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Preface 

It has always been a temptation for mathematicians to present the 

crystallized product of their thoughts as a deductive general theory 

and to relegate the individual mathematical phenomenon into the 

role of an example. The reader who submits to the dogmatic form 

will be easily indoctrinated. Enlightenment, however, must come 

from an understanding of motives; live mathematical development 

springs from specific natural problems which can be easily understood, 

but whose solutions are difficult and demand new'methods of more 

general significance. 

The present book deals with subjects of this category. It is written 

in a style which, as the author hopes, expresses adequately the balance 

and tension between the individuality of mathematical objects and 

the generality of mathematical methods. 

The author has been interested in Dirichlet’s Principle and its 

various applications since his days as a student under David Hilbert. 

Plans for writing a book on these topics were revived when Jesse 

Doug]as, work suggested to him a close connection between 

Dirichlet’s Principle and basic problems concerning minimal sur¬ 

faces. But war work and other duties intervened; even now, after 

much delay, the book appears in a much less polished and complete 

form than the author would have liked. 

It was felt desirable to include a report on some recent progress 

in the theory of conformal mapping: fortunately Professor M. Schiffer, 

who had a most active part in those developments, agreed to write a 

summary of the material; the result is the comprehensive appendix 

which will certainly be considered as a highly valuable contribution 

to the volume. 

In a field which has attracted so many mathematicians it is difficult 

to achieve a f#ir accounting of the literature and to appraise merits of 

others. I have tried to acknowledge all the sources of information and 

inspiration of which I am conscious, and I hope that not too many 

omissions have occurred. 

A first draft of the book was completed eight years ago, supported 

by a grant from the Philosophical Society and with the help of 

vii 



VU1 PREFACE 

Dr. Wolfgang Wasow. Assistance for the present publication was 

partly provided under contract with the Office of Naval Research. 

On the scientific side the book owes much to Professor Max Shiffman, 

who has been concerned with the theory of minimal surfaces ever 

since a good fortune brought him as a student to my seminar on the 

subject. Carl Ludwig Siegel read the manuscript carefully and gave 

much valuable advice. Avron Douglis, Martin Kruskal, Peter Lax, 

Imanuel Marx, Joseph Massera, and others have unselfishly devoted 

time to scrutinizing the manuscript, reading proof, and preparing the 

bibliography. The drawings were made mainly by George Evans, Jr., 

Beulah Marx, and Irving Ritter. Edythc Rodermund and Harriet 

Schoverling gave outstanding secretarial help. The strenuous re¬ 

sponsibility for the editorial work and for the supervision of all the 

steps from preparing the manuscript to the final printing was in the 

competent hands of Natascha Artin. Without the collective help of 

all these friends the book could hardly have appeared at this time. 

Naturally, a word of thanks must be added for the understanding 

and patient publisher whose interest has been most encouraging. 

The book is dedicated to Otto Neugebauer as a token of friendship 

and admiration. 

R. Courant 

New RocheUe, New York 

April 1950 
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Introduction 

A new era in the history of mathematics opened when Gauss 

proved the fundamental theorem of algebra. Abandoning the futile 

attempts of his predecessors to solve algebraic equations of higher 

degree by root extraction, he took a step of general significance by 

proving merely the existence of the roots in question. For the first 

time it was clearly understood that the primary task in a mathe¬ 

matical problem is to prove the existence of a solution. To find pro¬ 

cedures by which the solution can be explicitly obtained is a further 

question, distinct from that of existence. Since the beginning of the 

last century this distinction has played a clarifying role contributing 

greatly to progress in all fields of mathematics. 

Among the existence proofs which dominated the mathematical 

thinking of this period, the most celebrated and consequential were 

those based on extremum problems of the calculus of variations and 

suggested by actual or imagined physical experiments. Bernhard 

Riemann’s geometric function theory, published in his doctoral thesis 

(1851) and in his memoir on Abelian functions (1857), is the out¬ 

standing example of the power of such an approach. 

To describe the physical reasoning underlying Riemann’s concep¬ 

tion, let us consider a surface S in space with or without boundaries, 

of any topological structure. This surface S we assume to be covered 

by a thin uniform sheet conducting electricity. Imagine a stationary 

electric current over Sy generated by the connection of arbitrary 

points on the surface with the poles of electric batteries. The poten¬ 

tial of such a current will be the solution of a boundary value problem 

of a differential equation—just that type of boundary value problem 

obtained from a variational problem. In general this variational 

problem consists of seeking, among all possible flows, that which 

produces the least quantity of heat. If the existence of the mathe¬ 

matical function corresponding to such a minimal condition is as¬ 

sumed, the existence theorems of Riemann’s function theory follow 

almost immediately. 

Mathematically, such a minimum problem can be formulated as 

1 



2 INTRODUCTION 

that of minimizing an integral of the form 

D[<t>\ ~ffG (4>l + 4i) dx dy, 

in which the domain G of integration and the range of functions </> 
admitted to competition are specified according to the particular 

function-theoretical theorem to be proved. 

Already some years before the rise of Riemann’s genius, C. F. 

Gauss and W. Thompson had observed that the boundary value 

problem of the harmonic differential equation Au = uxx +uyv — 0 

for a domain G in the x, ?/-plane can be reduced to the problem of 

minimizing the integral D[<t>] for the domain G, under the condition 

that the functions </> admitted to competition have the prescribed 

boundary values. Because of the positive character of /)[<£] the 

existence of a solution for the latter problem was considered obvious 

and hence the existence for the former assured. As a student in 

Dirichlet’s lectures, Riemann had been fascinated by this convincing 

argument: soon afterwards he used it, under the name “Dirichlet’s 

Principle,” in a more varied and spectacular manner as the very 

foundation of his new geometric function theory. 

This theory, which was to have so profound an influence on the 

subsequent development of mathematics, greatly impressed many 

mathematicians. Immediately it was felt that progress of lasting 

importance had been made. Thus, when Weierstrass found a flaw 

in Dirichlet’s Principle and, in 1869, published his objection, it 

came as a shock to the mathematical world. His criticism can be 

simply summarized: The positive definite character of D[0] implies 

the existence of a greatest lower bound d. Riemann as well as his 

predecessors had taken it for granted that this bound d is a proper 

minimum, actually attained by ah admissible function <t> = w; yet 

this is just the point which requires careful scrutiny. While continu¬ 

ous functions of a finite number of variables always possess a least 

or greatest value in a closed region, there are variational problems 

where no minimum or maximum is attained although a greatest lower 

or least upper bound may exist. 

By no means could this objection be easily answered. Riemann 

died without having had time to consider Weierstrass’ criticism, 

and the efforts of others to save Dirichlet’s Principle remained un¬ 

successful. Yet mathematicians refused to give up the results gained 

by Riemann’s method. Substitute methods had to be invented to 
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prove his existence theorems, and so Dirichlet’s Principle became 

indirectly the stimulus for a far-reaching development of new meth¬ 

ods in analysis. Yet the fascination of Dirichlet’s Principle itself 

persisted: time and again attempts at a rigorous proof were made. 

Finally, fifty years after Riemann, D. Hilbert succeeded. In a 

famous publication (1900), he established some of Riemann’s exist¬ 

ence theorems by proving directly that the corresponding minimum 

problem actually has a solution. Since Hilbert’s pioneering achieve¬ 

ment, the theory has been both simplified and extended. Today 

Diriehlet’s Principle has become a tool as flexible and almost as 

simple as that originally envisaged by Riemann. It has, moreover, 

been the starting point for the development of the so-called direct 

methods of the variational calculus, a development equally important 

to both pure and applied mathematics. 

During the last decades it became apparent that another of the 

classical extremum problems of analysis and geometry is intimately 

connected with Dirichlet’s Principle. Since the early period of the 

calculus of variations, the problem of determining the surfaces of 

minimal area spanned in a given curve or subject to other boundary 

conditions has been attacked by many of the great mathematicians. 

Again physical experiments, such as those carried out by the Belgian 

physicist Plateau,1 lead immediately to the intuitive conviction that 

such problems can be solved. If a closed contour of wire is dipped 

into a soap solution, the liquid forms a film which, by virtue of the 

laws of surface tension, assumes as position of equilibrium the shape 

of a minimal surface spanned in the contour. But empirical evi¬ 

dence can never establish mathematical existence—nor can the mathe¬ 

matician’s demand for existence proofs be dismissed by the physicist 

as useless rigor. (Only a mathematical existence proof can ensure 

that the mathematical description of a physical phenomenon is 

meaningful.) 

At any rate, to solve ‘‘Plateau’s problem,” that is, to prove the 

existence of a minimal surface spanned in a given contour, appeared 

for a long time to be a most difficult task. Investigations by Rie¬ 

mann, Weierstrass, H. A. Schwarz, G. Darboux, and others linked 

the problem with the theory of harmonic functions and conformal 

mapping and provided explicit solutions in significant cases. It was 

1 See also Plateau [1], as well as Courant [13] p. 385, where various other 

types of significant experiments are discussed. 
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not, however, until 1939 that the first general existence theorems 

concerning Plateau’s problem were proved, independently, by Tibor 

Rad6 and Jesse Douglas. The natural sequel was the use of Dirich- 

let’s Principle as the basis of an attack on a variety of classical as 

well as new problems concerning minimal surfaces, with a view to 

developing at the same time general methods of the calculus of varia¬ 

tions. Such a program has been pursued by the author and his 

collaborators. It is applicable not only to problems of minimal sur¬ 

faces with fixed or free boundaries furnishing a stable equilibrium, as 

represented by soap film experiments, but also to problems concerning 

unstable minimal surfaces. The latter were first successfully attacked 

by M. Shiftman and, independently, by M. Morse and C. Tompkins. 

The present book is based on previous publications and on new 

material. It represents an attempt to develop Dirichlet’s Principle 

together with applications to conformal mapping and to the theory 

of minimal surfaces, and to give access to a wide, still largely un¬ 

explored field connected with many topics in analysis and geometry. 



CHAPTER I 

Dirichlet’s Principle and the Boundary Value 
Problem of Potential Theory 

I. Dirichlet’s Principle 

1. Definitions. We consider domains G in the :r, 7/-plane whose 

boundaries 7 consist of Jordan curves. Functions </>(x, y)> 0(.r, y), 
u(x, y), • • • in G will be called piecewise smooth if they are con¬ 

tinuous in G and if they have continuous first derivatives in G except 

on a finite number of arcs with continuous tangents and at a finite 

number of isolated points. (For convenience we shall in general as¬ 

sume that such arcs of discontinuity are either circular or straight.) 

“Dirichlet’s integral” 

(1.1) D\<t>] = jj (<t>l + 4>l) dx dy 

for piecewise smooth functions 0 is defined as an improper integral.1 

This means 

D[<t>] = lim [[ 
n~*oo JJon 

(<t>l + <t>l) dx dy, 

where Gn denotes a sequence of closed subregions of G converging to 

G in the sense that each point of G lies in almost all the regions Gn . 
(A region Gn may consist of several domains.) Without restricting 

the generality of our definition, we may furthermore assume that 

the regions Gn form a monotone sequence, i.e. that Gn+1 contains Gn . 

In polar coordinates r, 0, 

(1.1a) -ew - g ( r dr dd 

1 We might instead admit functions continuous in G and possessing first 

derivatives square integrable in the Lebesgue sense, but for our purposes 

little would be gained by the use of this wider class of functions. 

5 



6 BOUNDARY VALUE PROBLEM CHAP. I 

or, with the abbreviation ds = rdd, 

(1-lb) D[<f>] = Jj (</>* + <t>l) dr ds. 

Dirichlet’s integral for a subdomain S of G will be denoted by Da[<t>]- 
2. Original Statement of DirichleVs Principle. We describe 

Dirichlet’s Principle in the not quite precise form in which it was 

originally used. On the boundary 7 of the domain (7, continuous 

boundary values g are prescribed. Consider the problem of mini¬ 

mizing D[<j>\. Admitted to competition are all functions 0, continuous 

in G + 7 and piecewise smooth in (7, whose boundary values coincide 

with g. Dirichlet’s Principle states: The problem is solved by a 

uniquely determined admissible function <f> — a for which D[<f>] attains 

its minimum value d. This function u possesses continuous first 

and second derivatives in G and is harmonic, i.e. satisfies the differ¬ 

ential equation 

(1.2) Alt ~ Uxx "4” Hyy = 0. 

Thus the boundary value problem of (1.2) is reduced to the solution 

of Dirichlet’s variational problem: to find the admissible function 

that minimizes D[p]. 
3. General Objection: A Variational Problem Need Not be Solvable. 

At first glance, the preceding statement seems to be an immediate 

consequence of the classical calculus of variations, since Au = 0 is 

Euler’s equation for the integral D[<f>]. Yet this observation alone 

cannot be accepted as proof of Dirichlet’s Principle. Certainly 

there exists a greatest lower bound d for since the set of possible 

values of D[<t>] has zero as a lower bound; but it is not evident that 

d is actually attained by an admissible function u. As a matter of 

fact, any naive assumption that a u‘reasonable” variational problem 

always has a solution is easily refuted by examples to the contrary: 

a) Consider the problem of minimizing 

/M - f H+ -^(z)]1 dx 
Jo 

for all continuous functions <f>{x) having piecewise continuous first 

derivatives in the interval 0 < x < 1 and satisfying the boundary 

conditions 

*(0) - 1, *0) - 0. 
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The value 1 is evidently a lower bound for this integral. It is in 

fact, the greatest lower bound: for on substituting in I[<f>] the par¬ 

ticular admissible function 

we find 

0, 

H+) -f (1 + 5 2)* dx 

0 < x < 8 < 1, 

x > 5, 

5*(1 + $2)* + 1 - 5 < 1 + 5\ 

where 8 may be arbitrarily small. But there is obviously no ad¬ 

missible function for which /[</>] assumes the value 1. 

b) In the following problem the non-existence of a minimum is 

geometrically obvious: Among all surfaces z = f(x, y) bounded 

by a circle K in the x, y-plane and passing through a fixed point P 
above this plane, find the one with the smallest area. Consider a 

surface that is identical with the x, y-plane except for a small disk 

under the point P, where it rises in the form of a steep cone with 

vertex at P. By making the base of this cone sufficiently small, 

we can bring the area of the surface arbitrarily close to the area of 

K; but there is, of course, no admissible surface of the same area as K. 
c) There are even variational problems for which a least upper, as 

well as a greatest lower, bound exists, although neither is attained 

by an admissible function. Examples are furnished by extremum 

problems concerning 

'W-i'nrer 
for all continuous functions 0 having piecewise continuous first 

derivatives in 0 < x < 1 and satisfying the boundary conditions 

0(0) = 0, </>(l) = 1. Obviously 0 < J[0] < 1; but while this i6 a 

strict inequality, the limits 0 and 1 can be approximated as closely 

as desired. For if |0'| is sufficiently large throughout the interval 

except at a finite number of points of discontinuity, /[0] will be 

arbitrarily near its lower bound zero. On the other hand, if |0'| is 

zero except in a finite number of intervals of sufficiently small total 

length, the integral will be arbitrarily near 1. Now any admissible 

curve can be approximated as closely as desired by curves of either 
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type, consisting in the one case of a polygon whose sides are all 

nearly perpendicular to the x-axis, in the other of horizontal lines 

with steep connecting segments the sum of whose projections on 

the x-axis is kept sufficiently small. Therefore, in an arbitrarily 

small neighborhood of any admissible function 4> there are other 

functions for which the integral is as close to 0 or 1 as desired. 

4. Minimizing Sequences. Let /[</>] be a variational integral. 

Consider a sequence of admissible functions <fn , fa , • • • , such that 

the values l\<t>i], f [02J, • • * , tend to the greatest lower bound d of 

I[<t>J: such a sequence is called a “minimizing sequence.” AVhen- 

ever the set of possible values of /[</»] is bounded from below, the 

existence of a minimizing sequence is assured. However, the pre¬ 

ceding examples show that a minimizing sequence need not converge, 

and that, if it converges, the limit function need not be admissible. 

That Dirichlet’s integral is not exempt from this difficulty is shown 
by the following example: 

Consider the minimum problem for D[<£] in a circle of unit radius, 

and require the admissible functions to vanish on the boundary. 

This minimum problem is solved by <t> == 0 and by no other function; 

d = 0 is the minimum value, not merely the greatest lower bound. 

Now define in polar coordinates r, 6 a sequence of admissible func¬ 

tions^ : 
(Cn l0g Pn , T < pi, 

<i>n = <C„ log (r/pn), 

10, 
Pn ^ T ^ Pn y 

Pn < r < 1, 

where the cn are constants. Formula (1.1a) yields 

2 r1 Q_n* 
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If we choose pn = e and cn = — n~v'\ D[<t>n] tends to zero, i.e. <f>n 
is a minimizing sequence. The value nllz of <£n at r — 0 tends to 
infinity, and hence the functions 4>n do not converge. Incidentally, 
by the same construction one can obtain a minimizing sequence 
for Dirichlet’s integral which diverges in an everywhere dense point set. 

Thus a minimizing sequence cannot in general be expected to 
yield the solution of the problem by a mere passage to the limit. 
The essential point in the “direct variational methods” is to in¬ 
troduce appropriate additional constructions that produce con¬ 
vergence. 

5. Explicit Expression for DirichleVs Integral over a Circle. Spe¬ 
cific Objection to DirichleVs Principle. The general objections of 
the preceding section seem accentuated by a fact first discovered 
by Hadamard: not only is the possibility of solving Dirichlet’s 
variational problem not obvious, but Dirichlet’s minimum problem 
actually lias no solution in some cases in which the boundary value 
problem for the differential equation Au = 0 can be solved. Thus 
the idea of reducing the latter problem to the former seemed even 
more discredited. Here is Hadamard\s example: 

Let K be a disk of unit radius about the origin, and again in¬ 
troduce polar coordinates r, 6. On the circumference k of K, con¬ 
tinuous boundary values g = g(0) are assigned. Consider the-- 
not necessarily convergent —Fourier series for g: 

00 

g r>+j —- + (a»- cos p6 + bv sin vd). 
2 

For r < 1, the solution of An = 0 satisfying the boundary condition 
u — g on k is given by the convergent series 

(1.3) u(r, 0) = ~ rP(a, cos r6 + bv sin vd). 
2 V=r.\ 

This form of the solution, as well as the equivalent representation 
by Poisson's integral, 

(1.3a) *(r, 6) = ~ jf gM 
(1 — r2) da 

1 — 2r cos (a — 6) + r2 ’ 

will be used frequently. For r < 1 the derivatives of (1.3) are 
obtained by termwise differentiation. We have D[u] = lim Dp[u\, 

p—i 
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where Dp[u] is Dirichlet’s integral for the circle of radius p < 1 about 

the origin. From (1.3) we easily evaluate 

Dp[u\ = ir v(a] + bl)p2v. 
„c=l 

This implies that for every N 

7r 2 viflv + bl)p2v < /)p[?i] < 7r 23 + 5?), 

where the right side may be a divergent series. By letting p tend 

to 1, we infer immediately: 

DirichleVs integral (1A a) for the harmonic function u over the unit 

circle is given by the series 

(1.4) l)\u) = ,E v{al + bl) 

and exists if, and only if, this series converges. 

As pointed out by Hadamard, there exist continuous functions 

g(6) for which the series (1.4) diverges; for instance, the function 

defined by the uniformly convergent Fourier expansion 

0.5) 
sin pW 

} 

would yield D[v] = With boundary values such as (1.5), 
M-l M 

therefore, the boundary value problem of A?* = 0 can certainly not 

be reduced to a variational problem for Dirichlet’s integral: Dirich¬ 

let’s Principle for such a case is invalid. There is no full equivalence 

between the variational problem and the boundary value problem. 

6. Correct Formulation of DirichlcVs Principle. An obvious way 

of avoiding the last difficulty is to restrict the prescribed boundary 

values from the outset in such a manner as not to exclude the possi¬ 

bility of solving the variational problem. While such conditions 

are not necessary for the boundary value problem, they are essential 

for a meaningful variational problem. Accordingly, it will be as¬ 

sumed that the prescribed boundary values $ on y are those of a 

function g, defined in G + 7, for which D[g] is finite; in other words, 

we explicit^ assume that there exists at least one admissible func¬ 

tion g with a finite Dirichlet integral. Thus we are led to the fol¬ 

lowing formulation: 
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DirichleVs Principle: Given a domain G whose boundary y consists 

of Jordan curves. Let g be a function continuous in G + y, piecewise 

smooth in G, and with finite Dirichlet integral D\g]. Consider the 

class of all functions <f> continuous in G + y, piecewise smooth in G, and 

having the same boundary values as g. Then the problem of finding a 

function <f> for which D[<t>] attains a minimum d has a unique solution 

4> — u. This function u is the solution of the boundary value problem 

for Au ~ 0 with the prescribed boundary values g on y. 

2. Semicontinuity of Dirichlet9s Integral. Dirichlet9s Prin¬ 
ciple for Circular Disk 

It is easy to prove DirichleVs Principle in the preceding formula¬ 

tion if 7 is a circle. In the proof we use a fundamental fact which 

will now be formulated for domains G without restriction to circular 

disks: 

Lemma 1.1 (Semicontinuity of DirichleVs integral for harmonic func¬ 

tions): If a sequence of harmonic functions un converges to a har¬ 

monic function uy and if the convergence is uniform in every closed 

subdomain of G, then 

(1.6) Da [u\ < lim inf. D0 [u»]. 

Proof: For any closed subdomain G' of G the assumed convergence 

of the un implies, by Harnack’s theorem,2 the uniform convergence 

of the derivatives of un to those of u. Hence 

Dq> [u] — lim DQ, [un] < lim inf. Da [w„]. 
n-+ oo 

We obtain the inequality immediately by letting G' tend to G. 

To prove DirichleVs Principle for the disk K bounded by the 

unit circle let g be any admissible function for which 1%] < oo 

and consider the “harmonic polynomials” 

n 

Un = 008 8^n V^> 
2 v-i 

2 Harnack’s theorem states: If a sequence of harmonic functions converges 

uniformly in a domain, their derivatives converge uniformly in every closed 

subdomain and the limit function is again harmonic. The proof is a simple 

application of Poisson’s integral. 
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where aVy b„ are the Fourier coefficients of the given boundary func¬ 

tion g — <7(1, ^). While the Fourier series for g need not converge, 

the polynomials un are regular and harmonic everywhere. For 

fn — g — un we have Dx\{n] < 00 (see §3). With the notation 

(1.7) /)[</>, yp] = JJ (<t>xypx + 4>v^y) d* (h 

we may write 

D\g\ — D\un\ -T D\$n\ + 2D\u„ , £n j. 

By Green’s formula—which is applicable to the polynomials un , 

though not necessarily to u—we find 

T>hln , fn] = [ tn V (I0 ~ ff f n AUn fix (ly. 
Jo oT JJk 

r—J 

The second term on the right side vanishes because Aun = 0. The 

first term 011 the right is also zero; this follows immediately if we 

substitute for un its explicit expression, and observe that the first 

2n + 1 Fourier coefficients of vanish, i.e. that 

Hence D\un , fn] = 0, and tlierefore 

D[un] = D\.g) - Dlfn] < D[g}. 

In K the polynomials un tend to the harmonic function u with bound¬ 

ary values g} i.e. limn_oo un = and the convergence is uniform in 

every closed subdomain of K. The semicontinuity of Dirichlet’s 

integral for harmonic functions leads therefore to 

D[u] < lim inf. D[unJ. 

This and the preceding inequality imply 

DM < D[gl 

hence the minimum property of D[u] is proved. 



dirichlkt’s integral and quadratic functionals 13 

To prove uniqueness, we note first that 

(1.8) D[u, h] = 0 

for every function h with D[h\ < <*> which is piecewise smooth in K 

and vanishes on k. For if J)[<f>] attains a minimum for 0 = u, then 

in the expansion3 

D[u + ek\ = D\u\ + 2*D[v, h\ -f el)[h\ 

the coefficient of e must vanish. Equation (1.8) for h = </ — u 

implies 

D[g\ = D[u + h\ = D[u\ + l)\h\. 

Thus D[u\ < I)\g\ unless l)\h\ — 0, i.o. unless h has the constant 

value zero. 

3. Dirich let's Integral and Quadratic Functionals4 

Dirichlet’s integral D{4>] is a quadratic, non-negative functional 

of a function 0(.r, y). The function 0 may range' over a “linear func¬ 

tion space,” i.e. a set of functions which, with two functions 0, 0, also 

contains their lineal* combinations X0 + g0 with constants X and g. 

Another quadratic functional important for us is 

// [0J = Jj< 0“ <lx dy. 

We denote' quadratic functionals such as D[<j>J or //[0j by t.h<; neutral 

symbol Q\(j>\. Some of Ihe e'ssential properties of nem-negative* 

quadratic, functionals are: 

a) 

(1.9) (M > 0. 

b) If 0 and 0 are twe) functions for which Q[0j and Q\\p] exist, there 

exists also a functional 0J, called the symmetric bilinear form, 

for which 

(1.10) C?[X0h+ M0J = XJ^f0] + yQ[yp] + 2Xg(^[0, 0], 

8 The existence of D[u -f h\, D[u, /?], and D[g — ?/) is assured by the exist¬ 

ence of D[u], D[h], and D\g]> as follows from the general fact, proved in §3, 

that the existence of D\<p| and D[\p] implies the existence of D[<f> -f 0] and 

D[<f>, 0]. 
4 See Courant [21, Chapter VII. 
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with arbitrary constants X, n. Obviously 

(i.H) QM = Ql<t>Al 

We may define the bilinear form by 

(1.12) 2Q[0, 0] = Qfr + 0] - Q[<t>] - Q[yp\. 

For Q — I) the bilinear form is given by (1.7), for Q = H by 

fj <j>$ dx dy. 

c) From (1.9) and (1.10) follows 

Schwarz’1nequality: 

(1.13) [Q[4>,+]l2 < Qim+l 

which expresses the non-negative character of the ordinary quadratic 

form in X and p represented by (1.10). 

d) Equivalent to (1.13) are the 

Triangle Inequalities: 

(1.13a) Vm + V<M\ > VQ14> + 

(1.13b) vm - Vm < 
The name '‘triangle inequality,, is suggested by the interpretation 

of VQ[<t> — 0] the “distance” between the functions 0 and 0 in 

the “linear function space” under consideration. We may call it 

a “Q-metric” in the function space. Our concepts likewise apply 

to integrals Qs extended over subdomains S of G. 

Since integrals for G are defined as improper integrals, a proof is 

needed for the existence of Q[0 + 0], Q[<f> — 0], and Q[0, 0] as a con¬ 

sequence of the existence of Q[<t>] and Q[0]. The triangle inequality 

for any closed subregion S where the integrals are proper yields 

a/O.s[0 + 0] < \/Q[<i>] + VQlfb 

VQs[<l> — 0] < V~Q[4>\ + VQbPV 

By letting S tend to G and applying (1.12) we complete the proof. 

The triangle inequality is instrumental for establishing lemmas 

on convergence of quadratic functionals for a sequence of functions 

0i, 02, - in the linear function space. We decompose the domain 
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G into a closed subregion G' and a “boundary strip” G*, so that 

G = G' + G*, and state: 

Lemma 1.2: Suppose Q[<f>n] < oo and 

Q\<t>n - 0m] 0 

as n, m —> oo. Then there exists for every e > 0 a small “boundary 

strip” G* such that 

(?G*[0n] < C 

for all n. In other words, the lemma implies that the contribution 

to Q[0»] from a suitably small neighborhood of the boundary can 

be made uniformly small. 

Proof: By virtue of the triangle inequality (1.13b) applied for 

<t> = <t>n , 0 = 0m , with m fixed, the assumption Q[4>n — 0TO] —* 0 

implies the convergence of Q[<f>n] for n tending to infinity. Hence 

Q[0n] is bounded. We choose N so large that 

Ql<l>n 0m] ^ 

for n, m > N. Furthermore, we choose a closed interior part G' 

so large that, for the boundary strip G* = G — G', we have 

for v < N. Then the statement of the lemma follows from (1.13a) 

if we set 

0 = 0n — 0AT , 0 = 4>N • 

A consequence is the 

Corollary to Lemma 1.2: Suppose Q[0„] exists for all n, and 

Q[<t>n “ 0m] —> 0. 

If 0 is a function for which 

Qo'[<t>n ~ 0] > 0 
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for all dosed subdomains Cr of (7, then Q\<t>] exists and 

Ql4i = lira Q[0„1 
n—*eo 

as well as 

Q[0« “ 0] —> 0. 

Proof: By (1.13b) we have 

Qg' f0] ~ lim Qry' f0nj« 
n—+oo 

Since Qa'[<t>n] ^ Q[<t>n 1 and since Q[0n] is uniformly bounded, the 

existence of Q[<t>] follows. Now for a given e we choose a strip (7*, 

again with G — G' + <7*, such that 

f^6’*f0] < (?O*[0n] < - 

for all n. Choose a number N so large that for n > N 

Q(7'f0 ~ 0n] < 

Then 

Q[<t> — 0n] = Q(7*f0 ~ 0n] + Qfl'[0 “ 0n) < € 

for all n > N, i.e. 

Q[0 — 0n] 0 

and therefore 

f^[0n] —> C?f0], 

as n —» oo. 

In making use of lemma 1.2, we shall occasionally replace 6 by 

a subdomain $ of G. 

4. Further Preparation 

1. Convergence of a Sequence of Harmonic Functions. As ex¬ 

ample b) of §1, 3 shows, we cannot derive the convergence of a 

sequence <j>n merely from relations such as 77 [0n] —» 0, D[0WJ —» 0, 

or D\<t>n — 0™] —■» 0 as n, m —> <*>. However, such relations do ensure 



FURTHER PREPARATION 17 

convergence if we restrict <t>n to the narrower class of harmonic 

functions: 

Lemma 1.3: If Hs [wnJ —» 0 for a sequence of functions wn harmonic, 

in a domain S, the functions wn, and consequently the derivatives 

of wn , tend to zero uniformly in any closed subdomain S' of S. 

Proof: Given a closed subdomain S', we can find a positive number 

h such that the disk K with radius h about any point P in S' lies 

entirely in S. By the mean value theorem for harmonic functions, 

we have 

wn(P) = ~ j wn(x, y) dx dy. 

hence by Schwarz’ inequality 

\w„(P)f < HS[Wn\. 

irh£ 

This inequality implies the statement of the lemma for the functions 

wn . The statement concerning the derivatives follows automatically. 

Moreover, we can now prove the two further lemmas: 

Lemma 1.3a: Let un be a sequence of functions harmonic in S for 

which 

lls\lln Urn] * 0 

as n and m tend to infinity. Then in each (dosed subdomain S' of 

S the functions un tend uniformly to a harmonic function u and 

consequently also the derivatives of un tend uniformly to the deriva¬ 

tives of u. 

Lemma 1.36: Denote again by S' a closed subdomain of S and by un a 

sequence of functions harmonic in S. Assume that Ds[un — um\ 0 

as m, n tend to infinity, and that in addition the difference | un — um | 

becomes arbitrarily small for sufficiently large n and m—either at a 

fixed point P of S' or even only in a suitable point Pnm of S' which 

may vary with n and m. Then the functions ?/„ tend uniformly to a 
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harmonic function u in S'. Consequently also the derivatives of un 

tend uniformly to the derivatives of u in S'. Furthermore 

and 

Da[un] —> Da[u] 

Da[un — u] —> 0. 

The proofs of lemmas 1.3a and 1.3b follow immediately—for an 

arbitrary closed subregion S'—from lemma 1.3 and from Harnack’s 

theorem (see footnote 2, p. 11) and then for S by lemma 1.2 and 

its corollary. 

2. Oscillation of Functions Appraised by DirichleVs Integral. 

The analogue of Dirichlet’s integral for functions 4>(x) of one variable a; 

fb 2 
is simply / <f>l(x) dx. By Schwarz’ inequality, for a < xi < x2 <b, 

[<t>(xa) - = 

Thus in one dimension the oscillation of a function can be appraised 

by means of Dirichlet’s integral. Such a simple fact is no longer 

true in two dimensions, as seen from example b) in §1,3. However, 

similar estimates for the oscillation in two dimensions are possible 

at least along selected individuals of given families of curves. 

First we consider concentric circles in G about a center 0. Let 

r, 6 be polar coordinates about 0, s = rd. For a circular disk K: 

r < a in (7, define the function 

M(a) = DK[4>] > f*f Jo Jo 
^ dSy 

where <t> may at first be assumed to have continuous first derivatives 

in K. 

Let a and b = a — h < a be constants. By the mean value 

theorem for integrals, there exists an intermediate value r = r0 in 

the range b < r < a such that 

<t>i ds < 
M(a) 

h 

As above, we appraise the oscillation of <#> between two points Pi, 

P2 on a circular arc r = n of length | s2 — Si |: 

[<t>(P2) <t>(P 1)]2 ^ 
M(a) 

\s.: - Si I < 2ttM(o)|. 
h 
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Now we choose the width h of our ring b < r0 < a such that a/h is a 

fixed positive constant (for example 2). Since M (a) 0 as a —► 0, 

we can, for given a, always find circles r = rQ with a/2 < r0 < a on 

which the variation of <j> is appraised by Dirichlet’s integral; this 

variation is arbitrarily small for sufficiently small a. 

These facts may be formulated in a slightly more general way 

for piecewise smooth functions </> without restricting the center 0 

to a position in G. Then the circles r = constant may have arcs 

in G and arcs outside G. Again we denote by K = Ka the part of G 

lying in r < a and by M(a) = DK[(j)] the corresponding Dirichlet 

integral of <t>. We state 

Lemma 1.4' For b < a and a — b = h there exists a circle r = r0 

with b < ro < a such that on each connected arc of this circle lying 

in G the inequality 

(i.i4) i *(po - 0(po r < i s2 - sx i < —a^/(a) 

holds, where |s2 — «ij < 2ta is the length of the arc between Px and 

P2. In particular, for sufficiently small a there exist circles r = r0 

with a/2 < r0 < a such that the variation of 0 on each arc of the 

circle lying in G is arbitrarily small. 

Proof: We proceed as above, except that the definition of D[<f>] as an 

improper integral necessitates some caution in splitting the integral 

DK[<t>] into simple integrals. For this purpose we consider K as 

the limit of a sequence of closed sets Kn in G bounded by polygons, 

so that and <t>v are discontinuous at most along a finite number 

of arcs and isolated points in Kn. If Lrn) is the set of circular arcs 

in which the circle of radius r intersects Kn, we can split DKn as 

above and have 

jfdr L(rn) ds - Dk" ^ - M(a); 
for fixed n there is a value r0 = pn for which 

and 

/*«.> **ds ^ 
Pn 

M(a) 

h ’ 

|*(P0 - <t>(Pi)\2 < 2x 
aM(a) 

h 
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on each arc of Lp”\ As n tends to infinity we may assume that pn 

tends to a value p, and we obviously have the same inequality for 

every closed arc L onr - p that lies in G. This proves our lemma, 

if we set h = a/2. 

In the same way the following modifications of the lemma can 

be proved: 

Lemma 1.4a: Denote by S the part of G between y = a and y = a + h. 

There exists a value ?/0, a < y0 < a + h} such that on each connected 

segment in G on the line y = ?y0 we have 

I <t>(x-2, y«) ~ , y0) |2 < I x2 - Xi I D~- . 

Lemma 1.4b: Consider a family of concentric squares a: = =tr, y = ±r 

about the origin O. The statement of lemma 1.4 remains true if 

in the inequality (1.14) the factor 2ir is replaced by 8. 

Lemma 1.4c: Suppose the domain G in which <t> is defined extends 

to infinity, remaining finite. Let Ka denote the part of G 

outside the circle r = a, so that M(a) —> 0 as a <*>. Then again 

for each a there exists a value ro, with a < ro < 2a, such that in¬ 

equality (1.14) holds on each connected arc of r = r0 lying in G. The 

right side of the inequality tends to zero as a tends to infinity, if, 

say, h = a. In a similar way lemma 1.46 holds for large squares 

instead of small ones if G is an infinite domain. 

3. Invariance of Dirichlet's Integral under Conformal Mapping. 

Applications. In the next two articles we add a few observations 

for use in the later chapters. 

Theorem 1.1: Dirichlet's integral is invariant under conformal 

mapping. 

Proof: A conformal mapping x = x(x\ y')f y = y(x\ y') may trans¬ 

form the point (x, y) into the point (x', y') and the domain of integra¬ 

tion G into a domain G'. The Cauchy-Riemann equations imply 

4>l' + <t> 

2 
V' (4>l + 4>l) 

d(x, y) 

d(x\ y'Y 
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hence 

(</>i + <t>v) dx dy = JJ (ft* + dxf dyf. 

This equation expresses the invariance of Dirichiefs integral and, 

of course, also implies the invariance of the mixed integral Da(<t>, ^). 

As a consequence, Dirichlet’s Principle is proved for all domains 

which we can map conformally onto a circle. (From now on we will 

on occasion take the liberty of using the word “circle’’ to mean 

either the circumference or the disk, provided that no confusion can 

arise.) We recall a few elementary conformal transformations: 

a) The Semicircle: The transformation 

Lzl = (Lzj Y 
i + r \i + */ 

maps the interior of the upper half of the unit circle in the 2-plane 

onto the upper half of the ftplane. The mapping 

transforms this upper half-plane into the interior of the unit circle 
in the 77-plane. 
b) The Circular Lune: More generally, a circular lune in the 2-plane 

with the vertices Zi , z2 and the angle a can be transformed into a 

lune in the ftplane with the vertices ft , ft and the angle a\ by the 

transformation 

s' ~ ft _ / z — zAx 
f - ft \z - z2J * 

If X is chosen equal to t/a, the lune in the i"-plane is a circle. 

c) The Circular Sector: The center of the circle of a circular sector 

in the 2-plane may be assumed to be the origin. If the angle of 

the sector is a, the transformation £ = zlot maps the sector onto a 

semicircle in the £-plane, which can then be mapped conformally on 

the unit circle. 

d) The Ellipse: The interior of an ellipse may be seen to be equivalent 

to a circular disk by elementary conformal transformations. 

4. DirichleVs Principle for a Circle with Partly Free Boundary. 

In Chapters II and VI we shall need a generalization of Dirichlet’s 

Principle to the case in which the boundary values are left free on 
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a part of the circumference of the circle. On such an arc the solution 

of the minimum problem will be seen to satisfy a “natural boundary 

condition”: the normal derivative vanishes, or, what is equivalent, 

the harmonic function v conjugate to u attains constant boundary 

values. Since the circular disk is conformally equivalent to a semi¬ 

circular domain in such a way that the free arc is transformed into 

the bounding diameter, it is sufficient to prove 

Theorem 1.2: Let H be the domain x2 + y2 < 1, y > 0. Denote 

by m its bounding semi-circular arc, by X its (open) bounding diameter 

7/ = 0, —1 <# < 1. Let g(x, y) be a function continuous in H and 

on /x, with piecewise continuous first derivatives in H, and assume 

DH\g] < 00. Then there exists a function u, harmonic in H + X + y> 

with the same boundary values as g on /*, with vanishing normal 

derivative on X, and such that DH[u] < DH[g]} the equality sign 

holding only for u — g. 

Proof: If g is assumed to be continuous on the whole boundary 

X + y, the statement follows immediately from Dirichlet’s Principle 

for the circle; for we may then obtain a piecewise smooth function 

in the full circle by extending g symmetrically into the lower half- 

circle, i.e. by defining g(x, —y) = g(x,y). The harmonic function 

in the full unit circle with the boundary values of g and of its sym¬ 

metric extension is then likewise symmetric and, therefore, has a 

vanishing normal derivative on X. Under the less restrictive condi¬ 

tions of the lemma, which does not stipulate continuity of g on X, we 

have to supplement this reasoning. Instead of H, we consider first 

the subdomain Ht defined by 

x2 + y < l, y > e. 

The domain H( can be mapped on H by an explicit elementary con¬ 

formal transformation (see §4, 3) which also establishes a continuous 

biunique correspondence between the boundaries. For € 0 this 

mapping tends uniformly to the identity. It transforms the values 

of g in Ht into a function g€ which is continuous in H + y + X and 

tends in H + y uniformly to g as e —► 0. According to the previous 

remark, the lemma is proved for the function gt and for the harmonic 

function u€ which has the same boundary values as gt on y and whose 

normal derivative vanishes on X; i.e. we have 

Dslut] < Pn\g«]- 
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By the invariance of the Dirichlet integral under conformal mapping 

we have 

so that 
DM = D.Jg] < DM* 

Dn[ue] < Du[g]. 

For e —> 0, u< tends to a harmonic function u, uniformly in H + n + X, 
as follows by symmetric extension of gf and ut to the full circle/' 

In view of the semicontinuity of Dirichlet’s integral, we therefore 

obtain for e —» 0 the inequality 

Dh[u] < DM¬ 

As previously shown in the proof of Dirichlet’s Principle for the circle 

(see §2), the equality sign is excluded except for u = g. 

5. Proof of Dirichlet’s Principle for General Domains 

1. Direct Methods in the Calculus of Variations. Weierstrass’ 

theorem, which states that a continuous function f(x) in a closed 

interval always possesses a minimum and a maximum, is based on 

two facts: 1) the compactness of the set of real numbers in a closed 

interval, i.e. the existence, in each infinite subset, of sequences con¬ 

vergent to an element of the set; 2) the continuity of the function 

f(x). For the existence of a minimum alone the second property 

could be replaced by the less restrictive condition of lower semiconti¬ 

nuity \f(x) < lim inf. f(xn) for xn tending to x. 

In the calculus of variations the independent variable is not a 

number x ranging over a closed interval, but an admissible function 

<j>(x) or <t>(x, y)y ranging over a set or a “space of functions." The 

relevant questions are therefore: a) Is such a space or set of functions 

compact? b) Is the functional /[</>] or Z)[</>], whose minimum we seek, 

lower semicontinuous in the space? Of course, the meaning of “com¬ 

pactness'J in a function space depends on the meaning of “conver¬ 

gence," which in turn depends on the meaning of “neighborhood" or 

of “distance" in the space. 

6 For if a sequence of functions is harmonic in a domain G and continuous 

on the boundary y, and if the boundary values converge uniformly, the func¬ 

tions converge uniformly in G 4- y to a function regular and harmonic in G 
and continuous in G + y. 
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It is entirely possible to attack Dirichlet’s variational problem, 

which we shall henceforth call “Variational Problem I,” by seeking 

affirmative answers to these two questions. However, to proceed 

along this line we would have to enlarge the original function space 

to a “Hilbert space” by the addition of “ideal elements,” and at the 

end would be faced with the problem of proving that the solutions 

found in the larger function space are really contained in the narrower 

space of functions with continuous second derivatives. For our spe¬ 

cific, purposes it, seems preferable to proceed more directly, exploiting 

from the outset the individual features of Dirichlet’s problem and 

using the ordinary convergence concept. The proof of semicontinuity 

presents no serious difficulty, in view of lemma 1.1. We shall have 

to cope with the fact that sets of minimizing sequences are not com¬ 

pact in the sense of ordinary (uniform) convergence, so that appro¬ 

priate limiting processes must be devised to obtain the desired solution 

from a minimizing sequence. 

The proof of Dirichlet’s Principle proceeds in three steps: 

1) Construction of a harmonic function u in G. 

2) Proof that D[u] < d, where d is the greatest lower bound of 

D[(j>] for all admissible functions. 

3) Proof that u attains the prescribed boundary values. 

2. Construction of the Harmonic Function v by a “Smoothing Proc¬ 

ess.” Consider a minimizing sequence <f>n of admissible functions in 

G. As has been seen in § 1, 3, the functions <t>n need not converge. 

However, the “distance,” in the “D-metric,” between the functions 

of the sequence tends to zero, as will be shown presently: 

Lemma 1.5: Let fn(x, ij) be any sequence of variations piecewise 

smooth in G, vanishing at the boundary, and possessing a common 

upper bound M for D[fn]; then 

(1.15a) £fo»,fn]-* 0 

for any minimizing sequence <t>n . More precisely, if D[<f>n] = dn we 

have 

(1.15) D[0n,fn]2< (dn — d)M. 

This is the relation which in our direct approach replaces the vanish¬ 

ing of the first variation in the ordinary variational calculus. 
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Proof: Since 0 = 0n + is an admissible function in our variational 

problem, we have 

D[<j>] - d = dn - d + 2tDl4>n , fJ + e2/)[fn] > 0, 

hence all the more 

dn — d + 2eZ)[0n , fn] 4" * M > 0. 

Here the left side is a quadratic polynomial in 6, and (1.J5) simply 

expresses its non-negative character. 

As a consequence we state 

Lemma 1.5a: For a minimizing sequence 

(1.16a) D[(j)n — <f>m] —> 0 

as n and m tend to infinity. More precisely, 

(U6) D[<t>n - <t>m] < (Vdn - d + v^r-dy. 

Proof: Setting fn = 0n — 0m and M = D[<t>n — 0m] we have by (1.15) 

D[$n > 0n 0m] ^ \^dn d \/Z)[0n 0m]* 

Interchanging n and m and adding, we find that 

D[(f)n — 0m] < y/D[<f>n — 0m] (\Zck~-- d + -\/dm — d). 

Cancellation of the factor \/5l0« — 0m] immediately gives (1.16). 

Corollary to Lemma 1.5a: If 0(„X) and 0*') are two minimizing sequences, 

then 

i>[0(n1)-0L2)]-O 

as n oo ; for the mixed sequence 0(n1), 0L2) is again a minimizing 

sequence. 

On the basis of lemma 1.5a, Dirichlet’s Principle for the circle can 

be used to construct the solution u of the general problem by a 

“smoothing process.” To that effect let K be a circle in G with 

boundary k, and consider in K the harmonic function un having the 

same boundary values as 0n on k. The sequence of admissible func¬ 

tions 0n defined by 

un in Ky 

0n in G - Ky 
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is then again a minimizing sequence: for DK[u„\ < DK[<t>n] in conse¬ 

quence of Dirichlet’s Principle for the circle. Therefore we have 

d < D[tn\ < D[<t>n). 

The replacing of the minimizing sequence <t>n by the sequence will 

be referred to as a “smoothing” of <£n in K. 

By lemma 1.5a, D[\pn — \f/m] —> 0 and, a fortiori, 

DK[un — Urn] —> 0, 

as well as 

DK[<t>n — Un] —> 0. 

From these relations the convergence of un in K can be inferred by 

means of lemmas 1.3b and 1.4. The hypothesis of lemma 1.3b is 

satisfied, for we can show that | un — um | may be made arbitrarily 

small at a point Pnm suitably chosen within a smaller disk K* of 

radius h/2 concentric with K. To this end we describe about a point 

0 outside the boundary k* of K*, the two circles tangent to k*; let 

their radii be b and a = b + h. If 0 is sufficiently distant from k*, 

all circles about 0 that intersect k* also intersect the boundaiy y of 

G (since G is bounded). By lemma 1.4 these circles include a circle 
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Ko of radius r = r0 on which, along any connected arc in (7, the 

oscillation of p = \pn — is not more than y/2ir(a/h)D[p\. 

Now let Pnm be a point of K0 lying in the disk K*, Qnm the nearest 

point common to Kq and y. Since all functions \pn have the same 

boundary values, p{Qnm) is zero, and therefore p(Pnm) < 

y/2w(a/h)D[p\. By lemma 1.5a, D[p] —> 0; consequently p(Pn7n) —> 0 

as n, m —> <x>m Finally, lemma 1.3b ensures the uniform convergence 

of the un to a harmonic function u, in every closed subdomain S of K. 

Note also that 

(1.17) Ds[u - 0n]~* 0. 

Since the derivatives of un converge uniformly in S to those of u we 

have D8[u — un] —> 0. Furthermore, Ds[un — </>«]—> 0; hence (1.17) 

is established by the triangle inequality. 

This smoothing process can be applied to any circle in G; it leads 

in every such circle to the definition of a certain harmonic function u. 

We assert that this construction defines a uniquely determined func¬ 

tion in the whole domain G. 

For the proof we show that the functions U\ and u2 resulting from 

the smoothing in two overlapping circles Ki and K2 are identical in 

the common part K\K2. Suppose the sequence <f>n gives rise to the 

minimizing sequences and \p{n2) by smoothing in the circles K\ and 

K2, respectively. The mixed sequence \ \p{2), \p22\ • • * is also 

a minimizing sequence, and therefore l)[ypn) ~ 0, in conse¬ 

quence of the corollary to lemma 1.5a. If K' is a circle in KiK2 , we 

have, a fortiori, DK\Pn] — p{m\ —> 0. The functions and ^ are 

harmonic in K', and converge to Ui and u2, respectively. From the 

preceding argument it follows that the mixed sequence also converges 

to a harmonic function u in Kr. Hence Ui and u2 are identical with 

u in K'y therefore also identical everywhere in K\K2. 

Remarks: a) The limit function u does not depend on the particluar 

minimizing sequence <j>n from which it was derived by the smoothing 

process. For let <j>'n be another minimizing sequence; then the smooth¬ 

ing of the mixed tninimizing sequence fa , <]£>i, <t>2, <t>2, • • • in any circle 

K leads to a sequence of functions Ui, ui, u2, u2, • • • , harmonic in 

K, that converge to a harmonic function u, the common limit of un 

and un . 

b) Instead of using a fixed circle K for the smoothing of the minimiz- 
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ing sequence, we may use a different concentric circle Kn for the 

smoothing of each function <f>n 9 provided the radius rn of Kn remains 

greater than a fixed positive number, say rn > h. The uniform con¬ 

vergence of un to a harmonic function u in a concentric circle of radius 

less than h is then proved exactly as before. 

3. Proof that D[u\ = d. Consider a closed subdomain G' of G and 

represent it as the sum of a finite number of non-overlapping closed 

domains S, each of which can be enclosed in a circle K in G. Then, 

according to (1.17), Ds[u — un] —> 0, and therefore 

Do'[u — un\ —» 0. 

Hence, by lemma 1.2 and its corollary, 

D[u] = d. 

4. Proof that u Attains Prescribed Boundary Values. The function 

u, so far defined in G only, can be extended continuously to the bound¬ 

ary 7 and assumes the prescribed boundary values g on each Jordan 

curve a of 7.6 More precisely: with arbitrarily small prescribed c we 

have | u(P) — g(A) | < c for all points P of G whose distance PA 

to a point A on a is less than a suitably small quantity 5 = 5(c). 

This statement expresses the convergence of u(P) to the prescribed 

boundary values. 

Since the boundary values g are uniformly continuous on a, it is 

sufficient to prove the statement in a weaker form: For given c there 

exists a value 5(c) such that | u(P) — g(R) | < e if the distance 

PR of P to a point R on a nearest to P is less than 5(c). 

For the proof we set PR — 2h, intending to fix a proper upper bound 

5 for 2h. First we require 5 to be small enough to ensure that P has 

a distance greater than 25 from every boundary curve except a. 

Now we consider the subregion Sh of G consisting of all points P 

with a distance from a not exceeding 4h. Because of lemma 1.2 

there is a number <r(h) such that y/4x/)5A[0n] < a(h) for all n, with 

<j(h) —> 0 for h —> 0. As a consequence of lemma 1.4 applied to Sh in¬ 

stead of to G, there exists a circle about P with radius rn , h < rn < 2hy 

on whose circumference the oscillation of 4>n is less than 

\/iirDSh[(t>n) < <r(h). Similarly, there exists a circle about R with 

radius pn , h < pn < 2h, on whose circumference the oscillation of 

B As to isolated boundary points, see end of article. 
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<t>n is again less than cr(h). This circle intersects the circle about P at 

a point Qn and, if h is chosen sufficiently small, also intersects a at a 

point Rn such that an arc of the circle connecting Qn and Rn lies in G. 

Therefore since <t>n = g on a, 

(1.18) | MQn) - g{Rn) | < *(h). 

Let un be the harmonic function obtained by smoothing in the 

circle about P; then the value un(P) coincides with some value of <j>r( 

on the circle and hence cannot differ from <t>n(Qn) by more than <r(h): 

(1.19) | un(P) - <t>n(Qn) I < <r(h). 

By the uniform continuity of g on a there is a positive quantity rj(/i), 

tending to zero with h, for which 

(1.20) I g(R) - g(Rn) I < v(h), 

since the distance between R and Rn is less than 2h. Combining 

(1.18), (1.19), and (1.20), we find 

| un(P) - g(R) | < 2a(h) + v(h) 

Finally we choose 8 so small that for 2h < 8 the condition 2a(h) + 

rj(h) < c is satisfied. 

Thus u is recbgnized as the solution of the boundary value prob¬ 

lem. By article 3, D\u] — d; consequently uy being admissible in the 

variational problem, solves this problem as well. The uniqueness 

proof is exactly the same as in the case of the circle. Hence Dirich- 

let's Principle, as stated in §1, 6, is established. 
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It should be observed that our proof becomes invalid if a consists 

of an isolated boundary point, for then the construction of the arc 

RnQn breaks down. Assumption of boundary values can be expected 

only on connected non-degenerate point sets a of 7. 

5. Generalizations. We can remove two inessential restrictions 

made so far: a) the condition of boundedness for G\ b) the assumption 

that the boundary consists of Jordan curves. 

a) The restriction to bounded domains is eliminated by the following 

argument: Boundedness was used solely for establishing a connection 

between the values of the function <f>n — <f>m in K and the boundary 

values by means of circular arcs (see article 2). This connection may, 

however, be equally well established for an unbounded domain 

B as long as a boundary continuum T of positive diameter 2h is known 

to exist. In this case we can find a circle A intersecting T on which 

| </>n — <f>m | is arbitrarily small, for sufficiently large n and m. If A 

intersects K as well, our previous reasoning remains valid; if A does 

not meet Ky we ma}^ assume that A contains K, since otherwise this 

situation could be obtained by inversion of the plane in A. Finally, 

the values of | — <f>m | in K can be referred to the (small) values on 

A, again by the same construction as in article 2. 

b) For a boundary arc counted twice, a “slit” in the plane along 

which we distinguish opposite edges, our reasoning and our results 

remain literally valid, if we permit g and u to have different boundary 

values at opposite points of the boundary slit. 

To give general definitions for the case of multiple boundary 

points, one might proceed as follows: 

A sequence of points Pn in G is said to be convergent if Pn and 

Pm can be joined in G by a polygon of arbitrarily small diameter, for 

n and m sufficiently large. A convergent sequence whose limit point 

is not in G is said to define a boundary point R. Two convergent 

sequences Pn , P'n defining boundary points are said to define the same 

boundary point if the mixed sequence PnPn is also convergent. 

With these definitions the concepts of boundary values and conti¬ 

nuity on the boundary become obvious and no change in the reason¬ 

ing or in the results will be needed if, for admissible functions <£, 

boundary values are understood as limits of <j>{Pn) as Pn tends to R. 

Finally it may be stated that the results and the proofs remain 

valid also if G is a Riemann surface composed of a finite number of plane 

domains, each domain containing only one branchpoint of finite order. 
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6. Alternative Proof of Dirichlet’s Principle 

Many alternative proofs for Dirichlet’s Principle are available. 

One of these variants, which is given in the following sections, avoids 

use of the solution of the problem for the circle and, by its slightly 

different approach, illuminates some of the preceding lines of reason¬ 

ing. 

1. Fundamental Integral Inequality. As a preparation, instead of 

lemma 1.4, we formulate an important inequality due to H. Poincar6: 

Lemma I.4d: For all piecewise smooth functions f with vanishing 

boundary values there exists a constant k depending on G alone such 

that 

(1.21) im < kD\tk 

k may be chosen as l\ where l is the diameter of G. 

Proof: To avoid complications due to the boundary we consider in¬ 

stead of G a subdomain Gs , with polygonal boundary y5, such that Gs 
tends monotonically to G for 5 0. For a given positive e we have 

| f | < € on 75 if 8 is chosen sufficiently small. Through every point 

P in Gs draw the line y = constant in the direction of increasing x up 

to the first point P' of intersection with y6. Set f(P') = e(P); then 

e(P) is a piecewise continuous function of P with 

(1.22) | e(P) | < e. 

From 

Ir(P) - r(P') I = I f* udx 
1 jp' 

we find by Schwarz’ inequality that 

[f(p) - *(p)]2 < 1 fP tUx <1 f £ dx-, 
Jp’ Jl 

here I is the whdle intersection of y = constant with Gs, and l is the 

diameter of G as before. Integrating over I we find 

l lt(P) - *(P)]2 dx < l2 J^ldx. 
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Next we integrate with respect to y over the range of values corre¬ 

sponding to points in Gb, obtaining 

[[ im - e(P)fdxdy < tD\S), 

and consequently by the triangle inequality and (1.22) 

(jj a i(Pfdxdy^ - (ff a * dz dyj + (? 

Since e can be chosen arbitrarily small, and since any fixed closed 

subregion of G is contained in Gs for sufficiently small 8. the lemma 

follows almost immediately. 

For the analysis of boundary values we need a slight refinement 

of (1.21), obtained by the same method. As before we decompose G 

into a closed interior region Gf and a boundary strip G*y so chosen as 

to contain all points of G whose distance from the boundary does not 

exceed 4h. Then 

Da+[£J ^ o’(A), 
where a(h) tends to zero with h. 

We consider a continuous boundary component c of G whose diam¬ 

eter exceeds 4h and suppose that all other boundary components have 

a distance from c exceeding Ah. Let T be a straight segment of 

length Ah extending from a point R on c into the interior of G.‘ We 

consider all circles about R whose radii vary between 0 and 4h, and 

single out those arcs of the circles that lie in G and intersect T. These 

arcs form a simply connected subdomain L of G; L is a subdomain 

of G*, so that 

Dl[f] < e(h). 
Now we state: 

Lemma 1.4c: Iridepeaidently of the choice of R we have 

(1.23) < 64*Wa(h). 

The proof is parallel to that of lemma 1.4dwith the modification that 

we now consider circles instead of the straight lines y = constant. 

2. Solution of Variational Problem I. To construct the solution 

of Dirichlet’s variational problem we again start with an arbitrary 

7 The existence of such segments is obvious, since each straight ray from 
an interior point has a first point of intersection withy. 
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minimizing sequence <j>i, , • • * and make use of the following facts 

proved before in §5: 

(1.16a) D[(t>n — <#>mj —> 0 for u and m tending to infinity. 

(1.15a) D[<j>n , f] —> 0 for any admissible variation f. 

(1.24) D0*[<j>n — g] < a(h), where G* denotes a boundary strip of 

width h and where a(h) is a quantity, not depending on n, that tends 

to zero with h. We proceed by the following steps: 

1) We choose a fixed positive value a and consider the region Ga— 

possibly consisting of several pieces—-comprising all points P in G 

whose distance from the boundary exceeds a. To any admissible 

Figure 1.4 

function <p in Ga a smooth function to is associated according to the 

relation 

f ■* rkF\ / n\ 1 Cf I A. 1 
(1.25) Co(P) = — [[ <f> dx dy, 

7TOr JJk 

where the integral is extended over the circular disk K of radius a 

about P. This mean value co is obviously a continuous function of 

P in Ga . Furthermore, the first derivatives of u(P) exist, are con¬ 

tinuous, and are given by 

(1.26) 7ra2cx)x — JJ <j>xdxdy, irawy = JJ <t>vdxdy. 

For since u{x + £, y) = co(P') is expressed by (1.25), but with the 

integration extended over a disk K' of radius a about Pr, we have 

\ Tra[u(x + £, y) — co(x, y)] 

~ \fL yS> dx dy ~ If a ^x’ ^ dx ) 1 
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where Ai is the portion of K' -exterior to K and A2 the portion of K 
exterior to K'y each having area less than 2£«. As £ —»0 the right side 

tends to the limit $ dy (where k is the circle bounding the disk K) 

as becomes immediately evident if the double integral of the continu¬ 
ous function (j> is split into an integral with respect to y and an integral 
with respect to x. Expressing the contour integral by the integral of 
<l>x over K, we obtain the result stated in (1.20); a similar procedure 
yields the result for o)y. That a)x and ojy are continuous follows 
immediately; for 

ira[uz(x + y) - ux(x, 2/)] = // 4>xdxdy — 4>x dx dy, 
JJa2 

and the square of the right side is by Schwarz’ inequality not larger 
than 4£aZ)[0] since each lune has area smaller than 2£a. 

We identify </> with the functions <j>n of our minimizing sequence 
and apply (1.16a), as well as the relation 

(1.16b) JI[4>n — 4>V,] —> 0, 

which follows from the fundamental inequality (1.21). As a conse¬ 
quence, the expressions 

7T V(wn Wm)2 = £ JJ (<t>n ~ <f>m) dx rft/J < 7TaII[<t>n — <j>m J, 

" (If - £)’ - [//. (£ - °t) d‘ J * «'*• - 
" (t - daJ - [//. (t - w)dx *]’s '»■ci*- - 
converge to zero uniformly at all points in Ga ; hence there exists in 
Ga a limit function u(P) = u(P; a) such that 

(1.27) u(P) = lim a)n(P) 
n-*°o 

and 

(1.28) UX - lim y 
n-»oo 

Uy — lim cOnv y 
n—>oo 

convergence being uniform in Ga . 
2) Next we show that the limit function u(P) is independent of the 
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radius a. For the proof we make use of (1.15a), choosing suitable 

variations f. With r denoting distance from P, let 

0, for r ^ a, 

i _
i

 

for r < a. 
l L a j 

Then (1.15a) becomes 

, f] = ~~ ff <l>n dx dy + J </>n ~ ds —> 0, 

where s denotes arc length on k. Since Af = — 2/a and d£/dr = — 1 /a 

on k we obtain 

(1.29) 
1 
^ <f>n dx dy - fK<t>nds -* 0; 

this relation shows that u(P) is also the limit of the mean value of 

4>n over the circle k. 

Furthermore we choose a variation 

t' 

0, 

log 

r ^ a, 

t ^ r < a, 

t 
log - , r < t. 

a 

Relation (1.15a) leads immediately to 

(1.30) 0— [ 4>n ds — —- f <t>n ds —► 0, 
^7ra Jr** a dirt Jr**t 

and (1.30) shows that the mean value of <t>n over a circle is in the limit 

independent of the radius. 

Hence the definition of uf nx, uy is independent of a and these 

functions are continuous everywhere in G. 

3) We now show that the function u attains the prescribed boundary 

values, or that the function f = u — g has the boundary values zero. 

For the proof, consider a point P in G at a distance 2h from the 

nearest point on the boundary. Suppose that R is one of the points 

nearest to P so that RP = 2h, and that R lies on a boundary com¬ 

ponent c of diameter exceeding 4h. The disk K with radius h about 
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P lies in the region G* and in particular in the domain L attached to 

R, G* being a boundary strip and L a subregion of G* for which 

Dl\(I>7i} < a (h), as in article 1. Hence by (1.24) and by lemma 1.4e 

of article1! 1 we have 

[i IL ^ ~ g) dT dig\ - i11 ~q] 
< — 047r2h2a(h) = 647ro-(/i). 

7rh~ 

The right side is arbitrarily small for sufficiently small h. The left 

side, for fixed h and sufficiently large n, differs arbitrarily little from 

the square of the difference between u(P) and the mean value of the 

continuous function g over the disk K. Since this mean value 

approaches g{R) as h —> 0, it follows that | u(P) — g(R) | is arbitrarily 

small for sufficiently small h. The proof is complete. 

4) To show that u is admissible in Dirichlet’s variational problem we 

have to ascertain that D[u] is finite. Beyond that, we shall prove 

that D[u] — d. It suffices to show that D(}r[v] < d for every closed 

subregion G' of G. To this end we make use of 

Lemma 1.6: Every closed bounded region G' in the plane can be 

covered with a finite number of non-overlapping circular disks in such 

a way that the part of G' not covered by disks has an arbitrarily small 

area. Moreover, the maximum radius of the covering circles may 

be chosen arbitrarily small. 

Proof: Let t be an arbitrarily small positive quantity. We first cover 

G' by a finite number of non-overlapping squares with edges shorter 

than 2t, so that the remaining part of G' has an (upper) area less than 

e2/2. In each of these squares we consider the inscribed circle. The 

remaining parts of the squares are again covered with smaller squares 

so that the total residual area is less than e2/4. We add to the set of 

covering circles the circles inscribed in these new squares, and proceed 

as before. By continuing this process sufficiently long, we obtain a 

paving of G' by non-overlapping circles that leaves free as small an 

area as we may prescribe; for each circle covers more than J of the 

area of the circumscribed square, and hence the area rm remaining 

after m steps is appraised by 

< 
A 

4W 
+ 

1+2 + + 
1 

2r~1_ 
A + 
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where A is the area of G. Obviously, by starting with sufficiently 

small squares and by taking m large enough we can satisfy the stipu¬ 

lations of the lemma. 

On the basis of this lemma the integral 

I = JJ f(x, y) dx dy 

of a continuous function/(.r, y) can be represented as follows: For a 

given c we choose a covering of (V by circles of radii pi , p2, • • ■ , pm 

such that the remaining area is less than e and the oscillation of / in 

each of the circles is less than e. Denoting by /*■ the value of f at the 

center Pt of the circle Ki we have 

m 

/, = Z *• p\u -»/ 
7=1 

for t tending to zero, as follows from the elementary definition of a 

two-dimensional integral. 

By Schwarz’ inequality, the value of conir at the point W is ap¬ 

praised by 

[conx(P.)]2 = ¥~a\ [f <t>nx dx dy < —2 ff <t>i* dx dy. 
7T pi j JJKi WPi JJKi 

Thus we find that 

Z *Pi[o>Ur<) + uiv{Pd\ < Z fl (</>», + *»,) dx dy < DM. 

Letting n tend to infinity, we have 

I, < d, 

where 7e now refers to the integrand ui + Uy . Hence 

DQ'[u\ < d, 

and the relation D[u\ < d and therefore D[u] = d is established: u 

solves the variational problem. Consequently D[u, f] = 0 for any 

admissible variation f. Replacing 0n by u in (1.29) and (1.30) we 

find 

u(P) = —9 ff u dx dy 
iret£ JJk 
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for a disk K of arbitrary radius a about P. Likewise we have 

ux(P) = —2 ff uxdx dy, 
7rar JJk 

Uy(P) = — ff Uydxdy. 
7rcr JJk 

Hence it follows by the reasoning above that ux and uy possess con¬ 

tinuous derivatives, given by 

etc., with notation as above. Finally we apply the classical formalism 

of the variational calculus and conclude from the relation Z)[f, u] = 0 

and from the continuity of uxx and uyy that u is harmonic. 

7. Conformal Mapping of Simply and Doubly Connected 
Domains 

The solution of the boundary value problem for harmonic func¬ 

tions leads readily to the conformal mapping of simply and doubly 

connected domains on the interior of a circle or a circular ring, respec¬ 

tively. We first consider doubly connected domains: 

Let G be bounded by two Jordan curves 71 and y2, and let U* be 

the harmonic function in G with the boundary values 0 on 71 and — 1 

on 72. If V* is the harmonic function in G conjugate to U*, 

U* + iV* = F*(x + iy) = F*(z) 

is analytic as a function of the complex variable z = x + iy in G. 

