
PILANI (Rajasthan)

Class No.

Book No.

Accftssion No S..-5.S.2^l







THEORETICAL SOIL MECHANICS





THEORETICAL
SOIL MECHANICS

By

KARL TERZAGHI

EIGHTH PRINTING

London: CHAPMAN AND HALL, Limitea

JOHN WILET AND SONS, INC,

NEfV YORK



Copyright, 1943

BY
KARL TERZAGHI

All Rights Reserved

This hook or any part thereof must not

he reproduced in any form without

the written permission of the publisher

EIGHTH PRINTING, AUGUST, 1956

PBINTIDD IN THE UNITED STATES OF AMERICA



To HARVARD UNIVERSITY

in appreciation of its liberal encouragement of the

pursuit of knowledge, this book is gratefully dedicated





PREFACE

In the fifteen years since the author published his first book on soil

mechanics interest in this subject has spread over the whole globe and
both our theoretical and our practical knowledge of the subject have

expanded rapidly. The Proceedings of the First International Conference

on Soil Mechanics (Cambridge 1936) alone contains a greater amount
of quantitative information regarding soils and foundations than the

entire engineering literature prior to 1910. Yet, as in every other field

of engineering, the first presentation of the theoretical principles has

been followed by a period of transition characterized by a tendency

toward indiscriminate application of theory and by unwarranted gener-

alizations. Hence, when the author began work on a new textbook on

soil mechanics he considered it advisable to separate theory completely

from practical application. This volume deals exclusively with the

theoretical principles.

Theoretical soil mechanics is one of the many divisions of applied

mechanics. In every field of applied mechanics the investigator operates

with ideal materials only. The theories of reinforced concrete, for

instance, do not deal with real reinforced concrete. They operate with

an ideal material, whose assumed properties have been derived from

those of the real reinforced concrete by a process of radical simplification.

This statement also applies to every theory of soil behavior. The mag-
nitude of the difference between the performance of real soils under field

conditions and the performance predicted on the basis of theory can

only be ascertained by field experience. The contents of this volume

has been limited to theories which have stood the test of experience and

which are applicable, under certain conditions and restrictions, to the

approximate solution of practical problems.

Besides providing the reader with a working knowledge of useful

methods of analysis, theoretical soil mechanics also serves an important

educational purpose. The radical separation between theory and

application makes it easy to impress upon the reader the conditions for

the validity of the different mental operations known as theories. Once

the reader has grasped, on the basis of the results of the analysis, the

manifold factors which determine the behavior of simple, ideal materials

under the influence of internal and external forces he will be less likely

to succumb to the omnipresent danger of unwarranted generalizations

based on inadequate data.
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viii PREFACE

In order to be useful, the knowledge of theory must be combined with

a thorough knowledge of the physical properties of real soils and the

difference between the behavior of soils in the laboratory and in the

field. Otherwise the engineer is unable to judge the margin of error

associated with his numerical results. The properties of real soils and

the performance of soils under field conditions will be discussed in a

companion volume.

For the author, theoretical soil mechanics never was an end in itself.

Most of his efforts have been devoted to the digest of field experiences

and to the development of the technique of the application of our knowl-

edge of the physical properties of soils to practical problems. Even
his theoretical investigations have been made exclusively for the purpose

of clarifying some practical issues. Therefore this book conspicuously

lacks the qualities which the author admires in the works of competent

specialists in the general field of applied mechanics. Nevertheless he

could not evade the task of writing the book himself, because it required

his own practical background to assign to each theory its proper place

in the entire system.

The sources from which the subject matter has been collected are listed

in the bibliography. The approximate methods of computing the bear-

ing capacity of footings in Articles 46 to 49, the earth pressure of sand

on the walls of shafts in Article 74, the critical head of piping in Arti-

cles 94 to 96, the gas pressure in bubbles and voids in Article 112, and

the approximate solutions of the drainage problems given in Articles

118, 119, and 122 have not previously been published.

The first draft for the manuscript was thoroughly studied and com-
mented upon by Mr. Albert E. Cummings and Dr. Ralph B. Peck.

Their comments were so helpful and constructive that they induced

the complete revision of several chapters and the partial revision of

several others. The author is also indebted to his wife. Dr. Ruth D.

Terzaghi, for careful scrutiny of the manuscript in its various stages and

to Dr. Phil M. Ferguson for valuable suggestions.

Karl Terzaghi
Graduate School of Engineerinq

Harvard University

Cambridge, Mass.

December 1942,



SYMBOLS

In 1941 the American Society of Civil Engineers issued a manual

containing a list of symbols to be used in soil mechanics (SoU Mechanics

Nomenclature. Manual of Engineering Practice No. 22). The author

used these symbols except those for loads and resistances and those for

some of the linear dimensions. In the manual an attempt was made to

trace a sharp boundary between load (p and P) and resistance (g and Q).

Since these two quantities are sometimes equal and opposite, the dis-

crimination is neither necessary nor useful. Therefore the author

retained the conventional symbols g and Q for external loads and p
and P or / and F for pressures and forces on inner surfaces such as the

surface of contact between a retaining wall and a backfill. The symbols

for some of those quantities which appear conspicuously in the diagrams,

such as length or width, have been omitted from the list because rigid

standardization of the symbols for such quantities is unnecessary.

In the following list the dimensions of the quantities expressed by

the symbols are given in cm-gm-sec. They could as well be expressed

in any other units, for instance in ft-lb-hr, without changing the expo-

nents. The terms gram and pound indicate a weight which is a force.

If a quantity is given in one unit system, for instance

E = 120,000 (gm cm-*)

and we want to express it in another one, for instance in pounds and feet,

we must introduce into the preceding equation

and lem-ift

whereupon we obtain

(

1 30 5^\— lb X = 120,000 (2.05 lb ft"*)

= 245,000 lb ft"*

If no dimension is added to a symbol, the symbol indicates a pure

number.

When selecting the names for the values repressed by the 83unbols

the author applied the term coefficient to those values which are the

ix



X SYMBOLS

same for every point in a given space, as the coefficient of permeability,

or on a plane, as the coefficient of earth pressure. For values which

refer to an average (bearing capacity factor) or a total (stability factor)

the word factor was chosen. The term hydrostatic pressure ratio
”

has been avoided, because its use became customary in connection with

both the total and the unit earth pressures. This can be misleading.

A (cm*) == area.

Aa earth pressure factor (ratio between normal component of total earth pressure

on a given, plane surface and total pressure of equivalent liquid on the same surface

in those instances in which the distribution of these two pressures is not identical).

a (cm) « amplitude (vibrations).

Ov (gm~^cm*) == coefficient of compressibility (o^c) or coefficient of swelling, (a,,*) re-

fers to the unit of volume of solid matter. The second subscript may be omitted.

C (gm or gm cm"”^) = resultant cohesion.

C (any dimension) *= constant of integration.

e (gm cm"'*) « cohesion in Coulomb’s equation.

Ca (gmcm~*)- adliesion (retaining walls); corrected cohesion (stability of slopes).

Ce (gm cm""*) = critical cohesion (theory of stability of slopes).

Cp (cm^8ec~^) = coefficient of consolidation (c„c in compression and Cp, in expansion).

Cd (gm cm*"^ sec) = coefficient of viscous damping (vibrations).

Cf (gm cm”*) = required cohesion (theory of slopes).

Ca (gm cm”^) =» spring constant (vibrations).

da (gm cm*"®) => coefficient of d3mamic subgrade reaction (vibrations).

B (gm cm”*) =» modulus of elasticity. (If B refers to a definite state or range of

stress, subscripts are used.)

Bi (gm cm) » energy loss (pile driving).

e = void ratio == volume of voids per unit of volume of solid soil constituents.

F (gm or gm cm~^) = total internal force.

/ (gm cm”*) = force per unit of area (/« = normal and ft — tangential component).

/ (sec”^) = frequency (vibrations).

fo (sec”^) =» natural frequency (vibrations).

0 (gm cm”*) modulusof shear (vibrations).

Ga *= air space ratio (drainage).

Ga == factor of safetyj

ff (cm sec”*) » acceleration of gravity.

Ho (cm) » critical height of slope.

h (cm) == hydraulic head.

he (cm) = height of capillary rise.

hp (cm) » critical head with respect to piping.

htff (cm) « piezometric head.

1 (cm^) » moment of inertia of a beam.

la =» influence values pertaining to pressure distributioii.

Ip « influence values pertaining to settlement.

i « hydraulic gradient.

Ko » coefficient of earth pressure at rest (ratio between normal stress on a vertical

and a horizontal section at a given point of a mass of soil in the initial state of

elastic equilibrium of the mass).



SYMBOLS xi

=s coeflScient of active earth pressure (ratio between normal component of earth
pressure of a cohesionless mass on a plane surface and the corresponding hquid
pressure, if pressure distribution is hydrostatic).

Kp = coeflficient of passive earth pressure of cohesionless soil.

Kpm = coefficient of mobilized part of passive earth pressure of cohesionless soil

= Kp divided by factor of safety (theory of bulkheads).

k (cm sec“^) = coefficient of permeability (Darcy's coefficient).

kj and kn (cm sec*"^) = coefficient of permeability parallel and at right angles to the

planes of stratification.

kh (gm cm~^) = coefficient of horizontal pile or soil reaction.

kp (gm cm^^) = coefficient of vertical pile reaction.

ka (gm cm"“®) ~ coefficient of subgrade reaction.

M (gm cm or gm) = total moment or moment per unit of length.

m (gm cm“^ sec^) = mass — weight ^ acceleration of gravity (vibrations).

nip (gm“^ cm^) = coefficient of volume change (nipc in compression, in swelling),

refers to unit of total volume.

N = ratio, factor or coefficient which is a pure number (iVc, and Ny *= bearing

capacity factors, AT* = stability factor in the theory of stability of slopes, N = mag-
nification factor in theory of forced vibrations).

= tan^ (45® 4- 0/2) = flow value.

n = porosity = ratio between total volume of voids and total volume of soil.

ria = ratio between elevation of point of appUcation of earth pressure and total height

of lateral support.

nrt = depth factor (stability of slopes).

Tie = coefficient of elastic restitution (pile driving).

Ug = ratio between acceleration produced by an earthquake shock and acceleration

of gravity.

Pa (gm cm“^) = active earth pressure if arching effect is absent (retaining walls)

or disregarded (anchored bulkheads).

PAn (gm cm“0 = normal component of Pa-

Pai (gm cm*“^) = tangential component of Pa-
Pp (gm cm“^) = passive earth pressure without adhesion component.

Ppe (gm cm”^) = resultant of Pp and the adhesion between soil and contact face.

Pa (gm cm“"^) =a active earth pressure on supports which induce arching (timbering

in cuts).

p (gm cm“*) = total normal pressure per unit of area.

p (gm cm“^) = effective normal pressure per unit of area (bar may be omitted).

Pa (gm cm“^) “ atmospheric pressure.

Pg (cm cm*”^) == gas pressure, as for instance in air bubbles.

Q (cm* sec~^ or cm* sec“^) = total discharge or discharge per unit of length, per

unit of time; also used for total load (gm) or load per unit of length (gm cm~^).

Qd (gm cm“^) « ultimate bearing capacity of continuous footings at depth D below

the surface, per unit of length. It consists of three parts, whose values depend

on the cohesion (Qo), on the depth of foundation (Qg), and on the unit weight of

t^e soil {Qy),

Qd (gm) » dynamic pile driving resistance,

g (gm cm“*) * load per unit of area,

g' (gm cm~^) » line load per unit of length.

0x> (gm cm'"*) « Qd divided by width of footing. It oonsists of three parts, ga, g^,

and Qy, ooxresponding to Qct Qq, and Qy.

3 (gm or gm cm~^) » total shearing force.
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S% « degree of saturation.

8 (gm cm“^) « shearing resistance per unit of area.

T (degrees Centigrade) = temperature.

Tt (gm cm~^) » surface tension of water.

T9 « time factor (theory of consohdation).

t (sec) «= time.

U (gm or gm cm~^) = total excess hydrostatic pressure.

(7% = degree of consolidation.

Uw (gm or gm cm~^) = total neutral force,

u (gm cm*”^) = excess hydrostatic pressure.

Uu, (gm cm“^) “ neutral stress.

V (cm®) « total volume.

V (cm sec”^) = discharge velocity.

Vg (cm sec”"^) = seepage velocity.

W (gm or gm cm"”^) = total weight, or weight per unit of length.

W (gm or gm cm”*^) = effective weight.

W' (gm or gm cm“^) = submerged weight.

Wh (gm) = weight of hammer.

Wp (gm) =* weight of pile.

(degrees) = angles.

y (gm cm“"®) = unit weight.

7 ' (gm cm^®) = submerged unit weight.

7u» (gm cm”®) = unit weight of water ~ 1 gm cm”® = 62.4 lb ft”®.

A == increment.

3 (degrees) *= angle of wall friction.

• = base of Napierian logarithms; unit strain.

17 (gm cm”® sec) = coefficient of viscosity.

e (degrees) = central angle.

X (sec”^) =» damping factor.

II ~ Poisson’s ratio.

V » concentration factor (theory of bearing capacity),

p (cm) «= settlement; vertical displacement.

<r (gm cm”®) « total normal stress.

c (gm cm”®) = effective normal stress (bar may be omitted).

cri, ajiy and <r//j (gm cm”®) = major, intermediate, and minor principal stress.

r (sec) « period (vibrations).

r (gm cm“®) «= shearing stress.

0 (degrees) = angle of internal friction or of shearing resistance.

^ (degrees) ~ angle.

ta (sec”^) *= angular velocity.

i* and { (cm) « components of total displacement in two different directions,

log o = Napierian (natural) logarithm of a.

logio a « logarithm of a to the base 10 .

distance ab measured along a straight line.

SB « distance ab measured along an arc.
^

f>* means approximately equal.

(15)3 indicates equation 3 in Article 15. The article number appears at the top of

each page.

Names followed by dates, for instance (Darcy 1868), indicate references which are

given in the bibliography in alphabetic order.
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Section A

GENERAL PRINCIPLES INVOLVED IN THE THEORIES
OF SOIL MECHANICS

Chapter I

INTRODUCTION

1. Scope and aim of the subject. Soil mechanics is the application

of the laws of mechanics and hydraulics to engineering problems dealing

with sediments and other unconsolidated accumulations of solid par-

ticles produced by the mechanical and chemical disintegration of rocks,

regardless of whether or not they contain an admixture of organic

constituents. In geology such accumulations are called mantle or

regoUth. The term soil is reserved for the decomposed upper layer

which supports plants. On the other hand, in civil engineering the

material which the geologist calls mantle is commonly known as soil or

earth. The soil of the geologist and agronomist does not receive any

consideration in this book, because it can be used neither as a basis for

structures nor as a construction material. Since this book deals with

a branch of civil engineering it is unfortunately necessary to retain the

ambiguous terms soil and earth for material which should appropriately

be called mantle.

Soil mechanics includes (1) theories of behavior of soils under stress,

based on radically simplifying assumptions, (2) the investigation of the

physical properties of real soils, and (3) the application of our theoretical

and empirical knowledge of the subject to practical problems.

The development of some of the theories pertaining to soils was practically com-

pleted half a century ago, but our knowledge of the physical properties of real soils

has been accumulated almost exclusively during the last 25 years. Prior to this

period the inadequate knowledge of the properties of real soils very often led to a

misapplication of theoretical reasoning to engineering problems dealing with soils,

and as a result the theories were discredited.

The rapid advancement of our knowledge of the physical properties

of soils and of the details of the structure of natural soil strata has led

us to realize that the prospects of computing accurately the effect of a

change in the conditions of loading or of drainage on the soil in advance

1



2 INTRODUCTION Art. 1

of construction are usually very slight. This statement applies particu-

larly to all those instances in which the action of water is involved,

because this action often depends on minor details of stratification which

cannot be detected by test borings. For these reasons the role of

theoretical soil mechanics in earthwork engineering is very different

from the application of theory to structural design. When used in

connection with the design of a steel or a reinforced concrete structure,

applied mechanics provides us at the very start with conclusive informa-

tion, because the data on which the computations are based are relatively

reliable. On the other hand, the theories of soil mechanics provide us

only with working hypotheses, because our knowledge of the average

physical properties of the subsoil and of the orientation of the bounda-

ries between the individual strata is always incomplete and often utterly

inadequate. Nevertheless, from a practical point of view, the working

hypothesis furnished by soil mechanics is as useful as the theory of

structures in other branches of civil engineering. If the engineer is

fully aware of the uncertainties involved in the fundamental assump-

tions of his computations he is able to anticipate the nature and the

importance of the differences which may exist between reality and his

original concept of the situation. On the basis of his knowledge of these

possible differences he can plan in advance all the observations which

should be made during construction in order to adapt the design to

the real conditions before it is too late. Thus he fills the gaps in his

knowledge while construction proceeds and he will never be taken by

surprise.

By means of this ‘‘ learn as we go method we are often in a position

to proceed in our earthwork operations without any risk on the basis

of a lower factor of safety than the factor which is customarily required

in other fields of civil engineering, for instance in the design of rein-

forced concrete structures. Therefore the practical value of a thorough

grounding in the theories of soil mechanics cannot possibly be over-

emphasized. Although these theories deal only with ideal materials

and with ideal geological conditions, they represent the key to an intelli-

gent solution of the complex problems to be encountered in the field.

Every empirical rule based on past experience is valid only statis-

tically. In other words it expresses a probability and not a certainty.

Otherwise it could be replaced by a mathematical equation. In this

respect the empirical rule does not differ from the working hypothesis

furnished by soil mechanics. However, if we start our operations with

such a working hypothesis we are fuHy aware of the imcertainties in-

volved. Hence the element of surprise is eliminated. On the other

band, if we trust in empirical rules, as has been done in the past, we are



Art. 2 THEORY AND REALITY 3

at the mercy of the laws of statistics. The working of these laws is

disclosed by the fact that no year has passed without several major

accidents in the field of earthwork engineering. It is more than a mere
coincidence that most of these failures are due to the unanticipated

action of water. The action of water depends much more on minor

geological details than does the befiavior of the soil. As a consequence

the departure from the average expressed by empirical rules such as

those which are used in the design of dams on permeable strata is ex-

ceptionally important. For the same reason the results of theoretical

computations concerning the action of water on structures should only

be used as a basis for planning the layout of pressure gages, which serve

to inform us on the real flow conditions while construction proceeds.

If accepted at face value, the results of the computation are no better

and sometimes worse than empirical rules. This is the spirit in which

soil mechanics should be studied and practiced.

2. Theory and reality. With the exception of steel subject to

stresses within the elastic range there is no construction material whose

real mechanical properties are simple enough to be acceptable as a

basis for theoretical analysis. Hence practically every theory in ap-

plied mechanics is based on a set of assumptions concerning the mechan-

ical properties of the materials involved. These assumptions are

always to a certain extent at variance with reality. In spite of this

procedure, rigorous mathematical solutions are commonly too compli-

cated for general use in connection with the design of structures. In

such cases we are obliged to make additional simplifying assumptions

in order to facilitate the mathematical part of the investigation.

The nature and the implications of the aforementioned approximations are illus-

trated by the accepted method of computing the extreme fiber stresses in a reinforced

concrete beam with free end supports which is acted upon by a system of loads. The
first step is to determine the maximum bending moment by an analytical or a graph-

ical procedure. The result of this operation is absolutely reliable, because the

computation is based exclusively on the laws of mathematics and pure mechanics.

The next step consists in computing the stresses in the section by means of one of

the customary equations. This second operation involves no less than four supple-

mentary assumptions. These assumptions are (a) every plane section oriented at

right angles to the neutral axis of the beam remains plane during the process of

bending, (5) the tensile strength of the concrete is equal to zero, (c) under compres-

sion the concrete obeys Hookers law, and (d) the ratio between the modulus of

elasticity of steel and concrete is equal to some definite value such as 15. The

first of these assumptions is slightly inconsistent with the theory of elasticity, the

importance of the error depending on the ratio between the height of the beam and

the distance between the supports. The three others are conspicuously at variance

with the properties of real concrete. For this reason the term “ theory of reinforced

concrete ” assigned to the method of computation is not accurate. It is not a theory
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of reinforced concrete. It is the theory of an ideal substitute for reinforced con-

crete, and the mechanical properties assigned to this substitute represent a radical

simplification of the properties of the real material. However, in general, the

procedure is perfectly acceptable, because when applied to the design of normal rein-

forced concrete structures, the errors involved are known to be well within the margin

provided by the safety factor. In concrete design the factor is usually equal to 3.5 or 4.

Since the assumptions regarding the mechanical properties of the

material subject to investigation determine the range of validity of the

conclusions, no theory should be presented without a complete and

concise statement of the assumptions on which the theory is based.

Otherwise the results are likely to be applied to casvs which are beyond

the range of their validity.

The alleged incompatibility between practical experience and Coulomb’s theory

of the active earth pressure is an instructive example of a misjudgment due to inade-

quate knowledge of the hmits of the validity of a theory. In one of the following

articles it will be shown that Coulomb’s theory is valid only under the condition that

the upper edge of the lateral support of the soil yields in a horizontal direction to or

beyond a certain critical distance. Until a few years ago this important hmiting

condition was not known. As a consequence it was general practice to apply the

theory to the computation of the lateral earth pressure on the timbering of cuts in

sand. Owing to the stiffness of the top row of struts the upper rim of the lateral

support in a cut cannot yield in the manner just described and Coulomb’s theory

is tWefore not valid in this special case. The few engineers who had learned from

experience that the computed pressure distribution in cuts is radically different from

the observed pressure distribution were led to the erroneous conclusion that the

theory as such was worthless and should be discarded. Other engineers continued

to use the theory in connection with the timbering in cuts, to the detriment of econ-

omy and safety, and no reasonable compromise could be made until the real cause of

the apparent inconsistency became known.

In a similar fashion almost every one of the alleged contradictions between theory

and practice can be traced back to some misconception regarding the conditions for

the validity of the theory. For this reason, special attention will be paid to these

vital and fundamental conditions.

3* Cohesionless and cohesive soils. The mechanical properties of

soils range between those of plastic clay and those of clean perfectly dry

or completely immersed sand. If we dig into a bed of dry or of com-

pletely immersed sand, the material at the sides of the excavation slides

towards the bottom. This behavior of the material indicates the

complete absence of a bond between the individual sand particles.

The sliding material does not come to rest until the angle of inclination

of the slopes becomes equal to a certain angle known as the angle of

repose. The angle of repose of dry sand as well as that of completely

immersed sand is independent of the height of the slope. On the other

hand a trench 20 to 30 feet deep with unsupported vertical sides can

be excavated in stiff plastic clay. This fact indicates the existence of a
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firm bond between the clay particles. However, as soon as the depth

of the trench exceeds a certain critical value, dependent upon the

intensity of the bond between the clay particles, the sides of the cut fail

and the slope of the mass of debris which covers the bottom of the cut

after failure is far from vertical. The bond between the soil particles

is called cohesion. No definite angle of repose can be assigned to a soil

with cohesion, because the steepest slope at which such a soil can stand

decreases with increasing height of the slope. Even sand, if it is moist,

has some cohesion. As a consequence, the steepest slope at which it

will stand decreases with the height of the slope.

In spite of the apparent simplicity of their general characteristics

the mechanical properties of real sands and clays are so complex that a

rigorous mathematical analysis of their behavior is impossible. Hence

theoretical soil mechanics deals exclusively with imaginary materials

referred to as ideal sands and ideal clays whose mechanical properties

represent a simplification of those of real sands and clays. The follow-

ing example may illustrate the difference between the real and the ideal

soils. Most real soils are capable of sustaining considerable deformation

without appreciable loss of shearing resistance. In order to simplify

our theories we assume that the shearing resistance of the ideal soils is

entirely independent of the degree of deformation. On account of

this assumption all the theories involving the shearing resistance of

soils are more or less at variance with reality. Rigorous mathematical

solution of the problems does not eliminate the error associated with

the fundamental assumption. In many cases this error is much more
important than the error due to a radical simplification of the mathe-

matical treatment of the problem. However, the difference between

the assumed and the real mechanical properties is very different for

different soils. The investigation of this difference and of its influence

on the degree of reliability of the theoretical results belongs in the realms

of soil physics and applied soil mechanics, which are beyond the scope

of this volume.

In applied mechanics, materials whose shearing resistance is inde-

pendent of the degree of deformation are called 'plastic materials. In

accordance with our assumption an ideal sand is a plastic material with-

out cohesion. Plastic materials fail by shear followed by plastic flow.

The term plastic flow indicates continuous deformation at a constant

state of stress.

4. Stability and elasticity problems. The problems of soil me-

chanics may be divided into two principal groups— the stability

problems and the elasticity problems. The stability problems deal

with the conditions for the equilibrium of ideal soils immediately pre-
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ceding ultimate failure by plastic flow. The most important problems

in this category are the computation of the minimum pressure exerted

by a mass of soil on a lateral support (earth pressure problems), the

computation of the ultimate resistance of the soil against external forces,

such as the vertical pressure exerted on the soil by a loaded footing

(bearing capacity problems), and the investigation of the conditions for

the stability of slopes. In order to solve these problems it is sufficient

to know the stress conditions for the failure of the soil. No consider-

ation need be given to the corresponding state of strain unless there are

certain limitations imposed upon the deformation of the soil, such as

the limitation due to the incapacity of one part of a lateral support to

change its position. Even if such limitations exist, it is sufficient to

consider them in a general way without attempting a quantitative

analysis of the corresponding strain effects.

Elasticity problems deal with the deformation of the soil due to its

own weight or due to external forces such as the weight of buildings.

All settlement problems belong in this category. In order to solve these

problems we must know the relationship between stress and strain for

the soil, but the stress conditions for failure do not enter into the analysis.

Intermediate between these two groups is the problem of determining

the conditions of loading and of support required to establish the plastic

state at one point of a mass of soil. In connection with problems of this

type, both the elastic properties and the stress conditions for failure must

be taken into consideration. The transition from the initial state to

the ultimate failure of the soil by plastic flow is known as progressive

failure.

In nature the voids of every soil are partly or completely filled with

water. The water may be in a state of rest or in a state of flow. If it

is in a state of rest, the methods for solving stability and deformation

problems are essentially identical with those for solving similar prob-

lems in the mechanics of solids in general. On the other hand, if the

water percolates through the voids of the soil, the problems cannot be

solved without previously determining the state of stress in the water

contained in the voids of the soil. In this case we are obliged to com-

bine the mechanics of solids with applied hydraulics. (Chapters XII
to XV.)



Chapter II

STRESS CONDITIONS FOR FAILURE IN SOILS

5. Relation between normal stress and shearing resistance. In this

book the term stress is exclusively used for a force per unit of area of

a section through a mass. It is generally assumed that the relation

between the normal stress a on every section through a mass of

cohesive soil and the corresponding shearing resistance s per unit of

area can be represented by an empirical equation

s = c + 0- tan 0 [1]

provided it is a compressive stress. The symbol c represents the co-

hesion, which is equal to the shearing resistance per unit of area if

<r = 0. The equation is known as Coulomb’s equation. For cohesion-

less soils (c = 0) the corresponding equation is

s = <7 tan 0 [2]

The values c and 0 contained in the preceding equations can be

determined by means of laboratory tests, by measuring the shearing

resistance on plane sections through the soil at different values of the

normal stress a. In practice we are chiefly interested in the shearing

resistance of saturated or almost saturated soils. A change of stress

in a saturated soil is always associated with some change of its water

content. The rate of the change of the water content produced by a

given change of the state of stress depends on several factors, including

the degree of permeability of the soil. If the stresses which ultimately

lead to failure of the test specimen are applied more rapidly than the

corresponding changes in the water content of the specimen can occur,

part of the applied normal stress o will be carried, at the instant of

failure, by the excess hydrostatic pressure which is required to maintain

the flow of the excess water out of the voids of the soil. At a given value

of <7
,
the part of a which is carried by the water depends on the test

conditions. Hence in this case both the values c and 0 depend not

only on the nature of the soil and its initial state but also on the rate

of stress application, on the permeability of the material, and on the

size of the specimen. The value 0 obtained from such tests is called

the angle of shearing resistance. For clays this angle can have any value

up to (exceptionally morel and for loose, saturated sands any value

7
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up to 35®. In other words, no definite value can be assigned to the

angle <l>
for any soil, because it depends on conditions other than the

nature and the initial state of the soil.

On the other hand, if the stresses on the test specimen are applied

slowly enough, the normal stress which acts on the surface of sliding

at the instant of failure is almost entirely transmitted from grain to

grain. Tests of this kind are known as slow shear tests. The rate at

which such tests must be made depends on the permeability of the soil.

If shear tests on sand with a given initial density are made in such a

manner that the stresses are entirely transmitted from grain to grain,

we find that the shearing resistance s = <r tan 0 is practically inde-

pendent of the character of the changes of the stress which preceded the

failure. For instance, it makes practically no difference whether we
increase the unit load on the sample continuously from 0 to 1 ton per

square foot or whether we first increase the load from 0 to 5 tons per

square foot and then reduce it to 1 ton per square foot. If the load on

the sample at the instant of failure is equal to 1 ton per square foot, the

shearing resistance s is the same in both cases, in other words, the

shearing resistance s depends solely on the normal stress on the potential

surface of sliding. A shearing resistance of this type is called blfrictional

resistance and the corresponding value of represents an angle of

internal friction. Within the range of pressure involved in engineering

problems the angle of internal friction of sand can usually be considered

constant for practical purposes. Its value depends on the nature and

initial density of the sand. It varies between the extreme limits of

about 30® and 50®. The difference between the angle of internal friction

of a given sand in the densest and in the loosest state may be as high

as 15®.

Early investigatorB of soil problems generally assumed that the angle of internal

friction of sand is identical with the angle of repose described in Article 3. However,

as stated above, laboratory experiments have shown that the angle of internal

friction of sand depends to a large extent on the initial density. In contrast to

the angle of internal friction, the angle of repose of dry sand has a fairly constant

value. It is always approximately equal to the angle of internal friction of the

sand in the loosest state. Some textbooks even contain a list of values for the angle

of repose of cohesive soils, although, as shown in Article 4, the angle of repose of

such soils depends on the height of the slope.

When equation 2 is used in connection with stability computations

the value always represents the angle of internal friction of the sand.

In this book there will be no exception to this rule.

The results of slow shear tests on cohesive materials can usually be
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expressed with sufficient accuracy by equation 1,

5 = c + a tan <t>

In order to find out whether the term cr tan 0 satisfies the require-

ments for a frictional resistance, i.e., whether the resistance ata,n4>

depends solely on the normal stress <r, we submit our material with a

given initial water content to two different tests. In one test we in-

crease a from zero to ai and determine the corresponding shearing

resistance Si. In the second test, we first consolidate our material under

a pressure (T2 which is very much higher than <ti ;
then we reduce it to

ax and finally we determine, by means of a slow shear test, the corre-

sponding shearing resistance s[. The process of temporarily keeping

a sample under pressure which is higher than the ultimate pressure is

known as preconsolidation. Experiments show that the shearing re-

sistance s[ of the preconsolidated material may be equal to or greater

than Si, If the two values are equal, a tan <l> in equation 1 represents

a frictional resistance and we are justified in considering <#> an angle of

internal friction. On the other hand, if sj is greater than Si, we know
that the resistance <r tan 0 represents the sum of a frictional resistance

and some other resistance which is independent of <r. The most con-

spicuous permanent change produced by preconsolidation consists in

an increase of the density of the material and a corresponding reduction

of its water content. If s'l is appreciably greater than Si we always

find that the water content corresponding to sj is lower than that corre-

sponding to Si. We know from experience that the value c in equation

1 increases for a given clay with decreasing initial water content.

Therefore in most cases we are justified in drawing the following con-

clusion. If 8i is appreciably greater than si, the resistance <r tan 0 in

equation 1 consists of two parts with different physical causes. The
first part is the friction produced by the normal stress a and the second

part is the increase of the cohesion due to the reduction of the water

content which occurred while the pressure on the specimen was in-

creased from zero to cr.

This statement can be expressed by an equation

s « c + tan « c -h N + O’ tan [3]

wherein <r/ and crjn represent the extreme principal stresses at failure after a slow

test, and AT is an empirical factor. The fraction cr tan 0/ of the shearing resistance

changes with the orientation of a section through a given point, while the fractions c

“ ^ independent of the orientation. The customary methods for

experimentally investigating the shearing resistance of cohesive soils merely furnish
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the values c and <f> on the left-hand side of the equation. The determination of the

values 4>f and N requires elaborate supplementary investigations which belong

in the realm of soil physics.

For cemented sand the value $[ is usually very close to that of si.

For such materials the value <r tan 0 in equation 1 represents only a

frictional resistance. On the other hand, when experimenting with clay

we find that the shearing resistance s[ of the preconsolidated sample is

always appreciably greater than Si at the same load. Hence in con-

nection with clays the angle ^ in equation 1 represents neither an angle

of internal friction nor a constant for the clay, even when its value has

been determined by means of slow shearing tests. If one makes a

series of slow tests on a clay with a given initial water content after

increasing the pressure on the samples from zero to different values o-i,

<7-2, etc., one gets an equation

8 = c + <r tan

If one makes another series of tests on specimens of the same material

after preceding consolidation of the samples under a pressure which is

higher than the test pressures one gets another equation

s = c' + cr tan 0
'

wherein c' is considerably higher than c and ()>' considerably smaller

than <#>. Hence when using Coulomb’s equation 1 in connection with

clays, the reader should remember that the values c and <l) contained

in this equation represent merely two empirical coeflScients in the

equation of a straight line. The term cohesion is retained only for

historical reasons. It is used as an abbreviation of the term apparent

cohesion. In contrast to the apparent cohesion, the true cohesion repre-

sents that part of the shearing resistance of a soil which is a function

only of the water content. It includes not only c in Coulomb’s equation

but also an appreciable part of a tan </>. There is no relation between

apparent and true cohesion other than the name.

In order to visualize the difference between apparent and real cohesion we consider

again a material whose cohesion increases with increasing compaction. By making a

series of shear tests with the material we obtain

8 ^ c ’j’ *r tan <f>

However, when investigating which part of the shearing resistance of the material

is due to cohesion we obtain equation 3,

ffj -f <rjji ,,
, ,

c ^ N + ^ tan <Pf
2
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Comparing the two preceding equations we find that the true cohesion of the

material is equal not to c but to

,
+ am= c H N

If the entire pressure on a clay is transmitted from grain to grain the true cohesion

is never smaller than the apparent cohesion.

If c tan <t>
in equation 1 is equal to zero we obtain

8 = c [4]

For liquids the values c and <l> are zero which means that

8 = 0 161

6. Eflfectivc aiul neutral stresses. In the field, the voids of every

fine-grained soil are partly or wholly filled with water. If we take a

section through a saturated soil, part of it passes through the solid

particles and part of it through the water. In

order to ascertain the mechanical implications

of this fact, consider the test arrangement

illustrated by Figure 1. This figure represents

a section through a layer of a cohesionless soil

which occupies the bottom of a vessel. At the

outset of the test the free water level is sup-

posed to be located immediately above the sur-

face of the soil and the layer is assumed to be

so thin that we may neglect the stress due to

the weight of the soil and the water which are

located above the horizontal section ab. If we
raise the water level to an elevation hw above its

original position the normal stress on the section ah increases from

almost zero to

= hwyw

Fig. 1. Apparatus used

to demonstrate differ-

ence between effective

and neutral stress.

wherein is the unit weight of the water. Yet, this increase of the

compressive stress from practically zero to v on every horizontal section

within the soil does not produce a measurable compression of the layer

of soil. On the other hand, if we increase the intensity of the pressure

on the layer by the same amount, h^yw, by loading the surface of the

layer with lead shot, the resulting compression of the layer is very

appreciable. By an appropriate modification of the test arrangement

it can also be demonstrated that the position of the water level in the

vessel has no influence on the shearing resistance a of the soil, whereas

an equivalent solid surcharge increases the shearing resistance very
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considerably. These and similar experiments lead to the conclusion

that the compressive stress in a saturated soil consists of two parts

with very different mechanical effects. One part which is equal to

the pressure in the water produces neither a measurable compression

nor a measurable increase of the shearing resistance. This part is

is called the neutral stress It is equal to the product of the unit

weight of the water 7^; and the height to which the water rises in a

piezometric tube at the point under consideration. The corresponding

equation is

Unj w [1 ]

The height represents hw the piezometric head at the point of observation.

It can be positive or negative. Hence can also be positive or nega-

tive. If Uw is positive it is usually called the pore-water pressure.

The second part c of the total stress a is equal to the difference be-

tween the total stress and the neutral stress Uyj, This second part

a = (T — Urjo [2]

is called the effective stress, because it represents that part of the total

stress which produces measurable effects such as compaction or an

increase of the shearing resistance. The total normal stress is

<7” == ^ + Wv [3]

The influence of the pore-water pressure on the relation between

stress, strain, and shearing resistance in cohesive soils can be investi-

gated most accurately by means of triaxial compression tests on cylin-

drical specimens, because the test arrangement permits simultaneous

measurement of the total and of the neutral stress.

The principle of the triaxial compression test is illustrated by Figure 2.

This figure represents a section through a vertical cylindrical specimen

of a saturated clay. The top surface of the specimen is covered with a

metal disk and its base rests on a porous stone whose voids communicate

with an outlet valve V. The outer surface of the specimen and of the

porous stone is covered with an impermeable membrane as indicated in

the figure. The specimen is immersed in oil or water which can be

maintained imder pressure, by means of a pump or an accumulator.

The external, hydrostatic pressure <r exerted by the liquid on the water-

^ From this definition it is evident that the neutral stress does not represent the

real pressure in the water, because it does not include the pressure exerted by the

weight of the atmosphere. Whenever we are interested in the real pressure in the

water, as for instance in the theory of capillarity in Chapter XIV, the atmospheric

pressure must be added to the neutral stress.
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tight skin of the specimen can be combined with a supplementary, axial

pressure Atr per unit of area of the top surface of the specimen. The
external hydrostatic pressure combined with the supplementary axial

pressure produces a state of stress which is symmetrical about the

vertical axis of the specimen. Hence, during the test every horizontal

section through the specimen is acted

upon by a vertical stress <rj = <r + Ao*

and every vertical section by a horizontal

stress o-jj = (Tjix = a, which is equal to

the external hydrostatic pressure.

The tests can be made in two ways,

with the outlet valve V (Fig. 2) closed or

with it open. In a first series of tests

we keep the valve closed, in order to

keep the water content of the clay con-

stant throughout the test. By connect-

ing the column of water located above

the closed outlet valve with a sensitive

pressure gage we can experimentally dem-

onstrate that every change in the total

state of stress in the specimen is associated with some change in the

pore-water pressure; and we can measure the pore-water pressure im-

mediately preceding a failure of the specimen by shear. Thus we ob-

tain one set of data informing us on the relationship between stress,

strain, shearing resistance, and pore-water pressure.

In a second series of tests we keep the outlet valve open and at every

stage of the tests' we postpone our strain readings until the water con-

tent of the specimen becomes constant, when the pore-water pressure

is approximately equal to zero. Hence, the data thus obtained inform

us on the relationship between stress, strain, and shearing resistance at

a pore-water pressure of zero.

Both series of tests, those with a closed and those with an open outlet

valve, have been repeatedly made. By combining the data obtained

from two such series, performed on a silty clay, Rendulic (1937) arrived

at the following conclusions. The stress conditions for failure, as well

as the volume change, depend solely on the intensity of the effective

stresses; i.e., the mechanical effects of establishing a given state of

total stress depends only on the difference between the total stress and

the pore-water pressure. The same results are obtained if similar tests

are carried out with sand or any other soil in a saturated state. The

presence of gas bubbles in the voids of a soil influences merely the

rate of deformation but not the final result of the tests. Therefore we

Fia. 2. Apparatus for triaxial

compression test.
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are compelled to assume that both the strain in soils and the stress

conditions for failure depend exclusively on the effective stresses

(T^ Ufp

a-ji = (Tji — Utf [4]

cjix = ajxi — Uvf

On account of the decisive influence of the pore-water pressure Uu, on

the stress conditions for failure, this pressure must also be considered

in connection with the failure conditions expressed by equations 5(1)

and 6(2).

The shearing resistance of cohesionless materials such as sand is

determined by equation 5(2). When discussing this equation in

Article 6 it was emphasized that the normal stress a in this equation

represents a grain-to-grain stress which is synonymous with an effective

normal stress. Therefore we can write this equation

s = a tan <!>

wherein 0 is the angle of internal friction. The resistance a tan </> is a

pure frictional resistance. A frictional resistance depends only on the

effective normal stress on the surface of sliding. Hence if the total

normal stress is cr and the pore-water pressure is Uyjj the shearing re-

sistance of the sand is determined by the equation

g = (or — Uy,) tan (l> [5]

From slow shear tests on cohesive materials we obtain Coulomb's

equation

5 = c + ^ tan 0 [6]

For cemented sands and similar materials the item a tan represents

a pure frictional resistance, which justifies the substitution

a = O' •— W,p

Thus we obtain

« = c + (o’ — Uu,) tan 0 [7]

On the other hand, in connection with clays, the item cr tan ^ includes

both a frictional resistance and another resistance which depends on
the water content of the clay. (See Art. 6.) Since this second re-

sistance is not a simple function of the normal stress on the surface

of sliding, the substitution which led to equation 7 is not justified,

except under very limited conditions such as those which exist in a clay

during a triaxial compression test. Furthermore, when dealing with
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clays, we are seldom in a position to compute the pressure which de-

velops in the pore water while the point of failure is approached. For
these reasons, the data required for making a stability computation

pertaining to clays can at present be obtained only by means of the

following, purely empirical procedure. We test the clay in the labora-

tory under conditions of pressure and drainage similar to those tmder

which the shear failure is likely to occur in the field and we introduce

the values c and 0 thus obtained into our equations. It is obvious

that the success of this procedure depends chiefly on the degree to

which the experimenter has succeeded in imitating the field conditions.

The influence of the test conditions on the numerical values c and 0 in

equation 5(1) will be discussed in a volume on applied soil mechanics.

In the following articles the symbol d for the effective stress will be

used only if it is necessaiy for preventing misunderstandings. Other-

wise the effective normal stress will be represented by the symbol a,

which also indicates mixed normal stresses.

7. Mohr’s diagram and the conditions for plastic equilibrium in ideal

soils. The triaxial compression test illustrated by Figure 2 informs us

on the intensity of the vertical pressure, <ti per unit of area, which is

required to produce a failure of the specimen at a given horizontal

pressure cjj = aju* Since the failure occurs along an inclined surface

of sliding we are interested in the state of stress along inclined sections

through the specimen. Figure 3a represents the specimen. Every

horizontal section 1

1

through the specimen is acted upon by a normal

stress (Tj and the corresponding shearing stress is equal to zero. Accord-

ing to the accepted nomenclature in applied mechanics the normal

stress on any section which is not acted upon by a shearing stress is

called a principal stress* The section itself represents a principal plane.

The normal stress on every vertical section of our specimen is <rjj = <rjjj.

The corresponding shearing stress must also be equal to zero. Other-

wise the conditions for the equilibrium of the specimen would not be

satisfied. Hence the stress cn = <rjjj also represents a principal stress.

If (Tjj and (Tjj/ are different, the conditions for equilibrium require

that the directions of cjj cr/j, and am intersect at right angles.

Whatever the state of stress may be it is alwayTS possible to make
through every point of the body three principal sections which are acted

upon only by principal stresses. WTierever it may be necessary to

distinguish between principal and ordinary normal stresses the former

will be indicated by the symbol a with a roman numeral as a subscript.

aj is the major principal stress, and the symbol <rjj will be reserved for

the principal stress whose intensity is intermediate between that of ai

and ajij.



16 STRESS CONDITIONS FOR FAILURE IN SOILS Art. 7

In soil mechanics we deal chiefly with continuous masses of earth

with a constant cross section whose outer boundaries are perpendicular

to a single vertical plane. Every slice of earth oriented parallel to this

plane is acted upon by the same external and internal forces. The thick-

ness of the slice is not changed by a change in a state of stress in the slice.

Fig. 3. Stress conditions in soil during triaxial compression test.

In applied mechanics such a type of deformation is known as plane

deformation. When dealing with problems of plane deformation it is

sufficient to investigate the stresses which act parallel to the sides of

one slice.

In order to determine the stresses on an arbitrary inclined section

aa through the specimen shown in Figure 3a we investigate the con-

ditions for the equilibrium of a small prism (shown shaded), one side

of which is located on the inclined section. The other two sides are

parallel to the direction of the principal stresses, aj and auj. The slope

of the inclined surface is determined by the angle a. The angle a is

measured in a counterclockwise sense from the principal section //,

which is acted upon by the larger principal stress aj. We also specify

arbitrarily that the compressive stresses are positive. Figure 36 repre-

sents the prism on a larger scale. The equilibrium of the prism requires

that

2^ horizontal forces = cm sin ads — <r sin a ds + r cos ads — 0,

and

2^ vertical forces = cj cos ads — c cos a ds — t sin a ds = 0

Solving these equations for a and r we obtain

<r § ({Tj + Cm) + § <^in) cos 2a [IJ

and

T = ^ (ffj - am) sin 2a [2]

In Figure 3 the angle a ia smaller than 90®. JFor such a value we
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obtain from equation 2 a positive value for the shearing stress r. The
corresponding resultant stress deviates in a clockwise direction from
the normal stress <r. Since the shearing stress r is positive we assign

a positive value to the corresponding angle b between the normal stress

and the resultant stress.

The values of the stresses cr and t can be computed by introducing the

numerical values for <rj, and cc into equations 1 and 2. However,

we can also determine these values by means of the graphical procedure

illustrated by Figure 4. In this diagram the compressive stresses

(positive) are plotted on a horizontal axis from the origin O to the

right and the positive shearing stresses on a vertical axis from point 0
in an upward direction. Hence positive values of the angle b appear

above the horizontal axis. The horizontal axis is reserved for the

pfincipal stresses because the

corresponding shearing stress is

equal to zero. In order to de-

termine the values <t (eq. 1) and

T (eq. 2) for any plane forming

an arbitrary angle a with the

principal plane / / in Figure 3a,

we make O III = a///, 01 ^
ffj (Fig. 4), trace a circle with

a diameter I III = o-j — o-jjj,

whose center A is located half- ^ Graphic determination of stresses by
way between I and III and trace means of circle of stress,

through A a line Aa which

makes an angle 2a with AL For geometrical reasons the abscissa of the

point a thus obtained is equal to the normal stress cr (eq. 1), and its

ordinate is equal to the shearing stress r (eq. 2). The distance Oa

represents the resultant stress on the inclined section through the speci-

men shown in Figure 3.

In the diagram (Fig. 4) the co-ordinates of a point on the upper part

of the circle represent the two stress components for a definite section

which forms an arbitrary angle a < 90® with the principal direction

J I (Fig. 3a). In a similar manner the co-ordinates of a point on the

lower part of the circle represent the two stress components for a section

which forms an angle a > 90® with this direction. Hence the circle of

which I III (Fig. 4) is a diameter represents the locus of all the points

which are defined by equations 1 and 2. For this reason the circle is

commonly called the circle of sfress.

The procedure illustrated by Figure 4 can also be used to compute

the state of stress on,any arbitrary section aa through a point B (Fig.
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5o) of a large body of soil, provided the intensity and the direction of

the principal stresses <r/ and <r/// are known. If the section aa intersects

the principal plane 1

1

(Fig. 5a) at an angle a, the state of stress on the

section is determined by the co-ordinates of the point a on the circle of

stress shown in Figure 56. Point a is obtained by plotting the angle

Fig. 6. Graphic determination of stresses by means of pole method.

2a from AI in Figure 5b in a counterclockwise sense. However, the

position of point a can also be determined without laying off either a
or 2a by means of the following procedure. We trace through I (Fig.

56) a line parallel to the principal section 1 7 in Figure 5a. This line

intersects the circle at point P. Then we trace through point P a line

parallel to oa in Figure 5a. It intersects the line PI at an angle a.

By geometry this angle is equal to one half of the angle aAI. Hence

the line must intersect the circle of stress at the point a whose

co-ordinates represent the state of stress on the inclined section oa in

Figure 6a. This simple relation makes it possible to ascertain in the

diagram (Fig. 56) the position of the point whose co-ordinates represent

the stresses on any arbitrary section by tracing a straight line through

the point P parallel to the section under consideration. The point P
is called the pole of the diagram and is indicated by a double circle.

The principle of the procedure can be condensed into the following
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statement: Every point a on the circle of stress in Figure 56 represents

the state of stress on one particular section through point B in Figure

5a. Thus for instance point a represents the state of stress on section

aa. If we select several such points on the circle of stress and trace

through each one of these points a line parallel to the corresponding

section in Figure 5a, all the lines thus obtained intersect the circle of

stress at the same point, the pole P. Hence if we know the orientation

of the section corresponding to a single point on the circle of stress we
obtain the pole by tracing through this point a line parallel to the section.

The graphic procedures illustrated by Figures 4 and 5 are valid for

any material and regardless of whether or not the stresses aj and <rxii

include a pore-water pressure Uw, because no assumption has been

made regarding the physical properties of the material under investi-

gation.

In soil mechanics the most important application of the stress circle

method illustrated by Figures 4 and 5 consists in solving the following

problem: We know the direction of the extreme principal stresses and

the intensity of one of them. We also know, for instance from the

results of shear tests, that the earth fails by shear as soon as the shearing

stresses on any section satisfy Coulomb ^s equation

s = c + O' tan
<t> 5(1)

We want to determine the intensity of the second extreme principal

stress.

With equation 5(1) we introduce for the first time an empirical ele-

ment into our analysis, whereupon it becomes necessary to examine

very carefully the assumptions which are associated with the equation.

First of all, we assume, in sufficiently close agreement with experience,

that the equation is valid for any value of the intermediate principal

stress <Tj/ which acts at right angles to the plane of the drawing (Fig. 6a).

We are also obliged to assume, in the following investigation, that the

values c and 0 in equation 5(1) are the same for every section through

point JS. Regarding this important assumption, we must distinguish

between cohesionless materials such as sand and cohesive materials

such as clay. The shearing resistance of a sand is determined by the

equation

s *= <r tan 5 (2)

wherein a represents an effective normal stress and the angle of internal

friction. From experience we know that the validity of this equation

invariably justifies aforementioned assumption. Hence the results of
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theoretical investigations based on equation 6(2) are always accurate

enough for any practical purpose.

The shearing resistance of clay is determined by the equation

8 = c + fftan^ 5(1)

wherein a is either an effective or a total normal stress and <f> is the angle

of shearing resistance. In Article 5 it has been shown that the item

tan <l> consists of two parts. One part is a frictional resistance whose

intensity depends only on the value of the normal stress <r. This value

is different for different sections through a given point. The second

part of a tan <f> depends on the water content, which is the same along

every section through the point. Hence for clays the assumption that

the value tan 4> in equation 5(1) is independent of the orientation of a

section through a given point is not even approximately justified.

However, for the sake of simplicity, we cannot avoid it. The nature

and the importance of the errors due to this assumption will briefly be

discussed at the end of this article.

Fig. 6. Graphic presentation of Mohr’s theory of rupture for ideal plastic materials

(Mohr’s diagram).

At the outset of this investigation it was assumed that the direction

of the extreme principal stresses erj and cni the intensity of one of

these stresses are known. Our problem consists in determining the

value which must be assigned to the second principal stress in order to

satisfy the conditions for a shear failure at the selected point (B in

Fig. 6a) and the orientation of the surfaces of sliding at point B, In

Figure 6a the principal planes are shown by the lines 1

1

and III III

which always intersect at right angles. In the stress diagram (Fig. 65)
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equation 5(1) is represented by the straight lines AfoM and M^Mi.
These two lines are commonly called the lines of rupture. They inter-

sect the horizontal axis at an angle (f> and the vertical axis at a distance

c from the origin 0.

In order to solve our problem it is sufficient to remember that for a

given value of <r/, the stresses on any section through point B in Figure

6a are represented by the co-ordinates of the corresponding point on

some circle of stress which passes through point I in the stress diagram

(Fig. 66) provided that 01 = <7j. Since the unknown stress <r/jj is

assumed to be the smaller principal stress the corresponding circle of

stress must be located on the left side of point 7. If the circle of stress

representing the state of stress at point B does not intersect the lines of

rupture MqM and MqMi (Fig. 66) there is no section through point B
in Figure 6o which satisfies the stress conditions for failure, represented

by the lines of rupture. On the other hand, if the circle of stress, such as

that over I III' in Figure 66, intersects the lines of rupture, equilibrium

could not exist on any one of the sections corresponding to the points

located on the arc a'a". Hence the only circle of stress which satisfies

the condition that it represents the state of stress in existence at point

B at the instant of failure by shear is the circle which is tangent to the

lines of rupture. It passes through point III on the horizontal axis, at

a distance cju from the origin. It is called the circle of rupture and

the diagram is called Mohr's diagram (Mohr 1871). In order to de-

termine the orientation of the planes of failure with reference to the

principal planes in Figure 6o we trace IPa (Fig. 66) ||
7 7 (Fig. 6a),

thus obtaining the pole Pa of the diagram. The failure occurs simul-

taneously along two planes, SS (Fig. 6a)
||
PaS (Fig. 66) and (Si<Si

(Fig. 6a)
II
PaSi (Fig. 66). The planes intersect the principal section

7 7 in Fig. 6o at an angle of 45® <^/2. Hence the orientation of the

planes of shear is independent of the value c (eq. 5(1)). The shearing

stress on the planes of shear is equal to the ordinate of point S (or Si)

in Figure 66.

If we determine by means of the diagram (Fig. 66) the orientation of

the resultant stresses on the shear planes we find that the direction of

the resultant stress on each one of these planes is parallel to the other

plane, provided c = 0 (cohesionless material). Thus for instance if

c = 0 the resultant stress on SS in Figure 6o is parallel to SiSi and that

on SiSi is parallel to SS. In applied mechanics any two sections which

satisfy this condition are called conjugate sections. Hence in cohesion-

less materials the shearing planes represent conjugate sections.

The geometrical relations shown in Mohr’s dif^am demonstrate that
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failure occurs as soon as the principal stresses satisfy the equation

cj = 2c tan^45° +

The value

tan^^45® + ^ = 2c^N^ + <rjziN^ 13]

[4]

appears in many equations concerning the plastic equilibrium of earth.

It will briefly be called the Jlow value.

When dealing with sand (c = 0) we operate only with effective normal

stresses. Introducing into equation 3 the value c = 0, we obtain

— ^iii f ^45°
2^

~ 1^1

wherein </> is the angle of internal friction. Hence, if a mass of cohesion-

less soil is in a state of plastic equilibrium, the ratio between the major

and the minor effective principal stresses in every point of this mass must

be equal to the flow value This value depends only on the angle

of internal friction of the material.

Equation 3 can also be written in the form

III

2
sin <t>

= c cos 0 [6]

For the normal stresses <7* and <7, on an arbitrary pair of planes inter-

secting each other at 90°, such as those represented by the lines xx

and Z2 in Figure 60 and by the points x and z in Figure 66, we obtain

from Mohr’s diagram for the state of incipient failure

//®’»
I 2 *7, -f- <73; ,

\j[—^

—

1 +rlt — sin.^ = ccoe<^ [7]

For ideal sands the cohesion c is equal to zero. In every equation

pertaining to ideal sands the angle <p represents the angle of internal

friction and the normal stresses are effective stresses. Substituting

c = 0 in the preceding equations we get

and

<7i
— <rm

+ <7OT

= sin^

•y^
(<7, — <7g)^ + 4Ta, = Eon^

18]

<7, + <7,
[9]
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If the stresses in every point of a mass of soil satisfy any one of the

equations 3, 6, or 7 the earth is said to be in a state of plastic equilibrium.

This state may be preceded either by a state of plastic flow or by a state

of elastic equilibrium involving the existence of stresses which are every-

where below the point of failure. The theory on which the compu-

tation of the stresses in a state of plastic equilibrium is based is called

the theory of plasticity. There are several theories of plasticity, based

on different assumptions regarding the conditions for plastic flow

(Nadai 1931). These assumptions have been obtained by simplifying

the real stress conditions for the plastic flow of the materials subject to

investigation. The theory of plasticity pertaining to soils is based on

Mohr^s theory of rupture because we have not yet a substitute which

describes the plastic properties of the soils in a more satisfactory man-

ner. On the basis of Mohr^s concept we obtained equations 3, 6, and 7,

which represent three different forms of the fundamental equations of

the theory of plastic equilibrium in ideal soils with which the following

chapters deal. The equations have been derived on the assumption,

stated at the outset, that equation 5(1) is valid not only for the shear

plane but for any other section through a given point of a mass in a state

of plastic equilibrium.

Mohr^s diagram is nothing but a device for solving graphically some

of our problems in plasticity on the assumption that Mohr^s concept of

the stress conditions for failure is justified. This assumption also

implies that the cohesion c of the material subject to investigation is a

constant of the material.

If c in equation 5(1) is equal to zero (cohesionless materials) and if,

in addition, a represents an effective normal stress, this assumption is

approximately correct. The discrepancies which exist between the

assumption and the mechanical properties of real clays will be described

in a volume on applied soil mechanics. An analysis of their influence

on the validity of Mohr^s diagram and the corresponding equations for

clays has led to the following conclusions. In spite of the discrepancies,

equations 3 to 7 are always tolerably reliable. On the other hand, the

difference between the real and the computed orientation of the surfaces

of sliding with reference to the principal planes is always important.

In general, if the stresses in the equations or in the diagrams represent

effective stresses, the error is likely to be less important than the error

associated with similar computations involving mixed stresses.

The preceding investigations were also based on the tacit assumption

that plastic flow, involving a continuous deformation under constant

stress, has no influence on the values c and ^ contained in equation 5(1).

Thus both the ideal sand and the ideal clay are assumed to be capable
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of flowing indefinitely at unaltered values of c and <t>.
Therefore we are

justified in calling them plastic materials. Yet there are no real soils

whose physical properties strictly justify such an assumption. The

departure of the behavior of real soils from the ideal plastic behavior

varies notably not only with the nature of the soil particles but also

with the porosity. These deviations and their bearing on the importance

of the errors involved in the theoretical analysis will also be discussed

in a volume on applied soil mechanics.

8. Buoyancy or hydrostatic uplift. In practice we deal chiefly with

soils whose voids are filled with water. In order to determine the

effective stresses in such soils the neutral stresses

must be known. The methods for computing the

pore-water pressure in percolating water will be pre-

sented in Chapter XII. However, if the water is

in a state of static equilibrium, the computation is

so simple that the stress problems can be solved

without considering the details of the hydraulics of

soils. As an example we investigate the state of

stress in a sedimentary deposit which is completely

submerged. Figure 7 is a vertical section through

this deposit. The total pressure on a horizontal section through the

soil at a depth z below the surface of the water is equal to the sum of the

weight of the solid soil particles and of the water located above this

section. Let

-J)-
-

1

Fia.7. Section
through submerged

stratum of sand.

n = the porosity of the deposit (ratio between the volume of the

voids and the total volume of the soil)

7a = the unit weight of the solid particles

= the unit weight of the water

D = the depth of the water above the surface of the deposit

The weight of the solid soil particles per unit of area of the horizontal

section is 7a (1 — n)(z — D) and the corresponding weight of the water

is nyw{z — D) + yJD. Hence the total normal stress on the hori-

zontal section is

(T = 7a(l - n)(z - D) + nyyj{z - D) + 7^2)

According to equation 6(1) the neutral stress at depth below

the free water surface is equal to « y^ and the corresponding

effective stress per xmit of area is

^ ^ (f - y^z ^ (7« - 7ti;)(l - n){z - D) [11
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In this equation the product — y^) (1 — n) represents the weight

of the solid particles per unit of volume reduced by the weight of the

water displaced by the solid particles. This weight is called the sub-

merged unit weight of the soil mass and it is designated by the symbol y'.

From the preceding equation we obtain

y' = (y« “• ^w) (1 - n) [2]

Hence the effective normal stress on a horizontal section is

5 - D) [3]

It should be emphasized once more that the preceding equations are

not valid unless the water contained in the voids of the soil is in a state

of perfect equilibrium.

Since the surface of the soil is horizontal the shearing stress on hori-

zontal sections is equal to zero, which shows that the normal stress a

(eq. 3) represents either the major or the minor principal stress. Hence,

if the deposit is in a state of plastic equilibrium, the other extreme

principal stress can be computed by means of equation 7(5).



Chapter III

PLASTIC EQUILIBRIUM IN A SEMI-INFINITE

MASS WITH A PLANE SURFACE

9. Definitions. A semi-dnfinite mass is a homogeneous mass bounded

by a horizontal plane and extending to infinity downward and in eveiy

horizontal direction. The unit weight of the material is equal to y.

The state of stress in every point of the deposit can be represented by

a circle of stress in Mohr’s diagram, an example of which is shown in

Figure 66. If none of these circles of stress touches the lines of rupture,

MqM and MqMi, the deposit is in a state of elastic equilibrium or in a

state of rest. The term “
elastic equilibrium ” does not imply any

definite relation between stress and strain. It merely implies that an

infinitely small increase of the stress difference produces no more than

an infinitely small increase of the strain. On the other hand, if the

circles of stress touch the lines of rupture, an infinitely small increase

of the stress differences produces a steady increase of the corresponding

strain. This phenomenon constitutes plastic flow. The flow is pre-

ceded by a state of plastic equilibrium. (See Art. 7.)

In Mohr’s diagram every circle which does not touch or intersect

the lines of rupture represents a state of elastic equilibrium. 'Through

any point on the horizontal axis of such a diagram, for instance through

point Z in Figure 86, an infinite number of different circles can be traced

which satisfy the condition for elastic equilibrium provided one of the

principal stresses is equal to the abscissa OZ of the point. The circle

C is one of them. Yet, there are only two circles through point Z
which satisfy the conditions for plastic equilibrium. One of these

circles is located on the right-hand side and the other one on the left-

hand side of point Z. Therefore, in contrast to the two states of plastic

equilibrium, represented by these two circles, the state of elastic equi-

librium or of rest is statically indeterminate. The corresponding ratio

Vfto/viK) between the vertical and the horizontal principal stresses for

a mass of soil in a state of rest depends on the type of soil, on the geo-

logical origin of the soil, and on the temporary loads which have acted

on the surface of the soil. Its value may or may not be independent

of depth. If the nature of a mass of soil and its geological history

justify the assumption that the ratio ffho/<rvo is approximately the

26
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same for every point of the mass, it will be called the coefficient of earth

'pressure at rest and designated by the symbol Kq.

In order to define the subject of the following investigations let us

assume a homogeneous mass with a horizontal surface. The unit weight

of the mass is 7. We propose to establish in every point of the mass a

state of incipient plastic failure by subjecting it to a process of deforma-

Aclive Passive

'-Compression^

Major principal slress

Fig. 8 . Semi-infinite cohesionless mass with horizontal surface, (a) Stresses at

boundaries of prismatic element; (5) graphic representation of state of stress at

failure; (c) shear pattern for active state; (d) shear pattern for passive state.

tion parallel to a plane at right angles to the surface of the mass. Such

deformation is known as plane deformation. Every vertical section

through the mass represents a plane of symmetry for the entire mass.

Therefore the shearing stresses on vertical and on horizontal sections

are equal to zero. Figure 8a represents a prismatic block from this

mass, with a width equal to unity. The deformation of the mass occurs

parallel to the plane of the drawing. Since the shearing stresses on the

vertical sides of the prism are equal to zero, the normal stress, a*, on the

base of the prism is a principal stress. It is equal to the wei^t of the

prism,

<r» = yz

The initial state of elastic equilibrium of the mass of which the prism
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is an element can be changed into a state of plastic equilibrium by

two different operations. Either we stretch the entire mass uniformly

in a horizontal direction or we compress it uniformly in the same direc-

tion. If we stretch it, the pressure on the vertical sides of the prism

decreases until the conditions for plastic equilibrium are satisfied

while the pressure on the base remains unchanged. Any further

stretching merely causes a plastic flow without changing the state

of stress. The transition from the state of plastic equilibrium to

that of plastic flow represents the failure of the mass. On account of

the physical properties which we ascribe to the ideal soils it makes no

difference whether or not the state of plastic equilibrium is reached

simultaneously in every point of the soil. Since the weight of the soil

assists in producing an expansion in a horizontal direction the subsequent

failure is called active failure.

On the other hand, if we compress the soil in a horizontal direction

the pressure on the vertical sides of the prism increases while the pres-

sure on its base remains imchanged. Since the lateral compression

of the soil is resisted by the weight of the soil the subsequent failure

by plastic flow is called a passive failure. Since the stresses which start

the plastic flow are assumed to be identical with those required to

maintain the state of flow, any further compression of the soil has no

influence on the state of stress.

Thus the transition of the soil from a state of elastic equilibrium to

a state of plastic equilibrium can be accomplished by two different

operations, lateral stretching or lateral compression. In either case

the transition involves incipient shear failure along two sets of surfaces

of sliding (see Figs. 8c and 8d). The intersection between a surface of

sliding and the plane of the drawing is known as a shear line or, if curved,

as a curve of sliding. The shear lines or the curves of sliding which

represent the two sets of surfaces of sliding constitute the shear pattern.

Our problem consists in determining the stresses associated with the

states of plastic equilibrium in the semi-infinite mass and the orien-

tation of the surfaces of sliding. This problem was solved for the first

time by Rankine (1867). Therefore the plastic states which are pro-

duced by stretching or by compressing a semi-infinite mass of soil

parallel to its surface will be called the active and the passive Rankine

states^ respectively. In the following article it will be shown that

the shear pattern for semi-infinite masses with a horizontal surface con-

sists of two sets of parallel lines which are arranged symmetrically with

reference to the vertical direction. For the active Rankine state the

surfaces of sliding descend from the surface at an angle 46® + 0/2 to

the horizontal (see Fig. 8o). For the passive Rankine state the sur-
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faces of sliding descend at an angle 45® — <^/2 to the horizontal (see

Fig. 8d).

If the active or the passive Rankine state exists only in one part of

a semi-infinite mass with a horizontal surface, this part will be called

a Rankine zone. Within a Rankine zone the shear pattern is identical

with one of the two patterns indicated in Figures 8c or 8d. Thus for

instance Figure 15a shows an active Rankine zone on the right-hand

side and a passive zone on the left-hand side of point a.

It is obvious that the operation of stretching or compressing every

part of a semi-infinite mass to the point of failure can be performed

only in our imagination. There is no process in engineering practice

which has any resemblance to such an operation. Nevertheless, by
means of a series of mental operations described in Chapter IV it is

possible to adapt the results of the following investigations to the

solution of several engineering problems of considerable practical im-

portance, such as the computation of the earth pressure on retaining

walls or of the ultimate bearing capacity of continuous footings.

10. Active and passive Rankine state in a semi-infinite cohesionless

mass. Figure 8a shows a prismatic element of a semi-infinite, cohesion-

less mass with a horizontal surface. The unit weight of the material

is equal to 7 and the stress conditions for failure are determined by

the line of rupture OM in Figure 85, with the equation

s = <7 tan (l> 5(2)

The normal stress on the base of the element is equal to the weight

yz of the element. Since the shearing stress on horizontal sections is

equal to zero, the normal stress yz on the base of the element is a prin-

cipal stress. In Mohr's diagram (Fig. 85) this principal stress is rep-

resented by the distance OZ.

While the mass is in its original state of elastic equilibrium, inter-

mediate between the active and the passive Rankine state, the ratio

between the horizontal and the vertical principal stresses is equal to

the coeflSicient of earth pressure at rest, Kq (see Art. 9), and the hori-

zontal principal stress is

<^ho = Koyz [1]

In order to produce the active Rankine state in the soil, we must

stretch it in a horizontal direction imtil the stress conditions for plastic

equilibrium are satisfied. Since the transition to the active Rankine

state involves a decrease of the horizontal principal stress at a constant

value of the vertical one, the circle of rupture which represents the

active Rankine state at depth z is located on the left-hand side of
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point Z- It touches the line of ruptureOM at point a. The correspond-

ing pole will be called the active pole, Pa- According to Article 7 and

Figure 6 the pole is located at the intersection of the circle and a line

drawn through Z parallel to the plane on which the stress 72 acts.

Since this plane is horizontal and since, in addition, point Z is located

on the horizontal axis, the active pole Pa is located at the point of

intersection between the circle and the horizontal axis of Mohr^s dia-

gram. The planes of shear failure in Figure 8c are parallel to the lines

P^a and P^Ci in Figure 86. Both sets of planes rise at an angle of

45® + 4>/2 to the horizontal. From the angles and dimensions indi-

cated in Figure 86 we obtain for the normal stress ca (active pressure)

on a vertical section at depth z below the surface the value

aA = -yz tan® ^45° ~ ^ 1^1

wherein is the flow value (eq. 7(4)).

The pressure per unit of area of a horizontal section at the same depth

is yz. The ratio

is independent of depth. Hence, the normal stress on a vertical section

increases like a hydrostatic pressure in simple proportion to depth.

For inclined sections the value aa can be determined rapidly by means

of Mohr^s diagram. The method has been explained in Article 7. It

also increases like a hydrostatic pressure in simple proportion to depth.

If the failure of the soil is preceded by lateral compression, involving

an increase of the horizontal principal stress, the state of stress at the

instant of failure must be represented in Figure 86 by the circle through

Z which is tangent to the rupture line OM at point 6. The corre-

sponding planes of shear (Fig. 8d) are parallel to Pph and Pphi (Fig.

86). They form an angle of 45® -j- <^/2 with the vertical. From the

angles and stresses indicated in Figure 86 we find

up = yz tan^ ^45® + ^ ~ 7^^^ [4]

and the ratio between the horizontal and the vertical pressure is

^ = tan® ^45“ + 1)
= 16]

The stresses on inclined sections can be determined by means of Mohr’s

diagram. Since the ratio apf-iZ is independent of depth, the passive
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earth pressure on plane sections increases like the active earth pressure

in simple proportion to depth. From equations 3 and 5 we obtain

= yz [6]

In order to investigate the Rankine states in a semi-infinite mass

with a plane surface at an angle /3 < 0 to the horizontal, we examine

the conditions for equilibrium of the prismatic element shown in Figure

9a with vertical sides and a base parallel to the surface of the mass.

Fig. 9. Semi-infinite cohesionless mass with inclined surface, (o) Stresses at

boundaries of prismatic element; (5) graphic representation of state of stress at

failure; (c) shear pattern for active state; {d) shear pattern for passive state.

Since the state of stress along a vertical section is independent of the

location of the section, the stresses on the two vertical sides of the

element must be equal and opposite. Hence, the force which acts on

the base of the element must be equal and opposite to the weight yz of

the element. If we resolve this force into a normal and a tangential

component and if we consider the fact that the width of the base of the

element is equal to 1/cos we obtain for the normal stress on the

base the value

a — yz cos^ (7]
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and for the shearing stress the value

r ^ yz sin cos /S [8]

In Mohr’s diagram (Fig. 96) the stress conditions for failure are

deternoined by the lines of rupture OM and OMi, The state of stress

on the base of the element at a depth z below the surface is represented

by the point Z with an abscissa <r (eq. 7) and an ordinate r (eq. 8).

Since the resultant stress on the base of the prism acts at an angle

to the normal on the base, point Z in Figure 96 must be located on a

straight line through 0, which rises at an angle to the horizontal. The

circle which represents the state of stress at the instant of active failure

passes through Z and is tangent to the rupture line OM at point o.

To jfind the pole Pa we draw through Z a line parallel to the plane

on which the stress represented by Z acts, i.e., parallel to the base of the

element (see Art. 7 and Fig. 6). This plane rises at an angle jS to the

horizontal and the line OZ also rises at an angle to the horizontal.

Therefore the pole Pa is located at the point of intersection between

the circle and the line OZ. One set of the surfaces of shear in Figure 9c

is parallel to P^a and the other set to Pa(^i (Fig. 96). They are ori-

ented at an angle 45® — 0/2 to the direction of the major principal

stress. The intensity of the major principal stress is determined

by the distance 01a (Fig. 96). In a similar manner we find that the

circle of stress for passive failure passes through point Z and touches

the line of rupture OM at point 6. One of the two sets of surfaces

of shear in Figure 9d is parallel to Ppb and the other set is parallel

to Pphi (Fig. 96). The intensity of the major principal stress is deter-

mined by the distance 01p (Fig. 96) and its direction is perpendicular

to Ppip,

Rankine solved the problems illustrated by Figures 8 and 9 ana-

lytically. However, by means of the graphical procedures described

above the same results may be obtained in a small fraction of the time

required for an analytical solution.

11. Plastic equilibrium in surcharged or stratified or partially

immersed cohesionless masses with horizontal surfaces. If the surface of

the mass shown in Figure 8 carries a uniform surcharge, g per unit of

area^ the stress on the base of the prism represented in Figure 8a be-

comes equal to

(Tv q+yZ y [11

is a principal stress. For the corresponding normal stress on a
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vertical section we obtain by means of equation 7(5) for the active

state
> V ..

and for the passive state
r V

[2]

ffp = y(^ + z\ [3]

wherein

AT* = tan2
(
45® + 1)

is the flow value.

The values of aa and ap of the earth pressure on inclined sections can

be determined rapidly by means of Mohr^s diagram (Fig. 9b).

Figure 10a represents a section through a cohesionless deposit with

a horizontal surface, which consists of a series of horizontal layers with

thicknesses di, ^2 • •
•

,
unit weights 71, 72 • * • and angles of internal

friction </>i, <^2
* • • • Since the shearing stresses along horizontal sec-

tions are equal to zero, the normal stresses on horizontal and vertical

sections are principal stresses and their values can be computed by
means of equation 7 (5). If the mass is in an active state, the normal

stress Cv on horizontal sections corresponds to the major principal

stress (Tj in equation 7(5). At any depth z <d\ the vertical principal

stress Cyi is 71 z and the corresponding horizontal principal stress is

(^Ai = yiz [4]
N^i

wherein N^i = tan^ (45® + <#>i/2).

In Figure 10a this equation is represented by the straight line abi.

At any depth z> di the vertical principal stress is

<fv2 = yidi + 72 — di)

and the horizontal principal stress at the same depth is

0]
®

wherein N^2 = tan^(45® + ^2/2).

The corresponding pressure distribution is shown in Figure 10a by

the straight line which intersects the reference line ca at point Oi

at an elevation di (71/72 — 1) above the surface. The value di (71/72)

represents the thickness of a stratum with a unit weight 72 which exerts

on the surface of the second stratum the same pressure as the stratum

which actually rests on this surface.
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In Figure 8c the surfaces of sliding rise at an angle of 45®+ <#>/2 to the

horizontal. Since each of the layers shown in Figure 10a is entirely

independent of the others, the orientation of the surfaces of sliding is

as indicated in Figure 106.

Fig. 10. (a) Horizontal pressure acting on vertical section through semi-infinite,

cohesionless, stratified mass in active Rankine state; (6) corresponding shear

pattern; (c) vertical section through semi-infinite cohesionless partly submerged

mass in active Rankine state; (d) horizontal pressure on vertical section through

this mass.

Figure 10c is a section through a cohesionless deposit whose horizontal

surface is located at an elevation D above the water table. When
dealing with cohesionless materials such as sand we always operate

with effective stresses. That means the shearing resistance of the

material is determined by the equation

s = (T tan d)
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wherein a represents the effective normal stress and the angle of internal

friction. In accordance with experience we assume that the presence

of the water in the voids of the sand has no influence on the angle of

internal friction <l>. The unit weight of the sand above the water table

is y and the neutral stress is equal to zero. The immersed unit weight

of the sand as defined by equation 8(2) is y\ The stresses computed

by means of y^ represent effective stresses. Since there are no shearing

stresses on horizontal sections, both horizontal and vertical sections

are acted upon by principal stresses. The relation between these

stresses is determined by equation 7(5)

wherein o-j is the major and <rjjj the minor principal stress, and =
tan^(45° + </>/2). If the deposit is in an active state the vertical

principal stress corresponds to the major principal stress crj.

Between the surface and the water table the neutral stress is equal

to zero, the vertical principal stress is yz, and the horizontal principal

stress is

(TA = yz [61

Below the water table the neutral stress is

tiyj — (2 D^y-fff [71

wherein 7«, is the unit weight of the water, the effective vertical principal

stress is

yD + 7' (2 ~ D)

and the effective horizontal principal stress is

+ + 181

In Figure lOd the effective horizontal unit pressure <ta is represented

by the abscissas of the broken line abiCi. At any depth z the neutral

pressure (eq. 7) is equal to the horizontal distance between the lines

biCi and 5iC2 at that depth. The total magnitude and the distribution

of the horizontal pressure on the vertical section ac are given by the

pressure area acc^bi.

12. Active and passive Ranldne state in semi-infinite cohesive masses.

Figure 11a is a vertical section through a prismatic element of a semi-

infinite mass of cohedve soil with a horizontal surface. The unit

weight of the soil is y and the stress conditions for failure are determined
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by the line of rupture MqM (Fig. 115) whose equation is

5 = c + (7 tan </> 6(1;

Since every vertical section through a homogeneous, semi-infinite

mass with a horizontal surface represents a plane of symmetry, the

Fia. 11. Semi-infinite cohesive mass with horizontal surface, (a) Stresses at

boundaries of prismatic element; (6) graphic representation of state of stress at

failure; (c) shear pattern for active state; (d) shear pattern for passive state;

(e) stresses on vertical section through the mass.

shearing stresses on these sections are equal to zero and the normal

stresses on both the vertical sides and on the base of the element are

principal stresses. The normal stress Uv on the base of the element is

equal to the weight of the prism

= yz

In Mohr^s diagram (Fig. 115) the stress <Tv is represented by the dis-

tance OZ. The lines of rupture MqM andilfoMi intersect the vertical

axis of the diagram at a distance c from the origin 0. The corresponding

active Rankine state is represented by a circle Ca located on the left-

hand side of point Z, tangent to the lines of rupture. If this circle

intersects the horizontal axis on the left-hand side of the origin 0, as

shown in Figure 115, the horizontal principal stress at depth z is a
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tensile stress. For 0 = 0 we obtain the circle Ct, whose diameter repre-

sents the simple tensile strength of the soil. As 2 increases, the corre-

sponding tensile stress decreases, and at a certain depth Zq the tensile

stress becomes equal to zero. The state of stress at which the soil

starts to flow at a depth Zq is represented by a circle Co which passes

through the origin and touches the lines of rupture. From the geo-

metrical relations indicated in Figure 11b it may be shown by trigo-

nometry that

*..|tao(45- + |)-^v:v; in

Between the surface and depth jSq the active Rankine state involves a

state of tension in a horizontal direction. For the ideal plastic material

subject to investigation it is assumed that a state of tension can exist

permanently and that a plastic flow can take place in the tension zone

without causing a decrease in the tensile strength of the soil. However,

in a real soil tensile stresses always lead sooner or later to the formation

of open tension cracks. The investigation of the influence of such

cracks on the state of stress in the deposit is beyond the scope of the

present theory. The practical consequences of the formation of the

fissures will be discussed in Articles 57 and 62.

If 2 is greater than 2o the entire corresponding circle of rupture is

located on the right-hand side of the origin 0. For any depth 2 the

pole Pa coincides with the left-hand point of intersection between the

circle and the horizontal axis. Figure 11c shows the two sets of planes

of shear for z > zq. They are parallel to the lines and in

Figure 116, which connect the pole with the points of contact between

the circle of stress and the lines of rupture. They form an angle of

45“ — <p/2 with the vertical.

For the passive Rankine state, produced by a lateral compression

of the soil, all the circles of stress which represent a state of incipient

failure are located entirely on the right-hand side of point O, because

in this state the gravity stress yz is the smallest principal stress. As a

consequence the soil fails at every depth by shear. The circle Cp
represents the state of stress at failure for an arbitrary depth z. The
lines of rupture are tangent to it at 6 and 6i and the two sets of shear

planes (Fig. lid) are parallel to the lines Pp6 and Pp6i (Fig. 116).

They intersect the horizontal direction at an angle 45“ — ^/2.

The earth pressure on inclined sections can be determined by means

of Mohr’s diagram. The normal stresses on vertical sections are

principal stresses. Hence, they can be computed by means of equation

7(3). Substituting for the minor principal stress anr in equation



38 PLASTIC EQUILIBRIUM Art, 12

7(3) and yz for <rj we obtain for the active earth pressure per unit of

area of a vertical section at a depth z below the surface

(TA == ~2c
VnI

+ 7^ rr
Nj,

m

wherein = tan^(45° + <f>/2) represents the flow value. The passive

earth pressure is obtained by substituting ap for the major principal

stress ffj in equation 7(3) and yz for the minor principal stress trzii-

Thus we get

<7P = 2c\^ + yzN^ [3]

According to these equations both the active and the passive earth

pressure can be resolved into one part which is independent of depth

and a second part which increases like a hydrostatic pressure in simple

proportion to depth. The second part, yzj'N^ of aa (eq. 2), is identical

with the active earth pressure on vertical sections through a cohesionless

mass whose unit weight is y and whose angle of shearing resistance is <#>.

The second part, yz'N^y of the passive earth pressure <rp (eq. 3) is

identical with the passive earth pressure in the cohesionless mass de-

scribed above. In Figure lie the horizontal unit pressure for the active

state <fA is represented by the abscissas of the straight line and the

horizontal unit pressure for the passive state by those of the line apcp.

If the surface of the deposit carries a uniform surcharge q per unit

of area, we obtain from equation 7 (3) for vertical sections through the

deposit

and

<rp = 2c + + [5]

Figure 12 illustrates the graphical method of determining the state of stress in a
cohesive deposit on the verge of passive failure, of which the plane surface rises at

an angle smaller than 0, to the horizontal. In Mohr^s diagram (Fig. 126} all

the points which represent the stress on sections parallel to the surface are located

on a line through O, which rises at an angle fi to the horizontal axis. The reason

has been explained in the text to Figure 96. (See Art. 10.) The circle Co which
touches both the vertical axis and the lines of rupture represents the state of stress

at a depth zo below the surface. The active pole Pa (z = zo) coincides with the origin

O. Hence, at depth zq the major principal stress is vertical and the minor principal

stress is equal to zero. From the geometrical relationship shown in Figure 126

we obtain

Zo = - tan(46° + f)^- VJ^y \. 2/ y
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which is identical with equation 1. Between the surface and depth zq the active

Rankine state involves a state of tension. Beyond depth zq both principal stresses

are compressive stresses. With increasing values of z the active pole Pa moves
along the line which rises through O at an angle to the horizontal. Hence, with
increasing depth the orientation of the surfaces of sliding with respect to the vertical

Fig. 12. Semi-infinite cohesive mass whose surface rises at an angle jS < <#>. (a)

Stresses at boundaries of prismatic element; (6) graphic representation of state of

stress at failure; (c) shear pattern for active state; (d) shear pattern for passive

state.

direction changes. For 2 = oo it becomes identical with the orientation of the

surfaces of sliding in a cohesionless mass with an angle of internal friction 4> whose

surface rises at an angle to the horizontal, because at infinite depth the cohesion is

negligible compared to the shearing resistance due to internal friction. As a con-

sequence the surfaces of sliding are slightly curved, as shown in Figure 12c. The
dotted lines at the lower rim of the figure represent the orientation of the surfaces

of sliding at infinite depth. In the passive Rankine state the surfaces of sliding are

also curved, but they intersect the surface of the deposit at an angle of 45® —
<f>/2.

With increasing depth the surfaces of sliding approach the position which they

occupy in an equivalent cohesionless deposit.

If ^e surface of the cohesive mass rises at an angle fi > 4> the investigation leads

to the diagram shown in Figure 13. AH the points which represent the state o

stress on a section parallel to the surface of the soil are located on a line ON through

point O, which rises at an angle /S to the horizontal axis. This line intersects the

line of rupture M(yM at a point b. On the basis of the geometrical relationships

represent^ in Figure 135 it may be shown that the normal stress represented by
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the abscissa of point b is equal to

c

tan — tan
[6]

and that the corresponding depth is equal to

^ S I [7]

y (tan^ — tan0) coa^iS

The circle of rupture Ci through point b intersects the line ON^ at the point Pi.

According to the theory illustrated by Figure 5 this point represents the pole of the

circle Ci. If we connect this pole with the points of contact b and bi we obtain

Fiq. 13. Semi-infinite cohesive mass whose surface rises at an angle /3 > ^. (a)

Right-hand section shows shear pattern for active and left-hand section for passive

state of failure; below depth 2i the mass is not in a state of equilibrium; (b)

graphic representation of state of stress at failure.

the direction of the corresponding surfaces of sliding. One of these surfaces is

very steep and the other one is parallel to the surface of the soil. On the right-hand

side of point b the line ON is located above the line of rupture OM, Hence, below

depth zi the soil must be in a state of plastic flow, because on the right-hand side of

b state of stress represented by the line ON becomes inconsistent with the con-

ditions for equilibrium.

In the active Rankine state, the soil located between the surface and a depth
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zo fails by tension. From the geometrical relationships shown in Figure 136 we
obtain

so = -tan('45» + ^)=?^V^
7 \ 2/ y

^

This equation is identical with equation 1. Below depth zq there is no tension and
the soil fails by shear. The state of stress at depth 20 is represented by the circle Cq.

The corresponding surfaces of sliding are shown on the right-hand side of Figure 13a.

In the passive Rankine state the entire mass is under compression. The correspond-

ing surfaces of shding are shown on the left-hand side of Figure 13a. At a depth 21

the surfaces of sliding for active and for passive failure are identical. This is in-

dicated by the fact that there is only one circle of rupture to which the line of rupture

is tangent at point h in Figure 136. The same figure shows that at the depth zi

the states of stress corresponding to these two types of failure are identical.

The analytical solution of the problems illustrated by Figures 11 to

13 has been worked out by J. Resal (1910). Frontard (1922) de-

rived the equations of the surfaces of sliding shown in Figure 13a. He
attempted to utilize his solution for the purpose of ascertaining the

critical height of slopes of cohesive earth. However, his results are

open to serious objections (Terzaghi 1936a).



Chapter IV

APPLICATION OF GENERAL THEORIES TO PRACTICAL
PROBLEMS

13. Stress and deformation conditions. If the solution of a problem

satisfies the fundamental equations of a general theory, such as the

theory of elasticity or of a theory of plasticity, it also satisfies the con-

dition that the computed state of stress and strain in the interior of the

body subject to investigation is compatible with the assumptions re-

garding the mechanical properties of the material on which the theory

is based. However, in connection with a specific problem the computed

state of stress and strain must also be compatible with the conditions

which are known in advance to exist along the boundaries of the body

subject to investigation. These boundary conditions can be divided

into two groups, the boundary stress conditions and the boundary deforma-

tim conditions. They will briefly be called the stress conditions and the

deformation conditions.

In connection with elasticity problems there is seldom any doubt

regarding the nature of stress conditions, nor can there be any doubt

regarding the deformation conditions. As an example we consider the

problem of computing the state of stress produced by a surcharge q per

imit of area on a small portion of the upper surface of an elastic layer

whose lower surface rests on a rigid base. There is no doubt that the

solution must satisfy the condition that the vertical displacement of

the base of the elastic layer must everywhere be equal to zero.

On the other hand, in connection with plasticity problems of soil

mechanics, the deformation conditions have seldom received the atten-

tion which they deserve. As an example of the influence of the deforma-

tion conditions on the state of stress in a mass of soil on the verge of

sliding, let us consider the practical applications of the theory of plastic

equilibrium in semi-infinite cohesionless masses, described in Article 10.

It has been emphasized that the transition of semi-infinite masses from
a state of elastic into a state of plastic equilibrium can only be accom-

plished by an imaginary process of stretching or compressing the soil

which is without any parallel in the physical world. The states of plastic

equilibrium produced in soils by engineering operations never extend

beyond the boundaries of very narrow zones. In order to apply the

42
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theory of plastic equilibrium in seim-infinite masses to engineering

practice, we investigate the conditions for the equilibrium of a wedge-

shaped section abc (Fig. 14a) of a semi-infinite mass in an active

Rankine state. This section is assumed to be located between a surface

of sliding be and a vertical section ab. During the transition of the

mass from its original state into the active Rankine state, the soil

contained within the section undergoes elongation in a horizontal

direction. The amount of stretching is represented by the width of the

shaded area aai6 (Fig. 14a). At any depth z below the surface the width

Ax of the shaded area is equal to the width x of the wedge at that

depth times the horizontal stretching e per unit of length which is required

to transfer the soil at depth z from its original state of elastic equilibrium

to that of plastic equilibrium. Hence at depth z the width of the shaded

area is equal to e -x. The value e depends not only on the type of soil,

on its density, and on the depth z but also on the initial state of stress.

Hence the only general statement which can be made concerning the

shaded area is that its width must increase from zero at point 6 to a

maximum at point a. For a sand with a uniform density one can assume

with crude approximation that € is independent of depth z. On this

assumption the shaded area is triangular as shown in the figure. For a

given initial state of stress in the sand the value e decreases with increas-

ing density of the sand. As soon as the active state is reached, the

resultant F of the stresses on the surface be acts at an angle <l> to the

normal on be (Fig. 14a). The stress on ab is horizontal and increases

directly with depth, giving a resultant Pa which acts at the top of the

lower third of ab. The weight of the soil in the wedge is W. The three

forces F, TF, and Pa constitute a set of concurrent forces in equilibrium.

If we replace the overstressed soil below and to the right of be by a

mass of soil in an elastic state of stress, without changing the state of

stress and deformation within the zone abe, the force F retains both its

direction and magnitude. The weight of the soil in the zone abe remains

unchanged. Hence, if we replace the soil on the left side of ab by an

artificial support without changing the state of stress and deformation

within the zone abc, the equilibrium of the system requires that the

support furnish the horizontal reaction Pa described above. In other

words, if the substitutions which we have made do not change the state

of stress and deformation within the zone abc the forces F, W, and Pa
are identical with those described above.

If the soil has been deposited behind an artificial support ab the

preceding conclusion retains its validity provided the following condi-

tions are satisfied. First, the presence of the artificial support should

not produce any shearing stresses along ab. This is the boundary stress
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^ai J
pertaining to local state of plastic equilbrium in ideal sand.

Shaded areas in (a), (c), and (e) representminimiun displacement or deformation of
an oi^ally verticrf plane required to produce such a state. The type of plastic
equihbnum is indicated by corresponding shear pattern, (o) Shear pattern
corresponding to active state along frictionless vertical surface; (6) diagram show-mg that a yield of rough surface by tilting produces positive wall friction; (c) shear
pattern corresponding to active state along rough surface if wall friction is posi-
tive; (d) graphic method for determining slope of surfaces of sHHing at points of
intersection with rough surface; («) shear pattern corresponding to passive state
^ong rough surface if wall friction is positive; (f) shear pattern for active and
{g) for passive state along rough surface, if wall friction is negative.
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condition. Second, the support must yield during or after the process

of backfilling from its original position ab into a position at or beyond

the line aih in Figure 14a. This conclusion is based on the following

reasoning. It has been observed that the lateral earth pressure on the

back of a perfectly rigid, fixed wall is very much greater than the active

earth pressure. In order to pass into the active Rankine state the soil

adjoining the wall must undergo a lateral expansion at least as great as

that required to produce the same change in the state of stress in the

triangular section abc of the semi-infinite mass shown in Figure 14a.

This expansion requires the lateral yield of the wall mentioned above.

This is the boundary deformation condition. If either one of these two

conditions is not satisfied, the identification of the backfill of an artificial

support with the section abc in Figure 14a is not justified. It is, for in-

stance, conceivable that a lateral support is retained at point a in

Figure 14a while the lower end is capable of yielding far beyond point 6.

On this condition, the upper part of the bank cannot expand in a hori-

zontal direction, which prevents this part of the bank from passing into

an active Rankine state. Yet, if the lower part of the support yields

far enough another type of plastic equilibrium will develop. In Chap-

ter V it will be shown that the lateral confinement of the upper part of

the supported soil induces arching which increases the lateral pressure

on the upper part of the support and relieves the pressure on the lower

part. The surface of sliding through the foot of the lateral support is

strongly curved and it intersects the surface of the soil at right angles.

Hence, if the upper edge of the lateral support cannot advance into the

position indicated by a i in Figure 14a, neither the shape of the sliding

wedge nor the orientation of the forces which act on the wedge have

any resemblance to what is shown in Figure 14a, though all the other

conditions for the validity of the preceding reasoning, including the

absence of shearing stresses on ab (Fig. 14a) may be satisfied.

Finally, if the wall can yield only to a position intermediate between

db and aib (Fig. 14a) the conditions for a failure of the earth will nowhere

be satisfied, and the unit pressure on ab will have some value inter-

mediate between the imit earth pressure at rest, determined by the

equation

cTho = Kojz 10 (1 )

and the unit active earth pressure

VA = 72 tan
2

^
45® ~ f)

“

A state of plastic equilibrium will nowhere exist.

10 (2)
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The preceding analysis demonstrates that the practical importance of

the boundary deformation conditions cannot possibly be overemphasized.

If the practical implications of these conditions had been recognized,

engineers would never have been tempted to apply Rankine^s or Cou-

lomb’s theory of earth pressure on retaining walls to the computation of

the earth pressure on the timbering of cuts or on tunnel tubes. Neither

the conditions which determine the distribution of the earth pressure

on the timbering of cuts nor those which determine the intensity and

the distribution of the earth pressure on tunnel tubes have any re-

semblance to the fundamental conditions for the validity of Rankine’s

theory and its generalizations. In order to prevent the flagrant mis-

application of theories of this or a similar type, each of the following

theoretical investigations will be preceded by a complete statement of

the conditions and assumptions. Every one of the theories contained

in the following chapters of this volume can be relied upon to give

sufficiently accurate results when applied to practical cases provided

the field conditions correspond at least approximately to the stated

conditions and assumptions. Otherwise the theory is inapplicable

regardless of how sound it may be within the range of its validity.

14. Rankine’s theory of earth pressure on retaining walls. The
best known application of the principles explained in the preceding

article is Rankine’s theory of the earth pressure on retaining walls.

If a retaining wall yields, the backfill of the wall expands in a horizontal

direction, whereupon the lateral pressure exerted by the soil on the

back of the wall gradually decreases and approaches a lower limiting

value, which is called the active earth pressure. On the other hand, if

we force the wall in a horizontal direction towards the backfill, thus

compressing the soil in a horizontal direction, the resistance of the soil

increases until it assumes an upper limiting value, the passive earth

pressure. When the movement of the wall brings about either of these

two limiting values, the soil fails by plastic flow. To illustrate the

essential characteristics and defects of Rankine’s theory we compute
the earth pressure exerted by a cohesionless backfill with a horizontal

surface on the vertical back of an artificial support with a height H.
The shearing resistance of the soil is determined by the equation

« = <7- tan 6(2)

and the unit weight is y. According to Rankine’s theory the lateral

pressure on ah (Fig. 14a) is identical with the stresses on a vertical

section through a semi-infinite mass with a horizontal surface, for an
active Rankine state. The shearing stresses on such a section are
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always equal to zero. Hence the vertical section is acted upon only

by normal stresses.

In the case of active failure the normal stress on a vertical section is

aA. = 72 tan^ ^45° “ f)
= '>'2 10 (2 )

wherein == tan^ (45° + (/)/2) represents the flow value and the total

pressure on the section with a height H is per unit length of the wall

1

Pa = /
<TAdz=^iyH^— [11

If the failure is due to lateral thrust (passive failure) we obtain

and

crp = yzN^

Pp- r <rpdz = ^yH^N^

10(4)

[2]

In both cases the distribution of the vertical pressure over the face

ab is hydrostatic and the point of application of the pressure is at a

height H/S above the base of the section.

If the backfill material is cohesive, its shearing resistance is

8 — c + a tan

At the instant of active failure the normal stresses on a vertical

section are

= -2c-^+yz^ 12 (2)

Vn^ N^,

and

r <rAdz= -2cH-^+iyH^-^ [3]

The distribution of the active pressure on the vertical face ab is repre-

sented by the pressure line QaCa in Figure lie. The point of application

of the pressure is located at a distance less than H/S above the base

of the section. If

H = Hc =
7

the total lateral pressure on the face ab is equal to zero.

Article 12 the soil is in a state of tension to a depth

zo =

According to

12 (1 )
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Combining this equation with the preceding one, we obtain

He = - = 220 [4]

7

If the earth fails by lateral compression (passive failure) the stress

on a vertical section at depth z is

<Tp = 2cVi^ + 12(3)

and

Pp= r <rp d2 = 2cHVa^ +
0

The distribution of the passive earth pressure over the vertical face

db is shown by the pressure line apcp in Figure lie. The point of

application of the pressure is located within the middle third of the

height Hy because the pressure area aapcpc shown in Figure lie is

trapezoidal.

If the soil carries a uniformly distributed surcharge q per unit of area,

the horizontal pressure per unit of area at depth z is

and the total passive

Pp = 2cHVn'^ + + 1

^

Rankine has also derived equations for computing the earth pressure

of backfills with an inclined surface on walls with an inclined back.

Since these equations are rather complicated it is decidedly preferable

to determine the corresponding Rankine pressure and the direction of

this pressure graphically, by means of Mohr’s diagram, as explained in

Chapter III.

15. Influence of wall friction on the shape of the surface of sliding.

In connection with retaining walls, one of the boundary conditions for

the validity of equations 14(1) and 14(2) is never satisfied because there

are no retaining walls with a perfectly smooth back. The effect of the

roughness of the back of the wall on the active earth pressure is illus-

trated by Figure 146. It represents a section through a cohesionless

fill, supported along a vertical face o6. The lateral yield of the wall

causes a subsidence of the top surface of the wedge o6c, as indicated by
the slope of the line 002 (Fig. 146). The downward movement of the

soil along the rough face 06 changes the direction of the earth pressure

on db from its original horizontal position into a position at an angle 5
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to the normal on ah as indicated in the figure. The angle 5 is called the

angle of wall friction. For active pressure, 5 is considered positive when
it is measured downward from the normal as in the figure.

This stipulation has no relation to the convention regarding the sign of the shearing

stresses in Mohr’s diagram. In Mohr’s diagram a shearing stress is positive if

the corresponding resultant stress deviates from its normal component in a clockwise

sense. In connection with the active earth pressure on retaining walls, the wall

friction is positive if it acts in an upward direction. As shown in Figure 146 the posi-

tive wall friction corresponds in Mohr’s diagram to a negative shearing stress.

On the other hand, if we assume that the soil is located on the left-hand side of the

wall, it would appear in Mohr’s diagram as a positive shearing stress. The angle of

wall friction can also be negative. Negative wall friction develops if the wall,

owing to a heavy surcharge established on its crest or to some other cause, settles

more than the fill. In any case the existence of wall friction invalidates Rankine’s

equation 14(1) because this equation is based on the assumption that 6 « 0.

If 5 is not equal to zero, the determination of the real shape of the

surface of sliding is very diflScuIt. The problem has been solved rigor-

ously only on the assumption that the cohesion of the soil is equal to

zero. Nevertheless, the equations are far too complicated for practical

application. The following paragraphs contain a summary of the results

of the investigations of Reissner and of other workers in this field. On
account of the elementary treatment of the subject, some of the state-

ments must be accepted without rigorous proof.

Figure 14c is a vertical section through a semi-infinite mass of ideal

sand. When this mass is deformed by stretching it uniformly in a hori-

zontal direction the material passes through the active Rankine state

and fails along two sets of plane surfaces of sliding such as those on the

right-hand side of the line aD. If we introduce into this mass a dia-

phragm aB with rough faces and pull the diaphragm, the state of stress

in the sand changes only in the wedge-shaped space DaB between the

diaphragm and the Rankine surface of sliding aD through the upper

edge a of the diaphragm.

In order to visualize the mechanical causes of this important feature of

the state of plastic equilibrium, let us assume that we increase gradually

the angle of wall friction from zero to its ultimate value 5, while the mass

of sand remains in a state of plastic equilibrium. During this process

the shearing stresses on every plane section through a located between

the diaphragm and aD will increase. However, on the surface of

sliding aD the shearing stresses remain unchanged, because the mass

of sand located above aD was from the very outset on the verge of sliding

along aZ) in a downward direction.

The resultant Pa of the lateral pressure on any part of the diaphragm

slopes at an angle 6 to the horizontal, as indicated in the figure.
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The angle at which the surfaces of sliding join the face of the diaphragm can be

determined rapidly by means of Mohr’s diagram (Fig. 14d). In this diagram the

circle C represents the state of stress for some point next to the right-hand face of the

diaphragm. Since the resultant stress on the surface ah in Figure 14c deviates from

the normal on ah in a counterclockwise sense, the corresponding shearing stress must

be introduced into Mohr’s diagram (Fig. 14d) with a negative sign (see Art. 7),

Point A, which represents the state of stress on this face of the diaphragm, is located

on a straight line which passes through point O and descends toward the right at an

angle 5 to the horizontal. This line intersects the circle at two points. Point A is

the left-hand point of intersection because the diaphragm is acted upon by the

active earth pressure. The pole Pa for active earth pressure is located on the

line APa (Fig. 14d) parallel to aB (Fig. 14c). If we connect the pole Pa with the

points of contactD and Di between the circle C and the lines ofruptureOMandOM i,

we obtain the lines PaD and PaDi, These two lines determine the orientation of

the surfaces of sliding immediately adjacent to the right-hand face of the diaphragm.

Reissner (1924) has shown that the members of both sets of surfaces

of sliding located within the wedge-shaped zone abD must be curved.

The pressure of the sand on the rough diaphragm has been investigated

in succession by K^rmsm (1926), J^iky (1938), and Ohde (1938). The
equations which have been obtained for the earth pressure are too

complicated for practical use. However, the following general results

are of practical interest. If the plastic equilibrium exists in every

point of a semi-infinite mass of sand which is acted upon by a rough

diaphragm, the shape of the members of each one of the two sets of

surfaces of sliding located within the zone BaD can be expressed by an
equation r = ro/(^), wherein r is the distance of a point of the surface

from a (Fig. 14c), and 0 is the corresponding center angle; Tq represents

the value of r for = 0. This characteristic property of the surfaces

of sliding involves an increase of the earth pressure in simple proportion

to depth. Hence the normal component of the active earth pressure

per unit of area of the diaphragm can be expressed by an equation

PAn = 7zKa [1]

wherein y is the unit weight of the soil, z the depth below the surface,

and Ka a dimensionless coefiScient, called the coefficient of active earth

pressure^ whose value depends only on the angles 0 and 5. If the angle

of wall friction 8 is equal to zero, the earth pressure becomes identical

with the active Rankine pressure aa (eq- 10(2)) and

^ = tan^ ^45 - [2]

wherein is the flow value, equal to tan* (45® + <t>/2).

The shape of the surfaces of sliding is similar to that shown in Figure

14c. With decreasing values of 5 the curved part of the surfacesbecomes
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flatter and for 5 = 0 the surfaces are perfectly plane, as shown in Fig-

ure 14a.

By repeating the reasoning which has led to Rankine's earth pressure

theory (see Art. 13) we are justified in drawing the following conclusion

from Figure 14c. If a wall with a rough back yields in such a manner
that the deformation of the wedge-shaped mass of sand adjoining the

wall is identical with that of the sand located within the zone abc in

Figure 14c, the sand fails along a surface of sliding similar to be (Fig.

14c) and the distribution of the earth pressure on the back of the wall

will be hydrostatic. The transition of the semi-infinite mass from its

initial state into a state of active plastic equilibrium requires that the

horizontal stretching of the mass exceed in every point of the mass a

certain lower limiting value per unit of length which depends on the

elastic properties of the sand and on the initial state of stress. The
corresponding horizontal deformation of the sand located within the

zone abc (Fig. 14c) is indicated by the shaded area. Any deformation

in excess of that represented by the shaded area has no influence on

the state of stress in the sand. Hence, if the wall yields into any position

beyond ai&, the sand fails by sliding along the surface fee (Fig. 14c) and

the distribution of the earth pressure on ah will be hydrostatic. On the

other hand, if the wall yields, for instance, by tilting around the upper

edge a, the shape of the surface of sliding must be different from fee and

the distribution of the earth pressure depends on the type of yield.

The preceding reasoning can be applied without any modification to

a backfill acted upon by negative wall friction and to the passive earth

pressure. Figure 14/ shows the shear pattern for active plastic equi-

librium and negative wall friction.

If a semi-infinite mass of sand, located on both sides of a rough

stationary diaphragm, is transferred by horizontal compression into a

state of passive plastic equilibrium, the shear pattern shown in Figure

14c is obtained. Since the lateral compression causes the sand to rise

in a vertical direction while the diaphragm remains stationary, the

resultant passive earth pressure deviates from its normal component in

an upward direction. The corresponding angle of wall friction 6 is

called positive. The influence of the wall friction on the state of stress

in the sand does not extend beyond the Kankine surface oD through the

upper rim of the diaphragm, because at any value of 8 the sand located

above aD is on the verge of sliding along aD in an upward direction.

Within the wedge-shaped zone aBD both surfaces of sliding are curved.

Their shape has been investigated by J4ky (1938) and Ohde (1938).

The equation for each set can be written in the form r = ro/($), wherein

r is the distance of a point from a and 9 the corresponding center angle.
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At any depth z below the surface the normal component ppn of the

passive earth pressure per unit of area of the diaphragm is equal to

VPn = yzKp [3]

wherein Kp, called the coefficient of passive earth pressure

^

depends only

on 0 and 5. If the diaphragm is pulled out of the sand, the angle of

wall friction is negative and the shear pattern shown in Figure 14^ is

obtained. The angle at which the surfaces of sliding intersect the dia-

phragm can be determined by means of Mohr^s diagram (Fig. 14d).

If 5 = 0 we get

ii:i> = i\^« = tan2^45“ + 0 [4]

Point B (Fig. 14d), whose ordinate represents the shearing stress on ah (Fig. 14e),

is located on a line OB which rises at an angle 5. The corresponding pole Pp is

located on a line BPp^ which is parallel to aB in Figure 14c. Along the right-hand

side of the diaphragm one set of surfaces of shding is parallel to Ppl> in Figure 14d

and the other set is parallel to PpDi.

In Figure 14c the minimum lateral displacement of ab required to

produce the state of plastic equilibrium associated with the shear pattern

shown in the figure is represented by the shaded area aaib. If the

section ab is advanced toward the soil into any position beyond ai6,

the surface of sliding will be similar to be and the distribution of the

passive earth pressure over ab will be hydrostatic, as indicated by
equation 3. On the other hand, if the face ab is advanced, for instance

by tilting around a, into a position which intersects ai&, the shape of

the surface of sliding will be different from that of be and the distribution

of the passive earth pressure over a6 will depend on the type of yield.

