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Foreword 

The tremendous research and development effort that went into the 
development of radar and related techniques during World War II 

resulted not only in hundreds of radar sets for military (and some for 
possible peacetime) use but also in a great body of information and new 
techniques in the electronics and high-frequency fields. Because this 
basic material may be of great value to science and engineering, it seemed 
most important to publish it as soon as security permitted. 

The Radiation Laboratoiy of MIT, which operated under the super¬ 
vision of the National Defense Research Committee, undertook the great 
task of preparing these volumes. The work described herein, however, is 
the collective result of work done at many laboratories, Army, Navy, 
university, and industrial, both in this country and in England, Canada, 
and other Dominions. 

The Radiation Laboratory, once its proposals were approved and 
finances provided by the Office of Scientific Research and Development, 
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire 
project. An editorial staff was then selected of those best qualified for 
this type of task. Finally the authors for the various volumes or chapters 
or sections were chosen from among those experts who were intimately 
familiar with the various fields, and who were able and willing to write 
the summaries of them. This entire staff agreed to remain at work at 
MIT for six months or more after the work of the Radiation Laboratory 
was complete. These volumes stand as a monument to this group. 

These volumes serve as a memorial to the unnamed hundreds and 
thousands of other scientists, engineers, and others who actually carried 
on the research, development, and engineering work the results of which 
are herein described. There were so many involved in this work and they 
worked so closely together even though often in widely separated labora¬ 
tories that it is impossible to name or even to know those who contributed 
to a particular idea or development. Only certain ones who wrote reports 
or articles have even been mentioned. But to all those who contributed 
in any way to this great cooperative development enterprise, both in this 
country and in England, these volumes are dedicated. 

L. A. DuBbedge. 
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Preface 

The need that arose during the war for utilizing the microwave region 
of the radio frequency spectrum for communications and radar stimu¬ 

lated the development of new types of antennas. The problems and 
design techniques, lying as they do in the domain of both applied electro¬ 
magnetic theory and optics, are quite distinct from those of long-wave 
antennas. It is the aim of the present volume to make available to the 
antenna engineer a systematic treatment of the basic principles and the 
fundamental microwave antenna types and techniques. The elements 
of electromagnetic theory and physical optics that are needed as a basis 
for design techniques are developed quite fully. Critical attention is 
paid to the assumptions and approximations that are commonly made 
in the theoretical developments to emphasize the domain of applicability 
of the results. The subject of geometrical optics has been treated only 
to the extent necessary to formulate its basic principles and to show its 
relation as a short wavelength approximation to the more exact methods 
of field theory. The brevity of treatment should not be taken as an 
index of the relative importance of geometrical optics to that of electro¬ 
magnetic theory and physical optics. It is in fact true that the former 
is generally the starting point in the design of the optical elements 
(reflectors and lenses) of an antenna. However, the use of ray theory 
for microwave systems presents no new problems over those encountered 
in optics—on which there are a number of excellent treatises—except 
that perhaps the law of the optical path appears more prominently in 
microwave applications. 

In the original planning of the book it was the intention of the editors 
to integrate all of the major work done in this country and in Great 
Britain and Canada. This proved, however, to be too ambitious an 
undertaking. Many subjects have regrettably been omitted completely, 
and others have had to be treated in a purely cursory manner. It was 
unfortunately necessary to omit two chapters on rapid scanning antennas 
prepared by Dr. C. Y. Robinson. The time required to revise the 
material to conform with the requirements of military security and yet 
to represent an adequate exposition of the subject would have unduly 
delayed the publication of the book. Certain sections of Dr. Robinson's 
material have been incorporated into Chaps. 6 and 12. 

« 



X PREFACE 

I take pleasure in expressing here my appreciation to Prof. Hubert 
M. James who, as Technical Editor, shared with me much of the 
editorial work and the attendant responsibilities. The scope of the book, 
the order of presentation of the material, and the sectional division within 
chapters were arrived at by us jointly in consultation with the authors. 
I am personally indebted to Professor James for his editorial work on 
my own chapters. 

The responsibility for the final form of the book, the errors of omission 
and commission, is mine. A word of explanation to the authors of the 
various chapters is in order. After the close of the Office of Publications 
and the dispersal of the group, I have on occasions made use of my 
editorial prerogative to revise their presentations. I hope that the results 
meet with their approval. The policy of assignment of credit also needs 
explanation. The interpretation of both Professor James and myself of 
the policy on credit assignment formulated by the Editorial Board for 
the Technical Series has been to the effect that no piece of work discussed 
in the text would be associated with an individual or individuals. Radi¬ 
ation Laboratory reports are referred to in the sense that they represent 
source material for the chapter rather than individual acknowledgements. 
References to unpublished material of the Radiation Laboratory note¬ 
books have been assiduously avoided, although such material has been 
drawn upon extensively by all of us. In defense of this policy it may be 
stated that the work at the Radiation Laboratory was truly a cooperative 
effort, and in only a few instances would it have been possible to assign 
individual credit unequivocally. 

The completion of the book was made possible through the efforts of 
a number of people; in behalf of the editorial staff and the authors I wish 
to acknowledge their assistance and contributions. Mrs. Barbara Vogel 
and Mrs. Ellen Fine of the Radiation Laboratory served as technical 
assistants; the production of figures and photographs was expedited by 
Mrs. Frances Bourget and Mrs. Mary Sheats. It proved impossible to 
finish the work by the closing date of the Office of Publications; the Naval 
Research Laboratory accepted the work as one of the projects of the 
newly formed Antenna Research Section and contributed generously in 
personnel and facilities. Special thanks are due to A. S. Dunbar, 
I. Katz, and Dr. I. Maddaus for their editorial assistance; to Queenie 
Parigian and Louise Beltramini for preparation of the manuscript; 
and to Betty Hodgkins who prepared almost all of the figures. 
The editors are indebted to Dr. G. G. Macfarlane of the Tele¬ 
communications Research Establishment, Great Britain, for his 
critical review of several of the theoretical chapters and his contribution 
on the theory of slot radiators in Chap. 9. John Powell of the 
Radiation Laboratory prepared material on lenses that was used in 
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Chap. 11. The National Research Council of Canada and the British 
Central Radio Bureau have graciously granted us permission to take 
material from Canadian and British reports in accordance with current 

security regulations. The Bell Telephone Laboratory supplied the 
photographs of metal lens antennas. 

