cause compression at the upper surface 
of the wing are generally somewhat higher than those causing compres¬ 
sion at the lower surface. This requires that the stiffening elements 
along the upper surface be more efficient and also more closely spaced 
than those on the bottom. Since corrugations meet both of these require¬ 
ments it is common practice to use corrugations along the upper surface 
and some form of extruded or bent-up stringers along the lower surface. 
For highly loaded wings it may be desirable to use corrugations in both 
upper and lower surfaces. In the choice of stringers it should be kept 
in mind that the air loads acting on the covering tend to bend the 
stringers which are already subjected to high loads owing to the wing¬ 
bending loads. It is therefore advisable to use stringers with sufficiently 
high moments of inertia to resist the combined loads. 

Static tests of completed wing structures have demonstrated that the 
elementary beam theory is sufficiently accurate for calculating the bend¬ 
ing stress distribution, provided the following considerations are taken 
into account. On the compression side the metal sheet covering will 
buckle at relatively low loads which necessitates the use of effective 
widths (see section 6-1). For cutouts or discontinuities in the material, 
that is, a sudden change or redistribution in the bending material, the 
stress distribution near the discontinuity will not be according to the 
elementary beam theory. For example, if between two adjacent wing 
sections the corrugation gage is suddenly increased or a number of cor¬ 
rugations are added the stress distribution does not change suddenly to 
correspond to the new moment of inertia and neutral axis location. To 
understand fully the mechanism involved in the redistribution of normal 
stresses, it is necessary to consider two conditions. If the bending 
moment is constant, i.e., the shear is zero, then at the section where the 
additional material is added the spar will unload, through shear defor¬ 
mations of the sheet covering and corrugations, to the added material. 
This transfer of load from the spar to the added material by shear will 
continue until the stress in the whole assembly is again according to the 
bending theory. If the air-load shear is not zero, the air loads acting on 
the ribs are transmitted to the spar webs and are distributed between 
them in proportion to their stiffnesses. From the webs the shear must 
be transferred through the top or bottom sheet covering and corruga¬ 
tions to the point where the new bending material, capable of resisting 
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the bending loads imposed by the shear, is added. In tapered wings 
some of the shear is directly absorbed by the flange material and the 
above discussion applies only to the excess shear. 

In each case the redistribution of stress involves shear stresses which 
in turn cause shear deflections. Therefore, the additional material will 
be, over a certain distance, not fully effective and will not develop the 
stress indicated by the bending theory. The distance required to cause 
a redistribution of the stresses to correspond to the bending theory will 
depend upon the sharpness of the discontinuity and upon the shear 
rigidity of the material through which the shear transfer of the normal 

stresses takes place. The phenomena described above is commonly 
called “shear lag.” 

If a wing is uniformly tapered in plan form and the bending material 
is gradually added near the shear beams, the effect of “shear lag” will be 
negligible. A convenient method of allowing for the effects of shear lag 
is to assume a “reduced effective” area for the material, thereby reducing 
its effectiveness. It is obvious that the material farthest from the spars 
will be least effective. 

Owing to the complexity of the shear lag problem only a few of the 
simpler cases have been treated analytically. References 9-6 to 9*10 
include some of the theoretical and experimental work which has been 
done on this problem. 

As an illustration of the method for calculating the bending stress 
distribution, consider a wing section as shown in Fig. 9*6. It should be 
kept in mind that the elementary bending equations are only applicable 
if the planes of the transverse shear loads (Sx and Sy) are parallel to the 
two principal planes of bending. Therefore if we calculate the dis¬ 
tribution of the bending stress by means of equation 9-2, that is, 

Mxy , MyX 
= -— + —- 

lx ly 

it is necessary that x and y be principal axes. 

[9-2] 
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The general equations for determining the principal axes and the 
moments of inertia about them are given in elementary texts on applied 
mechanics. The problem is somewhat more complex for a stiffened shell 
structure than for the cases commonly encountered in strength of mate¬ 
rials and it will therefore be considered here in some detail. It is recom¬ 
mended that the outlined general procedure be followed. 

1. Choose any convenient set of perpendicular axes. One will usually 
be the chord line. 

2. Divide the section into numbered component parts, such as sec¬ 
tions of skin, corrugations, stringers, spar caps. 

3. Compute the area of each part. 
4. Tabulate as follows (numbers in brackets refer to columns in 

table): 

(1) Number of part 
(2) Area of the zth part in square inches = A i 
(3) xji the coordinate distance of Ai to the reference axis in inches 
(4) x[ the coordinate distance of A{ to the reference axis in inches 
(5) A{\ji moment of the area Ai about the x'-axis 
(6) A{Xi moment of the area At about the z/'-axis 

(7) Aiy? 
(8) A^2 
(9) IXi. moment of inertia of Ai about an axis parallel to x' and 

passing through the centroid of Ai 
(10) IyQ, moment of inertia of Ai about an axis parallel to yi and pass¬ 

ing through the centroid of A{. 
Some parts will have negligible values for Ix> and Iy>. The moments 

of inertia of the stringers about their own centroidal axes are 
usually negligible. 

(11) AiXiVi 

(12) IPi product of inertia of Ai about axes through its centroid and 
parallel to x' and y'. 

5. Determine the moments and product of inertia of the section about 
the x'-, y'-axes. 
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6. Determine the position of the center of gravity of the section. 

i—n i—n 

*-l »=! 

7. Choose a new set of axes x0, Vo, which are parallel to the a'-, yf- 
axes passing through the center of gravity of the section. 

8. Calculate the moments and product of inertia about these new 
axes. 

= Ix> — A f 

where 

^2/o ly’ A x2 

Ix0y{) — Ix'y' A x y 

n 

A - 

i= 1 

9. Determine the angle, /3} between the principal axes x, y, and the 
Xo~, 2/o~axes by the following equation 

tan 2/3 = —- 
I* 

10. Determine the principal moment of inertia of the section by the 
equations, 

Ix = IXo cos2 /3 — 2Ixm sin 0 cos 0 + Iy0 sin2 /3 

Iy = Iyo cos2 /3 + 2Ixm sin /3 cos /3 + IXo sin2 /3 

Since most of the sheet in the compression zone will be in a buckled 
state, it is necessary to use an effective width of sheet to allow for the 
decrease in the load-carrying ability of the buckled sheet. On the tension 
side the sheet is fully effective. The effective width of sheet acting with 
each longitudinal stiffener depends on the magnitude of the normal 
stress <r. Consequently, the location of the principal axes and the 
moments of inertia about them are not directly calculable, but must be 

evaluated by a series of successive approximations. These approxima¬ 
tions are carried out in the following manner. 

1. Assume the sheet fully effective in the compression zone and cal¬ 

culate the position of the principal axes, the moments of inertia about 
them, and the corresponding stresses. 
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2. Ascertain with the formulas of section 6 -2 which panels are in the 
buckled state and compute the effective width by one of the methods 
given in section 6-1 at each stringer or corrugation. The result is a new 
cross section with only part of the sheet effective in the compression 
zone. From the moments of inertia of this section, referred to a new set 
of principal axes corresponding to this new cross section, a new linear 
stress distribution is calculated. This distribution is now much closer to 
the actual distribution than the first one. 

3. With the new stress distribution again calculate the effective widths, 
moments of inertia referred to a new set of principal axes corresponding 
to the new cross section and the stress distribution. 

This latter stress distribution will, in general, be quite close to the 
actual distribution and will be sufficiently close for practical purposes. 
It should be noted that an appreciable amount of labor can be saved if 
the sheet elements in the compression zone are tabulated separately, for 
these are the only items which will vary in calculating the center of 
gravity of the cross section. 

To eliminate the tedious second and third approximations the follow¬ 
ing approximate method has been suggested in reference 9-11. If oy0 is 
the stress at the zth stringer, assuming the sheet in the compression zone 
fully effective, and (weR + wcL)i is the total effective width corresponding 
to the stress <rl0 at the stringer i, then the actual stress ai is 

_Ast + \(hRtn + biijjj 

A,i+-(W'Rt* + W.LtK)i*i' 

Where the subscripts R and L refer to the right and left of the stringer, 
A8 and b are the stringer area and spacings, respectively, and t is the 
sheet thickness. This approximation gives a non-linear stress distribu¬ 
tion in the compression zone. An experimental check of the method 
indicated that for a stiffened cylinder in pure bending the maximum 
calculated stress was about 12 per cent higher than the measured 
value. 

Having determined the distribution of the bending stress by one of 
the above methods the compression stress for each element will be known. 
These stresses can then be compared with the allowable stresses, which 
can be determined by the methods of section 6-2 or by simple static 
tests of representative panels of the structure, and the margins of 

safety can be determined. 
(c) Torsion Material. The torsional moments are primarily resisted 

by the outer covering and the rear spar. The portion of the wing aft of 
the rear spar is usually, over the greater portion of the span, some form 
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of control surface and in such cases it does not resist any of the torsional 
loads. The contribution of the interior spar web or webs depends on 
the relative thickness of the spar webs and the enclosed areas of the cells. 
For example, if we have a section consisting of two identical cells, that is, 
h = t2, pi — P2 and A\ = A2, Fig. 3 *35, then the shear stress in the 
interior web is zero and the section behaves as if the interior web were 
not present. 

Metal-covered wings are highly efficient torsion-resistant structures, 
provided there are no large cutouts. It should be realized that in the 
region when? a cutout occurs over a cell its resistance to torsion is practi¬ 
cally completely destroyed. In present-day construction cutouts are 
unavoidable; their detrimental effects can to some extent be minimized 
if they are properly reinforced so that the shear flow can be carried 
around the cutout and be redistributed over the periphery of the section. 
It is advisable to use heavy ribs or bulkheads adjacent to large cutouts; 
such members can then efficiently redistribute the torsional shear flow 
into the outer covering. 

The torsional moments acting on a wing come from two sources: 
1. Concentrated masses located at some distance from the shear 

center, such as nacelles, engines, landing gear, fuel and oil. The distri¬ 
buted wing weight might also contribute to the torsional moment if the 
chordwise position of the locus of the shear centers is not the same as 
that of the line connecting the centers of gravity of the wing. 

2. When the shear center does not coincide with the center of pressure 
of the air forces, the air forces produce torsional moments about the 
shear center. 

If the location of the shear center is known, the torsional moments 
can be readily calculated. If we assume the shear load in our previous 
example of Fig. 9*3 to be applied at a distance 1.953# aft of the front 
shear beam, then we can replace this shear force by a shear force at the 
shear center and a couple of magnitude 

Mt = (1.953# - 0.953#)$ = RS 

For this the resultant shear distribution will be the algebraic sum of the 
shear due to the shear force S acting at the shear center and the shear 
due to the couple Mr- The shear stress or shear flow resulting from this 
couple can be calculated by means of equations 3*84, 9*12 and 3-87. 
From the data given in Fig. 9 • 3 we can write the following equations. 
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where (tr)i and (tr)2 are the shear flows in the front and rear cells 
respectively, 

( 

tR 2 R 

0040 + 0080 

10.04R R \ 

0.040 + 0.060/(<T)2 

(<t)8 - 7TR2 GO 

2R 

0.080 

1 ^ 
(o)3 = —R2Ge 

and 
(O)i + (0)3 = (O) 2 

Solving these four equations for the four unknowns we have: 

<<r),« 0.1041 (0)2 = 0.0561 

(1,)a,-0.048| 

Where cutouts occur, the torsional moments will be resisted by the 
cells over which the cutouts do not extend and by the spars. If cutouts 
are adequately reinforced their effects occur only over local regions; in 
these regions assumptions and approximations are necessary for the 
analysis and generally static tests are resorted to for the determination 
of the exact allowable loads. 

The theory upon which our torsion calculations have been based 
assumes that the cross section is free to warp. Therefore, near cross 
sections which are restrained from warping, the torsion equations are 
not applicable. This would be true, for example, near the plane of 
symmetry of a cantilever semi-monocoque wing or tail surface. At sec¬ 
tions adjacent to the restrained section the torsional loads produce 
normal as well as shear stresses. These normal stresses may become very 
high and cause failure of the structure. The theoretical solutions of this 
problem are complex and accurate experimental conformation is still 
lacking. However, the designer should keep these conditions in mind 
when designing the torsion-resistant material. A discussion of the 
problem can be found in reference 9-4. 

(d) Wing Ribs. The primary loads acting on a rib are the external 
air loads and the reaction forces at the spar webs. Once these forces are 
determined the rib can be treated as a beam. In so far as the analysis 
of the rib structure is concerned, the distribution of the reaction shears 
at the spar webs are not important; however, the magnitude is important. 
The component of the external air loads, normal to the wing chord line, 
acting on the ribs is usually of the type showing in Fig. 9-7. If the 
analysis of the wing is based on a shear distribution between the spar 
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webs as calculated by the methods of section 9-1 (a), then the external 
air loads on the ribs should be resisted in the same manner. In this case 
the shear reactions are provided by the spar webs and the wing covering, 
provided the wing covering is attached to the rib. The vertical com- 

Fig. 9 • 7. Rib air load. 

ponent of these reactions will be at the shear center and equal in magni¬ 
tude to the vertical component of the air loads which here is given by 

Sr — s I p{x)dx 
Jo 

where p(x) = air pressure in pounds per square inch, 

s = rib spacing in inches. 

If the ribs are not evenly spaced, s will be the mean of the spacing of 
two adjacent ribs. The magnitude of the shear reactions is obtained by 
resolving Sr into components parallel to the principal axis and substi¬ 
tuting these components for Sx and Sy in the equations of section 9-1 (a). 

When the resultant of the reactions, which is equal to Sr, passes 
through the shear center the system will usually not be balanced in 
torsion. The torsional moment, which is equal to the product of Sr and 
the distance frofn the shear center to the center of pressure of the 
external loads p(x), is resisted by the spar webs and the wing covering. 
The method of calculating the shear flow or shear due to a torsional 
moment was discussed in the previous section. 

Since the rib transmits this shear to the covering and spar webs, the 
shear reactions on the rib will be the same as the shear in the covering 
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and spar webs. The magnitude of the shear flow due to the torque, 
together with that resulting from the shear load Sr passing through 
the shear center, determines the rivet spacing required to transfer the 
shear flow from the ribs to the covering and spar webs. The shear and 
bending moment at any section of the rib can be calculated from the 
external loads p(x) and the shear reactions described above. 

It has been shown, reference 9 • 12, that when a wing is subjected to 
bending loads, the bending of the wing as a whole tends to produce 
inward acting loads on the wing ribs. The inward acting loads which are 
in the direction of the radius of curvature arise from the fact that the 
normal stresses <r acting on an element of cross section area dA and a 
length ds give rise to two forces a dA inclined to each other at an angle 
ds/R. The radial component of these two forces is <r dA-ds/R. If we 
substitute l/R for its equivalent M/El, then for a rib spacing 5 and an 
amount of bending material having a cross-sectional area A, the normal 
pressure exerted on the rib will have a magnitude 

a Ms A M2s y A 

“ El = El2 

Since the inward acting loads P are oppositely directed on the tension 
and compression side they tend to compress the rib and their effects 
should be considered in addition to the loads previously discussed. It 
should also be kept in mind that when the sheet covering wrinkles in a 
diagonal tension field the ribs act as compression members. 