The preceding statements apply only to cohesionless masses. The
rigorous theory of the plastic equilibrium of heavy, cohesive, semi-

infinite masses has not yet matured beyond the initial stages. From a

practical point of view we are chiefly interested in obtaining information

on the passive earth pressure of such masses. In this connection it

should be remembered that the shear pattern for the passive Rankine

state in semi-infinite masses with a horizontal surface is independent

of cohesion (see Art. 12 and Fig. lid). If the surface of the soil carries

a uniformly distributed surcharge, q per unit of area, the passive Rankine

pressure per unit of area of a vertical section at a depth z below the

surface is

ffp = 2cv^ + qN^ + yzN^ 12(6)

wherein — tan® (45“ + ^/2) is the flow value. The first two terms

onthe right-hand side of this equation, and qN^, are independent
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of the depth and of the unit weight of the soU. The third term, yzN^,

contains the unit weight 7 as a factor, and it increases like a hydro-

static pressure in simple proportion to the depth.

If a semi-infinite mass of cohesive soil in a state of passive plastic

equilibrium is acted upon by adhesion and friction along the rough

sides of a plane diaphragm, the influence of the shearing stresses along

the faces of the diaphragm on the state of stress in the soil does not

extend beyond the Rankine shear planes aD, Figure 146, through the

upper edge of the diaphragm. Above these shear planes the shear

pattern is identical with that shown in Figure 146 for a cohesionless

mass. The state of stress which exists within the wedge-shaped zone

aBD has not yet been rigorously analyzed. However, by analogy with

the relation expressed by equation 12(5) the following assumption

appears to be acceptable. If a state of plastic equilibrium exists in

every point of a semi-infinite mass of cohesive soil which is acted upon

by friction and adhesion along a rough, plane contact face, the normal

component of the passive earth pressure per unit of area of this section

can be represented approximately by a linear equation

pPn = cKpc + <lKpq + yzKpy [5]

wherein Kpc^ Kpq, and Kpy are pure numbers whose values are inde-

pendent of z. From the results of estimates we know that the shape

of the surface of sliding for positive and negative values of the angle of

wall friction 6 is similar to that shown in Figures 146 and 14^ respectively.

The deformation conditions for the validity of equation 5 are similar

to those for the validity of equation 3. If these conditions are not

satisfied, the shape of the surface of sliding will be different from that

of be and the distribution of the passive earth pressure over the contact

face ab will depend on the type of movement of this face.

16. Plastic equilibrium produced by loading part of the surface of

semi-infinite masses. In the mass represented by Figures 14c and 146

the transition from the state of elastic to the state of plastic equilibrium

was accomplished by an imaginary operation which consisted in elongat-

ing or compressing the mass in a horizontal direction. However, the

transition can also be accomplished by means of a continuous surcharge

which covers the surface of the mass on one side of a straight line. The
equations which determine the plastic equilibrium of semi-infinite

masses due to local surcharges are difficult to solve. A complete solu-

tion has been worked out only on the assumption that the soil has a unit

weight equal to zero (Prandtl 1920). The investigations regarding the

influence of the weight of the mass on the characteristics of the state of

plastic equilibrium produced by a surcharge have not passed beyond the
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stage of establishing the differential equations (Reissner 1924). Yet,

even in this preliminary stage, the results furnish valuable information

of a general nature. The following paragraphs contain a summary of

those findings which are of immediate practical interest, without

attempting a rigorous proof of the statements.

(ct)

Fig. 16. Plastic flow in semi-infinite cohesive weightless solid due to uniformly dis-

tributed surcharge which covers (a) one half of the entire surface, and (6) a strip

with infinite length. {After Prandtl 1920,)

The surcharge per unit of area required to establish a state of

plastic equilibrium in every point of a weightless semi-infinite mass of a

cohesive material with an angle of internal friction
<f> is uniformly dis-

tributed over the surface on one side of a straight line, indicated by a

in Figure 15o. The entire mass can be divided by two planes through

a into three sections with different shear patterns. One of these planes,

aDp, descends toward the left through o at an angle of 45° —
<f>/2 to

the horizontal, and the other one, oDa, toward the right at an angle of

45° 0/2. Above the plane oDa the shear pattern is identical with

that corresponding to an active Rankine state (Fig. 11c) and above the

plane aDp with that corresponding to a passive Rankine state (Fig.

lid). Hence, above aDp the major principal stress is everywhere hori-
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zontal and above aDA it is eveiywhere vertical. These two Rankine
zones are separated from each other by a zone of radial shear

^ DaclDp.

Within this zone one set of surfaces of sliding appears in Figure 15a as a

set of straight lines through point a and the other one as a set of loga-

rithmic spirals which intersect the straight lines at angles of 90° — 0
(Prandtl 1920). If the surface of the semi-infinite mass on the left-

hand side of a is loaded with qo per unit of area, the load required to

establish a state of plastic equilibrium increases from qi to q'c + q'/ per

unit of area, wherein q'/ is a function only of <f> and ^o- The shear

pattern remains unaltered. If c = 0 and go = 0 the weightless mass

cannot carry any one-sided surcharge, regardless of what the value of

the angle of internal friction 0 may be, because there is no resistance

against the lateral yield of the loaded mass toward the left of the loaded

area. Hence in this case the critical load q'c is equal to zero. This

conclusion is also valid for the immediate vicinity of the boundary of a

loaded area on the horizontal surface of a cohesionless mass with weight.

This can easily be recognized when considering the conditions for the

equilibrium of the surcharge. The surfaces of sliding resemble those

shown in Figure 15a, although this figure refers to cohesive materials.

In order to sink into the ground, a surcharge located within a distance

2B from the loaded area must displace the soil located above the sur-

face of sliding bcde. If the soil has no cohesion the displacement is

resisted only by the friction due to the weight of the body of soil bcde.

Since the weight of this body increases with the square of 2fi, the

greatest surcharge Q which can be carried by the strip per unit of its

length is determined by an equation

Q = NB^

wherein iV is a factor whose value is independent of B.

surcharge per unit of area which the strip can carry is

Q = dB
2NB

The maximum

This surcharge increases in simple proportion to the distance from

the boundary a of the loaded area. At the boundary it is equal to zero.

The conditions for the plastic equilibrium of the semi-infinite mass

shown in Figure 15a are also valid for any limited section of this mass,

provided the states of stress along the boundaries of this section are

maintained. For instance, if we remove the surcharge on the right-

hand side of point 6 (Fig. 15a) the material located beneath the surface

of sliding bcde passes from the state of plastic equilibrium into that of

elastic equilibrium. Yet the material located above this surface re-
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mains in a state of plastic equilibrium. This method of reasoning is

similar to that which led to Rankine’s earth pressure theory. It in-

forms us on the conditions for the plastic equilibrium beneath loaded

strips with a finite width, such as the strip shown in Figure 156. In

this figure the line bcde corresponds to the line bcde in Figure 15a. A
slight increase of the surcharge in excess of q'c -H Qe causes the material

located above the surface represented by the line bcde to flow. How-
ever, it should be noted that the system of internal and external forces

which act on the loaded material is perfectly symmetrical with

reference to the vertical plane OiC. Therefore the zone of plastic

equilibrium must also be symmetrical with reference to this plane.

Hence the lower boundary of the zone of plastic equilibrium will be as

shown in the figure by the line edcdie\.

The preceding investigation was based on the assumption that the

unit weight of the loaded material is equal to zero. In reality there is

no weightless material. The weight of the material complicates the

situation very considerably. At given values of c and <t> it increases

the critical load and it changes the shape of the surfaces of sliding

within both the active Rankine zone and the zone of radial shear. Thus

for instance in the zone of radial shear the radial lines of shear are not

straight as shown in Figure 15a, but curved (Reissner 1924).

The problem of computing the critical load on the assumption that

y > 0 has been solved only by approximate methods. However, for

practical purposes these methods are sufficiently accurate. They will

be presented in Chapter VIII.

17. Rigorous and simplified methods of solving practical problems.

The solution of a problem is rigorous if the computed stresses are

strictly compatible with the conditions for equilibrium, with the

boundary conditions, and with the assumed mechanical properties of

the materials subject to investigation.

The stress conditions in the interior of a body are illustrated by
Figure 16a. This figure represents a prismatic element of a body which

is acted upon by no body force other than its own weight ydx dz.

One pair of sides is parallel to the direction of the force of gravity.

The sides are acted upon by the stresses indicated in the figure. The
conditions for the equilibrium of the element can be expressed by the

equations

dx
y HI

dff* . dr-and

dx dz
0 121
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Fig. 16. Diagrams illustrating equilibrium and compatibility conditions.

These equations are satisfied if

d^F
I3a]O’* = "TJ

dz^

d^F
[36]

I3c]

wherein F is an arbitrary function of x and z and C is the constant of

integration. Equations 3 demonstrate that there is an infinite variety

of states of stress which satisfy equations 1 and 2. Yet only one of

them corresponds to reality. Hence, to solve our problem, equations

1 and 2 must be supplemented by others. One set of supplementary

equations is obtained by establishing the boundary conditions. Thus

for mstance, if the body has a free surface which is not acted upon by

external forces, both the normal stress and the shearing stress on this

surface must be equal to zero.
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A second set of equations is obtained by expressing the condition

that the state of stress should be compatible with the mechanical prop-

erties of the material. If the material is perfectly elastic, the relations

between stress and strain are determined by Hooke’s law. If Hooke’s

law is valid, the stresses must satisfy not only equations 1 and 2 but also

the equation

provided the body is acted upon by no body force except its own weight

(see, for instance, Timoshenko 1934). It should be noticed that this

equation does not contain any one of the elastic constants of the mate-

rial. Combining this equation with equations 3 we obtain the standard

differential equation for the two-dimensional state of stress in elastic

bodies, when weight is the only body force. The equation is

d^F . d^F d^F
16]

The function F is known as Airy^s stress function (Airy 1862). The

mathematical part of the problem consists in finding a function F
which satisfies both equation 5 and the boundary conditions of the

problem. In some textbooks equation 5 is written in the form

= 0

The symbol represents Laplace ^s operator,

A solution obtained by means of equation 5 is valid only if the def-

ormation of the body is purely elastic. On the other hand, if the

stresses exceed the yield point in one part of the body, three different

zones should be distinguished. In one zone the stresses must satisfy

equation 5, which is only valid for perfectly elastic materials. In a

second zone the state of stress must satisfy the conditions for plastic

equilibrium, and a third zone represents a zone of transition from the

elastic into the plastic state. The existence of this zone of transition

makes the problem of computing the stresses extremely complicated.

In order to simplify the analysis the existence of a zone of transition is

always disregarded. For the elastic zone the stresses are computed

by means of equation 6 and for the plastic zone they are computed in

such a way as to satisfy the stress conditions for plastic equilibrium in

every point of the plastic zone. For soils these conditions are deter-
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mined sufficiently accurately by equation 7 (7), which represents Mohr's

rupture hypothesis,

•yl —
) sm0 = ccos</> 7(7)

In accordance with the simplified assumptions on which the analysis

is based, the boundary between the two zones is a surface of discontinuity

with respect to the rate of the change of stress in every direction except

in a direction tangential to the boundary.

Finally, if the problem deals with a body which is entirely in a state

of plastic equilibrium the solution needs only to satisfy the general

equilibrium condition represented by equations 3, the condition for

plastic equilibrium, expressed by equation 7(7), and the boundary

conditions. The Rankine state of stress in a semi-infinite mass of

soil can be computed in this manner.

In order to visualize the physical meaning of the preceding general

equations, we can compare them to the equations which determine the

pressure exerted by a perfectly rigid, continuous beam on nonrigid sup-

ports. Figure 166 shows such a beam. It rests on three columns, 1

to 3, with equal height II, The cross sections, A, of the columns are

all equal, and all the columns have the same elastic properties. The
beam is acted upon by a load Q at a distance from support 1 and

it exerts the pressures Pi, P2, and P3 on the columns 1 ,
2

,
and 3 re-

spectively. Therefore the columns 1 to 3 can be replaced by reactions

which are equal and opposite to these pressures. The equilibrium of

the system requires that the sum of all the forces and the sum of all

the moments acting on the beam must be equal to zero. The moments
can be taken around any point, for instance, the top of the support 1 .

These two conditions are expressed by the following equations:

—Q + Pi + P2 + -P3 = 0 [6a]

and
- P2L - 2P3L = 0 [66]

These two equations contain three unknown quantities. Pi to P3 .

Hence the conditions for equilibrium are satisfied, if we assign to one of

these quantities, for instance, to the reaction Pi, an arbitrary value.

This quantity is called the statically indeterminate reaction. In a

similar manner, there is an infinite number of different functions which

satisfy the general equations 3 indicating that the problem is indetermi-

nate. Yet there can be only one value of Pi or one fimction F which

will give the correct solution of our problem. This solution depends
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on the mechanical properties of the supports. In order to compute

that one value or that one function we must establish a supplementary

equation which expresses these properties.

In accordance with the customary assumptions regarding the mechan-

ical properties of construction materials capable of plastic flow we
establish the supplementary equation on the basis of the following

assumptions. For any pressure P smaller than a critical value Pp the

columns strictly obey Hooke’s law. After the pressure on a column

has become equal to Pp a further increase of the applied load Q produces

in the column a state of plastic flow at constant pressure. If this flow

does not relieve the pressure on the column the system fails. Hence

if the load Q on the beam is increased, the system passes in succession

through three stages. In the first stage the pressure on each one of

the three columns is smaller than Pp. In this stage an increase of the

load merely produces an elastic shortening of the columns and the

system is in a state of elastic equilibrium. The second stage begins as

soon as the load on one of the columns becomes equal to Pp. Any
further increase of the load Q must be carried by the elastic action of the

two other columns while the load on the third column remains equal

to load Pp. This is the state of plastic-elastic equilibrium. It con-

tinues to exist until the load on a second column becomes equal to Pp.

A further increase of the load Q causes a continuous plastic shortening

of both of the columns at constant load. This condition constitutes

failure. Hence the load Qmax required to increase the load on two

columns to Pp is the greatest load the system can carry. For Q = Q^bx
the system is in a state of plastic equilibrium.

In the elastic stage the ratio p/e of the imit load p «= P/A on a

column to the corresponding unit shortening e of the column is called

Young^s modulus E. Hence in this stage the total shortening of the

columns produced by a given load Q is

fi
Pig
AE ^

f2
Pgg
AE ' and fa

Pag
AE

Since the beam is perfectly rigid the heads of the columns must be

located on a straight line, which requires

fa fi "" 2 (fi — ^2) = 2^2 — fi

or

Pa - 2P2 - Pi

Combining this equation with equations 6 we obtain as a solution of our

problem

Pi P2 ** Pa "AQ 17]
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This solution satisfies the conditions for the equilibrium of the i^^s-

tern, the boundary conditions, and Hookers law. Therefore it represents

an analogue to a solution of the general equation 5 .

The relation between Q and the reactions Pi, P2, and P3, determined

by equations 7 ,
is represented in the diagram (Fig. 16c) by three straight

lines through the origin 0 . The load Qi required to increase the re-

action Pi to Pp determines the beginning of the plastic-elastic stage.

For this stage the supplementary equation required for the solution of

our problem is

Pi = Pp [81

Combining this equation with equations 6 we obtain

P2-fQ-2Pp and P3 = Pp-iQ [9]

valid for any load Q greater than Qi and smaller than Qmax* IJi Figure

16c this relation is represented by three straight lines, a6, cb, and de,

none of which passes through the origin of the system.

The condition for the plastic equilibrium of the system shown in

Figure 166 is

Pi = P2 = Pp and Q =

The corresponding solution is

Omax = 2Pp, Pi = P2 = Pp and P3 = 0

The computation of Qnxax hi this problem corresponds to computing the

force, the load, or the system of forces required to produce the failure

of a mass of soil by separation along a surface of sliding. Immediately

before the slide occurs the mass of soil located above the surface of

sliding may be in a plastic-elastic or entirely in a plastic state of equi-

librium. Along the surface of sliding the state of stress must satisfy

in every point Coulomb’s equation

s = c + O' tan <l>

wherein a is the normal stress on the surface of sliding and s the shearing

resistance per unit of area. It must also satisfy the conditions for

equilibrium expressed by equations 1 and 2. Figure 16d represents

an element dl of a surface of sliding together with a prismatic element

of the adjoining soil. By combining Coulomb’s equation for cohesion-

less sand,

s O' tan 0

with equations 1 and 2 Kotter (1888 ) obtained the equation

dc dri~ — 2o' tan ~ 7 sin (77
—

<#>) cos </»

dl dl
[10]
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wherein rj is the angle between the element dl of the surface of sliding

and the horizontal as shown in Figure 16d. Equation 10 is known as

Kdtter^s equation. If the shape of a surface of sliding in a mass of sand

and the angle of internal friction of the sand are known, it is possible

to determine by means of this equation the distribution of the normal

stresses on this surface and the line of action of the resultant pressure,

provided that the neutral stresses are equal to zero. J&ky (1936)

showed that equation 10 is also valid for cohesive soils. If the stresses

in a sand include both effective and neutral stresses, Kotter^s equation

must be replaced by an equation which takes into consideration the

effect of neutral stresses on the stress conditions for failure (Carrillo

1942a),

KOtter’s equation has been used by Ohde (1938) for the determination of the dis-

tribution of the horizontal pressure of sand on a vertical support which yields by

tilting around the upper edge. (See Art. 20.) The error of the results of such

investigations depends on the degree to which the assumed surface of sliding deviates

from the real one. A summary of Kdtter’s important contributions to earth pressure

theory has been published by Reissner (1909).

The equations given in the preceding paragraphs represent the funda-

mental equations for the rigorous solution of two-dimensional stress

problems in terms of Cartesian co-ordinates. Under certain conditions

it is more convenient to operate with polar or bipolar co-ordinates,

whereupon the fundamental equations must be transformed accordingly.

In no case can the rigorous solutions based on the aforementioned

fundamental equations be closer to reality than the assumptions upon

which these equations are based. There are no real construction mate-

rials with the exception of steel and there are no soils whose mechanical

properties are more than approximately the same as the assumed ones.

In order to visualize the practical consequences of the discrepancies between the

assumptions and reality we return to the example illustrated by Figure 166. In

accordance with the fundamental assumptions of the theories of elasticity and
plasticity we assumed that there is an abrupt transition of the elastic to the plastic

behavior of the columns. As a consequence the lines which represent the relation

between the load Q and the pressure on the columns show a sharp break with the

abscissa Q ^ Qi. In reality there is a gradual transition from elastic to plastic

behavior, involving a decrease of the pressure-compression ratio P/J* as the yield

point is approached. As a consequence the real relation between Q and the reactions

Pi to Ps is similar to that indicated by the dotted lines (Fig. 16c). Nevertheless the

relation represented by the unbroken lines is commonly called the rigorous solution

of the problem. The difference between the ordinates of the solid and the corre-

sponding dotted lines represents the error associated with the rigorous solution of the

problem as indicated by the solid lines.

In spite of the radically simplifying assumptions on which the rigorous
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solutions are based, the prospects for rigorous solutions for many prob-

lems of outstanding practical importance are rather remote. The
final equations obtained by rigorously solving other problems are so

cumbersome that they are unfit for practical use. Therefore, in prac-

tice, we depend to a great extent on simplified solutions.

In connection with elasticity problems, the efforts to obtain simplified

solutions have led to such theories as those involving a coefficient of

subgrade reaction (Chapter XVI). According to the concept of sub-

grade reaction the soil under load behaves like a bed of uniformly spaced

springs with uniform stiffness. The error associated with such an

assumption can be very important. Far more accurate are the simpli-

fied theories dealing with the conditions for equilibrium of a mass of soil

located above a potential surface of sliding. They are commonly
referred to as earth-pressure theories and theories of the stability of

slopes.

The rigorous solutions of most of the problems in these categories are

very complicated. Hence there is an urgent need for simplified pro-

cedures. These procedures consist in replacing the real surface of

sliding by an imaginary one with a simple equation. The position of

the surface of sliding within the soil must be such that the force required

to prevent a slip along the surface should be a maximum. Comparison

of the results thus obtained with rigorous solutions has shown that the

error due to simplifying the shape of the surface of sliding is often insig-

nificant. The best-known method of this type is Coulomb^s theory of

the active earth pressure on retaining walls, based on a substitution of

a plane surface of sliding for the curved one shown in Figure 14c. The
theoretical error due to this substitution is not in excess of 5 per cent.

(See Art. 23.) A difference of several per cent between the results of

a rigorous and a simplified computation is usually very small compared

with the difference between either of them and reality. It appears

insignificant in comparison with the advantages associated with simple

equations.

Most of the older approximate theories share the defect that the

importance of the theoretical error remains unknown until a rigorous

solution has been secured. Coulomb^s theory of the passive earth

pressure is an example. This theory has been used for more than a

century without anybody suspecting that the computed passive earth

pressure may be as much as 30 per cent higher than the real one. In

other fields of applied mechanics such risk has been eliminated by new
methods which are known under the collective title Relaxation Methods.

They could also be called Methods of Successive Approximation (South-

well 1940). One of the earliest and best-known applications of this
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method to an engineering problem is Hardy Cross’ Moment Distribution

Method for the analysis of continuous frames (Cross 1932). The
method is based on the principle that every state of equilibrium of a

given system is identical with the state in which the potential energy of

the system is a minimum.

Since the relaxation methods provide us with relatively simple solu-

tions with a known range of error, they seem to be ideally adapted to

dealing with the problems of soil mechanics, whose very nature excludes

both the possibility and the necessity of accurate solutions. The
methods have the further advantage that the investigator is compelled

by the procedure to have at every stage of his computations a clear

mental picture of what he is doing. Since most of the misapplications

of the theories of soil mechanics were due to erroneous conceptions

concerning the physical meaning of the mathematical operations, this

advantage has considerable weight.

So far no direct application of the methods of relaxation to the prob-

lems of soil mechanics has been attempted. Yet the prospects are

encouraging.

In connection with the practical application of soil mechanics the importance of

simplicity cannot be overemphasized, provided the simplicity is not achieved at the

price of ignoring the influence of vital factors. The necessity for simplicity is due

to the nature of the soils. Since there are no perfectly homogeneous soils and since

the mechanical properties of real soils are complicated, all the theories of soil mechan-

ics combined represent no more than a small step toward grasping the complex phe-

nomena subject to investigation. As a consequence, in every field of applied soil

mechanics the most important operation consists not in obtaining a rigorous solution

but in ascertaining the influence of various possible deviations of the real conditions

from the assumed ones. This can be done only on the basis of simple equations which

inform us at a glance of the relative weight of the different factors which enter into

the problem. Most rigorous solutions are by far too complicated to serve this vital

purpose. The principal value of these solutions is their ability to show the im-

p)ortance of the theoretical errors involved in the results of simplified analysis. In

this connection the rigorous solutions are of inestimable value. However, after a

complicated rigorous solution has rendered this service it is not likely to be of further

use unless the results are presented in the form of tables or graphs. The ability to

obtain rigorous solutions is not a prerequisite for successful work in the field of soil

mechanics. For both the research man and the practicing engineer it is sufficient

to know the general procedure by means of which the rigorous solutions are ob-

tained. The rigorous solution of the problems should be left to professional mathe-

maticians. For the same reason only the simplified methods will be discussed in this

book. Wherever it is necessary or advisable to refer to rigorous solutions, only the

results will be presented.

In many advanced papers on soil mechanics the mathematical refine-

ment is out of proportion to the importance of the errors due to simplify-
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ing assumptions. If these assumptions are clearly and completely

stated, such papers have at least the merit of honest mental experiments

and the reader may be in a position to judge for himself to what extent

the experiment can be considered successful. However, statements

covering all the vital assumptions are rather exceptional. Since few

readers kngw the subject well enough to recognize a gap in the set of

assumptions, a theoretical paper with an incomplete set may do more

harm than good.

Occasionally investigators make assumptions of grave import without

suspecting it themselves. On closer scrutiny of their papers one may
even find that their attempts to solve old problems by apparently more

rigorous methods have increased the error owing to the fact that a set of

conspicuous but tolerable assumptions was replaced by less conspicuous

but far more detrimental ones. The most instructive examples of such

misdirected efforts can be found among the advanced theories dealing

with the stability of slopes and with the bearing capacity of piles and

pile groups.

The existence of many papers with one or more of the aforementioned

shortcomings makes it difficult for the beginner to orient himself in the

field of soil mechanics without guidance. If a paper of this category is

mentioned in the following chapters at all, its defects will be indicated.



Section B

CONDITIONS FOR SHEAR FAILURE IN IDEAL SOILS

Chapter V

ARCHING IN IDEAL SOILS

18 « Definitions. If one part of the support of a mass of soil yield

while the remainder stays in place the soil adjoining the yielding part

moves out of its original position between adjacent stationary masses

of soil. The relative movement within the soil is opposed by a shearing

resistance within the zone of contact between the yielding and the sta-

tionaiy masses. Since the shearing resistance tends to keep the jdelding

mass in its original position, it reduces the pressure on the yielding part

of the support and increases the pressure on the adjoining stationary

part. This transfer of pressure from a yielding mass of soil onto ad-

joining stationary parts is commonly called the arching effect, and the

soil is said to arch over the yielding part of the support. Arching also

takes place if one part of a yielding support moves out more than the

adjoining parts.

Arching is one of the most universal phenomena encountered in soils

both in the field and in the laboratory. Since arching is maintained

solely by shearing stresses in the soil, it is no less permanent than any

other state of stress in the soil which depends on the existence of shearing

stresses, such as the state of stress beneath the footing of a column.

For instance, if no permanent shearing stresses were possible in a sand,

footings on sand would settle indefinitely. On the other hand, every

external influence which causes a supplementary settlement of a footing

or an additional outward movement of a retaining wall under unchanged

static forces must also be expected to reduce the intensity of existing

arching effects. Vibrations are the most important influence of this

sort.

In the following article two typical cases will be investigated, viz.,

arching in an ideal sand due to the local yield of a horizontal support

and arching in the sand adjoining a vertical support whose lower part

yields in an outward direction.

C6
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19. State of stress in the zone of arching. The local yield of the

horizontal support of a bed of sand shown in Figure 17a can be produced

by gradually lowering a strip-shaped section ab of the support. Before

the strip starts to yield, the vertical pressure per unit of area on the

horizontal support is everywhere equal to the depth of the layer of sand

Fig. 17. Failure in cohesionless sand preceded by arching, (a) Failure caused by
downward movement of a long narrow section of the base of a layer of sand;

(b) enlarged detail of diagram (a); (c) shear failure in sand due to yield of lateral

support by tilting about its upper edge.

times its unit weight. However, a lowering of the strip causes the sand

located above the strip to follow. This movement is opposed by fric-

tional resistance along the boundaries between the moving and the

stationary mass of sand. As a consequence the total pressure on the

yielding strip decreases by an amount equal to the vertical component

of the shearing resistance which acts on the boundaries, and the total

pressure on the adjoining stationary parts of the support increases by

the same amount. In every point located immediately above the yield-

ing strip the vertical principal stress decreases to a small fraction of

what it was before the yield commenced. The total vertical pressure

on the base of the layer of sand remains unchanged, because it is always

equal to the weight of the sand. Therefore the decrease of the vertical

pressure on the yielding strip must be associated with an increase of the

vertical pressure on the adjoining parts of the rigid base, involving an

abrupt increase of the intensity of the vertical pressure along the edges

of the strip. This discontinuity requires the existence of a zone of

radial shear comparable to that shown in Figure 15a. The radial shear

is associated with a lateral expansion of the sand located within the

high-pressure zone, on both sides of the yielding strip towards the low-
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pressure zone located above the strip. If the base of the layer of sand

were perfectly smooth, the corresponding shear pattern should be

similar to that indicated in Figure 17a and, on a larger scale, in Figure

176.

As soon as the strip has yielded sufficiently in a downward direction,

a shear failure occurs along two surfaces of sliding which rise from the

outer boundaries of the strip to the surface of the sand. In the vicinity

of the surface all the sand grains move vertically downward. This has

been demonstrated repeatedly by time-exposure photographs. Such a

movement is conceivable only if the surfaces of sliding intersect the hori-

zontal surface of the sand at right angles. When the failure occurs a

troughlike depression appears on the surface of the sand as indicated in

Figure 17a. The slope of each side of the depression is greatest where

it intersects the surface of sliding. The distance between these steepest

parts of the trough can be measured. It has been found that it is always

greater than the width of the yielding strip. Hence, the surfaces of

sliding must have a shape similar to that indicated in Figure 17a by the

lines ac and bd. The problem of deriving the equations of the surfaces

of sliding ac and bd has not yet been solved. However, experiments

(Vollmy 1937) suggest that the average slope angle of these surfaces

decreases from almost 90° for low values of D/2B to values approach-

ing 45° + <l>/2 for very high values of D/2B,

The vertical pressure on the lower part of the mass of sand located

between the two surfaces of sliding, ac and bd in Figure 17a, is equal to

the weight of the upper part reduced by the vertical component of the

frictional resistance which acts on the adjoining surfaces of sliding.

This transfer of part of the weight of the sand located above the yielding

strip onto the adjoining masses of sand constitutes the arching effect.

The preceding reasoning can also be applied to the analysis of the

arching effect produced in a mass of sand by the lateral yield of the

lower part of a vertical support. In Figure 17c the lateral support is

represented by ab. The surface of the sand is horizontal and the sup-

port yields by tilting around its upper edge. After the support has

yielded sufficiently, a shear failure occurs in the sand along a surface

of sliding bd which extends from the foot b of the support to the surface

of the sand. The stationary position of the upper edge, a, of the lateral

support prevents a lateral expansion of the upper part of the sliding

wedge. Therefore the sand grains located in the upper part of the

wedge can move only in a downward direction. Hence the surface of

sliding intersects the horizontal surface of the sand at d at right angles.

The corresponding subsidence of the surface of the sliding wedge is

indicated in the figure by a dashed line.
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The lateral expansion of the lower part of the sliding wedge is associ-

ated with a shortening in a vertical direction. The corresponding

subsidence of the upper part of the wedge is opposed by the frictional

resistance along the adjoining steep part of the surface of sliding. As
a consequence the vertical pressure on the lower part of the wedge is

smaller than the weight of the sand located above it. This phenomenon
constitutes the arching effect in the sand behind yielding lateral sup-

ports whose upper part is stationary.

20. Theories of arching. Most of the existing theories of arching

deal with the pressure of diy sand on yielding horizontal strips. They
can be divided into three groups. The authors of the theories of the

first group merely considered the conditions for the equilibrium of the

sand which is located immediately above the loaded strip without

attempting to investigate whether or not the results of the computations

were compatible with the conditions for the equilibrium of the sand at

a greater distance from the strip. The theories of the second group are

based on the unjustified assumption that the entire mass of sand located

above the yielding strip is in a state of plastic equilibrium.

In the theories of a third group it is assumed that the vertical sections

ae and 6/ (Fig. 17a) through the outer edges of the yielding strip repre-

sent surfaces of sliding and that the pressure on the yielding strip is

equal to the difference between the weight of the sand located above the

strip and the full frictional resistance along the vertical sections (Cain

1916 and others). The real surfaces of sliding, oc and hd (Fig. 17a), are

curved and at the surface of the sand their spacing is considerably

greater than the width of the yielding strip. Hence the friction along

the vertical sections ae and hf cannot be fully active. The error due to

ignoring this fact is on the unsafe side.

The following comments are intended to inform the reader in a general way on

the fundamental assumptions of the theories of the first two groups. Engesser

(1882) replaced the sand located immediately above the yelding strip by an imagi-

nary arch and computed the pressure on the strip on the basis of the conditions for

the equilibrium of the arch. Bierbaumer (1913) compared the sand located imme-

diately above the strip to the keystone in an arch. He assumed that the base of the

keystone coincides with the surface of the strip, and that the sides of the keystone

are plane and rise from the outer boundaries of the strip towards the center. The
pressure on the strip is equal and opposite to the force required to maintain the

keystone in its position. Caquot (1934) replaced the entire mass of sand located

above the yielding strip by a system of arches. He assumed that the horizontal

normal stress in the arches above the center line of the strip is equal to the corre-

sponding vertical normal stress times the flow value equation 7(4), and he

computed the pressure on the strip on the basis of the conditions for the equilibrium

of the arches. Vdllmy (1937) replaced the curved surfaces of sliding ac and hd

(Fig. 17a) by inclined plmie surfaces and assumed that the normal stresses on these
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surfaces are identical with the normal stresses on similarly oriented sections through

a semi-infinite mass of sand in an active Rankine state. The slope of the surfaces

of sliding is chosen such that the corresponding pressure on the yielding strip is a

maximum. According to the results of some of his investigations an increase of

the angle of internal friction of the sand should cause an increase of the pressure on

the 3delding strip. According to all the other theories and to the existing test re-

sults an increase of the angle of internal friction has the opposite effect. VfiUmy

(1937) also investigated the pressure of the earth on rigid and on flexible culverts

and compared the results of his analysis with those obtained by earlier investigators.

However, under field conditions the pressure on 3delding horizontal supports such

as the roofs of culverts or of tunnels depends on many conditions other than those

which have been considered so far in theoretical investigations.

All the theories cited above are in accordance with experience in that

the pressure on a yielding, horizontal strip with a given width increases

less rapidly than the weight of the mass of sand located above the strip

and approaches asymptotically a finite value. However, the values

furnished by different theories for the pressure on the strip are quite

different. In order to find which of the theories deserves preference it

would be necessary to investigate experimentally the state of stress

above yielding strips and to compare the results with the basic assump-

tions of the theories. Up to this time no complete investigation of this

type has been made, and the relative merit of the several theories is

still unknown. The simplest theories are those in the third category

which are based on the assumption that the surfaces of sliding are

vertical. Fortunately the sources of error associated with this assump-

tion are clearly visible. In spite of the errors the final results are fairly

compatible with the existing experimental data. Therefore the follow-

ing analysis will be based exclusively on the fundamental assumptions

of the theories in this category. In connection with a scientific study

of the subject Vollmy^s publication should be consulted (Vollmy 1937).

If we assume that the surfaces of sliding are vertical as indicated by
the lines ae and 6/ (Fig. 17a) the problem of computing the vertical

pressure on the yielding strip becomes identical with the problem of

computing the vertical pressure on the yielding bottom of prismatic

bins.

For cohesionless materials this problem has been solved rigorously by Kdtter

(1899). It has also been solved with different degrees of approximation by other

investigators. The simplest of the solutions is based on the assumption that the

vertical pressure on any horizontal section through the fill is uniformly distributed

(Janssen 1895, Koenen 1896). This assumption is incompatible with the state of

stress on vertical sections through the soil, but the error due to this assumption is

not so important that the assumption cannot be used as a basis for a rough estinmte.

Kgure 18a is a section through the space between two vertical sur-
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faces of sliding. The shearing resistance of the earth is determined by
the equation

s = c + <r tan (j>

The unit weight of the soil is y and the surface of the soil carries a
uniform surcharge q per unit of area. The ratio between the horizontal

Fig. 18. (a) Diagram illustrating assumptions on which computation of pressure in

sand between two vertical surfaces of sliding is based; (c and d) representations of

the results of the computations.

and the vertical pressure is assumed to be equal to an empirical constant

K at every point of the fill. The vertical stress on a horizontal section

at any depth z below the surface is Cy, and the corresponding normal
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stress on the vertical surface of sliding is

(TA = K^v 11]

The weight of the slice with a thickness dz at a depth z below the

surface is 2By dz per unit of length perpendicular to the plane of the

drawing. The slice is acted upon by the forces indicated in the figure.

The condition that the sum of the vertical components which act on the

slice must be equal to zero can be expressed by the equation

or

and

2By dz = 2B (<Tv + day) — 2Bay + 2c + 2Kay dz tan (f>

tan <)}

“F"

<Ty — q for 2 = 0

Solving these equations we obtain

B{y c/B)
,, —IT tan ^ */B\

\
—IT tan ^ x/B

iftan^
[2]

By substituting in this equation in succession the values c = 0 and

g = 0, we obtain

c > 0 ^ = 0 _ B{y - c/B)

K tan <t>

^
—X tan ^

[3]

= 0 q>0 <r, =
£taa 4>

(1 - / •

c = 0 q = 0 ffv =
By

K tan <l>

(1
- JTtan^ x/B^

[5]

If the shearing resistance in a bed of sand is fully active on the vertical

sections ae and bf (Fig. 17o), the vertical pressure per unit of area of

the yielding strip db is determined by equation 5. Substituting in this

equation

z ^ nB
we obtain

<B ydB [6o]

wherein

1

2Ctan0
(1 _ f/B-)

K tan 4>

(1 [6b]
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For « 00 we obtain a « 1/K tan and

yB
<^v ” ^voo "^77 7A tan 0

[7]

In Figure 186 the ordinates of the curve marked a represent the values

of n = z/B and the abscissas the corresponding values of a for </> = 30®

and K —
1, or for tan <t>

= 0.58. Figure 18c contains the same data

for = 40® and K = 1 or for if tan = 0.84.

Experimental investigations regarding the state of stress in the sand

located above a yielding strip (Terzaghi 1936e) have shown that the

value K increases from about unity immediately above the center line

of the yielding strip to a maximum of about 1.5 at an elevation of ap-

proximately 2B above the center line. At elevations of more than

about 5B above the center line the lowering of the strip seems to have

no effect at all on the state of stress in the sand. Hence we are obliged

to assume that the shearing resistance of the sand is active only on the

lower part of the vertical boundaries ae and 6/ of the prism of sand

located above the yielding strip ab in Figure 17a. On this assumption

the upper part of the prism acts like a surcharge q on the lower part and

the pressure on the 3delding strip is determined by equation 4. If

Zi ~ uiB is the depth to which there are no shearing stresses on the

vertical boundaries of the prism abfe in Figure 17a the vertical pressure

per unit of area of a horizontal section eifi through the prism at a depth

zi below the surface is g = yzi = yniB. Introducing this value and the

value z = 22 = ^2^ into equation 4 we obtain

<r„ = yB(i2 “i“ yBiiib2 = yB(jCi2 "b ^162) [8a]

wherein

02 = —^^
(1 _ „ ^-iC«,Un*

fgjjK tan <i>

For na = 00 the value 02 becomes equal to

1

and the value 62 equal to zero. The corresponding value of cr^ is

which is equal to the value given by equation 7. In other words, the

value <r,« is independent of the depth zi in Figure 17o.

The relation between n2 and 02 is identical with the relation between
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n and a, represented by equation 66 and by the plain curves in Figures

186 and 18c. The relation between the values n and the corresponding

values of

__ ^—JSTntan^

is represented in Figures 186 and 18c by the dash-dotted curves marked 6.

In order to illustrate by means of a numerical example the influence

of the absence of shearing stresses on the upper part of the vertical

sections ae and 6/ in Figure 17a we assume = 40°, K — 1, and ni = 4.

Between the surface and a depth Zi = riiB = 4JS the vertical pressure

on horizontal sections increases like a hydrostatic pressure in simple

proportion to depth, as indicated in Figure 18d by the straight line oc.

Below a depth zi the vertical pressure is determined by equations 8.

It decreases with increasing depth, as shown by the curve ef and it

approaches as3anptotically the value Cvao (eq. 7).

The dashed line og in Figure 18d has been plotted on the assumption

Til = 0. The abscissas of this curve are determined by equations 6.

With increasing depth they also approach the value (t^oo (eq. 7). The
figure shows that the influence of the absence of arching in the upper

layers of the bed of sand on the pressure (Xv on a yielding strip practically

ceases to exist at a depth of more than about 8JS. Similar investi-

gations for different values of and of ni led to the conclusion that the

pressure on a yielding strip is almost independent of the state of stress

which exists in the sand at an elevation of more than about 4B to 6J5

above the strip (two or three times the width of the strip).

If there is a gradual transition from full mobilization of the shearing

resistance of the sand on the lower part of the vertical sections ae and

6/ in Figure 17a to a state of zero shearing stress on the upper part, the

change of the vertical normal stress with depth should be such as

indicated in Figure 18d by the line odf. This line is similar to the

pressure curve obtained by measuring the stresses in the sand above the

center line of a yielding strip (Terzaghi 1936e).

Less simple is the investigation of the effect of arching on the pressure

of sand on a vertical support such as that shown in Figure 17c. The
first attempt to investigate this effect was made on the simplifying

assumption that the surface of sliding is plane (Terzaghi 1936c).

According to the results of the investigation the arching in the sand

behind a lateral support with a height H eliminates the hydrostatic

pressure distribution and it increases the vertical distance Ha between

the point of application of the lateral pressure and the lower edge of the

support. The intensity of the arching effert; and its influence on the

value of the ratio Ha/H depends on the type of yield of the support. If
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the support yields by tilting around its lower edge no arching occurs.

The distribution of the earth pressure is hydrostatic and the ratio

Ha/H is equal to one third. A yield by tilting around the upper edge is

associated with a roughlyparabolic pressure distribution and the point of

application of the lateral pressure is located near midheight. Finally,

if the support yields parallel to its original position, the point of appli-

cation of the lateral pressure may be expected to descend gradually

from an initial position close to midheight to a final position at the

lower third point. The investigation gave a satisfactory general con-

ception of the influence of the different factors involved, but, owing to

the assumption that the surface of sliding is plane, failed to give in-

formation regarding the effect of arching on the intensity of the lateral

pressure.

In order to obtain the missing information it was necessary to take

the real shape of the surface of sliding into consideration. Since the

upper edge of the lateral support does not yield, the surface of sliding

must intersect the top surface of the backfill at right angles (see Art. 19).

Ohde investigated the influence of this condition on the intensity

of the earth pressure on the assumption that the trace of the surface of

sliding on a vertical plane is an arc of a circle which intersects the sur-

face of the backfill at right angles (Ohde 1938). The corresponding

lateral pressure and the location of the point of application of the

lateral pressure have been computed for an ideal sand, with an angle

of internal friction = 31°, by three different methods.

In one of these, the location of the centroid of the pressure has been

determined in such a manner that the stresses along the surface of

sliding satisfy Kotter's equation, 17(10). In a second one it has been

assumed that the normal stresses on both the wall and the surface of

sliding are a function of the second power of the distance from the sur-

face of the backfill, measured along the back of the lateral support and

the surface of sliding respectively. The values of the constants con-

tained in the functions have been determined in such a way that the

conditions for the equilibrium of the sliding wedge are satisfied. In a

third investigation another function has been selected, approximately

expressing the distribution of the normal stresses over the boundaries

of the sliding wedge. In spite of the differences between the funda-

mental assumptions, the values obtained by these methods for the ratio

between the elevation of the centroid of the earth pressure and the

height of the bank range between the narrow limits 0.48 and 0.56.

They correspond to an angle of wall friction 5 = 0. However, the wall

friction was found to have little influence on the location of the centroid

of the pressure. Hence we are entitled to assume that the centroid is
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located approximately at midheight of the support and the corresponding

pressure distribution is roughly parabolic, as shown on the right-hand

side of Figure 17c. The investigation has also shown that an increase

of the ratio Ha/H due to arching is associated with an increase of the

horizontal pressure on the lateral support. A simple method of com-

puting the intensity of the lateral pressure is described in Article 67.

It is based on the assumption that the curve of sliding is a logarithmic

spiral, which intersects the surface at right angles.

A general mathematical discussion of the influence of the wall move-

ment on the earth pressure has been published by J&ky (1938).



Chapter VI

RETAINING WALL PROBLEMS

21. Definitions. Retaining walls are used to provide lateral support

for masses of soil. The supported material is called the backfill. Fig-

ures 19 and 27 represent sections through the two principal types of

retaining walls. The wall shown
in Figure 19 is called a gravity wall

because the wall depends on its own
weight for stability against the

horizontal thrust produced by the

lateral earth pressure. On the

other hand, the cantilever retaining

wallj shown in Figure 27, derives

part of its stability from the weight

of the soil located above the foot-

ing at the back of the wall. The pressures acting on
• y c .

• • II • . retaining wall at instant of failure.
Side of a retaining wall against

which the fill is placed is called the hack of the wall. The back may be

plane or broken, and a plane back may be vertical or inclined (baUered),

The failure of a retaining wall can occur by tilting (tilting failure) or by
sliding along its base parallel to its original position (sliding failure).

Either type of failure of the wall is associated with the downward move-

ment of a wedge-shaped body of soil (dbc in Fig. 19) located immediately

back of the wall. This body is called the sliding wedge.

22. Assumptions and conditions. Most of the theories of earth

pressure are based on the following assumptions: The backfill of the

wall is isotropic and homogeneous; the deformation of the backfill

occurs exclusively parallel to a vertical plane at right angles to the back

of the wall, and the neutral stresses in the backfill material are negli^ble.

Any departure from these fundamental assumptions will be mentioned

specifically. In this chapter it will be further assumed that the wall

moves to a position which is located entirely beyond the boimdary aib

of the shaded suea in Figure 14c. This is the deformation condition.

The width of the shaded area aaih In Figure 14e represents the amount by which

the hoiisontal dimensions of the body of sand abc increase while the sand passes

from its initial state of stress into that of plastic equilibrium. If a lateral support

77
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yields by tilting about its lower edge every part of the back of the wall crosses almost

simultaneously the boundary aib of the shaded area, whereupon the sand starts to

fail in every point of the sliding wedge. Therefore the deformation condition speci-

fied above is satisfied as soon as the sand starts to fail.

If a lateral support yields by tilting about its upper edge o, the upper part of

the back of the support remains within the shaded area. This type of yield is

incompatible with the deformation conditions specified above regardless of the

distance through which the lower edge of the support yields. The mechanical

implications of this type of yield will be discussed in Article 67.

Finally, if a lateral support yields parallel to its original position the sand con-

tained within the sliding wedge passes in succession through two stages. During

the first stage the upper part of the back of the wall is located within the shaded

area daj) in Figure 14c while the lower part has already passed beyond it. The slip

occurs in this stage, although that part of the sliding wedge which is located next to

the upper part of the lateral support is still in a state of elastic equilibrium (first

stage). As the outward movement of the support continues the state of plastic

equilibrium spreads within the wedge. As soon as the uppermost part of the sup-

port leaves the shaded area, the entire wedge is in a state of plastic equilibrium,

whereupon the deformation conditions for the validity of the following investigations

become satisfied (second stage). Both stages have been investigated experimentally

(Terzaghi 1934). The results showed very clearly the two successive stages.

During the first stage, when the slip occurred, the point of application of the earth

pressure was located at almost half the height of the lateral support. According

to the following investigations it should be located at one third of the height. How-
ever, as the advance of the wall continued, the point of application moved down
and finally it became stationary at one third of the height (second stage). The yield

required to establish the second stage is very small. Hence when dealing with

retaining walls the first stage can and will be disregarded. (Terzaghi 19366.)

23. Coulomb’s theory of the active earth pressure of ideal sand.

The unit weight of the sand is y and the shearing resistance of the sand

is determined by the equation

8 = <Ttan0 5(2)

wherein <r is the effective normal stress on the surface of sliding and <l>

is the angle of internal friction of the sand. The shearing force which

acts on the back of the wall is

Pai = PAn tan «

wherein PAn is the normal component of the total earth pressure Pa on

the back of the wall and 5 is the angle of wall friction. The angle 5 can

either be positive or negative (see Art. 15). In Figure 20 and in all

the following figures 5 is shown as positive, because in practice the condi-

tions for the occurrence of negative wall friction are seldom realized.

However, the results of the following analysis are valid for both positive

and negative values of & In no case can 8 be greater than the angle

of internal friction 4>.
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If the deformation condition specified in the preceding article is satis-

fied, and the back of the wall and the surface of the backfill are plane,

the upper part of the inclined boundary of the sliding wedge is plane

and the lower part is slightly curved, as shown in Figure 14c for a positive

value and in Figure 14/ for a negative value of the angle 6 of wall friction.

The active earth pressure Pa can be determined rigorously by means of

one of the methods which have been worked out by K&rmdn (1926),

Fia. 20. (a and h) Diagrams illustrating assumptions on which Coulomb’s theory

of earth pressure is based; (c and d) Culmann’s graphical method of determining

earth pressure of sand.

Jhky (1938), and Ohde (1938). However, the final equations are too

complicated for practical use. Sufficiently accurate results can be

obtained by means of the simplifying assumption that the inclined

boundary of the sliding wedge is plane. This assumption has been

introduced into earth pressure theory by Coulomb (1776). The theory

which is based on this assumption is called Coulomb^a theory. It is

illustrated by Figure 20a. In this figure bci represents an arbitrary plane

section through the lower edge of the back of the wall. The wedge-

shaped section abci of the backfill with a weight Wi is acted upon by

the following forces: The reaction Ft along the face 6ci, at an angle

to the normal on 6ci, and the reaction Pi along the back of the wall
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at an angle b to the normal on the back. Let

a = the angle between the back of the wall and the horizontal sur-

face of the ground in front of the wall,

— the angle at which the surface of the backfill rises above the

horizontal,

= the angle at which the right-hand side bci of the wedge abci

rises above the horizontal, and

<l>
= the angle of internal friction in equation 5(2).

Since the wedge is in a state of equilibrium the polygon of forces shown
in Figure 206 must be closed. The intensity of the reaction Pi depends

on the slope angle 171 of the surface 6ci. For rn = 180® — a, Pi is

equal to zero. With decreasing values of 771 , Pi increases and passes

through a maximum. Then it decreases and for 771 = <#> it again becomes

equal to zero. The wall must be heavy enough to withstand the greatest

lateral pressure, P^ax == Pa = active earth pressure. Hence the prob-

lem is to determine the maximum value of P. Coulomb solved this

problem analytically. He obtained

Pa = Ka
sin a cos 6

[la]

wherein

Ka =
sin® (a + (f>) cos 5

• / r, ,

/sin (<t>

sm a sm (a — 5) 1 + \ ;

—

^sm [a

+ S) sin {<t>
—

|
8 )'

[lb]

6) sin (a + /3).

The total normal component of the earth pressure on the back of

the wall is

PAn - Pa cos { =
Ka
sin a

[2]

The value Ka depends solely on the values of the angles (ft, 5, a,

and /3. For a = 90°, jS = 0, and = S = 30°, the difference between

the exact value of the earth pressure corresponding to Figure 14c and

Coulomb’s value is smaller than 6 per cent. In connection with

practical problems this error is insigniffcant. With decreasing values

of 5 the error decreases further and for S = 0 the Coulomb value of

the earth pressure becomes identical with the Bankine value

Pa = tan® ^45° -
|)

= L 14 (1 )

Although the case illustrated by Figure 20 is a very simple one,

equations 1 which represent the result of the computation are rather

cumbersome. If the back of the wall or the siuface of the backfill
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consists of several plane sections, the amount of time required for an

analytical solution is practically prohibitive. Hence it is advisable to

solve the problem by one of several graphical procedures which have

been worked out during the last century (Poncelet 1840, Rebhann 1871,

Culmann 1866, Engesser 1880). Although Poncelet’s method is better

known than any of the others, the methods of Culmann and Engesser

are preferable for practical purposes because they do not make it neces-

sary to burden the memory with special rules.

24. Culmann’s graphical solution. In Figure 20c the line ab repre-

sents a section through the back of the wall. We tentatively assume

a surface of sliding 6ci. Then we trace the slope line bS at an angle <#>

(angle of internal friction) to the horizontal, and the earth pressure

line bL at an angle ^ (angle between the pressure Pi and the vertical)

to the slope line bS, We also trace cidi ||
ab and diei ||

bL, Thus

we obtain the triangle bdiCi (Fig. 20c). Since the angles at the vertices

b and di of this triangle are equal to the angles at t and ri in the polygon

of forces (Fig. 20&), the triangle bdiei in Figure 20c is similar to the poly-

gon of forces shown in Figure 20&. The weight of the wedge abci in

Figure 20c is

TFi == ^yH'li

Since the triangle bdiei in Figure 20c is similar to the polygon of

forces risit we can establish the equation

111

bdi bdi

In a similar manner we can determine the intensity of the forces P2 ,

etc., required to maintain the equilibrium on other arbitrarily selected

surfaces of sliding bcz, etc. Since Cidi 1|
C2d2 ||, etc., the ratio n

between the true length of the distances li = aci, I2 = ac2 ,
etc., and the

corresponding distances bdi, ^2,
etc., is the same for each of these

surfaces, or

[2]

Introducing the value n into equation 1 we obtain

Pi - ^ynH' eidi = (7„ X eidi [3]

wherein C„ = ynH'l2 is independent of the slope of the assumed sur-

face of sliding.

By using the same procedure we get

P2 “ Cn X^
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and so on. In Figure 20c the forces Fi, P2; etc., are represented by

distances Cidi, ^2^2, etc. Thus we obtain in Figure 20c several points,

61, C2, etc. All these points are located on a curve C which is called

the Cvlmann line. In order to determine the maximum value Pa of

the lateral pressure we draw a tangent to the curve C, parallel to the

slope line hS, The point of contact of this tangent is e. If we trace

ed parallel to the earth pressure line fcL, the distance ed represents the

active earth pressure Pa on the back of the wall in the scale of the

drawing. The corresponding surface of sliding he passes through the

point of contact c. Substituting ed for e\di in equation 3 we obtain

for the intensity of the active earth pressure the value

Pa = ed [4]

The same method can be used if the surface of the fill is broken or

curved as shown in Figure 20d, However, in this case we cannot avoid

computing the weight of the wedges TFi, TF2, etc., which correspond

to the different sections 6ci, 6c2, etc. The weights thus obtained are

plotted on a convenient scale on the slope line from b toward S.

25. Engesser’s graphical solution. Figure 21a is a duplicate of the

section through the backfill shown in Figure 20a. In order to determine

the active earth pressure of this backfill by means of Engesser’s

method we trace the earth pressure line LLi through b at an angle ^
(angle between the direction of the earth pressure Pi and the vertical

direction) to the slope line bS. Then we plot the weight of each of the

wedges a&ci, a6c2, etc., from point b in Figure 21a on the line 6aSi toward

the left on a scale Wi = oci, W2 = ac2, etc. Thus we obtain the points

du d2 t
etc. Then we trace through each of these points a line parallel

to the corresponding section 6ci, 6c2, etc. These lines intersect the

earth pressure line LLi at the points ci, 62, etc. Figure 216 represents

the polygon of forces for the wedge a6ci. It can readily be seen that

this polygon is similar to the triangle bdiei in Figure 21a. For the

same reason the triangles 6d2^2, etc., are similar to the polygons of forces

which represent the condition for the equilibrium of the wedges a6c2,

etc. The sides diei, d^e^j etc., in Figure 21a are tangent to a curve E.

If three or four sides have been determined, the curve E can be traced

easily and accurately. It intersects the earth pressure line LLi at

point c. Since the distances bei, 662, etc., represent the lateral resistance

Pif P2 i etc., required to prevent a slip along the surfaces 6ci, bc2 ,
etc.,

the distance he corresponds to the maximum lateral resistance required

to prevent a slip along any plane section through 6, Hence it represents

the active earth pressure Pa on the scale of the drawing. The surface
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of sliding be is parallel to the tangent ed to the curve E at point e. From
the geometrical relations represented in Figures 21a and 216 we obtain

for the intensity of the active earth pressure the equation

Pa = hH' Te [i;!

wherein he is the true length of the distance represented by he. The

curve E is called the Engesser line.

If the surface of the backfill is curved, as shown in Figure 21c, the

weight of the wedges Wi, W2 ,
etc., must be computed. In this case

it is preferable to plot these weights in the polygon of forces (Fig. 2\d)

from point r in a downward direction and to construct the Engesser

line in this side figure. The rest of the procedure is identical with that

described above.
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26. Location of the point of application of the active earth pressure.

Figure 22a is a section through the sliding wedge adjoining a retaining

wall with a rough, vertical back. The siuiace of the fill is horizontal.

If the retaining wall yields through a distance suflacient to establish a

state of plastic equilibrium in every point of the sliding wedge the shear

pattern is like that shown in the figure. Any point &i at an arbitrary

Fixed

-k-

l\ „

— <*

'~d V
- o

U)
i

Fig. 22. Position of point of application of resultant earth pressure of sand under

different conditions of lateral support.

depth z below point a represents the lower edge of a surface of sliding

biCi which is similar to the surface of sliding be. As a consequence the

lateral pressure on the section abi of the wall is equal to the lateral

pressure on the back of a retaining wall with a height z. Substituting

a = 90® in equation 23 (2) and replacingHhyzwe obtain for the normal

component of the earth pressure on abi the value

P'An = hyZ^KA
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and the unit normal pressure on the wall at depth z is

dP^
VAn = -^ = yzKA [1 ]

This equation is identical with equation 15(1). It demonstrates that

the distribution of the eart/h pressure on the back of the wall increases

like a hydrostatic pressure in simple proportion to depth, as shown on

the right-hand side of Figure 22a. The point of application of the

earth pressure is located at a height H/Z above the base of the wall, and

the shaded area def represents the normal component of the earth pres-

sure on a6i.

If the surface of the backfill and the back of the wall are not plane, the

distribution of the earth pressure on the back of the wall is not hydro-

static. Yet, if the wall yields by tilting about its lower edge or by
advancing sufficiently far parallel to its original position, the entire

mass of sand located within the sliding wedge passes into a state of

plastic equilibrium. In this state every horizontal line on the back of

the wall represents the lower edge of a potential surface of sliding. This

fact suflBces to establish the validity of the equation

dP'An .

VAn = Sin a [2]

wherein a is the slope angle of the back of the wall at depth z.

On the basis of this equation it is possible to locate the position of

the point of application of the earth pressure by using the graphic pro-

cedure illustrated by Figure 225 to d. Figure 226 is a section through

the vertical back of a wall supporting a backfill with a broken surface.

On account of the break in the surface the distribution of the earth

pressure on the back of the wall is nonhydrostatic. We determine by

means of the method described in the following article the total earth

pressure which acts on the back of the wall between its crest and different

depths zi, Z2, etc. By plotting the values P^n thus obtained against

depth, we can trace the curve shown in Figure 22c. This curve repre-

sents the relation between Pati and the depth z. From this curve we
can get the values pAn, equation 2, by means of a simple graphical pro-

cedure. After plotting the values of pAn against depth we can trace the

curve Cl in Figure 22d. The area rst located between the curve Ci and

the vertical axis represents the total normal component of the lateral

pressure. The point of application of the lateral pressure is located at

the elevation of the center of gravity 0 of the pressure area rst. Similar

procedures, based on equation 2, have been worked out for determining
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the point of application of the earth pressure on a retaining wall whose

back is not plane. (See for instance Krey 1936.) Since all these

methods are based on the simplifying assumption that the surfaces of

sliding are plane, they are far from being rigorous. Nevertheless they

are rather cumbersome. For practical purposes simpler methods have

been devised which give approximately the same results. Considering

the nature of the basic assumptions, it appears doubtful whether the

elaborate procedures are more reliable than the simple ones.

The validity of equation 2 is limited by the condition that every part

of the mass of soil located within the sliding wedge must be in a state of

plastic equilibrium. If the deformation conditions are such that the

slip occurs while part of the sliding wedge is still in a state of elastic

equilibrium, equation 2 loses its validity and neither of the procedures

described before can be used for determining the position of the point

of application of the earth pressure. This is illustrated by Figure 22c,

which shows a vertical bank whose lateral support yields by tilting about

its upper edge a. The fixed position of a prevents the upper part of

the sliding wedge from passing into a state of plastic equilibrium. As

explained in Article 20, failure occurs along a curved surface of sliding

he which intersects the surface of the backfill at right angles and the

earth pressure on the support shown in Figure 22c is not identical with

that on the back of the retaining wall shown in Figure 22a. Therefore

it will be designated by another symbol. Pan instead of PAn- In

Article 67 it will be shown that the earth pressure Pan can be expressed

by an equation

wherein Aa is a coeflBcient whose value is independent of H, Hence the

earth pressure on a lateral support of the type shown in Figure 22c with

a height z is

If Pan were identical with the earth pressure P'Jn on the upper part of

the lateral support shown in Figure 22e we could write

[3]

and the distribution of the earth pressure would be strictly hydrostatic.

Yet we know from experience that the value Pan is always very much
greater than the value determined by this equation. This is due to

the following facts. If fei in Figure 22e represented the lower edge of

the lateral support the slide would occur along the surface biCi which
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is similar to the surface he and the earth pressure on ahi would be equal

to Pan* The shearing stresses along biCi would be equal to the shearing

resistance of the sand. In reality the lower edge of the lateral support

is located at b and not at bu The line biCi does not represent a surface

of sliding because it is located within a zone of elastic equilibrium.

The shearing stresses along any surface passing through this zone, such

as biCi are smaller than the shearing resistance of the sand. Therefore

the earth pressure on abi must be greater than Pan* On account of

these facts equation 3 is not valid. The distribution of the earth

pressure is not hydrostatic. It is roughly parabolic as indicated on

the right-hand side of Figure 22e, The location of the point of appli-

cation of the earth pressure depends on the type of movement of the

support which precedes the slip in the sand and cannot be ascertained

without taking this factor into consideration. The shaded area def =
Pan represents the earth pressure on a lateral support with a height z.

This pressure is much smaller than the pressure deji = P^n on the

section abi of the lateral support with the height H.

On account of the decisive influence of the deformation conditions on

the distribution of the earth pressure, all but the simplest earth pressure

computations should be preceded by a careful investigation of these

conditions.

This chapter deals only with retaining walls. Retaining walls yield

always in such a manner that the entire mass of soil located within the

sliding wedge passes into a state of plastic equilibrium. As a conse-

quence equation 2 can be used as a basis for determining the position

of the point of application of the earth pressure.

Depfh

Fig. 23. Earth pressure of backfill with broken surface.

27. Backfill with broken surface. Figure 23o shows a section

through a backfill with a broken surface. The intensity of the total

lateral pressure Pa. and the corresponding position of the surface of
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sliding he can be determined by any one of the graphic methods de-

scribed above, because these methods are applicable regardless of the

shape of the surface of the backfill. The point of application of the

lateral pressure is located approximately at the point of intersection

between the back of the wall and a fine 06i which passes through the

center of gravity 0 of the sliding wedge abed parallel to the surface of

sliding he. This procedure is based merely on the experience that the

results are approximately the same as those obtained by the relatively

rigorous method for solving the problem, illustrated by Figures 226 to d.

A third method is illustrated by Figure 236. We first assume that the sloping

section ad of the surface of the backfill extends to infinity as shown by the line oZ>.

The position of the corresponding surface of sliding 6ci can be determined by means

of the standard procedure. The line ed
||
6ci represents the surface of sliding through

point d, because in a backfill with a plane surface aD supported by a wall with a plane

back ah all the surfaces of sliding are parallel. Over the section ae of the back of

the wall the distribution of the lateral pressure is hydrostatic, as shown by the line

oci (Fig. 23c), because the top surface of the sliding wedge ode (Fig. 236) is plane.

A second computation is made on the assumption that the section dE of the surface

of the backfill extends as far as a i located on the upward continuation of the back

ab of the wall. The distribution of the lateral pressure of a backfill with a plane

surface aiE on a wall with a plane back ai6 is also hydrostatic, as shown by the line

aiA in Figure 23c. The error due to the assumption that the weight of the sUding

wedge is increased by the weight of the added wedge oaid decreases rapidly with

depth. Therefore the line OiA (Fig, 23c) represents the asymptote of the real

pressure line CjAi. At ci the real pressure line is almost tangent to aci and with

increasing depth it approaches the asymptote aiA. Therefore it can be traced with

sufficient accuracy by hand. The point of application of the pressure is located at

the elevation of the center of gravity 0 of the pressure area ahhici (Fig. 23c).

28. Wall with broken back. Figure 24a represents a section through

a wall with a broken back, acted upon by a backfill with a plane surface.

We determine, first of all, the earth pressure Pai on the upper section

ad of the wall. The corresponding pressure distribution is hydrostatic,

and the centroid of the pressure is located at the top of the lower third

of this section. We know only the direction of the force Pa2 which acts

on the lower section hd. Its intensity and point of application must
be determined.

In order to solve our problem by means of one of the standard

methods of earth pressure computation, we assume an arbitrary surface

of sliding hex and trace the corresponding polygon of forces riisiti shown
in Figure 246. In this polygon we resolve the known force Pai into

two components AW and Pax. Thus we reduce the problem to the

determination of the maximum value of the total lateral pressure of

the earth on the wall in the direction of Pa2> Figure 246 represents

the solution obtained by means of Engesser’s method. The weights
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of the different sliding wedges Wu TF2 ,
etc. (see Art. 25) have been

plotted from point r in a downward direction. The slip occurs along

the surface be in Figure 24a.

The intensity and the direction of the total earth pressure Pa on the

broken back of the wall are determined by the line rs in Figure 246.

This line represents the geometric sum of the two earth pressure com-

ponents Pai = ™ and Pa 2 = U8. The point of application of Pa is

located approximately at the point of intersection bi (Fig. 24a) between

the back of the wall and the line O61 ,
which passes through the center

of gravity 0 of the sliding wedge, abed, parallel to the surface of sliding

be. A better approximation can be obtained by means of the pro-

cedure described in Article 26.

29. Lateral pressure due to uniform surcharges. Figure 25a is a

section through a backfill whose inclined surface carries a uniformly

distributed surcharge, q per unit of area. The line diC2 is an arbitrary

plane section through a point di on the back of the wall at a depth z

below its upper edge. The weight of the corresponding wedge adiC2

without the surcharge is

Wi = Is

sin (a + jg)

sin a

The surcharge increases this weight by q Ig. The weight W'l of the

wedge with surcharge is the same as the weight of a wedge with the

section ac2di and with a unit weight jq > y. From the equation

W/

1

sin {a + P) + qU = *^73^ Is

sin (« + P)

sin a sin a
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we obtain for the unit weight yq the value

,
2g

y, = y+~
sin a

sin (a + fi)

= 7 + iV
2?

z
[la]

wherein N =
sin a

sin (a + /S)

[lb]

If we substitute iff == 2
, 7 = 7g, and Pa = Pa in equation 23 (la)

we obtain for the active earth pressure on the section adi of the wall

shown in Figure 25 the value

Pa =
Ka

sin a cos 5

Ka
sin O' cos 5

[2]

Fig. 25. Effect of uniformly distributed surcharge on earth pressure of sand.

wherein the factor X^/sin a cos 5 is a constant for given values of a,

5, and The corresponding unit lateral pressure pa at depth z is

VA =
dj^

dz
sin a = Ka

cos 6
yz +

Ka
cos 5

Nq [31

On the right-hand side of this equation the first term represents the

unit earth pressure at depth 2 due to the weight of the earth. The corre-

sponding distribution of this pressure is hydrostatic, as shown by the

triangle efg in Figure 25b. The second term represents the unit earth

pressure due to the weight of the surcharge. It is independent of depth.

Hence in Figure 25b this part of the earth pressure is represented by a

parallelogram eeifif. The continuation of the side ej/i of this parallelo-

gram intersects the reference line eg at point i at an elevation

y y sin (a -f /S)
[4]
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above the upper edge of the back of the wall. According to Figure 256

the earth pressure on the back of the wall is identical with the earth

pressure on the section ah of an imaginary wall with the height H + He
whose backfill does not carry any surcharge. The height He (eq. 4) is

called the equivalent height of the surcharge. From Figure 256 we obtain

the simple geometrical relation

15,

wherein Pa is the earth pressure exerted by the backfill without sur-

charge, represented by the triangle efg. Hence in order to solve our

problem it suffices to determine the earth pressure Pa of the backfill

without surcharge, to compute the equivalent height H, by means of

equation 4, and to introduce the value He into equation 5. The line

of action of the earth pressure Paq passes through the center of gravity

0 of the pressure area gficie in Figure 256.

30. Line load parallel to the crest of the wall. If a line load, q' per

unit of length of a line parallel to the crest of the wall, acts on the sur-

face of a backfill, the active earth pressure Pa of the backfill increases

by APa- The value of APa depends not only on the intensity of the

load but also on the distance between the load and the crest a of the

lateral support shown in Figure 26o. In order to investigate the

influence of the distance on the supplementary earth pressure APa, we
apply the load at an arbitrary distance ac' from the crest as shown in

the figure and determine the corresponding value of APa- This can for

instance be done by means of a slight modification of Culmarm’s pro-

cedure (see Art. 24). If the surface of the backfill carries no surcharge,

we obtain the Culmann line C and the slip occurs along the surface of

sliding be. The lateral resistance required to prevent a slip aloiig the

arbitrarily selected surface be' is determined by the distance d'e', and

the distance bd' represents the weight of the wedge dbe' in the scale of

the diagram. If we apply at e' a line load, q' per unit of length, we in-

crease the weight of every wedge whose right-hand boundary is located

on the right-hand side of e' by q' = d'd'i. Hence there will be a sharp

break in the Culmami line at the point of intersection between this line

and the line be'. This break is represented by the straight section e'ej.

On the right-hand side of point ei the Culmann line continues as shown

by the curve C'. The lateral resistance required to prevent a slip along

the section be' is determined by the distance d^ei. If this distance is

smaller than de which represents the earth pressure Pa exerted by the

backfill without surcharge, the surcharge has no influence on the lateral
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earth pressure and the slip occurs along he. On the other hand, if d[e[

is greater than ed, the slip occurs along the section he', because for any

section located on either side of he' the lateral resistance required to

prevent a slip is smaller than djej. The lateral pressure AP^ produced

by the line load q' is represented by the difference djej — de.

Fio. 26. Earth pressure exerted by backfill which carries a line load.

The graphic determination of AP^, illustrated by Figure 26a can be

repeated for line loads acting at different distances from the crest o.

By plotting the values of AP^ as ordinates above the points of appli-

cation of the line loads, we obtain the influence line AP^ in Figure 266.

The corresponding Culmann line is marked C'. A tangent parallel to

the slope line hS touches the curve C' at point e{ and the distance d[ei

determines the greatest value which the lateral pressure of the backfill

acted upon by a line load q' can possibly assume. If the line load is

located between the points a and the slip occurs along hei and the

position of the line load has no influence on the lateral pressure. If the

line load moves from point Ci toward the ri^t the influence of the line

load on the lateral pressure decreases and the slip occurs along a plane

whidi passes through 6 and the line which is occupied by the load. In

order to determine the location at which the influence of the line load
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on the lateral pressure becomes equal to zero, we trace a tangent to the

Culmann curve C (backfill without line load) parallel to the slope line

hS. This tangent intersects the curve C' at point 62 . The straight

line 6^2 intersects the surface of the fill at point C2 . If the load acts at

the point C2 the lateral resistance required to prevent a slip along the

section hc2 through the backfill with a line load becomes equal to the

lateral resistance required to maintain the equilibrium of the backfill

without line load. This resistance is represented by the distance ed.

Hence, if the line load is located on the right-hand side of point it

has no influence on the earth pressure and the slip occurs along he

Some engineers believe that a line load has no influence on the lateral

pressure unless it is located within the distance dc (Fig. 26&), which

represents the upper surface of the sliding wedge in a fill without hne

load. The preceding analysis demonstrates that this opinion is not

justified.

Figures 26c and 26d illustrate a simple method of estimating the

location of the point of application of the excess pressure AP^ due to a
line load q' per unit of length of a line parallel to the crest of the wall.

In both figures the points cj, c, and C2 are identical with the points

indicated by the same letters in Figure 266. If the line load is applied

at c' between cj and C2 (Fig. 26c) we trace a'c'
1|
65. The point of

application of the lateral pressure due to the line load is located on

a'6 at a distance of approximately ^/3 from a\ If the line load is

applied at c' between a and c[ as shown in Figure 26d we trace a'c'
||
65

and 6'c'
||
6c(. The point of application of the excess pressure is located

on a'6' at a distance of approximately a'6'/3 from a\ In both cases the

error is on the safe side.

A more accurate result can be obtained by determining the total pressure on each

of several sections of the wall at different depths below the upper edge. This in-

vestigation furnishes the data required to ascertain the distribution of the lateral

pressure over the back of the wall by graphic differentiation. However, in reality

the presence of a line load always increases the curvature of the surface of sliding

which in turn increases the error due to the assumption of a plane surface of sliding.

Hence the elaborate procedure for ascertaining the x>oint of application of the supple-

mentary pressure due to the line load is out of proportion to the general degree of

accuracy of the method of computation.

31 * Earth pressure on reinforced concrete walls* Reinforced con-

crete walls are always constructed on a heavy footing which extends

beneath the backfill, as shown in Figure 27o. If such a wall yields by
tilting or sliding until the backfill starts to fail, one part of the backfill

adjoining the wall, represented by the triangle 66id, remains practically
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undisturbed and acts as if it were a part of the wall. If the stability

of the wall were inadequate the backfill would fail by shear along a sur-

face of sliding h2C. In accordance with our assumptions the wall yields

in such a manner that every part of the sliding wedge passes into a

state of plastic equilibrium. Hence every point of the left-hand

boundary adbb2 of the sliding wedge represents the lower edge of a po-

tential surface of sliding. The line bci indicates the surface of sliding

through 6 .

Fig. 27. Earth pressure of sand on cantilever retaining wall.

If the surface bd extended to a point ai at the elevation of the crest

of the wall, both the boundary stress conditions and the deformation

conditions for the wedge bciai would be identical with those for a wedge-

shaped section located between two intersecting surfaces of sliding in

the semi-infinite mass shown in Figure 8c. Hence, as a first approxi-

mation, the results of the analysis contained in Article 10 can be applied

to the problem under discussion. According to these results the sur-

faces of sliding bci and bd in Figure 27a rise at angles of 45® + 0/2 to the

horizontal. The earth pressure Pa2 on the surface bd acts at an angle

0 to the direction of its normal component, and its intensity can be

determined rapidly by means of Mohr^s diagram (Fig. 86). The lateral

pressure Pai on the section ad of the wall can be ascertainedby means of

Coulomb^s equation 23(1) or by one of its graphical substitutes. The
pressure Pas on the vertical face 662 can be computed with sufficient

accuracy on the assumption that it acts in a horizontal direction as

indicated in the figure. On this assumption we obtain by means of

equations 15(1) and 15(2)

Pa3 = - ^)tan=* (45° -
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The distribution of the earth pressure over the section ad of the back

of the wall is hydrostatic, as shown by the straight line ar in Figure 276.

The point of application of the pressure is located at a distance of ad/3

from d. The distribution of the earth pressure over a plane section aih

through a semi-infinite deposit with a horizontal surface cai (Fig. 27a) is

also hydrostatic. In Figure 276 this pressure distribution is shown by
the straight line sL Therefore we can assume with sufficient accuracy

that the pressure on the surface of sliding 6d in Figure 27a is determined

by the trapezoid htrid in Figure 276. The earth pressure Paz is repre-

sented by the area b2utib.

A more accurate solution of the problem can be obtained by computing the lateral

earth pressure on different broken surfaces adib, adib, etc. (Fig. 27o), by means of

the method described in Article 28. The slip will occur along the section which

corresponds to the maximum value of the lateral pressure. The distribution of the

earth pressure over the surface of sliding which rises from point b toward the back

of the wall can be determined point for point by means of the method explained at

the end of Article 27.

32. Earth pressure exerted by stratified backfills. Figure 28o repre-

sents a section through a backfill consisting of two strata with different

unit weights yi and 72 > but with the same angle of internal friction <j>

and the same angle of wall friction, 5. The earth pressure exerted by
this system can be directly determined by means of Culmann’s method

Fig. 28. Earth pressure exerted by stratified, cohesionless backfills.

(Art. 24), because this method involves no assumptions regarding the

distribution of the weight within the wedges. In order to find the point

of application of the earth pressure we determine the center of gravity 0
of the sliding wedge abc and of the surcharge which rests on top of the

wedge. The point of application is approximately located at the point

of intersection between the back of the wall and a line through 0 parallel

to 6c.

On the other hand, if the angles of internal friction and of wall friction

for the two strata are different, as shown in Figure 286, we are obliged

to solve our problem in two steps. The first step consists in determining

the lateral pressure on the upper section, ae, of the wall. This
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can be done by means of the procedures described in Articles 27 and 29.

In order to determine the lateral pressure Pa2 on the lower part, c6, of

the wall, we disregard all the shearing stresses which act along the

boimdary between the two strata as well as the shearing stresses along

any vertical section above this boimdary. On this assumption the entire

upper stratum can be considered as a simple surcharge and the vertical

pressure on any section of the surface of the lower stratum is equal to

the weight of the earth and the surcharge q which is located above it.

Owing to this simplification of our problem the lateral earth pressure

Pa2 on the section he of the wall can be determined by means of Cul-

mann^s method. The corresponding surface of sliding is represented

by the line 6ci. The error involved in this method of computation is

on the unsafe side because the neglected shearing stresses tend to in-

crease the lateral pressure on the section he of the wall.

33. Earth pressure of cohesive backfills. Figure 29a is a section

through a cohesive backfill supported by a retaining wall with a rough

vertical back. The shearing resistance of the backfill is determined

by the equation

s = c + or tan
(f) 5(1)

The shearing stresses along the surface of contact between the soil and

the back of the wall are assumed to be equal to

PAt = Ca + PAn tan 5

wherein is the adhesion between the soil and the wall, pa n is the normal

pressure per unit of area of the back of the wall, and tan d is the coefficient

of wall friction. It is assumed that the yield of the wall is sufficient to

transfer the entire sliding wedge to a state of plastic equilibrium. If

the backfill consists of clay the yield required to satisfy this condition

may be greater than 5 per cent of the height of the wall.

The following method of computing the active earth pressure is analo-

gous to that used to compute the active Rankine pressure in cohesive

masses. In Article 12 it has been shown that the uppermost layer of a

semi-infinite cohesive mass in an active Rankine state is in a state of

tension to a depth

Below depth zq the horizontal pressure on a vertical section increases

from zero at depth Zq in simple proportion to depth, as shown by the

pressure area hccA in Figure 11c. If one replaces the soil located above

a horizontal section at any depth z below the surface by a surcharge
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72 per unit of area the intensity and the distribution of the stresses

below this section remain unchanged. The total horizontal pressure

on a vertical section between the surface and a depth 2zo is equal to

zero. Hence, theoretically, a vertical bank with a height He = 2zo

should be able to stand without any lateral support. (See Art. 67.)

However, in reality, the state of tension in the top layer sooner or later

produces tension cracks which reduce the height He to a smaller value

H'c. This value determines the depth to which the soil may detach

itself from the back of the wall as indicated in Figure 29a. To simplify

the following computations we assume that the tension cracks in the soil

itself extend to the same depth. This assumption involves an error on

the safe side.

Fia. 29. Active earth pressure on retaining wall backfilled with cohesive soil.

The factors which determine the height He will be discussed in

Article 67. In the following analysis He is assumed to be known.

It is further assumed that the soil located between the surface and depth

He acts like a surcharge yH'e per unit of area. This condition is satisfied

if the surface of sliding he (Fig. 29a) starts at the bottom e of a tension

crack with a depth H'e. Finally it is assumed, as a first approximation

and by analogy to the active Rankine state described before, that the

pressure on the wall increases with depth below point oi (Fig. 29a),

as indicated by the linem in Figure 296. On this assumption, the pres-

sure Pa on the back of the wall can be represented by a trapezoidal

pressure area rsuJt in Figure 296. In reality the distribution of the pres-

sure most likely will be such as indicated by the area reivi, whose center

of gravity is located a short distance below that of ravi.

In order to determine the pressure Pa (resultant of the normal
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component Pak and the friction component Pau tan 5 of the active

earth pressure Pac) we assume an arbitrary plane surface of sliding he^

through the foot h of the wall. The force Pi required to prevent a slip

along this surface can be scaled off the polygon of forces shown in

Fig. 30. Two different types of earth pressure graphs, which furnish the value of

the coefficient of active earth pressure Ka for different values of <t> and S. {Dioffram

a after Syffert 19S9.)

Figure 29c. In this polygon the weight Wi represents the weight of the

body of soil abeidi. The forces Ca = Ca Ci6 and C, = c bei represent

the cohefflon forces which act along the surface of contact Oib between

wall and earth and along the surface bei respectively.

In order to find the intensity of the force Pa we repeat the construc-

tion for plane sections rising at different angles through b to the elevation

of point Cl. The corresponding values Pi, P2, etc., are plotted as ordi-

nates above the surface of the fill as shown in Figure 29a. The force Pa
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is equal to the greatest ordinate of the curve thus obtained. The distri-

bution of the pressure Pa over the back of the wall is represented by the

pressure area rsut in Figure 296. The active earth pressure Pac is

equal to the resultant of Pa and the adhesion component Ca = Ca aih of

the earth pressure. The point of application of the active earth pres-

sure Pac is identical with that of which in turn is determined by
the position of the center of gravity Og of the pressure area rmty as

shown in the figure.

During rainstorms the empty space aai (Fig. 29a) between the wall

and the upper part of the backfill is invaded by surface waters. In this

state the lateral pressure on the back of the wall is equal to the sum of

the earth pressure and the pressure exerted by a column of water with

a height P', unless the space between the wall and the backfill is ade-

quately drained.

34. Earth pressure tables and graphs. In engineering practice the

backs of most walls and the surfaces of most backfills encountered

are at least approximately plane, and on account of the uncertainties

involved in the estimate of the values of 0 and h a rough estimate of the

earth pressure serves its purpose. In order to reduce the time required

to solve problems of that type, earth pressure tables or graphs can

be used which contain the values of the hydrostatic pressure ratio Ka
(eq. 23(16)) for different values of <f> and 5 and for different values of

the slope angle 0. Elaborate earth pressure tables have been published

by Krey (1936). Figure 30 shows convenient methods of representing

graphically the relation between the hydrostatic pressure ratio and the

values of 0 and 3. In Figure 30a the values of Ka are plotted on rays

through a zero point. The angle between the rays and the horizontal

axis is equal to the angle of wall friction 5, and the values of are

inscribed on the curves which represent the relation between Ka and

d (Syffert, 1929). In Figure 306 the hydrostatic pressure ratio Ka
has been plotted against the angle of wall friction S. Both diagrams

reveal at a glance the importance of the influence of the angle of wall

friction on the intensity of the earth pressure.



Chapter VII

PASSIVE EARTH PRESSURE

35. Passive earth pressure in engineering practice. In the broad-

est sense the term passive earth pressure indicates the resistance of the

soil against forces which tend to displace it. In engineering practice

the passive earth pressure is frequently utilized to provide a support for

structures such as retaining walls or bulkheads which are acted upon by
horizontal or inclined forces. The retaining wall shown in Figure 19

depends partly on the passive pressure of the soil located on the left

side of the face de to prevent failure by sliding along its base hd. The
equilibrium of the bulkhead shown in Figure 63 is maintained solely by

the lateral resistance of the soil on the left side of the face hd. The
body which tends to displace the soil is called the seat of the thrust and

the surface of contact between this body and the earth represents the

contact face.

The passive earth pressure of the soil is also utilized when a building

is supported on footings. If the load on a footing exceeds the ultimate

bearing capacity of the soil, a wedge-shaped body of soil such as the

body ahc in Figure 15i> moves together with the footing in a downward
direction. It may be in a state of plastic or of elastic equilibrium. In

either state the body abc is deformed without being displaced. On the

other hand the soil adjoining the inclined lower boundaries of this body,

ac and he in Figure 166, is shoved out of the ground. This event cannot

occur unless the pressure which acts on the soil along ac and 6c is

greater than the passive earth pressure. In this case the seat of the

thrust is represented by the wedge-shaped body of soil abc and the

contact faces are represented by two surfaces of sliding which are located

entirely within the soil.

36. Assumptions and conditions. The following computations are

based on the assumption that the soil is isotropic and homogeneous and

that the deformation of the soil occurs only parallel to a vertical section

at right angles to the contact face. It is further assumed that the

contact face advances under the influence of the thrust into a position

which is located entirely beyond the boundary ai6 of the shaded area

in Figure 14c. This area represents the minimum lateral compression

which is required to transfer the soil adjoining the contact face from its

100
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original state of elastic equilibrium to the state of plastic equilibrium

associated with the shear pattern shown in Figure lAe.

The unit weight of the earth is y and the shearing resistance of the

soil is determined by the equation

s == c + O' tan (f) 5(1)

wherein c is the cohesion, a the total normal stress on the surface of

sliding, and <#> the angle of shearing resistance. The shearing stress on

the contact face is

ppt = Ca + PPn tan 5 [1]

wherein Ca is the adhesion between the soil and the seat of the thrust,

pPn is the normal component of the passive earth pressure per unit of

area, and 8 is an angle whose value depends on the character of the

contact face. If the contact face represents the contact between

masonry and soil, the values of Ca and 8 may be equal to or smaller than

the values c and <^, respectively, and 8 represents the angle of wall

friction. On the other hand, if the contact face cuts across a mass of

soil, Ca is equal to c and 8 equal to In either case the angle 8 may be

positive or negative (see Art, 15). In all the figures in this chapter 8

is shown positive, because in practice the conditions required to produce

passive earth pressure combined with negative wall friction are seldom

satisfied. The adhesion Ca acts in the direction of the wall friction.

Hence if 8 is negative, Ca is also negative.

For cohesionless materials the values c and Ca are equal to zero. The
shearing resistance is equal to

« = tan

wherein <r is the effective normal stress on the surface of sliding and 0
is the angle of internal friction. The shearing stresses on the contact

face are

PPt = PPn tan 8

In the following investigations it will be assumed that the surface of

the soil is horizontal and that the angle of wall friction 8 is positive.

However, the methods described in the following articles can also be

used without essential modification if 3 is negative or if the surface of

the soil is inclined.

If the conditions stated at the outset of this article are satisfied the

soil fails as shown in Figure 14e for positive values of 8 and in Figure 14^^

for negative values. In either case the zone of plastic equilibrium in-

cludes a passive Rankine zone whose inclined boundaries rise at an

angle of 46® — <l>/2 to the horizontal. The lower boundary of the
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wedgenshaped zone located between the Rankine zone and the contact

face is curved. Therefore the lower boundary of the sliding wedge,

for instance the wedge abde in Figure 31a, consists of a curved lower

part bd and a straight upper part de which rises at an angle of 45® — <#>/2

to the horizontal. The boundary d between these two sections is located

on a straight line aD which descends through the upper edge a of the

Fig. 31. Approximate determination of position of point of application of resultant

passive earth pressure of cohesive soil.

contact face at an angle of 45® — <^/2 to the horizontal. This statement

is valid for both cohesive and cohesionless materials. The shape of the

curved part of the surface of sliding can be determined with sufficient

accuracy on the basis of the assumption that it consists either of a

logarithmic spiral or of an arc of a circle. For cohesionless materials

one can even assume, without excessive error, that the entire lower

boimdaiy of the sliding wedge is plane, provided the angle of wall

friction d is small (see Art. 38).

37. Point of application of the passive earth pressure. If the defor-

mation condition stated at the outset of the preceding article is satis-

fied the normal component ppn of the passive earth pressure per unit

of area of a plane contact face (db, Fig. 81a) at depth z below a can be
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expressed approximately by the linear equation

VPn = cKpe + qKpq + yzKpy 15(5)

wherein q is the surcharge per unit of area and Kpc, Kpq, and Kpy
are pure niunbers whose values are independent of z and 7 . The
pressure ppn can be resolved into two parts. One part,

v'pn = cKpc + qKpq

is independent of 2 . The corresponding part of the normal component

Ppn of the passive earth pressure is

Pk = fvk dz = -^ {cKpc + qKp,)
sm a Jq sm a

[
1 ]

Since this pressure is uniformly distributed, its point of application is

located at the midpoint of the contact face. The pressure Ppn produces

a frictional resistance Ppn tan S on the contact face. By combining

Ppn with the friction component Ppr^ tan d we obtain a force Pp which

acts at an angle 5 to the normal on the contact face ah.

The second part of the unit pressure ppn

v'A = y^Kpy

increases like a hydrostatic pressure in simple proportion to depth.

Therefore the point of application of the resultant pressure

p// ^ r j 1 jj2Ppn-~—
I

PPndZ-^yH -r—
sin a Jq sm a

[2]

is located at a height H/Z above the base of the contact face. Combin-
iiig -P/M with the frictional resistance Ppn tan h produced by this force

we obtain the force Pp which acts at an angle 5 to the normal on the

contact face ah.

The total passive earth pressure Ppc is equal to the resultant of the

forces Pp
, Pp', and of the adhesion force

Ca-
H

Ca
Bin a

[3]

Hence we can resolve the total passive earth pressxire into three

components with known direction and known position with reference to

the contact face. These components are Pp, Pp, and Co. Their dis-

tribution over the contact face o6 is shown in Figure 31o. For a co-

hesionless soil without surcharge Pp and Co are equal to zero and Pp is

identical with the passive earth pressure Pp.

The inteninty of the forces Pp and Co in Figure 31b increases in simple
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proportion to the height H of the contact face, and Pp increases with

the square of H, The soil fails by shear along a surface of sliding

through the lower edge of the contact face. Since Pp (eq. 1 ) does not

contain the unit weight y of the soil, this force represents that part of

the total passive earth pressure which is required to overcome the

cohesion and the frictional resistance due to the weight of the surcharge.

Hence if the unit weight of the soil is reduced to zero the force Pp re-

quired to produce a slip on a given surface of sliding is reduced from Pp
to Pp. On the other hand, if we retain the unit weight 7 wdiile elimi-

nating the cohesion and the surcharge we reduce this force from Pp
to p^;.

The normal component of the total passive earth pressure is

Ppn = P'pn + Ppn = (cKpc + qKp,) + iyH^^ [4]
Sin a sin a

In Figure 31a the line bde represents the surface of sliding. The top

surface ae of the sliding wedge is acted upon by the uniformly distributed

surcharge Q = aeq. In order to resolve the total passive earth pressure

Ppe into its constituents, P'p, Pp, and Co, we examine the conditions for

the equilibrium of the wedge abde. This wedge, with a weight W, is

acted upon by the following forces: the surcharge Q, the resultant C
of the cohesion C, along bde and of the adhesion force Co, the resultant

F of the elementary reactions dF which act at every point of the surface

of sliding bde at an angle <t> to the normal on this surface as shown in the

figure, and the forces Pp and Pp, which act at an angle S to the normal

on the contact face. Equilibrium requires that the polygon of forces

(Fig. 31c) constituted by these forces be closed. Among the forces

shown in the polygon, the forces Q and C (single lines) increase in simple

proportion to the height H of the contact face and the force W (double

line) increases with the square of the height. The sum of the forces

Pp + Pp is represented by the distance mt. One part, Pp, is con-

current with the forces Q and C and increases in simple proportion to

ff. The second part, Pp, is concurrent with W. In order to determine

the first part, we construct the polygon of forces on the assumption

that the unit weight y of the earth is equal to zero, which means IF =» 0.

The direction of the corresponding reaction F' is determined by the

condition that the elementary reactions dF act at every point at an

angle 4> to the normal on the surface of sliding. Tracing through r a

line parallel to the direction of F' we get the polygon of forces mnru.

The distance mu is equal to the force Pp and the point of application of



Abt. 38 COULOMB’S THEORY 105

this force is at the midpoint of the contact face ab. The force Pp is

represented by the distance vi. In order to determine this force inde-

pendently we could construct a second polygon of forces on the assump-

tion that c, Ca and q are equal to zero. The direction of the corresponding

reaction F" is determined by the same condition as that of F'. By
tracing sv parallel to this direction and rv parallel to mi we obtain the

polygon rsv. The force Pp is equal to the distance rv which in turn is

equal to ut as shown in the figure. The geometric sum of the two

forces F' and F" is equal to the total reaction F.

The preceding analysis leads to the following conclusion. If either

c or g is greater than zero the passive earth pressure can be determined

by two successive operations. The first one is based on the assumption

that the unit weight y of the soil is equal to zero. Thus we obtain the

component Pp of the earth pressure. The point of application of this

component is at the midpoint of the contact face. The second operation

is based on the assumption that c, Ca, and q are equal to zero and the point

of application of the component Pp thus obtained is located at a height

H/3 above the lower edge of the contact face.

A more accurate determination of the location of the point of applica-

tion of the passive earth pressure could be made on the basis of equation

26(2) because this equation is valid for both active and passive earth

pressure regardless of cohesion, provided the deformation conditions

permit the entire sliding wedge to pass into a state of plastic equilib-

rium. However, the error associated with the approximate method

illustrated by Figure 31 is not important enough to justify the amount of

labor required to obtain a more accurate solution.

The following articles 38 to 40 deal with the passive earth pressure

of ideal cohesionless materials without surcharge. They are intended

to acquaint the reader with the technique of computing the passive

earth pressure. The general case, involving the passive earth pressure

of cohesive soil with surcharge, will be presented in Article 41.

38. Coulomb’s theory of the passive earth pressure of ideal sand.

Figure 32o is a vertical section through a plane face ab in contact with

a mass of sand with a plane surface. If the conditions stated in Article

36 are satisfied, the normal component of the passive earth pressure per

unit of area of ah at a depth z below point a is determined by the equation

VPn
~

15(3)

wherein Kp i8 the coefficient of the passive earth pressure. Since the

earth pressure acts at an angle S to the normal on the contact face we
obtain from equation 15 (3) the following expression for the total passive
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earth pressure Pp:

Pp=-—
cos 5 COS 8 Jo sin a sin a cos 5

[1]

Coulomb (1776) computed the passive earth pressure of ideal sand

on the simplifying assumption that the entire surface of sliding consists

of a plane through the lower edge b of the contact face ab in Figure 32a.

The line bci represents an arbitrary plane section through this lower

edg'^. The wedge abci with a weight TFi is acted upon by the reaction

Fig. 32. (o and b) Diagrams illustrating assumptions on which Coulomb^s theory of

passive earth pressure of sand is based; (c) relation between <J>, 5, and Coulomb

value of coefficient of passive earth pressure Kp,

F\ at an angle </> to the normal on the section 6ci and by the lateral force

Pi at an angle 8 to the normal on the contact face ab* The corre-

sponding polygon of forces, shown in Figure 325, must be closed. This

condition determines the intensity of the force P\. The slip occurs

along the section be (not shown in the figure), for which the lateral force

Pi is a minimum, Pp. Coulomb determined the value Pp by an ana-

lytical method. Replacing Pp in equation 1 by Coulomb^s equation

for the passive earth pressure and solving for the coefficient of pasdve
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earth pressure Kp one obtains

sin^(a; — cos 5

sinasin(« + S)ri-
I Q\

This equation is valid for both positive and negative values of ^ and 5.

In Figure 32c the ordinates represent the angle of wall friction and the

abscissas the values of jSlp for the passive earth pressure of a mass of sand

with a horizontal surface, acted upon by a body with a vertical contact

face. The curves show the variation of Kp with respect to +5 for

different values of 0. They indicate that for a given value of 0 the value

Kp increases rapidly with increasing values of 5.

If the graphical methods of Culmann (Art. 24) and of Engesser

(Art. 25) are applied to the determination of the passive earth pressure

of cohesionless soil, the slope line hS (Figs. 20c, 20d!, and 21a) is inclined

at an angle of 0 away from ah and not toward it. Everything else re-

mains unchanged. The validity of this procedure can be established

on the basis of purely geometrical considerations.

For values <^ = 6 = 30®, = 0® (backfill with a horizontal surface),

and a = 90® (vertical wall) it has been found that the value of the

passive earth pressure determined by means of the exact theory (Art. 15

and Fig. 14e) is more than 30 per cent smaller than the corresponding

Coulomb value computed by means of equation 2. This error is on the

imsafe side and too large even for estimates. However, with decreasing

values of 5 the error decreases rapidly and for 5 = 0 the Coulomb value

becomes identical with the exact value

Pp = tan"*

(
45° + I)

14(2)

The excessive error associated with Coulomb’s method when 3 is

large is due to the fact that the surface along which the slip occurs,

such as the surface he in Figure 14e, is not even approximately plane.

However, with decreasing values of 5 (Fig. 14e) the curvature of be

decreases rapidly and when 5=0, the surface be is perfectly plane.

If 5 is smaller than <f)/3, the difference between the real surface of sliding

and Coulomb’s plane surface is very small and we can compute the corre-

sponding passive earth pressure by means of Coulomb’s equation. On
the other hand, if 5 is greater than we are obliged to determine the

earth pressure of ideal sand by means of some simplified method which

takes the curvature of the surface of sliding into condderation. These

methods are the logarithmic spiral method (Ohde 1938) and the friction
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circle method (Krey 1936). Either one of these methods can also be

used for cohesive earth.

39. Logarithmic spiral method. Figure 33a is a section through the

plane contact face ab of a block of masonry which is pressed against a

mass of cohesionless soil with a horizontal surface. According to

Fiq. 33. Logarithmic spiral method of determining passive earth pressure of sand.

Article 36 the surface of sliding be consists of a curved part bd and a

plane part dc which rises at an angle of 45° —
(f>/2 to the horizontal.

The point d is located on a straight line aD which descends at an angle

of 45° — <^/2 to the horizontal. Since the position of d is not yet

known, we assume a tentative surface of sliding which passes through

an arbitrarily selected point di on the line aD. Within the mass of soil

represented by the triangle adici the state of stress is the same as that

in a semi-inhnite deposit in a passive Eankine state. This state of

str^ has already been described (see Art. 10). The shearing stresses

along vertical sections are equal to zero. Therefore the passive earth
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pressure Pdi on the vertical section dj/i is horizontal. It acts at a
depth 2Hdi/Z and it is equal to

Pdi = hHli (45° + I)
= [1 ]

We assume that the curved part hdx of the section through the surface

of sliding (Fig. 33a) consists of a logarithmic spiral with the equation

r = [2]

whose center 0\ is located on the line odi. In this equation r repre-

sents the length of any vector OiU making an angle 6 (expressed in

radians) with the vector O16,
and Tq = Oih is the length of the vector

for 0 = 0. Every vector through the center Oi of the logarithmic spiral

of equation 2 intersects the corresponding tangent to the spiral at an

angle of 90° —
<^), as shown in Figure 33a. Since the center Oi of the

spiral is located on the line aD the spiral corresponding to equation 2

passes without any break into the straight section diCi. Furthermore,

at any point n of the curved section of the surface of sliding the reaction

dF acts at an angle <t> to the normal or at an angle 90° — 0 to the tangent

to the spiral. This direction is identical with that of the vector Oin.

Hence the resultant reaction Fi along the curved section bdi also passes

through the center Oi.

Since the surface of the mass does not carry a surcharge and the

cohesion is assumed equal to zero, the point of application of the passive

earth pressure on the face ah is located at a height H/Z above h (see

Art. 37).

The body of soil ahdiji (Fig. 33a) with the weight Wi is acted upon

by the horizontal force Pdu by the force Pi exerted by the body of

masonry, and by the reaction Fi which passes through the center Oi of

the spiral. The equilibrium of the system requires that the moment of

all the forces about the center Oi of the spiral must be equal to zero.

These moments are

Pill = the moment of Pi about Oi and

ilfi, Af2 ,

• • * Mn = the moments of all the other forces about Oi.

Since Fi passes through Oi

P\h + H W1I2 + Pdih =“ 0
1

and we obtain

Pi = - i i {Wyh + Pdlh)
n 1 <1

[3]
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The problem can also be solved graphically, by means of the polygon of forces

shown in Figure 336. In order to determine the direction of the force Fi which ap-

pears in the polygon we combine the weight Wi and the force Pdi in Figure 336 into

a resultant force Ri. In Figure 33a this resultant must pass through the point of

intersection ii of Pdi and TFi. It intersects the force Pi at some point t 2 . Equi-

librium requires that the force Pi pass through the same point. As stated above,

it must also pass through the center Oi of the spiral. Hence we know the direction

of Pi and we can dose the polygon of forces shown in Figure 336 by tracing Pi
|| Pi

Figure 33a and Pi
||
Pi Figure 33a. Thus we obtain the intensity of the force Pi

required to produce a slip along the surface bdici.

The next step consists in repeating the investigation for other spirals

through b which intersect the plane aD at different points d2 , da, etc.

The corresponding values Pi, P2 ,
P3 , etc., are plotted as ordinates /iCi,

etc., above the points /i, etc. Thus we obtain the curve P shown in

Figure 33a. The slip occurs along the surface of sliding corresponding

to the minimum value Pp, In the diagram (Fig. 33a) this minimum
value Pp is represented by the distance /C. The point of intersection

d between the surface of sliding and the line aD is located on a vertical

line through point /. The plane section of the surface of sliding rises

at an angle of 45° — <t>/2 toward the horizontal surface of the earth.

The greatest error associated with the procedure described above is

about 3 per cent, which is negligible. The dashed hne 6c' indicates the

corresponding surface of sliding determined by Coulomb^s theory. The

width^ of the top of Coulomb^s wedge a6c' is somewhat greater than

the distance oc.

In order to solve such problems without waste of time, we trace a logarithmic

spiral corresponding to equation 2 on a piece of cardboard as shown in Figure 33c,

selecting a suitable arbitrary value for tq. The spiral is then cut out and used as a

pattern. On account of the geometrical properties of the spiral any vector, such as

ro (Fig. 33c), can be considered as the zero vector provided the angle 6 is measured

from this vector. In order to trace a spiral through point 6 in Figure 33a, we place

the center point 0 of the pattern on some point Oi of the Hne aD (Fig. 33a) and ro-

tate the pattern aroimd Oi imtil the curved rim of the pattern passes through point

6 . By following the rim of the disk with a pencil from 6 to the line aD we obtain

point dh The line dici is tangent to the spiral at point di and rises at an angle of

45^ — 0/2 to the horizontal. In a similar manner we trace several spirals whose

centers Oi, O2, etc., are located at different points on the line aD, The weight of

the soil located above the curved part 6di of the assumed surface of sliding bdiCi is

represented by the area o6da/i. This area consists of two triangles, adifi and O106,

and the spiral sector Oibdi, The area of the sector is determined by the equation

4 = r*^»(»= — - 1) [41
«/o 4 tan 0

If the surface of the soil subject to lateral pressure rises at an angle fi as shown in

Figure 33d, the orientation of the line aD and of the plane section diCi of the surface
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of sliding with reference to the surface of the soil is identical with the corresponding

orientation of the surfaces of sliding in a semi-infinite mass of soil whose surface

rises at an angle /9. The method of determining this orientation has been described

in Article 10, and the orientation is shown in Figure 9d, Within the triangular area

adici the state of stress is the same as if the area represented a section of the semi-

infinite deposit shown in Figure 9d. According to the laws of mechanics, the shearing

stresses along any section difi which bisects the angle between the planes of shear

are equal to zero. Hence the earth pressure Pdij (Fig, 33d) acts at right angles to

the surface di/i which bisects the angle adiCi and its intensity can be determined by
means of Mohr’s diagram as shown in Article 10 and Figure 9b, The rest of the pro-

cedure is identical with the one just described.

40. Friction circle method. When using this method we assume
that the curved part of the surface of sliding be in Figure 34a consists

of an arc of a circle bdi with a radius ri which passes without break into

the plane section dic. The center of this circle is located on a line

drawn through di at an angle <l> to adi in Figure 34a, at a distance

Oidi = Oib from point di. At any point n of the curved section the

elementary reaction dF is tangent to a circle Cf which is concentric with

the circle of which bdi is an arc. The radius of the circle C/ is r/ =
fi sin <t>. This circle is called the friction circle. As an approximation,

with method of correction to be discussed later, we can assume that the

resultant reaction Fi is also tangent to this circle. In order to determine

the force Pi we combine the forces W\ and Pd\ into a resultant 22i as

shown in the polygon of forces (Fig. 346). In Figure 34a this resultant

must pass through the point of intersection ii between Pdi and Wi. It

intersects the force Pi at point t2 - To maintain equilibrium, the re-

action Pi must pass through the point of intersection i2 - Since Pi has

been assumed tangent to the friction circle C/, it must be located as

shown in Figure 34a. Since the direction of Pi is known, the force Pi
can be determined from the polygon of forces shown in Figure 346.

The minimum value Pp of the lateral force required to produce a slip

can be ascertained by plotting a curve similar to CP in Figure 33a. It

requires a repetition of the computation for several circles, each of

which passes through 6. The values of Pi, P2, P3 , etc., thus obtained

are plotted as ordinates above the line representing the horizontal

surface of the ground.

The most important error assooiated with the friction circle method is due to

the assumption that the reaction Fx in Figure 34a is tangent to the friction circle

C/ with a radius r/. In reality the resultant reaction Pi is tangent to a circle whose
radius r/ is greater than r/. If the force Pi is tangent to a circle with a radius

r} > r/ the angle of inclination of Pi in the polygon of forces (Fig. 346) becomes

smaller and the value of Pi becomes greater. Hence the error due to the assumption

that f/ equals r/ is on the safe side.

The value of the ratio (r^ — r/)/r/ depends on the value of the central angle $t
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and on the distribution of the normal pressure over the curved part of the surface

of sliding, bdi in Figure 34a. In general this distribution is intermediate between a
uniform distribution and a sinusoidal distribution, which involves zero pressure at

Fig. 34. (a and h) Friction circle method of determining passive earth pressure of

sand; (c) correction graph to be used in connection with friction circle method.

{Diagram c aiter D, TT. Taylor 1937,)

both ends of the section and a maximum for a central angle $ » 6i/2, Figure 34c

gives the values of 100 ^ — for both types of pressure distribution and for angles

of from 0® to 120® (Taylor 1037). If the soil is acted upon by a block of masonry

such as that shown in Figures 33 and 84, the distribution of the normal pressure over

the curved part of the surface of sliding is fairly uniform and the central angle seldom

exceeds 90®. The central angle of the curved part of the surface of sliding shown in
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Figure 84a is 60^. Assuming a perfectly uniform distribution of the normal stresses

over this surface we obtain from curve a in the diagram (Fig. 34c) a value of 4.6 per

cent for the correction factor. Hence, in order to get a more accurate result the

force F\ should be drawn tangent not to the friction circle C/ with a radius r/ as

indicated in Figure 34a but to a circle whose radius is equal to 1.046 r/.

If the correction graph (Fig. 34c) is used, the results obtained by means of the

friction circle method are as accurate as those obtained by means of the spiral

method described in the preceding article.

41. Passive earth pressure of a mass of cohesive earthy carrying a

uniformly distributed surcharge. Figure 35 illustrates the methods of

computing the passive earth pressure of a mass of cohesive soil whose
shearing resistance is determined by the equation

8 = c + (T tan
<t> 5(1)

The shearing stresses on the surface of contact between soil and

masonry are

Vpt = Ca + ppn tan 8

wherein 8 is the angle of wall friction and Ca the adhesion. If the seat

of the thrust consists of a mass of soil, the values c® and 8 are identical

with the values c and <!> in Coulomb's equation 5(1). The unit weight

of the earth is 7. The surface of the soil is horizontal and carries a

uniformly distributed surcharge, q per unit of area.

According to Article 36, the surface of sliding consists of a curved

part bdi and a plane part diCi which rises at an angle of 46® — 4>/2 to

the horizontal. Point di is located on a straight line aD which descends

from point o at an angle of 45® — <^/2 to the horizontal. The position

of point di on aD has been arbitrarily selected because its real position

is not yet known. Within the mass of soil represented by the triangle

adiei the soil is in a passive Rankine state (see Art. 12). The shearing

stresses along vertical sections are equal to zero. The normal pressure

per unit of area of the vertical section difi (Fig. 35a) is determined by
the equation

wherein = tan^(45® + 4>/2) is the flow value.