The curves 71 and 72 belong to the family of curves U* — constant, 

and the lines V* = constant are the orthogonal trajectories of the 

family. The function V* is not single-valued, but increases by a 

“period” k if the point z in G is made to describe a closed circuit T 

that encircles 72 in the positive sense. The period 

k = - [ [U* dx - U* dy] = f ds 
Jr Jr on 

(where d/dn denotes the normal derivative, s arc length on F) is 

independent of the specific choice of T but does depend on the shape 

of G. The level curves U* — constant = c, 0 > c > — 1 are closed, 

simple (analytic) curves in G. For there can be only one subdomain 

U* > c of G adjacent to 71 : no domain U* > c can reach 72 where 
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U* = —1, and there can be no closed subdomain U* > c inside G, 

since this would imply U* = c. Consequently the system of curves 

U* = c is homotopic to 71 and 72, and this system, together with its 

orthogonal trajectories, is described by the lines in Figure 5. Obvi¬ 

ously k 9* 0. 

For the function 

V + iV = F(z) = ~ F*{z) 
It 

the period is 2iri and hence 

f — u + iv = eHz) = f(z) 

maps G onto the circular ring 

e*"k < | f | < 1 
of the f-plane. 

In the limiting case when 72 degenerates into the origin 0, the 

function U* would become identically zero (since the boundary value 

— 1 at the isolated boundary point 0 is without influence on the solu¬ 

tion), and/(2) could not be directly obtained as above.8 To produce 

8 In the physio*! interpretation of analytic functions our transformations 

correspond to vortex motions of a two-dimensional liquid in G such that the 

lines U =» constant or U* — constant are the streamlines. 
It is not difficult to obtain the mapping of a simply connected domain G 

on the circle |f | < 1 as a limiting case by letting y2 shrink to a point 0, which 

will then be mapped on the origin = 0 (see, e.g., theorem 2.2). 
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the period 2w for the conjugate function V, the function U must have 

the form 

U = log r + w(x, y), 

where r is the distance of the point (x, y) from the origin and w is a 

regular harmonic function. For such functions U Dirichlet’s integral 

is infinite, and a treatment by Dirichlet’s Principle will have to aim 

not at U but at the regular function w, whose boundary values, by the 

condition U — Oon yt, (coincide with those of —log r, hence are known. 

The function 

f(z) = e™ = CV+,F 

maps G onto the unit circle in such a manner that 0 is transformed 

into the origin. Thus the problem of conformal mapping of simply 

connected domains on a circle can likewise be subordinated—in a 

slightly less direct way—to Dirichlet’s Principle. 

By linear transformations of the complex plane, the interior of a 

circle or of a circular ring may be mapped onto the exterior of one or 

of two circles, respectively; in the latter case the radii of both circles 

may be chosen as unity. 

For domains of connectivity higher than two, reduction of the 

problem of conformal mapping to a boundary value problem is no 

longer possible in quite so simple a manner. We shall obtain results 

of much wider scope by a different approach which, incidentally, will 

be largely independent of the general results of this chapter. 

8. Dirichlet’s Principle for Free Boundary Values. Natural 
Boundary Conditions 

Except for §4, 4 we have so far assumed that the boundary values 

of admissible functions <j> were prescribed on the boundary y. Now 

we consider the same variational problem as before except that we 

do not impose boundary conditions on the admissible functions for a 

portion X of the boundary y = X + g, while the values of <j> remain 

prescribed on the complementary part g. If such “free boundaries” 

X occur in our variational problem, nothing is changed in the preceding 

reasoning. The solution u exists, is harmonic, and attains the pre¬ 

scribed boundary values on those connected parts g of y where bound¬ 

ary values are imposed, isolated points of g being again excluded. 

As we found in §4, in the special case where G is half of a circular 
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disk, fx its circular and X its straight boundary, the solution u on the 

“free” part X of G is characterized by the fact that the conjugate har¬ 

monic function attains constant boundary values on X. As follows 

from §7, any simply connected domain G can be mapped conformally 

on a half-disk in such a manner that a prescribed segment of 7 passes 

into the bounding diameter. By this mapping u and its conjugate v 

are again transformed into a pair of conjugate harmonic functions; 

hence the result is immediately generalized to such domains. 

In the following chapter we shall, however, be particularly inter¬ 

ested in related facts for multiply connected domains G. In prepara¬ 

tion we prove 

Theorem US: Let the boundary 7 of a ft-fold connected domain consist 

of at least one boundary line a formed by Jordan arcs and of con¬ 

nected boundaries ft , ft , • • • , ft» . Consider D[<j>\ for all functions 

<t> piecewise smooth in G and assuming prescribed boundary values 011 

a. Then the solution for the variational problem of minimizing D[<f>| 

is a harmonic function u that assumes the prescribed values on a and 

satisfies the conditions 

f 7T ds = °> i = 1,2, ■ ■ • , in. 
Jpl dn 

Here ft- is an arbitrary polygon bounding, with ft, a two-fold 

connected subdomain of G; d/dn again denotes the normal derivative, 

s arc length on ft . Since du/dn — dv/ds, this relation expresses the 

fact that the conjugate function v is single-valued in the two-fold 

connected domains under consideration. Moreover, the conjugate 

function v possesses constant boundary values on each boundary ft . 

This fact constitutes what we call the “natural boundary condition” 

for free boundaries, implying that v is single-valued in each of the 

two-fold connected boundary strips. That v is single-valued in the 

whole domain G is then assured if a consists of only one boundary 

curve.9 

•Without making use of the natural boundary conditions, we may im¬ 

mediately establish that v is single-valued by the following reasoning based 

on the minimum property of D[u\. The minimum property is equivalent to 

the condition that D[u, f] = 0 for any function f continuous in G + piece¬ 

wise smooth in G, vanishing on a, and yielding a finite value Z>[f]. Let cr be 

an arbitrary polygon in G which separates a from some of the boundaries 
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Proof: We may accept the existence of the solution u of the varia* 

tional problem, established by the same considerations as for com¬ 

pletely fixed boundary values; hence only the natural boundary condi¬ 

tions for the boundaries Pi need be ascertained. Obviously the 

function u also furnishes the minimum for the integral A?[<£] extended 

over a doubly connected strip 8 between and a Jordan curve Pi so 

drawn that it bounds with pi a doubly connected subdomain of G. 

Admissible for this minimum problem are all functions continuous 

in S + pi, piecewise smooth in S9 and having the same values as u on 

Pi . We map 8 conformally on a ring R: a < r < 1 about the origin, 

in such a way that r = a corresponds to p[ and r = 1 to Pi. Retain¬ 

ing the notation u, v for the images of u and v we have, because of the 

invariance of Dirichlet/s integral under conformal mapping, DR[u] < 

DR[<t>]y which means that u also solves the corresponding minimum 

problem for R, Proceeding as in §4, 4, we replace <f>(r, B) in R by 

<£e(r, 6) = S) with r9 = r — e --, and extend <j>e by reflection 
1 0/ 

into the ring R: 1 < r < 1 /a, defining there<f>e(r, 6) — <t>t(l/r, B). For 

the harmonic function w(r, B) in the ring R + R with boundary values 

u(a, B) = u(\/a, B) wehaveD^fzc] = I)r[w] < Since DR[<f>(] —► 

D[<t>], we find 

DR[w] < D[<f>]. 

The function w is determined solely by the prescribed boundary 

values, hence does not depend on the individual function <j> admissible 

in the variational problem for R; consequently w solves this problem. 

, fa , • * • , /3m, leaving a on the inside. We pick a small positive constant h 
and consider in the polygon a strip S consisting of points P whose distance 
d(P) from <t is less than h. Now let f = 1 outside and on <r, f = [/i — d(P)]/h 
in S, and f = 0 otherwise, in particular near a. Then Z>[f] < <*> and D[u, f] = 

Tl = 0, so that, by Green’s formula, 

where s denotes arc length on <r and n the interior normal. This relation 
exhibits the single-valuedness of v under analytic continuation along <r. 

It should be noted that the proof becomes invalid for analytic continua¬ 
tion of v along curves <r which do not separate G as stipulated, a remark which 
will become relevant in the generalization of our theory to Riemann surfaces 

not of genus zero. 



FREE BOUNDARY VALUES 43 

Since, by the same reasoning employed before in §2, the solution of 

this minimum problem is uniquely determined, we have w = -u. 

Therefore it is proved that u is a harmonic function regular not only 

in R but in the whole ring R + R\ because of dw/dr — du/dr = 0 

for r = 1 it is further shown that the conjugate harmonic function v 

is constant onr = 1. Under conformal mapping of the ring R onto 

the strip .S', the functions v and v remain conjugate and the constant 

character of the boundary values of v is preserved.10 Thus our 

theorem is proved. 

10 If 0* is not analytic the analytic extension of u and r outside G naturally 

ceases to be possible. 





CHAPTER II 

Conformal Mapping on Parallel-Slit Domains 

i. Introduction 

1. ("lasses of Normal Domains. Parallel-Slit Domains. As shown 

in Chapter I, every simply connected domain G in the plane1 (except 

the full plane or the plane with one point removed) can be mapped 

conformally on the unit circle; every doubly connected domain G 

(except the plane with two points removed) can be mapped onto a 

circular ring whose outer circle may be chosen as the unit circle, the 

inner circle depending on G and possibly degenerating to a point. 

We shall now turn to the general problem of mapping conformally 

all domains of given topological structure (e.g., all Mold connected 

plane domains) onto individuals of a simple special family which de¬ 

pends on a finite number of parameters alone. Such a class 9} of 

domains will be called a class of normal domains. It is of course desir¬ 

able to reduce the number of parameters in the class 9i as far as 

possible so that no two domains in 9i are conformally equivalent. The 

family 9^ then contains one and only one conformal representative of 

every individual of the set of domains G. As implied in our previous 

results, for simply and doubly connected plane domains the minimal 

numbers of such parameters or 4‘moduli” are 0 and 1, respectively. 

We shall see that for Mold connected plane domains, with k > 2, the 

minimal number is 3k — 6. 

For convenience the term “class of normal domains” is somewhat 

loosely used; superfluous parameters may be retained, to be elimi¬ 

nated afterwards. For example, as we shall see in Chapter V, Mold 

connected domains can be mapped onto the exterior of k circles, a 

domain depending on 3k parameters. By linear transformation of 

the complex plane the number of parameters may be reduced: one of 

the circles may be chosen as the unit circle and the center of another 

prescribed. 
In the present chapter we shall be concerned with another class 91: 

“parallel-slit domains” or, more briefly, uslit domains.” Such slit- 

45 
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domains consist of the whole plane of the complex variable w = u + iv 

except for straight segments v — constant, the “boundary slits.” 

(In the case of infinite connectivity, these may be infinite in number.) 

Also admitted are slits which degenerate into points. 

Likewise we shall consider “half-plane slit domains,” consisting of the 

half-plane v > 0 (instead of the full plane) except for a number of 

parallel slits. The line v = 0 is then one of the boundaries. 

By the following physical argument one is led to the conjecture 

that such Wold connected slit domains constitute classes of normal 

domains. Suppose that G is a Wold connected domain in the plane 

of the complex variable z — x + iy. Consider a potential flow in G 

coming from a dipole 0 at the interior point 2 = 0. This flow may be 

characterized by an analytic function w = a + iv = f(z) with the 

singularity 1/z at z = 0. In this representation, the curves u = 

constant are equipotential lines, v = constant streamlines of the flow. 

The boundary curves of G, which we may visualize as smooth, are 

parts of streamlines v = constant. It is plausible that the stream¬ 

lines are smooth analytic closed curves through 0, along which u varies 

monotonically from — go to + 30, with the exception of those k stream¬ 

lines v = Ci , v = oz, • • • , v = Ck , which reach the boundaries, split 

there into two branches, and pass around the boundary in different 

directions until they meet again to lead back to the source at O. 

Each streamline v = c, except for c = cx , c2, • • , ck , is then mapped 

biuniquely onto a full line v = c in the w-plane. Of these exceptional 

streamlines, the parts coinciding with the boundary are mapped onto 

slits, i.e., straight segments v = Ci, v = c2, • • • , v = ck in the w-plane, 

in such a way that the two edges of the slit correspond to the two 

branches of the streamline along the corresponding boundary curve 

of G. If the dipole O is placed on a boundary curve of G with its 

axis in the direction of the curve, we obtain a half-plane slit domain. 

This domain may be chosen as the upper half-plane by mapping the 

boundary curve onto the entire line v — 0. 

In the preceding consideration the choice of 6 real parameters for 

a given domain G is left open, since we may place the dipole at an 

arbitrary point z0 of G, choose the direction and intensity of the dipole 

arbitrarily, and modify the mapping function by the addition of an 

arbitrary constant. In other words, we may specify a mapping func¬ 

tion in the form 

u + iv = w = f(z) = —-— + b + (z — zq)R(z) 
z — Zo 
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where R(z) is regular and analytic in G, a ^ 0, b are arbitrary complex 

parameters, and zQ is an arbitrary point in G. Since a /c-fold con¬ 

nected slit domain depends on 3Jc parameters, namely the initial points 

and lengths of the k slits, we are led to the conjecture that for k > 2 

a reduction of the number of parameters to 3k — 6 is possible.1 For 

half-plane slit domains this number of 1‘moduli’’ is more readily 

Figure 2.1. Dipole flow in doubly connected region. 

visualized. Since v = 0 is a boundary line, only a real additive con¬ 

stant b is admissible, and z0 and a are similarly restricted; thus only 

three parameters remain at our disposal for reducing to — 6 the 

3(k — 1) = 37c — 3 parameters in a k-fold half-plane slit domain. 

We may, for example, fix these parameters by making the point 

1 However, as shown in Chapter I, the number of moduli is not 3A; — 6 for 
k »» 1 or k = 2, since for these cases a slit domain admits, respectively, three- 

parametric or one-parametric transformations into itself. 
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w = go correspond to a given boundary point of G and by fixing 

the initial point of another slit as the point w = i. 

While the first objective of the present chapter is the proof that 

these slit domains form a class of normal domains for /c-fold connected 

plane domains G, we shall extend the mapping theorem greatly to 

Iliemann domains G with finite Euler characteristic of arbitrary 

topological structure. For domains not of genus zero, however, the 

concept of slit domain must be modified. The corresponding topo¬ 

logical structure of the slit domains is introduced by means of pairs of 

“inner slits” whose boundaries are coordinated by simple rules of 

“identification” (see §7). 

2. Variational Problem: Motivation and Formulation. Our object 

is to characterize the dipole potential u by a minimum problem for 

the Dirichlet integral /)[<£]. Without loss of generality it may be 

assumed that the dipole is at the origin and that the singularity there 

is of the form x/(x2 + y2). We aim at a complex mapping function 

w = u + iv = f(z) = \ + R(z), R{z) being regular in G. The Dirichlet 
z 

integral of u over G is infinite; therefore we must seek to characterize 

the potential by a modified minimum problem. A clue is provided 

by the following argument. As seen in Chapter I, §8, the boundaries 

7 of G are automatically streamlines v — constant, for a potential u 

obtained by minimizing D[<t>] with the values of <f> left free on 7. Con¬ 

sequently the following property of u is plausible: If k is an analytic 

curve in G enclosing the origin, say a circle, K the interior of k, and 

K* the subdomain G — K of G, u furnishes the minimum of DK*\<t>] for 

all functions <t> piecewise smooth in K*, continuous in K* + k, and 

having on k the same values as u. In itself this statement does not 

yet characterize u as the solution of a variational problem, since the 

minimum property of u is formulated with reference to the values of 

the function u itself on an arbitrary small curve k. It leads, however, 

to the following, as yet only tentatively conjectured property of u: 

The potential u is characterized by the prescribed singularity 

xf (x2 + if) at the origin and by the variational condition 

(2.1) D[u, f] = 0, 

valid for an arbitrary function f which is piecewise smooth in (7, and 

identically zero inside an arbitrarily small circle k about the origin. 

That such a function u exists, and that it provides the mapping of 
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G on a slit domain, will be proved in the next sections. Here we 

merely prove 

Lemma 2.1: A function u, with the prescribed singularity at 0 but 

otherwise regular in (7, is uniquely determined—except for an additive 

constant—by the condition (2.1), valid for any function f which is 

piecewise smooth in G and vanishes identically in a neighborhood of 

the origin, and for which 77[f] < go. 

Proof: Suppose the functions U\ and v2 both satisfy the condition 

(2.1). Then the function W — u\ — w> is regular and harmonic in 

Gy even at the origin, and satisfies the condition 1)[W, f] = 0 for 

arbitrary piecewise smooth f with f = 0 inside a circle k. 

We remove this restriction by proving that D[W, tj] — 0 for any 

function rj, piecewise smooth in G, for which I)[tj] < oc. Let a be 

the radius of k and r, 6 polar coordinates about the origin 0. We 

define the function 

v, 
2a — r 

r < a, 

h = l—-' rj(ay d)y a < r < 2a, 
a 

0, r > 2a. 

Then D[h] < oo if we assume (without loss of generality) that 

r May 0)]2 
Jo 

dO < 

Set f = r? — hy so that f satisfies th(^ requirianents for condition (2.1), 

whence D[Wy fj = 0. Furthermore l)\Wy n] = D\\V, f] + D\W, h\ — 

D[W, h]; but by Green’s formula 

1)[W, h\ = - ff hAWdxdy + 2a J hdf~ dd = 0, 
r<2a r—2« 

since W is harmonic and h = 0 for r - 2a. Hence D\Wy rj] =■■ 0. 

In particular we may now set ?? = W and obtain 

D[W] = 0. 

This equation implies Wt + Wl = 0, so that W — constant; thus our 

statement of uniqueness is proved. 
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To formulate a genuine variational problem solved by the function 

u, we avoid the singularity by aiming not directly at u but at a func¬ 

tion U — u — Sy where S is a suitably chosen piecewise harmonic 

function having the prescribed singularity. The advantage of ob¬ 

taining, as natural boundary conditions, constant boundary values 

for v is retained by stipulating S = 0 except inside a small circle k of 

radius a about the origin. Accordingly S is chosen as a function 
x 

discontinuous at r = a. Specifically we choose S — 2 7 ".2 + 
x + y 

R(x, y) inside k, R being a regular harmonic function. Consider 

functions 

<f> = $ -f- S 

piecewise smooth in G except at O, such that <£ is piecewise smooth 

except for the discontinuity on k. Among all admissible functions <J> 

we seek a solution U of the problem 

(2.2) D\$>] = min. = d. 

To ensure that U + S ~ u satisfies condition (2.1) and is thus in¬ 

dependent of the radius a of k, we must choose the singularity function 

S properly. Note that condition (2.1) is satisfied if the normal de¬ 

rivative dS/dn of the singularity function vanishes on k.2 For the 

solution U of our minimum problem necessarily satisfies the condition 

(2.3) D[Uy f] = 0 

for arbitrary f, piecewise smooth in Gy for which D[f] < 00. 

Let k' be any smooth closed curve inside k enclosing 0, T the ring 

between k' and k, and K' the domain bounded by k' ; assume, further¬ 

more, that f vanishes throughout K'. Then, with K'* = G — K\ 

0 - D[Uy f] = DKr*[Uy f] - Dr\S, f]. 

Now 

Dt [S, f] = — £ { ds + ^ ^ ds - fj^ {AS dx dy = 0, 

since f = 0 on k', dS/dn — 0 on k, and AS — 0 in T. Condition 

(2.1) is established for arbitrarily small curves k'. Consequently 

lemma 2.1 guarantees that u is independent of the radius a and the 

2 The converse likewise holds, as may easily be verified. 
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singularity function S. Incidentally, k as well as k' need not be a 

circle. What matters is solely the relation dS/dn = 0 on k. 

We now assume that the disk r < a lies entirely in G and define 

the singularity function3 S by 

(2.4) 

0, 
cos 8 r cos 6 _ -j— — 

X2 + y‘ 
, + ]2 ’ 

r > a, 

r < a. 

Independently of the motivating arguments presented so far, we 

formulate 

Variational Problem II: Among all functions <t> = <£ — £, with S de¬ 

fined by (2.4), for which <£ is piecewise smooth in G except at 0 and 

<f> is smooth in a neighborhood of 0, find the function <f> = U which 

minimizes D[$]. 

The preceding argument then establishes 

Lemma 2.2: Except for an additive constant, the solution U of varia¬ 

tional problem II defines the function U + S = u uniquely and 

independently of the specific choice of the circle k and the singularity 

function S. The function u satisfies condition (2.1) of lemma 2.1. 

We may fix the additive constant by demanding <f> = 0 at the ori¬ 

gin. 

It remains to be shown that the solution U of this variational 

problem exists. 

2. Solution of Variational Problem II 

1. Construction of the Function u. First we ascertain that there 

exist admissible functions $ with /)[$>] < °o. The function defined 

by 

0, 

<f> = 
—2 cos 8 

2 r 
2 < r < o, 

P, r > a 

is such an admissible function. Hence there exists a non-negative 

greatest lower bound d for the values D[<t>] attained by admissible 

functions. 

3 This singularity function was introduced by H. Weyl [1]. 



52 MAPPING ON PARALLEL-SLIT DOMAINS CHAP. II 

To prove the existence of the solution is now a simple task. Let 

#i, #2, * * * be any minimizing sequence. By exactly the same reason¬ 

ing as in lemma 1.5a, the fundamental relation 

(2.5) D[*n - -> 0 

or 

(2.5a) D[<t>n — <pm] —» 0, 

for n, m —> ao, is immediately established. We replace the minimiz¬ 

ing sequence by other piecewise harmonic minimizing sequences 

obtained from “smoothing processes. ” Returning to a fixed circle 

about 0 of radius r = r0 < a, we consider: 

1) Smoothing of an admissible function <P in the disk r < n , i.e. re¬ 

placing <t> by an admissible function Sk which is harmonic for r < r0 

and which, except for an additive constant , coincides with $ outside 

the disk. The additive constant is so chosen that 'k = 0 at the origin. 

Because of Dirichief’s Principle for the circle, 

Z)[T] < D[f>]. 

2) Smoothing of an admissible function <k for the region <7ro outside 

the circle r < r0.4 We replace <t> by an admissible function 12 which 

coincides with <l> for r < r{) , and for which w = 12 -f- S is the harmonic 

function in the subdomain Gro : r > r0 which has on r = r0 the same 

values as <k + S and which solves the problem 

= Dr oW = min. 

with </> = 4> + S prescribed on r — n . The existence of co lias been 

established in Chapter I, §5. 

From Dr 0M < Dr(J[0] we again infer 

Z>[12] < D[*]. 

For since 12 = <1> in r < r0, it is sufficient to prove this inequality for 

the integrals taken over Gro alone. Now 

Dro[S2] = DrQ[u>] + Z>r0[$] — 2Dro[cO, S] 

and 

Dro[*] = Dro[0] + Dro[S] - 2Dro[<2>, £]. 

4 Note that the discontinuity of 4> at r = a is preserved in this smoothing 
process. 
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Subtracting, using the minimum property of w, and remembering the 

boundary conditions w — <j> = 0 on r = r0 and dS/dr = 0 on r = a, 

we find Z)ro[co — </>, £] = 0 and immediately obtain 

»rM - Drom = Dro[«] - DroW < 0. 

After this preparation we start with an arbitrary minimizing 

sequence 4>n and replace this sequence by another, 'F* = \f/n — S, ob¬ 

tained from 4>n by smoothing in the disk r < 0 < a, where 0 is a fixed 

constant. Since Z>[>F„] < />[<F„], the sequence’'Fn is again a minimizing 

sequence and 

D\*n ~ *m] = D[fn - tm] 0 

as ft, » qo . Restricting the domain of integration to the disk 

r < 0, in which 'Fn is harmonic, and recalling 'Fn = 0 at the origin, we 

Figure 2.2 

infer from lemma 1.3b that the d'* converge uniformly to a harmonic 

function SF in any disk of radius /3' < (3. Moreover, D^[SF — <f>n] 0 

by lemma 1.3b, where Dp denotes Dirichlet’s integral over the region 

r < (3. 
The second step consists in replacing the minimizing sequence 

by another sequence of functions fi„ , obtained from >Fn by smoothing 

in the domain Ga' exterior to a circle r — a' < 0'. Again the func¬ 

tions fin = con — S form a minimizing sequence; with Da> denoting 

Dirichlet’s integral over Gaf , 

Da\fin ” fim] = Da’l0Jn — 0)m] “> 0 

for ft, m —» oo, where con is harmonic in Gar . Moreover, since a < 0' 
the values fin(a', 6) = Vn(«', 6) converge uniformly. Hence it follows 

(see footnote 5 p. 23) that the sequence wn converges uniformly in 
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Ga' to a harmonic function o> — ft + S for which by Lemma 1.3b 

/)«/[&> — con] = Da'[0 — ftn] —> 0; more generally, Da'[0 — <f>n] ► 0 for 

any minimizing sequence^ which coincides within in the disk r < a!. 

The function V that takes the values of SF for r < a' and those of 

ft for r > a' is therefore admissible and 

T)[U - 4>n] = Dr<a>[* ~ *n] + ZMO ~ 0. 

This implies, as in Chapter I, §5, 3, 

D[t/] = lim Z)[4>n] = d. 

Hence [/ solves variational problem II; consequently the function 

w is harmonic throughout G except at the origin, where it has the 

prescribed singularity. Moreover relation (2.1) holds, and u is 

uniquely determined, independently of the radius a. 

2. Continuous Dependence of the Solution on the Domain f 

Theorem 2.1: Let Gn be a sequence of subdomains of G tending to G, 

Un = un — S the solution of variational problem II for Gn (the singu¬ 

larity remaining fixed as n changes): Then Un and un converge in G 

to functions U and u, respectively. Furthermore, the convergence 

to zero of un — u = Un — U is uniform in any closed subdomain of 

G. The function U is the solution of variational problem II for G. 

Proof: Convergence of Gn to G means that every point of G is a point 

of almost all domains Gn . For our purposes it is sufficient to assume 

monotonic convergence of Gn to G,6 which means that Gn is a sub- 

domain Of Gn-fl . 

We denote admissible functions and greatest lower bounds for Gn 

by the subscript n. If d is the greatest lower bound in the variational 

problem for G, and 4>* a minimizing sequence for G, the functions 

are likewise admissible in the variational problem for a subdomain 

Gn ; hence we have 

dn = Dn[Un\ < Dn{*k] < D[$*]. 

6 The continuous dependence of the solution on the position and direction 

of the dipole singularity is a fact easily deduced from the compactness proper¬ 

ties of harmonic functions. 

6 The continuity theorem without this restriction is easily obtained from 

that for monotonic approach. 
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Keeping n fixed and letting k increase to infinity, so that D[$k] tends 

to d, we find 

dn < d. 

In the same way we find 

dn < dm , m > n 

since Um is admissible in the variational problem for Gn . Hence 

there exists a limit of the sequence: 

lim dn = 8 < d. 
n—♦» 

Furthermore, for m > n, and with f = Un — Um in Gn , 

dm > Dn[Um) = Dn[Un ~ f] = AJf/J + />n[f] - 2/^,1^ , fj. 

Since by the minimum property (2.3) of Un , Dn\Un , f) = 0, 

dm > dn + Dw[f]. 

But dm—+ 5 and dn—^ 8 for m, n —> oo ; hence 0. As a conse¬ 

quence we state: for any fixed closed subdomain (}' of G the integral 

D0'[{] or Da\un — um] tends to zero as n and m tend to infinity. 

Since Un = un — S — 0 at the origin, lemma 1.3b implies the con¬ 

vergence of un to a harmonic function u in such a way that the con¬ 

vergence of u — un and of the first derivatives of u — un to zero is 

uniform in any closed subregion Gf of G. Because of the semiconti¬ 

nuity of Dirichlet’s integral for harmonic functions (lemma 1.1), we 

have for U = u — S 

D\U\ < lim dn < d, 

and since U is admissible in the variational problem for G, 

D[U\ = d; 

thus the theorem is proved. 

3. Conformal Mapping of Plane Domains on Slit Domains 

In the following articles we shall study the conformal mapping of 

G by the analytic function w = u + iv = f(z) of the complex variable 

z = x + iy (u denoting the harmonic function constructed in the 

preceding section). 
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1. Mapping of k-fold Connected Domains. Let us first consider 

£-fold connected domains G hounded by k boundary curves or, more 

generally, connected sets of boundary points 71,72, • • • , 7* • 

Theorem 2.2: The analytic function w — u + iv = /(z) maps the 

k-fold connected domain G conformally on the whole ic-plane with h 

segments parallel to the 74-axis excluded. (Some of these “boundary 

slits” may reduce to points.) The mapping has a single-valued in¬ 

verse. Choose an arbitrary point z0 in G and complex constants 

a 0 and X; the mapping funct ion f(z) is uniquely determined if 

it is to have the form 

f(z) = — + X + (z - zo)R(z), 
z — z0 

R(z) being regular and analytic in G. 

Proof : Since u solves the problem of minimizing DK*[(f>] for the domain 

K* outside the circle k with the values of <j> on k given as those of u, 

the results of Chapter I, §8 show that f(z) is a single-valued analytic 

function in G and that the imaginary part v assumes constant bound¬ 

ary values c„ on the boundary components yv. Let h = £ + irj be 

any constant with tj ^ c„, v = 1, 2, • • • , k. All wre have to prove is 

that the equation/(z) — h — 0 has one and only one solution z in G. 

Let yie) be a sequence of piecewise smooth curves in G tending to 7„ 

as e —> 0, and let ^€) be their images, which are again closed curves 

(not necessarily simple) in the plane of w — /(z). Then for suffi¬ 

ciently small c, is arbitrarily near the line v = cv and hence has 

positive distance from the point h. Nowr 

N - p ~h ?/,!••■* - « 

is the number of zeros minus the number of poles of /(z) — h in the 

subdomain Gt of G bounded by the curves 7^°. Again for sufficiently 

small e, the point w = h is outside all loops formed by /3(yf) and there¬ 

fore the right-hand side of the equation vanishes, because it repre¬ 

sents the total variation of the argument of the vector joining Hoa 

point describing 0,°. Thus N — P; since/(z) — h has one pole in 

<?«, the point 0, the function/(z) — h has one zero. 

It follows that every point h in the plane of w — f(z) is the image 
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of one and only one point of G, with the possible exception of points 

h on the straight lines v = cv. The image B of G must be A*-fold 

connected, and consequently the boundary of B consists of k slits; 

these slits lie in a finite domain, because the neighborhood of the 

origin is mapped on the neighborhood of the point at infinity. Thus 

the mapping property of /(z) is established. 

To prove that the mapping function/(z) is uniquely determined, 

we assume without loss of generality that z0 — 0, X = 0, and o — 1, 

the first two conditions being attainable by translation, the last by 

rotation and dilatation of the coordinate system. The contention is 

that no function /*(z) other than our dipole function/(z) furnishes a 

conformal mapping of G on a slit domain, if it is required that f*(z) 

has, in the neighborhood of the origin, the form /*(z) — 1/z + zR*{z), 

R*(z) being regular and analytic. 

The difference W — p + ir — f(z) — j*(z) would be analytic every¬ 

where in G with boundary values of r constant on every boundary 

yv . We replace the variable z by w — f(z) and consider the function 

W = H(w) = /(z) — /*(z). Obviously H(w) is regular in B, including 

the point at infinity (the image of O), and thus W = II (w) is a func¬ 

tion regular and bounded in the whole slit domain B whose imaginary 

part r is constant on each boundary slit pv. 

We prove uniqueness by the same reasoning concerning the varia¬ 

tion of the angle of II(iv) — h as used above. Since II(w) is regular 

everywhere in B, II (w) — h ^ 0 for every value of h with the possible 

exception of values of h on the boundary. This implies H(w) = 

constant and consequently the uniqueness of the mapping function. 

An alternative proof is based on the following general remark: if 

a single-valued function II(w) = p + ir is regular, bounded, and not 

constant in a domain B of the w-plane, the boundary of the subregion 

of B where r exceeds a given constant value (actually assumed) must 

come arbitrarily close to the boundary ($ of B. For otherwise the 

boundary of the subregion would include a closed piecewise analytic 

curve L in B along which r = constant, and along which the normal 

derivative dr/dn of r could neither vanish identically nor change 

sign. Therefore the tangential derivative of the conjugate harmonic 

function p would not change sign, and p could not be single-valued 

upon continuation about the closed curve L. 

Consequently, in our case, if r0 is a value attained by r in B, r0 

necessarily coincides with one of the constant boundary values of r 

on the slits pv, since a curve r = r0 reaches at least one boundary 
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slit. This is impossible unless r and hence W = p + ir is constant 

in JS; thus, since W = 0 at w = oo, uniqueness is proved. 

Presently we shall extend the scope of the slit theorem by includ¬ 

ing a much wider class of domains G. One extension, however, 

should be mentioned here since it is obtained without modification of 

the reasoning: 

The slit domain theorem remains valid for fc-fold connected do¬ 

mains G on a Riemann surface with a finite number of sheets. While 

this statement hardly needs any additional justification, we shall in 

later sections revert in detail to the general question of the mapping 

of Riemann domains. 

2. Mapping on Slit Domains for Domains G of Infinite Connec¬ 

tivity. The solution, in §2, of the variational problem for the dipole 

function w = f(z) was not restricted to domains G of finite connec¬ 

tivity. The construction of u and the proof that v and u + iv = f(z) 

are single-valued hold equally well for plane domains G of infinite 

connectivity. It is of great interest to note that for infinite con¬ 

nectivity of G the dipole function likewise maps G onto a slit domain 

R, i.e., onto the whole plane of w = u + iv bounded by infinitely 

many parallel slits; i.e., any connected point set of boundary points 

in the w-plane consists of a straight segment v = constant. 

This generalization is not immediately obtained by the reasoning 

for /c-fold connected domains. It follows, however, by considering 

G as the limit of a monotonic sequence of domains Gn of finite con¬ 

nectivity. We map Gn on a slit domain Rn by a function w — fn(z) 

with the singularity 1 /z at the fixed point 0. According to §2, 2, 

fn(z) tends to an analytic function f(z) as n —> oo. If fn(z) maps Gn 

on a simple plane domain and if fn(z) —> f(z), with f(z) ^ constant, 

f(z) maps G on a simple plane domain B in the ie-plane.7 The con- 

7 For if G' is a suitable closed subdomain of G lying in Gn for sufficiently 

large w, and if C is the piecewise smooth boundary of Gwe may for given h, 
because of f(z) ^ constant, assume that/(z) h on C. (The condition may 
be satisfied, if necessary, by a slight deformation of C which enlarges G'.) 
We have 

N - 1 f d 2ir1, Jc 
log lf(z) - h] « lim r-l" 2wi Jc 

log I/„(z) - h\. 

and the last integral is either zero or minus one. Hence the equation 
f(z) — h = 0 has either one or no solution in G\ 
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dition/(z) 5^ constant is ensured by the singularity 1/z. The do¬ 
main B obviously has the same connectivity as G. 

To show that B is a slit domain we have to prove that any con¬ 
nected point set P* of boundary points of B consists of points with 
the same coordinate v. 

The image in B of a neighborhood of 0 is a neighborhood of w = 
u + iv = 00, which means that the boundary p of B lies within a 
finite circle of radius a about w = 0. If v were not constant on 0*, 
then P* would be intersected by a family of lines v = constant = c, 
ci < c < c2, see Figure 2.3. We consider the segments of these 
lines extending from v = +00 to their first intersection with p*~ - 

where |w| < a—ignoring their previous intersections with parts of 
the boundary of B not connected with P*. Those segments of these 
straight lines for u < a which lie in B, form a subset B' of B. We use 
the variational equation (2.1); by transformation to the w-plane this 
equation, because of its invariance under conformal mapping, becomes 
simply 

(2.1a) JJ du dv = 0, 

valid for any piecewise smooth function v) that vanishes in a 
neighborhood of w = 00 and for which D[f] is finite. With Q denoting 
the square 

a < w < a + C2 — ci, ci < v < c2 
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we define, in particular, 

[ (v - Ci)(v - Cz) 

(v - Ci)(v - Cz)- 
Cl 

Cl Cl 

Then — 0 in B'y so that (2.1a) reduces to 

du dv = 0. 

in B'y 

in Qy 

in B - B' - Q. 

But this result is absurd, since does not change sign in Q. The 

contradiction proves our statement concerning (3* and thus estab¬ 

lishes the mapping theorem. 

For infinite connectivity the statement of uniqueness is no longer 

correct. As first observed by Koebc, the slit domains B obtained 

from our variational problem have a distinctive property: The 

boundary (3 of B can be enclosed in a finite number of curves in the 

le-plane which contain a tolal area that can be made arbitrarily 

small; i.e. the boundary (3 forms a point set of content zero. 

The proof is an almost immediate consequence of the variational 

condition D[uf f] = 0 for f vanishing in the neighborhood of the 

origin. If G( is a domain of finite connectivity—bounded, say, by 

polygons 7t—that tends monotonically to G as e tends to zero, and 

if Dt denotes the Dirichlct integral over Gt, it follows immediately 

that 

D.[u, f] -> 0 

as e —> 0. Choosing a function f identical with u except in a neigh¬ 

borhood of 0 and applying Green's formula, we obtain 

du , 
u— ds — 

dn 

dv , 
u - ds 

ds 
0, 

where s denotes arc length on yt . The expression on the left is the 

total area in the u, v-plane contained by the images /3e of the polygons 

y€ ; thus the statement concerning the content of p is proved. 

It is easy to construct slit domains whose boundary does not 

have zero content. Such a domain, for example, is obtained if we 

choose as boundary slits the segments 0 < u < 1 for v ranging over 

all values of a perfect nowhere dense point set of positive measure. 
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Such slit domains can be mapped onto slit domains as above. 

Our example shows that in the case of infinite connectivity, unique¬ 

ness cannot be expected without additional conditions for B. The 

subject, however, has not yet been sufficiently explored for further 

discussion here. 

3. Half-Plane Slit Domains. Moduli. We return to domains G 

of finite connectivity k. The corresponding slit domains B depend 

on 3k parameters—the lengths of the k slits and the coordinates of 

their left endpoints. However, we could have chosen as singularity 

of f(z) a pole with prescribed residue <r at an arbitrary point Zo of G. 

The mapping function would then have the form 

w = f(z) = —+ X + (z — z0)R(z), 
Z Zo 

R(z) being regular in G. This shows that three complex parameters 

zo, o', X or 6 real parameters can be fixed arbitrarily in the mapping 

function, so that- in general only 3/c — 6 essential parameters re¬ 

main.8 

In such a normalization of slit domains, the 3k — 6 “moduli” 

of the domain are not all exhibited as tangible geometrical objects. 

A more geometrical representation of the moduli can be achieved 

by a slight modification of our class of normal domains. We replace 

the slit domains so far considered by “half-plane slit domains.” 

These originate as conformal images of a domain G if we let the 

singular point 0 tend to one of the boundary lines while the direction 

of the dipole at 0 becomes that of the tangent to the boundary line. 

Then the image of the boundary curve is an infinite line v — constant, 

say the w-axis; the image of G is the upper half-plane, except for k — 1 

finite slits. 

We may directly transform any slit domain B into a half-plane 

slit domain S: By reflection of B in the slit ft, , which is assumed 

not to shrink to a point, we construct a two-sheeted Riemann surface 

B with 2k — 2 boundary slits symmetric with respect to ft, , now an 

interior curve of B. This domain B is mapped9 onto a plane slit 

domain 3 by aifunction that has its singularity on ft and is symmetric 

with respect to fa . Then 3 is symmetric with respect to the real 

8 In the cases k = 0 and k = 1 we saw that the numbers of essential param¬ 
eters are 0 and 1, respectively. 

9 See the remark at the end of article 1; also the detailed discussion in §4. 
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axis, and ft is mapped onto the real axis in B] G is obviously mapped 

on the domain S that constitutes half of B, as stated. 

By a linear transformation: w = u + iv = az + b, with real a 

and b, the left end of one other slit may be given a prescribed position, 

say u = 0, v = 1. Since the point 0 could also be chosen arbitrarily 

on ft , we have proved 

Theorem 2.3: A /c-fold connected domain G in the z-plane (fc > 1) 

may be mapped conformally on a normalized half-plane slit domain >S 

in the u, v-plane bounded by v — 0 and by k — 1 slits in the upper 

half-plane, one of which has its left endpoint at u = 0, v = 1. In 

addition the point at infinity on v — 0 can be made to correspond 

to an arbitrarily chosen boundary point of G. 

This mapping on the half-plane slit domain S involves 3A* — 6 

parameters; 3k — 5 parameters describe the geometrical shape of Sy 

but due to the stipulated coordination of a fixed point on the bound¬ 

ary of G to the point u — qo , v — 0 the 3k — 5 geometrical parameters 

are subject to one condition, which reduces the number of degrees of 

freedom by one. 

The uniqueness proof for this mapping is entirely similar to that 

in article 1. 

4. Boundary Mapping. The mapping of the open domain 

automatically implies a coordination of boundary points. Let us 

first consider bounded plane domains (7, or more generally subdomains 

Gf of (7, denoting the subdomain and its image again by G and £, 

instead of G' and B'. If a boundary point Q is the limit of a sequence 

of points Pi, P2, • • • of Gy the images Pt of the points Pn tend to 

limiting points on the boundary of B. We associate all these limiting 

points with Q and consider the corresponding association for the 

inverse mapping. 

If Q is an isolated boundary point of G, there is only one corre¬ 

sponding boundary point of By i.e. the slit reduces to a point. For 

the function f{z) is bounded and regular in a neighborhood of Q 

except possibly at Q, and hence has a definite limiting value for z 

tending to Q. 

The following analysis of the behavior of the mapping function 

/(z) at the boundary depends neither on its minimum property nor 

on the fact that the boundaries of B are slits, but is based solely on 

the fact that the Dirichlet integral of u or v is finite: 
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Theorem 2.4: If w — f(z) = u iv maps a domain G in the z-plane, 

part of whose boundary is formed by a Jordan arc C, onto a domain 

B in the w-plane with a corresponding Jordan boundary arc C*—e.g. 

a slit—then the mapping implies a continuous one-to-one coordina¬ 

tion of the points of C and C*. 

Proof: The theorem is a consequence of lemma 1.4. We consider 

polar coordinates r, 6 about a point Q on C, with r6 = $, and the 

integral 

2 ff dzdy = JJ(ul + uv + vl + v]) dx dy = M(a) 

extended over the portion r < 2a of G. This integral represents 

twice the area of the image of this region; hence it exists and e(a) ss 

M (a) tends to zero for a —»0. We note that 

Ux "j~ ^ + Vx H“ Vy ^ ui -f~ Va . 

Under the assumption that Q is not an isolated boundary point, 

a value p can be found so small that the pointset r < p in G, or a 

subset of this pointset, forms a simply connected domain Gp with Q 

as a boundary point, bounded by an arc Lp of r - p and an arc Cp of 

C. Furthermore for p < 2a we have 

JJ (ut + vi) dr ds < e2(a). 

Hence (see the proof of lemma 1.4) there exists, for sufficiently small a, 

a radius p with a < p < 2a and 

(2.6) J (ui + vi) ds < 
e(a) 

Now we consider a sequence av of values a tending to zero as v —► ». 

To the sequence av there corresponds a sequence of radii pv, tending 

to zero, for which (2.6) is satisfied, and a sequence of nested sub- 

domains GPp of G bounded by LPp + CPv . Their images are again 

nested, simply connected subdomains BPp of B bounded by the images 

L* of the arcs LPv and by a part C* of C*. The boundary points 

on C* associated with Q necessarily belong to all the arcs CPv. 
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According to (2.6) and Schwarz' inequality we have, for the 

length l* = / y/u] + v; ds of L*„, the estimate 

if < 2rp. < 4m (a,). 
av 

Hence l* tends to zero as pv —> 0, and consequently the distance 

between the endpoints of the Jordan arc C*y tends to zero. Con¬ 

sequently the diameter of this arc likewise tends to zero; because 

of the nested character of the domains GPy, there is one and only one 

point, common to all the CPy , that corresponds to Q. Since the same 

proof holds for the inverse mapping also, our theorem is established. 

It may be pointed out that this reasoning also illuminates the 

behavior of the mapping at the boundary when the latter is not a 

Jordan arc. We consider, for example, a domain G whose boundary 

is not a Jordan curve, while the image B is a slit domain. A bound¬ 

ary point Q* of B may correspond not to a single boundary point 

on C, but to a whole pointset II, a so-called “primend.” Then our 

reasoning shows that all the points of II are common boundary points 

of a sequence of nested, simply connected subdomains GPy of G cut 

out of G by a sequence of curves whose lengths tend to zero. A 

further analysis of primends and of their one-to-one correspondence 

to the points of the slit is, on this basis, rather obvious but will not 

be pursued here.10 

4. Riemann Domains 

1. Introduction. In the construction of the dipole potential 

u we have so far visualized G as a plane domain. However, wide 

generalizations offer themselves immediately. The potential u and 

10 See Carath^odory [1], Ilurwitz-Courant fl], p. 404, Ker6kj&rtd fl]. 
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the conformal mapping on plane slit domains are obtained in the 

same manner for the much wider class of “Riemann domains” <7, 

with one modification: if G is not of genus zero, the potential func¬ 

tion v conjugate to u is not single-valued and the image slit domain 

is of a new type, as will be seen in §7. 

The construction of u by Dirichlet’s Principle was based on the 

following properties of G: 

a) G consists of a finite or denumerable number of non-overlapping 

“cells” and their boundaries. A cell is defined as a simply connected 

domain topologically equivalent to a disk by means of a mapping 

which, except possibly at isolated points, is conformal, (A cell 

may, therefore, contain a branchpoint of finite order.) In this 

mapping the boundary of the cell is required to correspond biuniqucly 

to that of the disk. 

Instead of visualizing G as the sum of denumerably many cells 

we may consider it as the limit of a monotonic sequence of subdomains 

Gn , each of which consists only of a finite number of cells and of 

the boundaries in common to two adjacent cells. 

b) Each point of G is an interior point of a cell in G. In other 

words: not only can the points interior to cells constituting G—as 

described in a)—be imbedded in other cells all of whose points are 

in Gy but also the boundary points of the constituting cells can be 

imbedded in such cells. These latter cells, of course, overlap with 

the cells described in a). 

For each cell Dirichlet’s Principle, with fixed or partly free bound¬ 

ary values, may be established from the foregoing. Property a) of 

the domain G serves for the definition of integrals over G, and for 

the construction of u in each individual cell by smoothing of mini¬ 

mizing sequences. Property b) is essential to establish the potential 

functions u in adjacent cells as analytic continuations of each other. 

No other conditions were needed for solving boundary value 

problems or for proving the existence of the dipole potential u. As 

to conformal mapping: for a plane domain G the harmonic function 

v conjugate to u is, as seen, single-valued, and no other property is 

needed to prove that G may be mapped on a slit domain. However, 

for Riemann surfaces G not of genus zero the proof that v is single¬ 

valued breaks down. Nevertheless, as we shall see in §7, a parallel- 

slit theorem can be formulated even for domains G not of genus zero 

if the concept of slit domain is properly modified. 
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The properties a) and b) essentially characterize the concept of 

a “Riemann domain” G. Before formulating a precise abstract 

definition we consider in detail those cases of Riemann domains 

which are particularly important for our purposes: 

1) Riemann Surfaces G spread over the plane of a complex variable 

z = x + iy possess the properties a) and b). The cells forming G can 

be chosen as simply connected plane domains—possibly containing 

the point at infinity—whose boundaries are Jordan curves, or as a 

finite number of congruent disks connected through a branch point 

in the center. Obviously such points of G as lie on the boundary 

of one of the constituting cells can be imbedded in a cell of the same 

type containing points of several of the cells. 

2) Polyhedral Domains: The construction of the dipole potential u 

and the mapping on slit domains also apply to domains on polyhedra. 

Polyhedral domains G can be decomposed into cells each of which 

is either a whole face of the polyhedron or part of a face. If x and 

y are rectangular coordinates on a face the corresponding “cell” 

is represented by z = x + iy as the 1'local complex variable.” A point 

P of G on an edge, not a vertex, is on the boundary of two adjacent 

cells Zi, Z2. To imbed P in a third cell we rotate the plane of ZL 
about the common edge into the plane of Z\, so that the two cells 

together now form a plane cell Z\ + Z2; then P is contained in the 

plane cell Z\ + Z2 and we may therefore consider Z\ + Z2 as a cell11 

on the polyhedron containing P. (The mapping of Z\ + Z2 on 

Z\ + Z2 is congruent, hence conformal, angles being of course 

measured in the surface.) Analytically, we choose local coordinates 

in the cell surrounding P, so that the common edge is the x-axis, 

the x coordinate of any point in the cell is measured parallel to the 

edge, and the y coordinate is the perpendicular distance from it. 

Dirichlet’s integral is now immediately defined as the sum of the 

integrals over the individual plane cells, each integral referring to 

the local coordinates. A function of a point P in G is called har¬ 

monic if it is harmonic in the local coordinates in each of the cells 

considered. An analytic function u + iv on G is then defined in the 

obvious way and maps each of the cells conformally. 

As to the vertices V of the polyhedron (?, they can also be im- 

11 If part of the common edge is on the boundary of G, Zt 4- Z% should be 

connected only along that part of the edge which belongs to G and contains P, 
in order to ensure the simple connectivity of the cell. 
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bedded in cells Z consisting of circular sectors with (sufficiently 

small) radius p and center V on all the faces of G converging in V. 

To verify that these sectors form a cell as defined in a) we subject 

each of the circular sectors to a conformal mapping of the form z' = 

za where z denotes the local complex variable in the sector, V being 

the origin, and where the exponent a, the same for all the sectors, 

is so chosen that the sum of the angles of the resulting circular 

sectors is 2t; then these sectors may be fitted together to form a 

plane circular disk Z' of radius p' = pa in the z'-plane. This disk Z( 

is the conformal image of the domain Z on the polyhedron, the 

conformality being interrupted only at the vertex V. Hence Z is a 

cell as defined above. 

As a consequence we state; Domains G of genus zero on a polyhedron 

can he mapped hiuniqucly onto plane parallel slit domains, the con¬ 

formality—hut not the continuity—of the mapping being interrupted 

at the vertices alone. 

3) Curved Surfaces in Space: The results of the previous sections 

apply also to curved surfaces G in space as long as they have the 

property that a suitably small neighborhood of each point of G can 

be referred to isometric parameters and hence mapped conformally 

onto a plane domain. The cells Z for such a surface G are simply 

connected domains conformally equivalent to circular disks in a 

plane. Functions <f> of a point P ranging over G may, in a cell Z, 

be considered as functions 4>{x, y) of the “local variables” (rectangular 

coordinates x, y, characterizing the image of P in the plane conformal 

image Z* of Z). The Dirichlet integral of <f> over Z is defined as 

jJz (4>l + <t>l) dx dy, 

and is invariant under conformal mapping of Z*. Dirichlet’s integral 

over G is defined as a sum of such integrals referring to a set of non¬ 

overlapping cells that constitute G. Harmonic functions in G are 

functions which are harmonic in the local variables #, y belonging 

to the plane conformal images Z* of the cells Z.12 

The existence of the dipole potential u then follows as before, 

and we find: The mapping theorem remains valid for domains G of 

genus zero on curved surfaces, provided that the surface permits con- 

12 See also the general discussion in §5. 
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formal mapping “in the small” of the neighborhood of each point. In 

other words: the various local mappings can he replaced by one con¬ 

formal mapping in the large of the whole domain G onto a plane parallel- 

slit domain, thus providing a uniform variable x + iy for the whole 

surface G. 

4) Domains defined by Boundary Coordination: Geometric function 

theory leads to the consideration of more general “Kiemann domains” 

G such as in the following examples: 

(1) G is a parallelogram in the 2-plane; however, corresponding 

points on opposite sides are “identified” by the stipulation that 

analytic functions in G are to have the same values at. corresponding 

points. Such a “period parallelogram,” with corresponding points 

considered as identical, is a closed domain of genus 1. 

Figure 2.5. Cell formed by boundary coordination. 

(2) Another closed domain G of genus 1 obtained from a plane domain 

G is the ring 1 < \z\ < 2 in the 2-plane, where the boundary points 

z on \z\ = 1 are identified with the points z' on \z\ — 2 by the corre¬ 

spondence 2' = 22. This identification means that functions f(z) 

in G must satisfy the condition f(2z) = f(z). 

The coordination of the boundaries in (1) and (2) is effected by 

a conformal transformation of the plane which applies not only to 

the domain G but to a whole plane neighborhood of each boundary 

point of Qy in such a way that the correspondence of boundary points 

extends to their neighborhoods. Using this transformation for 

example (2), we immediately see that a point of G on \z\ = 1 or 

\z\ = 2 can be imbedded in a cell Z as indicated in Figure 2.5. In 

the 2-plane the cell Z appears in two pieces; but these pieces are 

connected by the boundary identification and together they are 
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conformally equivalent to a plane disk. Thus G is a domain to 

which our previous construction of the potential u can be applied. 

The same is true for example (1). (Note, however, that the domains 

in these two examples are not of genus zero and therefore cannot be 

mapped onto slit domains of the type considered before.) 

2. The “Sewing Theorem.” Domains G obtained from plane 

domains G by boundary coordination will occur on different occasions 

in this book, and lead to remarkable mapping theorems. One im¬ 

portant theorem is 

Theorem, 2.5 (Sewing Theorem): Let a domain G in the x, ?/-pIane 

be cut by a slit along an analytic arc C that joins the points P and Q. 

The points A+ and A - of the two edges C+ and LL of the slit may be 

coordinated by an analytic transformation = t{z-) which leaves 

the endpoints P and Q fixed. By this boundary coordination, a 

domain G is obtained from G — C. Besides the boundary 7 of Q> 

the domain G has as boundaries the “vertices” P and Q. Then 

the domain G can be conformally mapped onto a plane domain B, e.g. 

onto a parallel-slit domain, in such a way that C is mapped on an 

analytic arc C' and corresponding points A+ and A_ on the two edges 

C+ and C_ of the slit C are mapped onto the same point A' on C". In 

other words, the abstractly stipulated identity of the two edges of C 

can be geometrically reestablished by conformal mapping: the two 

edges of the cut C can be “sewn together.” 

Another version of the sewing theorem, simpler because of the 

absence of vertices, is the following: , 

The plane domains G+ (consisting of the exterior of an analytic 

closed curve C+) and G- (consisting of the interior of another 

analytic closed curve (?_) are combined into one region G by an 
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analytic transformation z+ — t(zJ) that establishes a biunique corre¬ 

spondence between all the points 4+ on C+ and A- on CL. Then 

the domains G> and GL can be mapped conformally onto two domains 

G+ and Gl, respectively, in such a way that C+ and CL are trans¬ 

formed into the same curve C', that G+ is transformed into the 

exterior of Cf and G_ into the interior of C' and, furthermore, that 

corresponding points A + and A ... go into the same point A' on C. In 

other words, by conformal mapping the two separate components 

Figure 2.7. Fusing of two regions G+ , G_ . 

G+ and GL of G can be fitted together into a single domain G', i.e., 

the whole plane. 

Proof: We need only show that the Riemann domain G defined by 

our boundary coordination satisfies the conditions a), b) formulated 

above in §4,1. To this end we ascertain both that the ordinary 

points of G lie in cells—which is obvious—-and that every “point’’ 

on the coordinated edges, i.e. the point appearing geometrically as 

A+ on C+ and as A„ on C_, can be surrounded by a cell which may 

then be mapped on a plane domain. Such a cell is immediately 
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obtained if we use the function t(z) to map a sufficiently small “half- 

cell” Z_ , bounded by an arc c__ of 6Y_ and a circular arc with as 

center, on a domain Zl, again represented in the 2-plane. (Figure 

2.8 refers to the first case of the sewing theorem.) 

By this mapping the arc c- is transformed into the corresponding 

arc in such a way that points corresponding in the boundary 

coordination are brought into coincidence. A function g{z) con¬ 

tinuous in G, with g(z+) = g(zJ), becomes continuous in Z+ + ZL if 

transplanted from Z_ into Z_ by the transformation z = here 

Z+ denotes a half-cell adjacent to c+ as indicated in Figure 2.8. 

These facts characterize Z4. -f- Z_ as a cell in (?, and thus our theory 

is immediately applicable in the second version of the theorem, where 

C can be covered by a finite number of such cells. In the first form 

of the sewing theorem, where the endpoints P and Q of the slit C 

intervene, we consider G as the monotonic limit of domains Gn , 

which in turn can be decomposed into a finite number of cells, as 

indicated in Figure 2.9. (Gn replaces G so as to exclude neighbor¬ 

hoods of P and Q; then Gn is dissected into “cells” by the dotted 

lines and the cut C.) 
In the preceding construction the endpoints P and Q of the slit 

C do not appear imbedded in a cell. Hence, in the mapping of G 

onto B, it cannot generally be expected that they will again pass 

into single points rather than into slits, as seen by the following 

construction (Figure 2.10): We cut the ?c-plane by an analytic curve 

S which starts at a point E and winds asymptotically about the 

segment T: 0 < u < 1 of the ?/-axis. The w-plane with the cut S 
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may be called B; T is a “primend” of B (see §3, 4). We map B 

on a slit domain G of the 2-plane. The whole boundary slit y of G 
corresponds to the cut S together with the primend T7, and, as we 

saw, T is mapped onto a single point of the slit y. Without loss of 

generality we may assume that y is the segment 0 < x < 1 of the 

x-axis and that T corresponds to the point x — 0. In this mapping 

two opposite points A+ and A ~ on the two edges of the slit S corre¬ 

spond to different, not opposite, points on the two edges of the slit 

y. (For otherwise the mapping would be continuous, hence regular, 

yielding a conf ormal mapping of the 2-plane with the origin omitted 

on the w-plane with the slit T omitted; this mapping is impossible). 

Figure 2.10 

We obtain a domain G from G by identifying corresponding points 

A + and A_ on the two edges of the slit 7; then G is mapped onto the 

whole w-plane except the segment T which corresponds to the single 

initial point of 7. 

A correspondence of P and Q to single points in the mapping is 

assured by the condition established in the 

Corollary to Theorem 2.5: The vertices P and Q go into isolated 

boundary points of B if the coordination by z+ = t(zJ) at the bound¬ 

ary satisfies the condition 

(2.7) 0 < a < I t'(zJ) | < -, 
a 

where a is a positive constant less than 1. 
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Proof: We take—without loss of generality—the slit C as the straight 

segment 0 < x < 1 of the z-axis. By the function w — u + iv - f(z) 

the point P: x = 0 is mapped on a closed set of boundary points 

of B, say on a slit p. To show that p is merely an isolated point, 

we shall construct closed curves in B, surrounding p, of arbitrarily 

short length. 

Consider the integral 

M(a) = JJ | f'(z) |2 r dr dO, 

extended over all points of G whose distance r from P is less than 2a. 

For sufficiently small a the singularity of f(z) is outside the domain 

Figure 2.11 

of integration; moreover we have M(a) —> 0 for a —» 0. We shall 

construct two circles r — p and r — p* = t(p) about P, with images 

in the w-plane of arbitrarily small total length for sufficiently small 

a, which cut the slit G in the two corresponding points /1_ and A+ , 

respectively. (The images of these closed circles in the 2-plane are 

curves closed neither in G nor in B.) Furthermore, we shall see 

that the length of the image of the radial segment DE (see Figure 

2.11) can be made arbitrarily small. Then the curve consisting of 

the lower semi-circle A_ D, the upper semi-circle A+ E, and the seg¬ 

ment DE is closed in G; its simple and closed image in B encloses 

p, and its length can be made arbitrarily small. Hence p is an 

isolated point. 

To carry out the construction we choose a value of a so small 

that the circle with radius 2a about P intersects the slit C and does 
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not contain the singularity of f(z) = u + iv. We further note that 

condition (2.7) and the relations r* = t(r), 0 = t(0) imply, by the 

mean value theorem, that ar < r* < r/a. Setting z = r e'° and 

z* = r* e'° with r* = t(r) we have 

\f{»)\*rdO < M(a) 

and 

*aa /»2 jt 

/ dr* | f r* dd < M(a). 
Jo Jo 

Considering r as independent variable in r* = t(r) and recalling 

that dr*/dr — i! (r) > a we have, a fortiori, 

/aa -2r 

dr / 1/(2*) |2 r* dd < M(a). 
Jo 

Consequently 

»aa f «2r /*2r 'j 

J dr 11 |/'(z) I* r ri» + a J \f'(z*) |2 r* < 2M(o). 

Hence there exists for r an intermediate value p with 0 < p < a, 

and for r* = t(r) a corresponding value p* — tf(p), such that for 

\z\ — p and |2*| = p* we have simultaneously 

p C !/(*) f < 2 
Jo aa 

and 

ocp* f | f'(z*) I2' de < 2 
Jo 

M(a) 

aa ’ 

(see the similar reasoning in Chapter I, §4,2.) 

The lengths L(p) and L(p*) of the images in the w-plane of the 

circles r = p < a and r = p* < a are appraised as before by 

L2(p) < 2TTp 
2M(a) 

< 47T 
M(a) 

aa a 
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and 

IV) < 2>rp* < 4, "<“> 

both quantities tending to zero with a. 

As to the segment DE, if D is at a distance p from P, the distance 

of each point on DE from the slit C is larger than tj = pa; for suffi¬ 

ciently small rj the circular disk of radius 77 about any point z on DE 

lies entirely within G and within a circle of radius b — p(l/a + a) 

about P. Hence by the mean value property of f'(z) and by Schwarz’ 

inequality we have, for each point z on DE, 

I/O*) 12 < 
7T p£Cr 

and for the length X of the image of DE, with DE denoting the length 

of DE, 

x < DE , 
V irpa 

Now DE = |p — p*| = |p — J(p)| = p|l — tf(p) 1, where p is an inter¬ 

mediate value bet ween 0 and p. Hence DP < p (1 + 1 /a), and 

X < 
1 + ct /M{b) 

a2 Jr 7T 

Since 6 tends to zero with a, for sufficiently small a the lengths L(p), 

L(p*) and X all become arbitrarily small. Our corollary is proved. 

5. General Riemann Domains. Uniformisation 

The domains G discussed in the preceding articles illustrate the 

abstract concept of a Riemann domain by concrete cases. To 

arrive at this general concept we augment the two postulates a) and 

b) of §4 by one small further step which emphasizes the topological 

core of Riemann’s description of analytic functions in the large. 

If a Riemann domain G is subjected to a topological deformation 

resulting in a domain (7*, or more abstractly, if G* is another two- 

dimensional manifold in continuous and biunique correspondence 

with G, then G* should likewise be considered a Riemann domain. 

Such a point of view leads to a modification of postulate a): not a 

conformal, but merely a topological mapping of the cells of G onto 
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plane cells need be stipulated. Thus we arrive at an abstract defini¬ 

tion of a Riemann domain G: 

1) G is a two-dimensional connected manifold, i.e. 

a) G is a “topological neighborhood space.”™ 
(3) Every point P in G has a neighborhood topologically equivalent 

to a plane disk. 

7) Any two neighborhoods Np and Nq can be connected by a 

finite chain of neighborhoods Np — No, Ni , • • • , Nn — Nq such 

that Nk-i has points in common with AT for /.• = 1, 2, • • • , n. 

2) With each point P of G there is associated a neighborhood Np and 

a particular topological mapping of Np onto a disk ZP in the plane of a 

complex variable zP = x + iy —called a local variable for this neigh¬ 

borhood—such that the following decisive condition is satisfied: 

If the neighborhoods NP and Nq of points P and Qy respectively, 

have a domain in common, the corresponding regions in the cells 

Zp and ZQ of the local variables zp and z,, are mapped on each other 

conformally by the function which takes corresponding points of the 

cells ZP and ZQ into each other. 

As a result of these propert ies of G we can define harmonic func¬ 

tions and analytic functions in G. A function </> defined for all points 

P of G is called harmonic or analytic if it, is harmonic or analytic, 

respectively, in the local variables ;r, y or x + iy = z. Since these 

local properties are invariant under conformal mapping, the defini¬ 

tion, although referring only to local variables, is consistent in the 

large. Furthermore we call a point set in G a smooth or an analytic 

arc if its image in the plane of the local variables has the respective 

properties. 

Dirichlet’s integral can now be defined by reference to local 

variables. For this purpose the domain G must be decomposed 

into a denumerable set of non-overlapping “cells” having the fol¬ 

lowing properties: 

a) Each cell is a domain which, together with its boundary, is 

13 See Alexandroff [I], Chapter 1. The axioms defining such a space are: 

G is a collection of points P\ to each point P is associated a family of point- 

sets Nt, of G\ , called neighborhoods of P, with the following properties: (1) P 
is contained in all neighborhoods NP. (2) The common part of two neigh¬ 

borhoods of P contains a neighborhood of P. (3) If Q lies in NP then Np con¬ 

tains a whole ncighbornood of Q. (4) Two distinct points P and Q of G pos¬ 

sess suitable neighborhoods NP and NQ, respectively, which have no points in 

common. The formulation of these axioms is due to Hausdorff. 
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contained within a neighborhood—referred to local coordinates 

2—on a disk Z. It may be assumed that such a cell on Z is a simply 

connected domain whose boundary consists of piecewise analytic 

Jordan curves. 

b) Each point of G either belongs to a definite cell or is on the 

boundary of a finite number of cells. 

c) Each point of G possesses a neighborhood having points in 

common with only a finite number of (‘ells. 

Such a decomposition of G is called a triangulalion, since* the 

simply connected cells in the 2-plane may be replaced by conformally 

equivalent triangular domains. The possibility of such a triangula¬ 

tion need not be stipulated, but is a simple consequence of the pre¬ 

ceding definitions. 

The Dirichlet integral D\<t>\ of a function 0 over a cell is defined 

as the integral 

JJ (01 + 0i) dx dy, 

and this definition is invariant under replacement of Z by a con¬ 

formally equivalent- domain. The Dirichlet integral of 0 over the 

whole domain G is then the sum of the integrals over the cells of the 

triangulation. That, the Dirichlet integral is independent of the 

particular triangulation employed is easily seen by standard methods 

of proof. 

With these concepts all the arguments of the preceding sections 

remain in force; and thus the existence of the dipole potential u follows 

for any Riemann domain. The mapping theorem remains valid in 

the previous form if the conjugate potential v is single-valued in (?, i.e. 

for Riemann domains of genus zero. Of course, conformality of 

this mapping always refers to the mapping of the cells Z in the local 

variables. 

The process of mapping G onto an ordinary plane domain is 

sometimes called “uniformizaiion”; i.e. the variety of different local 

complex variables in these respective cells can be replaced by one 

and the same complex variable w for the whole domain (7. 

It must be mentioned that the oricntability of Riemann domains G 

is a consequence of the preceding general definition: Consider a 

cell N in G and the corresponding cell Z in the 2-plane, assigning to 

the latter an orientation, say the rotation in the negative sense with 
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respect to the 2-plane. Then consider a chain of overlapping cells 

N = No, Ni, • • • , Nn and the corresponding cells Z = Z0, Z\ , 

• • ♦ , Zn in the 2-plane. Since two adjacent cells Zk and Zk+1 are 

related by a conformal correspondence of the images of points in 

the overlapping regions on G, the orientation of Z is transferred to 

all cells Zk and thus a definite orientation is assigned to the whole 

domain G. 

Hence we are not allowed to consider non-orientable surfaces, 

such as a Moebius strip, as Riemann domains. On the other hand, 

we want to include them in our theory of conformal mapping. We 

resolve the difficulty by considering the “orientable covering surface1’ 

G of the non-orientable surface G\ i.e. we count each cell twice, 

once with each orientation. Intuitively we distinguish the two sides 

of the non-orientable surface G as if they were different or separated 

by a thin wall. The covering surface is then a Riemann domain in 

the proper sense. 