The types of ribs employed in wing construction vary over such a 
wide range that a definite classification is rather difficult. A general 
classification includes, truss type, tension-field type similar to the incom¬ 
plete tension-field beam, webs with lightening holes and stiffeners, and 
any combination of these. A number of these types are shown in Fig. 
9 • 8. The two ribs at the nacelles and the end rib at the fuselage arc of 
the tension-field type whereas the intermediate ribs are of the truss type. 
Not enough data are available on the structural efficiencies of the various 
types to allow a definite statement as to which type is the best. At 
times the type of rib employed is determined by conditions other than 
structural, for example, in integral fuel tanks the end ribs are part of the 
fuel tank and are of necessity of the tension-field type. 

So far we have only considered the external loads and reaction forces 
acting on the ribs. The manner in which the rib structure resists these 
loads depends on the type of construction. In the truss-type ribs the 
distributed external loads and reaction forces are applied as concen¬ 
trated loads at the joints and the structure is analyzed as a simple truss. 
The outer members on which the distributed loads act are relied upon 
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to transfer these loads, in shear, to the points where they can then be 
considered as concentrated loads. These outer members are therefore 
subjected to combined bending and compression or bending and tension. 
The effects of this combined loading must be taken into account in the 
design of the members. Tension-field type ribs can be treated in the 
same manner as the incomplete tension-field beams which were discussed 

Fig. 9-8. Typical wing ribs. 

in Chapter 6. This type of rib is usually provided either to distribute 
the concentrated loads, such as the nacelle and engine weights or landing- 
gear loads to the shear webs. A careful study should be made of the 
forces acting on the rib and of the reactions supporting these forces. 
When lightening holes are used in the webs of the ribs, they may be 
considered as being equivalent to a Vierendeel truss. A Vierendeel truss 
consists only of flanges and vertical members rigidly connected at the 
joints. It can be analyzed by assuming the structure to be pin-connected 
at the joints, then knowing the shears and bending moments acting on 
the truss, the loads in the members and the bending moments at the 
joints can be determined. A discussion of Vierendeel trusses is given in 
reference 9*13. 
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One of the important items in the wing analysis is the determination 
of the required rivet spacing at the various riveted connections. Con¬ 
nections which require analyses are the wing covering to the spar caps, 
the spar web to the spar caps, ribs to spar webs, the wing covering to 
the ribs or bulkheads, joints in the wing covering, and connections at 
the fuselage. The rivet spacing can in each be determined from the 
shear flow which has been calculated in the wing analysis. For example, 
the shear flow in pounds per inch at the connection of the spar caps and 
the wing covering will be known from the calculations of the shear 
distribution over the wing section. Based on the allowable bearing or 
shear load a rivet size and rivet spacing necessary to transfer this load 
from the wing covering to the spar cap can then be determined. The 
load on a rivet is the product of the shear flow and the rivet spacing. 
At the lap joints of the sheet covering the rivets should be checked for 
the normal loads, the tension loads usually determining the rivet size 
and spacing. Joints also occur in the stiffening elements and the neces¬ 
sary rivet spacing can be determined from the normal loads in the stif¬ 
fening element. In addition to these general considerations numerous 
connections occur, such as landing-gear fittings to the spars, pulley 
brackets. In designing these connections it should be remembered that 
tension loads on rivets are not permissible. 

It is customary to build wings in several sections, the usual number 
being five, namely, the center section, the two outer panels, and the two 
wing tips. Wings are built in several sections for two reasons, namely, 
maintenance and production. The maintenance and repair problems 
are simplified, for if any part of the wing is seriously damaged it can be 
readily replaced with a new section, whereas, if the wing was built as a 
single unit it would mean a complete new wing, or rebuilding of the 
damaged section, which is at best a difficult task and not always possible. 
Furthermore, if the damage occurs at some distance from a maintenance 
depot the problem of shipping the necessary parts and the assembly 
problems are greatly simplified. There are no facilities available for 
shipping the wing of a large airplane overland if it is built as a single 
unit. The building of wings in sections also lends itself better to mass 
production, for it requires less floor space for each unit, can be more 
easily handled and more men can work on the structure at the same 
time. 

In designing a wing joint the first consideration is that of transmitting 
the loads from one section to the other. Connections at the tips are 
relatively simple because of the low loads and can usually be accom¬ 
plished with some form of a riveted joint. At the center section the 
problem is mote difficult for here we must consider the transfer of high 
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loads across the joint. Several methods can be employed; all the loads 
can be transmitted through the spar connections or the loads can be 
transferred directly by providing suitable connections between the dis¬ 
tributed bending material as well as between the spars. If the first 
method is used, suitable provisions must be made to allow the loads in 
the distributed bending material to be transferred to the spars. 

The direct transfer of loads can be accomplished by designing special 
fittings connecting the longitudinal stiffening elements and a doubler 
plate connecting the wing covering, or entirely by means of doubler 
plates. In the latter case, the loads are transferred from the stiffening 
elements to the plating and then back again. The method of direct 
transfer of loads is the most satisfactory from a weight standpoint for 
all the material is as effective near the joint as at some distance away 
from the joint. 

The spars are connected at the joints by either shear bolts or tension 
bolts. Shear bolts require very close tolerances; for this reason the bolts 
are usually tapered, requiring reamed holes, and the assembly problem 
is particularly troublesome. Tension bolts do not require such close 
tolerances and are therefore much easier to assemble. However, the 
tension-bolt fittings are somewhat more difficult to design and also, the 
bolts should be thoroughly investigated for fatigue failure. 

The effects of concentrated loads such as the loads coming from the 
engine mount or landing-gear loads resulting from the landing conditions 
must be checked for the effect of localized stresses. Suitable provisions 
must be made to carry these loads into the wing structure without caus¬ 
ing high localized stress concentrations. This can be accomplished by 
designing the connecting fittings in such a manner that loads are grad¬ 
ually transferred to the wing structure; the addition of doubler plates 
may also be necessary. The individual members of the wing structure 
to which the above items are attached must also be checked for adequate 
strength. For the landing loads the wing structure as a whole, inboard 
of the landing gear, must be checked for bending, shear, and torsion. 

9-2. Control Surfaces 

The type of construction employed in the fixed-control surfaces, 
stabilizers and fins, is usually similar to the types of wing construction 
discussed in the first part of this chapter. The question, as to which 
type of construction is the most efficient for control-surface design, seems 
to be quite unsettled. Some designers favor the two-spar construction 
with all bending material concentrated in the spar caps, whereas others 
are inclined towards a multi-spar construction with the spars again 
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resisting all the bending loads. In the latter the individual spars are, 
of course, of lighter construction than in the two-spar design. A typical 
multi-spar construction is shown in Fig. 9-9. Control surfaces should 
not be designed purely on a strength basis, but due consideration should 
be given to rigidity which is an important item in the prevention of flutter. 
Large deflections of the fixed surface will impose severe loads on the 
movable surface attached to it and may also cause binding at the binge 
brackets. 

Fig. 9 ■ 9. Typical multi-spar construction. 

It is felt that a design with distributed bending material would be 
more rigid than a two-spar, but not necessarily more than a multi-spar, 
construction. In general it is not possible to predict which type will be 
the lighter, since this depends on the size of the surface, the design load¬ 
ing, and mostly on the ability of the engineer to design a structure with 
good balance between weight, required rigidity, and strength. 

Since these surfaces and the wings are similarly constructed, the 
analysis will also be similar, usually somewhat simpler, because of the 
absence of large cutouts. The only concentrated loads which must be 
taken into account are those at the hinges supporting the movable con¬ 
trol surfaces. The structure may be either continuous through the 
fuselage or it may be built in sections and the spars attached to stiff 
fuselage bulkheads. The methods of attachment are similar to those 
used in the wing connections. 

The torque loads on the elevators are relatively high and, in designing 
an elevator, one of the first requirements is that it be a good torsion- 
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resistant structure. There are essentially two types of construction, an 
all-metal construction and one in which the leading edge and the shear- 
resistant spar is metal with the section aft of the spar consisting of metal 
ribs with fabric covering. This latter type of construction has two 
advantages: it is a considerably lighter structure and has most of its 
weight concentrated near the hinge center line where it is needed for 
mass balancing. One of its disadvantages is that it has less torsional 
rigidity. The leading-edge section provides the torsion-resistant material 
and, since the hinge bracket is attached to the spar, cutouts through the 
leading edge are necessary. In order to carry the torsion loads around 
these cutouts heavy nose section ribs must be provided adjacent to the 
cutouts with proper reinforcement across them. The elevator spar is 
generally supported over three or more hinges, hence the equations for 
continuous beams, given in Chapter 3, are necessary for the analyses. 
Allowance should also be made for the fact that, as the stabilizer deflects 
the hinge supports deflect with it, giving rise to a condition of non- 
colinear supports. The leading edge and spar form a single cell which 
can be readily analyzed by the methods given in the previous sections. 
If the surface is an all-metal construction, the section will consist of two 
cells if the leading edge is properly reinforced around the cutouts; if not, 
it must be assumed that only the cell aft of the shear beam is effective. 
The construction and functions of the rudder are similar to that of the 
elevators. 

Ailerons and flaps are analyzed for the external loads specified in 
section 2-3. The construction of the aileron will be either all metal or 
metal and fabric. The problems which arise in the analysis and con¬ 
struction are similar to those encountered in the elevator design. The 
flaps are usually of the stiffened shell construction which can be analyzed 
by the previously discussed methods. A number of flap types are used 
at the present time, such as the split flap and the Fowler flap. The 
essential difference lies in the aerodynamic forces produced and not in 
the general methods of construction. 

Since these surfaces are attached to the wing structure, they assume 
the same deflection form as the wing. Frequently the loads imposed on 
these control surfaces because of the wing deflection will be the design 
criteria rather than the air loads acting on the surfaces. They should 
therefore also be investigated for these conditions. 

The design problems and methods of analysis discussed in this chapter 
are of a general character. In the design of any airplane a large number 
of problems will be encountered which have not been discussed here; 
however, a thorough understanding of the fundamental methods of 
analysis will be of considerable aid in solving such problems. It should 
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also be realized that in all special problems a number of basic assump¬ 

tions are necessary. How close these assumptions can be made to fit 

the physical facts is a matter of judgment and experience which can 

only be acquired with practical experience. 
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CHAPTER 10 

FUSELAGE ANALYSIS 

The stiffened-shell type of fuselage construction is quite similar to 
the wing construction with distributed bending material. One of the 
essential differences is that in the wing shear webs are provided to carry 
the greater part of the vertical shear, whereas in the fuselage the walls 
of the structure are relied upon to resist the shear loads. The fuselage 
frames or bulkheads are equivalent to the ribs in the wing, for they 
transmit the shear loads to the covering and also maintain the shape 
of the structure. The bending loads are resisted by the sheet covering 
and the longitudinal stiffening elements. The stiffening elements are 
usually stringers such as bulb angles, bent-up open sections, and hat 
sections. The loads on the fuselage are usually not high enough to 
justify the use of corrugations, except in stainless steel construction 
where the material gage is very small and the required spacing of the 
longitudinals is close enough to warrant their use. 

In calculating the bending stress it is again assumed that the elemen¬ 
tary beam theory is sufficiently accurate resulting in a bending stress 
distribution given by the equation 

Mxy Myx 
- 

*x ■Ly 

[9-2] 

The shear force Sx, Fig. 10* 1, is zero in practically all cases, except when 
maneuvering loads are applied to the rudder and fin. The principal axes 
and the moments of inertia about them are computed according to the 
method given in section 9-1(6). In general the fuselage cross section is 
symmetrical about the Y-axis, Fig. 10-1, hence the Y-axis is a principal 
axis if Sx is zero. When Sx is different from zero, the effective bending 
material will not be symmetrically distributed about the Y-axis because 
of the resulting bending stress. Also for sections near or at a cutout the 
bending material is not symmetrical about the Y-axis. The allowable 
compressive stresses are usually taken equal to the strength of the longi¬ 
tudinals, except in large fuselages where a general instability failure may 
occur. (See section 8-3.) In addition to the direct compression or 
tension stresses resulting from the bending loads, secondary stresses due 
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to the shear loads are imposed on the stringers. These secondary stresses 
will be discussed in the following paragraphs. 

The shear loads are resisted by the sheet covering and the longitu¬ 
dinals, the resulting shear stresses can be computed by the formula 

T 
Qx 

1st 
[10.1] 

if we assume Sx equal to zero. The static moment Qx is calculated as 
follows: If the stress is to be calculated at B, Fig. 10*1, then Qx is the 
static moment of the effective bending material from A to Bf with respect 

to the neutral axis. The maximum shear flow, tr, occurs at the neutral 
axis and is zero at the top. It is advisable also to investigate some points 
other than at the neutral axis for the effects of combined shear and ten¬ 
sion or shear and compression. 

The sheet covering will buckle at relatively low shear stresses and any 
additional shear will then be carried by diagonal tension, see section 6-3. 
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The diagonal tension loads in the sheet covering should theoretically 
produce appreciable compressive loads in the longitudinals, if it is 
assumed that a complete tension field exists. Test results indicate that 
the compressive loads calculated on the basis of a complete tension 
field are not reached, and the incomplete tension field theory given in 
section 6-3 should give a closer agreement between calculations and 
experiment. If the curvature of the sheet covering is appreciable, 
secondary bending stresses of considerable magnitude may be produced 
in the longitudinals. The shear wrinkles tend to straighten the curved 

sheet between longitudinals thus producing a normal pressure on the 
longitudinal, which pressure is resisted in bending and shear by the 
longitudinal. The magnitude of the induced bending stresses can be 
estimated as follows: 

Assume the shear stress to be uniform over a panel such as A or B, Fig. 
10 *2a, and calculate the shear flow, (tr)A and (tr)ny at the center of the 
panel by equation 10-1. This shear flow acts in the plane of the sheet, 
which is assumed to be straight between longitudinals, Fig. 10-26. It 
should be remembered that the conditions of equilibrium of a sheet ele¬ 
ment require that the shear stress along two perpendicular edges be 
equal in magnitude. If the angle between the chords to adjacent stiffen¬ 
ers is denoted by 0 then the load, in pounds per inch, tending to bend 
the longitudinal inward is 

Vr = [(<r)x + (<t)b] cos 0/2 [10-2] 

If pr is assumed constant between frames the stringer can be treated as a 
simple beam subjected to a uniform load. This method is only a rough 
approximation. A somewhat more accurate method is to consider only 
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the shear flow above the buckling value as the contributing value to the 
induced bending moments, that is, instead of equation 10-2, use 

Vr = [f'A (r — tc)a + tn (t — tc)b] cos p/2 [10*3] 

where rc is the buckling shear stress for the respective panels and r is the 
shear stress corresponding to the shear load Sy. When r is less than rc 
the equation has no meaning for the sheet is in the unbuckled state. 
Actually the sheet is not buckled at the frame and the load pr is not con¬ 
stant between frames but drops off to zero at the frames. For a more 
accurate determination of* the maximum stress the longitudinal should 
be analyzed as a beam column. By a beam column is meant a beam sub¬ 
jected to axial and transverse loads. 