This pressure consists of two parts

cTp « 2cV^ + qN^

which is independent of depth and

ap « yzN^



Fia. 35. Determination of passive earth pressure of cohesive soil, (a and b)

Logarithmic spiral method; (c) friction circle method.

which increases like a hydrostatic pressure in simple proportion to

depth (see Art. 37). The corresponding total pressures on the section

difi with a height Hdi are

Pai ^ Hai(2cVN'^ + qN^)
[1]

and

P'A = [2]

The point of application of is at an elevation Hdi/2 above point

di (Fig. 35a) and that of Pdi is at an elevation Hdi/S above point di.

For the curved part bdi of the surface of sliding either a logarithmic

qnral or an arc of a circle can be selected. Figure 36a shows a loga*
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rithmic spiral whose center is located at Oi. The equation of the spiral

is

r = roe®*“* 39(2)

The cohesion c ds which acts on an element ds of the spiral (Fig. 356)

can be resolved into one component c ds sin in the direction of the

vector r through Oi and a component c ds cos <t> perpendicular to this

direction. The moment about the center Oi of the spiral produced by
the first component is zero and that due to the second component is

T dd
dMe = rc ds cos 4) = rc cos <t>

= cr^ dd = crn [3]
cos ip

Hence the total moment due to the cohesion along bdi is

rdMc = —^(r!-4) [4]
Jo 2 tan (j>

In Figure 35c it is assumed that the curved part bdi of the surface of

sliding is an arc of a circle with a radius r and a center angle 0i. The
cohesion c ds which acts along an element ds of the arc can be resolved

into a component c ds cos /3 parallel to bdi and a component c ds sin J3

perpendicular to bdi. The resultant of the components parallel to bdi

is parallel to bdi and equal to

C.i = c^ [5]

and the sum of the components perpendicular to bdi is equal to zero.

The moment of the force C,i with reference to the center Oi of the

circle must be equal to the sum of the moments of the cohesion forces

c ds with reference to the same point. Hence, if h is the shortest dis-

tance from Oi to C,i

Ctih = Midi = bdi c r

or

[6]

In order to compute the passive earth pressure on ab either with the

logarithmic spiral or the friction circle, we proceed as prescribed at

the end of Article 37. We first assume that the unit waght y of the

soil is equal to zero and determine the force Pi required to produce a

slip along bdi. If y = 0 the force P'm (eq. 2) is equal to zero. The
point of application of the force P'l is located at the midpoint of ab.

The force acts at an angle S to the normal on the surface ob. The ele-

mentary reactions dF act at an angle ^ to the normal on the elements.
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If the spiral method is used, (Pig. 35a), the resultant reactions Fi for

7 = 0 and F'l for c = 0 and g = 0 pass through the center of the spiral.

The moment produced by all the cohesion forces about the center of

the spiral is equal to the algebraic sum of the moment Md (eq. 4) and

the moment produced by the adhesion force Co. If the friction circle

method is used, as shown in Figure 35c, it is necessary to establish the

direction of the force Fi for 7 = 0. For this purpose we replace the

cohesion force C,i and the adhesion force Co by their resultant Ci.

Then we combine this resultant with the forces P'di and Qi. Thus we
obtain the resultant jRi of the known forces C,i, Co, Pdi> and Qi (not

shown in the figure). The direction of the force F'l is obtained by

tracing through the point of intersection between f2i and P'l a tangent

to the friction circle. The intensity of the force P'l can be determined

either by means of a moment equation similar to equation 39(3) (spiral

method) or by means of a polygon of forces (friction circle method), as

described in Article 40.

The next step is to assume c = 0, g = 0 and to assign to the soil

its unit weight 7, whereupon the force P'di (eq. 1) becomes equal to zero

and the vertical section f\di is acted upon only by the force P'di. The
rest of the procedure is strictly identical with that described in Articles

39 and 40. It furnishes the value Pi.
The computation must be repeated for several different assumed

surfaces of sliding. Thus one obtains several sets of values (Pj +
(P2 + P2 )f

' '

'

(Pn + Pn)' The real surface of sliding is determined

by the condition that the sum (P^ + P”) is a minimum

P,> = P; + PK= (P^+P^min.

The force Pp can be determined graphically as described in Articles

39 and 40 by plotting the values of (P^ + Pn) as ordinates above the

surface of the earth. The passive earth pressure Ppe is equal to the

resultant of Pp and the adherion force Co. Since the force Co acts along

the contact face, the point of application of the passive earth pressure

is identical with that of the force Pp. It is located between the mid-

point and the top of the lower third of the wall.

42. Stmunaty of the methods of computing the passive earth pressure.

If the angle of wall friction 6 is smaller than ^/3, the passive earth pres-

sure of cohedonless masses of soil can be computed by means of equation

38 (2) or by one of its graphical substitutes. The error is on the unsafe

rade but it is small. For values of 5 greater than ^/3 the error due to

Coulomb’s assumption of a plane surface of sliding increases rapidly

with increasing values of i. In this case one of the methods described

in Articles 39 and 40 diould be used. The results obtained by means of
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these methods are practically identical. The passive pressure of

cohesive soil should be computed only by means of the logarithmic spiral

or of the friction circle method.

The methods of computation involving the assumption of a curved

surface of sliding are much more expedient than they appear to be.

When dealing with the passive earth pressure of clay, the angle of shear-

ing resistance can usually be assumed to be equal to zero. On this

assumption the curved part of the surface of sliding is an arc of a circle

and the plane part rises at an angle of 45° to the horizontal.



Chapter VIII

BEARING CAPACITY

43. Definitions. If a load is applied on a limited area on or below

the surface of the soil, the loaded area settles. If the settlements due

to a steady increase of the load are plotted as ordinates against the

load per unit of area we obtain a settlement curve. The settlement curve

Fig, 36. (a) Continuous footing; (6) cylindrical pier; (c) relation between unit

load and settlement on dense (Ci) and loose (C2) soil.

may have any shape intermediate between those represented by the

curves Ci and C2 in Figure 36c. If the curve passes fairly abruptly

into a vertical tangent (curve Ci) we identify the failure of the earth

support with the transition of the curve into the vertical tangent. On
the other hand, if the settlement curve continues to descend on a slope,

as shown by the curve C2 ,
we specify arbitrarily, but in accordance with

^

current conceptions, that the earth support has failed as soon as the

curve passes into a steep and fairly straight tangent.

The area covered by the load is called the bearing area. The load

required to produce the failure of the soil support is called the critical

load or the total hearing capacity. The average critical load per unit of

area, qn or }x> (Fig. 36c), is called the hearing capacity of the soil. It

depends not only on the mechanical properties of the soil but also on

the size of the loaded area, its shape, and its location with reference to

118
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the surface of the soil. In the following articles the investigation is

limited to vertical loads acting on horizontal bearing areas.

If the load acts on a very long strip with a uniform width it is called

a strip had in contrast to a load which acts on an area whose width is

approximately equal to its length, such as a square, a recttogular, or a
circular area. In engineering practice the load is transmitted to the

bearing area by means of footings or piers. Figure 36a is a section

through a footing. The length of a continuousfooting is great compared
to its width 2B whereas that of a spread footing is approximately equal

to the width. A pier (Fig. 366) is a cylindrical or a prismatic body of

masonry whose horizontal dimensions are small compared to the depth
D/ of its base below the surface. The lower end of some piers is given the

shape of a truncated cone whose base has a greater area than the section

through the pier (JbeUed-ovJt caisson pier).

In the following investigations it is assumed that the soil is homo-
geneous from the surface to a depth which is far below the level of the

base of the footings or piers.

44. Failure by local and by general shear. Before the load on a
footing is applied the soil located beneath the level of the base of the

footing is in a state of elastic equilibrium. The corresponding state of

stress will be described in Chapter XVII. When the load on the footing

is increased beyond a certain critical value, the soil gradually passes

into a state of plastic equilibrium. During this process of transition

both the distribution of the soil reactions over the base of the footing

and the orientation of the principal stresses in the soil beneath the

footings change. The transition starts at the outer edges of the base

and spreads as indicated in Figure 123c for a continuous footing which

rests on the horizontal surface of a homogeneous mass of sand and in

Figure 123d for a footing whose base is located at some depth beneath

the surface. If the mechanical properties of the soil are such that

the strain which precedes the failure of the soil by plastic flow is very

small the footing does not sink into the ground imtil a state of plastic

equilibrium similar to that illustrated by Figure 156 has been reached.

The corresponding relation between load and settlement is shown by
the solid curve Ci in Figure 36c. The failure occurs by sliding in the

two outward directions. In Figure 37c the line def represents one of

these surfaces. It consists of one curved part de and one plane part ef

which intersects the horizontal surface at an angle of 45® — <^/2 (see

Art. 16). This type of failure will be called a general shear failure.

In practice the conditions for the general shear failure illustrated by Figure 37e

axe never completely satisfied, because the horizontal compression of the soil located

immediately below the level of the base of the footing, on both sides of the base, is not
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great enough to produce the state of plastic equilibrium within the entire upper part

of the zone aef. Therefore one has to expect a failure similar to that illustrated by

Figure 37d. On account of inadequate lateral compression the shear failure occurs

while the uppermost part of the zones of potential plastic equilibrium is still in a

state of elastic equihbrium. If the surface of sliding cuts across a mass of sand in a

state of elastic equihbiium, it may intersect the free surface at any angle intermediate

between 46° — ^/2 and 90°. (See Figures 17o and c and 70c.) In cohesive soils the

surface of sliding terminates at the boundary of the zone of elastic equilibrium. In

the proximity of the free surface of such soils one may find instead of a zone of shear

a set of discontinuous tension cracks. In the theory of general shear failure these

discrepancies between theory and reality will be disregarded. The resulting error is

unimportant.

On the other hand, if the mechanical properties of the soil are such

that the plastic flow is preceded by a very important strain, the ap-

proach to the general shear failure is associated with a rapidly increasing

settlement and the relation between load and settlement is approxi-

mately as indicated in Figure 36c by the dashed curve Cz- The

criterion for the failure of the soil support, represented by a conspicuous

increase of the slope of the settlement curve, is satisfied before the failure

spreads to the surface. Hence, this type of failure will be called local

shear failure.

45. Condidons for general shear failure of soil support of shallow,

continuous footings. The term “ shallowfooting
”

is applied to footings

whose width 2B is equal to or greater than the vertical distance D/
between the surface of the ground and the base of the footing. If this

condition is satisfied we can neglect the shearing resistance of the soil

located above the level of the base of the footing. In other words we
can replace the soil with a unit weight y, located above this level, by a

surcharge q = Djy per unit of area. This substitution simplifies the

computations very considerably. The error is unimportant and on the

safe side. On the other hand, if the depth Df is considerably greater

than the width 2B (deep footings), it is necessary to take the shearing

stresses in the soil located above the level of the base into consider-

ation (see Art. 60).

If the soil located above the level of the base of a footing has been

replaced by a surcharge, q per unit of area, the base of the footing repre-

sents a loaded strip with a uniform width 2B located on the horizontal

surface of a semi-infinite mass. The state of plastic equilibriiun pro-

duced by such a load is illustrated by Figure 156. The figure is based

on the assumption that the shearing stresses on the loaded area are

equal to zero. In order to produce such a state of stress at the base of

a continuous footing it would be necessary to eliminate completely the

friction and tiie adhesion betweai the base and the sofl. Figure 37a has
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been plotted on the basis of the same assumption. The zone of plastic

equilibrium represented in this figure by the area ffieide can be

subdivided into (I) a wedge-shaped zone located beneath the loaded

strip, in which the major principal stresses are vertical, (II) two zones

of radial shear, ade and bdei, emanating from the outer edges of the

loaded strip, whose boundaries intersect the horizontal at angles of

Fiq. 37. Boundaries of zone of plastic flow after failure of earth support of

continuous footings.

46® -b <l>/2 and 45“ — <^/2, and (III) two passive Eankine zones. The

dotted lines on the right-hand side of Figure 37a indicate the boundaries

of the zones I to III at the instant of the failure of the soil support and

the solid lines represent the same boundaries while the load sinks into

the ground. The soil located within the central zone I spreads laterally

and the section throu^ this zone undergoes the distortion indicated in

the figure.

If the load is transmitted onto the ground by means of a continuous
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footing with a rough base as shown in Figure 376, the tendency of the

soil located within the zone I to spread is counteracted by the friction

and adhesion between the soil and the base of the footing. On account

of the existence of this resistance against lateral spreading the soil

located immediately beneath the base of the footing remains perma-

nently in a state of elastic equilibrium and the soil located within the

central zone behaves as if it were a part of the sinking footing. The
depth of this wedge-shaped body of soil remains practically unchanged.

Yet the footing sinks. This process is only conceivable if the soil

located just below point d moves vertically downward. This type of

movement requires that the surface of sliding de through point d should

start from a vertical tangent. The boundary ad of the zone of radial

shear, ode, is also a surface of sliding. According to Article 7 the

potential surfaces of sliding in an ideal plastic material intersect each

other in every point of the zone of plastic equilibrium at an angle of

90® —
<t>. Therefore the boundary ad (Fig. 376) must rise at an angle

<#> to the horizontal, provided the friction and adhesion between the soil

and the base of the footing suffice to prevent a'sliding motion at the base.

The right-hand side of this figure shows the deformation associated with

the sinking of the footing. The sharp rise of the soil on both sides of

the base of the footing has given rise to various speculations, and it has

been referred to as edge action. It is nothing else but the visible mani-

festation of the existence of two zones of radial shear.

Trial computations have shown that the angle of base friction re-

quired to produce the state of plastic flow illustrated by Figure 376 is

very much smaller than the angle of shearing resistance of the sup-

porting soil. Hence, the lower boundary of the central zone beneath

footings can always be assumed to rise at an angle 0 to the horizontal.

However, theoretically, the slope angle of these boundaries may have

any value ^ intermediate between and 45® + <t>/2.

Whatever the slope angle of the boundaries may be, the footing cannot

sink into the ground imtil the pressure exerted by the load onto the soil

adjoining the inclined boxmdaries of zone I in Figure 37c becomes

equal to the passive earth pressure. The passive earth pressure can be

computed by means of one of the methods described in Chapter VII and

the ultimate bearing capacity is determined by the condition that the

sum of the vertical components of the forces which act on the soil

located within the central zone I must be equal to zero.

To illustrate the procedure we compute the ultimate bearing capacity

of a shallow continuous footing whose base is located at a depth D/
below the horizontal surface of a mass of soil with a unit weight y.

Figure 37c is a section through the footing. Since the footing is shallow
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we are justified in replacing the earth located above the level of the base

of the footing by a surcharge

q = yDf

per unit of area. The shearing resistance of the soil is determined by

Coulomb ^s equation

8 ss c + (T tan 0 5(1)

The shearing stresses at the contact face ad at the instant of failure are

Ppt = c + ppn tan 4>

wherein ppn is the normal component of the passive earth pressure per

unit of area of the contact face. On account of the roughness of the

base of the footing and the adhesion between the base and the soil, the

contact faces ad and bd rise at an angle
<f>
to the horizontal. The passive

earth pressure on each one of these faces consists of two components,

Pp, acting at an angle <^(0 = 5 = angle of wall friction) to the normal

on the contact face and the adhesion component

The methods of determining the pressure Pp have been described in

Article 4L In this connection it should be remembered that the sur-

face of sliding obtained by one of these methods represents only an

approximation to the real surface of sliding because the methods are

not rigorous. Therefore the surface of sliding obtained by means of

the spiral or the friction circle method does not necessarily start at

point d in Figure 37c with a vertical tangent. However, the error due

to this discrepancy between the real and the approximate surface of

sliding is unimportant. The equilibrium of the mass of soil located

within the zone abd of elastic equilibrium requires that the sum of the

vertical forces, including the weight tan 0 of the earth in the zone,

should be equal to zero

Qd + yB^ tan <l>
— 2Pp — 2Bc tan = 0 [1]

Hence

Qd = 2Pp + 2Bc tan <t>
— yB^ tan <#> [2]

This equation represents the solution of our problem if Pp is known.

IfZ)/ = 0, g = 0 and c = 0, i.e., if the base of the footing rests on the

horizontal surface of a mass of cohesionless sand, the pressure Pp
assumes the value given by equation 38(1). Substituting in this
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equation H = B tan il>, S = Kp = Kpy, and a = 180® — we get

Pp =
[3 ]

COS'^ (t>

wherein Kpy is the coefficient of passive earth pressure for c = 0,

^ — 0, a = 180° —
<#>, and 5 = 0. Substituting this value and the

value c = 0 in equation 2 we obtain for the total bearing capacity per

unit of length of the footing

Go = <2 = 2 X -l\ = 2BX yBNy [4a]
Vcos"* <^ /

wheran

JV^ = itan0(^-

A

[461
\COS^ 0 /

The value Kpy can be obtained by means of the spiral or the friction

circle method (Arts. 39 and 40). Since the angle of wall friction 6 and

the slope angle a of the contact face are equal to 0 and to 180° — 0
respectively, the values Kpy and Ny depend only on 0. Therefore Ny
can be computed once for all. The relationship between Ny and 0 is

represented by the solid line marked Ny in Figure 38c.

46. Simplified method for computing bearing capacity. If the sup-

porting soil has cohesion, the computation of the critical load Qd
per unit of length of a footing by means of equation 45(2) requires the

determination of the component Pp of the passive earth pressure which

involves several hours of work. However, in connection with practical

problems we are usually satisfied with a less accurate value for the

critical load. The method is based on the equation

Ppn = (.cKp, + qKp,} + ^ 37(4)
sin a Bin a

whemn Ppn is the normal component of the passive earth pressure on a

plane contact face with a height H, a is the slope angle of the contact

face, and Kpe, Kpq, and Kpy are coefficients whose values are inde-

pendent ofH and y. If od in Figure 37c represents the contact face the

values H, a, and 8 contained in the preceding equation are equal to

H <== B tan 4>, a = 180® —
<f>, 5 = and c® =» c

Considering in addition that the total passive earth pressure Pp on the

contact face is equal to Pp„/co8 8, or

Ppn Ppn
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we obtain from equation 37 (4)

Pp = Ppn

COS S

B . n tan <6—^ {cKpc + qKp,) + ^ Kp,
cos 4> C08^<l>

Combining this equation with equation 45(2) we get

Qd — 2Bc (—

^

^ 1 1 [2]
\cos"^ <l> / cos 4> \cos 4> )

wherein Kpc^ Kpqj and Kpy are pure numbers whose values are inde-

pendent of the width 2JS of the footing. The equation is valid on the

condition that the soil support fails by general shear.

Va/ues of

Generaf shear failure r Qp = 2B(cNc ? per unitfenpfh

Local shear failure’^ (?p“ offoofi^

Circular foofing^ Diameter 2R, Rough betse

ToM critical toad- Qt,%.R^iT(1.3cNc*rD/r,*<^erIOff)
U„if weight ofearfh^r

Unitshear, resistance S'^crafan^

Fig. 38. Method of estimating bearing capacity by means of bearing capacity

factors, (a) Source of error associated with the use of this method; (6) simphfymg

assumption on which computation of bearing capacity factors for dense and for

loose soils is based; (c) relation between 0 and the bearing capacity factors.

Figure 38a represents a continuous footing with a rough base. If

7 “ 0 failure occurs along the surface of sliding dej/i. The curved

part dfix of this surface is a logarithmic spiral whose center is located at
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point h (Prandtl 1920). The equation of the spiral is

r = roe**“* [3]

wherein 0 is the center angle in radians measured from the zero vector

f0 = i>d as shown in Figure 38a. For ^ = 0 equation 3 represents the

equation of a circle with a radius r©. Since the equation representing

the surface of sliding contains neither c nor q, the shape of the surface

of sliding is independent of the cohesion and the surcharge. For

y = 0 we obtain for the load required to produce a general shear failure

along the surface of sliding deifi the value

= 2Bc(— + tan (j^ + 2Bq—

^

\cos (ft / cos 4>

= 2BcNc + 2BqN, [4]

The factors Ne and Ng are pure numbers whose values depend only

on the value 0 in Coulomb's equation. The value Qc represents the load

which the weightless soil could carry if the surcharge q were equal to

zero (y = 0 and g = 0), and Qg is the load which it could carry if its

bearing capacity were exclusively due to the surcharge q (y —0 and

c •= 0).

On the other hand, if c = 0 and g = 0, while y is greater than zero,

the failure occurs along de2/2 (Fig. 38a). The rigorous equation of the

curved part of this line is not yet known. Its approximate shape can

be determined either by means of the spiral or the friction circle method

(Arts. 39 and 40). The results of such investigations show that the

lowest point of the curve deg is located well above the lowest point of dei.

The critical load required to produce a failure along de2f2 is determined

by the equation

Qy = yB^ tan 0 f = 2B X yBN^ 45(4a)
\COS (ft /

If the values c, D/, and y are greater than zero, the failure occurs along

a surafce of sliding dej (Fig. 38a), which is located between heiji and

hea/z. From the results of numerical computations we know that the

corresponding critical load, Qd per unit of length of the strip, is only

slightly greater than the sum of the loads Qe + Qg (eq. 4) and Qy,

(eq. 46 (4a)). Therefore we can assume with sufficient accuracy

On = Oc + + Qr = 2Bci\r„ + 2BqNg + 2B'^yNy

wherdn 2B is the width of the footing. Substituting q » yDf we get

On “ 0. + 0« + Or = 2B(cJV. + yDfNg + yBNy) [6J
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The coefficients Ne^ Nq, and Ny will be called the hearing capacity

factors for shallow continuous footings. Since their values depend only

on the angle of shearing resistance in Coulomb ^s equation they can

be computed once for all.

In order to obtain information on the importance of the error associated with

equation 6, the critical load has been computed for a continuous footing with a width

2B whose base is located at a depth 2B below the horizontal surface of a mass of

ideal sand. For tf> = 34° we obtained bfi (Fig. 38a) = 8.5B, hf = 7.0B and 6/2 =
5.5B» The corresponding values for </> = 38° are 6/1 = 11.55, bf = 8.75, and 6/2 «=

7.15. These figures show that the three surfaces of sliding indicated in Figure 38a

are very different. Nevertheless it was found that the load Qd required to produce

a shear failure on def is less than 10 per cent greater than the sum of the loads Qq
and Qy required to produce a failure on the surfaces defi and ^^2/2 respectively.

The problem of computing the loads Qc and Qq in equation 4 has

been rigorously solved by means of Airy^s stress function (Prandtl 1920,

Reissner 1924). According to the definition of these loads the unit

weight 7 of the earth has been assumed equal to zero. The following

equations are derived from those published by Prandtl and by Reissner:

and

wherein

Nc cot
</.

1^2 (450 + ^/2) ^]

a^

2 cos^(45° + 0/2)

^(3ir — ^/2) tan ^

[]

[ ]

I6c]

As stated before, the values of Nc and Nq depend only on the value

of 0 . By plotting these values as abscissa on the left-hand side of

Figure 38a the solid curves Nc and Nq have been obtained. The values

of Ny are determined by equation 45(45). They are given by the

abscissa of the plain curve marked Ny on the right-hand side of Fig-

ure 38c. For <^ = 0 we get

ATo = fir + 1 = 6.7, Nq - 1, and Ny ^ 0 [7a]

Introducing these values and the value D/ = 0 into equation 6 we get

for the bearing capacity Qj) per unit of length of a continuous footing

with a rough base resting on the horizontal surface of the soil the value

Qx) = 25 X 5.7c [76]

and for the bearing capacity per unit of area

qj) « 6.7c [7c]
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For 0 == 34® we get

Nc = 41.9, Ng = 29.3, and Ny - 36.0

The bearing capacity Qjy per unit of length of a continuous footing

resting on the surface of the soil (depth of foundation D/ = 0) is

Qj)==2B X 41.9c + 2^2 x 36.07

and the average load per unit of area at the instant of failure is equal to

Qd = 41.9c + 36.0^7

These results and the data shown in Figure 38c demonstrate that the

critical load increases rapidly with increasing values of

Equations 6 and 7 refer to continuous footings with a rough base. Beneath such

footings the boundaries ad and bd of the zone of elastic equilibrium (Figure 38a) rise

at an angle rp = <f> to the horizontal. If the resistance against sliding at the base

of the footing does not suffice to reduce the angle \p to the value the values of the

bearing capacity factors are smaller than those given by the preceding equations.

The following equations represent the values of Nc and Nq on the assumption that

ip is greater than <f>.

If < 45® + <p/2:

Ne — tan 0 + .
[aj ( 1 4* sin 0) — IJ

sin 0 cos 0
[8a]

and

cos(0 — 0) 2 / ^ 0\
Nq =* a^ tan f 45 + ^ jCOS0 \ 2/

[86]

wherein
ssz d” 0/2 “”0) tan 0 [8c]

If ^ css 45® + 0/2 (perfectly frictionless base)

:

Ne = cot 0 fa tan^ ^45® + — ll [9a]

and

Nq = al tan^r45® -f- “J [96]

wherein

^ tan 0
[9c]

The corresponding values of Ny could be determined as shown in Article 45. If

we take it for granted that the surface of sliding for 7 « 0 (surface de^fi in Figure

38a) is determined by equation 3, then equations 6, 8, and 9 can also be derived by
elementary methods, on the basis of the condition that the pressure on the inclined

boundaries of the zone of plastic equilibrium abd in Figures 37c and 38a must be
equal to the passive earth pressure.

For a continuous footing with a perfectly smooth base the value ^ is

equal to 45® + 0/2. If in addition 0 « 0 we get

IT + 2-- 6.14, Ng = 1, and = 0 m
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Introducing the value No = 5.14 into equation 5 and assuming that

the footing rests on the surface of the ground (D/ = 0), we obtain for

the ultimate bearing capacity Qjy per unit of length of the footing

Qo = 2BX 5.14c [9c]

and for the bearing capacity per unit of area

qD = 5.14c [9/]

The corresponding value for a continuous footing with a rough base is

qD = 5.7c (equation 7c). Both values are independent of the width of

the footing.

If the point of application of the load on a footing is not located

exactly at the center line (eccentric loading), the failure of the earth

support will start on the side of the eccentricity. As a consequence the

sinking of the footing will be associated with a tilting of its base toward

the side of eccentricity. If the eccentricity is very small the load re-

quired to produce this type of failure is almost equal to the load required

for producing a symmetrical general shear failure. The failure occurs on

account of intense radial shear on one side of the plane of symmetry in

Figure 37, while the deformations in the zone of radial shear on the other

side are still insignificant. For this reason the failure is always asso^

ciated with a heave on that side toward which the footing tilts.

47. Conditions for local shear failure of soil support of shallow con-

tinuous footings. The stress conditions for the failure of a cohesive soil

are approximately determined by the equation

= 2c tan ^45° + 1)
+ tan^ ^45° + 7(3)

wherdn <r/ is the major principal stress and aui is the minor principal

stress. The values c and <l> represent the two constants in Coulomb’s

equation. Figure 386 shows the relation between the stress difference

~
‘Trir the corresponding linear strain in the direction of the

major principal stress c/ for two different soils. If the relation for a soil

located beneath a footing is such as indicated by the solid line Ci, the

soil behaves under load almost like the ideal plastic material represented

by the broken line 0a6, and the soil support fails by general shear.

On the other hand, if the stress-strain relations are such as indicated

by the dashed curve C2 ,
the lateral compression required to spread the

state of plastic equilibrium as far as the outer edge / of the wedge aef

(Fig. 37c) is greater than the lateral compression produced by the sinking

of the footing. Hence, in this case the soil support fmls by local shear.

In order to obtain information on the lower limit for the corresponding
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critical load we replace the curve C2 by a broken line Ocd. It repre-

sents the stress-strain relation for an ideal plastic material whose shear

values and are smaller than the shear values c and <!> for the mate-

rial represented by the curve C2 . Replacing the values c and in

equation 7(3) by c' and <i>' we obtain

(7j = 2c' tan (45° + </>'/2) + am tan^ (45° + 0'/2) [1]

Since the curve C2 in Figure 385 is located almost entirely on the right-

hand side of its ideal substitute Ocd, the critical load 0/> required to

produce a general shear failure in the material represented by equation

1 is somewhat smaller than the load required to produce a local shear

failure in the soil represented by the curve €2 - The available data on

stress-strain relations suggest that we are justified in assigning to c'

and the lower limiting values

c' = |c [2a]

and

tan = f tan <!> [25]

If the soil support fails by general shear, the bearing capacity is deter-

mined approximately by equation 46(5). For footings with a rough

base the values of the bearing capacity factors Net Nqy and Ny contained

in this equation are given by equations 46 (6a to 6c) and 45(45). In

order to compute the corresponding values A^', Nq, and Ny for local

shear failure we must replace the values <t> and c in these equations by

and <f)' and the value Pp in equation 45(45) must be computed on

the assumption that the angle of shearing resistance of the supporting

soil is equal to 0'. The critical load Qx> is equal to the sum

Q'j, = 2B(|ciV', + yDfN;, + yBN'y) [3]

This equation is the equivalent of equation 46(5). In Figure 38c

the values AT', AT', and Ny are represented by the abscissas of the

dashed curves Ni, Ng, and Ny respectively.

The bearing capacity per unit of area of the strip is

= IcN' + yDfN', + yBN', [4]

If the stresEHstram relations for a soil are intermediate between tire

two extremes represented by the curves Ci and Cs in Figure 38&, the

critical load is intermediate between Qd and Qi).

48. Distribution of the contact pressure over the base of continuous

footii^ The term contact pressure indicates the pressure which acts

at the surface of contact between the base of a footing and the sup-



Abt. 48 DISTRIBUTION OF THE CONTACT PRESSURE 131

porting soil. The following investigation of the distribution of the

contact pressure over the surface of contact is based on the equation

Qd = 2B(cNc + yDfN^ + yEN^) 46(5)

This equation shows that the total bearing capacity Qd per unit of

length of a continuous footing can be resolved into two parts

Qt = 2B(cNc + yDfN,) [1 ]

which increases in simple proportion to the width 2B of the footing, and

Q2 = 2yB^N, [2]

which increases with the square of the width. The distribution of the

pressures Qi and Q2 over the base of the footing is determined by the

distribution of the corresponding passive earth pressures over the

inclined boundaries of the zone of elastic equilibrium, abd in Figure 37c.

Figures 39a and 396 show one half of this zone.

When computing the values Nc and Nq in equation 1 it was assumed

that the unit weight y of the soil located beneath the level of the base

of the footing is equal to zero. On tliis assumption the passive earth

pressure is uniformly distributed over the inclined surface bd in Figure

39a. The shearing stresses on the vertical face dO are equal to zero

because this face coincides with the plane of symmetry of the footing.

Since the pressure on bd is uniform and the weight of the earth located

within the zone Obd is assumed equal to zero, we have to expect that

the normal pressure on Od is also practically uniform and that the re-

sultant pressure P'e intersects bd in the immediate vicinity of the mid-

point, as shown in the figure. On account of the roughness of the base

of the footing and of the adhesion the resultant pressure Q' on the

horizontal surface Ob acts at an angle to the vertical direction as indi-

cated in the figure. Equilibrium requires that the three forces, Ppc
(resultant of Pp and Co), Pe? and Q' intersect in one point. There-

fore the point of application of the vertical pressure on Ob is located on

the right-hand side of the midpoint of 06. The corresponding distribu-

tion of the normal stresses on 06 is represented by the ordinates of the

curve rs. This curve shows that the normal stress on the base of the

footing increases slightly from the center line toward the edges.

When computing Ny in equation 2 it was assumed that the cohesion

c and the surcharge q are equal to zero. On this assumption, the forces

which act on the soil located within the zone of elastic equilibrium are

as shown in Figure 396. Since c « 0 and g == 0 the passive earth pres-

sure on db increases like a hydrostatic pressure in simple proportion to
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the distance from 6. Its point of application is located at a distance

bd/3 from point d (see Art. 37), and its line of action passes through

the center of gravity of the mass of soil, with a weight TF, located

within Obd, The shearing stresses on the vertical face Od are equal

!

Fio. 89. Forces which act at instant of failure on boundaries of zone of elastic

equilibrium beneath the rough base of continuous footings (a) on weightless cohe-

sive soil; (b) on cohesionless soil with weight; (c) distribution of contact pressure on
rough base of continuous footing on cohesive soil with weight at instant of failure of

loaded soil.

to zero. Since the pressure on bd increases like a hydrostatic pressure

with depth we have to expect that the point of application of the nor-

mal pressure P's on Od is located somewhere between the midpoint

and the top of the lower third of Od as shown in the figure. Equilibrium

requires that the resultant force Q" acting on the horizontal surface Ob
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passes through the point of intersection of Pp and Pe» Since Q"
slopes toward the center line, its point of application is located at a

distance slightly greater than J5/3 from point 0. At the outer edge h

of the base of the footing the normal pressure on the base of the footing

is equal to zero and it increases toward the center point O (see Art. 16).

These conditions combined require that the distribution of the contact

pressure over the base of the footing should be roughly parabolic.

The distribution of the total critical load Q/> (eq. 46(5)) over the

base of the footing is shown in Figure 39c. The bearing capacity is

equal to the average height of the load area aaiOibib,

Once the soil support has failed, the state of stress in the soil located

above the surface of sliding becomes independent of strain. For this

reason an elastic deformation of the footing after failure of he earth

support should have no influence on the distribution of the soil /eactions.

On the other hand, if the load on a footing is very much smaller than the

critical load, the elastic deformation of the footing is likely to have a

considerable influence on the distribution of the contact pressure (see

Art. 139). As the load approaches the critical load, the initial dis-

tribution of the contact pressure gradually passes into that shown in

Figure 39c.

49. Bearing capacity of shallow square or circular footings. A square

or circular footing is shallow if the depth of foundation D/ is smaller than

the width of the footing. When dealing with shallow footings we can

replace the soil (unit weight 7 ), located above the level of the base of the

footing, by a surcharge q — D/y per unit of area. (See first paragraph of

Art. 45.)

If the soil support of a continuous footing yields, all the soil parti-

cles move parallel to a plane which is perpendicular to the center line

of the footing. Therefore the problem of computing the bearing

capacity of such footings is a problem of plane deformation. On the

other hand, if the soil support of a square or circular footing yields, the

soil particles move in radial and not in parallel planes.

By repeating the reasoning which led to equation 46(5) we arrive at

the conclusion that the critical load for a circular footing with a radius

R can be represented approximately by a general equation

Qj[)r ~ TTJK (CTle "4” "4“ yRtly^ [1}

wherein ric, n^, and Uy are pure numbers whose values depend only on

the angle of shearing resistance Equation 1 is an analogue of equa-

tion 46(6). However, on account of the mathematical difficulties

involved no rigorous method has yet been devised for computing the
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coeflBcients. Until the results of successful theoretical or of adequate

experimental investigations are available, we are obliged to estimate the

bearing capacity on the basis of the limited experience we have at

present. The available data will be given in a volume on applied soil

mechanics (Golder 1942, Skempton 1942, and unpublished test results).

Taking the most unfavorable test results as a basis for establishing a

provisional equation, the author obtained from the experimental data

for the bearing capacity of a circular area with a radius R

Qd = = irR^ihScNc + yD/Na + O.QyRNy) [2]

wherein Nc, Nq, and Ny represent the bearing capacity factors for con-

tinuous footings, supported by the same soil. For footings covering a

square area of 2B X 2B he obtained

Qd = 4B^qD = ^(hScNc + yD/Nq + 0,8yBNy) [3]

If the soil is loose or very compressible, the bearing capacity factors N
must be replaced by the values N\ (See Figure 38c.

)

Small-scale model tests have shown that the greatest heave of the

ground surface surrounding a loaded circular area with a radius R occurs

within a distance of about SR from the center of the loaded area.

Beyond a distance of about 5R from the center the heave is imper-

ceptible.

Equation 2 leads to the following conclusions. If the soil support of a

continuous footing with a width 2B on a cohesive soil (</> = 0) fails

under a unit load qohy general shear, the bearing capacity of a circular

footing with a diameter 2R is approximately equal to 1,3 Qd- On the

other hand, if c = 0, £)/ = 0, and <^ > 0 the circular footing fails at

an average unit load of about 0.6 qo wherein is the unit load required

to produce a general shear failure beneath a continuous footing with a

width 2R, supported by the same material. Experiments on sand and

clay have shown the approximate validity of this conclusion. An exact

agreement between the computed and the measured values cannot be

expected.

50* Bearing capacity of cylindrical piers. In the preceding articles

the shearing resistance of the soil located above the level of the base of

the footings has been disregarded, because the resulting error is small

and on the safe side. However, when dealing with piers whose diam-

eter 2R is small compared to the depth of foundation, no such simpli-

fication is justified because the resulting error is likely to be excesrive.

The effect of the shearing stresses in the soil on the bearing capacity of

a pier is illustrated by the right-hand side of Figure 366. The earth

located beneath the annular space represented by bd is acted upon by
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the horizontal radial pressure which is exerted by the soil located

immediately beneath the base of the footing. It tends to 3deld in an

upward direction, as indicated by arrows. This tendency is resisted

not only by the weight of the soil, yD/ per unit of the annular area bd,

but also by the skin friction per unit of the area of contact between

the pier and the earth and by the shearing stresses r on the outer

boundary de of the mass of soil located above the annular area. The
effect of these stresses is twofold. First of all they reduce the total

pressure on the base of the pier from Q to

Qi = Q - 2irRf,Df

Hence, if Qd is the total vertical pressure on the base of the pier at

the instant of failure, the load Qdp on the pier (weight of the pier in-

cluded) required to produce the pressure Qd is

Qdp = Qd + 2TrRfaDf [1]

Second, the shearing stresses in the soil located above the annular

area represented by bd increase the vertical pressure per unit of this

area, as soon as the area starts to rise, from yD/ to a higher value yiD/.

Replacing yD/ in equation 49 (2) by yiDf and substituting the value of

Qd thus obtained in equation 1 we get for the critical load on the pier

the equation

Qdp = irR^{L3cNc + yiD/N^ + O.QyNy) + 2TrRf,Df [2]

The values Nc, Nq^ and Ny can be obtained from Figure 38c. The value

7 i is determined by the vertical forces which resist a rise of the annular

area bd. Since the outer diameter of this area is equal to 2nfi, these

forces are

Df[in’‘ - 1 )tR^ + 2TrRf. + 2nTrRT]

or, per unit of the annular area

wherein

7l = 7 +
(n^ - 1)B

[Sa]

[36]

The factorn in eqs. 3 should be given such avalue that the critical load

Qdp, eq. 2, is a minimum. This condition can be satisfied bymeans of a

trial computation. Theskin friction/, can beintroduced into the preced-

ing equations with its full value, because the pier cannot sink into the

groundbefore theskinfriction is fully active. On theotherhand,thevalue

T in equation 36 is very uncertain, because the intensity of the shearing

stresses on de depends to a large extent on the degree of volume com-
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pressibility of the earth. If the soil is practically incompressible, such as

a dense sand, the shearing stresses on the lower part of de are likely to

be very significant. On the other hand, in a loose sand, which is very

compressible, the shearing stresses over the entire area de are hkely to

be insignificant, because the clearance required for a downward penetra-

tion of the pier can be produced by a lateral compression of the sand

located beneath the annular area hd and the tendency to lift the sand

located above this area is likely to be insignificant. Hence, when the

value T in equation 36 is selected, liberal allowance should be made for

the incomplete mobilization of the shearing resistance of the soil along

the cylindrical surface de. In any event, the volume compressibility of

the soil must be taken into consideration because it has a decisive

influence on the bearing capacity of the pier.

51. Bearing capacity of individual piles. The only difference be-

tween piles and slender piers is in the method of construction. Although

some types of piles have a conical shape, all the foregoing comments on

the bearing capacity of piers also apply to piles. One part 0/ of the

total load on the pile is carried by the skin friction. The balance Qp
is transferred onto the soil through the base or the point of the pile and

is called the point resistance. Hence the bearing capacity Q* of a pile

under static load can be expressed by the equation

Oa = Qp + Qf

The items Qp and Q/ correspond to the items Qd and 2TrRfsDf in equa-

tion 50(1), which determines the bearing capacity of piers.

For piles which are entirely embedded in uniform plastic material

such as soft clay, silt, or river mud, the point resistance Qp is likely to

be negligible compared to the load Q/ which is carried by the skin

friction. Such piles are known as friction piles. On the other hand,

if the point of the pile is embedded in a firmer stratum the greater

part of the load is carried by the point of the pile which, in this case, is

called a point-bearing pile.

The ratio between the total skin friction and the point resistance

depends not only on the nature of the soil and on the dimensions of the

pile but also on the method which has been used for installing the pile

in the ground. Certain types of piles, for instance the wood piles and

the precast reinforced concrete piles, may be driven into the ground

by the impact produced by a falhng weight (hammer). Other types of

piles are installed by driving into the groxmd a removable shell, whose

lower end is closed during the operation of driving. While the empty
space surrounded by the shell is being filled with concrete, the shell is
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gradually pulled out of the ground. This process relieves part of the

stresses which have been previously produced in the soil by driving the

shell. In order to accelerate and facilitate the process of driving a pile

or a shell through a hard stratum a water jet may be used which loosens

the soil ahead of the point of the pile. Piles have also been installed

by pouring or ramming the concrete into a drill hole or by driving a
cylindrical shell with an open lower end into the ground. The soil

which penetrates the space within the shell during the process of driving

is removed by means of an air jet, whereupon the empty space is filled

with concrete.

Our knowledge of the influence of the method of installing the piles

on the skin fricti >n and on the intensity of the shearing stresses in

equations 50(3) is still rudimentary and the prospects for evaluating this

influence by theory are very slight.

On account of the uncertainties involved in the computation of the bearing

capacity of cylindrical piers (see Art. 60), it is not surprising that the attempts to

compute the bearing capacity of piles (Stem 1908, D5tt 1922, and many others)

have not been successful. All of them involve very arbitrary assumptions or mis-

application of existing theories as illustrated by the following examples. The point

resistance has been computed by means of methods which are valid only for a plane

state of deformation, such as the theory of the passive earth pressure or the theory

of the bearing capacity of continuous footings, described in Article 45. The pressure

of the soil on the skin has been determined by means of Coulomb's theory of earth

pressure, which is also valid only for a plane state of deformation and the effect of

the volume compressibility of the soil on the point resistance has been consistently

disregarded (Terzaghi 1925).

Since the bearing capacity of the piles cannot yet be computed on the

basis of the results of soil tests performed in the laboratory we are still

obliged either to estimate this value on the basis of local experience or

else to determine it directly in the field by loading a test pile to the

point of failure.

In order to avoid the necessity of making load tests, persistent efforts

have been made for more than a century to obtain the desired infor-

mation from the results of a simplified field test involving the

measurement of the depth of penetration Ap produced by a hammer with

a known weight Wh which is allowed to drop on the head of the pile

from a known elevation H. The equations which are supposed to

express the relation between the distance Ap of penetration of the pile

and the corresponding resistance to the penetration of the pile are

known as pile formvias.

52. Pile formulas. By analogy with the resistance to the penetra-

tion of piles under a static load, it is assumed that the relation between
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the depth of penetration of a pile under a single blow of a hammer and

the corresponding resistance Q of the soil is approximately as indicated

by the line oeb in each of the two diagrams of Figure 40. The resistance

of sand may increase consistently with increasing penetration, as shown
in Figure 40a, whereas that of

clay probably passes through a

maximum, as shown in Figure

406. Since the resistance against

penetration under the blow of a

hammer changes with increasing

penetration the word ' dynamic

resistance against penetration

has no definite meaning imless

this term is applied to the final

resistance, represented by the

abscissa of the vertical asymp-

tote to the penetration curve.

The blow of the hammer produces not only a permanent penetration

of the pile but also a temporary elastic compression of the pile and the

surrounding soil. Therefore the penetration produced by the blow is

always followed by an elastic rebound involving a perceptible upward

movement of the head of the pile. In Figure 40 this reoound is indicated

by the line 6a.

The product of the resistance and the corresponding increase of the

penetration is equal to the work performed while the penetration is in-

creased. In each of the diagrams shown in Figure 40, the shaded area

oba represents the work required to overcome the skin friction and to

displace the soil located below the point of the soil while the pile is being

driven through a distance Ap into the ground. In addition to this useful

work the blow of the hammer sets up intense vibrations in the pile and

in the surrounding soil and after the blow has been struck the hammer is

likely to bounce conspicuously several times. The energy required to

produce these dynamic effects can be classified as loss of energy, because

it does not contribute toward increasing the permanent penetration of

the pile. If the hammer would strike the upper end of a perfectly elastic

colunm whose lower end rests on a perfectly elastic base, the final posi-

tion of the lower end would be identical with the initial one Therefore

we would classify the entire energy of the blow as a loss.

The existing pile formulas are based on the simplifying assumption

that the resistance to the penetration of the pile retains a constant value

during the entire movement of the pile through the distance Ap.

Fig. 40. Relation between resistance Qd
and penetration of pile under a blow of

the hammer (a) into sand and (6) into

clay. {After A, E. Cummings. 1940.)
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Since the total work performed by the falling hammer is WhHj we can

write

WhH = Qd^P “f*
[
1]

wherein Ei represents the total loss of energy. It is further assumed

without any justification that the work performed in producing a

temporary elastic compression of the pile and the adjoining soil neces-

sarily constitutes part of the loss of energy. On the other hand the

important losses of energy associated with the vibrations produced by
the blow are disregarded.

In order to correlate the real resistance-penetration diagrams shown

in Figure 40 with the rather artificial concept on which the pile formulas

are based we must assign the lower part abd of the shaded areas to the

loss of energy Ei and we must replace the upper part oade by a rectangle

of equal height and area whose width

area oade
Qd = T

Ap
[2]

is assumed to represent the dynamic pile-driving resistance to which the

pile formulas refer. According to Figure 40, the value Qd can be either

greater or smaller than the real dynamic resistance Qd*

The customary methods of estimating the loss of energy Ei in equation

1 are based on one of the following assumptions:

() the loss of energy is equal to the dynamic resistance Qd times

the temporary penetration (Ap' — Ap) of the pile,

() El is due only to the elastic compression of the pile,

(c) El is identical with the loss of energy determined by Newton^s

theory of impact,

(d) El includes both the losses due to elastic compression and the

Newtonian loss.

In the following analysis the different pile formulas will be written

in terms of the ultimate resistance, regardless of whether or not the

original equations, as published by their authors, referred to the ultimate

or to the ** safe
”

load.

Let

I = the length of the pile,

A = the area of the average cross section through the pile,

TFp « the weight of the pile,

E =“ the modulus of elasticity of the pile material,

n, = the coefficient of restitution in Newton's theory of impact.
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If the estimate of the loss of energy is based on assumption a, ex-

pressed by the equation

El = Qd (Ap' — Ap) [3]

we obtain from equation 1

Qd =
WhH
Ap'

[4]

Since the evaluation of this equation requires that the maximum penetra-

tion Ap' be measured in the field, the equation has not often been used.

Weisbach's theory (about 1820) is representative of the theories

based on assumption b, which considers only the energy loss due to the

elastic compression of the pile. Weisbach assumed that the resistance

against penetration of the pile is concentrated at the point of the pile.

The axial pressure in the pile increases from zero to Qd* Hence the

work required to produce this compression is

* 2AE [5]

Substituting this value in equation 1 and solving for Qa we obtain

Weisbach’s equation

Qd — — ApAE

I
+ 4

2WijHAE
I

[0]

The Newtonian equation for the loss of energy due to semi-elastic

impact between hammer and pile (assumption c) is

El = TFfli?
TFp(l - nl)

Wp + Wh m

For perfectly elastic impact the coefficient of restitution n, is equal to

unity and the corresponding loss of energy is equal to zero. For Ei = 0

we obtain from equation 1 Sanders’ (about 1850) equation

Ap

On the other hand for perfectly inelastic impact (n, = 0) the New-
tonian loss assumes the value

El WgH
Wp

Wp + Wg
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which is at the basis of Eytelwein’s formula (about 1820)

WhH
Qd

Wp .

If we replace the value Ap—- in this equation by an empirical con-
Wh

stant Cp we obtain the Engineering News formula

Qd =
WhH
Ap + Cp

[8]

The so-called general equations based on assumption d take into con-

sideration all the conceivable losses of energy. These include the loss

due to the elastic compression of the pile (eq. 5), the Newtonian loss

(eq. 7), and an additional loss Eu due to the elastic compression of the

soil and of the pile cap. Substituting the sum of these losses for Ei

in equation 1 we obtain

WpH = Qd^P ri" WpH Wp(l--n^)
,
QU

Wp + W,
+

H 2AE + Ei9 [9]

The best-known representatives of this group of pile formulas are

those of Redtenbacher (1859) and Hiley (1930),

For the same values of Wp^ H, and Ap the different pile formulas fur-

nish extremely different values for the dynamic resistance Qd> This

alone should suffice to demonstrate that the theoretical evaluation of the

loss of energy Ei is void of a sound scientific basis.

According to A. E. Cummings (1940) the different methods of com-

puting the energy loss Ei are open to the following objections. Equa-

tion 5 is based on the law which governs the relation between stress and

strain under static conditions. This law is not valid for deformation

under impact. The equation also fails to include the loss of energy

due to the deformation of the soil. The Newtonian equation 7 for

the loss of energy due to impact is valid only for the impact between

bodies which are not subject to an external restraint. Newton himself

warned against the application of his theory to problems involving for

instance the impact produced by the stroke of a hammer (Newton

1726). Equation 9 contains both the Newtonian impact loss and the

losses due to elastic deformation. Newton^s theory takes into con-

sideration all the losses of energy including those due to the elastic

deformation of the colliding bodies. This fact suffices to invalidate

equation 9 regardless of whether or not the Newtonian theory of impact

applies to the problem.
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On account of their inherent defects all the existing pile formulas are

utterly misleading as to the influence of vital conditions, such as the

ratio between the weight of the pile and the hammer, on the result

of the pile driving operations. In order to obtain reliable information

concerning the effect of the impact of the hammer on the penetration of

piles it is necessary to take into consideration the vibrations which are

produced by the impact. The elements of the theory of these vibrations

and the bearing of the theory on the problems of pile driving will be

discussed in Article 162.

In spite of their obvious deficiencies and their unreliability, the pile formulas still

enjoy a great popularity among practicing engineers, because the use of these formulas

reduces the design of pile foundations to a very simple procedure. The price one

pays for this artificial simplification is very high. In some cases the factor of safety

of foundations designed on the basis of the results obtained by means of pile formulas

is excessive and in other cases significant settlements have been experienced. The
opinions regarding the conditions for the legitimate use of the formulas are still

divided: In this connection the reader is referred to a recent and very illuminating

discussion in the Proceedings of the American Society of Civil Engineers (Pile driving

formulas. Progress Report of the Committee on the Bearing Value of Pile Founda-

tions, Proc. Am, Soc, C. E,, May 1941 ;
discussions in every issue from September to

December 1941, from January to March 1942; closure in May 1942)j

53* Dynamic and static resistance of piles. The dynamic resistance,

or the resistance of the earth to rapid penetration of the pile produced

by the blow of a falling hammer, is by no means necessarily identical

with the static load required to produce a very slow penetration of the

pile. This is due to the following reasons. The rapid penetration of the

point of the pile into the soil is resisted not only by static friction and

cohesion but also by the viscosity of the soil, which is comparable to the

viscous resistance of liquids against rapid displacement. On the other

hand a rapid succession of blows on the head of the pile loosens the grip

of the soil on the sides of the pile. In extreme cases the operation of

pile driving is likely to eliminate the skin friction almost completely as

long as the pile driving lasts and for some time thereafter.

In connection with the design of pile foxmdations we are interested

only in the static bearing capacity of the piles. Hence if we should suc-

ceed in obtaining reliable information on the dynamic pile driving

resistance we would still face the task of investigating by systematic field

tests the relation between the djmamic and the static bearing capacity

under different soil conditions. Until that time the dynamic pile formulas

will continue to serve only as yardstick to help the engineer

to get reasonably safe and uniform results over the entire job (Cum-
mings 1940). However, since all the existing pile formulas are funda-

mentally deficient, it is usually preferable to use as a yardstick empirical
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rules which are based on local experience or on experience with pile

driving in different types of soil.

54. Resistance of piles against buckling. If a slender point-bearing

pile of great length is surrounded by a very soft soil it is conceivable that

the superimposed load might cause a failure of the pile by buckling.

The computation of the load required to produce a buckling failure re-

quires certain assumptions regarding the elastic properties of the sur-

rounding soil. The problem will be discussed in Article 129, which is

in the section on elasticity problems. The analysis leads to the con-

clusion that the danger of buckling is veiy remote. Hence in most

cases it can be disregarded.



Chapter IX

STABILITY OF SLOPES

55. Assumptions. In every type of soil a slope can be made high and

steep enough to induce a failure of the soil due to its own weight. If

failure occurs by shear along a well-defined surface it is called a slide.

It involves a downward and outward movement of a slice of earth as

Fig. 41. (a) Deformation associated with slope failure; (6) shear pattern in sliding

mass; (c) solid curves represent the real and dashed curves the assumed shape of

surface of sliding for slope failure (upper curves) and ba43e failure (lower curves).

shown in Figure 41a, and the sliding occurs along the entire surface of

contact between the slice and its base. If the movement does not occur

along a well-defined surface of sliding it is called a slump or a flow.

Materials with a definite yield point fail only by sliding and not by
slumping. Ideal soils are assumed to have a definite yield point.

Therefore this chapter deals only with the conditions for stability with

respect to sliding. The discussions will further be limited to slides in

144
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oohesive materials whose shearing resistance is determined by Coulomb
equation

a = c + o’tan^ 5(1)

In this equation represents the total normal stress on the surface

of sliding, including the neutral stress. It is assumed that the equation

has been obtained by tests in the laboratory under conditions of pres-

sure and drainage similar to those under which the shear failure is

likely to occur in the field (see Art. 6). The influence of known neutral

stresses on stability will be investigated independently in Chapter XII
(Art. 93). This subdivision of the treatment of the subject appeared

advisable for the following reason. When dealing with slopes on clay

we are seldom in a position to compute with reasonable accuracy the

pore-water pressure which acts in the water content of the clay at the

instant of failure. In those few cases in which the pore-water pressure

can be predicted, the stability of the slope can be investigated by
combining the methods described in this chapter with those to be

presented in Article 93.

On account of the great variety of conditions which may lead to slides,

no more than a discussion of the fundamental principles of stability

computations will be attempted.

Owing to the complexity of field conditions and to the important dijfferenceB

between the assumed and the real mechanical properties of soils, no theory of stability

can be more than a means of making a rough estimate of the available resistance

against sliding. If a method of computation is simple, we can readily judge the

practical consequences of various deviations from the basic assumptions and modify

our decisions accordingly. Complicated theories do not offer this important advan-

tage. For this reason some of the more recent theories (Brahtz 1939, Clover and

Cornwell 1941) are not included in the following discussions regardless of their

academic merits. The basic assumptions of these theories and their practical impli-

cations have been summarized and commented upon by Carrillo (1942c).

56. Slope failure and base failure. Figure 42a is a section through

a vertical bank consisting of cohesive soil with a unit weight 7. The
shearing resistance of the earth is determined by the equation

s = c *4“ c tan <f}

Under the influence of the weight of the soil the originally vertical

section ab deforms during the process of excavation as indicated in the

figure by a dashed line. Within the shaded area the soil is in a state of

tension, which leads sooner or later to the formation of tension cracks.

The conditions which determine the depth of cracks and the influence

of cracks on the state of stress in the material adjoining cracks have

been investigated by Westergaard (1933d, 1939) in connection with solid
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construction materials such as concrete, but the results of the investi-

gations are not directly applicable to the conditions which exist in the

tension zone behind a vertical bank of earth. On the basis of the results

of model tests on gelatine the author assumes that the depth of the

Fio. 42. Slope and base failure of vertical bank, (a) Angle of internal friction

0 > 0 ; (6) 0 = 0.

tension zone does not exceed one-half of the height H of the bank, pro-

vided the tension is due to gravity and not due to excessive shrinkage.

On account of periodic changes in temperature and water content the

earth fails sooner or later by tension, and if the shearing resistance of

the soil is inadequate, the tension failure behind the upper part of the

bank is followed by a shear failure along a curved and inclined surface

of sliding hei through the lower edge h of the bank. This is a hank or

slope failure. The methods of investigating the conditions for the

stability of a slope with respect to a slope failure are closely related to

those for computing the active earth pressure on a lateral support.

However, we must also consider the possibility of a failure of the base
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of the bank. With reference to a horizontal section hdi through 6 the

soil adjoining the bank acts like a uniformly distributed surcharge,

per unit of area. If this surcharge exceeds the bearing capacity of

the soil located beneath the earth adjoining the vertical face sinks

into the ground, like an excessively loaded footing. This type of failure

is called a base failure. The soil located beneath the plane Mi can

yield only toward the cut, and the shearing stresses on hd\ are small,

because the soil located above this plane participates in the lateral

expansion of the soil located below it. Therefore the shear pattern is

similar to that shown in Figure 15a. According to this figure and to

Article 16 the lower boundary of the zone of plastic equilibrium beneath

a strip adjoining the edge of the loaded area consists of two plane sec-

tions separated from each other by a curved section, as shown in Fig-

ure 41a. The plane sections rise to the horizontal at angles of 45® + <#>/2

(right-hand side) and 45® — 4>/2 (left-hand side) and the radius of

curvature of the curved section increases from the surcharge side

toward the side which carries no load. The deepest point of the base

of the zone of plastic equilibrium is located at some depth

below the plane di. The bearing capacity per unit of length of a

strip hhi with a width B adjoining the foot of the bank is roughly equal

to one-half of the bearing capacity Qd oi a strip with a width 25,

because the soil located beneath the strip can yield only to one side.

The value Qd is determined by equation 46(5). Setting Df (depth of

foundation) = 0 in this equation we obtain Qd — 2BcNo + 2B^yNy
and

Q'D = iQD = BcNc + BhNy [3]

The shearing stresses along the surface of contact bbi between the sur-

charge in Figure 42a and the supporting earth are very small. There-

fore the value of the bearing capacity factor N, is determined by equa-

tion 46 (9o) which applies to continuous footings with a perfectly smooth

base. It is somewhat smaller than the value given by the equation

46 (6a) and the value Ny is somewhat smaller than that determined by
the curve Ny in Figure 38c.

In Figure 42a the surcharge which acts on the strip bbi with a width

B = n* is equal to the wei^t of the earth, W — myH per unit of length

of the strip reduced by the shearing resistance against sliding along the

vertical section a^bi. The upper edge of this section is located at the

bottom of one of the tension cracks. Since the depth of the tension
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cracks does not exceed H/2 the shearing resistance S per unit of length

of the strip is at least equal to 0.5Hc and the total surcharge Q per unit

of length is not greater than

Q - nzHy - 0.5Fc [4]

If this surcharge is greater than Q'd (eq. 3) the soil support of the

surcharge fails by sliding along a^biid. Hence the condition for the

failure of the base of the bank is

or

Q'j) = nzcNc + n^z^yNy = nzyH — O.SHc

H =
Nc - + nzNy

7

1 ^ 0^ c

7iZ y

[5]

The value H represents the height of the highest vertical bank whose

weight can still be supported by the strip hhi in Figure 42a with a width

B = nz. For

z 91 f
n y

the surcharge on the strip is equal to zero and H = co. For z = oo

we obtain (from eq. 5) JEf == oo. For some intermediate value Zi,

determined by the condition

dz
= 0

[6]

the height H (eq. 5) is a minimum. Combining equation 6 with equa-

tion 5 and solving for zi we obtain

For 0 = 20® and 30® the value zi is approximately equal to 3.0 c/7

and 2.5 c/7 respectively. The corresponding value Hf for the height of

the bank can be computed by introducing the value zi into equation 5.

If the soil is homogeneous to a depth of more than «i, a base failure

occurs imder the weight of any bank whose height is greater than Hf
and the deepest point of the surface of sliding is located at a depth zi.

On the other hand, if the soil rests at a depth D of less than zi on a firm

stratum, the base can sustain the weight of a bank whose height is

greater than Hf. In order to compute this height we replace z in
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equation 5 by D. The corresponding surface of sliding is tangent to

the surface of the firm stratum.

For </> = 0 the bearing capacity factor Ny in equation 3 is equal to

zero (see Art. 46). Introducing Ny == 0 into equation 5 we get

Q.5c

nzy

This value decreases steadily with increasing values of z. Hence, if

0 = 0, the surface of sliding associated with a base failure is always

tangent to the surface of the firm stratum, regardless of the depth D at

which this surface is located. The height H/ of the bank required to

produce a base failure can be computed by substituting z = D. Thus
we obtain

T

0.5c

nDy

U D = 00
,
the height /// is equal to

y

[8]

[9]

In Figure 426 the surface of sliding for <#> = 0 is indicated by the line

biid. It consists of two plane sections which rise at angles of 45° to

the horizontal and an arc of a circle whose center is located at point b

(see Art. 46). The failure occurs beneath a strip with a width

B = nD = Dy/2 = 1.41Z)

and 1.41

Since the shearing stresses along bb^ are very small, the bearing

capacity factor Nc is determined by equation 46 (9d)

Nc = 6.14

Introducing the values n = 1.41 and Nc = 5.14 into equations 8

and 9 we get

Hf

c
6.14-

7

1 -
0.355c

Dy

110]
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and

H/« = 6.14^ [11]

In the preceding investigations it was assumed that there is a sharp

break in the surface of sliding at point bi (Figs. 42o and 42b). In reality

the surface of sliding is smooth, as indicated in both figures by the dash-

dotted line a^g.

Figure 41o represents a slope before and after failure. Prior to

the failure the soil located within the shaded area is in a state of tension

and the failure of a slope is always preceded by the appearance of

tension cracks. The failure occurs by sliding along a curved surface of

sliding which passes through the lower edge of the slope. The slide

involves a stretching of the upper part of the sliding mass in the direction

of the slope and a compression of the lower part in the same direction.

The corresponding shear pattern is represented in Figure 41&. In the

lowest part of the sliding mass the shear pattern is similar to that shown

on the left-hand side of the vertical section rs in Figure 13o (passive

failure), and in the uppermost part it has some resemblance to that

shown on the right-hand side of rs (active failure). The zone of tran-

sition between these two shear patterns is comparable to the zone of

radial shear which separates the active and the passive Rankine zones

in Figure 15a.

An inclined slope can also fail on accoimt of inadequate bearing capac-

ity of its base, as indicated in Figure 41c for a material whose angle of

shearing resistance <i> is equal to zero. The question whether the failure

of a bank will be a slope or a base failure can only be decided on the

basis of the results of a stability computation. In order to simplify

the investigation we replace the surface of sliding through the lower

edge 6 of the slope (slope failure) by an arc of a circle with a radius ri,

whose center is located at Oi, and the composite surface of sliding associ-

ated with a base failure by an arc of a circle with a radius r2 whose

center is located at O2. Circles through the toe b are called toe circles in

contrast to midpoirit circles, which intersect the lower horizontal surface

of the ground at some distance from the toe. The cohesion required

to prevent a slip along any arbitrary toe circle is the required cohesion

Crt and the corresponding value for an arbitrary midpoint circle is

the required cohesion c™,. A slope failure occurs along that toe circle

for which Crt is a maximum Cet, and a base failure occurs along that

midpoint circle for which Cm is a maximum Ccn- These two circles will

be called the critical toe circle and the critical midpoint circle respectively.

The critical toe drcle can be compared to the surface of sliding in the
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backfill of a yielding retaining wall and the midpoint circle to that

beneath an overcharged, continuous footing. The cohesion values Cct

(critical toe circle) and Ccm (critical midpoint circle) represent the critical

cohesion values. The methods for locating the position of the critical

circles will be described in Articles 68 to 61. The critical cohesion

values can be determined by means of the friction circle method (Art. 40).

If a midpoint circle similar to the circle Cm, in Figure 41c is substituted

for the real surface of sliding a2id in Figure 426 we obtain for the critical

height /f/oo corresponding to a depth factor ^ instead of

= 5.14 -
y

the value

£f/ao = 5.52- [12]
7

involving an error of 7.4 per cent on the unsafe side. However, when
dealing with inclined slopes, the error due to the assumption of a circu-

lar surface of sliding is likely to be much less important.

The ratio of the critical cohesion value Cct for a toe circle to the

critical cohesion value Ccm for a midpoint circle (Cct/Ccm) niay be greater

or smaller than unity. If Cct/Ccm is greater than unity we have to antici-

pate a slope failure because the cohesion Cct required to prevent a slope

failure is greater than Ccm- Oo the other hand a value of Cct/Com smaller

than unity indicates the danger of a base failure. At a given height H
of a slope the value of the ratio Cct/ccm depends on the slope angle and on

the angle of shearing resistance In many instances it also depends

on the depth D at which the soil rests on a firm stratum. The ratio

(D + H)/H will be called the depth factory The influence of the

depth factor on the stabihty conditions will be discussed in Articles 58

to 61.

The replacement of the real surface of sliding by an arc of a circle has been sug-

gested for the first time by Petterson. The methods based on this substitution have

been further developed by Fellenius (1927) and Taylor (1937). Rendulic (19366)

proposed replacing the real surface of sliding by a logarithmic spiral. However,

Taylor (1937) has shown that the results obtained by means of the corrected friction

circle method (Art. 40) and by the spiral method are practically identical. Since

the friction circle method is more convenient than the spiral method, the latter will

not be considered. Attempts to solve the problems pertaining to the stability of

slopes by means of the analytical methods of the theory of plasticity have been

made by Frontard (1922) and J4ky (1936). Frontard disregarded the existence of

a sone of transition between the Rankine states which prevail in the vicinity of the

upper and the lower edge of the sliding masses. That is, he replaced arbitrarily the



152 STABILITY OF SLOPES Art. 56

continuous shear pattern shown in Figure 415 by the discontinuous shear pattern

shown in Figure 13a (Terzaghi 1936a). J4ky assumed that the slide occurs along an

arc of a toe circle which intersects the slope at an angle of 45® — <^/2. The real

surface of sliding intersects the slope at an angle of 45® — ^/2, but it is not justifiable

to assume that the simplified circular one does so. The errors associated with

these procedures are excessive. Furthermore neither of the two investigators

considered the possibility of a base failure and their methods of computation are

very complicated. For these reasons the proposed advanced methods cannot be

considered satisfactory.

In order to familiarize the reader with the methods of computation,

the individual problems connected with the stability of slopes will be

taken up in the following sequence. First we consider the conditions

for the stability of vei*tical banks, because they are similar to those

for the stability of the backfill of a retaining wall. Then we solve in

succession the following problems: (a) computation of the critical co-

hesion for plane inclined slopes; (6) computation of the critical

cohesion for an uneven slope on a stratified mass of soil; and (c) compu-

tation of the factor of safety of a given slope with respect to sliding.

On account of the important influence of the angle of shearing resist-

ance 0 on the type of failure of a slope (slope or base failure), these

problems will first be solved on the assumption that </> = 0 (Arts. 58

and 59) and then on the assumption that </> > 0 (Arts. 60 and 61).

When dealing with these problems the existence of tension cracks will

be disregarded. The influence of tension cracks on the stability of

inclined slopes will be discussed in Article 62.

57. Critical height of vertical banks. The uppermost part of the

soil adjoining a slope is in a state of tension, provided the slope angle is

greater than the angle of shearing resistance </> in Coulomb ^s equation.

The critical height of a slope is the maximum height which the slope

can have before the state of tension is relieved by the formation of

tension cracks.

In the following computation of the critical height of vertical slopes

it is assumed that the failure occurs along a surface of sliding through

the lower edge of the bank (slope failure). Subsequently it will be

shown that this assumption is justified for any value of 0. The shear-

ing resistance of the earth is determined by Coulomb's equation

s = c + cr tan 0 6(1)

The crudest and simplest method of estimating the critical height of

vertical banks is based on the assumption that the soil adjoining the

vertical face of the bank is in an active Rankine state. On this assump-

tion the surface of sliding hd in Figure 43a is plane and rises at an angle

of 45® + ^/2 to the horizontal (see Art. 12). If a semi-infinite cohesive
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mass is in an active Rankine state, the total horizontal pressure Pa
on a vertical section between the surface and depth H is determined by
the equation 14(3)

wherein = tan^ (45° + 0/2) is

the flow value. If

H = £re = 4-v^ II]
7

the total pressure Pa on the verti-

cal section vdth depth He is equal to

zero. For 0 = 0 the flow value is equal to unity and

He = 4- [2a]
7

However, the analogy between a vertical section with a height He and

an unsupported vertical face with a height He is not perfect, because the

state of stress along these two vertical planes is different. The upper

part of the vertical section is acted upon by tensile and the lower part

by compressive stresses as indicated in Figure 11c, and the soil located

between the section and the inclined face of the sliding wedge is in a

state^ of plastic equilibrium. On an unsupported vertical bank the

normal stresses are everywhere equal to zero and the soil located above

the potential surface of sliding passing through the foot of the bank

remains in a state of elastic equilibrium. This condition affects both

the critical height and the shape of the surface of sliding. Experience

shows that the surface of sliding is distinctly curved. Assuming a

circular line of sliding, Fellenius (1927) showed that

He = 3.85- [2b]

y

This value is only 5 per cent smaller than the value given by equation 2a,

and if 0 is greater than 0° the error is still smaller. Hence in connection

with estimates, equations 1 and 2a are accurate enough that the curvature

of the surface of sliding through the foot of a vertical bank can be dis-

regarded. In the following investigations, which deal with the influence

of tension cracks on the stability of vertical banks, it will be assumed that

this surface is plane.

The upper part of the soil adjoining the face of the bank is in a state

Fig. 43. Conditions for stability of

vertical bank after tension cracks

have developed.
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of tension, as indicated in Figure 42a by a shaded area. If one of the

tension cracks intersects the potential surface of sliding bd in Figure 43a

at a depth z below the surface, the w^edge-shaped body of soil aiddi

does not participate in a slope failure. The conditions for the equi-

librium of the adjoining body aaidib with a weight W per unit of length

are represented by the polygon of forces shown in Figure 436. The
weight is

1

The cohesion which acts along bdi is

W = iyiH^- z^) tan ^45° - “ 2")

C= (H-z)'

(«' -
1)

cos

and the reaction F acts at an angle of 0 to the normal on 6di. From
the polygon of forces we obtain

or

W = iy(H^ - z^)
1

= 2C cos 2c(H - z)

H = H' = 4-V¥^-z = Hc-z [3]
7

wherein He is the critical height determined by equation 1. Under

normal conditions the depth of tension cracks does not exceed about

one half of the height of a vertical slope. Assuming z = H[I2 we obtain

from equation 3

=^ = 2.67-Vi^ [4]
3 7

and, for 0 = 0 involving = 1

ff^ = 2.67- [5]

y

Ht represents the maximum height of a bank which has been weakened

by tension cracks. If the height of an unsupported vertical bank does

not exceed (eqs. 4 and 6), the bank can be expected to remain stable

indefinitely, imless the conditions for its equilibrium are changed, for

instance by the accumulation of surface waters in the open tension

cracks.

It remains to justify the initial assumption that there is no dai^;er
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of a base failure of an unsupported vertical bank. If 0 = 0, the base

of the bank does not fail unless the height of the bank is greater than

Hf (eq. 56(8)). This height decreases with increasing values of the

depth factor^ nz) = (D + H)/H, For tid = ^ it assumes its mini-

mum value

F/« = 5.14- 56(11)
y

Even this minimum value is considerably greater than the critical height

He = 4c/7 (eq. 2a).

Similar investigations have shown that the ratio Hf/Hc increases

rapidly with increasing values of the angle of shearing resistance
<f>.

These results are in accordance with our initial assumption.

58. Stability factor and critical circle if
<J)
= 0. In Figure 44a be

is an arbitrary toe circle through the toe b of an inclined slope ab, which

rises at an angle /S to the horizontal. Its position with reference to the

slope is determined by two angles. We select for the sake of con-

venience the slope angle a of the chord be and the center angle 26, Let

W = weight of the body of earth abfe per unit of length of the slope,

lyj = lever arm of the weight W with reference to the center 0 of the

toe circle,

r = radius of the toe circle,

la = length of the arc

Cr = cohesion per unit of area required to prevent a sliding move-
ment along be.

Since 0 = 0 a slide along be is resisted only by the cohesion, Crla per

unit of length of the slope. Equilibrium requires that the sum of the

moments about the center O of rotation should be equal to zero,

Wlto ~ Crlar = 0

or

c-W^ HI

A computation of the values W, Zu>, and la from the geometrical data

shown in the figure demonstrates that

Cr = yH
1

HctM
[2a]

wherein y is the unit weight of the soil aadf{a,fi,0) is a function of the

angles a, 0, and 6. The slope failure occurs along that toe circle for

which Cr is a maximum (critical toe circle). Since the slope angle 0 is
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Fig. 44. (a) Slope failure along critical toe circle; (b) values of the angles a and 6 in

section (a) plotted against slope angle /3; (c) diagram demonstrating that base

failure in homogeneous soil must occur along a midp)omt circle. (After FeUenius

1927.)

a constant, the position of the critical toe circle is determined by the

condition

dCr

da
0 and “ = 0

dd
12&]

Solving these equations and substituting the values of a and d thus

obtained in equation 1 one gets for the cohesion c® required to prevent a

slip along the critical toe circle

yH
^
yH

fia, |3, e)
~

AT.
[3]

wherein iV« is a pure number, called the stability factor, whose value

depends only on the slope angle. If the cohesion has a ^vea value, the

available cohesion c, while the height of the slope is variable we obtain
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from the preceding equation

7
[4]

The height He is the critical height of an inclined slope. It corresponds

to the critical height of vertical slopes, determined by equation 67(26).

The stability factor is an analogue to the bearing capacity factor

Ne (Art. 46). Fellenius (1927) has solved equations 2 for different

values of The results of his computations are graphically repre-

sented in Figures 446 and 45a. In Figure 446 the values of a and 6 have

been plotted against the slope angle They determine the position

of the center of the critical toe circle. If /S = 60°, a is equal to

d and the tangent to the toe circle at the toe of the slope is hori-

zontal. The values of the stability factor with respect to a failure along

a critical toe circle Ng are given by the ordinates of the curve aABh in

the diagram in Figure 45a. They increase from 3.85 for jS = 90° to

8.36 for = 0. The ordinates of the plain curve, marked 0 = 0 in

the diagram in Figure 45c represent the depth factor

nD
D + H
H [5]

for the deepest point of the surface of sliding along a critical toe circle.

For slope angles of more than 60° (right-hand side of point C on the

curve aAh in Fig. 45a) the depth factor is equal to unity. The surface of

sliding rises from the toe of the slope toward the slope. On the other

hand, if /3 < 60°, the deepest part of the surface of sliding is located

beneath the level of the toe of the slope, as shown in Figure 44a.

In order to investigate the conditions for the equilibrium of an in-

clined slope with respect to a base failure, we examine the forces which

act on the body of earth ahdmie (Fig. 44c) located above an arbitrary

midpoint circle dmie. The center of this circle is assumed to be located

on a vertical line through the midpoint m of the slope. The cohesion Cr

required to prevent a slide along the circle is determined by equation 1,

If we let the center 0 of the circle and the arc dmie be fixed while we

shift the slope through a distance Al toward the left, we increase the

weight W by AW and reduce the moment by AWAl/2. On the other

hand, if we shift the slope in a similar manner through a distance Al

toward the right, we reduce the weight W by ATT, but at the same
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time we also reduce the moment about point 0 by AWAl/2. In either

instance the moment which tends to produce the slide decreases while the

moment of the resisting forces c laT remains unchanged. Hence the ver-

tical line through the midpoint m of the slope is the locus of the centers

of the circles for which the moment tending to produce sliding is a

maximiun. All these circles are midpoint circles. The position of a

midpoint circle with reference to the slope is determined by two dimen-

sionless quantities, for instance the depth factor wz) = (D+H)/H
and the ratio

nx = H [6]

between the horizontal distance dh in Figure 44c and the height of the

slope. A computation of the values TT, and la in equation 1 from

the geometrical data shown in Figure 44c shows that

Ct = yH
1

/(/3, n*, ud)
[7a]

wherein y is the unit weight and /(/3, n*, nc) is a function of the values

/3, n*, and no. The values no and n* for the critical midpoint circle

must satisfy the further condition

-— = 0 and -— = 0
dno dUx

[76]

These equations are satisfied, if

njj = 00 and He = 6.52- [8]

y

for any value of the slope angle /8. The value He is identical with the

value given by equation 56(12). In Figure 45a equation 8 is repre-

sented by the horizontal line cd. It intersects the Nt line for the critical

toe circles at point A with an abscissa /3 = 63'*. Hence, if the elope

angle /3 is less than 53“ there are two possibilities. If the surface of the

ground adjoining the toe of the elope is horizontal one has to expect a

base failure and the corresponding critical height He (eq. 8) is inde-

pendent of the slope angle 0. On the other hand, if the surface of the

ground adjoining the toe rises as shown in Figure 456, the weight of

the soil located beneath the counterslope prevents a base failure and

one has to anticipate a slope failure along a critical toe circle. The
corresponding values of the stability factor N, are represented by the

ordinates of the curve ABh.

In the preceding discussions it has been tacitly assumed that the
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Fig. 46. (a) Relation between slope angle |8 and stability factor JV, for different

values of depth factor nn and of angle of internal friction
; (6) diagram illustrating

condition which excludes possibility of a base failure; (c) relation between dope

angle and depth factor n© for different values of n* (see Fig. 44c) and of

{Based on data published by D, W. Taylor 19S7i)

Such a limitation to the depth of the deepest point of the surface of

sliding is likely to influence the critical height with respect to both
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slope and base failures. If for instance the surface of the firm stratum

intersects the critical toe circle shown in Figure 455, the failure will

occur along some circle tangent to this surface. This circle may either

be a toe circle or it may intersect the slope at some distance above the toe

(slope circle).

The deepest point of the critical midpoint circle corresponding to

equation 8 is located at depth infinity. If a firm stratum prevents the

surface of sliding from extending into the ground to a depth greater

than Z), the critical midpoint circle is tangent to the surface of the firm

stratum and the depth factor is equal to

H+D

Since the value of the depth factor is determined by the depth at

which a firm stratum is located the first of the two conditions expressed

by equations 75 becomes immaterial and the position of the critical mid-

point circle with reference to the slope is determined by the second one,

which is

By means of this equation we obtain for the cohesion Ce = Crmax

required to prevent a base failure at a given height of the slope the

equation

The value of the stability factor depends on the slope angle and

the depth factor If the cohesion is given, the corresponding critical

height of the slope is

Hc=^-N,
y

This equation is identical with equation 4, but the numerical values

of N, are different, because the value N, in equation 4 corresponds to

critical toe circles and those in the preceding equation to critical mid-

point circles.

The influence of the depth factor on the stability factor N, is

determined by the curves marked njy = 1, 1.2, etc., in Figure 45a.

These curves have been plotted on the basis of the results of theoretical

investigations by Taylor (1937). It is obvious that the influence of the

depth factor on the stability conditions is limited to slopes which rise

at an angle 0 of less than 60°, because it has been shown above that
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steeper slopes fail only along critical toe circles. Ji > 60®, the entire

surface of sliding is located above the level of the toe and the corre-

sponding stability factors are given by the ordinates of the curve aA
in Figure 45a. The danger of a base failure does not exist for such

slopes.

For slope angles ranging between 53® and 60®, represented by the

abscissas of the points C and A respectively, there is also no danger of

a base failure. However, if the depth factor n2> is very small, the

critical toe circle intersects the firm stratum, which prevents a failure

along this circle. Thus if n/) = 1 the failure occurs along a circle which

intersects the slope. The corresponding values of the stability factor

Ng are represented in Figure 45a by the ordinates of the dash-dotted

line marked n/) = 1 which starts at point C.

If the slope angle /3 is smaller than 53° (abscissa of pointA in Fig. 45a),

three different possibilities must be considered independently, viz.,

(a) the depth factor is greater than about 4.0, (6) ni) is intermediate

between about 1.2 and 4.0, and (c) is smaller than about 1.2.

() Jinn is greater than about 4.0 the stability factor is practically

independent of the slope angle unless the slope angle jS is smaller than

about 15®. For every value of /3 in excess of about 15®, Ng is equal to or

slightly greater than 6.52, as indicated by the horizontal line Ad in

Figure 45a. The slope fails along a midpoint circle tangent to the firm

stratum.

() If ni> has a value between about 1.2 and 4.0, the curve which

represents the relation between and Ng can be obtained by interpola-

tion between the curves marked no = 1.2, 2.0, and 4.0. Each one of

these curves branches off from the plain curve AB at a point with an

abscissa /Si. If the slope angle is greater than jSi, the failure occurs along

a critical toe circle. For such values the stability factor is given by the

ordinates of aAB. If the slope angle is smaller than jSi, Ng is deter-

mined by the ordinates of an nx)-curve. Each one of these curves, for

instance the curve tid = 1.5, starts almost horizontal and becomes

steeper toward the right. Every point located beneath the shaded area

represents failure along a midpoint circle. Every point located within

the shaded area corresponds to a toe circle, and every point located

above it to a slope circle. In either instance the circle is tangent to the

surface of the firm stratum.

(c) If n/) is smaller than about 1.2, the failure occurs either along a

toe or a slope circle tangent to the firm base. The curve which repre-

sents the relation between jS and the stability factor Ng can be deter-

mined by interpolation between the two curves marked nj[> « 1 and

ni) 1.2. Every point of such a curve located within the shaded area
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represents a failure along a toe circle. Points located above tlis area

represent failures along slope circles.

The critical midpoint circles intersect the lower horizontal surface of

the ground at a distance fixH from the toe of the slope. Since the

centers of the circles are located on a vertical line through the midpoint

of the slope, and since the circles are tangent to the firm base, the value

Ux determines the position of the circles with respect to the slope. It

can be estimated by means of the diagram, Figure 45c. In this diagram

the abscissas represent the slope angle and the ordinates the depth

factor. Every point located above the curve A'B'e' represents a critical

midpoint circle tangent to a firm stratum with the depth factor ud.

For any given value of and ud the corresponding value of can be

estimated by interpolation between the curves marked n* *= 0 to 3.

In order to visualize the influence of the depth factor njo on the type of failure and

on the stability factor we examine the diiferent possibilities for the failure of a slope

with a slope angle = 20®. By interpolation we find that the points with an

abscissa /3 = 20® of the two boundaries of the shaded area in Figure 45a are located

on Nt curves corresponding to values of njo =1 .40 and 1.18 respectively. For values

of fiD between « and 1.4 the stabihty factor increases from 6.52 for tid = « to 7.0

for fiD = 1.4 and the slope fails along a midpoint circle. For values of tid == 14 to

1.18 the slope fails along a toe circle tangent to the surface of the firm bottom stratum,

and the value of Ng increases from 7.0 to 7.9. For values between 1.18 and 1.0 the

slope fails along a circle which intersects the slope and the value of N, increases from

7.9forni) = 1.18 to 9.4fornzj « 1.0.

59. Stability computations if <|> = 0. The following problems are

likely to be encoimtered in practice: (o) the cohesion of a bed of soft

clay is known and we want to determine the slope which should be

given to the sides of a cut with a given depth; (6) a slide has occurred

and we want to determine the average value of the cohesion of the

clay prior to the slide; and (c) we want to determine the factor of safety

of an existing slope on clay with a known but variable cohesion.

The first problem can be solved rapidly by means of the data con*

tained in the diagram in Figure 45a. To illustrate the procedure, let

us assume that we intend to make a cut with a depth of 20 feet in soft

clay. The shearing resistance of the clay is c = 500 pounds per square

foot and the unit weight is 120 pounds per cubic foot. The slope angle

of the sides of the cut should be so selected that the factor of safety with

respect to sliding is equal to 1.5. In order to satisfy the safety require-

ment the critical cohesion value should not be greater than
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Substituting H = 20 feet, y = 120 pounds per cubic foot and

Ce “ 333 pounds per square foot in equation 58(3) we obtain

or

Cc — 333 •"
yH
N,

120-20

N.

N, = 7.18

This value is greater than the ordinate of point A in Figure 45a.

Therefore the admissible slope angle depends on the depth factor. If

the firm base of the bed of clay is located at the level of the bottom of

the cut, the depth factor no equation 58(5) is equal to unity. A value

of N, = 7.18 corresponds on the N, curve for ni> = 1 to an abscissa of

fi = 33®. Since the point representing N, = 7.18 is located above the

shaded area the critical circle intersects the slope. On the other hand,

if the clay rests at a depth of 10 feet below the bottom of the cut on a

stratum of hardpan, the depth factor is == 1.5. For N, = 7.18 we
obtain from the curve marked no = 1.5 the value /3 = 17®30^ The
corresponding point on the curve is located a very short distance below

the lower boundary of the shaded area. Therefore the critical circle is

a midpoint circle which intersects the bottom of the cut in the immedi-

ate vicinity of the toe of the slope. It touches the solid base at a point

located on a vertical line through the midpoint of the slope.

The preceding example demonstrates the decisive influence of the

depth factor no on the safe value of j8, if 0 = 0 and N, > 5-5.

The second problem is illustrated by Figure 46o, which is a section

through a slide. The unit weight of the clay is y and the shape of

the surface of sliding e/d has been determined by means of test pits.

We also know from observations in the field the approximate depth

De of the tension cracks which had developed prior to the slide. In

order to determine the cohesion Cr which resisted the slide at the instant

of failure we trace an arc of a circle ej/di following as closely as pos-

sible the real curve of sliding efd. The radius of the circle is r and its

center is located at 0. The cohesion c, is assumed to have acted over

the length la of the arc, between di and point 62 located at a depth De
below the upper edge of the slope. The weight of the earth located

above the arc ea/di is W per unit of length of the slope. Before the slide

occurred the lever arm of the weight W with respect to the center of

rotation O was The cohesion is determined by the eqtiation

Wl„
58(1)
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The third problem deals with failure by sliding if the slope is uneven
and the earth located beneath the slope is nonhomogeneous. Figure 466

illustrates the procedure. It represents a vertical section through an
uneven slope on soft clay. The mechanical properties of the clay have

Fig. 46. (a) Replacement of real curve of sliding (solid line) by a circular one;

(6 to d) base failure in clay for which ^ 0: (6) beneath slope on stratified, cohe-

sive soil; (c) beneath retaining wall; and (d) beneath quay wall on pile foundation.

been investigated by means of laboratory tests on undisturbed samples.

On the basis of the results of the tests we subdivide the bed of clay into

several strata with an average cohesion ci, C2 ,
• •

•
, Cn* Then we trace

an arc of a circle efd in such a manner that the sections of the arc located

within the softest strata are as long as possible. The center of the

circle is 0, the center of gravity of the clay located above the arc is
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Og and the weight of the body aefd is W per unit of length of the slope.

The driving naoment is resisted by the moment Mg of the cohesion

n

1

wherein Ain is the length of that part of the arc which is located within

a stratum with the cohesion Cn* The factor of safety of the slope with

respect to sliding along the arc efd is

_ ___!

Wl^ Wly, [1 ]

This investigation must be repeated for different circles. The factor

of safety of the slope is equal to the smallest value of Gg thus obtained.

The procedure is entirely one of trial and error.

The preceding method of investigating the stability of slopes can

also be used if a bank is supported by a structure such as a retaining wall.

Figure 46c is a section through a retaining wall with a height sup-

porting a vertical bank of soft homogeneous clay. The clay rests at a

depth D = if on a hard stratum. Hence the depth factor ni> is 2.

If the retaining wall is strong enough to withstand the lateral earth

pressure Pa without tilting or sliding, there is no danger of a slope

failure. Hence only the possibility of a base failure needs to be con-

sidered. For the purpose of a rough estimate the difference between the

unit weight of the concrete and that of the clay can be disregarded. If

the two unit weights are equal, the stability conditions of the retaining

wall are identical with those for an unsupported slope ab with respect to

a base failure beneath such a slope. Since the depth factor is equal

to 2.0, the stability factors for failures along midpoint circles are deter-

mined by the curve no = 2 in Figure 45a. If we continue this curve

toward the left until it intersects the left-hand boundary of the diagram

(not shown in the figure) we find that the stability factor for a slope

angle /3 = 80® is equal to 5.60. For the corresponding critical height

of such a slope we obtain from equation 58(4)

If the retaining wall is higher than He the base of the wall fails along

a midpoint circle tangent to the surface of the firm stratum, as shown
in the figure, though the wall may be strong enough to prevent a slope

failure. The movement of rotation about 0 involves both the wall and

the adjoining mass of clay.
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In order to get a more accurate value for the critical height Ho of the wall the

excess of the weight of the wall over that of a body of clay with equal dimensions must
be taken into account. The excess weight alters the position of the center of the

critical circle and it reduces to some extent the value of the stability factor No* The
problem of determining the corrected value of No can be solved by trial and error.

Figure 46d is a section through a quay wall on a pile foundation. On
account of the shearing strength of the piles the potential surface of

sliding efd clears the piles. The free water located on the left-hand side

of the wall represents a stratum whose unit weight is equal to and
whose cohesion is equal to zero. The cohesion of the other strata is

Cl, C2 ,
etc. The weight W represents the weight of everything located

above c/d, including that of the wall and the water, per unit length of

the wall. The factor of safety with respect to sliding is determined by
equation 1. The location of the critical circle can be ascertained by trial

and error, as described before in connection with Figure 466. The
earth pressure wliich acts on the structures shown in Figures 46c and 46d

does not enter into the computations, because it represents an internal

force. The only forces which need to be taken into consideration are

the mass forces represented by the weight W and whatever external

forces may act on the soil located above the surface of sliding.

If one of the strata shovm in Figures 466 and 46d is very much softer

than the others, the surface of sliding may not be even approximately

circular. In this case we have to operate with composite surfaces of

sliding as explained in Article 63.

As a last example we examine the effect of a draw-down of the water

level in a lake or in a reservoir on the stability of the confining banks

or slopes. The method of computation will be explained by means of

the section shown in Figure 46d. In this section, W represents the

total weight of the soil and the water located above the surface of sliding

efd, per unit of length of the quay wall. The overturning moment is

Wly, and the factor of safety against sliding is determined by equa-

tion 1,
n

r^CnAln

When the water level is lowered to a level below that of point g in

Figure 46d, the total weight W of the mass of soil and water located

above the surface of sliding egd is reduced by the weight W' of the body

of water abgd. The force W' acts at a distance from the center of

rotation 0. Hence the lowering of the water level increases the over-

tuming moment from Wl^, to Wlv, + W'V„- The moment produced
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by the cohesion forces, represented by the numerator on the right-hand

side of the equation remains unchanged. Hence, if one disregards the

influence of the draw-down on the position of the critical circle, one

obtains for the factor of safety after the draw-down
n

T^Cn^ln

"" wu + w'C

If greater accuracy is required, it is necessary to determine inde-

pendently the position of the critical circle after draw-down by trial and

error, as described in the preceding paragraphs.

60. Stability factor and critical circle if <j> >0. If the angle of

shearing resistance 0 is greater than zero, the shearing resistance of the

soil is determined by Coulomb's equation

s » c + <r tan 0

According to Article 66 a slide may be caused by either a slope or a

base failure. Slope failures occur along a critical toe circle. In Figure

44a, be represents an arc of an arbitrary toe circle. Retaining the

symbols which have been used in Article 58 in connection with Figure 44a,

we find, on the basis of the geometrical data shown in the figure, that

the cohesion required to prevent a slip along be is

Cr = yH
1

F(a,^,<?,0)
II]

This equation is identical with equation 58 (2a), except inasmuch as

the function in the denominator contains the angle of shearing resistance

0. The position of the critical toe circle is determined by the condition

dCr

da
= 0 and

Solving these equations one gets for the cohesion Cr = Cc required to

prevent a slip along the critical toe circle.

yH yH
F{a, ft 6, 0)

“ N. [2]

This equation is an analogue to equation 58(3). However, the sta-

bility factor Ng contained in equation 2 depends not only on the slope

angle but also on the angle 0. Figure 45a shows the relation between

the slope angle /3 and the stability factor for 0 = 4°, 6®, 10®, 15®

20®, and 25® (Fellenius 1927). If the cohesion and the slope angle are
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given, we replace c* in equation 2 by c and H by the critical height Hg
and obtain

Hg^-N, [3]

y

All the points located on the right-hand side of the dotted curve CCis correspond

to toe circles whose deepest point is located beneath the level of the toe. The re-

lation between the slope angle and the corresponding depth factor nj> for the deepest

point of the critical toe circle is shown by the plain curves marked ^ = 6° and

^ = 10° in Figure 45c. If the critical toe circle intersects the surface of a firm

stratum, i.e., if the depth factor for the critical toe circle is greater than the depth

factor riD for the surface of the firm stratum on which the earth rests, the slide

occurs along a circle tangent to the surface of this stratum. The smallest value

which riD can assume is unity. For ni> = 1 and = 6° the stability factors are

represented by a dash-dotted curve, labeled wd == 1, through point Cs. The differ-

ence between the ordinates of this limiting curve and the plain curve labeled 0 = 5°

is insignificant. With increasing values of 0 this difference decreases. Therefore

one is justified in disregarding the influence of the depth factor on the stability

factor for values of 0 in excess of a few degrees.

At a given value of the slope angle jS, the stability factor increases

with increasing values of 4>. If Ns^ is the value of A, for given values

of jS and <#> and A,o is the corresponding value for 0 = 0® on the curve

aABb, the ratio

N.0
[4]

represents the friction index. Its value indicates the influence of the

frictional resistance on the critical height at given values of j8, c, and
If Hcq is the critical height for = 0, the critical height for a given

value is

ffc* = n^co [51

If /3 == 0, the friction index n^ is equal to infinity. The cohesion re-

quired to prevent a slip along a toe circle through the toe of a slope with

height H is

7^
Ng^

For 0 = 0 the value Ce^ becomes equal to Cgo and the value equal to

N,o, whence

c«o
Ngo

Since = «^«o we get

N, 1 1
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The influence of 0 on the values of and on the location of the critical

circle has been investigated by Fellenius (1927). Figure 47a shows

the relation between
<f> and l/n^ for different slope angles Figure 476

Fig. 47. (a) Relation between angle of internal friction and reciprocal value of

friction index n^; (6) location of center of critical toe circle and corresponding value

of n^for different values of <t> at given slope angle; (c) influence of value of on

position of center of critical toe circle for different values of slope angle /S. (Dio-

grama a and b after Fellenius 1927^
and c after D. W. Taylor 1937,)

illustrates the influence of on the position of the center of the critical

toe circle for /3 = 18^26' (slope 1:3). With increasing values of

the volume of the earth located between the slope and the surface of

sliding decreases and for = oo it becomes equal to zero. Figure 47c

shows the influence of the angle of shearing resistance on the position of

the center of the critical toe circle for different values of the slope

angle jS, according to Taylor (1937).

The base failure of an inclined slope occurs along a midpoint circle.

The center of the critical midpoint circle is always so located that the

friction circle is tangent to a vertical line through the midpoint m of the
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slope as shown in Figure 48. This statement can be verified by reason-

ing analogous to that set forth in Article 58 and illustrated by Figure 44c.

The principle of the friction circle has been explained in Article 40.

K we compute the cohesion Cc required to prevent a slip along a critical

midpoint circle, we arrive at

an equation

yH
N,

which is similar to equation 2,

and for the critical height He
we obtain

He = -N,
y

which is similar to equation 3. The value of the stability factor Na
depends on <t> and on the depth factor Ud- By computing the values of

Na for different values of /3, and it was found that there is no

danger of a base failure beneath an unsupported slope unless the angle

of shearing resistance <l> is smaller than about 5® and the slope angle is

smaller than about 10°.

U the stability conditions for a given slope are represented by a point located on

the right-hand side of the dotted line aA lo in Figure 45a the critical circle is likely

to be a midpoint circle. Yet for any value of ^ greater than about 6® this midpoint

circle is almost identical with the critical toe circle. The corresponding stability

factor for ^ 6° is represented by the ordinates of the dash-dotted curve through

Ai in Figure 45a. This curve is so close to the plain curve for = 6® that the

difference can be disregarded. For greater values of ^ it is still more insignificant.

If 0 > 0 typical base failures occur only beneath structures such as

retaining walls on pile foundations or quay walls similar to that shown

in figure 46d, whose foundation excludes the possibility of a failure at

a shallow depth. The essential condition of the occurrence of a typical

base failure is a very low value of the angle of shearing resistance

On account of the rule illustrated by Figure 48, the center of the critical

midpoint circle moves with increasing values of <t> away from the slope.

In addition it has been found that it moves with increasing values of 4>

slightly downward. For any value of 0 the center angle 2B ranges be-

tween about 100° and 135°.

61. Stability computations if
<t^ > 0. The following problems may

be encountered in practice: (a) We want to determine the slope which

can be given to the sides of a cut in fairly homogeneous soil with

known values of c and (&) we want to determine the factor of safety
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of a given slope in nonhomogeneous soil; and (c) we inquire about

the factor of safety of a retaining wall or a quay wall with respect to a

base failure.

As an example of the problems in the first category we modify the

problem which was solved at the beginning of Article 59 by assuming

that the angle of shearing resistance <t> is equal to 6° instead of 0®. The
depth of the cut is assumed to be 20 feet, the cohesion c = 500 pounds

per square foot, the unit weight y = 120 pounds per cubic foot, and
the factor of safety with respect to sliding Gg = 1.5. In order to satisfy

the safety requirement we replace the available cohesion c by

Cc = ^ = 333 Ib/sq ft

and the available coefficient of shearing resistance tan 0 by

tan <t>e
= tan • 0.105 = 0.070

Gg 1.5

or 4>e = 4°. Substituting the values H = 20 feet, y — 120 pounds per

cubic foot and Cc = 333 pounds per square foot in equation 60(2) and

solving for Na we obtain

Na = 7.18

This value corresponds on the curve marked ^ =« 4® in Figure 45a to

a slope angle jS = 42°. For slopes as steep as 42° the danger of a base

failure does not exist, and if the earth rests at a very shallow depth

below the foot of the slope on a firm stratum, the safety requirement is

satisfied even for a slightly steeper elope. Hence if the sides of the cut

are made at an angle 42° to the horizontal, the safety requirement is

satisfied regardless of the value of the depth factor no- On the other

hand, if 0 = 0 (Art. 59) the admissible elope angle ranges between
33° fornx> = 1 and 17°30^ for np “ 1.5. This example illustrates the

decisive infiuence even of a small angle of shearing resistance on star

bility. This influence is chiefly due to the fact that the angle of shearing

resistance required to eliminate the danger of a base failure beneath

slopes with a slope angle of more than about 20° is extrmely small.

A slight increase of the cohesion with depth has a similar effect. Hence,

if we experience a base failure in a cut in soft clay we know that the

cohesion did not materially increase with depth and that the angle of

shearing resistance did not exceed a few degrees.

Figure 49a is a section through an uneven slope on a sandy clay

whose cohesion varies with depth. The average value of the angle of

shearing resistance is If 0 is greater than about 6° the critical
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circle passes through the toe of the slope, unless there is an excep-

tionally soft layer located beneath the level of the bottom of the cut.

However, this possibility will not be considered. In order to estimate

the factor of safety of this slope with respect to sliding w e trace through

the toe of the slope an arc of a circle bde in such a manner that the

Fig, 49. (a) Forces which act on soil above arbitrary cylindrical section through

stratified cohesive soil beneath slope; (h) graphic method for locating position of

critical circle.

sections of the arc located within the softest strata are as long as possible.

Then we determine, for instance, by means of a polygon of forces (not

shown in the figure) the resultant Ca of the cohesion which acts along

the circle. This is the available cohesion. The weight W of the body

of earth located above the tentative surface of sliding bde acts along a

vertical line through the center of gravity Og ofthearea bdea. Equilibrium

requires that the resultant F of the normal stresses and of the shearing

stresses due to friction on the surface of sliding bde passes through the

point of intersection i between W and C®. If the resultant force F is

tangent to the friction circle, the slope is on the verge of failure by shear

along the tentative surface of sliding bde (see Art. 40).
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Hence we obtain the direction of F for the failure state by tracing

through i a tangent to the friction circle, which deviates from the vec-

tor Oi in a sense opposite to that of the direction of the potential sliding

motion. By tracing the polygon of forces (Fig. 49a) we obtain the

cohesion Cr which would be required to prevent a slide. By tracing su

parallel to Oi we obtain the component Ft of the frictional resistances in

the direction of the cohesion force Ca- The factor of safety with respect

to sliding along the tentative surface of sliding bde is approximately

Ft + Ca

Ft + C

This investigation must be repeated for different circles. If we assign

to the center of each one of these circles the corresponding value of the

safety factor Gg we can trace a set of curves of equal Gg values, as

shown in Figure 496. The center of the critical circle is located at the

point whicB corresponds to a minimum of G,.

If a vertical face is supported by a retaining wall on piles or by a

quay wall on a pile foundation shown in Figure 46d, the danger of a base

failure is very remote unless the angle of shearing resistance of the

strata located beneath the foundation is smaller than about 6®. The
factor of safety with respect to a base failure can be estimated by
means of the friction circle method described in the preceding paragraphs.

The same method has been used to determine the angle of shearing

resistance from the known position of a surface of sliding along which

a slide has already occurred (Fellenius 1927). However, one cannot

learn from the results of such an investigation whether the deviation

of the surface of sliding from the position corresponding to 0 = 0 was

due to a value of > 0 or due to a slight increase of cohesion with depth.

62. Correction for tension cracks. The depth of a tension crack

cannot be greater than the critical height for an intact vertical bank

67(1)
y

wherein = tan^ (45® + <^/2). There are, however, other limitations

to the depth of tension cracks. These are illustrated by Figure 50.

The arc bde represents a critical toe circle and the arc ghi a critical mid-

point circle. Under normal conditions the state of stress behind a

slope does not favor the formation of tension cracks with a depth in

excess of H/2. Furthermore, the distance between the tension cracks

and the upper edge a of the slope is seldom smaller than one-half of the

distance between this edge and the upper end e of the critical circle.

Hence the depth of tension cracks is not likely to be greater than De
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(Fig. 60) for toe circles and H/2 for midpoint circles, regardless of the

values of the theoretical maximum He (eq. 57(1)).

The effect of a tension crack (eifin Figure 50) on the stability of a slope

is threefold. First of all the crack eliminates the resistance due to the co-

FiG. 60. Influence of tension cracks on stability of slope.

hesion along the arc Cie. Hence, if c is the available cohesion per unit

of area, the crack reduces the total cohesion per unit of length of the

slope from c X Se to c X 6ei. In order to produce the same effect,

we can reduce the cohesion on Se from c to

bei
Ca = C-^

[
1]

without reducing the length of the arc. The second effect of the tension

crack is to reduce the driving moment (weight of the mass of earth

located above the surface of sliding X the lever arm with respect to

the center of rotation) by the moment produced by the weight AW of

the body efei about Oi. The third effect is due to the hydrostatic pres-

sure exerted by the surface water which accumulates in the cracks.

This pressure increases the driving moment. However, computations

have shown that the two last named effects practically compensate each

other. Hence, if we replace the available cohesion c by the corrected

cohesion, Ca (eq. 1), we can investigate the stability of the slope as if

there were no cracks.

Applying the method of correction to a vertical slope on the assump-

tion the surface of eliding is plane, we find that the corrected cohe-

sion Co (eq. 1 ) is equal to one half of the available cohesion c. Replacing
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e in equation 67 (2a) by = c/2, we get

ff, = 4 - = 2 - [2]
7 7

This equation takes the effect of an accumulation of surface water in

the cracks into consideration. On the assumption that the cracks are

not filled with surface water, we obtained

Hi = 2.67 - 57(5)
y

63. Composite surfaces of sliding. If the base of a slope contains

layers of clay which are very much softer than the other strata, the sur-

face of sliding is likely to consist of several sections joining each other

at obtuse angles. In such a case no continuous curve can be substituted

for the entire surface of sliding without the risk of a grave error on the

unsafe side. Furthermore no slide along a broken surface is conceivable

without plastic flow within at least one section of the sliding mass,

because the movement along a broken surface involves a radical defor-

mation of the superimposed material. On account of these complica-

tions the problem of estimating the degree of stability of the fill cannot

be solved without taking into consideration the forces which act in the

interior of the mass of soil located above the potential surface of slid-

ing. These forces are indicated in Figure 51 which represents a sec-

tion through a sand dam with a clay core prior to filling the reservoir.

The dam rests on a sand stratum which contains a thin bed of clay.

Even symmetrical dams slide toward one side only and the orientation

of the slide with reference to the plane ofsymmetry depends on accidental

factors. If the dam shown in Figure 51 fails, the slip will occur along

a composite surface of sliding such as dbde. In the right-hand part of

the sliding mass, corresponding to the area dide, active failure is to be

expected because within this part the earth is merely under the influence

of its own weight. The central part bibddi of the sliding mass will

move under the influence of the active pressure on ddi along a surface

of least resistance bd toward the left. On the left side of the toe of

the dam, passive failure will occur within the thin layer of sand above

the clay owing to the lateral thrust exerted by the advancing central

part bibddi.

In order to investigate the conditions for the stability of the dam
^own in Figure 61 we first determine the passive earth pressure Pp
on several tentatively selected vertical sections in the vicinity the left

toe of the dam, such as the section bbi. It is admissible to assume that
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the pressure Pp acts in a horizontal direction, because the error due to

this assumption is on the safe side. The central part bibddi of the

sliding mass cannot possibly advance toward the left unless it exerts on

the vertical section 66i a horizontal pressure equal to or greater than the

passive earth pressure Pp. Then we make a vertical section ddi through

an arbitrarily selected point d on the left side of the clay core. The

Fig. 61. Failure of fill along composite surface of sliding.

total resistance Pi to a horizontal displacement of the body of soil

bbidid with a weight Wi is equal to the sum of Pp, the cohesion cbd,

and the frictional resistance Fu against sliding along the base bd, or

Pi^ Pp+Fu + cbd

If the dam is on the verge of failure this resistance must be equal to or

smaller than the active eailh pressure exerted by the mass of earth

located on the right-hand side of the section ddi. Since the wedge dide

can expand in a horizontal direction over its full height the distribution

of the active earth pressure exerted by this wedge is hydrostatic. There-

fore the point of application of the active earth pressure is located at an

elevation Zi/S above the surface of the clay. The shearing stresses

along ddi can be neglected, because they increase the stability of the

dam. The intensity of the active earth pressure on ddi can be deter-

mined by trial and error on the assumption that the surface of sliding,

de, through d is an arc of a circle. The investigation must be repeated

for different positions of point d (Fig. 61). The real surface of sliding

satisfies the condition that the corresponding factor of safety (?, be a

minimum.
64. Failure of fills by spreading# If the layer of soft clay shown in

Figure 51 is located immediately beneath the base of the fill, the failure

of the fill is likely to assume the character of a flow, whereby the fill

spreads out laterally regardless of what the coeflicient of internal friction

of the fill material may be. The failure by spreading may either be
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limited to the vicinity of the toes or else it may occur over the entire

width of the base of the fill.