The publishers have agreed that ten years after the date on which 

each volume of this series is issued, the copyright thereon shall be relin¬ 

quished, and the work shall become part of the public domain. 

Samuel Silver. 
Naval Research Laboratory, 
Washington, D. C., 

April, 1947. 
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CHAPTER 1 

SURVEY OF MICROWAVE ANTENNA DESIGN PROBLEMS 

By S. Silver 

l'l. The Wavelength Region.—The designation of the boundaries of 
the microwave region of the electromagnetic spectrum is purely arbitrary. 
The long-wavelength limit has been set variously at 25 or 40 cm, even 
at 100 cm. From the point of view of antenna theory and design tech¬ 
niques, the 25-cm value is the most appropriate choice. The short- 
wavelength limit to which it is possible to extend the present techniques 
has not yet been reached; it is in the neighborhood of 1 mm. Accordingly 
we shall consider the microwave region to extend in wavelength from 0.1 
to 25 cm, in frequency from 3 X 108 to 1200 Mc/sec. 

This is the transition region between the ordinary radio region, in 
which the wavelength is very large compared with the dimensions of all 
the components of the system (except perhaps for the large and cumber¬ 
some antennas), and the optical region, in which the wavelengths are 
excessively small. Long-wave concepts and techniques continue to be 
useful in the microwave region, and at the same time certain devices 
used in the optical region such as lenses and mirrors are employed. From 
the point of view of the antenna designer the most important character¬ 
istic of this frequency region is that the wavelengths are of the order of 
magnitude of the dimensions of conventional and easily handled mechan¬ 
ical devices. This leads to radical modification of earlier antenna 
techniques and to the appearance of new and striking possibilities, 
especially in the construction and use of complex antenna structures. 

It follows from elementary diffraction theory that if D is the maximum 
dimension of an antenna in a given plane and X the wavelength of the 
radiation, then the minimum angle within which the radiation can be 
concentrated in that plane is 

With microwaves one can thus produce highly directive antennas such 
as have no parallel in long-wave practice; if a given directivity is desired, 
it can be obtained with a microwave antenna which is smaller than the 
equivalent long-wave antenna. The ease with which these small antennas 
can be installed and manipulated in a restricted space contributes greatly 
to the potential uses of microwaves. In addition, the convenient site of 

l 
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microwave antenna elements and of the complete antenna structure makes 
it feasible to construct and use antennas of elaborate structure for special 
purposes; in particular, it is possible to introduce mechanical motions of 
parts of the antenna with respect to other parts, with consequent rapid 
motion of the antenna beam. 

The microwave region is a transition region also as regards theoretical 
methods. The techniques required range from lumped-constant circuit 
theory, on the low-frequency side, through transmission-line theory, field 
theory, and diffraction theory to geometrical optics, on the high-fre¬ 
quency side. There is frequent need for using several of these theories 
in parallel—combining field theory and transmission-line theory, sup¬ 
plementing geometrical optics by diffraction theory, and so on. Optical 
problems in the microwave antenna field are relatively complex, and 
some are of quite novel character: For instance, the optics of a curved 
two-dimensional domain finds practical application in the design of 
rapid-scanning antennas. 

1*2. Antenna Patterns.—Before undertaking a survey of the more 
important types of microwave antenna, it will be necessary to state 
precisely the terms in which the performance of an antenna will be 
described. 

The Antenna as a Radiating Device: The Gain Function.—The field 
set up by any. radiating system can be divided into two components: 
the induction field and the radiation field. The induction field is impor¬ 
tant only in the immediate vicinity of the radiating system; the energy 
associated with it pulsates back and forth between the radiator and 
near-by space. At large distances the radiation field is dominant; it 
represents a continual flow of energy directly outward from the radiator, 
with a density that varies inversely with the square of the distance and, 
in general, depends on the direction from the source. 

In evaluating the performance of an antenna as a radiating system 
one considers only the field at a large distance, where the induction field 
can be neglected. The antenna is then treated as an effective point 
source, radiating power that, per unit solid angle, is a function of direc¬ 
tion only. The directive properties of an antenna are most conveniently 
expressed in terms of the “gain function” G(6,<t>). Let 6 and * be respec¬ 
tively the colatitude and azimuth angles in a set of polar coordinates 
centered at the antenna. Let P(0,<t>) be the power radiated per unit 
solid angle in direction 9, * and Pt the total power radiated. The gain 
function is defined as the ratio of the power radiated in a given direction 
per unit solid angle to the average power radiated per unit solid angle: 

. P(o,*) 
~P7~ 

4* 

0(9,*) 
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Thus G(d,<f>) expresses the increase in power radiated in a given direction 
by the antenna over that from an isotropic radiator emitting the same 
total power; it is independent of the actual power level. The gain 
function is conveniently visualized as the surface 

r = G(B,<t>) (3) 

distant from origin in each direction by an amount equal to the gain 
function for that direction. Typical gain-function surfaces for micro- 
wave antennas are illustrated in Fig. 1*1. 

The maximum value of the gain function is called the “gain”; it 
will be denoted by Gm. The gain of an antenna is the greatest factor 
by which the power transmitted in a given direction can be increased 
by using that antenna instead of an isotropic radiator. 