In addition to the shear and bending loads the fuselage structure will 
also be subjected to torsional loads. The torsional loads are a result 
of fin gust loads acting at right angles to the fin surface; side-load 
landing conditions in the case of a tricycle landing gear; and from the 
unbalanced loads in the unsymmetrical flight conditions. In the 
unsymmetrical flight conditions the wing reactions at the fuselage are 
not symmetrical, that is, the reactions on one side are larger than those 
on the other side. This unbalanced condition results in a torsional 
moment on the fuselage. The non-symmetry of the wing reactions are 
a result of the inertia forces in the fuselage due to the angular accelera¬ 
tions caused by the assumed difference in the lifting forces on each half 
span of the wing. 

The torsional loads are transferred through the sheet covering to 
the members or parts of the airplane which are capable of resisting 
them. For example, the torsional load resulting from the side load on 
the fin is resisted by reactions at the connections between the fuselage 
and the wing. Similarly the torsional loads resulting from the unsym¬ 
metrical flight conditions arc resisted by wing reactions. The shear 
flow and the angular twist per unit length 0, resulting from the torsional 
loads, can be calculated by equations 3*80 and 3-82 of section 3-6(6). 

, MtP 
“ 4A2Gt 

As previously pointed out these equations are strictly valid only when 
warping of the cross section is not restrained, that is, when we have a 
condition of pure torsion. It should be noted, that for the condition of 
pure torsion the shell with longitudinal stringers has the same shear 
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liow as the unstiffened shell and the torsional stiffness is the same. 
If the walls of the fuselage consist of sheet plus corrugations, the com¬ 
bination of sheet and corrugations can be replaced by an equivalent 
sheet, the thickness of which can be calculated by the method given 
in section 9-1 (a). If the torsional loads are sufficiently high, so that 
diagonal tension fields are formed between stiffeners, their effects will 
be to introduce secondary loads in the longitudinals and frames. These 
secondary loads are similar in character to those described for the 
vertical shear condition. Usually the torsional loads on the fuselage 
arc not high enough to cause any appreciable secondary load. 

The methods of analysis discussed so far do not take into account the 
effects of cutouts and discontinuities in the material and loads. A 
considerable number of large cutouts arc necessary in the majority of 
fuselages, such as doors, windows, and emergency exits. Methods are 
not available for calculating the exact influence of such cutouts on the 
stress distribution. The usual procedure is to make an analysis based 
on the elementary beam theory with suitable allowances for the ma¬ 
terial at or near the cutouts, which is not fully effective. For example, 
in calculating moment s of inertia and static moments, a stringer ending 
at a cutout is assumed ineffective from the cutout to the point where it 
crosses a frame. The discontinuity in the shear flow due to the cutouts 
is probably the most serious. Suitable provisions must be made tci 
allow the shear loads to be carried around the cutouts. This can be 
accomplished by providing doubler plates and also some form of a 
stiffening frame work reinforcement around the cutout. If the cutouts 
are not properly reinforced with a stiffening framework, an excessive 
amount of warping will take place, this being especially true around 
doors. Sharp corners in cutouts should be avoided, since they cause 
high stress concentrations which may be either sufficiently high to cause 
direct failure of the material or, if lower, they may cause a fatigue 
failure of the material. 

The floor and floor supports in passenger and cargo airplanes are part 
of the fuselage and as such should be considered in the fuselage analysis. 
The floor supports usually consist of beams which transfer the floor 
loads to the fuselage structure. 

The ordinary beam theories are all that are necessary for the analysis 
of these supports. Occasionally they may be of a statically inde¬ 
terminate nature and in such cases the methods given in Chapter 4 
can be used. The concentrated loads coming from chairs, etc., are 
taken directly into the floor supports. The floor is designed for the 
maximum pressure, in pounds per square inch, to which it will be sub¬ 
jected. The actual magnitude of the pressure is determined by oper- 
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ating conditions. For example, it has been found that womens heels 
(especially of the French variety) cause very high local loads and map 
determine the floor design. 

The transfer of loads from the floor supports into the fuselage struc¬ 
ture must also be considered. The passenger loads are distributed over 
a large number of frames and the resulting load on each frame will be 
relatively small. In baggage compartments the loads may be suffi¬ 
ciently high to require an analysis of the frames which distribute the 
load. The transfer of loads by the frames into the fuselage structure 
is discussed in the following paragraphs. 

In the design of fuselage frames two types of frames should be con¬ 
sidered, namely, (a) intermediate frames and (6) main frames or bulk¬ 
heads. The intermediate frames are provided to preserve the shape 
of the fuselage structure, to reduce the column length of the stringers 
and to prevent general instability failure. These frames are subjected 
to several types of loading such as radial loads due to the longitudinal 
curvature of the stringers, effects of diagonal tension fields in the sheet 
covering, or transfer of local shear loads to the sheet covering. Most of 
these loads are comparatively small and often tend to balance each 
other, therefore the design of intermediate frames is commonly based 
either on the experience of the designer or on some semi-empirical 
methods of analysis. 

This applies only to localized shear loads which must be transferred 
to the fuselage structure. The frame sizes necessary for general insta¬ 
bility criteria are determined by the methods of section 8-3. It must 
be realized that the experimental evidence on which the design criteria 
of section 8-3 are based was obtained from pure bending tests. Data 
on the influence of shear are not as yet available; it is therefore recom¬ 
mended that the pure bending data be used for the general instability 
calculations. Tests on stiffened cylinders which failed by panel insta¬ 
bility, reference 10-2, indicated that the influence of shear was such 
as to give a higher maximum stringer stress before failure occurred. 
It is possible that in the general instability type of failure the same 
effects may occur. 

The main frames are introduced primarily to distribute into the 
sheet covering such concentrated loads as the loads from the wings, tail 
surfaces, and landing gear. Main frames are usually statically inde¬ 
terminate structures and their analysis is based on the methods dis¬ 
cussed in Chapter 6. One of the first considerations in the analysis of 
frames is the distribution of the shear load over the frame. It should 
be remembered that the frame is somewhat analogous to a rib inas¬ 
much as it is required to distribute the shear loads into the fuselage 
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structure. In order to agree with the bending theory, the distribution 
of shear over the frame should be according to equation 10*1 or the 
shear load in pounds per inch at any point on the frame should be 

where Qx is the same as in equation 10-1. This type of distribution 
gives a maximum value at the neutral axis, regardless of where the load 
is applied. Another way of considering the problem is that the fuselage 
covering will abscrb the maximum amount of shear at the point of 
application of the concentrated load and that the shear resistance of 
the covering is reduced in proportion to its distance from the point of 
application of the concentrated load. This gives a linear shear distri¬ 
bution over the length of the frame. In addition to the distribution 
of the shear load, the magnitude of the concentrated load to be trans¬ 
mitted must be considered. The main frames which connect to the 
wing spars resist the spar shear reactions at the fuselage. The magni¬ 
tude of the shear reaction at any spar is equal to the total shear load 
in the spar web. Similarly the frames at the tail surfaces resist the 
reaction loads coming from the stabilizer spars. In the tricycle type of 
landing gear the loads on the nose gear are transmitted to the fuselage 
structure; however, here the dissipation of load into the structure is 
usually more gradual, that is, several frames are used for transmitting 
the load. One method is to attach the gear to two spars extending over 
several frames, the loads are then transmitted from the gear into the 
spars, from the spars into the frames, and from the frames into sheet 
covering and distributed bending material. Since the surrounding 
structure, i.e., spars, frames, sheet covering, and distributed bending 
material, forms a statically indeterminate structure, the exact portion 
of the total load resisted by each frame is difficult to determine. By 
making some simplifying and overlapping assumptions an analysis 
giving results of a first order approximation can be obtained. For 
example, the spars may be considered as simple beams, the frames 
providing the necessary reactions. 

The relative stiffness between the frame and the member which 
provides the reaction, and also the method of attachment to the mem¬ 
ber, will have an important bearing on the analysis. This is true, for 
example, for main-wing spars where the moment of inertia of the spar 
may be of the order of one thousand times that of the bulkhead, when 
it can be readily assumed that the frame is attached to a member of 
infinite rigidity. This assumption will to some extent simplify and 
shorten the work. 
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For the analysis of those frames we make use of Castigliano’s second 
theorem, the theorem of least work. In order to clarify the general ideas 
involved in the solution, we shall first consider a very simple case and 
then treat the more general case. Consider a circular bulkhead of 
uniform cross section, Fig. 10* 3a, attached to a spar at two points 
which lie on a diameter. It is assumed that the moment of inertia of 
the spar is very large compared to that of the bulkhead and the con- 

Fig. 10-3. Notation for frame analysis. 

nection between spar and bulkhead is equivalent to a built-in end. 
The shear distribution is in agreement with the bending theory, that is, 

It 
Qx 

h 
[10-4] 

If we replace the distributed bending material by a sheet of uniform 
thickness to around the frame, where t0 is equal to the total area of the 
bending material divided by the perimeter of the cross section, the 
analysis is greatly simplified. From the symmetry of the system it is 
seen that the upper half of the frame will carry one-half the total shear 
reaction Sv distributed equally to the end of the half frame as shown in 
Fig. 10-36. The axes of symmetry, X and F, will also be the principal 
axes. The static moment of an element of length R d/3, with respect to 
the neutral axis is 

A Qx = y to R dp 

Substituting R cos 0 for y and denoting the shear flow by q gives for the 
shear flow for any value of 

Sy to R2 

h 
cos j8 djS 

Sy tp B? 

I* 
sin j8 
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Noting that for a thin-wall cylinder of wall thickness to the moment of 
inertia about a diameter is tt t0 R3 we have, 

to = 
Sy sin ft 

ttR 
[10-5] 

This shear load in pounds per inch, acts along the outer surface of the 
frame and is at every point tangent to the surface of the frame. Since 
the bending axis of the frame is at its neutral axis the shear flow q will 
introduce a secondary bending moment which is proportional to the 
distance from the neutral axis to the outer surface. If the frame 
depth is small compared to the frame diameter the effects of the second¬ 
ary moments are also small and will be neglected in our present cal¬ 
culations. 

Dividing the upper part of the frame into two halves, Fig. 10-3c, the 
unknown forces Mb and Pb must be applied at B to balance the external 
loads. Let us first calculate the moment Me , produced by the unit 
tangential shear loads q at 6. The shear load qp R dp acting over an ele¬ 
ment of length R dp produces a moment at, 6 of magnitude 

AMpq = qpR2 [1 - cos (0 - p)]dp 
or 

Me = —- f [1 — cos (6 — ft)] sin P d P = (l — cos 0 — - sin 0 ) 
a TT Jo * \ 2 / 

We can now write the expression for the total moment at any point on 
the frame in the form 

Me = Mb + PbR( 1 — cos Q) 
SyRL _ 

7T \ 
cos B — -- sin 6 

2 ) [10-6] 

The unknown quantities Mb and Pb can be determined by Castigliano’s 
second theorem, section 4-1, namely, 

dU_ 

QMb 

dU 
dPB 

1^ 

El 

1 

El 

r «.!£**,- o 
Jo dMB 

f'nM,~Rde -0 
Jo orb 

By substituting the value of Me in these two equations and by per¬ 
forming the integration, we obtain two equations, linear in the two un¬ 
known quantities Mb and Pb, and from these two equations we can 
determine the magnitude of Mb and Pb in terms of the known quantities 
Sy and R. The moment at any point on the frame can now be calculated 
by equation 10-6. It has been assumed in the above energy expression 
that the expression for the bending strain energy of a beam is also appli¬ 
cable to curved members. 
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The shear force at right angles to the neutral axis, Fig. 10*4 can be 
calculated from the following relations. 

dM _ l^dMe 
dx R dd 

[10-7] 

A general expression for the axial load in the frame can be obtained 
from the equation of equilibrium for a section of the frame, Fig. 10-4. 
Taking moments about the center of the frame gives 

M0 = Mb + Pi,R + P«R - Me - ^ Ain <pdv = 0 
* Jo 

Fig. 10-4. 

Substituting for Me the value given by equation 10 -6 and integrating 
gives 

Pe = 6 sin 6 — Pb cos 0 
2ir 

[10-8] 

With the bending moment and axial loads known the maximum com¬ 
pression or tension stresses are calculable. 

Let us now consider the more general case (reference 10*4) in which 
the bending material is not uniformly distributed and the frame has a 
variable cross section. The cross section is again symmetrical with 
respect to the F-axis and the total shear reactions are transmitted to 
the frame at points A and C, as shown in Fig. 10-5a. These shear 
reactions are also symmetrical with respect to the F-axis. The axes 
X and F are principal axes and their position is calculated by the 
method described in section 9-1(6). The shear distribution can be 
assumed either to be in agreement with the bending theory, that is, 

SyQx 

or to vary linearly with the distance from the applied reaction as pre¬ 
viously described. Because of the symmetry of the system the frame 
can be divided into two halves. The balancing loads at A and D are 



and between 0 = 0X and 0 = 02 the bending moment at section M-M is 

n 

Mb + PiiUm ~ /] ASidi + ~~{xk — xm) [10*10] 

Replacing the integral expression for the bending strain energy by a 
summation, we can write for the total strain energy in one-half the 
frame, 

/-* Imb+PbVj-T^ASa]2 

-eJ~ “ 4i' [ij* m “12 

Mb + PBUm — ASjdi + (Sy/2) fa — xm) 
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By Castigliano’s second theorem 

dU 

dl'B 

3=k 

[<~3 
Mb + PnVj ~ ^ ^ 

i— 1 

Ejlj 
yjALj 

[i—rn 

Mb + Pj)ynt — ASjdi + (Sy/2) (xk — xm) 

m—k Pm I m 
ymALm= 0 

dU_ 

dMjj 

[j=j 
Mu + PuVi - 2_J ^id< 

L--ijf1-^ J - 1 33 

[i—tn -i 

Mb + PnVm — ^ ASidi + (Sy/2) (xk — xm) J 

+£ 
ni — k 

K J A Lm = 0 

For convenience we designate AL/EI by Z, then the latter two equa¬ 
tions become 

j= n n j~n r i = j -j 

mb V + Pb Y] 2/y^y T] 
y— i i i ^ i= i -* 

j—n 

+ (Sy/2) Z,(xk - xj)yj = 0 [10-11] 
/— A 

; = n ;*n j^n p i=j -j 

Mb £ Z, + yft -J2[zi 2 A/Sa*di J 
j— i u t=i 

+ (V2) 2 Z&* ~ *i> = 0 H0-12J 
j-k 

From these two equations the two unknown quantities Pb and Mb can 
be determined. All expressions can be readily evaluated except the ex- 

pression ^ ^ ASt4i which requires a considerable amount of work. It 
1 

should be noted that all values of di arc different for each section AS. 
Since A Lt*d* is equal to twice the area of the triangle abc, Fig. 10-6a, it is 
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seen that the expression ALA is just equal to twice the area ebcda. 
*= 1 

Now the expression ^ ^ ASA can be written as 

* = / i-j j=j 

ASidi = QiAL{di — q ALidi [10-13] 
i— i i — 1 

if g is the mean of the shear flow between the points e and d. Hence the 
expression can be best evaluated in the following manner: 

1. Plot the distribution of q> Fig. 10-06, as a function of the length of 
the frame, the length being measured along the outer surface from the 
point d, Fig. 10-6a. 

2. Plot the value of twice the area, similar to the area cbcda, at each 
section as a function of the frame length. This gives 2 A Lidi as a func¬ 
tion of the length as shown in Fig. 10-6a. 