To carry out the construction of the dipole potential for a non- 

orientable surface it suffices to stipulate that the functions <t> and 

consequently the potential u depend on the position of P on G alone 

and not on the orientation of G in the neighborhood of P. As we 

shall see, however, the value of the conjugate potential depends 

on the orientation. 

6. Riemann Domains Defined by Non-Overlapping Cells 

For our purposes Riemann domains may preferably be visualized 

in an intuitive way14 as represented by a denumerable number of 

simply connected plane cells each of which is bounded by a finite 

number of analytic arcs. Each point in such a cell represents a 

point of (7, and points in different cells represent different points 

of G. Points on an analytic boundary arc c also represent points 

in G, provided that c and another boundary arc c! of a cell are point- 

wise identified by an analytic transformation of the complex variable 

2' = t{z) that transforms a neighborhood of a point of c in the 2-plane 

into a neighborhood of a point of c' in the 2'-plane. By defining 

14 The main deviation from the preceding discussion is that in defining G 
we avoid the use of overlapping cells and establish the connection of adjacent 
cells by analytic transformation of the analytic boundary arcs of the cells 

alone. 
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the point 2onc and the point z' on cf as representing the same point 

of G we establish G as a Riemann domain. For we have seen in 

§4, 2 that such points on the arcs c or c' can again be imbedded in 

a cell consisting, except for a conformal transformation, of a part of 

Z adjacent to c and a part of 7J adjacent to c'. As to the endpoints 

of these coordinated arcs, the “vertices,” they must be considered 

as boundary points of G. However, the corollary to theorem 2.5 

can be generalized to the following theorem, whose proof is entirely 

similar to that given for the corollary: 

Theorem 2.6: Suppose that the cells Z\ , Z2, • • • , ZT, Zr+1 = Zx 

converge at a vertex V. Without loss of generality we may assume 

that each cell has a straight angular boundary in a neighborhood of V. 

The two straight boundary arcs of Zi ending at V may be called 

and yl, so that 7[ is identified with yw . Suppose that, by these 

boundary coordinations, a point on 7; at a distance p* from V passes 

into a point on 7i+i at the distance pt+i from V in the next cell. 

Then the condition 

0 < a < dp2 dps 

dpi dp2 

and consequently 

0 < a < 
P2 
' * 
Pi 

P8 
* * 

P2 

dpr+1 1 

dp* a 
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valid in a neighborhood of V for a fixed positive a < 1, are sufficient 

to ensure that V in G can be imbedded in a cell. The point V is 

therefore considered an interior point of G under 1 his condition, 

while in general the mapping is not conformal at V. 

7. Conformal Mapping of Domains JSot of Genus Zero 

1. Introduction. If a Kiemann domain G is of genus zero, i.e. if it 

is dissected into separate parts by any closed curve in 6?,15 then, as 

seen before, the harmonic function v conjugate to the dipole potential 

u is single-valued in G and the function 

w — u + iv 

maps G onto a plane parallel-slit domain. If, however, G is not of 

genus zero, while u by definition is single-valued in G, the conjugate 

potential v = v{P) need not return to its original value as the point 

P describes a non-dissecting circuit. Of course, the function w — 

u + iv can no longer provide a conformal mapping of G onto a simple 

plane domain, which would necessarily be of genus zero. Still we 

shall see that the analyt ic function w = a + iv maps the domain G 

onto a domain consisting of the whole w-plane with the exception of 

finite boundary slits parallel to the u-axis; in addition the plane is cut 

by pairs of parallel slits v = constant which extend from v — — c© 

to a finite value of u and whose edges are coordinated in such a manner 

that the image slit domain B in the tc-plano has the prescribed topo¬ 

logical structure. 

2. Description of Blit Domains Not of Genus Zero. To define such 

plane slit domains we first consider domains without boundary slits. 

There are two types of “interior” slit pairs: 1) a pair of slits v = 

constant in the u ,r-plane extends from u = — oo to the same finite 

value of u\ we coordinate' or identify the four edges as in Figure 2.13, 

so that corresponding points have the same ?/,-coordinate and corre¬ 

sponding edges are marked with the same figures {pair of the first 

type). 2) A similar pair of slits with the sole difference that the 

coordination is as in Figure 2.14 {pair of the second type). These 

boundary coordinations imply that paths meeting an edge of a slit 

15 In recent German literature on conformal mapping such domains are 
called “schlicht-artig,” since they can he mapped on simple plane or “schlicht” 

domains. 
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have to be continued from the corresponding slit as indicated in 
Figures 2.13 and 2.14. 

A domain with a pair of slits of the second type is non-orient able. 

This is immediately seen from Figure 2.17, which shows that the 

boundary coordination between the slits reverses the orientation of an 
adjacent angle. 

For a pair of slits of the first type, however, the orientation is not 

changed by the coordination of the edges of the slit. Plane regions 

which contain only slit pairs of the first type are orientable. 

We may cut the plane by I: pairs of slits, with the edges coordinated 

as in the diagrams. Such a plane with coordinated slits need not 

have the topological structure of a closed surface. Although, by the 

identification of edges, any point on one of the infinite slits is obviously 

an interior point of our slit domain B, this will be true of the point at 

Figure 2.13. Slit pair of first kind. Fig. 2.14. Slit pair of second kind. 

infinity only if the slits are properly arranged. If the slit domain B 

is to correspond topologically to a Uiemann domain G, with the point 

at infinity corresponding to an interior point 0, then a closed curve on 

G enclosing 0 will have to correspond to a single closed line in the slit 

domain which separates this domain into two parts. Such a line in 

the slit domain is made up of segments separated visually in the 

le-plane but connected by the stipulated coordination. The condition 

that the point at infinity in the slit domain is an interior point can be 

simply expressed by the following equivalent statement: 

A vertical line u — constant = c that intersects all the slits is 

fully described if, on meeting an edge of a slit,, one continues at the 

corresponding edge in the same or the opposite direction according as 

the pair is of the first or the second type, and proceeds in this manner 

until the path is closed. This condition implies a certain interlocking 

of the slits. (The condition is not satisfied, for example, by a plane 

with just one pair of slits of the first type.16 See Figure 2.13.) 

16 The domain corresponds topologically to a plane with two points re¬ 
moved. 
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In order to have an admissible domain, at least one more pair of 

slits is necessary. If the second pair is again of the first type we ob¬ 

tain an orientable surface, the torus (Figure 2.15); if the second pair 

of slits is of the second type, we obtain a non-orient able surface, the 

non-orientable torus or “Klein bottle” (Figure 2.16).17 It should be 

remarked that, in the second example, the orientation of the surface 

is preserved along the closed path consisting of the slits of the second 

type and reversed along the slits of the first type. 

On the other hand, a plane with just one pair of slits of the second 

type represents an admissible surface, the projective plane or cross 

cap, which may also be visualized as a disk where diametrically 

opposite points are identified (Figure 2.17). 

A closed surface is characterized topologically by its characteristic 

number and by whether it is orientable. Orient-ability, as discussed 

above, depends on the absence of pairs of slits of the second type. 

The characteristic number is related to the total number of slits. 

Any closed surface G can be considered topologically as a polyhedron 

having a certain number F of faces, E of edges, and V of vertices. 

Then the characteristic number L is defined as 

L = 2- F + E-V. 

If G is orientable, of finite genus p, i.e., can be described visually as a 

sphere with p “handles” attached, 

L — 2 p. 

If G is non-orientable, i.e. is visually described by p “handles” and q 

“cross caps,” 

L = 2p + q 

For a closed surface which is represented by a plane slit domain 

B with s pairs of slits, we have F - 1, E = 2s (corresponding edges 

being identified), and V = s + 1, the point at infinity counting as a 

single vertex. Hence s = L. Thus, if the characteristic number of 

our slit domain is to be L, the domain must have exactly L pairs of in¬ 

finite slits, e.g. 2p pairs of the first type if it is orientable and of genus p. 

The class of slit domains B is now extended by including the 

17 That Figures 2.15, 2.16, and 2.17 correspond to the intuitive models of 

the torus, Klein bottle, and projective plane, respectively, will be seen on page 
90 by means of the streamline diagrams (Figures 2.33, 2.34, 2.35). 
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limiting cases obtained if different pairs coincide entirely or in part. 

(As illustrations examine Figures 2.18, 2.19, 2.20, where correspond¬ 

ing edges are indicated by the same number.) 

Similar situations arise when pairs of slits of the second type are 

present. 

Fig. 2.15. Torus in slit represents- Figure 2.16. Klein’s bottle in slit 

tion. representation. 

Figure 2.17. Slit pair of second kind 

showing reversal of orientation and rep¬ 

resenting projective plane. 

So far our slit domains B were considered closed; we now introduce 

r boundary slits. A boundary slit may be either a finite slit v = 

constant as in the preceding sections—not coinciding with one of the 

infinite slits—or it may coincide with a part of an infinite slit not 

containing the endpoint, as illustrated by Figure 2.21. In the latter 

case the coordination of the two edges of an infinite slit is interrupted 

along a finite segment (a and 0 in the diagram). Otherwise a bound¬ 

ary slit may at the same time form the end part of a pair of corre¬ 

sponding infinite slits; in this case the endpoints of the coordinated 

pair need not have the same ^-coordinate, and the coordination of the 

ends is interrupted, as in Figure 2.22. Here the segments a, /3, 7, 6 

form the boundary slit under consideration. In a similar way this 
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j 
Fig. 2.20 

Figures 2.18, 2.19, and 2.20. Limiting cases of closed slit domains. 

Fig. 2.23 

Figures 2.21,2.22, and 2.23. Slits carrying segments of boundary points 
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may happen if the pair of infinite slits is of the second type or if, as 

in Figure 2.23, the coordination embraces more than two slits. 

Again, as before for genus zero, we shall find it convenient to con¬ 

sider half-plane slit domains lying in the half-plane v > 0, with v — 0 

corresponding to a boundary line; otherwise nothing need be changed 

in our preceding description. For example, a Moebius strip is repre¬ 

sented by Figure 2.24; the limiting case where one of the infinite slits 

falls into v = 0 is represented in Figure 2.25, with the boundary indi¬ 

cated by shading. 

For such half-plane domains we may stipulate a normalization 

similar to that used for L = 0, namely place the point at infinity on 

/ 

Fig. 2.24 Fig 2.25 

Figures 2.24 and 2.25. Moebius strip in slit representation. 

the boundary slit and fix the end of one interior slit at a = 0, 

v = 1. 

3. The Mapping Theorem. We now consider the class of all slit 

domains B with r such boundary slits and with characteristic number 

L, and state the main 

Theorem 2.7: Every Riemann domain G> as well as every non-orient- 

able domain with a Riemann covering surface (see the end of Section 

5), with characteristic number L and with r boundaries can be mapped 

conformally on a slit domain B. The mapping on a normalized half¬ 

plane slit domain is uniquely determined if the point at infinity is to 

correspond to a jixed point 0 on the boundary of G. 

Proof: The mapping is again provided by the analytic function 

u + iv — f(x + iy) (with the singularity at the origin 0) which was 

constructed in §2 and §3. As observed, for L > 0 the function/(z) 
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can no longer be single-valued in G, Thus while u, by the nature of its 

definition, remains single-valued in (?, the imaginary part v has 

additive periods along non-bounding closed curves. We proceed to 

examine the streamlines v = constant of the function/(z) = u + iv. 

Figure 2.26. Streamlines and equipotential lines through dipolo 

First we recall a fact from the elements of the theory of complex 

functions: in the neighborhood of the pole 0 of a function f(z) the 

equipotential lines u = constant and the streamlines v = constant 

form, approximately, two orthogonal families of circles, the first 

family tangent to the 2/-axis and the second tangent to the z-axis if 

the residue is real. For constants c of sufficiently large absolute 

value, the curve u = c becomes an arbitrarily small closed (nearly 

circular) curve through 0, and the same holds for the curve v = c. 
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Secondly the streamlines v = c are analytic curves in G along which 

the values of u change monotonically. Exceptions are provided only 

by the “crossing points,” i.e. the zeros of f'(z). The streamlines at a 

crossing point Q of the first order are schematically shown in Figure 

2.27. Four branches issue from Q, at equal angles: the arrows indi¬ 

cate the direction of decreasing u. At a crossing point of order m 
(i.e. an m-fold zero of f(z)), we have, similarly, 2m + 2 branches of 

streamlines through Q forming equal angles, as indicated for m = 2 

in Figure 2.28. Finally we recall that each boundary line y of G can 

be considered as part of a streamline v = constant. To study the 

behavior of streamlines in the neighborhood of a boundary curve y 
we may visualize y as analytic, e.g. a circle. For, according to the 

results obtained previously, we can map a doubly connected strip 

Z of G, bounded by y and by another curve, conformally on a plane 

domain in such a manner that y becomes a slit or a circle, and that 

the boundary coordination is biunique. Thus the topological be¬ 

havior of the mapping by u + iv in the vicinity of y is completely 

exhibited by the behavior in the cell Z. Then the function u + iv, v 
being constant on 7, can be analytically extended beyond 7 and there¬ 

fore may be considered regular on 7. 

Since u is single-valued along 7, we have, if s is the arc length and 

n the direction normal to 7, 

L dn 
ds = 0, 

a relation which implies that dv/dn has an even number 2/x + 2 of 

zeros on 7. Since dv/ds vanishes on 7, these zeros are crossing points. 

If /x = 0 we have the situation treated in §3. This case is illustrated 

in Figure 2.29, where a streamline meets the boundary 7 at a point Q 
and splits into two branches which flow in different senses about 7, 

unite at another point Q' of 7, and there leave 7 for the interior of G. 

In this case /z = 0 we say that 7 represents a simple element and is 

not a crossing element for G. If, however, /z > 0 we shall say that 

7 represents a crossing element of order /x for the flow. The cases 

/x = 1 and 11 = 2 are shown by Figures 2.30 and 2.31, with the direc¬ 

tion of decreasing values of u again indicated in the diagrams. Fin¬ 

ally we observe that each streamline, if followed in the direction of 

decreasing values of u, even through crossing elements, must ulti¬ 

mately lead to the pole 0 and arrive there from the side x < 0, on the 
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left of the ?/-axis, where the curves u = c with large negative values 

of c are situated. These streamlines cannot be closed since u is 

single-valued; they can end only at 0 because at all other points of G 

the function f(z) is regular. 

Our mapping theorem is easily obtained if we dissect G along 

streamlines into a region G* so that the function v becomes single¬ 

valued in G*. For this purpose we consider all the crossing points Q 

and crossing boundary elements 7 and cut G along those branches of 

the streamlines v = constant, emanating from Q or 7, along which u 

decreases. The cuts end at the pole 0, entering it there from the side 

x < 0. On the other hand, from each point P of G*, by following a 

streamline in the direction of increasing—instead of decreasing-—u, 

we can reach 0 from the side x > 0 where no cuts occur; hence G* 

remains a connected domain, and through each point P of G* there 

exists a single streamline v — constant along which u varies mono- 

tonically from — 00 to + «■ . Therefore this streamline is mapped in a 

one-to-one way onto a straight line v — constant in the a, ?;-plane, and 

the function f(z) is single-valued in G*. For, as we saw, the stream¬ 

line through any point P of G* leads to 0 from x > 0 in an unambig¬ 

uous way, since it cannot pass through a crossing element; but in the 

neighborhood of 0, for x > 0, the values of v are, save for an arbitrary 

additive constant, uniquely determined for G*. 

Moreover the curves v — cx and v = C2, for cx 5^ C2, have no 

common point in G* except 0, because near 0 for x > 0 they are 

different curves and cannot intersect in the domain G* in which there 

are no crossing elements. Hence G* is mapped in a one-to-one way 

onto a domain B in the u, t’-plane. The boundaries of this domain 

B are segments v == constant. Inasmuch as these boundary lines 

correspond to the cuts through crossing elements, they are parallel 

slits as described above, and the identification of opposite points on 

different edges of a cut on G is effected by coordinating such points as 

have equal values of u on the slits corresponding to the different edges 

of the cut. 

To complete the analysis, we first consider the typical “general” 

case of a simpleicrossing point Q on a streamline which passes through 

no other crossing element. The cut through this point Q, as in Figure 

2.32, is marked by a heavy line and corresponding edges of the same 

part of the cut are identified by the same figures. The thin line 

indicates those branches of the streamline through Q which lead to 
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u —» + oo. Typical instances of simple crossing points are furnished 

by the torus and the projective plane. The torus, represented as a 

rectangle with opposite sides identified, is mapped on a slit domain 

by the elliptic f-function of Weierstrass whose streamlines are sche- 

0 

Figure 2.32. Streamline through 
critical point in projective plane. 

Figure. 2.34. Dipole flow pattern on 
projective plane. 

Figure 2.33. Dipole flow pattern on 
torus. 

Figure 2.35. Dipole flow pattern on 
Klein bottle. 

matically drawn in Figure 2.33. The cuts issuing from the two 

crossing points Q and R are shown by heavy lines (cf. Figure 2.37). 

The projective plane, represented as a square with opposite sides 

identified reversely, is mapped by a function whose streamlines are 

schematically indicated in Figure 2.34 (cf. Figure 2.17). We also 

show the Klein bottle in Figure 2.35 (cf. Figure 2.16). 
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If a crossing point Q has higher multiplicity—i.e. if it can be con¬ 

sidered as the limiting case of several simple crossing points approach¬ 

ing one another—then the situation remains essentially the same and 

o 

Figure 2.36. Streamline through critical point of second order 
on torus. 

O 

Figure 2.37. Critical streamlines Figure 2.38. Critical streamlines 
on torus in general position. on torus in symmetric position. 

is illustrated in sufficient generality by Figure 2.36, representing a 

crossing point of order 2. The image in the u, p-plane is given by 

Figure 2.18. 
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If a branch of a streamline coming from the crossing point R, with 

decreasing values of u, meets another crossing point Q, both of the 

first order, we obtain, in general, the situation illustrated in Figure 

2.37. The image in the u, r-plane is shown in Figure 2.19. If, in 

addition, the other part of the cut through R likewise passes through 

the same crossing point Q, we obtain the diagram in Figure 2.38. 

Here a single closed circuit, which does not pass through 0, replaces 

the two independent circuits belonging to R and Q. The image of 

Figure 2.38 corresponds to the case of two pairs of cuts which partly 

coincide in such a way that the discontinuity of the image disappears 

at the infinite ends of the slits (Figure 2.20). It is immediately clear 

how a repetition or accumulation of such possibilities is expressed by a 

coalescing of infinite slits in our plane slit domain. 

Finally we have to account for the mapping of the boundaries 7. 

If a boundary curve y is part of a streamline not serving as one of our 

cuts, its image is simply a finite cut v — constant separated from the 

infinite cuts. If y is on one of the cuts through a crossing point but 

is not itself a crossing clement, the situation in B is represented in 

Figure 2.21 and the image is given by Figure 2.29 (see pp. 84 and 

88). If, thirdly, 7 is a crossing element of order e.g. g = 1 or 2, 

the situation in B is given by Figures 2.22 and 2.23 and the image of 

y is given by Figures 2.30 and 2.31 (see pp. 84 and 88). 

Thus the statement of our theorem is proved. 

4. Remarks. Half-Plane Slit Domains. While the preceding 

theorem can easily be extended to the case where there are infinitely 

many boundary elements 7, it is not obvious that it can be generalized 

to the case of an infinite characteristic number L (e.g. an orientable 

domain G of infinite genus). It may further be remarked that, by 

theorem 2.2, the mapping function/(z) is uniquely determined up to 

an arbitrary additive complex constant if the singular point 0 (situ¬ 

ated, for example, at z — z0), and the singularity <r/(z — z0) at that 

point, i.e. the complex constant a, are prescribed. Thus there is, for 

a given domain G, a family of conformally equivalent slit domains 

which depends on three arbitrary complex—or six real—constants. 

In applications it is often desirable to characterize a definite 

“normalized” representative slit domain conformally equivalent to a 

domain G. This is easily possible in the case of non-closed domains 

G with at least one boundary element 7. Instead of mapping 7 on a 

finite slit, we can map it on the whole real axis v — 0 and G on a 
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half-plane slit domain v > 0. The procedure is quite similar to that 

for L - 0 in §3, 3. Without loss of generality we may suppose that, 

by previous mapping of the adjacent part of G, 7 is already a slit 

y = 0 through the origin. Then we let the singularity 0 tend to this 

boundary in such a way that the st reamlines in 0 become tangent to 

y = 0. Alternatively, by reflecting G on the boundary slit. 7 we may 

form a domain G and then map G + G on a slit domain by a function 

J(z) with the singularity 1 jz at the origin on 7. The image of G is 

now a slit domain B' similar to that above but consisting only of the 

upper half-plane. The boundary slit 7 is mapped on the real axis 

v = 0, while all the other infinite slits and boundary slits remain as 

before. Now we may, by a dilatation and a translation in the ?/-direc- 

tion, introduce a suitable normalization. For example, the half¬ 

plane slit domain which is the conformal image of G may be uniquely 

characterized by fixing the vertex of a boundary slit or of any infinite 

slit at u = 0, v = 1. 





CHAPTER III 

Plateau’s Problem 

1. Introduction 

Intimately connected with Dirichlet’s Principle and conformal 

mapping is Plateau’s problem which has long challenged mathemati¬ 

cians by the contrast between its simplicity of statement and diffi¬ 

culty of solution: to find the surface G of least area spanned in a given 

closed Jordan curve y. If the surface G is represented in x, y, 2-space 

by a function z(x,y) with continuous derivatives, the area A is given 

by 

A = JJ (1 + Zx + Zy)l<2 dx dy} 

where B is the domain in the x,?/-plane bounded by the projection 

13 of y. The surface G is obtained as solution of the boundary value 

problem for Euler’s (non-linear) differential equation 

2xx(l -f" Zy) 2,ZzyZXZy *4“ Zyy{\ “P Z») = 0. 

This approach, although it has been pursued with a remarkable 

measure of success,1 has proved to be both cumbersome and essen¬ 

tially inadequate. Surfaces G are excluded if they cannot be repre¬ 

sented by a function z(x,y), while the geometrical minimum problem, 

formulated for arbitrary closed curves 7, in no way permits such a 

restriction. Instead we consider surfaces represented parametrically 

by a vector %(u,v) with components x,y,z, or xx, x2, #3, given as 

functions of two parameters u, v which range over a domain B of the 

a,«;-plane bounded by a curve 13. The area is expressed by the 

integral 

(3.1) .4(jc) = JJ y/eg — f2 du dv = JJ W du dvf 

1 See Rad6 [1]. 

95 
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where, in vector notation, 

c = Xl = 

f = Xu Xv 
yy dxv dxv 

hi du ~dv ’ 

Euler’s conditions for the variational integral (3.1) are a system of 

differential equations 

(3.2) 
d dJV d dlV 

du dXyu dv dxVv 
v ~ 1) 2, 3, 

which expresses the fact that the mean curvature of the surface 

X(u,v) is zero. Surfaces of vanishing mean curvature are called 

minimal surfaces even though they may not actually furnish a 

minimum of area under given conditions. 

Although the mathematical problem of proving the existence 

of a surface %(u,v), that solves the preceding differential equations 

and is bounded by a prescribed curve 7, has long defied mathematical 

analysis, an experimental solution is easily obtained by a simple 

physical device. Plateau,2 a Belgian physicist, studied the problem 

by dipping an arbitrarily shaped wire frame representing 7 into a 

soap solution. The soap film forming within the wire frame attains a 

position of stable equilibrium, which corresponds to a relative mini¬ 

mum of area, and thus produces a minimal surface spanned in 7.3 

Plateau’s experiments led to the name “Plateau’s problem” for the 

general question of minimal surfaces bounded by prescribed contours. 

It is appropriate to distinguish from this general problem the more 

specific one of finding a surface that furnishes the smallest area at 

least relative to neighboring surfaces or, physically speaking, the 

problem of stable equilibria of the soap film. As we shall see in 

Chapter VI, there are contours bounding unstable minimal surfaces, 

whose areas do not furnish relative minima. 

During the 19th century Plateau’s problem was solved for many 

specific contours. Progress was made in the general theory by 

Riemann, Schwarz, Weierstrass, and others mainly on the basis of 

one idea: The geometrical meaning of the problem makes it obvious 

2 See Plateau [1], [2]. 

3 We neglect the influence of gravity. 
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that the system of differential equations for Xi, x2 , is invariant 

under arbitrary transformations of the parameters u,v. Taking 

advantage of the freedom of choice of these parameters one can 

simplify the nonlinear differential equations, reducing them to the 

linear harmonic equation A£ = 0.4 This reduction is effected if we 

assume the possibility of introducing isometric parameters u,v 

on the surfaces G, i.e. parameters which are characterized by the 

equations 

(3.3) 6 - g = 0, / = 0, 

or, equivalently, by the fact that the mapping of G onto the do¬ 

main B in the w,t»-plane is conformal. Then W — e — g, and the 

differential equations (3.2) immediately become 

(3.4) Ay = + ~ = 0, or Ax, = 0, v = 1,2,3. 

Surfaces %(u,v) for which A;c — 0 are called harmonic surfaces. 

Harmonic functions x„(u,v) may be considered as real parts 

{-Re[/„(w)] of analytic functions 

fp(w) = xv + ixv 

of the complex variable w = u + iv (where xXiijV) is conjugate 

harmonic to x„(u,v)); consequently the Cauchy-Riemann equations 

imply 

4>(w) = 'LfliwY = 23 - i “) = e - 11 - 2if. 
v^i v=i \du OV / 

It follows that, for any harmonic vector f(w, v)> the expression 

<t>{w) = (e - {/) - 2if 

is an analytic function of the complex variable w = n + iv. This 

analytic function vanishes identically for harmonic vectors which 

represent minimal surfaces. We call the equation 

<p(w) = 0 

the characteristic equation for minimal surfaces. Discarding in the 

4 This linearization corresponds to that of the differential equations of geo¬ 

desics by the introduction of arc length as parameter; it is a special case of 

a more general fact concerning quasilinear partial differential equations in two 

independent variables (sec Courant |2j Chapter III, §2, 1). 
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preceding considerations whatever is motivation rather than proof, 
we formulate as basic definition: 

A minimal surface G is a surface represented by a harmonic vector 
X(u9 v) for which 

(3.5) 4>{w) = e — g — 2if = 0. 

As domain B for the variables u,v or for w = u + iv we may 

choose the disk u + v < 1. Plateau’s problem is to solve the 

equation Ay = 0 for B under the additional conditions that <t>{w) = 0 

and that y maps the boundary u + v2 = 1 onto the prescribed 

contour y. After this simplification the nonlinear character of the 

problem remains only in the boundary condition and in condition (3.5). 

While relations (3.3) have the appearance of side conditions in the 

form of nonlinear partial differential equations of the first order, 

they are really of a much less restrictive character. The equivalent 

form (3.5) of these conditions shows that the characteristic relation 

4>{w) = 0 is identically true in B, if we merely know, for example, 

that the boundary values of the real part e — g are zero and that the 

imaginary part —2/ vanishes at one point of B. 
A theory of minimal surfaces based on the preceding or similar 

definitions has led to famous results concerning minimal surfaces 

spanned in specific contours of simple geometric shapes, such as 

quadrilaterals and other polygons. More recently Gamier has 

attacked Plateau’s problem for a general contour y by using classical 

methods for polygonal boundaries. Complete and satisfactory 

success was however achieved only in 1930 and 1931, independently, 

by T. Rad(5 and J. Douglas.5 Their success was due to a combina¬ 

tion of the classical approach with that of the modern calculus of 

variations.6 

5 See Douglas [1], Rad6 [1], and Radb [2] Chap)ter V. 

fl Quite a different line of approach to the problem of least area, by direct 

methods of the calculus of variations, was attempted by Lebesgue in a classical 

paper [1]. More recently McShane [1] has pursued this line under remarkably 

generafconditions for the surfaces in competition. However, one should keep 

in mind the fact that it is not sufficient to give an existence proof by widening 

the concept of solution, e.g. by giving up conditions of differentiability. To 
obtain the relevant information that the actual solution belongs to the nar¬ 

rower class of “reasonable” functions one has to overcome practically the 

same difficulties and to use similar methods as would occur in an attack 

under more restrictive conditions. 
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The harmonic character of the vector y(a,a) representing a 

minimal surface makes it natural to seek a connection between 

Plateau’s problem and Dirichlet’s Principle as applied to the integral 

(3.6) D[jr] = i Jj* (ft, + ft) du dv - ^ JJ (e + g) du dv. 

Such a connection is moreover suggested by the following considera¬ 

tion. The inequality 

e + y 
o > \Zey, 

where the equality sign holds only for the case c = g, implies 

and 

_ ft 

for e — g ~ f — 0 alone. Hence for all surfaces x 

(3.7) nix] > A(x), 

and 

(3.7a) Dix) = A(x) 

if and only if (3.3) is satisfied, i.e. if the surface, without necessarily 

being harmonic, is represented by isometric parameters u,v. 
If it is again assumed that such an isometric parametrization is 

possible for all surfaces under consideration, the equality (3.7a) is 

always attainable for suitably chosen parameters u,v. For a fixed 

surface, A (ft is independent of the choice of parameters. The 

integral Z>[y], on the other hand, is not; as implied by the preceding 

inequalities, it becomes as small as possible for isometric parameters. 

Combining the preceding facts we conclude: To minimize the 

area A(x) among all areas to be compared it is sufficient to minimize 

Dirichlet’s integral (3.6) under the prescribed boundary conditions. 

The vector which minimizes Dirichlet’s integral automatically 

solves the problem of least area; it is not only a harmonic vector, 

but also satisfies (3.3) or, as is equivalent for harmonic vectors, the 

relation <p(w) = 0. 
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The possibility of introducing isometric parameters u, v for all 

surfaces to be compared remains unproved in this argument. Instead 

of supplying the proof we find it more convenient to consider the 

preceding discussion merely as a motivation. As the point of 

departure for a rigorous treatment of the problem of least area, we 

formulate independently 

Variationai Problem III: To minimize />[yj under the given conditions 

at the boundary. 

We shall show 

1) that the problem possesses a solution y, 

2) that the solution actually represents a minimal surface, and 

3) that the minimal surface is a surface of least area. 

Before carrying out this program we emphasize that its scope 

extends far beyond the original problem of a surface of least area 

spanned in a closed contour. Douglas has observed that the problem 

might equally well be stated and solved for any number m of co¬ 

ordinates .ri , .r2, • • • , xm , and that in t he case m = 2 its solution is 

tantamount to a proof of Biemann’s theorem on conformal mapping 

of simply connected domains on the inferior of a circle. Moreover, 

Douglas has envisaged and attacked7 the much more general problem 

of minimal surfaces of prescribed t-opological structure bounded by k 
given contours. 

Douglas restricts the vectors admissible in variational problem III 

to harmonic vectors, so that Dirichlet’s integral D[y| can be expressed 

in terms of the boundary values of y alone. As a consequence, 

the variational problem is reduced to a problem for functions of 

one variable. However, as the author and, independently, L. Tonnelli 

have observed, a considerable simplification may be gained by admit¬ 

ting a wider class of vectors; moreover, this approach makes possible 

solutions of the general problem of Douglas for higher topological 

structure (see Chapter V), of free boundary problems, and of problems 

concerning unstable minimal surfaces (see Chapter VI). 

In the following chapters these general theories with some of 

their ramifications will be discussed. The present chapter will be 

restricted to Plateau’s problem for simply connected minimal surfaces 

with prescribed boundary 7. We shall not only give existence 

7 See Douglas |5]. 
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proofs, but also analyze questions such as that of the dependence of 

the solution on the given data, i.e. on the prescribed boundary. 

2. Formulation and Solution of Basic Variational Problems 

1. Notations. The following notations will be used consistently. 

The domain of the parameters u , v in the complex plane of w = u + iv 

will be called B, its boundary ft; in this chapter B will generally be 

the unit circle \ w\ < 1. The minimal surface will be called G and its 

given Jordan boundary y. We shall call “admissible” all vectors % 

which are continuous in B + ft and piecewise smooth in B, and 

which define a continuous mapping of ft on y, monotonic in the 

following sense: as a boundary point describes ft monotonically, the 

image point describes y monotonically. Furthermore Dirichlet’s 

integral for any admissible vector is assumed to be finite. The 

totality of these vectors forms a set called the function space 2. The 

subspace of ® consisting of all harmonic vectors in £ will be called'}?. 

Our basic variational problem is to find an admissible vector x(u ,v) 

for 'which the Dirichlet integral /4|yj attains its least value d. (Generally 

we shall indiscriminately speak of vectors y(//., v) or surfaces G. 

That the variational problem makes sense, i.e. that there actually 

exist admissible vectors, is not a priori evident; as a matter of fact, 

it is not difficult to construct contours 7 for which 1)\$] is always 

infinite if the vector X satisfies the conditions of continuity and the 

boundary condition imposed. Therefore we expressly state as an 

assumption that admissible vectors exist. This assumption, how¬ 

ever, cannot be considered essentially restrictive; for example, it is 

automatically satisfied for all rectifiable contours, see §8, 3. 

2. Fundamental Lemma. Solution of Minimum Problem. The 

construction of the solution of the variational problem, in other 

words the existence proof for the solution, is based on an important 

Jemma, in statement and proof very similar to lemma 1.4. Instead 

of functions <j> we discuss a whole class of vectors with uniformly 

bounded Dirichlet integral: 

Lemma 3.1lira domain B of the u,v-plane consider the class of 

piecewise smooth vectors x for which Dirichlet’s integral is uni¬ 

formly bounded by the constant M: 

DfAx] < M. 
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About an arbitrarily fixed point Owe draw circles of radius r. Denote 

by Or an arc or a set of arcs of such a circle contained in B, by s arc 

length on Cr. Then for every positive <5 < 1 there exists a value p, 

depending on p, with <5 < p < \/«5, such that 

(3.8) [ g ds < 
Jcp p 

with 

(3.9; 
/ \ 4M 

e(6) = j-77: 
log 1/5 

tending to zero for 8 —> 0. Furthermore, the square of the length Lp 

of the image Cp of Cp in x,2/,2-space has the bound 

(3.10) Lp < 2tt e(8)y 

i.e. the oscillation of %{uyv) on Op is at most \Z2irt{8). 

Proof: If the vector p has continuous first derivatives, 

fs ds < L[p] < 2M. 

bo obtain (3.8), write the left member in the form 

with 

and apply the mean value theorem of the integral calculus. If p 

is only piecewise smooth, the reasoning has to be slightly modified, 

exactly as in Chapter I. Relation (3.10) follows by Schwarz’ 
inequality, since 

Lf = / ds. 
Jcp 

To solve the variational problem, we start, as usual, with a 

minimizing sequence ji, f2, • • • of admissible vectors, i.e. with a 

sequence for which D[jn] -> d; d now denotes the greatest lower 
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bound for D[y]. If we replace each of the vectors yn by an admissible 

harmonic vector with the same boundary values on 0, the new 

vectors—again denoted by yn—cl fortiori form a minimizing sequence 

by Dirichlet’s Principle. Our intention is to construct the solution y 

as limit of a uniformly convergent subsequence of the vectors y„ . 

The possibility of such a procedure depends on a further prepara - 

tory step. Because of the invariance of D[y] under conformal 

mapping, we may transform the unit circle B in the complex ic-plane 

into itself by an arbitrary linear transformation that takes a point P 

into a point Q and y(P) into t)(Q) with D[y] = Dfa], A sequence t)n 

thus obtained is again a minimizing sequence.8 This freedom is 

utilized to “normalize” the minimizing sequence by imposing the 

“three point condition”: Admissible vectors y are required to map 

three fixed points Pi, P2, Pi of 0 onto three fixed points P[, P2, P3 

of 7. The three point condition can be satisfied by substituting for 

each admissible vector another with the same Dirichlet integral. 

The new’ vectors are obtained by the linear transformation of the 

unit circle into itself that takes three points Qx, Qz, Q3 into Pi, P2, 

P3, respectively. 

Now we state 

Lemma 3.2: The boundary values of the admissible vectors y, satisfy¬ 

ing the inequality Z>[y] < M and the three point condition, are 

equicontinuous. Consequently these boundary values form a com¬ 

pact set on j3; the harmonic admissible vectors form a compact set 

in the region B + /3. 

Proof: We apply the fundamental lemma 3.1, as w^ell as a basic 

property of Jordan curves 7. For any positive <r, there exists a 

positive quantity r(<r) having the following property: if Q, Qf are a 

pair of points on 7 at a distance not exceeding r, the diameter of one of 

the two arcs of 7 determined by Q and Q' does not exceed <7. For given 

0-, we choose 5,0 < 8 < 1, so that the quantity 2ire(d) = 87rM/log (1/5) 

of lemma 3.1 satisfies the inequality 2ire(5) < r. Thus, for any point 

8 By letting the sequence of linear transformations which take y„ into t)„ 
converge to a degenerate one, we could prevent the convergence of a mini¬ 
mizing sequence to the solution; hence the necessity for a normalization 
as in the following paragraph. Incidentally, other methods of normalization 
which achieve the same purpose can be given and are preferable in other cases, 
see Chapters IV, V, VI. 
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P on 0, there exists :i quantity p , 8 < p < \/8, such t hat the oscilla¬ 

tion of x on the circle Cf, about P is not greater than -\Z2tte(8) < r. 

By the three point condition, for d sufficiently small, the larger arc 

of /3 cut out by Cp contains at least two of the fixed points Pi, P>, Pv, ; 

hence the image of the smaller arc of (3 is the “smaller arc” of y. 

For points R and R' on (3 at a distance not exceeding <5, therefore, 

| x(R) ~ X(R') I < o. 'This inequality expresses the equicon- 

tinuity of the boundary valutas of x , since 5 depends only on the 

quantity a. This equicontinuit.y together with the boundedness ol tlu' 

admissible vectors x implies the compactness by ArzehVs theorem. 

We apply this lemma to a normalized minimizing sequence of 

harmonic vectors x>, • Consequently we can choose a subsequence of 

the minimizing sequence with uniformly convergent boundary values, 

again denoted by jr„ . Since the* jr„ were assumed to be harmonic, 

wo inter immediately that they converge uniformly in B + (3 to an 

admissible vector x harmonic in B. 
By the lower semieontinuity of Dirichlet s integral (lemma 1.1), 

/>[yj < lim inf. D[Xv\ = d. 

Since (I is the greatest lower bound for l)\x], it follows that 

m = a. 
The harmonic vector x solves our variational problem. 

3. Remarks. Scmicotifimdtij. The preceding reasoning actually 

yields a somewhat more general result. Instead of the fixed curve 7 

we may consider a sequence of continuous curves yn converging to 7 

“smoothly,” or in the "Freehet sense,” i.e. in such a manner that if 

two points Pn , Qn on yn tend to the points P, Q of 7, then the whole 

arc PuQn of 7„ tends to one of the t wo arcs PQ of 7. We need not 

even require the yn to be simple curves, but may permit them to have 

multiple points and corresponding small loops, as long as these 

disappear in the limit. We assume the existence of admissible 

vectors with finite Dirichlet. integral for all yn . Now consider a 

sequence of vectors Xn mapping (3 oii7n and having uniformly bounded 

Dirichlet integrals. Such vectors can be normalized by the three 

point condition: to three fixed points Py Q ,R on (3 correspond three 

points Pn , Qn , Rn on yn which tend to three prescribed fixed points 

P\ Q', R' on 7. rrhen the boundary values of these vectors t\, form a 

compact set of functions, as is seen by reasoning similar to that in 
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article 2. As before, avo may replace yM by a sequence of harmonic* 

vectors; Ave choose a uniformly convergent subsequence and again 

denote it by yn . 

Denoting the limit vector by y, we have once more* 

D\x] < lim inf. l)[xn]. 

In particular, we may take for Xn a solution of t he variational problem 

for 7n (if in is a Jordan curve). The sequence? converges to 

a vector % admissible in the problem for 7, therefore d < l)\x\ < 

lim inf. Dly„]. This argument piwes 

Theorem 8.1: If dn is the greatest lower bound of I)\x\ under the 

condition that x maps the boundary 0 on 7,,, then 

d < lim inf. dn . 

In other Avords: the minimum d of the variational problem! is a lower 

semicontinuous function of the curve 7, if convergence is understood 

in the sense of Frdehet. 

3. Proof by Con formal Mapping Thai Sola lion is a Minimal 

Surface 

That the solution x <>1 problem III is a minimal surface, i.e. that it 

satisfies the condition <Ke) = 0, can be proved in a simple way by 

using the results of Chapter 11. For the construction of the solution 

X of the variational problem the parameter domain B Avas fixed as a 

circle and the three point condition was imposed. However, since 

Dirichlet’s integral is invariant under any conformal mapping, our 

solution Avill furnish the minimum even compared with a Avider class of 

vectors g; specifically we show that this is the case for certain dis¬ 

continuous vectors g.9 We cut the domain B along a circle k enclosing 

the disk /v, in which r, 6 may be polar coordinates. With an arbitrary 

analytic periodic function A(0) and a parameter e define the function 

\p = $ -f c\(0). For sufficiently small e the correspondence between 

6 and yf is analytic and biunique. We further introduce the vector 

9 Their introduction is motivated by the observations that the expression 

for the area A(f) yields the same value for discontinuous parametric* repre¬ 

sentations as well and that we are aiming at cases where /l (y) and />(jrJ are 

identical. 
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l(u,v) defined in B by 

l(r,0) 
in K, 

t(u,v) in B — K; 

l(rf0) is discontinuous on k but maps B again on the surface G in 

space. We state 

m > d[X] 
or what is equivalent 

DkM > D4& 

fn other words, y also yields a minimum with respect to these dis¬ 

figure 3.1. 

continuous vectors As a consequence, since y and 1 have con¬ 

tinuous derivatives (of all orders)10 with respect to v,v,e in K + k 

(3.11) ^ Dk[j] = Jj (huiu, + ivb>) dudv = 0 

for e = 0. The proof is immediate if we apply the sewing theorem 

to the domain B* obtained from B by cutting along k and identifying 

the point 0 on the outer edge of the cut with the point = 6 + cX 

on the inner edge. The Riemann domain B* may again be mapped 

conformally on the unit circle B. This mapping takes the vector 

which is continuous in R*, into a vector in B that satisfies all 

conditions of admissibility in the original variational problem. 

Since the invariance of Dirichlet’s integral implies D[g] = /)[$'] and 

since D[i'] > Z)[y] the statement is proved. 

10 A similar reasoning could not be applied to the whole domain B since 

these derivatives need not exist at the boundary /9. 
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By Green’s formula (3.11) is equivalent to 

— ff h A* du dv + ^ hbr dd = 0, 

for t = 0; all expressions under the integral signs are continuous in the 

coordinates and the parameter. For e = 0 we have 

h = Me, It = by and Aj = 0 

so that 

J \bbr dd = 0. 

The arbitrary character of X implies that 

bb = 0, 

or 

Jrf. = o, 

everywhere on /c, s being arc length on k. Through any point P in B 

we can draw such a circle k in a given direction; hence for any point P 

and any two orthogonal directions indicated by s and n we have 

= 0. In particular, if k is parallel to the w-axis at P, we have 

bb — bb = / = 0, and if k is parallel to the line u — v = 0, we 

obtain (ytt — b)(b + b) = e — g = 0. The relation <t>(w) = 

e — ^ — 2if = 0 is thus proved, and our solution is identified as a 

minimal surface. 

4. First Variation of Dirichlet9s Integral 

The proof that <l>(w) = 0 can be obtained, if desired, without use 

of the sewing theorem or of conformal mapping altogether. The 

following method employs a simple expression for the first variation 

of D[%]. Since this expression will be of basic importance in more 

general problems later we shall discuss it in somewhat greater detail 

than necessary for the present purpose; in particular we shall not 

necessarily assume the domain B to be fixed or simply connected. 

1. Variation in General Space of Admissible Functions. The 
variations of the vector % which we shall consider are of two types: 
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a) Variation of the parametric representation while the geometric 

surface is kept fixed; 

b) Variation of the surface.11 

As always in the calculus of variations, it is quite useless to 

consider the most general variations compatible with the conditions 

of admissibility. 

To introduce variations of type a) we transform the domain 

B into itself or into another admissible domain B' by a biunique 

transformation of the form 

(3.12) 
u — u' + eA 

v — vr + cM 

or, in complex notation, with w = u + iv, wf = u' + ivf, 

^3.12a) w = w' + e(A + z'M). 

The parameter e will take on a suitably small value; the quantities 

A and M are continuous functions of u,v,e in B and of u',v',e in B', 

with piecewise continuous first derivatives. We further suppose 

that the absolute values of the first derivatives have a common 

bound b. Finally, using the notation 

(3.13) 
A(a',p',0) = X(u',z/), 

M(u' ,vf,0) = M(u'y), 

we require the inequalities 

(3.14) 
| Au/ XU' j €?>, 

| — Mu' | < eb, 

| A„/ — XV' | < eb, 

| MV' ~ Mv' | < €& 

to hold; similar inequalities are assumed to hold for the derivatives 

with respect to u,v as independent variables. These inequalities 

imply 

(3.14a) [ Au Xy' j ^ 3eb, etc., 

and 

(3.14b) I AW' — Xu | < 3eb, etc. 

11 For present purposes only variations of type a) are required. Variations 

of type b), affecting the surface as well, are easily expressed, see (3.19) and 

(3.20). We shall make use of them in Chapter VI. 
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From these assumptions we deduce, by a short calculation, the 
inequalities 

(3.15) 

d(u\ v) 

d(u, v) 
(1 — eXu — €jJLv) < 2e\b2 + 6), 

d(u, v) 

d{uv) 
— (1 + eXU' + < 2e\b2 + b) 

for the Jacobian of the transformation. 
We introduce the variation a) of the vector y, which replaces y 

in B by the vector 

S(mV) = l(w,v) 

in S'. Denoting by JD* the Dirichlet integral taken over B' with 
respect to uf and v', we have 

= 2 ff 

+ [yw €Av> + yv(l + cMv/)]2} —~r—--dudv. 
d(u, t>) 

By a simple calculation using (3.13), (3.14), (3.14a), (3.14b), (3.15), 
and the inequality 

JJ I Xu Xv | dudv < /)[$], 

we obtain the basic variational formula 

(3.16) D*\d = D[x\ + ^eV(y, X, M) + e2R. 

Here the “first variation V of D[%\” is defined by 

(3.17) F(y, X, n) = [[ fp(X„ - ju») - (/(X, + Mu)] du dv, 

with the abbreviations 

V — Xu q — 2yuyr. 

The remainder term R has the bound 

\R\< cD\t] 
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with a constant c depending only on 6, not on £. The existence 

of the (improper) integral V and hence that of D*[$] is assured because 

(3.18) | p(K — m*) — Q&v + Mu) I ^ 26(| p | + | q |) ^ 46(yi + £v). 

Although in general only the variation a) of the parametric 

representation of a fixed surface will be needed, we note briefly 

that variations affecting the surface can be expressed by a vector 

t(u' ,v') vanishing at the boundary of B\ We replace x in B by 

(3.19) l(u’ y) = %(u,v) + et(u',v', e). 

Supposing Z)*[t] to be uniformly bounded in e, we find 

(3.20) Z>*M = Did + h V + €/>[*, t] + 62 7\ 

where t stands for t(w,?;,0) and the remainder T remains uniformly 

bounded if the integrals D\x] and Z>[t] are bounded. 

The expression 

lim g*W-_ g!i! - Oh, 11 + i V 

is called the first variation of Z)[£] for the variation (3.19) of the vector 

£. Since t = 0 on 7, the term D[ t] vanishes for harmonic vectors y, 

as shown in Chapter I, and the first variation of Dfy] has in this case 

the value V/2 even if t is not identically zero. 

A vector y is called stationary if the first variation vanishes for 

all admissible variations of the form (3.19). Since the deformation 

X,m of the parameter domain and the vector t do not depend on 

each other, the stationary character of £ is equivalent to the separate 

conditions Z>[y, t] = 0 and V = 0. The first relation is equivalent 

to Ay = 0. For the proof of <t>(w) = 0 we may therefore, assuming 

X to be harmonic,12 concentrate on evaluating the condition V = 0, 

thus restricting our attention to variations of the boundary repre¬ 

sentation of 7 by the boundary values of x on (3. 
2. First Variation in Space of Harmonic Vectors. Before pro¬ 

ceeding to prove that = 0 we interject a remark of independent 

18 If x Is not necessarily harmonic and if we demand t ** 0, then V *■ 0 
expresses the stationary character of the parameter representation of a given 

surface. The following arguments then yield, not the harmonic character 
of x, but the relation p — q «* 0, which expresses the fact that the stationary 

parameter representation is isometric. 
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interest. Douglas’ treatment of Plateau’s problem was based on 

the consideration of harmonic vectors £ alone. We shall show that 

this restriction has no effect on the form V of the first variation; 

more precisely, if £ is a harmonic*, vector in B and if £' is the harmonic 

vector in B' with the boundary values £'(w;,t/) = £(u,v) defined by 

transformation (3.12) (but in general differing from %(u' ,v') in B'), then 

i™ m i VIi.Km). 

In other words, in the space $ of harmonic vectors we obtain for 

the first variation of D[x] the same expression as before defined in 

the wider space ©, provided that the initial vector £ is harmonic.13 

For the proof we observe that D*[%'] < /)*[$] since f and 3 coincide 

at the boundary of Bhence 

(3.21) /)*[*'] < D[%] + icV + f2R. 

However, we could equally well start from £' in B' and transform 

Xf(uf ,v') into l)(u,v) = x'(u',v') by transformation (3.12) interpreted 

inversely. Then we obtain, from inequalities (3.14), (3.14a), (3.14b), 

(3.15), 

(3.22) D\xl < D[t)] < D*[i‘] - h V + t2 R'. 

The remainder 1 R' | is bounded if /)[£] is bounded, consequently 

also if /)*[£'] is bounded. The two inequalities together can be 

written as 

iV - eR' < d*w ] - m 
€ < \v + M 

for € tending to zero. This relation proves our assertion. 

Remarks: In accordance with the invariance of Z)[£] formula (3.17) 

for V shows that V = 0 if X + in is analytic in B so that 

w' = w — c(X + iy) is a conformal transformation of B into B' and 

XM — nv = X„ +^Mu = 0. Likewise, if X + in is an analytic func¬ 

tion of w in a part Bi of B and if B2 = B — Bx, then 

(3.23) V = ff* [p(Xw - Mr) - <?(XV + Mu)] du dv, 

18 Note that it is not obvious whether the change from x to £' can be ex^ 

pressed in the form (3.12). 
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since the integrand vanishes in Bi by the Cauchy-Riemann differential 

equations. 

3. Proof That Stationary Vectors Represent Minimal Surfaces. 

The expression V for the first variation of D[y] leads to very simple 

proofs of the condition 4>(w) = 0 for the solution £ of our variational 

problem. Obviously if £ is a minimal surface, V vanishes identically 

for all admissible functions X, y. Conversely, we show that the 

stationary character of y, i.e. the relation V = 0 together with the 

harmonic character of y, implies p = q = 0 or <p(w) = 0. As a matter 

of fact it is sufficient to assume that V = 0 for a suitable family of 

variations X, y. (It should be noted once more that p = e — g — 0 

and q — J = 0, or the isometric character of the coordinates, follow 

from V = 0 alone; the surface £ need not be harmonic, nor need it 

actually furnish a minimum of Dirichlet’s integral.) 

1) Proof using Riemann’s mapping theorem: If we presuppose the 

mapping theorem for simply connected domains, £ is seen to furnish 

the solution of the variational problem even if the parameter domains 

are permitted to vary into others equivalent conformally to the 

interior of a circle- -say domains B' obtained from a circular disk B 

by a transformation 

Ur = U + eX(?£,p), vr — V + ey(u,V), 

where X,y are arbitrary continuous functions with piecewise con¬ 

tinuous first derivatives in B + p and e is so small that the corre¬ 

spondence between B + and Bf + fi' is biunique. The differential 

equations Xu — yv — H, Xv + yu = K can be solved14 for arbitrary 

functions II and K piecewise continuous in B + The relation 

JJ (pH — qK) du dv = 0 

for arbitrary piecewise continuous H and K then immediately implies 

the condition p — q — 0 by the basic lemma of the variational 

calculus. 

2) Elementary variant of the proof: For a harmonic vector £, we can 

conclude from 7 = 0 that <f>(w) = p + iq = 0 by making use only 

14 Suppose, e.g., II — 0 and hence X = wv , m = wu with a function w for 

which wuu -f wvv — K. Any particular solution w of this equation will furnish 

X and fx as required. 
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of the conformal mapping of the interior of an ellipse onto that of a 

circle. We set X = a, /z = 0; obviously B' is an ellipse and V = 0 

becomes 

p da dv — 0. 

By the mean value theorem of potential theory it follows that p — 0 at 

the center of the disk B. Setting \i = 0, X = v we find, in the same 

way, that q — 0 at the center; hence </>(?/;) = 0 for w = 0. To prove 

<t>(w) — 0 for any other value w = a in B, we first transform the disk B 

into itself by the linear transformation wf = (w — a)/{aw — 1), so 

that w — a goes into wf — 0. The preceding reasoning then applies 

to the transformed vector f(u',v') = z(u,v) for which p' + W — 

<t>'(w') = Iu> — t'v2' — 2 iiu'ir' = ((dw/dw'f(f>{w). Since D*\f \ = Z>[f] 

the vector f likewise makes D*[$'] stationary, and hence pf + iq' = 0 

for w' = 0. But (<dw/dw')2 ^ 0 in we conclude that <f>{w) — 0 

for w = a, and the proof is complete. 

3) Proof without use of conformal mapping: The fact that V — 0 

implies <p{w) = 0 for harmonic vectors can be proved without refer¬ 

ence to any mapping theorem. If 7 is taken to be a plane curve we 

obtain thereby a proof of Riemann’s mapping theorem as a by-prod¬ 

uct. Such a version of the proof deserves our particular interest 

since it is preparatory to the investigation of conformal mapping of 

multiply connected domains which we shall carry out in Chapter Y 

on a similar basis. 

For the proof we restrict A,M in such a way that B' is again the 

unit circle: We consider an arbitrary real function a(r,0) of the polar 

coordinates r,6 with piecewise continuous derivatives in B, and 

define A, M by the relation 
it a * 

(3.24) A + i M = -w 6--— . 

The transformation inverse to (3.12a) takes the form wr = wetta, 

and for sufficiently small e maps the circle p onto itself in a one-to-one 

way. 

Let Br denote the interior of the circle (3r of radius r concentric 

with £. The relation V — 0 is equivalent to 

— pv) - q(\v + fxu)] dudv —> 0 
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as r —> 1. Integration by parts yields 

(3.25) f [X(p dv + q du) + p(p du — q dv)] —> 0, 
hr 

the domain integral vanishing since £ is harmonic and p and g, re¬ 

spectively the real and imaginary parts of the function <j>(w), satisfy 

the Cauchy-Riemann equations. With ,4m denoting the imaginary 

part of a complex quantity, we may write (3.25) in the more conven¬ 

ient form 

(3.26) ,4m l (X + dw 

as r —> 1. For the particular variation (3.24) we have 

X + in = —iwa(r,6). 

Since dw — iw d$, relation (3.26) becomes 

(3.27) o(r, 0) w2<f>(w) dd —► 0 

as r —> 1. 

The function is regular and analytic in B, so that 

'Cfm[w2<t>(w)] = H(r,0) is harmonic in J3. We consider a fixed point Q 

in B with polar coordinates p, \f/ and construct the Poisson kernel 

K{r,e-,Q) = -- r2 _ 2rp cos (d - i) "+ p2' 

With a value r, > p we define an admissible variation a(r, 6) by the 

relation 

<x(r,e) = K(r,6; Q)F(r,6). 

The function F(r,6) is given by 

F(r, 6) = i 

1, 
2r - p — n 

n - p 

0, 

r > n, 

ri > r > 
p + ^ 

p + n 
> r. 
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With the variation a, relation (3.27) becomes, for r —► 1, 

2 x 

K(rf B\ Q)H(r, 6) d$ —► 0; 

since the left side is the value of the harmonic function II at the 

point Q, we have H(p,\//) —> 0, and therefore //(p,^) = 0 for any 

point Q in B. 

Thus the regular analytic function w2<j>(w), having a vanishing 

imaginary part, is real and constant in B. At w = 0, w2<t>(w) is 

zero since <t> is regular in B; hence w2<t>{w) = 0 everywhere, and <t>{w) = 0 

as stated. As a consequence we may now assert: Stationary surfaces 

are minimal surfaces. 

5. Additional Remarks 

In this section we supplement the preceding solution of Plateau's 

problem by establishing some significant properties of the solution. 

1. Biunique Correspondence of Boundary Points. In our formula¬ 

tion of the variational problem in §2, 1, admissible vectors were 

required to map ft on y in a continuous and monotonic15 way. This 

requirement, as we now show, implies that the boundary corre¬ 

spondence is biunique. 

Since the mapping is monotonic we have only to prove that a 

whole arc c on p can never correspond to the same point, e.g. the 

point £ = 0 on 7. Otherwise by a conformal mapping we could 

transform the unit circle B to the half-plane v > 0, and c to a segment 

on v = 0, again denoting them by B and c, respectively. Since £ = 0 

on c, the harmonic vector £ can be analytically extended by reflection 

in c into the lower half-plane; on c itself we have £M — 0, hence by 

£2m — £; = 0 also £„ = 0. This argument leads to the absurd conclu¬ 

sion that the harmonic vector £ is identically constant. Hence c 

cannot be a segment, but must reduce to a single point, as was 

to be proved. 

2. Relative ifinima. The solution of the variational problem in 

§2, 2 proceeds unchanged if the vector £ is subject to suitable in¬ 

equality conditions. We may for instance, in the case of harmonic 

admissible vectors, prescribe that | %(u,v) — a(u,v) | < b (b constant), 

16 “Monotonic” is always understood in the weak sense only. 
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a(u,v) being a prescribed admissible harmonic vector. If we admit 

from the outset only harmonic vectors £ with | £ — a | < b, the 

existence of a solution can be proved exactly as in §2. Suppose 

that the vector £ solving this minimum problem is in the interior 

of the “sphere” | £ — a | < b; our variational reasoning in §3 or §4 

establishes £ as a minimal surface, which furnishes a relative minimum 

of Dirichlet’s integral. If, however, | £ — a | = bf i.e. if £ is on the 

boundary of the “sphere” at least for some points of B + /?, our 

variational reasoning is not applicable and r need not be a minimal 

surface throughout. 

3. Proof that Solution of Variational Problem Solves Problem of 

Least Area. The minimal surface r which minimizes Dirichlet’s 

integral possesses the least possible area. For the proof of this fact, 

which was really the initial goal, we cannot dispense with theorems on 

conformal mapping (cf. following article). The simplest argument 

is based on the results of Chapter II, §4, namely, that a simply 

connected polyhedral domain bounded by a Jordan curve can be 

mapped in a biunique and—except at the vertices—conformal way on 

the interior of the unit circle.lh 

Let G be any surface admissible in problem III for the contour 7, 

A its area. "Then there exists a sequence of polyhedra irn, whose 

boundaries yn tend smoothly to 7, for which 

lim A{wn) = A. 
n—*oc 

The possibility of a conformal mapping of wn on the unit circle B 

implies that there is an isometric parameter representation l)n(u,v) 

of 7rrj , with the unit circle as parameter domain. Hence, by formula 

(3.7a), 

D[tjn] = A(wn). 

Let £n be the solution of problem III for the polygonal contour yn 

that bounds 7r„ , £ the solution for the boundary 7. Then 

£[?»] < £fon], 

16 Approximation by polyhedra and their mapping on the interior of 

the unit circle is the principal tool used by Radd in his solution of Plateau’s 

problem. 
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and theorem 3.J on the lower semicontinuous dependence of the 

minimum d on the boundary gives 

d == D[fJ < lim inf. D[%n] < lim A(irn) = Ay 
n —*oo n —* oo 

or 

d < A. 

On the other hand d is the area of the minimal surface spanned in y. 

Hence d is the smallest possible value for the area A of an admissible 

surface bounded by y: the solution of problem III likewise solves 

the problem of least area. 

4. Hole of Conformal Mapping in Solution of Plateau's Problem. 

The solution of Plateau’s problem requires no knowledge of potential 

theory beyond Poisson’s solution of the boundary value problem for 

harmonic functions in the circle. Since the conformal equivalence of 

the unit circle B with other plane domains bounded by Jordan curves 

is a consequence, we might have chosen for B, instead of a circle, such 

a more general domain. Apparently this remark removes the objec¬ 

tion that the method refers to a special type of parameter domain B. 

However, the original geometrical nature of the problem of spanning 

surfaces of least area in a given contour requires even greater inde¬ 

pendence of specific parametric representations than the Riemann 

mapping theorem provides in the form mentioned and proved previ¬ 

ously. 

IJp to now we have obtained Riemann’s mapping theorem 

merely for plane domains bounded by Jordan curves. The pre¬ 

ceding method does not yield a proof of the mapping theorem for 

more general Riemann domains B. Consider, for example, the domain 

constructed from the vertical strip — l < u < 1, — °o < v < oo 

by removing the disk u + v < 1/4, and identifying the boundary 

points of the strip with equal values of v on the two vertical lines 

u — — 1 and u — 1. A priori it is conceivable that we would obtain 

for Dirichlet’s integral a minimum different from d, and therefore a 

minimal surface different from the one constructed in §2. In order to 

exclude this possibility we must know beforehand that such Riemann 

domains may be mapped on the unit circle. 

The indispensability of mapping theorems for a more thorough 

analysis of the situation is also shown by the following remark. The 
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condition that a surface is a minimal surface represents a purely local 

property; it is equivalent to the relation <t>(w) = 0 for a local parametric 

representation alone. Our attempt at a solution, however, starts 

with the assumption that a uniform representation l(u}v) is given 

for the whole surface. We must realize that, for the definition of 

area, a surface may be dissected into parts; each part could be given a 

local parameter representation, and all these representations would 

be independent of one another. It is obvious that the possibility 

of a uniformization must be ascertained before we can expect to 

solve both Plateau's problem and the problem of least area. The 

fact that a set of properly coordinated local conformal representations 

can be made uniform by one single representation valid for the whole 

surface is essentially the mapping theorem for Riemann domains 

proved in Chapter II. 

As a conclusion we state: The method based on the study of the 

first variation is valuable in itself, particularly because it yields 

theorems on conformal mapping—a point of view which will become 

even more important for problems of higher connectivity in Chapters 

IV and V. On the other hand, methods based on mapping theorems 

are more pertinent if the minimum problem refers to the geometrical 

quantity, area, rather than to the substitute Dirichlet integral, which 

coincides with area only for isometric representations. 

6• Unsolved Problems 

1. Analytic Extension of Minimal Surfaces. The existence 

proofs given for Plateau's problem leave unanswered many pertinent 

questions, for example, that of the analytic extension of minimal 

surfaces. For a plane curve y we have simply a conformal mapping 

of B onto the plane domain bounded by y; then we know from the 

elementary theory of analytic functions that the mapping function 

can be analytically extended beyond the boundary, provided y is an 

analytic curve. A corresponding theorem for minimal surfaces in 

7i-dimensional space, n > 3, has not been proved. In other words 

the truth of the following statement, plausible as it is, remains an 

open question: 

A minimal surface can be analytically extended (as a minimal 

surface) beyond any analytic arc of the boundary curve. 

The difficulty of the problem will be appreciated if one notes 



UNSOLVED PROBLEMS 119 

that the analytic boundary 7 may conceivably be represented by a 

vector whose components are non-analytic functions of the are 

length on /?. 

In the case of straight segments of the boundary 7 the analytic 

extension of the minimal vector can be easily effected by the principle 

of reflection. In fact we prove 

Theorem 3.2: If the boundary 7 of a minimal surface contains a 

straight segment the minimal surface can be extended analytically 

as a minimal surface beyond a. 

Proof: Again it is convenient to use the upper half-plane instead of 

the unit circle as a parameter domain. For simplicity we restrict 

ourselves to three-dimensional x,?/,z-space for the vector £. Let c 

be the open segment of the boundary line v = 0 which corresponds to 

a. Without loss of generality we may further assume that a is a 

segment of the 2-axis, i.e. that x = y = 0 along a. By reflection x 

and y can be extended harmonically beyond c and are regular in a 

neighborhood S of any closed subsegment c* of c; in this neighborhood 

x(u,—v) = —x(u,v) and y(u,— v) = — y(u,v). The derivatives 

of x and y are regular in S and xu,yu tend uniformly to zero as the 

ordinate v of the point P with coordinates uyv in S tends to zero and 

P tends towards c*. From / = 0, e = <7, i.e. from 

xuXo + VuVv + zuzv = 0, Xu + y\ + z\ = xl + yt + zl 

in B, we infer, for P tending to c*, that zuzv —> 0 uniformly; hence zv 

tends uniformly to 0, since xu —* 0, yu 0, and z2u > zl — x2u — \ju. 

It follows that zv has boundary values zero on c*; the harmonic 

function z(u,v) can be analytically extended by reflection beyond c* in 

such a way that z(u, —v)~ z(u,v). 

2. Uniqueness. Boundaries Spanning Infinitely Many Minimal 

Surfaces. In strictly linear boundary value problems of elliptic 

differential equations the proof of the uniqueness of the solution 

usually does not, present a serious difficulty and is of an essentially 

simpler character than the existence proof. For Plateau's problem 

the situation is quite different. Little insight of a general character 

has been obtained concerning the number of solutions of Plateau's 

problem for a given contour. The following example suggested by 

soap film experiments (see Figures 3.2, 3.3) demonstrates the existence 
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of two or more different solutions, both furnishing relative minima 

with different values for the area d. 

We first recall, from elementary variational calculus, a fact 

concerning the surface of revolution of least area between two parallel 

circles of equal radius, placed, for example, perpendicularly to the 

2-axis and with centers on the 2-axis at a distance a. It is well 

known17 that for certain values of a tlie catenoid, i.e. the surface of 

revolution of a catenary, gives a strong relative minimum with 

respect to all neighboring surfaces of revolution. On the other hand, 

a can be so chosen that the area d of the catenoid is not an absolute 

minimum, but exceeds by more than a positive quantity 2a the 

total area do of the two disks within the boundary circles. We 

make the further observation that the catenoid furnishes minimum 

area even if we admit to competition surfaces that are not surfaces of 

Figure 3.2 and 3.3. Two different minimal surfaces spanning the same contour. 

revolution. This can be seen by the classical symmetrization process; 

the area of every admissible surface is decreased by replacing each 

cross section z = constant by the circle with center on the 2-axis 

having the same area as the cross section. The catenoid is a doubly 

connected surface; by cutting out of it a small strip 8 bounded by two 

generating catenaries, cf. Figure 3.2, we produce a simply connected 

surface <7.18 This simply connected surface is bounded by one piece- 

wise analytic Jordan curve 7, and its area may be assumed larger than 

do + a if we make the strip s sufficiently narrow. The new surface 

G certainly furnishes a relative minimum for the curve 7, since it is 

part of a larger minimal surface furnishing a minimum. On the other 

17 Cf. Bliss [1], p. 122. 

18 This example was suggested by N. Wiener to J. Douglas, see Douglas 

[1], p.269. 
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hand, if it is suitably chosen the strip s together with the two disks 

at the end forms a surface (?' simply connected and bounded by 7, with 

area less than do + a. Hence, our previous theory proves the exist¬ 

ence of a minimal surface G* spanned by 7 whose area is less than 

do + a. The surface G* is a solution of Plateau’s problem different 

from G. 