The “transmitting pattern” of an antenna is the surface 

Gm 9 
(4) 

it is thus the gain-function surface normalized to unit maximum radius. 
A cross section of this surface in any plane that includes the origin is 
called the “polar diagram” of the antenna in this plane. The polar 
diagram is sometimes renormalized to unit maximum radius. 

When the pattern of an antenna has a single principal lobe, this is 
usually referred to as the “antenna beam.” This beam may have a 
wide variety of forms, as is shown in Fig. 1-1. 

The Antenna as a Receiving Device: The Receiving Cross Section.—The 
performance of an antenna as a receiving device can be described in 
terms of a receiving cross section or receiving pattern. 

A receiving antenna will pick up energy from an incident plane wave 
and will feed it into a transmission line which terminates in an absorbing 
load, the detector. The amount of energy absorbed in the load will 
depend on the orientation of the antenna, the polarization of the wave, 
and the impedance match in the receiving system. In specifying the 
performance of the antenna, we shall suppose that the polarization of 
the wave and the impedance characteristics of the detector are such that 
maximum power is absorbed. The absorbed power can then be expressed 
as the power incident on an effective absorbing area, called the “receiving 
cross section,” or “absorption cross section” Ar of the antenna. If S is 
the power flux density in the incident wave, the absorbed power is 

Pr * BAr (5) 

The receiving cross section will depend on the direction in which the 
plane wave is incident on the antenna. We shall write it as Ar ** Ar(&,4>), 
where 9 and $ are the spherical angles, already defined, of the direction 
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of incidence of the wave. This function, like the gain function, is repre¬ 
sented conveniently as the surface 

r = Ar(e,<t>). (6) 

The “receiving pattern” of an antenna is defined, analogously to 
the transmitting pattern, as the above surface normalized to unit maxi¬ 
mum radius: 

A; 
It is a consequence of the reciprocity theorem to be discussed in 

Chap. 2 that the receiving and transmitting patterns of an antenna are 
identical: ( 

G(d,<t>) __ Ar(d,<j>) ^ 
Gm Ar\f 

It will also be shown that the ratio Atm/Gm is a constant for all matched 
antennas: 

Ar\t __ X“ 

~ At' 
(9) 

Thus for any matched receiving system 

Ar (M) « ^(*,*). (10) 

Coverage Pattern, One Way.—The characteristics of an antenna may 
also be described in terms of the performance of a radio or radar system 
of which it is a part. It is necessary to distinguish between the case of 
one-way transmission, in which a given antenna serves for transmission 
or for reception only, and the case of radar or two-way transmission, in 
which a single antenna performs both functions. 

We consider first a transmitting antenna and a receiving antenna 
separated by a large distance R. Let Gt and Gr be the respective gain 
functions of the two antennas for the direction of transmission. If the 
total power transmitted is P, the power radiated in the direction of the 
receiver, per unit solid angle, will be (1/4v)PGt. The receiving antenna 
will present a receiving cross section (l/4tr)Gr\2 to the incident wave; it 
will, in effect, subtend a solid angle Gr\2/AirR2 at the transmitter. The 
power absorbed at the receiver will thus be 

GtGr'k2 
16r2R2 (11) 

The maximum operating range is determined by the signal-to-noise 
ratio of the detector system. If Pm is the minimum detectable signal 
for the receiver, the maximum operating range is 

(12) 
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Thus, if it is possible to ignore the effect of the earth on the propagation 
of the wave and if Gr is constant, it will be possible to operate the receiving 
system satisfactorily everywhere within the surface 

'-(£)“ 5 G',4'C-<I’'*»H- <13> 
where the transmitter is taken to be at the origin. This surface will be 
called the “free-space coverage pattern for one-way transmission.” 

Coverage Pattern, Two Ways.—In most radar applications the same 
antenna is used for transmission and reception. One is here interested 
in detecting a target, which may be characterized by its “scattering 
cross section” cr. This is the actual cross section of a sphere that in the 
same position as the target would scatter back to the receiver the same 
amount of energy as is returned by the target. For this fictitious iso¬ 
tropic scatterer, the effective angle subtended at the transmitter is a/R2 
and the total power intercepted is 

P% = _I pr -1 
47rI(rtR* 

(14) 

Scattered isotropically, this power would appear back at the transmitter 
as a power flux, per unit area, 

P, _ PGV 
4trR2 (4 w)2R* (15) 

Actually, the scattering of most targets is not uniform. The scattering 
cross section of the target will in any case be defined by Eq. (15), but it 
will usually be a function of the orientation of the target. 

The power absorbed by the receiver from the scattered wave will be 

Pr = ArS = 
Pa\*G] 
(4tt) 3fl4 (16) 

since here Gt * Gr. If the effect of the earth on transmission of the 
waves can be neglected, it will be possible to detect the target only when 
it lies within the surface 

(17> 

about the transmitter as an origin. This surface will be called the “free- 
space coverage pattern for two-way transmission.'’ 

Hie extent of the coverage patterns is determined by characteristics 
of the system and target—output power, receiver sensitivity, target size 
—that are not under the control of the antenna designer. The form of 
the coverage patterns is determined by but is not the same as the form 
of the antenna transmitting and receiving patterns; in the coverage 
patterns, r is proportional > to rather than to The 
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desired form of the coverage pattern is largely determined by the use to 
be made of the system. From it, one can derive the required form of the 
transmitting or receiving pattern of the antenna; it is usually in terms of 
this type of pattern that antenna performance is measured and specified. 

It is to be emphasized that the discussion of coverage patterns given 

id) 
Fig. 1*1.—Typical gain-function surfaces for microwave antennas, (a) Toroidal (omni¬ 

directional) pattern; (b) pencil-beam pattern; (c) flat-top flared beam; (d) asymmetrically 
flared beam. 

here assumes free-space conditions. In many important applications, 
coverage is affected by interference and diffraction phenomena due to 
the earth, by meteorological conditions, and by other factors. A detailed 
account of these factors, which may be of considerable importance in 
determining the antenna transmitting pattern required for a given appli¬ 
cation, will be found in Vol. 13 of the Radiation Laboratory Series. 