Fig. 10-6. Graphical solution of equation 10*13. 

3. Plot the values of q 2 ALA as a function of the frame length. The 
mean value of q, for example, at section J-J is the area under the q 

curve up to j, divided by the length to j, Fig. 10 • 66, and ALA is the 

value given by the 2 ALA curve at j. 
The summations of equations 10-11 and 10-12 can now be evaluated in 

a tabular form as shown in Table 10-1. Substituting the numerical 
values of the summations in equations 10-11 and 10-12, the quantities 
Pb and Mb are determined and their values substituted in equations 
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10*9 and 10*10. The bending moment M can now be calculated at any 
frame section. To determine the axial load and the transverse shear at 
any section, construct a force polygon of all the forces starting with PB 
and continuing along the frame with the A Si forces. Then the compo¬ 
nent of all the forces, acting above section J~Jy in a direction parallel to 
the tangent at section J--J, gives the axial load acting on the frame at 
this section. The component of these forces perpendicular to the tan¬ 
gent, at section J-J, gives the transverse shear force at the section. With 
all the loads known the combined stresses at any section can be cal¬ 
culated. 

The above method of analysis is strictly only applicable to frames 
which are unsupported by the fuselage covering and the distributed 
bending material, that is, their deflections are not restricted by the 
surrounding fuselage structure. Actually the frame deflections may 
become quite pronounced in which case the outward deflections are 
resisted by the fuselage covering due to double curvature effects and 
by the support of adjacent frames through the longitudinal stiffening 
elements. This action of the surrounding structure is equivalent to 
an introduction of inward acting loads which resist bending of the 
frame and which thereby reduce the frame stresses to values smaller 
than that indicated by the above analysis. However, at present, 
methods are not available for determining the actual reduction in 
stresses due to these effects, and it is therefore recommended that the 
above method of analysis be used in the design of main frames. 

So far we have considered only the stresses resulting from vertical 
shear reactions. As previously pointed out, for example, in the unsym- 
metrical flight conditions the shear reactions are not symmetrical about 
the F-axis. The unsymmetrical reactions can be replaced by a system 
of symmetrical vertical reactions plus a torsional moment equal to 
the unbalanced couple produced by the unequal reactions. These two 
loading conditions, vertical shear and torsion, can then be treated 
separately by the previously given methods of analysis. The stresses 
resulting from the separate loadings are added algebraically to give 
the total stress. 

Other cases which give rise to combined torsion and shear can be 
treated in a similar manner. The distribution of the shear flow due to 
torsion is constant around the frame and is given by the equation 

Because of the uniform shear flow over the fuselage cross section the 
calculations of the frame stresses, due to torsion, are somewhat simpler; 
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for example, q in equation 10*13 has the same value at every section. 
When a large cutout occurs adjacent to a main frame, its influence on 
the shear distribution should be taken into account. In addition to 
the frame stresses, the loads acting at the various connections between 
the frames and wing spars and between the frames and sheet coverings 
are obtained from the frame analysis. 

The fuselage analysis covered in this chapter is of a general nature 
and no attempt has been made to cover detailed methods of analysis 
or to treat- special problems. The references included at the end of the 
chapter treat many of these problems as well as giving a more detailed 
treatment of the methods of analysis. 
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CHAPTER 11 

ENGINE MOUNTS, LANDING GEARS, AND FITTINGS 

11-1. Engine Mounts 

In the analysis of an engine mount the first problem to be considered 
is that of determining the magnitude of the external forces to be resisted 

by the structure. All forces and moments acting on the engine mount 
can be classified as either direct or induced. The former includes 
thrust, torque, and the air forces on the engine or cowling, whereas the 
latter is concerned with inertia forces. Although the induced forces 
are of the same fundamental character, they arise from such a variety 
of causes that it might be well to consider them in some detail together 
with the direct forces. A further classification according to the cause of 
the force can be made as follows (see reference 11 • 1): 
а. The thrust and torque forces are produced by the propeller and 

their values depend on the engine and propeller characteristics as well as 
on the flight conditions. Their values can be calculated by standard 
methods given in courses on aerodynamics. 

б. The lift and drag (or anti-drag) forces on the cowling of a radial 
engine may be of sufficient magnitude to warrant their inclusion in the 
engine mount analysis. The magnitude of these forces can be estimated 
from wind tunnel test data. 

c. The linear acceleration forces arise from the acceleration of the 
airplane as a whole, caused by the resultant air forces, and are given by 

9 

where W = the weight of the engine 
a = the linear acceleration of the airplane in any direction. 

d. The angular acceleration forces and moments arise from the angular 
acceleration of the airplane about its center of gravity. The force is 
given by 

386 
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and the moment by 
Ma = la 

where l = the distance from the center of gravity of the airplane to the 
center of gravity of the engine-propeller combination, 

I = the mass moment of inertia of the airplane about the axis of 
rotation, and 

a = the angular acceleration. 

e. The radial acceleration force arises from the angular velocity, «, of 
the airplane about its center of gravity and is given by 

W 
F„ - - aH 

9 

f. Gyroscopic couples arise from the rotation of the propeller and 
certain parts of the engine, both of which act in conjunction with an 
angular velocity of the airplane. The equations for calculating these 
couples are given in reference 11*1. 

g. Vibration forces arise from unbalanced engine parts, propellers, 
etc. The nature of these forces is such that they arc not included 
in the usual static stress calculations, but 
must be considered from a standpoint of 
fatigue of the structure. In addition to 
the above any special loading requirements 
as given by the Civil Aeronautics Authority 
or the Services must be met. For these, see 
CAR 04, CAAM 04 and the appropriate 
service manuals and handbooks. 

The above loads apply to either air-cooled 
or liquid-cooled engines. The remainder 

of the discussion on engine mounts will nl Welded st„, 
be primarily concerned with the design of tubular engilie mount. 
air-cooled radial engine mounts since this 
type of engine predominates in both service and commercial airplanes 
of this country. 

After the loads have been determined the next problem is that of 
choosing a structure which will (1) carry the applied loads, and (2) 
allow easy access to the back of the engine since this region contains 
nearly all of the engine accessories and accessory drives. In the majority 
of the normal-sized airplanes built today, a welded steel tubular mount 
is used. (See Fig. 11-1.) The analysis of such mounts follows the usual 
methods of analysis for space frameworks given in Chapter 4 or in 

numerous other reference texts (see reference 11-2). It is almost 



388 ENGINE MOUNTS, LANDING GEARS, AND FITTINGS [11-1 

mandatory that these trusses be redundant so that loss of one member 
due to fatigue tailure or any other reason, will not cause complete loss 
of an engine. This redundancy may extend to all four sides of the 
mount. The only member of the mount which docs not lend itself 

easily to types of analysis previously discussed is the engine mounting 
ring, to which is attached the engine. A method of analysis of this 

member is given in detail in reference IT3 and will not be given here. 
Every effort should be made to have the center lines of all members 

entering a joint intersect at one point. This will prevent fatigue 
failure arising from reversal of loads applied 
through eccentric points. A certain amount 
of gusseting at the joints is usually neces¬ 

sary and, to permit an accurate stress 

analysis, typical joints should be tested to 
determine the appropriate end restraint 
to use for the tubes. 

There are two major disadvantages in¬ 
herent in the wedded tubular mount. The 
first of these is the need for highly skilled 

welders to manufacture the structure. The 
labor on this type of mount is therefore 

expensive and the construction does not lend itself readily to mass 

production using relatively unskilled labor. The second disadvantage 
is that the mount must be covered with an inner cowl for aerodynamic 
reasons and, since the air forces and vibration forces in this cowl are 
relatively large the cowl is heavy but actually contributes nothing to 
the strength properties of the engine mount itself. 

For the above reasons, considerable thought has been given to the 

use of a semi-monocoque engine mount. (See Fig. 11*2.) This struc¬ 

ture takes the place of both the engine mount and inner cowl and thus 
one structure is made to serve two purposes. The major disadvantage 
of the semi-monocoque cowl is the difficulty of providing sufficient 

access holes in the mount without destroying the strength properties 
of the structure. In very large installations it is poSwsible to reach the 
rear of the engine from inside the nacelle and in these cases there is no 

problem. However, the design for reasonably large radial engines 
looks promising and the access doors present no more of a problem than 
do cutouts in the wings and fuselage of the airplane. Methods of 

analysis for this type of mount are identical with those discussed 
previously for the wings and fuselages, although the loadings are in 
general more complex. 

Fig. 11-2. Semi-monocoque 
engine mount. 
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11-2. Landing Gears 

There are two types of ground plane landing gears in common use 
at the present time. The first of these is the one that has been used 
for a number of years and consists of two main wheels forward of the 
center of gravity of the airplane and a smaller wheel located somewhere 
near the tail. This is commonly known as the conventional type of 
landing gear. A somewhat newer innovation which is rapidly gaining 
favor is the tricycle gear which consists of two main wheels aft of the 
center of gravity and a nose wheel as far forward in the nose of the 
fuselage as it can be placed. These two types are discussed in detail 
in Chapter XII of reference 11-4 and only the major advantages and 
disadvantages will be mentioned here. In general, it can be said that 
the tricycle gear is heavier, has a shorter wheel base, has more drag if 
unretracted than the conventional gear, and does not allow ground¬ 
looping in emergencies. To offset these disadvantages, the tricycle 
gear allows full use of the brakes in landing without danger of nosing 
over, has no tendency to ground-loop accidentally, is more suitable for 
blind landing, and usually allows shorter take-off runs. Structurally, 
the design of the nose wheel follows the same pattern as that for the 
main wheels except that it must have incorporated in it devices to 
permit swiveling, centering when retracting, and possibly steering when 
taxiing. The same statements are true concerning the tail wheel; 
however, the loads on the tail wheel are very much smaller than those 
on the nose wheel and it is consequently much smaller. 

Considering main landing gears, they fall into two major classifica¬ 
tions: those which retract while in flight and those which remain ex¬ 
tended at all times. The obvious advantage to the retractable gear is 
the reduction in drag which must be paid for by an increase in weight, 
not only by the addition of the retraction mechanism but also because 
the retracted wheel makes large cutouts necessary in the wing or fuselage 
into which it goes thus causing structural inefficiency and an additional 
weight increase. However, the drag saving is sufficient to make retrac¬ 
tion justifiable, if not mandatory, on all large, high-performance air¬ 
planes and the non-retractable type is therefore seen only on smaller 
or low-performance airplanes. 

Structurally, there are again two classifications into which nearly 
all landing gears will fall. These are the truss-type gear (Fig. 11*3) and 
the cantilever (Fig. 11*4) or semi-cantilever (Fig. 11-5) types. The 
truss-type gear has the advantage that the oleo strut is in pure com¬ 
pression which leads to a smoother action particularly in taxiing. It 
has more drag and therefore is never used for a non-retracting gear, 
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however, the drag increase is not so serious and for some considerations 
may be an advantage for a retracted system. It does have the serious 
disadvantage that it gives more structural interference when retracted 
owing to the over-all dimensions of the truss. It has one other disad- 

Fig. 11-3. Truss-type landing gear. Fig. 11-4. Cantilever landing gear. 

vantage since removal of a wheel is more complicated; however, this 
may be offset by the possibility of having brakes on both sides of the 
wheel and by being able to run direct pressure leads from the truss 
structure on both sides. The cantilever gear, with its low drag, is 
always used for non-retracting systems and because of the relatively 

small size of the structure is being 
used considerably in retracted sys¬ 
tems. It has the disadvantage that 
the oleo strut is in bending and, if the 
design is not carefully handled, this 
fact may cause serious sticking and 
consequently poor shock absorber 
action. Owing to the necessity for 
attaching the retraction mechanism 
to the gear, it is frequently possible 
to use part of the retraction system 
to take some of the loads which may 
lead to a structure which is cantilever 
for side loads and trussed for fore 
and aft loads, or vice versa. 

Fig. 11 o. Sem^antilever landing The joads in the landing.gear 

gear' system have been briefly outlined in 
Chapter 2 and are more specifically given for commercial airplanes in 
CAR 04 and CAAM 04. For the truss system, the method of analysis 
follows the methods given in Chapter 4. The cantilever or semi¬ 
cantilever gear analysis follows the principle of beam analysis, in which 
the beam is loaded with bending and shear in one or more planes and, 
in addition, may be subjected to torsion. The only part of the analysis 
which introduces new features is the analysis for the bend between 
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the oleo and the axle, and this part must be analyzed by the methods 
employed for curved beams under bending. A short description of this 
method will be given and more detailed derivations may be found in 
reference 11*5 and 11 * 6 and others. 

Consideration of the beam in Fig. 11-6, shows that the stress at any 
distance y from the centroidal axis of the section is given by the equation 

<T 
M 

AR (1 + 1zT+d [1H] 

where M = bending moment in inch-pound, considered positive when 
it tends to increase the curvature; 

A — cross-sectional area of the beam in square inches; 
R — radius of the beam measured to the centroidal axis of the 

section, in inches; 
Z = a non-dimensional property of the cross section, somewhat 

similar to the moment of inertia in the straight beam 
formula; 

y = distance to fiber in question from the centroidal axis, in 
inches—positive towards convex side of beam. 

Values for Z for various beam cross sections are given in the above 
references. For circular and elliptical cross sections, the values may 
be calculated from the equation 

Z = [11-2] 

where R is as defined above and c is the distance to the outer fiber 
measured from the centroidal axis. (Fig. 11*6). 
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In general, the stresses at this section of the oleo strut will determine 
the outside diameter of the oleo strut. Since the effect of the curved 
beam disappears in the straight portion of the strut and also, since the 
torsion links take out the torsion stresses, the upper part of the oleo 
strut need not be as strong and may be bored out to reduce weight. 

The shock-absorbing mechanism is either purchased as a complete 
assembly or in large companies is designed by a special group, therefore 
it will not be discussed. One item, however, which must be kept in 
mind is that the oleo piston and cylinder must slide together under load 
and should therefore have the same load-deflection curve. In order 
that this may be true it is advisable that the oleo cylinder and strut 
have as nearly as possible the same moment of inertia. 

The retraction mechanisms, although they may appear complex, are 
basically determinant truss systems and are so analyzed. No attempt 
will be made to show a typical system because they are different for 
nearly every airplane. The only design features that should be empha¬ 
sized are (1) that the system be not adversely affected by deflections of 
adjacent structures such as the wings; (2) that manual retraction and 
lowering be provided if the power supply (usually hydraulic) fails; 
and (3) that positive locks be provided to assure rigidity of the landing 
gear when it is extended. 

11-3. Fittings 

In the interest of structural efficiency it is desirable to keep the 
number of fittings in an airplane to an absolute minimum. The ideal 
airplane would be one that contained no fittings. However, from the 
standpoint of production, assembly, and maintenance, it is necessary 
to break the structure into small units to facilitate handling. Each such 
unit which must be attached to the rest of the structure involves the 
use of fittings. Such fittings must be as strong as the members they 
join and they will weigh as much as the structure they replace plus any 
additional material necessary to pick up the loads in the structure plus 
the weight of bolts, nuts, rivets, or other means of attaching the fitting 
to the structure. In addition to the above, regulations specify an 
additional fitting margin of safety over and above the design loads. 
Meeting this margin of safety, which is 1.20 for commercial airplanes 
and 1.15 for military airplanes, adds additional weight to the structure. 