This contour 7 can also be used to construct rectifiable Jordan 

curves spanned by infinitely--even non-dcnurnerably—many minimal 

surfaces. The construction is based on the following lemma, for 

which a complete proof can be given by the methods developed in 

Chapter VI. 

Lemma 3.3: Let yx and 72 be two Jordan curves bounding minimal 

surfaces £1 and &>, respectively. Construct a new Jordan curve yt 

cTD <rt> 
Figure 3.4. Scheme of composition of two contours. 

by connecting 71 and 72 with a thin strip 77 consisting of two almost 

parallel lines at a distance not exceeding e, and by omitting corre¬ 

sponding small arcs of 71 and 72. Then there exists a minimal sur¬ 

face ye spanned in yt which converges to £1 in 71 and to £> in 72, as 

e tends to zero. 

We apply lemma 3.3 to two contours 71 and y2 geometrically 

similar to 7 (but not necessarily of the same size). With these two 

Jordan curves we construct a new contour 7' = ye by the method 

described in the preceding lemma, see Figure 3.4. Then 7' is spanned 

by at least four stable minimal surfaces because a solution for the 

new contour 7' ran have the appearance of G or G* (see Figs. 3.2, 

3.3) in each part 71 and y2 . Now we construct still another simple 

contour by linking successively not two but infinitely many contours 

71,72 , • • • similar to 7 by narrow “bridges.” If we take care to 

decrease suitably the size of consecutive parts as well as the lengths 
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and widths of connecting bridges, e.g. in a geometric progression, we 

obtain a rectifiable contour 2 spanned by an infinite number of 

minimal surfaces each of which has, in every link yn of 2, the appear¬ 

ance either of G or of G*. If, for a given minimal surface of this type 

in 2, we associate with yn the number 0 or 1 according as the surface 

resembles G or G* in yn , we see that every such minimal surface in 

2 may be associated with a representation in the binary system of a 

number between 0 and 1, in a uniquely determined way, and that to 

each such representation corresponds a minimal surface in 2. Hence 

the number of possible simply connected minimal surfaces in the rectifiable 

contour 2 has the cardinal number of the continuum. Let T denote the 

minimal surface, bounded by 2, of the type of G in all parts 71, 

72 , ■ • • of 2; let Tn denote the minimal surface of the type of G 

in all parts of 2 except in yn . It is plausible that Tn —* T as n tends 

to infinity, so that we obtain an example of a minimal surface which 

is a limit of a sequence of other minimal surfaces in the same contour. 

(Similar examples were suggested by Paul L6vy.) 

In Chapter VI we shall prove that a contour which may be 

spanned by two stable minimal surfaces admits at least one unstable 

minimal surface. Anticipating this result, we may conclude that in 

addition to G and G* there exists an unstable minimal surface G** 

in the contour 7. As a matter of fact, it is plausible that there exist 

11011-denumerably many unstable minimal surfaces bounded by 2. 

The somewhat paradoxical phenomena of this example seem to 

confirm the feeling that reasonable geometrical problems may become 

unreasonable if the data are not properly restricted, e.g. if such 

abstractions as general rectifiable curves or curves with highly 

irregular points are permitted to occur. 

These heuristic considerations have still to be substantiated by a 

complete proof. Nor have the following questions been fully 

answered: For what contours can uniqueness of the solution be 

established or a bound for the number of solutions given? Are 

there cases in which “blocks” of non-isolated minimal surfaces exist, a 

block being defined as a continuum of minimal surfaces with the 

same boundary and consequently the same value of the area? For 

these questions not even examples have been found to indicate plau¬ 

sible answers. 

3. Branch Points of Minimal Surfaces. If a parametric repre¬ 

sentation of a minimal surface includes points for which e = g = 

/ = 0,£the mapping may cease to be conformal at these points. 
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Such points are called branch points, in analogy with the case of 

analytic functions for m = 2. Although our preceding solution of 

Plateau’s problem does not exclude the possibility of obtaining a 

minimal surface with branch points, there are few explicit examples 

of such minimal surfaces known. See Rado [2] and Courant [12]. 

The following illustration shows what one may expect in such a 

case. Introduce polar coordinates r, 6 in the plane and consider the 

rays 6 — 0, 6 = 27r/3, 6 = 47r/3. Let P and Q, OP j* OQ, be two 

points on 0 = 0 and 6 = 27r/3 respectively; connect P and Q by a 

curve rj in space which lies above the plane and construct a minimal 

surface bounded by OP, OQ, and tj. This minimal surface lies 

entirely above the plane. According to article 1, it can be extended 

by reflection in OQ. The extension lies entirely below the plane; 

in particular, the point P is reflected into a point P' on 8 = 47r/3 

with OP = OP'. The extension can itself be reflected in OP' so that 

a new piece OP'Q' is added, Q' being a point on 6 = 0 with OQ' = OQ- 

In general, these three pieces will obviously not be connected analyti¬ 

cally along 0 = 0. Only after three more reflections, in 9 = 0, 

<9 — 2?r/3, and 6 = 4t/'3, do we obtain a minimal surface G containing 

a full neighborhood of the origin. The boundary of G is a Jordan 

curve; the surface has a branch point at 0, and 6 = 0, d = 27t/3, 

6 = 47t/3 are lines of self-intersection. 

We could of course have started with an angle 2w/o or 2tt/ (12n + 1); 

then the same construction would yield other minimal surfaces with 

simple branch points. In all these examples the geometrically 

remarkable feature is that they have more than one line of self-inter¬ 

section, the branch lines forming equal angles with each other. 

The questions now arise: Is the behavior of the branch lines in our 

example typical? What can be stated about branch points of higher 

order? More generally, we may consider the problem of finding 

examples and of characterizing classes of curves y for which the 

problem of least Dirichlet integral will necessarily lead to minimal 

surfaces with branch points. 

7. First Variation and Method of Descent19 

In itself the first variation 7(j,X,m) introduced in §4,1— not 

merely the relation V = 0 — is a useful tool for a more penetrating 

study of minimal surfaces. In an ordinary Euclidean y-space one 

19 See Courant^(lOf 
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can obtain stationary points of a function /(y) by starting at an 

arbitrary point y = fo and proceeding from it along the line of steepest 

descent for the function, e.g. along the direction opposite from that 

given by the gradient of the function. If the function is bounded, 

this process necessarily leads to a point % where the gradient vanishes, 

i.e. to a stationary point, not necessarily a minimum. A similar 

idea can be applied to function space, as was first suggested by 

Hadamard.20 Initially certain difficulties inherent in the variational 

calculus for several independent variables seemed to present serious 

obstacles. Remarkably enough, for Plateau’s problem and the 

related questions of conformal mapping the idea of steepest descent 

can be successfully applied, with certain modifications. In the first 

place, it is not necessary to perform the variations along the lines of 

steepest descent; we shall be satisfied with what we call “safe descent.” 

Secondly, we shall make use of the fact that, by Dirichlet’s Principle, 

we can always reduce our functions to harmonic functions which 

depend on the boundary values alone. 

The method of safe descent for Plateau’s problem simply consists 

in the following procedure. We start with an arbitrary admissible 

harmonic vector . If the variation F(£o,A?m) does not vanish 

identically in A and p, we can vary the vector £0 into another vector 

g for which, by formula (3.16), D[%\ < Dfjol. Replacing the vector g 

by the harmonic vector 8 with the same boundary values we obtain a 

variation of £0 into 8, which decreases the value of Dirichlet’s integral. 

The iteration of this process of descent converges to a minimal surface 

t), if we make the descent safe by the following specifications: 

For a variation of the type (3.24) and with a chosen as at the end 

of §4, 3, V reduces to the expression 

V — 3m[w2<t>(w)] = H(p,\f/), 

see page 115, where w = pef* can be chosen arbitrarily within the 

circle \ w\ < 1. The vector g obtained from £0 by this variation is 

not necessarily normalized in the sense of §2, 2. But since Z)[g] is 

unchanged under a linear transformation, we can normalize g without 

destroying the validity of formula (3.16). The normalized vector g 

is next replaced by the harmonic vector 8 with the same boundary 

values. 

Consider for the vector 8 the values of 3m\w2<f>(w)] as a function 

20 See Hadamard [1]. 
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of w in a closed, fixed subdomain of B, e.g. in the circle | w | < 1/2. 

Let Q be the point in the circle where do = 3m\w2<j>(w)] has the largest 

absolute value. If we choose this to be the point Q in the definition 

of a, we have 

V = So, 

and therefore, by (3.16), 

DM < D[£o] + ^ "1“ ^oD[fo]* 

Let M be an upper bound for D[y], and set 

then 

5o_ . 

iMc ’ 

im < oh0] - 
dl 

16Me ’ 

Repeat the same procedure with & = $ instead of £0. Continuing 

in this fashion we obtain a sequence of harmonic vectors y0, Ji, 

and a sequence of numbers <50, • satisfying the inequality 

16Mc ‘ 

It follows that for y —* oo the values D[%v] converge to a limit, hence 

that 

(3.28) 5, -* 0. 

The harmonic vectors form a compact set, consequently contain a 

subsequence converging uniformly in B + ($ to a harmonic vector £. 

This vector represents a minimal surface; for the functions <f>v(w) 

corresponding to the convergent subsequence of the converge 

uniformly in B + (3 to the function <f>{w) belonging to £. By relation 

(3.28) , 

ffm[w2(t>Xw)] 0 

for | w | < 1/2; hence = 0 in the circle | w | < 1/2, therefore 

in the whole circle B. Our method of descent leads to a minimal 

surface spanned in 7. 
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It should be emphasized that we have merely constructed a 
minimal surface, without proving that this minimal surface is “stable” 
or gives a relative minimum. It may well be that the procedure of 
safe descent leads to a stationary vector £ representing an unstable 
minimal surface. In this case there arc vectors t) in any neighborhood 
of i with D[tf] < D[j], and hence the process of descent can be 
continued, leading to still another minimal surface of smaller area, etc. 

8. Dependence of Area on Boundary 

In §2,3 we proved a theorem concerning the lower semicontinuous 
dependence on the curve y of the absolute minimum d of Dirichlet’s 
integral. Under suitable restrictions in the definition of convergence 
of a sequence y„ to y the absolute minimum can be shown to be a 
continuous functional of the boundary curve. 

1. Continuity Theorem for Absolute Minima. We begin with a 
relatively simple theorem concerning the continuous dependence 
on the boundary contour of the absolute minimum d of Dirichlet’s 
integral. 

Theorem 8.8: Let 

(3.29) Xi = Xi + £i(xi , x2, • • • , xm) i = 1, 2, • • • , m 

be a transformation of the j-space into an y'-space. The functions 
£i are assumed continuous with piecewise continuous derivatives, 
and are required to satisfy the inequalities 

I ft I < dft 
dxk 

< e. 

The transformation takes y into a curve y\ and the minimizing vector 
£ belonging to y into a vector tf, continuous in B + P and with 
piecewise continuous derivatives in B, which maps B on a surface 
bounded by y'. Let the greatest lower bounds of Dirichlet's integral 
for surfaces bounded by y and 7' be d and d', respectively. Then 

d' < (1 + 6)d; 

the quantity 5 — (1 + me)2 — 1 tends to zero with e. 
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Proof: By Schwarz’ inequality 

Dtf - rl = 
a*AH 

dxk dv ) J 
du dv 

< me D[y]. 

Application of the triangle inequality gives 

WW\ - V®2 < mVZ>[f]; 

since D[f] = d, Z)[y'] > d', we have dl < (1 + mefd. The theorem is 

proved. 

For sufficiently small e the transformation (3.29) has an inverse. 

With this inverse transformation the relationship between d and d' 

can be considered in reverse order; consequently, c can be chosen so 

small that the minimum values d and d! for y and y' differ by an 

arbitrarily small quantity. 

Examples for such continuous dependence of the minimum on the 

curve y are given by piecewise smooth curves y approximated by 

inscribed polygons y'. If the approximation is fine enough, the 

existence of a transformation of y into y' which takes y into y' and 

satisfies the conditions of the preceding theorem is evident. 

In article 5 we shall prove a theorem, less obvious than the 

preceding one, referring to arbitrary minimal surfaces and inde¬ 

pendent of their minimum character. 

2. Lengths of Images of Concentric Circles. We consider a harmonic 

surface %(u,v) = y(r,0) in the unit circle B:r < 1. Suppose that the 

boundary is mapped onto a rectifiable curve y ; this implies that the 

components of the vector y(l ,6) are functions of bounded variation. 

Denote by L{r) the length of the image of the circle of radius r con¬ 

centric with the unit circle, by L = L( 1) the length of y: 

Theorem 3.4: L(r) increases monotonically in the interval 0 < r < 3 

and 

L — L( 1) = lim L(r). 
r-» 1 

Proof: It is sufficient to prove 

L(n) > L(r0), n < n < 1, 
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since the limit equation for r —»1 is an immediate consequence of the 

lower semicontinuity of length for the curves y(r, 0) in r. We carry 

out the proof for rx = 1. For n < 1, the same argument holds with 

the simplification that y(rx , 0) is analytic; this is no longer true for 

ri = 1. 

The vector j(ro,0) can be expressed in terms of the boundary 

values 

by the integral 

£(ro , 0) 

m = y(M) 

6)&(a) da, 

where i£(r0,a — 0) is the Poisson kernel 

K(r0 
_1- rl~ 

1 — 2r0 cos (a — 0) + rl 

Consider 

r Ka «(«) da.21 
Jo 

We integrate the last expression by parts, as may be done if integra¬ 

tion is understood in the sense of Stieltjes, since $(a) is of bounded 

variation. Hence 

b 0) d$(a) 

and, since K(r0,a — 0) > 0, 

\b \ < r K(r0> a - 0) | d$(a) |. 
Jo 

p2r 

Substituting this integral in the expression L(r0) = / | | dd for 
Jo 

the length L(r0) and using the relation 

/»2x 
/ K(r0, a — 6) dO = 1 

Jo 

we obtain 

21 The substitution of —Ka for K$ is the decisive step in the proof. 
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L(r0) < j dd J K(r0, a - 0) | dg(a) | = J | dg(a) | = L( 1), 

as asserted in the theorem. 

3. I soperimetric Inequality for Minimal Surfaces.22 

Theorem 3.5: Let L be the length of the boundary curve 7 of any 

simply connected minimal surface (not necessarily a surface of 

absolute minimum area), A the area of the minimal surface. The 

inequality 

L2 — 4 ttA > 0 

always holds, and the equality sign is true only for plane circular 

disks. In other words, the area of a minimal Surface is never larger 

than that of the disk with the same boundary length. 

Proof: First we confine ourselves to the part of the minimal surface 

X(r,9) for which r < p < 1, thus gaining the advantage of analytic 

boundary values on r = p; theorem 3.4 will then permit passage to 

the limit as p —» 1. For convenience we again denote by (3 and 7 the 

boundaries of the circle and of the minimal surface respectively, by L 

the length of 7, and by .4 the area 

A = 1 [[ (ft + f») dudv. 
I JJr£p 

Let s be arc length on j3, a the corresponding arc length on 7, and 

t — 2tt<t/L; express differentiation with respect to t by a dot. Along 

the boundary we consider £ as a function of <r or t and have 

(3.30) I u I = 1; I j I = 

L and A remain invariant if the coordinate system in the £-space is 

subjected to a translation. Hence we may assume that the origin 

is at the center of gravity of %(t), i.e. that 

i»2 T 

(3.31) / = 0. 
Jo 

22 See Carleman [1] and [3], also Rad6 [2], Chapter III, §24 and §25, and 

Rad6 [3]. 
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Since = 0, by Green’s formula 

and hence 

1 f2rp 
A = 2 jf Hr rfs, 

A 

Furthermore, since % is a minimal surface, j |r | = | y, |; introducing t 

instead of s, we have, therefore 

a < \ f* | e M j | dt. 

Relations (3.30) imply 

r 2 r2r 

s-I 
Hence 

if r'lT 

(3.32) 

and, a fortiori, 

- 2 A> [ - | 11 | j |] dt 
Jo 

-iCmt-ur + t-A dt 

(3.33) 

The inequality 

(3.34) 

2r - 2A ~ Uo ^ “ fS) dL 

f (j2 - ?2) dt>0 

for periodic £ with continuous derivatives subject to condition (3.31) 

is proved in a well-known manner: with a„ and by denoting the 

Fourier coefficients of %(t), (3.31) implies that do = 0 and the integral 

in (3.33) takes the form 

Z 2 (v* l)(a* + &*)> 
& *-i 

an expression which is positive unless £ has the form 

£ = cti cos t + bi sin t, 
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i.e. unless y describes a circle. Since, for a circle, L2 — 4tA = 0, 

our statement is completely proved. It may also be noted that 

inequality (3.32), by (3.33) and (3.34), implies the same statement: 

L2 — 4irA = 0 only if | y | = | y |, i.e. if y($) describes a circle. 

Finally, as stated before, the passage to the limit for p —» 1 together 

with theorem 3.4 establishes the isoperimetric inequality for the 

whole minimal surface. 

We infer that if the boundary curve is rectifiable, Plateau’s 

problem certainly has a solution. For if we approximate y and its 

length by polygons yn , the minimal surfaces spanning the polygons 

will, by the isoperimetric inequality, have uniformly bounded 

Dirichlet integrals; therefore theorem 3.1 implies the existence of an 

admissible vector. 

4. Continuous Variation of Area of Minimal Surfaces. For 

continuous variations of the lengths of rectifiable boundaries, theorem 

3.1 on semicontinuous dependence of the area on the boundary can be 

replaced by a more precise theorem concerning continuous de¬ 

pendence: 

Theorem 3.6:23 Let yn(u,i>) = yn(r,0) be a sequence of minimal 

surfaces in B:r < 1 mapping the circle (3: r = 1 on rectifiable curves 

7n of bounded lengths Ln . If, for r < 1, the surface yn tends to a 

minimal surface y whose boundary y lias the length 

L = lim Ln, 
n —*oo 

then the areas An of the minimal surfaces yn tend to the area A of y. 

Proof: As a preliminary remark we observe: By the isoperimetric 

inequality all the areas An are uniformly bounded, say An < My and 

therefore by lemma 3.2 the convergence of y* to y is uniform in B. 

The proof will be completed if for any prescribed positive e we can 

find an h so small that 

DM < « 

for all sufficiently large n, where Sh is the ring 1 — h < r < 1. For 

in the inner circle r < 1 — h the Dirichlet integral of yn converges 

23 This theorem, which has important applications (see Chapter VI), was 

discovered by Morse and Tompkins [4] and given a more general formulation 

by Shiftman [8]. 
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to that of y, since here the derivatives of £n converge uniformly to 

those of £. 

An estimate for DSh [?n] will be obtained by subdividing the ring 

into sufficiently small simply connected cells which depend on $n , 

and by estimating Dirichiefs integral for each cell, using the iso- 

perimetric inequality. We denote by L(r{),a,(3) the length of the arc 

defined on the minimal surface f(r,0) by r = n>, ot < 6 < /?, and by 

Ln(ro,a,&) the corresponding arc length on £n(r,0). The expression 

L(l,a,a + y), being a continuous function of a, has a maximum 

8 = 8(y) and a minimum a = a(y), i.e. 

(3.35) cr < L(l ,«,« + y) < 5, for all a. 

If 17 —* 0, 8 and a tend to 0 as well. As long as y > 0, a 5* 0; otherwise 

an arc of 13 would be mapped on one point of 7, and this mapping has 

been proved impossible, see §5, 1. 

The division of Sh into cells depends on a preliminary step. The 

inequality D[j„] < M implies, for h < 1/2, ni 

U r dr do < 4 M. 
-h 

For v = 2ir/iV (N an integer), we can write 

/*(?»)= [ [ 53 £ nr(r, 6 + vri) dr d6 = [ f pn(r,8)drd8, 
Jo Jl—h *=0 JO Jl-h 

N-l 

with pn(r,0) — S bir(r,d + vy). By the same reasoning which 

led to lemma 1.4, the inequality Ih(Xn) < 4M implies, for each 

(with fixed y and h), the existence of a set of equidistant angles 

an, an + y, •••,«»+ vy, ••*,««+ (N — l)y such that along 

the corresponding radii 

[ pndr < 
Ji-h y 

Therefore a fortiori on each of these radii 

4M 

y 
(3.36) 
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Let It*'** be the length of the curve on the minimal surface defined 

by f„(r,0), 0 = an + vy, 1 — h < r < 1. Since 

(RiH)Y = ^ ^ I Ur I h \x *2"r ^r> 

we have, by (3.36), 

(3.37) /4'0 < 

We divide the ring *8/, into N cells by the radii 0 = an + vt) = av, 

v = 0, 1, • • • , N — 1. With an arbitrarily small positive number 

k < 1, we fix the quantities rj, h. First we choose tj so small that 

5 < k. Let 8V — L( 1, av , o?„+i). By (3.35) we have 

(3.38) o- < 6, < k. 

rFhen we choose for h a value so small that 

(3.39) Rin) < a, 

as is possible by (3.37); moreover so small that also 

(3.40) | L(1 — h,a,a + rj) — L( 1 ,a,a + ij) \ < a, 

as can be done on the basis of theorem 3.4 and the lower semicon¬ 

tinuity of length. Finally we choose n so large that 

(3.41) | Ln{\ — hya,a + rj) — L( 1 — h,a,a + y) | < a 

and 

(3.42) | L„(l,a,a + y) - L(l,a,oc + y) | < <t.H 

24 The assumption Ln —> L together with the well-known property of lower 

semicontinuity of length implies that Ln(\, a, a -f v) Ij(\, «, a + y) uniformly 

in the end-points «, a + 77. Suppose, on the contrary, that the sequence of 

subscripts n contained a subsequence for which, with some positive e, 

| L„(l, an , an -f Vn) — L{ 1, <*n , otn + Vn) | > e. 

We could determine a further subsequence for which an —> «, an -f yn —> a -f- 77. 

Since for this final subsequence 

Ln( 1, aM , <*n 4* ??«) —» ML a, a + »7), 

the above inequality would imply 

lim inf. L„(l, a* , <*« + i?n) — Mb <*, « -f rj) > e 
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For relation (3.42) we use the assumption Ln —» L, while (3.41) is a 
consequence of the uniform convergence of to , for r = 1 — h. 

Consider the v-th cell in Sh on the minimal surface yn, and let 
\in) be the length of the image of its boundary curve. We find, by 
inequalities (3.38)-(3.42), 

A<n) < a -f a (5^ -f- a) + (5„ + 2a) < 75u. 

Applying the isoperimetric inequality (theorem 3.5) to the r-th cell 
we have, for the area A(yn) of the minimal surface £n corresponding 
to that cell, 

/ A («)\2 

^(w) < ' 
* 4ir 

and therefore 

JST-l N-lU(n)\2 

< E(-}^ 
v-0 y*~0 4?T 

49*L 

47T 

Hence, for all sufficiently great n, Dsjfn] will be less than e, if wo 
choose k = 47T€/49L; our theorem is proved. 

5. Continuous Variation of Area of Harmonic Surfaces. Morse 
and Tompkins have proved a more general form of the preceding 
theorem, in which the surfaces under consideration are assumed to 
be only harmonic and not necessarily minimal surfaces: 

Theorem 8.7: Let £U) be a sequence of harmonic surfaces having 
rectifiable boundary curves and suppose that £<n) tends uniformly 
to a surface f with rectifiable boundary curve, in such a way that the 
length Ln of the boundary of £(n) converges to the length L of the 
boundary of £. Then the area An of £<n) tends to the area A of y. 

the absolute value sign being superfluous because of the lower semi continuity 
of length. On the other hand, with Kn denoting the arc of yn complementary 
to ctn , OCn -J- vn , 

lim inf. Ln{Kn) — L(K) > 0 

by the lower semicontinuity of length, where K is the arc of y complementary 
to a, a -f* 17. By addition, these two inequalities yield 

lim inf. Ln — L > €, 

contrary to Ln —* L. 
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Proof: Morse and Tompkins proceed by direct calculation of the 
integral defining the area. A modification of their proof follows. 

We first show, by this method, that an inequality, implying 

(3.43) A < i V 

(a substitute for the isoperimetric inequality) holds for all harmonic 
surfaces \ with rectifiable boundary curves. 

Let x again be defined in the unit circle B of the ?/,t/-plane. We 
then have, in the usual vector notation, 

A = JJ | t* X lv\dudv = JJ | jr X fe | dr dO. 

The harmonic vector £ is expressed in terms of its boundary values 
£(0) by Poisson’s integral: 

where fl(r, 8; </>) = 1 — 2r cos (<f> — 6) + r. 

Similarly as in article 2, we have 

and, using integration by parts, 

(3.44) r» j_ r 1 -f2 
2ir Jo f2(r, 0; <(>) 

The Stieltjes integral in (3.44) exists, because is rectifiable and 
therefore of bounded variation. 

The harmonic vector rjr conjugate to is expressed in terms 
of the boundary values f(0) by 

r?r = 
lV r2w 2r sin (0 - 8) 

2rJt 8(r,0;<*») 
d?(<*>), (3.45) 



136 plateau’s problem CHAP. Ill 

From (3.44) and (3.45) we obtain 

(3.46) Jr X J* = 
1 f2’ f 2(1 - r2) sin (</> - 0) 

4w-Jo Jo ' Q{r,0;4>W(r~, 8;i) 
dz(<t>) X dj(f). 

The same product may be expressed by (3.46) with 4> and ^ inter¬ 
changed. Adding the two expressions and using the fact that 

dj(£> X dj(4>) = -rfjfa) X dj(^), 

we obtain 

Jr X J« 

[ 1 — r2] [sin (<f> — 0) — sin (\p — 0)] 

.“(r, «; <p)4->(r, 0; ^) 
dj(tf>) X dj(^)- 

Since sin (<£ — 0) — sin (^ — 0) = 2 cos [|(<£ + ^)— 0] sin %(<!>— *p), 

and | d{(</>) X dj(^) | < | dj(</>) | • | dx('P) |, the last formula yields 
the relation 

r V r I < _L r r r2) 1 Shl 1:1 if(*) I- I I 

ir 491 ~ 4ir2 Jo Jo «(r, 0; <*>)fl(r, 0; i) 

From this inequality wc obtain an estimate for the area A. To 
that end let A(<r,p) be the area of the part of £ which corresponds 
to the ring <r < r < p. Then 

A(a, p) = jf J | jr X Jo | dd dr 

< i r r • r r r ° 
" 2x2 Jo Jo LJ* Jo fl(r, 1A) 

and we can evaluate the integral 

1 rp f2r (1 — r2) dd dr 

2tt2 J<, Jo il(r,d] 0)12 (r, (9; f) * 

The inner integral, 

(3.47) 
1 r2r_ 1 - r2 

2-7T Jo ti(r, 0; <£)^(r, i/0 
dd, 

could be calculated explicitly by elementary integration,20 but it is 
simpler to find its value by the following reasoning. The expression 

26 E.g. by expanding the integrand into the product of two Fourier series 
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il(r, 0; </>) ' 1. — 2r cos — 0) + r2 ’ 

as a function of 0, can be considered as representing the boundary 
values for ft = 1 of a regular, harmonic function /(ft ,0) in the unit circle 
ft< 1. (Note that this harmonic function depends on the values of 
r and \f/.) Poisson’s integral (3.47) then yields the value of this func¬ 
tion/(ft, 0) at the point ft = r, 0 = <j>. In order to find the function 
/(ft,0) we remember that, for r < 1, the Poisson kernel 

_J?_- r2 

ft2 — 2Rr cos — 0) + r2 

is a harmonic function of ft and 0 which is regular in the exterior of 
the unit circle. The harmonic; function with the same values on the 
unit circumference obtained from it by replacing ft by 1/ft is therefore 
regular inside the unit circle. Hence the required harmonic function 
with boundary values (3.48) is 

me) = - 

^ cos O - 0) + r2 

and its value for ft = r, 0 = </> is 

_1 + r2_ 
1 — 2r2 cos (^ — 0) + r4' 

this must be the value of the integral (3.47). 
By elementary integration we obtain26 

26 The calculation proceeds as follows: 

^ jl_ rp|" _ i__i_ 
2x Ja [_1 — 2r cos lit — <t>) + r2 + 1 -f 2r cos — <t>) + r2 

1 1 f r-cos£(iA-0) , , r + cos i(^ - </>)lp 
- —* -~| arc tan ;——-rr + arc tan -~r~.——-r-r . 

2tt | sin $(* - <t>) | L I Sln M ~ <t>) | I sin i(»A — 4) | 

If we use the addition formula for the arc tan, 

arc tan a + arc tan b arc tan 
ci 4“ b 

1-ab’ 

valid for all a and 6, the expression for I reduces to (3.49). 
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(3.49) 

Hence 

(3.50) 

/ =! r8_i 

t J«r 1 — 2r2 cos 
+ r* 

cos (\p — <t>) + r4 
dr 

= r± 
L2tt 

1 

sin W - 4>) 
arc tan 

2r | sin i(^ — <£) 
1 - r2 

.4(<r, p) 

< i r rr 
2ir Jq Jo |_ 

arc tan 2r | sin — 4>)~ 

1 - r‘ 

From this, letting <r -» 0, p —> 1, we find 

I di(<t>) Hdf(iA) |. 

A<'-L\ 

since | d$(<p) | is the differential of the arc length on $(<£). 
Now we might proceed as in article 4, but it is just as easy to 

establish the continuity theorem directly. Consider all those arcs 
of the curves £(ri>(0), n = 1, 2, • • • , and y(0) that are images of arcs of 
length a of the unit circumference. Let 17(a) be the maximum length 
of all such arcs. Since the length of £(n)(0) tends to the length of 
y(0), we know that 17(a) —» 0 as a —> 0/7 Let M be an upper bound 
of the lengths of £<n)(0). In estimating An(cr,p), decompose the 
region of integration into the two parts \\p ~ 4> \ < a/2, called Dx , 
and | —• </> | > a/2, called D2 , where | ^ — <p | is the length of the 
shorter arc joining \[/, <j>. The integral corresponding to the one in 
(3.50) for £(n> instead of y, extended over the first region D\ , is then 
less than or equal to 

~ ■ \ i-i 1 < ivM-M. 

The integral over the second region is seen to be less than or equal to 

1 ir 

2w \_2 
arc tan 

2cr | sin (a/4) 
1 - cr2 

i M2 < 
M~ act 
_arccot4lr-- 

V 

in virtue of the fact that sin a/4 > a/8. Therefore, for each of the 
surfaces f(B) and for j, the area A satisfies 

27 See footnote 24. 
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(3.51) A(<T, 1) < J via) + ~ arc cot • 

For an arbitrary e > 0 select a so that 77(a) < e/2M and choose 
a < 1 so that 

Then (3.51) gives 

M/ 

2tt 
arc cot 

aa 

2(1 — cr2) 

A (a, 1) <\, 

for all £(n) and for 
()n the other hand we know that 

An(0f a) —> A (0,a) 

as n —> co, because the convergence of j(w) to £ is uniform in every 
closed subdomain of B. Therefore an N can be found such that 

Mn((U) - A(0,a) | < i 

for all n > N. Hence 

\An A | + ! + 

for all n > iV. This completes the proof of the continuity theorem. 





CHAPTER IV 

The General Problem of Douglas 

/. Introduction 

In contours 7 consisting of several closed curves, soap film experi¬ 
ments produce multiply connected minimal surfaces, as for example 
in the classical case of surfaces of revolution of least area. Moreover, 
for suitable contours 7, soap film experiments indicate the existence 
of minimal surfaces of higher topological structure such as surfaces 
not of genus zero or non-orientable surfaces,1 see Figures 4.1 and 4.2. 
Such more complicated surfaces are formed by the soap film whenever 
they have greater stability - i.e. smaller area than simply connected 
surfaces spanned in the same contour. 

We formulate the general 
Problem of DouglasGiven, in the m-dimensional y-.space, a system. 7 

of /: Jordan curves 71,72, • • ■ , 7a •' to construct a minimal surface of 

prescribed Euler characteristic and prescribed character of orientability, 
bounded by 7. 

The possibility of solving this problem depends on certain condi¬ 
tions, as may be illustrated by the example of minimal surfaces of 
revolution bounded by two parallel circles. Certainly this boundary 
7 is spanned by a doubly connected minimal surface—a catenoid—if 
the two circles are so near each other that the admissible class includes 
doubly connected surfaces with area less than the sum of the areas 
of the two boundary circles. If the two circles are too far apart, 
no doubly connected stable minimal surface is bounded by them, 
and solutions exist only if the degenerated surface consisting of the' 
two disks is considered to be a solution. 

In more detail, consider the problem with the distance a between 
the planes of the boundary circles as a parameter. For small values 

1 A number of such experiments are described in Courant [14]. 

2 This general problem was first clearly stated and attacked by J. Douglas, 

see |3], [4), [5], [7], and particularly [8|. 

141 
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of a the catenoid exists and furnishes the absolute minimum. As a 

increases to a certain value cto the area of the catenoid becomes 
equal to the sum of the areas of the disks spanned in the two boundary 
circles. For a slightly greater than a0 the catenoid still furnishes a 
relative minimum of the area, while the absolute minimum (or rather 
greatest lower bound) is given by the sum of the areas of the two disks. 
If a increases to a certain value ax determining the “conjugate” 
position of the boundary circles, the catenoid ceases to yield even a 
relative minimum, though it still furnishes a stationary value for 
the area/ 

A similar situation occurs in the case of Douglas’ general problem: 
a sufficient, but not necessary, condition can be formulated for the 

Figure 4.1. Minimal surface of different genus through same contour. 

Figure 4.2. Minimal surface forming a Moebius strip and simply connected 

minimal surface through same contour. 

existence of a solution. A surface bounded by the prescribed system 
7 of curves yv is called of lower type if either or both of the following 
occur: 
1) it has a smaller Euler characteristic than prescribed; 
2) it is degenerate, consisting of two or more surfaces of total char¬ 

acteristic not greater than prescribed, bounded by complementary 
subsets of the set of curves yv . 

With this definition we state 

Theorem 4J: A sufficient condition for the existence of a solution of 
Douglas’ problem is that the greatest lower bound d of Dirichlet’s 

3 See the discussion in Bliss [1], Chapter IV. 
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integral for non-degenerate admissible vectors £ is actually less 

than the greatest lower bound d* of Dirichlet’s integral or of the com¬ 

bined Dirichlet integrals for surfaces of lower type bounded by 7. 

Examples are indicated in Figures 4.1 and 4.2; they picture 

surfaces of genus 1 and of the type of the Moebius strip, respectively, 

furnishing a smaller minimum value d of the area than surfaces of 

genus zero. In such cases the system 7 bounds not only the simply 

connected minimal surfaces shown to solve Plateau’s problem in 

Chapter III, but also those of higher type, and the surfaces of higher 

topological structure have a greater degree of stability. 

It should be emphasized that in the formulation of Douglas’ prob¬ 

lem no orientation was stipulated for the curves yv . As the example 

of plane boundaries 7 shows, such an additional st ipulation may imply 

degeneration. We shall, however, not pursue this subject further. 

The proof of theorem 4.1 proceeds by a variational method similar 

to that of Chapter III. Again we minimize Dirichlet’s integral 

A?[£]; now, however, the parameter domain B for x(u1 v) not only is 

required to be of prescribed topological structure, but cannot be a 

fixed domain chosen in advance. For instance, in the case of a 

doubly connected surface we cannot arbitrarily choose B as a fixed 

circular ring, since two such rings are not necessarily conformally 

equivalent, therefore need not be conformal images of the same 

minimal surface. 

Accordingly we shall admit, as parameter domain B in our 

variational problem, any member of a fixed class 91 of domains. 

For minimal surfaces not of genus zero the simple plane domains B 

used before must be replaced by Riemann domains. The proper 

choice of this class of domains B is decisive. It must be sufficiently 

restricted to permit, as in Chapter III, the construction of a con¬ 

vergent minimizing sequence, but wide enough to permit a variational 

proof that the limit is a minimal surface. 

If we know beforehand that every Riemann domain of the pre¬ 

scribed structure is conformally equivalent to some member of our 

class 91 of admissible domains B—a fact which is assured if we use 

slit domains as in Chapter II—the characteristic condition <t>(w) = 0 

for a minimal surface can be proved exactly as in Chapter III, §3. 

If, however, mapping theorems are not presupposed, the identity 

<t>(w) = Omust be deduced from the variational conditions expressing 

not only the freedom of choice in mapping the boundary 0 on 7, 

but also the permissible variations of the domain B itself. In this 
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connection the case of a two-dimensional £-spaee is of particular 

interest. Here naturally only surfaces of genus zero are to be 

considered, so that Douglas’ problem reduces to the question of 

mapping the parameter domain B conformally onto a plane Mold 

connected domain G bounded by the curves yv. Chapter V will 

deal with these applications to the theory of conformal mapping of 

Mold connected domains on classes 9? of “normal domains.” 

In the present chapt er we will be primarily concerned with minimal 

surface theory. The previous argument (Chapter III, §5, 4) in 

favor of presupposing the theory of conformal mapping and the 

minimum value d are even more pertinent to the higher topological 

cases of Douglas’ problem than to Plateau’s original problem. It is 

conceivable that different types of parameter domains B might lead 

to different minimal surfaces as solutions. To show that the resulting 

surface is independent of the choice of domains, we must make 

use of theorems concerning conformal equivalence of the various 

classes of domains B. Moreover, only on the basis of such theorems 

can we establish equivalence of the variational problem for the area 

with that for Dirichlet’s integral. In this chapter we shall, therefore, 

identify the solutions of our variational problem as minimal surface's 

by reference to mapping theorems, while giving in the next chapter a 

proof of the decisive relation<f>(w) = 0, independent of such theorems. 

2. Solution of Variational Problem for k-fold Connected 

Domains 

1. Formulation of Problem. To construct minimal surfaces of 

genus zero bounded by A* given oriented curves yv, we formulate 

and solve our variational problem for any of three different (‘lasses 

sJf of parameter domains B: 

a) The domain B consists of the whole u, v~plane except the in¬ 

teriors of k circles whose radii and centers are not preassigned 

(Class sJ}a). 

b) The domain B is a slit domain in the sense of Chapter II 

(Class SR*). 

c) The domain B is a Itiemann domain over the -u, e-plane bounded 

by k unit circles and having branch points of the total multiplicity 

2k - 2 (Class %). 

To describe the latter class intuitively, we take k unit circles over 

the u, v-plane and connect, each, say, with the following one by two 
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branch points whose positions are not prescribed, obtaining a domain 

with h separate boundary curves. For k > 2 we also permit some 

branch points to coalesce into branch points of higher multiplicity. 

Moreover we permit connection among the h sheets in any order, as 

long as the total multiplicity of the branch points is 2k — 2. 

For each of our classes 9? the boundary ft of B is a system of k 

curves ft , ft , • • * , ft • A vector %{u, v) in B will be called admissible 

if it has the following properties: 

1) £ is continuous in B 4* /3 and has piecewise continuous first deriva¬ 

tives in B. 

2) i maps the curves ft, in a continuous and monotonic way on 

the prescribed curves 7,, . 

After choosing one of the classes 9?, we formulate 

Variational Problem IV: To find in the class 91 a domain B, and in B 

an admissible vector y, for which Y)[y] attains the least possible 

value d. 

Once and for all we assume the existence of admissible vectors for 

whichl)\ic] < oo, which is certainly justified for rectifiable curves yvf 

2. Condition of Cohesion. As mentioned in §1, we must ensure 

the possibility of solving problem IV by additional restrictions. We 

formulate below a “condition of cohesion” which postulates the 

existence of minimizing sequences not degenerating into separated 

surfaces. For higher topological structure the same condition also 

excludes degeneration of the minimizing sequence into surfaces of 

lower type. 

A sequence of surfaces in x-space is said to be cohesive if there 

exists a fixed positive a such that each closed curve on yn of diameter 

less than a can be contracted continuously to a point on the surface. 

Otherwise the sequence is said to tend to degeneration or to separation, a 

terminology indicating the intuitive meaning of our condition. If 

problem IV admits a cohesive minimizing sequence we shall say that 

the problem satisfies the condition of cohesion. Our aim is to show 

that problem IV can be solved, if the condition of cohesion is satisfied. 

Since the converse is obvious, it will be seen that cohesion is 

necessary and sufficient for the existence of a solution. Still the 

condition of cohesion is not equivalent to the condition for existence 

‘ See Chapter III, §8, 3. The proof given there for one contour can be 

immediately extended to the present case. 
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of a solution given by theorem 4.1. By way of example we recall the 

problem of the minimal surface of revolution and suppose that the 

minimizing catenoid and the two disks have the same area. Then 

there exist minimizing sequences tending to the catenoid and satis¬ 

fying the condition of cohesion; on the other hand different minimizing 

sequences tending to the two disks plus a connecting line do not 

satisfy this condition. Hence theorem 4.1 can yield no more than a 

sufficient condition for a minimum. 

After solving problem IV under the assumption of cohesion we 

shall prove that cohesion is a consequence of the condition of theorem 

4.1, which is more restrictive, yet more easily verifiable in concrete 

cases. 

3. Solution of Variational Problem for k-fold Connected Domains G 

and Parameter Domains Bounded by Circles. We first construct the 

solution for the class 9ia of parameter domains. Consider a cohesive 

minimizing sequence j» ; we have 

where Bn is the parameter domain for and d is the greatest lower 

bound for Dirichlet’s integral in problem IV. We shall select a 

subsequence of the vectors for which the corresponding domains 

Bn tend to a limiting domain B belonging to the class sJfa of domains, 

and for which the values £„ on the boundaries /3[n) of Bn form an 

equicontinuous set of functions. Subsequently the reasoning may 

proceed exactly as in Chapter III, §2. 

By a linear transformation of the ic-plane we map Bu onto a 

domain bounded by the unit circle pin), a smaller concentric circle 

/?2n), and k — 2 circles lying in the ring between f3[n) and ($\n\ This 

normalization replaces the three point condition of Chapter III, 

§2, 2. The domains Bn define a limiting A -fold connected domain B 

if, for n —> oo, Bn does not degenerate in one of the following ways: 

1) Twto circles, e.g. 0in) and pjtn) come arbitrarily near each other 

at a point P while their radii remain above a positive bound i). 

2) Two circles come arbitrarily near each other at a point P, but the 

radius of one of them, say ftSn), shrinks to zero. 

3) One or more circles, e.g. fiin\ • • • , shrink to the same point P 

while the point remains bounded away from the non-shrinking 

circles. 

We begin by excluding the first type of degeneration. Denote by 
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M a common upper bound for D[fn]; choosing a small constant 5, 

0 < 5 < 1, set 6(5) = 2M/(log 1/5). According to lemma 3.15 there 

is for each value of n a circle Kn about P of radius pn , 5 < pn< y/l, 

such that the length Ln of the image by fn of any arc of Kn lying in Bn 

satisfies the inequality Ln < \Z2tte(5). The assumed degeneration 

implies, for sufficiently large n, the existence of an arc of Kn joining a 

point on p[n) with one on n), and therefore the existence of an arc in 

y-space of length Ln joining a point on 71 with one on . The 

distance between points on these curves is bounded away from zero; 

but choosing 5 suitably, we can make c—and hence Ln—so small as 

to yield a contradiction. The first type of degeneration cannot occur. 

By a similar argument the third type of degeneration is shown to 

be impossible. In this case we could, for sufficiently large fixed n, 

include the circles shrinking to P in a circle kp of radius p about P, 

in such a way that the length Lp of the image of kp by %n is not greater 

than v/27re(5). This inequality would imply that £n tends to 

degeneration, in contradiction to the condition of cohesion. 

Finally, to exclude the second type of degeneration we consider 

the typical case where a circle Pzn) shrinks to a point P on fi[n) while 

pin) is bounded away from 0i(n). Again by lemma 3.1 we can, for 

suitably small fixed 5 and sufficiently large n, draw a circular arc 

about P which joins two points R and R' on p[n) and separates pin) 

from 02n), in such a way that the length Ln of the image Xn of *n by 

£n is less than \/2Te(8) = tj(5). The two arcs on /3in> determined by 

R and R' are mapped onto two complementary arcs of 71 whose end- 

6 This lemma was proved under the assumption that the parameter domain 

does not depend on n. The proof for the more general case needed here is 

literally the same. 
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points Q and Q'—the images of R and R'—lie at a distance less than 

7/(5), so that the diameter of one of these two arcs is arbitrarily small 

for sufficiently small 6. Hence 5 can be chosen so small that this arc, 

together with the arc X„ , defines on the surface £„ a closed curve <o„ of 

arbitrarily small total diameter. The curve o>r< cannot be contracted 

to a point on the surface £„ , since it separates 72 from 73 ; consequently 

tends to degeneration, contrary to our assumption. 

Summarizing, we state: no degeneration of Bn can occur; it follows 

that the sequence Bn or a suitable subsequence tends to a domain B 

again of type SJt0 . 

Next we prove the equicontinuity of the functions on each 

boundary circle, say on p[H); the proof follows the pattern of Chapter 

III, §2, 2. Accordingly we again define a quantity t(<t) (inherent 

in the geometrical shape of 7) with the following properties: if Q, Q' 

are two points on one of the boundary curves yv at a distance less 

than cr, the diameter of one of the t wo arcs on 7* between Q and Qf 

is not greater than r; obviously r is greater than <j, but tends to zero 

with <r, and for given r a suitably small cr can always be found. 

Given an arbitrarily small positive constant e we choose a such 

that t(<t) < e and a suitably small positive constant 

S < exp 

M denoting a common upper bound for D[xn\- By lemma 3.1 we 

can draw, about an arbitrary point P1} on p[n\ a circular arc k„ lying 

in Bn with radius pn , <5 < pn < joining two points R and R' on 

Pil) in such a way that the oscillation of £« along Kn is less than <7. 

The smaller arc p* connecting R and R' on the circle p[7l) is mapped 

on either the larger or the smaller arc of 71 connecting the respective 

image points Q and Qf of R and R'. The larger arc 71** is excluded: 

for otherwise, the image 71* of the larger arc P** connecting Q and Q' 

on pi would have diameter not exceeding r, and y? together with 

the image of ku would form a closed curve on £n of diameter not 

exceeding r + a. This curve, while not contractable to a point on 

In , could be made to have arbitrarily small diameter for sufficiently 

small r. We have arrived at a contradiction to the assumption of 

cohesion. It follows that the oscillation of £n on pf is less than r, 

hence less than e, and £n is equicontinuous on pi. The same proof 

holds for all the other boundary circles. 
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After replacing the vectors £« by harmonic vectors with the 

same boundary values on the circles pln\ we complete the existence 

proof exactly as in Chapter III: a suitable subsequence of the 

converges to an admissible harmonic vector £ in B for which i>[jr] — d. 

4. Solution of Variational Problem for Other Classes of Normal 

Domains. The arguments of the preceding section remain almost 

literally valid for the class 9b, of parameter domains; for the class 9JC a 

slight modification is necessary. It suffices to explain the method for 

doubly connected domains By consisting of two unit circles connected 

by two branch points A and A'. We fix A' at w = 1/2, leaving free 

the other branch point A. To prove that the sequence Bn has as 

limit a domain B of class 9b we must show that the branch point A 

in Bn can tend neither to A' nor to the boundary. The first degenera¬ 

tion is excluded as above by lemma 3.1,6 the second by the following 

argument. If A tends <o a boundary point P on the unit circle di , 

we draw about P a circular arc ku in B with radius p, 5 < p < -y/fi, 8 

being chosen sufficiently small as in our lemma. For large n the 

point A is separated from A' by Kn , so that ku joins a point R on pi 

with a point Rf on jd*>. The oscillat ion of £« on ku becomes arbitrarily 

small with 8, while the images of R and R' must remain at a distance 

no smaller than the minimum distance between yi and y2; the second 

type of degeneration is thus likewise seen to be impossible. 

3. Further Discussion of Solution 

1. Douglas' Sufficient Condition. The condition of cohesion, 

necessary and sufficient for the existence of a solution of variational 

6 It is obvious that such a lemma is valid also for Kiemann domains H. 
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problem IV, is not easily verifiable in particular cases. The restric¬ 

tive, merely sufficient, but more intuitive condition of theorem 4.1 

has been mentioned in the introduction to this chapter. We repeat 

and amplify the statements for fc-fold connected domains. 

A fc-fold connected surface £ of genus zero bounded by y is said 

to be degenerate if it consists of two separate surfaces (which may 

possibly intersect) whose boundaries together form y. The greatest 

lower bound of D[£] for such degenerate surfaces spanned in y may 

be called d*. Let £ be decomposed into two surfaces f' and f" 

bounded by y' and 7", where y' consists of k\ 7" of fc" curves 7, and 

k' + k'; = k. The Dirichlet integrals over A;'-fold and A/'-fold con¬ 

nected parameter domains, for surfaces bounded respectively by 7' 
and 7" in £-spaee, are denoted by Z)'[£] and />"[£], the corresponding 

greatest lower bounds by d' and d". Noting 

d* = d' + d" 

we shall prove 

Theorem 4.2: For every possible type of degeneration of a surface £ 

we have 

(4.1) d < d*. 

Furthermore we restate theorem 4.1 (Douglas' condition): The 

condition that 

(4.2) d < d* 

for all possible degenerations is sufficient for the existence of a solution 

of variational problem IV (and hence for the existence of a non¬ 

degenerate fc-fold connected minimal surface bounded by 7). 

Simultaneously with the proof of theorem 4.1 it is convenient to 

establish 

Theorem 4.3: The greatest lower bound d in variational problem IV 

depends semicontinuously on the boundary 7. More precisely, 

if a sequence 7(n> of boundary curves tends to 7 in the strong (Fr^chet) 

sense, we have 
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where dn is the greatest lower bound for D[%] for surfaces % spanned 

in 7<n). The theorem remains valid if 7(n) has multiple points. In 

Chapter III the statement was proved for k = 1; it will now be 

proved for every k by induction. 

The proof of these theorems would be facilitated by accepting from 

the outset the fact that d, d*, d', d" can be interpreted as greatest 

lower bounds of area — an immediate consequence of theorems on 

conformal mapping. However, since we intend in the next chapter to 

develop a method for deriving mapping theorems from the solution of 

problem IV, we shall prove theorems 4.1-4.3 merely by discussing 

the Dirichlet integral, making no use of its connection with area. 

The proofs will depend on properties of the Dirichlet integral formu¬ 

lated in two lemmas. 

2. Lemma 4.1 and Proof of Theorem 4.2. Our two lemmas express 

the fact that vectors j can be subjected to certain locally large varia¬ 

tions without an essential increase in D[%], The first lemma means 

that a variation of replacing y by any prescribed constant vector in 

the neighborhood of a point P in B and affecting only a slightly 

larger neighborhood of P can be so constructed as to change D[%] by 

arbitrarily little. Precisely we state 

Lemma 4-L7 Let $(«, v) be an arbitrary vector satisfying \ % \ < M, 

continuous in B + (3 with piecewise continuous first derivatives in B, 

and for which Dfe] < . Given an arbitrarily small positive constant 

a and any point P in B—say the origin—we can find a sufficiently 

small constant rjy 0 < rj < 1, and a vector t)(u, v) identical with i 

outside the neighborhood u + v < t? of P, having a prescribed 

constant value — say t) = 0 — inside the smaller neighborhood 

u + v < tja of P, and satisfying the inequality 

(4.3) D[t)] < DU) + a. 

In other words: without essentially increasing Dirichlet’s integral, 

we can pull out a spine from the surface i reaching to a given point. 

Corollary: If B contains the point at infinity, we can similarly find a 

sufficiently large constant ri' and a vector t)(w, v) having the values of 

7 This lemma, in connection with the theorems of Chapter III, guarantees 
the existence of d for rectifiable boundary curves. 
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3 within the domain u + v < r?/2 and the value t) = 0 outside the 

larger circle u2 + v2 < t/'4, such that inequality (4.3) holds. 

Proof: To prove the lemma we form the function p(u, v) with 
.2 _2 , 2 

r ~ u + v and any constant rj < 1, 

(h r > y, 

p(u, v) = p(r) = { 
log 7) 

[0, r < „2, 

and define the vector I) by 

(4.4) t)(«, v) = p(u,v)i(u, v). 

Set < = D[p] =\ \( (pi + pt) du dv = — ir/log v- 

Using | p | < 1,|U < M, and Schwarz’ inequality, we have 

^ £>\i\ + M~D{p\ + ff pipuhl + Pv&l) du dv 
JJji* < r < t) 

< D[i) + M\ + ‘2MVeW[i} 

or 

< wm + mviy- 
Since we can satisfy (4.3) by making y and hence e sufficiently small, 

the lemma is proved. The proof of the corollary is essentially 

the same. 

Theorem 4.2 follows easily from lemma 4.1. To prove it, say 

for the class of domains i?, we consider, in circular domains B' 

and B", admissible vectors and f" referring to the systems 7' and 

7" of boundary curves, respectively. Without loss of generality 

we may assume that Bf lies inside one of its boundary circles while B" 

contains the point at infinity, and that both contain the origin 0. We 

select an arbitrarily small positive constant e and restrict ourselves 

to admissible vectors for which 

Db\i‘] < df + €, 1)*„[*"] < rf" + 6. 
8 See Courant [3J, p. 685 ff. 
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According to lemma 4.1 we replace the vector f in B' by another 

admissible vector t)' which is zero in a small disk K of radius y about 0 

and for which Db'W] < d! + 2e. By the corollary we construct, for 

sufficiently large y', an admissible vector t)" in B" such that t)" = 0 for 

r > rjf and Db"W'] < d" + 2e. Next we subject B" to a similarity 

contraction from the origin, reducing r by the factor yjy so that the 

circle of radius y shrinks to one of radius y. Dirichlet’s integral is not 

changed by this contraction of B". We retain the notations B" and 

ty" with reference to the contracted domain and denote by B* the 

domain B' — K and by B** the part of B" which is interior to K. 

Finally we define a new /c-fold connected circular domain B = B* + 
B**, and an admissible vector t) in B by 

IV in if*, 

D = <t>" mB**, 

[0 on k, 

where k denotes the periphery of K. Then Db*W\ = Db'W] and 

= D^ that 

DM = Db.WI + Db**W'\ < d' + d" + 46. 

Since d < Z>[t)] and since e can be chosen arbitrarily small, theorem 

4.2 is proved for parameter domains bounded by circles. An entirely 

similar proof holds for the other types 6 and of domains defined 

in §2. 

3. Lemma Jf.2 and, Proof of Theorem 4-1- Whereas lemma 4.1 

refers to a variation of the vector l{u,v) in the parameter domain B, 

the following lemma appraises the effect on vectors 3 of particular 

transformations defined in the j-space. This transformation, which 

we shall call “pinching,” contracts a whole spherical neighborhood 

of a point into the point while leaving fixed the points outside a 

larger neighborhood. Let A be a point represented by an arbitrarily 

chosen constant vector a in g-space, e a small positive constant. We 

transform the whole $-space into a ty-space of vectors t) by contracting 

the sphere of radius y2 about the point A into that point while leaving 

unchanged the space outside the concentric sphere with radius y; 

here y = e~ll\ Let the surface $ be represented by a vector v) 

defined in the parameter domain B\ then the ‘‘pinching” transforms 
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l(u, v) into another vector t)(w, v) which is identical with a wherever 

| g — a | < rj2 and identical with g wherever | g — a | > 77. We prove 

Lemma 4.2: By a suitable “pinching” process any vector g with 

finite Dirichlet integral is transformed into a vector h for which 

DM < (1 + e)2Z)[g]. 

In other words, without essentially increasing the Dirichlet integral 

of g and without essentially modifying the values of g we can deform 

the surface g so that all parts of the surface near a point a are pinched 

into this point. 

We shall apply the lemma to a sequence of surfaces g tending to 

degeneration. Specifically we shall suppose that g is “almost de¬ 

generate” in the neighborhood of a point A; that is, we assume the 

existence of a closed curve a on the surface, lying entirely within a 

sphere of radius rf about A, which separates the surface into two 

parts each bounded not only by a but also by a part of the boundary y. 
Then our pinching transforms the surface g into an actually degen¬ 

erate surface. 

Proof: We may suppose a = 0, and contract the whole ?n-dimensional 

g-space into a ty-space by the transformation 

2/m = pOK > M = 1, 2, • • • , m 

or 

(4.5) 9 = V(r)h 

where p as a function of the distance r — (z\ + z\ + • • • + zL)1/2 

and the parameter 11 = e~llt is given9 by 

(1. r > 1h 

P(r) = 
1 ^ log rj/r 

+ ^g 77 

10, 

V < r < 77, 

r < ?72. 

In (4.5) we substitute for g the surface vector g(w, v)\ then the vector ty 

represents a surface parametrically in B. 

9 This function is essentially different from that used for lemma 4.1 because 
it refers to distance in the vector space instead of in the parameter domain B. 
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Consider the open point set B*: t? < | g | — r < tj contained in B. 

The Dirichlet integral of l) is given by 

-DM = | JJ Kpiu + Pul)2 + (Piv + Prj)2] du dv = a + b + c. 

Since p < 1 we have the inequality 

a “ \ IIB ^du dv — 
furthermore, from the definition of p we find 

b ^ 5 flu ^P~u P^ du dv = \ JJ„. P^ du dv’ 
and 

du dr 
c ~ fh ('r'Vu lln + PPv llv) 

= (pp«iiu + PPv Uv) du dv. 

The derivatives of p in B* have the bounds 

I P« I < l I *« |, ! Pv ! < ; I u I. r r 

Recalling that | $ | = r we derive 

I V Vu ttu | < e$l , \pp»ll»\ < *ll, 

£(P*u + Pv) < t(lu + fa,)y 

and consequently 

b < e2DB.[l\ < Ml\, 

c < 2d)B*[l] < 2eD[*]. 

Collecting the results, we have 

DM < Dm + 2e + e2) = (1 + efDU), 

as stated in the lemma. 

The proof of theorem 4.1 is carried out in two steps: First we 

realize that a system 7 of curves for which problem IV has no solu- 
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tion bounds minimizing sequence Bn , tending to degeneration; 

for convenience we suppose that the parameter domains Bn are of 

class •Jh* ,10 again normalized by the stipulation that the outer 

boundary circle is the unit circle and that another boundary circle 

has the same center. Secondly we show that the existence of a 

degenerating minimizing sequence implies an equality of the form 

(l — d! + d", contradicting Douglas’ condition d < d! + d". This 

second step is a proof by induction based on lemma 4.2 and on a 

semicontinuity theorem which generalizes, to ft-fold connected 

domains, theorem 3.1 for simply connected domains. We shall prove 

this semicontinuity theorem simultaneously with theorem 4.1, again 

using induction. 

Theorem 44: Let y("} be a sequence of systems of £ continuous 

contours—possibly having multiple points—converging to 7 in the 

sense of Frtfchet as n —> , and let be an admissible vector defined 

in a parameter domain Bn of the prescribed class, mapping the 

boundary of Bn onto y(v)\ then the greatest lower bound d for the 

Dirichlet integrals of surfaces spanned in 7 satisfies the inequality 

(4.6) d < lim inf. />/?„[£«]. 

Relation (4.6) expresses the semicontinuous dependence of d on 7. 

Using our induction assumption, we suppose that theorem 4A 

holds for £=1, 2, •••,/,: — 1 and turn to the second step mentioned 

above. Consider a sequence , B„ of vectors and corresponding 

paramet er domains (not necessarily a minimizing sequence) admissible 

in problem TV for the boundary 7u), and suppose that the surfaces 

tend to degeneration. For a suitably chosen subsequence we may 

assume that separation of the surfaces £n occurs at the origin. In 

other words, a closed curve t(?,) on the surface yn separates two parts 

of the boundary y(n\ and the curves r(,,) shrink uniformly to the 

point 0; that is, we can find a sequence rjn of positive numbers tending 

to zero such that 

| !« | < Vn on r(n). 

The curve ru) is defined as the image of a simple closed Jordan 

curve tin) in Bn separating Bn into two domains B'n and B" bounded 

10 For other types of domains B the proof is entirely similar. 
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by /(?0 and by two complementary systems and of IS and fe" 

boundary components respectively. 

According to lemma 4.2 we replace the surface $n defined in Bn 

by a degenerate surface in such a manner that 

< l)Bn[$n] + CXn 

with an —> 0; the vector l)n maps the boundary of Bn onto a 

system y(n)* of curves which fend to y as do the boundaries 7(r0.n 

We have evidently 

(4.7) lim inf. I)B,Jtjn] < lim inf. D]in[$n]. 

Assume that the curve /°° in Bn + (3(n), on which tjn vanishes, has Bn 

in its interior and B 'n in its exterior. We denote by B*t the sum of 

B'u and the whole exterior of t(n) and by /?** the sum of B', and the 

whole interior of t(n\ and define vectors t)* and ty** by 

* _ (tjn in Bn , ** ft)n in Bn , 
w \() outside//'0; n \() inside/00. 

The ve<*tors ty* and l)** are piecewise smooth in Bt and B**, respec- 

lively, and their Dirichlet integrals satisfy the relation 

(4.8) Db:[\u] + DiCltf*} = DbM. 

Furthermore, t)„ and map theboundaries of Bn and /^respectively, 

on sets of (turves y and y where y —-> y , y —> y . 

Thus they are admissible in variational problems IV relating to 

lower numbers IS and IS' of boundary curves. For such lower 

numbers semicont inuity of d has been assumed; consequently we have 

lira inf. > d', lim inf. /V/H)**] > d", 

where d! and d" refer to the* partition of the boundary y into yf and 

7", respectively. We obtain by (4.7) and (4.8) 

(4.9) d! + d" < lim inf. DbSuY 

11 The system 7',l)* is identical with 7(n) if the origin 0 is not on 7; for 

then r)n can be chosen so small that the transformation (4.5) does not affect 

the boundary curve. The slight complication of the proof of theorem 4.1 

arising from the need of ascertaining semicontinuity is due to the fact- that a 

position of the point 0 of separation on 7 cannot a priori be excluded. 
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Applying inequality (4.9) to a minimizing sequence Bn , for which 

—» d, we find d > d' + d", whereas theorem 4.2 states that 

d < d! + d"\ hence d = d! + d". Furthermore, the inequality 

d > df + d" contradicts condition (4.2) 

d < d' + d" = d*; 

therefore, this condition precludes the existence of a degenerating 

minimizing sequence, and is sufficient for the existence of a solution of 

problem IV. 

To complete the proof by induction we have still to deduce 

theorem 4.4 (semicontinuity) for fc — k under the assumption 

that it is proved for k < k. We distinguish two cases. If the 

vectors £„ referred to in the theorem tend to degeneration, (4.9) and 

(4.1) establish semicontinuity. If, on the other hand, the vectors 

satisfy the condition of cohesion, the reasoning of Chapter III, 

§2, 3, holds almost literally: the domains Bn form a compact set and 

define a limiting domain B, the vectors are equicontinuous on the 

boundaries j3{v\ and the harmonic vectors an with the same boundary 

values tend for n —► °o to an admissible vector £, mapping the bound¬ 

ary of B on 7, for which 

D[t) < lim inf. DbM. 

In particular we have 

d < lim inf. dn , 

where dn is the minimum value of Dirichlet’s integral for y{n), Bn, 

so that semicontinuity is established for /c-fold connected domains in 

both cases. 

Again it should be emphasized that the analysis of the preceding 

sections remains valid for the various types of parameter domains 

described in §2, and that no essential modifications are necessary 

for still other classes of normal domains. 

4. Remarks and Examples. In the preceding proofs, use of 

theorems on conformal mapping was avoided so that we can utilize 

theorem 4.2 in Chapter V for the proof of a number of general mapping 

theorems. There the number of space dimensions will be m = 2. 

On the other hand, in the general case—in particular for m > 2— 

we cannot remove certain unsatisfactory features of the solution of 

problem IV without making use of mapping theorems. For example, 

the preceding solution was given with specific reference to a pre- 
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scribed class 91 of parameter domains B. Without theorems concern¬ 
ing the conformal equivalence of an arbitrary /c-fold connected 
Riemann domain with a member of 9?, the characterization of d as the 
minimum of Z)[f] retains an artificial element, even though the class 
91 is wide enough to permit identification of the solution as a minimal 
surface by variational methods. The simplest choice of the class 9? 
is that of half-plane slit domains, which according to Chapter II art* 
conformal representatives of all Riemann domains of finite Ruler 
characteristic. Our remark applies even more to the case of surfaces 
not of genus zero discussed in the next section. 

As in Chapter III theorems on conformal mapping allow us to 
identify the solution of problem IV with the surfaces of least area 
under the prescribed boundary conditions. With such an inter¬ 
pretation of dy d', d" as greatest lower bounds of areas of surfaces, 
the theorems of this chapter become intuitively clearer, and the con¬ 
ditions easier to verify in particular cases. 

Examples: 

1) Douglas’ sufficient condition d < d* is certainly satisfied if the 
lower type surface of least area is self-intersecting. This is intui¬ 
tively evident: by cutting the surface along the lines of self¬ 
intersection, establishing suitable new identifications of the edges of 
the cuts, and slightly deforming the new surfaces, one can remove 
self-intersections and obtain a surface of smaller area. This new sur¬ 
face will sometimes have a higher topological structure; when it does, 
it is plausible that the given system of curves bounds a non¬ 
degenerate minimal surface of higher topological structure more stable 
than the original self-intersecting solution of Douglas’ problem. 

2) Consider the case k — 2 for surfaces of genus zero. Assume 
that the two boundary curves 71 and 72 are interlocking. It is 
immediately seen that the degenerate surface consisting of the two 
simply connected minimal surfaces bounded by 71 and 72 has greater 
area than the doubly connected surfaces obtained from an intersecting 
pair of surfaces by a deformation that eliminates the self-intersection. 
Hence, Douglas’ condition is satisfied and a non-degenerate solution 
exists. Similarly one can see that a knotted curve 7 always bounds, 
besides the self-intersecting simply connected minimal surface, a 
surface of higher structure.12 In general the condition is satisfied 

The result that two interlocking curves always define a doubly connected 
minimal surface was first obtained by Douglas. 
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for k — 2 if the two simply connected surfaces of least area through 

7i and 72 intersect in a closed curve. It is an interesting problem to 

prove these facts without using the interpretation of Z)[y] as area. 

3) We consider an example that dispenses with the identification 

of d, d'y d" as areas. In Chapter V, we shall verify the condition 

d < d* directly by analyzing Dirichlet’s integral in the case where 

the system 7 of curves bounds a plane domain. Using an obvious 

generalization of theorem 3.3 to /.-fold connected domains, we 

establish the sufficient condition by a slight deformation of the 

boundary system 7* Hence problem IV has a solution for contours 7 

lying sufficiently close to a plane. 

4, Generalisation to Higher Topological Structure 

Finally we turn to the problem of minimal surfaces not of genus 

zero. As stated, soap film experiments indicate that for certain 

suitably twisted contours 7 the solution of least area need not lx* 

orientable (if 7 is a single curve) or simply connected (if 7 is a system 

of curves); instead we obtain surfaces of the type of a Moebius strip 

or other non-orientable surfaces, or surfaces of higher genus, see 

Figures 4.2, 4.1.13 
1. Existence of Solution. To formulate variational problem IV 

for surfaces not of genus zero we must choose parameter domains B 

of the same topological structure. The most convenient class of 

such domains B are the normalized half-plane slit domains with 

properly coordinated infinite interior slits, as studied in Chapter II, 

§7; it was shown that these domains form sets of normal domains. 