1*3. Types of Microwave Beams.—The most important types of 
microwave beams are illustrated in Fig. 1*1. 

The least directive beam is the “toroidal beam,”1 which is uniform in 

1 Such a beam is also referred to as “omnidirectional.” (IRE Standards and 
Definitions, 1946.) 
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azimuth but directive in elevation. Such a beam is desirable as a marker 
for an airfield because it can be detected from all directions. 

The most directive type of antenna gives a “pencil beam,” in which 
the major portion of the energy is confined to a small cone of nearly 
circular cross section. With the high directivity of this beam goes a 
very high gain, often as great as 1000. In radar applications such a 
beam may be used like a searchlight beam in determining the angular 
position of a target. 

Although the pencil beam is useful for precise determination of radar 
target positions, it is difficult to use in locating random targets. For 
the latter purpose it is better to use a “fanned beam,” which extends 
through a greater angle in one plane than it does in a plane perpendicular 
to that plane. The greater part of the energy i£ then directed into a cone 
of roughly elliptical cross section, with the long axis, for example, ver¬ 
tical. By sweeping this beam in azimuth, one can scan the sky more 
rapidly than with a pencil beam, decreasing the time during which a 
target may go undetected. Such a fanned beam still permits precise 
location of targets in azimuth, at the expense of loss of information 
concerning target elevation. 

Other applications of microwave beams require the use of beams with 
carefully shaped polar diagrams. These include one-sided flares, such 
as is illustrated in Fig. 1-ld, in which the polar diagram in the flare 
plane is roughly an obtuse triangle, whereas in transverse planes the beam 
remains narrow. In radar use, such a beam at the same time permits 
precise location of targets in azimuth and assures most effective distribu¬ 
tion of radiation within the vertical plane of the beam. Toroidal beams 
with a one-sided flare in elevation have also been developed. 

No theoretical factors limit any of the above beam types to the micro- 
wave region, but many practical limitations are imposed on long-wave 
ahtennas by the necessary relationship between the dimensions of the 
antenna elements and the wavelengths. 

1*4. Microwave Transmission Lines.—The form of microwave 
antennas depends upon the nature of the available radiating elements, 
and this in turn depends upon the nature of the transmission lines that 
feed energy to these elements. We therefore preface a survey of the 
main types of microwave antennas with a brief description of microwave 
transmission lines; a detailed discussion of these lines will be found in 

Chap. 7. 
Unshielded parallel-wire transmission lines are not suitable for micro- 

wave use; if they are not to radiate excessively, the spacing of the wires 
must be so small that the power-carrying capacity of the line is severely 

limited. , 
Use of the self-shielding coaxial line is possible in the microwave 
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region but is generally restricted to wavelengths of approximately 10 cm 
or more. For proper action as a transmission line, a coaxial line should Iy transmit electromagnetic waves in only 

I a single mode; otherwise the generator 
| looks into an indeterminate impedance 

nmimzamaagnaaJ and tends to be erratic in operation. 
j On this account it is necessary to keep 
I the average circumference of inner and 

outer conductors less than the free- 
space wavelength of the transmitted 
waves. At wavelengths shorter than 

^ 10 cm this limitation on the dimensions 
°f coaxial lines begins to limit their 

(5) power-carrying capacity to a degree 
that makes them unsatisfactory for 
most purposes. 

..[ || J The most useful transmission line 
~ ^Vj ^ in the microwave region is the hollow 

v,v:i7i T pipe. Such pipes will support the 
|J I propagation of an electromagnetic wave 

fc) U J. . only when they are sufficiently large 
compared with its free-space wave- 

^\ length. As guides for long-wave 
f| radiation, intolerably large pipes are 

j J required, but in the microwave region 
/ it becomes possible to use pipes of con- 

^ venient size. Like the coaxial guide, 
there is also an upper limit imposed on 
the cross-sectional dimension of the pipe 
if it is to transmit the wave in only a 
single mode. However, in the absence 
of an inner conductor, this size limita¬ 
tion does not affect the power capacity 
so seriously as it does in the coaxial line. 

1-5. Radiating Elements.—The 
W nature of the radiating elements 

terminating a tauramiaden line i. to 
half-wave dipole; (b) rhombic antenna a considerable extent determined by 

SSttSX'itia-K the nature of the line itaelf. Typhnrl 
(d) conical horn fed by a circular long-wave radiating elements are the 

“dipole” antennas, auch aa the (renter- 
driven half-wave dipole, and loop 

antennas, such as the rhombic antenna, illustrations of which are 
given in Fig, l-2o and b. It is evident that the parallel-wire and 

mSSmm 
Fig. 1-2.—Transmission lines and 

radiating elements, (a) Center-driven 
half-wave dipole; (b) rhombic antenna 
terminating a two-wire line; (c) micro- 
wave dipole terminating a coaxial line; 
(d) conical horn fed by a circular 
waveguide; (e) slot radiator in the Wall 
of a rectangular guide. 
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coaxial lines lend themselves to such terminations. Many long-wave 
antenna ideas have been carried over into the microwave region, par¬ 
ticularly those connected with the half-wave dipole; the transition, how¬ 
ever, is not merely a matter of wavelength scaling. In a microwave 
antenna the cross-sectional dimensions of the transmission line are com¬ 
parable to the dimensions of the half-wave dipole, and consequently, the 
coupling between the radiator and the line becomes a more significant 
problem than in a corresponding long-wave system. The cross-sectional 
dimensions of the dipole element are also comparable to its length. A 
typical microwave dipole is shown in Fig. T2c; the analysis and under¬ 
standing of such microwave dipoles is at best still in a qualitative stage. 