There are additional factors which make fittings responsible for weight 
increases other than those mentioned above. Provisions for attaching 
bolts may make the adjacent structure larger and heavier because of 
stress concentrations around bolt holes. Fittings may change a column- 
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end fixity and may add secondary loads due to unavoidable eccen¬ 
tricities. And it must not be forgotten that such items take time to 
manufacture and therefore increase the cost of producing the airplane 
in addition to increasing its weight. In the light of the above, it is 
therefore obvious that a designer’s efforts should be directed towards 
reducing fittings to a minimum and to making them as simple to 
analyze and to manufacture as is possible. 

The fact that fittings must be manufactured with appropriate 
tolerances on all dimensions also adds to the weight problem. For 
example, a fitting with a ^-in. web may have a tolerance of H 4 which 
immediately makes it necessary to analyze on the minimum dimension of 
JtU in. whereas a large portion or even all the fittings may come through 
with the maximum dimension of %4 in., which immediately gives a 
weight penalty of 30 per cent in such fittings. In general, due to theii 
small size, fitting tolerances will be proportionally greater than those in 
large structural members and thus the weight penalty will be more severe. 

The designer should be completely familiar with the machine opera¬ 
tions used in manufacturing fittings and for that purpose should read 
the appropriate parts of reference 11*7. The most common manu¬ 
facturing methods arc: 

а. To cut the fittings from solid bar stock. This method is slow 
and is therefore generally used on experimental models or for fittings 
which are simple enough to be finished on an automatic screw machine 
or lathe equipment. 

б. To form the fittings from sheet stock. This is a satisfactory 
method for small attachment clips and similar parts. 

c. Casting the fitting in aluminum or magnesium-alloy or high- 
strength steel. One of the major disadvantages of this method lies in 
the very severe penalties which are imposed upon any castings used as 
structural members of an airplane. These restrictions make margins 
of safety of 100 per cent sometimes necessary and this imposes a very 
severe weight penalty on this type of fitting. A detailed discussion of 
this problem is given in reference 11-7. 

d. Forging the fitting. For any production airplane, those fittings 
which are made by casting or cutting from solid stock on the experi¬ 
mental model are usually reworked so that they can be made into 
forgings. Forgings have very good strength properties, do not have 
weight penalties imposed upon them, and are suitable for large-scale 
production at a low cost. 

In the light of the above discussion, it is easy to see why nearly all 
fittings in a production airplane fall into classes b and d and very few 
are found which are made by methods a and c. 
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Various means may be used to attach fittings to the main structure. 
Bolting, riveting, welding, and spot-welding have all been used satis¬ 
factorily in the appropriate places. One note of caution should be 
mentioned, however, regarding the use of a combination of bolts and 
rivets. Inasmuch as rivets are driven so as to fill the hole completely 
and bolts must have some tolerance for ease in installation, the rivets 
will carry the entire load until they deflect far enough to take up the 

bolt tolerances. This usually means 
that the rivets have failed before the 
bolts begin to be loaded, an undesirable 
and overweight method of construction. 

Methods of analysis of fittings follow 
the usual laws of applied mechanics 
and strength of materials. The most 
important point from the design stand¬ 
point is the determination of the loads 
acting in the fitting. The direct loads 
from the main structure are usually 
easily determined from the structural 
analysis; however, there may be sec¬ 
ondary stresses introduced into the 
fittings, which in combination with the 
direct si resses may cause failure. These 
secondary stresses may be due to eccen¬ 
tricities of the fitting with regard to the 
load application point which may intro¬ 
duce bending stresses; vibration loads 

coming into the fitting through control cables or rigging wires; shock loads 
that may arise due to worn bearings either in the fitting or in an adjacent 
structure; accidental handling loads; and numerous other loads which 
are not immediately apparent from a consideration of a strictly routine 
analysis. The designer must try to envision all possible loads on the 
fitting, and the damage to the airplane which might be caused by a 
fitting failure and govern his design accordingly. Obviously the failure 
of a fitting holding ash trays in the cabin need not be given as careful 
consideration (except from a weight standpoint) as one which attaches 
the wing to the fuselage. There are all degrees of importance between 
these two extremes. 

A question that often arises is the method of rivet design to use for a 
fitting such as that shown in Fig. 11 • 7 where a group of rivets or bolts 

attaches a cantilever fitting to a main structural member. The method 
assumes the rivets are all of the same size. Referring to Fig. 11 *7, it is 

Fig. 11-7. Eccentric fitting. 
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assumed that the horizontal and vertical forces H and V are uniformly 
distributed between the rivets so that 

#i = H2 = H3 = Ht = H5 = • • • = Hn - - [11-2] 

Vi = F2 = F3 = F4 = Fs - ••• = F„ - 

where Hi • • • //n are the horizontal forces on rivets 1 • • • n, respec¬ 
tively, and Vi • • • 7n are the corresponding vertical forces. 

The next step is to determine the center of gravity of the rivet system 
which gives the value of c shown in Fig. 11-7. The turning moment on 
the fitting is then equal to 

M ~ Vc [11 -3] 

which is resisted by forces on the rivets acting perpendicular to the 
radii. Assuming that the fitting rotates as a rigid body the tangential 
rivet forces, 1\ • • • Tn, will have ratios as follows: 

Tx = rj Ti = n 
T2 r2 Tn rn 

[11-4] 

[11-4a] 

The torque developed by these forces acting around the rivet centroid 
is given by 

M = 7c = Tm + T2r2 • • • Tnrn [11-5] 

or, substituting equation 11-4a into equation 11*5 

r\ r\ 
n + - + - + n n 

= ^(rl + rl + 
n 

giving, for the tangential forces 

Mn 

_ Mr2 

T2~r\ + ri+. 

r M r" 
A “ * + * + • 

[H-6] 

[11-7] 
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The total force system acting on one rivet, say rivet 1, is shown in 
Fig. 11-76. These forces are added vectorially and from this vector 
sum the total load and hence the stress on the rivet can be obtained. 
This is repeated until all the rivet loads are determined. The rivet 
size is then chosen on the basis of the maximum rivet load, it not being 
advisable from a manufacturing standpoint to have a group of rivets of 
different sizes. 

Simple fittings such as that discussed above are relatively easy to 
analyze. Some of the more complex fittings which may be complicated 
forgings with reinforcing flanges, etc., are very difficult to analyze since 
the stress distribution in the fitting for even simple loadings is unknown 
and hard to estimate. For such fittings large margins of safety must 
be used just to offset the designer’s ignorance. Newer photoelastic 
methods, notably those which make possible a three-dimensional 
analysis, may make the designer’s task easier when this technique of 
investigation has been clarified. Until that time recourse must be had 
to simpler analysis methods aided by static tests to destruction and 
generous margins of safety. 
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Problems for Chapter 3 

3-1. A hard-drawn copper wire having a diameter of 0.128 in. is supported at one 

end and allowed to hang vertically; a load of 250 lb. Is applied to the other end. The 

wire has an elastic limit of 28,000 lb./sq. in. and a Young’s modulus of 16,000,000 

lb./sq. in. Will the wire return to its original length upon removal of the load? What 

elongation will take place per foot of length when the load is applied? 

3-2. A square plate of metal 4 ft. on a side and x/i in. thick is subjected to a shearing 

stress which tends to twist the square surface into a rhombus. To apply this stress 

one edge is securely fixed, and a bar, fastened to the other edge, is pulled with a force 

of 180 tons. As a result the bar is observed to advance a distance of 0.069 in. in the 

direction of the pull. Find the shearing strain, the shearing stress, and the shear 

modulus of the plate. 

3-3. A square steel rod 1 in. on a, side is to be bent into the arc of a circle. What is 

the smallest radius to which it can be bent (cold), assuming that the maximum stress 

is limited to 35,000 lb./sq. in. and the modulus of elasticity is 30 X 106 lb./sq. in.? 

3-4. A steel bar 2 in. wide, 1 in. thick, and 12in. long, with!? = 30 X 106 lb./sq. in. 

is stressed by a tensile load of 60,000 lb. parallel to the 12-in. axis and a compression 

load of 576,000 lb. parallel to the 1 in. axis. Compute 

the newT dimensions of the bar. (Poisson’s ratio = 0.30.) 

3-6. Find graphically the magnitudes of the maxi¬ 

mum and the minimum principal stress and the direc¬ 

tion of the plane on which each acts, also the magnitude 

of the maximum shearing stress and the direction of the 

planes on which it acts, for the combination of stresses 

as shown in the figure. 

3-6. A structural steel bar % in. in diameter and 10 

in. long is subjected to an axial tensile load of 12,0001b. 

(a) Calculate the tensile and shearing unit stresses on a 

plane making 60° with the direction of the load, and 

<T, * 12,000!b./sq. in. 
<r2 - 4-,000/h/sq.in. 
T - 3,000ib./sq.in. 

check the result by a graphical solution using Mohr’s 

circle. (5) Find the maximum unit shearing stress. 

10001b. 10001b. 

Area^2fk sq in. 
Moment of inertia=$.00 inf 

Fig. 3*8. 

3-7. A steel bar 1.06 in. wide and 0.17 in. thick failed 

in diagonal shear on a plane at an angle of 42° with the 

cross section when subjected to a tensile load of 10,050 lb. 

What was the amount of the unit shearing stress on this 

plane? What was the value of the theoretical maximum 

unit shearing stress? 

3-8. A 4-in. /-beam is loaded as shown. Determine the 

following: 

(a) Shear curve. 

(?>) Moment curve. 

(c) Maximum bending stress. 

3-9. A simple beam 20 ft. long carries a uniformly distributed load of 600 lb. per 

linear foot and a concentrated load of 8000 lb. at a point 8 ft. from the left end. Write 

397 
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expressions for the moment between the left reaction and the concentrated load, and 

for the moment between the concentrated load and the right reaction. Draw the 

moment diagram. Compute position and amount of maximum moment if the beam 

is supported at the right end and at a point 8 ft. from the left end. 

3-10. A cantilever beam 2 in. wide, 12 in. deep, and 5 ft. long carries a uniformly 

distributed load of 300 lb. per linear foot, including its own weight. If E is 1,200,000 

lb./sq. in., compute the expression for the deflection at any point x and at the end. 

3-11. Find the deflection at 25 in. from the right end of the beam of Fig. 3*11. 

Fig. 3-11. Fig. 3-12. 

3-12. Draw the shear and bending moment diagrams for the beam of Fig. 3-12. 

3-13. Calculate the following for the beam illustrated, (a) maximum bending 

moment, (b) maximum shear, (c) maximum bending stress, (d) maximum shear 

stress, (e) the deflection at L/2. 

300lb. 

Fig. 3-13. Fig. 3-14. 

3-14. Given two sections of equal geomet rical dimensions as illustrated. For equal 

applied torsional moment, find the ratio of angles of twist in terms of t and R. Solve 

when t = 0.04 in., R = 2 in., M = 100 in.-lb. 
3-15. Given the bent-up section in the figure. Applied torque = 400 in.-lb. 

Assume 0 = 3.85 X 106 lb./sq. in. Obtain: (a) shearing stress, (5) unit twist, (c) tor¬ 

sional rigidity of the section. 

Fig. 3-15. Fig. 3*16. 

3-16. Given the stabilizer section shown in Fig. 3 • 16. The maximum torque at this 

section is 41,400 in.-lb. Calculate the resultant shear stresses in the nose sheet, front 

spar web, top and bottom skin aft of nose section, and rear spar web. Section is 

symmetrical about the chord line, and the depth at the front spar is 14 in. 
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Problems for Chapter 4 

4-1. Determine the loads in each member of the truss A BCD of Fig. 4*1. All 
joints are pin joints. 

4-2. Given the pin-jointed truss with thin wire bracing in the outer bay as shown 

in Fig. 4-2. Obtain loads in all members. (Indicate direction.) 

4-3. Given the truss shown, with dimensions as indicated. Compute the load in 
each member. 

Fig. 4-3. Fig. 4-4. 

4-4. Determine the tension in the wire as shown, where 

A — cross-sectional area of wire 

E — Young’s modulus of the wire 

E' - modulus of elasticity of the beam 

l = one-half length of beam 

1 = moment of inertia of beam (constant) 

w = uniformly distributed downward load. 

4-6. One-half of the wing structure of an aeroplane is illustrated. AB and CD 

are the rear spars; A'Bf and CD' are the front spars; BC and B'Cf are rear and front 

struts between the upper and lower wings. The other members operating are steel 

wires BD, AfCf, BC*. The external loads are as shown. In plan view each wing is as 

shown (a), the cross members being wooden struts and the diagonals steel wires. The 

cross section of each front spar is 3.59 sq. in. and of each rear spar 2.47 sq< in.; BD * 
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0.0538 sq. in.; A'C' = 0.0269 sq. in.; all the other wires are 0.0158 sq. in. For steel 

E = 30 X 106 lb./sq. in., for the wood i? = 1.4 X 106. Considering only the struc- 

Fi«. 4 *5. 

ture ABB'C'D'A' and neglecting the strain energy of the struts, find the load in the 

wire BC'. 

4-6. The frame work ABC FED in the figure is loaded by the three forces W, P, Q. 

All the bars have the same cross section, are of the same material, and are pin-jointed 

W 

at their ends. Find the loads in all the members in terms of W. (A plane frame wdth 

6 joints and 9 bars is necessary to prevent collapse; actually there are 11 bars. Re¬ 

gard BD and BF as the redundant bars.) 

Problems for Chapter 5 

6-1. Given the column with a cross section as shown. The stress-strain data for 

this material are as follows: 

Fig. 5*1. 

Stress Strain 

(lb./sq. in.) (in./in.) 

24,000 0.00242 

28,000 0.00291 

32,000 0.00355 

36,000 0.00450 

40,000 0.00626 

44,000 0.00906 

Assume section is stable and that column is pin-ended. Plot column curve, using the 

tangent modulus curve in the short column regime. (Proportional limit = 24,000 

lb./sq. in. <run = 56,000 lb./sq. in.) 
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6-2. Given the column with a cross section as shown. Assume column is pin- 

ended and that the stress-strain characteristics are the same as in Problem 5-1. 

Draw column curve, using Johnson parabola in short column regime. 

V
isro-* 

0.55"-> 

--125"-H 

Fig. 5-2. 

5- 3. Given the column with the cross section illustrated. Assume column is 

pin-ended and of the same material as in Problem 5-1. Draw column curve, using 

Johnson parabola in short column regime. 

6- 4. Given the channel section column illustrated. Minimum moment of inertia 

= 0.00156 in.4; area - 0.075 sq. in.; E = 107 lb./sq. in.; end fixity coefficient = 1.0; 

column length = 10 in.; <rvp - 39,000 lb./sq. in. Calculate column buckling stress. 

crushing stress in lb./sq. in. by considering the various elements as flat plates, 

(ia/b - 4), <ryp = 39,000 lb./sq. in. 

5-6. Given the stiffened panel in the sketch. Sheet thickness = 0.035 in. Use 

E = 107 lb./sq. in.; G = 3.85 X 106. Calculate the critical buckling stress for the 

sheet when 

(а) the sheet is assumed simply supported along all four edges and 

(б) the edges at the stiffeners are completely restrained from bending defor¬ 

mation but elastically restrained in rotation. The loaded edges are simply 
supported. 
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6-7. Consider the channel section shown in the figure. Determine aa 

-0.1S" 

Jff 3, 
0.040- 

-40,000lb./sain. 
E -10.3 X/0 6/b.fsq. in. U 

Fig. 5 * 7. Fig. 5-8. 