As in the case of genus zero, Douglas’ problem for prescribed higher 

topological structure need not have a solution. For example, a single 

plane boundary curve 7 bounds neither a minimal surface of genus 

one nor one of the type of a Moebius strip.14 The same condition 

of cohesion as for genus zero is necessary and sufficient, and it is 

formulated exactly as in §2, 2. Likewise the same condition d < d* 

is sufficient for the existence of a solution, where the quantity d* 

refers to degenerate surfaces having 7 as boundary. Such surfaces 

either consist of two separate surfaces the sum of whose Euler charac¬ 

teristics is not greater than that prescribed, or are degenerate merely 

13 See footnote I. 

11 The only minimal surface hounded by a plane contour is a part of that 
plane. 
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by having a smaller Euler characteristic. If d and d* are identified 

with minimum area, the condition d < d* assures existence of a 

minimal surface of given topological structure whenever the area 

for such surfaces can be made smaller than the greatest lower bound 

of the area for surfaces of lower structure. 

2. Proof for Topological Type of Moebius Strip. The proof 

proceeds exactly along the lines of the preceding sections; we shall be 

content to give it in detail for the typical case of a minimal sur¬ 

face of the type of a Moebius strip bounded by one contour 7.15 

Here the parameter domain is given by Figure 2.24 on page 85 and 

the limiting Figure 2.25 on page 85, where A is the fixed point u = 0, 

v — 1, while the ordinate of A' is a parameter. Let £„ , Bn denote 

a minimizing sequence of vectors and domains admissible in varia¬ 

tional problem IV, normalized by the stipulation that the image of 

the point at. infinity u ~ <x> in t he mapping of 0 on y is fixed. We 

suppose d < d*y where d* is the lower hound of Diriehlet’s integral 

for simply connected surfaces spanned by 7. Assuming that the 

domains Bn , or a subsequence, tend to a limiting domain B, wo 

establish the equicontinuity of the vectors y« on (3, supposing B to be 

of the type of Figure 2.24 (for a domain B such as in Figure 2.25 the 

reasoning is only slightly different ). 

We reason as before, cf. lemma 3.1. For every positive a there 

is a quantity r(a) such that, if two points Q, Q' on 7 are at a distance 

less than <r, one of the two arcs QQ' on 7 has diameter less than r. 

By choosing a properly, r can be made arbitrarily small. If P is a 

point on 0, we can accordingly find half-squares Rn T Rn as in Fig¬ 

ure 4.7 such that the oscillat ion of yw on Rft T R„ remains less than 

a quantity a while 

8 < RnPRn < Vd, 

8 depending only on a and tending to zero with a. Since maps 0 

monotonically on the Jordan curve 7, the oscillation of yn is less than r 

either on the segment Rn P R» or on the complementary infinite part 

of 0. The second alternative is easily ruled out: it would imply that 

the simply connected domain B* bounded by the half-square is 

mapped by yn onto a simply connected surface, bounded by a curve 

y(n)* which with increasing u tends to 7 in the strong (Fr^chet) 

sense. We would have 

18 For the reasoning in the general case, where the technical details are 
quite similar though more cumbersome, see Shiftman [3J. 
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(4.10) lim inf. DB:hn] < lim DBn[£n] = d 

and by the semicontinuity of d* for simply connected regions, 

(4.11) d* < lim inf. Z)*:[fn]; 

combining inequalities (4.10) and (4.11) we would have 

d* < d, 

contrary to our assumption d* > d. 

/ A 

Figure 4.8 

This statement of equicontinuity must be supplemented by a proof 

of equicontinuity at u — c© ; in the preceding notation, we must show 

that for | u | > 1/y/$ the oscillation of %n on (3 remains less than r(<r). 

For the proof we construct a large half-square with an edge larger 

than 1/y/&, as Rn T R'n in Figure 4.8, where the side RnSn consists of 

three properly coordinated segments, and where the total variation 

of is less than a. We must rule out the possibility that the oscil¬ 

lation of on the segment Rn P Rrn of 13 is less than r. In this case 

the coordination of the edges would make the part Z?* of Bn outside 

the half-square a simply connected domain—the orientability being 

safeguarded by the barrier SS' which excludes paths along which the 

orientation might change. The boundary of Bt is again mapped by 
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onto a curve 7* which tends to 7 in the strong sense and for which 

D u*[£n] < D *„[?„]; thus we obtain the same contradiction of d < d* 

as above. 

Instead of using the simply connected domain B* defined by 

boundary coordination, we could use the following alternative 

construction. First we replace %n according to lemma 4.2 by an 

admissible vector t)n which is constant along the contour Hn TRn 

and for which I)[t)n] < D|j„J + a; for sufficiently small 6, the quantity 

a can be made arbitrarily small. In the part of Bn outside the 

half-square we reflect the strip C between the edges 2 and 1' in the 

middle line /z, so that 1' is adjacent to 1 and 2 is adjacent to 2' on the 

fi' vO 

Figuro 4.0 

boundaries of C. Denote the reflected vector by D* • 

a new vector by 

(4.12) 
in C\ 

in Bt - Cy 

We define 

so that it remains continuous on crossing the slits. Removing the 

slits we have in the exterior i?* of the half-square a plane simply 

connected domain B°n and a vector t)„, continuous in B\, for which 

D[t)n] — the preceding reasoning may be applied to prove 

equicontinuitv. The remaining details of the proof for the existence 

of a solution £ are the same as in the case of simply connected domains. 

We have yet to show that our assumption d < d* ensures non- 

degeneration of the sequence Bn , i.e. that the point A 1 remains 

bounded away from the fixed point A. Suppose that A 'n —> .1; then 

according to lemma 3.1 we can replace Xn by an admissible vector i)n in 

Bn , identical with £n outside a fixed circle about A, and identically 

zero within a smaller fixed concentric circle, for which Z)[t)n] < 

Z>[^] +a, with arbitrarily small preassigned a, In particular \}n 

is zero along the straight segment AAni for sufficiently large n. 

Again we replace Xfn in the strip C between the edges 2 and 1' by a 
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vector l)* , and define a vector t)°n as in (4.12). Obviously tyn is con¬ 

tinuous in the whole half-plane H: v > 0 with the cuts removed, and 

DM = Z>fo»] < Z)[j„] + a. 

Since tjl is an admissible vector in the variational problem for the 

simply connected surfaces spanned by 7, we have d* < 

and consequently letting n tend to 00 

d* d 4” ol\ 

since a can be chosen arbitrarily small we conclude 

d* < rf, 

contrary to our assumption. Degeneration has been shown impos¬ 

sible, and the proof is complete. 

3. Other Types of Parameter Domains. Many other classes of 

parameter domains B could be used in the general problem of Douglas. 

For example, to obtain surfaces of genus p with k boundary curves yv 

one might consider Riemann surfaces B consisting of the interior of k 

unit circles and one full plane, these k + J sheets being connected 

by 2k — 2 + 4p branch points;16 the circle /it, is to correspond to the 

boundary curve 7, . 

By reflecting such Riemann surface domains simultaneously in 

all the boundary circles one obtains symmetric closed Riemann 

surfaces B which may again serve as parameter domains, carrying 

the same values for admissible vectors in points corresponding by 

symmetry. For the study of non-orientable minimal surfaces we 

may use as parameter domains closed symmetric surfaces which, 

unlike those just described, are not dissected by the symmetry lines 

corresponding to 7.1' Another possible class of parameter domains 

B for surfaces of genus p is provided by fundamental domains of 

automorphic groups generated by linear transformations in the 

complex plane, k circular disks being removed from the fundamental 

domain. Apart from the intrinsic interest one may have in linking 

the theory of minimal surfaces with the concepts of classical function 

theory, the value of such parameter domains for our theory is ques¬ 

tionable. Even more than in the case of genus zero we cannot 

16 See Courant [6]. 
17 Douglas [4) has based his analysis on such symmetric ltiemann surfaces. 
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expect a satisfactory result, from the theory unless we know beforehand 

that the class of parameter domains used is a class of normal domains 

of the prescribed structure. 

The difficulty encountered if one does not wish to presuppose 

mapping theorems may be illustrated by the case I: = 1, p = 1. We 

choose for B a two-sheeted surface consisting of a unit circle and a full 

plane, the two sheets being connected by four branch points within 

the unit circle*. If a minimizing sequence Bn degenerates in such a 

way that two branch points tend to the same point—cancelling each 

other so that only two branch points remain in the limit—B would 

degenerate to a simply connected domain with p — 0. This domain, 

however, consisting of a unit circle, with a full plain* affixed by two 

branch point s, is of a different type from the domains B originally used 

to define tin* lower limit </ for simply connected domains of genus zero. 

Conformal mapping must therefore be applied to show that domains 

obtained by such processes of degeneration are equivalent to domains 

of the originally admitted type. 

The same situation arises for other types of domains By e.g. for 

plane domains defined by fundamental domains of automorphic 

groups of linear substitutions with p generating transformations. 

Since the group and the boundary circles depend only on a finite 

number of parameters, the reasoning concerning the solution of the 

variational problem follows our previous pattern. In this case Bn 

may so degenerate* that the limit domain B is of lower genus while 

still defined by a group with p generating transformations. A 

degeneration of this kind occurs, for example, if two corresponding 

boundaries of the fundamental domains touch in corresponding 

points or, as one says, if tin* fundamental domain of the limiting 

group has a “parabolic vertex.” The genus of the limit domain 

is lowered, so that this domain no longer belongs to the type admitted 

for the lower genus; again equivalence must be established by mapping 

theorems. Corresponding considerations hold for slit domains. 

4. Identification of Solutions as Minimal Surfaces. Properties 

of Solution. If we know beforehand that our class 9! of parameter 

domains contains conformal representatives of all Riemarm domains of 

the prescribed structure, the identification of the solution x a 

minimal surface is immediate. Exactly as in Chapter III, §3 

for the case of genus zero, we may use the sewing theorem; alter- 
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natively we may base the relation 4>(w) — 0 on the vanishing of the 

first variation (3.17) 

//, ift- Hv)p - (X, + Pn)q] du dv 

for arbitrary X, p as described in Chapter III, §4. 

From the fact that polyhedral surfaces of the given structure are 

conformally equivalent to domains B it follows as before that our 

solutions are the surfaces of least area under the given conditions. 

A further rather obvious remark is that one-to-one correspondence 

of d and 7 can again be proved for the solutions of Douglas’ problem. 

Likewise the theorems on semicontinuous and continuous dependence 

of (I on the boundary are easily extended to t he solutions of Douglas1 
general problem. 



CHAPTER V 

Conformal Mapping of Multiply Connected 
Domains 

l. Introduction 

1. Objective. In Chapters I and II, the conformal mapping of 

general Riemann domains G on slit domains B was obtained by 

employing Dirichlet’s Principle to construct functions in G mapping 

G onto B. A different approach1 2 to t he problem of conformal mapping 

of arbitrary domains G on individuals of any of three classes 9£ 

of normal domains B is provided by the methods of Chapters III 

and IV; Dirichlet’s Principle is used there to construct functions 

in B giving the inverse mapping of B onto G. Restricting ourselves 

to A;-fold connected plane domains G,~ we shall pursue this latter 

approach to obtain a variety of mapping theorems stating that- 

arbitrary3 A'-fold connected domains can be mapped conformally 

onto individuals of a great variety of specific classes 91 of domains. 

To establish such mapping theorems, tw^o steps are necessary: 

First, with domains B of 91 as parameter domains, wre must prove 

the existence of a solution of variational problem IV, formulated 

in the preceding chapter. Secondly we must deduce the relation 

<t>(w) = 0 for the solution £ of this problem as a consequence of the 

vanishing of the first variation V. We postpone the first step io 

the end of this chapter; assuming that the variational problem is 

solved by the vector x and the domain B, we concentrate on the 

proof of the relation <£(w) = 0. 

1 See Douglas 12], 

2 According to Chapter II any A-fold connected Riemann domain is con¬ 

formally equivalent to a domain in the plane; therefore the restriction to 

plane domains G in this chapter does not impair the generality of the results. 

3 For convenience we disregard degenerate domains G having isolated 

points as boundary components. Such boundary elements may simply be 

omitted from the reasoning, and the theorems are then equivalent to those 

for a smaller value of k. 
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168 MAPPING OF MULTIPLY CONNECTED DOMAINS CHAP. V 

2. First Variation. As stated in Chapter III, §4, 1, the ex¬ 

pression (3.17) 

r(¥, A, m) = ip(\„ - Hv) - '/(A* + /Ol du dv, 

p + iq = (xl — xl) - 2ix„Iv = <t>(w) 

for the first variation of J)[£\ is valid not merely for simply connected 

domains B and for variations that transform B into itself, hut more 

generally for any domain of the prescribed class and for any varia¬ 

tion A, M satisfying conditions (3.14) and transforming B into an¬ 

other admissible domain B'. 

The expression (3.17) may be modified. Let B be divided into 

two parts, B — By + B> , by a piecewise smooth boundary line L 
in the interior of B. Suppose that A + /M, and hence X + Ah is an 

analytic function of w in Bi . Then the variation w = w' + e(A + iM) 

maps the domain B{ conformally onto a domain Bi ; therefore the 

corresponding part of Dirichlet’s integral remains invariant, and we 

obtain V by considering B> alone.1 Instead of (3.17) we have (3.23) 

V(t, X, m) = JJ Ip{\,i - mJ ~ <7(X„ + fjLu)l du dr. 

Now we assume that in (3.17) £ is harmonic and consequently that 

p + iq = <t>{w) is an analytic function. Under the further assumption 

’ For Bi wo may therefore drop tin* assumption that A, M have hounded 

first derivatives, hut not for B: . 
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that X and ju vanish in a neighborhood of the boundary lines of B2— 

except L—the relation (3.23) after integration by parts becomes 

(5.1) F(y, X, m) = f [X(p dv + q du) + y(p du — q dv)]\ 

since p and q satisfy the Cauehy-Riemann equations the domain 

integral over B> vanishes and only the contour integral over L 

remains. The expression (5.1) can also be written in the form 

(5.2) [L F(f, X, fi) = dm I / (X + iy)(j>{w) dw 

If r and B solve variational problem IV, V vanishes for all admis¬ 

sible variations of r and B, as was seen in the preceding chapters. Our 

task is to deduce from the vanishing of the first variation the relation 

<f>(w) = 0 for various (‘lasses 9b To this end we need not consider 

“arbitrary” variations but only a suitable subset of admissible 

variations depending on a finite number of parameters.5 6 

2. Conformal Mapping on Circular Domains 

1. Statement of Theorem. 

Theorem 5.1: Any //-fold connected domain G can be mapped con¬ 

formally on a “circular” domain B consisting of the whole plane 

with k circular disks removed5 or on the half-plane v > 0 with k — 1 

circular disks removed. 

Corollary: One of the boundary circles of B, the antecedent on 

of a fixed point on , and the center of a second boundary circle 

may be prescribed arbitrarily. 

2. Statement and, Discussion of Variational Conditions. I11 the 

lollowing sections we assume variational problem IV solved by a 

circular domain B in the r,e-plane and a vector y(u, v)y postponing 

to §7 the proof that the solution exists for k ^ 2. First we derive 

and exploit the variational conditions for the solution (independently 

of the number of dimensions of the y-space). 

We denote by uv the center of the boundary circle f$v in the plane 

5 The relation V — 0 for all other admissible variations is then a conse¬ 

quence. 
6 As said before, the trivial exceptional case in which (1 lias isolated bound¬ 

ary points will be disregarded in the following sections. 
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of w = u + iv. Wc assume that the point w* on ft corresponds to a 

fixed point on 71 ; w* will be called a fixed point. If B is a half-plane 

with circular disks removed, we choose the real axis r = 0 as the 

boundary ft . 

a) By variation of B into itself, i.e. of the representation of the 

boundary 7 on ft wc shall obtain the result: on the boundary circle 

ft in the ze-plane the function {w — u>„)20(w) is real and regular 

analytic except possibly for one pole of first, order at the fixed point 

w* on ft . 

If ft is a straight line, we shall find the variational condition: 

4>(iv) is real on ft and regular analytic except possibly for a pole of 

first order at w*. In this case, the function <f>(w) vanishes to at 

least the fourth order at infinity. If, in particular, w* = this 

zero merges with the pole at w* to a zero of at least the third order. 

b) By variation of the position of the center w, of the circle ft we 

shall obtain the relation 

/ <t>(w) dw = 0 
Jp'r 

for every curve fi'v homologous to ft in B. 
c) By dilatation and rotation of ft we shall obtain the condition 

(w — o)v)(f)(w) dw = 0. 
h'v 

If ft is a straight line in the w ,p-plane, say v = 0, conditions b) 
and c) assume the forms 

The conditions a) for a straight line ft as boundary are imme¬ 
diately obtained from those for a circle. Consider, for example, the 
unit circle in the w-plane, which is transformed into the real f-axis 
by the function w = (f — i)/(f + i). In the plane of the variable 
f = £ + irf we must consider, instead of the function 

x(r) = (& - *'r,)2 = m 
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Since dw/d£ = 2ij(f + i)2, the function (dw/dt;)2 has a zero of order 

4 at f = oo ; furthermore 

wfy(w) = x(f)(.f2 + l)2/4, 

so that x(f) is real on the real axis, w2<l>(w) being real for | w | — 1. 

Remarks: Condition a) for the exterior of a circle is immediately 

reduced to that for the interior by the transformation f = a/[z — «„).7 

Furthermore condition a) is invariant under conformal mapping of a 

circle onto itself. For example, if we map the unit circle onto itself 

by a transformation of the form w = (f — a)/(df — 1), the fact that 

iv2 <t>(w) is real on | w | = 1 implies that f2x(f) is real on | f | = 1 and 

vice versa. As a matter of fact a simple calculation gives, for 

| «f | = | | = 1, the relation 

from which condition a) obviously follows. 

3. Proof of Variational Conditions. Conditions b) and c) follow 

immediately from V = 0 if we apply special variations X, ^ in the 

expression (5.2) for V. We assume B to be inside the circle ft, say the 

unit circle, with polar coordinates r,6. A translation of the circle 

in the direction of the u-axis is effected by an admissible variation 

A, M for which A + zM = X + in = 1 in a neighborhood of ft bounded 

by a curve L homotopic to ft , and A + iM = 0 in a neighborhood 

of all the other boundary components. Since the expression X + in 

is constant, therefore an analytic function of w, in the ring B\ between 

L and ft , we can apply (5.2) and obtain immediately 

= 0. 

In the same way we obtain, for X + in = i in B\, the equation 

file - 0; 

7 If ft is the unit circle, we have = l/w and £2x(t) * w24>(w); the condition 
for the exterior of ft follows from the condition for the interior. 
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combining the two results, we have 

(5.3) J <t>(w) dw = 0. 

A dilatation of & can be represented by the transformation 

w' = (1 — e)w, a dilatation combined with a rotation by the trans¬ 

formation w' = (1 — ie)w in Bi , yielding 

\ + ifx — w or X + in = iw. 

As above we deduce from (5.2) and V = 0 the variational condition 

(5.4) W 4>(w) dw = 0 

for a variation of the radius. 

Since <j>(w) is regular in B, (5.3) and (5.4) are equivalent to 

(5.5) 

and 

(5.0) 

[ <t>(w) 

J0I 
die = 0, 

/ ic </>(tc) dw; = 0, 

for any curve in 7^ homologous to di • Condition (5.5) holds 

equally for the boundary circles of B, with centers u,, v > I. 

Instead of (5.(3) we find 

(5.0a) J(w — o)v)<t>{w) dw = 0. 
fir 

(Combining (5.6a) with (5.5) we have again (5.0).8 

To prove a) we must refine somewhat the corresponding argument 

of Chapter III, §4, for the case k — ], where 4>{w) is regular every¬ 

where within the circle ft. Without loss of generality we may assume 

that jSi is the unit circle and contains all the other boundary circles (3V. 

As in Chapter III, we write the relation V = 0 in the form 

(5.7) j'J* [p(X„ n.v) ^?(Xv “f~ gu)] du dv ^ 0 

8 Conditions (5.5) and (5.6) are equivalent to the statement: The function 

is the second derivative fn(w) of an analytic single-valued function 
\^{w) in B. 
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as t —» 1, where Bt is the subdomain of B inside the circle of radius 

r — t < 1 about the origin. The limit is uniform for all variations 

X, n for which | \u |, | Xv |, | g(( |, | pv | are uniformly bounded. 

We choose a fixed value r0 < 1 such that all boundary circles 

£2, ft , • • • , fik are within the circle of radius r = r(, and assume 

t > r0. As in Chapter III we choose a function a(r, 6) which vanishes 

for r < r0 and for which w' = w exp \iea(r,6)\ is an admissible 

variation of B into itself. Then (5.7) implies 

(5.7a) f a(t, 6)H(t, 0) dd —> 0 

Jo 

as t 1, where 

(5.8) //(r, 6) = <chn [vf <t>(w)] = — 2rtrto 

is harmonic in B. 

We choose h > 0 in such a way that 1 — h > n and consider in 

B a point Q with polar coordinates p, tj, where p < 1 — h. We 

define again 

a(r, 0) = K(r, 0; Q)P(r) = ~ --- 
t~ - 

where 

P(r) 

'0, 

<1 (r " 1 + k)’ 

r - p2 

2rp eos(0 — ■>?) + p2 
B(r), 

r < 1 — /i, 

1 — h < r < 1 — 

1, r > 1 — 

Condition (5.7a) expresses the following fact: Let 

= //(p,h;0 

be the harmonic function, defined and regular in the disk 0 < p < /, 

having for p = / the same values as H(Q) defined by (5.8). The 

function H(Q; t) tends to zero for t —» 1, and this convergence is 

uniform for all points with p < 1 — h. (The uniformity of the 

convergence is a consequence of the fact that our choice of a implies 

the uniform boundedness of | X„ |, | Xt, | , | pu |, | pv |.) Writing r, 6 

instead of p,*7 we consider the function (\ryd;t) = //(r, 0) — H(r,d; t) 
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which is harmonic for n < r < t, and vanishes for r = t, hence 
can by reflection be extended as a harmonic function to the region 
r0 < r < t2/r0. 

We proceed to show that H{r} 0) approaches zero for r —> 1. 
Denote by A/2 an upper bound for | H(r0, 0) | and set 2d = 1 — r0. 
With an arbitrarily prescribed c, choose h such that 

h 
hA t 

hd 2 

and restrict t to values in the range 1 — h/2 < t < 1. Using the 

relation #(p, 77; t) —» 0 for t —> 1, we keep t large enough to ensure 

! H(ro, 6; t) | < A/2 uniformly in 6 and conclude that | C(n , 6; t) | = 

! C(t2/r0, 6; i) | < A. As a consequence, we have, in the whole ring 

f/r0 > r > 7*0, the inequality | C(r, 0; J) | < A. For the derivative 

Cr we have, in the smaller ring t > r > 1 — h, the inequality | Cr | < 

A/d since all points of the ring are centers of disks of radius d in 

which C is regular and | C | < A. After selecting h we are free to 

choose t so near 1 that | H(r, 0; t) \ < c/2 for r < 1 — h — r*. Then 

I C(r*, M) | < £ I Cr(r, 6;t)\dr<jh<i; 

hence | 0) | < | C(r*, 0; 0 I + I 0; 0 | < 2(c/2) = c. 

Therefore for given c we have | i/(r ,0) |< eifl — r = /^is chosen 
sufficiently small; condition a) is established, provided that no 
restrictions at the boundary are imposed on the variation. A 
consequence of the vanishing of H(r,0) for r —> 1 is that H, and 
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therefore w2<j>(w) and <f>(iv), can he analytically extended beyond 

the boundary 0. 

If a point F: r = 1, 0 = 0o, on 0i is fixed in the sense that F 

has a prescribed image on y, we are no longer permitted to choose 

a(r,0) as above since now a(l, 0O) must be zero. An admissible' 

variation in this case is provided by 

«(r, 0) = [K^ 0; (?) - K(r, 0O ; Q))P(r]). 

Instead of H(Q; t) —> 0 we obtain the relation 

H(Q] t) - c K(t, 0o ;<?)-> 0 

where c/2t is the mean value of J/(r, 0) on r = t, or on any concentric 

circle. Substituting in the preceding reasoning 

0(r, 0; 0 = //(r, 0) — //(r, 0; 0 — c, 7v(£, 0O ; r, 0), 

we find by the same argument that 

H{r, 0) - c K(l, 0O ; r, 0) 

is a regular harmonic function for r0 < r < 1 which tends uniformly 

to zero for r —> 1. Since 7£(1,0O ; r, 0) is the imaginary part of 

(i/2w)(e9° + w)/(c'e° — w), an analytic function of w which is 

regular except for a pole at w = et9° and real for [ w | = 1, statement a) 

concerning the function w2 <f>(w) is proved. 

4. Proof (hat <t>(w) = 0. To complete the proof of the mapping 

theorem we have to deduce the relation </>(w) = 0 from the preceding 

variational conditions. The function being regular in B + 0, 

is either identically zero or has only a finite number of zeros in B + (3. 

By counting these zeros in B and on 0 we shall exclude the second 

alternative.9 

First we prove that on each freely variable boundary circle10 0* 

the function (w — w„)2<£(w) has at least four zeros. Assuming again 

that 0* is the unit circle we have w = ee,dw — iw dd, and 

wi <j)(iv) = f(0) 

on 0„, where/(0) is a real, periodic function of the angle 0 for which, 

by (5.5) and (5.6), 

9 This method was suggested to the author by Hans Lewy. 

10 According to footnote 3 p. 167 we assume that none of these circles 

degenerates to a point. 
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(5.9) 

and 

(5.10) 

= 0 

cos 0 dO — 0, sin 6 dd = 0. 

Equation (5.9) shows that there are at least two ares on sepa¬ 

rated by zeros of /(0) where /(0) > 0 and /(0) < 0, respectively. If 

there were only two changes of sign of /(0) on pv, we could suppose 

them to occur at points 0 = 0O and 0 = — 0O, respectively. As a 

consequence the function (cos 0 — cos 0O) /(0) would have the same 

sign for all values of 0, an impossibility since formulas (5.9) and 

(5.10) imply 

6 — cos 0o)/(0) dd — 0. 

The number of changes of sign, i.e. of zeros of /(0), on pp is therefore 

at least four, since it must be even. This result immediately extends 

to the other boundary circles pv of B, if the function (w — 4>(w) 

is considered instead of wf 

For a boundary circle (3„ whose center is lixed, only variational 

condition c) or (5.9) is established. Consequently we can prove 

only that /(0) or <j>(w) has two zeros. If a boundary circle (3„ is 

fixed, neither (5.9) nor (5.10) is proved, since these conditions follow 

from the variation of the boundaries. Moreover, if a point F: 

w - w* on ft? is fixed, the function (w — u>„)2 </>{w) may have a pole of 

first order at that point. Since the function is real on p„ it must vary 

from + 00 to — oo as w describes the circle starting from w*, so that 

/(0) has at least one zero on the circle. Consequently the number of 

zeros minus the number of poles on the circle is not negative. 

For symmetry we assume that B is the domain outside all the k 

circles . Let (3i be fixed, F a fixed point on Pi (i.e. having a fixed 

image on y), and let the center of p2 be fixed. The function 

regular in the infinite domain B, has a zero of at least the fourth 

order at w = cc.11 For the total number N of zeros of <j>(w) in B 

11 The function <f>(w) can be written in the form 

tn m j 

<t>(w) = S fl(w)2 = 2 ( 
I*-' M-l \dU dv ) 

(see Chapter III, §1), where B(w) is regular at infinity and f'M(w) has there¬ 

fore a zero of at least the second order at infinity. 
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we have therefore 

4 < N = X) [ d log <j>(w) 
Zm Jp'v 

where pi denotes a path of integration coincident with pv except for 

arbitrarily small semicircular detours about the zeros and possibly the 

pole of on pi (see Figure 5.3). The contribution to the integral 

from a small semicircle about a zero or pole of order r is equal to 

— wir or 7rir, respectively, with arbitrarily close approximation for 

sufficiently small radii of the semicircles. Let N,. and J\ denote the 

total multiplicity of zeros and poles, respectively, on fiv. The 

contribution on the right side by the small semicircles is approximately 

-f E (N, - P.). 

The contribution to (l/27rt) / d log <t>(w) by the path of integration 

along is given by the expression 

2~%y d log [(W - uf<t>(w)] - J d log (w - 

Since (u> — cov)2 is real on fiv, the contribution of the first integral 

is zero, while the contribution of the second integral on each circle is 
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(approximately) two. Combining all these facts and realizing that 

only integers N, Nv, Pv are involved, we find 

4 < N = (N, - P,) + 2k, 

Since Nt - Pi > 0, P2 = P3 = • • • = P, = 0, iV2 > 2, and AT, > 4 
for y > 2, we obtain 

4 < N < 3. 

This result is absurd and the only alternative left is that 0(w) vanishes 
identically; theorem 5.1 is proved. 

In the case of a finite domain B inside a circle ft or of an infinite 
half-plane domain where ft is a straight line, the reasoning remains 
practically unchanged and need not be repeated explicitly. 

3. Mapping Theorems for a General Class of Normal Domains 

1. Formulation of Theorem. The methods and results of the 
preceding section can be generalized to other classes 91 of normal 
domains; a very general mapping theorem results, involving 3h — (> 
parameters (k > 2). 

We consider plane domains B with boundaries ft , ft , • • • , ft . 

For ft we may choose a straight line or an arbitrary fixed closed 

Jordan curve; one fixed point F on ft corresponds to a given point 

P on 71. The boundary ft is an arbitrary Jordan curve, starshaped 

from a fixed center a and permitted to vary by expansion or contrac¬ 

tion from this center. The curves ft , ft , • • • , ft are convex, each of 

arbitrarily prescribed shape, and each permitted to vary by expansion 

or contraction from an arbitrary center, including the limiting case 

of parallel displacement. Leaving aside other possible variants, we 

deal with the following two classes of parameter domains B : 
a) Domains 91a ; ft in closed, B is inside ft and outside ft , ft*, • • • , ft , 
and these curves have no points in common. 
b) Domains 9h ; ft is a straight line and B is outside ft , ft , • • • , ft . 
We state: 

Theorem 5.2: Any fc-fold connected domain G can be mapped con¬ 
formally onto a domain B of class??, if 9? is either 9?« or 91&, in such a 
way that F and P are corresponding points. 
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First we shall assume that our curves ft are analytic; later in 
§6, 2, however, we employ a simple passage to limit to extend the 
result to non-analytic boundaries, e.g. to boundary curves with 
vertices, or to straight slits each of which has a prescribed direction. 

The proof of the theorem again proceeds from the assumption 
(to be verified in §7) that variational problem IV for our classes 
of parameter domains is solved by a domain B and a vector Our 
task is merely to prove the identity 4>(w) — 0 as a consequence of the 

condition V = 0. 
2. Variational Conditions. The evaluation of V = 0 is easily 

reduced to the special case of §2, 3. As a preliminary step we 
consider a single boundary curve ft . By a function w = w({) we 
map the whole w-plane outside ft onto the exterior of the unit circle 
in the plane of an auxiliary complex variable f = re\ in such a way 
that f = oo and w = °o correspond to each other. Because of the 
supposed analytic character of ft, the function w(f) is analytic in 
the domain |f | > 1 and its derivative dw/df is bounded there; 

likewise the inverse of w is analytic on and beyond /3V and dw/dt; 

cannot vanish there. By this device the variational condition 
corresponding to the variations of ft into itself is reduced to the 

condition corresponding to the variation of the unit circle | f | = 1 

into itself. 
According to §2, 2 this condition implies that f<j>{w)(dw/d$)2 = 

f2x(f) is real, and hence regular, on | f | =1. The function x(f) is 
regular on | f | = 1; therefore <j>(w) = p + iq is regular on /3y. Since a 
fixed point F on ft corresponds to a fixed point P on 71, (j){w) may 
again have a pole of the first order at F; by the same argument as in 
§2 it must have at least one zero on ft . 

Knowing that p and q are regular on ft , except possibly at F on 
ft , we may directly exploit the condition 

V = Jj [p(Xu - fh) - g(xr + M«)] du dv = 0 

by assuming X = /x = 0 on /3« for k y* v. Observing that p„ — Qv = 
V* + 9« = 0 we obtain after integration by parts 

/ t(pX - qn) dv + (pn + q\) du] = 0. 
Jb. 
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Equivalently, considering 6 as a parameter on f3v and denoting 

differentiation with respect to 6 by a prime, we have 

gu') + p(pu' — qv')] dd = 0. 

On (3, the variations X, ijl are the components of a displacement 

vector D, and the variations of the boundary curve (3V into itself 

correspond to tangential vectors (X, /i), i.e. to X — An', n = Avf 

where A is an arbitrary (piecewise smooth) function of 6 on f$v. A 

slight modification of the argument in §2 establishes the following 

conditions: 

a) The variation of (3, into itself leads to the condition that the 

vector to with the components pv' + qu' and pu! — qv' is everywhere 

orthogonal to the curve (3„. An equivalent statement is that f2x(f) 
is real on /3y. 

b) Variation of (3„ by a similarity transformation from the origin 

corresponds to X = u, g = v and leads to the condition 

rto dd = 0, 

Avhere r is the vector with the components u, v. 

c) Variation by parallel displa(*ement of (3V corresponds to arbitrary 

constant values of X and fx on (3y and leads to the condition 

rua dd = 0, 

where a is an arbitrary constant vector with components a, b. Con¬ 

ditions b) and c) together yield the relation 

1*2 TT 

(5.11) / m(r - a)de = 0, 
Jo 

which can also be obtained directly by similarity transformation of 

f}v from the center at u = a, v — b. 

At any point, to = 0 implies <j>(w) = p + ^ = 0 since u+ v'2 

0. As in §2, either the function is identically zero in B or it 

has only a finite number N of zeros in B and a finite number Nv of 

zeros on . 

3. Proof that <t>(w) — 0. To show that cannot have a finite 

number N of zeros, we proceed as in §2. Consider the continuous 
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vector ft), normal to (3>> by a). Since (32 is assumed starshaped from 

the origin, the inner product of the vector r with ft) does not change 

sign along #> unless ft) passes through the value zero and changes 

direction. The vanishing of the integral of rft), assured by b), thus 

implies at least two zeros of ft), and hence of on . 

The same reasoning holds for the remaining curves $v . However, 

condition c) ensures the existence of two additional zeros of <t>{w) 

on . Let A] and /12 be the two zeros on required by condition 

b), Z the point of intersection of the tangents to j3v drawn from Ax 

and A>>, and denote by a the vector from O to Z. If the two tangents 

are parallel, denote by a an arbitrary parallel vector. From (5.11) 

we infer that the vector U) vanishes in at least t wo points on £?„ other 

than Ai and A2. Otherwise ft) would change from the inward 

normal direction to the outward normal direction along /L in A\ and 

A2 alone. The vector r — a connects Z with a point traversing (3„. 

Since pv is assumed convex for v > 2 the product ft)(r — a) would 

have no change of sign along the whole curve. This contradiction to 

(5.11) shows that <f>(w) has at least four zeros on . 

From this point on the proof that 4>(w) = 0 proceeds almost 

exactly as in §2. As before we assume that 4>(w) has only a finite 

number N > 0 of zeros in B and denote by Nv the number of zeros 

on . Again 

N = ~ 2 J d log <t>(w) 
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where & is identical with ft except for small semicircular detours in B 

circumventing the zeros on ft and the pole at F on ft ; the paths of 
integration leave B on the left side. Let us assume that ft is the 
real axis, F a finite point on ft . Since is real on ft with a pole of 
order Pi < 1 at F and a zero of not less than fourth order at w = <*>, 
there must be at least one more zero of <t>(w) on ft ; otherwise <t>(w) 
could not approach the value + <*> on the one side, the value — <*> 

on the other side of F. We conclude for ft that N\ — Px > 4 and 

therefore 

m Ld 108 *(”) s "2- ■ 

Employing the function w(£) of article 2 and the relation 

*<« - (f) • 
we write for ft 

2S /»; d 108 *M ~ 2S li d log *(f) " ti li J 108 

where the unit circle in the f-plane is taken to correspond to &. 
Since w'(f) is regular for | £ | > 1 and has no zeros, the second integral 
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vanishes; the first, written in the form 

LLd,°e{'' 
yields, as before in §2, the value 2 — | N2. Since N2 > 2, we have 

„J-. f, d log </>(«’) < 1. 
2tti Jp'a 

In the same way we obtain from the condition Nv > 4 for v > 2, 

2S Ld l0g S °- 

Adding the results, we find 

N < -1, 

an absurdity which leaves only the alternative that 4>(w) is identically 

zero. The proof of theorem 5.2 is complete. 

For the other variants of the theorem the same reasoning holds 

with obvious modifications which need not be described in detail. 

That the boundary curves are analytic was essential for the proof. 

Using analytic boundaries as approximations, we can easily extend 

the result to non-analytic boundaries (see §6, 2). 

It may be stated that the theorems of the preceding section can be 

considerably extended. Instead of considering variations of the 

boundary curve by similarity transformations we may permit /3y 

to vary within a more general prescribed set of curves. 

4. Conformal Mapping on Riemann Surfaces Bounded by 

Unit Circles 

1. Formulation of Theorem. 

Theorem 5.8: Every plane12 A;-fold connected domain G having no 

isolated boundary points can be mapped conformally onto a Riemann 

surface B consisting of k identical disks, e.g. interiors of unit circles, 

connected by branch points13 of total multiplicity 2k — 2. Moreover, 

12 As said before, in view of the general result of Chapter II the assumption 

that G is a plane domain is not an essential restriction. 
13 The conformality of the mapping is of course interrupted at the branch 

points. 
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an arbitrarily fixed point Fv on each boundary circle can be made to 
correspond to a fixed boundary point Pv on the boundary continuum 
yv of (7, and the position of one simple branch point in B may be 
prescribed. The class 4? of these domains depends on 3A* — 6 real 
parameters: the 2k — 3 freely variable branch points represent 
4A: — G coordinates, while fixing the points Fv reduces the number of 
parameters by k. 

In §7 we shall prove existence of a solution of the corresponding 
variational problem TV by a vector %(u,v) in a domain B of the 
class 91. Anticipating this fact we need only deduce </>(te) = 0 from 
V — 0, by a procedure similar to that employed in §2 and §3. 

2. Variational Conditions. Variation, of Branchpoints. Repeat¬ 
ing the proof of §2, 4 we obtain tlie same conclusion. The analytic 
function 

y//{w) = w2 <f>(w) 

is regular in the neighborhood of each unit circle /■?„, except possibly 
for a pole of the first order at, Fv, and \p is real on (3V. 

Further variational conditions are obtained by variations of 
branch points, the only possible type of variation of the domain. 
Let P be a branch point which is not fixed for the class 91, say the 
point w — 0, and let D be a neighborhood of P in B containing no 
other branch point. Consider a subdomain Bx of I) containing P 
and bounded by a curve L, closed in B, e.g. by a multiple circle 
enclosing P. We apply the general expression (3.23) for V, choosing 
X and p as zero outside D and X + ip as an analytic function of w in 
Bi ; then formula (5.2) holds. In particular, we choose X + ip = 1 
or X + in — i in Bx . As before, we can deduce the variational 
condition (5.3) 

J 4>(w) dw = 0, 

for any closed curve L enclosing no other branch point than P. 
In the case of a simple branch point, (5.3) is the only variational 

condition. If P is a branch point of higher order—say of orders—we 
must supplement condition (5.3) by others corresponding to a resolu¬ 
tion of P into branch points of lower order. In a small simply con¬ 
nected neighborhood Bx of P, bounded by L, such a resolution is 
effected by an analytic transformation of the form 
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(5.12) t i v/O'-H) w — w + ew 

or 

(5.13) W = W + lew 

where v may range from 0 to j — 1 and e is a parameter. To prove 

this fact we first use the transformation w = o-J+1 to map the neigh¬ 

borhood Bx of P on a simple neighborhood of cr = 0 in a <r-plane; 

transformation (5.12) takes the form w' — crjn + ecr\ The branch 

points of the transformed neighborhood Bj over the w'-plane cor¬ 

respond to the zeros of 

dr = + J V+,~y + «]. 

By way of example we see that (5.12) resolves the branch point w — 0 

into j + 1 — v simple branch points and one (v — l)-fold branch 

point at w' = 0. 

The variation (5.12) corresponds to X + in = wvl(j+l) in Bi, and 

(5.13) similarly corresponds to X + in — iwv,{3'H) in Bx. In either 

case we define X + in — 0 out side a wider simply connected neighbor¬ 

hood D about P. In the strip 1) — Bi the expression X + in can 

be defined arbitrarily, with the sole restriction that X + in is piecewise 

smooth in B. Then formula (5.2) and the condition V = 0 imme¬ 

diately yield 

file J wv,W) 4>(w) dw — 0, w »l(j+D - o, 

or 

(5.14) J wP,i3+l) <j>{w) dw ~ 0, v — 0, 1, • • • , j — 1. 

Conditions (5.14) yield 

Lemma 5.1: At a branch point of order j, the function <f>(w) has a 

pole at most of order j. 

m 

Proof: The function is of the form <p(w) = 23 where 
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fRe [fp(w)] = . The transformation a = w1/0+1) maps the neigh¬ 

borhood of the branch point w = 0 onto a simple neighborhood of 

<r = 0. Since the functions fn(w) have bounded real parts in the 

neighborhood of w = 0, they are regular functions of cr, and so is 
m 

A{<r) — X) idfjdc)2. Consequently, 
p—i 

x(t) = <t>(w) 
1 

(7T"i)2> 
AM, 

where A (V) is regular for a = 0. Thus <t>(w) appears to have a pole 

of order 2j at a = 0. Consider, however, conditions (5.14); expressed 

with reference to the <r-plane, they become 

(5.15) » - 0, 1 >•••,./— 1, 

where L' is a simple closed curve about the pole of x(<r) at a — 0. 

Expanding x(<r) in powers of <r, 

<t>(w) = xM - + - + • • • + -i + ~ + • • ■ + 
a a1 rr3^1 

bj 
T2/ ’ 

we see by (5.15) that all the coefficients ht vanish, and <t>(w) has a 

pole at most of order j at a = 0, as stated. 

3. Proof that (f>(w) ~ 0. The relation <t>(w) - 0 is proved by the 

same method employed before. Unless <t>(w) and hence == 

w2 <t>(w) vanish identically, the function ^(w) has a finite number N of 

zeros in B, and, since it is regular in the neighborhood of the boundary 

circles, a finite number Nv of zeros on $v. At the fixed point Fv 

there is a pole of multiplicity P, = 1 or 0. As before, Pv — 1 implies 

Nv > 1, so that Nv — Pv > 0 for every boundary circle . 

Because of the factor w2 the total multiplicity N of zeros of 

\//(w) in B is at least 2k. According to the preceding article, the total 

multiplicity of the poles of yp(w) at the variable branch points is not 

greater than 2k — 3. The pole at the fixed branch point may be of 

second order, so that the total multiplicity P of poles of \k(w) is at 

most 2fc — 1. Combining these results we have 

N - P> 1, 

a formula which obviously remains true if zeros and poles merge. 
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On the other hand 

1<AT-P = J-. Z [ d log i(w), 
v Jp'r 

where again f$'v denotes the circle &v described in the negative sense 

and modified by small semicircular detours in B about the poles and 

zeros of \p(w) on . As before 

since NP — Pv > 0 and since i!/{w) is real on $v. We are led to the 

absurdity 1 < N — P < 0; this contradiction proves that ^(ic) and 

consequently <f>(w) vanish identically. The proof of theorem 5.3 is 

complete.14 

The preceding method can be used to establish a similar theorem 

for the more general domains obtained by adjoining to the /c-fold 

connected plane domain G a given number of full planes, each plane 

being attached by two branch points. 

5. Uniqueness Theorems 

Theorem 5.^: For a given domain G the conformal mapping described 

in theorems 5.1-5.3 is uniquely determined. 

1. Method of Uniqueness Proof ,15 Suppose a domain G is mapped 

on two domains B and B* of the class 9? under consideration; this 

assumption would imply a conformal mapping of B onto B* by an 

analytic function w* = f(w). The uniqueness theorem is tantamount 

to the statement that w* — w, or 

g(w) = f(w) — w 53 o. 

The proof of this identity will be like that used for the relation 

<t>{w) = 0. We assume that g(w) is not identically zero, consequently 

has a finite number N of zeros and P of poles in B. An investigation 

of the number N — P will lead to a contradiction. Since the respec- 

14 The theorem is due to Riemann. For different proofs see Bieberbach 
[1] and Grunsky [1]. 

16 The method was first proposed by Carleman and later found inde¬ 
pendently by Shiftman, see Carleman [2] and Shiftman [6], 
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tive boundaries 0 and 0* of B and B* may be assumed to be analytic, 

the function g(w) is analytic on 0 and we have 

(5.16) N — P = ^2 [ d log g(w) = 1> 

where 0r¥ coincides with 0V except for small semicircular detours in B 

about the zeros and poles of g{w) on 0V ; the sense of integration is 

such that B remains to the left. 

2. Uniqueness for Ricmann Surfaces with Branch Points. First 

we consider the A’-fold unit circles of § 1. We suppose that we have 

normalized the domains of this class by fixing one branch point and 

prescribing, for one point Fv on each boundary circle 0V, the corre¬ 

sponding point Pv on yv. At the fixed branch point we have f(w) = 

ic, i.e. g(w) = 0, so that N > 1; it is immediately obvious that P = 0. 

To evaluate the integral in (5.10) we observe that the complex 

number g(w) = f(w) — w is represented geometrically as a vector 

with initial point at w and terminal point at w* = f(w). The integral 

L = d log g{w) 

gives the number of full rotations of this vector as the point w de¬ 

scribes 0V . If g(w) had no zeros on 0V, the path of integration would 

be 0y = 0V, and the end point of the vector would always be on 0V , 

so that Iv = +1; but we know that g(w) — 0 at the point Vv of 0V . 

The circumvention of a zero of n-t.h order contributes — n/2 to lv ; 

consequently Iv < 1 — and since Iv must be an integer we have 

Iv < 0. From (5.16) we obtain the inequality N < 0, contrary to 

the assumption N > 1. It follows that f(w) = w; the uniqueness 

proof is complete. 

3. Uniqueness for Classes 91 of Plane Domains. We next prove 

the uniqueness theorem for the class 9ta described in §3. For the 

number of poles we have again 

(5.17) P = 0. 

The contribution 11 of 0i to the right member of (5.16) can be dis¬ 

cussed exactly as in article 2; accordingly 

(5.18) h < 0. 

Since 0* is obtained from 02 by a radial transformation relative 

to an interior point, and since 02 is star-shaped relative to this 
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point, ft and p* have no common points unless they coincide. If 

they coincide, we again reason as in the preceding article (except that 

the sense of integration is now different) and conclude that 72 = 

— 1 — nj2, where n is the total multiplicity of the zeros of g(w) on 

ft • If P* surrounds ft , we obviously have /2 = — 1, and the same is 

true if P* is interior to ft : in all cases 

(5.19) h<-1. 

Consider /„ for v > 2. Each of the three situations enumerated 

for 12 may arise, yielding /„ < — 1; but three additional situations 

are possible for P* with respect to pv : 

1) 13* and its interior lie completely outside pv; in this case /„ = 0. 

2) p* is tangent to pv . The function g(w) either has no zero at all 

on ft,, or it has a zero at the point of contact of ft and P* . If g(w) 

has no zero we displace pf slightly so as not to intersect ft . In this 

displacement the total angle of rotation of the vector attached to the 

points of ft is changed continuously. Since it must always be a 

multiple of 2ir it cannot change at all: in this case lv = 0 or — 1, 

according as the tangency is external or internal. 

If g(w) vanishes at the point of contact, the zero contributes at 

most — | to /„ . Together with the contribution of the remaining 

arc of Pv, we have Iv < — \ or /„ < — according as the tangency 

is external or internal. These inequalities can be replaced by Iv < — 1 

or /„ < —2, respectively, since Jv is an integer. 

3) pv intersects P? . Then, as will be proved in the next paragraph, 

there are only two points of intersection by virtue of the convex and 

homothetic character of ft, and p? . In this case we again have 

h < 0, as can be seen geometrically. In the self-explanatory 

diagram we distinguish three possibilities; the letters A and B 

refer to the points on ft in which ft intersects p? , while A*, B* are 

the corresponding points on P* . (The cases where A — A* or 

B = B* can be reduced to those of the diagram by a slight circum¬ 

vention as previously.) 

To prove that ft and p* have only two points in common, assume 

that they intersect in the points A, B, C, considered as points of 

Pv. Three points A*, B*, C* on pt correspond to these points, by the 

homothetic relation between ft and p* . The lines AA*, BB*, CC* 

are concurrent at a point P. One of the lines FA, PB, PC, say PA, 

passes through the interior of the triangle A*B*C* and intersects 

B*C* at a point Q* between B* and C*; therefore, PA intersects BC 
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at a point Q between B and C. From the homothetic relation 

between the triangles ABC and A*B*C* it follows that one of the two 

points Q and Q*, say Q*, does not lie between A and A*. Being an 

interior point of fit, Q lies between two boundary points of fi* on the 

line PA. Hence there exists a third point A** of fit on PA in addition 

to A and A*. Since p* is convex, there can be no such point; pv and 

Pv have only two points of intersection. 

P 

Collecting our results for v > 2, we have 

(5.20) lv < 0, v = 3,4, 

Substituting the relations (5.17-5.20) in equation (5.16), we obtain 

N < -1, 

in contradiction to N > 0. 

4. Uniqueness for Other Classes of Domains. The same method 

yields a uniqueness proof for the other classes of domains considered 

in the previous sections. For domains B containing the point at 

infinity only a slight modification is necessary: we now have P < 2 

instead of P = 0. The function f(w) may take a finite point wo into 

w* = oo ; then g(w) = f(w) — w has a pole of first order at w = wq 
and another at w = oo, so that P = 2. Otherwise /(<*>) = oo ; in 

this case P = 0 or 1 according as/(to) has the residue 0 or 1 at infinity. 
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Hence N — P > — 2, while the counting of the indices /„, since all 

curves are described in the same sense, yields N — P < — 2. 

Again we must have g(w) ss (). 

If ft is the real axis, no new modification is necessary. 

6. Supplementary Remarks 

1. First Continuity Theorem in Conformal Mapping. Our results 

can be considerably extended on the basis of 

Theorem 5.5: Let w = gn(z) be a function mapping a fixed fc-fold 

connected domain G in the 2-plane bounded by k Jordan curves 

7i, 72, • • • , 7k conformally onto a domain Bn in the w-plane. Suppose 

that for n oo the domain Bn tends to a domain B in such a way 

that the k boundaries of Bn—assumed as Jordan curves—tend to k 

boundary curves of B in the strong sense. Then either gn(z) tends 

to a constant, or a subsequence of the gn tends to a limit function 

g(z) mapping G on B\ the convergence is uniform in the closed domain 

G and the mapping by g{z) as well as by gn(z) remains continuous 

and biunique at the boundary. 

We may assume B as a bounded domain. Then the equicon- 

tinuity of a sequence gn(z) not tending to a constant follows exactly 

as in Chapter III, §2. Theorem 5.5 follows from this remark by the 

same arguments employed before. 

2. Second Continuity Theorem. Extension of Previous Mapping 

Theorems. Suppose 9l(n) is a class of domains B{n) with analytic 

boundaries as considered in §3-§5, while Sfl is a class of domains 

whose boundary curves are limits in the strong sense, for n —> <x>, 

of the boundary curves of domains B(n). If G is a fixed domain, a 

mapping w — g{n\z) of G onto a domain of 9l(n) is assured by our 

previous results. The same reasoning as that employed in Chapter 

IV, §2, 3 to exclude degenerations of the parameter domains, serves 

to prove that the domains JB(w) corresponding to G cannot tend to 

degeneration. Hence we may assume that a suitable subsequence 

tends to a domain B of the class 9?. Theorem 5.5 then implies that G 

can be mapped on B. As a result we formulate 

Theorem 6£:\The boundary curves of B need not be analytic func¬ 

tions; they may be merely Jordan curves. 
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No essential change is necessary in the proof. In the same way we 

find 

Theorem 5.7: Instead of convex boundary curves, some or all the 

boundaries of B may be straight slits whose directions arc prescribed. 

3. Further Observations on Conformal Mapping. More mapping 

theorems can be proved by the methods in this chapter. For example, 

domains not of genus zero could be treated, but are beyond the scope 

of the present book. Attention should be given to the role of con¬ 

vexity in our proof: it is not difficult to show by examples that 

omission of this assumption might invalidate the uniqueness theorem. 

On the other hand, mapping theorems do not necessarily depend on 

convexity,16 as may be seen from the following example, a proof of 

which is very simple on the basis of our methods. We consider a 

class 91 of doubly connected domains B depending on one parameter. 

The domains B arc ring-shaped. The outer boundary curve yi may 

be an arbitrary Jordan curve. The inner curve 72 is any member of 

an arbitrarily chosen family of curves 7(0 having the following 

properties: y(tf) contains y{tf) for > t<> , 7(0) is a point, and 7(1) 

has at least one point in common with 71 . The mapping is uniquely 

determined if a fixed point on 71 is to have a fixed image. 

Incidentally, our approach can also be used to study the behavior 

of mapping functions under continuous change of the domain. For 

example, consider the ring G between a unit circle and a concentric 

square in its interior, and map G onto a circular ring B. What 

happens in the limit if the square touches the unit circle? The 

answer is that the function mapping G onto B converges non-uniformly 

to constant values on the unit circle. 

7. Existence of Solution for Variational Problem in Two 
Dimensions 

To prove that the variational problems on which our mapping 

theorems are based possess a solution, we refer to the sufficient 

condition of theorem 4.1 and show that it is always satisfied for a 

two-dimensional y-space. 

1. Proof using Conformal Mapping of Doubly Connected Domains. 

The mapping theorem for k-fold connected domains G will be proved 

16 See e.g. Manel [1], where non-convex slits are the boundary curves. 
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by induction;17 for simply and doubly connected domains it holds by 

Riemann’s mapping theorem. An important element in the proof 

is the fact that the minimum value d of Diriehlet’s integral is equal 

to the area A of G, if a domain B can be mapped conformally onto G. 

We shall prove in detail the existence of a solution of problem IV 

for circular domains B. The boundary ft may be chosen as the unit 

circle, with all the other boundary circles ft , ft , • • ■ , ft in its interior. 

We note first that G may be assumed to be a finite plane domain 

bounded by k Jordan curves 71,72, • • • , 7* , with 71 as the outer 

boundary. For if G were not plane, we could first map G conformally 

onto a plane domain G\ as is always possible by theorem 2.2. Sup¬ 

pose that the boundary component 71 of G' is not a Jordan curve, 

but e.g. a boundary slit: a second conformal mapping will take the 

simply connected plane domain bounded by 71 and containing G' 

into a plane domain bounded by a circle 71 . The image of Gf in 

this mapping is a plane domain G" with the Jordan curve 71 as one 

boundary. Treating the other boundaries successively in the same 

way, we obtain after k steps a domain of the desired type conformally 

equivalent to the original domain G. 

Again let 7' and 7" be any subdivision of the system 7 of boundary 

curves into complementary subsets. Denote by d' and d" respec¬ 

tively the lower bounds of Diriehlet’s integral for the variational 

problems referring to 7' and 7" as boundary systems, by d the cor¬ 

responding bound for 7. As was shown in Chapter IV, to prove the 

existence of a solution of problem IV we need only verify the sufficient 

condition d < d! + dLet 7' consist of the k' curves 71,72 , • ■ • , 

7*/ , k' < /c. By the induction assumption we have 

df — A1 — Ao — * • • — Ah> — A' > A1 — A2 — * • • — Ak — A, 

where Ai denotes the area contained in 7* and A, A' denote the areas 

respectively bounded by the systems 7, 7'. Consider a circle suffi¬ 

ciently small to be contained in the interior of any of the curves 

7*/ -f 1 , yk' 4- 2 > * * * > 7k 7 &nd let 2p be its area: this shows that 

d' > A + 2p; 

the sufficient condition d < d! + d" is proved if we can establish the 

inequality 

17 Degenerate cases in which one or more of the boundary curves are 

isolated points may be disregarded by the induction assumption. 
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(5.21) d < A + p. 

We obtain (5.21) by constructing a domain B, and in B a vector 

t}(;u,v)j mapping B (non-conformally) onto G, for which D[t}] < A + p. 

By Dirichlet’s Principle we have d < D[%] < A + p for the vector y 

harmonic in B and coinciding with \) on ft 

The presentation of the proof is simplified if we choose 71 ,7-2 , • • • , 

7&-1 as circles. For since we assumed the mapping theorem to hold 

for domains bounded by k — 1 contours, we may first map the 

domain bounded by yx, y2, * • , y*_i conformally onto a domain 

bounded by k — 1 circles. In other words we may from the outset 

assume 71,72, • • • , jk-i to be circles, while the last contour 7*, or 

briefly 7, is any closed Jordan curve. For brevity we shall refer to 

ft simply as ft 

We proceed by a continuity method. Consider a closed set 

7(/) of curves, depending continuously on a parameter tf 0 < t < 1, 

with the following properties:18 

1) 7(0) is a circle of area 2p inside 7. 

2) The curves 7(0 bound a monotone increasing sequence of domains. 

3) 7(1) = 7- 

18 Such a set y(t) is for example furnished by the images of the circles that 

lie in a circular ring conformally equivalent to the doubly connected domain 
bounded by y and r(0), and are concentric with the boundary circles of the 

ring. 
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The system 7i, 72, • • * , 7*-i, 7(0 bounds a continuous sequence 

G(t) of domains, with area A(t) and lower bound d(t) of the variational 

integral. 6(1) is identical with G. 

Since 6(0) is a circular domain, it is a domain for which both the 

mapping theorem and the existence of a solution of problem IV are 

already established. We have obviously d(0) = ^4(0). 

Inequality (5.21) will follow from 

1jemma 5.2: Let r be a value of the parameter t for which G(t) can 

be mapped conformally on a domain B, so that problem IV for 6(r) 

Q(r) 

G(r) 

Figure 5.8 

has a solution with d(r) = A(t); then problem IV can be solved for 

all values t in the range r < t < r + h, for sufficiently small positive h. 

Denote by 2 the set of all values t for which G(t) is the conformal 

image of a circular domain B. From §6 we infer that 2 is a closed 

set. Since the value t — 0 belongs to 2, lemma 5.2 implies that 

every value t, including t — 1, belongs to the set; hence 6 is con¬ 

formally equivalent to a domain B. 

Proof of Lemma 5.2: We assume that 6(r) is the conformal image of a 

circular domain B(r), with 7(7) corresponding to a circle £(r). I11 

Figure 5.8 the circles ft , ft , * • * , ft-1 and 71,72, • • • , 7*~i are not 

shown; they may be supposed to lie in the part of the diagram beyond 

the edge of the page. 
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Let t(u, v) be the vector mapping B{r) conformally on (?(r). 

We surround /3(r) by a fixed concentric circle k of radius a, so chosen 

that there are no boundary points of B(t) between /3(t) and its 

reflection in k. To 7(7 + A) in G(t) there corresponds, by our 

conformal mapping, a curve {3*(t + A); for sufficiently small A, 13* 

is arbitrarily near (3(t) in B{r) by the continuity of the mapping 

function t at the boundary (proved in theorem 2.4). We denote by 

B*(t) the domain consisting of B(r) with the interior of k removed; 

R is the ring shaped domain l)etween 13* and k and B'(t + h) denotes 

the noneircular domain B*(t) + R which is mapped conformally onto 

<7(t + A) by t(</, v). 

Our aim is to transform the domain B'{t + h) into a circular do¬ 

main B taking the point (a, r) of B' into (?7, v) in B, and to construct 

the transformation in such a way that the vector 

t)(u, v) = t(a, v) 

in the circular domain B is admissible in problem IV for (7(r + h) 

and that < .4(7 + li) + p. Then our previous remark shows 

that problem IV has a solution for G(t + A), and the proof of the 

lemma is complete. 

The construction leaves the region B*(t) outside k untouched 

(u = a, v = v in B*) and affects only the noncircular ring R. We 

transform R into a circular ring R* with the same outer radius a such 

that the points on k remain fixed. 

First we map R conformally onto a ring R*7 by a transformation 

that, takes (u, v) \nji into (u*7 v*) in R*.19 In general this transfor¬ 

mation carries points of k into other points of k. Let r, 6 be polar 

coordinates in R, r*, 6* polar coordinates in R*y and set w — r el9y 
w* r* e*o*. p0jn|, a (,%e on K rnay correspond to the point 

a exp {id* 1 ■= a exp {i[6 + g(6)]\. 

Secondly we restore the points of k to their original locations by the 

transformation 

19 Here we arc making use of the mapping theorem for two-fold connected 

domains. If we want to admit knowledge of the theorem for simply connected 

domains alone, we must adopt the modification described in article 2. 
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This now transformation is not conformal. However, the vector t) 

defined by l)(u, v) — t(w, r) is seen to be continuous and admissible 

in B = B* + /(* if wo realize that the function a(6) and its deriva¬ 

tives arc continuous. For the conformal transformation taking R 

into R* maps the circle k into itself and can therefore be extended 

beyond k by reflection. Moreover, h can be chosen so small that the 

transformation of R into R* differs, on k, arbitrarily little from the 

identity. (hnsequently (t(6) and its first deriva.tive can be made as 

small in absolute value as desired. Substituting l)(w) = t(w*c",ir), 

we find20 that />/,*[t)l differs from /),,[t| by less than p 2 if h is taken 

sufficiently small. We can further choose h so small that A (r -f h) > 

A (t ) — p/2. Recalling the assumption that <Hr) = H(r), we find 

= On*\t\ + /7#*|l)j 

< /Lf*[t| + 7>«[t] + p/2 

= A (t) + p, 2 

< A(t + h) + p. 

Lemma 5.2 is established: by our previous remark, we have proved 

the existence of a solution of problem IV for the domain G. 

2. Alternative Proof. Supplementary Remarks. We present a 

variant of the proof that makes no use of the mapping theorem for 

doubly connected regions. Instead of mapping R onto a circular 

ring, we map the whole simply connected exterior of onto the 

exterior of a circle by a function w* = g(w) differing only slightly from 

the identity on k. Thereby R is mapped onto a domain R* bounded 

by the image k* of k and by a circle. We can transform R* (non- 

conformally) into another ring, in such a way that the points of k* 

are again taken into their original positions on k. As above we 

obtain an admissible domain B, and an admissible vector t) mapping 

B onto G(t + h), for which Dg[t)] < A(t + h) + P if h is chosen 

sufficiently small. 

For the other classes of domains considered in this chapter the 

proof is quite similar to that for circular domains. Only one point 

requires attention: the choice of the domain (7(0) for the class of 

Riemann domains considered in §4. We must choose (7(0) as a 

domain in the x, //-plane which can be mapped onto a Riemann 

20 See similar estimates in Chapter IV, §3. 
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domain B by an explicit function. For this purpose we use the 

domain B = B0 having (k — l)-fold branch points at w = 1/2 and 

w — —1/2. The domain B0 is mapped by the function 

.r + iy = 
Ilk 

on a A;-fold connected plane domain, which by a linear transformation 

can be changed into a ring domain (7(0). 

By showing that variational problem IV always possesses a 

solution, we have completed the proof of the mapping theorems of 

the present chapter. 



CHAPTER VI 

Minimal Surfaces with Free Boundaries 
and Unstable Minimal Surfaces 

1. Introduction 

In this chapter we shall discuss two extensions of the theory of 
minimal surfaces. First we shall solve the problem of finding minimal 
surfaces of least area when the whole boundary or part of it is not 
prescribed but left free on given manifolds.1 Secondly we shall study 
minimal surfaces whose areas are not relative minima. Minimal sur¬ 
faces of this type correspond to unstable equilibria of a soap film; 
they will therefore be referred to as unstable minimal surfaces. 

1. Free Boundary Problems. Problems with free boundaries were 
discussed in the early nineteenth century by Gergonne, who proposed 
the problem: to find the surface of least area bounded by two opposite 
faces of a cube and by two skew diagonals of a second pair of opposite 
faces (see Figure 6.1). Riemann and Schwarz generalized the 
problem by asking for a simply connected surface of relative minimum 
area whose boundary consists alternately of straight line segments 
and of arcs on given planes. This problem can obviously be further 
generalized to that of finding a simply connected surface of least area 
whose boundary consists alternately of given Jordan arcs and of 
point sets on given manifolds; we call this type of boundary a “chain.” 
Furthermore we shall consider problems of the following kind: to find a 
doubly connected surface of minimal area one of whose boundaries is 
free on a given surface, say a sphere, while the other boundary is a 
prescribed Jordan curve. Finally, we may ask for surfaces of least 
area wThose entire boundary is free on a closed manifold, e.g. a torus, 
In this case we must introduce an additional topological specification 
in order to exclude trivial solutions degenerated into points. 

1 The word manifold, in this connection, means a connected closed point 

set. 

199 
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For problems involving free boundaries we shall be able to prove 

the existence of solutions of least area; concerning the “trailsversality 

properties” of the minimal surfaces on the free boundary, however, 

only partial results will be obtained. 

2. Unstable Minimal Surfaces. The phenomenon of unstable 

minimal surfaces within prescribed contours has long been observed. 

It occurs, for example, in the problem of minimal surfaces of revolu¬ 

tion if the two boundary circles arc chosen at such a distance that the 

generating catenary contains the points conjugate to the end points; 

the corresponding catenoid furnishes a stationary value, but neither a 

maximum nor a minimum of the area. Other examples of unstable 

Figure G.l Gcrgonne’s surface. 

solutions may be found in Schwarz’ investigations on minimal 

surfaces.2 

In general, one might expect that the existence of two relative 

.minima in Plateau’s problem would guarantee the existence of another 

minimal surface of unstable character, just as the existence of two 

distinct relative minima of a differentiable function of a finite number 

of variables implies the existence of a stationary “mini-maximum.” 

Theorems about the existence of such unstable minimal surfaces were 

first proved by M. Shiftman and at the same time by M. Morse and 

C. Tompkins. In addition, these papers propose the classification of 

unstable minimal surfaces by considering the individual features 

of the problem from within the framework of an abstract theory of 

2 See Schwarz [1]. 
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critical points in function spaces. The discussions are based on 

Douglas’ explicit expressions for the Dirichlet integral of harmonic 

vectors in terms of their boundary values. A different approach due 

to the author, using the method of Dirichlet \s Principle, proceeds by 

reduction of the problem to that of stationary values of a differentiable 

function of a finite number of independent variables, provided that 

the boundary contour is polygonal. This theory was essentially 

extended by Shiftman. He observed that a passage to the limit from 

polygons to more general (rectifiable) closed curves is possible on the 

basis of the continuity theorem of Morse and Tompkins (theorem 3.0). 

Attention may be called to unsolved problems of unstable minimal 

surfaces with free boundaries. Consider, for example, the following 

analogy: We join two given points A and B on a closed smooth curve 

by the shortest connection (i.e. a straight segment ) and then seek a 

position of the points A and B for which this minimum length is 

a maximum. This maxi-minimum is furnished by the diameter, a 

stationary chord perpendicular to the curve at its two end points. 

In a similar way we consider a closed surface M and on it a closed 

curve n in which we span a simply connected minimal surface of 

least area; then we seek a position of n for which this minimal surface 

is a stationary “diameter surface” (not a maximum). 