In order to determine the factor of safety of a fill with respect to a
partial or a total failure by spreading it is necessary to investigate the

intensity and the distribution of the shearing stresses on the base of the

fill. These stresses depend to a certain degree on the state of stress in

the fill. The following investigation is based on the assumption that

the entire fill is on the verge of a complete failure by spreading. The
shearing stresses obtained on the basis of this assumption represent the

smallest stresses which are compatible with the conditions for the

equilibriiun of the fill.

65. Shearing stresses at the base of cohesionless fills. Rendulic

(1938) has presented a simple method of determining the shearing

stresses along the base of a cohesionless fill which is on the verge of

active failure at every point. The shearing resistance along any sec-

tion through the fill is assumed to be given by the equation

s = <7 tan
<f> [1]

and the error due to assuming plane surfaces of sliding will be disregarded.

Hence the earth pressure which acts in the fill can be determined by
means of Coulomb^s earth pressure theory.

Figure 62a shows a profile of the fill. The pressure on a vertical

section ab produced by the fill material located on the right side of this

section must be equal and opposite to the pressure exerted by the fill

on the left side. This condition determines the angle 5 between the

resultant pressure on ab and its normal component. Since the angle d

is unknown it is advisable to use Engesser’s graphical procedure (Art.

25) for determining the earth pressure on ab. According to this pro-

cedure, illustrated by Figure 21, plane sections are made through the

foot b Of the vertical section ab in Figure 52a, at different angles to

the horizontal. The weights of the wedges located between ab and

these sections are plotted on a vertical line (Fig. 526) from point r in a

downward direction. Thus for instance Wr (Fig. 52b) represents the

weight of the wedge abar in Figure 52a, located on the right-hand side

of ab. The slope of the base bar of this wedge has been arbitrarily

selected. The wedge, with a weight Wr, is acted upon by the reaction Ft

and by the earth pressure Fa- The reaction Ft acts at an angle 0 to

the normal on the inclined surface a^. Fr in Figure 626 has been

traced through point t in Figure 626 parallel to Fr in Figure 62a. By
repeating the same construction for wedges whose inclined base rises

at different angles to the horizontal on the right-hand side of ab in



Fio. 52. (a and b) Diagrams illust rating method of computing shearing stresses at

base of sand fill shown in (a); ( c to e) results of the computation; (/) increase of

ani^e ^ between resultant stress on base of sand fill and the vertical direction with

increasing distance from center line of fill; (g) relation between toes of fill)

and slope angle 0 for different values of (After L. RenduUe 1988 )

178
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Figure 52a and by tracing the envelope to the corresponding lines F in

Figure 626 we obtain the Engesser curve E, for the earth located on the

right-hand side of ab in Figure 62a. By means of a similar procedure

we construct in Figure 626 the Engesser curve Ei for the earth located

on the left-hand side of ab in Figure 62a. According to the theory of

Engesser’s method (Art. 25) the earth pressure exerted on ab by the

earth located on the right-hand side of a6 is represented by the distance

between point r and the curve Er in Figure 626 measured from r in the

direction of the earth pressure. In a similar manner the Engesser curve

El determines the intensity of the pressure exerted by the earth located

on the left-hand side of ab. Equilibrium requires that the pressure Pa
exerted on ab by the soil located on the right-hand side of ab is equal and
opposite to that exerted by the soil located on the left-hand side of ab.

In order to satisfy this condition we construct in Figure 626 the auxiliary

curve E'r. This curve has been obtained by transferring each point n of

the curve Er along a vector such as nN through r to a distance n'r = nr

on the other side of point r. The auxiliary curve E' intersects the curve

El at points Si.

According to Article 25 and Figure 2ld the distance rsr in Figure 626

represents the active earth pressure exerted by the soil on the right side

of the fill and the distance rs/ the corresponding pressure acting from the

left side. Since rSr = rsj these two pressures are equal and act in

opposite directions.

The intensity of the pressure can be obtained by substituting rs, for

be in equation 25 (1), whereupon we obtain

Pa =

The line of action of Pa in Figure 62a is parallel to SrSi in Figure 626.

The earth pressure Pa on the vertical section a6 can be resolved into a

normal component

PAn = Pa COB B

and a tangential component .

Pai = sin 8

In Figure 62c the ordinates of the curve Pak represent the values of

PAn for different vertical sections through the fill and the ordinates

of the curve Pai represent the corresponding values of Pai- In order to

determine the distribution of the shearing stresses over the base of the

fill we investigate the conditions for the equilibrium of a vertical slice

of the fill, shown on the right-hand side of Figure 62o. The weight of the
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slice is dW = ziydx. The external forces which act on the slice are

indicated in the figure. The equilibrium of the horizontal components

requires

j jrdx = dx or r
dx

dPAn

dx

dPA ^Pa i

The values and are represented in Figure 52d. They have

been obtained graphically from the diagram, Figure 52c. By means of

the data given in Figure b2d the preceding equations for p and r can be

evaluated.

In Figure 52e the plain lines show the distribution of the normal pres-

sure and the shearing stresses over the base of the fill. The dashed line

represents the distribution of the normal pressure on the base of the fill

on the assumption that the shearing stresses on vertical sections are

equal to zero. The figure shows that the normal pressure p per unit of

area at any point of the base is almost directly proportional to the height

of the fill above this point. The shearing stress is a maximum at some

point located between the center line of the fill and the toe.

The angle ^ between the resultant stress on the base of the fill and

the normal component of the stress is equal to zero at the center line,

and it increases from the center line in both directions toward a maxi-

mum ^niax the toes. Figure 62/ shows the increase of ^ from the

center line toward the toe of a fill for two values of 0 and Figure 62^

represents the relations between the slope angle jS of the sides of the fill,

the angle of internal friction 0, and the angle

If no lateral displacement occurs along the base of a fill, the fill is

not on the verge of active failure. As a consequence the lateral pressure

on vertical sections and the corresponding shearing stresses on the base

are likely to be considerably higher than the values obtained by means

of the preceding analysis. In a fill which is not on the verge of active

failure the hydrostatic pressure ratio K depends on the method of

placing the fill and may be as high as 0.6. The hydrostatic pressure
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ratio is determined by the equation

X = tan2^45° [2]

wherein <t>^ is the friction angle corresponding to the mobilized part of

the internal friction of the fill. If K is between 0.40 and 0.60 the

value of 0^ ranges between 25° and 15°. In order to estimate the inten-

sity of the shearing stresses at the base of a fill with a hydrostatic

pressure ratio K we replace the value of 0 in the preceding analysis

hy4>'-

If the shearing resistance along the base can be expressed by an

equation

a = c + p tan 0i

wherein 0i < 0, it may happen that the shearing resistance in the

vicinity of the point at which t = Tmar (Fig. 52e) may be inadequate

while the shearing resistance in the vicinity of the toe is excessive.

Such a condition is incompatible with the assumptions on which the

preceding analysis was based. It invalidates the conclusions regarding

the distribution of the shearing stresses over the base of the fill, repre-

sented by Figures 526 to 52^. However, it is ob\dous that no failure

by spreading can occur unless the active earth pressure on some vertical

section through the fill is greater than the total shearing resistance along

the base of the adjoining part of the fill. This condition can be used

as a basis for investigating the case.



Chapter X

EARTH PRESSURE ON TEMPORARY SUPPORTS IN CUTS,
TUNNELS, AND SHAFTS

66. General characteristics of shear failures behind timbered sup-

ports. The term timbering applies to temporary supports which are

place against the face of an excavation prior to the construction of a

permanent support. During the process of excavating and timbering,

the area of the working face (unsupported part of the face) never ex-

ceeds a small fraction of the total area of the excavated face while the

remainder is supported by relatively rigid structural members. In

Chapter V it has been shown that this condition induces arching. The
arching effect relieves the stresses in those parts of the mass of earth

which have an opportunity to yield, and it increases the stresses in the

earth adjoining the supports which tend to prevent yielding. The type

of arching and its mechanical effects depend on the type of excavation

and on the method of construction.

67. Earth pressure on timbering of cuts in ideal sand. The custom-

ary methods of timbering and excavating are such that the lateral yield

of the soil on both sides of the cut increases from practically zero at the

upper edge of the cut to a maximum at or slightly above the bottom of

the cut, as shown in Figure 53a. Owing to the deformation condition

which is imposed upon the sand by the method of construction, the

surface of sliding (bd in Fig. 63a) is curved and intersects the surface

of the sand approximately at right angles (see Art. 20 and Fig. 17c).

The following computation of the lateral pressure of the sand on the

timbering of a cut is based on the assumption that the lateral expansion

of the sand in the lower part of the active wedge (abd in Fig. 53a) and
the corresponding subsidence of the upper part is sufficient to mobilize

the shearing resistance of the sand,

5==<rtan0 6(2)

per unit of area over the entire potential surface of sliding bd. The
point of application of the resultant pressure is located at an elevation

nJS above the bottom of the cut and is assumed to act at an angle i

to the normal on the back of the support as indicated in the figure. As
a result of arching, ria is greater than one-third. Its value depends to

182
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a certain extent on the method of construction. However, from theory

as well as from experience, we know that it ranges for clean as well

as for silty sand between the narrow limits of 0.45 and 0.55 provided

the bottom of the cut is located above the water table (see Art. 20).

(^) ib) (c)

Fia. 63. (a) FaOure by sliding in mass of sand due to yield of lateral support by
tilting about upper edge; (b) determination of line of sliding by means of logarith-

mic spiral method; (c) the unbroken line represents surface of eliding if lateral

support yields by tilting about a and the dash-dotted curve represents surface of

sliding for retaining wall computed by means of Coulomb^s theory.

A close approach to the real shape of the potential surface of sliding

can be obtained by assuming that the trace of the surface on a vertical

plane perpendicular to the axis of the cut is an arc of a logarithmic

spiral, the equation of which is

r = ro***“* [1]

The center 0 of this spiral is located as shown in Figure 53a on a

straight line dZ) which rises at an angle and passes through the upper

rim, d, of the surface of sliding (Terzaghi 1941). In order to determine

the location of point d we select arbitrarily a point di on the horizontal

surface in Figure 636 and trace, through this point and through the

foot of the bank, 6, a section of the spiral whose center Oi is located

on the line diDi- The wedge abdi with a weight Wi is acted upon by
the reaction Pi of the lateral support ab and by the reaction Fi along

the surface of sliding bdi. The sum of the moments about the center

Oi of the spiral must be equal to zero. The reaction Fi passes through

Oi (see Art. 39). Therefore the force Pi is determined by the equation

[2]
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In order to solve this equation some assumption must be made re-

garding the value Ua in Figure 536 because it determines the distance

/i. With increasing values of Ua the distance h decreases and the value

Pi (eq. 2) increases. At the beginning of this article it has been stated

that the value ria for clean and for silty sands ranges between 0.45 and

0.65. Hence if for such soils it is assumed that ria = 0.55 the error is

most likely on the safe side.

The remainder of the investigation is practically identical with any

of the graphical procedures for solving a maximum and minimum prob-

lem by trial and error. We determine the force P for spirals through

different points on the horizontal surface of the sand and plot the

values as ordinates above these points as shown in Figure 536. Thus

we obtain a P-curve. The earth pressure Pa on the timbering is equal to

the ordinate of the highest point C of this curve. The surface of sliding

passes through the point d located beneath point C on the horizontal

surface of the deposit. The normal component Pan of the active earth

pressure is

Pan “ P

a

COS 5

and the ratio

[3]

is the earth pressure factor for the active earth pressure on the timbering

of a cut. It is a pure number. If the deformation conditions are such

that the distribution of the active earth pressure of a cohesionless soil

on the plane back of a lateral support is hydrostatic, the earth pressure

factor Aa is identical with the coeflScient of active earth pressure Ka
for this soil, which is determined by equation 23(16). Everything else

being equal, the ratio

n
Ka

[4]

is a measure of the influence of the deformation conditions on the active

earth pressure. The greater n, the greater is the increase of the earth

pressure due to the lateral confinement of the upper part of the sup-

ported mass of sand. For given values of and d the value n increases

with increasing values of the factor rta, which determines the location of

the point of application of the pressure. (See Fig. 63a.) If ^ = 38®

and 5 = 0® we obtain

for fia == 0.45 n = 1.03

and for Ua = 0.55 n = 1.11
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The width of the top of the sliding wedge is always considerably

smaller than the width of the top of the corresponding Coulomb wedge,

represented by ahde in Figure 63c.

With decreasing values of ria the curvature of the surface of sliding in a mass of

sand decreases and for ria = 1/3 it is very slight, as shown in Figure 14c. If in

addition the angle of wall friction is equal to zero, the surface of sliding for na = 1/3

is perfectly plane (see Art. 14). Hence for ria = 1/3 and 6 = 0, the assumption

that the line of sliding is a logarithmic spiral in shape (eq. 1) is not even approxi-

mately correct. Nevertheless, if on the basis of this assumption we compute the

active earth pressure for ria == 1/3 and 5 = 0 we find that the error is always con-

siderably smaller than 10 per cent. With increasing values of rig the percentage

error decreases rapidly. For na = 1/2 the spiral method for computing the earth

pressure on the timbering in cuts is at least as accurate as Coulomb^s method for

computing the earth pressure on retaining walls.

The distribution of the earth pressure on the timbering of cuts in

sand depends to a certain degree on the details of the method of con-

struction. In general the distribution is more or less parabolic, as

shown in Figure 17c.

68. Earth pressure on the timbering of cuts in ideal cohesive soil.

The method of computation described in the preceding article can also

be applied to cuts in cohesive soil, the shearing resistance of which is

determined by Coulombh equation

s = c + a tan 0

The slip along an arbitrary surface of sliding (bdi in Fig. 536) is re-

sisted not only by the friction but also by the cohesion, c per unit of

area of the surface of sliding. Taking moments about the center Oi

of the spiral, equilibrium requires

Pih = - Me [1]

wherein Me is the moment of the cohesion forces about Oi. The value

of Me can be computed by means of equation 41 (4)

Me
c

2 tan 0
(r? ~ rl) 41(4)

In Figure 536 the values ro and ri are represented by the distances

Oidi and Oi6 respectively. Introducing the value Me into equation 1

and solving for Pi we obtain

P. - i[w.. -^ (r? - rj)]

This force represents the lateral pressure required to prevent a slip

along the arbitrary surface bdi (Fig. 536). The surface of sliding must
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satisfy the condition that the pressure Pi be a maximum, Pa- Its

position can be determined graphically as shown by the curve P (Fig.

536) for ideal sand. Replacing Pi in the preceding equation by the

maximum value Pa and the values of TTi, ri, etc., by those corresponding

to the real surface of sliding we obtain

The greatest height at which the vertical sides of a cut can stand

t emporarily without lateral support is approximately

+ 57(1)
7 \ 2/7

wherein

Hence

[3]

Introducing this value into equation 2 we get

The normal component of the active earth pressure is

Pan — Pa 008 6

and the earth pressure factor is

Aa =
^ an

(
W L 1 He rl- r§

\ yH^ I
^ ^ H HI ViV'* tan

<l>
)
cos 5 [4]

The ratio is a pure number the value of which depends only on

Hc/H, S, 0, and rio. The plain curves in Figure 64 show the relation

between and the value no, which determines the position of the

point of application of the earth pressure, for <l>
= 17°, S = 0°, 10°,

and 20°, and Hc/H = 0.66, 0.5, and 0.4. The individual values have

been determined by means of the spiral method described previously.

The active Rankine pressure on the sides of the cut would be
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Replacing c by the right-hand term in equation 3 and dividing by
we obtain for the corresponding earth pressure factor

Values oMyi

Values 0^AA

Fia. 64. Relation between earth pressure factor Aa and ratio Ua which determines

position of point of application of resultant earth pressure of cohesive soil, for three

different vdues of ratio between critical height He and total height H of lateral

support and for different values of angle of wall friction 5.

For 4> = 17® this value is represented in Figure 54 by the abscissas of

the vertical dashed line which intersects the plain curves.

The dashed curves in Figure 54 show the relation between Aa and

Ua for = 0. The abscissas of the vertical dashed line which intersects
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tile dashed curves are equal to Aa (eq. 5) for ^ = 0, or

Aa = 1-j^ [
6]

For values of ria greater than 0.5 the pressure ratio Aa represented

by the abscissas of the dashed curves (Fig. 54) starts to increase rather

rapidly with increasing values of ria- Hence in attempting to estimate

the earth pressure of cohesive soils on the timbering of a cut it is im-

portant to make a reasonable assumption regarding the value ria. If

Hc/H = 0 and 0 == 0, the soil adjoining the sides of the cut acts like

a liquid and the corresponding value of ria is H- On the other hand,

if Hc/H = 1, the depth of the cut is such that the sides can stand

temporarily without lateral support. In this case, the struts required

Fig. 65. Bracing required to prevent formation of tension cracks behind vertical

bank whose height is equal to critical height He*

to prevent an ultimate failure of the sides by caving should be installed

near the upper edge of the cut. The reason for the satisfactory results

obtained by means of this traditional procedure is illustrated by Figure

65. In this figure is shown a vertical section through an unsupported,

vertical bank, the height of which is equal to He- The soil adjacent to

the upper part of the bank is in a state of tension. The deformation

due to the weight of the soil is indicated by a dashed line. To simplify

the problem, we assume that the tensile stresses are determined by
Raniine^s equation 12(2). On this assumption the tensile stresses

decrease according to a straight fine law from a maximum value at the

surface to zero at a depth

2c He

as shown in the figure. Hence the point of application of the tensile

force is at a depth Hc/^ below the surface, which corresponds to a value

ofna=^ 6/6. If the bank fails the failure starts with the formation of
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tension cracks parallel to the edge of the bank. In order to keep the

upper part of the soil in a state of compression while excavation pro-

ceeds, struts should be installed at the elevation of the point of appli-

cation of the tensile force, that means at a depth of /fc/6. The
deformation of the supported bank is indicated by a dash-dotted line.

Thus we obtain two extreme values for no, viz., Ua = 5/6 for Hc/H ~
1 and ria— % for Hc/H = 0 and <#>= 0. If we assume as a first approxi-

mation a linear relationship between Hc/H and ria we obtain

A more accurate method for estimating the value ria is not yet avail-

able. The results of pressure measurements in open cuts in clay

indicate that the real values of n® are somewhat smaller than those

determined by equation 7. However, they also indicate in accordance

with the equation that the values of Ua increase with increasing values

of Hc/H, The measured values of ria are closer to Ua (eq. 7) than to

%, In no case has a value of less than % been obtained. Hence it

appears that the error associated with using equation 7 is on the safe

side, because a higher value of n® involves a higher theoretical value for

the earth pressure. In this connection it should be remembered that

the ria value for the Rankine pressure decreases from % for Hc/H = 0

to — 00 for Hc/H = 1. Hence if the point of application of the Rankine

pressure goes down the point of application of the pressure on the tim-

bering goes up.

69. Conditions for the stability of the bottom of a cut. The soil lo-

cated on both sides of a cut acts, with reference to a horizontal section

through the bottom of the cut, like a uniformly distributed surcharge.

This surcharge tends to produce a heave of the bottom of the cut, where

the surcharge is absent. This heave is comparable to the base failure

on slopes. (See Art. 56.) However, no heaving failure can occur

unless the load due to the weight of the soil near the sides of the cut

exceeds the bearing capacity of the soil located below the level of the

bottom of the cut. In the following analysis two extreme cases will be

considered, viz., cuts in ideal sand and cuts in ideal cohesive soil the

angle of shearing resistance of which is equal to zero.

Figure 56o is a vertical section through a cut of depth H in ideal

sand. The bottom of the cut is located at a considerable elevation

above the ground-water table. The lower ends of the vertical members

of the system of bracing are located at the level of the bottom. Hence

the active earth pressure Pa acts on the lateral support in a horizontal

direction (P® Pan). The distribution of the lateral pressure on the
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sides of the cut is roughly parabolic, as shown by the pressure area rus

in Figure 660. The normal pressure on a vertical section aC through

the edge s of the bottom of the cut can nowhere exceed the passive earth

pressure. The passive earth pressure of sand increases Uke a hydro-

Fio. 66. (a) Distribution of horizontal pressure on timbering in open cut in cohe-

sionless sand; (b) heave of bottom of timbered cut in soft clay if no hard stratum

interferes with flow of clay; (c) as before, if clay rests at shallow depth below

bottom of cut on hard stratum.

static pressure in simple proportion to the depth. Plotting the passive

earth pressure per unit of area from sC to the left we obtain the straight

line sKp. Before the cut is excavated the normal stress on the vertical

section rC at a depth z below the surface is

<rho = Koyz 10 (1 )

wherein Ko is the coefficient of earth pressure at rest. Plotting the

values of cho from r(7 to the left we obtain the straight line rKo. Since

the influence of excavating the cut on the state of stress in the soil de-

creases with increasing depth the line st which represents the distri-

bution of the normal stresses on the vertical section sC must aqrmp-

totically approach the straight line rKo as shown in the figure.

Thus are the general characteristics of the state of stress in the

vicinity of the outer edges of the bottom of the cut. In order to obtain

information regarding the factor of safety of the cut with respect to a

failure due to a heave of the bottom we compute the vertical pressure
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Q per unit of length of a strip ssi (Fig. 56a) adjoining the lower edge 8

of the side of the cut. The strip has an arbitrary width B. The pressure

on the strip is equal to the difference between the weight yHB of the

prism TTiSiS and the total shearing force on the vertical right-hand

boundary of this prism. The shearing force is approximately equal to

the active earth pressure, Pa, times the coefficient of internal friction,

tan Hence

Q = yHB — Pa tan = yHB — ^H^Aa tan 0

wherein

67(3)

is the earth pressure factor for the active earth pressure on the timbering.

The timbering prevents the soil located above the bearing area from

following the lateral movement of the soil located beneath this area.

Furthermore, the loaded sand can yield only toward one side. There-

fore the bearing capacity Qo per unit of length of the strip with a width

B is approximately equal to one half of the bearing capacity Qo of a.

continuous footing with a width 2B whose rough base rests on the sur-

face of the sand. The value Qd is determined by equation 46(5).

Setting c = 0 and D/ (depth of foimdation) = 0 in this equation we get

Qd = 2B^yNy
and

Qd = iQo = B^Ny

The value of the bearing capacity factor Ny can be scaled off the

diagram shovm in Figure 38c (curve Ny). The factor of safety with

respect to a failure due to a heave of the bottom.

is a minimiim if the width B of the strip satisfies the condition

d BSNy
dB yHB - iyHUAtmil>

Solving this equation we get

B HAa tan ^
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For 5 = 0 and Ua = 0.5 the value Aa is approximately equal to th®

coefficient for the active Rankine pressure,

Ka = tan

Hence

H tan= (45»-|)tan,tan
<f>
— ngH

wherein Ub is a pure number whose value depends only on the angle of

internal friction <f>. For values of 4> between 30° and 40° the value ub
ranges between 0.19 and 0.18. The minimum value of the factor

of safety G. is determined by the equation

This equation shows that the factor of safety with respect to a heave

of the bottom of the cut is independent of the depth of the cut. It

depends only on the value of </>. If </> increases from 30° to 40°, the

factor of safety increases from about 8 to about 50.

Figure 566 is a vertical section through a cut in an ideal cohesive soil

the angle of shearing resistance 0 of which is equal to zero. The soil

is uniform to a considerable depth below the bottom of the cut and the

vertical members of the system of bracing terminate at the bottom.

The shearing resistance of the soil is equal to c. The vertical pressure

Q per unit of length of a horizontal strip dsi with an arbitrary width B
is approximately

Q = yHB-Hc = BH(y-^
[3]

which indicates that the pressure q increases with increasing values of B.

The angle <j} of shearing resistance is equal to zero and the surcharge

acts on the supporting soil like a load carried by a continuous footing

with a rough base, because the timbering prevents the soil located above

the level of the bottom of the cut from following the lateral yield of the

soil located below this level. Therefore the bearing capacity go per

unit of area of the strip is determined by the equation

qo = 6.7c 46(7c)

which is independent of the width B. The ratio

^ Qd Bqo 1 5.7c

"c

’"B
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represents the factor of safety with respect to a heave of the bottom of

the cut. It decreases with increasing values of B. The greatest

value which B can assume is determined by the shape of the surface of

sliding through d (Fig. 666). Since <^ = 0 the curved part of this sur-

face is an arc of a circle about e, and since the section es represents

the equivalent to the rough base of a footing, the surface of sliding

starts at s with a vertical tangent (see Art. 45). The plane part of the

surface of sliding rises at an angle of 45° to the horizontal. On account

of these geometrical conditions, the width B cannot exceed Bi^^.
Substituting this value in the preceding equation we get

For

Of H
5.7c

J5,v'2

H = Hi
5.7c

B1V2

[4]

[5]

the factor of safety becomes equal to unity. Hence if soil is excavated

to a depth greater than Hi the soil on both sides of the cut moves down-
ward, together with the system of bracing, and the bottom of the cut

rises. If ^ = 0 the critical height for a vertical bank is approximately

from which

He
4c

y

C = hlic

Introducing this value into equation 6 we obtain

Hi

4 -

5.7

Hc_

B1V2

67 (2a)

[6]

If Hi = He/5.65 the value Hi becomes equal to infinity. With in-

creasing values of Hi the value of Hi decreases. On the other hand, if

Hi = 00 we obtain

Hi = 1.42Hc = |Hc

This means that the bottom of a very wide cut will fail as soon as the

depth becomes greater than about % times the critical height He, pro-

vided the earth is homogeneous to a great depth. If a cut is made in a
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soft soil, which is underlain at a depth D below the bottom of the cut

by a hard stratum, the failure of the bottom occurs as shown in Figure

56c. The width of the strip which can sink is equal to D. Replacing

Bi\^y which represents the width of the sinking strip in Figure 566

by D we obtain from equation 6 for the depth at which the cut fails by
heaving the value

5.7
[7]

which is independent of the width of the cut.

If the excavation of a cut is made between sheet piles which extend

to a depth Di below the bottom of the cut, the method for estimating

the factor of safety with respect to a heave of the bottom must be modi-

fied accordingly. The simplest procedure is to compute the vertical

pressure on a horizontal section through the lower edge of the sheet

piles. The heave of the bottom is resisted not only by the weight of

the soil located between the buried parts of the sheet piles but also by

the adhesion between this body of earth and the adjoining sheet piles.

70. Tunnels through sand. Figure 57a shows a section through a

bed of sand in which a tunnel is being constructed between the hori-

zontal surface of the bed and the water table. The cohesion of the

sand is assumed to be not in excess of the feeble hond produced by a

trace of moisture. Yet from experience we know that this trace of

cohesion is sufl&cient to maintain the working face in small drifts with-

out lateral support. Part of the yield of the sand toward the tunnel

occurs while the working face passes the section shown in the figure and

the remainder takes place after the timbering has been constructed.

Owing to the imperfect fit of the timbers at the joints and the com-

pressibility of the supports of the footings of the vertical posts, the

yield of the timbering is usually sufficient to reduce the pressure of the

sand on the timbering almost to the value corresponding to the state

of incipient shear failiue in the sand. This state is similar to the state

of stress in a mass of sand above a yielding strip. The sand adjoining

the sides of the tunnel also subsides on account of the yield of its lateral

support. The inclined boundaries of the zone of subsidence rise at

an angle of about 45® + ^/2. Therefore, at the level of the roof of the

tunnel, the width of the yielding strip is approximately equal to

2Bi = 2rBo tan^45° - |
[1]
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In accordance with the procedure described in Article 20 it will be
assumed that the potential surfaces of sliding through the outer edges
of the yielding strip bibi are vertical, as shown in the figure by dotted
lines biCi. On this assumption the vertical pressure on the horizontal

Fig. 67. (a) Flow of sand toward shallow tunnel at instant of failure of timbering;

(b) vertical unit pressure in sand above center line of tunnel plotted against depth;
(c) distribution of vertical pressure on horizontal section through bottom of tunnel.

If tunnel is located at great depth, diagram (d) takes the place of (a) and (e) that

of (6).

section 6i6i (Fig. 57a) with a width 2Bi is determined by equation

20(5). Substituting in this equation for z the value D and for B the

value Bi (eq. 1), we obtain

Y-Bi
^ j2]<r.

jf^tan^
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per unit of area of the horizontal section 5i6]. In this equation the

symbol K designates an empirical coefficient. From the results of

direct measurements it has been found that the value of this coefficient

is approximately unity (see Art. 20). On both sides of the tunnel the

pressure Cy acts like a surcharge on the top surface of the wedges located

on both sides of the tunnel. The corresponding lateral pressure on the

sides of the tunnel can be computed by means of Coulomb ^s theory with

the assumption that the sides of the tunnel are simple retaining walls

the backfill of wliich carries a uniformly distributed surcharge, Cy per

unit of area.

The pressure which acts on the roof of the tunnel is transferred to the

sand beneath the bottom of the tunnel through the footings of the

vertical posts. The remainder of the weight of the sand located above

the roof is transferred by shearing stresses to the sand adjacent to the

tunnel. Hence the distribution of the vertical pressure on a horizontal

section through the bottom of the tunnel must be similar to the dis-

tribution shown in Figure 67c.

If a tunnel is located at a great depth below the surface the arching

effect does not extend beyond a certain elevation Di above the roof

of the tunnel. The sand located above this elevation, from the surface

of the ground down to a depth 2)2, Figure 67d, acts on the zone of arching

like a simple surcharge with an intensity yD2 per unit of area. In this

case the pressure on the roof of the tunnel is determined by equation

20(4). Substituting B = J5i, q = 72)2 ,
and z = 2)i, in this equation

we obtain

^
Di/Bi

^ K tan
<l>

The angle of internal friction ^ for a sand is at least equal to 30®

and from experiments it has been found that the value 2? is at least

equal to unity. If the roof of a deep tunnel yields, the height Di of

the zone of arching increases while the height D2 decreases. As soon

as the height 2>i becomes equal to about 20 per cent of the total depth

2)i + 2)2 the second term on the right-hand side of the preceding equa-

tion becomes negligible. The first term is smaller than yBi/K tan 0
for all values of Di. Hence the pressure per unit of area of a deep

tunnel through dry sand does not exceed an upper limiting value, which

is equal to

yBi

K tan<^
[3]

although the arching does not extend to the surface of the ground.
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The vertical pressure per unit of area of horizontal sections at points

located above the center line of the tunnel are represented in Figure

57c by the abscissas of the curve ots. This curve is similar to curve

odf in Figure 18d.

The conditions for the stability of the bottom of tunnels in sand can

be investigated by means of the method described in the preceding

article. The results of such an investigation have shown that the factor

of safety with respect to heaving of the bottom of a tunnel through

sand is always adequate provided the deepest point of the potential

surface of sliding is located above the water table.

71* Application of Rankine’s theory to the computation of the pres-

sure of sand on the lining of tunnels. Prior to the construction of a
tunnel a mass of sand with a horizontal surface is laterally confined

and the ratio between the horizontal and the vertical pressure is equal

to the coefficient of earth pressure at rest Kq, In order to establish the

active Rankine state, the sand must be allowed to expand laterally

over the full width and depth of the deposit through a certain mini-

mum distance per unit of width, which depends essentially on the

density of the sand. In contrast to this fundamental requirement of

Rankine^s earth pressure theory the lateral expansion of the sand pro-

duced by the tunneling operations does not extend beyond narrow

zones located on both sides of the tunnel. Beyond these zones the

horizontal strain is practically equal to zero. This type of deformation

is incompatible with Rankine^s theory. There is, however, one ex-

ception to this general rule. It involves the pressure of the sand on the

timbering of a tunnel at a shallow depth beneath a slope which rises

at an angle equal to or slightly smaller than the angle of internal friction

of the sand. To a depth not in excess of a small fraction of the total

height of the slope, the sand is on the verge of active failure before the

construction of the tunnel is started. This state is identical with the

active Rankine state illustrated by Figures 96 and 9c. For a slope

angle == 0 one set of potential surfaces of sliding is parallel to the

slope and the other set is vertical. Since the sand was already in a state

of plastic equihbrium before construction was started, the timbering in

the tunnel can do no more than maintain this state. Hence the earth

pressure on the upper part of the support is approximately identical

witli the active Rankine pressure. For example, if the section through

the tunnel has the shape shown in Figure 58, the normal pressures on

the section abc of the extrados can be estimated by means of Rankine's

theory, using Mohr’s diagram. In the sand adjoining this section the

principal stresses crj and cm are oriented as shown in the figure by
arrows. During the construction operations the stress in the sand at
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the bottom of the tunnel is reduced to zero. On the section ad the con-

struction operations reverse the direction of the shearing stresses which

acted on this section prior to construction. Therefore Rankine’s theory

Fia. 58. Tunnel in a mass of cohesionless sand whose surface rises at the angle

of repose.

should only be used for computing the pressure on the arch abc. The
pressure on the face ad can be computed by means of Coulomb’s theory.

In order to adapt the permanent lining of railroad tunnels to the earth

pressure conditions illustrated by Figure 58, the section through the

lining of some tunnels has been given an unsymmetrical shape such as

that shown in the figure (Bierbaumer 1913).

If the slope angle is slightly smaller than the angle of internal fric-

tion 4> we can use the method illustrated in Figure 68 by assuming that

the angle of internal friction is equal to the slope angle If the slope

angle p is considerably smaller than Rankine’s theory cannot be used.

72. Tunnels through cohesive soil. The method of investigation

which has been described in Article 70 can also be applied to tunnels

through cohesive soil. The shearing resistance of the earth per unit

of area of a potential surface of sliding is

8 - c + <r tan0 6(1)

If we retain the simplifying assumptions on which the equations in

Article 70 are based we can estimate the pressure on the roof of the

tunnel by means of equation 20(3). Substituting in this equation for

B the value Bi (eq. 70(1)), which represents one half of the total width

of the zone of arching at the level of the roof of the gallery as shown

in Figure 67a, and for z the depth D of the roof of the gallery below the

surface we obtain

^9

7 -
Bt

Ktasx<lf
(1

D/Mt\
[1]
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According to this equation the pressure on the roof is equal to zero

for any depth provided

5 ,
[2]

h a \ d

It should, ho,wever, be remembered that equation 20(3) is based on
the simplifying assumption that the normal stresses on horizontal

sections through the zone of arch-

ing are everywhere the same. In

reality the surfaces of equal normal

pressure are curved like arches.

As a consequence the surface of

zero pressure intersects the plane

of symmetry of the tunnel at some

distance above the roof. Within

this distance the soil is in a state

of tension. A tension failure along

the upper boundary of the zone of

tension causes a body of soil with a

planoconvex cross section to drop

out of the roof. In order to pre-

vent such an accident, an unsup-

ported roof in a tunnel through co-

hesive earth should always be given

the shape of an arch.

If the width of the tunnel is greater than c/7 (eq. 2) the roof must

be supported. The pressure on the roof is transmitted to the bottom

of the tunnel through the footings of the vertical timbers. The corre-

sponding distribution of the normal pressure on a horizontal section

through the bottom of the tunnel is similar to that shown in Figure 57c.

In extreme cases the earth may be too weak to resist the unequally

distributed load shown in Figure 67c, whereupon the bottom of the

tunnel will rise unless it is held down by a stiff floor construction or an

invert.

The conditions for the stability of the bottom of a tunnel through

cohesive soil are essentially identical with those described in Article 69

and illustrated by Figures 666 and 66c. If the bottom of a timnel is

sufficiently stiff, the temporary lining of the roof can be supported by
footings located on both sides of the bottom of the tunnel. Otherwise

it is necessary to build the tunnel by means of a shield (Terzaghi 1942a).

Such a method increases the cost of construction considerably. Hence

Fig. 69. Heave of bottom of tunnel in

soft clay. Left-hand side of diagram

shows conditions if clay extends to

great depth, right-hand side the con-

ditions if clay rests on firm base at

shallow depth.
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the bearing capacity of the bottom of the tunnel is a factor of great

practical importance.

In Figure 59 is shown a vertical section of a shallow tunnel having a

width 2B. The unit weight of the soil surrounding the tunnel is 7, its

cohesion is c, and its angle of shearing resistance is zero. The total

normal pressure on the vertical sections ah and de through the sides of

the tunnel is approximately equal to the earth pressure Pa on the

timbering in a cut of equal width and equal depth in the same soil. The
block of soil ah\eid serves the function of the struts. The normal

pressure on the vertical sides of this block is represented by the pressure

area asb\.

Since there are no horizontal struts below the roof of the tunnel the

soil on both sides of the tunnel can yield freely toward the timnel.

Therefore the soil located above the strip gh acts like a surcharge on a

perfectly smooth base. On this condition the bearing capacity of the

strip is determined by the equation

qn = 5.14c 46(9/)

It is independent of the width of the strip. The width of the 3delding

strip is conditioned by the limitations imposed by the width of the

tunnel upon the size of the zone of plastic equilibrium in the soil located

beneath the strip. Since <#» = 0 the boundary of the zone of plastic

equilibrium consists of an arc of a circle, kly and a straight segment, Igy

which rises at an angle of 45° to the horizontal as shown on the left

side of Figure 59. Hence the width of the strip hg is 2B.

The lower limiting value of the total vertical pressure on the strip is

equal to the difference between the weight of the mass of soil located

between the plane of S3nnmetry of the tunnel and the vertical section

gh, which is ZyBH — yBHt, and the total shearing resistance on the

vertical section gh, which is He, Hence the vertical pressure per unit of

area of the strip bg cannot be smaller than

and the factor of safety with respect to a heave of the bottom is

Q

5.14c

For

•Y He
1m -Ht)
2 ' 2B

6.14c + 0.57^1

13]

1.57
c

2B

H --Hi [4]
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the factor of safety becomes equal to unity. Introducing the critical

height He = 4c/7 (eq. 67 (2a)) into this equation we get

6.14+
2
1-'

^ [5]

A
2B

If the vertical distance between the bottom of the tunnel and the sur-

face is greater than Hi, the bottom of the tunnel will rise and the roof

will subside.

The dash-dotted line on the right side of Figure 69 represents the

lower boundary of the zone of plastic equilibrium on the assumption

that the soft soil is underlain at a depth D < By/2 below the bottom by
a hard stratum. The presence of this stratum reduces the width of the

zone of subsidence from 2B to DV2, whereupon we obtain

The temporary support of a tunnel may also fail as a result of inade-

quate support of the footings of the arch ribs or of the posts. The load

on the footings per unit of length of the tunnel is at least equal to the

difference between the weight of the body of soil ahie\d and the greatest

value 2c {H — Ht), which the shearing force on the vertical sections

ab\ and dei can assume. If the ribs are supported by continuous foot-

ings each 26i in width, the pressure per unit of area exerted on these

footings will be at least equal to

yB{H - Ht) - (/f ~ Ht)c 1 ,,, „ , , „ ,
5 — (ff-H,)(rB-o)

Since the bases of the footings are rough, the bearing capacity is de-

termined by the equation

qo = 5.7c 46 (7c)

The pressure q on the footings should not be greater than the bearing

capacity qo divided by an adequate factor of safety G,. Hence

or

26i = (yB - c)0, [7]



202 EARTH PRESSURE ON TEMPORARY SUPPORTS Akt. 72

The method of open mining cannot be used unless it is possible to

install continuous footings the widths of which are at least equal to 2hi

or to install equivalent square footings.

73. State of stress in the vicinity of drill holes. In dealing with

problems concerning the plastic equilibrium of soil in the vicinity of

cylindrical holes, a distinction must be made between small holes such

as drill holes and large holes such as shafts. In contrast to a drill hole,

the diameter of which does not exceed a few inches, a shaft is an ex-

cavation the width of which is at least several feet.

When a small hole is drilled in a deposit of cohesive soil, the walls of

the hole may stand without any lateral support. Yet, when a shaft

having a diameter of 10 feet is excavated in the same soil, the walls of

the shaft may fail unless supported by timbering. The following

analysis deals with the stress conditions which are likely to exist in the

vicinity of small holes. The term cylindrical section will be used ex-

clusively for sections whose axis coincides with the center line of the hole.

Let

7 = the unit weight of the soil,

Kq = the coeflScient of earth pressure at rest the value of

which depends on the nature of the soil and its

geologic history,

cTr, and cz = the horizontal radial stress, the horizontal circum-

ferential stress, and the vertical stress respectively:

all normal stresses,

T = the shearing stress on the planes on which the normal

stresses Cr and a, act,

<rj and cm == major and minor principal stress respectively which

exist after the hole has been made,

cTro = the normal stress at the walls of the hole at a depth

To = the radius of the hole, and

Tz = the outer diameter of the zone of plastic equilibrium

at depth z.

The shearing resistance of the soil is determined by Coulomb's

equation

« = c.+ <r tan 4>

wherein c is the cohesion, c the normal pressure acting on the plane of

shear, and <t> the angle of shearing resistance. The corresponding con-

ditions for plastic equilibrimn are defined by equation 7 (3)

crj as* 2c 4" CjllN^ [11
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wherein <r/ designates the major and cm the minor principal stress, and

Ar* = tan2^45“+|)

In Figure 60a are shown the stresses which act on an element of the

soil adjoining a cylindrical section having an arbitrary radius r. Since

Fig. 60. (a and h) Stresses which act on the sides of a small block of soil located

at an arbitrary distance r from center line of a shaft; (c and d) diagrams illustrating

the assumptions on which the computation of earth pressure on lining of shaft are

based.

the shearing stresses on vertical sections through the center line of the

hole are equal to zero, the circumferential stress is a principal stress.

Westergaard (1940) has demonstrated by trial computation that

the shearing stress t shown in Figure 60a can be negligible. If this

condition is satisfied the radial stress or^ is almost identical with the

minor principal stress whereupon we can replace the plasticity
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condition (eq. 1) by

(Tq =* 2c + N^<Tr [2]

Since both stresses cq and Gr are horizontal a failure of the walls of

the drill hole would occur by plastic flow in horizontal planes. By com-

bining equation 2 with equations 17 (3), Westergaard (1940) determined

the stress function which satisfies the boundary conditions of the

problem. The corresponding stresses are

and

These equations can also be derived by elementary methods, by combining

equation 2 with another equation expressing the condition that the sum of all the

forces which act on the element shown in Figure 60a in the direction of a horizontal

radius through the center of the element must be equal to zero (Terzaghi 1919).

At the boundary between the zone of plastic and elastic equilibrium,

the stresses computed by means of equations 3 must also satisfy the

conditions for the elastic equilibrium of the soil located beyond the

boundary. The equations which determine the stresses in the elastic

region will be derived in Article 145. By combining these equations

with equations 3, Westergaard obtained for the radius of the zone

of plastic equilibrium at a depth z below the surface, on the assumption

ITo == the equation

Te = ^0
2[(iV* - Dtz + 2cV^]

{N^ + 1)[{N^ - l)<^ro + 2cV]VJ
[4]

In order to apply the preceding equations to cohesionless soils we
must introduce tiie value c = 0 into equations 2, 3, and 4. Thus we get

Ge [6]

o-f

)
[6a]

i

G0
£) [66]

r 2yz
mUo(iV* + 1)J
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The radius Ve of the zone of plastic equilibrium (eq. 7) has a finite

value for every positive value of the radial stress aro which acts at the

walls of the drill hole. This conclusion is in accordance with field ex-

perience with drill holes in sand. As a rule, the insignificant lateral

resistance offered by a mud jacket suffices to keep the drill hole open.

As a second case let us consider the state of stress in the vicinity of a

drill hole in an ideal clay the angle of shearing resistance 0 of which is

equal to zero. Introducing into equation 2 the value

N^, = tan2^45'‘ +0 = 1

we get

ffe — <fr "h 2c

Evaluating equations 3 and 4 for ^ = 0 we obtain

2c In + <^t0

[8]

[9a]

[96]

r. = roe [10]

If the walls of the drill hole are unsupported the normal stress Vro

acting on the walls is equal to zero and the value r, becomes equal to

(yx —c)/2c

©
+ Vro

and
(yx'-c -'«rro)/2c

Te = Tq €'

Between the surface and a depth

z, = -

[11 ]

[12]

the value r, is smaller than tq. This indicates that the elastic region

within this depth extends to the walls of the hole. For greater values of

z the radius of the zone of plastic equilibrium increases with increasing

depth. Yet, for any finite value of z the value of r, is finite. Hence,

the walls of a drill hole in clay should not require any lateral support,

regardless of what the values of c and z may be. Experience has shown

that the walls of drill holes in stiff or medium clay do not in fact require

any lateral support. This experience agrees with the preceding con-

clusions. However, experience has also shown that the walls of shafts

in clay are likely to fail unless they are adequately supported. This
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observation indicates that the preceding analysis does not apply to

shafts. The reason will be discussed in the following article in connec-

tion with the earth pressure of sand on the walls of shafts.

74. Conditions for the equilibrium of sand adjoining the walls of a

shaft located above the water table. Figure 60c is a vertical section

through a block of sand with a weight W, a height z, and an arbitrary

radius r. It surrounds a cylindrical shaft with a radius tq. The outer

surface of the block is acted upon by a shearing force Sr and the base

of the block by a vertical pressure Q. The equilibrium of the block

requires

W=‘Q + Sr [1]

In the preceding article it was assumed that the shearing stresses on

cylindrical sections are negligible and that the normal stresses on hori-

zontal sections represent intermediate principal stresses. If the diam-

eter of the hole does not exceed a few inches these conditions are almost

satisfied even if the radial stresses Cro at the walls of the hole are very

small. Therefore, the results of the analysis agree with experience with

drill holes in sand. Since the normal stresses on horizontal sections

were assumed to be intermediate principal stresses, the problem of

computing the stresses in the sand surrounding the hole was a two-

dimensional problem of plasticity.

When a wide shaft is excavated in sand we may expect on the basis

of construction experience that the timbering has to srrstain an ap-

preciable earth pressure. If the timbering is not strong enou^ to

sustain this pressure, it fails, whereupon the surface of the sand sur-

rounding the mouth of the shaft subsides. This type of deformation

of the sand surrounding the shaft indicates a shear failure on approxi-

mately cylindrical sections. It also indicates that the normal stresses

on horizontal sections exceed the strength of the sand. Therefore the

analysis contained in the preceding article cannot be applied to the

computation of the earth pressure on the walls of shafts.

The intensity and the distribution of the earth pressure on the lining

of shafts imdoubtedly depends to a certain extent on the method of con-

struction. Our present knowledge does not yet permit us to take this

effect into consideration. In order to get at least some information

concerning the influence of the diameter and the depth of the shaft and

of the angle of internal friction of the sand on the earth pressure we solve

by approximation the following problem. We apply on the walls of

the draft with a depth infinity a radial pressure, Cro uiut of area,

as indicated on the right-hand side of Figure 60c and we estimate the

smallest value which must be assigned to this pressure in order to pre-
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vent a failure of the walls of the shaft. Since this pressure can be
supplied by the resistance of an ideal lining, the pressure o-^o will briefly

be called the earth pressure.

Figures 60a and 606 show the stresses which act on a wedgenshaped

element of the sand adjoining a cylindrical section with an arbitrary

radius r. As explained in the preceding article, the circumferential

stress (Te represents the major principal stress and the two other principal

stresses act in radial planes. It has also been shown that the radial

stress (Tr represents for t = 0 the smallest principal stress. In connec-

tion with shafts the shearing stress r cannot be disregarded. Therefore

the smallest principal stress o-jjj acts at a small angle 5 to the horizontal,

as indicated in Figure 606. The type of movement of the sand produced

by a failure of the walls of the shaft indicates that the second principal

stress cii has the greatest value compatible with the conditions for

plastic equilibrium. According to Mohr^s theory of rupture (Art. 7)

this value is equal to that of the major principal stress, which in our case

is equal to ae- The stress conditions for failure are represented in

Mohr^s diagram. Figure 60d. Setting o-jj = aj in equation 7 (5) we
get for the state of impending failure

wherein == tan^ Hence

^IT

^iij

= AT, ui

Since Cr ai^d <r, in Figure 60d are not principal stresses the ratio (xjar = a

is smaller than the ratio cn/crni = By geometry we obtain

from Mohr's diagram

— = a
(ft

= tan^
(
45-

+

1) 12]

The value of the angle <t>i depends on that of d. It is smaller than <f>.

The diagram further shows that the shearing stress which acts on the

cylindrical section at a given value of 4>i cannot be greater than

8 = Ct tan <f>2 [3]

Finally we learn from Figure 60d that the ratio Vf/vr is somewhat

greater than the ratio v./vr = <*• Hence, if we assume v* <r» or
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we introduce a slight error on the safe side into our computation. In

the following analysis the value a = o-^/cTr represents the equivalent of

the value = cr^/o-r which appears in equations 73 (6).

The relation between ae, o-r, and <rro is determined by equations 73(6).

If we replace the value in these equations by a, we obtain for the

radial and circumferential stress respectively the values

These equations show that both the radial and the circumferential

stresses decrease with decreasing values of r/ro. In other words, the

intensity of all the stresses decreases in radial directions toward the

shaft. This stress condition will be referred to as ring action.

From equations 2 and 46 we get

Figure 61a is a vertical section through the center line of a shaft. If

there were no ring action, the lateral pressure on the walls of the shaft

would not be smaller than the active Rankine pressure. At a depth z

below the surface this pressure is equal to

VA = yz tan^ ^45° ~ 0
= "y®

per unit of area. In Figure 61o this pressure is represented by the hori-

zontal distances between the lines ib and iKa- However, as a result of

the ring action the lateral pressure on ib is very much smaller than the

active Rankine pressure. It is represented by the pressure area ibd.

At point i at the upper edge of the shaft, the pressure line id should be

tangent to the line iKa- The pressure area efg on the right-hand side

of the center line of the shaft shown in Figure 61a shows the distribution

of the lateral pressure on a cylindrical section with an arbitrary radius r.

Before the shaft is constructed, the pressure per unit of area acting on

this section at any depth z is equal to

(To = Koyz

wherein Kq is the coefficient of earth pressure at rest. The stress vo is

represented in Figure 61a by the horizontal distance between the lines ef
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and cKq, After the shaft has been excavated, the pressure line shifts

from its original position to position eg.

Figure 616 represents the stresses which act in the vicinity of the shaft

at any depth z below the surface. The scale of the stress diagrams

shown in this figure is smaller

than that used in Figure 61a.

The abscissas give the distances

r from the center line, the ordi-

nates of the lower curve repre-

sent the radial stress, and those

of the upper curve the circum-

ferential stress and the vertical

stress. The boundary between

the plastic and the elastic zone

is indicated by a break in the

stress curves. Within the plastic

zone, the stresses <Tr and cr^

are determined by equations 46

and 4c respectively.

The total weight of the sand

above the horizontal section at

depth Zy between the walls of

the shaft and a distance r from

the center line is

iJah^-r/iTr

‘IL,
''1
ro h-

W = 7r(r^ — rl)yz

The total pressure on the an-

nular area 7r(r^ -- Tq) is equal to

3ro Stq

Distance from centerline

{c)

Q f2'7rr<Tgdr

Fig. 61. (a) Distribution of radial pressure

cro on lining of shaft in sand and of radial

stresses cr^ on cylindrical section with radius

r; shaded area in right-hand diagram indi-

cates zone in which shearing stresses on

cylindrical section are almost equal to shear-

ing resistance of sand; (6) approximate dis-

tribution of radial, circumferential, and

vertical normal stresses (tr^, and <r,) along

horizontal section at depth z; (c) relation

between radius of a cylindrical section and

average value of tangent of angle ^ between

resultant stresses on this section above

depth z and the radial direction.

In Figure 616 the pressure Q is

represented by the shaded area.

The difference between the forces

W and Q must be carried by
the shearing stresses acting on

the cylindrical surface ef in Figure 61a. The following investiga-

tions will show that the rate of increase of the radial stress on a

cylindrical section decreases as the depth below the surface increases,

as indicated by the curvature of the pressure line eg in Figure 61a.

Therefore the average radial pressure per unit of area acting on the
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cylindrical section ef is intermediate between the value art which repre-

sents the normal pressure on the section at depth z, and the value ^ar,

which represents the average normal pressure on the assumption that the

pressure increases in simple proportion to depth. The corresponding

average shearing resistance Sa on the cylindrical section is intermediate

between ar tan <l>2 and ^ar tan In the following computations we
assign to Sa the lower limiting value

So “ tan 02 [5]

which involves an error on the safe side.

If only a part of the shearing resistance is required to maintain a

state of equilibrium, the average shearing stress on ef will be equal

to ^ar tan 0, wherein tan 0 is smaller than tan 02- The value of tan0

is determined by the condition that the total shearing force on ef should

be equal to the difference between the forces W and Q, or

W Q = 7r(r^ — rl)yz —
J"

2'iTrazdr = 2rrz \ar tan 0

Combining this equation with equation 4d, and setting

we get

tan 0 =

r— = n and m. _ O'rO

l6o]
^0 yro

1 2a ro - 1

[65]
m,n“ g H” 1 z n“

The value rii for which tan 0 is a maximum is determined by the

condition

d tan0

dn
= 0

Solving this equation for we obtain

— ^ ^ + 1 g — (g — 2) nf

To 2a g + ni’’*^
[7]

The angle 0 represents the angle between the resultant stress on a

cylindrical section and the corresponding normal stress ar. According

to Mohr’s diagram, Figure 60d, the greatest value which this angle

can assume at a given value of the angle 0i is 02 . Replacing n in

equation 66 by Ui and tan 0 by tan 02 we obtain

nf — 1 2g ro — 1
tan 02 =

g + 1 0 ni
[8]
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If 2 =» 0,
equation 8 is not satisfied unless rii = 1, whence

z
z = 0

, ni = 1
,

and =—
[9]

(ITq

With increasing values of 2, both ui and increase. For 2 = oo we
get from equation 8

nf — 1—
7

"

n" tan <t>2

Introducing this value into equation 7 and solving for ni we get

Hence

2 = 00, ni = (g -

tan <t>2

[101

The value a contained in the preceding equations is equal to

tan® (45® + 0i/2) (eq. 2). If <l>i is known the angle <^2 can be deter-

mined graphically by means of Mohr’s diagram as shown in Figure 60d.

In Figure 62o the values of <fn and <^2 have been plotted against 0 —
for 0 = 30® (dashed curves) and 0 = 40® (plain curves). In Figure

626 the abscissas represent the values of 0 — 0i and the ordinates the

corresponding values of via computed by means of equation 10 for

0 =* 30® (dashed curve) and 0 = 40® (plain curve). For 0i = 0 or

0 — 01 = 0, 02 is equal to zero, whence w, for z = » (eq. 10) is equal

to infinity. If the radial pressure Vro acting on the walls of the shaft

at depth infinity is smaller than infinity the sand siurounding the shaft

starts to yield toward the shaft. During this process shearing stresses

develop along cylindrical sections and the radial stresses Vr (Fig. 606 )

which act on these sections cease to be principal stresses. As the

shearing stresses increase the angle 4>i decreases, the angle 02 increases

and the value m,= Vro/T^o decreases as shown in Figure 626. Hence
the radial pressure Vro = yrom, required to stop the sdeld also decreases.

As soon as 0i becomes approximately equal to 0 — 5® this pressure

becomes a minimum. This nunimum pressure value satisfies the re-

quirements of our problem because we inquired about the smallest

radial pressure Vro which suffices to maintain in the vicinity of the shaft

a state of plastic equilibrium. According to Figure 62a the value of

0t corresponding to a value of 0i >= 0 — 5® is approximate^ equal to

0 — 6®. For 01 = 0 — 5° the angle S (slope angle of the direction of
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the smallest principal stress am in Fig. 60a) is roughly equal to 15®

for any value of <l> between 30® and 40®.

for 9 ~30

Values of

(a)

Values of

(b)

1.472 = for i/rQ •co

10 20 30

'i/alues of z/r0

(c)

30® 40®

Values of ^

id)

Fia. 62. (o) Values of angles <t>x and in Mohr’s diagram, Fig. 60d, plotted aeainrf.

“ !» (6) influence of ^ on value of ma •= v^/tto for s = « ; (c) relation

between m. and the depth ratio s/ro for 0 = 40°; (d) relation between m. <>• (Tro/vro

and 0 for s °> «.

Thus the smallest radial pressure Cto == Voing required to prevent a
failure of the walls of the shaft can be computed for any pven value of

z by combining equations 7 and 8 with the equation

^ ^ — 6“ (llj

provided the angle ^ ranges between the limits of 30° and 40°, repre-

senting the extreme values which the angle of internal friction of a
is likely to assume. The following table contains the numerical values
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of fiiff and rii for = 40® (0i = 40® — 5® = 35®) and different values of

«Ao-*

z/ro 0 3.1 8.3 11.8 18.2 29.4 76.0 QO

rriff
= O-rO

yfQ
0 0.23 0.30 0.33 0.35 0.36 0.37 0.398

ni 1 1.30 1.38 1.40 1.42 1.44 1.46 1.472

In Figure 62c the abscissas represent the values z/ro, the ordinates of

the plain curve the corresponding values of m<r, and those of the dashed

curve the values of ni. With increasing values of z/tq both curves ap-

proach horizontal asymptotes with ordinates of 0.398 and 1.472. For

depths greater than about 8ro (four times the diameter of the shaft),

the unit earth pressure on the wails of a shaft with a given radius r©

increases very slowly with increasing depth. The radius riiro of the

space within which the sand would subside in a vertical direction in

case of a failure of the lateral support of the walls of the shaft is approxi-

mately equal to 1.5 times the radius tq of the shaft.

Similar graphs can be plotted for any given value of 0. By means of

such graphs the earth pressure on the walls of a shaft can be computed

rapidly. Let us assume that a cylindrical shaft having a diameter of

2ro = 20 feet is to be excavated in a bed of sand with a unit weight

7 = 110 pounds per cubic foot. We wish to determine the lateral

pressure on the walls of the shaft at a depth z = 100 feet below the sur-

face. For z/ro — 100/10 = 10, we obtain from Figure 62c 0.315.

Since

0.315 =
CTrO

110 X 10

the pressure per unit of area acting on the walls of the shaft at a depth

of 100 feet is

(th) = 0.315 X 110 X 10 = 345 Ib/sq ft

According to Figure 62c a value of z/tq = 10 is associated with a

value of ni == 1.39. Hence, the ratio between shearing stresses and

normal stresses on cylindrical sections will be greatest at a distance of

about nifo 14 feet from the center line of the shaft or of 4 feet from

the walls of the shaft. If the values of nivo are plotted as a function of

the depth, we obtain a dome-shaped surface. On the right-hand side

of Figure 61a the generatrix of this surface is represented by the line

mn. Above this surface, within the space represented by the shaded

* The numerical values in the table were obtained by introducing tan 02 *- tan tan 85** into eq.

8> computing from this equation the values m for different values of ni and by computing the oorre>

sponding values of s/n by means of eq. 7.
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area, the shearing resistance of the sand acting on cylindrical sections is

fully active. Beyond the boundaries of this space the shearing stresses

on cylindrical sections rapidly drop below the maximum value which

they could assume.

If the walls of the shaft are located entirely below the water table and

if the shaft is perfectly sealed, the walls are acted upon by the sum of

the full water pressure and the pressure exerted by the sand. At a

depth of 100 feet below water table, the pressure of the water is equal

to 100 times 62.5 = 6250 pounds per square foot. In order to calculate

the pressure exerted by the sand, we must replace in the preceding

equations the unit weight 7 of the sand by the submerged unit weight

7 '. Assxuning 7
' = 70 pounds per cubic foot, we get

cro = 0.315 X 70 X 10 = 221 Ib/sq ft

which is negligible compared with the pressure exerted by the water.

Figure 62d shows the relation, given by equation 10, between the angle

of internal friction
<t>

of the sand and the values of == o^ro/7^0 for

2 = 00 . The corresponding value of <Tro represents the highest value

which the unit pressure of a given sand on the walls of a shaft with a

given diameter can assiune.

Figure 62c shows that the ratio ni for 0 = 40^^ and 2/ro == «> is equal

to 1.47. For = 30*^ we obtain from equations 10 rii = 2.30. These

results indicate that the zone in which the shearing resistance of the sand

on cylindrical sections is fully active is very narrow. For this reason

we Were justified in disregarding the abnormal stress conditions which

prevail in the vicinity of the bottom of the shaft. At a short distance

above the bottom of the shaft they must be practically normal.

So far we have no evidence of any contradiction between the results

of the preceding computations and the earth pressure on the lining of

real shafts in sand. This fact seems to indicate that the customary

methods of constructing such shafts permit the full mobilization of the

shearing resistance of the sand while excavation proceeds. In accord-

ance with the results of the preceding computations the earth pressure

on the lining of shafts in sand approaches a finite and relatively small

value with increasing depth.

75« Pressure o£ clay on walls of shafts. The method of computation de-

scribed in the preceding article could also be applied with minor modifications to the

computation of the earth pressure on the walls of shafts in clay. However, a study

of the problem on this basis showed that the errors are likely to be excessive. Th^
are primarily due to the infiuence of the soil located beneath the bottom of the shaft

on the intensity and distribution of the stresses. The theory described in the pre-

ceding article is based on the assumption that the depth of the shaft is infinity. If

the depth of a shaft is finite, part of the radial pressure exerted by the soil around
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the lower part of the shaft is transferred by shearing stresses to the soil located be-

neath the bottom. Up to a height above the bottom which is roughly equal to the

width of the zone of plastic equilibrium, the relief of pressure due to this pressure

transfer is very important. If a shaft is surrounded by sand the width of this zone

is very small. Therefore at a short distance above the bottom the pressure on the

walls of the shaft is practically identical with that on the walls of a shaft with infinite

depth. On the other hand, at the level of the bottom of a shaft in clay the width

of the zone of plastic equilibrium is roughly equal to the depth of the shaft. There-

fore the relief of the earth pressure due to the pressure transfer described above

extends over the major part of the depth of the shaft. On account of this influence

the earth pressure on the walls of a shaft with finite depth in clay should be very

much smaller than the computed pressure. As a matter of fact, a comparison of

the results of one such computation with the results of pressure measurements in

the field showed that the measured pressure did nowhere exceed about one half of

the computed pressure. More accurate methods of computation are not yet available.



Chapter XI

ANCHORED BULKHEADS

76. Definitions and assumptions. Anchored bulkheads serve the

same purpose as retaining walls. However, in contrast to retaining

walls whose weight always represents an appreciable fraction of the

weight of the sliding wedge, bulkheads consist of a single row of relatively

light sheet piles of which the lower ends are driven into the earth.

Fia. 63. Anchored bulkhead with (a) free and (6) fixed earth support. Dash-

dotted lines indicate potential surfaces of sliding.

The active earth pressure is taken up partly by anchor rods which

are tied to the sheet piles at A in Figure 63, at a short distance below

the upper edge a of the bulkhead and partly by the passive resistance of

the soil located on the left side of the lower part of the sheet piles.

The anchor rods are held in place by anchors which are buried in the

backfill at a considerable distance from the bulkhead.

In further contrast to retaining walls, bulkheads are flexible. On
accoimt of the anchorage of the uppermost part and the passive resist-

ance of the soil adjoining the lowest part of the bulkhead, the upper and

the lower edges of a bulkhead are practically fixed. Therefore a bulk-

head yields only by bending in a horizontal direction and the maximim
deflection occurs approximately at midheight of the bulkhead. This

type of yield is essentially different from that of any of the lateral

supports which have been discussed in the preceding chapters. When
a cut is made in sand the lateral yield of the sand adjoining the cut

increases from almost zero at the upper rim to a maximum at the

bottom and the distribution of the lateral pressure of the sand on the

216
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timbering is roughly parabolic. A retaining wall usually yields by-

tilting about its base and the distribution of the active earth pressure of

sand on such a wall is hydrostatic. The lateral yield of the upper part

of the soil adjoining a bulkhead resembles

that of the soil adjoining a cut and the lat-

eral yield of the lower part is similar to

that of the backfill of a tilting retaining

wall. On account of this deformation

condition the distribution of the active

earth pressure on a bulkhead represents

a combination between that on the timber-

ing of cuts and that on the back of retaining

walls, as indicated by the pressure area

dbitiSi in Figure 64.

In connection with bulkhead problems it

is always assumed that the lateral yield of

the middle part of the bulkhead is impor-

tant enough to mobilize the full shearing

resistance of the supported soil along the

potential surface of sliding, for instance

the surface de in Figure 63a. The intensity and the distribution of the

earth pressure on the buried part of the bulkhead depends on the

depth to which the sheet piles have been driven into the ground.

In connection with the design of bulkheads we have to answer the

following questions: What is the depth to which the sheet piles must

be driven in order to insure an adequate lateral support for the lower

part of the bulkhead? What is the intensity of the force which acts

on the anchor rods? What is the value of the greatest bending moment
in the sheet piles?

In order to simplify the presentation of the subject the discussions will

be limited to vertical bulkheads acted upon by the earth pressure

of a homogeneous mass of ideal sand whose shearing resistance is deter-

mined by the equation

« = cr tan 0 5(2)

The anchor pull is assumed to be horizontal. It is also assumed that the

water table is located below the lower edge of the sheet piles and that

the surface of the mass of sand which is supported by the bulkhead does

not carry any surcharge. However, the methods of computation

described in the following articles can also be used without essential

modification even if the soil adjoining the bulkhead is partly or wholly

submerged, or stratified, or cohesive, or if the anchor pull acts at an

Fig. 64. Assumed (unbroken

line) and real (dashed line)

distribution of active esirth

pressure on anchored bulk-

head with fixed end support.
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angle to the horizontal. The influence of seepage forces on the stability

of bulkheads will be discussed in Article 92.

77. Conditions of end support. If the sheet piles have been driven

only to a shallow depth, the deflection of the bulkhead is somewhat

similar to that of a vertical elastic beam whose lower end d is simply

supported without being fixed, as shown in Figure 63a. Bulkheads

which satisfy this condition are called bulkheads with free earth support.

On the other hand, if sheet piles have been driven to a considerable depth,

as indicated in Figure 636, the lower end of the bulkhead is practically

fixed in its position, because the resistance of the sand adjoining the end

does not permit more than an insignificant deviation of the piles from

their initial, vertical position. Therefore bulkheads of this type will

be called bulkheads with fixed earth support. An adequately anchored

bulkhead with free earth support can fail either by bending or, on

account of a failure of the sand adjoining the contact face bd, by shear

along a curved surface of sliding df. A securely anchored bulkhead with

fixed earth support can fail only by bending.

78. Distribution of active earth pressure on bulkheads. On ac-

count of the boundary deformation conditions described in Article 76

the distribution of the active earth pressure on a bulkhead is non-

hydrostatic. The results of theoretical investigations (Schoenweller

1929, Ohde 1938) and experience indicate that the distribution of the

active earth pressure is similar to the distribution indicated by a dashed

curve asiti in Figure 64. It is also known from both theory and experi-

ence that the total active earth pressure on the bulkhead is approxi-

mately equal to the Coulomb pressure on the back of a retaining wall,

which is determined by equations 23 (1 ). However, the methods which

have been worked out for determining the distribution of the pressure

do not take the elastic properties of the soil into consideration. The
importance of the error due to disregarding this vital factor is not yet

known. Furthermore, the elaborate character of the procedures con-

ceals the manifold a,rbitrary assumptions on which the procedures are

based and inspire an unwarranted confidence in the reliability of the

results. Hence, pending further increase of our knowledge of this

subject, the author suggests that the influence of the nonhydrostatio

distribution of the pressure on themaximum bending moment Mo should

be estimated on the basis of our purely empirical knowledge of earth

pressure phenomena, as explained in the following paragraph.

Figure 64 is a vertical section through a bulkhead with fixed earth

support. Below point &i the lateral deflection of the bulkhead is in-

significant. Above 6i the right-hand face of the bulkhead is acted
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upon by the active earth pressure Pa. The distribution of the earth

pressure on the bulkhead depends to a large extent on the elastic proper-

ties of the soil supported by the bulkhead. If the soil consists of a
semi-liquid, fine-grained hydraulic fill, the pressure distribution is

hydrostatic as indicated by the triangular area abit which represents

the pressure Pa- As a consequence, the maximum bending moment
Mo computed on the assumption of a hydrostatic pressure distribution

is practically identical with the real maximum bending moment M.
On the other hand, if the bulkhead supports a mass of clean sand as

assumed in this chapter the distribution of the lateral pressure is in-

dicated by the pressure area asitibi and the real maximum bending

moment M in the sheet piles does not exceed about one half of the

maximum bending moment Mo computed on the basis of a hydro-

static pressure distribution.

79. General procedure. The customary methods of bulkhead design

(Lohmeyer 1930, Blum 1930) ignore the nonhydrostatic distribution of

the active earth pressure on the bulkhead. Therefore the computed

value of the maximum bending moment in the sheet piles is considerably

greater than the real one as demonstrated in the preceding article.

On the other hand, the influence of the pressure distribution on the

depth of penetration required to obtain an adequate lateral support

for the buried part of the bulkheads is very small. Therefore this

depth can be determined without appreciable error by means of the usual

methods.

In accordance with this general procedure it will be assumed that

the horizontal component of the active earth pressure, pAn per imit of

area of the back of the bulkhead, is determined by the equation

PAn — y^^A 15(1)

wherein Ka is the coefficient of active earth pressure. The hori2x>ntal

component of the passive earth pressure per unit of area of the con-

tact face of the buried part of the sheet piles is equal to

ppn = yz'Kp 15(3)

wherdn Kp is the coefficient of the passive earth pressure and z' is the

depth below the lower ground surface. The methods for computing

the values of Ka and Kp have been discussed in Chapters VI and VII

respectively. These values depend on the angle of internal friction ^
and the angle of wall friction d. The angle d must be selected in accord*

ance with the conditions of the problem. Since the weight of the

sheet piles is negligible compared to the external forces which act on the
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bulkhead the friction component of the passive earth pressure cannot

be appreciably greater than that of the active earth pressure. For

5 = 0 the values Ka and Kp become identical with the Rankine values

ii:^ = tan2 ^45° - i 15(2)

and

Kp = tan^ ^45° + 0 = JV* 15(4)

respectively.

80. Bulkheads with free earth support. Figure 65 is a section

through a bulkhead with free earth support. The distribution of the

active earth pressure over the right-hand face of the bulkhead is assumed

Fig. 66. (a) Various assumptions regarding distribution of passive earth pressure

on buried part of bulkhead with free earth support; (b) customary assumptions

conoeming the forces which act on such a bulkhead.

to be hydrostatic, as indicated by the triangular pressure area add^.

The depth D of penetration of the sheet piles is determined by the con-

dition that the passive resistance of the earth required to support the

lower end of the sheet piles should not exceed a certain fraction l/Q,

of the passive earth pressure represented by the triangular pressure

area hddp (Fig. 65). The value <?* is called the factor of safety with

respect to failiire of the lower support of the bulkhead.

The lines dibi, d^ha, and dzbz (Fig. 65a) indicate different opinions
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concerning the left-hand boundary of the pressure area which represents

the mobilized fraction of the total passive earth pressure bddp. Most
investigators prefer the vertical line dibi because it simplifies subsequent

computations (Krey 1936).

Assuming that the mobilized part of the passive earth pressure can be

represented by a trapezoid bbidid (Fig. 65o), the bul^ead is acted

upon by the forces indicated in Figure 65&. Let

PAn
{H + DY

yKj, = horizontal component of the active earth

pressure,

1 1 -D®
Ppm = TT ^Fn — TT

~ mobilized part of the horizontal
Cr, Cr, 2

component of the passive earth pressure,

tan 5 = coeflScient of wall friction,

Ap = tension in the anchor rods per unit of length of the bulkhead,

Q = vertical soil reaction at lower edge of sheet piles, per unit of

length.

Do = the elevation of the center of gravity of the pressure area

bbidid above the lower edge of the sheet piles.

The equilibrium of the system requires that the sum of the vertical

components, that of the horizontal components, and that of the mo-
ments around any point, for instance point A, should be equal to zero.

Hence

P^n tan 5^ — Ppm tan dp — Q = 0 [lo]

Ap + Ppn,- PAn = 0 [16]

and

(ff + D)- Hi] - Pp,a(H + D - F, - Do) = 0 [Icl

Equations 16 and Ic can be solved for D, the required depth of pene-

tration of the sheet piles, and for Ap, the pull in the anchor rods. The
specifications usually require a factor of safety 6, = 2. Nothing is

known regarding the intensity of the soil reaction Q in equation la.

Yet this reaction has a considerable influence on the values Ka and

Kpm. If Q = 0 the condition expressed by equation lo is not satisfied

unless the angle of wall friction for the passive pressure is greater than

that for the active pressure or unless both values are equal to zero. In

order to keep the errors on the safe side, it is often assumed that 6 0.

On this assumption the Coulomb values for the earth pressures become

identical with the Rankine values, provided the bulkhead is vertical.

The Rankine values are given by equations 15(2) and (4).
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81. Bulkheads with fixed earth support. The lower end of a bulk-

head is assumed to be fixed if the depth of penetration of the sheeting is

sufficient to produce an elastic line of the type represented in Figure

66o by the dashed line E. The S-shape of this line represents the com-

bined result of the flexibility and of the deep penetration of the sheet

piles. Owing to the fact that the active earth pressure produces bend-

Fia. 66. (a) Real and (6) assumed distribution of horizontal pressures on the two
sides of a bulkhead with fixed earth support.

ing between the anchorage and the earth support, the bulkhead yields

toward the left. As a result, passive earth pressure sufficient to main-

tain the equilibrium of the S3^tem is mobilized in the sand adjoining the

upper part he of the section hd of the sheet piles.

On the other hand, at a greater depth, below some point c located

between 6 and d the sheet piles must deflect to the right of their original

position, because if the sheet piles were long enough the elastic line E
would ultimately become identical with the straight vertical line an.

This asymptotic approach to an can only be accomplished by successive

deviations of the elastic line to the left and to the tight of an, which

gradually die out with depth. A deflection of the elastic line toward

the left of its original position involves the mobilization of the passive

earth pressure on the left side of the sheet piles while the right face is

acted upon by the active earth pressure. A deflection toward the ri^t
has the opposite effect. In order to ascertain the extreme boundaries

for the values which the earth pressure can assume at different depths
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below the surface the designers reasoned in the following manner. The
smallest value which the earth pressure on the right-hand face of the

bulkhead can assume is equal to the active earth pressure. The hori-

zontal component of this pressure is represented by the pressure area

anKA (Fig* 66a). The horizontal pressure exerted by the buried part

bd of the bulkhead on the adjoining soil should nowhere exceed the

horizontal component ppn of the passive earth pressure divided by the

safety factor G,. At any depth z' below point b the pressure ppn is

ppn = yz'Kp

wherein iTp is the coefficient of passive earth pressure. In order to

satisfy the safety requirement the horizontal unit pressure should not

exceed

PPm ~ 77 PPn ~ Kpm

wherein

Kpm = 77 Kp

As a rule it is assumed = 1 because there is hardly any danger that a bulkhead

with fixed earth support may fail on account of inadequate passive earth pressure.

However, the numerical value of (?« has no influence on the following analysis.

Therefore the distinction between Kp and Kpm will be retained.

In Figure 66a the pressure ppm is represented by the abscissas of the

line bKpm- No limiting values are needed for the lateral pressure

exerted by the section cd of the bulkhead, because this pressure is always

very small compared with what the soil can stand.

The effect of the deflection of the bulkhead on the intensity and dis-

tribution of the horizontal pressure on the two sides of the bulkhead

is shown in Figure 66a by the pressure area located between the bulk-

head and the line obArd for the right-hand side and by the pressure area

bstd for the left-hand side. The resultant pressure per unit of area of

the bulkhead is given by the abscissas of the line abAUV in Figure 666

with reference to the vertical line ad. These abscissas are equal to the

algebraic sum of the abscissas of the lines ab^r and bst in Figure 66a.

Our first problem is to determine the depth to which the piles must

be driven in order to get an elastic line similar to that shown in Figure

66a* In order to simplify this problem we add to the pressures indicated

by the abscissas of the curve (Fig. 665) two equal and opposite

pressures represented by shaded areas and we replace the entire positive

pressure which acts on the lower end of the bulkhead, including the

pressure +AP represented by a shaded area, by its resultant R4 per
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unit of length of the bulkhead. The point of application of the resultant

pressure Rd is located approximately at point di. Thus we replace the

two real pressure areas hivdi and divd with curved boundaries by one

triangular area hid^di located on the left-hand side of the bulkhead

section hd and one concentrated force Rd acting on the right-hand side

of this section. The section did of the bulkhead located belowthe point

of application of Rd is assumed to be fixed. The graphical solution of

the problem of determining the required depth of penetration of the piles

is illustrated by Figure 67.

Fio. 67. Elastic line method for computing anchor pull and maximum bending

moment in anchored bulkhead with fixed earth support.

At the outset of our investigation the depth Di at which point di

(Fig. 666) is located is unknown. Hence we are obliged to make a first

guess, represented by the value Dj = hd[ in Figure 67a. Then we
replace the continuous system of forces which acts on the bulkhead by a

system of individual forces 1 to 8 as shown in Figure 676, draw the poly-

gon of forces shown in Figure 67c and the corresponding funicular

polygon. Figure 67d. The elastic line corresponding to the system of

forces shown in Figure 67o should intersect the line djo at point A
where the anchor rods are attached. In order to find out whether or not

this condition is satisfied it is necessary to construct the elastic line.

This may be done by the methods of graphic statics. (See for instance
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Malcolm 1909). We assume that the areas enclosed by the funicular

polygon (Fig. 67d) represent horizontal pressures. The area which is

located on the left side of the closing line Ar' represents a positive pres-

sure and the area on the right side represents a negative pressure. It

is not necessary to make an assumption concerning the absolute value

of these pressures because the scale of the forces has no influence on the

position of the point of zero deflection. We replace these continuous

pressures by a system of individual forces a to i, as shown in Figure 67e,

and construct the corresponding funicular polygon shown in Figure &7g.

This funicular polygon represents the elastic line of the sheet piles.

Since the elastic line thus obtained does not pass through point A
(Fig. 67^) we repeat the construction with smaller values of Dj until

we find a value which satisfies the condition that the elastic line passes

through point A (Fig. G!7g). The final solution is represented by the

closing line Ar in the funicular polygon, Figure 67d, and by the vector Os

in the polygon of forces (Fig. 67c). The position of point s (Fig. 67c)

also determines the intensity of the anchor pull Ap.

For active earth pressure the angle of wall friction is usually assumed to be equal

to zero. In connection with the passive earth pressure of material whose angle

of internal friction 4> is greater than 25°, it is generally assumed that the coeflficient

of passive earth pressure Kp is equal to twice the corresponding Rankine value,

tan^ (45° + If the angle of internal friction is smaller than 25^ it is assumed

that Kp equals the Rankine value. These assumed values are based on the fact

that the existence of wall friction more than doubles the value Kp provided that ^
is greater than 25°. If is less than 25° the influence of wall friction on the value Kp
decreases rapidly with decreasing values of 0.

The value Di obtained by means of the graphical procedure shown
in Figure 67 determines the position of point di in Kgure 666. The
lower end of the sheet piles is located at point d, which is below the

point of application di of the pressure Rd» For practical purposes it is

admissible to assume without any further investigation that ddi = 0.2Di.

Hence the sheet piles should be driven to a depth D = 1.2Di.

82. Equivalent beam method. The equivalent beam method repre-

sents a simplification of the elastic line method described in the preceding

article. It involves a considerable saving in time and labor at a small

sacrifice of accuracy. Figures 68a and 686 illustrate the principle on

which this method is based. Figure 68a represents a loaded beam of

which one end (6) is fixed and the other end (a) is simply supported.

The corresponding moment curve is shown in Figure 686. The point of

inflection of the elastic line is at c. If we cut the beam at point c and
provide a free support at c for the left section ac of the beam, the bending

moments in the section ac remain unaltered. The beam ac is called the

equivalent for the section ac of the beam a6 (Blum 1930).
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The application of this reasoning to the design of bulkheads with

fixed earth support is illustrated by Figures 68c and 68/. Figure 68c

represents the system of forces which act on the bulkhead according

to Figure 67o and Figure 68/ shows the corresponding moment curve.

a

Fig. 68. Equivalent beam method for computing anchor pull and maximum bend-

ing moment in anchored bulkhead with fixed earth support.

In order to apply the equivalent beam method to our problem we
must ascertain the location of the point at which the bending moment
in the sheet piles is equal to zero. This point is identical with the

point B in Figure 68/ at which the closing line intersects the moment
curve. It is located at a certain depth x below the original surface of

the ground. The bulkhead analysis by means of the elastic line method

(lig. 67) furnishes the following values of z for different values of

<l>=- 20° 30° 40°

0.25H 0.08H - 0.007H
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The angle of internal friction 4> of sandy backfills is approximately

30® corresponding to a value of x of about O.lif. Hence if both the

backfill and the earth on the left-hand side of Mi in Figure 68c are sandy

we are entitled to assume x = O.IH without risking a serious error.

This assumption makes it possible to solve our problem by means of

the equivalent beam method, illustrated by Figures 68a and 686. After

tracing the boundaries ab^d/^di of the pressure areas, we cut the sheet

piles at B (Fig. 68c) at a depth x = O.IH below point 6. We replace

the shearing force at jB by a reaction Rb per unit of length of the bulk-

head and replace the earth pressure acting on aB by a system of individ-

ual forces 1 to 6 as shown in Figure 68d. We then construct the polygon

of forces (Fig. 68c) and the corresponding funicular polygon (Fig. 68/)

with the closing line AB, By tracing the ray OB in the polygon of

forces (Fig. 68c) parallel to the closing line AB in Figure 68/ we obtain

the magnitude of the reaction Rb as well as that of the anchor

pull Ap as shown in Figure 68c. The maximum bending moment Afo in

the sheet piles is determined by the fiuiicular polygon (Fig. 68/).

The lower part Bdi of the sheet piles (Fig. 68c), with a depth Di -- a:,

is acted upon by the upper reaction Rbj by the earth pressure represented

by the pressure area located between Budji and Bdi (Fig. 68c), and

by the lower reaction Rd^ The moments about any point, for instance

point di in Figure 68c, must be equal to zero. This condition requires

that

(T). _ x")*
[{Kp^ - Ka)x - KaH]

'' = Rs{Dt - X)

Solving this equation we obtain

Ka
Dj =

Xpm -Ka 2
^

I
6Rb 9/ Ka V

V (Kp^ - KA)y 4 Kp„ - Ka) [1 ]

The second term under the root is very small compared with the first

one and can be neglected. Hence we can write

Di = ^H Ka
Kp„, - Ka

X
I

6Rb

2 “V (Kp„ - KA)y
[2]

The sheet piles are driven to a depth D = 1.2Di. The reason has

been explained in the preceding section.
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83 . Comparison of methods of bulkhead computation. When com-

puting the required depth D of penetration by means of the elastic

line or the equivalent beam method (Arts. 81 and 82), one obtains for

D very much higher values than those corresponding to bulkheads with

free earth support (Art. 80). The data contained in the following

table serve as an example (Rimstad 1937).

Table 1

1

Method of computation

Depth of

penetration D
(ft.)

Anchor

pull

(Ibs./ft.)

Max. bending

moment
(ft.-lbs.)

1. Free earth support (method

Fig. 65)

2. Fixed support (elastic line

6.0 6300 18,550

method, Fig. 67)

3, Fixed support (equivalent

12.0 6180 14,000

beam method, Fig. 68) 12.2 5180 14,000

The height JI of the bulkhead to which the data in the table refer is

23 feet and the backfill is supposed to carry a continuous surcharge

whose weight is equal to that of a layer of soil 8 feet deep. The results

obtained by the elastic line and the equivalent beam method are prac-

tically identical. When computing the quantity of steel per linear

foot one usually finds that the bulkheads with free earth support re-

quire somewhat less steel than those with fixed earth support provided

the computation has been made on the basis of the customary assump-

tions regarding the factor of safety of these two types of bulkheads.

However, the fixed earth support has the advantage that it eliminates

the possibility of a failure of the bulkhead due to inadequate lateral

resistance of the soil adjoining the buried part of the bulkhead.

The nonhydrostatic pressure distribution on bulkheads seems to be

associated with a displacement of the point of application of the active

earth pressure in an upward direction. Hence when computing the

anchor pull on the assumption of a hydrostatic pressxire distribution,

as was done in Articles 80 to 82, one is likely to underestimate the anchor

pull. As a matter of fact, most of the bulkhead failures which came to

the author’s attention were due to inadequate anchorage. Unfortu-

nately no reliable data regarding the position of the point of application

of the earth pressure are available. Pending further advance in our

knowledge, it appears advisable to increase the theoretical value of the

anchor pull by at least 20 per cent.
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84. Anchorage of bulkheads and the resistance of anchor walls.

The anchor rods of the bulkheads shown in Figure 63 can be tied to

individual blocks supported by battered piles or to walls or plates

which are buried in the ground and maintained in their position by the

resistance of the adjoining earth against lateral displacement. Figure

69a shows an anchor block supported by two battered piles. The force

Ap exerted by the tie rod tends to force the left pile deeper into the

ground and to pull the right pile out of the ground. The forces Pi and

Fiq. 69. Anchorage of bulkhead by means of groups of batter pfles.

Pa which act on these piles can be determined by means of the polygon

of forces (Fig. 696). The bearing capacity of piles has been discussed

in Article 51.

Anchors such as anchor walls and anchor plates which depend for

their resistance entirely on the passive earth pressure must be given

such dimensions that the anchor pull does not exceed a certain fraction

of the pull required to produce failure. The ratio between the anchor

pull Ap and the maximum pull which the anchor can stand is called the

factor of safety of the anchor.

Figures 70a and 70c represent vertical sections through anchor walls.

If the upper edge of the wall is located at the surface of the ground as

shown in Figure 70a the failure of the wall due to an excessive pull on

the anchor is associated with the rise of a wedge-shaped body of sand

abc along an inclined surface of sliding he. At the same time active

failure occurs behind the wall, involving a slip along an inclined surface

of sliding. Since the sand on the left side of the wall yields in an up-

ward direction the vertical component of the passive earth pressure

tends to lift the wall out of the ground. This force cannot possibly

assume a value greater than the sum of the weight of the wall and its

friction along the surface of contact with the active wedge on the right

side of the wall. Both the weight and the friction are very small.

Hence we assume that the vertical component of the passive earth

pressure Pp tan 5 is almost equal to zero or 6 = 0. The corresponding
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Burface of sliding is almost plane, as shown in Figure 70a. If the wall

is vertical and 6 is equal to zero, the passive earth pressure is determined

by the equation

Pp = tan^ ^45“ +0
If the wall is inclined we can compute the value Pp by means of

Coulomb's theory.

Fiq. 70. (a) Shear pattern in sand adjoining an anchor wall; (6) distribution of

pressure on the two sides of ab representing the anchor wall in (a) and of ab rep-

resenting the wall in (c)
;

(c) shear pattern in soil adjoining an anchor wall whose

upper edge is below the surface of the sand; (d) traces of surfaces of sliding on

surface of sand after failure of square anchor plate; (e) shear pattern in sand

adjoining an anchor beam.

In both cases the distribution of the passive earth pressure over the

left face of the anchor wall is hydrostatic, provided the anchor rods are

tied to the anchor wall at the top of the lower third of its height. For

the active earth pressure Pa we can also assume, at least as a first

approximation, tlmt 6 equals zero, whereupon we obtain for a vertical

anchor wall
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If Ap is the pull on the tie rods per unit of length of the bulkhead

and Gt the specified factor of safety for the anchorage, the depth H of

the anchor wall must be chosen so as to satisfy the equation

(Pp - Pa) [1]

Figure 70c is a section through an anchor wall whose height is equal

to about one half of the depth at which its lower edge is located. The
distribution of the earth pressure over the left-hand side of the anchor

wall ai6 is shown by the pressure area oia2 ?)2& hi Figure 70f). The
anchor pull required to produce a failure of the anchorage is equal to

the difference between the passive and active pressure areas, aia2b2b

and aia{ b'b respectively. In Article 15 it has been shown that a

plane surface of sliding is associated with a hydrostatic pressure dis-

tribution. Since the distribution of the lateral pressure on the sand

located on the left side of the vertical section ab in Figure 70c has no

resemblance to a hydrostatic pressure distribution, the surface of sliding

be through the lower edge b of the wall cannot be even approximately

plane, although the angle of wall friction is practically equal to zero.

Figure 70c also shows the orientation of the surfaces of sliding within

the zones of plastic equilibrium on both sides of the anchor wall Oi6.

It has no similarity to the shear pattern represented in Figure 70a. An
accurate method for computing theultimate resistance of an anchor wall

whose upper edge is located below the surface of the ground is not yet

available. However, experience has shown that the difference between

the resistance of the two walls shown in Figures 70a and 70c is unim-

portant provided Hi (Fig. 70c) is equal to or greater than H/2.

As a last case we consider the resistance of an anchor wall (Fig. 70e)

whose height is small compared with the depth ff. In this case the

anchor must be expected to yield by ploughing through the ground

without producing a shear failure extending to the surface of the ground.

The displacement occurs along curved surfaces of sliding (Fig. 70e)

toward the zone of expansion on the right side of the section oai because

this is the zone of least resistance against the inflow of displaced mate-

rial. The force required to pull such an anchor beam with a height Hi
is approximately equal to the bearing capacity of a continuous footing

with a width Hi whose base is located at a depth H — Hi/2 below the

ground surface. The method of computing the bearing capacity has

been described in Article 46.

85. Spacing between bulkhead and anchor wall. The minimum dis-

tance between the bulkhead and the anchor wall is determined by the

condition that the base fc2 of the passive wedge adjoining the anchor
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wall (Fig. 71a) should not intersect the base dc\ of the active wedge
adjoining the bulkhead. If, as shown in Figure 71c, this condition is

not satisfied, one part of the passive wedge CiC2g is located within the

active wedge. Within this zone the sand is expanding in a horizontal

direction which is incompatible with the passive state. In order to

estimate the effect of the superposition of the two zones on the resistance

Fig. 71. (a and h) Conditions for equilibrium of bulkhead anchored to a wall lo-

cated above the line dg, which represents natural slope of sand
;

(c) conditions for

equilibrium of anchor wall, if surface of sliding passing through lower edge of

anchor wall intersects surface of sliding through lower edge of bulkhead.

of the anchor we investigate the stress conditions on the vertical section

Czg (Fig. 71c). If the wedge C2c/ were located entirely outside of the

active wedge, the section c^g would be acted upon by the passive earth

pressure.

= + [
1
]

However, in the case illustrated by Figure 71c the pressure on c^g

will not be far from the active pressure.

Pi [2]

Hence the inadequate distance between the bulkhead and the anchor

wall reduces the resistance of the anchorage approximately by the

amoimt Pp — P^.
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It is also frequently specified that the upper edge of the anchor wall

should be located beneath the slope line dg (Fig. 71a) which rises from

the lower edge d of the bulkhead at an angle 0 to the horizontal. The
anchor wall shown in Figure 71a does not satisfy this condition. As a
consequence the body of sand adfe has a tendency to slide in a down-

ward direction along the inclined surface of sliding df. This tendency

increases the pressure on the earth adjoining the section bd of the bulk-

head by an amount APp over the pressure exerted on this section by a

bulkhead with adequate anchorage. The body adfe with a weight W
is acted upon by the active earth pressure P^, by the supplementary

force APp and by a reaction F which acts on df at an angle 0 to the

normal on df. It is assumed that the force APp acts in a horizontal

direction at a height D/3 above the lower edge d of the bulkhead. We
also assume that acts in a horizontal direction, at Hi/3 above /.

On these assumptions the intensity of APp is determined by the polygon

of forces shown in Figure 716 (Krey 1936).

If the anchor wall were buried on the right side of the slope line dg

(Fig. 71a) the sand on the left side of bd would be acted upon only by
the pressure Ppm (Fig. 656). The inadequate length of the anchorage

shown in Figure 71a increases this pressure by APp.

S6. Resistance of anchor plates. If the anchorage shown in Fig-

ure 70c consists not of a continuous wall but of individual plates whose

width 6 is equal to their height Hi the passive failure in the sand ad-

joining the plate spreads over a width in excess of the width 6, as shown
in Figure 70d by the line €162 . Before the anchor pull is applied the

sand is in a state of rest. The corresponding coefficient of earth pressure

is approximately 0.5 and the frictional resistance along any section

through the fill is equal to the normal component of the earth pressure at

rest times the coefficient of internal friction, tan </>. As soon as the

anchor pull is applied the horizontal pressure in the sand increases

within a roughly cone-shaped zone extending from the anchor plate

toward the left. Prior to the application of the anchor pull the total

horizontal pressure on the vertical sections represented by the lines OiCi

and azC2 through the passive wedge in Figure 70d is equal to the earth

pressure at rest, Pq, and the corresponding resistance against sliding

along these surfaces is Pq tan <^>. As the anchor pull increases, the

pressure on these two sections and the corresponding resistance to sliding

also increases very considerably. Therefore the slip occurs along the

outer boundaries of the zone of compression produced by the anchor

pull, and the surface of sliding intersects the surface of the fill along a

crescent-shaped line 6162 (Fig. 70d). The resistance to sliding along

the wide inclined sides of such a surface is undoubtedly greater than
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the original resistance against sliding, 2Potan0, along the vertical

sections aiCi and 02^2 . Hence the admissible pull Ap for each anchor

plate is

2P
Ap = Apb + —^ tan 4> [1]

wherein is the admissible anchor pull per unit of length of an anchor

wall (eq. 84(1)), G, is the required factor of safety, and Pq is the earth

pressure at rest on a vertical section through the passive wedge.



Section C

MECHANICAL INTERACTION BETWEEN SOLID
AND WATER IN SOILS

Chapter XII

EFFECT OF SEEPAGE ON THE CONDITIONS FOR
EQUILIBRIUM IN IDEAL SAND

87. Shearing resistance of saturated sand. The shearing resistance

of saturated sand is determined by the equation

s = (a — Uyj) tan (t> 6(5)

wherein a is the total normal stress on the surface of sliding at a given

point and
<l> is the angle of internal friction. The neutral stress is

equal to the unit weight of the water times the height hw to which

the water rises in a piezometric tube above the point, or

‘M’li;
~ *Yw^W ^(I)

If the water which occupies the voids of the sand is stationary, it

rises at every point to the same level and the piezometiic head hv, is

equal to the depth of the point below that level. The influence of

neutral stresses acting in stationary water on the effective stresses and

on the stability of a mass of sand has been described in Articles 8 and

11. On the other hand, if the water percolates through the voids of a

sand it rises in piezometric tubes at different points to different levels.

In order to determine the neutral stresses due to flowing water it is

necessary to take into consideration the hydrostatic conditions which

exist along the boundaries of the mass of sand subject to seepage. This

is a problem of applied hydraulics. The effect of neutral stresses due

to capillary action on the stress conditions for the failure of soils will

be discussed in Chapter XIV. In this chapter the capillary forces will

be disregarded.

88. Flow of water through soib. The path along which a water

particle travels through a mass of soil is called a flow line. If the

flow lines are straight and parallel the flow is a linear jlow. The flow

of water in a downward direction through a horizontal bed of sand is an

235
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example of this type. If the water particles travel along curves in

parallel planes, the -flow is two-dimensional. All other types of flow,

such as the flow toward wells, are three-dimensional. In connection

with foundation problems we are primarily interested in two-dimen-

sional types of flow. The flow of water out of a storage reservoir

through the soil located beneath the foundation of a dam belongs in

this category.

Fig. 72. Meaning of terms and symbols used in theory of seepage if used in con-

nection with (a) linear flow and (6) two- or three-dimensional flow involving

curved flow lines of which dl is an element.

Figure 72a is a section through one of several types of an apparatus

which could be used to establish a linear flow in a soil sample with

finite dimensions. The sample is contained in a prismatic box with a

length I and a cross-sectional area A. The sides of the box are im-

permeable. The two ends are perforated to permit free communication

between the soil and the adjoining columns of free water. The line ah

represents one of the flow lines. The neutral stress at point a is

and at point 6

^w2 “““ ^wh'w2

[
1 ]

[2]

If the water stands at the same level in the two piezometric tubes at

a and b the water is in a state of rest, although the neutral stresses u^i

and Uy,2 niay be very different. In order to cause the water to flow

through the sand it is necessary to establish a hydraulic head h (Fig.

72a) which increases the hydrostatic pressure in one tube by ywh in

excess of the hydrostatic pressure in the other tube at the same level.
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This excess hydrostatic pressure yji represents the force which drives the

water through the sand. The ratio

ip [3]

represents the pressure gradient between the points a and 6. It has the

dimension of a unit weight, gm cm~^. The ratio

ip h

yw I
[41

is the hydraulic gradient. It is a pure number.

The quantity of water which percolates per unit of time through the

unit of area of a section at right angles to the direction of the flow is

called the discharge velocity v. For fine sands and for soils finer than

sand the relation between the pressure gradient ip, equation 3, and the

corresponding discharge velocity v can be expressed almost exactly by
the equation

V ““ tp [5]

V

wherein rj (gm cm"^ sec) is the coeflBcient of viscosity of the liquid and

K (cm^) an empirical constant. The value rj depends to a certain

extent on the temperature of the liquid and the value K on the porosity

and on the shape and size of the voids in the porous material. In

physics the value K is called the coeflBcient of permeability. By com-

bining equations 4 and 6 we get

K .

V ““ yuA'

V

The only liquid with which the civil engineer has to deal in connec-

tion with seepage problems is water. Within the range of temper-

atures to be encountered under field conditions the values rj (viscosity)

and 7w, (unit weight) of water are almost constant. Therefore it

is customary in civil engineering to assume that both values are con-

stant and to substitute in the preceding equation the value

whence

t; = Ai = fc

y

[6]

[7]

The value k is also called the coefficient of permeability. However, in
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contrast to the value K used by the physicists it has the dimension of a

velocity, cm per sec. It represents the discharge velocity for a hy-

draulic gradient i equal to unity, and the law expressed by equation 7

is called Darcy^s law (Darcy 1856). According to this law the quantity

of water which flows per unit of time through the sample shown in

Figure 72a is

g = At; = Aki

In connection with equation 6 it should be emphasized that the permeability

characteristics of a porous material are expressed by K (cm*) and not by k (cm sec“^),

because K is independent of the unit weight and the viscosity of the percolating

liquid whereas k depends on these factors. The exclusive use of k in this book
and in civil engineering in general is justified only by convenience.

Within the sample the water occupies only a volume n per unit of

volume of the soil. Therefore the average velocity with which the

water particles travel in a direction parallel to the flow lines is

18]
n

which is called the seepage velocity.

From the data shown in Figure 72a we obtain the following relations. If hv,i

and /iur2 represent the piezometric heads at a and h respectively, the hydrostatic head

h is equal to

A ™ A||,2 H [Q]

and the hydraulic gradient is

h hjffX h%p2

I

H
I

[101

Since « u^i/y^ (eq. 1) and = u^^lyw (eq* 2), equation 10 can be replaced by

^
1 H

TTw I
[111

If the flow occurs in a vertical direction, H in equations 10 and 11 is equal to Z,

whence

, Atpl — Au>2 ^
1 ~ Wtp2 -

^ sa — 1 1H y^H [121

A positive value of i indicates that the hydraulic gradient produces a flow in an
upwwd direction.

In Figure 726 the line ab represents an element of an arbitrarily curved flow

line. The length of the element is dl. At one end a of the element the water

rises in a piezometric tube to a height hv above a and at the other end 6 it rises to

an elevation

dhxo
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The difference between the elevation of the observation points a and h ia dz.
Substituting in equation 10

7 JT ^ ^ t
I. r Li «

I at, — , /ijpl S3S hwt ny,2 “ an;
—

-p at
t ol dl

and

we obtain

Since

H ^ dz

dl

dhfff dz

~W^'dl

y y j dhyf 1 dUyf
Ufif ” ^w'y uf nr ^to ~ —— and ***

7w dl 7n, dl

we can also write

The pressure gradient is equal to

1 duto ^
yto dl dl

dh
ip « — 7«; “ « ywi

[131

[14]

[16]

Fia. 73. (a) Flow of water through homogeneous sand around lower edge of single

row of sheet piles; (6) hydrostatic pressure conditions on four sides of prismatic

element of sand shown in (a).

89. Flow net. Figure 73a illustrates the flow of water along curved
lines which are parallel to the section shown in the figure. The figure

represents a section through an impermeable diaphragm extending to a
depth D below the horizontal surface of a homogeneous stratum of soil

which rests at a depth Z>i below its surface on an impermeable hori-

zontal base. It is assumed that the difference hi between the water

levels on the two sides of the diaphragm is constant. On account of

the existence of the hydraulic head hi the water enters the soil on the

upstream side of the diaphragm, flows in a downward direction, and



240 EFFECT OF SEEPAGE Art. 89

rises on the downstream side toward the surface. Figure 736 shows a

prismatic element of the soil on a larger scale. The element is a

parallelepiped with sides dx, dy^ dz. The flow of the water occurs

parallel to the section represented by the figure. Let

Vx = the component of the discharge velocity i; in a horizontal

direction,

dh
ix — “ 7" >

hydraulic gradient in a horizontal direction, and

Vg and iz
—

,
the corresponding values for the vertical direction.

dz

The total quantity of water which enters the element per unit of time

is equal to Vx dz dy + Vz dx dy and the quantity which leaves it is

dVx dVz
Vx dzdy -\ dx dz dy + Vzdxdy-\ dzdx dy

ox dz

If we assume that the water is perfectly incompressible and that the

volume occupied by the water within the element remains constant,

the quantity of water W'hich enters the element must be equal to the

quantity which leaves it. Hence

dVr dVz~ dx dz dy dz dx dy — 0
dx dz

dVx dv,

dx dz
[1]

This equation expresses the condition for the continuity of the flow.

According to Darcy’s law (equation 88 (7)) the two components of the

discharge velocity are

dh ^ ,
dh

Vx = —K— and Vx = —k—
dx dz

wherein and represent the hydraulic gradient i in the X and
dx dz

Z directions, respectively.

The product kh is called the 'potential and it is designated by

^ = kh

di
Hence r* = —

—

dx
and V,

dz
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Substituting these values in equation 1 we obtain

dx^ dz^
12]

The solution of this equation can be represented by two sets of curves

which intersect each other in every point at right angles. The curves

of one set are called the flow lines and those of the other one the equi-

potential lines. At every point of an equipotential hne the water rises

in an observation well to the same elevation. In accordance with this

definition the horizontal surface of the ground on the upstream side of

the diaphragm represents one equipotential line and that on the down-
stream side another.

Furthermore the contours of the embedded part of the diaphragm and
the section through the base of the permeable stratum represent flow

lines. These data constitute the hydraulic boundary conditions for the

flow of seepage and pennit the solution of equation 2. In Figure 73a

this solution is graphically represented by a flow net which satisfies

both equation 2 and the boundary conditions (Forchheimer 1917).

In complicated cases the flow net can also be determined graphically,

by trial and error, by a hydraulic model test or on the bases of the

electric analogue to the process of the flow of seepage. A brief review

of all these methods has recently been published (A. Casagrande 1937).

Complete treatises on this subject are also available (Muskat 1937).

Figure 74 represents several flow nets to be used as a guide when
using the graphical method. For reasons which will be explained in

the following article the individual curves which constitute the flow

nets are always selected in such a manner that all the fields enclosed

between the two sets are approximately square.

Figures 74a to 74d represent the seepage through a uniformly per-

meable stratum beneath the base of concrete storage dams with differ-

ent cross sections. The permeability of the graded filters indicated in

Figures 74c and 74d is assumed to be very great compared with that of

the natural soil. Hence the area of contact between the soil and the

filters represents the equivalent of a free exit surface. In each of the

cases represented by Figures 74a to 74d the boundaries of the zone of

seepage are identical with the boundaries of the permeable stratum.

Hence the hydraulic boundary conditions are determined by the section

through this stratum and by the position of the free-water levels above it.

Figure 74c is a section through a homogeneous earth dam which

serves as a storage dam. On the downstream side the embankment

rests on a horizontal layer of sand and gravel whose permeability is

very great compared with that of the construction material of the dam.
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Therefore this layer acts as a toe drain. The uppermost flow line ah is

commonly known as line of saturation or line of seepage. It represents

the upper boundary of the zone of seepage.

The seepage water enters the dam through the upstream slope and
it flows toward the left boundary of the drainage layer. The fact that

the position of the boundary ah is not known in advance complicates

the problem of constructing the flow net. However, since this bound-

ary coincides with a flow line, it can be determined graphically, by
trial and error (A. Casagrande 1937). The method is based on the

assumption that the capillary forces have no influence on the position

of the uppermost flow line. In connection with fine-grained soils this

assumption is not even approximately justified (see Art. 111). If a

homogeneous earth dam consisting of sandy soil is sufficiently water-

tight to retain the water in a reservoir, a rainstorm is likely to estab-

lish a flow of seepage within the entire body of the dam as shown in

Figure 74/. During the rainstorm the dam is less stable than during

a dry spell.

All the flow nets represented in Figure 74 were constructed on the

assumption that the soil located within the zone of seepage is hy-

draulically homogeneous. In other words, it has been assumed that

the permeability of the stratum is the same in every direction. In

nature almost all accumulations of soil are stratified, i.e., they are

composed of successive layers with different coefficients of permeability.

Let

fci, k2 f

• • • kn = the coefficients of permeability of the individual

layers,

Hif H2 ,
• • • Hn “ their thickness,

H = Hi + H2 +••• + Hn the total thickness of the

deposit,

ki = the average coefficient of permeability parallel to the

bedding planes, and

kji = the average coefficient of permeability perpendicular

to the bedding planes.

If a flow occurs parallel to the bedding planes the flow lines are also

parallel to these planes and the hydraulic gradient has at every point of

every bed the same value i, which is independent of the coefficient of

permeability of the beds. Hence the average discharge velocity is

V = ikj = {kiHi + k2H2 -f • • • + knHn)
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or

== ^ + k2H2 4- • • • + knHn) [3]

On the other hand, if a flow occurs at right angles to the bedding

planes every water particle passes in succession through every one of the

layers. Since the flow is continuous the discharge velocity v must be

the same in every layer, whereas the coefficient of permeability of the

layers is different. Hence the hydraulic gradient must also be different

in the different layers. Let

t'l, t2 ,

• • • in = the hydraulic gradient in the individual layers and

h = the total loss of hydraulic head corresponding to a total

distance of percolation H = Hi + H2 + ••• + Hn»

On the basis of equation 88(7) we obtain

t;
= — kji = kiii = ^2^2 =
H ^nin

The solution of these equations is

kn =
H

^4.:^
ki k2 kn

[4]

Comparison of equations 3 and 4 shows that the coefficient of perme-

ability ku of a stratified deposit perpendicular to the bedding planes

must always be smaller than the coefficient kj.

This can be demonstrated in the following manner. We assume that the per-

meable layer with a total thickness D consists of two homogeneous layers each

with a thickness of and with different coefficients of permeability ki and A; 2 .

By means of equations 3 and 4 we obtain

ki = + k2\ kn “ ^
and

kn
__

4Jcik2
j

/ki — k2^
ki (ki 4* ^2)* \ki + k2/

Hence kn must be smaller than kj. Similar results are obtained if the stratum

consists of more than two layers with different permeabilities.