5- 8. Consider the bent-up ^-section shown, with E — 10.3 X 106 lb./sq. in. and 

l - 0.050 in. Determine <rcc. 

6- 9. Consider the section which is illustrated. Determine <rcc. 

Fig. 5-9. 

Problems for Chapter 6 

6-1. Consider a simply supported flat plate loaded in compression on two edges. 

Discuss the important stress regimes in this plate as the compressive load is gradually 

increased. How would you calculate the effective width of sheet for each regime? 

6-2. A 17ST dural sheet, 0.032 in. thick, 6 in. wide, and 12 in. long is simply sup¬ 

ported, and the 6 in. sides are loaded by compression forces in the plane of the plate. 

Find the effective width and the total load carried by the plate for the following edge 

stresses: 1000 lb./sq. in.; 5000 lb./sq. in.; 10,000 lb./sq. in.; 20,000 lb./sq. in. 

6-3. A panel made of 0.040 24ST sheet is 18 in. wide and 18 in. long. The panel is 

stiffened by 24ST extruded bulb angles placed on 6-in, centers. These angles have an 

area of 0.177 sq. in. and a moment of inertia about an axis parallel to the sheet of 

0.0253 in.4. S is equal to 0.375 in. The rivet spacing on the stiffener is 1 in. Con¬ 

sider the plate to be simply supported on all edges. Determine: 

(a) The curve of panel load vs. stiffener stress. 

(b) The stiffener stress at which buckling between rivets will take place. 

(c) The maximum allowable load on the panel. 

If the panel length is changed, determine the allowable panel load as a function of the 

panel length. Assume the crushing stress of the stiffener section is equal to 32,000 

lb./sq. in. and that the end fixity coefficient is equal to 1.5. 
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6-4. A series of 24ST panels with cross section as shown were tested in compression. 

The other panel data were: 

(a) Sheet thickness — 0.040 in. 3/* _r* >.tr p 
(b) Stiffener area = 0.1464 sq. in. r ~ ... — 

(c) Stiffener moment of inertia = ^-SE 

0 0480 in.4. Fig. C-4. 
(d) Rivet spacing — 1.0 in. 

(c) 8 = 0.60 in. 

(/) The failing loads of the panel for these lengths tested were: 

r 
L = 8 in. 

L = 16 in. 

L = 24 in. 

L = 32 in. 

P - 20,600 lb. 

P - 10,800 lb. 

P = 18,500 lb. 

P - 17,500 lb. 

The material was tested and was found to have a yield stress of 44,000 lb./sq. in. and 

a Young's modulus of 10.3 X 10G lb./sq. in. Make all the necessary corrections and 

determine a design allowable curve for this panel, giving P allowable in terms of L. 

Use a design end fixity coefficient of 1.5. Consider the 

plate to be simply supported on all edges. 

6-6. Design an incomplete tension field beam with a 

total height of 18 in. that will support a shear load of 

25,000 lb. In so far as it is possible, failure of web, rivets, 

and web stiffeners should be simultaneous. Assume that 

the upper and lower flanges are T-sections as shown. All 

material is 24ST. 

6-6. Compare the allowable strength of a 6-in.-long 

panel of 24SRT-Alclnd corrugations if the corrugations 

are (a) standard circular arc and (b) omega type corru¬ 

gations. 

6-7. A sheet panel is stiffened with omega corrugations. All material is 24SRT 

Alclad and the panel has the following dimensions: 

(a) Sheet covering thickness = 0.032 in. 

(b) Corrugation Lockheed LS-193 with t = 0.040 in. 

(c) Rivet spacing « 2 in. 

Fig. 6-5. 

Determine the allowable column stress vs. length curve for this panel. 

6-8. Prove that the controlling section for the stainless steel corrugation shown in 

Fig. 6-55 (page 279) is the largest curved portion. 

Problems for Chapter 7 

7-1. Consider a thick flat plate 18 in. wide and 36 in. long with a uniformly dis¬ 

tributed load on the plate of 40 lb./sq. in., and E = 10.5 X 106 lb./sq. in. Determine: 

(a) Bending moment. 

(b) Shear. 

(c) Comer reactions for all four edges simply supported. 

7-2. Consider the plate of Problem 7-1 with all four edges built in. Determine 

deflection and moment. 
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7-3. Determine bending stresses for the plates of Problems 7-1 and 7-2. 

7-4. Consider an aluminum-alloy plate 25 in. by 25 in. bv 0.045 in. thick, with a 

Young’s modulus of 107 lb./sq. in., subjected to a uniform load of 25 lb./sq. in. 

Determine: 

(a) Deflection at center of plate. 

(b) Stress in the center of the plate. 

(c) Stress in the center of the sides of the plate. 

7-5. Consider a 25 in. square plate of stiffened aluminum alloy which satisfies the 

assumptions as stated on pp. 296 and 297. Determine the moment of inertia of the 

stringers when icmax = 1 in.; j) — 4 lb./sq. in.; N — 4. (Work on the assumption 

that the stringers are pin-ended at the boundaries.) 

7-6. Determine the necessary section modulus for the stringers of Problem 7-5, if 

the stringers are completely fixed and <ranow — 40,000. 

7-7. Calculate the moment of inertia of the long stringers when wtotai ~ 1 in.; 

u'st = 0.40 in.; wsh — 0.60 in.; a = 20 in.; b = 5 in. 

Problems for Chapter 8 

8-1. Determine the total load carried by the following panel, t = 0.020 in.; 

5 = 3 in.; ft = 30 in.; L = 12 in.; <ryp — 36,000 lb./sq. in.; K — 107 lb./sq. in. Com¬ 

pare with the tested load as given in Table 8-2. 

8-2. Carry out the necessary calculations for specimen number 10 of Table 8-3. 
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SUBJECT INDEX 

A 

Acceleration and load factors, 47 

human tolerance of, 48 

related to maneuverability, 48 

Acceleration forces, 46 

Accelerations, angular, 59 

during landing, 72 

linear, 59 

Accelerometers, 48 

Accommodations, for cargo, 31* 

for crew, 30 

for passengers, 30 

Aerodynamic center, 50 

Aileron design, 368 

Aileron forces, flying conditions, 69 

maneuvering, 68 

tab effects on, 69 

Aileron load distribution, 68 

Aileron type flaps, loads on, 69 

Airfoil characteristics, 49 

corrected, 45 

Air load, on wing ribs, 362 

Air-load moments, wing, 73 

Air-load shear curve, wing, 73 

Air-load shears, wing, 73 

Alignment, effect of deformation on, 92 

Allowable loads, 76 

Allowable stresses, for circular arc corru¬ 

gations, 263 

Altitude, effect on load factor, 48 

ANC-5, 207, 260, 261, 262 

Angle, for zero shear stress, 82 

of plate buckling in tension-field 

beams, 243 

of twist in torsion, in hollow, thin- 

walled sections, 122 

in solid circular cylinders, 115 

in solid elliptical cylinders, 116 

in solid rectangular cylinders, 119 

in T-section bars, 119 

Angle sections, as columns, 173 

stress causing leg buckling in, 174 

Army Handbook for Airplane Designers, 

91,261 

Arrangement, 21, 32 

Aspect ratio, limits for vertical surfaces, 

68 
Aspect ratio correction, 51 

Axial compression, of cylindrical shells, 

259 

Axial loads, strain energy due to, 129 

Axes, principal, in wings, 357 

of column sections, 199-201 

B 

Baggage, loading of, 27 

passengers’, weight of, 37 

Baggage compartment, location, 24 

Balance, effect, of fuselage moments on, 

63 

of moving engines, wings, and othei 

items, 40 

of nacelle moments on, 63 

of useful load on, 23 

of weight empty on, 22 

importance of proper, 41 

Balance table, 62 

Balancing elevator load, 64 

limits on, 64 

Balancing load on tail, 59, 60, 63 

distribution of, 64 

Balancing stabilizer loads, distribution of, 

64 

Balancing the airplane, 59 

Ballast, use to locate center of gravity 

position, 33 

Bar, circular, strain energy in, due to 

torsion, 133 

rectangular, as columns, 160 

torsion in, 118 

407 
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Bar, round, as columns, 160 

Basic air-load shears and moments on 

wing, 73 

Beam, definition of, 92 

neutral axis of, 96 

on three supports, 148 

radius of curvature in, 95 

shear in, sign convention for, 93 

Beam analysis, 93 

assumptions in, 98 

curved, 391 

for distributed loads and external mo¬ 

ments, 99 

graphical, 90-104 

non-uniform load, 101 

notation for, 95 

of continuous beams, 101 

pure bending, 94-99 

for beams with one axis of symmetry, 

109-113 

shear deflections, 108 

shearing stresses, 104-109 

Beam bending moments, 94 

sign convention for, 94 

Beam flanges, secondary stresses in, 257 

stresses in, 255 

tapered, 258 

Beam reactions, 100 

Beams, 49 

centroidal axis of, 94 

continuous, 101 

curved, 391 

distributed load in, 94 

incomplete tension field, 241-258 

load, shear, and moment relationships 

in, 97 

load in, sign convention for, 93 

pure bending in, 94-99 

shear deflections in, 108 

shear web, 234-258 

statically indeterminate, 148 

strain energy in, 149 

stress distribution in thick-webbed, 235 

stressed beyond proportional limit, 98 

thin-webbed, 236 

Wagner, 236-240 

Beam shears, 94 

Beam slopes, 102-104, 148 

Beam theory, as applied to wing struc¬ 

tures, 355 

Bearing margin of safety, 77 

Bending, of stiffened cylinders, 329-338 

strain energy of, 130 

wing, material resisting, 8 

Bending material, in wing structures, 

354-359 

Bending moment, free, 101 

in beams, 94 

sign convention for, 94 

in eccentrically loaded column, 164 

Bending rigidity, of beam, effect of web 

stiffeners, 237 

of plate stiffeners, 208 

Bending stiffness, in frames, 147 

Bending stress, in fuselages, 370 

Bent-up sheet section columns, 173-201 

Boundary conditions, 89 

Bow’s notation, in truss analysis, 126 

Braked landing conditions, 71 

Buckling, as a design criterion, 76 

local, in column cross sections, 159 

of circular cylinders, 309-312 

of curved plates, 312-317 

of thin plates under shear, 172, 234 

of thin plates and stiffeners, 208 

of thin plates with elastically re¬ 

strained edges, 168-171 

Buckling failure of channel- and Z-sec- 

tions, 174 

Bulb angles, as sheet stiffeners, 216 

Bulb section stiffeners, 194 

Buffet supplies, 27 

effect of trip length on, 38 

location as affecting the center of 

gravity, 38 

weight of, 38 

Bulkhead analysis, fuselage, 375-385 

C 

Cabin arrangements, 27 

laid out in the mock-up, 6 

Cargo, accommodations for, 31 

disposition for balance, 40 

effect on center of gravity location, 33, 

38 

location with respect to propeller, 38 

maximum and minimum allowable 

39 

Castigliano’s theorems, 136, 140 

Casting margin of safety, 77 
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Center of gravity, of airplane, 33, 45 

effect of seating arrangement on, 37 

limits of, 35 

referenced to chord, 35 

travel, 35 

limits of, 33 

while loading, 26 

of area, 96 

of wing sections, 358 

Center of gravity limits, 60 

how adjusted, 40 

Center of gravity location, affected by 

buffet supplies, 38 

effect of cargo on, 38 

on the ground, 41 

Center of gravity travel, affected by fuel 

and oil, 36 

Center of pressure, for tail group, 60 

position of, 50 

Center of rotation, of sheet stiffeners, 195 

Center stiffeners, effective columns of, 

213 

Centroidal axis of a beam, 94 

Channel section, beam shear analysis of, 

110 
shear distribution in, 112 

torsional failure of, 197 

Channel sections, as columns, 174 

Chord load, in tail surface, 61 

Chord wise pressure distribution effect on 

ailerons, 69 

Circular arc corrugations, 259-266 

and flat sheet, 272 

design allowables for, 263 

effect of pitch/depth ratio on, 264 

effect of yield point on, 263 

in stainless steel, 265 

properties of, 259 

Civil Aeronautics Authority Manual 

(CAAM-04), 42, 46, 50, 71, 77, 

387, 390 

Civil Air Regulations (CAR-04), 1, 2, 4, 

8, 20, 22, 24, 36, 37, 38, 42, 46, 

48, 50, 58, 60, 70, 71, 77, 387, 390 

Clamped edge condition, 165 

Cockpit, arranged in the mock-up, 6 

Coefficient of end fixity, 156, 159 

Cold working, effect of, 92 

Column analysis, 154-164 

comparison of column curves, 157 

Column analysis, effective free length, 

163 

empirical methods of, 186-194 

Euler column curve, 157 

for eccentric loading, 163-164 

Johnson's parabola, 157 

Johnson’s parabolic equation, 159 

local buckling in, 159 

long, or Euler columns, 154-156 

notation in, 154 

reduced modulus curve, 156-157 

secant equation, 164 

short column curves, 161 

stainless steel sections, 188-193 

straight line equation, 157, 160 

tangent modulus curve, 157, 158 

where yield point varies, 163 

Column curves, for sheet stiffener com¬ 

binations, 211-220 

Column failure, above the proportional 

limit, 175 

of angle sections, 173 

of channel and Z-sections, 174 

of square and rectangular tubes, 179 

torsional, notation for, 196 

types of, 154-164 

Columns, energy in, 154-155 

procedure for testing and analyzing, 

185 

thin-walled, 173-201 

angle sections, 173 

channel and Z-section, 174 

extruded shapes for, 193 

general design considerations, 201 

general shapes for, 183 

made up of flat elements, 186 

made up of curved elements, 192 

square and rectangular tube, 179 

stainless steel sections for, 188- 

193 

torsional instability of, 195 

with torsional instability, 195 

Combined loading, 77 

Comfort, effect, of noise level on, 23 

of propeller location and clearance 

on, 23 

heating and ventilating, 25 

Compatibility equations, 87 

Composite section corrugations and flat 

sheet, 277 
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Compression, axial, of cylindrical shells, 