2. Free Boundaries. Preparations 

1. General Remarks. In the ease of fixed boundaries the solution 

of Plateau’s problem is based on the fact of compactness. The 

reasoning used in Chapters III and IV shows that a minimizing se¬ 

quence of harmonic vectors for Plateau’s problem always contains a 

uniformly convergent subsequence, the limit vector being either a 

constant or an admissible vector. Equieontinuity of the boundary 

values of the admissible vectors j* (//, v) was the basis for the con¬ 

struction of the minimizing vector. 

A new difficulty arises for free boundaries, since in this case it is 

no longer possible to require that, admissible vectors have continuous 

boundary values on the given manifold M. In Plateau’s problem 

we proved the convergence in the interior of B by first investigating 

the properties of the boundary values of the admissible vectors. 

However, it is possible to construct examples of surfaces of least area 

with free boundaries, for which these free boundaries are not continu¬ 

ous curves (see §5, 2). Hence the methods of Chapter III must be 

replaced by a reasoning which refers to the interior of the domain 
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and starts from a suitable definition which does not use continuous 

boundary values. 

Definition 6.1: Denote by the shortest distance from the point £ 

to a closed manifold M. If £ — £(it, v) is a continuous surface 

defined in a parameter domain B with boundary (3, then 0m[£] is a 

function gM[$(uyv)] of uy v in B. If <7at[£(w, y)] tends to zero as the 

point (w, v) in B tends to the boundary 0 of By we say that the bound¬ 

ary of £(?/., v) is on M. 

Remarks: 

a) If the boundary of £(w, v) is on M, the distance gM\l(uy v)\ tends 

uniformly to zero as (w, v) tends to 0; e.g. if 0 is the line v — 0, the 

distance <7ji/[£(w, ^)] tends to zero uniformly in u as v approaches zero. 

For otherwise there would exist an infinite sequence of points (w*, Vi) 

in B with iu —> 0 and a number a > 0 such that gsilliui, i\)] > a. 

The points (Ui, vt) contain a subsequence converging to a point of 0 

(possibly the point at infinity) and for this subsequence we have by 

our definition gM[x(ui, vt)] —> 0, in contradiction to the assumption. 

b) In some of the subsequently treated cases, only a part of the 

boundary of the surface £ will be on M. By this we mean that the 

statement of the definition above is satisfied for a part 0i of 0 alone. 

(For instance, if 0 is the line v ~ 0, 0i will consist of one or more 

segments of the line.) 

The manifold M may be a closed surface such as a sphere or a 

torus, or it may be a part of such a surface, for example the ring- 

shaped part cut out of a spherical surface by two parallel planes; 

also M may simply be a continuous closed curve. In more than 

three dimensions we have a correspondingly greater variety of 

possibilities. 

2. A Theorem on Boundary Values. The treatment of free 
boundaries is based on a theorem of compactness which enables us to 
prove that the limit vector of a convergent minimizing sequence is 
admissible. For convenience we state this theorem under the 
assumption that B is the upper half-plane v > 0. 

Theorem 6.1: Let £n(w,t>) be a sequence of harmonic vectors in B 
whose boundaries are on closed manifolds Mn , and assume 

2>ll.l < A*, 
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A being a constant independent of n. Suppose that the vectors y„ 

converge uniformly in each closed subdomain of B to a harmonic 

vector y (for which automatically Z)[y] < A2), while the manifolds 

Mn tend to a continuous manifold M in the sense that the greatest 

distance from points of Mn to M tends to zero. Then the boundary of 

the limiting vector y is on M. Note that no assumptions are made 

concerning the dimensions of Mn and M. In our applications Mn 

will be a curve, M a surface. 

Proof: We denote by gMn\ln(u, p)] the distance of the point yn(u, v) 

from Mn . We must prove, given the assumptions of the theorem, 

that the relation 

gMn[tn(u, v)] —► 0, 

as v —> 0, implies 

y»U(u, t>)] -*■ o, 

as v —* 0. Let g(Mn , 71/) be the largest distance from a point of Mn 

to M. By the triangle inequality we have 

*')] ^ QMn[xiu,v)\ + g(Mn , M)y 

hence 

gMU{Uy p)J < lim inf. gMnlz(u, p)J. 
n—*°o 

It will be sufficient, therefore, to investigate 0^Jy(w, p)]. 

Nothing is known about the continuity of the values of y or yn 

on the boundary v — 0. Consider 

v) = yn(uy V + 6n), 

8n being a given positive constant. This harmonic vector is continu¬ 

ous for v — 0, and its values 0) lie on a curve M'n whose distance 

from Mn can be made arbitrarily small if 8n is chosen sufficiently 

small. Since t)n(u, v) —> y(w, v) as 8n —» 0 we may prove our theorem 

by writing Mn instead of Mn and y» instead of ; note that yn(u, v) 

now has continuous (even analytic) boundary values yn(w, 0) on (3. 

We need only prove that the distance gMn\l(u, p)] from the limit 

vector to Mn is arbitrarily small, uniformly in n, for points with 

sufficiently small p-coordinate. To that end we choose v = h, where h 

is so small that, for the strip Bh : 0 < v < 2h, we have 

Db„[f] < e, 
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where e > 0 is a preassigned small constant, as is possible since 

/)[?] < oo. Subsequently we choose a number N(h) so large that 

for n > N we have the inequality 

(6.1) | ln(u, h) - t(u, h) I < e. 

To estimate (j,w „[t(^, h)| without assuming that for fixed u and 

(sufficiently small) h, the distance yxjtniu, /?)] is small uniformly 

in n, we consider a fixed point—say (0, h). First we estimate the 

oscillation of y(w, h) along the line v = h. By the mean value 

theorem for harmonic functions and by Schwarz’ inequality we 

have on v = h 

I < - 

so that 

Iin, h) - f(0, h) | 

\/ 7vh 

[ $u(w, h) 
Jo 

dw,; < 
\/V 
y/ 7r h 

Hence for | n | < (y/w h)/(y/2 e) we find 

(6.2) | j(w,A) - f(0,A) | < 

the inequality shows that f (r, /».) varies little in an interval that is 

large relative to h. Consequently we have for n > N and 

the inequality 

j(0, h) - y„(w, d) | < 2t. 

In at least some points of the interval (6.3) we can find a suitable 

estimate for the distance A)J. For according to the mean 

value theorem there exists a value 7/0—;possibly varying with n—in 

the n-interval of length 6*, for which 

■21 d’-i -j/iir- 
Hence by Schwarz’ inequality we have in the usual way 

lr»(«o, h) - , o) < va /242 
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or, equivalently, 

i 0 j h) £n(Ul) , 0) j ^ /^/~ A\/6 • 

Since y„(^0,0) is on Afn , we find 

fl'j/Jr.Awo, h)] < a/^ A\/f. 

From (6.3) we have 

| J„0<n, h) - r(0, h) I < 2t; 

hence the triangle inequality yields 

A)] < 2« + ^/~ AVe, 

where the right side is independent, of n. The bound is uniformly 

small, and letting n go to infinity we obtain 

0m[|(O, h)\ < 2e + a/^ A\/(. 

The theorem is proved. At the same time it follows that (jMn[Xn(u, h)] 

tends to zero with h, uniformly in n. 

Corollaries: 

1. The theorem can be immediately extended, say by conformal 

mapping or by direct application of the same reasoning, to the 

interior B of a circle. 

2. The theorem also holds when different parts of an admissible 

vector in lie on different adjacent manifolds M(ln\ i= 1,2, • * *, fc, 

which converge to manifolds T/(l). More precisely: Let the bound¬ 

ary 0: v — 0 of B be divided into segments ft, ft, • • ■ , ft , and 

assume that the distance from a point on the admissible surface 

Xn(a, v) to the manifold Af(nl) tends to zero as the parameter point (u, v) 

tends to ft . If the other assumptions of theorem (i.l are satisfied, 

the part of the boundary of x which corresponds to the segment ft 

lies on M(i). 

8. It is obvious that the theorem remains valid if one or more domains 

with boundaries ft , ft , • ■ • , ft are omitted from the half-plane and 

the admissible vectors are required to map ft , ft , • * • , ft con- 

i inuously on prescribed Jordan curves 71 , 72, • ■ • , jk. 
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3. Minimal Surfaces with Partly Free Boundaries 

1. Only One Arc Fixed 

Theorem 6.2: Let T be a closed manifold of m — 1 or less dimensions, 

7 a Jordan arc joining two points Pi, P2 of T. Then there exists a 

simply connected minimal .surface of least area having its boundary 

on 7 and on T. 

Proof: We establish the theorem by minimizing Dirichlet’s integral. 

Surfaces y(w, v) defined in the interior B of the unit circle f$ are 

admissible if they satisfy the following conditions: 

1) y is continuous and piecewise smooth in B. 

2) The boundary of y lies on M = T + 7, and the Jordan arc 7 

corresponds in a continuous and monotonic way to an arc c of the 

unit circle /L (Naturally we assume that there exist admissible 

vectors with finite Dirichlet integral.) 

a) Existence Proof: We shall construct an admissible vector y for 

which Dirichlet’s integral assumes its absolute minimum d. The 

proof that this vector represents a minimal surface is then the same 

as for Plateau’s problem in Chapter III. 

Starting with a minimizing sequence tj„ , we replace it by a 

sequence of harmonic vectors with the same boundary values, again 

denoted by t)rf : The end points of c are joined by an analytic arc cn 

in B which is so close to the complementary circular arc of c that the 

image yn of cn on the surface tjn is at a distance not more than e = \/n 

from T. Let ty* be the harmonic vector in B' enclosed by c + cn 

whose values on c + cn coincide with those of t)n . By Dirichlet\s 

Principle we have Dn/[t)n] < A conformal mapping of B' 

onto the unit disk B transforms the vector i)n into a harmonic vector 

yn , defined in B and spanning the closed curve 7 + 7». By a linear 

transformation of the unit circle into itself we may adjust y„ so that a 

three-point condition is satisfied with reference to the end points 

and one interior point of c. We have the inequality 

(G.4) lim inf. Z)[y„] < lim D[Xfn\. 
n -* 00 n -* 00 

As in Chapter III, we conclude that the boundary values of yn are 

equicontinuous on c. Since D[yn] is bounded, at least a subsequence 
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of the y„ converges to a non-constant harmonic vector y, the con¬ 

vergence being uniform in every closed subdomain of B + c, in 

particular on c (see lemma 1.3b). By the semicontinuity of 

Dirichlet’s integral for harmonic functions and inequality (0.4), 

we find 

/>[y] < lim inf. I)[yw] < lim = d. 
n —*oo n —i»oe 

rrhe vector y maps the arc c monotonically and continuously on 7. 

Theorem 0.1 shows that all other boundary points of y are on T; 

hence x is admissible, so that Z)[y] > d. Consequently 

DU) - d, 

and y solves our problem. 

b) Transversality Relation: We establish a relation for the free 

boundary on T which expresses orthogonality in a weak sense between 

T and the minimal surface. For the proof we suppose T to have a 

continuous tangent plane. We further assume that we can transform 

the y-spaee in the neighborhood of T by transformations 

(6.5) + e • ■ • ,xw;e) 

depending 011 a parameter e and satisfying the following conditions: 

The functions have piecewise continuous, bounded derivatives with 

respect to xv and e, and are zero in a neighborhood of the arc 7; 

equations (6.5) transform T into itself. We write £m(£i , x2, • * • , 

xm ; 0) = 7}^ and combine the x^ as a vector y', the % as a vector 77. 

On substitution of the components xv — xv(u, v) of the minimizing 

vector y, the vector y' becomes admissible in B. Since 

D[f] > D[f], 

we obtain in the usual way 

B[y, y] ^ 2 JJ (tuyu %vVv) du dv ~ 0*, 

consequently, if Bs is a closed subdomain of B, bounded by a piecewise 

smooth curve 0* which tends to /3 as 8 —> 0, we have 

Vu + y«r7v) dw dv 0, 
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as 6 —> 0. Since Aj = 0, we have by Green’s formula 

f V a~ d* 
hi dn 

0, 

where d/dn denotes differentiation along the normal to (3a, s arc 

length on (3&. If G is our minimal surface, 75 Ihe image of /3S on <7, 

this formula may be interpreted on 75 to mean 

/ •?* 3 y 5 (t/l 
0, 

where d/dn now denotes differentiation in G normal to y&, s arc 

length on 75 ; for the integral is invariant under conformal mapping 

and £ maps B conformally on G. Since 17 vanishes in a neighborhood 

of 7, the last formula can be replaced by 

/,v~ ds 
dn 

0, 

where 75 tends to the free boundary as 5 —> 0. 

Since d£/dn on G is a vector tangent to G and 77 an arbitrary 

tangential vector field near 1\ this relation expresses what may be 

called a weak condition of orthogonality between T and G. The 

arcs 7$ may be chosen as any sequence of piecewise smooth curves 

on G whose end points tend to those of 7 and whose greatest distance 

from T tends to zero. 

2. Remarks on Schwarz' Chains.3 We consider briefly the 

more general problem of simply connected minimal surfaces of 

least area in three dimensions whose boundaries consist of k parts 

which are alternately on Jordan arcs and on two-dimensional surfaces 

successively connected by these arcs. Boundaries of this type are 

frequently called “ Schwarz' chainsthe problem was investigated 

by Riemann as well as by Schwarz. We consider in addition the 

special case where some of the surfaces coincide. 

We subdivide the unit circle 13 into A; segments 0, by points 

.11 , A, • • • , Al corresponding to the angles 0X , 62 , ■ • • , 0k ,and con¬ 

sider as admissible all vectors y which map these intervals consecu¬ 

tively onto the different boundary manifolds. The solution proceeds 

in two steps: First we solve the variational problem for fixed points 

A \ , A2, • • • , Ak. The minimum of Dirichlet’s integral is a function 

8 See also I. Ritter [1 ]. 
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d(0i,62, • • * ,6k) of the angles 6\ , 62 , • • • , 6k , and is attained by an 
admissible vector; but this vector does not necessarily represent a 
minimal surface. Secondly, to obtain a minimal surface which solves 
the problem we have to vary the angles 0t , i = 1 ,2,•• • ,/r, and seek a 
set of angles for which d{0,) is a minimum. By a linear transforma¬ 
tion of the unit circle into itself we can always fix the values of three 
of the 6, . Again wo have two alternatives. If d(0i) attains its 
minimum value for a set of distinct values 0,:, the corresponding 
vector £ represents a minimal surface and solves the problem of 
Schwarz’ chains. Otherwise we obtain a sequence 0,(n) of sets for 
which 

lim d(0-n)) = d 
11 —* 00 

(the lower limit of Dirichlet’s integral for admissible vectors) and 
which tends to degeneration in that at least two distinct sequences 
din\ 0<w> approach the Name limit 6. In this case the corresponding 
harmonic surfaces £„ tend to degeneration as in Chapter IV, § 2. 
Exactly as before, it follows that the problem has a degenerate solu¬ 
tion, consisting of several minimal surfaces each of which belongs to a 
chain formed by only a part of the given Jordan curves and surfaces. 
This degeneration is excluded if we know that the lower bound d of 
Dirichlet’s integral for non-degenerate surfaces is less than that for 
degenerate surfaces. 

A simple illustration is given by two vertical semicircular arcs 
standing on a horizontal plane M, the planes of the semicircles being 
perpendicular to the line joining their centers. The problem of 
Schwarz’ chain is solved by a minimal surface consisting of a half- 
catenoid if the distance between the circles is sufficiently small; 
otherwise, we obtain the degenerate solution consisting of two half¬ 
disks. 

3. Doubly Connected Minimal Surfaces with One Free Boundary. 
As an example of higher connectivity we consider a doubly connected 
minimal surface one of whose boundaries is free on a closed manifold 
M while the other is a monotonically described closed Jordan curve y. 
In the variational problem we admit surfaces represented by con¬ 
tinuous vectors g(u,v) with piecewise continuous first derivatives 
in the circular ring B of the u, p-plane bounded by the unit circle 
and a smaller concentric circle . We further assume that £ has 
continuous boundary values on di which map the unit circle mono- 
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tonically on 7, and that the boundary of x corresponding to ft is 

on M in the sense of definition 6.1. 

We seek a doubly connected minimal surface of least area (or least 

Dirichlet integral) d, bounded by the curve 7 and the manifold M. 

We shall prove 

Theorem 6.3: Such a minimal surface exists, provided that the 

greatest lower bound d is smaller than the greatest lower bound d* 

belonging to Plateau’s problem for 7 as the sole boundary. 

Proof: We again obtain the minimal surface G by solving the varia¬ 

tional problem of finding a domain B and an admissible vector x 

for which D[x] — d is a minimum. Accordingly we suppose 

d < d* 

and consider a minimizing sequence consisting of admissible vectors 

£n defined in ring domains Bn for which D;*„[£«] —> d. First we show, 

similarly as in Chapter IV, § 2, that Bn cannot tend to degeneration: 

a) If the radius an of the inner circle oM) of Bn w^ere to approach 1, 

we would have exactly the same contradiction as in Chapter IV, § 2. 

b) The radius an cannot tend to zero for a subsequence Bn . For 

suppose a„ —» 0; according to lemma 4.1, we could replace the vector 

£n by another vector = pn(u,v) £n which is zero for r1 ~ u2 + v < ai 

and equal to £„ for r — 1, and for which 

D\t)n] < £>[?n] + 

with an —* 0. We may consider t)„ as a vector in the whole unit circle, 

admissible in Plateau’s problem for the single contour 7 for which 

the minimum is d*. Letting n tend to infinity we immediately 

obtain, since d* < lim inf. /)[tyn], 
n—* 00 

d* < d, 

in contradiction to our assumption d < d*. It follows that we can 

choose a subsequence of the domains Bn tending to a ring B with radii 

1 and a, 0 < a < 1. 

In the same way as before we see that the boundary values of fn 

on ft are equicontinuous, so that, at least for a suitable subsequence, 

they converge uniformly to a monotonic, continuous representation 
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of y. The vectors £n are next replaced by harmonic vectors in B 
which have the boundary values £n(l,0) on the outer circle and the 

boundary values £n(r„,0) on the inner circle, where rn > an is a 

sequence tending to a. The vector £„ (rn, 0) as a function of 0 defines a 

continuous curve Mn tending to M as n —* oo. By Dirichlet’s 

Principle we have 

lim inf. Z)|,w[tyn] < lim inf. D^tfn] 

for the harmonic vectors Xfn . 
Since the tjn have equally bounded Dirichlet integrals and converge 

on ($i we conclude by lemma 1.3b that they converge to a limiting 

harmonic vector £ uniformly in every closed subdomain of B + Pi ; by 

the convergence of t;n alone, we see that £ maps pi monotonically on y. 
Theorem 6.1 and its corollary 3 imply that the boundary of the 

vector £ corresponding to p2 is on M. Hence £ is admissible and 

DU] > d. On the other hand, we have as in Chapter I, §2 the rela¬ 

tion 

Z)[£] < lim inf. DBnUn] = d, 

and therefore 

DU) = d; 

hence £ solves the variational problem. That £ is a minimal surface 

is again seen as in Chapter IV or V. 

Along the free boundary of £ we have the same transversality 

condition as in article 1, i.e. 

where Lt is any set of piecewise smooth contours homologous to y on 

the surface £ and tending to M as c —> 0, r? is an arbitrary tangential 

vector field near M, and df dn denotes differentiation normal to Le in 

the surface £, s arc length on Lt . The proof is almost literally the 

same as in article 1. 

4. Multiply Connected Minimal Surfaces with Free Boundaries. 

Extension of the theorems of this section and their proofs to multiply 

connected minimal surfaces, some of whose boundaries are free 

on prescribed manifolds, offers no new difficulties. The decisive 

sufficient condition for the existence of minimal surfaces of given 
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topological structure with free boundaries on a closed manifold M 

is again that the greatest lower bound d for surfaces of the prescribed 

topological structure is smaller than that for surfaces with the same 

fixed boundaries but of lower topological type. 

Significant geometrical facts are connected with conditions of this 

sort: Suppose for instance that M is a closed surface in space while y, 

the fixed part of the boundary, lies entirely outside M. Suppose 

further that, among all possible different choices of topological 

structure, G is the minimal surface of least area bounded by y and 

Figure 6.2 Illustrating the fact that demand for absolute* minimum may imply 
higher connectivity. 

by M\ then G is entirely outside the surface M. For, otherwise, 

omitting from G all parts inside M, we would obtain a minimal 

surface Gf bounded by y and by M but having smaller area. 

That we need restrictions to ensure that the minimal surface lies 

outside M is made plausible by the following example (see Figure 6.2). 

Consider the problem of article 3. Let M be a sphere: cut it by two 

planes perpendicular to a diameter and very close to its opposite ends. 

In each plane choose a circle concentric with the circle of intersection 

of the plane and the sphere, but of slightly greater radius. Finally, 
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remove a small segment from each of these circles and connect the 

breaks by a narrow bridge consisting of two arcs that lead far away 

from M. The curve 7 is to consist of the incomplete circles and their 

joining arcs. Obviously there is a triply connected surface of arbi¬ 

trarily small area bounded by 7 and by My consisting of the narrow 

bridge plus the two plane rings interior to the circles and exterior 

to M. If, however, we stipulate double connectivity, it is plausible 

that we can bring the circles so close to M and the bridge so far from 

M that the greatest lower bound of the area is greater than for the 

corresponding triply connected domain. Moreover it is readily seen 

that to approximate the lower bound wo must admit surfaces pene¬ 

trating M. 

The same is true for surfaces of simple connectivity as discussed 

in article 1. It is easy to construct examples for which doubly 

connected surfaces yield a smaller minimum; then the simply con¬ 

nected surface, whose existence was proved in article 1, may pene¬ 

trate M. 

/. Minimal Surfaces Spanning Closed Manifolds 

1. Introduction. While in the preceding problems parts of the 

boundary of the minimal surface were given as Jordan curves, 

the minimal surfaces investigated in the present section have their 

entire boundaries free on prescribed surfaces.4 As pointed out in 

§ 1, a new element enters the problem and the existence proof: it is 

necessary to specify the topological position of the required solution 

relative to the boundary manifold M. For example, we may pre¬ 

scribe linking numbers between the boundaries of the surfaces under 

consideration and preassigned curves not on the manifold A/.5 

We limit ourselves to a typical problem. Let M be a torus. We 

shall seek a minimal surface of least area whose boundary lies on the 

torus and which covers the “hole” in the torus. For our topological 

specification we consider a fixed simple closed polygon H (see Figure 

6.3), having no points in common with M} which is “linked” with M, 

in the sense that it is linked with every member of a class of homol- 

4 See also Courant and Davids [8] and the more detailed discussion in 

Davids [1]. 
5 It should be stated that other topological specifications may be equally 

pertinent, cf. remark d) at end of section. 
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ogous non-bounding cycles on M.6 Plainly such a polygon will 

lie either completely exterior to the torus, passing through the hole, or 

completely interior, winding around the hole on the inside. 

To formulate our variational problem we suppose that the admis¬ 

sible surfaces are represented parametrically by continuous vectors 

$(u,v) in the unit circle B of the w,r-plane. The vectors £ are 

assumed to have piecewise continuous first derivatives and bounded 

Dirichlet integral. Since the boundary of £ need not be a continuous 

curve on M we impose the following linking condition: the images 

by £ of simple closed curves in a subregion of B sufficiently close 

to the boundary /3—precisely, the images of concentric circles near 

Figure 6.3 Polygon interlocked with torus. 

/3—are required to be curves linked with H. The variational prob¬ 

lem is again to find an admissible vector £ for which 

/>[?) = d 

is the smallest possible value. That a solution of this problem 

yields a minimal surface follows exactly as in the case of Plateau’s 

problem. 

2. Existence Proof. Denoting by d the greatest lower bound of 

D[x] for admissible vectors, we define: a sequence £« of surfaces is 

termed an admissible sequence if its members satisfy all admissibility 

conditions except that the boundary of the surface £n is not neces¬ 

sarily on My but on a manifold Mn , which tends to M as n —» <*> in 

* Then any orientable surface through a member of the class of non-bound¬ 

ing cycles intersects //, and the algebraic sum of the intersection numbers is 
different from zero. 



MINIMAL SURFACES SPANNING CLOSED MANIFOLDS 215 

the sense that the greatest distance from points of Mn to M goes to 

zero. Let 8 denote the greatest lower bound of the lower limits of 

/)[yn] for all such admissible sequences; an admissible sequence £„ 

for which 

£>[*«] 5 

is called a generalized minimizing sequence. Obviously 8 < d; we 

shall see that 5 = d. 

Starting from an arbitrary generalized minimizing sequence Xfn 

we construct another consisting of harmonic vectors £„ bounded by 

closed continuous curves Mn. Let r,0 be polar coordinates in B, 

and choose a radius rn so close to 1 that the piecewise smooth curve Mn 

represented by the vector \)n(rn , 0) lies at a distance from M going to 

0 with n and is linked with 11. Denote by £„ the harmonic surface 

whose values on the boundary f3 of B are given by £*(1, 0) = X)n(rn , 8). 

This surface has Mn as boundary. Since D[x*n] < the vectors 

£*rt again form a generalized minimizing sequence. Since Mn and II 

are linked, there must exist at least one point (uQ , v0) in B for which 

X*n(vo , Vo) is on II. By a linear transformation of B into itself we can 

map (?/o , Vo) into the origin; in this way we obtain a generalized 

minimizing sequence of harmonic vectors £„ with D[$n] = D\x*n] and 

with the boundaries Mn . 

With this normalized sequence £„ we can reason as before (see 

Chapter ITT, § 2, 3). The boundary values of £„ are bounded, hence 

also the values of %n in B. Since is bounded, we can, by lemma 

1.3b, choose a subsequence of the vectors tending uniformly to a 

harmonic vector x in every closed subdomain of B\ by the usual 

reasoning we have 

D[l] < 5. 

Theorem 6.1 shows that the boundary of x is on M. The point 

y(0,0) is on II and therefore at a positive distance from Af; thus % 

is not constant. 

To recognize x as an admissible vector we must still prove that 

the boundary of £ is linked with H. This is the crucial point of the 

reasoning. Once the admissibility of £ is established, we have (since 

D[x] < 8 and 8 < d) the relation 

/)[£] = 8 = d; 

consequently £ solves our problem. 



210 MINIM A L SURFACES CHAP. VI 

First mark off the points or ares in B for which ic{ufv) is on 

the polygon II. Because £ is regular and harmonic in every closed 

subdomain of B, there can be only a finite number of “intersections”; 

for the boundary of £ is on 71/ and therefore bounded away from II. 

(Note that the total number of intersections of II and £„ has not been 

shown to be bounded.) (liven a small positive constant e we can 

choose a circle r = rt , enclosing all the int ersect ions and such that t he 

vector £(/•« , 0) represents a curve Mt whose distance from M is 

everywhere less than e'2. rrhen we choose n so large that 

I Vn(r<, 6) - |(r,, 9) | < i 

for all values of 6; consequently the curve £„(rt,0) is at a distance 

not greater than e from M. Suppose that the curve £(r«,0) were not 

linked with //; then £»(r«,0) also would not be linked with II.1 Since 

the curve £n(l,0) is linked with II, the algebraic, sum of the inter¬ 

section numbers of £n corresponding to the ring R( : r, < r < 1 

would be different from zero. 

For any subdomain of B, e.g., for the disk Bf: r < 1/2, we have 

JMf] » lim DM; 

furthermore, since the harmonic function £ cannot be constant in B', 

Db'[%] is not zero. Therefore 

(6.6) Di'ltn] > a > 0, 

where a is a fixed constant. 

Secondly we appraise the radial oscillation of £„(r, 6) (cf. Chapter 

III, § 8, 4). Let A be a uniform bound for all />[£«]; then there 

exists, for each n, a value 6 = 9n such that 

1 

2 
£n (r, 6n) dr < £«(^ j 0») r dr < A. 

7r 

Hence, by Schwarz1 inequality, we have 

| U(r,«n) - Jn(M„)|2 <2(1 -r)-, 
7T 

\ < r < 1. 

7 For these curves can, for sufficiently small e, be deformed into each other 

without meeting H. 
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Therefore the oscillation of £n(r, 0n) on the radial segment Ln: 6 — 

On , r* < r < J, is less than e/2, if rf is chosen sufficiently close to 1. 

The point y*(l, 0n) is on M„ , and the greatest distance from Mn to 

M goes to 0 with n\ therefore the values of jr„ on the segment Ln arc' 

at a distance less than e from M, provided n is large4 enough. Since 

r, is independent of //, we may rotate to obtain Lv — L. We cut the 

ring Rt along L t o obtain a simply connected domain R* ~ R* , whose 

boundary is mapped by yH on a continuous curve, at a distance less 

than e from M, linked with II since the algebraic sum of the inter¬ 

section numbers of in the ring Rt differs from zero. (No inter¬ 

section points of Xn with // can correspond to points on L since the 

distance of such points f rom M is greater than e.) We have 

^**[?u] — D\£«] ““ 

and by (6.6) 

IIU- R*[Xn\ > II B'[jn] > OL, 

hence 

**[?«] < />[?«] - nr. 

Letting e tend to zero and, accordingly, n to infinity and ?% to 1, we 

obtain 

(6.7) lim inf. DR*[xn] < o ~ a. 

By a conformal mapping we can transform R* into the unit circle B 

and in in R* into a vector jn in B with D[jn] = The sequence 

jw is certainly an admissible sequence. Hence 

lim inf. II\ln\ = lim inf. /)**[&»] < 5 — a. 

in contradiction to (6.7); the vector 4' is admissible. We have 

completed the existence proof with the additional result that 5 = d. 

Remarks: 

a) The solution of the variational problem satisfies a transversality 

condition analogous to that proved in § 3, l, b. 

b) In the special case where M degenerates to a Jordan curve 7, we 

obtain the solution of a problem similar to Plateau’s problem but 

different in that a wider class of surfaces is admitted to competition: 

we no longer require that. % map the unit circle monotonieally and 



218 MINIMAL SURFACES CHAP. VI 

continuously on the curve 7. It is sufficient to require that the 

boundary of £ be “on y” in the sense of definition 6.1, and that £ be 

linked with the polygon H, as explained in article 1. The linking 

condition may be regarded as substitute for the monotonic mapping 

of /3 on y. 
The widening of the range of competition in this new problem 

might conceivably lead to a lower value for the minimum area. 

It has been proved, however, that the generalized problem has the 

same solutions as Plateau’s problem.8 

c) The problem and methods developed here for simply connected 

surfaces can be generalized to the case of minimal surfaces of higher 

topological structure. We shall dispense with a discussion of these 

generalizations.9 

d) It should be stated that the assumption of a closed boundary 

surface M is not necessary, though convenient for the formulation 

of the proof. Obviously the character of a minimal surface £ as a 

relative minimum with a free boundary on M is not affected if M is 

replaced by an open or closed surface Mf which is identical with M 

in a neighborhood of the set of boundary points of £ on M. Instead 

of considering linking numbers, we may restrict the free boundary set 

in other ways to obtain a compact closed class of admissible vectors. 

5. Properties of the Free Boundary. Transversality 

Beyond ascertaining the existence of minimal surfaces of least 

area with free boundaries, the preceding sections give little informa¬ 

tion about the nature of the “trace” of the minimal surface G, i.e. 

the set p of accumulation points of %(u, v) as (u, v) approaches the 

part ft of (3 corresponding to the free boundary. To discuss properties 

of the trace under proper assumptions concerning AT is a challenging 

task. 

1. Plane Boundary Surface. Reflection. In the case where M 

is a plane the situation is quite simple. Transversality of a minimal 

surface G with respect to a plane M implies that G can be analytically 

extended by reflection in the plane (c.f. theorem 3.2); consequently 

we have 

Theorem 6.4* The trace is an analytic curve and the tangent plane of 

G along the trace is orthogonal to the plane M. 

8 See Courant [12]. 
9 See Davids [1]. 
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Proof: Let £(i£,f) represent a minimal surface G having a free 

boundary on the plane z = 0 and furnishing a relative minimum 

for the Dirichlet integral. The free boundary may correspond to an 

interval (Ui, uf) on the boundary ($: v = 0 of the parameter domain 

B: v > 0 in the u, u~plane. For the harmonic function z(uyv) we have 

z —» 0 as v ■—» 0 for u\ < u < u2. Hence, b.y the principle of reflec¬ 

tion for harmonic functions, z can be analytically extended across 

the interval {u\ , u2) so that z(u, v) — —z (u, —v). Consider in B 

a semicircle II of radius a whose diameter lies in (u{ , ?/2). Since 

£ solves the minimum problem for the Dirichlet integral over the 

whole parameter domain, D//[j] is likewise a minimum among all 

vectors in II whose values on the semicircular boundary of II coincide 

with those of £ while the values corresponding to points on the 

diameter lie on z = 0. This condition does not affect the components 

z{uyv) and y(u,v); their boundary values for v = 0 are completely 

free. Writing 

DM = Dh\x\ + DH[y\ + Dh[z\ 

we see therefore that x(u,v) is the solution of the problem of mini¬ 

mizing the Dirichlet integral in a semicircle when the boundary values 

are prescribed on the circular boundary, but free on the diameter. 

The same is true for y(uyv) (with different prescribed boundary 

values). From theorem 1.3 it follows that x(uyv)y y(u,v) are regular 

on the part of (3 bounding II and that xv = 0, yx = 0 there. By the 

principle of reflection we may extend x(u yv) and y(uti0 into the lower 

half-plane in such a way that x(uy — v) = x(uyv)y y(uy —v) = y(u,v). 

Our statement is proved. 

By way of example: the minimal surface bounded by a horizontal 

circle and having a free boundary on a horizontal plane is a catenoid, 

which meets the plane at right angles. 

It should be noted that the principle of reflection and the ortho¬ 

gonality on a plane depend only on the stationary character of D[$\ 

(for a precise definition of the notion of stationary character see article 

3 of this section); the result of this article is therefore generally valid 

for stationary minimal surfaces. 

As a consequence of the principle of reflection we formulate 

Lemma 6.1: Let G be a surface of least area bounded by the plane M 

and a Jordan arc y joining two points of M. A plane E orthogonal 

to M and having no point in common with y has also no point in 
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common with G. In fact, G is half of a minimal surface G' whose 

boundary 7' consists of 7 and the image of 7 by reflection in M. If E 

is represented by x = 0, we may assume :r > 0 on 7'. By the extreme 

value theorem for harmonic functions we know that x > 0 throughout 

G\ hence throughout (7. 

Note that a minimal surface G of least area, bounded by a plane 

M: z = 0 and a given boundary curve 7 in the half-space z > 0, lies 

entirely in this half-space. For the harmonic function z(u,v), which 

is not a constant, has non-negative boundary values; hence z > 0 

in the interior of G. Furthermore the trace of G on the plane M 

is a monotonic image of the corresponding segment of the u-axis in the 

parameter plane. For otherwise there would be a point P on this 

segment where ft — xt = 0. Let us assume that G is the image of the 

upper half of the disk u + 02 < 1. Then the harmonic function 

z(u,v) must have a crossing point at P. Consequently a branch 

of the curve z(u,v) — 0 must issue from P into the interior of the 

half-disk, separating a region z > 0 from a region z < 0; this contradic¬ 

tion of the inequality z > 0 in II proves that the trace is a monotonic 

image of a segment of 13. 

2. Surface of Least Area Whose Free Boundary Is Not a Continuous 

Curve. The general question of characterizing the trace of G on M 

is quite complex. That there are inherent difficulties may be seen 

from the example sketched in the following paragraphs, which shows 

that the trace need not be a continuous curve. 

To define the boundary surface M we take a cube one of whose 

faces is given by z — 0, | x | < 2, | y | < 2. We carve out of the 

interior of this cube an infinite number of straight ditches Dn , n — 

1,2, • • •, whose tops are the strips 

2 = 0, | x | < 1, i y - -1 < eJ„, 
! n I 

and whose bottoms are given by 

<0 €n , j X ( 1, < «-/2; 

the side walls are formed by the connecting planes, the end walls by 

| x | = 1. We choose the positive quantities en so that their sum is 

less than 1/4. The top of each ditch is a plane rectangle of area 

2el ; the longitudinal cross section area of the ditch is 2en . We 
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consider first the surface G\ bounding the cube with a single ditch ~ 

say the ditch Dx— removed. As arc y we choose the straight segment 

I 2f| < , .t = 0, 2 = which bridges the ditch at the central line. 
It is easily seen that there are two symmetric solutions for the varia¬ 

tional problem, each furnishing an absolute minimum: the two plane 

rectangular strips of area e'l covering half of the ditch. The free 

boundary is the corresponding rectangular half of the top edge of the 

ditch. We demote by Gt the strip on which x > 0, by GY the strip 

on which x < 0. A third solution is given by the central vertical 

cross section of the ditch; this solution, having an area larger than 

e?/2, furnishes only a relative minimum. 

Next consider the continuous surface M bounding the cube with 

all the ditches 1),h removed; the tops of the ditches have the segment 

2 = 0, y — 0, | x | < 1 as limit line. As the curve y we choose a 

polygon connecting the points x = 0, y — 0, z — 0, and x = 0, 

y = 1 + ei , z = 0. The polygon y is chosen to run closely above the 

center line of each ditch, and is composed alternately of vertical and 

horizontal segments. Above the ditch Dn there is a horizontal 

segment at a height 7]n above the surface of the cube, Avith rjn < en ; 

the vertical segments connect successive horizontal segments. As y 

tends to a straight segment in the plane z = 0 (as rjn —> 0), the solutions 

G of the minimum problem converge to degenerate limit solutions. 

We denote by Gft the surface for which x > 0, by GT the surface for 

which x < 0, covering the ditch Dn . Each combination of surfaces 

Gt and (Y^ n= 1,2, • • •, is an absolute minimum for the degenerate 

case. Here the trace on M contains a sequence of rectangular edges 

of the respective halves of the ditches. Again Ave assume a con¬ 

tinuity lemma similar to lemma 3.3 (a proof could be given by 

methods developed later in this chapter). We infer that for y 
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sufficiently near the plane z = 0 there exist infinitely many minimal 

surfaces solving our minimum problem and that there is such a 

surface arbitrarily near any degenerate surface of the type just 

described. The traces of the latter accumulate on the line \ x\ < 1, 

y = 0, z — 0, or on half of it. The same is true of our non-degenerate 

minimal surfaces if y is sufficiently close to M, i.e. if the t)n are chosen 

sufficiently small; hence the trace is not a continuous curve. The 

various solutions to the problem, moreover, form a non-denumerable 

set, a remarkable fact that supplements a corresponding observation 

in Chapter III, § G, 2, with respect to non-uniqueness in the problem 

for fixed boundaries. 

3. Transversality. From the preceding example we infer that, to 

ensure a trace with “reasonable” properties, we shall have to impose 

conditions on the boundary manifold M; such conditions are likewise 

needed to replace the weak transversality relation of § 3, 1, b , by the 

stronger statement that the free boundary is orthogonal in the 

ordinary sense. 

From a systematic viewpoint it seems appropriate to introduce 

the general concept of transversality by a definition applicable to 

all free boundary problems in the calculus of variations. A minimal 

surface G with boundary p lying on a surface M is called transversal 

to M in the neighborhood of a point P of p where G remains on 

one side of it/, if G has the following variational property: there exists 

a piece G' of G bounded by a Jordan arc y and a portion p' of p con¬ 

taining P, and there exists an open portion M' of M containing p', 

such that. G' furnishes the absolute minimum for the problem with 

boundary fixed on 7 and free on Mr. Employing transversality as a 

property in the small we define, in the large: a minimal surface G 

with boundary p on M is stationary with respect to ilf if it is trans¬ 

versal at every point P of p. A surface that is stationary in the 

large, however, need not furnish a minimum. The diameter surface 

G of a sphere M may serve as an example. 

According to article 1, a minimal surface orthogonal to a plane ilf 

is transversal to ilf and automatically has an analytic trace p. Con¬ 

versely, given a plane or, more generally, any analytic surface ilf, one 

can use the representation of minimal surfaces given in Chapter III, 

§ 1, to construct a minimal surface orthogonal to ilf along a pre¬ 

scribed analytic trace p, as is known from differential geometry.10 

10 See e.g. Blaschke [1], Chapter VIII, § 111. 
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This surface can easily be seen to be transversal to M along p. If 

one were able to show that there are no other surfaces transversal to 

an analytic surface M, the result would be a proof that the trace p of 

surfaces solving the problem of the preceding articles is an analytic 

curve. 

However, little progress has so far been made toward such a 

complete result. All that has been proved is that convexity of the 

boundary surface M is essentially11 sufficient to ensure that the trace 

is a continuous and rectifiable curve, and that the minimal surface 

possesses almost everywhere on the trace a tangent plane orthogonal 

to a supporting plane of M.u 

6. Unstable Minimal Surfaces with Prescribed Polygonal 
Boundaries 

1. Unstable Stationary Points for Functions of N Variables' 

We turn to the subject of unstable minimal surfaces. As pointed 

out in §1, a continuously differentiable function d(ui,U2, • • • ,uN) 

of N independent variables in a domain C possesses “unstable" stationary 

points (mini-maxima) if it possesses two separate relative minima 

at points Pi and P2, and if at the boundary of C the values of d become 

infinite.16 It is assumed that the two minima Pi and P2 are strict, 

i.e. that if P ^ P» is a point in the neighborhood of P», d(P) > d(P,), 

i — 1, 2. We shall not prove, however, that the unstable sta¬ 

tionary point P,i is a strict saddle. Generally it is true only that 

in every neighborhood of P3 there exists a point P such that, 

d(P) < d(P»). 

We proceed to construct such a stationary point. Let Pi and P2 

be two points in C where the relative minima di and do are attained. 

Join Pi and P2 in C by a continuous curve or, more generally, by a 

connected closed point set 2. Denote by d? the maximum value of 

d(ui , U‘> , * • • , Ry) in 2, by Ps a point in 2 where this maximum is 

attained; the value is greater than both di and do . Finally we 

consider a sequence 2i , 22 , • • * of such connected closed point sets 

with maximum values d^x , d?2 , • • • assumed at the points PXl , Ps? , 

• • • so that 

Gfen dy 

11 The word “essentially” points to some slight further assumptions. 

12 See Courant [12]. 
18 If C is unbounded, it is assumed that d becomes infinite also at infinity. 
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where d is the greatest lower bound of all possible maximum values 

dz . Obviously d > di and d > d2. 

Let Ai, A %, • • • be a sequence of points in 2i, 22, • • • , respec¬ 

tively. The totality of all points of accumulation for all such 

sequences defines a compact point set 2 which is connected and 

which contains P\ and P2 . A suitable subsequence of the points 

Pzn has, furthermore, a limit point 

Pv = lim Pzn. 
n —* oo 

The point Pi lies in 2. By continuity d(Pz) = dy while for all other 

points of 2 the value d(uiyu2} • * • ,uN) does not exceed d; therefore 

dr — d. We call 2 a “minimizing connecting set” joining Pi and P2 . 

In 2 there exists a closed set 2)f of points P in which the maximum 

d{P) = d is attained. We shall show that there is at least one point P 

in 9J? for which d(P) is stationary, i.e. for which the first derivatives 

of d(ui,U'>y • • •,uN) all vanish. 

For the proof we transform the minimizing set 2 into a set 2' 

by a deformation which takes the points P of 2 into points P' of 2' 

in such a manner that d(P') < d(P), except for the images of arbi¬ 

trarily small neighborhoods of stationary points P. Hence if did 

not contain a stationary point we could replace 2 by another con¬ 

necting set 2' for which dzi < d, contrary to the minimizing character 

of 2. 

The deformation is effected by moving P into P' along the direction 

of the gradient of the function d(ui,ih, • • • ,uN). Let U: Ui,v2, • • ■ ,us 

be a point of C and V: V\, v>, • • • , vN an arbitrary vector at the point 

U. The first derivatives of d(U) were supposed to be continuous 

in the domain C. Consequently for any fixed closed subdomain C* 

of C and arbitrarily small 8y we can find a positive constant e$ so 

small that, for all points U in C*, 

(C.8) d{U - eV) - d(U) - cF-grad d(U) + er(e),14 

with | r(e) | < 5, whene\'er | t | < . We choose C* so that it 

contains 

Assume that everywhere in the closed set 9)? 

| grad d{U) | > 4a, 

14 U-grad d(U) is the inner product of the two vectors. 
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a being a positive constant. Then we can choose a constant a < 1 

so small that 

| grad d(U) \ > 2a 

holds in the larger domain 93?* consisting of all points U whose 

distance to points in 93? does not exceed a. We may assume that 

1\ and P2 do not belong to 93?*, and that (7* contains 93?*. 

We apply (0.8) for V = grad d(U) to points of 93?* and obtain 

(6.9) d(U — eV) < d(V) — 4eaf + eS, 0 < e < es ; 

if we choose 8 = a2 and es accordingly small, (6.9) becomes 

d(U - eV) < d(U) - 3ca2. 

Denote by Pd a fixed point in 93?, by r distance from P(). Consider 

all points l>: 111,112, • • • ,Un in 93?* whose distance from Po does not 

exceed a. In this sphere r < a we replace each point U by U': 

ui ,U‘2, • • • ,uN according to 

IP =11-7) grad V 

with 

7) = 6&(<7 — r). 

I'hen in the interior of the sphere 

d(U') < d(U) < d, 

while outside tli(‘ sphere we s(‘t IP = (J and have 

d(U) = d(U'). 

By a finite number of such spheres we can cover 93?; performing a 

succession of corresponding transformations U —> Uf we arrive at a 

transformation of C into itself in which all points outside 93?* remain 

unchanged. The set 2 is transformed into a compact connected 

set S' containing Px and P2, and d(U') < d everywhere in S', contrary 

to our assumption that S is a minimizing set. Hence the hypothesis 

a > 0 in 93? is absurd and S contains a stationary point of d(U). 

Let S be the set of stationary points contained in 93?. It is 

closed because of the continuity of the derivatives of d(U). Since 

93?, and hence is a proper subset of S, there is a boundary point 

P8 of © in S. We prove 
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Lemma 6.2: In any neighborhood K of P3 there exists a point P for 

which d(P) < d(Pt). 

Proof: Let Q be a point lying both in K and in the set 2 — ©; then we 

have d > d(Q). If d(Q) were equal to d, there would be another point 

P in a neighborhood of Q contained in K, for which d(P) < d(Q) = d, 

since Q is not a stationary point. The lemma is proved. 

The recent theory of critical points15 has carried the analysis of 

stationary points much farther, by considering higher types of 

stationary points and establishing relations between their numbers 

and the topological characteristics of the domain C. 

To generalize the theory of unstable stationary points to func¬ 

tionals in the calculus of variations one must cope with the difficulty 

that these functionals, in the relevant cases, are not continuous but 

merely semicontinuous in the respective function spaces. For the 

variational problem of minimal surfaces with given boundary, 

M. Shiftman, and independently M. Morse and C. Tompkins, have 

overcome this difficulty by an explicit analysis of Douglas’ functional. 

An alternative approach is to reduce the problem of stationary values 

for functionals to a corresponding problem for differentiable functions 

of a finite number N of variables,16 and subsequently to pass to the 

limit as N —» ,17 We shall present this method for the case of simply 

connected minimal surfaces with piecewise smooth boundaries. The 

following articles deal with the first part of this program by treat¬ 

ing the problem of unstable minimal surfaces spanned in polygons. 

2. A Modified Variational Problem. Let 7 be a simple polygonal 

contour with Ar + 3 vertices. We consider Dirichlet’s integral 

Z)[f] extended over the upper half-plane B: v > 0 with v = 0 as 

boundary. The space ©* of admissible vectors consists of all vectors 

l(u, v) continuous in B + /3, with piecewise continuous first derivatives 

in B and finite Dirichlet integral, which map 6 continuously and 

monotonically on the polygon 7. The subspace of harmonic vectors 

in ©* is called ty*. We may suppose that three fixed consecutive 

vertices of 7 are images of three fixed points, e.g. u = — 1, 0, <*> on p. 

This normalization defines corresponding subspaces of and $*, 

16 See Lusternik-Schnirelmann [I], [2] and M. Morse [1]. 

16 See Courant [9]. 

17 Shiftman [8] was the first who successfully carried out such a passage 
to the limit, see § 7. 
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which we denote by 0 and ^ respectively. From Chapter III, § 2, 2 

we know that the subspace of defined by Z)[j] < c is compact. 

The other vertices of y correspond consecutively to values 

ui,u2, • • • ,uN on /3, forming the set (U). We modify the previous 

variational problem III to problem III-U: To find for a fixed set (U) 

a vector g of 0 for which D[g] is a minimum with respect to 0. 

Problem III-U is solved exactly like Plateau's problem III in 

Chapter III; the solution g is a vector of , but, in general, does not 

represent a minimal surface. The value of the minimum is a function 

d( U) = d(ui, u», • • • jUn) 

of the set (U) of N parameters a, in the domain 0 < Ui < ih < 

< us < <*. At the boundary of this domain d(U) becomes infinite, 

as follows also from the results of Chapter Ill. For if I)[\] remained 

bounded as, e.g., U\ > u2 , we would have a set of admissible vectors g 

with equally bounded Dirichlet integrals and with non-equicontinuous 

boundary values on /?, in contradiction to lemma 3.2. The harmonic 

vectors g, depending on ({/), which solve problem III-U are called 

minimal vectors; they form a subset S.U( of 

By a transformation (3.12), 

u = u' + eA, 

v = v' + cM, 

involving a parameter €, where A and M are functions of u,v, and e 

(or of u\ v\ and e), we take the domain B + (3 into itself in a one-to-one 

way. The functions A and M are supposed to be continuous in 

B + (3 and to have piecewise continuous first derivatives absolutely 

bounded by a constant />; the quantities A and M for t = 0 are called 

X and ju. As before in Chapter III, § 4, 1 we consider families of 

variations in 0* of the following type: the vector i of 0 is varied 

•nto a vector g of 0* by the relation 

= y(w,v). 

Denoting by D* Dirichlet's integral taken over B with respect to 

u\ vf, we have (3.16) 

1 = »[f] + bV(t, K m) + 
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where the first variation of D\%] is defined by (3.17) 

F(y, X, n) = JJ [p(\u — ~ q(K + mJI dw dp, 

with 

I # I < c D[fJ, 

the constant c depending only on the bound b for the first derivatives 

of A and M. If x is in p + iq — <f>{w) is an analytic function of w — 

u + iv in B\ in particular, the equation <j>(w) — 0 characterizes £ as a 

minimal surface. 

The transformation (3.12) takes the system (17) into another 

system (U ) of values ui,u2, * • •,ux . In general, (3.12) will affect 

the points a — — 1, 0, oo, so that vectors of © are transformed into 

vectors of ®* no longer satisfying the three-point condition. How¬ 

ever, by a suitable linear transformation of w, with real coefficients, 

superimposed on (3.12)-- which leaves Dirichlet’s integral and the 

domain B invariant—we return to a vector of ©. Accordingly we 

may assume* all variations normalized, so that we remain in ©. 

We define: D\£] is stationary if 

1) 4* is harmonic, 

2) the first variation V vanishes for all functions X,m or A, M admitted 

in (3.12). 

Our previous remark shows that to establish the stationary character 

of a vector £ in © it suffices to prove V — 0 for all X, ju or A, M for 

which A vanishes at u — —1,0, 30 on 0, so that the varied vector i 

is also in ©. We shall assume this normalization throughout the 

section. 

In a sequence of lemmas, we shall analyze d(U) as a function of 

the set (U): Ui,u2, • • • vN . We first prove 

Lemma 6.3: The minimal vector $ is uniquely determined by (£/). 

Proof: For fixed (U) the admissible vectors form a convex set,18 i.e. 

ls Here is the only—hut decisive—point where we use the assumption 

that y is a polygon. 
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if two vectors fa and fa belong to ((/), so does the linear combination 

X = tfa + (1 — t)fa,0 < t < 1. Setting D\fa\ = <L , ? = 1 ,2, we have, 

by Schwarz’ inequality, 

(0.10) «[jJ < f- dt + (1 - t.f d,_ + 2/(1 - t) Vdtdi, 

the equality sign holding only for fa = fa . Suppose fa and fa were 

distinct minimal vectors, i.e. <l\ = <72 = r/; then (0.10) would implv 

Dh\ < dy contrary to the minimum character of d. The lemma is 

proved; accordingly the space 9M of minimal vectors is simply an 

iV-parametric family. 

The next lemma, although not indispensable for our immediate 

objective, will be of value later. 

Lemma (Lf: An admissible vector x which represents a minimal 

surface belongs to 9)f. 

Proof: On each open segment >S\ : a, < u < i/t+l of j3 the vector £ 

is regular and harmonic, according to the principle of reflection for 

minimal surfaces (theorem 3.2). The first component of £ has on 

St a vanishing derivative with respect to v and the other two com¬ 

ponents are constant there (if the components are taken with respect 

to suitably chosen orthogonal axes). For a different admissible vector 

X + % belonging to the same set ((/), the last two components of $ 

vanish on St , so that $£„ = 0 everywhere on S,-. 

To characterize x as a member of SJJ we must show that 

J)\X + *1 = D\x\ + DW + 2D\tfi] > /)[£]. 

This inequality follows from the relation £)[£,£J = 0, which we obtain 

by integrating first over the' domain B with small half-disks about the 

points of (IT) omitted. Since A£ = 0, and since $Xv = 0 on St , 

Green’s formula leaves only contributions from the circular arcs; 

these tend to zero as the radii of the small circles approach zero 

t hrough properly chosen sequences. 

Thirdly we show: 

Lemma 6.5: The function d(U) is continuous. 

Proof: Consider the minimal vector g belonging to (U) and denote by 

the minimal vector belonging to the varied set ((/'); we have 
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(V = d(U') = 7)[g'] < D[i] and therefore, by (3.16), 

(6.11) d(U') < d(U) + h «V(J, X, m) + e2crf(f/) 

or, since; | F(j, X, /*) | < 4W)f$] by (3.18), 

d(U') < d(U)( 1 + 41)6 + C62). 

A similar inequality holds for the inverse4 transformation from (IP) 
to (fJ); the lemma is therefore proved. 

Furthermore4 we prove 

Lemma 6.6: The minimal vector g depends continuously on (U). 

Proof: Let (Un) be a sequence tending to (£/), gn the corresponding 

minimal vectors, and dn — /)[gn] the minima of Z>[f] in the problems 

Ill-Un . Since dfl —* d the values d„ are bounded. The vectors g„ 

belong to a compact space, and at. least a subsequence tends to a 

vector of s]3 (*orresponding to the set (U). The semicontinuity 

of Dirichlet’s integral for harmonic vectors yields D\tf] < lim dH — d, 

hence necessarily 7>>[p] — d. Bjr lemma 6.3, g is uniquely determined 

by (U), i.e. t) = g is the minimal vector for (U) and the limit of the 

sequence $„ ; for otherwise we could select a subsequence converging 

to another limit. 

On the basis of the preceding lemmas a decisive conclusion can be 

drawn : 

Lemma 6.7: The function d(U) possesses continuous first derivatives 

with respect to a, . 

Proof: We now consider g as the original vector and y as obtained 

from the variation A, M; then for this variation we have 

(0.12) d = d(U) < d(U') - \ eF'(j', X, ju) + tcd(U') 

with V' defined by 

((>•13) V'(h', X, n) = ^[p'(Xu ~ M.) ~ g'(X„ + nu)]dudv; 

here we have written u, v as independent variables instead of u', v' and 

used the notation 

P — g« gt>, Q — 2g wg„. 
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First we establish the relation 

(6.14) lim X, m) = V(h X, „). 
«->o 

Given a small positive constant <5, we divide B into a closed interior 

domain Bx and a boundary strip B2 of width less than 5. Let Vx 

and Vi denote the integrals V taken over Bx and B2, respectively, 

Vi and Vi the corresponding integrals V. By lemma 6.6 we have 

lim i' = j, 
t-+0 

hence the convergence of y is uniform in B{ and by Harnack’s 

theorem (see Chapter I, § 2), the same holds for the derivatives of 

y. Hence we may pass to the limit under the integral sign in , 

obtaining V\ —> V\ . From (6.11) and (0.12) it follows that />[y] —♦ 
/>[$]. Bv choosing <$ sufficiently small we can make* hence also 

arbitrarily small uniformly in €. The; form of the integral Vo 

shows, since the derivatives of X and \x are bounded, that V2 remains 

arbitrarily small independently of e if the width S is chosen sufficiently 

small. Hence we have V' —► V as well. 

From (6.11) it follows that d(Uf) is bounded in € for sufficiently 

small c For e > 0 we infer from (6.11) and (6.12) that 

((U5)i7/(j,,X,p)-«d(t/') < ~(— <$V(i,\,»)+ecd(U). 
e 

Hence we have, by (6.14), 

(6.16) lim di^ ~~ d(^U) = i F(j, X, M). 

If X and ix are specialized in such a way that only is changed (so 

that, in particular, /x = 0), relation (6.16) establishes the existence 

of the partial derivative dd(U)/dUi. Since V, according to the 

preceding arguments, depends continuously on (U) and on the values 

of X in ([/), it is clear that the derivatives of d(U) are continuous 

functions of the Ui. Consequently 

(6.17) IF(j,XfM) = 
»-i oUi 

where X* is the value of X at the point u = ii*, v = 0. 

The continuity of the partial derivatives also follows from explicit 
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expressions obtained if we choose the variation (3.12) as a piecewise 

linear transformation which leaves vf = v unchanged, slightly changes 

one of the values u; - e.g. takes w> into in + e—and does not affect 

the others: 

Ml + (M - H,)(- € +1 
\Ui — U\ 

V V'i + (U — Wa) ( € +1 

M < U\ , W > //■* . 

The function X — A is given by — (u — Wi)/(u2 — iq) and — (u — w3)/ 

(u2 — uf) in the respective segments, while /x = M is zero. Formula 

(6.16) yields 

tl\ < U < U-2 , 

/to < u < a3, 

dd{Ui, U2, • • • , Wat) 

du.2 

and this explicit expression again shows that the derivative is a 

continuous function of the values (U). 

3. Proof That Stationary Values of d(V) Are Stationary Values for 

Z)[y]. If the function d(U) is stationary for a set (U), i.e. if all the 

derivatives dd/dut vanish, the corresponding vector £ makes Z)[j] 

stationary and hence represents a minimal surface. This follows 

immediately from the fact (proved in Chapter III, § 4, 3) that the 

vanishing of V for all admissible X, y implies <j>(w) = 0. From 

lemma 6.4 we may easily infer the complete equivalence of the 

problem of stationary values of d(1>) with that of minimal surfaces 

spanned in 7, since every minimal surface £ spanning 7 is represented 

by a vector £ of 

As a conclusion we state 

Theorem 6.5: Unstable minimal surfaces spanned in 7 correspond to 

unstable stationary points for a function d(u,i,U2, • • • ,uN) with 

continuous first derivatives. The theory of the former is reduced to 

that of the latter. 
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More precisely, suppose that P3 is a stationary point of d(U) 

with the property established in lemma G.2, that every neighborhood 

of contains points P for which d(P) < d(Pa). To the coordinates 

(U) of such points P correspond variations of the minimal surface 

which decrease 7)[y). On the other hand, there are obviously varia¬ 

tions in 0 which increase Dfy]. Hence the minimal surface cor¬ 

responding to P:j represents a strict saddle point . 

Since minimal surfaces furnishing strict relative minima of 

Dirichlet’s integral obviously belong to and yield strict relative 

minima for d(ui,u2, • * • ,?Cv), we obtain in particular from § (>, 1 

Theorem 6.6: If y bounds two different minimal surfaces, each 

furnishing a strict relative minimum, there exists at least one strictly 

unstable minimal surface spanned in y. 

4. Generalization. The preceding result van be generalized by a 

method best explained in geometric phraseology. Let two admissible 

vectors t)i(u,v) and tfc(u,v) in 0, with di = I)[th) < D[t)2] = d2 , be 

connected by a connected set 2 of admissible vectors Xand let 

dz be the least upper bound (or maximum) of D[X)\ in 2, or the 

‘‘elevation” of 2.19 The difference dz — d2 is called the “relative 

elevation” of the connecting set 2. The minimum or greatest lower 

bound of all rfs may be denoted by d. If d > r/2, i. e. d — d2 — h > 0, 

we say t hat t)i and 1)2 are separated in 0 by a “wall” of relative elevation 

h and absolute elevation d. A connecting set whose elevation equals 

the elevation d of the wall will be referred to as a “minimizing” 

connecting set. We prove first: 

Lemma 6.8: Let jq , be the harmonic vectors in with the same 

boundary values as t)i , l)2 , respectively; then Xi and £2 are separated 

in by a wall whose elevation is at least equal to that of the wall 

separating th and i)2 in 0. 

Proof: Let l) be an admissible vector in @, £ the vector in ST with the 

same boundary values. We construct the connecting set 

W) = r + (I - 00) - r), 0 <t< 1. 

,,J The only essential difference in the reasoning for the functional D\x_] 
in a function space from that in § 6, 1 stems from the fact that /)[|*] is merely 

semi continuous. 
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The vectors i)(t) have the same boundary values as p and p(0) = p, 
p(l) = y. Furthermore we have 

Dim = m + a - tfDh - *], 

since D[y, p ~ y] = 0 (of. (Chapter I, § 2). The vector p(/) represents 
a deformation of p into y, depending continuously on the parameter 
/, for which Dirichlet’s integral decreases monotonically as t increases 
from 0 to 1. Such a monotonic continuous deformation will be 
(‘ailed a “retractionWe denote by Li and L2 the sets of surfaces X)(t) 
retracting pi into yi and t)2 into y2, respectively. If 2* is a set 
connecting yx and y2 in the elevation of 2* must be at least equal 
to the elevation d of the wall separating pi and p2 in @; for otherwise 
Li + S* + L2 would be a set of elevation less than d connecting 
pi and p2 in ©. The lemma is proved; note that it remains true if y 
is not assumed to be a polygon, since this assumption has not been 
used in the proof. 

If 7 is a polygon, a vector y in s]3 can be still further retracted in 
into the vector $ in 9)1 belonging to the same set (U) as y. The 
reasoning is the same as before: along the connecting set in s$ given by 

i{t) = i + (i - <)(f - a), o < t < i, 

the values of Dirichlet’s integral decrease monotonically; for 

Dim) = m + (i - t?D\f - g], 

in consequence of the relation /)[$, y — 3] = 0 which follows in the 
usual way from the fact that 

Dll) < D[i + e(f - g)], 

for e different from zero. We conclude, for polygonal contours 7: 

Lemma 6.9: If two vectors yi, y2 of *1)3 are separated in by a wall of 
elevation greater than a positive quantity A, the vectors gi, 32 of 9JJ 
belonging to the same sets (U) as yi, y2, respectively, are separated 
in 9W by a wall of elevation greater than A. 

The following generalization of theorem 6.6 is now readily proved: 

Theorem 6.7: If a polygon 7 bounds two surfaces pi, p2 in ©, separated 
in © by a wall, 7 must bound an unstable minimal surface. Note 
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that this result does not presuppose the existence of two isolated 

relative minima. 

Proof: We know from the preceding discussion that the two vectors 

fa, jo in 9W belonging to the same sets (f/) as , ty>, respectively, are 

separated by a wall in 2ft. Consequently the function d(ui, u2, • • •, uN) 
has an unstable stationary point (cf. article 1) and the polygon 7 

bounds an unstable minimal surface. 

5. Remarks on a Variant of the Problem and on Second Variation. 
Recent investigations by I. Marx and M. Shiftman [1] have shown 

that the function d(u\, u2, • • * , uN) can be used to classify unstable 

minimal surfaces. This classification depends on the second deriva¬ 

tives of d(ui, ii'2, • • • , Un), whose existence and continuity could 

not be easily ascertained for the problem formulated in article 2. 

We therefore relax the conditions of that problem by dropping the 

requirement of monotonicity for the mapping of the segments 

Ui < U < Ui+i 

of v = 0 on the corresponding edge of the polygon; instead we permit 

the admissible vectors to map each segment onto the straight line 

containing the edge of the polygon, fixing only the images of the 

points Ui and ui+i as the corresponding vertices of the polygon but 

allowing multiple covering and even overshooting of the ends by 

the image of the segment on the r-axis. This new problem will be 

called Problem M. 

This problem (which, incidentally, does not lead readily to the 

generalization in the next section) allows an analysis in the following 

steps, which will be described in detail in the paper by Marx and 

Shiftman. First, it can be shown that the minimal vectors depend 

differentially on the parameters U\ , u* , • • • , uN . This in turn 

implies that the function d(ui , ?/2, • • • , U\) has continuous second 
derivatives. 

Now let (U) be a stationary set for d(U). Construct the matrix 

of second derivatives d2d/diii dUj at this point. Then the following 

result is obtained: the number of negative eigenvalues of this matrix 

is equal to the number of negative eigenvalues of the operator 

L[c] = — (cu« T cvv) 2KWc 
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under the boundary condition c(u, 0) = 0. The operator L[c\ is the 

Ruler expression associated with the second variation of the surface 

area: 

// [c ,( + c* + 2KWc2] du dv. 

where c stands for the variation in the direction of the surface normal, 

and K and IT arc' the (lauss curvature and surface element, respec¬ 

tively, of the minimal vector corresponding to (V). 

Incidentally, for the simplified problem described in this article, 

it is not hard to show (see Marx, Shiftman |1]) that, for a minimal 

vector, <t>(w) has at most poles at Hi , w> , • • • uN and at — 1,0: 

4>(w) = £ 
Ri Rn+i . R\+2 

_ “r | i ~r 
=i w ~ a,- w + 1 w 

Furthermore, if one substitutes this expression of <f>(w) into the for¬ 

mula for tlie derivatives of d, one readily gets 

dd(ui , U2, ' * * U\') 7T 

- - 2 

7. Unstable Minimal Surfaces in Rectifiable Contours 

1. Preparations. Main Theorem. The preceding result will now 

be extended by a passage to the limit to more general classes of 

boundary curves 7, e.g. rectifiable curves.20 We confine ourselves 

first to the more special class V of rectifiable Jordan curves 7 consisting 

of a finite number of arcs with continuously varying direction; no 

assumption concerning continuity or existence of the tangent is 

made for the end points of these arcs. A curve 7 of the class SI 

has the following property7: 

Lemma 6.10: Let o be an arbitrarily small constant. Wo can ap¬ 

proximate the curve 7 by a polygon ya, and transform the whole 

y-space continuously into an y'-space, in such a way that an admis¬ 

sible vector x(u,v) for the boundary 7 is taken into an admissible 

vector y'(w,?;) for the boundary ya satisfying the inequality 

(6.18) Dir] < 0 + *)Dl& 

The values of y' on the u-axis 13 differ, for corresponding values of u, 

from those of y by less than a quantity depending only on u and 

20 Of. footnote 17 on page 226. 
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going to zero with <r. If ol is a sequence of positive numbers tending 

to zero, the polygons yffl can be so constructed as to approximate 

7 in the Fr^chet sense, the length of y0l tending to the length of 7. 

The proof of this lemma will be postponed (see § 8). 

Our objective is 

Theorem 6.8 (Main Theorem): Let Xi, £» be two admissible vectors 

spanned in 7 and separated by a wall. Then the wall has finite 

elevation d\ the vectors j.‘i and y2 are contained in a minimizing con¬ 

necting set 2 which also contains a strictly unstable minimal surface 

X 'j and 

m = d 
while for all t) in w 

m < d. 
In particular the theorem holds if £1 and y2 are t wo separate relative 

minima. 