All the theoretical methods of computing the flow of seepage through

stratified masses of soil are based on the simplifying assumptions that

the values kxi and kx are constant but not identical throughout the

stratum; in other words, that the stratum is characterized by trans-
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verse anisotropy. On this assumption the anisotropy merely causes a
linear distortion of the flow net. In order to construct the flow net for

an anisotropic medium of this tjrpe it suffices to reduce the dimensions

of the zone of seepage in a direction parallel to the beds of stratification

in the ratio E
yki

(Samside 1931). For this distorted section the flow

net can be constructed as if the permeable stratum were isotropic.

After the construction is finished, we restore to the original scale all

(Ncdura! scale) (Dishrledscale,horizonlat vertical

= 0.63xyerfleaf)

Fia. 76. Construction of flow nets by means of transformed section, if coefficients

of permeability of sand in horizontal and vertical directions (fc/ and ’kij) are

different.

the dimensions, including those of the flow net. Figure 75 illustrates

the procedure. This figure represents a section through a row of sheet

piles in a stratified bed of fine sand whose coefficient of permeability

A;/ in a horizontal direction is equal to 2.5 times the corresponding value

kii for a vertical direction. In order to construct the flow net for

seepage from a body of free water on the left side of the sheet piles

toward the right we multiply the horizontal dimensions of the section

by the factor = 0.63 and construct the flow net for the transformed

section by means of one of the methods mentioned above. Then

we multiply the horizontal dimensions of the net by E - 1.58.

Thus we obtain the flow net on the left-hand side of Figure 75. The
two sets of curves which constitute this flow net do not intersect at

right angles.

The reasoning which led to the differential equation 2 can also be

applied to the three-dimensional flow of water through a homogeneous,
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porous material. Thus one obtains

dx^ dy^ dz^
[5]

The solution of this equation can be represented by three sets of curved

surfaces. The surfaces of one set are surfaces of equal hydrostatic head

and correspond to the equipotential lines in the flow net. The water

percolates along the lines of intersection between the members of the

two other sets. Equation 5 can be solved only in exceptionally simple

cases, and there are no convenient graphic or experimental methods

comparable to the methods for constructing flow nets. Therefore

most of the practical problems involving three-dimensional flow can be

solved only by crude approximation, on the basis of more or less arbi-

trary, simplifying assumptions. Fortunately most of the problems in

civil engineering deal with the flow of water parallel to a plane.

90. Rate of percolation. After the flow net has been obtained by
means of one of the methods mentioned in the preceding article the rate

of percolation can be determined rapidly on the basis of Darcy's law

V = ki 88(7)

wherein v is the discharge velocity, k is the coefficient of permeability,

and i is the hydraulic gradient. In order to facilitate the procedure

the flow net should be plotted in such a manner that the potential drop

between two adjacent equipotential lines is a constant

Ah = h
Nd

[1 ]

In this equation, hi is the total hydraulic head and Nd is the number
of potential drops. The value Nd may be arbitrarily selected. In

Figure 73a the value Nd was made equal to 18. The successive po-

tential drops are marked 1 to 18.

The flow lines intersect the equipotential lines at right angles. The
space between two flow lines is known as a flow channel. Since the

water particles travel along the flow lines, water neither enters nor

leaves a flow channel except through the entrance and the discharge

end. However, the width of the channel and the corresponding rate of

flow vary throughout the length of the channel.

A section of a flow channel located between two adjacent equipotential

lines is a field of the flow net. One of these fields, located within the

zone of the potential drop No. 15, is marked by a shaded area. If a is

the average distance between the two equipotential lines at the site of

this field, the average hydraulic gradient within the field is t = Ah/a
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and the quantity of water which flows through the field per unit of
time and unit of width of the flow channel is

a

If h were the average distance between the boundary flow lines of the
field instead of a as shown in Figure 73a the quantity of water which
flows through the field would be

hki = k^h-
a

Since the quantity of discharge is the same over the whole length of

the flow channel, the ratio b/a must also be a constant. In order to

simplify the computation of the rate of percolation we plot the flow

net in such a way that the fields are square. As a result, 6/a == 1.

On this condition the discharge per flow channel is equal to

AQ = kAh ~ = /c [2]
a Nd

If Nf is the total number of flow channels, the rate of discharge Q per

unit of width of the section shown in Figure 73a is

Q = [3]

Since the fields of the flow net are square the number N/ depends on

the number Nd. If we double Nd we also double N/, In Figure 73a

the number N/ is equal to 9.

If the stratum is anisotropic, that is, if the coefficient of permeability

parallel to the bedding planes is kf and that perpendicular to the bedding

planes is k// we construct the flow net as shown in Figure 75 by means

of a transformed section. On the basis of such a flow net the rate of

discharge can be computed (Samsioe 1931) by means of the equation

Q = [4]

The following articles contain examples of the computation of the

effect of seepage on earth pressure and on the stability of slopes. For

the sake of simplicity the examples will be limited to soils with a

negligible cohesion.

91. Effect of rainstorms on the earth pressure on retaining walls.

Figure 76a represents a section through a gravity retaining wall. The

backfill rests on a horizontal impermeable base and is separated from
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the back of the wall by a coarse-grained filter layer communicating with

weep holes at the foot of the wall. During a rainstorm part of the

water which falls on the surface of the backfill enters the backfill and

flows through it toward the filter. In the section shown in the figure

Fig. 76. (a, c, and d) Graphic determination of earth pressure of fine sand
during rainstorm on vertical back of retaining wall covered with a coarse sand

drainage layer; (6) distribution of ratio between seepage velocity at surface and
coeflScient of permeability over surface of backfill; (e) inclined filter layer de-

signed to eliminate increase of earth pressure during rainstorm.

the surface of the backfill represents an equipotential line and the base

of the backfill a flow line. At every point of the vertical surface of

contact between the backfill and the filter the neutral stress in the

water is equal to zero. The flow net shown in Figure 76a satisfies all

these hydraulic boundary conditions.

According to equation 90(2) the discharge AQ per unit of time is the

same for every flow channel. The discharge velocity is

Ah
v^ki=^k—

a

wherein M is the loss of head during the flow from one equipotential

line to the next one and a is the length of the side of a square in the

flow net. The water which enters the fill next to point c (Fig. 76o)

flows almost vertically downward and leaves the ground again at an
infinitely small distance dl below c (not shown in the figure). The loss

of head is equal to dl and the distance through which the water travels
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is also equal to dl. Therefore the hydraulic gradient i is equal to unity
and the discharge velocity is

1^0 = ki = k

wherein k is the coefficient of permeability of the backfill. From point

c toward the right the distance between successive equipotential lines

increases while the potential drop Ah remains unchanged. The corre-

sponding discharge velocity decreases toward the right, as shown in

Figure 766. Therefore, as soon as the intensity Vr of a rainstorm (depth

of precipitation per unit of time) approaches the value of the coefficient

of permeability kj there will be a continuous flow of water through the

backfill toward the filter, and the intensity of the neutral stress Uy, in

the water is determined for every point of the backfill by the flow net

shown in the figure. In humid climates the aforementioned condition

is satisfied during every severe rainstorm, provided the value k is equal

to or smaller than about 0.002 cm per sec or 2.84 in. per h.

The intensity of the earth pressure exerted by the backfill during the

rainstorm can be estimated by adapting Coulomb^s method to the

problem under consideration (Terzaghi 1936d). The unit weight of

the backfill, water, and soil combined is y, and the shearing resistance

of the fill is determined by the equation

s = (cr — Uy,) tan (f) 6(5)

In accordance with Coulomb^s procedure we also assume that the

surface of sliding is plane. To solve our problem we select an arbitrary

plane section dei (Figs. 76a and 76c) through the foot of the fill. The
weight of the wedge is TFi, soil and water combined. The wedge is

acted upon by the water pressure Ui perpendicular to the section dei

by a reaction Fi at an angle 0 to the normal on dei and by a reaction

Pir at an angle 5 to the normal on the back of the wall.

The water pressure Ui represents the resultant of the neutral stresses

Uy, along the section dei. According to equation 6(1)

the neutral stress at any point A (Fig. 76a) of the section is equal to

the unit weight of the water times the height hy, to which the water

rises above that point in a piezometric tube S. This height is equal to

the difference in elevation between the point A and the point Ai where

the equipotential curve through A meets the vertical face of the back-

fill. By plotting the neutral stress Uy, at each point of eid at right

angles to ejd one obtains the hydrostatic pressure line dfei. The pres-
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sure area dfei represents the neutral force Ui and the resultant of

this force passes through the center of gravity of the pressure area.

The reaction Fi (Fig. 76c) represents the resultant of the effective

stresses on dei. Therefore it acts at an angle </> to the normal on the

section cfei. Since the wedge cdei is in a state of equilibrium the corre-

sponding polygon of forces (Fig. 76d) must be closed. This condition,

together with the known direction of the unknown forces Fi and Pir,

determines the intensity of the reaction Pir = Sih (Fig. 76d) which is

required to prevent a slip along the section dei (Fig. 76a). After the

rainstorm the neutral force Ui decreases rapidly. Finally, on account

of capillary action (see Chapter XV) it becomes negative. If one

disregards both the capillary forces and the decrease of the unit weight

of the sand due to partial drainage, the lateral force required to prevent

a slip along dei in Figure 76 becomes equal to Pi = in Figure 7Qd.

The position of the surface of sliding can be determined by repeating

the construction for different arbitrary sections de2 j
de^, etc., not shown

in the figure. The corresponding weights TF2, TF3, etc., are plotted in

Figure 76d from point r in an upward direction. All the points ^2, ts,

etc., thus obtained (not shown in the figure) are located on a curve Cr-

By tracing a tangent to this curve parallel to rs we obtain point t. The
distance st represents the active earth pressure on the wall during the

rainstorm. The point of application of the earth pressure Pat is lo-

cated at an elevation slightly greater than H/3 above the base of the

fill. The active earth pressure Pa on the retaining wall after the rain-

storm can be determined by means of Culmann's method as shown in

Figure 76d, (See Art, 24.) According to the results of numerical

computations the effect of a rainstorm on the intensity of the lateral

pressure can be very important in spite of effective drainage of the

back of the wall. It has also been found that the rainstorm reduces

the slope angle of the potential surface of sliding. If 7 = 125 pounds

per cubic foot, (j> = 38°, 8 = 15°, and H = 24: feet, the computation

furnishes the following results:

Before rainstorm Pa = 3.6 tons per ft rj = 62°

During rainstorm Pa = 4.8 tons per ft ?;
== 54°30'

The customary methods of computing retaining walls disregard the

effect of rainstorms on the earth pressure. Yet, as shown by the above

data, a rainstorm may increase the earth pressure by as much as 33 per

cent. Hence it is not surprising that the failure of retaining walls

usually occurs during heavy rainstorms. The preceding analysis shows

the fallacy of the current opinion that such failures are necessarily due
to inadequate drainage of the back of the wall.
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According to Figure 76a the effect of the rainstorm on the earth
pressure is due to the curvature of the equipotential lines 'which in turn
produces during the rainstorm a hydrostatic pressure along the potential
surfaces of sliding through the foot of the wall. If the filter is incUned
as shown in Figure 76e, all the equipotential lines within the sliding

wedge are horizontal. Hence the hydrostatic pressures are eliminated

and the earth pressure during rainstorms is reduced to the value ob-

tained by means of the customary methods of computation.

92. Effect of rainstorms and of tides on the stability of anchored
bulkheads. The methods of designing bulkheads described in Chap-
ter XI are based on the assumption that the shearing resistance of the

soil is determined by the equation

8 = <T tan <t> 5 (2)

wherein o- is the effective nonnal stress on the potential surfaces of

sliding. In other words it has been assumed that the neutral stresses

are negligible. If a bulkhead is fairly permeable, owing, for instance, to

the existence of open joints between the individual sheet piles, a rain-

storm may cause an increase of the active earth pressure on the upper

part of the bulkhead, but it does not reduce the passive resistance of the

soil which supports the lower part. On the other hand, if the bulkhead

is practically watertight because the joints between the sheet piles

have been silted up or because the bulkhead is made of reinforced con-

crete members vnth grouted interstices a rainstorm causes a flow of water

from the backfill through the soil beneath the sheet piles into the soil

which supports the lower part of the bulkhead. Such a case is illus-

trated by Figure 77a representing a section through a bulkhead driven

into a stratum of very fine sand which rests on an impermeable base

at some depth below the lower edge of the sheet piles. Before the

rainstorm the water table is located at the level of the plane ed. The

flow net represents the hydraulic conditions which prevail during the

storm. It has been constructed on the assumption that the permea-

bility of the backfill is identical with that of the natural sand stratum

and that the bulkhead is perfectly watertight.

The shearing resistance of the sand is determined by the equation

5 = ((T — Uw) tan0 6(5)

The neutral stresses can be determined from the flow net as ex-

plained in the preceding article in connection with the backfill of a

retaining wall. They increase the active earth pressure on the upper

part of the bulkhead and reduce the resistance of the sand against the

lateral pressure exerted by the lower part of the bulkhead. At every
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point the neutral stress Uy, is equal to the unit weight of the water,

times the height to which the water rises at that point in a piezo-

metric tube. As an example of the application of this method we

determine the neutral stress at the points a\ and a2 located on the

second equipotential curve (Fig. 77a). If Nd is the total number of

potential drops between the entrance and the exit surface, the loss of

head associated with the flow from one equipotential line to the next is

h
10 10

and the loss of head between the surface and the line aia2 is 2A/i. Hence

the neutral stress at point ai is ~ 2Ah) and at point a2 is

Fig. 77. (a) Seepage through mass of fine sand supported by watertight bulk-

head, during rainstorm j
water table is located at ed; (6) flow of water through

sand behind bulkhead at seacoast during receding tide.

yw {^2 — 2Ah). In this manner we can determine the neutral stress

along any section through the sand, for instance along the potential

surfaces of sliding be and bd (Fig. 77a). These stresses increase the

active earth pressure on the upper part of the bulkhead and reduce the

resistance of the lateral sand support on the lower part. Both effects

tend to reduce the factor of safety of the bulkhead. The computation

of the factor of safety can be accomplished by combining one of the

methods described in Chapter XI with the method explained in the

preceding article.

Figure 77b is a section through an impermeable bulkhead located at a

seacoast with considerable tidal variations. The soil conditions are

assumed to be identical with those shown in Figure 77a. While the

tide is rising, the water flows from the sea into the backfill through the

space between the bottom of the sheet piles and the impermeable base

of the sand stratum. This flow increases the resistance of the earth



253Art. 93 EFFECT OF SEEPAGE ON STABILITY OF SLOPES

support and the factor of safety of the bulkhead. On the other hand,
while the tide recedes, the opposite phenomenon takes place, as indi-
cated in the figure. It increases the active pressure on the upper part
of the bulkhead and reduces the resistance of the earth support of the
lower part.

On account of the decisive influence of the aforementioned flow
phenomena on the factor of safety of bulkheads, no bulkhead should
be designed without a previous investigation and analysis of the possible

sources and the mechanical effects of a temporary flow of water from
the backfill toward the seat of the sand support of the lower part of the
bulkhead. At a given section through the bulkhead the flow pattern
depends to a large extent on the details of the stratification of the

natural sand deposit and on the ratio between the average coefficient of

permeability of the natural deposit and of the backfill. Neither one of

these data can accurately be ascertained. Hence the analysis should be

based on the most unfavorable possibilities which are compatible with

the results of the soil investigations. In most cases it will be possible to

eliminate the major part of the harmful effects of rainstorms or of tidal

variations by measures of drainage, as illustrated for retaining walls by
Figure 76e.

93. Effect of seepage on the stability of slopes. Figure 78a is a sec-

tion through a homogeneous earth embankment consisting of a fine-

grained soil with a negligible cohesion. The shearing resistance of the

soil is determined by the equation

8 = {(T — Uw) tan <{> 6(5)

wherein a is the total normal stress and Wu, the neutral stress on the

potential surface of sliding. The embankment is assumed to rest on

the surface of a practically impermeable stratum. Fine-grained soils

remain almost saturated for long periods of time, wfith the result that

the unit weight y of soil and water combined has a practically constant

value. During the diy season the water is held in the voids by capillary

forces, associated with negative values of the neutral stresses Uy, (see

Chapter XIV). Since negative stresses in the water raise the factor of

safety of the embankment over the value corresponding to Uy, == 0, the

neutral stresses in existence during the dry season will be disregarded

in the following analysis.

During heavy rainstorms rain water enters the embankment

through the crest and the upper part of the slopes and leaves the em-

bankment through the lower part of the slopes. The excess over the

quantity which can seep through the voids of the soil flows down on

the surface of the slopes. The hydraulic boundary conditions for con-
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Btructing the flow net shown in Figure 78a are as follows: The base of

the section through the embankment and the line of symmetry of the

section are flow lines. The crest is an equipotential line, and at any

point along the slopes the neutral stress is equal to zero.

Fia. 78. (a) Seepage through fill made of fine sand, during heavy rainstorm;

(6 and c) polygons of forces required for stability computation by means of friction

circle method; (d) method of preventing failure during rainstorm by means of

a coarse-grained filter covering the base of the fill.

In order to maintain a stationary flow through the embankment,

the intensity Vr of the rainstorm (quantity of precipitation per unit of

time and imit of area of a horizontal surface) must be suflScient to

maintain the stationary flow determined by the flow net. The quantity

of water, AQ, which flows between two adjoining flow lines is the same

for every flow channel (see Art. 90). Hence the quantity of rain water

which must be fed into the channels per unit of time and per unit of

area of the intake surface is greatest where the width of the channels at

the surface is smallest. This condition is realized along the edges of

the crest of the embankment, where the distance between two adjoining
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laow lines is smallest and equal to a^i^. The total loss of head for the
corresponding flow channel is equal to h as shown in Figure 78a, and the
potential drop is

90(1)

wherein Nd is the number of drops within the channel. At the entrance

to the channel, with a width amin, the hydraulic gradient is

®min

and the quantity of water which must be fed into the channel per unit

of time and unit of area is

V == ki ^ k
Ah k

^min Ad

Hence the condition for maintaining the flow indicated in Figure 78a is

^ k h

^min Ad
[11

In humid climates this condition is satisfied for every embankment
whose coeflacient of permeability k is smaller than that of a veiy fine sand.

The influence of the rainstorm on the factor of safety of the slopes

can be determined by means of the friction circle method described in

Chapter IX. Prior to the rainstorm the neutral stresses are assumed

to be equal to zero. Since the cohesion is negligible the critical circle

in that state is identical with the slope line (see Art. 60) and the factor

of safety with respect to sliding is

tan (f}

Ga “ —

'

taniS

wherein P is the slope angle, Figure 78a.

During the rainstorm the radius of the critical circle assumes a finite

value and the position of the circle with reference to the slope can only

be determined by trial and error. For this purpose we assume an

arbitrary circle tangent to the firm base of the embankment. The center

of this circle is located at Oi and the corresponding friction circle, with

a radius r/, is marked C/. The tentative surface of sliding ABC (Fig.

78a) represents the seat of neutral stresses

Uyj ~ 0(1)

wherein hy, is the height to which the water rises in a piezometric tube
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at the point of observation as shown for instance in Figures 76a and

77a, The resultant Ui of the neutral stresses on ABC can be deter-

mined by means of a polygon of forces (Fig. 78b), The line of action

of Ui passes through the center 0i of the circle, parallel to Ui in the

polygon in Figure 7Sb, The weight TFi of the body of soil (solid and

water combined) is counterbalanced by two forces, Ui and Fi, as shown

in the polygon of forces in Figure 78c, One of them, ?7i, is known.

It represents the resultant of the water pressure which acts on the

surface ABC, The second force, Fi, represents the resultant of the

effective stresses on ABC, In Figure 78a the force Fi must pass through

the point of intersection between the forces Ui and Wi, The distance

between the prolongation of the line representing the force Fi and the

center Oi is di. Since the tendency of the slope to slide increases with

increasing values of di the ratio r//di can be regarded as a measure of

the safety of the slope with respect to sliding. If di = r/ the reaction

is tangent to the friction circle and the corresponding factor of safety

is equal to Vf/di = 1. For di = 0 the factor of safety is equal to in-

finity. Hence we can assume that the factor of safety during the rain-

storm, with respect to a slip along ABC, is

In the case illustrated by Figure 78a the value Gar is smaller than

unity, although the surface ABC does not necessarily correspond to a

critical circle. Hence along the critical circle a slide is likely to occur

before the rainstorm has established the state of stationary flow repre-

sented by the flow net shown in Figure 78a, On the other hand, if

Gar is found to be greater than unity we must repeat the investigation

for other circles. The position of the critical circle is determined by
the condition

^ Vf
Gar = T ~ mimmum

d\

If we insert a coarse-grained filter immediately beneath the base of

the embankment all the equipotential lines become horizontal and the

flow lines vertical, as shown in Figure 78d; consequently the neutral

stress at every point of the embankment is equal to zero. Hence the

presence of the filter layer prevents rainstorms from reducing the

stability of the slopes. This arrangement is a cheap and simple measure

to increase the stability of road or railroad fills.

The graphic method of computation illustrated by Figure 78a can

also be used without modification for determining the factor of safety
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of earth dams acted upon by seepage flowing out of a storage reservoir

(Fig. 74e) or of earth dams consisting of sandy soils with some cohesion

provided the clay content of the soil is very low. Once the flow net is

constructed it suffices to determine the neutral force Ui (Fig. 78a),

and to combine it with the weight Wi of the earth located above the

potential surface of sliding.

The preceding method of computation is based on the assumption

that the water content of the soil adapts itself almost instantaneously

to a change in the state of stress in the embankment. Therefore it

cannot be applied to dams or fills made out of a compressible material

with a low permeability such as clay.

94. Mechanics of piping and the critical head. Figure 79a is a sec-

tion through a single-wall cofferdam. It consists of a row of sheet

piles which are supported laterally by wales and struts. The subsoil is

assumed to consist of a stratum of gravel with a thickness Di and a

stratum of fine, dense, homogeneous sand with a thickness I>2 > The
coefficient of permeability of the upper stratum is very large compared

to that of the lower one. The sheet piles penetrate the lower stratum

{a) {b) (c)

Fig, 79. Graphic determination of factor of safety of homogeneous sand with

respect to piping. Danger of piping is produced by pumping from excavation

pit which is surrounded by single-wall cofferdam, (a) Flow net; (6) neutral and

effective forces which act on sand within zone of potential heave; (c) method of

determining filter load required to maintain a given degree of safety.

to a depth D below its surface. After the sheet piles are driven, the soil

located within the cofferdam above the surface of the lower stratum is

removed by dredging and the water is pumped out of the space sur-

rounded by the cofferdam. Outside the cofferdam the water level

retains its original position. Therefore the pumping causes a flow of

water through the soil toward the bottom of the excavation. On ac-

count of the high permeability of the top stratum, with a thickness Z)i,

the flow occurs as if this stratum were non-existent. The flow net shown



258 EFFECT OF SEEPAGE Akt. 94

in Figure 79a was constructed on the assumption that the flow of

seepage toward the bottom of the excavation is approximately two-

dimensional.

From model tests we know that the sand adjoining the sheet piles

remains in equilibrium provided the hydraulic head hi is smaller than

a certain critical value (Terzaghi 1922). However, as soon as this

critical value is approached the discharge increases more rapidly than

the head, indicating an increase of the average permeability of the sand.

Simultaneously the surface of the sand rises within a belt with a width

of approximately Z)/2, as showm in Figure 79a, and finally a mixture of

sand and water breaks through the space located below the sheet piles.

This phenomenon is called pipingy and the hydraulic head at which

piping takes place is the critical head hp. Piping beneath a cofferdam is

likely to cause a failure of the cofferdam. Our problem is to determine

the factor of safety with respect to piping of the cofferdam shown in

Figure 79a after the water level has been lowered within the cofferdam

to a depth hi below the outside water level.

The process described in the preceding paragraph suggests that the

piping is initiated by an expansion of the sand between the buried part

of the sheet piles and a distance of about D/2 downstream from the

sheet piles. This expansion is followed by an expulsion of the sand out

of this zone. No such phenomenon could occur unless the water

pressure overcame the weight of the sand located within the zone of

expulsion. With suflScient accuracy we can assume that the body of

sand which is lifted by the water has the shape of a prism with a width

D/2 and a horizontal base at some depth Ds below the surface. The
rise of the prism is resisted by the weight of the prism and by the fric-

tion along the vertical sides of the prism. At the instant of failure

the effective horizontal pressure on the sides of the prism and the

corresponding frictional resistance are practically zero. Therefore

the prism rises as soon as the total water pressure on its base becomes

equal to the sum of the weight of the prism, sand and water combined.

The head hp at which the body is lifted is the critical head. The eleva-

tion of the base of the body is determined by the condition that hp

should be a minimum because piping occurs as soon as the water is able

to lift a prism of sand regardless of where its base is located. Figure

795 shows the base at an arbitrary depth D3.

In order to determine the water pressure which acts on the base of

the prism we be^ by investigating the state of stress in the water at

an arbitrary point P (Fig. 79a). The stress in the water or the neutral

stress at point P is equal to the height hy, to which the water rises above

that point in a piezometric tube multiplied by the unit weight 7^ of the
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water. The height hu> can be divided into two parts, z and h, and
the neutral stress at P is

tCw ^Ifw [ 1 ]

The first part, zyy,y represents the hydrostatic uplift (Art. 8). Its

mechanical effect consists in reducing the effective unit weight of the

sand from 7 to the submerged unit weight 7'. The second part, hywy

is the excess hydrostatic pressure in the water with reference to the free-

water level on the downstream side and h is the hydrostatic head at

point P with reference to this level. Therefore the condition for the

rise of the prism of sand shown in Figure 795 is that the total excess

hydrostatic pressure on the base of the prism should be greater than

the submerged weight of the prism, which in turn is equal to

The excess hydrostatic pressure at any point P (Fig. 79a) within

the zone of seepage can be determined from the flow net. According to

the theory of flow nets (Art. 89) the potential drop Ah representing the

loss of head associated with flow of water from one equipotential line

to the next one is

wherein A'd is the total number of fields in one flow channel. Hence

the hydrostatic head h at point P is equal to

h = niAh = ^hi [2]

wherein rid is the number of fields in the flow channel through point P
between the point P and the discharge end of the channel. By means

of this equation we are able to determine the distribution of the hydro-

static head h over the base of the prism shown in Figure 79b. It is

represented in the scale of the drawing by the ordinates of the curve C.

The average hydrostatic head on the base Oa of the prism is ha and the

total excess hydrostatic pressure on this base is

Ue ^ '^yw^ha

The hydrostatic head h at any point in the sand is determined by

equation 2

Ud
h = xr hi = hi X constant

Nd

wherein the constant factor Ud/Na merely depends on the position of

the point in the flow net. Therefore the ordinates of the curve C
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increase in simple proportion to the head hi and the corresponding

average head ha can be expressed by a product

ha = 'nihi [3 ]

wherein m is independent of the head. The values ha and hi can be

measured in the drawing. Hence the value of the ratio m = ha/hi

can be computed.

In order to lift the prism the excess hydrostatic pressure Ue on the

base Oa of the prism must be equal to the submerged weight of the

prism, ox

^Dhayw =
whence

ha = Ds
/

2L
yw

[4]

At the instant when the prism rises, the head hi in equation 3 is

equal to the critical head hp. Substituting mhp for ha in equation 4

we get

t'
mhp = I>3—

yw
or

hp = —m yyj
[5]

The investigation can be repeated for different horizontal sections

through the sand, which are located at different depths Ds below the

bottom of the pit. The critical head is determined by the condition

hp = minimum, and the horizontal section to which this minimum
refers is the critical section. It represents the lower boundary of the

mass of sand subject to lifting in the initial state of the piping phe-

nomenon. For the simple row of sheet piles represented in Figure 796

an investigation has shown that the critical section passes almost ex-

actly through the lower edge of the sheet piles, or D3 *= D. On the

other hand, if the buried part of a water-retaining structure consists

of several rows of sheet piles or of one row of sheet piles located at the

downstream edge of a concrete dam as shown in Figures 74a to 74d

the location of the critical section must be determined by trial, which

requires repetition of the construction represented in Figure 796 for

different horizontal sections.

According to equation 4 the critical head hp for a given water-retain-

ing structure is practically independent of the angle of internal friction
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of the sand, and it increases in simple proportion to the submerged unit

weight of the sand. The agreement between the computed values of

hp and the values obtained by experiments with clean sand is very
satisfactory.

At a given hydraulic head hi the factor of safety Gs against piping is

determined by the ratio between the submerged weight TF' of the body
of sand located above the strip Oa (Fig. 796) and the water pressure

Ue or

W' jDDsy' K
* E7. hi

The preceding analysis was based on the assumption that the subsoil

of the water-retaining structure is hydraulically isotropic. In practice

it is always necessary to take the stratification of the subsoil into con-

sideration. Since the stratification has a decisive influence on the flow

net it also determines to a large extent the factor of safety.

93. Effect of loaded filters on the critical head and on the factor

of safety. If the factor of safety of a proposed dam foundation with

respect to piping through a permeable substratum is inadequate we are

compelled to increase the factor of safety by constructive measures.

This can be accomplished simply and cheaply by utilizing the relation

expressed by the equation

IF'
Gs = — 94(6)

According to this equation the factor of safety is equal to the ratio

between the submerged weight of the body of sand adjoining the down-

stream face of the sheet piles in Figure 796 and the excess hydrostatic

pressure Ue which tends to lift this body. In order to increase the factor

of safety it is sufficient to increase the weight TF^ without changing the

pressure Ue- The increase of IF' can be obtained by applying a sur-

charge on the surface through which the water flows out of the sand.

In order to prevent the surcharge from producing a change in the flow

net and a corresponding increase of the pressure Ue we must introduce

an inverted filter between the sand and the base of the surcharge. The

filter should be coarse enough to permit a practically unrestricted escape

of the water out of the sand and yet fine enough to prevent the escape

of soil particles through the bottom layer of the filter. If these two

conditions are satisfied the surcharge has no influence on the pressure U«.

The method of determining the magnitude and the distribution of the

surcharge required to obtain a given factor of safety is illustrated by

Figure 79c for the single-wall cofferdam shown in Figure 79a. Our
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problem is to determine the surcharge required to prevent the factor of

safety from dropping below a given value Ga while the water level rises

during the highwater period to an elevation hi above the water level

within the cofferdam. OX represents the critical section, and the

ordinates h of the curve C represent the height of a layer of water

whose weight is equal to the excess hydrostatic pressure on the critical

section. By plotting above the line OX the values hy^^/y^ we obtain

the curve W. This curve represents the upper boundary of an imaginary

mass of earth with a unit weight y' whose weight is equal to the excess

hydrostatic pressure on the critical section. In order to establish a

factor of safety Ga with respect to piping, the pressure on the critical sec-

tion due to the submerged weight of the earth and the surcharge should

be equal to Gs times the total excess hydrostatic pressure on the base

of the prism. By multiplying the ordinates of the curve W by Ga we
get the curve G (Fig. 79c). In order to obtain a factor of safety Ga

we must charge the section ah of the surface of the sand with a weight

equal to the shaded area times the submerged weight y' of the sand.

Experiments have shown that a uniformly distributed surcharge has

practically the same effect on the critical head as the surcharge repre-

sented by the shaded area in Figure 79c provided that the width of the

uniform surcharge is approximately equal to the width ah of the base

of the shaded area. Since the surcharge is located above the water

level the effective unit weight of the surcharge is roughly equal to

twice the submerged unit weight y'. Hence the cross-sectional area of

the required surcharge would be approximately equal to about one half

that of the shaded area.

96. Lateral pressure on sheet pile cut-offs. Figure 80a is a section

through the lowest part of the row of sheet piles shown in Figure 79.

The abscissas of the curve cd with reference to the vertical line ah

represent the water pressure on the left face of the sheet piles and those of

the curve oci the water pressure on the right side. The figure demon-

strates that the buried part of the sheet piles is acted upon by an un-

balanced water pressure A (7 represented by the shaded area in Figure 806

tending to bend the sheet piles toward ^e right. This water pressure

combines with the active earth pressure Pa exerted by the sand located

on the left side of the sheet piles. The curves ac and de can be con-

structed by means of the flow net as described in Article 94, and the

active eartih pressure can be computed graphically by means of the

method described in Article 91. The resistance of the sand to a yield

of the sheet piles by ^ting about point a in Figure 80a cannot

exceed the effective part Pp of the passive earth pressure of the sand

located on the right-hand side of ob in Figure 80a. This pressure can
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be estimated by means of equation 14(2). Setting Pp = Pp, H = D,

y — y", and = tan^ (45° + <f>/2) in this equation we obtain

Pp = tan2 ^45° + 0
The quantity 7" contained in this equation represents the submerged

unit weight 7 ' of the sand reduced by the average seepage pressure

per unit of volume of the mass of sand adjoining the right-hand face

of the sheet piles.

Fia. 80. (a) Water pressure on the two sides of buried part of single-wall coffer-

dam during pumping; (h) imbalanced water pressure, equal to difference between
water pressures indicated in (a) ;

(c) conditions for failure due to piping on account
of inadequate bond between concrete apron of a dam and the adjoining sheet

piles.

As soon as the hydraulic head h becomes equal to the critical head hp

the effective weight of the prism of sand located above Oa in Figure 796

becomes equal to zero and the average unit weight of the sand located

within this prism also becomes equal to zero. The height Ds of the

prism is approximately equal to D. Therefore the condition 7" = 0
prevails practically throughout the mass of sand located in the vicinity

of the sheet piles on the right-hand side of ab in Figure 80a. Setting
y'^ = 0 in the preceding equation we get

Pp = 0

Hence, as the hydraulic head approaches the critical value he the pas-

sive earth pressure of the sand on the right side (rf the sheet piles ap-

proaches the value zero; whereupon the forces P^ and AU on the

left-hand side of the sheet piles are resisted only by the bending strength

of the sheet piles. On account of this condition it is conceivable that

the sheet piles fail by bending before the sand on the right side of the

sheet piles is actually lifted by the water pressure.

If a sheet pile cut-off is located at the downstream toe of a concrete

structure, as shown in Figure 80c, the unbalanced water pressure on the

upstream face of the sheet piles combined with the active earth pressure
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on this face is likely to push the sheet piles away from the concrete

unless the upper part of the sheet piles is firmly anchored in the con-

crete. If a gap opens up between the sheet piles and the concrete a

mixture of sand and water escapes through this gap and the structure

fails at a hydraulic head which is very much smaller than that required

to lift the sand located on the downstream side of the sheet piles. Since

the connection between the sheet piles and the concrete has seldom

received the attention which it deserves, it is by no means impossible

that some dams have failed owing to a break in this connection and the

consequent piping through the gap. Failures due to piping usually occur

within a very short time, and the destruction is so complete that it is

practically impossible to reconstruct after the accident the real cause of

events.

The value Pp of the passive earth pressure also determines the

bearing capacity of the sand which supports the dam. As the value

Pp approaches zero the ultimate bearing capacity of the sand located

on the left side of the sheet piles also approaches the value zero, and it is

conceivable that a dam may fail on account of inadequate support

although the sand beneath the dam may be firm and dense.

The preceding examples illustrate the various mechanical effects of

seepage which tend to produce failure of dams on permeable foundations.

On account of the variety of conditions which are likely to be encoun-

tered in actual practice no general rules can be established. Yet, in

every special case the effect of the flow of seepage on the theoretical

factor of safety of the structure can be estimated on the basis of the

general principles established in Articles 87 to 94. The real factor of

safety depends on details of stratification and other minor geologic

factors which cannot be determined in advance. Therefore the results

of an analysis pertaining to the safety of a structure with respect to

piping always requires subsequent verification or modification on the

basis of the results of water pressure measurements to be performed

during construction or during the period when hydraulic head is applied

for the first time. Whatever the results of such an investigation may
be, it is usually possible to eliminate the existing sources of danger by

appropriate measures of drainage or by means of the loaded filters

described in the preceding article.



Chapter XIII

THEORY OF CONSOLIDATION

97. Fundamental conceptions. In the preceding chapter on seepage

and seepage effects it was assumed that the volume occupied by the

water per unit of volume of the soil is independent of the state of stress

in the soil. If this condition is satisfied the quantity of water which

flows out of an element of the soil such as that shown in Figure 7Sb is

equal to the quantity of water which enters the element, regardless of

whether or not the state of stress in the soil changes. This condition,

known as the continuity condition, is expressed in mathematical terms

by the differential equation 89(1). There is no real soil which strictly

satisfies the continuity condition, because every change in the state of

stress produces a certain change in the volume of voids. An, per unit

volume of the soil. Yet, if the soil is very permeable and not very com-

pressible, the change of the porosity due to a change in the state of

stress in the soil can usually be disregarded.

A change in the effective stresses in a highly compressible soil, such as

a clay or a sand-mica mixture, is likely to produce an important change

An in the volume of voids n. Hence if the voids of such a soil are com-

pletely filled with water and remain in that state a change in the effec-

tive stresses involves a change in the water content of the soil. Every

process involving a decrease of the water content of a saturated soil

without replacement of the water by air is called a process of consoli-

dation. The opposite process is called a process of swellingy which in-

volves an increase of the water content due to an increase of the volume

of voids.

A further complication arises if a soil combines high compressibility

with low permeability. Both of these properties are exhibited to a high

degree by fat clays. In soils with such characteristics, changes in the

water content due to changes in the state of stress take place very

slowly, because the low permeability of the soil does not permit a rapid

transfer of the water from one part of the mass of soil to another or to

an adjoining highly permeable stratum. This phenomenon produces

a time lag between a change of the external forces which act on a

feebly permeable, compressible stratum and the corresponding change

of the water content of the soil. It is the principal cause of the pro-

265
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gressive settlement of foundations on clay and of many other processes

of outstanding practical importance. The theories which deal with

these processes are called theories of consolidation. Like all the other

theories of soil mechanics and of structural engineering they are based

on simplifying assumptions. Hence the results represent only approxi-

mations to reality.

98. Assumptions involved In the theories of consolidation. With

few exceptions all the existing theories of consolidation are based on

the following assumptions: the voids of the soil are completely filled

with water; both the water and the solid constituents of the soil are

perfectly incompressible; Darcy law is strictly valid; the coefficient

of permeability A; is a constant; and the time lag of consolidation is

due entirely to the low permeability of the soil. The theories contained

in the following articles are based on the following supplementary

assumptions, unless a departure from these assumptions is specifically

mentioned. The clay is laterally confined; both the total and the effec-

tive normal stresses are the same for every point of any horizontal sec-

tion through the clay and for every stage of the process of consolidation;

an increase in the effective pressure from an initial value po to a final

value p reduces the void ratio of the clay from an initial value cq to a

final value e; the ratio

^0 ^ —1 2 rti
a^c = Ji: 3- gm ^cm^ [1]

P - Po

is assumed to be a constant for the range of pressure po to p. It is

called the coefficient of compressibility. If the effective pressure is

reduced from an initial value p to a final value p' the void ratio in-

creases from an initial value e to a final value e'. The ratio

is also assumed to be a constant for the range of pressure p to p'. It

is called the coejfficient of elastic recovery.

From equation 1 we obtain

eo - a«5(p - po) [3]

The quantity Cq e represents the decrease of the volume of the

voids in a block of soil with the initial volume 1 + Cq. The initial

void ratio eo corresponds to a volume of voids per unit of volume of

soil no = eo/(l + eo) and the final void ratio e to noi = 6/(1 + Co).

Therefore the decrease An of the volume of voids per unit of the initial
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volume of the soil is

An = no - noi = -
(p - po) = lUve (p - Po) = m„e Ap [4]

1+^0

wherein Ap is the increase of the effective unit pressure. The value

^vc __1 2
.

gm ^cm^
1 + 6o

[61

is the coefficient of volume decrease. The corresponding value for a

process of swelling due to a reduction of the effective pressure is

=
1+^0 [6]

which is called the coeffiwient of volume expansion. If there is no possi-

bility of a misunderstanding the second subscript on the symbols Ot,

and m^ will be omitted.

The preceding assumptions determine the physical properties as-

cribed to the ideal clay which constitutes the subject of the subsequent

theoretical investigations. Equations 1 to 3 represent a crude approxi-

mation of the relation between the effective pressure on a real clay in a

state of complete lateral confinement and the corresponding void ratio.

For this reason the theories based on equations 1 to 3 can be applied

only to processes in which the lateral deformation of the consolidating

bed of clay is small compared with the strain in a vertical direction.

Owing to the assumed absence of stress variations on horizontal sections

the flow of water within the clay takes place only along vertical lines

and is therefore an example of linear flow. In actual practice the

stress distribution over horizontal sections is never perfectly uniform,

but in many cases the resulting error can be disregarded.

99. Differential equation of the process of consolidation of hori-

zontal beds of ideal clay. Figure 81 is a section through a stratum of

ideal clay on an impermeable horizontal base. Let

Co = the initial void ratio,

Ovc = the coeiSBcient of compressibility (eq. 98(1)),

rOve = the coefficient of volume decrease (eq. 98(5)),

k = the coeflScient of permeability,

= the unit weight of the water, and

H = the initial thickness of the bed of clay.

The clay is buried beneath a bed of highly permeable sand, and

the water table is located at an elevation ho above the surface of the

clay. At the outset of our investigation the clay is assumed to be in a
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state of hydraulic equilibrium. On this assumption the water would
rise in a piezometric tube I from any point of any horizontal section mn
in the clay up to the water table at a height ho above the surface of the

clay. For the corresponding neutral stress Uyj we obtain

wherein H + ho — z represents the piczometric head which is equal to

the vertical distance between the section mn and the water table. By

Fig. 81. Fxcess hydrostatic pressure in pore water of clay due to sudden appli-

cation of uniformly distributed surcharge.

plotting this stress horizontally from the reference line aih the line aic

has been obtained. The total normal stress on mn is equal to the weight

Po of the clay, sand and water located above a unit area of mn. The
effective normal stress on mn is

Po = Po '^w

If we apply a uniformly distributed surcharge pi per unit of area of the

surface of the sand which extends in every direction to infinity, the total

normal stress on the surface of the clay and on any horizontal section mn
through the clay increases by pi. Iliis increase of the total stress is

represented in the Figure 81 by the shaded area oced, whose width

od = ce is equal to pi. The supplementary pressure pi consolidates

the clay. At the end of the process of consolidation the entire surcharge

Pi is transmitted from grain to grain and the neutral stresses are identical

with those represented by the abscissas of ac. This means that the

surcharge ultimately increases the effective normal stress on eveiy
horizontal section by pi. The normal stress pi is called the consolidation
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stress or the consolidation pressure because it is responsible for the process

of consolidation.

If the consolidation pressure is due to some cause other than a uni-

formly distributed surcharge, it may change with depth within the

clay. In any event, for any horizontal section through the clay the

consolidation pressure is equal to the difference between the effective

normal stress on the section after consolidation and the effective nor-

mal stress on the same section prior to the application of the surcharge.

However, on account of the low permeability of the clay the process

of consolidation proceeds very slowly. Immediately after the surcharge

Pi is applied, the void ratio of the clay is still equal to co, which indicates

that the effective stresses remain equal to pol yet the total normal

stress on the horizontal section has been increased by pi. Hence, at

the outset of the process of consolidation the entire surcharge pi per

unit of area is carried by a neutral stress of equal intensity which in-

dicates that the pressure in the water has increased from its initial

value Uw to + pi. The temporary increase u of the hydrostatic

pressure represents the excess hydrostatic pressure (see Art. 88). At

the instant when the load pi is appKed the excess hydrostatic pressure

on any horizontal section mn through the clay is equal to pi. As a

consequence the water rises in a piezometric tube (Z in Fig. 81) to a

height

yw

above the water table. As time goes on, the excess hydrostatic pres-

sure decreases and the water level in the piezometric tube goes down.

If, at a time t, the excess hydrostatic pressure is equal to u, the water

stands in the piezometric tube at a height

[1 ]

above the water table. Finally the excess hydrostatic pressure becomes

equal to zero and the surface of the water in the piezometric tube

arrives at the elevation of the free ground water level. Yet, at any time

the sum of the added effective normal stress p — Po produced by the

surcharge and the excess hydrostatic pressure u is equal to pi or

« + p — Po = Pi

whence

t* *= Pi — p + Po [2]
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The decrease of the excess hydrostatic pressure per unit of time is

equal to

du dp
[3]

The increase of the effective normal stress by dp/dt per unit of time

involves a corresponding decrease in the volume of voids n of the clay.

The relation between p and n is determined by equation 98(4)

Uq — n ^ rrivc {p — Po)

from which we obtain

dp \ dn

dt nivc dt

Combining this equation with equation 3 we get

dn du

Since the voids of the clay are assumed to be completely filled with

water the value — dn/dt represents the quantity of water which is

squeezed out of the clay at depth H — z per unit of time and per unit

of volume. The quantity which is squeezed out of a slice with thick-

ness dz is equal to

dn ^
du

^_ ^2 = -m^c— dz

per unit of time and unit of the area of the slice. It joins the quantity

which enters the slice through its base mn. Hence, if t; is the discharge

velocity at the section mn, the velocity v increases in an upward direc-

tion over the distance dz by

dv
^

dn
^

du
^

dz ~ *“ ' dz ' n i
dz dt dt

[4]

This equation is nothing more than a mathematical expression of the

dv
fact that the difference — dz between the quantity of water which leaves

dz

the element per unit of time and that which enters it must be equal to

diif

the quantity dz which is squeezed out of the element per unit of
dt

time.

The discharge velocity v is determined by the hydraulic gradient » and

by the coefficient of permeability, k, of the clay. At the siuface of the
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clay the excess hydrostatic pressure is always equal to zero. This means
that the water in a piezometric tube at the surface of the clay never

rises higher than ho- On the other hand, in the piezometric tubes shown

in Figure 81, the water rises immediately after the application of the

surcharge to an elevation hi and as consolidation proceeds the water

level goes down again. At any time t it stands at an elevation h above

the initial level. With increasing values of 2, h decreases and for z ^ H,

h is equal to zero. At depth H — z and at a time t the corresponding

hydraulic gradient is

. dh 1 du

dz jy, dz

Darcy^s law requires that the discharge velocity v be equal to

^
_ h du

yw

The rate of change of in a vertical direction is

dv k d^u

dz Jy; dZ^

161

Combining this equation with equation 4, we obtain

^ _ k d^u

dt w^vc
[61

This is the differential equation of the process of consolidation of hori-

zontal beds of clay on the assumptions specified in the preceding article.

(Terzaghi 1923.) To simplify this equation we substitute

and obtain

k
= C^e

7wmmi

du d^U

Tt
^

17]

[8]

The coefficient c^c is called the coefficient of consolidation. A reduction

of the load on a bed of clay causes the clay to swell. In this case the

coeflicient Cve niust be replaced by the coefficient of swelling

CvB = —-— cm^ sec ^ [9]

yw^v9

where is the coeflScient of volume expansion (eq. 98(6)). If there is

no doubt whether the coefficient of consolidation applies to a process

of compression (Cpc) or of swelling (c»,), the second subscript will be

omitted.
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All the quantities contained in this equation are independent of the

initial hydrostatic head Aq. Therefore it will be assumed in each of the

following investigations that the initial hydrostatic head Aq is equal

to zero.

Every process of consolidation involves the transition of the excess water from a

state of rest into a state of movement. In the derivation of equation 8 the energy

required to overcome the inertia of the water was neglected. One investigator

objected to this omission and claimed that it invalidates the results, whereupon a

rigorous solution was found which takes the forces of acceleration into account

(Heinrich 1938). This solution demonstrated that the error involved in the original

solution does not exceed a few tenths of one per cent.

100. Thermodynamic analogue to the process of consolidation.

If we assume = 1, equation 99(6) becomes identical with the differ-

ential equation for the non-stationery, one-dimcnsional flow of heat

through isotropic bodies, provided we assign to the symbols in the

equation the following physical meaning:

Theory of consolidation Symbol Thermodynamics

Excess hydrostatic pressure u Temperature

Time t Time
CoeflBcient of permeability k Coefficient of heat

conductivity

Coefficient of volume change
dp

11 “
1+60

Heat capacity times

unit weight

Coefficient of consolidation

or swelling

Cv Diffusivity

The loss of water (consolidation) corresponds to the loss of heat (cool-

ing) and the absorption of water (swelling) to an increase of the heat

content of a solid body. The existence of the thermodynamic analogue

is useful in two different ways. First of all it eliminates in some cases the

necessity of solving the differential equation 99(6) because a great

variety of solutions has already been obtained in connection with

thermodynamic problems, Second, in contrast to the phenomena of

consolidation and swelling, the processes of cooling and heating are

familiar to everybody from daily experience. Therefore the knowledge

of the existence of the analogue facilitates the visualization of the

mechanics of consolidation and swelling.

The case represented by Figure 81 may serve as an example. It in-

volves the consolidation of a bed of clay on an impermeable base due to

the sudden application of a surcharge pi per unit of area. At the

instant of the load application the excess hydrostatic pressure in the

water content of the clay rises in every point of the loaded stratum from

its initial value zero to a value uq = pi represented by the width of the
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cross-shaded area aced. As time goes on the excess hydrostatic pres-

sure gradually decreases and finally becomes equal to zero. The thermo-

dynamic analogue to this case is the gradual cooling of a plate with a

thickness H after the temperature has been raised at every point from

zero degrees to degrees. The base of the plate is insulated and the

surface remains in contact with air whose temperature is maintained

at zero degrees. The cooling of the plate proceeds at a decreasing rate

from the exposed surface toward the insulated bottom. On the basis

of the thermodynamic analogue we may conclude that the consolidation

of the bed of clay will proceed at a decreasing rate from the surface

toward the impermeable base of the stratum. The equations which

describe this process will be derived in the following article.

Mathematical analogues also exist between consolidation processes

in general and the following physical processes: Diffusion of substances

dissolved in liquids, diffusion of gases, propagation of electric currents

in cables, and movement of solid bodies through a stationary viscous

liquid (Terzaghi and Frohlich, 1936).

101. Excess hydrostatic pressures during consolidation. The excess

pressure u in the water contained in consolidating beds of clay is

determined by the differential equation 99(8). Solving this equation

for u we obtain w as a function of the time t and the elevation z,

u = f{t, z) [1]

The character of this function depends on the type and the rate of the

change of stress which causes the consolidation and on the location of

the surface or surfaces through which the excess water can escape from

the clay. In their totality these factors determine the conditions to be

satisfied by the solution of equation 99(8). Figure 81 illustrates the

consolidation of a bed of clay with a thickness H due to a suddenly

applied surcharge pi per unit of area. This surcharge instantaneously

produces on every horizontal section through the clay a consolidation

stress with the intensity pi. The excess water can escape through the

upper surface only. At the instant of load application, i = 0, the

void ratio of the clay has not yet changed, but the total normal pres-

sure on every horizontal section has increased by pi. Therefore at

time < == 0 the excess hydrostatic pressure is equal to w = pi throughout

the layer. At any time t, such that 0 < ^ < « ,
the excess hydrostatic

pressure at the surface, where z = jEf, is equal to zero because there is

no obstruction against the escape of the excess water out of the clay

adjoining the surface. At the bottom of the layer, where z = 0, the

discharge velocity v is always equal to zero, because no water comes
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out of the impermeable base of the clay. Since

k du

yw dz
99(5)

we obtain for the bottom of the layer (z = 0)

After a time infinity the excess pressure in the water is everywhere

equal to zero. These conditions can be condensed into the following

set of equations. For

t = 0 and 0^z< H, w = Pi [2a]

0 5 f 5 00 and z = 0,

du
[25]

0 ^ f 5 00 and z = H, u = 0 [2c]

t = m and 0^ z^ H, u = 0 [2d]

On the basis of these conditions the solution of the differential equa-

tion can be accomplished by means of Fourier^s series.

The solution of the problem illustrated by Figure 81 led to the follow-

ing results:

14 iV= Q0

2Ar + i
sin

r (2N + 1) irz
~\

(2;^r+i) 2x27’^/4

I 2H \
[3a]

wherein c is the base of natural logarithms and

^ k t

[36]

represents an independent variable, called the time factor. It has the

dimension of a pure number.

In order to visualize the distribution of the excess hydrostatic pres-

sure u (eq. 3a) within the consolidating bed of clay we make an inclined

section db (Fig. 82) through the clay which rises at an angle of 45° to the

horizontal and establish at some point m of this section a piezometric

tube. If u is the excess hydrostatic pressure at point m, the water

rises in the tube to an elevation h = u/y^, (eq. 99(1)) above the original

ground-water level at elevation ho, as shown in Figure 81. Since h is

independent of the position of the ground-water table, we assume ho = 0
and plot the value h from the top surface of the clay in an upward
direction. The point thus obtained is located on a curve which is
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called an isochrone. An isochrone is the locus of the levels to which the

water rises in piezometric tubes from different points of the inclined

section ab at any one time. The difference between the elevation of any
point m on the section ab and that of the corresponding point i on an

isochrone labeled t is the piezometric head at point m at time t and
the neutral stress at point m is

ny) y)rni ”f” h z) j^4j

The hydraulic head h at point m with reference to the initial water table

is equal to

wherein u is the excess hydrostatic pressure at time L The value of

u is determined by equations 3, which represent the solution of equa-

tion 99(8). The hydraulic gradient at point m at time t is equal to

dh ^ \ du

dz dz
[6]

A negative value of i indicates a gradient in a downward direction.

Since cmi = z, the gradient at point m at time t is identical with the

slope of the isochrone labeled t at point i. If the slope is toward point

a, as shown in the figure, the gradient at point m is positive, which

indicates that the excess water at the elevation of point m flows in an

upward direction.

At the instant of the application of a uniformly distributed load pi

per unit of area of the surface of the bed of clay shown in Figure 82

the isochrone consists of a broken line ode whose horizontal part de is

located at an elevation Pi/tu; above the horizontal surface of the clay.

This is the zero isochrone. During the first stage of the process of

consolidation the isochrones are tangent to de. This fact indicates

that the consolidation is still limited to the upper part of the clay de-

posit while the void ratio in the lower part is unchanged. At a later

stage, represented by the isochrone a/2 ,
the isochrones meet the vertical

line ec. The distance e/2 represents the increase of the effective normal

stress in the clay at the base of the clay deposit since the instant of

load application. Because the rate of percolation through a horizontal

section increases with the elevation z of the section the slope of the

isochrones increases from the right to the left. At the base of the zone

in process of consolidation the discharge velocity is equal to zero,

which requires du/dz = 0. Therefore at any time the tangent to the

right-hand end of the isochrones must be horizontal. After consoli-
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dation is complete the water level in each of the tubes is located on the

line oc. This is the final isochrone. If the external hydraulic condi-

tions, such as the position of the water table, remain unchanged, the
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Fig. 82. Consolidation of layer of clay after sudden application of uniformly

distributed surcharge. Isochrones (plain curves) represent locus of water level

in vertical piezometric tubes whose lower ends are located on section ah.

final isochrone is identical with the locus of the water levels in the tubes

before the application of the consolidation stresses.

In the thermodynamic analogue the ordinates of the isochrones with

reference to the surface of the bed of clay represent the temperatures.

In an early stage of cooling, indicated by the isochrone afi

,

the tempera-

ture of the lower part of the hot plate is still unchanged whereas the

upper part has already cooled off.

The diagrams which represent the successive stages of a process of

consolidation by means of isochrones, such as the diagram in Figure 82,

will briefly be called piezographs. They facilitate the determination

of the state of stress at any time in every point of the bed of clay. The
total normal stress at time t on a horizontal section at elevation z is

Pt = Pi +y (.H - z) [7]

wherein y is the unit weight of the clay and water combined. The
total neutral stress is

u„ = u + y^, (H - z)
[8]

Therefore the effective normal stress is

p, = = (pt -u) + (H - z) (y
- 7„) [9]

In this equation the difference (pi — u) represents the increase of

the effective stress due to the surcharge and {H — z) {y — y„) is the
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effective stress at elevation z due to the submerged weight of the clay.

This part of the total effective stress pt existed before the surcharge was

applied.

The validity of the preceding equations requires that the initial surcharge on the

surface of the clay be equal to zero and that the water table coincide with the sur-

face of the clay. If these two conditions are not satisfied, the total surcharge per

unit of area must be added to the total normal stress ptt equation 7, and the initial

neutral stress which acted on the surface of the clay must be added to the neutral

stress Vnvt equation 8.

Figures 83a to 83/ show the isochrones for several other important

cases of consolidation of horizontal beds of clay. In Figure 83a the

bed of clay with a thickness 2H is assumed to rest on a permeable base.

Hence the excess water can escape toward both the upper and lower sur-

faces of the clay stratum. Since the flow of the excess water out of the

clay is symmetrical with reference to a plane at midheight of the bed

of clay, the isochrones are also symmetrical, as shown in the figure. In

the case represented by Figure 836 the bed of clay with a thickness

2H also rests on a permeable base but the consolidation stresses are

assumed to decrease from a value pi at the top to a smaller value p2

at the bottom, as shown in the figure by the straight line de. This

assumption approximates the stress conditions produced by a surcharge

acting on a strip on the surface of the clay because the normal stress

on horizontal sections due to a local surcharge decreases with increasing

vertical distance between the surface and the section. The isochrones

resemble those in Figure 83a, but they are not symmetrical. During

every stage of the process the point of contact between the correspond-

ing isochrone and a horizontal tangent to this isochrone determines

the elevation of the boundary between the zones of upward and down-

ward drainage. This boundary passes through the point of intersection

between the vertical through the point of contact and the inclined

section ab, as shown in Figure 836. At time zero the boundary is

identical with that surface of the clay where the excess pressure is

greatest. As time goes on the boundary gradually approaches a hori-

zontal plane at midheight of the bed of clay. These statements also

apply to every other process of consolidation involving drainage in two

directions such as the process illustrated by Figures 83c and 83e.

In Figure 83c the consolidation stresses are assumed to decrease from

Pi at the upper surface to zero at the lower, and the excess water can

escape through both upper and lower surfaces. If the base of the clay

is impermeable, the isochrones corresponding to the system of stresses

indicated in Figure 83c intersect the zero isochrone dc, as shown in

Figure 83d. The physical meaning of this result obtained by compu-
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tation can be recognized on the basis of the thermodynamic analogue

to this case. This analogue consists of a plate with an insulated base

whose initial temperature increases from Tq at the base to To + jT =
Tq + ad at the top. The surface remains in contact with air

(e) (f)

Fia. 83. Isochrones representing progress of consolidation of a layer of ideal clay

for difFerent t3rpes of drainage and different distributions of consolidation pres-

sure in a vertical direction. {After Terzaghi and Frohlich, 19S6.)

at temperature Tq. During the subsequent process of cooling the tem-

perature of the lower part of the plate temporarily increases. In the

theory of consolidation, an increase of the temperature corresponds to

a swelling of the clay.

figure 83e shows the piezograph for a hydraulic fill on a permeable
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base. This graph was drawn on the assumption that the consolidation

during the process of placing the fill and the change of the unit weight

of the fill due to consolidation can be neglected. The total normal stress

on a horizontal section through the fill at a depth 2H—z is (2H — z) y
wherein y is the unit weight of the fill, water and clay combined. Yet
immediately after the fill has been placed the effective stress is equal to

zero, because consolidation has not yet started. Hence at a time

t = 0 the neutral stress at any depth 2H ~ 2; is equal to the total stress

{2H — z) y which causes the water to rise in a piezometric tube from
depth 2H — z to an elevation (2H — z) y/yy, above this depth or to an
elevation

h = X (2H - z)y - (2H - z) = (2H - z)
^ = {2H - z)^

yw yw y v)

above the surface of the fill. In Figure 83e these initial values of the

hydrostatic head are represented by the ordinates of the straight line

ae. During the following process of consolidation the hydrostatic

Fig. 84. Consolidation of bed of clay due to seepage in vertical downward direc-

tion from reservoir into sand stratum whose outcrops are located on downstream

side of storage dam.

head gradually approaches the value zero and the boundary between

the zones of upward and of downward drainage gradually rises from the

base of the fill toward a horizontal plane at midheight of the con-

solidating stratum. If the fill rests on an impermeable base the iso-

chrones slope only toward the left, as shown in Figure 83/ and intersect

the line ec at right angles, because at the impermeable base the hy-

draulic gradient is equal to zero.

It should be noted that the thickness of all those layers of clay in

Figure 83 from which the excess water escapes through both surfaces

of the layer is indicated by 2H (Fig. 83a, 836, 83c, and 83e), whereas

that of the others is indicated by H. The reason for this important

distinction will be explained in the following article.

The consolidation of a bed of clay can also be produced by a flow of

water through the clay in a downward direction. Figure 84 illustrates

the mechanics of this process. It represents a section through a reser-
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voir located above a bed of clay with a thickness 2H which in turn rests

on a layer of sand. Prior to filling the reservoir the water table is

assumed to be located at the surface of the ground. By filling the

reservoir to a depth hi with water we increase the total normal stress

on every horizontal section through the clay by hiy^. If the hydro-

static head in the bed of sand beneath the clay is also increased by hi

the increase of the neutral stress is everywhere equal to the increase of

the total stress and both the effective stresses and the void ratio of the

clay remain unaltered. On the other hand, if the hydrostatic head in

the sand is maintained at its original value, for instance, because the

sand layer intersects the surface of the ground on the downstream side

of the dam, as shown in the figure, the filling of the reservoir creates a

flow of water from the reservoir through the clay into the sand. Once

this flow has become stationary, the hydrostatic head of the water at

any point of the section ah (Fig. 84) through the clay is equal to the

ordinates of the straight line dc with reference to the base of the fill.

These ordinates also determine the permanent increase yJiizl2H of the

neutral stress in the clay. However, owing to the filling of the reser-

voir the total normal stresses on every horizontal section have increased

by hiyyj. Hence the filling of the reservoir ultimately increases the

effective normal stresses on horizontal sections through the clay by

This potential increase of the effective stresses produces consolidation.

Immediately after the reservoir has been filled the void ratio of the clay

is still unchanged. Hence at that time the increase of the effective pres-

sure is still equal to zero and the entire excess stress y^hi is added to

the neutral stress. The corresponding isochrone is represented by the

horizontal line de. As time goes on the clay consolidates, the hydro-

static head becomes smaller, as indicated by the isochrone dfc, and
finally it assumes the values determined by the ordinates of the straight

line dc. The process of consolidation is identical with that represented

by Figure 83e.

The line dc is an example of a final isochrone located above the level

oc to which the water rose in the piezometric tubes prior to the appli-

cation of the consolidation stresses. If the final isochrone is located

above or below the original water table, the excess hydrostatic pressure

u in the differential equation of the process (eq. 99 (8)) represents the

difference between the hydrostatic pressure at a given point at a given

time and either the initial or the final hydrostatic pressure at the same
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point. Therefore one has the choice between two different reference

pressures. However, the choice has no influence on the results of the

computation. The author always uses the final pressure as a reference

pressure. In accordance with this arbitrary convention the final iso-

chrone represents the base line for measuring the hydraulic heads.

102. Settlement due to consolidation. During the process of con-

solidation of a bed of clay the thickness of the bed decreases on account

of the decrease of the void ratio. The corresponding downward move-

ment of the surface of the layer is called the settlement due to consolidation.

The final decrease of volume Arii per unit of the initial volume of the

clay is determined by equation 98(4). By means of this equation we
obtain

Aril = Pi = [IT

wherein pi denotes the consolidation pressure (see Article 99). In

the process illustrated by Figure 82 the consolidation pressure pi is the

same throughout the bed of clay. Therefore the final settlement of

the surface of the bed of clay shown in Figure 82 due to consolidation is

PI = HAm = Hm^pi [2]

If the consolidation pressure changes with depth according to a

straight line law, as for instance in the processes illustrated by Figures

836 to 83/ and Figure 84, the final settlement is equal to

rr Pi + P2 roT
Pi = mM — [31

wherein pi is the consolidation pressure on the upper surface of the clay

and p2 the consolidation pressure on the lower surface.

A surcharge pi per unit of area of the entire surface of a bed of clay

with a thickness H produces a consolidation pressure which has the

same intensity pi throughout the layer and the final settlement is

determined by equation 2. During the period between the instant

when the surcharge is applied and an arbitrary time t the effective

pressure produced by the consolidation pressure pi at a given depth

H -- z increases from zero to

P Pi — u

The decrease An of the porosity of the consolidating clay due to an

increase of the effective pressure by p can be computed by means of

equation 98(4). Setting Ap == p in this equation we get

An = m^p = mv(pi u) [4]



282 THEORY OF CONSOLIDATION Abt. 102

The decrease dp of the thickness of a horizontal layer with the original

thickness dz is

dp — An dz = m^Cpi — u) dz [5]

and the settlement p at the time t is

P — J Andz = rriv — J u d^ [6]

For the bed of clay shown in Figure 82 the value u is determined by
equations 101 (3 ) . Substituting this value in equation 6 and integrating
we have

.-<»«—] 171

wherein

r. = 101(36)

represents the time factor.

The factor outside the brackets represents the ultimate settlement

Pi (eq. 2). If the boundary conditions are different from those shown

in Figure 82 the term in brackets will also be different. Yet, in any

event, the first term on the right-hand side of the equation represents

the final settlement and the term in brackets represents always some
function, f{T^, of the time factor. Hence we can write

P = Pi/(r,) = [8a]

The value

c^% = 100-^ = 100/(r,) [86]
Pi

is called the degree of consolidation. It depends only on the boundary

conditions and on the time factor T.. The character of the function

/(T.) depends on the conditions of the problem. For a great number
of different conditions the fimction /(T®) is already known (Terzaghi

and Frohlich, 1936). Hence there is no need to determine this function

in any but exceptional cases. In Figure 85, curve Ci represents the

function 100/(r.) = U% for the processes illustrated by Figures 82,

83a, 836, 83c, and 83e. All these processes with the exception of the

first involve the drainage of beds of clay with a thickness 2H in two
opposite directions due to an excess pressure which is a linear function

of depth. The identity of the time factor-consolidation curves for all

these processes demonstrates that the shape of these cuirves is inde-
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pendent of the slope of the zero isochrone ed, provided this isochrone

is straight, and the excess water can escape through both the upper and
the lower surfaces of the consolidating layer. A layer of clay which

permits drainage through both surfaces is called an open layer. The
thickness of such a layer is always represented by the symbol 2H, in

contrast to the symbol H used for the thickness of half-closed layers

which can discharge their excess water only through one surface.

The shape of the time factor-consolidation curve for half-closed

layers of clay with a thickness H depends on the distribution of the

consolidation pressure. Figures 83d and 83/ represent two different

distributions which are frequently encountered. The corresponding

time factor-consolidation curves shown in Figure 85a are C2 and C3

Fig. 85. Relation between time factor and degree of consolidation. In (a) the

time factor is plotted on an arithmetic and in (6) on a logarithmic scale. The three

curves Ci to Cz correspond to three different cases of loading and drainage, rep-

resented by Figure 83 (o, d, and/). {After Terzaghi and FrdMichf 19S6.)

respectively. For a half-closed layer acted upon by a uniformly dis-

tributed consolidation pressure, such as the layer shown in Figure 82,

the time factor-consolidation curve is identical with the curve (7i for

open layers, because the process of consolidation in such a layer is

identical with that in each one of the two halves of the open layer illus-

trated by Figure 83a.

The curves Ci, C2 ,
and Cz (Fig. 85a) represent the solution of the
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most common consolidation problems. The solutions of many others

have also been published (Terzaghi and Frohlich, 1936). If we want

to determine the settlement of the surface of a bed of clay at a time t

after consolidation started we determine first of all the ultimate ajmount

of settlement pi by means of equbations 2 or 3. Then we determine the

time factor by means of equation 101 (36)

and finally we take the value of the corresponding degree of consoli-

dation from the graph (Fig. 85a). From equation 8a we obtain for

the settlement at time t the value

U%

For open beds of clay the value H in the equation for computing the

time factor Tv is always equal to one half of the initial thickness of the

bed of clay. On the other hand, if the clay rests on an impermeable

base (Figs. 83d and 83/) the value H is equal to the total thickness.

In engineering practice by far the most important processes of con-

solidation are those represented by the curve Ci in Figure 85. They
include the consolidation of half-closed beds of clay due to a uniformly

distributed consolidation pressure (Fig. 82) and of open beds of clay

imder the influence of any consolidation pressure which is a linear

function of depth, such as the processes illustrated by Figures 83a,

836, 83c, and 836. The curve Ci also represents the relation between

the time factor and the degree of consolidation for the small-scale con-

solidation tests which are performed in the laboratory for the purpose

of determining the coefficient of consolidation Cv in equation 101(36).

For values of U% between 0 and 52.6 the curve Ci can be represented

almost exactly by the equation

which is the equation of a parabola. Substituting for Tv the value

given by equation 101(36) we obtain

The values Cv and H are constant. Hence for values of U% smaller

than 52.6 the degree of consolidation produced by a suddenly applied
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load increases in direct proportion to the square root of the time. For

values of U% greater than 52.6 the curve Ci is almost identical with a

curve with the equation

= 1.781 - 0.933 logio(100 ~ U%) [11]

It should be noted that the radius of curvature of the curve Ci in

Figure 85a increases steadily until U% becomes approximately equal

to 60, then decreases once more and assumes a second minimum at

about U% ==85. On account of the parabolic shape of the first sec-

tion of the curve (see eq. 10) the tangent to the curve at any point of

that section with the abscissa intersects the horizontal axis at a

distance — from the origin.

In Figure 856 the relation represented by the curve Ci in Figure 85a

has been shown on a semilogarithmic plot. The curve thus obtained

has a point of inflection at about U% = 75. In the vicinity of U% =
95 it flattens rapidly and approaches a horizontal asymptote corre-

sponding to C/% = 100. The curve represents an equation

logic T, = F{U%)

Substituting for the value given by equation 101 (36) we obtain

cp
logio = logic t + logic

jp = logic i + const. = F(U%)

This equation leads to the following conclusion. If the degree of

consolidation of two beds of clay with different values of Cv/H^ is plotted

against the logarithm of time, the time-consolidation curves thus ob-

tained have the same shape but they are separated from each other

by a horizontal distance logic (cd/H^). For Tv/i = 1 the time-consol-

idation curve becomes identical with the time factor-consolidation curve

shown in the figure. This important property of the semilogarithmic

time-consolidation graph facilitates comparison of empirical consoli-

dation curves with the theoretical standard curve for the purpose of

detecting deviations of the real process from the theoretical one. There-

fore in many cases the semilogarithmic plot is preferable to the arith-

metic plot.

103. Approximate methods of solving consolidation problems. So-

lutions which have been obtained by solving the differential equations

99(8) are called rigorous solutions because they comply strictly with the

fundamental assumptions (see Art. 17). If the conditions of the

problem exclude the possibility of obtaining a relatively simple rigorous

solution it is always possible to obtain satisfactory approximate solu-

tions. Approximate solutions can be obtained by substituting for the
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real isochrones such as those shown in Figures 82 and 83 a family of

simpler curves with similar general characteristics.

For instance the isochrones shown in Figure 82 have approximately

the shape of parabolas because the drainage of the excess water toward

the top surface of the clay requires an increase of the hydraulic gradient

from zero at the base of the zone of consolidation toward a maximum at

the surface (see Art. 101). Hence the simplified method of compu-

tation is based on the assumption that the isochrones are parabolas.

As time goes on the apex of the parabolic isochrones advances first from

d in Figure 82 in a horizontal direction toward e and then in a vertical

downward direction from e toward c. The rate at which the apex

travels determines the quantity of excess water which drains out of the

clay per unit of time. At the surface the hydraulic gradient must

always be equal to the gradient required to maintain the flow of the

excess water toward the surface. This condition makes it possible to

determine the rate of displacement of the isochrones and the corre-

sponding rate of consolidation. The time factor-consolidation curve

obtained by means of this procedure is almost identical with the curve

representing the rigorous solution.

The replacement of the real isochrones by simpler curves is strictly

comparable to Coulomb^s method of substituting plane surfaces of

sliding in the backfill of retaining walls for the real surfaces, which are

slightly curved. (See Art. 23.) Many approximate solutions of con-

solidation problems have alreadybeenpublished (Terzaghi 1925, Terzaghi

and Frohlich, 1936), and the method can easily be adapted to problems

which have not yet been solved.

104. Consolidation during and after gradual load application. In

practice the most important causes of consolidation are the construction

of buildings or embankments above beds of clay and the deposition of

clay in a semi-liquid state by hydraulic fill processes. In both cases

the consolidation of the clay under constant load is preceded by a period

of transition during which the consolidation occurs simultaneously with

an increase of the load. The consolidation due to every load increment

proceeds independently of the consolidation due to the preceding and

the succeeding load increments. Therefore the rate of consolidation

during the period of transition can be computed with any desired degree

of accuracy by a simple process of superposition.

As an example of this method we compute the rate of consolidation of

a bed of clay with a thickness 2H located between two layers of sand.

The upper layer of sand serves as a base for a building under construc-

tion. The ordinates of the broken line Oab in Figure 86a represent the

average normal pressure p due to the weight of the building on hori-
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zontal sections through the clay plotted against the time t. Con-

struction is started at time ^ = 0 and it is finished at time h. After

time ti the pressure p is constant and equal to pi. The curve Ci repre-

sents the time-consolidation curve on the assumption that the entire

weight of the building was suddenly applied at time < = 0. It was

obtained from the curve Ci in Figure 85a by substituting the time scale

of Figure 86 for the time-factor scale of Figure 85a. The substitution is

accomplished by means of equation 101 (35)

At a time t smaller than ti the average pressure on the clay is p. For

practical purposes we can assume that the state of consolidation at

time i is the same as if the pressure p had acted on the clay during a

Fig. 86. Graphic methods of constructing time-consolidation curve, if consolida-

tion pressure is applied gradually. {After Terzaghi and Frdhlich^ 19S6.)

period t/2. At a time i/2 after sudden application of a pressure p
the degree of consolidation would be V' (Fig. 86a). Hence the degree

of consolidation at time t is equal to

U% = u'%^
Vi



288 THEORY OF CONSOLIDATION Abt. 104

in per cent of the final settlement due to consolidation under load pi.

The theoretical justification of this approximate method of computa-

tion has been published elsewhere (Terzaghi and Frohlich, 1936).

Plotting this value against an abscissa t we obtain one point of the

consolidation curve C. Other points can be determined by repeating

the procedure for other values of t Beyond point a\ with an abscissa

ti consolidation proceeds as if the final pressure pi had been suddenly

applied at a time ti/2.

If the rate of application of the load pi is variable as indicated by

the time-load curve Oa in Figure 866, the time-consolidation curve

can be obtained by means of the graphical method illustrated by Fig-

ures 866 and 86c. The curve Ci in Figure 866 is identical with the

curve Cl in Figure 86a. It represents the relation between time and

the degree of consolidation on the assumption that the final pressure

Pi had been suddenly applied at a time < = 0. The degree of con-

solidation at time t due to the sudden application of the smaller pres-

sure p at a time < = 0 is equal to

U"% = U'%^ [1]
pi

in per cent of the final consolidation under a pressure pi. The influence

of the gradual application of the pressure p remains to be investigated.

In order to ascertain this influence we reproduce in Figure 86c the

section On of the time-load curve Oa of Figure 866, on a larger scale.

If we choose the scale in this figure in such manner that the area Fq of

the rectangle Oninn2 represents the settlement at a time t after sudden

application of the pressure p, the settlement due to the sudden appli-

cation of a load increment dp at a time ^ = 0 is equal to the area of the

slice shown in the figure with a length t In reality the increment dp
acted on the clay only during a time t — From equation 102(10)

we learned that the settlement due to a suddenly applied load increases

with the square root of the time. Therefore the length of the strip

which represents the settlement due to the load increment dp in Figure

86c is equal to

By plotting the values \^t(t — ts) corresponding to different points

on the load curve On (Fig. 86c) from nn2 to the left we obtain the dashed
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line On. The shaded area F = Onn2 represents the real settlement at

the time t in the scale of the figure. If p had been applied at < 0

the settlement would be equal to the area Oninn2 = Fq and the corre-

sponding degree of consolidation would be equal to J7"% (eq. 1), Hence

the real degree of consolidation at a time t due to a load applied as

indicated by the curve On (Figs. 866 and 86c) is

This value determines one point on the line of consolidation C.

Other points can be determined by repeating the procedure for other

values of t Equation 102(10) on which the procedure is based is

strictly valid for values of U% between 0 and 52.6. Yet, even for

somewhat higher values of Z7% the approximation obtained by the

method described before is very satisfactory.

If the load curve rises in irregular steps (see load curve shown in Fig.

86d) the problem of estimating the rate of consolidation can be solved

by substituting for the curve a set of two or more sharp steps (dashed

load lines in Fig. 86d). Each one of these steps represents the sudden

application of one part of the final pressure. Each one of these incre-

Vi P\
ments contributes one share, 100~

,
100—

,
• • • to the final consoli-

Pi Pi

dation of 100 per cent. The consolidation produced by each increment

proceeds independently of the others. The corresponding consolidation

curves are represented in Figure 86d by C' and C". At any time t the

degree of consolidation is equal to the sum of the ordinates of these

curves for a time t. By performing this operation we obtain a curve

with sharp breaks. These breaks are due to the preceding substitution

of a broken line for the real load curve which is smooth. The real

consolidation curve is also smooth, as shown by the plain curve C in

Figure 86d.

The general procedures illustrated by Figure 86 can also be adapted

to the solution of all the other problems involving consolidation during

a gradual change of the load on the clay.

105. Effect of gas content of the clay on the rate of consolidation.

If one part of the voids of a clay is occupied by gas bubbles the appli-

cation of a surcharge on the clay causes a simultaneous compression of

the gas which in turn involves a decrease of the void ratio in advance

of the subsequent consolidation of the clay. In the diagram in Figure

87 this sudden decrease of the void ratio prior to the consolidation is

indicated by the initial consolidation £/o%* The value J7o% depends
on the initial gas pressure, on the volume occupied by the gas prior to
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Time i

the application of the surcharge, and on the intensity of the surcharge.

During the following process of consolidation the temporary excess

hydrostatic pressure in the water content of the clay disappears and

the gas pressure in the bubbles approaches its original value 'Pg. There-

fore the quantity of water which leaves the clay during the process of

consolidation is exactly the same as if the gas bubbles were not present.

The coefficient of permeability of the clay is also practically independent

of the gas content of the clay

unless the gas occupies an ap-

preciable percentage of the

voids. Therefore we can con-

clude that the pressure of the

gas in the clay has very little

effect on the rate of consolida-

tion. In a clay without gas

the degree of consolidation for

i = 0 is equal to zero and the

subsequent consolidation pro-

ceeds as shown by the curve C
(Fig. 87). If the clay contains

gas bubbles the degree of consolidation for ^ = 0 is equal to ?7o%* Yet,

according to the preceding reasoning the rate at which the final state is

approached is independent of the gas content. Hence we obtain the

consolidation curve Cg for clay which contains gas by reducing the

ordinates of the curve C (Fig. 87) with reference to the lower boundary

. .. 100-f/o%
of the diagram at a ratio •

106. Two- and three-dimensional processea of consolidation. In consolidation

processes involving two-dimensional flow, the excess water drains out of the clay

in parallel planes. In a three-dimensional process of consolidation the flow occurs

in radial planes or else the water particles travel along flow lines which do not lie in

planes.

The differential equation for one-dimensional flow has been derived in Article 99.

By means of a similar method of approaching the problem one obtains for the three-

dimensional flow the equation

Fia. 87. Influence of incomplete saturation

of clay on shape of time-consolidation

cinrve (plain curve Cg).

du

at

/d^u
m

wherein u is the excess hydrostatic pressure in the water, i the time, and tv the co-

efficient of consolidation (eq. 99(7)). If the flow occurs only in one direction, for

instance in the direction of the Z axis, two of the three terms in brackets become

equal to zero and equation 1 becomes identical with equation 99(8). The differential

equation for the two-dimensional process of consolidation, parallel to the XZ
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plane is

Su / 8^ d^u\

dt
^

\da?® dz^

)

[2]

If a three-dimensional process of consolidation is symmetrical about an axis, it

is more convenient to replace the Cartesian coordinates by polar coordinates, r in

a radial and z in an axial direction. By means of this substitution one obtains

from equation 1

^ /8^ 1 8m 8^m\
[3]

If the radial flow takes place in planes at right angles to the Z axis, the term

8^m/ dz^ is equal to zero and one gets

^ ^

dt
^

\dr^ r dr/
[4]

Carrillo (19426) has shown that the three-dimensional radial flow, described by

equation 3, can be resolved into a plane, radial flow (eq. 4) and into a linear flow

(eq. 99 (8 ) ) . If t/r% is the average degreeof consolidation of a layer of clay due to the

plane radial drainage at a given time i and Uz% the degree of consolidation due to

the Linear drainage at the same time, the degree of consolidation U% due to the

combined linear and radial drainage is determined by the equation

100 _ [;% =i (1 _ Ur%) (1 - Ur%) [5]

The coefiicient of consolidation Cv in equation 3 is given by the equation

k
(V
« 99(7)

'ixorriv

wherein k is the coefficient of permeability, the unit weight of the water, and

the coefficient of volume decrease (eq. 98(5)). If the coefficient of permeability k

for the axial direction is equal to n times the coefficient of permeability kr for radial

directions the ratio between the corresponding values of Cv is also equal to n, or

~ = n and — = n [6]
kr Cvr

If km different from k^ it can be shown that equation 3 must be replaced by

8m ^ /8^m
m

However, the general relation expressed by equation 5 retains its validity.

In engineering practice one of the most important two-dimensional processes of

consolidation occurs in the core of hydraulic fill dams during and after the period of

construction. Figure 88a is a section through such a fill during construction. The
central part of the fill occupied by the finest soil constituents is called the core of

the fill. One part of the excess water drains out of the core through the top sur-

face in a vertical upward direction into the core pool P and the remainder escapes in

a horizontal direction through the slopes of the core. Both types of flow take place

simultaneously and parallel to the section shown in the figure. G. Gilboy (1934)
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computed the rate of consolidation of such fills on the simplifying assumptions

that the excess water escapes out of the core only in a horizontal direction. At

least during the first period of construction the drainage through the top surface

is likely to be important. Therefore the real rate of consolidation should be ex-

pected to be appreciably higher than the computed one.

Time Facfor T'

Pig. 88. Two- and three-dimensional processes of consolidation, (a) Hydraulic

fill dam; (6 to d) drainage of bed of clay beneath fill by means of sand wells;

(e) relation between time factor and degree of consolidation of cylindrical body

shown in (d) due to drainage toward central well for R/r « 1, 10, and 100.

As a simple example of a three-dimensional process of consolidation we consider

the process illustrated by Figure 886. This figure represents a section through an

embankment resting on the horizontal surface of a stratum of soft clay or silt. In

order to accelerate the consolidation of the loaded stratum, filter wells have been

established which permit the escape of part of the excess water in a horizontal direo-
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tion into the wells, which in turn dehver the water into a filter bed located between

the clay and the base of the fill. The rest of the excess water flows in an upward
direction from the clay into the filter bed. Figure 88c shows the layout of the

system of wells. The vertical sections indicated by dash-dotted lines divide the

consolidating layer of clay into prismatic blocks. Within each block the drainage

proceeds as if the vertical sides of the block were hned with an impermeable mem-
brane, because the excess water in the clay located on either side of each vertical

section escapes in opposite directions. The problem of computing the rate of drain-

age can be simplified without appreciable error by assuming that each block is

cyhndrical. On this assumption the flow is symmetrical about the axis of the block.

Within the block the flow of the water toward the exit surfaces proceeds as if the

cyhndrical surface of the block were covered with an impermeable material.

If the permeability of the clay in a vertical direction is different from that in a

radial direction the consohdation of the cyhndrical block is represented by equa-

tion 7. Rapid appheation of the weight of the fill produces throughout the block

an excess hydrostatic pressure equal to the weight of the fill q per unit of area of the

top surface of the block. As time goes on this excess pressure gradually approaches

zero. Simultaneously the effective stresses in the clay increase and approach a

constant value which is equal to the total increase of the stress in the clay produced

by the weight of the fiU. The outer cyhndrical surface and the base of the block

are impermeable and the excess water escapes through the top surface and the walls

of the well. These are the boundary conditions. The flow of the excess water

through the block can be resolved into two components, one vertical component in

the direction of the centerline of the filter well (direction of the Z axis) and one

horizontal, radial component directed toward the filter well. The boundary con-

ditions for the vertical linear flow are identical with those for the consolidation due

to sudden appheation of a surcharge q per unit of area on a bed of clay with a thick-

ness H which rests on an impermeable base (half-closed layer). (See Art. 102.)

The relation between the time t and the degree of consohdation (7«% is determined

by the equation

U,% = 100/(n) 102(86)

wherein

101(36)

is the time factor. The function f(Tv) depends only on the boundary conditions.

For the boundary conditions described before, the relation between Ug% and T^ is

represented by the curve Ci in Figures 85a and 88e.

The second component of the flow of the excess water represents a process of

consohdation involving the flow of the water in horizontal radial directions from the

vertical outer surface of a cyhndrical body toward the filter well which occupies the

central part of the body. This type of flow is represented by equation 4. The
equation has been solved by Renduhe (1935a) who showed that the relation between

the time t and the degree of consohdation Ur% can be expressed by an equation

Ur% - 100 F(r) [8a]

wherein

[85]

is the time factor for consohdation involving horizontal radial flow out of a cyhndrical
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body with an outer diameter 2R toward a central filter well with a diameter 2r. The
relation between the degree of consolidation Ur% and the time factor T depends on

the value of the ratio R/r, In Figure SSe this relation is represented by the curves

CiQ and Cioo for values of R/r = 10 and 100 respectively. If the values Uz% and

Ur% have been determined for a given time t one obtains the average degree U%oi
consolidation of the block for the time t by introducing these values into equation 6.

In order to illustrate the influence of the filter wells on the rate of consolidation

we assume that the depth H of the bed of clay shown in Figure 886 is 20 feet. The
weUs have a diameter of 1 foot and they are spaced 9 feet in either direction. Re-
placing the vertical prismatic blocks which surround the wells by cylindrical blocks

with equal horizontal cross-sectional area we obtain for the diameter of these blocks

2R = 10 feet. We want to determine the influence of the wells on the average degree

of consolidation at the time when the degree of consolidation in the clay without wells

would be equal to 30 per cent. The computation will be made on two different

assumptions regarding the permeability. First it will be assumed that the clay is

isotropic,

kf = k or = Cj, and n = 1

and then it will be assumed that

kr = lOA; or — lOc^ and n =» 10

From curve Ci (Fig. 88c) we obtain for Uz% »= 30 the value Ty » 0.07. Introduc-

ing this value into equation 101(36) we get

whence

0.07^2
t

The time factor for radial flow at time t is

Cc 0.07JT2 0.07-20* ^ ^

W-l.
Since R/r = 10, the degree of consolidation Ur% at time t is equal to the ordinate

of that point on curve Cio in Figure 88e, whose abscissa is equal to 0.28, or Ur% “ 29.

Introducing the values C/,% *= 30 and Ur% = 29 into equation 6, we obtain

or

100 - u%
100

70 X 71 = 60

17% «60

Hence the presence of the wells increases the degree of consolidation at time t

from 30 to 60 per cent.

Jlkr ^ lOkg or Cvr ^ lOcv the time factor for radial flow at time t is

T
Cvr. lOc, 0.07g* „„
4S* 4B* c,

“ ®
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A value of IT « 2.8 corresponds on curve Cio to a degree of consolidation Ur%
of almost 07.5 per cent.

Every sedimentary bed of clay is far more permeable in a horizontal direction than

in a vertical direction. Therefore the filter wells are much more effective than one

should expect from a computation of the influence of the wells on the rate of consoli-

dation on the assumption that the bed is hydraulically isotropic k — kr or n —
Filter wells have also been used to accelerate the consolidation of beds of clay or silt

which have been artificially deposited by some hydraulic process. If such a fill is

located above a highly permeable layer one can further increase the efficacy of the

wells by maintaining the water level in the wells at the level of the base of the fill

by pumping. In either case the rate of consolidation can be estimated by means of

a procedure similar to that described above.

Another, less important but more difficult, problem involving a three-dimensional

flow of the excess water out of a consolidating clay presents itself in connection with

the computation of the rate of settlement of a local surcharge on the horizontal

surface of a bed of clay whose thickness is great compared with the width of the

area covered by the surcharge. A first attempt to solve the problem was made
by Biot (19356) on the assumption that the clay obeys Hooke's law and that the

excess water escapes only in a vertical direction.

At a later date the same investigator formulated a general theory of three-dimen-

sional consolidation (Biot 1941o). On the basis of this theory he computed the

consolidation settlement under a uniformly distributed load covering a rectangular

area on the surface of a bed of clay (Biot 19416) and the consolidation due to a load

acting on a bed of clay whose top surface is impermeable (Biot and Clingan, 1941).

He also investigated the progressive settlement of loaded, elastic slabs resting on a

bed of ideal clay (Biot and Clingan, 1942).

All these investigations were based on the assumption that the coefficient of con-

solidation Cv contained in equation 1 is a constant. For processes of consolidation

involving linear flow this assumption is known to be reasonably accurate. However,

in connection with two- and three-dimensional processes of consolidation, the same
assumption should be regarded as a potential source of errors whose importance is

not yet known. Biot also assumed that Cv has the same value for both compression

and swelling. This assumption is never justified. A better approximation could

be obtained by assuming that c^, for swelling is equal to infinity.

Based on experimental data obtained from triaxial compression tests Rendulic

(1936) showed that the process of consolidation of the clay located beneath a finite

loaded area can be expressed by the differential equation

du k /

dt ywf{x,y,z)\dx^ dy^ )

provided the process does not involve a local swelling of the clay. In this equation,

k is the coefficient of permeability, and /(as, y, z) is a function which depends on the

relation between a change in the effective state of stress in the clay and the corre-

sponding change of the volume of voids. The factor

k

yv,fix,v,z)

corresponds to the coefficient of consolidation Cp mentioned above. The function

Vf «) represents the equivalent of the coefficient of volume decrease mvo in equa-

tion 99(7). According to the results of the tests made by Rendulic. this function
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is very complicated. The error due to replacing this function by a constant could

be estimated only by means of a theoretical analysis based on the test results which

Rendulic has published or by a comparison of computed and observed rates of

consolidation. Up to this time no such investigations have been made. There-

fore the existing theoretical methods for dealing with two- or three-dimensional

problems of the consolidation of clay under load are not yet ready for practical

application.



Chapter XIV

CAPILLARY FORCES

107. Capillary phenomena. In fine-grained soils water is capable of

rising to a considerable elevation above the water table and remaining

there indefinitely. In order to explain this phenomenon physicists

have been obliged to assume the existence of a force which is capable of

compensating the weight of the water located above the water table.

This force is known as capillary force. Although the physical nature

of this force is still controversial all its mechanical effects can be accu-

rately computed on the basis of the assumption

that the locus of the force is the line along

which water, air, and solid meet.

108. Surface tension. In order to visualize

the mechanics of the capillary rise of the water

in the voids of a dry, cohesionless sand, we
simplify the problem by considering the rise of

the water in a capillary tube. Figure 89 is a

section through such a tube. Every part of

the body of water contained in the tube, such

as the cylindrical element shown in the figure,

with a diameter 2x, a height he and a weight

Trx^ywhe is in a state of equilibrium. At the base

of the element, at the elevation of the free water

level outside the tube, the hydrostatic pressure

in the water is equal to zero. The pressure on

element is also equal to zero. The shearing stresses along the cylin-

drical surface of the element are equal to zero. Yet the element has a

weight TTX^yyfic- Hence it cannot be in equilibrium unless the outer

rim of the top surface of the element is acted upon by a force whose

vertical component F is equal to the weight TrxSwhe- No such force

could exist unless the mechanical properties of the uppermost layer of

the column of water are different from those of ordinary water. This

uppermost layer is called the surface film of the water. The force

which keeps the element from sinking downward must have its seat

within this film, because there is no other conceivable seat for this force.

Up to this point our reasoning does not contain any assumption and

297

Fia. 89. Forces acting

on water contained in a

capillary tube.

the top surface of the
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the conclusion is as strictly valid as any statement regarding the con-

ditions for the equilibrium of a solid body.

The next step is to ascertain the state of stress within the surface

film, because the preceding analysis merely informed us concerning the

vertical component F of the stresses. Experimental investigations

made more than a hundred years ago have shown that the surface

film is in a state of two-dimensional tension parallel to its surface and

that the force F, shown in Figure 89, represents the vertical component

of these tensile stresses. This tension is called the surface tension of

the water. The thickness of the surface film which represents the seat

of the surface tension is of the order of magnitude of 10“^ centimeters.

The views concerning the molecular mechanism which produces the

surface tension are still controversial. Yet the existence of surface

tension as a stress acting within the surface film was established during

the last century beyond any doubt, and the intensity of this stress has

repeatedly been determined by independent methods with consistent

results.

Hence, the mathematical concept of this phenomenon involves no

hypothesis, because it is valid regardless of the physical causes of sur-

face tension.

A few investigators in the field of soil mechanics have been misled by the differ-

ences in opinion concerning the physical causes of surface tension to the conclusion

that the existence of surface tension as such is a matter of opinion. This conclusion

can be compared to doubts concerning the validity of the laws of electric conductivity

based on the fact that our conceptions regarding the nature of electricity are still

in a controversial state. In this connection it should be emphasized that no capillary

phenomenon has ever been observed which is incompatible with the mathematical

concept of surface tension.

The following table contains the tension in the surface film of

water in contact with air for different temperatures T. (Smithsonian

Physical Tables 1934.)

T{^C.) = 0® 10® 20® 30® 40®

T, (gr. per cm.) = 0.0756 0.0742 0.0727 0.0711 0.0695

109. Rise of water in capillary tubes and grooves. A tube is called

a capillary tube if its diameter is suflBciently small to induce a visible

rise of the water within the tube above the free water surface outside

the tube. Figure 90a is a section through such a tube. The surface

of the water in the tube assumes the shape of a cup, called the meniscus.

The surface of the water intersects the vertical wall at an angle a called

the coniact angle.

The value a depends on the chemical composition of the walls of
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the tube and on the type of impurities which cover the walls. If the walls

of a glass tube have been cleaned and moistened prior to the test,

a is equal to zero. On the other hand, if the walls are covered with a

greasy film, a may even be greater than 90°. In this case, the meniscus

boundary between meniscus and tube; (6) state of stress in water in capillary

tube with open upper end; (c) rise of water in capillary tube whose upper part

is evacuated, while free water surface is acted upon by atmospheric pressure Po«

is convex upward and the apex of the meniscus is located below the level

of the water outside the tube. Usually the impurities which cover the

walls of capillary tubes are such that the value a ranges between 0° and
80°.

The equilibrium of the column of water which occupies the tube

(Fig. 90a) above the free water level requires that

= Tfirrcoaa

or

hc^
2T,— cos a
ryw

[la]

If r is given in centimeters, y^ — I gram per cubic centimeter and

Tg = 0.076 gram per centimeter

he = cos a [Ih]
T

The state of stress in the water contained in a capillary tube depends

on the pressure, Po, in the air located above the water. K the test

illustrated by Figure 90& is made in a perfect vacuum the entire column
of water located above the free water level is in a state of tension for the
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foUoxving reasons. Since the water is in a state of equilibrium, the

pressure in the water is the same in every point of a horizontal section.

At the level of the free water surface the pressure is equal to zero. The
weight of a column of water located within the capillary tube between

the free water level and an elevation z above this level is equal to 7^,2

per unit of area of a horizontal section. The pressure on the base is

equal to zero and the unit pressure on the upper surface is Ug. Since

the sum of all the forces which act on the colunm is equal to zero, we
obtain

or

Ug “f“ yw^ — 0

Ug —
[2]

In Figure 906 the values Ug are represented by the abscissas of the

straight line Od.

If the space located above the water is invaded by air under a pressure

Pa the pressure in the water increases everywhere by Pa* Hence, in

this case the pressure in the water will be as shown by the abscissas of

the dotted line aidi (Fig. 906). The height he of capillary rise remains

unaltered. According to Figure 916 no tension exists in the water

unless the height ho of capillary rise is greater than ha = Paljw or

approximately 10 meters. Finally, if we dip the lower end of an evacu-

ated capillary tube (Fig. 90c) into water in contact with air under a

pressure pa, the water will rise in the tube to a height of

ha he — ^—1 cos a [3]
yw r

For glass tubes with perfectly clean walls, a = 0.

If we lift the lower end of a capillary tube out of the water and main-

tain the vertical position of the tube, the flow of the water out of the

tube will stop as soon as the water level in the tube arrives at an ele-

vation of about he above the lower end of the tube. At the same time

a permanent droplet will be formed at the lower end of the tube, as

shown in Figure 91a. The weight of the colunm of water contained in

the tube is carried by the surface tension of the film at the upper

boundary of the column. In the vicinity of the lower end of the tube

the stress in the water changes from tension in the colunm to pressure in

the drop and the surface film of the drop can be compared to a minute

rubber bag which acts as a container and transfers the weight W of

the drop to the lower end of the tube.

Thus far we have considered only the capillary rise of continuous

columns of water in a tube and the column of water retained in capillary
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tubes after drainage. However, in connection with the origin of soil

moisture we are also interested in the capillary rise of water in slits and
grooves and in the droplets which are retained at the points of contact

between uneven surfaces.

If we immerse the lower edge of two glass plates which are separated

from each other by a very narrow air space, the water rises within this

space as it does in a capillary

tube although the sides of the

air space are open. If we ad-

just the position of the glass

plates in such a fashion that

they touch each other along a

vertical line of contact, the

height of the capillary rise in

the groove thus obtained de-

creasesfromthecontacttoward

the open side. Very narrow

grooves can even be used as

capillary siphons for trans-

porting water out of a con-

tainer, provided they are given

the shape of a hook whose

outer end is located below the

surface of the water in the container as shown in Figure 916.

In an accumulation of solid particles such as sand every point of

contact between two adjoining particles is surrounded by an annular

groovelike space having a V-shaped cross section. The width of this

space increases from zero at the contact in every direction. When
sand is drained by gravity or by centrifuging, each of these grooves

retains a minute quantity of water held in place by capillary forces as

shown in Figure 91c. The forces exerted by the solid onto the surface

film are indicated by arrows. Since they tend to increase the diameter

of the particle of water surroimding the point of contact, the water is

maintained in a state of tension and the solid particles located on both

sides of the point of contact are forced together with a pressure equal

and opposite to the tension on the section ab through the water.

110. Capillary movement of water in a column of dry sand. If we
immerse the lower end of a column of dry sand contained in a cylindrical

vessel with a perforated bottom, the water rises in the voids of the sand

in the same manner as it rises in a bundle of capillary tubes. In both

the sand and the tubes the rate of capillary rise decreases rapidly and

finally becomes equal to zero.

0<7r<

Fig. 91. (a) Permanent droplet at lower end

of water-filled capillary tube; (b) experi-

ment to demonstrate capillary movement in

V-shaped grooves; (c) adhesion between

sand grains produced by contact moisture.
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In order to eimplify the analysis we assume arbitrarily that the water

level within the sand represents the boundary between a zone of com-

plete capillary saturation and a zone in which the sand is completely

dry. On this assumption the rate of capillary rise is governed by

Darcy^s law

V = ki [1 ]

wherein t; is the discharge velocity, k the coeflBcient of permeability,

and i the hydraulic gradient.

In reality the uppermost part of the moistened zone is in a state of partial and

not of complete capillary saturation. Within this zone the rate of flow of the water

is determined by the capillary potential, which is a function of the degree of satura-

tion of the sand (see, for instance, Baver 1940). However, the methods of com-

putation which are based on the concept of the capillary potential have not yet

reached a stage in which they could be advantageously applied to the solution of

engineering problems.

Since the cross-sectional area of the column of sand is the same for

every elevation, the rise of the water into the column represents a

linear flow in a vertical upward direction. At a given time t the water

level stands in the sand at an elevation z above the free water level

outside the column. Assuming that the vertical component of the sur-

face tension at the upper boundary of the saturated section is a constant,

the hydraulic head with respect to the base of the column, located at the

free water level is ft© — z and the hydraulic gradient is

The rate dz/dt at which the upper boundary of the saturated zone

rises in a vertical direction is identical with the seepage velocity

i.e., with the vertical component of the average velocity of the water in

the capillary passage ways. If n is the volume porosity of the sand, i;, is

equal to v/n (eq. 88(8)).

Hence

V dz

n dt

If we combine this equation with equations 1 and 2 we obtain

dt n z

whence

k
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At i = 0 the height of capillary rise z is equal to zero. This con-

dition is satisfied, if

C ^ he ^ he log he

Thus we get

In the preceding analysis it was assumed that the water is allowed

to rise in the voids of a dry sand until a state of equilibrium is reached.

However, a state of final capillary equilibrium can also be established

by permitting the excess water to drain out of a column of sand which,

at the outset, has been completely saturated. In this case the process

which leads to the final state of capillary equilibrium is called drainage.

As soon as the excess water is given an opportunity to escape through the

base of the column of sand, air invades the upper part of the column.

Thus the water content of the upper

part is transformed into a system of

threads and streaks of water interwoven

with a network of air channels. The
water contained in such a network is

called semi-continuoxis capillary water.

It occupies the narrowest pore channels

and the grooves between the grains. If

the column of sand is very high, the

streaks and threads of water contained

in the uppermost part of the column

are likely to break up into individual

droplets which surround the points of

contact between the individual grains,

as shown in Figure 91c. Capillary water

of this type is in a discontinuous state,

because each one of the droplets is hy-

drostatically independent of its neighbors,

weight and by surface tension only.

Fig. 92. Vertical distribution of air

space after drainage of column of

wet sand.

It is acted upon by its own
Water in this category can remain

in the sand forever, at any elevation above the ground-water level pro-

vided there is no loss of water due to evaporation.

Hence in a final state of capillary equilibrium the uppermost part of

the column is moistened by discontinuous soil moisture, whereas the

lowest part is completely saturated. The zone of transition contains

the capillary moisture in the semi-continuous state as described above.

Figure 92 illustrates a method of expressing the degree of saturation in
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different parts of a drained column of sand in quantitative terms. In

this figure the width of the right-hand rectangle represents the total

volume of voids, e, per unit of volume of the solid constituents. The
curve shown in the figure divides this rectangle into two parts. At
any elevation z above the free water level the width Cyj of the left-

hand part indicates the volume occupied by the water and the width

Ca = e — Cu, the volume occupied by the air. The ratio

S% = 100 [4]

is called the degree of saturation and the ratio

r — — 1 fKi

the air space ratio. The height of the zone of complete capillary satura-

tion (5% = 100) will be designated by the symbol hcc- It seems to be
smaller than the height he to which the water rises by capillarity in a

column of perfectly dry sand.

111. Capillary siphon effect. Figure 93a is a section through an
earth dam with a core made of relatively impermeable material. The

crest of the core is located at an

Zo/7s of ccrplllary

saiurarion
elevation bJH above the free

water level. If Aff is smaller

than the height of capillary rise

for the material which consti-

tutes the more permeable part

of the dam, the capillary siphon

effect illustrated by Figure 916

causes the water to flow over the

crest of the core and to dis-

charge into the downstream part

of the dam. A method of com-
puting the rate of discharge is

not yet available. However,

^ ^ ^ .
from both laboratory experi-

Fig. 93. Capillary flow of water out of a . j £ u • •

reservoir (a) through the soil located above
expenence it 18

a watertight core, and (b) through soil lo- known that the loss of water due

cated above the theoretical line of satura- to the siphon effect can be rather
tion in a homogeneous earth dam. important (see, for instance,

Terzaghi 19426).

A similar siphon effect takes place in homogeneous earth dams, as

shown in Figure 936. On account of capillary action the water perco-
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lates through the dam not only below the so-called line of saturation

(see Art. 89) but also within the zone of capillary saturation. In the

construction of a flow net for a dam as described in Article 89 this

source of movement is not considered. Therefore the real flow net is not

perfectly identical with the theoretical flow net and the real discharge

is likely to be somewhat greater than the computed discharge.

112. Gas pressure in bubbles and voids. In many soils the zone of

complete saturation (capillary or gravity saturation) contains a certain

amount of free gas in a discontinuous state. If a gas particle is entirely

surrounded by water it is called a bubble. Bubbles in soils always ad-

here to the surface of a soil particle, but the area of contact is insignificant

compared with the total surface area of the bubble. On the other hand,

if a gas particle occupies a space whose

outer boundaries consist of independ-

ent menisci separated from each other

by the surface of soil grains the gas

particle is said to occupy a void. Gas
bubbles are always almost spherical,

whereas the voids may have any shape.

The gas particles in a soil may
represent the remnants of the air

which occupied the voids before the

water invaded the soil. They may
also represent air or some other gas

which has previously been dissolved

in the water or a gas which developed

as the result of chemical processes in

the soil. At a given temperature the

gas pressure in a bubble depends ex-

clusively on the weight of the gas

contained in the bubble and on the

stress in the water. The gas pressure in voids also depends on the

arrangement of the soil particles which surround the void.

In order to illustrate the difference between the conditions for the

equilibrium of a gas bubble and of a gas particle contained in a void

we compute the gas pressure in a bubble which adheres to the roof of

the water-filled container shown in Figure 94a. The bottom of the

container communicates through a capillary with an open body of water.

Another capillary rises from the roof. By changing the distance be-

tween the outside water level and the bottom of the container one can

change the stress in the water within the limits determined by the diam-

eter of theupper capillary. The computation will be based on the simpU-

Roof

Fig. 94. Diagrams illustrating the

conditions which determine the ex-

pansion of bubbles into voids.
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f3dng assumption that the weight of the gas in the bubble is independent

of the state of stress in the water. At the outset of the experiment the

diameter of the bubble is equal to 2ro. Since the bubble is located above

the free water level, the hydrostatic pressure Wu>o in the water next to

the bubble is negative. The real pressure Wq in the water is equal to

the algebraic sum of and the atmospheric pressure po, or

Uo^ Uy,o + Pa [1]

The pressure t^o can be either positive or negative. The gas pressure

is Pgo and the surface tension T,. Figure 946 is an enlarged vertical

section through the bubble. The equilibrium of the forces which act

on the lower half of the bubble requires

or

^oPgO = ^0^ + ^irroTs

Pao = ^ = + Pa H
^0

[21

If fo approaches zero, the gas pressure Pgo approaches infinity. How-
ever, within the range of molecular dimensions, equation 2 loses its

validity.