259 

of stiffened cylinders, 322-329 

Compression loads in bars, 154 

Compression stress, 79 

Compression tests, material, 228 

Concentrated load on thick plate, 287 

Conservation of energy, 130 

Construction cost of wing spars, 343 

Controls, engine, 29 

flight, 28 

laid out in the mock-up, 6 

power plant, weight of, 3 

surface, weight of, 4 

Control surfaces, design of, 3G6-369 

effect of speed on size of, 44 

horizontal, loads on, 04 

loads on, 63 

size limits of, 48 

tabs for, loads on, 69 

vertical, loads on, 67 

Corrected airfoil characteristics, 45 

Correction for material properties, 220, 

227-229 

Corrugated sheet, use of, 259-280 

Corrugations, and flat sheet, 271-280 

ANC circular arc, 259 

composite sections for, 270 

flat element sections for, 268 

omega or flat-topped, 267 

plus flat sheet in shear, 351 

typical sections for, 260 

stainless steel, 265, 269, 270 

Couples, internal, redundant, 148 

on frame members, 148 

Crew, accommodations for, 30 

weight of, 38 

Critical buckling stress, 167 

of circular cylinders, 309-312 

of stiffened plates, 208 

Critical column load, 156 

Critical structural loading, 46 

Crushing strength, of a column cross sec¬ 

tion, 159 

of thin-walled sections, 173-194 

Curvature, 97 

Cutouts in fuselages, effects of, 374 

Cylinder, shear distribution in, 345 

Cylinders, circular, ultimate load on, 311 

under axial compression, 309-312 

Cylinders, stiffened, general instability 

of, 331-338 

under compression, 322-329 

under pure bending, 329-338 

thin-walled, shear distribution in, 345 

torsion in, 120-123 

under internal pressure, 307 

under torsion, 338-340 

Cylindrical shells under axial compres¬ 

sion, 259 

D 

d’Alembert’s principle, 47 

Dead weight items in wing, 74 

Dead weight factor, 58 

Deflection, beam, pure bending, 97 

in a truss, 138 

of membranes, 288 

of simply supported flat sheet, 167 

of thick plates under normal pressure, 

184 

of thin plates, large, 206 

under normal pressure, 293 

Deformation, 85 

rate of, 134 

total, effect in design, 91 

Deformation equations, 88 

Deformations, in elastic bodies, 133 

normal, 88 

De-icer, weight of, 4, 21 

Derivative of strain energy, 137 

Design criteria, for flat sheet, 164 

Design gliding speed, 43 

Design level speed, 42 

Design load factor, 47 

Design maneuvering speed, 43 

Design power loading, 45 

Design shear and bending moments for 

wing, 74 

Design weight, 44 

Design wung loading, 44 

Discontinuities in structures, effects of, 

353 

Displaced ailerons, effect on design load 

factors of, 55 

Displacement, from derivative of strain 

energy, 137 

of points in a truss, 134 

of points in truss analysis, 134 

Distribution, of shear in a wing, 351 
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Distribution, of shear load between wing 
spars, 344 

Down loads on wing, 54 
Drag, parasite, where applied, 61 
Drag coefficient, 49 
Drag force on wing, total, 49 

where applied, 61 
Drag truss, 49 
Drawing, three-view, 21, 22 
Dressing rooms, location of, 37 
Ducts, heating and ventilating, 25 

layout in mock-up, 6 

E 

Eccentricity in thin-walled columns, 200 
Eccentric loading in columns, 163-164 
Economics of design, 28 
Edge stiffeners, effective column for, 215 
Edge supports, definition of, 165 
Effective column, in stiffened cylinders, 

325, 326 
Effective columns, in stiffened plates, 

209-210 
in stiffened sheet, 210, 213, 215, 217 

Effective free length of a column, 163 
Effective shear modulus, 258 
Effective width, in rectangular tubes, 181 

in stiffened plates, 209 
in wing analysis, 359 
of flat plates, 203 

Effective width curve, limitations on, 
206 

Effective width ratio, 204 
Effective wing area, 50 
Elastically restrained edges of plates, 

168-171 
Elastic axis, wing, 76 
Elastic system, work in an, 129-133 
Electrical equipment, weight of, 21 
Electrical system, equipment in, 31 
Elevator design, 366 
Elevator load, balancing, 64 

limits on, 64 
maneuvering, 65 

Elevator loads, effects of tabs on, 65 
Elevator ribs, design criteria for, 66 
Elevator spar, loads due to stabilizer 

deflection on, 101 
Elliptical bars, torsion in, 115 
Emergency exits, 27 

Emergency fuel, effect on center of 
gravity location, 36 

Emergency horsepower, 44 
End fixity, of flat plates, 167 

of sheet stiffeners, 211, 212, 216, 220, 
221,229 

End fixity coefficient, 156, 159 
End moments, effects of, 100 
Energy, conservation of, 130 

in columns, 154-155 
internal, of buckled plates, 167 
strain, of bending, 130 

of direct load, 129 
PJngine controls, 29 
Engine mount design, 386-388 
Engine mounts, as redundant structures, 

147 
forces on, 386 
types of, 387-388 

Engineer, equipment for, 29 
Engine ratings, 44 
Engines, accessories, weight of, 3 

weight of, 3 
Equation, three-moment, 104 
Equilibrium equations, for beam shears, 

105 
for non-uniform stress, 84 
for uniform stresses, 79 
three-dimensional stresses, 85 
two-dimensional stresses, 84 

Equilibrium, force, 47 
momentary, 59 
neutral, 155 

Equilibrium condition for shear flow, 347 
Equipment, arranged in the mock-up, 6 

communicating, weight of, 4, 20 
electrical, 31 

weight of, 21 
engineer’s, 29 
fixed, 28 
heating and ventilating, 32 
location, 4 
miscellaneous, 32 
navigator’s, 30 
pilot’s, 28 
radio operator’s, 30 
power plant, 31 

Equivalent shear modulus for corrugated 
sheet, 352 

Euler column formula, 155 
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Experimental panel tests, end fixity of, 

229 

Extruded sections as columns, torsional 

failure of, 199 

Extruded shapes as columns, 193 

F 

Factor of safety, 47 

Failure in channel or 2-sections, types of, 

174 

Fin design, 366 

Fitting analysis, 392 

Fitting margins of safety, 77 

Fittings, eccentric, 394 

manufacturing methods for, 393 

Fire extinguishers, 27 

Fixed edge condition, 165 

Fixed equipment, 28 

Fixity coefficient, 156, 159 

Flange forces in Wagner beams, 237 

Flange stiffness, correction factor in thin- 

webbed beams for, 238 

effect of, 238 

Flap design, 368 

Flaps, design flight conditions with, 57 

wing, 69 

Flap warning signals, 28 

Flat element corrugations, 269 

Flat plates, buckling of, under shearing 

stress, 172 

edge conditions of, 168 

stiffened, under compression, 208-234, 

259-280 

under shear, 234-259 

thin, history after buckling, 205 

under normal pressure, 283-307 

Flat sheet and corrugations, 271-280 

Flat sheet buckling, effect of, 165 

Flat sheet loaded in the plane of the 

sheet, 164-173 

Flat-topped corrugations, 267 

and flat sheet, 275 

Flight condition, inverted, 57 

Flight controls, 29 

Flight design conditions, dive with flaps 

down, 57 

gliding, 57 

inverted flight, 57 

negative gust with flaps down, 57 

negative high angle of attack, 54 

Flight design conditions, negative low 

angle of attack, 56 

positive gust with flaps down, 57 

positive high angle of attack, 52 

positive high angle of attack (modi¬ 

fied), 53 

positive low angle of attack (modified), 

55 

Flight load, factors of, 46 

external, 46, 47 

Floors, fuselage, 374 

Force, shearing, 79 

Force coefficients, 49 

Forces, external, points of application of, 

60 

on engine mounts, 386-387 

Frame, definition of, 147 

Frame analysis, 147-153 

circular, 152 

notation for, 153 

effect of symmetry on, 151 

fuselage, 375-385 

main, 375 

rectangular, 151 

Frames, loads on, 147 

bending stiffness in, 147 

Free body diagram, 151 

Free edge condition, 165 

Fuel, emergency, effect on center of 

gravity location of, 36 

order of filling the tanks, 33 

weight per gallon of, 37 

Fuel and oil, emergency reserve, 36 

ratio to be carried, 36 

residual weight of, 4 

Fuel and oil loads, effect on center of 

gravity location of, 36 

Fuel and oil tanks, order of filling and 

emptying, 36 

Fuel consumption, 37 

effect on center of gravity location, 35 

Fuel system, weight, 3, 17 

Fuel tanks, weight, 18 

Furnishings, weight, 4, 20 

Fuselage analysis, 370-385 

bending stress in, 370 

effects of cutouts on, 374 

floor analysis, 374 

frame analysis, 375-385 

landing gear loads, 376 
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Fuselage analysis, shear stresses in, 371- 

373 

torsional loads in, 373 

Fuselage moments, effect on balance of, 

63 

Fuselage panel design, 372 

Fuselage weight, 3 

as affected by wing position, 41 

breakdown of, 13, 14 

general trend in, 13 

G 

Gear, tricycle, weight of, 3 

Gliding design condition, 57 

Graphical analysis, of fuselage frames, 

382 

of trusses, 125 

Ground gusts, 69 

Gust load factors, 46, 50 

Gust loads on vertical tail surfaces, 67 

Gust reduction factor, 51 

Gusts, horizontal, 69 

Gust velocity, 51 

H 

Heating and ventilating, 25 

equipment for, 32 

Heating sources, 26 

High strength materials limited by high 

stresses, 92 

Hinge moments, 66, 67 

Hooke's law, 90, 130, 134, 156 

//-sections as columns, 161, 162 

I 

/-beam, shearing stress in, 107 

Indicated air speed, 42 

with flaps, 43 

Induced shear in column sections, 199 

Inertia forces, 59 

in flight, 47 

Initial buckles, effect of, 173 

Inspection, 27 

Instability, general, of stiffened cylin¬ 

ders, 331-338 

design curves for, 335 

local, in stiffened cylinders, 330 

of flat sheet, 164-173 

torsional, of columns, 195-201 

Instruments, 28 

weight of, 4, 18 

J 

Johnson parabolic equation, 159 

Joints, truss, rigidity of, 124 

L 

Landing attitudes, 70 

Landing conditions, level, 70 

nosing-over, 71 

one-wheel, 71 

side-drift, 71 

three-point , 71 

two-wheeled, 71 

Landing gear, design conditions for, con¬ 

ventional, 70 

tricycle, 71 

effect on loading passengers, 26 

Landing gear design, 389-392 

Landing gears, types of, 389-390 

Landing gear warning signals, 28 

Landing gear weight, 3 

tricycle, 16 

conventional, 14 

Landing loads, 70 

items influencing, 72 

Least work, principle of, 142 

Lift coefficient, 49 

Lift force, where applied, 61 

on wing, 48 

total, 49 
Limitation of control surface size, 48 

Limit elevator load, balancing, 64 

maneuvering, 65 

Limiting center of gravity, 40 

Limit load factor, 47 

Limit load on ailerons, 68 

Limit loads, on horizontal surfaces, 64 

on vertical surfaces, 67 

Linear accelerations, 59 

Load, ultimate, on circular cylinders, 311 

useful, definition, 3 

effect of balance on, 23 

weight of, 21 

weight per passenger, 4 

Load criteria, 78 
Load distribution, on ailerons, 68 

in incomplete tension-field beams, 245 

on wing flaps, 69 
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Load distribution, on vertical surfaces, G7 

Load factor, net, GO 

tail, 63 

Load factors, Army and Navy regula¬ 

tions, 46 

design, 47 

determined by performance, 42 

Civil Aeronautics Authority require¬ 

ments, 42 

flight, gust, 46 

maneuvering, 46 

landing, 46 

limit, 47 

wing, 45 

Loading and unloading, 26 

Load in sheet stiffener combinations, 210 

Loads, balancing, on fixed tail surfaces, 

64 

beam, sign convention for, 93 

external, on airplane, 59 

fictitious, 139 

in web stiffeners of thin-webbed beams, 

255 

on control-surface tabs, 69 

on stiffeners, in plates under pressure, 

297 

torsional, in fuselages, 373 

unsymmetrieal, in fuselage frames, 384 

Long column, definition of, 154 

Lubricating system, weight of, 3 

M 

Maintenance, 27 

of wings, 365 

Maneuverability, 48 

load factors affected by, 48 

Maneuvering elevator load, 65 

Maneuvering load factors, 46 

Maneuvering loads, on ailerons, 68 

on vertica1 tail surfaces, 67 

Manufacturing methods for fittings, 393 

Margin of safety, 76 

for castings, 77 

for fittings, 77 

for parts subjected to shock, 77 

for reversed stress bearings, 77 

Material properties, correction of test re¬ 

sults for, 220, 227-229 

Maxwell's reciprocal theorem, 134 

applied to moments, 136 

Mean aerodynamic chord, 45 

Membrane analogy for torsion, 117 

Membrane analysis of thin plates, 288 

Military aircraft, mock-up for, 7 

specifications for, 2 

Military airplanes, load factors for, 46 

Misfits in truss analysis, 147 

Mock-up, 6 

Modulus of elasticity, definition of, 85 

limits on, 92 

reduced, 156 

Mohr’s circle, 82 

Moment, wing, where applied, 61 

torsional, in hollow thin-walled cylin¬ 

ders, 120 

for solid circular cylinders, 115 

for solid elliptical cylinders, 115 

for solid rectangular cylinders, 118 

for T-section bars, 119 

Moment coefficients, 49, 50 

Moment of inertia, definition of, 96 

for channel section, 113 

of stiffeners in plates under pressure, 

298, 3(X), 302, 304 

polar, 115 

Moments, hinge, 66 

in thick plates under pressure, 284 

of inertia in wing sections, 357-358 

tail surfaces, 72 

torsional, in wing sections, 360 

wing, 72, 74 

Monocoque structure, 164 

N 

Nacelle moments, effect on balance of, 63 

Nacelles, weight of, 16 

Navigator, equipment for, 30 

Negative high angle of attack condition, 

56 

Negative low angle of attack condition, 

56 

Neutral axis of a beam, 96 

Neutral axis shift in beams, 98 

Neutral equilibrium, 155 

Newton's first law, 47 

Noise level, 23, 26 

Nosing-over landing condition, 71 

Notation, for columns, 154 

for cylinder analysis, 345 

for curved beam analysis, 391 
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Notation, for deflection of stiffened rect¬ 

angular panels, 303 

for frame analysis, 377 

for oblique web stiffeners in Wagner 

beams, 237 

for plates under pressure, 283 

for stiffened panels under normal pres¬ 

sure, 296 

for stiffened rectangular panels, 302 

for stiffened square panels, 296 

for torsional column failure, 196 

for vertical web stiffeners in Wagner 

beam, 236 

for wing analysis, 356 

O 

Oil, weight per gallon, 37 

Omega corrugations, 267 

and flat sheet, 275 

One-engine operation, effect on vertical 

control surfaces of, 67, 68 

effect on ailerons of, 68 

P 

Panel instability, in stiffened cylinders, 

330 

Panel resonance, 24 

Panels, stiffened, under 

normal pressure, 296-307 

rectangular plates, 301 

square plates, 298 

Panel tests, stiffened, use of, 220 

Parabolic equation, Johnson, 159 

Parasite drag, where applied, 61 

Passengers, accommodations for, 30 

vision of, 25 

weight of, 37 

Performance, calculations of, 4 

characteristics needed for design, 4 

effect on load factors of, 42 

wind tunnel tests for, 5 

Permanent elongation, 90 

Permanent unit strain, 90 

Pilot, equipment for, 28 

location of, 27 

vision for, 25 

Pilot force, limits on, 64,65,66,67,68, 69 

Pin-connected trusses, 124 

Pin-ended columns, 156 
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Pitch-depth ratio of corrugations, 

strength effect of, 264 

Planes of symmetry in beams, 98 

Plane stress pattern, 83 

Plane trusses, 125 

Plastic deformation, in a buckled plate, 

205 

in columns, 156 

Plates, buckled, energy in, 167 

curved, ultimate strength of, 317-322 

under compression, 312-322 

thick, under normal pressure, 284 

thin, analysis of, deflections, 293 

limits on, 290-292 

stresses, 294- 295 

buckling of, 164-173 

under shearing stresses, 172, 234 

effective width of, 203 

loaded above buckling load, 203-282 

loaded in own plane, differential 

equation for, 166 

loaded uniformly, 285 

stiffened, under compression, 208r~ 

234, 259-280 

under shear, 234 -258 

with elastically ^strained edges, 

168-171 

stress distribution of, beyond buck¬ 

ling, 203 

under normal pressure, 290-296 

under shear, ultimate strength of, 

234-258 

under normal pressure, 283-307 

Plate stiffeners, effect of bending rigidity 

of, 170 

effect of torsional rigidity of, 169 

Poisson’s ratio, 86, 87 

Polar moment of inertia, 115 

Positive high angle of attack condition, 

52 

modified, 53 
Positive low angle of attack condition, 55 

modified, 55 

Power loading, design, 45 

Power plant equipment, 31 

weight of, 3, 16 

Pressure, internal, in cylinders, 307 

normal, on plates, 283-307 

Pressurized cabins, plate analysis, 290 

stresses in, 307 
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Prestrained trusses, 147 