Remarks: We note that from the outset we may restrict ourselves to 

harmonic vectors y, since a non-harmonic vector t) can be retracted 

into a harmonic vector with the same boundary values (of. lemma 0.8), 

and since this process of retraction, if applied to all surfaces of a 

connected set 2, leads to a connected set of harmonic surfaces. Like¬ 

wise we may assume that all admissible vectors X are subject to the 

three-point condition, i.e. belong to the vector space* If yi or y2 

is not a minimal surface, we* can retract it in s)3 into a minimal surface* 

by the method of descent of Chapter III, § 7. 

Proof: We recall the following results of Chapter III: the lower 

semicontinuous dependence of the minimum of Dirichlet’s integral 

on the boundary curve (theorem 3.1), the compactness property of 

harmonic vectors as used for the proof of semicontinuity (§ 2, 3), 
and the continuity theorem for the area of minimal surfaces with 

rectifiable boundaries (§ 8, 4).21 The proof consists of the following 

steps: 

a) We replace 7 and 2) by ya and 2b respectively; 

b) We apply theorem G.7 for each value of <7; 

c) We pass to the limit as <7 —> 0. 

21 The use of this third property is the specific idea that makes a passage 

to the limit possible, see Shiftman [8], 
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We assume a wall between the (harmonic) vectors £1 and £2 

whose relative elevations satisfy the inequality 

d — d\ > d — d2 > 2a > 0. 

The absolute elevation d = <» is not excluded a priori, but will be 

shown impossible in the course of the proof. Consider a sequence of 

positive numbers a — tending to zero and a corresponding ap¬ 

proximation of 7 by polygons 7, to which we shall apply lemma 6.10. 

If £ is a vector of $ spanning 7, every yv bounds, by lemma 6.10, an 

admissible vector £' — £, for which inequality (6.18) holds. By 

Dirichlet’s Principle we can retract £, into the harmonic vector with 

the same boundary values without invalidating (6.18). For a 0 

these harmonic vectors—which we again call £<,—tend to £, in 

consequence of the last statement of the lemma. We denote by 

the space of harmonic vectors in ya. It may be assumed that the 

three fixed points on 7 also lie on ya and that the same three-point 

condition is satisfied for as for s]3. 

Since ya is a polygon, we may retract every vector £ff of into 

a vector fa of the subspace of , as in lemma 6.9. For every 

connected set 2 of vectors £ in ty, bounded by 7, we thus have a 

connected set 2a of vectors fa in 21?, for which 

D[fa\ < (1 + c)D[t]. 

The boundary values of 3* differ from those of £ by less than a quantity 

depending only on a and tending to zero with a. In particular, we 

obtain from £1, £2 first £iI<r, £2,<r and then fat9>fat<r, with 

/n iq\ D[fa,— dit9 < (1 + <r)di, 

K } D[i2t0] = d2,a < (1 + a)d2 . 

If £1 and £2 are connected by a set 2 in which D[£] < a, fat<T and fal<r 

can be connected by a set of vectors fa in for which D[fa] < (1 +<r)a. 

By the results of § 6, 4 we can connect fa,a and 32,, by a minimizing 
set 2a with elevation da, and consequently 

(6.20) d9 < (1 + c)a. 

In 29 we have elements at the “top,” i.e. elements for which 
Z>[t„] = da , while D[faJ < dv for all fa in 20. 
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According to theorem 6.7, three possibilities arise: 1) da = di,„, 

2) da — d2,a, 3) there is a wall between $i,ff and , whose top U 

may be assumed to be a minimal surface. In all three cases we have a 

fixed bound A, independent of a, for D[^ff] in 2ff. In the first two 

cases this follows from (6.19), in the third case from the isoperimetrie 

inequality (theorem 3.5), which states that D[ta] < I2/ir if w7e assume 

ya so close to y that the length of ya does not exceed 2L, L being the 

length of y. 

Let a tend to zero through a sequence , <r2 , ■ • • , and denote by 8 
the limit or least upper bound of dffi as o-; —•» 0. We consider—as in 

§ 6, 1—the totality of all sequences of vectors £a- in 2n and denote by 

2 the set of all limit vectors of such sequences. Because of the 

compactness of our harmonic vectors, 2 is a connected set in SJ> 

containing £i and £2. Furthermore, by the semicontinuity of 

Dirichlet’s integral in its dependence on the boundary, we have 

Z)[£ 1 < 8 for all £ in 2. Since the relative elevation of 2 above d- 

was supposed to be at least a positive quantity 2a, we have 

8 > di -f“ 2a. 

Consequently ((>.19) yields, for suitable large i, i.e. <r; sufficiently 

small 

dai ^ d\tff ef, d(ri ^ $2,0 "f" 

The set 2fft has positive relative elevation, so that the possibilities 

1) and 2) above are excluded; t0l is a minimal surface. By the property 

of compactness, at least a sub-sequence of the t9i has as limit a minimal 

surface £ in 2. We may assume £ — lim^-,0 and 8 = lim^-o d0i , 

with eh, = D[tai]. Since the length of yff tends to that of 7, we 

have by theorem 3.6, 

/> [?] = lim dffi = 6, 
er ,* —► 0 

wThile the Dirichlet integrals of all other vectors in 2 are of value at 
most 5, because of the semi continuity. In other words, £ is the 
“top” of 2, i.e. £ does not furnish a relative minimum. 

It remains to ascertain that 2 with £ on its “top” is a minimizing 
set connecting £1 and £2 in $ (and consequently that 8 = d). In¬ 
equality (6.20) is valid for the elevation a of any connected set 2 
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in containing and y2. Letting <Ji tend to zero, we find that 

a > lim dai — h. 

In other words, <$ is the absolute elevation between jq and y2 in 

i.e. 5 — d: our proof is complete. 

2. Remarks and Generalizations. The result could be generalized 

for arbitrary rectifiable curves by essentially the same method; how¬ 

ever, complications would arise in the approximation of y by polygons 

ya . These were avoided by Shiftman, who introduced a different 

approximation of the problem for y by one involving only N param¬ 

eters. Let the unit circle B serve as parameter domain, with polar 

coordinates r, 6. We subdivide y by N + 3 points A\ , A2, • ■ • , .4^+:*, 

so that for N —► the distance between two consecutive points will 

tend to zero. On the boundary /3 of B we mark off N + 3 points 

Qi > Qz, •••,(?*+-3 with the coordinates 0i , 02, • • • , 0N+:i. The 

arcs A ,-A »■+1 of y may be imbedded in convex point sets Ki (whose 

diameters later will shrink uniformly to zero as N tends to infinity). 

Vectors £(r,0) are admissible if they are continuous and have piece- 

wise continuous first derivatives in B. Furthermore their boundary 

values corresponding to the arcs QiQt+1 are required to be in K* , 

and concentric circles r < 1 are to be mapped by £(r,0) on lines of 

lengths not exceeding the length L of y. Finally we impose a con¬ 

dition equivalent to the three-point condition by selecting three 

fixed points on ff and stipulating that the boundary sets Ki belonging 

to the intervals that contain these points are to contain three fixed 

points on y. For a fixed set of values Qi , Qi , * • ■ , Qn+* our ad¬ 

missible vectors form a convex manifold, and this fact again is the key 

to the solution of the problem D\%\ = minimum = <7(0i , 02 , • • • , 

0/vf.O- The theory of the minimum problem and the result are 

exactly the same as in § (>. The.passage to the limit, as N tends to 

infinity and the maximum diameter of the convex sets /v, tends to 

zero, can be carried out in a way similar to that of article 1. For 

further details, reference is made to Shiftman [8|. 

Another remark concerns the extension of the theory to k contours, 

/•■ > 1. For two contours no essentially new element enters; for 

/.- > 2 it is necessary to make a more detailed study of the possible 

degenerations of the domain B (see e.g. Chapter IV, § 2, 3), since 

degenerated surfaces must be admitted in the proof of the theorem. 

Such questions are treated in papers by Shiftman [7] and Morse and 

Tompkins [5]. 
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8. Continuity of Dirichief9s Integral under Transformation 
of i-Space 

It remains to prove lemma 6.10. To this end we apply the 

method of transformation of the f-space already used in Chapter IV, 

§ 3, 3. The curve y is transformed into a polygon ya by a finite 

sequence of elementary transformations of the space, called “pinch¬ 

ing” processes, each of which affects only the immediate neighborhood 

of a point or a segment : 

a) 5, t-pinchinq about a point P. This transformation takes vectors 

y(w, r) into vectors t)(w, v) defined in the same domain B, continuously 

in the parameters <$, /. For convenience, we choose P as the origin. 

The pinching leaves fixed all straight lines through P, transforms the 

points of the sphere 

/' = (X] + :r*> + • • • T* < o 

into the origin, and leaves the coordinates of all points outside a 

larger sphere r > t8 unchanged. We define 

Uv = y{r)xv, r = l ,2, ■ • • ,w, 

where 

0, r < 8, 

p(r) = t, 1 . log , & < r < tS, 
log t '8 

1, r > Id. 

For 8 = ij2 and i — rj \ this transformation is identical to that used 

to prove lemma 4.2. As in that proof, we have 

(0.21) /)[t)] < k) (1 + + ?»“) du dv, 

where the function t(.rj ,;r2, • • • ,.rm) = e(r) is given by 

J__ 

6 = < lOg t’ 

0, 

(If we suppose £ to be a harmonic vector, r < td and r > 18 define 

subregions of B with analytic boundaries.) 

r < £5, 

r > t8. 
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b) 5, t-pinching about a straight segment S. Without loss of generality 
we may choose for S the segment 

0*2 = xz = • • • = xm = 0; | Xi | < a. 

We define the transformation for | X\ | < a b)r 

2/i = xi , yi = p(p)xi, i = • • • ,m, 

with p2 = x\ + x% + • • • + xL and p(p) as above; for | X\ | > a the 
transformation is defined as <5, /-pinching about the points Xi — a 
and Xi = —a on the segment S. By this pinching process a cylindri¬ 
cal bar about S with two half-spherical ends is contracted into S. 

Again we find the same inequality (6.21) as for the pinching 
about a point if e = l./log t for all points of B corresponding to 
vectors affected by the pinching and € = 0 elsewhere in B. 

By carrying out successively AT pinching processes about different 
points and lines, possibly with different values 8 — 8{, e = , we 
obtain from y a vector t) with 

< 9 JJ (1 + ciY ■ • • (1 + **)“(£« + fi) du dVj 

the ti being defined like e. If at most two pinching processes affect 
the same point in space, i.e. if no more than two quantities e* differ 
from zero at the same point, we have 

DM < (1 + €)4/>[f], 

where e now denotes the largest value 1/log ti employed in our 
pinching processes. 

In applying these transformations we first assume that the points 
of discontinuity of the tangent to 7 are simple vertices in which the 
direction of 7 has only a jump discontinuity, and at which the adjacent 
arcs are not tangent to each other. We inscribe in 7 a polygon 7' 

whose vertices include the vertices of 7 and whose edges are between 
r and 2r in length; the quantity r is later to be determined as a 
function of a. As a consequence of the piecewise continuity of the 
tangent to 7', there is a quantity 77(7), tending to zero with r, such 
that every point of 7 is at a distance less than t/4t from the corres¬ 
ponding edge of 7'. 

The deformation of the y-space taking 7 into 7' is constructed by 
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successive pinching processes, so balanced that they do not interfere 

with each other. First we cut off from the ends of each edge of y' 

segments of the length t?2t. About the remaining middle segments 

S of the edges we perform 5, /-pinching processes with 

o = r) r, t — . 
V 

These pinching processes, for sufficiently small r, will not interfere 

with each other; they pull y into y' except for neighborhoods of the 

vertices. The arcs about the vertices will not extend farther than, 

say, 2t?72 from them. By additional pinching processes about the 

vertices with 

6 = 2 rrj\ t = * , 
V 

these arcs are transformed into the vertices while points already on 

the edges remain there. Hence the total effect of the pinching 

processes is a transformation of y into 7'; our construction ensures 

that y' is monotonically described by the resulting vector as 

the point (u,v) describes 0 monotonically. Furthermore, for suffi¬ 

ciently small r no more than two of our pinching processes will 

affect the same portion of the vector space. Hence, according to the 

preceding result, 

"M s (‘ - isrJcw- 
By making 77 so small that 

0 - —y log T)J 
< 1 + a 

we obtain the result stated in our lemma. 

Finally, to remove the preliminary restriction concerning the 

endpoints of the arcs of 7, we have merely to begin the construction 

with pinching processes about the vertices. Then 7 will be taken 

into another curve 7* for which our restrictive assumptions are 

valid, and the argument can be applied without change.22 

22 If in the pinching processes v is replaced by a-q the result will be a trans¬ 

formation depending continuously on the parameter a, so that a continuous 

deformation takes place as a increases from 0 to 1. 
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APPENDIX 

Some Recent Developments in the Theory of 

Conformal Mapping 

By M. Schiffkk 

7. Green's Function and Boundary Value Problems 

1. In Chapters II and V, Dirichlet’s Principle was used to prove the 

existence of solutions for various boundary value problems and^to 

demonstrate for each the possibility of several different conformal 

maps. Each such existence proof can, in principle, be transformed 

into a procedure for constructing the required solution; the difficulties 

involved are, however, such as to render this method impracticable. 

Certain fundamental solutions have, therefore, been introduced, in 

terms of which large classes of boundary value problems may be 

solved by simple computation. The whole theory of boundary value 

problems is thus reduced to the construction and consideration of a 

few fundamental solutions. Here one such fundamental solution 

will be considered, namely the Green’s function. Various important 

properties of this function will be pointed out, and computational 

procedures for its construction will be derived from them. 

Let G be again a domain in the x,?/-plane bounded by k smooth 
k 

curves yv which form the boundary y — Jv of G' Let — £ + irj 

be a fixed point in 0, and let h(z, f) be a harmonic function of the 

point z = x + iy which has on 7 the boundary values 

(Al.l) h{z, f) = log \z - f I, z e- 7 f G G. 

According to the existence theorem of Chapter I such a function exists. 

We wish to study its properties and consider various applications. 

We define the function 

(A1.2) g(z, f) = log —+ h(z, f) 
I z — n 

240 



250 APPENDIX 

which has the three following characteristic properties: 

a) d(zi f) is harmonic for 2 f ff, except at the point z = f; 

b) g(z, f) + log | z — f | is harmonic at z — f; 

c) 9(z> f) has the boundary value 0 on 7. 

The function g(z, f) is called the Green’s function of the domain G. 

Now let u(z) be harmonic in G and continuously differentiable 

in the closed region G + 7. Then from Green’s identity and the 

boundary behavior of the Green’s function, we obtain immediately 

the identity 

(A 1.3) 
dg(g, [) 

dn* 
u(z) dsz 

where d/dn again denotes differentiation in the direction of the 

interior normal. We recognize from (A1.3) that the solution of a 

boundary value problem with respect to the domain G can be reduced 

to simple integration, once the Green’s function has been determined. 

It can be shown by a finer argument that (A1.3) holds for harmonic 

functions which are continuous in the closed region G + 7. 

We conclude from the minimum principle that the Green’s function 

is positive in the domain G since it becomes positively infinite at f and 

vanishes on 7; hence dg(z, $)/dnz > 0 on 7. The dependence of the 

(ireen’s function on the parameter point f is clarified by the applica¬ 

tion of Green’s identity 

ff(v, f) - v) 
(A 1.4) -i/T 

2w Jy L g(z, f) 
dg(z, v) 

On 
<7(2, v) 

dg(z, f)~ 

dn 
ds = 0, 

which proves the symmetry law for the Green’s function 

(A 1.4') 0(2, f) = gc, 2). 

Hence we may consider z as the parameter point; then g{z1 f), as a 

function of f, will be the Green’s function. 

The Green’s function has a very simple electrostatic interpretation. 

Consider the boundary 7 of G as a system of grounded conducting 

walls and locate at the point f 6 G a point of charge 1 exerting a 

held of force derived from a logarithmic potential. The charge at f 

induces on 7 a countercharge with potential h(z, f). The Green’s 

function will then be considered as the potential of the total field 

thus created, 
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The Green’s function, being harmonic in z, may be extended to an 

analytic function of z by addition of its conjugate harmonic function 

(A1.5) p(z, f) = g(z, f) + iy(z, f). 

The function p is harmonic in f and analytic in z; it has a logarithmic 

pole with residue 1 at f and is determined only up to an additive 

imaginary constant. It is not single-valued because of the logarithmic 

singularity which introduces periods 2tin. If G is multiply connected, 

p(z, f) has, in addition, periods with respect to circuits around the 

boundary curves yv . These periods are 

(A1 .<>) 2') — t <f ^ ds = i (f dl^-ds. 
Jyv J y, d* Jy, dn 

rfhe period functions a>„(f) are harmonic in f and single-valued in G. 

From (A1.3) we conclude that has the boundary value 0 on all 

Ym , except on yv where it has the value 1. The function co„(f) is called 

the harmonic measure of the boundary component yv with respect- to 

G at the point 

Again wo may extend the harmonic function a>„(f) to an analytic 

function wv(f) which is determined up to an additive imaginary 

constant 

(A1.7) 

In general, w„(f) will possess imaginary periods if f describes closed 

curves in G. We find as the period of wv(£) with respect to the contour 

*Vm 

(A 1.8) = i <b ~ds. 
Jy» dn 

It should be remarked that the periods u>„(f) and could also be 

computed by extending the integrations in (A1.6) and (A1.8) over 

closed curves yv and which lie entirely in G, and are obtained from 

yv and ym by continuous deformation through the domain. This fact is 

an immediate consequence of Green’s theorem which asserts the 

independence of these integrals of their path, as long as the path 

remains in the same homotopy class. From (A1.6) and (A1.8), we 

conclude 

(A1.9) l\, = - ds‘ ds< = P’> > 

i.,e. the symmetry of the matrix of the . 
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The constants P»v also have a simple electrostatic interpretation. 

Suppose that all conductors yp are grounded, except for yv which is 

kept at the potential 1. Then the electrostatic field in G is described 

by the potential uv(z). From the elements of electrostatics, we con¬ 

clude that the charge on the conductor yp induced by these conditions 

equals 

(A1.10) - ~ f pds = P„. 
2ir J7ft dn 

The constants Pyfi are characteristics of the conductor system 7; 

they were first considered by Maxwell and called the induction 

coefficients of the system [30, 42]. 

Consider the somewhat more general case of an electrostatic field 

in G where each conductor yp is kept at a constant potential, say ap . 

The corresponding field in G is described by the potential function 

k 

(Al.ll) Cjo(z) — Z OtnCOniz). 
p“ 1 

The energy associated with this field is defined by the integral 

(A1.12) E = ~ JJ (grad oo)2 dx dy 

a 

Here the final integral can be computed by using the fact that cc{z) = 

ap on 7P and applying definition (A1.8). We conclude 

(A1.13) E = i E 

As immediately follows from its definition, E is always non-negative. 

The energy integral can only vanish if grad = 0 in G, which implies 

c*j = constant. But in this case all boundary values ap of this constant 

function must be equal. Conversely, according to the uniqueness 

theorem for the boundary value problem, if all boundary values ap of 

co(z) are equal, then co(z) must be a constant. Hence we have proved: 

k 

Pp<jOtpQtff ^ 0. (Al.14) 
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Equality holds only when all ap are equal. Thus we find: The ma¬ 

trix (Ppo) defines a 'positive semi-definite quadratic form. 

Let us, in particular, assume that = 0. The quadratic form 

k-1 

(A1.14') X Pp.a,a. > 0 
P,(7 — 1 

can vanish only if all ap become equal to ak , that is, also vanish. 

Hence the matrix positive definite and has a non¬ 

vanishing determinant. Consequently, each system of linear equations 

*-i 

(A1.15) X PmU. = tv , p = 1, 2, • • • , k - 1 

has exactly one solution vector , a — 1, 2, ■••,/: — 1. This fact will 

play an important role in our subsequent developments. 

2. Canonical Conformal Mappings. In article 1 we saw that if we 

know the Green’s function for a domain G, we arc' able to solve the 

boundary value problems with respect to this domain. We want 

now to show that, by means of the Green’s function and the harmonic 

measures and induction coefficients derived from it, univalent func¬ 

tions in G which map this domain upon interesting types of canonical 

domains may be explicitly constructed. 

Let us consider at first a simply connected domain with one 

boundary curve . We extend its Green’s function to the analytic 

function p(z, f). In order to eliminate the multivaluedness arising 

from the logarithmic pole at £, we introduce the function 

(A1.1G) f(z, f) - exp |-p(z, £)} , 

which is single-valued in G, vanishes to the first order at z — f, 

and has the modulus 1 for z £ y. This function has already been con¬ 

st meted in Chapter I, §7. It maps G onto the unit circle in such a 

manner that the point z — £ corresponds to its center, the origin. 

We can generalize this construction to the case of a multiply 

connected domain G. In this case, the function p(z> f) will have 

additional periods besides those which arise from the logarithmic 

pole at f. We have, however, in the functions wv(z) another set of 

multivalued functions in G and we will be able to make p(z, f) single¬ 

valued by addition of an appropriate linear combination of these 
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functions. In fact, let us solve the system of linear equations 
k-1 

(A1.17) 22 PpaUa = OJp(f), p « 1, 2, • • • , A: — 1. 
ir-l 

Introducing the matrix (IIp<r)i.. ,jt_i which is inverse to (Poff)\ . ,*_i , 

we may solve this system in the form 
k-1 

(Ai.170 «,(f) = 
<r—1 

Next construct the linear combination of functions wa(z) 
k—1 

(A1.18) w(z, f) = 22 «.(f)u>„(z), 

which is analytic in and has the period 

(A1.19) — 27TZ 22 Pp<rU<r{{) = ~ 27TZWp(f) 

with respect to a circuit around the boundary continuum 7P , 

p = 1,2, - * * , A; — 1. Then, in view of (A 1.6), the function 

(A1.20) log/(z, f) = - \^p{z, $) + 22 «„(f)u;„(z)l 

has no periods if z describes any circuit which is topologically ecjuiva¬ 

lent to any yP , p — 1, 2, • • * , k — 1. 

Now we need only inquire about the period of the function (Al.20) 

with respect to the contour y* . We remark that the path consisting 

of all boundary curves yv , passed in the positive sense with respect 

to the domain G, is topologically equivalent to a small circle around 

the logarithmic pole f and leads, therefore, to the period 2iri. Since a 

circuit around each yp , p < A*, does not change the function (Al.20), 

it is clear that this function increases by 2iri if yk is described. Thus 

the function 

(A1.21) /(z, f) = exp - jp(z, f) + 22] j 

is single-valued in G and has a simple zero at z — f. In order to 

determine the modulus of /(z, f) for z £ yP , we have to consider the 

real part of the function (Al.20) for z £ yp . In view of the known 

boundary behavior of g{z, f) and coff(z) on yp , we find 

JO for z £ yk , 

1~«p(0 for z € 7» • 
(A1.22) log | /(z, f) 
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This shows that | f{z) f) | is constant on each?* and is, in particular, 

1 on yk . 

From all the facts established about it, we conclude that the 

function w — f(z, f) maps the domain G onto a domain Gw such that 

the images of the boundary curves lie on circles ) w | = exp{ — wp(f) j 

and | w | = 1, respectively. Since the argument of f(z, f) docs not 

change ifdescribes any of the contours yp , p < k, it is evident that 

the images of these yp form circular arcs on a Riemann surface over 

the w-plane. We cannot assert the same for the image of 7* ; in fact, 

if z describes yk its image point w(z) encircles the origin in the w-plane 

exactly once, since its argument increases by 2x. 

From the behavior of f(z) on the boundary of G it follows easily 

that f(z) has all its values inside the unit circle in the w-plane and 

that each point | w | < 1 is assumed at most once in G. In fact, let 

a be an arbitrary point in the complex plane which does not lie on 

one of the circumferences | w | — exp( — wp(f)} or | w | = 1. Then, 

according to the argument principle, the integral 

(A 1.22') ± jr fl * - £ // are UW - «1 

gives the number of times this value a is attained inside G. From our 

characterization of f(z) on the boundary curves yp if is obvious that 

1/27r arg [f(z) — a] does not change if z mils over any yp with p < /c; 

if 2 describes the contour yk the expression will change by 1 and 0, 

for | a | < 1 and | a | > 1, respectively. Thus f(z) cannot assume 

any value | a | > 1, and attains each value | a | < 1 at most once. 

The same must clearly hold for points on the exceptional circum¬ 

ferences, excluded above. Thus we have proved: 

The junction f(z, f) rnaps the domain G univalently onto the interior 

of the unit circle which is slit along k — 1 circular arcs around the 

origin. The point z — f is mapped into the origin and the boundary 

continuum yk into the unit circumference [34] (Figure 1). 

Remark: Since the numeration of the boundary continua is quite 

arbitrary, we have proved the existence of k different canonical 

maps depending on the choice of the particular boundary continuum 

which is to correspond to the unit circumference. 

Let f and rj be two arbitrary points in G and consider the analytic 

function of z 

(A1.23) F(z; f, v) = {7^ • 
)\Z> V) 
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This function is of constant modulus on each boundary continuum 

of 7; it vanishes at. 2 = f and has a simple pole at z = rj. Its argument 

does not change if z describes any boundary contour of G. Hence, 

the same considerations as above lead to the result: 

The function F(z; f,7?) maps the domain G uni vale ntly onto the whole 

complex plane, slit along k circular arcs around the origin. The points 

f and r) are transformed by this mapping into the origin and the point at 

infinity, respectively [34] (Figure 2). 

Figure J. Circular-slit do 
main in unit circle. 

Figure 2. Circular-slit do¬ 
main in plane. 

It is easy to derive further canonical map functions from the 

examples already constructed. From the fact that 

( 0 for z Q yk, 
(A1.24) tfe {log/(*,$■)} = 

{ ~ ?W) for z f yPf p < k 

we obtain by differentiation with respect to £ (putting f = £ + irj) 

(A 1.25) j~ log f(z, f)j = Xp(f) for z £ ypt p < fc, 

where the Xp are independent of z. Thus the function 

(A 1.26) iKz, f) = - — log f(z, f) 

has a constant real part on each boundary continuum yp of 7. It 

has at the point z = f a simple pole with residue 1. Hence it maps the 

domain G univalently onto the whole plane slit along segments 

parallel to the imaginary axis. The point z = f corresponds in this 

map to the point at infinity. 

Similarly, we show by differentiating (A1.24) with respect to rj that 

(A1.27) <p(z, f) = log f{z, f) 
l 07) 
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maps the domain univalently onto the plane slit along segments 

parallel to the real axis. At z = f the function has again a simple 

pole with residue 1. 

Y 

From the functions <p(z, f) and \p{zy f) infinitely many new slit 

mappings can be constructed. In fact, consider the combination 

(A1.28) <pa(z, f) - eta[cos a <p{z, f) - i sin a ^(z, f)J 

for arbitrary a. This function admits around z = f a series develop¬ 

ment 

(A1.29) <pa(z, f) = ----- + regular terms, 
2 — s 

and on each boundary continuum 7P we have clearly 

(A1.30) {c~*Va(2, f) J = constant for z 6 yp . 

Therefore, 

The function <pa(z, f) maps the domain G on the whole plane slit 

along straight segments which are turned at the angle a to the real axis; 

the point z — f is a simple pole with residue 1 [24, 46, 60) (Figure 3). 

Finally we are led to the following construction. For every value 

of a, we find 

(A1.31) \[<Pa{z, i) + <Pa+*tt(z, f)] = \[<p{z, f) + ^(2, f)] — $(z, {*). 
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This function is also regular in the domain G except at the point 

z = f where it has a simple pole with residue 1. We want to show that 

it is univalent in G. At first it is clear that each boundary contour 

yp of G is mapped by w — <£(2, f) into a simple convex curve in the 

w-plane. In fact, if z describes yp the real part of ^(2, f) remains 

constant while the real part of <p(z, f) assumes every value in a certain 

interval exactly twice; this is an immediate consequence of the 

mapping properties of the functions <p and \p. Hence, in view of 

(A 1.31), we see that the image of yp is cut by each parallel to the 

imaginary axis at most twice. Using the fact that <t> can also be de¬ 

composed into (pa and <pa+,r/2 we prove that the image of each yp is 

cut by each straight line in at most two points. This establishes the 

asserted convexity. 

This result does not in itself guarantee the univalence of the 

mapping; the image domain Gw of G may be spread over a Riemann 

surface in spite of the fact that the image of each yp is a simple curve. 

In this case, the domain Gw must contain winding points of the Rie- 

mann surface which correspond to the point z 6 G with $'(2, f) = 

d/dz$(z, f) = 0. We will show, however, that <£'(2, f) does not vanish 

in G. In fact, since <p«(2, f) is univalent in G it has everywhere a non¬ 

vanishing derivative, i.e. 

(A 1.32) tttMx ** i tan « 

for any choice of a and z £ G. At z = f, the quotient (A1.32) has the 

value 1; its value cannot be imaginary for any choice of z £ G; hence, 

(A1.32-) a‘{£Sr«}>0' ziG- 

But $'(2, f) = 0 in G would imply 

(Ai-33) - -*■ 

which is impossible because of (A1.32'). 

Thus, we have proved: 

The junction $(2, f) maps G univalently onto an injinite domain of 
the w-plane with convex boundary curves [17, 25, 60]. 

We shall see later that this map is distinguished by an important 

extremum property. Here we want to stress the interesting fact that 
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the formulas (A1.28) and (A1.31) permit the construction of univalent 
functions from simpler univalent functions by the process of addition, 
a quite unusual phenomenon in the theory of univalent functions. 
It will also be important to remember that all functions constructed 
so far may be expressed explicitly in terms of the Green’s function and 
functions derived from it. 

For later use, let us note the fact that, in view of (A1.26), (Al.27), 
and (A1.31), 

(A 1.34) <f> (z, f) = - 2 (d£ - * Sv) 1<>S ^Z’ ^ = * l1}' 

Obviously, f{z, f) is not analytic with respect to its parameter point 
f; it is, however, convenient to introduce the following symbolism. 
We define the two differential operators [71] 

(A 1.35) 
d = i (b __ . d\ 

df 2'W 1 dr,)’ 

1 
9 

and apply them to arbitrary differentiable functions of £ and tj. 
In this sense, we may put (A1.34) into the form 

(A 1.3(5) f) = - ~ log/O, f). 
of 

The function 

(A1.37) rn(z, f) = -log | f(z, f) | = log f(z, f) - § log f(z, f) 

is harmonic in z and has constant values on all boundary continua yfi ; 
it has a logarithmic pole with residue —1. The function m(z, f) is 
a generalization of the Green’s function and will occur in later con¬ 
siderations. In terms of it, we may write 

(A 1.38) Viz, f) = 2 -~-y m(z, f). 
dz df 

3. Boundary Value Problems of Second Type and Neumann's Func¬ 
tion. A well-known problem in potential theory which occurs in 
many applications is the following: Along the boundary curves yp of 
the domain G the value of the normal derivative of a harmonic function 
is prescribed, i.e. we have 

(A 1.39) s = arc length on y. 
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The problem is to determine the harmonic function u(z) in G. This 

is the so-called boundary value problem of the second type in potential 

theory. 

We remark, at first, that we are not quite free in prescribing the 

function n(s) on y. For, according to Gauss’ identity for harmonic 

functions, we have 

(A1.40) (f> n(s) ds = 9 --ds ~ — f[ Audxdy = 0. 
J y J7 dn JJ 

a 

Thus /jl(s) is subjected to the restriction that its integral over y 

must be equal to zero. We will now show that if this condition is 

fulfilled the problem has a unique solution. In fad, assuming that the 

required harmonic- function u(z) exists in (7, let us extend it to an 

analytic function w(z) — u(z) + iv(z). According to the Cauchy-Rie- 

rnann differential equations which connect the real and imaginary 

parts of an analytic function, we have on y 

(A1.41) m(«) = ^ = - lV. 
dn ds 

This requirement determines the boundary values of the unknown 

harmonic function v(z) on each boundary curve yp , up to an additive 

constant. 

We are now able to give a procedure for the construction of the 

function u(z). First, we determine a boundary value distribution 

vis) which is compatible with (A1.41). Then, by means of Green’s 

function, we construct a harmonic function v(z) in G with these 

boundary values. We remark that 

k—1 

(A1.42) V(z) = v(z) + ^2xvo)v(z) 

will differ on each y„ , p < /;, from v(z) by the constant Xp and is, 

therefore, also a permissible conjugate function according to (A1.41). 

We now have to determine among all functions V(z) that function 

which has a single-valued conjugate harmonic function u(z)\ i.e. 

we require, in view of (A1.8): 

(A 1.43) 0=4 ~ (Is = 4 = 4 ~ dx - 2t 
Jy P d# JyP dn JyP dn i 
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But we have already proved that the system of equations 

(A 1.43') £ = ~<( t- <is’ p = 1,2, ■ • • , k — 1 

has exactly one solution. Thus we can find a harmonic function 

a(2) which is single-valued in <7 and satisfies on 7 the boundary 

condition (A1.39). It is clear that this function n(z) is determined 

only up to an additives constant. 

We have just shown that the boundary value problems of the second, 

type can be solved, by means of the Green's function, and the harmonic 

measures. The procedure is, however, somewhat involved; it will, 

therefore, be more convenient to introduce another fundamental 

function which, in the present problem, plays the same role as the 

Green’s function in the boundary value problems of the first type. 

This function is called the Neumann’s function and is defined by the 

following three properties: 

a) N(z, f) is harmonic for 2 i G, except at the point z = f; 

b) N(z, f) + log | z — f | is harmonic at z = f; 

c) d/dn \T(z, f) — 2ir/L for z 7, L = total length of 7. 

rrhe meaning of condition c) is clearly understood if we remember 

that, since N(z, f) has a logarithmic pole at 2 = f, necessarily 

(A1.44) J- (p f N(z, f) = 1. 
Jy dnz 

The simplest requirement for the normal derivative of N is that its 

value on 7 be constant, from which, clearly, condition c) follows. 

Not even with all these conditions is N(z> f) uniquely determined; 

we may still add an additive constant depending on f. In order to 

fix N(z, f) completely the following requirement is usually made: 

(A 1.45) j) N(z, f) dsz = 0 for all f. 

Let u(z) be an arbitrary harmonic function which is continuously 

differentiable in the closed region G + 7. We find, because of Green’s 

identity, 

(A1.4ti) 

i/(r) 
1 

2 IT 
»W dN- -V(2, f) p) * 

dn dn) 

Niz, f) ~ ch + I 
dn L jy 

dn/ 

u ds. 
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Since ?/(f) is only defined up to an additive constant if its normal 

derivative is prescribed, it is sufficient to restrict the second boundary 

value problem to the class of all harmonic functions which satisfy 

the additional requirement 

For all these functions, we have the representation 

CA1.4O0 «(f) = - ~ £ N(z, r) d* 

in terms of the Neumann’s function and the boundary values of 

the normal derivative4. 

There remains the problem of representing the Neumann’s function 

explicitly in terms of the Green’s function. We consider the regular 

harmonic function 

N(z, f) + log \z - f | 

in (r and denote by v(z, f) its conjugate function with respect to z. 

By the Cauchy-Biemann differential equations, we have, using the 

notation 

log (z - f) = log I z - f I + i arg (z - f), 

v(z, f) = ~\n{za) + iog|z - rU 
ds an 

2tr <9 , . 
= t ““ T ar& (z ~ f)' L ds 

Choosing on each yp an arbitrary branch of the multivalued function 

arg (z — <f), we det ermine 

(A1.48') v(z, f) = —2tt/L s + arg (z — f) + \p for 2 6 ^ = 0, 

and solve this boundary value problem by the formula [cf. (Al.3) 

and (A1.6)]: 

k-1 
+ 2 X»W»(z). 

v(z, f) 

(A 1.49) 
-H 

for z Q 7, 

(A 1.48) 
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Here the A„(f) are again determined by the requirement that the 

conjugate function of v(z, f) shall be single-valued in G, Using (A1.6) 

and (A1.8), we are led to the conditions 

dst 

k-1 

27T ^ V \V(£)Pi;p , p <C 4* 

which determine the A„(f) uniquely. 

There exists a close relationship between the formula (A1.49), 

giving the conjugate of the regular part of the Neumann’s function, 

and the following formula for the regular part of the Green’s function: 

(A1.51) h(z, f) = 1 (f d4*’ 0 log j t - f | ds,. 
ZlT Jy u7lt 

This equation follows directly from the fact that h(zy f) has on y the 

boundary values log | z — £ |. Let us assume that the yp , p < /c, 

have been so determined that on them log (z — f) is single-valued. 

Then, comparing the periods of the conjugates of both sides of (A1.51) 

with respect to a circuit around a curve yp , we obtain in view of (A1.6) 

(A 1.52) «,<f) = i- <f ^ log 11 - ?\dst. 
2t Jy dnt 

Let' u(f), r(f) be a pair of conjugate harmonic functions and set 

w(f) = w(f) -f- Then by the Cauchy-Riemann equations we 

have, for the differential operators d/df and d/df defined in (A 1.35), 

(A 1.50) 

I do)p(t) r 2tt , , 
9 -T-st + arg (t 
Jy dnt L L 

(A 1.53) 
dw _ . dy 1 die du _ . dp 

df “ %Bf ~ 2df ’ df ~ ~1df' 

Differentiating (A1.50) and (A1.52) with respect to f and bearing in 

mind that log | t — f | and arg (t — f) are conjugate, we obtain 

Ar-l 

(A 1.54) i Z P, 
dA* dojp 

df ar 
Introducing the analytic functions iep(f) defined in (A1.7), we get the 

following simple expression for the derivatives of the coefficients A„(f): 
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Now, differentiating (A1.49) and (A1.51) with respect to f and 

using (A1.55), we find 

(A 1.56) . f) 

' d"r 

r) , i 
at ^ 2 p. 

^ > IIi»p COy(s) W’p(t) . 

I 

This is an interesting identity between the derivatives of the con¬ 

jugate of the Neumann’s function on the one hand, and of the Green's 

function on the other. It is, of course, still more interesting to intro¬ 

duce the Neumann’s function itself into the identity. This is done by 

again using (A1.53), this time with respect to differentiation in 

We find from (A 1.56) and (A1.53) [8, 17J: 

(A 1.57) 

Hud we differentiated the conjugate-complex identity related to 

(A 1.56) with respect to z, we would have obtained analogously 

(A 1.58) 
*2N(z, f) 

dz df 

d2<y(z, $) 

dzdf 

1 
4 

k-1 

X 
O,*'3* 

IVu>'(z)w'(f). 

We have thus identified the second derivatives of the Neumann's function 

with simple expressions based on the Green's function. The central role 

of the latter becomes quite evident from all the formalism based on its 

properties. 

We can bring (A 1.57) and (A1.58) into a particularly elegant form 

by introducing the function m(z, f), defined in (A1.37). Because of 

(A1.21), we can write 

k-1 

(A 1.59) m(z, f) = g(z, f) + X n„ »,(*)«.(f) 
(r,p=»] 

and hence we may put (A1.57) and (A 1.58) into the form 

r \ 1 ,.nX (z, f) d2?n(z, f) d2N(z, f) 
(A 1.60) = —r—rr--, — 

dz df dz df dz df 

d^niz, f) 

dz df 

The close relation of d2m/dzdf to a univalent mapping function 

has already been shown in (A1.38). 

Let us show, finally, how the Neumann’s function is connected 

with an important canonical mapping of the domain G. Let f and r\ be 

two arbitrary points in G and consider the function N(z, f) — N(z, 77), 
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In view of the fundamental property of the Neumann’s function, 

we have 

(A1.61) ~ \N(z, f) - N(z, „)] =0 for 2 6 r 

We may extend the above harmonic function in 2 to an analytic, 

function q(z\ f, rj) of 2. From the Cauehy-Riemann equations we can 

assert that- the imaginary part of q remains constant on each boundary 

curve yfi . In particular, this imaginary part will be single-valued on 

each yP . Further, q(z; f, 77) has two logarithmic poles at f and 77 

Figure \. Ibidial-slit domain. 

with the residues —1 and +1, respectively. Hence, we easily obtain 

the following 

Theorem: The function 

(A1.G2) Q{z\ f, 77) =t exp {-q(z\ f, 77)} 

is univalent and single-valued in G and maps this domain onto the 

whole plane slit along linear segments, all directed towards the 

origin. The point z = f corresponds to the origin, the point. 2 = 77 to 

infinity (Figure 4). 

These properties determine the conformal map up to a multiplica¬ 

tive constant. The possibility of this so-called radial-slit domain was 

first proved by Kobe [34]. We see here that its explicit analytical 

expression is given by the Neumann’s function and, hence, is ulti¬ 

mately reducible to the Green’s function of G. Numerous further 

canonical maps could be constructed from the Green’s and Neumann’s 

functions and the harmonic measures. We mention, for example, the 
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mapping of G onto a circular ring slit along k — 2 concentric circular 

arcs (Figure 5). One has here the freedom to determine the two bound¬ 

ary curves yp which shall correspond to the full circumferences which 

bound the ring [34]. 

For further results concerning the Green’s function and canonical 

mappings, compare [33, 38]. 

2. Dirichlet Integrals for Harmonic Functions 

1. Formal Remarks. In the previous chapters, we considered the 

family of all piecewise smooth functions inf? which satisfy given con¬ 

ditions with respect to the boundary. Within this family, we dis¬ 

tinguished the harmonic funct ion as that having the minimum Dirich¬ 

let integral. In this section, Dirichletintegral will be used in a 

different way; we shall apply it only within the family of harmonic 

functions and characterize certain harmonic functions by extremum 

properties of Dirichlet\s integral. 

Let n{z) and v(z) be harmonic in (7; applying the complex differential 

operator d/dz defined in (A 1.35), we obtain two analytic functions 

(A2.1) f(z) = Uj - iu„ = 2 ~, g(z) = vx — iv„ = 2--. 
dz dz 

The Diriehlel, product, l)\u, v] may then he expressed in the form 

(A2.2) />[«, »1 = h?e j fj f(z)g(z) 

G 

In order to utilize the full power of the theory of analytic functions 

we shall henceforth consider analytic functions/(z) and g(z) instead of 

harmonic functions u(z) and v(z). We regard them as vectors in an 

infinite-dimensional linear space g over the field of complex numbers 

in which a metric is established by defining as the scalar product of 

two vectors 

(A2.3) {f, 9) = // fS dr. 

G 

In particular, we define as the norm or length of the vector the 

expression 

(A2.30 Il/H = VUJ), i-e- ll/ll* - // Iff dr. 

Q 
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In the following, the formal rules on integration by parts will be of 

importance. If there exists a function F(z), single-valued and con¬ 

tinuously differentiable in G and such that f(z) = F'(z), then from 

Green’s formula one can easily derive 

(A2.4) 

(/> g) = JjF'(z)g(z) dr, 

G 

— "™ h ^ F{z)g(z) dz, dz — dx — i dy. 

Similarly, if g{z) = G'(z), we have 

(A2.4') (/, g) = + I j f(z)G(g) dz. 

If f{z) or g{z) is derived from a single-valued harmonic? function 

u(z) or v(z) according to (A2.1), we may write 

(A2.5) (/, g) = - 1 j> u{z)g(z) dz = + ~ j> f(z)v(z) dz. 

For each single-valued analytic function f(z) in G there exists a 

function F(z) such that F'{z) — f(z). In general, however, F(z) will 

not be single-valued in G. For a circuit around the boundary con¬ 

tinuum yp , the function F(z) will have the period 

(A2.0) lf]p = f f(z) dz. 

These periods can easily be written in the form of scalar products 

in our Dirichlet metric. In fact, consider the function wp(z) defined in 

(A1.7) and apply (A2.5) to the expression 

(A2.7) (/, w'j = + l j) f(z)up(z) dz. 

Using the fact that = 1 on yp and cop = 0 elsewhere on 7, we find 

finally 

(A2.8) [f]„ = +i(J, w') = 

Consider the subspace C g consisting of all analytic functions 

in G with single-valued integrals. We conclude from (A2.8) the 

important result: 

The necessary and sufficient condition for f(z) to lie in is that it be 

orthogonal to all functions wp(z). 
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2. The Kernels K and L. We define next the two functions 

(A2.9) K(z, ?) 
2 <?g(z, f) J, ,x 2 a2g(z, f) 
7T d* af ’ 1 ^ A* dz df 

These combinations of derivatives of the Green’s function have al- 

already occurred in the important identities (A1.57) and (A1.58). We 

shall immediately recognize their significance in our Dirichlet calculus. 

Since we may write 

log I Z - f I = £ log (z - f) + 2 log (z - ?), 

it is obvious that the singularity of the Green’s function disappears 

under the differentiation processes leading to the function A. Hence 

K(z, f) is a regular analytic function of z and f over the whole of (1. 

The function L(z, f) has at z — f a double pole; we put 

(A2.10) T(z, f) 
1 

ir(z — D2 
<(*, f), 

where f(z, f) is a regular analytic function of z and t in (>. As an 

illustration, consider the case where the domain G is the circle 

| z | < R; the Green’s function has then the form 

(A2.ll) f/(z, t) = log 
R(z 

I 
r): 

and hence 

(A2.12) KU, f) - 2f)1, £<*, o - Ifer) -0. 

From the definition of A and L and from the symmetry of the Green’s 

function, we infer the symmetry laws 

(A2.13) K(z, f) = K(JJ), Liz, f) = L(f, z), /(«, f) - Z(f, *). 

Now let /(z) be analytic and continuous in (7 + y. Consider the 

Dirichlet integral 

(M.KbJ)) = If K(t, z)f(z) dr 

G 

a 

d2y(r, z) 

d?dz 
f(z) dr,. 

(A2.14) 
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Let be the domain obtained from G by removal of a circle of 

radius € around the point f and compute first, by means of (A2.5), 

Dirichlet’s integral over this sub-domain: 

(A2.15) fj Ki$, DM dr, = - If M dz. 

of.. 
The line integral on the right-hand side is to be extended over the 

boundary of , i.e. over 7 and the circumference | z — f | = €, the 

latter in the negative sense. Since for z (z y, we have </(2, f) ss 0 for 

all f£<?, it is clear that 

(A2.16) = 0 fo,. 2 € y 

Thus we find in view of the behavior of the Green's function near f, 

as given by (A1.2), 

(A2.17) 
IIK<t■* - L j (M+1)m * 

= /(r) + 0(«). 

Let t —* 0; the left-hand side converges towards the Diriehlet integral 

(A1.14) and thus we have proved the remarkable identity [62, 72]: 

(M, K(z, fj) = JJ K(£, DM dr = /(f). 

G 

(A2.18) 
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The function A(f, z) is, therefore, a reproducing kernel with respect to the 

integral operation (A2.18); it may also be considered as the unit 

matrix in the vector space g with Dirichlet metric. Identity (A2.18) 

was first observed by Wirtinger; it has, as we shall see, numerous 

applications in the theory of analytic and harmonic functions. 

It is now of interest to study the Dirichlet integral 

(A2.19) (/Os). L(z, n) = - l If -V~|:f) /(*) drz. 

We must remark at first that, because of its double pole at f, L(z, f) 

does not belong to the class We may, however, define the improper 

integral (A2.19) as the limit value for e—► 0 of analogous integrals 

extended over the subdomains G^,f . We find again by use of (A2.5) 

(A2.20) If f{z)L(z, J) drz = -i. I 0 /(2) dz> 

where the integration in the line integral is to be extended over 7 

and | z — r I = e. On 7 the integrand vanishes again because of 

(A2.16) and hence, in view of (A1.2), 

(A2.21) 

Jj f(z)Ij{z, f) dr a 

°<,e 

dz 

= 0(e). 

This result proves that the limit of the left-hand integral exists for 

e —> 0 and that it has the value 0. Thus we have proved 

(A2.22) (/(*), L(z"n) = 0, 

that is: 

The kernel L(z, f) fs orthogonal to all analytic functions in G. 

From the representation (A2.10) follows the identity 

(A2'23) l // dT■ - II Mr* » *■ i 
W </ 

the improper integral on the left is to be understood in the same sense 

as the L-integral. This interpretation is to be given to all improper 
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integrals which will occur. Identity (A2.23) states a very interesting 

fact: The function 1 /w(z — f)2 is a simple analytic function which 

becomes infinite only at the point f. This fact excludes it. from the 

family The family contains, however, the function l(z, f) which is 

equivalent to the given function in the space with Dirichlet metric, 

having the same scalar product with all functions of Jy. 

If we choose, in particular, f(z) = K(z, fj) for arbitrary rj £ G\ we 

obtain from (A2.23) and tho reproducing property (A2.18) of 7v 

(A2.24) t JJ K(z, fj)(z — [)“' d,Tz = Z(f, jj). 

a 

Thus the knowledge of the /v-kernel leads to an easy construction of L: 

(A2.25) L(f, v) = l [(f - v'r2 ~ JJ K(v, 2)Os - f)“2 dr, . 

a 

Since the Green’s and Neumann’s functions are obtainable from K 

and L, our construction problem for these functions is reduced to the 

problem of expressing the Tv-kernel in a convenient way. 

On the other hand, the kernel K can be constructed if the L-kernel 

is known. To show this, we start again from the formula (A2.1G) 

2) _ 0 

dt 
for z f_ 7. 

Let z(s) be a parametric representation of tlie curve system 7 and s 

the length parameter. Denoting dz/ds by z\ we obtain from (A2.16) 

by differentiation 

(A2.26) dVf. «) , , 
d[dz 

z) _ o 
"W 2 ■ °' 

Hence, using definitions (A2.9), we arrive at the result 

(A2.27) L(z, f)z' = ~K{z, f)z' for z 6 7, l 6 0. 

Consider now the Dirichlet integral 

(«*, f), Z(z, ij)) = // i(z, v)l(z, f) dr, 

G 

= UJ 
(A2.28) 
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By moans of (A2.4'), wo establish the formula 

l- ff l(z, f)(2 - fl) ‘(It, 

(A2.29) 

passing to tho limit as 

= ~ - nr'dz + 0(e); 

0, wo obtain, from (A2.10), 

(A2.29') 

(l(z, f), l(z, i})) — +2^- ^ f)(z ~ 1 d2 

- ~: (f> (Z - f)~2(2 - fl)_‘ 
2ir« Jy 

Using the boundary behavior (A2.27) of the L-kernel, wo can, in 

view of tho residue theorem, write 

. j> L{z, f) (z - n) 1 dz 

(A2.30) ' _ 

= +4?- £ A'fe. ?)(* - dz = A(f, ,). 

Let further G be the complementary part of the 2-plane with respect 

to G. Applying (A2.4') with respect to G, we find 

(A2.31) 

2Tv i {z -f)_2(f - ^ dz 
= ~2 JJ ~ f)~20* - fl)‘‘dr, 

T; 

* = r(r,*). 
F(f, *0 is a regular analytic function of f and fj in G which can be 

obtained by simple integration. It will play an important role in the 

final construction of the X-kernel. We can use (A2.30) and (A2.31) 

to put (A2.29') into the final form 

(A2.32) jf l{z, r)l(z, v) dr, = K(f, fj) - r(f, if). 

a 
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This formula permits, in fact, the construction of K, once the kernel L 

is known. 

3. Inequalities. We shall now apply the identities obtained above 

to the theory of analytic functions in G. We have for every such 

function the identity (A2.18). Hence, by Schwarz’ inequality and the 

reproducing property of the kernel K, we find 

(A2.33) | m |2 <||/||* fj Kit, z)K(z, f) dr = f| / ||* A(f, f). 

a 

This formula shows: 

Each function f f Jy can be estimated at each point of G if its norm 

in the Dirichlet metric is known. 

The equality sign in (A2.33) can only hold if f(z) = \K{z, f); this 

shows that the A"-kernel can be characterized by an extremum 

property within the space $$. In fact: 

Among all functions f(z) f 5 which have at a given point f c G 

the value 1, the function K(z, f)//C(f, f) has the least norm, nameh/ 

Ki£% f)"1- 

This remark opens a new approach to the whole theory of the 

boundary value problem. Suppose the existence of a Green’s function 

were unproved; the construction of the kernels K and L would then 

be impossible. It is always possible to define an analytic function 

K{z, f) by the above extremum problem since the class of all analytic 

functions in G with bounded norm is compact. This extremal function 

is easily shown to have the reproducing property (A2.18). If the 

L-kernel is defined by means of (A2.25) it becomes possible to con¬ 

struct- Green’s and Neumann’s functions and verify all their properties. 

This approach was used by Lehto and Garabedian-Schiffer in order 

to give a new proof for the existence of various canonical mappings 

[18, 3GJ. 

Consider next the analytic function 

(A2.34) f(z) = £ \K(z, f,.)*,. + X/(2, 
i-l 

where the are N arbitrary points in G and the xt arbitrary numbers. 

The norm of f{z) is clearly non-negative. It can be easily computed 

by means of identity (A2.32) and the reproducing property of the 
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A-kernel. We find: 

0 < 11/1!2 

(A2.35) 

a-i 
jCk 

+ 2tteh E Kf.-, f*)** Xk 

+ I a |2 X [A(r., h) - r(r,, f*)]x, Xk- 

Note first that the Hermitian form [cf. (A2.31)] 

(A2.36) X r(f, , fk)xixk = \ [f | X 
a-i Tl JJ I t-i 

Xi | , 
—--v i drt 

(z ~ i 

is positive definite. lienee, we conclude from (A2.35) that 
JV AT 

(A2.37) X A(r., > X l’(f,, ft)**ft > 0 
i,k^l i.fc-1 

is also positive definite. Since the inequality (A2.35) holds for every 

choice of the complex parameter X, the discriminant condition is 

(A2.38) 

^ ^ ^(fiy fk)XiXk i 

N N 

< X A(r«, fk)xif.k X LA(f«, f*)]j 

From (A2.38) we derive the weaker result 

(A2.39) !E ^(f» > £k)%i%k 
t.jfc-l 

^ ^ y A (ft- , f*:)Xj Xfc . 
t.fc-1 

Consider next the class of all analytic functions /(;?) in G which 

have at N arbitrarily given points ft* £ G the prescribed values a* . 
N 

There exists always exactly one function E A(z, ft)x» in this class; 
t-i 

for the determinant of the system 
N 

(A2.40) X A (ft, f ,•)*,• = a* 
i-1 

does not vanish because of the positive definite character of the 

A-kernel. Thus every function of the above class can be written 

in the form 

f(z) = X K(z, f+ <p(z), (A2.41) 
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where <p(z) vanishes at all points ft. Let us now compute the norm 

of/; because of the reproducing property of K and because = 0, 

we obtain 

ii/«ir = E m<,h)x<xk + imp 
(A2.42) *,t”1 

N 

^ ^ y £k}%i i'k • 
i,k~ 1 

The quadratic form on the right may be defined as a minimum 

in an appropriate interpolation problem. We recognize from this 

result the importance of the K~kernel in the interpolation theory for 

analytic functions in G. 

4. Conformal Transformations. Let us map the domain G by a 

univalent function w = <p(z) onto a domain Gw . Let gw(w> «) denote 

the Green’s function of Gw and correspondingly Kw and Lw the 

kernels connected with this domain. It is easily seen that, if w = 

(A2.43) gw{w, «) = g(z, f), 

i.e. the Green’s function is invariant under conformal mapping. 

If we differentiate this identity with respect to z and f, we obtain 

the following transformation laws for the kernels: 

(A2.44) Kw{wy (zV(f) = K(z, ?), Lw(w, u)<p'(z)v’(t) = L(z, f). 

Finally, we find for the transformation of l(z, f) the rule 

(A2.45) 

The function 

i r 
7T L[*(z) - <p(f)]2 

+ l(z, f)- 

(A2.4G) w*, r) i_ 

(T- f)2 

is of great interest in the theory of conformal mapping. If we consider 

it for an arbitrary function <p(z), we can immediately state a criterion 

for the uni valence of <p(z). This criterion is obviously the regularity 

of U(z, f) within the domain considered. If z = f, U has the value 

U(z, z) 
6 L^'2 2 <p'2 _ 

1 

6 
{<P> *}, (A2.47) 
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where j^>, z\ denotes the Scliwarz-Cayley differential parameter 

which plays an important role in the conformal mapping of domains 

whose boundaries are circular arcs. 

Let Z]_ and z» be two arbitrary points in G which are mapped by 

<p(z) into W\ and w? . (Nearly, in view of (A2.44) the expression 

(A2.48) L K(z, z) I dz 
/w •> 

Vb 
" i 

Kw(w, w) | dw 

is a conformal invariant and can serve to introduce in G a length 

concept which is unchanged by any conformal mapping. The geometry 

of this metric was studied by Bergman [5|. In the case of a simply 

connected domain G it was first considered by Poincare. 

o. An Application to the Theory of Univalent Functions. The theories 

of conformal mapping and of univalent functions (of. [43, (S8J) are 

closely interrelated: conformal mapping is carried out by means of 

univalent functions. The two theories differ, however, in their points of 

view and in the problems considered. While the theory of conformal 

mapping deals primarily with existence* and behavior of canonical 

mappings, the central problem in the theory of univalent functions is 

the establishing of necessary and sufficient conditions for a given 

analytic function <p(z) in G to be univalent. We shall now show that 

inequalities (A2.39) yield considerable information in this respect. 

In fact, suppose that w = <p(z) is univalent in G and maps this 

domain onto the domain Gw . Here inequalities (A2.39) must hold 

with respect to the functions lw and Kc . But according to the results 

of the last article these functions can be expressed in terms of the 

given function <p(z) and the known functions / and K connected with 

our basic domain G. Using formulas (A2.44) and (A2.45), we obtain 

the result: 

In order that <p(z) be univalent in (7, it is necessary that the inequality 

(A2.49) ! - e(f/. ffr) + Vv, , f*) XiX* ! < K({;, lk)x{xk 
) j,k=°l \_7T J ! i.k^l 

hold for arbitrary values f 7 f G and complex numbers Xi . 

Since U is simply constructed from <p(z) this inequality puts an 

infinity of necessary conditions on the function <p(z). As an illustration 

let us consider the case in which G is the unit circle and let N = 1. 

We obtain, because of (A2.12) and (A2.47), the necessary condition 

(1 ^ i2); ’ 
(A2.50) ! \<p,2! I < 

6 
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which is closely related to the distortion theorem for this class of 

univalent functions. Nohari has shown conversely that if a function 

<p(z) satisfies in | z I < 1 the inequality 

(A2.51) \W, 2(1 < 
2 

(1 - I 2 I2)2 ’ 

we can assert that <p(z) is univalent in | z \ < 1. This condition is, 

however, not necessary [29, 441. 

It can also he shown that a countable subset can be selected from 

the inequalities (A2.49) which as a whole represents a sufficient 

condition for the univaience of the fund ion <p{z). Such a set of inequal¬ 

ities was given first, by (5run,sky and is intimately related to inequality 

(A2.49) [26J. 

(i. Discontinuities of the Kernels. By definition, the kernel L(z, f) 

has a double pole for i — The kernel K(z, f) is continuous for 

z f G + y as long as f e <7; however, if f lies on y, the kernel K also 

becomes infinite for z = f. In the case of the circle this is quite 

obvious, in view of (A2.12). That t his is generally so may be deduced 

from the fact that the homogeneous integral equation 

(A2.52) f(z) + A jj K(z, f)/(f) drt = 0 

G 

has the value A — — 1 as an eigenvalue of infinite order, since all 

analytic functions/^) satisfy this equation because of the reproducing 

property of K. Hence, by virtue of general theorems on integral 

equations, K(z, f) cannot be a bounded function in the closed region 

G + y (cf. [14])/ 

We prove now the remarkable 

Theorem: The function l{z, f) is continuous in both variables in the 

closed region G + 7 if the boundary curves yp everywhere possess throe 

continuous derivatives with respect to the length parameter. 

This statement, is immediately verified for the circle by means of 

(A2.12). The result can be extended by conformal mapping to all 

simply connected domains by applying the transformation law (A2.45). 

and remarking that, if <p(z) denotes the function mapping the unit 

circle onto the simply connected domain G, our assumption on the 

curves yp guarantees the continuity of U(z, f) in the closed region 

| z | < l. There remains to prove, therefore, only the regularity of the 

/-kernel for multiply connected domains. Let 7, be one fixed boundary 

curve. It divides the plane into two domains; wre call the one which 
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contains G the domain G\ . Let g^z, f) be its Green’s function. The 

function gi(z, f) — g(z, f) is harmonic everywhere in (7 and vanishes, 

by construction, on 71. Hence, we may represent it by Green’s formula 

(A1.3) and obtain 

(A2.53) gi(z, f) - g(z, ?) = ~ f [gri(<, f) - gr(<, f)] ds,. 
a7T J y—“y\ Olflt 

Differentiating with respect to z and f, we obtain in obvious 

notation 

lx (z, f) - Kz, f) 

(A2.54) = _j_ r d2g(z, t) pgl«, f) _ f)1 

ir2 Jy—yi dzdn, |_ J * 

This formula already contains the stated result. For if f and 2 lie near 

or on 71 , the integrand in (A2.54) remains continuous, since the 

integration point t does not run over 71. The function £1(2, f) is con¬ 

tinuous in the closed simply connected region Gx ; hence l(z, f) is con¬ 

tinuous near and on yx . But, since 71 might have been any boundary 

curve of 7, our result is proved. 

The continuity of l(z, f) in G + 7 is of great value for the theory 

of the Green’s function. As a first application let us consider formula 

(A2.32).We know now that the left-hand side is continuous in the 

closed region G + 7. Thus, we can infer the continuity of the expres¬ 

sion K(z, f) — T(z, f) in this closed region. The significance of this 

result lies in the following fact: the kernel K(z, f) is a certain deriva¬ 

tive of the Green’s function of G and depends on the domain G in a 

highly transcendental way; the T-function, however, is obtained by 

integrating an elementary function over the complement of G and 

can in effect be computed by integration. No solution of boundary 

value problems is necessary for its construction; we express this fact 

by terming T as a geometric quantity. Thus our result shows that the 

K-kernel has on 7 the same order of infinity as the geometric quantity 

r. 
7. An Eigenvalue Problem. We consider the positive definite 

Hermitian kernel K(2, f) — T(2, f) (cf. (A2.37)), which is uniformly 

bounded in G, and study the homogeneous integral equation 

(A2.55) ?,(*) = \l fj [K(z, f) - Viz, f)K(f) drc. 
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Because of the enumerated properties of the kernel this equation has 

positive eigenvalues X2 and eigenfunctions <p„(z). We want to show 

that we have always \l > 1. In fact, we derive from (A2.55), (A2.31), 

and the reproducing property of the kernel: 

(A2.56) JJ |<pv (z)|2 drz = X2 JJ M*)|2 drz — X2 JJ |xv(s)|2 dr, 

g a a 

where 

(A2.57) xM = l-JJ dT<> 36 G- 
G 

The equation (A2.56) proves our statement. Furthermore it shows 

that Xp > 1 except for functions <pv(z) whose transform Xv(z) vanishes 

identically in the complement G of G. Such functions can, however, be 

easily characterized. We remark first that, because of (A2.55) and the 

continuity properties of the kernel K — F, each <pv(z) is continuous 

in G + 7. Hence, integrating by parts by means of (A2.4), we may 

transform (A2.57) into 

(A2.58) 

27ri 

£ *»(r)(r - *) 

£ ^(r)f'2(f - z)-1 dt 

since df = f' ds and | f'|2 = 1. The same formula represents also an 

analytic function x»(z) f°r z (z G. The function Xv{z) has a discon¬ 

tinuity if the argument point z crosses the boundary y. According 

to a classical result of Plemelj [45], we have for any z <E 7 the jump 

condition 

(A2.59) lim Xv{z%) = lim Xv(z*) + <p„(z)z'2, Zi £ G, ze 6 G. 
ti~*z zt~*z 

If we assume now Xr(z) = 0 in G, we find that the analytic function 

Xv{z) in G has on 7 the boundary values ipv(z)z'2. Let 

(A2.60) $(f) = J [<p,(z) + Xv(z)\ dz. 

For two points f 1 and f2 on the same boundary continuum yp , we have 



280 APPENDIX 

Hf: 

(A2.60') 

ii) - <K<f*) = f \<pyZ' + XvZ'] ds 

rl'z f 

I \<pvz + g>vzf\ ds, 
•hi 

if we chose the are of *yp between fi and f2 as our path of integration. 

The right-hand term is real ; this shows that<t>(f) has constant imagi¬ 

nary parts on each yp . Hence, subtracting from <$>({*) an appropriate 

combination of functions iw„(f), we can obtain an analytic function 

which has on y the imaginary part zero. By the maximum principle, 

this function has a vanishing imaginary part everywhere in G and is 

therefore a real constant. Thus we have proved 

k 

(A2.01) <p,(£) + x,(f) = *'(f) = / Z real. 

Similarly we can show 
k 

(A2.61') - x*(f) = Z! real. 
/>—1 

Thus we conclude finally 

(A2.02) i(dp + iaP)w'(z). 

We have proved: 

/I // eigenfunctions of (/12.f>5) ve/7// eigenvalue 1 are linear combina¬ 

tions of Wp (z). 

It is easily seen that all such combinations are really eigenfunctions 

of (A2.55) with eigenvalue 1. This result illustrates again the im¬ 

portance of the harmonic measures and their many-sided role in 

the theory. 

Let us multiply (A2.55) by wP(z) and integrate over (i. Using the 

symmetry property of the kernel and the fact thatWpte) is an eigen¬ 

function of (A2.55) with \l = 1, we obtain 

(A2.03) JJ <Pv{z)w'p(z) <Itz — \l f! 
<; t; 

Hence, if Ay > 1 

(A2.630 (<Pv, w?) = jj <pv w'p dr - 0 

a 

which proves, by virtue of (A2.8), the 



DI RICH LET INTEGRALS FOR HARMONIC FUNCTIONS 281 

Theorem.: Each eigenfunction <pv{z) of (A2.55) with eigenvalue > 1 

lies in g0, i.e. has a single-valued integral in G. 

8. Kernel Functions for the Class go . We may subtract from the 

kernel K(z, ?) a combination ^ tntrwp(z)wi(£) «uch that it becomes 

orthogonal to all functions wp(z). This corrected kernel KQ(zf f) 

will then lie in the class go, i.e. will have a single-valued integral 

in G. It will still have the reproducing property within the class g0 

since all elements of this class an* orthogonal to the corrective term. 

Using results of section 1, we can give a very elegant interpretation 

for K»(z, f). In fact, we showed in (A1.37) that the kernel —d2m/dzdf 

has a single-valued (and also univalent ) integral — \d/d£ log f(z, f) 

and lies, therefore, in g0 . By (A 1.58) and (Al .(>()) we connected 

this kernel with — d2y(z, fVrtedf. But the kernels differ only by a 

combination of wp ; hence, we have necessarily 

(A2.04) Ko(z, f) - 
2 cf m 

7r ()zdl 

2 iTN(z, f) 

7r ctedf 

We may also introduce the corresponding ^-kernel for go and 

define 

(A 2.05) 
2 (TN(z, f) _ 2 c)2?// 

7T dzdf 7T dzdf 

A completely analogous theory for the* kernel functions in this now 

function space is possible, the central role being played now by the 

Neumann’s instead of the Creen’s function. 

We may study the* solutions of the integral equation 

(A2.0f») = x'i JJ \Kn{z, f) - l'(z, f)| 

a 

Since /v0 and V both lie in go , we conclude first that also <pv(z) (- go. 