The use of hollow waveguide lines leads to the employment of entirely 
different radiating systems. The simplest radiating termination for such 
a line is just the open end of the guide, through which the energy passes 
into space. The dimensions of the mouth aperture are then comparable 
to the wavelength; as a result of diffraction, the energy does not continue 
in a beam corresponding to the cross section of the pipe but spreads out 
considerably about the direction of propagation defined by the guide. 
The degree of spreading depends on the ratio of aperture dimensions to 
wavelength. On flaring or constricting the terminal region of the guide 
in order to control the directivity of the radiated energy, one arrives at 
electromagnetic horns based on the same fundamental principles as 
acoustic horns (Fig. 1-2d). 

Another type of element that appears in microwave antennas is the 
radiating slot (Fig. T2e). There is a distribution of current over the 
inside wall of a waveguide associated with the wave that is propagated 
in the interior. If a slot is milled in the wall of the guide so as to cut 
across the lines of current flow, the interior of the guide is coupled to 
space and energy is radiated through the slot. (If the slot is milled along 
the line of current flow, the space coupling and radiation are negligible.) 
A slot will radiate most effectively if it is resonant at the frequency in 
question. The long dimension of a resonant slot is nearly a half wave¬ 
length, and the transverse dimension a small fraction of this; the perim¬ 
eter of the slot is thus closely a wavelength. 

1-6. A Survey of Microwave Antenna Types.—We are now in a posi¬ 
tion to mention briefly the principal types of antennas to be considered 
in this book. 

Antennas for Toroidal Beams.—A toroidal beam may be produced 
by an isolated half-wave antenna. This is a useful antenna over a large 
frequency range, the limit being set by the mechanical problems of sup¬ 
porting the antenna and achieving the required isolation. The beam 
thus produced, however, is too broad in elevation for many purposes. 

A simple system that maintains azimuthal symmetry but permits 
control of directivity in elevation is the biconical horn, illustrated in 
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Fig. 1*3. The primary driving element between the apexes of the cones 
is a stub fed from a coaxial line. The spread of the energy is determined 
by the flare angle and the ratio of mouth dimension to wavelength. 

Although this antenna is useful over a 
large frequency range, maximum di¬ 
rectivity for given antenna weight and 
size is obtainable in the microwave 
region, where the largest ratio of 
aperture to wavelength can be 
realized. 

Increased directivity in a toroidal 
beam can also be obtained with an 
array of radiating elements such as 
dipoles, slots, or biconical horns built 
up along the symmetry axis of the 
beam. The directivity of the array is 
determined by its length measured in 
wavelengths; high directivities are 

conveniently obtained by this method only in the microwave region. A 
typical microwave array of this type is shown in Fig. 1 -4. 

Pencil-beam Antennas.—Beams that have directivity both in eleva¬ 
tion and azimuth may be produced by a pair of dipole elements or by a 
dipole with a feflecting plate. The major portion of the energy is con¬ 
tained in a cone with apex angle somewhat less than 180°. 

Fig. 1*4.—A microwave beacon array. 

Similar beams are produced by horn antennas that permit control 
of the directivity through choice of the flare angle and the mouth dimen¬ 
sions. Homs are useful at lower frequencies as well as in the microwave 
region; indeed, the early work on horns was done for wavelengths ranging 
from 50 to 100 cm. 

More directive beams—true pencil beams—can be produced by 
building up space arrays of the above systems. Two-dimensional arrays 
(mattress arrays) and multiunit horn systems are used at lower frequen¬ 
cies. Their directivity is severely limited, however, by the mechanical 
problems occasioned by the required ratio of dimensions to wave¬ 
lengths. Such arrays have not been employed in the microwave region. 



Sec. 1*6] A SURVEY OF MICROWAVE ANTENNA TYRES 11 

At these wavelengths it becomes feasible, and indeed very convenient, 
to replace the two-dimensional array technique by the use of reflectors 
and lenses 

(b) 
Fig. 1*5.—Pencil-beam antennas, (a) Paraboloidal mirror; (b) metal-plate lens. (Metal- 

plate lene photograph courteey of the Bdl Telephone Laboratories,) 

Highly directive pencil beams are produced by placing a partially 
directive system such as the double-dipole unit, dipole-reflector unit, or 



12 SURVEY OF MICROWAVE ANTENNA DESIGN PROBLEMS [Sec. 1-6 

horn at the focus of a paraboloidal reflector or a centrosymmetric lens. 
The use of these devices is based on the concepts of ray optics, according 
to which the reflector or lens takes the divergent rays from the point 
source at the focus and converts them into a beam of parallel rays. 
Despite the diffraction effects which limit the application of ray optics 
and are very important in the microwave region, it is practicable to 
make the apertures so large that extremely sharp beams can be produced. 
Conversely, it is possible to obtain good directivity with an antenna so 
small that aircraft installations are practical. Paraboloidal and para¬ 
bolic reflectors are used at lower frequencies in some special cases, but 
in the required large sizes they tend to be less satisfactory than mattress 
arrays. 

Plastic lenses are used in the microwave region in precisely the same 
way as glass lenses in the optical region. In addition, a new device, 
the metal lens, has been developed for microwaves. The wavelength 
of an electromagnetic wave in an aiivfilled waveguide is greater than that 
in free space; from the optical point of view the waveguide is a region 
of index of refraction less than unity. A stack of waveguides thus con¬ 
stitutes a refractive medium analogous to dielectric material, from which 
a metal lens can be fashioned. Figure 1*5 shows microwave pencil- 
beam antennas employing, respectively, a paraboloidal mirror and a 
metal lens as directive devices. 