By raising the position of the container shown in Figure 94a one can

reduce the pressure in the water from Uq to u, whereupon the gas pressure

changes from pgo to pg and the radius of the bubble changes from Vq

to r. According to Boyle^s law the product of the volume and the

pressure is a constant for every gas at a constant temperature. The
volume occupied by the gas before and after the change of the pressure

in the water is equal to iTiTo and respectively. Therefore, if

To is known, the radius r can be computed from the equation

i^o (mo + = i^rr®

or

Solving this equation for u one gets

The rate at which the bubble expands with decreasing value of the
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pressure u in the water is determined by the equation

du

r
2

^Uo + 2T,

For

[4]

the rate of increase of the radius of the bubble becomes equal to in-

finity. At that state the real pressure in the water is Ui. By combin-

ing equations 3 and 4 we get

«!=-“* [5]
3 ri

The corresponding hydrostatic pressure (see eq. 1) is

For the gas pressure one obtains by means of equation 2

^2T,
Pel = wi +—

ri

2^
3 ri

m

As soon as the hydrostatic pressure in the water becomes equal to

Uai (eq. 6) the gas bubble expands and continues to expand until the

container is empty. As soon as this state is reached, the gas particle

ceases to represent a bubble. It occupies a void, as shown in Figure 94c.

The boundaries of this void consist of the walls of the container and of

two menisci, located at the bottom and the roof of the container respec-

tively. If F is the volume of the container, the gas pressure Pj* is

determined by the equation

i^lVeo = yPet

or

4irro

3F

In contrast to the gas pressure for the bubble state determined by

equation 2, the preceding equation for the gas pressure in the void state

contains the volume of the void into which the gas particle expanded.

Hence, as soon as the gas particle passes into the void state, as shown

in figure 94c, the gas pressure depends chiefly on the initial conditions
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and on the volume of the void into which the particle expanded. All

the other factors, such as the stress in the water and the surface tension,

are of minor importance. The curvature of the menisci which form part

of the boundary of the gas-filled void depends on the gas pressure and

on the height of the column of water located above and below the con-

tainer, It can easily be computed on the basis of these data.

In order to illustrate the influence of the size of a bubble on the stress in the

water at which the bubble expands into a void we compute the radius ri (eq. 4)

and the corresponding values ui (eq. 5) and Uw\ (eq. 6) for two different values of ro

on the assumption that the bubble is located at the outset of the test at the elevation

of the free water level. As a consequence Uxo^i in equation 1 is equal to zero. The
atmospheric pressure Va is equal to 1000 grams per square centimeter. On these

assumptions U(s is equal to 1000 grams per square centimeter.

If ro = 5 X 10“^ centimeters (radius of a medium-sized clay particle) we obtain

ri = 10 X 10~® centimeters, ui = — 1000 grams per square centimeter, and

Wtoi = — 2000 grams per square centimeter. Hence the bubble expands into a

void after it doubles its size, and the corresponding stress in the water is equal to

that in the water in a capillary tube at an elevation of 2000 centimeters or 20 meters

above the free water level. On the other hand, if ro = 0.05 centimeter (size of a

fine sand particle), we obtain ri = 1.6 centimeters, = — .Of gram per square

centimeter, and Wtwi = — 1000.06 grams per square centimeter. Hence, in this

case, the expansion of the bubble which precedes the expansion into a void is very

important and the stress in the water at which the expansion occurs is numerically

almost equal to the atmospheric pressure. It should be remembered that all the

equations from which the preceding data were obtained were based on the assump-

tion that the weight of the air contained in the bubbles remains constant. In

reality the decrease of the pressure in the water is always associated with a release

of air. Therefore the results of the computations are only approximately correct.

The results of the preceding analysis make it possible to visualize

the influence of tension in the water contained in the voids of a soil

on the space occupied by the gas particles. A void in a soil can be

compared to the container shown in Figure 94. The gas content of an

almost saturated soil is hkely to consist of very small gas bubbles, which

adhere to the walls of the voids. If tension develops in the water the

largest bubbles expand into voids and as the tension increases the

smaller bubbles follow. The tension required to start this process

depends on the initial state of stress in the water and on the size of

the largest gas bubbles. Once a gas bubble has expanded the relation

between gas pressure and surface tension, expressed by equation 2,

loses its validity for this gas particle.



Chapter XV

MECHANICS OF DRAINAGE

113. Types of drainage. The term dmiTMige is applied to the process

of artificial withdrawal of water from a body of soil. In connection with

engineering operations drainage is used to increase the stability of the

soil prior to excavation or prior to the application of loads. In either

case the increase of stability is due to the reduction of the neutral

stresses in the soil at practically unaltered total stresses. In order to

drain a soil it is necessary to lower the water table. The terms ground-

water level, phreatic water level, water table, or ground-water surface indi-

cate the level to which the water rises in piezometiic tubes whose lower

end is located immediately below this level. If the ground water is

stationary, the water rises in every tube to the same elevation regardless

of the location of the lower end of the tubes.

If the water flows through the soil, the ground-water surface is also

sometimes called the line of saturation. However, this term is misleading,

because every soil is in a state of complete capillary saturation up to

some elevation above the water table. At the upper boimdary of the

zone of complete capillary saturation the piezometric head is always

negative, whereas the water table is the locus of all those points in a mass

of soil for which the piezometric head is equal to zero.

The lowering of the water table can be accomplished by constructing

within the soil a system of ditches or tunnels with a gravity outlet

(drainage by gravity), by pumping from wells or ditches (drainage

by pumping), or by surface evaporation (drainage by desiccation).

The excess water may escape along straight, parallel lines (linear drain-

age), by flow along curves in parallel planes (two-dimensional drainage),

in radial planes (radial drainage), or by flow along lines having a three-

dimensional curvature (general case of a three-dimensional drainage).

In connection with the practical application of drainage it is often

useful or necessary to know in advance the approximate time required

to drain the major part of the excess water out of the soil. The rate

at which the water escapes is called the rate of drainage. For a given

layout of the drainage system both the rate and the effect of drainage

depend on the physical characteristics of the soil subject to drainage,

such as grain size and compressibility. These characteristics range

309
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between the two limits represented by those of ideal sand and ideal clay.

In connection with drainage the term ideal sand indicates an ideal

granular material which is perfectly incompressible. Hence the water

which drains out of such an ideal sand must be replaced by air oc-

cupying the same volume (drainage by air replacement).

The term ideal clay indicates a highly compressible soil whose voids are

so small that they remain completely filled with water during the

entire process of drainage, provided the surface of the soil is protected

against evaporation. Hence the total volume of the water which drains

out of the ideal clay is equal to the simultaneous decrease in the total

volume of the voids. A process of this type is essentially identical with

the processes of consolidation under the influence of an external load, and

the rate of consolidation can usually be computed by means of the

methods described in Chapter XIII.

While the drainage of a mass of sand proceeds the drained part of the

mass is separated from the saturated part by a broad zone of transition

in which some of the voids are occupied by air and the remainder by
flowing water. Within the zone of transition the rate of flow depends

not only on the hydraulic gradient and on the size of the voids but also

on the degree of saturation and on several other factors. The theories

which take these factors into consideration (Gardner 1936; see also

Wilson and Richards, 1938, and Baver 1940) are so involved that they

are not yet fit for practical application. The computations contained

in the following articles are based on the traditional assumption that

the drained and the saturated parts of the sand are separated by sharp

boundaries. Therefore the results provide us only with a very crude

approximation to the real processes of drainage in sands.

114* Drainage of a stratum of ideal sand through its base* Figure

95a is a section through a bed of ideal sand with a depth H resting on

a layer of gravel which is much more permeable than the sand. Prior

to the drainage of the sand, the water table is located at the surface

of the sand. At that stage the water stands in piezometric tubes at

the level of the surface of the ground. At any depth H — z below the

surface the neutral stress (see Art. 6) is equal to

Wiy = y^(H z)

Drainage is accomplished by pumping water out of the gravel through

wells with a watertight lining. On account of the lining the drainage

occurs only in a vertical direction (vertical drainage). The pumping
operations maintain the water level in the wells at the level of the

base of the sand stratum. After drainage is complete, the lowest part

of the sand remains in a state of complete capillary saturation whereas
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the voids in the remainder of the sand are occupied by discontinuous

soil moisture (see Art. 110). In nature there is a gradual transition

between these two zones, but in the following analysis it will be as-

sumed that they are separated by a sharp boundary.

If the sand were dry the water would rise by capillarity within a

few days to an elevation he above the water table. Therefore it will

be assumed that the boundary between the saturated and the drained

part of the fill is located at an elevation he above the water table, at

every state of drainage. Let

n = the volume of voids in the sand per unit of total volume,

Oa = the air space ratio of the sand after drainage (eq. 110(5)),

k = the coefficient of permeability of the sand,

= the unit weight of the water,

7 = the unit weight of the saturated sand (sand and water combined),

ya = the unit weight of the sand after drainage, and

7
^ =*= the submerged unit weight of the sand.

Drainage is performed by rapidly lowering the water level in the wells

to the level of the base of the sand and maintaining it at that level by
pumping. As a consequence, the water table is transferred from the

surface to the base of the bed of sand, whereupon the water tends to

flow out of the sand. This tendency is resisted by the surface tension

of the water which is capable of carrying the weight of a layer of water

with a depth he- In order to visualize the effect of the surface tension

on the state of stress in the water we make an inclined section ab at an

angle of 45® to the horizontal through the sand and establish at different

points of this section piezometric tubes, such as the tube S at point m
in Figure 95a. These tubes are given the shape of a U, which makes

it possible to measure both positive and negative neutral stresses.

Before pumping starts the water in every tube stands at the level of the

surface of the ground. If there were no surface tension the hydraulic

head with reference to the lowered water table at time ^ = 0 would be

equal to H and the hydraulic gradient equal to jGT/JT = 1. However,

as soon as the pumping from the wells produces a tendency of the water

to flow out of the sand, the surface tension of the water becomes fully

active, whereupon the piezometric level for points located close to the

surface descends from the surface to a depth he below the surface. This

event reduces the initial head at the surface with reference to the

lowered water table from H to H — he and the initial hydraulic gradient

from unity to

. H -he
to = H [11
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In Figure 95a this gradient is given by the slope of the straight line ao6,

which represents the locus of the piezometric levels for different points on

Fia. 95. (a) Drainage of bed of sand by pumping from underlying layer of gravel;

(6) state of stress in the sand after drainage; (c) retarding influence of surface

tension on rate of drainage. If surface tension were negligible, drainage would

proceed as indicated by C2 in (c).

the plane ah at time zero. Atany point m of this plane at depth JOT — zi

below the surface the initial head with reference to the lowered water

table is

/lo =^ = (^ - Ac) I
the initial excess hydrostatic pressure is

Z\

^0 “ Tw X do/ ~ ywiH he)

and the neutral stress is

Uwo = Tw X mdo =

The line Ooft, as well as any other line in the diagram which connects
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simultaneous piezometric levels for the section ab, has the same physical

significance as the isochrones shown in Figures 82 and 83. Since the

isochrone aob (Fig. 95a) is located entirely beneath the section ab the

neutral stress at every point of this section is already negative at

t = 0.

As drainage proceeds the upper boundary of the zone of complete

capillary saturation moves downward. At this boundary the piezo-

metric head is always equal to — Hence, if the boundary is located

at an elevation z above the lowered water table, the hydraulic head at

the boundary is equal to z — Ac and the hydraulic gradient

While z decreases, the water level in the tube S goes down; and as

soon as 2 = Zi the water level stands in S at a distance he below point m,

as shown in the figure. Further descent of the boundary causes the

column of water in the U-tube to break, because m is no longer sur-

rounded with saturated sand.

As soon as the boundary arrives at the elevation he of the point mi
the hydraulic gradient i (eq. 2) becomes equal to zero, whereupon the

drainage is complete. The stress conditions for this final state are

shown in Figure 956. In this figure the vertical distance between any

point on the plane section ab and the corresponding point on the final

isochrone bfiai represents the piezometric head at that point. The
reason for the curvature of the lower part of aifi will be explained below.

Since the isochrone is located entirely below ab the piezometric head

is negative at every point of the section. Below elevation he the sand

remains completely saturated. Above this elevation the water merely

occupies the vicinity of the points of contact between the soil grains.

It constitutes the discontinuous soil moisture (Art. 110). At any eleva-

tion z < ho the total normal stress on a horizontal section is

p ^ y {he - z) +yd(H - he) [3]

and the effective normal stress is

P = P + [4]

At any elevation z> ho the total normal stress is

p ^ yd {H - z)

The neutral stress in the water contained in the voids of the sand above

the zone of saturation cannot be measured by any direct means, because

the column of water contained in the piezometric tubes breaks as soon as
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air enters the end of the tube located at the observation point. How-
ever, laboratory determinations of the apparent cohesion of drained

sand indicate that the stress in the water contained in the zone of dis-

continuous soil moisture represents the equivalent of a neutral stress

Uy) “ ywhc [5]

which is practically independent of the depth below the surface. The
value he is somewhat greater than he- In Figure 956 the value he is repre-

sented by the vertical distance between ab and the upper part of aji.

Hence, for z > he the effective normal stress on a horizontal section is

V = p + ywK [6]

Since he is greater than he there is a gradual transition between the

straight upper part of the final isochrone aifib and the straight lower

part fib. The rate at which the top of the zone of saturation

descends from any elevation z toward its final position at elevation he

is —dzidt per unit of time. The quantity of water per unit of time

which flows out of the layer of sand per unit of area of its base is

dz
[7]

In this equation the product nGa represents that part of the voids of

the sand, n per unit volume, which is invaded by air. The quantity

V represents the discharge velocity. Darcy^s law requires

V = ki

Combining this equation with equations 2 and 7 we obtain

k
[8]

The solution is

t = — Z — he log {he — Z)

]
+ C

The value of the constant of integration C is determined by the con-

dition z == H for t == 0. Thus we obtain

t =
he^Ga

I
H he

[9]

This equation determines the rate at which the drainage of the ideal

sand proceeds. At any time t the quantity of water which has left the
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sand per unit of area of its base is

{H - z)nGa

The total quantity of water which drains out of the sand is {H — hc)nOo-

The ratio

I>% = 100|f^ [10]

represents the degree of drainage of the sand in per cent. It corresponds

to the degree of consolidation U% defined by equation 102(86). By
plotting the value D% against time we obtain the drainage curve C\

(Fig. 95c). It approaches the value D% = 100.

If the height of capillary rise he is negligible we obtain for i (eq. 2)

the value t = 1 = constant. Instead of equations 8 and 9 we get

- j.nGa
at

and

dz k
r « -TT “ constant
dt

nGd

Substituting Ac = 0 into equation 10, we obtain for the degree of

drainage at any time t

i>(%) = iooS^* = ioo^ 111]

This is the equation of a straight line C2 in Figure 95c, which intersects

the lower boundary of the diagram at a point with the abscissa

k

For pven values of k, n and Ga the curve Ci for A* > 0 is always lo-

cated entirely on the right-hand side of the straight line C2 for A* = 0.

Hence the capillary forces not only reduce the total quantity of water

which drains out of the sand but they also retard the process of drainage.

113. Drainage of ideal sand by pumping from well. The drainage

of sand prior to excavation operations is frequently accomplished by
pumping from wells. Figure 96 shows a layer of sand underlain by an

impermeable base at a depth H below the original water table. The
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water is pumped out of a single well at a constant rate Q per unit of

time. The pumping produces a funnelnshaped depression in the water

table, whose radius R increases with time. The computation of the

radius i? as a function of time is a problem of applied hydraulics, which

has been solved only on the simplifying assumption that the capillary

^^

^

^ Somd

Impermeahle base

Fia. 96. Drainage of sand by pumping from single well.

suction head he is negligible. If he is equal to zero the lowered ground-

water surface is identical with the boundary between the moist and the

saturated part of the sand. Above this boundary the volume occupied

by the water is equal to n(l — Go) per unit of volume of the sand.

The coefficient of permeability of the sand is k. At an arbitrary

time t after the pump has been started the vertical distance z between

the original and the lowered water table at an arbitrary distance r

from the centerline of the well is

Q /. 15^
,

g
* 47rfcfl'V^ a “^4X1!

wherein

kHt

If a is small one can neglect all the terms in the parentheses on the

right-hand side of the equation except for the first one, whence

The radius R of the funnel-shaped drained zone in Figure 96 is deter-

mined by the condition z » 0, which requires that

log (1.6Vo) =0 or a =« 1.6*

On the basis of this condition we get

4^ X 2 X 21
+

)

[1]
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and

(Steinbrenner 1937). According to these approximate equations and

to several other independent solutions of the problem (Weber 1928,

Kozeny 1933) the radius /Z at a given time t is independent of both the

radius of the well and the quantity of water Q which is pumped out of

the well. (See also Theis 1940.)

116. Drainage of sand embankments after drawdown. In order to

visualize the process of drainage induced by lowering the free water

level adjoining an embankment consisting of ideal sand we analyze the

simple case illustrated by Figure 97. This figure represents a section

Fig. 97. Flow net for sand embankment, corresponding to an intermediate state

of drainage after sudden drawdown.

through a road fill across a pond. The free water level is located

immediately below the crest of the fill at an elevation H above the im-

permeable base of the fill. If the pond is suddenly and completely

emptied the excess water, nGa per unit of volume of the fill,

drains out through the slopes of the fill. The height of capillary rise

he is assumed to be negligible. Since the excess water contained in the

sand adjoining the slopes can drain out of the fill more easily than

that in the center, the upper boundary of the zone of saturation very

soon assumes the shape of a rounded ridge. As time goes on, the

crest of the ridge descends at a rate — dz/dt per unit of time, which

approaches the value zero. At the crest the discharge velocity is

“ - - 1”®- '“CT

Below the upper boundary of the zone of drainage the continuity

condition (eq. 89(1)) is satisfied. Therefore the flow net can be

constructed by means of one of the methods cited in Article 89. Im-

mediately after the drawdown, at time < = 0, the flow net is similar

to that shown in Figure 78a, representing the seepage through an em-
bankment during a rainstorm. As time goes on the average hydraulic
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gradient within the zone of saturation steadily decreases. Therefore

the final state is asymptotically approached. Figure 97 shows the

flow net for an arbitrary time t after the drawdown has been accom-

plished. At any time i > 0 the crest of the zone of seepage is located

below the crest of the embankment. Hence the corresponding stability

conditions are more favorable than those produced by heavy rain pro-

vided that the rain establishes a state of complete saturation.

The effect of a sudden drawdown on the stability of fills consisting

of cohesive soils will be discussed in Article 122.

117. Drainage of a bed of ideal clay through its base. Figure 98a

is a section through a stratum of ideal clay whose thickness H is less

than the hdght of capillary rise of the water in the clay. The surface

Fia. 98. Consolidation (a) of an existing bed of clay and (6) of a freshly deposited

hydraulic fill by suddenly lowering the water table to the base of the clay and

maintaining it at that level by pumping from a well.

of the stratum is permanently protected against evaporation. Prior

to drainage the water table is located at the surface of the clay. In this

state the water rises from every point of both the clay and the sand in a

piezometric tube to the surface of the clay and the neutral stress

at a point n at an elevation z above the base of the clay is

Uwo = yw{H-z)

Drainage is accomplished by sinking a well through the clay into

the sand and by maintaining the water level in the well by pumping

at the level of the base of the clay. The time required to lower the

water level in the well is assumed to be negligible. In accordance with

the properties which have been assigned to the ideal clay (Art. 113)
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the clay remains in a saturated state throughout the process of drain-

age. In other words, the volume of the water removed by drainage is

equal to the decrease in the volume of the voids of the clay. The excess

water escapes out of the clay in a downward direction into the sand.

After drainage is complete the piezometric head at any point n of the

clay at an elevation z above its base is equal to

Uwi = yw^

Hence drainage reduced the neutral stress at elevation z by

Uwo - Uy,i = 7i^(£r — z) + ywZ = ywH U]

which is independent of depth.

The total normal unit pressure on a horizontal section through that

point remains almost unaltered during the process of drainage, because

the weight of the water which drains out of the clay is negligible com-

pared to the total weight of the clay. Therefore the effective normal

pressure on horizontal sections increases during the process of drainage

by an amount pi equal to the simultaneous decrease of the neutral

stress (eq. 1) or

Pi = yvfH [2]

The same effect can be produced by loading the surface of the clay with

Pi per unit of area while maintaining the water table at its original

position at the surface of the clay. In order to realize the intimate

relationship which exists between drainage and consolidation under

load, we first consider the consolidation of the clay under the influence

of a surcharge pi == ywH without any change in the position of the

water table. The surface of the clay is assumed to be covered with

an impermeable membrane. Owing to the presence of this membrane
the excess water can escape only in a downward direction into the sand.

Immediately after the application of the load, the water in every tube

stands at the level di^i at an elevation pi/y^ = H above the surface of

the clay (Fig. 98a). At time < = oo the water stands in every tube at

the level of the surface of the clay. Therefore the lines di«i and ac

represent the zero and the final isochrones respectively. The excess

hydrostatic pressure u for intermediate stages is determined by

du ^ 99 (8)
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The procedure for establishing the boundary conditions has been ex-

plained in Article 101. These conditions are:

for

t = 0 and Q <z^ H, u = Pi = y^H [3a]

0 ^ 5 00 and z = H,
du

dz
~ [36]

0 5 ^ W and 2 = 0, u = 0 [3c]

i = 00 and 0 5 2 ? H, u = 0 [3d]

The solution of equation 99(8) which satisfies these boundary con-

ditions is similar to equation 101 (3a). It can be written in the form

u = f{t, z) [4]

In Figure 98a this equation is represented by the dashed isochrones.

They are a mirror image of those shown in Figure 82. At any time i

the water level stands in a piezometric tube at an observation point n
at the level of the corresponding point d' on the isochrone for time

as shown in the figure. The corresponding neutral stress is

'Uw — Jw X nd' [5]

The process of consolidation due to drainage is also determined by the

differential equation 99 (8) . The boundary conditions are identical with

those given in equations 3, except that the head representing the ex-

cess hydrostatic pressure u is measured not from the surface but from

the base of the bed of clay, at a depth H below the surface. Therefore

the solution of equation 99(8) which satisfies the conditions of the prob-

lem is identical with equation 4, but the final isochrone Ob is located at

the base of the layer of clay and not at its surface. Hence, if a set of

dashed isochrones, representing a process of consolidation imder a sur-

charge jwH, is given, the corresponding plain isochrones can be ob-

tained by shifting the dashed isochrones through a distance H verti-

cally downward. In other words, the vertical distance dd' between

two isochrones corresponding to the same time Hs a constant, H. IS

the consolidation at a given time at a given point n is due to a sur-

charge, the neutral stress at time^ is yw nd' and if it is due to

drainage the neutral stress is —yw nd. Since

Tid^ “t" iid = H
the difference is a constant
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or

The neutral stress Uy, can either be positive or negative whereas

is always positive.

For both processes, represented by the dashed and the plain isochrones

respectively, the relation between time and excess hydrostatic pressure

u is determined by the same equation (eq. 4). Therefore the relation

between the time factor Ty and the degree of consolidation U%
(eq. 102(86)) is also the same for both processes. It is shown by
the curve Ci in Figure 85a.

Figure 986 represents the piezograph for a hydraulic fill located

above a bed of sand. The piezograph has been plotted on the following

assumptions. The consolidation during the construction of the fill

can be disregarded. The maximum height of capillary rise is greater

than the depth H of the fill, and the hydrostatic head at the base of the

fill is maintained at zero with reference to the base of the fill by pump-
ing from a well which extends into the sand. The line ae is the zero

isochrone, which represents the locus of the piezometric levels for

every point of the plane section ab for time < == 0. At time t —<x>

the piezometric level coincides everywhere with the level of the base

of the fill. Hence the line Ob represents the final isochrone. The zero

isochrone is identical with the zero isochrones ae in Figures 836 and

83/ respectively, but the final isochrone is different. The process

of consolidation is determined by the differential equation 99(8),

given before. However, in contrast to the process illustrated by
Figure 98a, that represented by Figure 986 cannot be reproduced by any

system of external loading. Therefore it is necessary to solve the

equation independently of the solutions given in Article 101. Since ae

and Ob represent the zero and the final isochrones respectively, the

boimdary conditions are

t = 0 and 0 < H,

0^ t^co and z = 0,

t *= 00 and 0 5 z ? jff

,

In Article 101 it has been shown that the hydraulic gradient (eq.

101(6)) at a given point n is identical with the slope of the isochrone

at the point of intersection between the isochrone and a vertical through

the point. A slope in a direction opposite to that of the reference line

ab indicates a gradient in an upward direction, whereas a slope in the

rry H - Z
^ rru — H h yvJEL

u = 0

u = 0
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same direction indicates a gradient in a downward direction. For 4 =* 0,

the isochrone is represented by the line ae with a uniform slope toward

the left. As a consequence, at time ^ = 0, the water flows at every

point of the fill in an upward direction. At time <2 the flow across

the horizontal section AB through point n changes from upward into

downward. After time ta corresponding to the isochrone marked ta in

Figure 98b the excess water escapes only in a downward direction and the

gradient at the surface remains equal to zero, as shown in Figure 98b.

Therefore one must supplement the preceding boundary conditions by

0^ t^ta and II II

ta^t^ CO and II 0II

On the basis of these boundary conditions, the shape of the isochrones

shown in Figure 98b has been computed by means of an approximate

method. During the first stage of drainage, t < ta, the isochrones

slope both ways, indicating that part of the water escapes in an upward
direction through the surface of the fill and temporarily accumulates

on the surface. This phenomenon is called water-logging, and it has

been observed repeatedly. The elevation of the boundary between

the zone of upward and that of downward drainage is determined by
the position of the point of contact between the corresponding iso-

chrone and a horizontal tangent to this isochrone as described in Article

101. After the tangent to the isochrones at point a becomes horizontal

(t = ta) further drainage occurs only in a downward direction and the

water which has previously accumulated on the surface disappears

quite rapidly and percolates through the fill into the sand. This part

of the excess water is small compared with the total quantity of water

which drains out of the fill. Therefore when establishing the boundary

conditions we were justified in assuming that the hydraulic gradient at

the surface is equal to zero at any time greater than ta*

Solving the problem on this assumption we obtain a time-consolida-

tion curve which is always located entirely between the curves Ci and

C2 shown in Figure 85a. Since the space between these two curves is

rather narrow it sufl5ces for the purpose of an estimate to assign to the

time-consolidation curve for the process represented in Figure 986 a
position intermediate between Ci and C2 in Figure 86a. If the process

of drainage is not assisted by pumping from wells the relation between

the degree of consolidation U and the time factor is represented by
the curve Ci (Fig. 85a) and at the end of the process of consolidation the

hydrostatic excess pressure is equal to zero throughout the fill.



Abt. 118 EFFECT OF GAS ON BATE OF DRAINAGE 323

During pumping, the fill acts as a half-closed layer because most
of the excess water leaves the fill only through its base. Therefore

the symbol H in the equation for the time factor Tv (eq. 101 (36))

represents the entire thickness of the fill. If the consolidation is not

assisted by pumping it proceeds as shown in Figure 83e and the symbol

H represents one half of the thickness of the layer. Since the process

of pumping almost triples the average effective vertical pressure in the

fill, it causes a very considerable increase of the density of the fill.

118* Effect of gas bubbles on the rate of drainage of a bed of ideal

clay through its base. The drainage of a clay always involves a de-

crease of the neutral stress in the clay. In the process illustrated by
Figure 98a the ultimate decrease at every point of the bed of clay is

equal to (eq. 117(1)) wherein H is the thickness of the bed of clay

which in turn is equal to the vertical distance between the zero isochrone

ac and the final isochrone 06. If one part of the voids of the clay is

occupied by gas bubbles under a gas pressure the decrease of the

neutral stress is associated with a lowering of the gas pressure, which

in turn involves an expansion of the bubbles. Hence the volume of

the water which drains out of the clay is greater than the decrease of

voids of the clay. Let

ro = average radius of the bubbles prior to drainage,

r = average radius of the bubbles after drainage,

Uvo = average neutral stress in the clay before drainage,

y>w — JwH = average neutral stress in the clay after drainage,

Pa = atmospheric pressure,

eo = the average initial void ratio of the clay,

6i = the average final void ratio,

ttv == the coefficient of compressibility of the clay,

niv = the coefficient of volume decrease,

Oa = initial air space ratio, equal to the ratio between the space oc-

cupied by the gas prior to drainage, and the initial volume of

voids, and

Ae = the final increase of the volume occupied by the gas per unit

of volume of solid.

By means of equations 112 (1 and 2) one obtains for the average

initial gas pressure in the bubbles the value

2T
PgO = + Pa d

^0
U1
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Drainage reduces the gas pressure to

"Pg Wy; yvjH. H” Pa “f“

2T,
[2]

If To is known the radius r of the bubbles after drainage can be com-

puted by means of equation 112(3). Prior to drainage the volume

occupied by the bubbles per unit of volume of the solid is equal to

Ga€Q, Drainage increases this volume to GaCo + Ae, Boyle^s law re-

quires that

^qGqPqo ~ ifi^Ga "h Ac)pg

whence

Ae = ^
13]

Vo

The total quantity of water which leaves the clay during the process

of drainage is equal to

Co Cl + Ae

per unit of volume of solid. In a clay without any bubbles the quan-

tity of water which drains out of the clay due to an increase of the

effective pressure by p is equal to Cq — ci = a^p per unit of volume

of solid. In a clay with gas bubbles it is equal to

wherein

[4]

The corresponding coeflScient of volume decrease (eq. 98(5)) is

V%m “

Ae
Uv + “

1 + Co 1+^0
[5]

Hence the rate of consolidation of the clay with gas bubbles can be

computed by substituting for in equation 101 (36) which defines

the time-factor Ty, Thus we obtain

In the case under discussion the value p in equation 5 is equal to

and the value Ae is determined by equation 3. On account of the

relations expressed by equations 5 and 6 the drainage of a fine-grained,
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practically incompressible sediment may proceed as slowly as that of

a highly compressible one, provided its voids are partly filled with gas

The apparent coefficient of compressibility of such a sediment is iden-

tical with a'v (eq. 4) for clays,

, _ Ae

P

In Article 105 it has been shown that the presence of gas bubbles

in a clay accelerates the rate of consolidation. According to the pre-

ceding analysis the gas content has the opposite effect on the rate of

drainage.

119. Drainage of ideal clay through the walls of a shaft. Figure 99

is a section through a bed of clay in a state of hydrostatic equilibrium.

The water table is assumed to be located at the surface of the bed.

The excavation of a shaft in such a deposit changes the total stresses

in the clay adjoining the shaft, thus causing a migration of the water

Fia. 99. State of stress in ideal clay surrounding a shaft with watertight lining.

Shaded areas on right-hand side indicate temporary change in pore water pressure

due to stress relaxation in clay during excavation.

in the clay toward the zone of stress relaxation. We also establish a

hydraulic gradient between the clay and the walls of the shaft, involving

a gravity flow of water toward the shaft comparable to the flow of water

through sand toward a well. In order to perceive the mechanics of

this compound process we investigate both components independently.

In order to isolate the first component we assume that the bottom and

the walls of the shaft are lined with an impermeable membrane and

that the shaft is completely filled with water immediately after excava-

tion. Thus we eliminate the source of gravity drainage toward the

shaft, and the effect of sinking the shaft is limited to a change in the
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state of the stress in the clay. Prior to the construction of the shaft

the neutral stress along a horizontal section at a depth z was equal to

zywi the effective normal stress zy (7
' - submerged unit weight of

clay) and the total normal stress zy (7 = unit weight of clay, solid

and water combined). In Figure 99 these initial stresses are indicated

by the ordinates of horizontal lines. However, the normal stress on

horizontal sections in the undisturbed bed of clay is very much higher

than the clay can stand without being laterally confined. Therefore

the excavation of the shaft causes a plastic yield of the clay toward the

shaft, which continues until the state of stress in the clay becomes

compatible with the conditions of plastic equilibrium. During this

process of stress relaxation, which has been referred to as ring action

(Art. 74), the total normal stress on horizontal sections changes from

its original value to the values represented by the ordinates of the

curve Cm (Fig. 99). (See also Fig. 616.) Within zone A these stresses

are lower and in zone B they are higher than the initial total stress

7Z. Yet, the effective pressures in the clay do not change appreciably

unless the void ratio changes. Hence, immediately after the construc-

tion of the shaft the change of stress indicated by the shaded areas

(Fig. 99) merely involves a change of the neutral stresses. Within

zone A the neutral stress has been reduced and within zone B it has been

increased. The corresponding hydrostatic pressure gradient causes a

migration of water from zone B into zone A, Hence in zone B the clay

consolidates and in A it swells. This process continues until the water

content of the clay has adapted itself to the modified stress conditions.

In the final state the neutral stress is again equal to what it was before

the construction of the shaft, or 7u,z, and the effective normal stresses

on a horizontal section at depth z are equal to the ordinates of the

curve Cf (Fig. 99) which is located at a distance zy^, below the curve Cj.

It should be emphasized that the swelhng of the clay in zone A occurs

in spite of the impermeable membrane which is assumed to cover the

bottom and the walls of the shaft. This fact indicates the fallacy of

the widespread opinion that the swelling of the clay in shafts and in

tunnels is exclusively due to the absorption of moisture out of the

atmosphere.

If the shaft is not provided with a watertight lining and if no free

water is allowed to accumulate in the shaft, the piezometrio head at

any point of the walls of the shaft at a depth z below the surface can-

not be greater than zero. It can, however, be temporarily negative.

On the other hand, at the same depth z, at a considerable distance

from the shaft the piezometric head is equal to z. Therefore the con-

struction of the shaft produces a tendency for the water to drain toward
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the shaft. However, as long as the clay located within zone A tends

to swell not a drop of water can get out of the clay into the shaft, be-

cause all the water which flows toward the shaft is retained within the

zone of swelling A. The flow of water into the shaft cannot begin until

the water content of the clay has adapted itself to the modified stress

conditions. If the recharge of the clay by rain water balances the loss

of water by drainage toward the shaft the existence of the shaft gives

rise to a stationary, radial flow of water toward the shaft. The piezo-

metric head at any point of the walls of the shaft remains equal to zero.

In practice it is unlikely that water will ever flow out of the clay into the

shaft because the rate of evaporation is likely to be higher than the

quantity of water which drains toward the shaft by gravity. The in-

fluence of evaporation on the state of stress in the clay will be discussed

in Article 121.

The excavation of a tunnel in a bed of homogeneous clay also pro-

duces a very substantial reduction of the stresses in the clay adjoining

the tunnel combined with an increase in the pressure at a greater dis-

tance (see Fig. 67c). Therefore the excavation of the tunnel must

also be followed by a swelling of the clay adjoining the tunnel, regardless

of whether or not the atmosphere contributes any moisture to the clay.

The rate of swelling of the clay adjoining a shaft can be estimated by
means of equation 106 (4) on the simplifying assumptions that the flow of

the water occurs in horizontal planes and that the radial and circum-

ferential normal stresses are principal stresses.

120. Drainage of an ideal clay embankment after a sudden drawdown.

Figure 100a shows a cross-section through an embankment made of

ideal clay whose unit weight is 7. The submerged unit weight is y'

and the height H of the embankment is smaller than the height of capil-

lary rise. The embankment rests on an impermeable base and it is

almost completely submerged in a pond. The clay is assumed to be

in a state of hydrostatic equilibrium. Hence the water rises at every

point of the embankment in a piezometric tube to the level of the water

in the pond. If we suddenly empty the pond the piezometric head

becomes temporarily equal to zero at every point of the slopes of the

embankment. As time goes on the water content of the clay adapts

itself to the new hydraulic boundary conditions. However, imme-

diately after the drawdown the water content is practically identical

with what it was before.

In order to visualize the influence of this condition on the state of

stress in the fill immediately after a drawdown we investigate the state

of stress on a horizontal section through the fill at an elevation z above

its base. The left-hand side of Figure 100a shows the approximate
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distribution of the stresses on the section before the drawdown. The

total normal stresses Wui + on the section are approximately repre-

sented by the ordinates of the line rritiOi and the effective normal stresses

5 by those of the line rto. The ordinates of these lines have been

Fig. 100. (a) Left-hand side: approximate distribution of effective and neutral

pressure on horizontal section through completely immersed clay fill; right-hand

side: the corresponding pressures immediately after sudden drawdown; {b to

d) hydraulic conditions at times 0, and oo . Left-hand sides show lines of equal

hydrostatic head and right-hand sides the lines of equal neutral stress.

obtained by dividing the normal stresses by the imit weight 7u> of the

water. The drawdown reduces the total normal stresses to the values

which are determined by the line sttiOi on the right-hand side. Yet

the water content of the clay remains unchanged. Hence, if the fill

material were laterally confined, the effective normal stresses would
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also remain unchanged, and the neutral stress Uy, at any point m of the

horizontal section would be equal to

Uy, = ~ z.

The piezometric head iszi — z and the hydrostatic head with reference

to the toe of the fill would be

h — Zi

which is the same for every point on a vertical line through m. The
right-hand side of Figure 1006 shows the lines of equal neutral stress and

the left-hand side the lines of equal head for the state immediately

after the drawdown.

In reality the fill material is not laterally confined. As a consequence

the drawdown changes not only the total normal stress on horizontal

sections but also the shearing stresses. This change is associated with

a change of the effective principal stresses at unaltered water content,

which in turn produces a supplementary change in the neutral stresses.

This change can either be positive or negative. It depends on the rela-

tion between stress and volume change for the fill material and cannot yet

be computed. Hence at the very best, the state of stress represented

by Figure 1006 is approximately correct.

During the subsequent process of drainage the clay remains in a state

of complete capillary saturation and the total quantity of water which

flows out of the embankment is equal to the total decrease of the volume

of the voids due to consolidation. Since the hydraulic head decreases

from the central part of the fill in both directions the excess water drains

toward the lowest parts be of the slopes, as shown in Figure 100c. At

every point of the discharge area the hydraulic head with reference to

the toes of the embankment remains equal to its initial value. Within

the upper and the central parts of the embankment the neutral stress

and the corresponefing hydraulic head decrease. The equations of

the curves of equal head and of equal neutral stress could be derived

by means of the differential equation 106(2). However, on account of

the involved boundary conditions, the problem has not yet been solved.

The author assumes that the curves would look about Uke those shown

on the left-hand side of Figure 100c.

On the upper part ac of the slopes the piezometric head is negative,

because the flow of the water from ac through the clay toward be is re-

sisted by the surface tension of the water. As time goes on the width

of the exit area be decreases and approaches zero. In this final

state the water in every piezometric tube stands at the level of the
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base of the embankment and the hydrostatic head with reference to

this base is at every point equal to zero, as shown in Figure lOOd.

Since the ultimate neutral stress is negative in every point of the embankment,
subsequent immersion of the embankment causes the clay to swell. A similar con-
dition exists in earth dams for storage purposes which have been built out of cohesive
soil in a semi-desiccated state because this state is associated with a negative neutral

stress in the soil. While the reservoir is being filled for the first time, the soil swells,

its shearing resistance decreases, and the factor of safety with respect to sliding

decreases. The process begins on the upstream side of the fill.

121. Drainage by desiccation. We know from experience that a
specimen of saturated clay in contact with the atmosphere gradually

dries out from the surface toward the interior. This process involves a
continuous flow of water from the interior of the clay toward the sur-

face of evaporation. At the surface the discharge velocity is equal
to the rate of evaporation, Ve per unit of area and per unit of time.

The neutral stress due to the weight of the water contained in the
specimen is negligible. Therefore, as long as the water contained in

the clay is in a state of equilibrium, the neutral stress throughout
the specimen is either almost equal to zero or else it is everywhere
negative. Yet, as soon as one exposes the surface of the clay to evapora-
tion, the water drains from the interior of the specimen toward the sur-

face which in turn requires the existence of a hydraulic gradient. Since
the neutral stress in the interior of the specimen did not increase,

the existence of the hydraulic gradient indicates a decrease in the
neutral stress at the surface. The only one known agent which can
produce such a decrease without any change in the external conditions

is the surface tension of the water.

If we eliminate further evaporation before air has entered the voids
of the clay, the clay is still in a saturated state. Yet its void ratio

is appreciably smaller than the initial void ratio and subsequent im-
mersion causes the clay to swell. The inflow of water into the clay

requires a hydraulic gradient, which is directed toward the interior

of the clay. Since the surface of the swelling specimen is in direct

contact with free water we are obliged to assume that the water con-
tained in the clay is in a state of tension.

In order to visualize the state of stress in a partly desiccated mass
of clay and its relation to the surface tension we analyze the forces which
act on a bundle of highly compressible capillary tubes whose radii

are equal to r. The tubes are completely filled with water as shown
in Figures 101a and 1016. Pressures due to the weight of the water
are considered negligible compared to the forces produced by the
surface tension, and the area of the section through the walls of the
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capillaries is assumed to be negligible compared to the total area of the

section through the tubes. The minimum value of the angle of contact a

is assumed equal to zero. Figure 101a shows the tubes before evapora-

tion starts. At this stage the total normal stress on a section through

the bundle is practically equal to zero and the angle of contact of the

Fia. 101. (a and 5) Axial compression of capillary tubes due to evaporation of

water at their open ends; (c) tension in middle part of air-fiUed capillary tubes

after immersion.

menisci is 90°. As evaporation proceeds the surface of the water tends

to withdraw into the interior of the tubes. This tendency is resisted

by the surface tension of the water which causes the surface layer

of the water to adhere to the outer ends of the tubes. Hence the menisci

assume a cuplike shape. With increasing curvature the axial com-

ponent of the surface tension, indicated by a dashed arrow, increases.

It produces a tension in the water and a pressure of equal intensity in

the walls of the tubes. The smallest value which the radius of curvature

of the menisci can assume is equal to the radius of the tubes. In this

stage the contact angle a. which was originally equal to 90° is equal

to zero. For a = 0 the total pull exerted by the surface tension on

the water contained in one tube is 27rrir,. The tensile stress Uyj in the

water is determined by the equation

2rrTs cos a + 7rr^w„, = 0

or

2’* Ml— cos a 11]
r

This value represents the neutral stress in the system. The total

normal stress on every section through the tubes remained equal to

zero. Therefore the solid walls must be acted upon by an effective

stress

- np = 0 — = — cos a [2]
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per unit of area of the total section through the tubes. The value v
is called the capillary pressure, because it is exerted by the capillary

forces. If the walls of the tubes are highly compressible the capillary

pressure produces a visible shortening of the tubes, as indicated in

Figures 101a and 1016. By combining equations 2 and 109(la) we
get

p = cos a

wherein he is the height of capillary rise.

When a bundle of empty capillary tubes is immersed in a horizontal

position to a depth z below the surface of the water the surface tension

pulls the water into the tubes and compresses the air which remained
in the tubes as shown in Figure 101c. The force with which the surface

tension pulls the water toward the air is determined by equation 2.

It combines with the water pressure and the atmospheric pres-

sure pa- For a = 90° the total pressure in the air is

2T
Vo = 7wZ + Pa -i

^ = yw {z + he) + Pa
r

This equation can also be obtained by substituting = ytpZ in equa-
tion 112(2).

The average normal pressure per unit of the total area of a vertical

section through the bundle is equal to the pressure in the water at the
same elevation, which is y^z + Pa’, the pressure in the air wliich oc-

cupies the tubes is Pg, and the cross-sectional area of the walls of the
tubes was assumed to be very small compared to that of the bundle.
Therefore equilibrium requires that the solid walls carry a stress

p — yw^ “H Pa Vo ~~ ” Tu>6c
r

per unit of the area of the total cross section of the bundle. This
stress is a tensile stress. If the walls are weak it may cause a failure

of the walls by tension.

Every soil, including clay, comprises a system of capillary channels
which commumcate through the surface with the surrounding space.

If these capillaries are filled with water the process of evaporation must
necessarily produce the mechanical effects illustrated by Figures 101a
and 1016, including the development of tensile stresses in the water
combined with shrinkage due to the capillary pressure. Subsequent
immersion causes the soil to swell.
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The preceding account of capillary pressure and of swelling is based on the assump-

tion that the flow of water into or out of a soil is exclusively due to the existence of

a hydraulic gradient with a purely mechanical origin. This is the mechanical con-

cept of swelling. In exceptionally fine grained soils, such as bentonites, the swelling

assumes the characteristics of a penetration of water into a solid by diffusion. The
relation between swelling due to mechanical causes and to diffusion will be discussed

in a volume on applied soil mechanics. Since the fundamental equations for con-

solidation and for diffusion are identical it makes no difference to which of these

two causes the observed phenomena may be ascribed.

The greatest value Pa which the capillary pressure in a soil can as-

sume is numerically equal to the greatest tension which can develop

in the water contained in the soil. This tension is equal to

Us = ywhc ~ Pa [3]

wherein he is the height of capillary rise (see Arts. 109 and 110). As
soon as the neutral stress in the water becomes equal to Us further

evaporation causes the surface of the water to recede into the interior

of the soil while the stress in the water retains its value Ug.

In practice it may occasionally be necessary to estimate in advance

the rate of consolidation of a bed of clay by drying. After the desicca-

tion is complete the neutral stress throughout the clay is equal to

Us ^ — yjic (eq. 3). Since the weight of the water which evaporates

is small compared with the total weight of the clay the total normal

stress on horizontal sections through the clay remains practically con-

stant. Therefore the process of drying increases the vertical effective

pressure of the clay by = — Us- The same ultimate effect can be

obtained by consolidating the clay under a surface load = yjio per

unit of area. If the clay rests on an impermeable base as assumed in

the computation illustrated by Figure 82, the excess water escapes

during both processes in an upward direction through the surface of the

clay. Yet, though the final effect of both processes is the same, the

rate of consolidation is governed by different laws, because the boundary

conditions are different. In order to visualize this difference we make
a vertical section (Fig. 102a) through the clay, similar to the section

shown in Figure 82 and plot the piezograph for the state of stress on a

plane ah which rises at an angle of 45° to the horizontal. The dashed

curves above oc are the isochrones for consolidation under a surface

load Ps por unit of area and are identical with those shown in Figure 82.

At any time the water stands in a piezometric tube above an arbitrary

point m of the plane ah at the level of the point V which is located at

the intersection between a vertical line through m and the isochrone

for time The corresponding hydraulic gradient is equal to the slope

of the isochrone at point V. A slope toward the left indicates a gradient
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in an upward direction. At the surface, represented by point a, the

piezometric level remains permanently at the level of the surface of the

rioodedcrFigr

(h)

Fio. 102. (a) Consolidation of bed of clay due to surface evaporation; (6) swelling

of partly desiccated bed of clay after flooding of its surface.

clay. As time goes on the hydraulic gradient i at the surface steadily

decreases and approaches zero. Therefore the discharge velocity

V = hi

also decreases and approaches zero.

If the consolidation is due to desiccation, the line ac represents the

zero isochrone and the line de the final isochrone. At any time t the

excess hydrostatic pressures u are equal to the ordinates of the isochrone

for time t with reference to the fimal isochrone de multiplied by the

unit weight of the water yv,. The tension in the pore water at the

surface increases with increasing loss of water by evaporation. There-

fore the left-hand end / of the isochrones (Fig. 102o) whose ordinate

represents the hydraulic head at the surface gradually moves from its

initial position a toward its final position d, where it arrives at time

ta. At any time during this period the slope tb at the left-hand end /
of the isochrones is determined by the rate of evaporation v.. The
process which takes place between time zero and constitutes the

first stage of the process of consolidation due to desiccation. Dur-
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ing the same period all the dashed isochrones pass through a. Hence
the first stage of desiccation has no resemblance to the corresponding

consolidation under the load pa-

The second staige begins as soon as the stress in the water assumes

the greatest value compatible with the shape and size of the voids in

the clay. This value is equal to u* = — ywKi equation 3. During the

second stage the stress in the water at the surface remains constant,

while the quantity of water which leaves the clay through the surface

decreases. During this stage the isochrones pass through the left-

hand end d of the final isochrone de and at their right-hand ends their

slope is equal to zero. Hence in this stage the boundary conditions

for the plain isochrones are identical with those for the dashed ones.

In order to compute the rate of consolidation during the first stage

one must know the rate of evaporation. Everything else being equal

the rate of evaporation decreases with increasing tension in the water.

However, to simplify the computation we assume that the rate of

evaporation remains constant during this stage and equal to Vg. A
constant rate of evaporation is necessarily associated with a constant

rate of flow of water through the surface and a constant hydraulic

gradient to at the surface. This condition can be expressed by the

equation

Ve = kio

wherein iq is the hydraulic gradient at the surface,

hydraulic gradient

,
__Ve

__
1 du

k Tu; dz

Therefore the

[4]

which is equal to the slope of the left-hand end of the isochrones is also

a constant. This condition prevails until the time ta when the left-

hand end of the isochrones arrives at point d corresponding to a neutral

stress Us — — iwh- Until this time the boundary conditions for the

process of desiccation are

t = 0 and H, u = yjtig

O^t^ta and z = H,
du

dz k

0 5 t ? <o and II P
du .

t = ta and z = H, o11
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After time ta (second stage), the piezometric head he remains con-

stant, but the quantity of water wMch flows toward the surface de-

creases and approaches zero. Thus the quantity of water which

flows toward the surface becomes smaller than the quantity which

evaporates as long as the surface of the water remains at the surface

of the clay. Therefore, the surface of evaporation withdraws into

the interior of the clay. With increasing distance between these two

surfaces the rate of evaporation decreases very rapidly. Hence a slight

downward movement of the surface suffices to maintain equality be-

tween the loss due to evaporation and the decreasing recharge from

below.

In the second stage the isochrones pass through point d because at

the surface represented by point a the excess hydrostatic pressure u
attained its final value zero at the beginning of tliis stage. At time

t 1=1 Qo the isochrone becomes identical with the horizontal line de.

Therefore between the time ta and ^ = oo the slope of the isochrones at d

decreases and approaches zero. For this second stage of desiccation

the boundary conditions are

00 and u = 0

<o § < ? 00 and z = 0, oII1

f = c» and 0^ z^ H, u = 0

The isochrones for this second stage are similar to the dashed isochrones

in Figure 102a because the boundary conditions are similar.

The rate of consolidation is determined by the differential equation 99(8). The
problem of computing this rate has been solved by approximation for JET — oo

(Terzaghi and FrChlich, 1936), with the following results. Between time < = 0

and a time

ta [5]

in which Cv «= coefficient of consolidation (eq. 99(7)), the perceptible consolidation

of the clay due to desiccation is Hmited to the upper part of the layer of clay. For

any time t > ta the thickness of the consolidated crust is determined by the equation

D = 2 [6]

For t ^ tay D ia equal to

Da = -^ Vs; 17]
y%o^e

If the depthH of a bed of clay is greater than Da the foregoing equations also apply

to such a bed. In either case the isochrone corresponding to time ifa is a parabola
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whose vertex is located in Figure 102o on oc at a distance Da from a. At any time
t < ta the neutral stress at the surface is

Ve jtC,

At time t == ta the degree of consolidation is

In the process of consolidation under load represented by the dashed isochrones

the same degree of consolidation would be reached at a time ta- After the time ta

the relation between the time factor and the degree of consolidation is the same for

both processes, provided we apply the load p, == jtuhc on the surface of one bed of

clay at a time ta — ta after the process of desiccation has been started on another

similar bed of clay. In order to obtain a plain isochrone in Figure 102a for t > ta

we construct the dashed isochrone for + <a after the load was applied

and shift the dashed isochrone through a distance he in a downward direction as

shown in the figure.

If we stop further evaporation at a time ii represented by an isochrone

dci (Fig. 102a) the water in the clay is the seat of a hydraulic gradient

directed toward the surface of the clay. Since such a gradient is in-

compatible with the hydraulic equilibrium in the clay for Ve = 0,

water flows from the lower part of the bed of clay into the upper one

until the hydraulic gradient becomes equal to zero. This proce&s

involves a consolidation of the lower part and a swelling of the upper

part of the clay. At the end of this process the excess hydrostatic

pressure is equal to —ywhi throughout the bed of clay. Such a process

is called an adiabatic process. The value hi is determined by the con-

dition that the average water content of the clay remains constant

during the entire process. At time t = ^ the water stands in every

piezometric tube on the line diei at a depth hi below the surface. There-

fore the line diei represents the final isochrone for this process.

In the thermodynamic analogue this process corresponds to the

upward migration of heat in a horizontal layer with insulated surfaces,

whose initial temperature decreases from the base toward the top.

As time goes on the temperature gradient gradually disappears and the

temperature of the layer becomes everywhere equal to the average of the

initial temperatures.

If the surface of the clay is flooded at the stage represented by the final

isochrone diCi (Fig. 102a) the hydrostatic head at the surface becomes

equal to zero against — hi in the interior of the clay. The corresponding

hydraulic gradient causes an infiltration of free water into the interior

of the clay. The zero isochrone for this process is diei in Figure 102&

and the final isochrone is ac. The isochrones for this process of swelling
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resemble a mirror image of the dashed isochrones shown in Figure

102a with reference to the surface of the clay and the equation of

the time-swelling curve is identical with the equation of the time-

consolidation curve Cl in Figure 85a. However, in order to compute

the rate of swelling we must replace the coefficient of volume compression

in the equation for the time-factor Tv (eq. 101 (3i>)) by the coeffi-

cient mv8 of volume expansion (eq. 98(6)).

122. Effect of drainage on earth pressure and stability. Every proc-

ess of drainage reduces the stress in the pore water of the soil without

appreciably changing the total stress. This change in the neutral stress

involves an increase in the effective stresses on every potential surface

of sliding within the soil, although the weight of the soil located above

Fig. 103. Hydraulic fill with negligible cohesion deposited behind retaining wall.

Water table is located at base of fill and height of capillary rise is greater than

the depth H of the fill, (a) shows forces which act on sliding wedge at inter-

mediate state of consolidation of fill; (h) isochrone for the same state.

this surface is unaltered. Drainage therefore increases the factor of safety

with respect to sliding, provided the external conditions for equilibrium

remain unchanged. This statement is valid regardless of whether or not

the lateral face of the earth is held by an artificial support.

The neutral stress in the soil during and after drainage can be com-

puted for any potential surface of sliding on the basis of the information

contained in the preceding articles of this chapter. Once these stresses

have been determined the factor of safety against sliding or the con-

ditions for equilibrium can be ascertained by means of the methods

described in Chapter XII. If the drainage occurs in a vertical direction

toward the base of a stratum the computation is substantially simpli-

fied by the fact that the neutral stress at a given time is the same for

every point of a horizontal section through the stratum. As an example

we compute the lateral pressure exerted on the section r$ of the back rsi

(Fig. 103a) of a retaining wall by a sluiced backfill in an intermediate
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state of consolidation. At the elevation of point 8 the backfill rests on

a bed of gravel. The water table is assumed to be located at the

elevation of the base of the fill. The excess water drains through the

base of the fill into the gravel and escapes through openings in the wall,

below the level of point s, toward an open space located on the left side

of the wall.

The process of consolidation of the fill is graphically represented by
the plain isochrones in Figure 986. The isochrones represent the locus

of the piezometric levels for different points of an inclined section ab

for a given time t The curve bdf in Figure 1036 is a duplicate of one

of these isochrones. It intersects the inclined section ab at point d

with the ordinate Zq, Above the level of point d the piezometric head

is negative and below this level it is positive. If z is the elevation of any

pointm on the section ab and h is the ordinate of the corresponding point

I on the isochrone, the neutral stress Uy, at point m at time t is

Uiff = yw{h

II z < Zq the neutral stress Uyj is positive and \{ z> z^ it is negative.

Plotting the positive values of to the left of rs in Figure 103a and the

negative values toward the right we obtain the hydrostatic pressure

area rrius^ which represents the total neutral pressure on the vertical

face rs of the sliding wedge rsL The resultant Py^ of this pressure passes

through the center of gravity of the pressure area at an elevation H\
above the base of the fill. Since the neutral stress at a given time is the

same for every point on a horizontal section through the fill the total

neutral pressure Fy, on the inclined surface st of the sliding wedge is

sin ri

The point of application of this pressure is also at an elevation Hi above

the base of the fill. The horizontal component of Fy, is equal to Py, and

the vertical component is Pw cot rj. The horizontal component is equal

and opposite to the water pressure on rs. Therefore the resultant of

all the neutral forces which act on the sliding wedge rst is equal to

Py, cot V and it acts in a vertical direction as shown in the figure. The
neutral force Py, cot tj reduces the effective weight of the sliding wedge

from W (weight of solid and water combined) to

w = W — Py, cot rj = cot rj — Py, cot Tj

= cot 1
?
^1
- = hyrli^ cot n
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wherein

The value yr is independent of the slope angle of the potential surface

of sliding sL Hence the neutral pressure reduces the effective unit

weight of the fill from y to 7r. It also shifts the position of the effec-

tive weight toward the right-hand side as shown in the figure. The

effective reaction F acts at an angle <t> to the normal on the surface of

sliding and the effective part Pa of the active earth pressure acts at an

angle 6 to the normal on the back of the wall. The pressure Pa can

be determined by any one of the methods described in Chapter VI,

after substituting the value yr (eq. 1) for the unit weight y of the fill.

When assuming that the point of application of Pa is located at the

elevation of the point of intersection ti between the effective weight W
and the potential surface of sliding rs one makes a slight error on the

safe side.

Another group of problems of practical importance deals with the

effect of a rapid drawdown on the stability of embankments. The
drawdown initiates a process of drainage. During drainage the factor

of safety with respect to sliding increases; and after drainage is complete

it is even higher than it was before drainage, because the surface tension

of the water reduces the danger of sliding. Therefore the greatest

danger exists immediately after the drawdown, and the subsequent

stages do not need to be taken into consideration.

If a completely immersed embankment consists of fine sand the

distribution of the neutral stresses immediately after a sudden draw-

down was found to be slightly more favorable than the corresponding

state of stress in the water during a heavy rainstorm which produces a

state of complete saturation. (See Art. 116.) Hence, if the slopes ot

such an embankment are stable during long wet spells before the slopes

were submerged they are also stable after a sudden drawdown.

In connection with an investigation of the effect of a sudden draw-

down on the stability of slopes on cohesive soil such as clay it is neces-

sary to consider the incapacity of the clay to adapt its water content

rapidly to a change in the state of stress. To illustrate the method of

investigation we determine the factor of safety with respect to sliding

of the upstream slope of the earth dam shown in Figure 746 immediately

after a sudden drawdown of the water level in the reservoir to the level

of the foot of the slope. Figure l()4a is a duplicate of the section repre-

sented by Figure 746. As indicated in the discussion of Figure 74e, in
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Article 89, it is assumed that the soil located between the base of the dam
and a depth D below the base is identical with the construction material

of the dam and that the water content of the soil has adapted itself to

Fig. 104. (a) Diagram illustrating method of estimating factor of safety of homo-
geneous earth dam with respect to sliding after sudden drawdown; (6) relation

between effective normal stress and shearing resistance for the construction ma-
terial of the dam; (c) a simplified method of investigating stability of completely

submerged slope after sudden drawdown.

the state of stress which existed before the drawdown. If the drawdown
was preceded by a long wet spell the neutral stresses are determined by
the flow net shown in Figure 74/. Otherwise they are determined by
that shown in Figure 74e.

In order to estimate the factor of safety with respect to sliding

along an arbitrarily selected toe circle bdc in Figure 104a we divide the

total mass of soil and water which is located above the surface bdc

before the drawdown into n vertical slices with a width AB. The
wei^t of the arbitrary slice shown in the figure is AWm per unit of

length of the dam and its base rises at an angle am to the horizontal.
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If we disregard the stresses on the vertical boundaries of the slice the

total reaction on the base of the slice is equal to AWm- It can be re-

solved into a tangential component APt and a normal component APn =
ATTmCOsam* Since the width of the base of the slice is Afi/cosott,

the total normal stress on the base is

^yytn 2 roi
cr = cos = —— cos [2]AB AB

The neutral stress at the base can be determined from the flow net

(Figs. 74e or 74/) by means of the method described in Article 91.

Prior to the drawdown the base of the prism is acted upon by an effective

normal stress

(Tffl ~ <r Uy) [3]

In this manner the intensity and the distribution of the effective normal

stresses can be determined for any point of the surface bdc.

During the drawdown the water content of the soil remains practically

unaltered. Therefore the effective pressure on the surface bdc also

remains practically the same, while the shearing stresses increase. The
relation between the effective normal stress arn (eq. 3) and the cor-

responding shearing resistance per unit of area under conditions

which do not permit a change in the water content during failure can

be determined by laboratory tests. The results of a typical series of

such tests are shown in Figure 104&. By means of this figure and
equation 3 we can determine the shearing resistance Sm per unit of

area of the slice shown in Figure 104a. The total shearing resistance

along the inclined base of the slice is Sf^ AB/cos The total moment
of the shearing resistance about 0 is

n

Mr = AB

r

2
1 cos am

and the moment which tends to produce the slide is

Md = Wly)

wherein W is the weight of the soil and the water located above the

siuface bdc after the drawdown. The factor of safety with respect to

sliding along bdc is

” s_
„ ABrE—

—

a ^ = 1 cosa,, (4]
• “ Md WL

Ji the results of the shear tests represented in Figure 1046 can be
replaced with sufficient accuracy by a straight line, the value of Ss> is
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given by the equation

Sjfi — c Vjji tan [5J

which corresponds to Coulomb’s equation, 5(1). Introducing the value

for 8„ (eq. 6) into equation 4 we obtain

AB r2 (c + tan <^^)

1 cos am

WL [

Wl^

da + AB tan <fi ^ 1
1 cos OLmJ

[6]

wherein is the length of the arc hdc. The investigation must be

repeated for several different toe circles. The slide occurs along that

circle for which Ga is a minimum.

In practice the drawdown of the water level in the reservoir never

occurs suddenly. While the water level goes down the dam starts to

consolidate and hence the stability with respect to sliding is increased.

Therefore the real factor of safety is somewhat higher than the factor

obtained by means of the procedure described above.

In the preceding investigations the effect of deformation at constant water con-

tent on the neutral stresses has been disregarded. At the present state of our knowl-

edge the error due to this simplification cannot yet be avoided. If an embankment

is well compacted the error is likely to be on the safe side. For loose embankments

it is on the unsafe side.

If the soil behind a slope is completely immersed in standing water,

as shown in Figure 104c, the effect of a sudden drawdown on the stability

of the slope can be estimated without computing the neutral stresses

along the surface of sliding (Taylor 1937). In order to visualize the

principle of the method let us assume that the resistance of a body

against sliding on a plane surface is determined by the empirical equation

S = C + TF tan 0 [7]

where C is the adhesion between the body and its base and W is the

effective weight of the body. If we immerse the body its effective

weight becomes equal to

wherein Wy, is the weight of the water displaced by the body,

immersion its resistance against sliding is

(

w _ prr \

:j^tan^j

= (7 -f- W tan (t>i

After

m
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wherein

TF — TF= ——

-

tan 4> [86]
n

is a fictitious angle of shearing resistance. Hence the effect of immer-

sion on the sliding resistance can be computed by replacing the value

tan <t> in equation 7 by tan (t>i in equation 86. In order to apply this

method to the case illustrated by Figure 104c we resolve the total

weight of the body abdc (Fig. 104c), W per unit of length of the slope,

into the submerged weight TF' and the weight Ww of the water displaced

by the body abdc. Before the drawdown, the slope ab is acted upon by
a water pressure Py, per unit of length of the slope. Since the moment
of the neutral forces about 0 is equal to zero, the resultant U of the

neutral stresses on bdc, Figure 104a, passes through O and

PJu = WJy,

The moment which tends to produce a slide is The drawdown
eliminates the resisting moment Pwlu = Wy^lyy. Therefore it increases

the driving moment from TF'Zw to

Ma = (TF' + WJly,

Yet the effective pressure on the surface of sliding remains unchanged.

As a consequence the resistance against sliding along bdc is the same as

if the body abdc were still in a state of complete immersion. If the shear-

ing resistance is determined by Coulomb ^s equation

5 = c + a tan

the effect of complete inomersion can be compensated for by replacing

the value tan 4> by the value given by equation 86

tan
W -Wy,
W tan <l>

After this substitution has been made the neutral forces can be dis-

regarded, whereupon the factor of safety with respect to sliding can be

determined by means of any one of the methods described in Articles

67 to 65.



Section D

ELASTICITY PROBLEMS OF SOIL MECHANICS

Chapter XVI

THEORIES INVOLVING A COEFFICIENT OF SUBGRADE,
SOIL, OR PILE REACTION

123. Definition of subgrade reaction. If a load or a system of loads

is transmitted onto the soil either by rigid or by elastic footings the

base of the footings is acted upon by the contact pressure whose total

magnitude is equal to the total load on the bearing area. The distri-

bution of the contact pressure over the bearing area depends on both the

physical properties of the supporting earth and on the elastic prop-

erties of the footing. A computation of the contact pressure shows,

in agreement with experience, that the ratio between the unit contact

pressure at a given point of the base of a footing and the settlement

of that point is different for different points of the contact area. For

instance, every point of the base of a rigid footing which carries a centric

load settles through the same distance. Yet the distribution of the con-

tact pressure over the bearing area is non-uniform.

Since the rigorous methods of computing the distribution of the

contact pressure are too complicated for application to routine prob-

lems it is customary to simplify the computation by the arbitrary as-

sumption that the ratio between the unit contact pressure and the

settlement is the same for every point of the bearing area. In other

words it is assumed that the settlement of any fraction of a loaded area

is independent of the size of the area and of the load which acts on

the balance of the area.

This assumption is incompatible with the mechanical properties of

solids and soils in general. In order to establish agreement between

assumption and reality it would be necessary to replace the soil sup-

port of the footing by a bed of equally spaced and equally compressible

springs each one of which is independent of the others, as shown in

Figure 141a. This is a highly artificial concept. Therefore the results

of computation based on this concept must be considered crude esti-

mates. Nevertheless most of the current methods for computing

845
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the pressure on the base of footings and on the individual members

of a group of piles belong in this category. The present chapter

deals only with these methods. In order to distinguish between the

pressure computed by means of one of these methods and the real con-

tact pressure or the contact pressure computed by means of the theoiy

of plasticity or the theory of elasticity, the former will be called the

suhgrade reaction. The ratio between the unit subgrade reaction and

the corresponding settlement is known as the coefficient of suhgrade re-

adion. The methods of computing the contact pressure by means

of the theory of elasticity will be discussed in the next chapter.

124. Coefficients of soil and pile reaction. The coefficient of sub-

grade reaction is defined as the ratio p/p between a load p per unit

of area of the horizontal surface of a mass of soil and the corresponding

settlement p of the surface. The ratio between a horizontal pressure

p per unit of area of a vertical surface and the corresponding horizontal

displacement is called the coeficient of horizontal soil reaction. The
ratio Q/p between the load Q on a foundation pile and the settlement p

of the pile represents the coefficient of vertical pile reaction.

In order to secure the data required to assign a reasonable value

to these coefficients we may apply a uniform pressure on an exposed

surface of the soil; then we measure the deflection at different points,

divide the unit pressure by the deflection at different points, and take the

average of the values thus obtained. Or we transmit a known total

pressure onto the soil by means of a rigid body, such as a block of

concrete, measure the displacement, and compute the ratio between unit

pressure and displacement. When dealing with piles we may apply a

load Q on each member of a group of uniformly spaced piles, measure

the settlement of each pile, and take the average. Or we apply a

given total load by means of a block of concrete onto the group of piles

and divide the load per pile by the settlement of the block. In either

case both procedures involve an arbitrary element inasmuch as we
replace a variable ratio by an average value, the fictitious coefficient

of subgrade reaction. The importance of the error due to this substitu-

tion will be discussed in the next chapter.

From experience it is known that a uniformly distributed load on a

circular or rectangular area of the horizontal surface of a cohesive soil

produces a bowl-shaped depression, as shown in Figure 105a. In

other words the settlement decreases from the central part of the loaded

area toward the periphery. The average settlement is p. Experience

has also shown that the average settlement increases at a higher rate

than the unit load. Disregarding the non-uniform settlement of the

loaded area and the absence of strict proportionality between load and
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average Bettlement one can write

- = ks (gm cm-®) [1]
p

The value of the coefficient of subgrade reaction A* depends not only

on the nature of the soil but also on the size and the shape of the area

which carries the load. Furthermore it decreases with increasing

unit load, everything else being equal. Therefore the value ks is not

a constant for a given soil and the relation expressed by equation 1

Fig. 105. (a) Real settlement of uniformly loaded area; (b) real settlement of

uniformly loaded group of equally spaced piles; (c) simplifying assumptions on

which the theory of anchor walls embedded in sand is based.

represents only a crude substitute for the real relation. Hence when the

value ka is selected all the factors which are likely to influence this value

must be taken into consideration.

If every pile in a group of uniformly spaced piles carries the same

load Q per pile, the settlement of the piles also decreases from the

center of the group toward the periphery as shown on Figure 1056, unless

the points of the piles rest on a veiy rigid stratum. Therefore the ratio

Q/p increases from the center of the group toward the periphery. Yet,

when computing the distribution of a total load on the piles in a group

we always assume that the ratio

- = kp (gm cm"^) [2]

P

is a constant. The value kp represents the coefficient of vertical pile

reaction.

The concept of subgrade reaction has also been applied to the com-
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putation of the horizontal pressure on piles and on sheet piles. In

order to visualize the fundamental principles of this method we consider

the relation between pressure and displacement for a vertical anchor wall

(Fig. 105c) buried in sand. The wall is acted upon by a horizontal

anchor pull Ap, At the instant of failure the right-hand face is acted

upon by the active and the left-hand face by the passive earth pressure.

Assuming a hydrostatic distribution of the earth pressure one obtains

for the resultant horizontal unit pressure at depth z below the surface

Pi = yz{Kp - Ka)

wherein Kp and Ka are the coefficients of passive and active earth

pressure respectively and y is the unit weight of the sand (see Art. 84).

It is further assumed that the horizontal displacement pi required to

increase the resultant unit pressure from its initial value zero to pi

is independent of depth. Finally it is assumed, in contradiction with

experience, that the resultant unit pressure p increases in simple pro-

portion to the horizontal displacement p. On the basis of all these as-

sumptions one obtains for the pressure p the equation

p P „ V Kp — Ka
P = Pi — = ~ 72 (Kp — Ka) = pyz =*

Pi Pi Pi

or

p- = ymn [3a]
P

wherein

n\ (cm *) [36]

However, in most publications the relation expressed by equation 3a is

given in the form

wherein

P- ^ mjfi
P

Kp-Ka
f— (gmcm *)

Pi

[4]

is an empirical constant, which is independent of depth. It should be

noted that the dimension of m}^ is not identical with that of the coeffi-

cient of subgrade reaction. Equations 3 and 4 apply only to cohesionless

sand. For clay, the usual assumption is that

- - (gm cm~») [5]
P
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The ratio between the horizontal unit pressure p and the corresponding

horizontal displacement p represents the coefficient of horizontal pile

or soil reaction. It may either increase with depth (eq, 4) or it may be

independent of depth (eq. 5).

The discussions contained in the following articles are based on equa-

tions 1 to 5. When reading these articles the reader should always

be mindful of the crude approximations which are involved in these

equations. (See last paragraphs of Article 126.)

125. Subgrade reaction on the base of rigid footings. The compu-
tation of the subgrade reaction on footings is always based on equa-

tion 124(1)

V- = ka == constant [1]

P

To illustrate the procedure we determine the distribution of the sub-

grade reaction over the base of a perfectly rigid rectangular footing

Fig. 106. (a) Rigid, rectangular slab acted upon by column loads Qi to Qn; (6)

and (c) distribution of subgrade reaction on base of the slab shown in (a).

(Fig. 106) acted upon by a system of column loads Qi to Qn- The

equilibrium of the footing requires that the sum of the column loads be

equal to the total subgrade reaction, or

/.B

2«-/7
1 «/o

p dx dy m

It also requires that the point of application of the subgrade reaction be

located on the line of action of the resultant loads. This condition is

satisfied if

n

px dx dy and ZQy
I

py dx dy [3]
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In order to solve these equations we must express the subgrade reac-

tion p as a function of the co-ordinates x and y. Since the footing is

perfectly rigid its base remains plane while it settles. Figures 1065

and 106c show two side elevations of the base of the footing after the

settlement has occurred. If Po, P6, and Pe represent the vertical dis-

placement of the three corners a, 6, and c respectively with reference to

the original surface of the ground, the settlement at a point with the

co-ordinates x and y is

X y
P = Pa + (pc ““ Ph) ^ ^

Substituting in this equation p = p/A* (eq. 1), we obtain

P = Pa + (Pe - Vh) I + (P6 - Po) I [4]

wherein pa, pt, and Pc represent the soil reactions at the comers a, 5,

and c respectively. By means of this equation, equations 2 and 3

can be evaluated. Thus we get

£ 0 = f dy =
16]

n pB BL^
r Qx = /

dy
j

pxdx = --- {\pa + !?>«- ip») [6]

and

n fL pB

LQy = I
dx

I
pydy=— (ip„ + ^p, + ^i) [7]

These three equations determine the three unknown quantities,

Pa, Pbf and Pc in equation 4. If the line of action of the resultant of the

loads passes through the center of the base of the footings the sub-

grade reaction is uniform,

p = = constant
BL

Under certain soil conditions this conclusion is reasonably correct.

In other instances the real distribution of the soil reactions is not even ap-

proximately uniform (see Art. 139). The source of the contradictions

between existing theories and reality resides in the fact that equation 1

involves crude approximations.

126. Subgrade reactions on the base of elastic footings. Since elas-

tic supports deflect in an upward direction between the points of load
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application, the subgrade reactions are greatest beneath the loads and

smallest in the intermediate areas. Owing to this influence of the

deflection on the distribution of the subgrade reactions the bending

moments in elastic footings may be considerably smaller than those

computed on the assumption that the footings are perfectly rigid. The

methods of computing the bending moments in elastic beams and

Fig. 107. (o) Distribution of subgrade reaction over base of elastic beam on elas-

tic base, which is acted upon by line load 5' per unit of width; (h) ends of very

flexible loaded beam rising above surface.

footings on an elastic subgrade are described in several textbooks on

applied mechanics (see, for instance, Timoshenko 1941). Therefore the

following paragraphs merely contain a summary of the general prin-

ciples involved.

Figure 107a represents a longitudinal section through an elastic

beam with a length L and a constant rectangular cross section, resting

on the horizontal surface of an elastic subgrade. The beam with a

width B and a height H carries a load q' per unit of width which acts on

the beam on a line equidistant from the two ends of the beam. The

settlement is determined by equation 124(1)

- = ks = constant
P

[1 ]

Under the influence of the load the footing bends and assumes the

position indicated in the figure. Let

E = the modulus of elasticity of the beam,

BH^
I = —^ ,

the moment of inertia of the section through the beam,

S « the vertical shearing force at a distance x from the midpoint of

the beam per unit of width,

p * the subgrade reaction at distance x from the midpoint of the

beam (pressure per unit of area).
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p « the settlement of the base of the beam at a distance x from the

midpoint, and

e = the base of natural logarithms.

The rate at which the shearing force changes with the distance x

from the center of the beam is

dx
V = [2]

According to the theory of bending of beams the vertical displacement

P of the beam with reference to its original position is determined by

the equation

dS
,— = pA:, = -El

dx cLx
[3]

A solution of this equation is

p •= Cl cosh cos 4' + Ci sioli sin + Cz cosh sin ^

[4a]

[46]

wherein

+ Ci sinh cos

is a pure number and Ci to C4 are the constants of integration,

corresponding bending moment per unit of width is

M =
B dx^

The

[6]

The constants of integration Ci to C4 (eq. 4a) must be determined in

such a way that the continuity and the boimdary conditions are satis-

fied. These conditions are the following. At half the length of the

beam, x = 0, the tangent to the elastic line is horizontal and the shearing

force per unit of width is q'/2. At the two ends of the beam both

the bending moment M and the shearing force S are

These conditions can be expressed by the equations

equal to zero.

T-O
dx

at a: = 0 [6a]

El d\ _ q'

B dx^ 2
at a: = 0

[66]

411 at X “ —
2

[6c]
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and

o El d^p „
at « =

2̂
m

By combining equation 4a with these conditions one obtains for the

subgrade reaction at a distance x from the midpoint of the length of

the beam

gVi 1 (

P pK =— —
- {sin i sinh

2L sinh + sin \pi

— sinh yp sin (ypi
— tp) + 2

\pl / ypi+ COS yp cosh cosh I -;r
-

2 \ xs

and

M

for the bending moment M at the same distance per unit of

q'L

4i/'i

(cosh i/' cos ^ + sinh ^ sin ^ — sinh ^ cos — cosh if/ sin

— D cosh if/ cos ^ + -4 sinh if/ sin if/)

width

[8]

wherein

if/ — X , _ r

y^Ei’ ^ydEi’

. 2 + cos^j - sin ^1 + « ^A =
. ,

.

—

;

and D =
Sinh ypi + sin ypi

4EI

cos \pi + sin \pi —
sinh ypi + sin ypi

Both the subgrade reaction p and the bending moment M are greatest

beneath the load, at x = 0 and ^ = 0. At that point they assume

the values

gVi

and

Pmax Pmasi^» (1 4“ A)

#1

19]

110]

For a perfectly rigid beam the corresponding values are

Pmaz
q%
8
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. At the two ends of the elastic beam the subgrade reaction is equal to

, ^1

2
-

Pi Pi
j^q

If the beam is long and slender, the value pi (eq. 11) becomes nega-

tive. Since there can be no tensile stresses along the surface of contact

between the beam and the surface of the subgrade, the ends of the beam
rise above the surface beyond a certain distance V/2 from the load, as

shown in Figure 1076. Within this distance the subgrade reactions

decrease from a maximum beneath the load to zero at a distance V/2

from the load.

The problem of computing the bending moments in elastically supported beams
and slabs has attracted the attention of mathematically minded engineers for many
decades. Therefore a great number of different problems of this type have already

been solved. Originally the theory was worked out for the purpose of computing

the bending moments in railroad ties supported by ballast (Zimmermann 1888). It

was used for this purpose by the American Society of Civil Engineers’ ‘‘Committee

to report on stresses in railroad tracks'^ (Talbot 1918).

In 1911 the author applied the theory for the first time to the design of a founda-

tion consisting of a grillage of heavy reinforced concrete beams. In later years the

theory was also applied to the design of locks made of reinforced concrete (Freund

1917, 1924) and to the computation of the bending moments in hard road surfaces

acted upon by concentrated loads (Westergaard 1926). Figures 108o to 108d show

elastic beams and simple frames which transmit vertical loads onto masses of soil.

The loading conditions illustrated by Figures 108e to 108^ are frequently met in con-

nection with the design of locks. The walls of a lock are practically rigid (Z = «)
whereas the floor construction is relatively flexible (see Figs. 108^ and lOSh),

The symbol M in Figures lOSh and 108^ indicates a couple. The equations for

computing the bending moments in structures acted upon by the forces shown

in Figure 108 and by various other systems of forces have been assembled by
Hayashi (1921) in a book which also contains several solutions based on the assump-

tion that the coefficient of subgrade reaction is variable. Freund (1927) has also

solved some of the problems on the assumption that the coefficient of subgrade reac-

tion (eq. 124(1)) decreases with increasing intensity of the pressure p.

In connection with the practical application of the existing theories

and solutions, the principal difficulty is to estimate properly the value

of the coeflScient of subgrade reaction kg (eq. 124(1)). Since depends

on many factors other than the nature of the soil it cannot be deter-

mined directly by laboratory or by small-scale field tests. The laws of

similitude which govern the influence of the size of the loaded area on
the value of kg are complex and imperfectly known. Therefore the

extrapolation from test results is essentially a matter of judgment.

The preceding statements also apply to all the other coefficients listed
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in Article 124. A survey of the factors which determine the value

feg under field conditions has been published elsewhere (Terzaghi 1932).

Fortunately the influence of an important error in estimating the coeffi*

Fia. 108. Some types of elastically supported, load-bearing structures; equations

for computing the subgrade reaction, side reactions, and bending moments for

these structures have been published.

cient of subgrade reaction on the results of the computations is rela-

tively unimportant, because equation 8, which determines the bending

moments, contains only the fourth root of this coefficient.

127. Free, rigid bulkheads and the foundation of cable towers for

transmission lines. A bulkhead is free if it owes its stability solely to

the lateral resistance of the earth adjoining its buried part. The bulk-

head may be acted upon by horizontal forces applied to the upper edge

of the bulkhead or by the lateral earth pressure of a backfill.

Figure 109a is a section through a free bulkhead designed to resist a

horizontal force per imit of length of the upper edge of the bulkhead.

The soil adjoining the buried part of the bulkhead consists of sand, and

the horizontal soil reaction is assumed to be determined by equation

124(4),

~ = rrihZ ll]

P

In this equation p represents the difference between the pressures

which act at the depth z per unit of area on the two sides of the bulkhead.



356 THEORIES OF SUBQRADE REACTION Art. 127

The application of the force g' to the upper edge of the bulkhead

produces a displacement by rotation about a point 0 located between

the surface and the lower edge of the bulkhead. Displacements in the

Fio. 109. (a) Vertical section through rigid bulkhead in sand acted upon by hori-

zontal force g' per unit of length; distribution of resultant horizontal pressure

on biuied part of bulkhead (fc) if adjoining sand is in an elastic state and (c) if

it is in a plastic state of equilibrium.

direction of the force g' are positive and those in the opposite direction

negative. At a depth z below the surface the displacement is

p = Pi - (pi - P2) ^
wherein pi and P2 represent the lateral displacement at the surface and
at a depth D respectively. Substituting in this equation p = v/mh,z

(eq. 1) we obtain for the horizontal soil reaction at depth z the value

P = m* j^pi2 - (pi - P2 ) [2]

The unknown values pi and Pz are determined by the conditions for

the equilibrium of the bulkhead. These conditions require that the

total horizontal soil reaction per unit of length of the bulkhead should be
equal to q' and that the moments about any point (for instance point a
at the surface shown in Fig. 109a) should be equal to zero. Hence
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and q'H = / pzdz = mjJDP + I/02) [36]
«/o

Solving these equations and substituting the values of pi and p2 thus

obtained in equation 2 we get

P = |^[3Z)+4£r-2^(2Z) + 3ff)] [4]

In Figure 109& the soil reactions p are represented by the horizontal

distance between the parabola adc and the vertical line ah. As the force

q' increases, the slope of the parabola at point a becomes flatter and

the value of p increases. The greatest value which p can asstune at any

depth z is equal to

y^{Kp-

K

a) [6]

wherein Kp and Ka represent the coefficient of passive and active

earth pressure respectively. (See Chapter XL) At a depth D this

pressure is equal to

px) = yD (Kp — Ka) [6]

If the soil adjoining the bulkhead rises the bulkhead also rises, be-

cause the weight of the bulkhead is small and the relative displacement

between the sand and the bulkhead remains practically equal to zero.

Therefore the values Kp and Ka should be computed on the assumption

that the coefl&cient of wall friction is equal to zero. They are equal to

Kp = tan^ ^45° + 15(4)

and

Ka = tan^ ^45° - 15(2)

wherein is the angle of internal friction of the sand.

Since the soil reaction p cannot exceed the value p, ni« (eq. 5), the sand

starts to flow as soon as the slope of the pressure parabola at point a

(Fig. 1096) becomes equal to the slope of the straight hne ae whose

abscissae represent the values p, mu- condition is satisfled if

PI
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However, after the flow has started, equation 1 loses its validity

and the pressure line assumes more and more the shape of a broken line

as indicated by the dashed curve ad2C2 in Figures 1096 and 109c. In

this stage of the process we can replace the lower part of the curve

with sufficient accuracy by a straight line (Fig. 109c). As the

force q' further increases, point dz moves downward along ae and

point Cs moves toward the right. The lateral pressure which the sand

can sustain on the right side of point 6 is appreciably higher than px)

(eq. 6), because at 6 the pressure acts on the sand only over a narrow

belt. Yet it is usually assumed that the bulkhead fails as soon as the

soil reaction at point 6 becomes equal to px). On this assumption the

conditions for equilibrium at the instant of failure are

3m« = hvoD -
^ 2px)Di = Pd(5Z) - Dx) [8a]

and

qL. (^ + Z)) = fpn Z)
I
- i 2vDr>x ~ = Vd - iZ)?) [Sb]

wherein H is the lever arm of q' about point a.

Eliminating Di from these equations we obtain the value of the great-

est pull g4ax which the bulkhead can sustain. These equations can

also be used to determine the minimiun depth D to

which the bulkhead ought to be driven at given

values of H. If a factor of safety G, is re-

quired, we replace the value Px) in equations 8 by

Px)/G,. This method of computation has also been

used in the design of free bulkheads (bulkheads with-

out anchorage) which are acted upon by the active

earth pressure of a backfill adjoining the upper

part of the bulkhead (Krey 1936).

Figure 110 is a section through the foundation

of the cable tower of a transmission line. The
foundation is acted upon by the weight W of the

system and by the overturning moment produced

by the one-sided pull of a cable, q' per unit of width

measured at right angles to the section. The tilt-

ing movement of the foundation is resisted by the

two components Fn and Ft of the reaction on the

base and by the lateral resistance of the earth, Pi and P2 respec-

tively. The forces Pi and P2 are determined by the same factors as

the forces Pi and P2 in Figure 109a. Therefore the preceding analysis

can be applied without any essential modification to the computation

Fig. 110. Forces

which act on the

foundation for the

mast of a transmis-

sion line.
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of the forces P\ and P2 in Figure 110. Since the length of the foun-

dation block perpendicular to the plane of tilting is finite, the tilting

movement and the lateral compression of the earth adjoining the block

are also resisted by friction along two planes which pass through the

sides of the block parallel to the plane of tilting. By neglecting the

stabilizing effect of this frictional resistance one commits an error on the

safe side.

If it is required that the angular deflection of the center line of the

tower should not exceed a specified amoimt 6 it is necessary to estimate

the value of the constant rrih in equation 1 by means of field tests. From
Figure 110 we obtain for the angular deflection the value

tan 5 = ~ (pi — P2 ) [9]

The horizontal pull required to produce this deflection can be

computed by combining equation 9 with equations 3. The error is on

the safe side. A better approximation can be obtained if the resisting

moment produced by the forces Ft and Fn in Figure 110 is taken into

consideration (Sulzberger 1927).

128. Free, flexible bulkheads and piles subject to lateral loads. If a

free bulkhead is flexible, it deflects and bends under the influence of a

lateral force, as shown in Figure 111. Unless this bending is negligible,

it invalidates the equations derived in the preceding article. The in-

tensity and the distribution of the horizontal soil reactions over the

face of flexible bulkheads can be computed by means of the method

described in Article 126. The relation between the lateral deflection p

of the bulkhead from its original position, at a depth z, is determined

by equation 126(3)

11]

Assuming that the coefficient of lateral soil reaction, p/p, can be

described adequately by some fimction of the depth z,

9

we obtain

(21

This eaiiation has been solved for

/(*)
0

kh = const. 124 (6)
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and

f{z) = “ = ni}^ 124(4)
P

by Rifaat (1935). The values which he calculated on the assumption

that f{z) = nihZ agreed very well with his measurements on a free

steel bulkhead whose lower part was buried in clean sand.

If the yield of a bulkhead induces arching in the backfill, such as the yield of a

flexible anchored bulkhead (see Article 78) no method of computation involving a

coefficient of horizontal soil reaction can be used because arching invalidates the

results.

If a bulkhead is driven to a very great depth, the curve into which the

center line of the sheet piles deflects assumes the sinusoidal shape in-

dicated in Figure 1116. The
maximum deflection associated

with the successive waves de-

creases with depth somewhat

as the amplitude of damped
vibrations decreases with time.

The deflection curve has been

computed by Miche (1930,

equations quoted by Rifaat

1935) on the assumption that

H (Fig. 1116) is equal to zero

and that the coefficient of hori-

zontal soil reaction is given by
equation 124(4).

The same general method of

computation can also be used to

compute the lateral deflection and the bending stresses in long, indi-

vidual piles which are acted upon by a horizontal force at or above the

surface of the ground. The problem has been solved by Titze (1932)

on the assumption that the relation between the horizontal soil re-

action p and the depth is determined by an equation

p = pahZ'^ [3]

wherein oth and n are empirical coefficients. For sand the investigator

assumed n = 1 and for clays n > 1. As a limiting case, valid for ideal

clays, he assumed p/p — kh — constant. Yet in every case the final

equations are so involved that they are hardly suitable for practical

application. Therefore it is preferable to simplify the problem by
the further assumption that the lower part of the pile is fixed as in-

A** * f

'

A
\

P \

WKsr/rr

1 1

^ V L
D /) Oi

LI
Fixed

k
M {b) ( (c)

Fiq. 111. {a) Real shape of short pile and

(6) real shape of long pile acted upon by
horizontal force; (c) shape of pile assumed
for purpose of computation of bending mo-
ments in the pile.
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dicated in Figure 111c. The vertical distance L between the surface of

the ground and the lower end of the deflecting part of the pile can be

computed on the basis of the condition that the total work of deforma-

tion of the system should be a minimum. The method has been applied

to the computation of the bending moments in wooden piles whose

upper ends are embedded in a rigid concrete mat (Cummings 1937).

The piles are surrounded by sand and the ratio between the horizontal

unit pressure and the corresponding horizontal displacement increases

in simple proportion to depth, as expressed by the equation

-= nth (gm cm"^) z 124(4)
P

The final equations are remarkably simple,

the pile can be considered to be fixed is

’^-4
216 El

d nth

The depth L below which

[4]

wherein E is the modulus of elasticity of the pile material, I the moment
of inertia, and d the diameter of the pile. According to this equation

the length L is independent of the intensity of the horizontal force Q
which acts on the head of the pile. It would be easy to use the same

method of computation on the assumption that the coefficient of hori-

zontal soil reaction is a constant. The method could also be applied

to the computation of the deflection of piles whose upper ends are free.

129. Stability of foundation piles against buckling under axial loads*

If a load acts on a long, slender pile driven through soft soil to bearing

on a hard stratum, there is at least a theoretical possibility of a failure

of the pile due to buckling. The current methods of computing the

critical load (Forssell 1926, Granholm 1929, Cummings 1938) are based

on the assumption that the coefficient of horizontal pile reaction is

a constant,

- = *A(gmcm-®) 124(5)
P

The analysis leads to the conclusion that the pile would buckle into a

sinusoidal curve with several waves, as shown in Figure 112. The fol-

lowing is a brief abstract of Cummings' article on this subject. Let

D = the depth of that part of a point-bearing pile which is embedded
in soft soil,

d = the diameter of the pile,

E = the modulus of elasticity of the pile material, and

I == the moment of inertia of every section through the pile.
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The pile is assumed to be hinged both at the surface and at the base

of the soft layer. The number m of half waves of the sinusoidal curve

into which the pile tends to buckle is determined by the equation

(m + 1)2 = 11]

If this equation leads to fractional values of m it is necessaiy to use

the next highest whole number. The value m increases with the coeffi-

cient of horizontal soil reaction, kh- The critical buckling load is

Qb = “^2
“ + 2m + 1) [2]

The factor outside the parenthesis represents the critical buckling

load for the free-standing column with hinged ends. The numerical

examples contained in Cummings' article demonstrate that the critical

Fig. 112. Deformation of point- Fig. 113. Upper diagram: loaded

bearing pile embedded in soft clay rigid concrete slab resting on piles;

under influence of heavy, verti- lower diagram: tilting of slab due

cal load. to shifting of the center of the load

from 0i to Oi,

load Qh exceeds the crushing strength of the pile unless the soil is ex-

cessively soft. The theory has been confirmed by experiments in the

laboratory. On accoimt of the high value of the critical load there are

no records of piles which have failed in the field by buckling beneath the

surface of the ground.

130. Distribution of vertical load on piles supporting rigid structures.

Figure 113 represents a rigid, rectangular raft foundation supported by
piles arranged in parallel rows. The rows parallel to the X axis are

equally spaced and symmetrical with respect to this axis. In the other

direction, the spacing of the rows is arbitrary. The total load on the
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foundation is equal to Qt for each row parallel to the X axis. We
shift the point of application of the load from point Ox on the X axis to

point 0[ at a distance L\ from the left boundary of the raft without

changing the load. The displacement of the load reduces the pressure

on the piles on the left and increases the pressure on those located on

the right side of the foimdation. The problem is to determine the

pressure on the piles after the load was moved.

The displacement of the load causes the base of the raft to tilt from

its original position ah into the position ai6i. The settlements at ax

and hx are equal to pi and P2 respectively. The settlement of a pile at

a distance Xm from the Y axis is

p = Pi + [1 ]

The equilibrium of the foundation requires that the sum of the pile

reactions Qx to Qn should be equal to the total load Qt and the moments

of the pile reactions with reference to the Y axis should be equal to

QtLx. Hence

Qt = ^Qm [2a]
1

and

QtLx = ^Qm^m [26]

1

wherein n is the number of the piles in one row parallel to the X axis.

In order to solve this equation we must make some assumption regarding

the relation between the settlement and the pile reaction. The cus-

tomary assumption is that

— = kp (gm cm ^) = constant
p

[3]

where kp is the coefficient of vertical pile reaction (eq. 124(2)). By com-

bining equation 3 with the preceding ones we can compute the load on the

piles. The accuracy of the results depends on the errors associated

with equation 3. Since the load on some piles of the group was in-

creased and that on others was reduced, the coefficient of pile reaction kp

is not even approximately the same for all the piles. Therefore the

errors involved in the computation can be very important.

131 . Pile foundations for quay walls. Pile foundations for quay

walls differ from pile foundations for buildings in that the direction of

the resultant R of the forces which act on the quay wall foundation is

inclined. In order to provide for adequate stability, quay walls are
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often made to rest on one set of vertical and two sets of inclined piles

which are battered in opposite directions, as shown in Figure 114a. The
oldest and simplest method of calculating the pile loads is known as

Culmann^s method, described by Lohmeyer (Brennecke-Lohmeyer,

1930). We replace each group of piles by an imaginary pile located in

the centerline of the group. These imaginary piles A, 5, and C are

shown in Figure 1146. The piles A and B are acted upon by axial pres-

ing load on piles supporting a quay wall.

sures Qji and Qb and the pile C by an axial pull Qc- The resultant

of the forces Qb and Qc must pass through both the point of intersection

h between the lines B and C and the point of intersection a between the

line A and the line of action of the external force R, Therefore the

three forces Qb, and Qc can be determined by means of the polygon

of forces represented in Figure 114c. If Q is the load assigned to each

real pile, the required number of piles in each group per unit of length

of the wall is

Qa Qb j Qc r-,
and ^ [1]

In each group one half of the required piles are placed on one side

and the other half on the other side of the line which represents the

imaginary pile.

In the layout shown in Figure 114d the piles are arranged in five
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rows, numbered 1 to 5. The heads of the piles of rows 4 and 6 are

located on the same straight line, indicated in the figure by point IV.
For the computation of the pressure on the piles of such a foundation

a method has been developed which is known as the trapezoid method
(described in Brennecke-Lohmeyer, 1930). We substitute for the

vertical component of the resultant R a continuous load represented

by a trapezoid abbiai whose area is equal to the vertical component Ry
of the force R and whose center of gravity is located on the line of action

of Rv This continuous load satisfies the conditions for equilibrium in a
vertical direction. Then we compute the vertical pressure Pj to Piv
on each of the four rows of pile heads I to IV on the assumption that

the base ab of the trapezoidal load consists of individual sections

a II, II III, and III b which rest on the heads of the piles, as indicated

in Figure 114d. These sections are assumed to be hinged at II and III.

The pressures thus obtained represent the vertical force which acts on

each of the four rows of pile heads per unit of length of the wall. The
horizontal component Rh of the force R is exclusively carried by the

battered piles labeled 3 to 5. The total pressure on the battered piles

is determined by the polygon of forces shown in Figure 114c. The
number of piles in each row per unit of length of the wall is equal to

the force obtained by means of the polygon of forces divided by the

load Q which is assigned to the individual piles.

The replacement of the vertical component Rv by the trapezoidal load abbiai (Fig.

114d) is somewhat arbitrary because any other assumption would serve the same

purpose, provided the chosen pressure area is equal to Rv and its center of gravity

is located on the line representing R^. In order to eliminate the arbitrary elements

in the special case of a quay wall foundation on point-bearing piles, Westergaard

(1917) introduced into the analysis the condition that the displacement of the pile

heads should be compatible with the rigidity of the supported structure. In its

present, highly elaborate form the procedure is known as Nokkentved’s method.

It is based on the assumption that both the supported structure and the support

of the points of the piles are perfectly rigid, that the construction material of the

piles strictly obeys Hooke’s law, and that the resistance against lateral deformation

of the soil adjoining the piles can be neglected. In other words it is assumed that the

quay wall represents a rigid body supported by perfectly elastic columns which

rest on a rigid base. The existence of the soil which surrounds the piles and the

deformation of the soil which supports the points of the piles are disregarded. If

these assumptions are really justified it is possible to compute the pressure on the

piles by means of the methods which are used in the theory of statically indeter-

minate structures. The statically indeterminate quantities must satisfy the con-

dition that neither the relative position of the heads of the piles nor that of the

points of the piles should change while the system is being deformed. If the piles

axe fixed at one or at both ends the solution of the problem must also satisfy the

condition that the relative position of the tangents to the centerlines of the piles at

the fixed ends remains unchanged (Ndkkentved 1928).
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On account of the great number of statically indeterminate quantities the com-

putation of the pile reactions is rather involved. Therefore many efforts have been

made to simplify the procedure as far as the nature of the problem permits. P. Hedde
(1929) adapted the method of influence lines to the solution of the problem and
A. Labutin (1933) worked out a graphical procedure. A summary of the present

status of the technique of solving the problem has been published in English (Vetter

1939). It is rather difficult to imagine field conditions under which the funda-

mental assumptions of the theory are at least approximately satisfied. Even if the

piles are driven through liquid mud to rock the results of the computations may
be very inaccurate because the theory disregards the deformations at the contact

between the points of the piles and the rock. These deformations invalidate the

assumption that the axial deformation of the piles increases in direct proportion to

the length of the piles. Therefore the practical value of the theory is doubtful.



Chapter XVII

THEORY OF SEMI-INFINITE ELASTIC SOLIDS

132. Elastic and plastic equilibrium. If the factor of safety of a
mass of soil with respect to failure by plastic flow (see Section B) ex-

ceeds a value of about 3 the state of stress in the soil is likely to be
more or less similar to the state of stress computed on the assumption

that the soil is perfectly elastic. Hence the state of stress in a mass
of soil under the influence of moderate stresses can be estimated by
means of the theory of elasticity. The importance of the error associated

with the results of the computation depends chiefly on the extent to

which the real stress-strain relations depart from Hookers law. This

departure increases rapidly as the state of plastic equilibrium is ap-

proached. If the departure can be expected to be unimportant one

can use the theory of elasticity as described in this chapter. If it is

likely to be important one has to use the theory of plasticity in accord-

ance with the procedures described in Chapters V to XI.

The following examples may illustrate this statement. Experience has shown that

the earth pressure of sand on the timbering of cuts is approximately equal to the

active earth pressure. This empirical fact indicates that the sand adjoining the cut

is close to a state of plastic equilibrium regardless of the value of the factor of safety

of the struts with respect to crushing. The existence of a state of stress close to the

state of plastic equiUbrium strictly excludes the application of the theory of elasticity

to the computation of the stresses whereas the errors associated with the application

of the theory of plasticity to such a state of stress are tolerable. For this reason, all

the investigations pertaining to earth pressure are based on the theory of plasticity.

The stresses in the soil in earth dams or behind the slopes of open cuts are also usually

well beyond the range of approximate validity of Hooke's law. Therefore we are

justified in solving problems dealing with slopes on the basis of the theory of plasticity,

as described in Chapter IX. On the other hand the theory of elasticity has been

successfully used for computing the intensity and the distribution of the vertical

pressure on beds of clay which are located beneath strata of sand at some depth below

the base of raft foundations, because the soil located beyond a certain depth is far

from a state of plastic equilibrium.

133. Fundamental assumptions. In accordance with the nomencla-

ture used in this book the term stress will be used exclusively for a force

per unit of area. Compressive stresses are positive and tensile stresses

negative. The term strain indicates change of length per unit of length

in a given direction. A positive strain indicates shortening or con-

867
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traction and a negative strain elongation. Every theory dealing with

stresses is based on the assumption that the material subject to stress

is either isotropic and homogeneous or else that the departure from

these ideal conditions can be described by simple equations. In con-

nection with elastic behavior, the term isotropy denotes identical elastic

properties throughout the solid and in every direction through any point

of it, and the term homogeneity involves identical elastic properties at

every point of the solid in identical directions. Hence a homogeneous

material is by no means necessarily isotropic. The term aelotropy

indicates non-isotropy, regardless of the type of deviation from isotropy.

If the elastic constants of an aelotropic material are associated with

three orthogonal planes of symmetry the material is called orthotropic.

When dealing with orthotropic materials it is usually assumed that one

of these planes is horizontal and that the elastic properties with reference

to the two vertical planes are identical.

Most of the theories contained in the following articles are based on

the assumption that the soil is both isotropic and homogeneous. De-

partures from these assumptions will always be specifically mentioned.

The theories are also based, with very few exceptions, on the assumption

that the soil strictly follows Hooke’s law, which states that the ratio

between a linear stress, <r, and the corresponding linear strain, €, is

a constant^

- = j? (gm cm-2) [1 ]

6

called the modulus of elasticity or Young^s modulus. The strain pro-

duced by a positive linear stress can be investigated experimentally by

means of a simple compression test illustrated by Figure 115a. The load

Q is applied to the upper surface of the specimen by means of a steel

disc. Both the top surface and the base of the specimen are lubricated.

Plotting in a diagram (Fig. 1156) the vertical strain e against the stress

<r, we obtain for a perfectly elastic material a straight line, OE.

The positive vertical strain produced by a vertical pressure is as-

sociated with a negative horizontal strain, ei = Ad/d, The absolute

value of the ratio between the strains €| and e,

M = ~ = [2]
€ <r

is called Poisson^s ratio^ and the reciprocal 1/n is Poissan^s number.

For perfectly elastic materials the value m is a constant. If both

equations 1 and 2 are valid the strain produced by a composite state of

stress is equal to the sum of the strains produced by each one of the
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stresses individually. This relation is known as the law of superposition.

Since every composite state of stress at a given point can be resolved

into three principal stresses a/, o-//, and cr/jj, intersecting each other at

right angles (see Art. 7), the strain in a given direction is equal to the

sum of the strains produced by each of the principal stresses individually

in this direction.

\Q

H

.
'''

(«) ih)

Fig. 115. (a) Unconfirjod compression test on cylindrical specimen of perfectly

elastic material; {h) test result; (c) orientation of principal stresses in three-

dimensional state of stress.

Figure 115c shows a prismatic element with a volume V whose sides

are acted upon by principal stresses o’/, a/j, and (t///. If these stresses

are equal,

= <rii = (Tin = cTyj

the strain in the direction of each of these stresses is

Hence the application of the all-round pressure (r„ changes the

volume of the element by

AF
> (I-2rt

per unit volume. For n = 0.5 the volume change AF/F is equal to zero.

Therefore elastic solids for which y, = 0.6 are incompressible.

For dense soils and solid granular materials such as concrete or

sandstone Poisson’s ratio increases from small values of the order of

magnitude of 0.2 at low stress to more than 0.5 at very high stresses.

In other words materials of this category contract under small load,

but they expand when the state of failure is approached. Yet, in all

the theories involving the elastic properties of soils, Poisson’s ratio ia
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assumed to be a constant. Therefore the results are valid only if the

stresses are low compared to those required to produce a failure.

If the three principal stresses (rji, crjjj are different, the volume
change AVfV per unit of volume is equal to the sum of the volume
change produced by each one of these stresses individually. An in-

dividual principal stress, for instance <rj, reduces the unit volume by

^ _ 2^ ^ (1 _ 2m) [3]V E ^ E E ^ ^ ^ ^

Hence the volume change produced by the simultaneous application

of three different principal stresses is

AV
V

1 - 2m

E
(aj + (Til + f^IIl) [4]

For a given value of AVIV, equation 4 is the equation of a plane

which intersects the three axes at equal distances from the origin 0, as

shown in Figure 116a. For different values of AV/V, equation 4 repre-

sents a family of parallel planes. The distance between the origin 0
and the intersection of these planes with the three axes increases in

simple proportion to the sum of the three principal stresses. Every set

of stresses represented by one of the points of such a plane produces the

same volume change as a linear stress equal to the distance between

the origin 0 and the points at which the plane intersects any one of

the three axes.

If cii = (Tin the state of stress has circular symmetry about the o-/-

axis. (Tj is the axial and (th = (tui is the radial stress. The change of

volume per unit of volume produced by such a system of stresses is

AV 1 - 2m
^ + 2(r/j/) [5]

Rgure 116a shows that a radial stress with the intensity \(ti produces

the same volume change as an axial stress with the intensity a/. Since

all the points representing the volume change due to stresses having

circular S3anmetiy are located on a plane through the <r/-axis, bisecting

the angle between the two other axes, we can represent the volume

change due to such a change in stress in a plane diagram (Fig. 1166).

This diagram is obtained by rotating the plane 0ai6i (Fig. 116a) into the

plane of the paper (Rendulic 1937). In this plane, values of cr/ are

represented on the vertical axis, and values of (tui V2 on the horizontal

axis. If the stresses are changed from those represented by the co-

ordinates of any point on any one line parallel to ai6i (Fig. 1166) to

those represented by any other point on the same line, the corresponding
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volume change is equal to zero. For geometrical reasons every point

on a line at right angles to aihi represents a state of stress

Cl = cji = Cm = Cyj.

Another graphical method of representing the volume change due to

a state of stress having circular symmetry is shown in Figure 116c

(Casagrande 1936). In this diagram the abscissas are equal to the

stress difference ci — cm and the ordinates are equal to the correspond-

Fiq. 116. (a) Diagram representing relation between principal stresses and unit

volume change for perfectly elastic material; (6) and (c) simplified methods of

representing the same relation if two principal stresses are equal.

ing volume change at a constant value of cm- By increasing all the

principal stresses from an initial value of zero to cjo = cji = cm the

volume decrease per unit of volume is

AFo

V
1 - 2m

E
• 3<rjo [61

Subsequent increase of cj at a constant value cjj = cm increases the

unit volume change from AFq/F to

^ ^ + (1 _ 2^)y y -r Kt-

This relation is shown in Figure 116c by a straight line L which intersects

the vertical axis at a distance AV^/V below the origin. In Figure 116b an

increase of the axial stress <ti at a constant valueam of the radial stress is

represented by a vertical line cd. The horizontal line ce represents a

process involving an increase of<r/j = am at a constant value ff/. In
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triaxial compression tests (see Art. 6) either one of these changes of

stress can be produced.

If the results of triaxial compression tests on real soils are plotted

in diagrams similar to Figures 1166 and 116c, we can recognize at a

glance the extent to which the properties of the soil deviate from those of

an ideal elastic material.

134. State of stress in a laterally confined elastic prism acted upon
by its own weight. If we construct a prism ahcd (Fig. 117) with a unit

weight 7 on a perfectly frictionless base the pressure due to the

weight of the material causes not only a vertical compression but also

a lateral expansion. If the prism had no weight it would assume the

shape indicated by the rectangle abdc.

At a depth z below the top of the prism

the normal stress on a horizontal sec-

tion is

a = yz

From equation 133(2) we obtain for

the corresponding lateral expansion per

unit of width of the prism
Fig. 117. Deformation of prism of

elastic material due to its own
weight; right-hand diagram repre-

sents horizontal pressure on smooth,

confining vertical walls.