But then its scalar product with 7u — V is the same as with K — I\ 

Hence the integral equations (A2.55) and (A2.(>(>) have all eigenvalues 

A; > 1 and the corresponding <pp(z) in common. Equation (A2.00) 

has no eigenvalue 1, since the functions wv{z) do not lie in g0 . 

Consider the identity 

(A2.07) K0(z, w) — JJ [An(2, f) - F(z, f)lAo(f, w) - r(z,w). 
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which follows immediately from the reproducing property of Ko in go • 

We may conceive of this identity as an inhomogeneous integral 

equation for K0(z, w) with the positive definite Hermitian kernel 

Ko — T which is continuous in the closed region G + y. Since its 

lowest eigenvalues are greater than 1, we may solve this integral 

equation by the well known Neumann series based on the reciprocal 

kernel [14]. In fact, let 

(A2.08) AM(z, f) = ff A(''u(*, ®)IX.(w, f) - r(w, f)J drw 

1) 

A<0\z, f) = Kn(z, f). 

rrhen we have 

(A2.G9) Ko(z, u>) = ]L [[ A'1"(2, f)r(f, W) <It[ . 
D 

If we define analogously 

(A2.70) rw(2,f) = ff r(-v(z, w)r(w, f) drt 

D 

ru)(2, f) = r(z, f), 

we may easily compute the series (A2.69) in the form of a double 

sum 

(A2.71) K0(z, w) = g{ ± (-1)" Q rwi)(j, ©)|. 

We have expressed the kernel Ko in terms of a series each of whose 

elements can be obtained by elementary integration, and thus have a 

practically and numerically important procedure for constructing a 

kernel function [9]. 

After having constructed the kernel Ko for the class go, we can 

easily find the kernel K for the wider class g. In fact, let ap be a 

point in that component of Q which is bounded by the curve yp . 

Then the function 

(A2.72) W'p(z) = (2 - a,)-1 - fj K0(z, ?)(f - a,)-1 dn 

Q 

is regular in G and, by construction, orthogonal to all functions 

of the class g0 . Its integral has the period 2iri, if z describes the 
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contour yp and is single-valued otherwise. Thus the function Wp{z) 

is a combination of functions wp (2), whose coefficients can easily be 

computed from the mentioned periodicity conditions. But knowing 

K0 and the wp we can easily construct the kernel K. 

9. Comparison Theory. An interesting generalization of the develop¬ 

ment of the kernel Kq can be given which also is of value for more 

efficient calculations in practical problems. Let ® be a domain in the 

complex plane which contains our original domain (?, and is also 

bounded by k smooth curves Sp each of which can be deformed 

continuously through © into the corresponding boundary curve yp 

of G. Let $(2, $(2, f) and 8(2, f) denote the corresponding (ireen’s 

function and kernels with respect to the larger domain. 

Figure 7. Comparison domains. 

We remark that the function 

(A2.73) A(2, f) = 8(2, f) - L(z, f) 

is again regular analytic in G and continuous in the closed region 

G + 7. This follows immediately from the result obtained for the 

/-kernel in article 6. In fact, A (2, $*) is a clear generalization of this 

/-kernel and becomes identical with it in view of (A2.12) if we choose 

© as a circle. Let us now compute the integral (cf. (A2.22)) 

(A2.74) JJ A(2, f)A(2,77) drz = JJ 8(2, f) A(2,77) drz, 
a o 

which is analogous to (A2.32). Integrating by parts according to 

(A2.5) and using (A2.73) and formula (A2.27), we transform the 

above integral into 



284 APPENDIX 

(A2.75) 

\ 
7ri i 

7ri 

mz,v)'-'Uz,V))dz 

l +'«i 
dfl(z, f) 
#. 

/£(«, fj) dz. 

Since V and dfl/df are both bounded in the domain G* = (M — (7 
the first of the two right-hand integrals can be retransformed by 
(A2.5) into an area integral over G*(f and 77 lying in (?). Thus, we find 

(A2.7G) 

j>^!) itM dz 

- // «(*, r)v(«, i) dr, = -#(r, fj). 

(Nearly, 7i(f, fj) is a positive definite Ilermitian kernel in G of the 
same nature as T. We consider £(2, f) and ft(2, f) as known quantities 
and want, to express K and L in terms of them; hence B is again to be 
considered as an elementary geometric quantity, obtainable by simple 
integration. 

The second integral of (A2.75) can be transformed by integration 
by parts if we remark that dg(z9 f)/df - 0 on 7, and that we may 
write this integral in the form 

1 d d) ~ <j(z, f)l 
VI Jy 

(A2.77) 

K(z, ft) dz 

fj l*G\ z) -K(t,z)\K(z,fi) drz. 

Using the reproducing property of K, we easily evaluate (A2.77), 
and, combining (A2.7G) with (A2.77), finally obtain the identity 

(A2.78) Jf A(2, f)ACTn) dr, = KQ;, fl) - u) - fi(f, i/). 

This result contains valuable information on the change of the 
kernel K if the fundamental domain G is changed. We recognize 
from (A2.78) that the kernel 

(A2.79) K{z, f) - fl(z, f) - B(z, f) = M(*, f) 

is positive definite, i.e. that T"! Af(z,-, lk)x9Xk ^ 0 for1 any choice of 
points 2t f G and complex values . This proves in particular: 



7)1 RICH LKT INTEGRALS FOR HARMONIC FUNCTIONS 28o 

The positive Hermitian form ^2 K(ziy Zk)xtXk decreases moriotonicalhj 

if the basic domain G is increased. This result permits easy estimates 

for the /v-kernel using domains of comparison that either lie entirely 

in G or contain G. 

Let us define for each function f(z) 6 two transforms 

TJ(z) = fl «(*,?)/(/) d.T{, 

(A2.80) 

Ti.f(z) = JJ 2(z, f)/(f) d,T[. 

Since %(z, f) has a double pole at 2 = f the last integral is improper; 

it is, however, easily verified that it represents an analytic function 

of 2 in G and G*. This function is discontinuous if z crosses the bound¬ 

ary y of G. In fact, integration by parts leads (for functions f(z) 

which are continuous in G + 7) to 

(A2.81) 

Tif(z) i a^ir Jsr* 
. 1 i (i 1 + ...) 

« J-y \2 f — Z / 
m<e. 

rrhus we conclude from Plemelj’s theorem that T2f(z) jumps by the 

amount f(z)z'2 if 2 crosses the boundary curve 7. For z £ G, we may 

also write T2f(z) as the proper integral 

(A2.82) Ttf(z) = JJ A(z, f) /(f) drt 

g 

because of the identity (A2.22). T\f(z) is obviously analytic* over 

all of ©. 

Multiplying identity (A2.78) with and integrating over G 

with respect to each variable, we obtain, in view of (A2.76) and the 

reproducing property of the it-kernel with respect to & = G + G*, 

// | rI\f(z) fdrz = ff | f(z) |2 dr, 

O G 

- // 1 Tlf(z) I' dT‘ ~ // 1 r*/(e) |2 dT" 
o+a• o» 

(A2.83) 
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Thus we have the remarkable fact that for each function f(z) analytic 

in G two transforms Trf and l\f can be defined in ffl which have the 

same norm sum with respect to their domain of definition: in obvious 

notation, we may write 

(A2.84) || !T,/ |||i + || TJ ||l = ||/ ||2* . 

Again we set up an integral equation, 

(A2.85) <pv(z) = X2, JJ M(z, f)<p,(f) dn 

o 

(.M(z, f) being defined by (A2.79)) 

and investigate; its eigenvalues. Multiplying (A2.85) by $v(z) and 

integrating over (7, we obtain, in view of (A2.79) and (A2.80), 

(A2.8G) || (pv \\l = \l |j| <p„ ||g — || Tup, ||| — JJ | T2<pv |2 drj. 

o* 

This clearly proves that each X2 ^ 1; we can even state that \2V = 1 is 

only possible if 

(A2.87) Ti(pv ss 0 in T2<pv s 0 in G*. 

It is easy to show that, under our assumptions with respect to @, no 

such function <pv can exist except for <p s= 0. In fact, from Typv = 0 

in GY* and the known discontinuity behavior of T$pv on 7, we conclude 

that T‘i<pv{z) represents in G an analytic function with boundary 

values ip~(z)z'2. From this very fact we concluded in section 7 that 

(pv{z) must be a linear combination of functions wp(2), say 
k-l 

(A2.88) <pv(z) = 2 CpWp(z). 
p" 1 

On the other hand, the identity Tnpv = 0 implies 

(A2.89) JJ 90s, D vft)drt = 0, 2 <E ©, 
O 

and by scalar multiplication with any function analytic in @ we can 

show that <pv(z) is orthogonal to all analytic functions in Let 

to'p(z) be the derivatives of the harmonic measures in ©, analogous 

to the wp(z). We find 

(A2.90) Cp JJ Wp-tVff dr = 0, a = 1, 2, • • • , k — 1. 
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According to (A2.8), (1 /i) (wp , tt>l) = represents the period scheme 

of the functions ti^z) with respect to circuits around the boundary 

curves yp which are equivalent to circuits around the Ep. Thus 

(A2.90) may be written in the form 

k-1 

(A2.900 X = 0, <y — 1, 2, • • • , fc — 1. 
p*»l 

In section 1 we proved that the matrix (sJ3p(r)i.. ./<_i has a non-vanishing 

determinant. Hence, all cp must equal zero and pv(z) s 0. We have 

therefore proved: 

The integral equation (A2.S5) has all eigenvalues >1. 

We now consider the inhomogeneous integral equation 

I(Zy f) = $(z, f) + 

^A2'91^ = K(Z, f) - fj M(z,w)K(w,f) drw 

G 

for the kernel K(z, f). The function /(z,f) is a known quantity by our 

assumption that all quantities connected with © are to be considered 

as given. We may solve this equation also by an infinite series since 

again the eigenvalues of the kernel are greater than 1. Introducing 

the iterated kernels 

(A2.92) Jlv)(z, f) = fj I(-1}(z, w)I(w, f) drw , Ia)(z, f) = I(z, f) 

G 

we obtain using the methods of ai*ticle 8 the series development [66] 

(A2.93) K(z, f) = g jg (-1)" f)}• 

We remark that the v-th term in this series can be written in the form 

(A2.94) X (-1)" Q IW)(z, f) = JJ Mm(z, w)l(w, f) drw 

G 

where M{l,)(z, f) is the r-th iterated kernel of the original kernel 

M (z, f) of the integral equation. Our data on © do not give M(z, f) 

since it still contains the kernel K(z, f). But, by means of it, we can 

easily interpret the significance of the series development (A2.93). 

In fact, let us assume that the boundary curves Ep and yp of the 

two compared domains © and G are at least three times continuously 
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differentiable with respect to their length parameter, and that a 

correspondence between the points of each GP and each yp can be 

established such that the maximum distance between any two cor¬ 

responding points is less than e. We will express this fact by saying 

that the system y of curves lies in an e-neighborhood of the system G. 

It can then easily be shown that the difference A(z, f) = $(z, f) — 

L(z, f) between the corresponding L-kernels is of the order of mag¬ 

nitude 0(e) uniformly in G. Hence, assuming W to have a finite area, 

i.e. not to contain the point at infinity, we conclude from (A2.78) 

that the kernel M(z, f) has the order of magnitude 0(e2) and the 

r-th iterated M{v)(z, f) is 0(tv). Thus we recognize that the series 

development (A2.93) for the /v-kernel proceeds in powers of the 

Figure 8. Variation of y. 

e-measure of distance between the boundary curves. In particular, 

the following result is an immediate consequence of (A2.93): 

K{z, ?) = lb, f) + 0(e2) 

(A2.95) 
= $(z, f) + Jj S(z, w) dT,„ + 0(f). 

o* 

We may transform (A2.95) in order to bring it into the usual form of 

functional analysis. We assume that the correspondence 6 y has 

been established in the following form: if one proceeds from any 

point on G along the interior normal with respect to G one arrives 

just at the corresponding point on y. We denote the distance between 

the two corresponding points by bn. The variation bn is a continuous 

function on G of order 0(e). By means of it we may express (A2.95) 

in the equivalent form 

?) = K(z, f) - U‘(z, f) 

i 2(z, w) bn ds + 0(f). 
(A2.96) 
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Formula (A2.96) describes the sensitivity of the functional &‘(z, f) 

with respect to infinitesimal deformations of the boundary £. Various 

conclusions with respect to $t(z, f) can be derived from this repre¬ 

sentation. The variation formula (A2.96) determines the change of ST 

with the shift 8n of the infinitely many points on S, just as the 

differential 

u? V &F j (IF = 2s — 
»—1 ox,- 

describes the corresponding change of a function F(xi, x2, • •, xN) 

with the shift dx? of its V variables x, . Analogous variation formulas 

for i*, q, to etc. may be derived from (A2.96). We shall return to 

this problem in section 3. 

10. An Extremum Problem in Conformal Mapping. Consider the 

class ®(z0) of all functions/(z) which are univalent in G and regular 

except for a pole at z = z0 with residue 1. These functions map G 

onto a domain which contains the point at infinity and is bounded 

by k continua corresponding to the different yp . Let f(z) be con¬ 

tinuously differentiable in G + y except at z = zn. Then the expression 

(A2.97) A(f) = i^/d/ 

measures the area of the complements of the image domain of G. 

By its nature this expression is non-negative. There arises the question 

of an upper bound for A (/) in the class ©(z0). 

In order to answer this question we remark that the function 

>(z, z0) defined in (A1.31) and (Al .3(3), and discussed in section 1, 

article2 belongs to the class© (z0). It has the following simple relation 

to the L-kernel (cf. (A1.38), (A1.59)) 

i i 

(A2.98) <P'(z, z0) = -itLiz, z<,) + - £ IIp„w'„(z)wUzo) ■ 
& p,<r-1 

From this fact, the formula (A2.4) for integration by parts, and the 

identities (A2.8) and (A2.10) we conclude, for every function <p{z) 

which is continuously differentiable in G + 7, 

(A2.99) ~ ^ Hz, z<>) d<p(z) = - (<*>'(«, *n), /(«)) = 0. 

Now eveiy function in the class :Z(z„) may he written in the form 

(A2.100) f{z) = Hz, *») + Hz), 
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where <p(z) is regular in G. Hence we obtain 

(A2.101) A(f) = A(4>) + i jf <pd<f> = A($>) - || *>' ||J. 

We have proved [17, 25, GO]: 

Among all univalent functions in G with a pole at z0 with residue 1, 

the function T(z, zf) maps G onto the domain with maximum comple¬ 

mentary area. 

11. Mapping onto a Circular Domain. Let G be bounded by a curve 

system y which is three times continuously differentiable with respect 

to its length parameter. We conclude, from (A2.27) and the symmetry 

properties (A2.13) of the kernels, that 

(A2.102) /,(*, ryr' = -k(z, = -/v(r, w* 

= L(z, = real 

if z and f both lie on the boundary 7. Hence, we find from (A2.10) 

(A2.103) Am <jt f ! ^2> f)2' ?''!» 2, f € 7- 

We may also put f = z(s + As), z = z(s) and let As—* 0. The right- 

hand side of (A2.103) remains continuous because of the continuity 

of the /-function. The limit of the left-hand side is easily computed 

by repeated application of the mean value theorem of calculus. 

We obtain 

(A2.104) ^ I«'.»)«') 

where p(s) is the radius of curvature of y at the point with the length 

parameter s. 

If, in particular, G is a domain bounded by circles of the type 

discussed in Chapter V, §2, we have Z(z, z)z'2 = real on y. Functions 

g(z) which are analytic in G and have the property that z,2g(z) is real 

on the boundary play an important role in the theory of conformal 

mapping; they are (‘ailed quadratic differentials with respect to the 

domain G considered. It is easily shown that each quadratic differential 

which is regular in G can be represented in the form 
k-l 

(A2.105) g{z) = ^2 hpvWp(z)wUz)j V = real. 



DIRICHLET INTEGRALS FOR HARMONIC FUNCTIONS 291 

Thus we find that, for a circular domain, 

A- i 

(A2.106) Z(z, z) = 2^ ^PaWfp(z)wUz). 
p,c*~ 1 

Now every domain G can be mapped by a univalent function 

z* — f(z) onto a circular domain (7*. According to (A2.45) and 

(A2.47) we have the relation 

(A2.107) l*(z*, z*)J'{z? = ~ {/, z) + l(z, z). 
()7T 

Using the formula (A2.10G) which is valid for (?*, and the fact that 

o)v(z) = (a*(J(z)) follows from w'v{£) = ?c*'(z*)/'(z), we obtain 

(A2.108) 7T- {/,«} + Kz, 2) = X \l,,wl,{z)w'a{z). 
()7T p.tr*®-! 

This formula represents a differential equation in G for the function 

mapping f(z) onto the circular domain. The constants in this 

equation are not known and must be fitted in such a way that /(z) 

is single-valued in G. The functions l and wp , however, are known if 

the Green’s function for G is given. We have here established a simple 

connection between the Green’s function and the mapping on circular 

domains. 

12. Orthonormal tiydcmx. Suppose a system of analytic functions 

{Uy(z)\ is known in G such that 

(A2.109) (uv, i2p) = JJUy&Upiz) (It2 = j 
a [1, for v = n , 

and that every function/(z) with finite norm || f j| can be developed 

into a series 

00 

(A2.110) f{z) = ^otyUviz) 
r-1 

in terms of the orthonormal system, which converges uniformly in each 

closed subdomain of G. The coefficients av are given by the Fourier 

formulas 

(A2.111) «„=(/, uy) = Jff(z) uv(z) (h2. 
a 

In particular, the kernel K(z, f) can be developed into such a series 
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and because of the reproducing property we can easily determine 

all its Fourier coefficients. We find 

00 _ 
(A2.112) K o, f) = 22 M*(z)wv(r). 

This remarkable connection between the /v-kernel and a complete 

orthonormal system in G permits a computation of the kernel, once a 

complete orthonormal system of the required property has been 

determined. The kernel K(z, f) was first studied by Bergman and 

Bochner in connection with the formula (A2.112) which was con¬ 

sidered as the definition of this kernel [-4, 5, 7, 13J. This definition can 

easily be extended to the case of functions of several complex variables, 

analytic in a certain domain G, and useful applications of the kernel K 

can be made in this theory [(>]. 

Similar developments for fundamental functions in orthogonal 

series were developed by Zaremba in the theory of partial differential 

equations [73, 741. Related to this approach is also the theory of orthog¬ 

onal polynomials and their connection with conformal mapping, as 

developed by Szego [09], compare also [15]. An abstract theory of 

reproducing kernels was developed by Aronszajn [3], 

Variation of the Green’s Function 

1. HadamartVs Variation Formula. In the foregoing sections we 

considered the dependence of the Green’s function g(z, f) for a fixed 

domain G on its variables z and f. It is, however, far more important 

to study the dependence of the Green’s function upon the domain G 

or, in other words, upon the boundary curves 7. In fact, the actual 

construction of the Green’s function for an arbitrarily given domain G 

involves infinite series of iterated integrals and is very complicated. 

It is, therefore, far more convenient to study the Green’s function 

in those simple cases in which it. can be expressed in closed form, 

and to extend the information thus obtained to more general domains 

by a continuous deformation of the boundary 7. If the behavior of 

the Green’s function for slight deformations of the domain is known, 

numerous conclusions about its fundamental properties can be ob¬ 

tained without any actual construction. 

The first investigation of this kind is due to lladamard [27, 28] 

who proceeded in the following manner: Let. G be a domain bounded 

by /,• twice continuously differentiable curve's yp. Let us define on 
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each 7P a positive' continuously differentiable function <p(s) of the arc 

length; we erect at each point of 7 the interior normal and plot on it 

the segment 5n = e<p($). If e is sufficiently small, the endpoints of the 

normal segments will form a system of continuously differentiable 

curves 7* which will determine' a domain <7* lying entirely within (7. 

Let g*(z9 f) and g(z, f) denote the Green’s functions for <7* and (7, 

respectively. 

Consider the expression 

(A3.1) 0(z, f) = </(z, f) 
1 

27T 

z) f) 

fb/7 drt, <$//* c/.SV 

= r/(*, f) - er(z, fb 

which is harmonic in G except for the pole* at z = f. For z C 7 it has 

the boundary value — (dg(z, $)/dnz) 8nz (ef. (A1.3)) and is thus negative 

on the whole' boundary of G. Since 8nz — 0(e), £(z, f) will be very 

small on 7 and the locus ®(z, f) = 0 will, therefore, be' very near 

7. Led 2* be the point corresponding to z 0117*; it lie's on the normal to 

7 at £, at a, distance . Hence, by Taylor’s theorem 

f/C*, f) - y{z, n = j/(z*. f) = a«s + o(n. 
dn- 

Thus, we find for every f <7 (note that er(z, f) = ( dg(z, t)/dng)8ns 0117) 

(A3.2) 0(z*, f) = 5//.- - er(z, f) + 0(«*) = 0(e2), 
dn~ 

wliere the term 0(t2) can be estimated uniformly for f in eae*h e*loseel 

subdomain of (7. 

rrhe function </*(£, f) — ®(z, f) is regular harmonic in G* because 

the logarithmic infinities cancel by subtraction, and is also 0(e) 

on 7* since g*(z, f) vanishes there. Hence, using the maximum 

principle for this difference considered as a harmonic function of z, 

we obtain 

(A3.3) ./li-, f) 
dn, dr?, 

and the remainder term 0(e2) can be estimated uniformly for £ f (7* 

and f in a fixed closed subdomain of G. 

Using the notation of functional analysis, we may write (A3.3) 
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in the form |28, 32, 37J: 

(A3.4) 8g(z, f) = -1 <f "M Mb.!} Snt dst 
2t Jy d fli dilt 

where 5</(z, f) denotes the difference of the two Green’s functions in 

G* up t o a harmonic funct ion of both variables, which can be estimated 

as 0(e) uniformly in each closed subdomain of G*. 

Let us draw some conclusions from (A3.4). Since g(z, f) = 0 for 

z G 7 and > 0 in G, it is clear that dg(z, £)/dnt > 0 for z G y. Hence we 

see that the Green’s function decreases with decreasing domain, i.e. 

for 8n > 0 on y. This is also an immediate consequence of the maxi¬ 

mum principle, since g*(z, f) — g(z, f) < 0 on 7*; however, (A3.4) 

permits us to estimate the speed of decrease in its dependence on bn. 

The right-hand side* of (A3.4) remains well defined even if z and f 

coincide. This becomes clear when we observe that the singular part 

of the Green’s functions is the same for both domains and that, 

evidently, Sg(z, f) = Sh(z, f), where h(z, f) is the regular part of the 

Green’s function as defined in (A1.2). We conclude from (A3.4) 

the formula 

slh(z, z) + Mr, r) - 2/1(2, f)] 
(A3.5) 

This shows: 

J_ I dg(t, z) 

2w Jy L dilt 
T 

dnt 
8nt dst. 

The combination h(z, z) + /?.(f, f) — 2h(z, f) decreases with decreasing 

domain. 

This result is not quite obvious and is our first significant result 

from the variation formula. Inversely, if we increase the domain G 

this combination of the Green’s functions will increase. For a circle 

of radius R we have 

(A3.6) h(z, f) = log 
R1 - zf 

R 

Let us enclose the whole domain G in a very large circle of radius R; 
because of the monotonicity just proved, we find the inequality 

(A3.7) h(z,z) + Mr,r) - 2/1(2,d < log . 

Letting R —» °o, we finally obtain the inequality 

(A3.8) 2h(z, f) > h(z, z) + h({, {). 
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This example illustrates how finite inequalities can be obtained from 

the infinitesimal variation formula (A3.4). 

We now wish to extend Hadamard’s formula (A3.4) to include the 

case in which neither of the two compared domains G and G* lies 

within the other, but an intercrossing of the boundary curves is 

allowed. This means that negative and positive values of 8n are con¬ 

sidered. For this purpose we consider a third domain Go which contains 

both G and G* in such a way that the normal distance of each bound¬ 

ary 7 and 7* from the boundary 70 of G0 is 0(e). Let 5a0 and 8n* be the 

normal distances of 7 and 7* from 70 , respectively.. We can always 

coordinate G0 with G in such a way that the angle between the normals 

at corresponding points of 7 and 70 is also 0(e). We may, then, assert 

that 8n = Sn* — 8n0 + 0(e2). Now we apply Hadamard’s formula 

(A3.3), first with respect to the domains Go and G\ and then with 

respect to the domains Go and G*. Taking the difference of the t wo 

results, we obtain 

(A3.9) 

!7*(z, f) - g(z, f) 

I dffnfa, n dg,)Un,z) 

2tt Jy o dnt dnt 
8n, ds, + 0(e2), 

and this estimate holds uniformly in each closed subdomain within G. 
Since, as e —> 0, the curve system 70 tends to 7 in such a way that the 

normals tend towards each other, we can assert that 

dgo(to, z) dg(t, z) 

dnt dnt 

uniformly for z in any closed subdomain of G. This shows that 

Hadamard,s variation formula (A3.4) still holds in the general case 

considered. 

It is easy to derive from (A3.3) the variation formula for the 

harmonic measures o>p(f). In fact, let yp be a curve which lies inside 

G and G* and is homologous to 7* and 7* . We have, in view of (A1.6) 

and (A3.3), 

«*({■) — ^p(f) 

(A3.10) 

dg*(z, f) dg(z 

dnz 
g(z, s~)\ 
dn, ) 

ds 

2w Jy dnt dnt 

where 0(e2) can be estimated uniformly for all points f in a fixed 
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closed subdomain of G. Using next the definition (A1.8) for the 

induction coefficients Ppa, we obtain from (A3.10) by integration 

over a curve y0 lying in G and homologous to y0 and y* 

(A3.ll) 

pw _ p — 
* pa 1 p<7 

dn) 
ds 

2tt 

Step dcOa 

dn dn 
8n ds + 0(e2). 

Formulas (A3.10) and (A3.ll) now permit us to compute with ease 

the variations of all combinations of functions g, etc., which were 

studied in section 1. 

We make the following application of (A3.11). Let.rp, p = 1,2, •• • , 

k — 1, be an arbitrary set of real numbers. We consider the variation 

of the non-negative quadratic form PD0x0x0 . In view of (A3.11), 

we find 

(A3.L2) «( g ~ rJXP'tnf S’‘^ 

This proves the 

Theorem: The quadratic form ^ Ppaxpx„ increases monotonically 

with decreasing domain, i.e. bn > 0. 

Our result permits an estimate of this expression, by means of the 

corresponding forms for convenient domains of comparison with 

known Green’s functions. 

Hadamard’s formula can be written in the following form: Consider 

the function p{i, z), analytic in t, which possesses g(t, z) as real part. 

If t varies along y, obviously p(t7 z) = ip(t, z), where p is a real-valued 

function. Thus, differentiating with respect to the length parameter 

8 on y, we obtain 

(A3.13) p'(t, z)t' = i p'(t, z) = . 
OS dt 

By the Gauchy-Riemann differential equations we further have the 

relation (dg/dn) — — (dp/ds) between the partial derivatives of 

the real and imaginary part of p(t, z). Hence we can, in (A3.4), 

replace d/dn g{t, z) by z)t' or by ip'(t, z)t 
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Thus we find, in view of | /.' |2 = 1, 

(A3.14) 

hg(z, f) = 2t 

2x 

i 

i 

p'(l, z)p'(t, £)5nt dst 

p'(t, t)5ntdst. 

The variational equation (A3.14) may be differentiated with respect, 

to each variable without losing its validity. For, as is easily seen, if a 

harmonic function is 0(e) uniformly in a given domain, the same is 

true of all its derivatives in each closed subdomain. Using the identity 

p’(t, z) = 2(d/dt)g(t, z), 

we derive4 from (A3.14) 

(A3.15) 8K(z, f) = ^ K(z, t)K(t, f)8n, ds, = j> L(z, l)L{t, })dn, d,st, 

(A3.15') bh(z, f) = j) K(z,t)L(t, £)6ntdst = ^ L(z,t)K(£,t)5?i,d$t. 

We see from the elegant form of the formulas (A3.15) and (A3.15') 

again that the particular derivatives K and L of the Green’s function 

play a distinguished role in the theory. The second formula (A3.15) is 

identical with the variation formula (A2.96) derived in a very 

different way. 

If one has a variation formula for some functional it is quite natural 

to consider extremum problems. The variation formula permits one 

to compare the value of this expression for neighboring domains and 

to characterize the extremal domain by the requirement that under 

each variation of the domain the expression must change in the same 

direction. However, in order to apply the variation formula, we must 

be sure, beforehand, that it is applicable in the case of the extremal 

domain. To derive Iladamard’s variation formula, it was necessary 

to assume that the boundary 7 of a domain G was at least continuously 

differentiable. Otherwise, we would not even have been able to write 

down the formula (A3.4) which contains normal derivatives of the 

Green’s function on the boundary 7. But since we cannot assert that 

the required extremal domain has such a boundary, Hadamard’s 

formula will at best be of heuristic value for guessing the right 
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extremal domain, but will never lead to its unambiguous determina¬ 

tion. For the latter purpose, we must derive a variation formula 

which is valid in the most general domain possible. Such a formula 

can indeed be established as we will show in the next article. 

Figure 9. Interior variation. 

2. Interior Variations. Let G again be bounded by k continuously 

differentiable curves yp ; let Zo be a fixed point in G and consider the 

following function in G: 

(A3.16) z* - z -f et<pp2(z — Zo) '\ 0 < p, 0 < <p < t. 

This function maps the exterior of the circle | z — zo | = p onto the 

whole plane slit along the rectilinear segment 

( zo — 2pe1*, zo + 2pet{f> ) 

of length 4p with center zo. If p is small enough, | z — z0 | = p lies 
entirely in G, and z*(z) is, therefore, univalent on the boundary y of 
the domain G and maps it into a boundary y* of a new domain G*; 

G* will differ by very little from G if p is small enough. We want to 
compute the variation of the Green’s function for this particular 
variation of G into G*. 

Again let g*(z, f) denote the Green’s function of G*. The function 

d(z, f) = g*(z*, n - g(z, f) 

is harmonic in G outside of the circle \ z — z0 \ < p and vanishes 
on 7. Let us assume that f and lie in G outside the circle | z — Zo | < p, 
and apply Green’s identity to the functions d(^, f) and g(z, rj) with 
respect to the domain Gp which is bounded by the curve system y and 
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the circumference \ z — z^\ = p. In view of the vanishing of d(z, f) 

and g(z, 77) on 7, we obtain 

(A3.17) d(v, f) - 
L dra* dn* 

Since the function g{z, f) is regular for | 2 — 20 | < P, we can also 

put (A3.17) into the form 

<7*6?*, r> -<70?,r) 
(A3.18) 

- i cf |><* f)- Jfe,) 
Ztt j\e—zQ\r*mp l dnz cm* 

We have thus expressed d(tj, f) by an integral over a small interior 

circle in G. In order to evaluate this integral, we observe that 

| z — zo! = p and | z* — zo | = | z — z0 + eXipp2{z — zo)~l | = O(p) 

on the above path of integration. We can, therefore, develop all terms 

of the right-hand integral in power series about the point z0 and 

evaluate the integral up to first order terms. The error term will depend 

only on the derivatives of g(z, tj) and g*(z, f*) near the point Zo 

and can, therefore, be estimated uniformly for all domains G and G* 

which contain a fixed subdomain including z%. Introducing the 

analytic function p*(z, f) which has the real part g*(zy f), we may 

write 

/Ao <7*(2*, f*) = g*(zo,n 
(A3.19) 

+ - Zo) + e'*p (z - Zo) lp*'(zo ,f*)| + O(p’) 

and similarly 

(A3.19') g(z, 17) = g(z0, v) + $e{(z - z0)p'(z0, y)l + (>(/)■ 

Furthermore, putting z — z0 — re” and remarking that on the circle 

| z — Zo | = p we have d/dn = d/dr, we find that 

(A3.20) fl*(z*, n = ««{(«* - e2i*e-<T)p*’(zo, f*)} + O(p), 

(A3.20') -- g{z, „) = HHe{e”p'(zo, ,)} + 0(p). 
anz 

Introducing all these expressions into (A3.18), we obtain, after an 

elementary calculation, 

(A3.21) g*(v*, n - g(v, f) = Xe{e2<*Py'(zo,np'(zo,v)) + 0(p3). 
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Inside each closed subdomain of G, we can make use of the fact that 

p*'Oo , f*) = p'(zo , {*) + 0(p2); furthermore, we can introduce in 

(A3.19) the Taylor series development 

f*) = a*(v, f) + file{(!!”’pV(ii, - £orl 
(A3.22) 

+ fi%V(f),)(f-2„n+ o(Pj). 

Thus we finally obtain the 
Theorem: If the domain G is transformed by the variation (A3.10) 

into the domain G*, the corresponding Green’s functions vary accord¬ 

ing to the formula [58, 59, 61]: 

o*(v, f) - giv, <*) 
(A3.23) 

= HI,: j/’V [p'U, «, n) - f + 0(p3). 
I L f ~ «o ?? — zoJJ 

This formula has been derived under the assumption that the 

domain G considered possesses a smooth boundary. We remark, 

however, that the formula (A3.16) defines in a unique way a variation 

for any domain G which contains the point z0 in its interior. No use 

is made here of the concept, of normal shift which would have implied a 

smooth boundary. The final result (A3.23) contains on its right-hand 

side a term which is defined for every domain G containing the 

points z0, f, and rj in its interior. The error term G(p3) can be estimated 

uniformly for all domains which contain a fixed subdomain which 

must in turn include zo, f, and rj. From these observations it follows 

that the formula (A3.23) holds for the most general domain G in the 

complex plane. For such a domain we define the Green’s function 

as the limit of the corresponding Green’s functions of a sequence of 

domains Grt with smooth boundaries converging towards G. If now 

we make a variation (A3.16) of G into G*, the domains Gn of the 

sequence are varied into a sequence G* with smooth boundaries 

which converges to G*. Since, for the difference gt — gn, formula 

(A3.23) is valid with a uniform error term 0(p3), we recognize that 

(A3.23) must still hold in the limit for the variation of G into G*. 

3. Application to the Coefficient Problem for Univalent Functions. 

Let us now illustrate by an important example the use of the variation 

formula (A3.23). We consider the family U of functions/(z) which are 
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regular analytic and univalent in the unit circle | z | < 1, and have 

there the series development 

oo 

(A3.24) f(z) = 2 + 23 an z . 
n “"2 

It is known that the n-th coefficient an of each funct ion / 6 U satisfies 

the inequality | an | < en |39]. Furthermore, since the family U is 

compact it is evident that for each value n there exists at least, one 

function f t{z) for which the n-th coefficient has the largest possible 

modulus. It is well known that the function 

(A3.25) f(z) = =- 2- =3+23 nz" 
(1 — Z)L n=2 

belongs to the class U and is an extremal function for n = 2 and 3 

[12, 40]. It is conjectured that the same function f(z) is an extremal 

function for each value of the integer n. We will show how the formula 

(A3.23) gives a partial answer to this question. 

Consider a fixed value n and suppose that the extremum function 

w = f(z) maps the unit circle upon a domain G in the te-plane. By 

normalization (A3.24), the domain G contains the point w — 0. 

Let z — <J>(w) be the inverse function of f(z). We observe that th(‘ 

Green’s function of the domain G has the form 

(A3.26) 

and, in particular, since 4>(0) = 0, 

(A3.26') g(w, 0) = log JL | = log jL . 

Thus the Green’s function of G stands in a simple relationship 

to the inverse of the extremal univalent function and we may apply 

our variational formula for g(w, w) in order to characterize f(z). 

We perform on the domain G the variation 

(A3.16') w* = w + el<pp2(w — wo)-1 

which transforms G into a domain G* of the w-plane. By means of 

(A3.23), we can compute the Green’s function g*(w, 0) of the new 

<l(w, (o) = log 
1 — 4»(co)4>M 
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domain. Using (A3.26), we obtain 

r <f>'(t0o)2 

g*iw>0) = g{w>0) +\* 

(A3.27) + 
3>(w0)[l — $(l0)$(l0o) 

__J_ 1 _ <t>(w) 

+ <t>'(u>) 
$>(w) (w — Wo) 

+ 0(P3). 
Wo$(w) Wo 

Now let $*(w) = \w + b>>w2 + • • , X > 0, map the domain G* into 

the unit circle. Then we clearly have g*(w, 0) = —log | $*(w) | 

and hence, extending both sides of (A3.27) to analytic functions of w, 

we obtain 

3>'(wo)2 

(A3.28) 

log <f>*(w) = log <£(w) — 

&(w) 

2if 2 
e p 

+ + * 1 

<f>(w>)] 

—2 tip 2 
- e p 

$(w)(w — wo) w0<f>(w;)J 

|~ &(wo)2 $(w) $(iv) 

$>(w0)[l — ^(^o)^^)] w° - 
+ 0(p3). 

Let us take the exponential function of both sides and replace ®(w) 

by z, $(w0) by z0, w by f(z), wo by f(z0) and &(w) by f'(z)~\ We 
find 

(A3.29) 

= z — ei{pp 

1 

z 

_^Jr(Zo)2(Zo - z) 

+ + 

—2t> 2 
e * p 

[/(*) - /(zo)]/'(z) ' /(Vo)] 

\-^J-_L\ 
Lz0 f/(so)2(l — zo z) f(s«) A - ft VY1 - x 
-Zo/ (Zo)-(l - Zo z) 

Further let/*(z) = (] /X)z + • ■ • map the unit circle onto the domain 

G*. From /*(<f>*(w)) = w = /(z), we conclude 

(A3.30) 

-rw - -"v' [*t4S- 

+ iw^m + /S)] 
*7'(») z7'(z)1 

Z) 
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Thus wo have obtained a new univalent function jf*(z) which is 

very near the extremal /(z). Tn order to compute the power series 

development of /*(z) around the origin we introduce a sequence of 

polynomials Sr(t) by the following definition: 

(A3.31) = £ 's»«)2b- 

The coefficients of the polynomials Sn(t) are constructed in elementary 

rational fashion from the first coefficients of the function f(z). We 

next compute from (A3.30) the n-th coefficient a* of f*(z) and obtain, 

after elementary transformations, 

(A3.32) al = a„ + c'2VA„(2o) + e-2,vp2 Rjjij) + 0(A 
a i 

with 

a / \ "4“ l)^n+l 2a2 a„ 1 nr f \ -—-w s, 

(A3.33) + ~2 o,( \2 (n — l)an + 
Zo / 1^0/ _ 

/(*>) /(So)2 

(n - l)a„_! 

zo 

(n - 2)a„_2 , L 2os 
-j--- + • • • + n-2 + 

2q Z o Zo 

1 " 
n —1 
0 

and 

■Bn(zo) = 

(A3.33') 
*>/'(*)* 

[(« — ])«„_! + (n — 2)<in_2 2o 

+ (n — 3)<I„_3 2q + • • • + Zo 
n-■■'*!] (jl 1) (ln—] 

/(Zo) ‘ 

It is now clear that the function /*(«)• 1/a* is again of the class 11. 

Hence we have 

R < |a.| 
I ai I 

for any choice of w0 and <p and p. Since eiaf(e~iaz) is of the same class 

U as /(z), we may assume without loss of generality that an > 0. 

Thus we have the extremum condition for/(z): 

(A3.34) &e{e2‘VAn(zi,) + <T2,Vfi„(3o) + 0(p3)| < 0. 
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Dividing by p and letting p —> 0, we obtain (note that U(e\V} — 

fRe{U |) 

(A3.35) fAe{e2uf[An(z0) + S„(z0)]! < « 

and, since <2"' is quite arbitrary, we arrive at the necessary extremum 

condition 

(A3.3G) An(2o) + Bn(zo) s 0 for | z0 | < 1 ■ 

We find therefore, in view of (A3.33) and (A3.33'), the following 

differential equation for/(2): 

z2S'{zY ( 1_\ 

m1 1" v/W 
(A3.37) 

(/? + l)an+1 — 2a2a„ — (n — l)a„-i 

(± 
\z»-' 

m 
zf'izY = 

-- + “al. + 
—’ Z-2 

+ (n — l)a»_ 

+ (n - l)a„ + (n — l)a„_i z + • ■ • + z 

This result can still be considerably simplified by the following 

remark. Had we subjected the extremal domain G to the simple 

variation w* = w + e2upp which is in fact a conformal mapping, we 

would have obtained instead of (A3.27) the identity 

(A3.38) g*(wy 0) = g(w, 0) 

which follows from the conformal invariance of the Green’s function 

g*(w*, w*) = g(w, oj). Carrying through the same considerations for 

this new type of variation, we would have obtained the extremum 

condition [41] 

(A3.39) (n + \)an+\ = 2+ (fi — l)a«-i • 

This leads to the final differential equation for the extremal function 

[50,55,59]: 

z j'izY ,, r 1 "I = 1 , I , (w - l)a»-i 
(A3.40) fW " L/(z)J z"-1 z-2 ^ ‘ ^ z 

+ (n — 1 )an + (n — l)a„-i z -f- • • • + z" *• 
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The right-hand side of (A3.40) is a rational function of z which is real 

for \z \ = 1. We recognize that f(z) is still analytic for | z | = l, 

except for those points where f(z) becomes a root of Sn(l //) = 0. 

Let w(t) = be the parametric representation of the boundary 

curve belonging to the extremum domain. Then w'(t) — ielif'(cxt) 

will be a tangential vector at the point w(t). In view of (A3.40), 

we find 

(A3.41) 

as the differential equation for the boundary of the extremal domain. 

Ry appropriate choice of the parameter we can bring (A3.41) into 

the more usual form 

(A3.41') 

Thus the boundaiy of the extremal domain G consists of a finite 

number of analytic arcs. We may continue the study of the extremal 

domain by Hadamard’s method and prove, for example, that the 

plus sign holds always in (A3.4T). For further details see [55, 50, 57]. 
It is easily verified that, for every n > 2, the function (A3.25) 

satisfies the differential equation (A3.40). It can be shown that, for 

n — 2, it is the only function in 11 which does so; hence | a2 | < 2 is 

proved. In the case n = 3 we can show |50] that every solution of 

(A3.40) satisfies | a3 | <3; hence | a3 | < 3 is proved for all functions 

(A3.24) and again (A3.25) appears as the extremal function. A 
corresponding proof for n > 3 has not yet been established, which 

leaves the question of max | an | for n > 3 still open. We see that 

the method of interior variation leads to differential equations as 

necessary conditions for extremal functions. The proof that the 

necessary conditions determine the extremal function uniquely and 

the establishment of sufficient extremum conditions can, of course, 

never be obtained by variational methods which are just a comparison 

with the neighboring functions of the class considered. The knowledge 

of the necessary extremum conditions reduces, however, the manifold 

of possible extremal functions in such a strong way that the suffic¬ 

iency proof becomes in many cases quite simple. For further applica¬ 

tions of the method of interior variations, see [17, 20, 49, 5151, 05]. 
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The coefficient problem for univalent functions in the unit circle 

was attacked first by Lowner by a variational method [40], which 

is closely related to the methods of the last two articles (cf. [49, 65]). 

4. Boundary Variations. There is another method of solving ex¬ 

tremum problems in conformal mapping by variations, a method 

which is particularly useful in the theory of multiply connected 

domains. We illustrate it by treating the following coefficient problem 

for univalent functions. Consider a fixed domain G in the z-plane 

which contains the point at infinity. Let 93 be the class of all uni- 

Figure 10. Boundary variation. 

valent functions in G which have, near infinity, the scries development 

(A3.42) f(z) = g + ao + -1 + “! + ••• . 
z z- 

It can again be shown that the coefficients av of all / £ 93 are bounded 

for fixed v, and the question of the maximum | an | arises again. 

Let w — f(z) map G onto a domain A in the w-plane with boundary 

F. Let wq £ T and a, be two points on the same component of V 

at a distance < p from w0. We can then easily construct the function 

(A3.43) 4>(w) = (/3 - a) Tlog , 
L w — P J 

which is univalent in A. This function has in the domain | w — Wq | > p 

the series development 

(A3.44) M 

where the remainder term can be estimated uniformly in each closed 

subdomain of [ w — Wq | > p. 

In view of the obvious principle that a univalent function of a 
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univalent function is again univalent, we have in 

(A3.45) /•(,) - .[/Ml - /« - "-±1 - + 00.1 

a new function of the class 3?. Its n-th coefficient a* will be of the 

form 

(A3.46) a* = <xB - Tn(w0) + O(p’) 

where the polynomials Tn(w) are defined by the generating function 

(A3.47) 1 = £ ^(w)*-* 
J(z) - W «-l 

and depend in an elementary rational way upon the coefficients 

°f /(*)• ■ 
Suppose now that /(z) is a univalent function in 35 with maximum 

.cj?e{ctMo„}. Since our basic domain G need no longer be symmetric 

each choice of p leads to a separate extremum problem. Then, for 

every point Wo 6 r, we must necessarily have 

(A3.48) (Re|e’> - fifTM0)j + 0(p3) > 0, 

whence after division by p2 

(A3.480 (Re je* Tn(wa)j + 0(P) > 0. 

We recognize from (A3.48') that all points of T near wq must approxi¬ 

mate a straight line through w0 with angle eXT such that 

(A3.49) (Re{e,l2rMr„(W)0)| > 0. 

This shows that T has no interior points; if it has a tangent at Wq it 

must have the direction e,T. Refining our argument, we can, in fact, 

prove that the extremum property of f(z) implies the existence of a 

tangent to T at each point wq where Tn(wo) 5^ 0. We omit this rather 

lengthy proof but condense its result [56] in the following 

Lemma: Let Ti be a continuum in the w-plane. Suppose that 

there exists an analytic function s(w) ^ 0 such that for every uni¬ 

valent function $(w) which has a representation 

A rt2 
(A3.50) <*>(«>) = w + A0 + -h O(p’) 

W — Wo 
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uniformly in each closed subdomain of | w — Wo | > p, the inequality 

(A3.51) &e{A1p2s(iv0)} + 0(p3) > 0 

is fulfilled. Then T\ is an analytic curve which can be expressed in 

such a parametric form w — w(t) that 

(A3.52) wr (t)2s[w(t)] +1=0, w'(t) = dw/dt. 

Since for every function (A3.50) our previous reasoning would 

have led to the condition (A3.51), with s(wQ) = — er'MT„(wo), the 

lemma proves, for our particular problem, that the extremal domain 

A is bounded by analytic curves satisfying the differential equation 

(A3.53) w'(t)*Tn(w) - e~* = 0. 

Let us apply this result to the particular case n — 1. In this case, 

we easily find T\(w) ss 1 and, hence, the differential equation for all 

boundary curves of the extremal domain: 

(A3.53') w'(t)2 = i.e. w(t) = + constant. 

This shows that the extremal domain is bounded by parallel recti¬ 

linear segments with the direction e~ 

Since the existence of an extremal domain is guaranteed by the 

compactness of the family our necessary condition for this domain 

yields an existence proof for the above types of slit mappings. It is 

obvious that every extremum problem in conformal mapp ng which 

can be treated by means of the preceding lemma, and Por which 

the existence of an extremum follows from the compactness of 33, 

leads to an existence theorem for a mapping onto a domain bounded 

by analytic slits which satisfy a differential equation (A3.52). 

The possibility of mapping a multiply connected domain onto a 

parallel-slit domain was proved by means of the above extremum 

problem by de Possel [46, 47] and Grotzsch [24]. It should also be 

remarked that the most straightforward proof of Riemann’s mapping 

theorem for simply connected domains is based on a similar extremum 

method (cf. [12]). This method of establishing canonical maps by 

considering extremum problems within the family of univalent func¬ 

tions in G is carefully to be distinguished from the method of 

Dirichlet’s Principle in which the same existence proofs are obtained 

by extremizing certain expressions within a much wider family of 

functions in G. 
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Let us now treat the following problem, due to Grotzsch [22]. 
Consider a domain G which contains the point at infinity and is 
bounded by k continua yp. Each function f(z) £ 25 maps G onto a 
new domain G+ in the w-plane bounded by continua 7* . Let d(yp) 
be the maximum distance of any two points on C\ , i.e. the span of 
Cp . We ask for the maximum of d(yf) for all mappings (A3.42). 

It is easily seen that there is an extremal mapping for which d(yt) 
is really a maximum; let a, b be that pair of points on yf for which 
| a — b | = d(yt) is attained. We can always find a function $>(w) 
of the type (A3.50) for w0 £ y+ which is univalent in G+, so that 
<b\f(z)] will also be of the class 2?. The points a, b go by the mapping 
into 

(A3.54) d\ — a + Ao + —+ 0(p3), 
a — wo 

b) — b + Ao + 711 p2 +o(A 
Wo 

But, from the assumed extremum property of Gf', we have clearly 

A\p“ , nrJ' (A3.55) | ai — fei | = | a — b 1 - 

(a — wo)(b — wo) 
+ 0(P3) 

Thus, from the requirement 
< | a - H 

(A3-55,) !lt‘+ 0(/> > o, 

we conclude by virtue of our lemma that all boundary curves 7^ are 
analytic and satisfy the differential equation 

(A3.50) wf2(a - wT\b - w)"~l +1=0. 

This differential equation can be immediately integrated to 

(A3.57) w = ^{gl b) "T i(& — b)(cpeil + 1 (cpe ), t ~ real, 

where the constant of integration cp may have different values on each 
continuum 7^ . In particular, we have = 1 on 71, since 7! contains 
the points a and b. Thus 71 is just the straight segment connecting 
these two points. All other continua 7^ , p > 1, are easily seen to be 
arcs of ellipses with a and b as their foci. Hence we obtain the 
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Theorem: Each multiply connected domain can be mapped onto 

the whole plane slit along confocal elliptic arcs. One of the boundaries 

can be prescribed to correspond to the segment connecting the foci. 

We might also formulate the following very similar problem: We 

consider all domains G+ with boundary y+ obtained from G by maps 

of the class 3$ and ask for the maximal span d(yt, yt): i.e. we consider 

pairs of points a G yt and h G yt and seek, for fixed i and fc, the 

maximum distance | a — b | under all maps / G 3$. We may repeat 

just the same considerations as above leading from formula (A3.54) 

to formula (A3.57) only with the understanding that a G yt and 

b G yt • Again we find from (A3.57) that all curves 7* are arcs of 

ellipses with foci a and b. In our new problem we conclude, therefore, 

that yt and 7* are straight segments lying in the segment ( a, b). 
We have proved [22]: 

6i-J> 
Figure 11, Elliptic slit sys¬ 

tem with foci a and b containing 

segment (a, b). 

Figure 12. Elliptic slit sys¬ 

tem with foci a and b and two 

slits on line ah. 

Each multiply connected domain can be mapped onto the whole plane 
slit along confocal elliptic arcs. Two boundary continua can be prescribed 
to be straight segments containing the foci and lying in the segment 
between them. 

In particular: 

Each doubly connected domain can be mapped onto the whole plane 
slit along two collinear straight segments. 

The reader will have no difficulties in devising various other 

extremum problems and solving them analogously. Each such exercise 

will provide him with an existence theorem for a certain type of 

conformal mapping. 

5. Lavrentieff’s Method. In the preceding articles, extremum prob¬ 

lems with respect to univalent functions in a given domain were 

studied. The main difficulty was in each case the proof that the 
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boundary of the extremal domain has certain continuity properties. 

For this reason one is obliged either to use interior variation methods 

or to apply the deep lemma of the previous article. In various cases, 

however, one can use a reasoning first developed by Lavrentieff 

[19, 35] in order to show that the extremal domain has analytic 

boundaries; once this fact is established one has little difficulty in 

characterizing the extremal domain in more detail, for example by 

use of Hadamard’s formula which then becomes applicable. 

We want to develop Lavrentieff’s reasoning in an extremum problem 

which is in itself of interest. Consider a simply connected domain G 
which contains the point at infinity; there exists a univalent function 

w = f(z) in G which has at infinity the development (A3.42) and 

which maps G upon the circular domain | w | > R. The number R 
is a characteristic measure of G, called the mapping radius of (7. 

It is immediately verified that each domain which is obtained from G 
by a map with a function of the normalization (A3.42) has the same 

mapping radius as G. By the transformation 

(A3.58) t = w + R2/w 

we can map the circle | w | > R onto the Lplane slit along the segment 

{ ~2R, 2R). This domain has also the mapping radius R\ on the 

other hand, one of our results in article 4 showed that the boundary 

curve 7+ of this new domain has the largest span d(r + ) among all 

curves y+ resulting from a mapping (A3.42) of 7. Hence we obtain 

the inequality (due to Bieberbach [11]) 

(A3.59) d{7) ^ 4R, 

connecting span and mapping radius. Equality in (A3.59) can only 
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hold if 7 is a segment of the length 4R. We may also invert this result 

in the following way: Let two arbitrary points a, b be given and 

consider all continua which contain them. Each such continuum 7 

determines a simply connected infinite domain with a certain mapping 

radius; we will call this radius also the mapping radius belonging 

to the continuum 7. The span d(y) is clearly > | b — a | and for the 

straight segment connecting b with a we have exactly d(7) = | b — a |. 

For the mapping radii R(7) we have, therefore, the inequality 

(A3.60) | b - a | < rf(y) < 4/2(7) 

and equality can hold only if 7 is the segment (a, b ). Thus we have 

proved: 

The continuum through a and b with least mapping radius is the 

straight segment { a, b ). 

Grotzsch proposed the following more general question [23]: Let 

at ,i = 1,2, • • • , n, be n given points in the complex plane; determine 

a continuum 7 containing them with the least possible mapping 

radius. We will treat this problem by LavrentiefTs method. 

Consider an extremal continuum 7; assume that we can decom¬ 

pose it into two separate continua 71 and 72 by deleting from 7 

a subcontinuum C which does not contain any of the points at. The 

continua y\ and 72 determine an infinite doubly connected domain D. 

According to the last result of the preceding article there exists in I) 

a univalent function w = f(z) — z + a0 + 0,1/z + • • • which maps 

D onto the whole plane cut along the two collinear straight segments 

71 and 72 . The continuum C is mapped into a continuum C' which 

connects the segments 7^ and 72 and forms with them the image 7' 

of the extremal continuum 7. The continuum 7' has still the mapping 

radius of 7. If C is not the straight segment C" between 71 and 72 , 

we may replace C' by <7"; this replacement will, in view of our last 

theorem, decrease the mapping radius of 7'. The change, in view of 

the univalent correspondence w — /(z), will create a new continuum 

7 in the z-plane still containing all the points at but with a smaller 

mapping radius. But this would contradict the assumed extremum 

nature of 7; the above decrease in the mapping radius of 7' was im¬ 

possible, i.e. C' was already the straight segment connecting 71 and 72 . 

We know that C is obtained from C by the inverse mapping 

z = which is analytic in the w-plane outside of 71 and 72 . 

Hence C is the analytic image of a straight segment, i.e. analytic. 

Thus each subcontinuum C of 7 which has the property that its 
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deletion splits y into two separate continua is an analytic are. If we 

had known that y consists of finitely many Jordan arcs, it would 

have followed immediately that all these arcs are analytic. This 

would have opened the way to an easy further investigation which 

we shall not continue here. Thus LavrentiefTs method permitted us 

to conclude, from the Jordan character of y, its analyticity. However, 

the proof that the continuum y consists of finitely many Jordan arcs 

requires a finer topological consideration which is nearly as deep as 

the proof of the general lemma on boundary variation of article 4. 
In the classical calculus of variations one always makes great use 

of the principle that each subarc of an extremal curve is itself an 

extremal curve. This principle does not, in general, hold for the type of 

extremum problem with which we are concerned here. Lavrentieffs 

method, however, shows that sometimes this fruitful principle of the 

calculus of variations may be applied. 

G. Method of Extremal Length. In the above articles we have; de¬ 

veloped the treatment of extremum problems by methods of varia¬ 

tions. By considering appropriate problems, we were able to prove 

the existence of mappings on certain canonical domains. We showed, 

in fact, that the mappings belonging to the extremal functions led 

to domains with analytic boundary curves which satisfy certain 

differential equations. There arises, however, the converse question: 

does every such domain really solve a certain extremum problem of 

the type considered? This question is, in general, very hard to answer 

by variational considerations and here the importance of an alternate 

method becomes evident, namely the method of extremal length. 

This method goes back to Faber [10], Grotzsch [21], and Rengel [48] 

and was brought into its present elegant form by Ahlfors and Beurling 

[1], [2], [10]. It is particularly useful as a method of verification; i.e. 

if it is conjectured that a certain domain has some extremum property 

the method frequently enables us to prove the correctness of this 

guess. We want again to illustrate the method by an example. 

Consider a circular ring bounded by the circumferences | z | = 1 
and | z | = R. We introduce in this ring a positive weight function 

p(x, y) and determine, by means of it, a metric ds2 = p | dz |2. Our 

only requirement on the weight factor p is that the total area of the 

ring be 1, i.e. 

(A3.G1) p2rdrd(p = 1, z ~ re'* = x + iy. 
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A curve C in the annulus has the length 

(A3.62) = ^ p d\ z | = J p\/r2 dtp1 + dr2, 

and we may ask for the minimum of this length among all closed 

curves C which are topologically equivalent to the circumference 

z = e1*, 0 < <p < 2ir. The minimum number /i[p] depends on p. 

We shall try to choose p in such a way as to maximize this quantity. We 

consider at first the weight function p0(x, y) = log R)~in (1/r). 

The constant in this definition has been chosen so that (A3.61) is 

fulfilled. We obtain for lc the following estimate: 

(A3.63) 

If we choose for C any circle | z | = c, 1 < c < R, the inequality 

becomes an equality. Thus, in this particular metric, we have p[p0] = 

(2ir/log RY m. 
Let now p(x, y) be an arbitrary weight function satisfying (A3.61). 

We start with the obvious inequality 

(A3.64) [ f (p — po)y dr d<p > 0. 
Jo J1 

Using (A3.01) twice, we can transform (A3.64) into 

(A3.65) 2 > 2(2tt log R)~112 f f Pr d<pdr. 
Jo J i r 

In view of the definition of p[p], we have, 

(A3.66) pr d(p > p[p], 

since the left-hand integral measures the length of the circle | z | = r 

in the p-metric. Hence, the inequality (A3.65) yields 

(A3.67) (2tt log R)'n > n\p] log R. 

Finally we obtain 
(2^ \ 1/2 

logr) == 

We repeat our result in the following form: 

Among all weight Junctions p satisfying (A3.61), the function p0 = 

(2ir log R)~ll2(\/r) leads to the greatest value for the minimal length. 

This maximum is (27r/log R)112. 



VARIATION OF THE GREEN’S FUNCTION 315 

Let now G be a doubly connected domain which has been obtained 

from the circular ring by a map w = f(z). Let w = u + iv; each 

integral pw du dv over a part of G may be expressed in the form 

JJ pw\f(z)\2dxdy over the corresponding part of the annulus. 

Thus each weight function pw in G gives rise to a weight function 

(A3.69) p. = p* | /'(*) |2 

*n the annulus and vice versa. 

Each doubly connected domain G can be mapped onto a circular 

ring of the above form, i.e. bounded by two circumferences | z | == 1 

and | z | = R. The number R is characteristic for G and is called its 

modulus. We can define it now by the following minimum property: 

Consider all metrics based on a weight junction pw which give the total 

area 1 for the domain G. The minimum length for all closed irreducible 

curves in G and for any weight function pw is less than or equal to 

(2ir/log R)1/2 and this maximum is attained for that function pw which 

is connected with p0 by (A3.69). 

In fact, we may transfer the whole question from the domain G 

into the annulus by means of the transformation formula (A3.69). 

Each metric in G determines a corresponding metric in the annulus 

such that corresponding curves have equal length; hence, the minima 

obtained in both domains must be the same. Thus we obtain the 

possibility of defining the modulus R of G by means of an extremum 

problem formulated with respect to G. We remark that a very elegant 

characterization of the map of G onto the annulus has been given, 

although the possibility of such a map has been presupposed. 

Let us draw some conclusions from our result: 

a) It is impossible to map two domains with different moduli onto 

each other. For, under conformal mapping, the metrics could be 

transplanted from one domain into the other; hence the extremum 

of the minimum lengths must be the same. But this shows that the 

moduli must coincide. 

b) Let G' and G be two doubly connected domains such that 

G' 3 G and that each closed irreducible curve in G is also irreducible 

in G'. In this case, we can assert that the modulus of G' is greater 

than the modulus of G. In fact, each weight function p' in G' can be 

made a permissible weight function for G after multiplication with a 

constant factor X > 1 which guaranteed that, for the metric Xp' — pr 
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G has the total area 1. The length of each irreducible curve in G in the 

p-metric is X times its length in the p'-metrix and hence definitely 

larger than the minimal length in G'\ thus, a fortiori, this will hold for 

their maxima. But this implies R' > R for the moduli. 

We can invert our statement on the minimal length for doubly 

connected domains in the following way: Let p be a weight function in 

G such that, for each irreducible closed curve in G, 

(A3.70) £ p ds > 1. 

Then G will have in the corresponding p-metric the area 

(A3.71) fj p dx dy > log R. 

a 

To apply this result we let G be a doubly connected domain 

bounded by two curves Ci and Cv2. We draw another irreducible 

closed curve T, and thus divide G into two doubly connected domains 

Gi and G2 bounded by the pairs of curves Ci , T and C2, I\ respectively. 

We introduce in G the extremal weight function p which satisfies 

(A3.70) and gives G its minimal area. Applying now the preceding 

result to Gi and G>>, we conclude: 

(A3.72) JJ p dx dy > ~- log Rh JJ p dx dy > — log R2, 

a i g 2 

where Ri and R<> denote the moduli of Gi and G?, respectively. For 

p is clearly a permissible weight function in G\ and G2 . Adding both 

inequalities and using the fact that p is the extremal weight function 

for Gy we obtain 

(A3.73) log R > log R\ + log R>, 

an interesting superadditivity property for the logarithms of the 

moduli. 

The method of minimal length can also easily be extended to the 

case of domains with higher connectivity. One introduces here again 

a positive weight-function p such that JJ p dx dy and J p ds meas¬ 

ure area and length in G. We now submit p to the following restric¬ 

tions. Let yl be a curve in G which is topologically equivalent to the 

boundary curve yv of 7; we require 
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(A3.74) fj pds > a,, v = 1,2, • • • , k, 

y'v 

where the av are a fixed given set of positive numbers. We ask for the 

minimum 

(A3.75) Min JJ p dx dy — M(ax, a2, • • • ,ak). 

a 

rrhis function M(ax ,«•>,••*, ak) is, of course a conformal invariant; 

hence the equality of M {ax , a2, • • • , ak) for two given k-fold Con¬ 

ner, ted domains G is a necessary condition for their conformal equiva¬ 

lence. Recently, Jenkins has proved that in the case of a triply con¬ 

nected domain this condition is also sufficient [31]. The method of 

extremal length has been applied successfully in various problems of 

conformal mapping [21-23, 31, 48J. If we choose suitable side con¬ 

ditions the extremal length coincides with important functionals of 

the domain, just as in our illustrative problem it represented the 

modulus of a doubly connected domain. The extremal property thus 

exhibited leads to useful inequalities for the functionals considered. 

We mention here as example the beautiful result of Teichmueller 

obtained in the same way [70]: 

Every function (A3.24) which maps the unit circle onto a slit domain 

in the w-plane such that the boundary slit satisfies the differential equation 

(A3.41'), solves some extremum problem relative to the first n — 1 

coefficients a2 , a3 , - • • , an . 

Thus the method of extremal length permits us to show that 

the necessary conditions for the coefficient problem, obtained by 

variational methods, are sufficient conditions for some similar coeffi¬ 

cient problem. It is only the vagueness of Teichmueller’s theorem 

with respect to the exact nature of the coefficient problem which 

separates us from the complete solution of the general coefficient 

problem. 

7. Concluding Remarks. For the sake of brevity, we developed the 

theory of the fundamental solutions and the kernels only in the case of 

domains imbedded in the complex plane. We might have treated the 

more general case of domains on arbitrary Riemann surfaces, as 

studied in the previous chapters. All arguments are still applicable 

except for one important point which may serve to clarify the relative 

merits of the various methods of existence proof considered. 

We pointed out that in the case of a plane domain the existence 



318 APPENDIX 

of reproducing kernels can be established by certain extremum 

methods within the family of analytic functions in this domain; 

the existence of the Green’s function can, therefore, be inferred 

without the use of Dirichlet’s Principle. This is, however, impossible 

in the general case of a domain on a Riemann surface. In this case 

we are not sure a priori that an analytic function exists in the do¬ 

main. We have to start with the family of piecewise smooth func¬ 

tions and only Dirichlet’s Principle permits the selection of analytic 

functions from this family. Once the existence of such functions is 

ensured, we may continue the theory by the method of the funda¬ 

mental functions and the kernels. 

Similarly, the method of existence proofs by extremal methods 

within the family of univalent functions in the domain is applicable 

only after the existence of univalent functions is established. In each 

plane domain we always have the function z as an example of a 

univalent function, but this does not hold in the general case. 

Thus three types of existence proofs for boundary value problems 

by extremum methods have been considered: 

a) The Dirichlet Principle working with the widest class of all 

piecewise smooth functions with finite Dirichlet integral over the 

domain. 

b) The kernel method using the subclass of all analytic functions 

with finite Dirichlet integral. 

c) The extremum method within the narrowest class of univalent 

functions in the domain. 

It is clear that the method working in the wider class is of greater 

generality, while the method in the narrower class, if at all applicable, 

is of greater convenience in operation. 

Finally, we want to point out that the method of fundamental 

solutions and kernels can be easily extended to a wide class of partial 

differential equations of elliptic type and stands there in an analogous 

relation to Dirichlet’s Principle as in the case of analytic functions 

and the Laplace equation, studied here [8, 67]. 
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definition, 98 
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connection with kernel functions, 
292 

Oscillation of functions, 18 
of vectors, 101 

P 

Parallel-slit domains. Bee Slit do¬ 
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uniqueness question for, 119 
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statement of, 141 
sufficient condition for, 142 
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convergence of, 14 
properties of, 13 
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Rado, 4, 116 
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rectifiable. 
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Schwarz’ inequality, 14 
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Sewing theorem, 69 
Shiftman, 4, 200 
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definition, 45 
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mapping of domain of infinite con¬ 

nectivity on, 58 
mapping of domain of infinite ge 
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mapping of Klein bottle on, 82, 90 
mapping of multiply connected do¬ 

main on, 308 
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normalization of, 92 
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Smoothing process, 24 
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ff., 160 
solve Plateau’s problem, 96 

Stationary point, unstable, 223 
Stationary vector, definition, 110 

represents minimal surface, 112 if. 
Streamlines, 39, 46, 86 

exceptional, 46 
Surface, closed, topological charac¬ 

terization of, 82 
Surfaces of lower type, 142 
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Three point condition, 103, 104 
Tompkins, 4, 134, 200 
Tonelli, 100 
Torus, mapping on slit domain of, 

82, 90 
Transversality, 207, 218 
Triangle inequalities, 14 
Triangulation, 77 
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Uniformization, 77 
of general Riemann domains, 75 

Univalent functions, 276 ff. 
coefficient problem for, 300 ff. 
connection with conformal map¬ 

ping, 276 ff. 
Uniqueness question for Plateau’s 

problem, 119 
Uniqueness theorems for conformal 
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on Riemann surfaces with branch¬ 
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Variational problems, for mapping 
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