Principle of least work, 142 

Propeller axes, effect of location on 

vertical tail surface, 67 

effect of location on ailerons, 68 

Propeller efficiency, 61 

Propeller location and clearance, 23 

Propellers, weight of, 3 

Propeller thrust, 61 

where applied, 61 

Proportional limit, definition of, 89, 90 

effect on column failure, 175 

Pure bending in beams, 94 

R 

Radio operator, equipment for, 30 

Radius, of curvature, 97 

in beams, 95 

of deformation, 134 

of gyration for sheet stiffeners, effec¬ 

tive, 214 

Rated horsepower, 44 

Reaction forces in landing, 71 

Reactions, beam, 100 

redundant, 139 

Reciprocal theorem, Maxwell’s, 134 

Redistribution of stress due to buckling, 

165 

Reduced modulus curve in column fail¬ 

ure, 156, 179 

Redundancies, multiple, 143 

Refueling, order of, effect on center of 

gravity position, 35 

Resolution of forces in trusses, 126 

Resultant air forces, direction of, 59 

Resultant force coefficient, 49 

Resultant shear stress in torsion, 115 

Rib air load, 362 

Ribs, elevator, design criteria for, 66 

weight breakdown, 9 

wing, 361 

types of, 363 

Rigidity, torsional, of plate stiffeners, 169 

of sheet stiffeners, 218 

Rivet analysis for fittings, 394 

Rivet correction factor in tension-field 

beams, 242 

Rivet load in incomplete tension-field 

beams, 248 

Rivets, inaccessible, 343 

failure of sheets between, 211 

Rivet spacing, effect of, on stiffened 

panels, 230 

in wing design, 365 

optimum, 233 

Rods, circular, torsion in, 115 

slender, as columns, 154 

Rubber, behavior under load, 85, 86 

Rudder design, 366 

S 

Safety features, 27 

Safety locks, 28 

Seating arrangements, effect on center of 

gravity location, 37 

Secant equation for eccentrically loaded 

columns, 164 

Secondary bending stresses in beam 

flanges, 257 

Secondary loads in trusses, 124 

Self-strain, in indeterminate structures, 

128 

Semi-monocoque structure, 164 

Shear, flat panels under, 234-258 

torsional, 114-123 

wing, material resisting, 9 

Shear analysis of wing, 348-352 

Shear carried by beam web, 241 

Shear-carrying members in wings, 343 

Shear center, of channel section, 113 

of open sections, 195 

of unsymmetrical sections, 113 

of wing, 360 

of wing structure, 350 

Shear curve, wing, 73 

Shear deflections in beams, 108 

Shear distribution, in channel sections., 

110-113 
in thin-walled cylinder, 345 

Shear flow, 122 

Shear flux, 122 

Shear force, 79 

Shear in beams, 94 

sign convention for, 93 

Shear in corrugated sheet, 352 

Shearing deformation, 88 

Shearing strain, 85 

in torsion, 115 
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Shearing stress, due to torsion, in hol¬ 

low, thin-walled sections, 122 

in solid circular cylinders, 116 

in solid elliptical cylinders, 116 

in solid rectangular cylinders, 118 

in T-section bars, 119 

lines of, in torsion problem, 114 

Shearing stresses, beam, distribution of, 

105-109 

in /-beams, 107 

maximum value of, 107 

Shear lag, 165 

in wings, 356 

Shear loading of thin plates above buck¬ 

ling, 235 

Shear modulus, 86, 87 

effective, 258 

Shear rigidity, effect on shear analysis, 

350 

Shears, in thick plates under pressure, 

284 

tail surface, 72 

wing, 72 

Shear stiffness, of corrugated sheet, 352 

of tension-field beam, 351 

Shear strain energy, 131 

Shear stress, 79 

angle for zero, 82 

Shear stresses, in fuselages, 371 

maximum, 82 

wing, due to torsion, 76 

Sheet buckling between rivets, 230- 

234 

Sheets, stiffened, buckling of, 3 69 

effect of rivet spacing on, 230 

Sheet stiffener combinations, 169, 171 

column curves for, 211-220 

corrugations in, 259-280 

load in, 210 

Sheet stiffeners, center of rotation of, 

195 

Sheet structures, flat, ultimate strength 

of, 165 

thin, buckling of, 164-173 

edge supported in, 165 

Shock load margins of safety, 77 

Short column analysis, 157-164 

Sign convention, for balancing loads, 

61 
for bending moment, 94 

Sign convention, for loads, 93 

for shear, 93 

for stresses, 80, 87 

Slope of beam deflection curve. 102-104 

Space trusses, 125 

Spars, tension-field, 165 

wing, 343 

Specifications, and the designer, 2 

commercial airplane, 1 

company. 2 

military airplane, 2 

Speed, design gliding, 43 

design level speed, 42 

design maneuvering, 43 

indicated, 42, 43 

stalling, 43 

Split flaps, loads on, 69 

Soap film for torsion problem, 118 

Stable cross sections as columns, 154 

Stability of a truss, 124 

Stability range, 35, 59 

Stabilizer, deflection in, 101 

Stabilizer design, 366 

Stabilizer load, balancing distribution of, 

64 

Stainless steel corrugations, 265 

and flat sheet, 279 

design curves for, 269, 270 

Stainless steel sections, as columns, 188- 

193 

Stainless steel stiffened sheets, 216, 217 

Stalling speed, 43 

Starting systems, weight of, 3 

Static tests of wing structures, 355 

Stewardess, weight of, 37 

Stiffener failure in incomplete tension- 

field beams, 249 

Stiffener loads in plates under pressure, 

297 

Stiffeners, center of rotation when at¬ 

tached to sheet, 195 

oblique, in complete tension-field 

beams, 243 

plate, effect of bending rigidity of, 

170 

effect of torsional rigidity of, 169 

web, in thin-webbed beams, 236 

Stiffener sections, general, 183 

Straight line equation for columns, 160 

Strain, definition of, 85 
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Strain, normal, 85 

shear, 85 

unit, 85 

Strain energy, derivative of, 137 

general theorems of, 133 

in beams, 149 

in thin-walled cylinders, 122 

minimum, 142 

of bending, 130 

of direct load, 129 

of shear and torsion, 131 

Strength, of aircraft elements, ANC-5, 

77, 81 

Strength-weight ratio of wing spars, 344 

Stress, critical buckling, 1(57 

compression, 79 

non-uniform, equilibrium equations 

for, 84 

normal, definition of, 78 

shear, 79 

sign convention for, 80 

tension, 79 

uniform, equilibrium equations for, 

79 

ultimate, definition of, 89, 90 

Stress analysis by Mohr’s circle, 83 

Stress axes, 80 

transfer of, 81 

Stress directions, principal, 82 

Stress distribution, affected by buckling, 

165 

in buckled thin plates, 204 

in stiffened cylinders, 322-329 

in stiffened flat sheet, 208-209 

in thick-webbed beam, 235 

in thin-webbed beams, 236 

Stresses, causing buckling, 165 

definition of, 78, 80 

in membranes, 288, 289 

in pressurized cabins, 307 

in thick plates, 284, 286 

in thin plates under normal pressure, 

294, 295 

principal, 82 

three-dimensional, 85 

two-dimensional, 81, 84 

Stress-strain curves, soft iron, 89 

steel and aluminum alloys, 91 

Stress-strain relationships, 86, 89 

Structures, redundant, 128 

Surface controls, weight, 19 

Superposition, principle of, 133 

T 

Tab, load distribution of, 60 

warning signals, 28 

Tabs, ailerons, 69 

control surface, loads on, 69 

effects on elevator loads, 65 

rudder, 68 

Tail, weight, 3 

Tail force, where applied, 61 

Tail load, 59 

Tail load distribution, tabs aiding pilot, 

66 

Tail load factor, net, 63 

Tail load factor moments, 61 

Tail loads, balancing, 60 

distribution of, 04 

maneuvering, distribution of, 65 

limits on, 65 

Tail surface, tension on, 72 

Tail surface loads, effect of horizontal 

ground gusts on, 69 

Tail surface moments, 72 

Tail surfaces, balancing load, 59 

Tail surface shears, 72 

Tail surface weight, breakdown, 12 

average trends, 12 

Tail wheel, weight, 3 

Take-off horsepower, 44 

Tangent modulus curve in column analy¬ 

sis, 158 

Temperature effects on redundant trusses, 

147 

Tensor, stress, 79 

Tension-field angle, 243 

Tension-field beams, 236-240, 242 

diagonal, 234-258 

incomplete, 241-258 

calculations for typical, 244 

inclined web stiffeners in, 253 

load distribution in, 245 

loads in web stiffeners of, 255 

loads on flange rivets of, 248 

oblique stiffeners in, 243 

rivet correction factor for, 242 

shear carried by flanges in, 241 

stiffener failure criteria for, 249 

stresses in beam flanges of, 255 



INDEX 419 

Tension-fit‘Id beams, incomplete, tapered 

flanges in, 258 

web buckling in, 243 

Tension-field web, 165 

Tension stress, diagonal, in Wagner 

beam, 236 

Tension tests, effect of using for com¬ 

pression allowables, 220 

Terminal velocity, 43 

Tests of stiffened panels, analysis of, 220 

Thrust, propeller, where applied, 61 

Torque, work due to, 132 

Torsion, bars with solid cross section, 114 

boundary conditions in, 114 

in doubly connected sections, 123 

in hollow thin-walled sections, 121 

in solid elliptical cylinders, 116 

in solid rectangular cylinders, 117 

in 7-section bars, 119 

lines of shearing stress in, 114 

of thin cylinders, 338-340 

Torsion bending constant for columns, 

195 

Torsion free bending, 349 

Torsion material in wing sections, 359 

Torsion problem, 114-123 

assumptions in, 114 

membrane analogy for, 117 

Torsion strain energy, 132 

Transfer of stress axes, 81 

Truss, definition of, 124 

joint rigidity in, 124 

Truss analysis, 124-147 

Bow’s notation in, 126 

by cut sections, 126, 128 

by resolution of joint forces, 125, 126 

Castigliano’s second theorem, 140 

fictitious loads in, .139 

graphical, 125, 126, 127 

intentional misfits in, 147 

Maxwell’s reciprocal theorem applied 

to, 134 

multiple redundancies in, 143 

notation for, 127 

joint displacement in, 134 

principle of superposition applied to, 

133 

redundant reactions in, 139 

strain energy in, 129 

temperature effects in, 147 

Trusses, external loads on, 124 

plane, 125 

secondary loads in, 124 

statically determinate, 124 

statically indeterminate, 124 

space, 125 

Truss-type spars, 344 

T-section column curve, 185 

T-sections, torsion in, 119 

Tul>68, barrel-shaped, as columns, 161, 

163 

rectangular, as columns, 161, 163 

with thin walls as columns, 179 

square, with thin walls as columns, 

179 

Twisting moment of lift forces, 50 

U 

Unit deformation, normal, 85, 88 

shearing, 86, 88 

Unit strain, 85 

V 

Vertical tail surfaces, aspect ratio, 68 

gust loads, 67 

maneuvering loads, 67 

Vibration, damping, 24 

sources of, 24 

Vibrations, 130 

Vision, passengers’, 25 

pilot’s, 25 

Vierendeel truss, 238 

Vierendeel truss ribs, 364 

W 

Wagner beams, 236-240 

Warning signals, 28 

Warping of tliin-wailed column struo 

tures, 196 

Web-buckling angle, 236 

Weight and balance, 32 

Weight and balance log, 34 

Weight breakdown, preliminary, 3 

second, 7 

Weight, buffet supplies, 38 

communicating equipment, 4, 20 

crew, 37 

de-icer, 4, 21 

design, 44 

electrical equipment, 21 
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Weight, engine accessories, 3 

engines, 3 

fuel per gallon, 37 

fuel system, 3, 17 

fuel tanks, 18 

furnishings, 4, 20 

fuselage, 13 

gross, design breakdown of, 3 

instrument, 4, 18 

landing gear, 14, 16 

lubricating system, 3 

minimum, 44 

design, 58 

nacelles, 16 

oil, per gallon, 37 

passengers’, 37 

passengers’ baggage, 37 

power plant, 3, 16 

power plant controls, 3 

propeller, 3 

residual fuel and oil, 4 

ribs, 9 

starting system, 3 

stewardess’, 37 

surface controls, 4, 19 

tail surface, 12 

tricycle gear, 3 

useful load, 4. 21 

wing, 8 

Windshield arrangement, 25 

Wind tunnel tests, 5 

accuracy and validity of, 5 

effect of power, 5 

to determine moment coefficient, 63 

Wing, lifting force on, 48 

sweeping, to adjust center of gravity 

location, 41 

Wing analysis, bending material, 354- 

359 

effective width use in, 359 

torsion material in, 359 

Wing area, effective, 44 

Wing down loads, 54 

Wing drag, where applied, 61 

Wing fittings, 365 

Wing flaps, 69 

Wing lift, where applied, 61 

Wing load distribution, 72 

Wing load factor, 45, 58 

Wing loading, 61 

design, 44 

Wing moments, 72 

where applied, 61 

Wing position, effect on fuselage weight 

of, 41 

Wing ribs, 361 

types of, 363 

Wings, design considerations, 342 *366 

design of, as affected by cutouts, 343 

shear-carrying members, 343 

shear analysis, 348-352 

Wing section, torsion in, 123 

Wing shears, 72 

Wing spars, 343 

Wing structures, types of, 354 

typical, 353 

Wing weight, 3 

dead, non-structural, 10 

structural, 10 

distribution of, 8 

effect of span on, 11 

equations for determining, 8 

items influencing the, 7 

Lipp analysis of, 8 

loads affecting, 8 

material breakdown of, 8 

Wing weight factor, 11 

Work, due to bending, 130 

due to loading, 129 

internal and external, 130 

Y 

Yield point, correction to standard value 

of, 227 

definition of, 89, 91 

Yield point stress, as a design criterion, 

77 

in buckled structures, 165 

Young’s modulus, 87 

correction to standard value of, 227 

definition of, 85 

limits on, 92 

Z 

Z-sections as columns, 174, 188 

Z-section column curves, 184, 185 
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