Antennas for Flared Beams.—Simple flared beams and onesided 
flares are likewise produced by means of reflectors and lenses and by 
arrays of dipole-reflector units or radiating slots. Such arrays by them¬ 
selves give beams that are highly directive in planes containing the array 
axis but are fairly broad in the transverse plane. In order to gain greater 
directivity in the transverse plane the array may be used as a line source 
along the focal line of a parabolic cylindrical reflector; this focuses radia¬ 
tion from a line source in the same way that a reflector in the form of a 
paraboloid of revolution focuses radiation from a point source. By 
suitable shaping of the cross section of the cylinder, one can produce 
beams with carefully controlled one-sided flares and other useful special 
characteristics. Typical microwave antennas of this type are shown in 
Fig. 1-6. 

Except for a few types of linear array, all microwave antennas use 
primary sources of radiation together with reflectors and lenses. The 
radiating element, which extracts power directly from the transmission 
line, is spoken of as the “primary feed,” the “antenna feed,” or simply 
the “feed”; its radiation pattern as an isolated unit is known as the 
“primary pattern” of the antenna. In combination with the optical 
elements of the antenna, the feed produces the over-all pattern of the 
antenna, often referred to as the “secondary pattern” of the antenna. 
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One of our major problems will be to establish the relationships among the 
primary pattern of the antenna feed, the properties of the optical ele¬ 
ments, and the secondary pattern. 

(b) 
Fig 1 6.—Antennas for producing flared beams (o) Simple flared-beam antenna, (6) 

one-sided flared-beam system 

1*7. Impedance Specifications.—The achievement of a satisfactory 
antenna pattern is by no means the only problem to be considered by the 
antenna designer. It is important that the antenna pick up maximum 
power from an incident wave and that it radiate the power delivered to 
it by a transmission line without reflecting an appreciable portion of it 
back into the transmitter. In other words, it is important that the 
antenna have satisfactory impedance characteristics. 
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The impedance problem in microwave antenna design takes on a 
somewhat special character because of the characteristics of other ele¬ 
ments of the system, particularly the transmitting tubes. Conventional 
triode-tube oscillators are not generally useful in the microwave region. 
This isriue to inherent limitations in the tube itself and to the fact that 
elements in the tank circuit no longer behave like lumped impedances. 
The self-resonant frequency of the ordinary tube is considerably below 
the microwave range, and it is therefore impossible to design a practical 
circuit that will oscillate at the required high frequency. A modified 
triode has been designed for use down to 10 cm. It has limited power 
capacity and is used where low power is acceptable. More generally, 
magnetrons and klystrons are used, the former for very high power levels. 
The operating characteristics of these tubes are very sensitive to the 
impedance into which they are required to operate, the frequency varying 
rapidly with changes in this impedance. More serious than this “fre¬ 
quency pulling” is the fact that the magnetron will cease to oscillate 
without too much provocation. Closer tolerances are, therefore, imposed 
on the impedance of a microwave antenna than those which would be 
dictated by power considerations. Many tubes can be tuned over a fre¬ 
quency band, but at any frequency setting they must operate into the 
proper impedance. Thus it is customary to specify that a microwave 
antenna be satisfactorily matched to the transmission line within close 
tolerances, not simply at an intended operating frequency, but over a 
band of frequencies. 

In rapid-scanning antennas the impedance problem is even more 
complex. The arrangement of the mechanical parts varies during a 
scan; it is necessary to make sure that the impedance properties of the 
antenna remain satisfactory in all parts of the scan, as well as for a given 
range of wavelengths. This element of the problem has an important 
bearing on the choice of schemes for rapid-scanning antennas. 

Throughout this volume the impedance characteristics of antennas 
will be considered in parallel with their radiation patterns. 

1*8. Program of the Present Volume.—This book falls into four main 
divisions: basic theory, theory and design of feeds, theory and design of 
complete antenna systems, and antenna-measuring techniques and 
equipment. 

The following chapter summarizes certain parts of conventional cir¬ 
cuit theory that are pertinent to antenna problems. In particular, it is 
shown that the antenna designer need make no distinction between trans¬ 
mitting and receiving antennas. Chapter 3 states the basic principles 
of field theory and applies them to the discussion of current distributions 
as sources of radiation fields. Chapters 4 to 6 then discuss electromag¬ 
netic waves without regard to their sources. Chapter 4 gives a brief 
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treatment of wavefronts and rays. Chapter 5 deals with the interaction 
between electromagnetic waves and obstacles; the general theory of 
reflectors is here developed as a boundary-condition problem, and a 
discussion is given of the relation between this theory and conventional 
diffraction theory, which also finds application to microwave antenna 
problems. Finally, Chap. 6 applies this theory in treating one of the 
fundamental problems of antenna design—the relation between the field 
distribution over the aperture of an antenna (such as a lens or reflector) 
and its secondary pattern. 

Chapter 7, on microwave transmission lines, serves as introduction 
to the chapters on antenna feeds: dipole feeds, linear arrays, and horns. 
Of these types all but the first have found applications also as complete 
antennas; these applications will be indicated in these chapters. 

A chapter on lenses precedes the treatment of more complex antenna 
systems which is organized according to the type of beam to be produced: 
pencil beams, simple fanned beams, and more complexly shaped beams. 
When an antenna is installed on ground or a ship or airplane—generally, 
enclosed in a housing—its performance is modified from that in free 
space by its enclosure and neighboring objects. The subject of antenna- 
installation problems is discussed briefly to acquaint the engineer with 
the phenomena that may be expected to occur and some of the currently 
known solutions of the problems. 

The concluding chapters provide a statement of the basic techniques 
of antenna measurements and a description of certain types of measur¬ 
ing equipment that have given satisfactory service in the Radiation 
Laboratory. 