= — 2
E [1 ]

It increases in direct proportion to the depth z as indicated in Figure 117

by the lines Ciai and di6i.

If the prism is laterally confined between perfectly smooth, vertical

walls or within a layer of identical material on a rough base no lateral

expansion can occur. Therefore at any depth z every vertical side of

the prism will be acted upon by a horizontal pressure uui per unit of

area whose intensity suffices to reduce the lateral expansion of the prism

at depth z to zero. These pressures produce in every horizontal direction

a strain

^III <^III (fill VT 'r T
Substituting = «i (eq. 1), we obtain

wherdn

=

jro =
M

1 -J»

12]

[3]
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corresponds to the coefficient of earth pressure at rest (eq. 10(1)) in the

theory of earth pressure. For practically incompressible materials the

value of M is 0.5 and the corresponding value of Kq is unity.

133. Stresses and displacements due to a point load on a semi-infinite

solid with a horizontal surface. If an external force acts on a very small

area of the surface of a solid or on the walls of a little cavity in the

interior of the solid it is called a point load, and the area which is acted

upon by the force is called the point of application of the load. It repre-

sents the center of the perturbation in the state of stress, caused by the

load. The vertical component of an inclined point load acting on the

horizontal surface of a semi-infinite solid produces a state of stress

which has circular symmetry about a vertical line through the point of

application. The state of stress due to the horizontal component is

symmetrical with reference to a vertical plane through the line of action

of the horizontal component.

Fig. 118. (a) Stresses at point N and (6) displacements of point N in interior

of semi-infinite solid acted upon by point load Q.

The simplest and by far the most important state of stress ensues

if a vertical point load acts on the horizontal surface of a semi-infinite

solid (Fig. 118a). Let

Q = the load,

r = the horizontal radial distance between an arbitrary point N
below the surface and a vertical axis through the point a of

application of Q,

^ = the angle between the vector aN and the vertical axis through

the point of application,

0 = the vertical co-ordinate of point N, measured from the surface

downward,
“ the vertical stress, the horizontal radial stress and the

horizontal circumferential stress; all normal stresses,

Tft = shearing stress in the directions of r and z, and

p = Poisson^s ratio for the solid.
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On account of the circular symmetry of the state of stress about the

vertical axis through a the shearing stresses in vertical, radial planes

are equal to zero. The intensity of the other stresses has been com-

puted by means of a stress function which strictly satisfies the boundary

conditions (Boussinesq 1885). The stresses are

3Q 5 ,= ;r-2 cos'* ^

r
""

2wz’^ L
3 cos sin^ ^ — (1 — 2m)

COS^ xff

1 + cos lf'_

ffa = — (1 — 2m )

Q
2irZ^

COS® — COS® ^

1 + COS

Tr. =
3Q

27rz®
cos^ ^ sin 4/

[la]

[16]

[lc]

[ld]

These equations are known as Boussinesq's equations. The circumfer-

ential stress ffj is negative for every value of m < 0.5. It should be

noted that the vertical stress v, is the only normal stress which is

independent of Poisson’s ratio m- In this and in all the following

articles it is assumed that the unit weight of the elastic material

is zero. Therefore the computations furnish only the stresses pro-

duced by the surface loads. In order to get the total stresses in

an elastic material with unit weight y one has to combine the

stresses due to the loads with those produced by the weight of the

supporting material. These stresses are

a, = zy (2a]

ffj. — (Tg = KoZy [26]

and

T„ = 0 [2c]

wherein is the coefficient of earth pressure at rest for the lateral earth

pressure in the semi-infinite solid.

If one computes by means of equations 1 the principal stresses pro-

duced by the point load Q one finds that the direction of the largest

principal stress at any point intersects the horizontal surface of the

mass in the immediate vicinity of the point of application a (Fig.

118a) of the load and that the two other principal stresses an and am
are very small. If m “ 0.5 one obtains an — am = 0. The direction

of the largest principal stress aj passes through point a and the intensity
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of this stress is

ar ^ Q 3 ,/ = - —
5 COS ^

2irz®
[3]

This means that for ju = 0.5 the load Q produces a unidirectional state

of stress.

The equations for the stresses due to a horizontal point load acting

at a point of the horizontal surface have been derived by Cerruti (1882,

quoted by Love, 1934). They are not as simple as equations 1. Still

more cumbersome are the equations which represent the stresses due to

a vertical and a horizontal force acting at a point beneath the horizontal

surface (Mindlin 1936). In order to use these equations for solving

practical problems it would be necessary to simplify them at the expense

of accuracy.

With increasing depth below the surface the state of stress represented by Mind-
lin’s equations approaches that which is produced by a force acting at a point in the

interior of an infinite solid. The corresponding stress equations have been derived

by Kelvin (about 1850). Introducing the special value m = 0.5 (Poisson's ratio for

incompressible elastic solids) into his equations one finds that the stresses produced

by the point load Q applied at a given point within an infinite solid are equal to one

half of the stresses acting at the same point in a semi-infinite solid whose plane

surface passes through the point of application of Q at a right angle to the direction

of Q. Hence one obtains these stresses by dividing the stresses determined by
equations 1 by two, provided jx = 0.5.

If the stresses in a semi-infinite elastic solid are known, the correspond-

ing deformations can be computed by means of the fundamental equa-

tions of the theory of elasticity. From a practical point of view, the

most interesting displacements are those produced by a vertical point

load Q applied to the horizontal surface of a semi-infinite solid. They

have been computed by Boussinesq (1885). Since the state of stress

produced by such a point load is symmetrical about the line of action of

the load, the displacement of a point N (Fig. 1186) is determined by

two components of the displacement, for instance

f = the vertical displacement of the point N, positive in a downward

direction,

J = the horizontal, radial displacement, positive in an outward

direction.

The displacements f and f are determined by the equations

f =^ j^2
(1 - m) + cos^ sin i [4a]

and

5

^ r_ (1 _ 2ij,) + cos ^ + cos® sin tan ^ [46]
27rr F L J 2
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At the surface \l/
= 90°, cos ^ = 0, sin ^ = 1, and tan \l//2 = 1. With

these values we obtain for the displacement of a point on the surface

at a distance r from the load

fo =
0 1 - /
ttt E

[5a]

__ Q 1 - M
"

2irr E [56]

136* Stresses due to a flexible area load covering a part of the

horizontal surface. The term flexible indicates that no stiff structure

such as a footing is inserted between the load and the surface of the semi-

infinite solid. The load q per unit of the loaded part A of the surface

of the solid can be divided into an infinite number of discrete point loads

qdA. Since the material is assumed to be perfectly elastic the stress

produced by the total load is equal to the sum of the stresses pro-

duced by the point loads q dA, Therefore the resultant state of stress

can be determined by integration.

A load q^ per unit of the length of a straight line of infinite extension

on the surface of the solid produces a state of plane strain. The stresses

at an arbitrary point N of every plane section at a right angle to the

line, represented in Figure 119a by point a, are

2q' .

(Tz
— cos ^

TT Z
[la]

and

2 -.2
,

(Tx = - ~ cos^
\f/ sin^ ^

TT z

2
,

Txz — cos ^ sin ^
TT Z

[16]

[Ic]

It should be noted that these equations do not contain Poisson’s ratio.

By integration one obtains the following values for the stresses due to a

load q per unit of area on a strip of infinite length and a constant width
2B (Fig. 1196):

T

l^sin f cos lA + lA

J

j”— sin ^ cos ^

[2a]

[26]
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and

I2c]

On the basis of equations 7(1) and 7 (2) one gets for the corresponding

principal stresses the values

~
(^0 + sill ^o)

TT

and

ajji = ^ — gin ^o)
TT

I3al

[361

wherein = ^2 — (see Fig. 1196). According to these equations

the principal stresses for a given value q depend solely on the value ^o-

Fig. 119. (a) Line load; (6) strip load acting on surface of semi-infinite solid;

(c) orientation of principal stresses at N due to strip load; (d) curves of equal

ratio between vertical pressure and unit load on strip with infinite length (pressure

bulbs).

Hence for every point on a circle through a, 6, and N (Fig. 119c) the

principal stresses have the same intensity. By means of a simple

computation it can also be shown that the directions of the two prin-
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cipal stresses in every point on the circle ahN (Fig. 119c) pass through

the points c and d respectively. These two points are located at

the intersection between the circle and the plane of symmetry of the

loaded strip. Furthermore by means of equation 2o it can be shown

that all the points with equal vertical normal stress are located

on curves (Fig. 119d) which resemble sections through the boundaries

between the individual layers of a bulb. Therefore the space located

beneath the loaded area is commonly called the huTb of pressure. From
this explanation of the meaning of the term it is obvious that no definite

dimensions can be assigned to the bulb of pressure beneath a given

loaded area, unless one specifies that the vertical normal stress at

the boundary of the bulb should correspond to a certain fraction, for

instance or of the unit load q.

The computation of the stresses due to a uniformly distributed load

on a rectangular or a circular area are rather involved, and the results

of the computation cannot be represented by a simple set of equa-

tions. However, the problem has been solved and the results have

been compiled in tables which make it possible to determine the stresses

in any point by means of a simple process of interpolation (Love 1928).

The vertical normal stress at a depth z below the center of a circular area

with a radius R which carries a unit load q is

= g{i - [i ^

In many practical cases it is sufficient to know the intensity and the

distribution of the normal stresses over horizontal sections through

the loaded solid. In order to get this information with a minimum
amount of labor it is desirable to express the equations for the normal

stress in terms of dimensionless ratios. In this form an equation

can be solved once and for all for different values of the dimensionless

ratios. For instance by dividing both sides of equation 135 (la) by
Q/z^ we obtain

. Accv -fir+WT ^ ®

Iff is a pure number. It is called an influence value, because it deter-

mines the influence of a vertical point load at point a (Fig. 118a) on

the vertical normal stress a* at point N. It depends only on the value of

the ratio r/2. The numerical values of (eq. 5) for different values of
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r/2 are given in Table I of the Appendix.

-r ^

From equation 5 we get

[6]

The vertical normal stress cr* at point N (Fig. 119a) of a semi-infinite

solid acted upon by a line load q per unit of length (eq. la) is given by

g'2
.

a, = — cos
Z TT

wherein

1 T
z TTtl + (x/z)^] Z

I7a]

176]

is the influence value for the line load. This equation is so simple that

no tables are required for determining the values of

Figure 120a represents a rectangular area which carries a uniformly

distributed load q per unit of area. Point N is located at a depth z

below an arbitrary point of this area. In order to determine the

vertical normal stress o-g at point N we divide the total area by two

lines through point into four rectangular sections, marked I to IV.

Each of these areas contributes one share, Acg, to the total vertical nor-

mal stress a-g produced at point iV by the load. Using Boussinesq^s

equation 135 (la) as a starting point one obtains by integration (New-

mark 1935)

A<t 1 r2mn (m^ + + l)i + 2

q 47r L + m^n^+ 1 + 1

+ tan ^
2mn (m^ + n^ + l)i "I

~ + 1

J

[8]

wherein

n
L
z

are pure numbers. The value /<r is dimensionless and represents the

influence of a surcharge covering a rectangular area on the vertical

normal stress at a point located at a depth z below one of its corners.

Plotting in a diagram (Fig. 1206) the values of la = Acr/g on the horizontal

axis and the values Ijm ^ zJB on the vertical axis we obtain for different

values of L/B = n/m the curves shown in the figure (Steinbrenner 1934).

Table II and plate 1 in the Appendix contain the influence values

la (eq. 8), for different values of m and n. The Appendix also con-
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tains the influence values for a point load (Table I) and for a cir-

cular surcharge (Table III), In order to compute the vertical normal
stress at point N in Figure 120a one computes the ratios m and n

% ^

« .

-2

^ 4.

6

|

Cq-

P

oint load Q-4B^q
4^ ^Unitload^onsquarg23^23

Fia. 120. (a) Uniformly loaded rectangular area on surface of semi-infinite solid;

(6) influence values for vertical normal stress at point N due to load on either one
of the four areas / to 7F in (a); (c) diagram illustrating method of computing
influence values, if is located outside of loaded area; (d) diagram illustrating

the influence of replacement of uniformly distributed load on square area by an
equivalent point load at the center of the area on the vertical unit pressure along
vertical line through center of the loaded area. {After Steinbrenner 19$4-)

for each one of the areas marked I to IV respectively and determines

the corresponding influence values /<rj to by means of the graph
or the table. The total normal stress at point N is

? {Igj + Igji + lain + Igiv) [9]

If point is located outside the loaded area we construct a rec-

tangle N%cd (Fig. 120c) whose sides are oriented as shown in the
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figure. From the figure it can be seen that

area abed = N'bicdi — N'nbbi — N'aiddi + N'aian [10]

The vertical normal stress at point N located at a depth z below point

due to a surcharge q per unit of the area abed is equal to the algebraic

sum of the normal stresses produced by loading each one of the areas

listed on the right-hand side of the preceding equation with q per unit

of area. Hence, after we have determined the influence values to

for the areas indicated on the right-hand side of equation 10, for

instance, by means of Table II in the Appendix, we obtain for the vertical

normal stress (Tg

— q (Iffi — Ioil — hill + hiv) 111 ]

U)

id)

(f)

Fiq. 121. Some types of flexible loads on surface of semi-infinite solid; equations

for computing vertical pressure produced by these loads have been published.

The method described in the preceding paragraphs is only one of

several methods which have been worked out for the purpose of determin-

ing the normal stresses on horizontal sections beneath finite loads. (See

Burmister 1938, and discussion of his paper by Newmark, Krynine, and

others.)

In Figure 120d the abscissas of the curve Ca. represent the vertical nor-

mal stress at different depths z below the center of a square area 2B
by 2B which carries a surcharge q per unit of area or a total surcharge

^B^q. The abscissas of the curve Cq represent the corresponding

stresses due to a concentrated load Q = 4i5®g acting at the center of

the square area. The figure shows that the difference between the

two curves becomes veiy small for values of z/B in excess of six. Hence

in a computation of the normal stresses on a horizontal section at a depth

z below a continuous load on a fihite area it is admissible to replace this

load by point loads spaced not in excess of z/3. The stresses produced
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at a given point of the section by the point loads can be computed by

means of tables of influence values for point loads.

Figures 121a to 121/ represent different surcharges resembling fills

with inclined slopes. Perpendicular to the plane of the paper the sur-

charges extend to infinity. The equations which determine the normal

stresses due to the weight of these surcharges on horizontal sections,

together with references to the original publications, have been com-

piled by Gray (1936). Tables and charts have been prepared by
Jurgenson (1934). The results of recent investigations were published

by Holl (1941).

137. Settlement of the surface of a semi-infinite solid due to a flexible,

vertical load on a finite area. Assuming that the solid is perfectly

elastic, the law of superposition of stress and strain is valid. Hence
the settlement due to a load on a finite area can be computed by
integration as was done in Article 136 for the purpose of determining

the stresses produced by such a load. To illustrate the procedure we
compute the vertical displacement of point N'y located within the rec-

tangular area shown in Figure 120a. The area carries a uniformly

distributed surcharge q per unit of area. The vertical displacement

dto of p)oint N' due to a surcharge dQ = qdx dy acting at an arbitrary

distance r from point N' is determined by equation 135 (5a). By in-

tegrating over a rectangular area with a width B and a length L one gets

for the settlement Ap of the comers of the loaded area the equation

Ap = qB i log
^

+ log (i + VF+T)] [lo]

wherein

! -

1

m
is a pure number (Schleicher 1926). Substituting

/p = i log
^

+ log (I + Vi* + 1)
j

(2a)

one gets

Ap = qB^-^I, [2b]

The value I, is also a pure number. It determines the influence of a

uniform surcharge covering a rectangular area on the settlement of the

comers of this area and represents an analogue to the influence value

I„ (eq. 136(8)). Figure 122a shows the relation between and the
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ratio I between the length and the width of the loaded area. For
i == 00 we obtain Ip = which shows that the settlement of a uniformly

loaded strip on the surface of a semi-infinite solid is equal to infinity

for any finite value of the load and the width of the strip.

Fig. 122. (a) Influence values for computing settlement of a comer of a loaded

rectangular area L X B on surface of semi-infinite solid; if L/B = co, /p = oo

;

(b) diagram illustrating method of determining settlement of point located out-

side of loaded area; (c) curves of equal settlement for square loaded area; (d)

settlement profile.

In order to determine the settlement of point (Fig. 120a) we com-

pute the values of I for each one of the rectangles I to IV. From the

diagram (Fig. 122a) we obtain the corresponding values of Ip. They
are represented by the values Ipj to Ipjv The total settlement of point

iNT' is

1 — ju^

P — Q—^— (Bjlpi + Bnlpu + Bullpin + Biylpjv) [3]

If point N' is located outside the loaded area we construct a rectangle

N%cdi (Fig. 1226) whose sides are oriented as shown in the figure.

From the figure we obtain

area abed = N'bicdi — N'aiddi — N'bibn + N'aian

The areas indicated on the right-hand side of this equation have the

comer N' in common. The influence values Ipi to Ipiy for the settlement

of these areas can be obtained from Figure 122a.
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The settlement of point (Fig. 122c) due to a load q per unit of

the area ahcd is equal to the algebraic sum of the settlements produced

by loading each one of these areas with q per unit of area. Hence, after

we have determined the influence values Ipj to Ipiy for each one of these

areas, we obtain for the settlement p of point N'

1 -
P === Q—^— (IpiBi — IpiiBii — IpiiiBjii + IpivBiv) [4]

The results of the computation of the settlement for different points

within and outside a loaded area can be represented by curves of equal

settlement^ like those shown in Figure 122c for a square loaded area.

Sections through the loaded area, such as that shown in Figure 122d, are

called settlement profiles. The settlement produced by a uniformly dis-

tributed load acting on part of the surface of a semi-infinite elastic solid

has always the character of a bowl-shaped depression. In other words,

the central part of the loaded area settles more than the peripheral

parts.

138. Transition from state of elastic to that of plastic equilibrium

beneath flexible loads. As soon as the stresses due to an increasing

load satisfy the stress conditions for failure at one point the loaded

material fails at that point and a further increase of the load causes the

failure to spread imtil the bearing capacity of the material is exceeded.

In relatively rigid solids, such as concrete, very stiff clays, or cemented

sand, the failure eliminates the cohesion at the point of failure and the

propagation of the failure produced by an increase of the load is asso-

ciated with progressive injury to the loaded material. Therefore the

load required to establish the stress conditions for failure at one point

of the loaded material is almost equal to the greatest load which the

footing can carry.

In perfectly plastic materials the transition from the state of elastic

equilibrium to that of incipient failure also spreads from local centers,

but the transition is not associated with a loss of strength. Therefore

the critical load is considerably greater than the load required to produce

incipient failure at some point of the loaded material. During the

transition from incipient to ultimate failure an increase of the load

produces merely an increase of the size of the zone of plastic equilibrium.

Before the flow begins in a material combining ideal elasticity aad
ideal plasticity, the stresses due to the load increase in simple proportion

to the load and the orientation of the principal stresses remains un-

changed. After the flow has started this rule loses its validity and the

orientation of the principal stresses also changes. A very convenient

method of visualizing this change consists in plotting the trajectories
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of stresses. (See any textbook on applied mechanics, for instance

Timoshenko 1940.) The trajectories can be obtained by determining

for a considerable number of points the direction of the principal stresses

and by tracing two sets of curves which are at every point tangent to the

direction of the principal stresses. Since the principal stresses in-

tersect at right angles, the two sets of trajectories also intersect at right

angles, as do the two sets of curves in a flow net. Figures 123a and

Fia. 123. (a) Trajectories in semi-infinite solid beneath flexible strip load, if loaded

material is in elastic state
; (6) trajectories at instant of failure in solid by general

shear; (c) spread of plastic state in sand due to increase of strip load on surface;

(d) as before, if strip load acts beneath level of surface. {After 0. K, Frdhlich

19S4a.)

1236 represent the trajectories for the state of elastic and of plastic

equilibrium respectively in an ideal solid beneath a flexible, loaded

strip of infinite length.

For states intermediate between elastic and plastic equilibrium the

location of the outer boundary of the zone of plastic flow can be esti-

mated by combining the equations which represent the stresses due to the

surcharge and to the dead weight of the loaded solid with those ex-

pressing the stress conditions for flow failure. In every section through

the loaded material, the boimdary is located at the points where the

sum of the stresses due to the surcharge and the dead weight satisfy
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the conditions for flow failure. The following example illustrates the

procedure. The stresses due to a uniform surcharge on a flexible

strip with infinite length are determined by equations 136(2). The
equations for the stresses due to the weight of the loaded solid, y per

unit of volume, are

(Tt = yz, ffx = Koyz and t^z = 0

wherein Kq is the coefficient of earth pressure at rest (eq. 10(1)).

Combining these equations with equations 136(2) and 7(1) and 7(2)

one can compute the principal stresses aj and a///. The stress condi-

tions for flow failure are determined by equation 7 (6),

O'/ + <^III

2
sin </)

=
2

C cos <t)

wherein <t> is the angle of shearing resistance and c the cohesion. Intro-

ducing into this computation the simplifying assumptions c = 0 and

Ko = 1 (ideal sand, hydrostatic distribution of the stresses due to the

weight of the sand) Frohlich (1934a) obtained for the boundaries of the

zone of plastic flow in different stages intermediate between the state

of elastic and plastic equilibrium the lines indicated in Figures 123c

and 123d. In Figure 123c the surface of the sand on both sides of the

loaded strip carries no surcharge. The width of the zone of plastic flow

is greatest at the surface. In Figure 123d the surface adjoining the strip

carries a uniformly distributed surcharge yD per unit of area due to the

weight of a layer of sand with a depth D, At the level of the loaded

strip the width of the zones of plastic flow is equal to zero and it assumes a

maximum at some depth below the strip. In both cases (Figs. 123c

and 123d) an increase of the load causes the deepest points of the zones

of plastic flow to advance on a circle through the rims of the load. The
center of the circle is at a depth B tan <f>

below the center of the load as

shown in the figures. Finally the two zones of plastic flow merge

into one, which is separated from the loaded area by a zone of elastic

equilibrium. In the figures the section through the lower boundary

of this zone is indicated by the curve Cu- As this final stage of transi-

tion from elastic equilibrium to plastic equilibrium is approached, the

equations of Boussinesq lose their validity completely and the remainder

of the process is described by the theory of plasticity.

Frohlich’s computations are based on the assumption that the transition from

elastic to plastic behavior occurs abruptly. In reality, at every point of every soil

the process of elastic deformation passes imperceptibly into plastic flow. The theory

also disregards the conditions for equilibrium within the zone of plastic deformation.

Therefore it leads to the erroneous conclusion that the depth of the zone of plastic
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flow is capable of increasing indefinitely. According to Chapter VIII the depth of

the zone of plastic flow cannot possibly exceed a certain critical value which depends

on the width of the loaded area and on the coefficient of internal friction. However,

up to the stage when the zones of plastic flow merge beneath the center of the loaded

area, as indicated by the curves Cu in Figure 126, the theory appears to be fairly

reliable. If the load covers a long strip, the load required, according to Frohlich^s

theory, to produce the merger of the plastic zones is approximately equal to the

lower limit of the ultimate bearing capacity, determined by the dashed curves in

Figure 38c. (See Art. 46.)

If the angle of internal friction of a plastic material with a cohesion

c is equal to zero, the factor sin <t>
in equation 7(6) is also equal to zero

and the stress conditions for failure are determined by the equation

As soon as the imit load on a flexible strip with infinite length becomes

equal to vc this condition is satisfied at every point of a semicircle whose

center is located at the midpoint of ah in Figure 119c. Hence if 0 = 0

the propagation of the plastic state starts simultaneously at every

point of a cylindrical section through the edges of the loaded area.

According to equation 46(9/) the bearing capacity of the material is

gc = 5.14c = (tt + 2)c

Hence the bearing capacity exceeds the load ire required to establish the

nucleus of a zone of plastic equilibrium by 39 per cent.

139. Distribution of contact pressure over the base of footings.

The term contact pressure indicates the normal stress at the surface of

contact between a footing and the supporting earth. In Article 137

it was shown that a surcharge uniformly distributed over a finite part

of the horizontal surface of a semi-infinite elastic solid always produces

a bowl-shaped settlement of the loaded area, similar to the settlement

illustrated by Figures 122c and 122d. In order to produce at least a

fairly uniform settlement the unit load on a circular area must be very

much greater at the rim than at the center. In Figure 124a the sur-

charge increases from zero at the center in direct proportion to the square

of the distance from the center. Nevertheless the center settles almost

as much as the rim, as indicated by a dotted line below the base of the

load (Boussinesq 1886). Hence if a perfectly uniform settlement is

enforced by the absolute rigidity of a footing, the contact pressure must
increase from the center of the base of the footing toward the rim,

provided the supporting material is perfectly elastic. For an elastic

footing the distribution of the contact pressure depends on the elastic

properties of the supporting medium, on the flexural rigidity of the

footing, and on the distribution of the loads on the footing.
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The computation of the contact pressure on the base of both rigid

and elastic footings represents a problem in advanced theory of elasticity.

The following paragraphs contain a summary of the most important

results. The simplest problem is the computation of the contact pres-

sure on the base of a rigid circular footing (Fig. 1246) with a radius R
which carries a centric load

Q = irR^q

The value q is equal to the total load Q divided by the area tt/?^ of the base

of the footing. If the surface of contact between the footing and the

Fig. 124. (a) Flexible load on circular area required to produce almost uniform

settlement; (6) contact pressure on base of rigid, circular footing. {After Bovs-
sinesq 1886,)

supporting elastic medium remains plane (rigid footing) and the shearing

stresses at the surface of contact are equal to zero (perfectly frictionless

base), the contact pressure increases from q/2 at the center to infinity

at the rim, as shown in the figure (Boussinesq 1885). The character

of the pressure distribution can be visualized in the following manner.

If we spread the entire load on the footing uniformly over the surface

of a hemisphere whose equator is identical with the rim of the base of

the footing, the contact pressure is identical with the vertical projection

of the hemispherical load onto the base of the footing. Since the area

of the surface of the hemisphere is equal to twice the area of the base of

the footing, the load per unit of area of the hemisphere is equal to \q.

Hence the unit pressure at the center of the footing is also equal to ^q.

The calculated settlement of the footing is about 7.3 per cent smaller

than the calculated average settlement produced by a uniformly dis-

tributed flexible surcharge of equal intensity q acting on the area

covered by the base of the footing (Schleicher 1926).

Figure 125a represents the distribution of the pressure on the base of an elastic,

circular footing with a radius R and a thickness H acted upon by a load q per unit

of area (Borowicka 1936). The stiffer the footing the less uniform is the distribution
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of the contact pressure over the base of the footing. The final equations contain a
factor

1 1 - mI Er(H'\*

6 1 - Es\r) ID

wherein /xp and represent Poisson ratio for the footing and the subgi*ade respec-

tively and Ep and Es the corresponding values of Young^s modulus. This factor

can be considered a measure for the relative stiiTness of the footings. A value iiCr = 0
indicates perfect flexibility. For values of Kr ranging between 0 and about 0.1 the
contact pressure is smallest at some distance intermediate between the center and

(ft) (b)

Fia. 126. (a) Contact pressure on base of uniformly loaded, circular plate with

different degrees of flexural rigidity; (6) as before, for load applied on a strip.

{After Borowicka 1936 and 1938.)

the edge of the footing, as indicated in the figure for Kr ^ 0.05. With increasing

stiffness the pressure distribution approaches that shown in Figure 1246 for a rigid

footing. Habel (1937) computed the contact pressure for circular, elastic footings

supporting a load which acts on the central part of the upper surface of the footing.

Figure 1256 illustrates the influence of the flexural rigidity of a uniformly loaded

elastic slab, with a constant width 2B, a thickness H, and an infinite length, on the

distribution of the soil reactions over its base (Borowicka 1938), The value Kr
is given by equation 1. The value Xr = 0 indicates perfect flexibility of the slab

and Kr ^ ^ means a perfectly rigid slab.

Biot (1937) worked out a rigorous solution of the problem of computing the

contact pressure on the base of an elastic beam of infinite length, resting on the

horizontal surface of a semi-infinite solid. This solution made it possible to compute
the value of the coefficient of subgrade reaction which must be introduced into the

elementary theory of beams on an elastic subgrade (Art. 126) in order to establish a

reasonable agreement with the results obtained by means of the rigorous theory.

The investigation led to the conclusion that the ratio between the average unit load

and the corresponding average settlement is a complicated function not only of the
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modulus of elasticity of the subgrade and of the width of the beam but also of the

flexural rigidity of the beam. Hence no definite value can be assigned to the coefiS-

cient of subgrade reaction for a given subgrade.

Finally Habel (1938) derived approximate equations for the contact pressure on

the base of elastic beams which transmit an arbitrary system of loads onto the sur-

face of a semi-infinite solid.

In all the investigations cited in this article it has been assumed

that the shearing stresses at the base of the footing are equal to zero.

In reality this condition is never satisfied. An attempt to investigate

the influence of the shearing stresses on the state of stress in the loaded

material was made by Frohlich (1934a) on the basis of equations

derived by Boussinesq (1885). Frohlich concluded that friction forces

directed radially inward may be expected to produce an increase of the

normal stresses on horizontal sections beneath the loaded area. With
increasing depth this influence decreases. At depths in excess of about

twice the width of the loaded area it is negligible. An investigation

of the distribution of the shearing stresses over the base of foundations

was made by Vogt (1925). The effect of the shearing stresses at the

base of footings on the distribution of the contact pressure has not yet

been analyzed.

140. Change in the distribution of the contact pressure due to an

increase of the load. The increase of the load on a footing causes

progressive transition of the loaded material from the state of elastic

to that of plastic equilibrium. This transition influences not only the

intensity and the distribution of the stresses in the loaded material,

as described in Article 138, but it also changes the distribution of the

contact pressure on the base of the footing. The theories of contact

pressures described in the preceding article led to the conclusion that

the contact pressure at the edge of a rigid footing is equal to in-

finity for every finite value of the load. Since there is no material

which can sustain such a state of stress the plastic flow begins as

soon as load is applied. As the load increases, the zone of plastic

flow spreads, as indicated in Figures 123c and 123d, and the difference

between the real and the calculated distribution of the contact pressure

becomes more and more conspicuous. As soon as the two zones of

plastic flow shown in Figures 123c and 123d merge into one, the distri-

bution of the contact pressure approaches the distribution which prevails

after the load has become equal to the bearing capacity of the loaded

material. This distribution has been discussed in Article 48 .

The effect of the transition of the loaded material from the elastic

to the plastic state on the distribution of the pressure on the base of

a ri^d footing is illustrated by Figures 126a, 1266, and 126c. These
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figures show the contact pressure on the base of perfectly rigid slabs

with a width 2B and an infinite length resting on the surface of

homogeneous soil deposits with great depth. In each figure, the load

on the footing is assumed to increase from a small value to a value equal

to the bearing capacity of the footing. It is further assumed that the

base of the footings is perfectly smooth. The ordinates of the curves C\

represent the contact pressure produced by loads which are too small

to establish a state of plastic equilibrium beyond the immediate vicinity

Fig. 126. Influence of cohesion c and angle of internal friction of semi-infinite

solid and of intensity of unit load on distribution of contact pressure on base of

rigid, continuous footing with frictioniess base, (a) </> = 0; (6) c = 0; (c) c

and greater than 0.

of the rims of the footings. Those of the curves (7^ represent the contact

pressure for the instant when the load on the footing becomes equal to

the ultimate bearing capacity of the footing. The curves C2 represent

the contact pressure for an intermediate state of loading. In each figure

and for each stage, the total load per unit of length of the strip is equal

to the area between the base of the footing and the corresponding curve.

In Figure 126a the footing rests on an ideal material without internal fric-

tion which passes with increasing load from an ideal elastic into an ideal

plastic state. In Figure 1266 the footing is assumed to rest on ideal

sand and in Figure 132c on a sand-clay mixture. The contact pressures

represented by the curves Cu have been discussed and computed in

Article 48.

The dashed line in Figure 126a shows the distribution of the contact

pressure on the assumption that Hookers law is valid throughout the

loaded material. It is identical with the curve labeled Kr ^ ^
in Figure 1266. At the edges of the strip the theoretical value of the

contact pressure is equal to infinity. As a consequence the plastic

flow starts along the edges as soon as load is applied, as explained at

the beginning of this article. On account of the plastic flow the contact
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pressure along the edges assumes the highest value compatible with the

stress conditions for plastic flow and retains this value during the

subsequent process of loading. The distribution of the contact pres-

sure under a small load is shown by the plain curve Ci, As the load

increases the pressure beneath the central part of the slab increases

(curve C2 ), and finally the distribution of the pressure becomes uniform,

as indicated by the horizontal line Cu whose ordinate Qc represents the

bearing capacity. The value qc is equal to 5.14c (eq. 46(9/)) wherein c

is the cohesion of the material. If the base of the footing is rough, the

ultimate unit pressure at the edge is somewhat greater than the ultimate

unit pressure at the center, as shown in Figure 39a, and the average value

of the corresponding contact pressure is equal to 5.7c (eq. 46(7c)).

Figure 1266 represents the contact pressure beneath a slab resting on

the surface of a deposit of cohesionless sand. At the surface, at the

rim of the base of the slab, even a very small stress exceeds the stress

conditions for failure. Hence at the rim the contact pressure can

never become greater than zero (see Art. 16). As the load increases

the contact pressure on the central part of the base increases, and at

the instant of failure the distribution of the contact pressure is roughly

parabolic as indicated by the curve In that stage the average

contact pressure qy is equal to the bearing capacity factor Ny (eq.

45(46)) times the unit weight 7 of the sand times one half of the width

of the footing.

If the bearing capacity of the soil is due to internal friction as well as

to cohesion, the successive stages are as indicated by the curves Ci,

C2 ,
and Cu (Fig. 126c), which corresponds to Figure 39c. A similar

distribution of the contact pressure should be expected if the base of

a rigid footing is located at a considerable depth below the surface of

a layer of dense sand.

According to the methods of computation based on the assumption

that the coefficient of subgrade reaction is constant (Chapter XVI),

the contact pressure on the base of a rigid footing should always be

perfectly uniform provided the resultant of the load passes through the

center of gravity of the base. Figure 126 illustrates the type and

importance of the errors which are hkely to be associated with this

radically simplifying assumption.

141. Stresses due to a vertical load on the horizontal surface of

orthotropic and of nonhomogeneous semi-infinite solids. The theories

discussed above are based on the assumption that the semi-infinite solid

is both isotropic and homogeneous with respect to its elastic properties.

In nature this condition seldom exists. The most common deviations

from the ideal state of elastic isotropy and homogeneity are stratification
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or lamination, characteristic of practically all sedimentary deposits and
a rapid decrease of compressibility with depth, which is typical of

sandy soils.

In stratified soils, consisting of a succession of highly compressible

and feebly compressible layers, the strain produced by an effective

all-around pressure, aj = cr/j = ct/j/, is very much smaller in directions

parallel to the bedding planes than at right angles to these planes.

This is an analogue to the fact that the average coeflScient of permeability

of every stratified mass of soil is greater parallel to the planes of stratifi-

cation than at right angles to these planes (see Art. 89). In the theory

of elasticity the ideal substitute for a thin-bedded mass of soil is a

semi-infinite, homogeneous but orthotropic elastic solid whose modulus

of elasticity has the same value Eh in every horizontal direction and a

smaller value Ev in a vertical direction. Wolf (1935) assumed that the

ratio Eh/E^ is equal to an empirical constant w, or

E,
= n 11 ]

Fig. 127. Relation between depth and vertical unit pressure beneath center line

of flexible strip load (a) if modulus of elasticity in horizontal direction is greater

than in vertical direction; (6) if solid is reinforced in horizontal direction by un-

stretchable, flexible layers, and (c) if modulus of elasticity increases with depth.

Dash-dotted curves correspond to isotropic and homogeneous, semi-inflnite solid.

On this assumption he computed the stresses produced by a point

load and by a flexible strip load of infinite length having a width 2B.

(See also Holl 1941 .) In Figure 127a the abscissas represent the influence

values /, = ffg/q for the influence of the load, q, per unit of area of the

strip, on the vertical normal stress <r, at depth 2 beneath the center

line of the strip, for different values of the ratio EJEg. The ordinates

represent the ratio zjB between the depth and one half of the width of

the strip. The diagram shows that the stress decreases for high values
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of the ratio n = E^/E^ much more rapidly with depth than it does

for low values. For E^ = E^, the curve is identical with the curve

obtained by means of Boussinesq’s equations.

Another possible method of investigating the influence of lamination

on the distribution of the stresses due to a surcharge consists in as-

suming that the semi-infinite solid is reinforced by horizontal, perfectly

flexible membranes, which prevent completely any deformation in a

horizontal direction without interfering with deformations in a vertical

sense. This assumption has been made by Westergaard (1938). For

the vertical normal stress at a point Nj produced by a vertical point load

Q applied at point a (Fig. 118a) he obtained the equation

Q C[ 1

^•“z2 27rLc^+(rA)"J

In this equation r is the horizontal distance of the point N from the

line of action of the load Q, z is the vertical distance between the point

and the surface, C is a constant whose value is given by the equation

and fi is Poisson^s ratio for the material located between the membranes.

If M = 0, C becomes equal to Co = 1/V^.

The Boussinesq value for the stress or* is

3 r 1 li

2irll + {r/zy\
136(5)

Curve C in Figure 1276 represents the influence values la = for

the vertical normal stresses or* beneath the center line of a uniform

strip load with a width 2B, plotted against the depth ratio z/B. It is

located between the curve Cb, which represents the influence values

according to Boussinesq, and the curve Cw, which represents Wolf's

solution for n = 00 or Eh — ^ • Fadum (1941) has computed the

influence values for the Westergaard solution on the assumption that

M = 0 or C = Co = 1/ V^. (See eq. 3.) His tables include the in-

fluence values for point load, line load, and uniformly distributed loads

on circular and rectangular areas.

A second deviation of the elastic properties of soils from those of

Boussinesq's ideal elastic solid consists of a decrease of the compressi-

bility of the soil with increasing depth below the surface of the soil

stratum. It is due to the fact that the law of superposition does not
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hold for soils. This deviation is typically developed in cohesionless

sand. It can easily be demonstrated by laboratory experiments.

If we apply a load on a sample of a perfectly elastic material, acted

upon by an initial all-round pressure, we find that the vertical strain

produced by the load is independent of the initial pressure. On the

other hand, if we repeat the same test on a sand sample we find that

the strain due to the load decreases with increasing intensity of the all-

round pressure. In a sand stratum the sand is under the influence of an

all-round pressure due to the weight of the sand. The intensity of this

pressure increases with the depth below the surface. Hence, the strain

produced by a given change of the stress in the sand decreases with in-

creasing depth below the surface. In order to take this property of

sands into account without losing the simpUcity resulting from assuming

the validity of the law of superposition, we proceed in the following

manner. We assume that the sand strictly obeys Hookers law but

we also assume that the modulus of elasticity of the sand increases with

depth according to a definite law. In other words we assume that the

sand is perfectly elastic and isotropic in every horizontal direction but

elastically nonhomogeneous in a vertical direction.

In order to estimate the stresses in such materials GriflSth (1929)

and Frohlich (1934a) proposed a semi-empirical modification of Bous-

sinesq^s theory of incompressible elastic solids (Poisson^s ratio fi = 0.5).

If /X = 0.5 the stresses produced by a vertical point load Q at any pointN
(Fig. 118a) of a semi-infinite, homogeneous solid represent the com-

ponents of a linear, principal stress aj, whose intensity is determined by

Boussinesq^s equation 135(3)

30 3 ,

By replacing the exponent of the factor cos® ^ in this equation by an

arbitrary exponent v one also changes the distribution of the stresses in

the solid. At the same time one must satisfy the condition that the total

pressure on every horizontal section through the solid must be equal to

the point load Q. The equation which satisfies this condition is

2irz^
cos' yf/ 14]

The value v will be called the concentration index because it determines

the intensity of the pressure on horizontal sections beneath a given

point load Q. It must be selected in such a way as to comply with the

type of deviation of the deposit from the homogeneous state. The
normal stwisses at point N (Fig. 118a) in a vertical, radial, and circum-
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ferential direction (<t«, (Tr, and ai) and the shearing stresses are deter-

mined by the equations

^ Q v-f2 ,

[5a]

" Q • 2 1

ffr
= — ^coa \f> sm ^

2tz
[56]

ae = 0 [5c]

^ Q .+1 , • ,T„ = ~2 ^ Bin
ZttZ

[6d]

On the basis of certain simplifying assumptions regarding the elastic

properties of sands, Frohlich arrived at the conclusion that the concen-

tration index for sands should be approximately equal to p = 4. The
corresponding values I

„

= ejq for the influence of a strip load on the ver-

tical normal stresses beneath the center line of the strip are represented

by the curve C in Figure 127c. The position of tins curve with reference

to the Boussinesq curve Cb indicates that the elastic properties of the

sand tend to increase the concentration of the normal stresses beneath

the center line of the loaded strip.

In a general way this theoretical conclusion is in accordance with the results of

the measurement of the normal stresses at the base of layers of sand which are

acted upon by local surcharges. However, the major part of the observed deviation

of the measured stresses from the stresses computed by means of equation 135 (la) is

due to the rigidity of the base which supported both the layer of sand and the pres-

sure cells in the experiments. This rigidity alone produces a very appreciable devia-

tion of the pressure distribution from that computed by means of equation 135 (lo).

(See Art. 149.) This fact was ignored by many investigators. Hence several of the

proposed methods of eliminating the discrepancies between theory and observation

are based on an inadequate interpretation of the test results (Strohschneider 1912,

K5gler and Scheidig, 1927) and their use should be discontinued.

142. Influence of size of loaded area on settlement. If the load is

applied on the surface of a semi-infinite, elastic and isotropic mass, the

settlement of any point of the surface can be computed by means of

equation 135 (5a) or, if the loaded area is rectangular or square, by
means of equation 137(3) and the data contained in Figure 122a. The
following examples illustrate the results of such computations.

The settlement of the center of a uniform surcharge on a square area,

2B by 2B, on the surface of a semi-infinite solid is
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wherein E is Young’s modulus and is Poisson’s ratio. The settlement

of the comers is

Pe = 2Pa

and the average settlement

Pa = 0.848 po = 1.90 J (1 — p.^)B = B X const. [1]
bj

The settlement of the center of a circular area with a radius R is

1 -
Po — 2 qR ^ [2]

The edge settles through a distance

2
Pr = “ Po 13]

TT

and the average settlement is

Pa = 0.85 Po = 1.7 (1 — pi^)R = R X const. [4]
td

(Schleicher 1926). Equations 1 and 4 show that the average settlement

produced by a given load q per unit of s(iuare and of circular areas on the

surface of semi-infinite solids increases in direct proportion to the width

of these areas.

These and similar computations lead to the following conclusion.

For a given load q and a given ratio I between the length and the width

of the loaded area, both the settlement at the center of the area and the

average settlement increase in simple proportion to the width of the

loaded area. The settlement of a circular area increases in direct pro-

portion to the radius. However, the validity of this conclusion is

limited by the conditions that the loaded material is elastically isotropic

and homogeneous and that it obeys Hookers law. The following devia-

tions from these conditions will be considered: (a) The compressibility of

the material decreases with increasing depth below the surface; (6) the

loaded material does not obey Hooke's law, and (c) the strain increases

with time at constant state of stress.

In practice we are never able to obtain more than an approximate

knowledge of the elastic properties of a natural soil deposit. For this

reason a rigorous analysis of the influence of aforementioned deviations

of the elastic properties of soils from those assumed by Boussinesq on

the settlement is only of theoretical interest. The information which

is needed for practical purposes can be obtained on the basis of radically

simplifying assumptions.
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In order to get a general conception of the influence of a decrease of the

compressibility of a soil with increasing depth below the surface we
assume that the ratio M between the normal stress on a horizontal

section at a depth z below the loaded area and the corresponding vertical

strain at that depth is a function solely of z. We replace the real dis-

tribution of the normal stresses on the horizontal section by a similar

one which can be expressed by a simpler equation. Finally we confine

Fig. 128. (a) Distribution of vertical pressure on horizontal section beneath loaded

circular footing resting on a soil whose compressibility decreases with depth;

(6) relation between radius of footing and settlement (unbroken curve) computed
on the assumption that the depth of soil stratum is infinite.

our investigation to the settlement of a circular footing with a radius R
and assume that the distribution of the contact pressure on the base of

the footing is represented by a paraboloid.

Figure 128a is a section through the footing. The curve Cb shows

the distribution of the normal stresses on the horizontal section cd

according to Boussinesq. In order to simplify the computation we replace

this pressure distribution by another one in which the normal unit

pressure on the section is given by the ordinates of a paraboloid. In

Figure 128a this paraboloid is represented by the parabola Cp. The
points of intersection c\ and di between the parabola and the line cd are

assumed to be located on straight lines aci and 6di, respectively, which

pass through the outer edges of the footing at angles of 45® to the hori-

zontal. If is the vertical unit pressure on cd beneath the center of

the footing, the total pressure represented by the paraboloid is

^7r(B + z)^(r*. Since this pressure must be equal to the load Q ««
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on the footing we can write

or

This value is somewhat greater than the value computed by means of

Boussinesq^s equations. The vertical strain at depth z beneath the

center of the footing is

Gz _ 2g

wherein M is the ratio between the vertical unit pressure and the corre-

sponding vertical strain. The simplest assumption one can make
regarding the relation between M and the depth 2 is a straight line

relation

M = Mo + az [6]

In this equation Mq (gm cm"^) and a (gm cm"”*) are empirical constants

whose values express in a general way the degree of elastic homogeneity.

For an elastically homogeneous material a is equal to zero and M = Mq-

On the other hand, for a material whose compressibility decreases with

increasing depth both Mq and a are greater than zero.

On the basis of equation 5 we obtain for the settlement of the footing

r 2,
^ Jo Mo + az (R + z)2 ^ (Mo - Ra)^

If the loaded material is perfectly elastic, a is equal to zero and

P = -r^
Mo

The exact value of p for a = 0 (perfectly homogeneous material) is

given by the equation

p = 2gie^-^ 142(2)

For Mo *=£'/(! — these two equations become identical. The
relation between the radius R of the footing and the settlement p for

a SB 0 is shown by the straight line OCq (Fig. 1286). When dealing with

soils we must always assume that a is greater than zero, whereupon we
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obtain for the relation between R and p a curve similar to OCa- The
greater the value a at a given value of Mq the more rapidly does the

slope of the curve decrease with increasing values of R.

Fig. 129. Unit load on circular area required to produce a given settlement pi,

if load rests (a) on ideal, perfectly elastic base, (c) on clay and (d) on sand; (6)

empirical relation between settlement and unit load, if load is applied at a constant

rate; (c) same as (6), with one intermission in process of loading.

Equation 6 also determines the relation between the radius of the

loaded area and the unit load q required to produce a given settlement pi.

Substituting p = pi in equation 6 and solving for q we obtain

1 (Mo - Ra)^
[7]

If a =* 0, equation 7 becomes

qR = 2Pi-^o = constant

which is the equation of a hyperbola, represented by the plain curve in

Figure 129a. If a > 0, the curve which represents the relation between

R and q for a given value of Mo approaches the horizontal asymptote
less rapidly than the curve for a == 0 as shown by the dash-dotted curve.

In the preceding computations it has been assumed that the ratio

between the vertical unit pressure and the corresponding vertical strain
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is independent of the unit pressure. Therefore the calculated settle-

ment p (eq, 6) increases at a given value of R in direct proportion to

the unit load q, as shown by the straight line OCq in Figure 1296. How-
ever, if we investigate this relation by means of a loading test on a real

soil, we always find that the ratio between the settlement and the unit

load increases with increasing load, as indicated in Figure 1296 by the

settlement curve OC, Only the uppermost part of this curve is approxi-

mately straight. This observation indicates that equations 6 and 7

are valid only for very low loads. The increase of the rate of settlement

under higher loads is due to the fact that soils do not obey Hooke's law.

In order to make a rough estimate of the influence of this fact on the

relation between the radius of a loaded circular area and the settlement

at a given unit load, we replace the middle part of the curve OC in

Figure 1296 by a straight line with the equation

g = Cl + C2 [8]

valid for the range indicated in the figure. If we further assume that

the load rests on a thick stratum of soft clay which is fairly homogeneous

with respect to its elastic properties, the values of ci and C2 are inde-

pendent of the radius R, On these assumptions we obtain for the

load q required to produce a given average settlement pj the equation

q = Cl +C2 [9]

This equation is represented by a hyperbolic curve (Fig. 129c) which

has a horizontal asymptote with the equation q = Ci. It can also be

written in the form

C2P1 2RTr Pr
[10]

wherein Pr is the length of the perimeter of the loaded area A and ci

(gm cm"*) and m, (gra cm~^) are empirical constants which can be

determined by loading tests on circular areas with different radii.

Housel (1929) has shown experimentally that equation 10 is also valid,

within the range of conditions covered by the tests, for square and

rectangular loaded areas underlain by clay. The total load required to

produce the settlement pi is

Q = Aq = Aci + m,Pr [11 ]

The value m, (gm cm"*) is called the perimeter shear. The conditions

for the validity of the equation have been stated above.
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The term perimeter shear could convey the erroneous impression that the symbol

m, represents a shearing resistance per unit of length of the perimeter. Therefore

it should be emphasized that there is no material to which one could assign a

shearing resistance per unit of length. In order to visualize the physical significance

of tn* we apply equation 11 to a perfectly elastic, isotropic and homogeneous material

and compare the result with the rigorous equation for the load which is required to

produce a given settlement. For such a material, ci in Figure 1296 and in equation 11

is equal to zero, whence

Q « m,Pr

For a square area 2B by 2B which carries a unit load g, the total load is Q = 4B*g

and the perimeter is Pr = Introducing these values into the preceding equa-

tion and solving for q we get

8B 1

[12]

The value q represents the unit load required to produce a settlement pi. The rela-

tion between imit load and the average settlement of the loaded area is determined

by the equation 142(1)

p - Logic's

The unit load q required to produce a settlement pi is

E 1

® 1.9(1 - B

Combining this equation with equation 12 we get for perfectly elastic solids

piP
*”• "

3.8(1 -
113]

This equation demonstrates that the perimeter shear m* represents by no means a
specific shearing resistance which has its seat at the perimeter of the loaded area.

The value m, has no physical significance other than that of an empirical coefficient

with the dimension gm cm”'^. The presence of the quantity Ci on the right-hand side

of equation 10 is due to the imperfect elasticity of the loaded material, as shown in

Figure 1296. It disappears if the loaded material is perfectly elastic, whereupon

Q ~ m, Pr. It should also be mentioned that the application of a load on a limited

area of the horizontal surface of a semi-infinite elastic solid causes every point of the

surface to move down. An increase of the load increases the settlement of the surface

which surrounds the loaded area. On the other hand, if we apply the load on the

surface of a semi-infinite, imperfectly elastic solid such as clay, the material rises

beyond the boundaries of the loaded area as soon as the load approaches the value

given by the abscissa of point b (Fig. 1296). This is the edge action referred to in

Article 46 and illustrated by Figures 37a and 376.

For a perfectly cohesionless sand, the settlement due to a load on an

area of a given size also increases much more rapidly than the load, as

indicated by the curve C in Figure 1296. At the same time the values Ci

and C2 in equation 9 are not even approximately independent of the
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radius R. This extreme case has been theoretically investigated by
Aichhom (1931). The results of the investigation are shown in Figure

129d. For a certain radius Ri the load per unit of area required to pro-

duce a given settlement pi is a maximum. This conclusion has been

confirmed repeatedly by experiment.

The influence of time on the settlement is illustrated by Figure 1296.

This figure shows the relation between unit load and settlement obtained

by means of a loading test on a mass of soil. If the unit load has been

increased at a constant rate, the line which connects the points represent-

ing the results of the observations is a smooth curve OacC. On the

other hand, if the load has been kept constant for several hours or days,

from time to to ti, the intermission appears in the diagram as a vertical

line ab, regardless of the nature of the loaded soil. The relation between

time and settlement at constant load is shown to the right of the line ab.

If the process of loading is continued after time ti at the original rate of

loading, the load-settlement curve gradually approaches the curve

OacCj which represents the settlement associated with the uninterrupted

loading process. The relative importance of the time effect shown by

the vertical line ab and its physical causes are different for different soils.

In a test on sand or a sandy soil, the time effect is chiefly due to a lag

in the adjustment of the sand grains to a change in the state of stress.

In connection with clays it is chiefly due to a temporary disturbance of

the state of hydrostatic equilibrium of the water contained in the voids

of the clay, as described in Chapter XIII. In either case the final result

is the same as if the elastic constants of the loaded material were a

function of the rate at which the load is applied.

Finally, in all the theories presented in the preceding articles it has

been assumed that the compressible material which supports the load

extends to an infinite depth. In nature every compressible soil stratum

rests at a finite depth on a relatively incompressible base. The distance

between the loaded area and this base represents one more variable

factor. The influence of this factor on the settlement will be discussed

in Article 150. It is illustrated by Figure 138.

The preceding review of our present knowledge of the relation between

the settlement and the size of the loaded area demonstrated that this

relation is rather complicated. On account of the great number of

variable factors involved, it cannot be expressed by a simple rule of

general validity. For the same reason the usefulness of small-scale

loading tests is limited. The extrapolation from the results of such tests

to the settlement of loads on large areas can be very misleading. In no

case should such an extrapolation be attempted without careful con-

sideration of all the factors which are likely to influence the difference
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between the settlement of the small area and that of the large one.

Foremost among these factors are the variations of the elastic properties

of the soil with depth. In the past this factor has very often been

disregarded.

143* Stresses in a semi-infinite solid due to loads transmitted by skin

friction on piles. Figure 130a shows a cross section through a row of

sheet piles, which is acted upon by a load q' per unit of length of its

upper edge and Figure 1306 is a vertical section through a loaded founda-

tion pile. The piles are assumed to be embedded in a homogeneous

mass of soil. Since the point resistance of the piles is very small prac-

tically the entire load is transferred onto the soil by shearing stresses

ficting at the surface of contact between the sides of the piles and the soil.

Pig. 180. Approximate distribution of vertical pressure on horizontal section (a)

through lower edge of loaded row of sheet piles and (6) through point of a loaded

pile.

The resistance to shear may be due either to adhesion or to friction or to

both. In accordance with prevalent usage the shearing resistance along

the surface of contact will be designated as skin friction regardless of

its real physical causes. The following analysis applies to piles in clay.

In order to compute the state of stress produced by a loaded pile in

the adjoining material one must know the distribution of the shearing

stresses over the skin of the pile. The state of stress on the skin of

loaded piles in clay can be expected to be at least fairly similar to that

on the skin of piles which are embedded in and adhere to a perfectly

elastic matrix.

From model teste with loaded rigid walls embedded in gelatine we
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know that the shearing stresses are practically uniformly distributed

over the sides of the wall from the surface downward to a depth a

short distance above the lower rim of the wall. Immediately above

the lower rim the shearing stresses increase and at the lower rim they

exceed the strength of the bond between the sheet piles and the ad-

joining material. However, for practical purposes, this local departure

from a uniform stress distribution can be disregarded. Therefore we
are justified in assuming that the shearing stress r along the surface of

the embedded part of loaded sheet piles is equal to the total load q' per

unit of length of the row of sheet piles divided by the total area of con-

tact between the sheet piles and the soil per unit of length, or

An estimate of the intensity and the distribution of the normal

stresses over a horizontal section through the lower edge h of the sheet

piles at depth D can be made in the following manner. We divide the

sheet piles into horizontal strips with a height AD. Each side of each

strip transmits onto the soil a load Ag'/2 = rAD per unit of length of the

strip. In order to estimate the normal stresses on a horizontal plane

section at depth D, we first determine, by means of Boussinesq's

theory, the normal stresses which would be produced by each of the

load fractions if the surface of the embedding material were lo-

cated at mid-height of the corresponding strip and the load frac-

tion represented a line load acting on this imaginary surface. For

strip 3 the imaginary surface is indicated in Figure 130a by a dash-

dotted line. The force Ag' represents a vertical load, per unit of length

of the line of intersection between the imaginary surface and the sheet

piles. The normal stresses produced by this line load on the horizontal

section through the lower edge of the sheet piles can be computed rapidly

by means of equation 136(la). The result is shown beneath the hori-

zontal line through 6, for the strips marked 5 and 6. The normal stress

at any point of the horizontal plane through h is equal to the sum of the

stresses produced at that point by the load fractions Ag'. It is repre-

sented by the ordinates of the curve C in Figure 130a for one side of the

horizontal section.

A similar method can be used for estimating the normal stresses on a

horizontal section through the point 6 of a single pile (Fig. 1305). The
distribution of the shearing stresses over the sides of such a pile was also

found by experiment to be practically uniform. In order to obtain an

approximate solution of the problem we divide the pile into several sec-

tions. Then we replace the shearing force which acts on each of these
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sections by a point load and compute the stresses produced by this

load on the assumption that the horizontal surface of the semi-infinite

mass passes through the midpoint of the section. This can be done by
means of Table I in the Appendix (influence table for point load). The
curves marked 6 and 6 represent the results of the computation for the

sections 5 and 6, The ordinates of the curve C are equal to the sum of

the ordinates of the curves obtained for the individual sections. The
error is on the safe side because the presence of material above the mid-

point of each section relieves the stresses produced by the point load

in the material below the midpoint. In order to reduce the theoretical

error one can compute the stresses on the horizontal section through h

by means of Mindlin’s equations (see Art. 135). However, the error

due to assuming perfectly elastic behavior of the material surrounding

the pile is likely to be far greater than the error associated with the

simplified method of computation.

It should be emphasized that either method of computation can be applied only

to the computation of the stresses in the vicinity of single piles, because these methods

are based on the assumption that the pile is surrounded by a homogeneous material.

The material which surrounds a pile in the interior of a pile group consists of an elastic

matrix reinforced by relatively rigid piles. As a matter of fact, the experimental

investigation of the state of stress in a group of piles embedded in gelatine has shown
that the distribution of the shearing stresses over the sides of a pile in the interior of

the group has no resemblance to that for an individual pile (Terzaghi 1935).

Experimental data concerning the distribution of the shearing stresses

on the sides of loaded sheet piles or piles in sand are not yet available.

The results of theoretical investigations concerning this distribution

cannot be trusted unless they are adequately confirmed by experiments.

144* Stress distribution in semi-infinite^ elastic wedges. A semi-infi-

nite wedge is a body whose boimdaries consist of two intersecting

planes, as shown in Figure 131a. The wedge is acted upon by the force

of gravity in the direction of OA at an angle a to the line Oi5, which

bisects the angle between the boundaries of the wedge. If one side of

the wedge, for instance OC in Figure 131a, is very steep and is acted

upon by an external pressure q^ro whose intensity increases in direct

proportion to the distance ro from the apex 0 of the wedge, the wedge

represents a simplified section through a concrete gravity dam whose

steep side sustains the pressure exerted by the water in the reservoir.

Therefore the problem of computing the stresses in such a wedge received

early attention. The first rigorous solution of the problem was pub-

lished by L4vy (1898). It is based on the assumption that the wedge
is semi-infinite. On account of this assumption the solution does not

apply to the immediate vicinity of the base of a dam, but it can be
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expected to furnish relatively accurate values for the rest of the struc-

ture, provided the material is perfectly elastic. L6vy proved that the

distribution of the normal stresses on a plane section due to the weight of

the wedge alone or combined with a hydrostatic pressure on one side

of the wedge can always be represented by a straight line, provided the

wedge strictly obeys Hooke’s law.

Fig. 131. (a) Vertical section through infinite wedge whose left-hand face is acted

upon by a fluid pressure; (6) distribution of normal and shearing stresses on

horizontal section through symmetrical wedge due to the weight of the wedge, if

the material is perfectly elastic; (c) as before, if the wedge consists of ideal sand

in state of plastic equilibrium.

Fillunger (1912) solved the same problem by a different method and

arrived at the same conclusion. The following equations represent

Fillunger’s solution. Let

cTr, ~ the normal stresses (positive in compression) at point N in the

direction of the vector r, and at right angles to it, respec-

tively,

T = the shearing stress on planes having normal stresses <r,. and

^ = the angle between the vector r and the line which bisects the

angle 2^i between the sides of the wedge; ^ is positive for a

clockwise deviation from the bisecting line OB and

y = the unit weight of the wedge.

The stresses due to the weight of the wedge are

(Tf “ ry[{a + cos a) cos ^ + (b + sin a) sin yp

—c cos 3^ — d sin 3^] [la]
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and

ce = r7[(3a + cos a) cos ^ + (36 + sin a) sin ^

+c cos 3^ + d sin 3^]

r = ry(a sin ^ — 6 cos ^ + c sin 3^ — d cos 3^)

116]

lie]

wherein

a =
cos a sin 3^1

1

2 (sin ypi + sin 3^i)

sin a cos 3^1

2 (cos ypi — cos 3^i)

cos a

8 cos^
and

sin Of

8 sin^ ypi

The stresses due to the external pressure are

= ^^0 (« cos ^ + 6 sin ^ — c cos 3^ — d sin 3^)

<re = rqo (3a cos ^ + 36 sin ^ + c cos 3^ + d sin 3^)

and

T = rqo (a sin ^ — 6 cos ^ + c sin 3^ — d cos 3^)

wherein

sin 3^1
^

cos 3i^i

16 sin cos^ yj/i 16 cos sin^

[2a]

[26]

[2c]

c
1

16 cos^ ypi

and d = 1

16 sin^ ypi

Evaluation of the preceding equations shows that the distribution

of both the normal and the shearing stresses on plane sections parallel

to the crest of the wedge is governed by a straight line law. If = 0

and a = 0 (symmetrical wedge) the normal stress at every point of a

horizontal section at a depth z below the crest of the wedge is equal to

yz/2 and the shearing stresses increase in simple proportion to the

distance from the center line of the section.

Figure 1316 shows the distribution of the normal stresses Cg and of

the shearing stresses t over a horizontal section MN through one half of

a wedge which is symmetrical with reference to a vertical plane through

its crest and is acted upon only by its weight. Figure 131c represents the

distribution of the corresponding stresses over the horizontal base of a

sand embankment in a state of plastic equilibrium, whose cross section

is identical with that of the wedge OMN in Figure 1316. These stresses

have been discussed in Article 65. There is no doubt that the stresses

in every earth embankment are far more similar to those shown in
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Figure 131c than to those computed by means of equations 1 and 2

regardless of the value of the factor of safety of the slopes with respect to

sliding. As a matter of fact, it is inconceivable that the normal stress

on the base of an earth embankment should be uniform. Hence the

solution represented by equations 1 and 2 corresponds to a limiting case

which is never even approached in practice, except on plane sections

through masonry gravity dams.

As a supplement to equations 1 and 2 Fillunger^s publication contains

the equations for the stresses in a semi-infinite wedge acted upon by
an external pressure which is uniformly distributed over one of its sides.

A mathematical method of computing the stresses in a semi-infinite

wedge with arbitrary boundary forces has been worked out by Brahtz

(1933).

145. Stress distribution in the vicinity of shafts and tunnels in semi-

infinite elastic solids with a horizontal surface. Figure 132a is a section

through a cylindrical shaft in an elastic, semi-infinite solid with a unit

weight 7. Let

z = vertical co-ordinate, measured downward from the hori-

zontal surface,

r = horizontal, radial distance from the Z-axis which is identical

with the centerline of the shaft,

ro = radius of the shaft,

= vertical stress, horizontal radial stress and horizontal ciicum-

ferential stress, respectively; all are normal stresses,

Tr* = shearing stress in the direction of r and z.

Before the excavation of the shaft the stresses at any point at a depth z

are

o’i = 72 ,
Cr — (Tq — KoyZj and = 0 [1]

wherein Kq is the coefficient of earth pressure at rest (eq. 10(1)).

Since the shearing stresses on cylindrical sections are equal to zero, one

can replace the material located within the boundaries of the future

shaft by a liquid with a unit weight Kqj without changing the state of

stress in the surrounding material. The stresses which act at any point

in the material surrounding the shaft can be resolved into two parts.

One part is due to the weight of the material and the other is due to the

pressure exerted by the heavy liquid. The sum of these two stress com-

ponents is equal to the initial stresses given by equation 1, and the

stresses produced by the liquid alone can easily be computed. After a

shaft has been excavated, the shearing stresses along the walls of the
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shaft are equal to zero and the radial normal stresses are also equal to

zero. Therefore the effect of excavating the shaft on the stresses in the

surrounding material is identical with the effect of pumping the heavy

liquid out of a cylindrical hole whose dimensions are identical with those

of the shaft. (Biot 1935c).

By adapting Lamp’s formulas for the state of stress in thick-walled

cylinders subject to internal pressure (Lame 1852, see Timoshenko 1941)

to the computation of the stresses produced by the heavy liquid at a

depth z below the surface and at a distance r from the centerline of the

shaft, one obtains

" A
<7, = 0 [2o]

2

Cr = K^yz “2 [26]

II 1
(2c]

" A= 0 [2cq

After excavation of the shaft, the stresses at any point in the solid

adjoining the shaft are equal to the difference between the initial stresses

(eqs. 1) and those given in equations 2. Therefore they are equal to

<^1
- v'' = yz [3a]

and

Tfz “ 0 [3d]

Westergaard (1940) has derived the same equations by means of the

stress fimction. At the walls of the shaft (r = ro) the radial stress is

equal to zero and the circumferential stress is equal to twice the initial

value of the horizontal stress. The vertical stress ctz (eq. 3a) is equal

to the stress Cz which acted on a horizontal section at depth z prior to

the excavation of the shaft. The distribution of the stresses repre-

sented by equations 3 over horizontal sections is shown in Figure 132a.

If the soil surrounding the shaft is in a state of plastic equilibrium the

distribution of the stresses on horizontal sections is similar to that shown
in Figure 1326 (see Articles 73 and 74).

In all soils, including the stiffest varieties, the stress distribution is
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similar to that shown in Figure 1326, because in the vicinity of the walls

of a shaft the high circumferential stresses ae determined by equa-

tion 3c are likely to be greater than the compressive strength of the soil.

As a consequence these stresses produce a plastic flow of the soil adjoin-

ing the walls of the shaft which continues imtil a state of plastic equilib-

rium or of failure is reached. Hence the stress distribution shown in

Figure 132a corresponds to a limiting case which does not exist in

reality except in the vicinity of shafts in hard and sound rock.

,
Elcfsiic Plasfic

0\z=0 ^ 0\z-0

Fig. 132. State of stress along horizontal sections through material surrounding

a cylindrical hole (a) if material is perfectly elastic and (Z>) if it consists of cohesive

sand which is strong enough to stand up without lateral support.

The reasoning which led to equations 3 can also be used for the pur-

pose of visualizing the effect of a tunnel on the state of stress in a semi-

inflnite elastic solid. To simplify the investigation we assume that the

tunnel is cylindrical and that the value Kq in equations 1 is equal to

unity, in other words, that there is a hydrostatic state of stress in the

solid prior to the excavation of the tunnel. Let

D = the vertical distance between the centerline of the tunnel and

the horizontal surface,

fo = the radius of the tunnel,

7 = unit weight of the solid, and

Crt = radial stress and circumferential stress at an arbitraiy radial

distance r from the centerline of the tunnel, both normal

stresses.

In accordance with the assumption that Kq ^ 1 the initial stress at



412 THEORY OF SEMI-INFINITE ELASTIC SOLIDS Abt. 145

any point of the walls of the tunnel, at depth z below the surface, is

determined by the simple equations

cr'r == a'g == yz [4]

By excavating the tunnel we reduce the radial stress at every point

of the walls of the tunnel from its initial value yz to zero. Therefore

the state of stress at every point of the solid after excavation is equal to

the difference between the initial stress and the stresses produced at that

point by a radial pressure yz on the walls of the tunnel. Such a pressure

can be produced by filling the tunnel with a liquid with a unit weight y
in such a manner that the liquid would rise in a piezometric tube to the

level of the horizontal surface of the solid. In order to visualize the

state of stress produced by the liquid pressure we investigate this state

independently of the stresses produced by the weight of the material

surrounding the tunnel. This can be accomplished by assuming that

the tunnel filled with the liquid is located in a weightless material.

If the depth D (Fig. 133a) is great compared with the diameter 2ro

of the tunnel, the liquid pressure is approximately equal to yD per unit

of area at every point of the walls of the tunnel and the surface of the

ground is located beyond the range of influence of the liquid pressure

on the stress in the adjoining material. Therefore the stresses can be

computed by means of Lam^^s equations for the stresses in tubes with

very thick walls, equations 2. By substituting the values Kq ^ \ and

s jD in these equations, we obtain

= and (rr=-7Z)^ [6]

In the paragraphs dealing with shafts it was shown that the stresses

in the material after excavation are equal to the difference between the

initial stresses and the stresses produced by the heavy liquid. Since we
assumed that Kq equals 1 and that the radius ro of the tunnel is very

small compared to the depth Z), the initial stresses at the walls of the

tunnel (stresses prior to excavation) are approximately equal to

^ « (tJ = i>y

The stresses produced by the heavy liquid are determined by
equation 6. Therefore the stresses after the excavation of the tunnel are

and
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The corresponding distribution of the stresses is shown in Figure 133a.

On the left-hand side of the plane of symmetry of the tunnel the liquid

pressure yD has been plotted from the walls of the tunnel in a radial

direction toward the center of the tunnel. Since it was assumed that

Ko equals unity, the liquid pressure yD is equal to both the circum-

ferential and the radial stress along the walls prior to the excavation

of the tunnel. On the right-hand side the circumferential stresses cr^o

for r = To are shown in a similar manner. The ordinates of the

curves located above a horizontal line through the center of the tunnel

section represent the radial and circumferential stresses ar and

respectively, which act along a horizontal section through the centerline

of the tunnel.

Fia. 133. State of stress along horizontal section through center line of horizontal

cylindrical holes through perfectly elastic material (o) at great depth below sur-

face and (b) at shallow depth. Left-hand side of each diagram represents state

of stress before hole was made. If holes are located in cohesive sand strong

enough to stand without support, state of stress is as shown in (c) and (d).

If the tunnel is located close to the surface, as shown in Figure 1336,

the hydrostatic analogue retains its validity, but equations 2 cannot be

used, because the distribution of the hydrostatic pressure exerted by the

liquid on the walls of the tunnel is not even approximately uniform.

The pressure increases rapidly from the roof toward the bottom. Fur-

thermore the material surrounding the hole cannot be considered as

representing a tube with a very thick wall, because above the roof the

wall is very thin. On account of the weakness of the roof the horizontal

components of the liquid pressure, which tend to force the sides of the

tunnel apart, produce tensile stresses of great intensity at the roof. If

the thickness of the roof were great compared with the diameter of the
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tunnel the circumferential tensile stress at the roof would be approxi-

mately equal to the liquid pressure A reduction of the thickness

of the roof to its real value zq has little effect on the total tensile force

on a vertical section through the roof. Yet it reduces the area which is

acted upon by the tensile force. Hence if the roof is veiy thin the

tension per unit of area of the section must be considerably greater than

yZQ, With increasing distance of a wall point from the highest point of

the roof the vertical distance of this point from the surface increases.

Therefore with increasing distance from the roof point the value of the

circumferential tensile stress approaches the value of the liquid pressure

and at the bottom it may even be smaller than the liquid pressure,

because the stretching of the roof is likely to relieve the tension at the

bottom. These conditions determine the distribution of the tensile

stresses due to the liquid pressure over the walls of the tunnel. The
stresses after excavation of the tunnel are equal to the difference between

the circumferential stresses prior to excavation and those produced by
the liquid pressure. These stresses are represented by the radial width

of the shaded area on the right-hand side of Figure 1336. The circum-

ferential and radial stresses along a horizontal section through the center-

line are equal to the ordinates of the plain curves ae and ar respectively.

K the stresses in the vicinity of the tunnel exceed the yield point of

the soil, the preceding analysis cannot be applied. The stresses corre-

sponding to a state of plastic equilibrium are shown for a deep tunnel in

Figure 133c and for a tunnel at a shallow depth in Figure 133d. The
radial distance between the dotted line and the wall of the tunnel on the

left-hand side of each profile represents the state of stress prior to the

construction of the tunnel.

The problem of computing the stresses in the vicinity of a cylindrical tunnel corre-

sponding to the elastic state of equilibrium has been solved rigorously by Mindlin

(1939). He made the following assumptions regarding the value of the coefficient

of earth pressure at rest Aq contained in equations 1

:

(a) Ko = 1

and

(6) Xo = 7-^ (see eq. 134(3))
1 -p

(c) is:o = 0

The S3rmbol m represents Poisson’s ratio. However, the final equations are so

involved that they cannot be applied to practical problems until they have been

condensed into tables or graphs similar to those which are used in connection with the

equations of Boussinesq. Here again it should be emphasized that the results can

be applied only to hard rock tunnels on the assumption that the rock has not been

injured by the blasting operations. The principal field for the practical application
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of the theory is the computation of the stresses in the concrete at the walls of con-

duits or inspection galleries in large concrete dams. In the vicinity of tunnels through

soil we must expect the stress conditions illustrated by Figures 133c and 133d.

An attempt to investigate the state of stress in the vicinity of tunnels through a

material which does not obey Hooke's law has been made by Schmid (1926). The
final equations are also very cumbersome. However, graphs and tables facilitate

to a certain extent their interpretation.



Chapter XVITI

THEORY OF ELASTIC LAYERS AND ELASTIC WEDGES
ON A RIGID BASE

146. Problems defined. The preceding chapter dealt with the

stresses and the settlement due to loads on the horizontal surface of

semi-infinite masses. It also dealt with the stresses in semi-infinite

wedges. In nature every layer of soil and every wedge-shaped body of

soil rests at a finite depth on a relatively rigid base. In the following

articles the influence of the rigidity of the base of elastic masses on the

state of stress and on settlement will be investigated. The investiga-

tions also include the influence of stratification on the state of stress

produced by surcharges.

Fig. 134. Intensity and distribution of normal stresses on rigid base of elastic

layer beneath flexible strip load and of shearing stresses on vertical sections

through edges of loaded strip.

147. Influence of a rigid lower boundary on the stresses produced
by surface loads. Curve Ci in Figure 134 represents the distribution of

the normal stresses on a horizontal section at depth D through a semi-

finite elastic mass whose surface is acted upon between a and 6 by a load

uniformly distributed over a strip with a width 2R. The shearing

stresses on a vertical section through a are represented by the horizontal

distance between aai and the dash-dotted curve C[. The total shearing

force Si on aai is given by the area aaiCid. The area aia2d20 represents

416
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one half of the total normal pressure Pi on the base ai5i of the prismatic

block aa\hih per unit length of the block. The equilibrium of the block

requires that the sum of the total normal pressure Pi on the base of

the block, and the shearing forces 2Si on aai and bbi should be equal

to the total load Q on ab or

Q = 2Pg = Pi + 2Si [1]

If the layer rests at depth D on the surface of a perfectly rigid layer

the shearing stresses in the lowest part of the vertical sections aai and

bbi are very small compared with those at the same depth in the semi-

infinite solid, because the rigid support prevents free angular distortion

of the material located immediately above the base. If there is neither

adhesion nor friction between the elastic layer and its base, the shearing

stresses at ai and bi are equal to zero. The plain curve C2 represents

the distribution of the shearing stresses over oai on the assumption

that the elastic layer adheres to its base. Yet, for the reasons stated

before, the lower part of the curve C2 is much closer to oai than the

lower part of C(, and the shearing force S2 represented by the area aaiC2d

is smaller than the shearing force Si represented by the area aaiCid.

The sum of 2S2 and the vertical reaction P2 on the base ai6i of the block

must be equal to Q. Hence P2 must be greater than Pi in equation 1.

At the same time the total normal pressure on every horizontal section

must always be equal to Q. A pressure distribution which satisfies

this condition together with the condition P2 > Pi is represented in

Figure 134a by the plain curve 62 - Its maximum ordinate is greater

than that of the curve Ci and its slopes are steeper. The shaded area

a2azdzd2 is equal to the shaded area dciC2 -

148 . Pressure on the rigid base of an elastic layer due to point and

line loads. In order to compute the intensity and the distribution of

the pressure on the rigid base of an elastic layer acted upon by a load

covering a finite area one needs equations similar to Boussinesq^s equa-

tions 135 (la) and 136 (la). These equations can be derived on two
different assumptions. Either it is assumed that there is neither friction

nor adhesion between the elastic layer and its base (frictionless base)

or else perfect adhesion between the layer and the base is assumed
(adhesive base). The problem of computing the pressure due to line

loads has been solved for elastic layers on a frictionless base by Melan
(1919) and on an adhesive base by Marguerre (1931). The equations

for the pressures produced by a point load on a layer with a frictionless

base have been derived by Melan (1919) and for a layer on an adhesive

base by Biot (1936a) and Passer (1935). Biot's solution for a point

load on an elastic layer with an adhesive base may serve as an example
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of the results thus obtained. Let

Q = the point load,

D = the thickness of the elastic layer,

r = the horizontal radial distance between an arbitrary point N on

the adhesive and rigid base of the layer and the line of action

of the load Q,

/X = Poisson^s ratio of the elastic layer, and

P2> = normal unit pressure on the base at point N,

If /X = 0.5 the unit pressure P2> is determined by the equation

^ A
27r

~ 0.039

"[[-(07 [-(01

[-(07 ' [

1 - 5 <01

-(0:r 1

If point N were located in a semi-infinite solid the vertical normal

stress (Tz at point iV', which corresponds to the unit contact pressure p/>,

could be computed by substituting the values

z = D and cos ^ -F z

VD^ +
into Boussinesq’s equation 135 (la). Thus we get

^ A 1 r 1 It

2ir Ll + (r/D)^}

This example shows that the equations representing the pressure on a

rigid base are by no means as simple as the equations of Boussinesq.

The results of the investigations regarding the pressure on a rigid base

beneath a point load are shown in Figure 135a. In this figure the

curve Cb represents the distribution of the normal stresses over a hori-

zontal section at depth D through a semi-infinite mass, acted upon by a

vertical point load Q. It has been computed by means of Boussinesq’s

equation 135 (la). Curve Co represents the corresponding distribu-

tion on the assumption that the plane separating the elastic layer

from the rigid base is perfectly frictionless. If there is perfect adhesion

between the elastic layer and the rigid base the pressure distribution is

as shown by the curve Ca> The greatest ordinate of the curve Co
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exceeds the greatest ordinate of Cj? by about 71 per cent. Perfect

adhesion between the layer and its base (curve Co) reduces this value to

about 56 per cent.

Figure 1356 shows the normal stresses on a horizontal plane at depth D
due to a vertical load g' per unit of length of a straight line at right angles

to the plane of the drawing. Cb represents the Boussinesq solution for a
semi-infinite solid (eq. 136(la)), Co the solution for a perfectly friction-

less rigid base, and Ca the solution for an elastic layer which adheres to its

base. The greatest normal stress on the frictionless rigid base exceeds

the Boussinesq value by about 44 per cent. Perfect adhesion between
the layer and its base reduces this value to about 28 per cent (curve Co).

Fig. 135. Distribution of normal pressure on rigid base of elastic layer acted
upon (a) by point load and (6) by line load. {Sources of data given in text,)

By evaluating the equations represented by the curves in Figures 135a

and 1356, Biot (1935a) found that the maximum ordinates of these

curves, corresponding to points immediately under the load, are as

follows:

Point Load
Section through semi-infinite mass

(curves Cb) 3/27r = 0.477

Rigid base with adhesive surface

(curves Co) 1.557 X 3/27r

Rigid base with frictionless surface

(curves Co) 1.711 X 3/27r

Line Load

2/t = 0.637

1.281 X 2A

1.441 X 2/t

Biot (1936a) also computed the distribution of the normal stresses produced by
point and line loads on a horizontal, perfectly flexible membrane embedded at some
depth below the horizontal surface of a semi-infinite solid. At the surfaces of con-

tact between the solid and the membrane the lateral displacements are assumed equal
to zero. He found that the normal stress on the membran ^ vertically beneath the
load is about 6 per cent lower than the corresponding stress at the same depth on a
horizontal section through a semi-infinite solid.
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149« Elastic layer acted upon by a flexible load on a finite area.

If the load is uniformly distributed over a finite area on the surface of an

elastic layer the rigorous computation of the intensity and the distribu-

tion of the vertical unit pressure on the base of the layer is rather

cumbersome. Cummings (1941) computed the pressure by means of

equation 148(1), represented by the curve Ca in Figure 135a, on the

following assumptions: the load q per unit of area acts on a circular area

with a radius R; Poisson^s ratio of the elastic layer is 0.5; the base of

the elastic layer is rigid and the elastic layer, with a thickness D, adheres

perfectly to the rigid base. On these assumptions he obtained for the

vertical unit pressure Pd on the rigid base beneath the center of the

loaded area the equation

2 1

Pd = g
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The equation for the vertical unit pressure at other points of the rigid

base would be still more complicated. In order to obtain simpler

though less exact equations for the pressure we take advantage of the

following fact. The shape of the plain curves shown in Figures 135a

and b is similar to that of curves which represent the distribution of

the normal stresses on horizontal sections through semi-infinite masses

which are acted upon by the same loads. In order to compute the

vertical pressure at depth D below the surface of a semi-infinite mass

acted upon by a point or a line load we must replace the value z in

Boussinesq's equations, 135 (la) and 136 (la) respectively, by D, By
means of this procedure the curves Cb in Figures 135a and 1356 were

obtained. If we substitute for the value D an appropriately selected

fictitious value D' which is smaller than D the Boussinesq curves become

almost identical with the curves representing the real distribution of

the pressure on a rigid base at depth D. The same procedure can also

be used to estimate the pressure on a rigid base beneath an elastic layer

if the load is distributed over part of the surface of the elastic layer

(Terzaghi 1932). If the load which produces the pressure pn (eq. 1)

acts on the surface of a semi-infinite mass, the vertical normal stress cr.
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at depth D beneath the center of the loaded area is equal to

1

1 + {R/D)
136(4)

The normal stress is smaller than (eq. 1). However, if we replace

the value D in this equation by

jD' = 0.75D [2]

the value becomes practically identical with the value pn (eq. 1).

Hence we can write

Pn =
?

{l - [i + {R/0.75Dy_

In Figure 136a the abscissas of the plain curve represent the exact values

of PD) determined by equation 1, and those of the dashed curve the

values computed by means of the simplified equation 3. The two
curves are almost identical. The distribution of the vertical pressure

over the rigid base of an elastic layer with a depth D is also very similar

to that over a horizontal section at depth 0.75D below the surface of a

semi-infinite mass which is acted upon by the same load. These state-

ments are valid regardless of the shape of the area covered by the load.

Hence the pressure on the rigid base of an elastic layer with a depth D
is approximately identical with the pressure on a horizontal section at

a depth D' = 0.75Z) through a semi-infinite solid whose surface carries

the same load.

The normal stress at point N (Fig. 120a) in a semi-infinite solid be-

neath a loaded rectangular area is determined by equation 136(9).

The influence values 1^ which appear in this equation are given by
equation 136(8). They are a function solely of m = B/z and of n =
L/z. In order to obtain an approximate value for the unit pressure

px) at an arbitrary point N on the rigid base of an elastic layer with a

depth D one must replace the values of m and n in equation 136(8) by

m r B
0.75D

and n'
L

0.75Z)
[4]

The corresponding influence values can be obtained by means of Table

II in the Appendix.

Figures 1366 and 136c show the distribution of the pressure produced

by a load on a strip of infinite length on a rigid base at a depth D below

the surface of an elastic layer. In Figure 1366 the depth D is equal to

0.84 and in Figure 136c it is equal to 0.5 times the width 2B of the strip.

In each figure the ordinates of the dash-dotted curve represent the
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ratio (Tf/g between the normal stresses (t, and the unit load q for a hori-

zontal section at depth D through a semi-infinite mass and those of the

plain lines represent the ratio Pd/q between the unit pressure on a

rigid base at tha depth and the unit load g. A comparison of the data

Fio. 136. (a) Influence of depth ratio on unit pressure on rigid base of elastic

layer beneath center of a circular loaded area; (6) and (c) distribution of pressure

on rigid base of elastic layer acted upon by flexible strip load, for two different

depth ratios. The distribution of the pressure on a horizontal section through

a semi-infinite mass at the level assigned to the rigid base is indicated by dash-

dotted curves.

shown in Figures 1366 and 136c indicates that the influence of the ridigity

of the base on the maximum value of the unit pressure pu is different for

different depth ratios D/B. Combining equations 2 and 136 (2a) it can

be shown that the influence is greatest if the depth D is roughly equal to

five times the width of the loaded strip. For very small and very large

values of D/B the influence is negli^ble.
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The equations given in this article apply only to the stresses at the

base of the elastic layer and in its immediate vicinity, because according

to St. Venant^s principle the influence of the rigidity of the base on the

state of stress in an elastic layer decreases rather rapidly with increasing

elevation above the base. In the upper half of the layer the state of

stress is practically identical with that in an elastic, semi-infinite deposit

which is acted upon by the same load. Therefore the equations con-

tained in this article cannot be used for computing the settlement of a

loaded area on the surface of such a layer.

150. Approximate method of computing the settlement due to loads

on the surface of elastic layers. The problem of computing rigorously

the settlement of loads covering a finite part of the surface of elastic

layers on a rigid base has not yet been solved. However, Steinbrenner

(1934) worked out an approximate solution which is accurate enough for

every practical purpose. He computed the settlement Ap of the comers

of a uniformly loaded rectangular area on the horizontal surface of a
semi-infinite mass. Then he computed the vertical displacement Ap'

of the points located at a depth D below these comers and assumed that

the settlement Ap^ of the corners of the loaded area on the surface of

an elastic layer with the thickness D is equal to the difference Ap — Ap',

or

ApD = Ap — Ap' II]

Let L = the length of a rectangular area,

B = the width of the area,

I = L/B = the length factor,

D = the depth of the elastic layer,

d = D/B = the depth factor,

q ~ the unit load,

E = the modulus of elasticity of the layer, and

p = Poisson’s ratio.

The vertical displacement Ap of the comer of the rectangular area is

given by equations 137(1). The vertical displacement f of a point in

the interior of the semi-infinite mass due to a point load acting on the

surface is determined by equation 135 (4a), and the vertical displacement

Ap' of a point at a depth D below one of the corners of the rectangular

area can be computed by a simple integration. By means of this pro-

cediu*e one obtains

Apd - Ap -Ap' = g|[(l - + (1 - a* - l2o]
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wherein

Fi
(1 +
l(l + + 1 )

and

The value

+ log

r,
Fz = — tan"

(1 + + 1)^ 1 +
I + VP + d^ +

I

1 _

2t' dVp + + 1

/,= (!- V)Fi + (1 - ju - 2V)F2

[2b]

[2c]

[3]

is a pure number. It determines approximately the influence of a

rectangular surcharge which rests on the surface of an elastic layer

with a thickness D on the settlement of the corners of the area. Fig-

ure 137a represents the relation between the depth factor d = D/B
and the values Fi and F2 in equation 3 for different values of the length

factor I = L/B. If Poisson^s ratio /i = 0 the influence value Ip (eq. 3)

is equal to

7, = Fi + F2 for /X - 0 [4]

If /X = 0.5 the second term on the right-hand side of equation 3 is equal

to zero and the influence value is

I, = 0.75Fi for M = 0.5 [5]

For intermediate values of m the value Ip can be computed by means of

equation 3 and the data contained in Figure 137a.

In order to compute the settlement of a point iV located within the

rectangular area shown in Figure 1376 we compute for each one of the

four areas I to IV the values I and d and determine the corresponding

influence values Ipj to Ipiv by means of equation 3 and the data shown
in Figure 137a. The settlement of point N is

P = ^ (7pi-B/ + IpiiBii + IpijiBjii + IpivBjv) [6]

If point N is located outside the loaded area the settlement of the

point can be computed by means of the process of algebraic summation
described in Article 137 and illustrated by Figure 1226.

Figures 138a to 138c illustrate the influence of the depth ratio d =
D/B and of Poisson^s ratio on the settlement of a flexible load on a
circular area with a diameter 2R. If the depth ratio is smaller

than about f and Poisson^s ratio close to one half, the settlement
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( 6)

Fig. 137. Settlement due to load on surface of elastic layer, (a) Graph for esti-

mating settlement of a corner of a loaded rectangular area on surface of elastic

layer with rigid base; (&) diagram illustrating method of estimating settlement

of point located within loaded area. (After Stevnbrenner 1934-.)

is greatest at a distance of about 2R/3 from the center of the area, as

indicated in Figure 138c. This conclusion has been confirmed by field

observations (Terzaghi 1935). Figure 138c also shows that the free

surface of a thin elastic layer rises in the vicinity of the loaded area,

provided Poisson's ratio is close to 0.6.

In Figure 138d the abscissas represent the ratio between the given

thickness Di of an elastic layer and one half of the variable width 2B

of a square area on the surface of the layer which carries a pven unit

load qi per unit of area. By means of equation 6 we obtain for the
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Fia. 138. (a) to (c) Settlement of flexible load on circular area on surface of elas-

tic layer for three different depth ratios; (d) influence of size of a square loaded

area on the surface of an elastic layer on the settlement of the center point of the

area at a given unit load, and (c) influence of the same factor on the unit load

required to produce a given settlement of the center point.
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settlement of the center of the loaded area

wherein Ip is the influence value (eqs. 2 and 3) for square areas. For

such areas the value I in equation 2 is equal to unity. Hence at a given

value p. of Poisson ^s ratio the value Ip depends only on the depth factor

d = D/B, In order to investigate the influence of the width 2B of the

loaded area on the settlement p at a ^ven depth Di of the elastic layer

we write

[7]

[8]

At a given value p the influence value p,- depends only on the ratio B/Dv
Assuming p = 0.5 (incompressible elastic layer) we get for pi correspond-

ing to different values of B/Di the values given by the ordinates of the

curve in Figure 138d.

Figure 138d shows that the settlement is greatest if the width 2B of the

loaded area is roughly equal to 1.3 times the thickness Z>i of the layer.

Figure 1386 illustrates the influence of the width 2B of the loaded area

on the unit load which must be applied on the square area in order to

produce a given settlement pi of the centerpoint of the area. If we
assign to p in equation 8 a constant value pi, we get

E /1\ E

wherein

1 Di

The values qi are given by the ordinates of the curve shown in Figure

1386. The value qi mm is equal to l/p* max = 1/0.45 = 2.2.

151. Distribution of the vertical pressure on a bed of clay between

sand layers. Important settlements have frequently occurred on ac-

count of the gradual consolidation of beds of clay enclosed between

strata of sand. On account of the low permeability of the clay the

compression of the clay occurs very slowly as explained in Chapter XIII.
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Between two beds of sand a layer of clay is laterally almost completely

confined unless the layer is very thick. Therefore the fundamental

assumptions specified in Article 98 are valid and the rate of consolidation

can be computed by means of the method described in Article 102.

In order to illustrate the influence of a process of gradual consolidation

of a bed of clay on the distribution of the stresses we investigate the

state of stress beneath a loaded strip with a width 2B, shown in Figure

139. The load acts on the surface of a bed of sand, which rests at a

depth D on a horizontal layer of clay with a thickness 2H, We assume

that the theory of Boussinesq would be valid for the sand, if it did not

contain a layer of clay.

¥A ‘

1

r 1 1

\
!

1

Sand

1

\Pi'Ps-Pj •'t'L . Sanof
Before coneonaormn— Afier coneoHdcfHon

Fig. 139. Effect of gradual consolidation of bed of clay between two sand strata

on the stresses produced by a flexible strip load in the loaded soil and on the

settlement.

The normal stresses on a horizontal section at a depth D beneath a

loaded strip on the surface of a homogeneous semi-infinite solid are

determined by equation 136 (2a) and the shearing stresses on vertical

sections through the rims of the loaded strip can be computed by means

of equation 136 (2c). In Figure 139 the normal stresses on a horizontal

section at a depth D are represented by the vertical distance between

this section and the dash-dotted curve Ci and the shearing stresses on

the vertical section aai by the horizontal distance between this section

and the dash-dotted curve Ci.

Owing to the low rate of consolidation of clay, a bed of clay acts at

the outset of the process of consolidation like a flexible but practically

incompressible layer, and the distribution of the stresses in this stage

is nearly the same as though the elastic properties of the clay were

identical with those of the sand. In this initial state the deflections of

both the top and bottom surfaces of the bed of clay, p, and pj respec-



Art. 162 ELASTIC WEDGE ON A RIGID BASE 429

lively, are almost identical; they are as indicated in Figure 139 on the

right-hand side of the diagram.

As the process of consolidation proceeds the top surface of the clay

settles more than its base and in the final state of consolidation the

difference between the settlement of the two surfaces may be very

important. The influence of the excessive settlement of the upper

surface on the shearing stresses on vertical sections through the rim of

the surcharge is opposite to that of a rigid base. It increases the shearing

stresses in the vicinity of ai and bi so that the distribution of the shearing

stresses is such as indicated by the curve C2 Figure 139. An increase

of the shearing forces on the two vertical sides of the block abbiai

involves a decrease of the normal pressure on its base. Hence if we
compute the normal pressure on the clay by means of Table II in the

Appendix, which is based on Boussinesq’s equations, the error is on the

safe side. On the other hand the error due to ignoring the influence of

the lack of elastic homogeneity of the sand strata on the distribution of

the pressure (see Art. 141 and Fig. 127c) is on the unsafe side and partly

compensates the error mentioned before.

The settlement due to the compression of the sand strata is usually

neglected. In accordance with this procedure the settlement p of the

surface at any point is equal to the decrease of the thickness of the

clay bed vertically below the point. After consolidation is complete

this decrease is equal to

P = pi — P6 = 2pHm^

wherein p is the normal stress on a horizontal section at mid-height of

the bed of clay, computed by means of the graph in Figure 120&, 2H is

the thickness of the bed, and is the coefficient of volume compression

(eq. 98(5)); the symbols pi and pi represent the settlement of the two

surfaces of the clay stratum.

152. Elastic wedge on a rigid base. Article 144 contains the equa-

tions for the stresses in elastic wedges derived on the assumption that

the sides of the wedges extend to infinity. These stresses are associated

with a troughlike deformation of every horizontal section through the

wedge. Hence if a wedge rests at a finite depth below its crest on a

rigid, horizontal base the distribution of the stresses on the base must

be different from that on a horizontal section through a semi-infinite

wedge. On the basis of the reasoning illustrated by Figure 134 we
should expect that the rigidity of the base increases the normal stresses

on the central part of the rigid base at the expense of the stresses along

the rims. This conclusion is in accordance with the results of a mathe-

matical investigation made by Wolf (1914) on the basis of the assump-
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tion that the wedge adheres to its base. In order to satisfy the condition

that the deformation of the base of the wedge should be equal to zero,

Wolf replaced the stress function F in equation 17(5) by a series of

polynomials and selected the coefficients in the polynomials in such

a manner that the boundary condition at the base is at least approxi-

Normcr! 6-hresses on he

/ (Tj^rigio/base)

Fig. 140. (o) Section through elastic wedge on a rigid base, acted upon by water

pressure; (6) distribution of normal stresses and (c) of shearing stresses along

base of wedge (a to c after Wolf 1914); (d) tensile stresses along upper horizontal

surface of elastic layer with vertical lateral boundary.

mately satisfied. Figure 140a is a section through the wedge which he

investigated. The vertical side of the wedge is acted upon by the

hydrostatic pressure of a liquid whose unit weight is equal to one half

of the unit weight of the construction material of the wedge, and the

inclined side of the wedge rises at 45° to the horizontal. On these

simple assumptions the distribution of the normal stresses on the base,

computed by means of equations 144(1) and 144(2) for the semi-infinite

wedge, should be perfectly uniform as indicated in Figure 1395 by a

horizontal dash-dotted line. The rigidity of the base changes the distri-

bution, as shown by the plain curve. Figure 140c shows the influence

of the rigidity of the base on the distribution of the shearing stresses on

the base. The figures demonstrate that the effect of the rigidity of

the base on the stress distribution at the base is negligible compared to

the difference between the distribution of stresses in a state of elastic

equilibrium and that in a state of plastic equilibrium, illustrated by

Figures 1316 and 131c respectively. For sections at a higher level it

is insignificant, because with increasing elevation above the base the
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stress distribution rapidly approaches that for a semi-infinite wedge.

Further contributions to the mathematical theory of elastic wedges

have been made by Brahtz (1933). The equations which he presents

may apply to concrete dams on a rock foundation but there is no evi-

dence to indicate that the theoretical state of stress which he postulates

has any resemblance to that in an earth dam or in a fill.

Figure 140d is a section through a semi-infinite wedge with one

horizontal and one vertical surface. If we replace the lower part of

the wedge, beneath a depth H, by rigid material, the state of stress in

the wedge becomes identical with that in an elastic layer with a vertical

face and a thickness supported by and adhering to a rigid base.

The dashed line indicates the deformation of the layer due to its weight.

Along its upper horizontal surface the layer is in a state of tension.

From the results of strain measurements on a small gelatine model

the author concludes that the distribution of the tensile stresses along

the horizontal surface is approximately as indicated by the stress area

between the original surface and the plain curve marked ctx (Fig. 140d).

At a distance of about H/2 from the upper rim of the vertical face the

tensile stresses are a maximum. A failure of the bank starts with the

formation of a tension crack at a distance of about H/2 from the rim

of the bank. Once the failure has started it proceeds by shear from the

bottom of the crack to the foot of the bank along a curved surface of

failure.

153. Experimental stress determination based on the laws of simili-

tude and on mathematical analogues. Rigid boundaries complicate the

determination of the stresses produced in elastic material by mass

forces such as the force of gravity or the pore-water pressure, and

mathematical solutions are not yet available for many problems of

practical importance such as that illustrated by Figure 140d. In such

cases, the required information can be obtained from small-scale model

tests. The interpretation of the results of such tests is based on the

laws of similitude. These laws are determined by the general equations

which represent the quantities under investigation. For instance, the

equations of flow nets or the equations representing the distribution of

the stresses due to a surcharge on the surface of an elastic solid can

always be presented in such a form that the coefficients on one side of

the equation are pure numbers. Therefore the quantity on the other

side of the equation is independent of the scale of the model.

If the unlmown stresses are due only to gravity or to pore-water

pressures, the law of similitude is very simple, because such stresses

increase in direct proportion to the linear dimensions of the body.

But the experimental difficulties are very considerable because the
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stresses produced by these forces on small-scale models are extremely

small. When investigating states of stress produced by gravity, Bucky

(1931) eliminated this difficulty by mounting his models on a centrifuge.

Thus he was able to increase the intensity of the mass force and the

stresses due to this force to any desired value. By means of this method

he attempted to determine the safe width of mine workings at different

depth below the surface (Bucky 1934).

Another method of overcoming the experimental difficulties is the

employment of mathematical analogues. Many of the differential

equations used in hydraulics and in applied mechanics are identical

with differential equations expressing fundamental relations in other

fields, such as flow of heat or diffusion. The existence of such an identity

establishes a mathematical analogue. One mathematical analogue has

been described in Article 100, and many others are known (Timoshenko

1934). If the boundary conditions for a specific problem in one realm

of physics are selected in such a way as to correspond to those in another,

as explained in Article 100, the solutions of the differential equation for

both problems are numerically identical.

One of the best-known mathematical analogues is the soap film analogue for the

state of stress due to torsion (Prandtl 1903, see Southwell 1936). On account of

this analogue the deflection of a uniformly stretched soap film is identical with

the stress function in the differential equation for torsion, provided the following

conditions are satisfied. The area covered by the soap film must be similar to the

section through the bar under torsion, and the film must be acted upon by a imiform

pressure which can, for instance, be produced by a one-sided air pressure. Once
the stress function is known the stresses can be determined by graphic integration

or some other process. It is relatively simple to measure the deflection of the film,

but it is impossible to measure the stresses in the bar. A membrane analogue has

been used by Brahtz (1936) to determine the pore-water pressure at the impermeable

base of permeable storage dams.

Hence the existence of mathematical analogues permits a simple

experimental solution of many difficult theoretical problems. The
practical value of the results depends on the importance of the difference

between the properties of the soil used in construction and the ideal

material to which the analogue applies. In soil mechanics the differ-

ence is usually so important that the field for the practical application of

the analogue method is rather limited.

134. Photoelastic method of stress determination. The photoelas-

tic method is based on Brewster's law which states that stress causes

every optically isotropic material to become doubly refracting. When
passing through a sheet of transparent material under stress, a ray of

polarized light is resolved into two rays, one of which is polarized in a
plane at right angles to one of the principal stresses, a/, and the other
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one at right angles to the other principal stress, cr/j. The phase differ-

ence between the two rays increases in direct proportion to the difference

<^1 o-jj between the two principal stresses. By measuring the position

of the planes of polarization of the two rays and their phase difference

one obtains all the data required to trace the trajectories of the stresses

and to compute the difference between the principal stresses for every

point of the photoelastic model. The data required to compute the sum
of the principal stresses can be obtained by measuring the change of the

thickness of the model due to the application of the stresses, by a soap

film test based on a mathematical analogue discovered by Den Hartog,

or by other independent methods (Southwell 1936). Quite recently

Brahtz and Soerens (1939) described a procedure for the direct deter-

mination of individual principal stresses.

The model is made of glass, celluloid, bakelite, phenolite or some

other transparent material. It is mounted at right angles to the path of

a beam of polarized light and subjected to a system of forces in accord-

ance with the problem under consideration. In most test arrangements

the plane of polarization of the ray which enters the model remains

stationary while the model can be rotated around an axis parallel to

the beam of light and shifted in two directions at right angles to each

other and to the beam of light (Coker and Filon, 1931). The trajec-

tories of stresses can be determined graphically.

The technique described in the preceding paragraphs can be used only

for the investigation of plane states of stress. However, quite recently

successful efforts have been made to apply the photoelastic method to

the investigation of triaxial states of stress (Hiltscher 1938).

The photoelastic method is extensively used by the U. S. Bureau of Reclamation

for determining stresses in concrete structures. The limitations of the method in

connection with problems of soil mechanics are identical with those of the theory

of elasticity in general. (See Article 132.)



Chapter XIX

VIBRATION PROBLEMS

155. Introducdon. If an elastic or elastically supported structure,

such as a water tower or a tall building, is temporarily forced out of its

normal position by an impact or by the sudden application and removal

of a force, the elastic forces in the supporting earth and in the members

of the structure are no longer in equilibrium with the external forces and

vibrations ensue. The disturbance of the static equilibrium can be

produced by earthquakes, explosions, operating machinery, traffic,

pile-driving operations, and many other agents. The amount of dis-

turbance of the equilibrium produced by a single impulse can be ex-

pressed either by the intensity of the force which causes the disturbance

or by the distance to which the force removes the center of gravity of

the structiure from its equilibrium position. The force is called the

disturbingforce, and the displacement produced by the force is the initial

displacement

If the elastic support of a rigid system is of such a nature that the

system can only vibrate parallel to a given straight line or in a plane

about a fixed axis the system is said to have only one degree of freedom.

Otherwise it has two or more degrees of freedom. The degree offreedom

is equal to the number of quantities or coordinates which are required

to define the displacement of the body. In the most general case the

movement of a rigid system can be resolved into three translatory and

three rotational components. Each one of these components can be

defilned by a single value. Therefore a rigid system can have no more

than six degrees of freedom. Since the relative position of the particles

of such a system does not change, the system is called a single mass

system. On the other hand if a system consists of several relatively rigid

bodies which are connected with each other by relatively flexible mem-
bers one has to deal with a multiple-mass system.

The vibrations caused by a single impulse are called free vibrations.

The time between two successive arrivals of any one particle in its

extreme position in a given direction is the natural period of the vibra-

tion for this direction. An elastically supported rigid system with a

single degree of freedom has only one natural period. If a system has

several degrees of freedom the natural frequency of the components of

its free vibrations can be different.

484
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In contrast to the free vibrations produced by a single impulse, the

vibrations produced by a periodic impulse with an arbitrary period are

called forced vibrations. A periodic impulse can be produced by operat-

ing machinery, street traffic, pile-driving operations, and many other

causes. If the origin of the periodic impulse is distant from the struc-

ture, the impulse reaches the base of the structure through the subgrade.

Within the subgrade the impulse travels like a sound wave. As time

goes on, the distance between the seat of the impulse and the outer

boundary of the zone which vibrates under the influence of the impulse

increases. This outer boimdary is the wave front. The velocity with

which the wave front advances represents the velocity of wave propaga^

tion. Since it depends to a large extent or entirely on the elastic proper-

ties of the subgrade, it is possible to utilize vibration methods for the

purpose of ascertaining certain elastic properties of the subgrade without

sampling and testing.

The major part of this chapter deals with the influence of the mechan-

ical properties of the soil on the vibrations of superimposed structures

and the influence of the vibrations on the settlement of the structures.

To demonstrate these influences it suffices to consider the rectilinear

vibrations of single-mass systems with one degree of freedom. The
theory of the effect of the vibrations on the structures themselves is

beyond the scope of this book.

In order to grasp the fundamental principles of the subject it is sufficient to know
the theory of undamped free and forced rectilinear vibrations. In order to be able

to understand the publications dealing with the effect of vibrations on structures and

their foundations the reader also needs a knowledge of the damping effect. The
methods of designing engine foundations involve in addition the theory of

vibrations about a fixed axis of rotation. The theory of undamped vibrations appears

in the following articles in large print, the theory of damped vibrations in small

print and for the theory of vibrations about a fixed axis the reader is referred to

general textbooks, such as Timoshenko (1937).

This chapter also deals with the exploration of soil conditions in the

field by means of vibrators, with the principles of seismic soil explora-

tion, and with the mechanical effects of earthquakes.

The contents of the entire chapter are limited to an elementary expo-

sition of the fundamental principles of the subject. However, special

attention will be called to the controversial character of the assumptions

on which the theories of vibrations in soils are based. Many of the

publications in this field, particularly those which deal with engine

foundations and with soil exploration by means of vibrators, fail to

mention the appalling approximations involved in the computations.

Hence an unprepared reader may be led to overestimate the reliability

of the results*
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136. Free harmonic vibrations. Figure 141a shows a prismatic

block with a weight W supported by a bed of identical, uniformly

spaced, and perfectly elastic springs. This arrangement corresponds

to the mental picture on which the concept of subgrade reaction

(Art. 124) is based. If a centric vertical load Q is applied to the block,

Fia. 141. (o) Piston on spring support for demonstrating free vibrations; (6 to d)

three different graphic representations of vibrations of piston.

the block descends through a distance x. The load q per unit of the

area A of the base of the block is g = Q/A. Since the springs are per-

fectly elastic, the ratio

- = k, (gm cm“®) [1]
X

is a constant. This equation is essentially identical with equa-

tion 124(1). The value k, represents the coefficient of subgrade reac-

tion for a block or a footing supported by a spring bed. The ratio

— = c, (gm cm“^) = Ak, [2]
X

is called the spring constant of the support of the block. The spring

constant represents the total load required to move the block in the

direction of the force exerted by the load through a distance 1.