CHAPTER 2 

CIRCUIT RELATIONS, RECIPROCITY THEOREMS 

By S. Silver 

2*1. Introduction.—The circuit theory considerations and techniques 
characteristic of low-frequency radio work do not carry over in a simple 
manner to the microwave region. Thus, for example, in treating a cir¬ 
cuit element as a lumped impedance, it is assumed that the current 
(and voltage) at any given instant has the same value at every point in 
the element. This assumption is valid if the dimensions of the circuit 
element are small compared with the wavelength, with the result that 
the phase differences between separated points in the element are negligi¬ 
ble. If, however, the wavelength becomes comparable to the dimensions 
of the element, these phase differences become significant; at a given 
instant the current at one point in the element may be passing through 
its maximum value, while at another point it is zero. In such cases the 
circuit element must be regarded as a system of distributed impedances. 

The extension of conventional circuit theory to microwave systems 
is further complicated by the use of circuit elements such as waveguides, 
in which voltages and currents are not uniquely defined. The analysis 
of these elements must be approached from the point of view that they 
serve to guide electromagnetic waves; attention is centered on electric 
and magnetic fields rather than on voltage and current. The final result 
of the field theory analysis is that under suitable conditions—which are 
generally encountered in practice—a waveguide can be set into equiva¬ 
lence with a two-wire transmission line in wl^ch the fundamental quan¬ 
tities are voltage and current. The latter are directly related to the 
waveguide's electric and magnetic fields, respectively.1 By means of 
this equivalence the concepts of impedance, impedance matching, and 
loaded lines are carried over to waveguides. 

A waveguide can itself be treated as a system of distributed imped¬ 
ances. Distributed impedances are treated in the same way as lumped 
impedances, by use of Kirchhoff's current and voltage laws for networks. 
A system of distributed impedance can, in fact, be replaced by a network 
of lumped-impedance elements. The latter differ from the conventional 
radio-circuit elements in that their impedance is a transcendental func- 

1 The subject is treated in Chap. 7. A full treatment of the extension of circuit 
theory to waveguides will be found in Vol. 8 of this series. 
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tion of frequency rather than an algebraic function. By means of these 
equivalent lumped-element networks, the network theorems that are 
applicable to low-frequency lumped-element networks are carried over 
to systems with distributed impedance. The first part of this chapter 
will review several network theorems and the two-wire transmission-line 
theory that are used in microwave circuit theory. The subjects will be 
treated briefly, the reader being referred to standard texts1 for more 
complete discussions and proofs of the results quoted here. 

The relation between a transmitting and a receiving antenna also 
can be expressed in terms of an equivalent network. In this way one 
can arrive at a reciprocity theorem which relates the transmission char¬ 
acteristics of an antenna to its receiving characteristics. Of particular 
importance to antenna design is the fact, proved by use ef the reciprocity 
theorem, that the transmitting pattern of an antenna is the same as its 
receiving pattern,2 The reciprocity theorem will be discussed in the 
latter part of this chapter. 

2*2. The Four-terminal Network.—Let us consider an arbitrary net¬ 
work, free from generators, made up of linear bilateral elements. A 
linear bilateral element is one for 
which the relation between voltage 
and current is linear: 

V - IZ, (1) 

where the value of the impedance Z 
is independent of the direction of the 

voltage drop across the element.8 For convenience the network will be 
pictured as enclosed in a box and presenting to the outside only a pair 
of input and a pair of output terminals. This is illustrated schematically 
in Fig. 2-1. A boxed network of this type is referred to as a four-terminal 
or two-terminal-pair network. 

The network as a unit involves four quantities: the current ii, the 
voltage drop Fi from A to B, the current i*, and the voltage drop F* 
from C to D. In consequence of the linear property [Eq. (1)] of each 
component element of the network, the relations between the voltages 
Fi, V% and the currents ii, i% are linear: 

Fia. 2*1.—Four-terminal network. 

Fi = Znii — Z i2t*2, 1 /os 
F* * Znii - Zni*. j W 

1 W. L. Everitt, Communication Engineering, McGraw-Hill, New York, 1087; 
E. A. Guillemin, Communication Networks, Vols. I, II, Wiley, New York, 1281; T. E. 
Shea, Transmission Networks and Wave Filters, Van Nostrand, New York, 1922. 

* See Chap. 1 for the definitions of these patterns. 
* It is assumed that we are dealing with a single frequency, that both the voltage 

and current depend on time through the same factor 
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TheT impedance coefficient Zn is the input impedance at AB when CD 
is open-circuited (i2 = 0); similarly Z22 is the input impedance at CD 
when AB is open-circuited. The quantities Z12 and Z2i are known as 
the transfer impedance coefficients of the network. As a result of the 
bilateral property of the component elements of the fretwork, the transfer 
impedance coefficients satisfy the reciprocity relation1 

Z12 - Z11. (3) 

As an* alternative to the relations expressed by Eq. (2), the currents 
may be expressed as linear functions of the voltage: 

<1 - YnV 1 - Y12F2, } 
is - YnVi - r22v2. J w 

The admittance coefficient Yn is the input admittance at AB when the 
terminals CD are short-circuited; F22 is the admittance at CD when AB 
is short-circuited; and Ti2, Y21 are the transfer admittance coefficients. 
The latter coefficients satisfy a reciprocity relation 

Yn = F2 (5) 

in the case of bilateral elements. The impedance and admittance coeffi¬ 
cients of the network are related: 

r^22 
11 = Y21 « Yn - 

'12 
(6) 

Z22> y _ Zn 
A 9 222 A 9 

where 
A = Z11Z22 — ZnZn. (7) 

By virtue of the reciprocity relations, [Eqs. (3) and (5)], the network 
has only three independent parameters. Consequently it can be replaced 

by a network of three lumped-im¬ 
pedance elements arranged in the 
form of either a T- or II-section as 
shown in Fig. 2-2. The imped¬ 
ance elements of the T-section are 
designated by Zh Z2, Z8. In the 
case of the II-section it is more con¬ 
venient to use admittances; the 

elements are designated by Ya * 1/Z*, Yb — 1/Zb, Yc -> 1/Zc. The 
relations between the elements of the reduced networks and the coefficients 
of Eqs. (2) and (4) are 

?*MCtion section 

Fig. 2*2.—T- and Tr-section equivalents of 
four-terminal network. 

a. T-section: 

‘JS. A. Guillemm, op. 
Vol. I, Chap. IV. 