Application and subsequent sudden removal of a vertical load Qi
on the block shown in Figure 141a causes the block to vibrate, whereby
its center of gravity moves up and down on a vertical line through its

original position.



Abt. 156 FREE HARMONIC VIBRATIONS 437

The following computation of the vibratory movement of the block

is based on the assumptions that the block is rigid, the mass of the

springs is negligible compared with that of the block, and the movement
of the block is resisted by no friction forces whatsoever.

At a time t after the load Qi was removed the center of gravity of the

block is at a distance x (Fig. 1416) from its original position Og, The
velocity of every particle of the block is equal to dx/dt and the accelera-

tion equal to d^xjdt^^, Newton^s second law of motion states that the

product of the mass of a body into the acceleration is equal to the force

which acts on the body in the direction of the acceleration. This con-

dition can be expressed by the equation

131

wherein g is the acceleration due to gravity and Q is the force required to

maintain the center of gravity of the block at a vertical distance x from

its original position Og. When written in this form the condition con-

stitutes what is known as D^Alembert^s principle of rectilinear motion.

From equation 2 we obtain

whence
Q = CtX

W d^^x
.

g de + 0 [4]

The solution of this equation is

x = Cl sin + C2 cos

wherein Ci and C2 represent the constants of integration. Counting the

time from the instant when the center of gravity of the block passes

through its equilibrium position for the first time and the displacement

x positive in an upward direction, the solution must satisfy the con-

dition X = 0 if < = 0, which requires C2 = 0 and

X — Cl sin

Until the instant when the disturbing force Qi ceases to act on the block

the displacement of the center of gravity is

Qi

Cb
X — a [6]
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This condition is not satisfied unless Ci = a. Therefore

[6]

The term ^c^gI

W

has the dimension 8ec“^ or that of an angular

velocity

O) = [7]

which is equal to the ratio between the velocity of the movement of a

point along a circle and the radius of the circle. The angular velocity w

represented by equation 7 is a constant and is called the natural circular

frequency of the vibration produced by the impulse. Substituting u>

in equation 6 we obtain

X = asm cat [8]

This relation can be represented by means of a vector with a length a,

which rotates with a constant angular velocity co around the equilibrium

position of the center of gravity of the block, as shown in Figure 141c.

At any time t the distance x (eq. 8) is equal to the vertical distance be-

tween the moving end of the rotating vector and the horizontal diameter

of the circular path of this end. Vibrations which satisfy equation 8 are

called harmonic vibrations.

Another method of representing equation 8 graphically is illustrated

by Figure 14Id. It consists in plotting the distances x against time.

The curve thus obtained is a simple sine curve.

The time r required for the vector in Fig. 141c to move through a
complete circle is equal to the time interval which corresponds to a

complete wave in Figure 14Id. It is determined by the equation

T(a = 2'7r

or

The value r is called the period of the vibration. The number of cycles

per unit of time,

is ihB frequency of the vibration.

The preceding equations were obtained on the assumption that the vibrato^
movement of the block is resisted by no friction force whatsoever. In reality this
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condition is never strictly satisfied. As a consequence the amplitude of the vibra-

tions gradually decreases and finally becomes equal to zero. This process is known
as damping. If a rigid system rests on the soil the damping is chiefly due to the

viscous resistance of the soil to rapid deformation. Our knowledge of this resistance

is still inadequate. For the time being it is generally assumed that the damping
force is equal to the rate of deformation of the soil times a constant c^. This con-

stant has no relation to the other elastic constants of the soil. If a footing rests on
the soil the rate of deformation of the soil at a time t is related to the velocity dx/di

with which the base of the footing moves at the time t. Therefore it is assumed
that the damping force is

dx
Pd « Cd (gm cm ^ sec) --- [llj

at

The spring bed shown in Figure 141a represents an imaginary substitute for the

earth support of a footing. In order to introduce a damping force into the system

which is independent of the elastic properties of the spring bed one can connect the

Fig. 142. (o) Spring-supported piston connected with dash pot for demonstrating

damped free vibrations; (6) graphic representation of movement of piston.

block with a small piston surrounded by a viscous liquid which is contained in a

stationary vessel, as shown in Figure 142a. Such vessels are known as dash pots.

The damping force Pd exerted by the viscous liquid is approximately determined by

equation 11. D’Alembert’s principle requires that

W d^x
.

dx
.

To ^
g dr dt

0 [12]

The constant Cd has the dimension gm cm**^ sec and the dimension of the spring con-

stant c, is gm cm~^. In order to establish uniformity in the dimensions of the

coefficients it is customary to express the value c, in terms of the circular frequency cd,

equation 7, and to replace Cd by the term

Cd [13 ]

wherein the coefficient X also has the dimension of a circular frequency, which is sec

The coefficient X is known as the damping factor. From equation 7 we get
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Replacing the values of Cd and in equation 12 by those given above we obtain

Ip -f- 2X -f" o)^x — 0
at

(141

By solving this equation it has been found that the effect of the damping force on

the vibrations depends on the value (See for instance Timoshenko 1937.

)

If this value is real (high values of the damping force) the initial displacement does

not produce any vibration at all. Instead of vibrating, the block slowly returns to

its equilibrium position at a decreasing rate and reaches this position at time inhnity.

This is known as the overdamped condition. On the other hand, if VX^ — is

imaginary (low values of the damping force) the sudden removal of the disturbing

force causes the block to vibrate, but the period ra of the vibrations is slightly smaller

than the natural period t of the block. This is the normal case. Since the difference

between the period ra of the vibration and the natural period r of the block is very

small, it will be disregarded and we assume ra - r.

Figure 1426 represents the relation between time and displacement for the normal

case. If On and Un+i are the ampUtudes for any two successive oscillations the

ratio On/an+i is a constant

On+l

or

log On - log On+l « tX [15]

This value is called the logarithmic decrement. It expresses the intensity of the

damping effect. The values On, Un-i, and r are obtained by direct measurement

of the amplitude of the free vibrations of the block. Hence the value X can be com-

puted by means of the simple equation

X (sec~^) = ~ log 116]
T On+l

157* Forced harmonic vibrations. The vibrations of a system are

said to be forced if the impulse which causes the vibrations is repeated

periodically. Pulsating storm winds and the vibrations of the base of a

building due to pile-driving operations are examples of such periodic

impulses. In order to explain the essential characteristics of forced

vibrations we assume that the elastically supported block with a weight

TF, shown in Figure 143a, is acted upon in a vertical direction by a

periodic impulse whose intensity is determined by the equation

Q = Qi sin u)it [ 1 ]

If X denotes the vertical displacement of the block at time t, D^Alem-

bert's principle requires that

n .~^
wherein c, is the spring constant of the elastic support. By means of
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equation 156(2) one obtains for the vertical displacement ai produced
by Qx the value

whence

and

Oi —

Wd^x
.— + XCa = aiCa Sin cait

Q cLt

[21

[31

(c)

Fiq. 143. (a) Piston on spring support with natural circular frequency 6io acted

upon by periodic impulse to demonstrate undamped, forced vibrations; (6) re-

lation between circular frequency ratio coi/wo and magnification factor; (c to d)

graphic representation of forced vibrations for three different values of circular

frequency ratio.

Expressing the value c, by means of equation 156(7) in terms of the

natural circular frequency wq of the block we get



442 VIBRATION PROBLEMS Abt. 167

The solution of this equation is

X =
ai

1 — COi/cOo

(sisin odit
wi

. ,— sin wqI
a>o )

[6J

Equation 5 demonstrates that the vibration of the block can be resolved

into two parts. The first one

X
/ .

2/2 ^1^— Wi/a>0
I6al

is a forced vibration with a circular frequency wj and an amplitude

_/ AT-

wherein

jy 1

1 - 0^1/4

[6b]

[6c]

is called the magnification factor. Plotting the value N against the

ratio coi/a>o we obtain the curve shown in Figure 1436. For wi/wq = 1

its ordinate is equal to infinity. This is the resonance condition for the

undamped forced vibration. The second part

^ == m ““ sin [7a]
1 — Wi/Wo Wo Wo

is a free vibration with a circular frequency wo and an amplitude

o" = OiiV- [76]
(00

In order to illustrate the character of the resulting vibration the curves

shown in Figure 143c have been plotted. They represent the vibrations

of a spring-supported block whose natural circular frequency (oo is equal

to twice the circular frequency of the impulse. The period of the impulse

is Ti = 2t/(oi. In the diagram the thin dotted line represents the vibra-

tion which the pulsating disturbing force Q would produce if it acted

statically. On accoimt of the dynamic action of this force the real

vibration of the block is different. The heavy dashed curves shown
within a distance ri from the origin represent the two components of the

real vibration and the plain curve located beyond a distance ri represents

the total real vibration.

An investigation of the influence of the ratio wi/uq on the amplitude

of the resulting vibrations by means of equation 6 leads to the following

conclusions. When the frequency <«>i of the impulse approaches the
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natural frequency ojq of the system the vibration assumes the character

of a vibration with a circular frequency and a variable amplitude as

shown in Figure 143d. This phenomenon is called heating. For == wq

the period of the beats become equal to infinity. As a consequence the

amplitude increases in simple proportion to time, as shown in Figure 1436,

and approaches the value infinity. This figure illustrates the phenom-

enon of resonance. The resonance is due to the fact that each new
impulse reaches the block exactly at the time when the block is in an

extreme position. Thus the eflfect of the successive impulses is additive.

Equation 5 also discloses the following relation. If the ratio coi/wo

is very small, i.e., if the natural frequency of the system is very high

compared with the frequency of the impulse, the magnification factor is

equal to unity and the vibration of the system is identical with that of

the impulse. On the other hand, for very high values of coi/wo the

magnification factor is almost equal to zero and the impulse

produces a vibration with the circular frequency coq and a very small

amplitude, aioio/cci.

Furthermore, if the ratio coi/a>o is smaller than unity the magnification

factor N (eq. 6c) is positive and if wi/wq is greater than unity it is nega-

tive. This abrupt change of sign at coi/cuq == 1 has the following physi-

cal significance. If wi/ojo is less than unity the impulse and the forced

vibration represented by equations 6 are synchronous. If wi/cjo is

greater than unity, the impulse precedes the forced vibration by half a

period. This time lag of the forced vibration is called a phase difference.

Since each of the two components of the resultant vibration is a

simple harmonic vibration, each can be represented by the vertical com-

ponent of the movement of the free end of a rotating vector (Figure

141c). If the two components of a vibration are not synchronous

the rotating vectors which correspond to the components must form an

angle, called the phase angle. A phase difference of half a period requires

a phase angle tt. Since the phase difference between the two components

of an undamped, forced vibration is either equal to zero (wi/wq < 1) or

equal to half a period (wi/wq > 1), an increase of the value coi/wq

beyond unity involves an abrupt increase of the phase angle from zero

to x. For damped forced vibrations the phase angle increases gradually

from zero to x. (See below.)

The greatest vertical pressure exerted by the periodic impulse on the

spring bed is equal to

Pa ®max

wherein Onua is the greatest amplitude of the forced vibrations. Figure
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143c shows that Omax cannot be greater than + a", whence

Pa ia' + a")c.

The value Pa represents an upper limiting value for Pa- In the follow-

ing computations it will be assumed that Pa = Pa- The values of a'

and a'' are given by equations 66 and 76 respectively. Substituting

these values in the preceding equation one obtains

Since ai = Qi/cg (eq. 2) one can write

Pa = ±QlN (l + -) = ±Ql [8]

wherein N is the magnification factor (eq. 6c) and wi/wq is the ratio

between the circular frequency of the impulse and the natural frequency

of the block. The force Pa represents the greatest value of the pressure

exerted by the impulse on the spring bed. Hence the total vertical

pressure on the spring bed varies between the limits

W + Pa and FT — Pa

Equation 8 shows that these limiting values depend not only on the

magnitude of the disturbing force Qi but also on the ratio wi/wq.

If the block is connected with a dash pot, as shown in Fig. 142a, it is acted upon

W d^x
not only by the disturbing force Q (eq. 1), by the inertia force -r

,
and the re-

g dt^

action xc^ of the spring bed but also by the damping force

Since

one can write

^ (iaj

P.-C.-

<S4 “ 2X—

Pd = 2X

9

W ^
g dt

166(11)

166(13)

wherein X (sec ^^) denotes the damping factor. The force Pd must be added to the

forces represented on the left-hand side of equation 3. Thus one obtains

W dh W dx+ 2X + »c, « Oic, sin uit
g dr g dt

Expressing the value c, by means of equation 166(7) in terms of the natural circular

frequency wo of the block we get

d^x dx n •+ 2X 0^ « aiwo sin [9]
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Like the vibration represented by equation 4, the vibration determined by the

preceding differential equation consists of two parts, one free and one forced vibra-

tion. However, if damping takes place, the free vibration is rapidly obliterated by the

damping force. Therefore it is customary to disregard the free vibration and to

identify the total with the forced component

X ^ ai sin (sin CO i< — arc tan
Wo

2(oiX "j

{10 ]

Introducing the symbols

and

we obtain

Ni =

V[-(s)T-(rJ©*

2coiX
a arc tan -o ^

Wq — Wj

X «= a\Ni sin (wif — a)

[lla^

im

flic]

This is the equation of a harmonic vibration whose frequency is equal to the fre-

quency of the impulse. The value Ni represents the magnification factor. The
forced vibration lags behind the impulse, and the importance of the lag is determined

by the phase angle a (eq. 115). The amplitude of the forced vibration is

aiNi
ai

112]

Hence the greatest pressure exerted by the impulse on the spring bed is

Pa == c,a « c^aiNi = QiNi [13]

wherein represents the magnification factor for damped, forced vibrations (eq.

11a).

The amplitude a (eq. 12) is a maximum for

wi wi rea wo

This is the condition for resonance. Introducing this value into equation 12 we
obtain for the amplitude at resonance

Oxnax

Plotting the value Ni (eq. 11a) against the ratio wi/wq we obtain a curve similar

to those shown in Figure 144a for values of 2X/wo « 0.2 and 0.5 respectively. The
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figure shows that the value of wi/o>o for resonance is close to unity. Therefore it is

customary to simplify the resonance condition by assuming that the circular fre-

quency for resonance, tax res» equal to wo or

res = ^0 [14]

Fia. 144. Damped, forced vibration of spring-supported piston with natural

circular frequency wo. (a) Magnification factor and (c) phase angle for three

different values of damping factor X, both plotted against circular frequency

ratio wi/wo; (h) representation of vibration of piston by means of a rotating vec-

tor labeled Nxai,

The amphtude 0^^^ is determined with sufficient accuracy by the equation

Omax = ^ flSl

At any time t the periodic disturbing force Q (eq. 1 ) is equal to

Q = Qi sin wi^ = oic« sin wi<

If the spring bed were acted upon by no other force the vertical displacement at time

i would be

y =* — = oi sin wi<

The real displacements of the block are given by equation lie,

X “ aiNi sin (wif — a)

These displacements are identical with the vertical component of the displace-

ments of the moving ends of two vectors with a length oi and aiNi respectively

which rotate with a circular frequency wi, as indicated in Figure 1445. The angle

between the two vectors is equal to the phase angle a. At any time t the distances
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y and x are equal to the vertical distance between a horizontal axis through the center

of rotation and the moving end of the vectors ai and Niai respectively. Plotting the
phase angle a (eq. 115) against the values of wi/wo we obtain a curve similar to those

shown in Figure 144c for values of 2\/m ^ 0.2 and 0.5 respectively. For X = 0

(undamped vibration) we obtain the vertical line labeled X = 0 instead of a curve.

This line expresses the abrupt increase of the phase angle at wo/coi = 1 from zero to

associated with undamped, forced vibrations.

158. Coefficient of dynamic subgrade reaction. In Article 156 it

was demonstrated that the spring constant c* and the coefficient of sub-

grade reaction of the spring bed shown in Figure 141a are connected

by the simple relation

Cg — Akg

or

wherein A is the area of the base of the block. According to the theory

of subgrade reaction (Chapter XVI) the spring bed shown in Figure 141a

represents the mechanical equivalent of a real earth support. In reality

the analogy is very incomplete because the value kg for a uniform spring

bed is independent of the size of the loaded area, whereas the value k, for

an earth support depends on the size of the loaded area and on several

other factors which are independent of the elastic properties of the soil

(see Art. 124).

However, at the time when the theory originated it was generally

believed that kg (eq. 1) was a constant not only for a given spring bed

but also for a given soil and that the settlement of a foundation could be

determined if kg was known. Therefore the simple theoretical relation

expressed by equation 1 suggested the idea of determining the value of

the coefficient of subgrade reaction kg of a given soil by means of a vibra-

tion test. This can, for instance, be done by placing a thick steel disk

on the surface of the soil, subjecting the disk to a pulsating force with a

variable frequency, and measuring the amplitude of the forced vibrations

produced by the impulse. The disk and the source of the impulse

together constitute a vibrator. According to Article 157 the amplitude

of the vibrator is greatest if the frequency /of the impulse is equal to the

natural frequency /o of the vibrator. From equation 156(10) we obtain

whence
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and

A 9

wherein A is the area of the base of the vibrator and W the weight of

the vibrating system.

The weight W in equation 3 is equal to the sum of the known weight

Wi of the vibrator and the unknown weight W, of the body of soil which

participates in the vibrations of the system. Hence we can write

Wi +W,
9

[3]

The experimental method of estimating the unknown weight Wr will be

described below.

Equation 3 is based on the tacit assumption that the weight Wr of

the vibrating soil constitutes part of the weight of the rigid vibrator

and that the seat of the forces of elastic restitution has no weight. In

reality the system operates rather like a rigid mass with a weight Wi
(weight of the vibrator) supported by springs with a weight Wr. In

order to get a more accurate conception of the interaction between the

vibrator and the supporting soil it is necessary to take into consideration

the mass forces which act on the soil located beneath the base of the

vibrator. This has been accomplished by E. Reissner (1936) on the

simplifying assumption that the vibrator rests on the horizontal surface

of a semi-infinite elastic-isotropic mass. However, no attempt has yet

been made to apply the results of this analysis to the practice of vibrator

investigations.

In spite of the inconsistencies in the theoretical concepts on which the

interpretation of the test results was based the investigation of soils by
means of vibrators brought out various facts of considerable practical

importance. The following is a summary of the results which have been

obtained to date.

The natmal frequency of a vibrator with a given weight and a given

base area is directly related to the elastic properties of the subgrade.

The more compact and less compressible is the subgrade the greater is

the spring constant. Therefore vibrators can be and have been success-

fully used to determine the relative degree of compaction of artificial

fills consisting of sandy soil. For similar reasons there is a definite

relation between the natural frequency of the vibrator and what is con-

sidered on the basis of general construction experience the allowable

bearing value for sandy subgrades. The following data abstracted from

Lorenz (1934) illustrate this relationship.
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Type op Soil
Frequency
/in 8BC“^

Allowable Bearing
Value in

tonb/bq. ft.

Loose fill 19.1 1.0
Dense artificial cinder fill 21.3 1.5

Fairly dense medium sand 24.1 3.0

Very dense mixed-grained sand 26.7 4.5

Dense pea gravel 28.1 4.5
Limestone 30 —
Hard sandstone 34 —
The natural frequencies given in the table are those obtained by means
of a vibrator with a weight of 6000 pounds whose base covers an area of

about 11 square feet. The results of seismic observations suggest that

every mass of soil with fairly well defined boundaries has a natural

frequency of its own. However, this frequency is not identical with the

natural frequency obtained by a vibrator test on the surface of such a

mass (Ramspeck 1938).

In connection with the table it should be emphasized that both the frequendes

and the allowable bearing values apply only to the general characteristics of the

Bubgrade and not to a definite settlement, because the settlement of an area which

carries a given unit load depends on several factors other than the mechanical

properties of the subgrade (see Art. 142).

It has been found that the values of ka obtained by means of equation 3

are consistently considerably larger than those obtained by means of

static loading tests on the same area. For this reason the ratio between

unit load and settlement determined by means of a vibrator test will be

designated by another symbol

The value da is called the coefficient of dynamic subgrade reaction. It

represents the dynamic equivalent of the coefficient of subgrade reac-

tion ka (eq. 124 (1 ) ) . When applied to the computation of the settlement

Ap produced by a change Ap of the vertical pressure, equation 124(1)

is valid only for positive values of Ap, because the settlement p in this

equation includes both the reversible and the permanent settlement.

On the other hand equation 4 is valid for both increase and decrease of

the pressure.

Information regarding the influence of different variables, such as the size of the

loaded area on the value of the coefficient of d3nmmic subgrade reaction is still

rather incomplete. Lorenz (1934) states that the influence of the size of the loaded

area on the value of for sand is insignificant. On the other hand, according to

Figure 10 in Seismos (no date), which represents the results of field tests on dense,

loamy pea gravel, an increase of the load^ area from 0.25 to 1.00 square meter was
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associated with an increase of da from 15 to 23 kg cm”® at a unit load of 0.6 kg cm”*
and from 27 to 34 kg cm”® at 1.5 kg per square centimeter. These figures also

imply that da increased with increasing values of the unit load whereas the coeffi-

cient of static subgrade reaction ha usually decreases with increasing unit load.

According to Figure 5 in Lorenz (1934) the value of da for sand also decreases with

increasing unit load.

If the frequency of the impulses imparted to a soil by a vibrator

increases, the 'settlement of the base of the vibrator begins to increase

^pidly as soon as the frequency /i becomes greater than about one half

or two thirds of the natural frequency /o

of the soil-vibrator system. As the fre-

quency approaches the value /o the set-

tlement of the base of the vibrator

becomes many times greater than the

settlement corresponding to the static

equivalent of the inertia pressure in-

volved. The range of frequencies within

which the impulse produces excessive set-

tlement will be referred to as the critical

range. The critical range seems to in-

clude the frequencies between about 0.5/o

and 1.6 /o and to be fairly independent of

the size of the vibrator. Hence if the fre-

quency of the vibrations of a foundation

on sand are within the critical range for

the frequency of a vibrator operating on

the same sand, excessive settlement

should be anticipated. The knowledge

of the relation between frequency and

settlement became a vital factor in the

design of the foundation for rapidly re-

volving machines on sand strata. It

was also instrumental in the development

of heavy machinery for artificially com-

pacting sandy fills.

(d)

0.5 1.0

Ratio Wi/cJq

1.5 2.0

Fig. 146. (a) Diagram illustrat-

ing principle of Degebo vibra-

tor; (6 to d) illustrate the in-

fluence of the frequency ratio

on amplitude, rate of work,

and settlement.

Most of the aforementioned investigations

have been carried out since 1930 by the Degebo

(Deutsche Gesellschaft fiir Bodenmechanik).

The same institution has worked out the theoiy

The reports on the test results are not easily

accessible, and very little has been published in English. The following review of

the theory and practice of the procedure is entirely based on the publications of the

Degebo.

of the procedure (Degebo 1933).
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The vibrator developed by the Degebo produces periodic impulses by means
of two equal weights NW which rotate about parallel axes in opposite directions in

such a manner that the common center of gravity of the two weights moves up and
down on a vertical line between the extreme positions a and b, as shown in Figure
145o. The number of revolutions, /i per unit of time, of the weights can be varied

between wide limits. According to equations 156(10) the circular frequency of the

periodic impulse produced by the weights is

2ii/i

and the period is

h

151

[6]

Each of the rotating weights is acted upon by a centrifugal force

AF 2
1
“ wi r

0

wherein g is the acceleration of gravity and r the eccentricity. At a given num-
ber of revolutions the force Qi can be varied by changing the eccentricity r of the

rotating weights. Since the two weights rotate synchronously in opposite directions,

the horizontal components of the centrifugal forces cancel each other and the vertical

ones represent a periodic disturbing force with the intensity

wherein

Q • Qi sin (t)it

2AW 2 .

7*0)1

Q
Coil sin wjf

C
2AF

g
r

[7a]

I7b]

is a constant which depends only on the design of the vibrator and on the eccen-

tricity r. The rotating weights are mounted on a heavy base plate covering an

area A. The total weight of the base plate and of the machinery supported by the

plate is Wi. The pulsating force Q (eq. 7a) produces a forced, damped vibration in

a vertical direction not only of the vibrator but also of the soil located immediately

below the vibrator. According to definition the spring constant c, in the differential

equation of the process, 167 (9), is equal to the force required to produce a reversible

displacement equal to unity of the center of gravity of the vibrating system in the

direction of the vibration. The load per imit of area required to produce a reversible

settlement equal to unity of the surface of the subgrade is equal to the coefficient of

d3mamic subgrade reaction d,. Therefore the spring constant for a vibrator with a

base plate covering an area A is

c» = dgA

provided we tolerate the assumption that the vertical displacement of the center

of gravity of the vibrating system is identical with the displacement of the base of

the vibrator. The weight W of the vibrating mass is equal to the sum of the weight

Fi of the vibrator and the weight W, of the body of soil which participates in the

movement of the vibrator. Substituting into equation 156(7)

c« = d«A, F = Fi + Fa

and solving for <ao we obtain for the natural circular frequency of the
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system the value

«o =
d^Ag

[8]

On account of the damping properties of the subgrade the impulse Qi sin <ait

Cwi sin coit (eq. 7a) produces forced vibrations with viscous damping. The
reversible part of the settlement produced by a static load Qi = Cwi is

oi
cJi

[9]

This value represents the displacement which the maximum disturbing force Qi
would produce statically. Substituting the value given by equation 9 for oi ip

equation 157(12), we obtain for the amplitude a of the resulting forced vibration at a

given circular frequency wi of the impulse

a =— JVi [10]

wherein Ni Is the magnification factor (eq. 157(1 la)). The observer records the

frequency

Expressing cui in equation 10 in terms of the frequency /i we get

a « fi

Plotting the values of a against the value of the ratio fi/fo = coi/«o we obtain a

curve similar to those shown in Figure 1456 for two different values of the ratio

2\/o)q (see Art. 157). The resonance condition is approximately satisfied if /i//o

«i /wo®' 1 (8©6 eq* 157(14)).

Another record which is kept by the observer is the work per unit of time required

to operate the vibrator. This work consists of two parts. One part is used up in

overcoming the friction in the bearings and other resistances within the mechanism.

It has been found that this part increases approximately in direct proportion to the

square of the frequency. The second part is consumed by the viscous resistance

of the soil against periodic deformation. The damping force is determined by
equation 156(11)

Pd
dx

At any time t the distance between the center of gravity of the vibrating system

and its equilibrium position is equal to

X « aiiVi sin («i< — a) 167(llc)

its velocity is

dt
aiNiosi 008 (wi< — a)
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The value C is detennined by equation 7b and the value iV^i by equation 157(1 la).

According to equation 156(13) the value Cd is equal to 2\W/g, wherein X is the damp-
ing factor and W the weight of the vibrating system.

Plotting the rate of work L against the ratio /i//o we obtain a curve similar to

those shown in Figure 145c for two different values of 2X/ci)o. With increasing values

of 2X/wo the peak of the amplitude curve in Figure 1435 moves toward the right and

the peak of the work curve becomes lower and flatter.

A third characteristic curve which can be obtained by means of the vibrator

observations is the phase angle curve. The phase angle curves are similar to those

shown in Figure 144c for values of X > 0. Since the equation for the phase angle

(eq. 167(116)) contains the damping factor X, the shape of the phase angle curve is

to a certain extent indicative of the damping properties of the soil on which the

vibrator operates.

When performing a vibrator test the experimenter plots the amplitudes, the rate

of work, and the phase angle against the frequency f\ of the vibrator. He also

measures the total settlement of the base of the vibrator at different frequencies.

Since the natural frequency /o of the vibrator is approximately equal to the

frequency /i at resonance which is equal to the abscissa of the peak of the frequency-

amplitude curve one can compute d, by substituting /o = /i res ^ equation 3,

provided the weight TF of the vibrating system is known. This weight is equal to

the sum of the weight Wi of the vibrator and the weight Wg of the body of soil which

participates in the vibrations of the system. In order to estimate the weight W$ the

observer increases the weight of the vibrator by means of a surcharge and repeats

the test, whereupon the natural circular frequency of the system decreases from «o

to Assuming for the sake of simplicity that the increase of the weight of the

vibrator has no effect on the weight W$ he obtains a second equation which makes it

possible to compute Wa.

On the basis of the results of such an operation, involving the increase of the
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weight of a vibrator from 1.8 to 3.3 tons, it was found that the weight TT* was equal

to 12.6 tons (Lorenz 1934). The base of the vibrator covered an area of 3 square

feet. Another set of tests mentioned toward the end of the same paper indicated

that Wt was equal to not more than 1 ton. The weight of the vibrator was increased

from 2.0 to 2.7 tons. The area covered by the base of the vibrator was apparently

equal to 11 square feet. The soil conditions are not specified. These results seem

to indicate that the weight Wa is likely to vary between wide limits. Since the method
of computing the weight Wg is rather unreliable the results of the investigations can

only be used for estimating the extreme values between which Wa may range. By
means of these values one computes an upper and lower limit for the value da of the

coefficient of dynamic subgrade reaction. These values represent the statistical

average for the upper and lower limit of the value da of the soil located within the

seat of the forces of elastic restitution. Considering that the weight Wa of the soil

which participates in the vibrations of a vibrator with a base up to 11 square feet

in area does not exceed about 15 tons the depth of this seat is hardly greater than

about 7 feet and it may be considerably less. The elastic properties of the strata

located at a greater depth have no influence on the test result unless the strata

are abnormally loose or almost liquid. In order to get information on the elastic

properties of stratified deposits with an appreciable depth it is necessary to combine

the vibrator method with seismographic observations as described in Article 163.

In no case can the results of vibrator tests be used as a basis for computing settlement

due to consolidation, because there is no relation between the soil properties revealed

by the vibrator tests and the coefficient of compressibility avc (eq. 98(1)). At the

very best the observations can disclose the existence of compressible beds of clay

beneath the site, before any borings are made.

The value of the damping factor X can be computed by combining equation 11

with equation 156(13). A value of X in excess of about 3 or 4 sec“^ combined with

an important settlement of the base of the vibrator is considered an indication of

high compressibility and sensitivity to vibrations (Lorenz 1934).

The Degebo vibrators are constructed in such a way that the periodic impulse can

be applied either in a vertical or in a horizontal direction. The data obtained while

subjecting the vibrator to a horizontal periodic impulse have been used for determin-

ing the coefficient of dynamic subgrade shear reaction dr. This coefficient represents

the force per unit of area of the base of the vibrator required to produce a reversible

horizontal displacement of this area through a distance equal to unity (Lorenz 1934).

This coefficient together with the coefficient d, is used in connection with the compu-
tation of the natural frequency of engine foundations, described in Article 160.

159. Natural frequency of a water tower. On account of the pos-

sibility of resonance effects, the effect of periodic impulses, such as those

produced by heavy street traffic or by earthquakes, on structures and
their foundations depends to a large extent on the ratio between the

frequency of the impulse and the natural frequency of the structures.

In order to illustrate the influence of the elastic properties of the sub-

grade on the natural frequency of superimposed structures we investi-

gate the vibrations of the water tower shown in Figure 146 under the

influence of a single impulse. The tower rests on four footings and the

impulse acts on the tank in a horizontal direction in one of the planes of

symmetry of the tower.
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The greatest part of the mass of the tower is concentrated in the

tank. The possibility of a relative displacement between the center

of gravity of the water and that of the container complicates the prob-

lem very considerably (Ruge 1938). However, for practical purposes,

according to Williams (1937), one can consider the tower a single mass
system provided one assigns to the water only about three quarters of

its real weight. Therefore we neglect the mobility of the water con-

tained in the tank; we also neglect the weight of the framework which

supports the tank and assume that the effective weight W of the tank

(weight of the container plus three quarters of the weight of the water)

is concentrated in the center of gravity Og of the tank.

The natural frequency of the tower with respect to the vibrations

produced by the impulse depends on the elastic properties of the soil

beneath the footings and on those of the framework which supports the

tank. One extreme possibility is that the dis-

placements due to the elastic deformation of the

soil are negligible compared to those due to the

elastic deformation of the framework. In this

case the tower acts like a mass point attached to

the upper end of a flexible vertical rod whose

lower end is fixed. The vibrations of a tower

with such characteristics have been investigated

by Williams (1937). The second extreme possi-

bility is that the tower is a rigid structure resting

on an elastic subgrade. Since we are exclusively

interested in the interaction between subgrade

and structure only the second possibility will be

considered.

If one assumes that the center O of the base

of the tower maintains its position the tower rep-

resents a single mass system with one degree of

freedom. The system can only vibrate parallel to the plane of the

drawing by oscillating around a horizontal axis through 0 (Fig. 146).

It is further assumed that the coefficient of dynamic subgrade reaction

has been determined by means of a vibrator test. The impulse produces

an overturning moment M about the axis of rotation through 0. This

moment increases the total pressure on the two footings on the right-

hand side of 0 by 2P and reduces that on the two others by the same

amount. Equilibrium requires that

M = 4PS

Fig. 146. Vertical sec-

tion through rigid

water tower on perfectly

elastic foundation.
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If il is the area of the base of one footing the pressure P produces a

vertical displacement of the footings of

PI Ml
ft "“I"*

““ — *4'"

^ Ad. 4AP d.

It is associated with an angular displacement of the tower through an

angle

B “ AAB^ d.

about the axis of rotation through 0. Since the tower is rigid and the

axis is stationary the vertical axis 00

g

of the tower swings through the

same angle and the center of gravity Og of the tower moves through a

distance

MH 1

445^ d.

On account of the small value of 8 the displacement x is almost horizontal

and rectilinear. For an estimate one can assume that every particle of

the tank moves through the same horizontal distance, BH, This assump-

tion reduces the problem to one involving linear vibrations. In order

to determine the corresponding spring constant c. we make

or

M = QH

wherein Q is a horizontal force which passes through the center of gravity

Og of the tank. The moment produced by Q about the axis of rotation

through 0 is equal to the impulse moment M, Since we assumed that

every particle of the tank moves simultaneously through the same hori-

zontal distance x the spring constant c. is equal to the force required to

move the tank through a horizontal distance 1 (see Art. 156 and

eq. 156(2)), whence

Q B^

Introducing this value into equation 156(7) one obtains for the natural

circular frequency
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The natural frequency (eq. 156(10)) is

_ ^ [a
~

~ 2t~

The static pressure per unit of area of the base of the footings is

whence

[1 ]

From this equation one can draw the following conclusions regarding

the natural frequency of a rigid tower representing a single mass system

with one degree of freedom. The softer the supporting soil the lower

is the frequency /o. In order to increase the frequency of a tower with

a given height one must increase the width of the base of the tower or

reduce the unit pressure on the base of the footings.

If the frequency of a periodic impulse on the tower resting on a mass

of sand is within the critical range for the sand the impulse is hkely

to increase the permanent settlement of the tower regardless of the

natural frequency of the tower. If it is also close to the natural fre-

quency of the tower, resonance occurs which is likely to produce severe

supplementary stresses in the members of the supporting framework.

It is common practice to judge the effect of periodic impulses such as

earthquake shocks on structures vnthout considering the influence of

the natural frequency of the structure on the amplitude of the vibrations.

Such a procedure is justified only if the frequency of the impulse is very

much greater or smaller than the natural frequency of the structure (see

Art. 164). Otherwise the results can be very misleading.

160. Natural frequency of engine foundations. Every engine is a

source of a periodic impulse. The frequency fi of the impulse is equal

to the number of complete cycles or revolutions of the engine. If the

frequency of the impulse is equal to the natural frequency of the founda-

tion, resonance occurs. As a consequence the base of the engine vibrates

excessively. The vibrations are transmitted to the soil and are likely

to cause damage to neighboring buildinp. In order to eliminate the

danger of resonance and of its harmful effects the foundation for an

engine should be designed in such a way that its natural frequency is

much smaller or much greater than the frequency of the impulse. 'Wlien

choosing the factor of safety with respect to resonance it is necessary

to consider the degree of accuracy with which the natural frequency of
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the foundation can be computed. This degree is very different for

different types of foundation.

If the foundation of an engine consists of a massive block or of a

cellular structure with massive walls, the natural frequency can be com-

puted on the assumption that the foundation represents a single mass

system on an elastic support. In order to obtain a uniform distribution

of the static pressure on the supporting soil the base of the foundation

is laid out in such a way that the center of gravity of the stationary

masses is located on a vertical line through the center of gravity of the

base. Furthermore engines are usually installed in such a manner

that their plane of symmetry coincides with the plane of symmetry of

the foundation. If the impulse acts on such a system in a vertical line

through the center of gravity of the base, the vibrations occur only in a

vertical direction similar to those of the block shown in Figure 141a

and the system has only one natural frequency /q. The value /o is

determined by the equation

^0 A. /m
27r\ IF

156(10)

wherein W is the weight of the vibrating system and c, is the spring

constant. If the foimdation rests on the soil, the weight W is equal to

the sum of the weight Wi of the loads which rest on the soil (weight of

the engine and of the foundation) and the weight of the body of

soil which participates in the vibrations of the foundation, whence

fo

In order to avoid the condition of resonance the foundation should be

so designed that/o is smaller or greater than the frequency of the impulse.

The greater the difference between these two frequencies the smaller is

the magnification factor N (eq. 157 (6c)) which determines the ampli-

tude of the forced vibrations of the foimdation. If /i is greater than/o or

i.«>i
A m

.1 U
2irSWi

c„g

+ W, [1 ]

the magnification factor N approaches the value zero with increasing

values of fj/fo = wj/wo, as shown in Figure 143&. On the other hand, if

fi is smaller than fo the magnification factor approaches with decreasing

values of the ratio fi/fo — wi/«o the value unity. Hence if possible

the foundation is so designed that its natural frequency fo is smaller

than/i.
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The only disadvantage of the condition /o< /i is that the starting and the stopping

of the engine temporarily establishes resonance. However, the resonance occurs

at a low frequency of the impulse and it has a very short duration. Experience has

shown that this temporary resonance is harmless.

If /o < /i the weight Ws of the soil reduces the value /o and the danger

of resonance. Therefore, if /o < /i one usually disregards the weight Wb
and writes

/ _ _L /m
27r \ Wi

In this equation Wi represents the weight of the foundation and of the

stationary parts of the engine. Substituting c, = Ad^ (eq. 158(4)),

one gets

wherein A is the area of the base of the foundation and dg is the coefficient

of dynamic subgrade reaction. The total pressure on the foundation is

equal to the sum of the static "weight Wi and of the inertia force dzPa-

If the damping force is negligible the value of Pa is given by equation

157(8). Otherwise it is determined by equation 157(13). The total

pressure on the base of the foundation varies periodically between

IT'i + Pa and Wi — Pa- Since the influence of a pulsating load on the

settlement is greater than that of a constant load it is customary to

design the foundation on the assumption that the greatest total pressure

on the subgrade is equal to

q==Wi+ 3Pa

The greatest unit pressure is

Q Wi+ SPa
" = i

= —
per unit of area (Rausch 1936). This load should not exceed the allow-

able bearing value Qa for the soil, whence

, Wi + 3Pa
A =

Qa

Introducing this value into equation 2 we obtain
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In centimeter-gram-second units g is equal to 981 cm sec ^ and

. , -lx . \Wl+ZPa Id,

For sand the ratio ~ (cm~^) ranges between about 2 for loose sand and

about 3 for dense sand. The corresponding range for/o is

fo (sec = (7 to 9)
Wi + 3Pa

fo (min ^) = (420 to 540)
Wi + 3Pa

These equations show that the condition fi/fo > 1 can only be satisfied

if the frequency of the impulse is very high. If it is medium or low

one may try to design the foundation in such a way that its natural

frequency fo is considerably higher than /i. If this attempt is not

successful it is necessary to insert between the engine and the base of

the foundation either an elastic layer, for instance made out of cork, or

else a spring support. If the elastic support of the foundation is merely

due to the elasticity of the supporting soil, the natural frequency fo is

given by equation 1, which contains the weight of the body of soil

participating in the vibrations of the system. By neglecting Ws in the

design of a system whose natural frequency fo should be higher than fi

one overestimates the safety with respect to resonance. Hence if

fo > fi the weight Ws must be taken into consideration. The uncertain-

ties involved in estimating Ws should be compensated by an ample

margin of safety.

The preceding analysis merely served as an elementary introduction

into the principles of the design of engine foundations. It is based on

the assumption that the aggregate acts like a single mass system with one

degree of freedom. In practice the conditions of impulse and support

are always such that the aggregate acts like a system with as many as

six degrees of freedom which involve up to six different values for the

natural frequency (see Art. 155). Each one of these frequencies should

satisfy the condition that it is lower or higher than the frequency of the

impulse. The equations for computing the frequencies are available

(see for instance Rausch 1936). All these equations contain the spring

constants of the elastic supports. In order to find out whether resonance

can be avoided without artificial means, such as spring supports, one
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needs to know the coefficient of subgrade reaction for both vertical and
horizontal loads.

According to Article 158 the value of the coefficient of subgrade

reaction depends on several factors other than the nature of the sub-

grade. In order to determine this coefficient one should use a vibrator

which permits variation of the test conditions, such as the unit pressure

on the base of the vibrator and the intensity of the impulse. The value

corresponding to the full-sized foundation is obtained by extrapolation

(Seismos, no date). On account of the uncertainties involved in this

process the results should be given in the form of a range of values.

If the frequency of the impulse exerted by an engine founded on a

stratum of sand is within the critical range for the sand, even very

gentle vibrations are likely to cause important settlement of both the

foundation of the engine and of adjacent structures. Everything else

being equal, the settlement increases rapidly with decreasing density

of the sand. In order to avoid excessive settlement on loose or medium
sand one should not only provide an ample margin of safety with respect

to resonance but one should also increase the density of the sand by
means of piles.

At present one of the most important motors is the steam turbine.

In the early days of steam turbine construction little attention was paid

to the effect of the inevitable unbalance of the rotating parts until the

owners complained about foundation defects. At that time the influence

of the natural frequency of the foundations on the mechanical effect

of the disturbing force was not yet appreciated. Therefore the manu-

facturers tried to remedy the situation by steadily increasing the require-

ments concerning the solidity and the mass of the foundations, which

led to very clumsy and uneconomical constructions. Rational methods

of design were not developed until the natural frequency of the founda-

tions received the attention which it deserved.

The following abstract from German standard specifications for the foundation

of steam turbines illustrates the importance which is attributed to the natural fre-

quency of the foundation. K the natural frequencies of the foundation have not

been computed or if the difference between the number of revolutions n of the tur-

bine and one of the frequencies is smaller than i 30 per cent of n the designer is re-

quired to assume that the members of the support of the turbine are acted upon by

a centrifugal force Qi equal to 20 times the weight of the rotating parts. For dif-

ferences between 30 and 60 per cent the centrifugal force can be assumed to be

equal to 10 times the weight of the rotating parts, and for differences in excess of 60

per cent equal to 6 times this weight (Ehlers 1934).

Steam turbines are supported either by rigid or by elastic structures

such as heavy slabs resting o^ relatively flexible columns, as shown in

Figure 147. The foundations of the rigid type can be designed by means
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of the method whose principles were explained in the first part of this

article.

The design of the elastic type of foundation (Fig. 147) is usually based

on the assumption that the earth support is rigid and that the seat of

the periodic deformations produced by the disturbing agent resides

Fig. 147. Simplified vertical sections through table-support for turbo-

generator.

exclusively in the columns which transfer the weight of the aggregate

onto the base plate. Foundations of this type represent the equivalent

of foundations on a spring support, and the elastic properties of the soil

have no bearing on the design.

161 , Waves and wave transmission. The vibrations which have

been discussed in the preceding articles occur in closed systems. If an

elastically supported system is rigid, all the points of the system pass

simultaneously through the equilibrium position, provided it has only

one degree of freedom. However, in addition to vibrating in itself, the

system represents the center of a vibratory disturbance which proceeds

like a sound wave from the center into the subgrade in every radial

direction. It imparts to the subgrade the capacity of producing forced

vibrations in structures resting on the subgrade at a considerable distance

from the center of the disturbance. The event which starts the disturb-

ance is the impulse. The duration of the impulse may be very short, as

is that of the impulse produced by an explosion or an earthquake. In

this case the intensity of the waves produced by the impulse dies out on

account of viscous damping. On the other hand a periodic impulse,

such as that produced by operating machines, pile-driving operations,

or street traffic, maintain a permanent state of vibration.

The general characteristics of the waves have been discussed in

Article 155. A line which intersects all the consecutive wave fronts at

right angles is called a line of wave propagation, A particle a on such a

line (Fig. 148a) starts to vibrate at the instant when the wave front

passes through the particle. At the time when the particle a has com-

pleted its first cycle with a period r the wave front has arrived at a

distance

I tm TV [11
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from particle a. The length I is called

the wave length and v is the velocity of

wave propagation.

The type of vibration produced by an

impulse and the velocity v of wave prop-

agation depend essentially on the elastic

properties of the medium through which

the wave travels and on the location of

the surfaces of discontinuity with refer-

ence to the center of the impulse. The
theories dealing with these relations are

based on the fundamental equations of

the theory of elasticity and involve the

most advanced methods of higher math-

ematics. The following paragraphs con-

tain a brief summary of those results

which have a direct bearing on founda-

tion problems.

An impulse originating at a point

located in the interior of a homogene-

ous, infinite elastic solid can produce only two types of waves, known as

compressiony pushy or P waves and transversCy shear

y

or S waves. A com-

pression wave is one in which the particles vibrate in the direction of

wave propagation, like the particles in the path of a sound wave. The
velocity of these waves is

Fig. 148. (a) Diagram illus-

trating wave propagation; (6)

relation between Poisson's

ratio jj, of vibrating medium
and velocity of propagation of

compression (P) and shear

waves (S).

I
Eg (I

Vt(1 -M 2m")
12]

wherein E = Young^s modulus,

p = Poisson^s ratio,

7 = unit weight of the solid, and

g = acceleration of gravity.

In a transverse or S wave the particles vibrate in a plane at right angles

to the direction of wave propagation and the waves travel with a velocity

/ Eg ^
\27(1+m)

13]

wherein 0 is the modulus of shear. Figure 148& shows the influence of

Poisson’s ratio on the velocities v and v,. The velocity of S waves is

always smaller than that of P waves and for m — 0.5 the value v becomes
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equal to infinity while the value v, of the S waves is finite and equal to

In a semi-infinite or stratified solid, an impulse can also produce several

other types of waves. Since these other types of waves travel along and

parallel to the surface of semi-infinite solids or to the surfaces of discon-

tinuity in stratified deposits they are called surface waves. The dis-

placements produced by these waves decrease with the distance from the

surface. The best-known types of surface waves are the Rayleigh dnd

the Love waves. In a Rayleigh wave the particles vibrate in elliptical

orbits in planes parallel to the direction of wave propagation and at right

angles to the surface. The Love waves are special types of shear waves.

Along the surface of a semi-infinite solid all the surface waves travel

with a velocity slightly smaller than that of the shear waves (eq. 3),

In relatively thin elastic layers the velocity of certain types of surface

waves, including the Love waves, is a function of both the wave length

and the thickness of the layer.

The theory of surface waves has been developed on the basis of the

assumption that the vibrating medium is perfectly elastic. It can be

foxmd in any text book on theoretical seismology, for instance Macelwane

(1936). A mathematical investigation of the relation between the

amplitude of Rayleigh waves in elastic layers with a finite thickness and

the distance from the surface of the layer has been published by
Marguerre (1933). On account of the simplifying assumptions on

which the theory of surface waves is based and of the complex character

of these waves the interpretation of the results of field observations

concerning surface waves is always somewhat uncertain.

At the boundary between two media with different elastic properties

a wave may be reflected back into the medium through which it came
or it may be refracted, i.e., it may change its direction when entering

the second medium. If a particle receives two impulses, for instance

one by a direct wave and a second one by a reflected wave, the resulting

motion is equal to the geometric sum of the motions which would be

produced by each one of the impulses individually. If the two impulses

are equal and opposite, the particle remains in a state of rest. These are

mterference phenomena.

The laws which govern the aforementioned phenomena are similar to

the laws of reflection, refraction, and interference in optics. A mathe-

matical study of the application of these laws to the problems of seismic

soil investigations has been published by Ramspeck (Degebo 1936).
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162. Longitudinal impact on piles. One of the simplest phenomena
of wave propagation occurs in a pile after it has been struck by a falling

hammer. The impact of the hammer on the head of the pile produces

in the pile a compression wave which travels through the pile toward the

point, where it is reflected back into the pile. Since the older theories of

dynamic pile-driving resistance, described in Article 52, failed to take

this phenomenon into consideration they furnished misleading informa-

tion concerning the influence of the weight of the pile on the effect of the

pile-driving operations.

The theories of longitudinal impact on piles are based on the differen-

tial equation of longitudinal vibrations in bars which in turn is based on

the following assumptions. The pile is perfectly elastic, every cross

section through the pile remains plane during the process of vibration,

and the particles of the pile vibrate only in a longitudinal direction, i.e.,

parallel to the axis of the pile. The lateral deformation of the pile is

disregarded. In other words it is assumed that Poisson's ratio fx is

equal to zero. Let

p = the longitudinal displacement of any cross section of the pile dur-

ing the vibration, at a depth z below the head of the pile and at

a time

f *= the compressive strain or the compression of the pile per unit of

length, at depth z and time t,

A = the area of the cross section of the pile,

L = the length of the pile,

P = the total pressure which acts on the cross section of the pile at

depth z and time t

a = P/A, the compressive stress on this cross section,

E = Young's modulus of the pile material, and

y = its unit weight.

The compressive strain f is equal to

Since

P
AE

we can write

dp
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The total pressure on a cross section at depth z + cb is

p+dp-m+g*)
By D'Alembert's principle the resultant of the static forces which

act on the slice of the pile must equal the inertia force (mass of the slice

times its acceleration). The mass of the slice is

and the inertia force is

yA d’jo

g dt^

The resultant of the static forces is

P + dP - P = AE^^dz
oz

Therefore D'Alembert's principle requires that

g dt^

d^p Eg d^p
[
1 ]

This is the differential equation of the longitudinal vibrations in a

pile regardless of whether the end bearing of the pile is rigid or elastic.

Since the theory disregards the lateral deformations of the pile the

velocity v of the propagation of the wave through the pile is obtained

by substituting /i = 0 in equation 161 (2). Thus we get

V = [2]

Hence equation 1 can be replaced by

tf. =
dt‘ dZ^

13]

wherein v is the velocity of propagation of the impact wave through the

pile.

If the upper end of a rigidly supported pile with a weight Wp and a
length L is struck by a hammer with a weight W^, falling with|a velocity

Vff, the solution of equation 3 furnishes for the greatest compressive
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stress (Tniax produced by the impact on the base of the pile the value

(T^ = 2^ ^ (1 + [4]

provided Wp/Wn is smaller than 5 (Boussinesq 1885). The value e is

the base of the natural logarithms.

In contrast to the assumptions on which this equation is based, the

support of the point of a pile is never perfectly rigid and the head of the

pile is protected against direct impact by a pile cap or cushion. In

order to adapt the theory to pile-driving problems, the British Building

Research Board solved equation 3 on the basis of the modified assump-

tions that the lower end of the pile rests on a perfectly elastic support

and that the head of the pile is protected by a perfectly elastic cushion

(Glanville et ah, 1938). The final equations are very complicated, but

they can be replaced by simple equations which give fairly satisfactoiy

values. One of these is

^maz Wp(l+E/TM 181

wherein Te w & constant with the dimension gm cm~® whose value

depends on the elastic properties of the pile cushion (Cummings 1940).

In order to decide whether or not equation 5 applies to a given case the

ratio

N = Wp
SWh(1 + E/TcL)

[6]

is computed. If the ratio N is smaller than about 0.1 or 0.16 equation

5 gives fairly accurate results. Otherwise it would be necessary to use

the unabridged equations.

If the upper ends of two piles with identical dimensions but with

different Young's modulus, E and and different unit weights, y
and y' respectively, are struck by the same hammer with the same

velocity the ratio between the maximum compressive stress produced

by the impact on the lower end of the piles depends on the rigidity of

the support of the lower end and on the type of protection of the upper

end. For rigid support of the lower end and unprotected upper ends

we obtain from equations 2 and 4

1 ^-2Wp/Wb

\ ^-2Wp/Wb m
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wherein Wp and Wp represents the weights of the piles. For elastic

point support and impact on cushions with the same stiffness constant

for both cushions we obtain from equations 2 and 5

®^max

^max

EyW'pil ->rE'/TcL)

EWWp{\ + E/TcL)
[8]

In a discussion of the practical implications of equations 4 and 6 Cummings (1940)

presented the following numerical example. One reinforced concrete and one

wooden pile with equal dimensions are driven with a drop hammer with a weight of

Wh = 5000 pounds through soft strata of fill and silt to bearing in a hard stratum of

sand and gravel. The velocity of the hammer at the instant of impact is equal to

vh = 14 feet per second. The heads of the piles are protected by identical cushions

with a stiffness constant To = 10,000 pounds per cubic inch. The data regarding the

piles are as follows:

Length L
Cross-sectional area A
Weight Wp
Unit weight y
Young’s modulus E

Concrete Ph^d

25'

12" X 12"

3750 lbs.

150 Ibs./cu. ft.

3,000,000 Ibs./sq. in.

9610 ft./sec.

Wooden Pile

25'

12" X 12"

1000 lbs.

40 Ibs./cu. ft.

1,200,000 Ibs./sq. in.

11,800 ft./Beo.

Calculation by means of equation 4 shows that the greatest force AamBx produced

by the impact on the piles with rigidly supported ends and with unprotected heads

is 1,540,000 pounds for the concrete pile and 685,000 pounds for the wooden pile.

Computing the value Aamax by means of equation 5, which takes the cushion and the

elastic point support into consideration, we obtain for the concrete pile 514,000

pounds and for the wooden pile 389,000 pounds. The real pressures will very likely

be still lower because the theory on which equation 5 is based disregards the skin

friction and the existence of a damping force in the pile. Nevertheless, the results

of the computation justify the conclusion that the greatest pressure produced by
a given impact is greater at the point of the concrete pile than at the point of the

wooden pile. The approximate validity of the theory on which this conclusion is

based has been demonstrated by large-scale tests (Glanville et al., 1938). As a con*

sequence of the difference between the maximum pressure at the points of the two
piles discussed before, the concrete piles should penetrate deeper into the firm stratum

than the wooden pile and its static bearing capacity after the pile has been driven

to refusal should be higher. Yet, according to all those pile formulas which take only

the weight of the pile into consideration (see Art. 52) the bearing capacity of the

wooden pile should be higher than that of the concrete pile provided both piles have
been driven to refusal. This is an example of one of the many erroneous conclusions

to which the pile formulas may lead. The reasons for the deficiencies of these

formulas have been discussed in Article 52.

163. Soil exploradon by means of explosives and vibrators. Equa-

tions 161(2) and 161(3) show that the velocity of wave propagation

depends on Young's modulus and on Poisson's ratio. Strata with very
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different elastic constants are usually separated by fairly sharp bounda-
ries likely to give rise to well-defined reflection and refraction phenomena.
Therefore it is theoretically possible to obtain information on the elastic

properties and on the thickness of the strata located beneath the surface

of the earth by recording the vibrations produced by an impulse on the

surface at different distances from the focus of the disturbance. Such
methods have been used for many years and if the geological conditions

are favorable, the results are very satisfactory. The impulse is pro-

duced either by an artificial explosion or by a vibrator. In both methods

the vibrations are recorded simultaneously at different distances from

the focus of the disturbance by means of portable seismographs. There-

fore the methods are also called methods of seismic soil exploration.

In the explosion methods the impulse is produced by exploding a

blasting cap or a small charge of dynamite. An impulse of this type

produces chiefly compression waves. In a saturated soil the velocity

of compression waves is much higher than in the same soil in a moist

state. Therefore the upper boundaiy of the zone of capillary saturation

represents a prominent surface of discontinuity with respect to the

velocity of propagation of the explosion waves. The seismographs are

located on straight lines through the point of explosion. They record

both the instant of the explosion and the subsequent vibrations. In

exploration to great depth, for instance in salt dome exploration, the

interpretation of the seismographic records is based either on the time

between the explosion and the arrival of the first energetic impulse or

on the time which elapses before the waves with a lower velocity arrive.

Within a certain distance, whose magnitude depends on the thickness

of the unconsolidated stratum, the first impulse registered by the

seismograph is produced by a wave which travels along a fairly straight

line from the site of the explosion to the receiver. Beyond this distance

the first energetic impulse is produced by the refracted waves which

travel along the path of least resistance at depth. The later ones are

due to direct and to reflected waves which travel within the media of

high resistance. Therefore the two methods are known as refraction

and reflection method respectively (see for instance Leet 1938 or Heiland

1940).

In soil exploration for engineering purposes only the refraction

method is used, and its application is limited to the determination of

the total depth of unconsolidated deposits resting on a rock surface and

of loose, imconsolidated strata overlying dense ones. The velocity of

compression waves in rock is at least ten times as great as in the uncon-

solidated material. Therefore the boundary between the two materials

gives rise to very conspicuous refraction phenomena (Shepard 1936).
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The principle of the method is illustrated by Figure 149. Let

= the velocity of wave propagation in the unconsolidated material,

V2 = the corresponding velocity in the bedrock,

<1 = the time at which the first energetic impulse reaches the de-

tector / at a short distance Li from the site of the explosion,

t2 = the corresponding time for the detector //, and

D = the depth of the rock surface below the ground surface.

Since V2 is very much greater than vi the first waves which reach

detector II at a considerable distance L2 from the site of the explosion

are the refracted waves which travel chiefly immediately below the

I Uncon-
soHdahc/

/

/

y-—///ywwwr
Rock

Fig. 149. Diagram illustrating principle of refraction method for seismic soil

exploration.

rock surface, as indicated in the figure. On the other hand, detector I

located fairly close to the site of the explosion receives the first impulse

through a direct wave. For the sake of simplicity it is usually assumed

that the wave travels from the surface of the ground to the bedrock and

back again at right angles to the surface of the bedrock and that both

surfaces are parallel. On this assumption we obtain for detector I the

equation

ix
k
Vl

or

and for detector II

t2

2Z)
^

Z/2

Vl V2
or

£1

2

Thus we have two equations with three unknown quantities, Z), vi, and
1^2 . In order to get a third equation we install a third detector at a dis-

tance 1/3 from the site of the explosion (not shown in the figure) and
record the time at which this detector registers the first strong impulse.

If the surface of the rock is not parallel to the surface of the ground

or if we want to determine the bottom of a buried valley the explosion

is repeated at different points JSi, E2 , etc., of the surface and seismo-
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graphic observations are made along different straight lines through the

site of each explosion. One of the principal errors involved in this

procedure is due to the assumption that the velocity of wave propagation

immediately below the surface between E and I is identical with the

velocity in a vertical downward direction across the ground-water level

and the beds of stratification. Yet, under favorable geological con-

ditions the method has been found to give satisfactory results (Shepard

1935).

On accoimt of the relation shown in Figure 1486 the influence of

variations of n on the velocity y of P waves is likely to efface the corre-

sponding influence of variations of other, much more important soil

constants, such as the modulus of elasticity. As a rule the value ju is

not known. Hence the explosion method does not permit the de-

termination of the modulus of elasticity of the strata through which

the explosion waves travel. Furthermore, since the explosion produces

a single impulse there is no possibility of determining the thickness of

individual soil strata by means of observing interference phenomena on
the surface of the ground.

In order to increase the amount of information to be derived from

seismographic records the Degebo in Berlin in conjunction with the

Geophysical Institute of the University of Gottingen adopted the

vibrator described in Article 158 as a source of wave impulses. The
waves produced by the vibrator are chiefly shear waves in the categoiy

of surface waves. A differentiation of this wave complex into well-

defined types such as Rayleigh or Love waves has only been accom-

plished in a general way. The ground water has no influence on the

velocity of shear waves. On the other hand along the boundaries of

relatively thin strata the velocity of certain types of surface waves is a

fimction of the frequency of the impulse and of the thickness of the

stratum. However, if the frequency exceeds a certain value, the

velocity of these waves is independent of the frequency and becomes

equal to that of the other surface waves, which is only slightly smaller

than the velocity v, (eq. 161(3)) of shear waves. Hence the measured

velocities of wave transmission are a measure of the elastic properties

of the medium through which the wave travels, provided the frequency

of the impulse has been so chosen that the velocity of all the waves is

independent of the frequency.

Since the vibrator produces a periodic impulse, the determination of

the velocity of the waves is not as simple as it is in the method of re-

fraction shooting described before. Nevertheless the problem of meas-

uring this velocity has been successfully solved.

In order to determine the boundary between two different uncon-
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solidated strata, the amplitude is measured at different points on

straight lines through the center of the vibrator. A consistent decrease

of the amplitude with increasing distance from the vibrator, as shown

in Figure 150a, indicates a homogeneous stratum of great depth. On

the other hand, if the subsoil is stratified, the surface waves interfere

with the reflected waves and produce a phenomenon comparable to

Newton^s rings in optics. As a result of this interference the amplitude

Dense

(b)

Fig. 150. Diagram illustrating effect of stratification on amplitude of waves

emanating from an operating vibrator.

becomes a periodic function of the distance from the vibrator. If the

thickness of the stratum is everywhere the same, the amplitude diagram

is symmetrical with reference to a vertical line through the center of

the vibrator, as shown in Figure 1506, and the peaks of the curve are

equally spaced. If the thickness of the layer increases in one direction

the distance between the peaks increases in the same direction as shown

in 150c. In any event the thickness of the layer can be computed from

the spacing of the peaks. The theory on which the interpretation of

the vibration records is based is well established (Degebo 1936). The

theory also makes it possible to compute from the records the velocity

of wave propagation in deeper layers. The principle of this method is

somewhat similar to that of the refraction method illustrated by Figure

149. The results of the computation are represented by traveUtime

curves^ in which the distance covered by the wave is plotted against time.

In order to investigate the subsoil over large areas, the vibrator is

operated in succession at the points of intersection between the two sets

of lines in a gridiron and the observations are made along the lines which

constitute the gridiron. The upper layers are investigated by means



EARTHQUAKE WAVESArt. 164 473

of high-frequency and the deeper layers by means of low-frequency

impulses.

Since the vibrator produces only shear waves the measured velocities

do not permit the computation of Young^s modulus (see eq. 161(3)).

However, by combining the vibrator method with the measurement of

the velocity of compression waves produced by artificial explosions,

the investigators obtained two independent sets of data which made it

possible to compute both the values E and fx by means of the equations

161(2) and 161(3).

164. Earthquake waves. The mechanics of earthquakes are essen-

tially identical with those of the vibrations produced by artificial im-

pulses in connection with seismic prospecting (Art. 163).

An earthquake may be caused by a sudden slip along fault planes at a

moderate depth below the surface (tectonic earthquake), by explosions

or other events associated with volcanic activities (volcanic earth-

quake), or by processes of an unknown nature at great depth below the

zone in which rocks behave as solids (plutonic earthquakes). The
zone in which the earthquake originates is called the focus and the point

or line on the earth^s surface located above the focus is the epicenter.

In the vicinity of the epicenter the seismographic instruments usually

re^ster in succession the arrival of P, S, and various surface waves.

The surface waves always include Rayleigh waves. Love waves, and

several other types. At a greater distance from the epicenter the

records are still more complex on account of various reflection and

refraction phenomena. In every case the earthquake represents a

periodic impulse which transfers every object supported by the earth

into a state of forced vibrations. Since the intensity of forced vibra-

tions depends chiefly on the ratio between the natural frequency of

the object and the frequency of the impulse, the latter represents a

factor of vital importance. Unfortunately the records of earthquake

vibrations are so complex that they leave a wide margin for inter-

pretation. The vibrations are in every respect similar to those produced

by quarry blasts. Figure 151 represents a record obtained during and

after such a blast (Leet 1939).

The charge consisted of 19,000 pounds of 40 per cent Red Cross extra gelatine

d3nDiamite. It was placed in mine pockets in a short tunnel behind the 190-foot face

of a quarry in a trap rock sill in the Connecticut Valley. The seismograph was located

on the surface of an alluvial fill in a vaUey at a distance of 1800 feet from the seat of the

impulse, 125 feet below the level of the quarry floor. The record shows the trana-

verse, the vertical, and the longitudinal components of the displacements and covers

a period of 5.9 seconds. The recorded waves have the characteristics of surface

waves. The dashed line indicates a wave with a period of about 0.3 second which is
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masked by waves with shorter periods. Toward the end of the period of observa-

tion the vertical and the longitudinal displacements become imperceptible while the

transverse displacements continue.

In connection with engineering problems, the most important com-

ponents are the horizontal ones, designated in Figure 151 as transverse

and longitudinal components, because they represent the cause of

tilting and bending in structures. For this reason the vertical com-
ponent is customarily disregarded. The intensity of the earthquakes

is usually expressed by the ratio Ug between the greatest acceleration
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produced by the earthquake in a horizontal direction and the acceler-

ation g produced by the force of gravity. In order to estimate the value

Ug one replaces the seismographic record of the horizontal vibrations by
a similar, simplified record representing a free harmonic vibration

such as that shown in Figure 141d, with an amplitude a and a circular

frequency wi. By differentiation of equation 156(8) one obtains for

the greatest acceleration of the particles d^x/dt^ — rig g the value

If the natural frequency /o of a structure is very high compared
with the frequency of the impulse produced by the earthquake, the ratio

fi/fo = o)i/(oo is close to zero. As a consequence the amplitude of the

vibrating structure is practically equal to that of the earthquake waves,

as shown in Figures 1436 and 144a. This condition is satisfied by most

low buildings and ordinary retaining walls. Such structures can be

designed on the assumption that they are permanently acted upon by a

mass force equal to the resultant between the vertical force of gravity

g and a horizontal force Ug g. The mechanical effect of this mass force

on high buildings is somewhat similar to that of a wind pressure, and

the stresses in the members of the structure can be computed accordingly

(Fleming 1930). However, the results of such computations can be

very misleading unless the natural frequency of both the entire building

and its individual constituents, such as walls and columns, is beyond

the range of the frequency of the earthquake waves. In order to com-

pute the earth pressure which acts during an earthquake with an inten-

sity Ug on a retaining wall (Fig. 152a) we tilt the wall and the backfill

through an angle tan”^ Ug, as shown in Figure 1526, and increase the unit

weight of both the earth and the wall by multiplying it by Vl + rig.

The balance of the investigation is identical with that described in

Chapter VI.

Figure 152c represents a section through a concrete gravity dam.

An earthquake moves both the dam and the base of the reservoir in

rapid succession through a distance a to the right and to the left. The

water tends to remain where it is because the shearing stresses along

the bottom of the reservoir are negligible. Therefore the mechanical

effect of the earthquake on the system dam-water is the same as if the

dam were rapidly advanced through a distance a toward a stationary
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body of water. Westergaard (1933o) has shown that the resistance p
of the water against rapid displacement, per unit of area of the vertical

face of the dam at a depth z below the water level, increases approxi-

mately in direct proportion to the square root of the depth below the

surface. It can be computed from the approximate equation

p = Cn„Vm [2]

wherein C is a function of the ratio between the depth H of the reservoir

and the period r of the earthquake shock. For a given period r the value

m
»

Fig. 162. (o) Section through retaining wall; (6) imaginary angular displacement

of wall and back fill which would have approximately the same effect on stability

of wall as an earthquake with intensity n„ g', (c) dynamic water pressure p
on face of concrete gravity dam during earthquake.

Ug depends on the amplitude o (see eq. 1). In Figure 144c, equation 2

is represented by the parabola labeled p. For a period t = 4/3 seconds

and for different values of H Westergaard obtained

H = 0-310 ft 310-540 ft 640-680 ft

C = 0.026 0.027 0.028 tons/cu ft

The stresses produced by the force p (eq. 2) must be added to the

stresses produced by the earthquake acceleration which acts on the dam
itself. Westergaard also presented a rigorous solution of the problem.

If the natural frequency of a structure is considerably outside the

range of frequency of earthquake vibrations, the errors associated

with the method of computation illustrated by Figure 1526 are on the

safe side because the method is based on the assumption that the struc-

ture is permanently under the influence of the horizontal body force

Ug g. In reality this body force acts only during a brief period. Every

harmful effect of the force n. g involves a displacement against redsling

forces. Such a displacement represents work whose performance re-

quires time. We assumed in contrast to reality that the force acts
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forever. Therefore the results of the computation inform us on the

greatest amount of destruction which can be wrought by an earthquake

of given intensity Ug provided the natural frequency of the structure is

very different from that of the earthquake waves. On the other hand,

if the natural frequency of the structure or of parts of the structure

approach that of the earthquake vibrations, resonance phenomena are

likely to intensify the effect of the periodic impulse to such a degree

that the sign of the error associated with the method illustrated by
Figure 1526 is reversed. Such a condition can be anticipated for tall

buildings or very high smoke stacks and requires that the method illus-

trated by Figure 1526 be replaced by another which takes the natural

frequency of the structure into consideration. A simple method of

this type, applicable to framed structures, has been described by Wester-

gaard (1933c) and another for tall smoke stacks by Briske (1927).

The theoretical investigations in this field have been supplemented

repeatedly by laboratory investigations involving measurement of the

stresses in small-scale models mounted on shaking tables (see for instance

Williams 1937, Ruge 1938).

In connection with any investigation involving resonance phenomena
produced by earthquakes the investigator faces the delicate problem of

selecting an appropriate value for the frequency of the earthquake

vibrations. The earthquake shock produces simultaneous vibrations

with very different frequencies similar to those produced by a quarry

blast (see Fig. 151). Therefore the damage to two different structures

subject to the same earthquake shock may be due to two entirely differ-

ent components of the same vibration. The one factor in common to

the destructive impulse on the two structures is the amount of kinetic

energy which is supplied by the earthquake to the foundations per unit

of time and per unit of volume of the subgrade. Hence, if resonance

phenomena must be considered it would appear logical to express the

intensity of the earthquake in terms not of maximum acceleration but

by the intensity of the flow of energy (Mendenhall 1888). Another

method has recently been suggested by Westergaard (19336). Sub-

stituting a simple harmonic vibration with the amplitude a and the

circular frequency w for the real earthquake vibrations we obtain for

the distance x of a particle from its equilibrium position at a time I

from equation 156(8)

05 = a sin (*>t

for its velocity

dx
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and for its acceleration

2 • <= — do) sin m
dr

The corresponding maximum values are

t^max = and I )
= Ugg OUT

\dt /max

Combining these two equations we obtain

_ngg Ugg
^max rt

^
O) Ztt

wherein r is the period of the vibration. The kinetic energy Ek which

is supplied to the subgrade of a structure per unit of time and per unit

of volume, while the velocity is greatest, is

Ek (gm cm~“) = ^ - ^ [3]
2 g or

The value Ek has the dimension of a force per unit of area and repre-

sents the proposed substitute for the measure rig.

Another complication associated with the estimate of the period of

earthquakes is due to the well-known influence of the character of the

uppermost strata on the value Ug which is considered a measure of the

intensity of earthquakes. On rock outcrops the value rig is always

veiy much smaller than on the surface of loose, alluvial fills. An
alluvial fill which occupies a depression in the surface of the rock repre-

sents an elastic unit with well-defined boundaries, having a natural

frequency of its own. Therefore the high values of rig for loose surface

deposits may represent the result of a resonance phenomenon which

occurs in the soil before the earthquake waves reach the foundations of

the structures. One can visualize this process in the following manner.

If the rock extends to the very surface of the earth the greatest part of

the kinetic energy which flows toward the surface is reflected and flows

back again into the rock. On the other hand, if the rock is covered with

a bed of sediments the energy is absorbed by the sediments, a process

comparable to the accumulation of kinetic energy in a pendulum acted

upon by a periodic impulse whose frequency is equal to the natural

frequency of the pendulum. This process intensifies the effect of the

earthquake on structures whose foimdations are supported by the sedi-

ments. In the derivation of equation 3, this possibility was not taken

into consideration.
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In the present state of our knowledge the influence of the geolo^c

conditions on the character and the intensity of the impulse produced by

a g^ven earthquake can only be investigated by field observations.

Even the most refined theoretical methods of evaluating the stresses in

a building due to earthquakes (for instance Biot 1942) can be used only

if the impulse which acts on the building is known in advance.





APPENDIX

INFLUENCE VALUES FOR VERTICAL STRESSES IN A SEMI-
INFINITE ELASTIC SOLID DUE TO SURFACE LOADS

1. Point load. The vertical normal stress v, at a point located at a

depth 2 below the surface of the solid at a horizontal distance r from the

point of application of a point load Q (Fig. 118a) is given by the equation

wherein

136(6)

The following table contains the values of I, for different values of r/s.

4gl
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Table I*

r/t I, rtz h
0.00 0.4775 0.40 0.3294

1 0.4773 1 0.3238

2 0.4770 2 0.3181

8 0.4764 3 0.3124

4 0.4756 4 0.3068

6 0.4745 5 0.3011

6 0.4732 6 0.2955

7 0.4717 7 0.2899

8 0.4699 8 0.2843

0 0.4679 0 0.2788

0.10 0.4657 0.50 0.2733

1 0.4633 1 0.2679

2 0.4607 2 0.2625

8 0.4579 3 0.2571

4 0.4548 4 0.2518

5 0.4516 5 0.2466

6 0.4482 6 0.2414

7 0.4446 7 0.2363

8 0.4409 8 0.2313

0 0.4370 9 0.2263

0.20 0.4329 0.60 0.2214

1 0.4286 1 0.2165

2 0.4242 2 0.2117

8 0.4197 3 0.2070

4 0.4151 4 0.2024

6 0.4103 0.1978

6 0.4054 6 0.1934

7 0.4004 7 0.1889

8 0.3954 8 0.1846

9 0.3902 9 0.1804

0.80 0.3849 0.70 0.1762

1 0.3796 1 0.1721

2 0.3742 2 0.1681

8 0.3687 3 0.1641

4 0.3632 4 0.1603

5 0.3577 5 0.1565

0 0.3521 6 0.1527

7 0.3465 7 0.1491

8 0.3408 8 0.1455

9 0.3351 9 0.1420

r/« I9 r/z Iff

0.80 0.1386 1.20 0.0513

1 0.1353 1 0.0501

2 0.1320 2 0.0489

3 0.1288 3 0.0477

4 0.1257 4 0.0466

5 0.1226 5 0.0454

6 0.1196 6 0.0443

7 0,1166 7 0.0433

8 0.1138 8 0.0422

9 0.1110 9 0.0412

0.90 0.1083 1.30 0.0402

1 0.1057 1 0.0393

2 0.1031 2 0.0384

3 0.1005 3 0.0374

4 0.0981 4 0.0365

5 0.0956 6 0.0357

6 0.0933 6 0.0348

7 0.0910 7 0.0340

8 0.0887 8 0.0332

9 0.0865 9 0.0324

1.00 0.0844 1.40 0.0317

1 0.0823 1 0.0309

2 0.0803 2 0.0302

3 0.0783 3 0.0295

4 0.0764 4 0.0288

5 0.0744 5 0.0282

6 0.0727 6 0.0275

7 0.0709 7 0.0269

8 0.0691 8 0.0263

9 0.0674 9 0.0257

1.10 0.0658 1.50 0.0251

1 0.0641 1 0.0245
2 0.0626 2 0.0240

3 0.0610 3 0.0234
4 0.0595 4 0.0229
5 0.0581 5 0.0224

6 0.0567 6 0.0219

7 0.0553 7 0.0214

8 0.0539 8 0.0209

9 0.0526 9 0.0204

^Q. Qilboy (1938)t Influence Tablet for Solution of Boutiineiq Equation. In “Earth and Fomi*
dationtt “ Progreti Btport of Special CommitteOf Proe, Am, 8oc. C.E., Vol. 50, p. 781.
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Table I— cmiinued

r/z Ic

1.60 0.0200

1 0.0195

2 0.0191

8 0.0187

4 0.0183

5 0.0179

6 0.0175

7 0.0171

8 0.0167

9 0.0163

1.70 0.0160

1 0.0157

2 0.0153

3 0.0160

4 0.0147

5 0.0144

6 0.0141

7 0.0138

8 0.0135

0 0.0132

1.80 0.0129

1 0.0126

2 0.0124

3 0.0121

4 0.0119

5 0.0116

6 0.0114

7 0.0112

8 0.0109

0 0.0107

1.00 0.0105

1 0.0103

2 0.0101

8 0.0099

4 0.0097

5 0.0095

6 0.0093

7 0.0091

8 0.0089

9 0.0087

r/z U
2.00 0.0085

1 0.0084

2 0.0082

8 0.0081

4 0.0079

5 0.0078

6 0.0076

7 0.0075

8 0.0073

9 0.0072

2.10 0.0070

1 0.0069

2 0.0068

3 0,0066

4 0.0065

5 0.0064

6 0.0063

7 0.0062

8 0.0060

9 0.0059

2.20 0.0058

1 0.0057

2 0.0056

3 0.0066

4 0.0054

5 0.0053

6 0.0052

7 0.0051

8 0.0050

9 0.0049

2.30 0.0048

1 0.0047

2 0.0047

3 0.0046

4 0.0045

5 0.0044

6 0.0043

7 0.0043

8 0.0042

9 0.0041

r/z U
2.40 0.0040

1 0.0040

2 0.0039

8 0.0038

4 0.0038

5 0.0037

6 0.0036

7 0.0036

8 0.0035

9 0.0034

2.50 0.0034

1 0.0033

2 0.0033

3 0.0032

4 0.0032

5 0.0031

6 0.0031

7 0.0030

8 0.0030

9 0.0029

2.60 0.0029

1

0.0028

2 0.0028

3 0.0027

4 0.0027

5 0.0026

6 0.0026

7 0.0025

8 0.0025

9 0.0025

2.70 0.0024

1 0.0024

2 0.0023

3 0.0023

4 0.0023

5 0.0022

6 0.0022

7 0.0022

8 0.0021

9 0.0021

r/z U
2.80 0.0021

1 0.0020

2 0.0020

8 0.0020

4 0.0019

5 0.0019

6 0.0019

7 0.0019

8 0.0018

9 0.0018

2.90 0.0018

1 0.0017

2 0.0017

3 0.0017

4 0.0017

5 0.0016

6 0.0016

7 0.0016

8 0.0016

9 0.0015

3.00 0.0015

1 0.0015

2 0.0015

3 0.0014

4 0.0014

5 0.0014

6 0.0014

7 0.0014

8 0.0013

9 0.0018

3.10 0.0018

1 0.0013

2 0.0013

3 0.0012

4 0.0012

5 0.0012

6 0.0012

7 0.0012

8 0.0012

9 0.0011
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Table I— cordinued

r/z Iff r/z Iff r/z It

3.20 0.0011 3.40 0.0009 3.75

1 0.0011 1 0.0008 to 0.0006

2 0.0011 2 0.0008 3.90

8 0.0011 3 0.0008

4 0.0011 4 0.0008 3.91

6 0.0011 6 0.0008 to 0.0004

6 0.0010 6 0.0008 4.12

7 0.0010 7 0.0008

8 0.0010 8 0.0008 4.13

0 0.0010 9 0.0008 to 0.0003

4.43

3.30 0.0010 3.60 4.44

1 0.0009 to 0.0007 to 0.0002

2 0.0009 3.61 4.90

3 0.0009

4 0.0009 3.62 4.91

5 0.0009 to 0.0006 to 0.0001

6 0.0009 3.74 6.16

7 0.0009

8 0.0009

9 0.0009

2. Uniformly distributed load on a rectangular area. If B is the

width and L the length of a rectangular area, which carries a load q per

unit of area the vertical normal stress at a point N (Fig. 120a) at a

depth z below one of the comers of the area is equal to

A<r, = ql^

The influence value 7^ is determined by the equation

hr
^ r 27nnVm^ + +1l + n^ +2

^
4s- + 1 4* + 1

2mnVm^ -h + 1 1
*

I 1 ^2^2 Im + n + 1 — m n J
wherein

186(8)

m • — and
2

L
n —

2

The values of I, for given values of m and n can be determined from the

graph on Plate 1, which has been prepared by R. E. Fadum. They are

also contained in the following table.
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3* Vertical normal stress beneath the center of a uniformly loaded

circular area. The vertical normal stress at depth z beneath the center

of a circular area with a radius R carrying a load q per unit of area is

wherein

136(4)

The following table contains the values of I9 for different values of R/z.
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Table III^

iBA /r

0.00 0.00000

1 0.00016

2 0.00060

3 0.00136

4 0.00240

6 0.00374

6 0.00638

7 0.00731

8 0.00962

0 0.01203

0.10 0.01481

1 0.01788

2 0.02122

3 0.02483

4 0.02870

5 0.03283

6 0.03721

7 0.04184

8 0.04670

9 0.06181

0.20 0,05713

1

0.06268

2 0.06844

3 0.07441

4 0.08067

6 0.08692

6 0.09346

7 0.10017

8 0.10704

9 0.11408

0.30 0.12126

1 0.12869

2 0.13605

8 0.14363

4 0.16133

5 0.16916

6 0.16706

7 0.17507

8 0.18317

0 0.19134

R/z h
0.40 0.19969

1 0.20790

2 0.21627

3 0.22469

4 0.23315

6 0.24165

6 0.25017

7 0.25872

8 0.26729

9 0.27687

0.50 0.28446

1 0.29304

2 0.30162

3 0.31019

4 0.31875

6 0.32728

6 0.33579

7 0.34427

8 0.35272

9 0.36112

0.60 0.36949

1 0.37781

2 0.38609

3 0.39431

4 0.40247

5 0.41068

6 0.41863

7 0.42662

8 0.43454

9 0.44240

0.70 0.45018

1 0.45789

2 0.46553

8 0.47310

4 0.48069

5 0.48800

6 0.49533

7 0.60259

8 0.50976

9 0.51685

R/z U
0.80 0.52386

1 0.63079

2 0.63763

3 0.64439

4 0.55106

5 0.66766

6 0.66416

7 0.57058

8 0.67692

9 0.68317

0.90 0.58934

1 0.69542

2 0.60142

3 0.60734

4 0.61317

5 0.61892

6 0.62459

7 0.63018

8 0.63668

9 0.64110

1.00 0.64646

1 0.65171

2 0.66690

3 0.66200

4 0.66703

5 0.67198

6 0.67686

7 0.68166

8 0.68639

9 0.69104

1.10 0.69562

1 0.70013

2 0.70457

8 0.70894

4 0.71324

6 0.71747

6 0.72163

7 0.72573

8 0.72976

9 0.73373

RIz U
1.20 0.73763

1 0.74147

2 0.74526

3 0.74896

4 0.75262

6 0.76622

6 0.75976

7 0.76324

8 0.76666

9 0.77003

1.30 0.77834

1 0.77660

2 0.77981

8 0.78296

4 0.78606

5 0.78911

6 0.79211

7 0.79607

8 0.79797

9 0.80083

1.40 0.80364

1 0.80640

2 0.80912

3 0.81179

4 0.81442

5 0.81701

6 0.81956

7 0.82206

8 0.82462

9 0.82694

1.50 0.82932

1 0.83167

2 0.83397

3 0.83624

4 0.83847

5 0.84067

6 0.84283

7 0.84495

8 0.84704

9 0.84910

* Computed by R. E. Fadum end ehookod by J. Levinio.
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Table III— continued

R/z h
1.60 0.85112

1 0.85312

2 0.85507

8 0.85700

4 0.85890

5 0.86077

6 0.86260

7 0.86441

8 0.86619

0 0.86794

1.70 0.86966

1 0.87136

2 0.87302

8 0.87467

4 0.87628

5 0.87787

6 0.87944

7 0.88098

8 0.88250

9 0.88399

1.80 0.88546

1 0.88691

2 0.88833

8 0.88974

4 0.89112

5 0.89248

6 0.89382

7 0.89514

8 0.89643

9 0.89771

R/z h
1.90 0.89897

1 0.90021

2 0.90143

8 0.90263

4 0.90382

5 0.90498

6 0.90613

7 0.90726

8 0.90838

9 0.90948

2.00 0.91056

.02 0.91267

.04 0.91472

.06 0.91672

.08 0.91865

.10 0.92053

.15 0.92499

.20 0.92914

.25 0.93301

,30 0.93661

.35 0.93997

.40 0.94310

.45 0.94603

.50 0.94877

.55 0.95134

.60 0.95374

.65 0.95599

.70 0.95810

.75 0.96009

.80 0.96195

.85 0.96371

R/z h
2.90 0.96536

.95 0.96691

3.00 0.96838

.10 0.97106

.20 0.97346

.30 0.97661

.40 0.97753

.50 0.97927

.60 0.98083

.70 0.98224

.80 0.98352

.90 0.98468

4.00 0.98573

.20 0.98757

.40 0.98911

.60 0.99041

.80 0.99152

5.00 0.99246

.20 0.99327

.40 0.99396

.60 0.99457

.80 0.99510

6.00 0.99556

.50 0.99648

7.00 0.99717

.50 0.99769

R/z Iv

8.00 0.99809

9.00 0.99865

10.00 0.99901

12.00 0.99943

14.00 0.99964

16.00 0.99976

18.00 0.99983

20.00 0.99988

25.00 0.99994

30.00 0.99996

40.00 0.99998

50.00 0.99999

100.00 1.00000

00 1.00000
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SUBJECT INDEX

A
Active earth pressure. See Earth pres-

sure.

Adiabatic process, 337

Aelotropy defined, 368

Air space ratio defined, 304

Airy^s stress function, 68

Analogue, diffusion, to swelling, 333

thermodynamic, to adiabatic process,

337

to consolidation, 272 ff., 278

Analogues, mathematical, 431 ff.

Anchor beams, 231

Anchor plates, 233 ff.

Anchor walls, 229 ff.

Anchorage of bulkheads, 229 ff.

Angle of internal friction, 8, 14

Angle of repose, 4, 5, 8

Angle of shearing resistance, 7

Angle of wall friction (active earth

pressure), 49

Angle of wall friction (passive earth

pressure), 61

Apparent cohesion, 10

Arching above yielding strip, 68

Arching behind lateral support, 74
Arching effect, 66, 68, 69

Arching, theories of, 69 ff.

B

Base failure of slopes, 146 ff.

Base failure on quay walls, 166, 173

Base failure on retaining walls, 165, 173

Bearing area defined, 118

Bearing capacity defined, 118

Bearing capacity factors, 127 ff.

Bearing capacity of cylindrical piers,

134 ff.

Bearing capacity of square and circular

footings, 133 ff.

Boundary deformation conditions de-

fined, 42

Boundary, hydraulic, conditions de-

fined, 241

503

Boundary stress conditions defined, 42

Bouasinesq’s equations, 374

Boyle^s law, 306, 324

Bubbles, gas pressure in, 306 ff.

Buckling, resistance of piles against, 143,

361 ff.

Bulkheads, anchorage of, 229 ff.

comparison between methods for,

computation, 228

definition of different types of an-

chored, 218

distribution of active earth pressure

on anchored, 218

effect of rainstorms on anchored, 261 ff.

effect of tides on anchored, 262

free, flexible, 369 ff.

rigid, 366 ff.

Bulkheads with free earth support 220 ff

.

Bulkheads with fixed earth support,

222 ff.

Buoyancy in soils defined, 24

C

Cable towers, foundation of, 358 ff.

Capillary force defined, 297

Capillary potential, 302

Capillary pressure defined, 332

Capillary rise, height of, in grooves, 301

height of, in sand, 301 ff.

in tubw, 298 ff.

Capillary siphon effect, 301, 304 ff.

Capillary tubes, rise of water in, 298 ff.

Capillary water, discontinuous, 303

semi-continuous, 303

Circle of rupture, 21

Circle of stress, 17

Coefficient of active earth pressure, 50

Coefficient of compressibility, 266

Coefficient of consolidation, 271

Coefficient of dynamic subgrade reaction,

449

Coefficient of earth pressure at rest, 27

Coefficient of elastic recovery, 266

Coefficient of horizontal pile reaction, 349
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Coefficient of horuontal soil reaction,

346, 349

Coefficient of passive earth pressure, 52

Coefficient of permeability, 237

Coefficient of subgrade reaction, 345 ff.

Coefficient of swelling, 271

Coefficient of vertical pile reaction, 347

Coefficient of volume decrease, 267

Coefficient of volume expansion, 267

Cohesion, 6, 9, 10

Cohesion, apparent, 10

Cohesion, true, 10

Composite surfaces of sliding, 175 ff.

Compressibility, coefficient of, 266

Compression test, principle of triaxial, 12

Compression waves. See Waves.

Concentration index, 395

Conjugate sections, 21

Consolidation, assumptions involved in

theories of, 266 ff.

change of vertical pressure on bed of

clay during, 427 ff.

coefficient of, 271

defined, 266

degree of, defined, 282

during gradual load application, 286 ff.

effect of gas content on rate of, 289 ff.

of bed of clay by desiccation, 333 ff.

of bed of clay by lowering the water

table, 318 ff.

of bed of clay by seepage from resei^

voir, 279 ff.

of hydraulic fill dam, 291 ff.

of hydraulic fill layer by drainage

through its base, 321 ff.

of loaded bed of clay containing verti-

cal filter wells, 292 ff.

of submerged hydraulic fill layer on

impermeable base, 279

of submerged hydraulic fill layer on
permeable base, 278 ff.

pressure, 269

settlement due to, 281 ff.

stress, 269

two- and three-dimensional processes

of, 291 ff.

Contact angle, 298

Contact face, 100

Contact pressure on base of footings,

130 ffj, 387 ff.

Coulomb's equation, 7

conditions for validity of, 9 ff., 19 ff., 23

Coulomb's theory of active earth pres-

sure, 78 ff.

Coulomb's theory of earth pressure, mis-

application of, 4

Coulomb's theory of passive earth pres-

sure, 105 ff.

Counter slope, influence of, on stability

factor, 158

Cracks. aSccTension cracks.

Critical circles defined, 150

Critical cohesion value defined, 161

Critical head (piping), 258 ff.

Critical height of slope defined, 152

Critical height of vertical banks, 162 ff.

Critical load defined, 118

Critical range for frequency, 460

Culmann line, 82

Culmann's method (quay walls), 364

Culmann's method (retaining walls), 81

Cut-off, lateral pressure on sheet pile,

262 ff.

Cuts in cohesive soils, 186 ff

.

Cuts in sand, 182 ff.

Cuts, stability of bottom of, in ideal

clay, 192 ff.

stability of bottom of, in sand, 189 ff.

D
Damping defined, 439

Damping factor defined, 439

Darcy's law, 238

Decrement, logarithmic, 440

Deformation conditions defined, 42

Deformation, plane, defined, 16, 27

Depth factor defined, 151

Desiccation, drainage by, 330 ff.

Diffusion, analogue to swelling, 333

Discharge velocity, 237

Drainage, by desiccation, 330 ff.

degree of, defined, 315

effect of, on earth pressure and sta-

bility, 338 ff

.

effect of gas content on rate of, 323 ff.

fundamental assumptions in theories

of, 309 ff

.

of clay embankment after sudden

drawdown, 327 ff.

of clay through walls of shaft, 326 ff.
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Drainage of consolidated bed of clay by
lowering the water table, 318 ff.

of hydraulic fill layer through perme-
able base, 321 ff.

of sand by lowering the water table,

310 ff.

of sand by pumping from a well, 315 ff.

of sand embankment after sudden
drawdown, 317 ff., 340

rate of, defined, 309

Drawdown, drainage of clay embank-
ment after sudden, 327 ff.

effect of, on stability of clay slopes,

166, 340 ff.

effect of, on stability of quay walls,

166

on stability of sand slopes, 317 ff.,

340

Drillholes, in clay, 206

in sand, 204

state of stress in vicinity of, 202 ff.

Dynamic resistance against pile penetra-

tion, 138 ff., 142

E

Earth pressure, active, defined, 46

active, of cohesive soil, 96 ff.

coeflicient of, 60

at rest, coeflScient of, 27

distribution of active, on anchored

bulkhead, 218

exerted by hydraulic fill, 338 ff.

factor defined, 184

graphs, 99, 107

on anchored bulkheads during rain-

storm, 261 ff.

on anchored bulkhead during receding

tide, 262 ff.

on reinforced concrete retaining walls,

93 ff.

on support in tunnels beneath slope on

sand, 197 ff.

on support in tunnels in cohesive soil,

198 ff.

on support in tunnels in sand, 194 ff.

on timbering of outs in cohesive soil,

186 ff.

on timbering of cuts in sand, 182 ff.

on walls of shafts in clay, 214

on walls of shafts in sand, 206 ff.

505

Earth pressure, passive. 8$$ Passive

earth pressure.

point of application of active, 84 ff.

tables, 99

Earthquake waves, 473 ff.

Earthquakes, effect of, on buildings, 476,

477

effect of, on concrete gravity dams
475 ff.

effect of, on high smoke stacks, 477

effect of, on retaining walls, 475 ff.

methods for expressing intensity of,

476, 477 ff.

types of, 473

Eccentric loading, effect of, on t3rpe of

failure of footings, 129

Edge action (bearing capacity), 122, 402

Effective stresses, 12, 13

Elasticity, modulus of, defined, 368

Embankment. See Drainage, stability.

Energy, loss of, in pile driving, 138 ff.

Engesser line, 83

Engesser method, 82 ff.

Epicenter of earthquakes, 473

Equilibrium, elastic, defined, 28

plastic, defined, 23

Equipotential lines defined, 241

Equivalent beam method, 226 ff.

Evaporation, drainage by, 330 ff.

effect of, on stresses in clay adjoining

shaft, 327

Excess hydrostatic pressure defined, 237

Explosives, soil exploration by means of,

468 ff.

F

Failure, active, in semi-infinite mass de-

fined, 28

bank, 146

base, of slope, 147 ff.

by piping, 267 ff

.

by plastic flow, 6, 28

of fills along composite surfaces of

sliding, 176 ff.

of fills by spreading, 176 ff.

of retaining walls, 77

of soil adjoining anchor walls, beams,

and plates, 230 ff.

of soil beneath eccentrically loaded

footings, 129
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Failure, of soil surrounding a shaft,

206

of soil beneath footings by general

shear, 119, 120 ff.

of soil beneath footings by local shear,

120, 129 ff.

passive, in semi-inffnite mass defined,

28

progressive, 6

slope, 146 ff.

Field of flow net, 246

Filter, effect of loaded, on critical head,

261 ff.

Flexible load, defined, 376

pressure on base of elastic layer due

to, 420 ff.

settlement due to, on elastic layer,

423 ff.

on semi-infinite solid, 382 ff.

stresses in semi-infinite, orthotropic,

or nonhomogeneous solids due to,

392 ff.

stresses in semi-infinite solid due to,

376 ff.

Flow, linear, defined, 235

plastic, 5, 23

two-dimensional, defined, 236

Flow value, 22

Flow channel, 246

Flow lines, 236, 241

Flow net, for hydraulically anisotropic

soil, 245 ff.

for hydraulically isotropic soil,

241 ff.

Flow nets, typical examples for, 239, 242,

245, 248, 252, 254

Focus of earthquakes, 473

Footings, contact pressure on base of

elastic, 389 ff.

contact pressure on base of rigid,

130 ff., 388, 390 ff.

subgrade reaction on base of elastic,

350 ff.

Bubgrade reaction on base of rigid,

349 ff.

Forced vibrations, 435, 440 ff

.

Foundations, vibration of engine, 457 ff.

vibration of steam turbine, 461 ff.

Freedom, degree of, of vibrating system

defined, 434

Frequency, influence of, on settlement of

base of vibrator, 450 ff.

influence of properties of soil on natu*

ral, of vibrator, 448 ff.

natural, defined, 438

of engine foundations, 457 ff.

of sedimentary strata, 449, 478

of water tower, 454 ff

.

of vibrations defined, 438

Friction, angle of internal, 8, 14

Friction circle method, principle of. 111

Friction index, 168

Friction piles, 136

Frictional resistance, 8, 14

G

Gas content, effect of, on rate of consoli-

dation of clay, 289 ff.

effect of, on rate of drainage of clay,

323 ff.

on rate of drainage of incompressible

sediments, 325

Gas pressure, in bubbles, 305 ff

.

in voids, 305 ff.

Gradient, hydraulic, defined, 237

pressure, defined, 237

Grooves, capillary rise in, 301

Groimd-water level = ground-water sur-

face, defined, 309

H
Head, critical (piping), 258 ff.

effect of loaded filter on critical, 261 ff

.

hydraulic, 236

piezometric, defined, 12

position, 236

Homogeneity, defined, 368

Hydraulic boundary conditions defined,

241

Hydraulic fill dams, consolidation of,

291 ff.

Hydraulic fill layers. See Consolidation

;

Drainage.

Hydraulic gradient defined, 237

Hydrostatic pressure, excess, defined,

237

1

Impact, longitudinal, on piles, 466 ff.

Newtonian, loss, 140 ff.
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Influence tables, for stresses due to load
on surface of semi-infinite elastic

solids, 480 fl.

Influence values, for settlement of surface

of elastic layer, 423 ff.

for settlement of surface of semi-in-

finite elastic solids, 382 ff.

for stresses in elastic solids, 378 ff.

Interference phenomena, 464, 472

Isochrones defined, 276

Isotropy defined, 368

K
KOtter’s equation, 61 fl.

L

Law, Boyle's, 306, 324

Law, Darcy's, defined, 238

Layer, half-closed, defined, 283

Layer, open, defined, 283

Line of saturation =" line of seepage, 243,

309

Line load, earth pressure on retaining

wall, due to, 91 ff.

influence of position of, on earth pres-

sure, 91 ff.

pressure on rigid base of elastic layer

due to, 417 ff.

stresses in semi-infinite solid due to,

376 ff.

Logarithmic decrement, 440

Logarithnaic spiral method, principle of,

108

Longitudinal vibrations in piles, 466 ff.

Love waves, 464, 471, 473

M
Magnification factor defined, 442

Meniscus defined, 298

Midpoint circles defined, 160

Modulus of elasticity defined, 368

Mohr’s diagram, 19 ff

.

Mohr's theory, approximations involved

in, 19, 23

Multiple mass system defined, 434

N
Neutral stresses defined, 12

Newtonian equation, for loss of energy,

140 ff.

O
Orthotropic solid, stresses due to load on

surface of 393 ff.

Orthotropy defined, 386

P

P waves. See Wave.
Passive earth pressure, coeflBcient of, 62
Coulomb's theory of, 106 ff.

defined, 46

friction circle method. 111 ff.

logarithmic spiral method, 108 ff.

of cohesive soil, 113 ff.

point of application of, 102 ff.

Percolation, rate of, through hydrauli-

cally isotropic soil, 246

Percolation, rate of, through hydrauli-

cally orthotropic soil, 247

Perimeter shear, 401 ff.

Period, natural, defined, 434

Period of free, harmonic vibrations, 438

Phase angle defined, 443

Phase difference defined, 443

Photoelastic method, 432 ff.

Phreatic water level, 309

Piers, bearing capacity of cylindrical,

134 ff.

Piezographs defined, 276

Piezometric head defined, 12

Pile formulas, 137 ff.

Pile foundations for quay walls, 363 ff

.

Pile, Newtonian impact loss in driving,

140 ff.

Pile reaction, coefficient of vertical, 346 ff.

Piles, bearing capacity of individual,

136 ff.

danger of failure of, by buckling, 143,

361 ff.

distribution of load on, beneath rigid

footings, 362 ff.

supporting a quay wall, 363 ff

.

dynamic resistance to penetration of,

138 ff., 142

fnction, 136

longitudinal impact on, 465 ff.

point-bearing, 136

static resistance to penetration o f, 137

142

t3rpes of, 136 ff.

Piping, mechanics of, 267 ff

.
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Plane deformation defined, 16, 27

Plastic equilibrium defined, 23

Plastic flow, 6, 23

Plastic materials defined, 5

Plasticity, theories of, 23

Point-bearing piles, 136

Point load, displacements in semi-infinite

solid due to, 376 ff.

pressure on rigid base of elastic layer

due to, 417 ff.

stresses in semi-infinite, isotropic solid

due to, 373 ff.

orthotropic or nonhomogeneous

solids due to, 392 ff.

Point of application, of active earth pres-

sure, 84 ff

.

of passive earth pressure, 102 ff

.

Point resistance of piles, 136

Poisson^s ratio, defined, 368

influence of, on velocity of wave propa-

gation, 463

Pole, active, 30

Pole of stress diagrams, 18

Pore-water pressure defined, 12

Potential (gravity), defined, 240

Preconsolidation defined, 9

Pressure gradient defined, 237

Principal planes, 15

Principal stresses, 15

Progressive failure, 6

Push waves. See Compression waves.

Q
Quay walls, base failure on, 166, 173

load on piles, supporting, 363 ff.

Quarry blast, vibrations due to, 473 ff.

R
Radial shear, zone of, 55

Rainstorm, effect of, on earth pressure on
retaining wall, 247 ff.

on stability of bulk-heads, 251 ff

.

op stability of slopes, 253 ff

.

Rankine state, active, defined, 28

passive, defined, 28

Rankine states, in cohesionless masses,

29 ff.

in cohesive masses, 35 ff.

Rankine sones defined, 29

Rankine's earth pressure theory, 46 ffj

conditions for validity of, 43

Rate of drainage, 309 ff.

Rate of percolation, 246 ff

.

Rayleigh waves, 464, 471, 473

Reflection method, principle of, 469

Refraction method, principle of, 469 ff.

Reinforced concrete retaining walls,

earth pressure on, 93 ff.

Relaxation methods, principle of, 63

Resonance condition defined, 442

Repose, angle of, 4, 5, 8

Ring action in soil surrounding shafts,

208, 326

S

S waves. See Shear waves.

Saturation, degree of, defined, 304

line of, 243, 309

Seepage, line of, 243

Seepage velocity, 238

Seismic soil exploration, 469 ff.

Settlement, curves of equal, 384

due to consolidation, 281 ff.

due to load on surface of elastic layer,

423 ff.

due to load on surface of semi-infinite

solid, 382 ff.

influence of size of loaded area on,

396 ff.

influence values for computing, 382 ff.,

423 ff.

load-curve, 118

of vibrator, influence of frequency on,

450 ff.

Settlement profile, 384

Shaft, drainage of clay toward, 325 ff.

earth pressure of clay on walls of,

214

earth pressure of sand onwallsof, 206 ff.

in elastic solid, 409 ff.

swelling of clay adjoining walls of,

326 ff.

Shear line, 28

Shear pattern, 28

Shear tests, 7 ff

.

Shear waves. See Waves.

Shearing resistance, angle of, 7

Shearing stresses at base of cohesionlesi

fills. 177 ff.
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Sheet pile cut-offs, lateral pressure on,

262 ff.

Similitude, laws of, 431 ff.

Siphon, effect, capillary, 301, 304 ff.

Skin friction, 136, 404

stresses in elastic solid due to, on
loaded piles, 404 ff

.

Sliding, curve of, 28

Sliding wedge, 77

Slope circle, 160

Slope failure, 146 ff.

Slopes, effect of rainstorms on stability

of, 263 ff.

effect of seepage on stability of, 253 ff.

effect of tension cracks on stability of,

163 ff., 173 ff.

Soil exploration, by means of explosives,

468 ff.

by means of vibrators, 471 ff.

seismic, 469 ff.

Soil reaction, coefficient of horizontal,

346, 349

Spring constant defined, 436

Stability factor defined, 166

Stability of slopes. See Slopes.

Static resistance to penetration of piles,

137, 142

Steam turbines, foundation of, 461 ff.

Strain defined, 367

Stress, circle of, 17

defined, 7

effective, defined, 12

neutral, defined, 12

Stress function, Airy's, 68

Stress, principal, defined, 16

Strip load, pressure on base of elastic

layer due to flexible, on surface,

421 ff.

stresses in semi-infinite solid due to

flexible, on surface, 377 ff.

Subgrade reaction, coefficient of, 346 ff

.

coefficient of dynamic, defined, 449

on base of elastic footings, 360 ff.

on base of rigid footings, 349 ff.

Submerged unit weight of soil defined, 26

Superposition, law of, 369

Surcharge, equivalent height of, 91

on backfill of retaining walls, 89 ff.

Surface film, 197

Surface tension defined, 298

609

Surface tension of water, numerical
values of, 298

Surface waves defined, 464
Swelling, coefficient of, 271

defined, 266

effect of, on stability of clay embank-
ment, 330

of clay adjoining shafts and tunnels,

326 ff.

of clay after partial desiccation, 337 ff

.

T

Tension associated with active Rankine
state, 37 ff.

Tension cracks, in soils, 37, 146, 146,

163 ff., 173 ff.

influence of, on critical height of in-

clined slopes, 173 ff.

on critical height of vertical banks,

163 ff.

Thermodynamic analogue to consolida-

tion, 272 ff., 278

Tides, effect of, on stability of bulkheads,

262

Timbering. ASeeCuts; Tunnels.

Time factor defined, 274

Toe circles defined, 160

Trajectories of stresses due to flexible

strip load, 386

Transition from elastic into plastic state

beneath loaded area, 384 ff

.

Transverse waves. See Wave.
Trapezoid method (Quay walls), 366

Travel-time curves, 472

Triaxial compression test, principle of, 12

True cohesion, 10

Tunnel, beneath slope on sand, 197 ff.

in cohesive soil, 198 ff.

in perfectly elastic solid, 411 ff.

in sand, 194 ff.

stability of bottom of, in cohesive soiL

199 ff.

in sand, 197

U

Unit weight, submerged, of soil defined,26

Uplift, hydrostatic, 24

V

Velocity, discharge, defined, 237
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Vldooity, of wave propagation defined,

435

seepage, defined, 238

Vibrations, damped forced, 444 ft.

damped free, 438 ff.

forced, harmonic, 440 ff.

free, defined, 434

free, harmonic, 436 ff.

longitudinal, in piles, 465 ff.

Vibrator, principle of, 447

soil exploration by means of, 471 ff.

theory of, tests, 461 ff.

Void ratio. See e in list of symbols.

Voids, gas pressure in, 305 ff.

Volume decrease, coefficient of, 267

Volume expansion, coefficient of, 267

W
Wall friction, angle of (active earth pres-

sure), 49

angle of (passive earth pressure), 51

influence on shape of surface of sliding,

49 ff.

Water-logging (drainage), 322

Water table = phreatic water level =
ground-water level, defined, 309

Wave, compression (push or P), defined,

463

compression, velocity of propaga-

tion of, 463

shear (transverse or S) defined, 463

velocity of propagation of, 463

Wave front defined, 435

Wave length defined, 463

line of, propagation defined, 462

Wave propagation, velocity of, defined,

435

Wedge, elastic, on rigid base, 429 ff.

sliding, defined, 77

stresses in semi-infinite elastic, 406 ff.

Wells, consolidation of clay by drainage

toward, 292 ff.

Wells, drainage of sand by pumping
from, 315 ff.

Work performed in pile driving, 138 ff.

Y

Young's modulus, 368