Zi * Zn — Zn‘, | 
Z% *= Z22 — Zi2, J (8) 
Zt - zw, ) 

cfo*, Vols. I, ll, Wiley, New York, 1931, particulady 
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b. Il-section: 

Ya - Y„ - Yit, 
Yo - - Fis, 
Yb = F12. 

(9) 

The relations between the T- and Il-section elements for one and the 
same four-terminal network are given by 

7 _ A 
6 a — -s-> 

6t 
Zb — 

A 
Zl zc = £, (10) 

where the quantity A is that defined in Eq. (7). 
The network can also be characterized by any three of the following 

measurable quantities: the input impedance at AB when CD is short- 
circuited, the input impedance at AB when CD is open-circuited, the 
input impedances at CD when AB 
is open-circuited or short-circuited. 
The relations between these quan¬ 
tities and the impedance coeffi¬ 
cients or the T- and IT-section 
elements can easily be derived from 
Eqs. (2) and (8) or (9); they are 
given explicitly by Everitt.1 

2*3. The Rayleigh Reciprocity 
Theorem.—The reciprocity relation 
between the transfer impedance co¬ 
efficients given in Eq. (3) is funda¬ 
mental to the various reciprocity 
theorems pertaining to networks. 
All*of these theorems are variants 
of the general theorem derived by 
Rayleigh.2 The particular form of 
the theorem as it applies to a four-terminal network will be discussed here. 

In Fig. 2*3, i\ and i* are the currents in the network terminals when a 
generator of emf V0 is applied to the terminals AB through an impedance 
Zt to feed a load Zl across the terminals CD; i[ and are the correspond¬ 
ing currents at the terminals when a generator of emf V'0 is applied to the 
terminals CD through an impedance ZL to feed a load ZT across AB. 
The generator in each case is assumed to have zero internal impedance. 
The reciprocity theorem states that 

Fig. 2*3.- - Reciprocity theorem for the four- 
terminal network. 

va - (a) 

1W. L. Everitt, op. dt.f Chap. II. 
* Rayleigh, Theory of Sound, Vol. I, Secs. 105-111, Macmillan, New York, reprinted 

by Dover Publications, NeW York, 1945. 
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Using Eqs. (2), we find for Case a of Fig. 2-3 

Z21V0 
** (Zn + Zr)(Z2i + Zt) - ZiiZu 

For Case b, remembering that the role of input and output terminals 
must be interchanged in Eqs. (2), we have 

* __ZnK_ 
1 (Zn + Zi)(Zn + Zl) — ZitZu 

Multiplying the first of these by V'0 and the second by Vo, one finds that 
the reciprocity theorem in Eq (11) holds provided that Z« — Zn. 
Conversely, if a four-terminal network is linear in the sense of Eq (2) 

Fig 2 4 —Th^vemn’s theorem and the maximum-power transfer condition. 

and if the reciprocity theorem [Eq. (11)] holds for the network, then the 
transfer impedance coefficients satisfy the reciprocity relation of Eq. (3). 

2*4. Thevenin’s Theorem and the Maximum-power Theorem.—Con¬ 
sider a network made up of linear bilateral elements and containing a 
system of generators. Th6venin’s theorem states that the current 
through any impedance ZL across a pair of terminals C, D of the network 
is the same as the current in an impedance ZL connected across a generator 
whose emf is the open-circuit voltage across CD (the voltage with Zt 
removed) and whose internal impedance is the input impedance meas¬ 
ured at CD looking into the passive network (the network with generators 
replaced by their respective internal impedances).1 The theorem is illus¬ 
trated diagrammatically in Fig. 2*4. 

Thdvenin’s theorem is useful in discussing the conditions for maxi¬ 
mum-power transfer from a generator through a network to a load 
impedance Zt. As is well known, when a load impedance is connected 
directly to a generator of internal impedance Za, maximum-power trans¬ 
fer is effected with a load impedance that is the complex conjugate of the 
generator impedance: 

1W. L. Everitt, op at,, p. 47. 



Sec. 2*5] THE TWO-WIRE TRANSMISSION LINE 21 

Consider then the case in which the load ZL is fed by the generator through 
a four-terminal network, the generator emf being Vo and ts internal 
impedance ZG (Fig. 2-4). The four-terminal network may be replaced 
by its T-section equivalent as shown. By Th6venin’s theorem the sys¬ 
tem is equivalent to a generator of emf VoZ 12/(Zu + ZG) and internal 

impedance Z22 — Zlz/iZu Za) 
feeding the load impedance Zl di¬ 
rectly. It follows then that maxi¬ 
mum-power transfer will be achieved 
with a load that is the complex con¬ 
jugate of the internal impedance of 
the effective generator:^ 

Zl = Z%2 — (Zls)2 . 

zh + z% (12) 

2*5. The Two-wire Transmission 
Line.—One of the most important 
distributed-impedance systems from 
the point of view of antenna theory 
is the two-wire transmission line.1 
For the present the line will be con¬ 
sidered in its conventional form, as a 
pair of linear conductors in a plane, 
which support the propagation of a wave of wavelength small compared 
with the length of the lines The problem of interest is the distribution 
of voltage and current along the line for a wave of single frequency, in 
which the voltage and current vary with 

The line is shown schematically in Fig. 2-5 as a pair of parallel wires. 
In general, however, the spacing between the wires may vary along the 
line; the only restriction imposed is that the line have an axis of sym¬ 
metry. Position along the line is specified by the coordinate z along 
the symmetry axis. It is further assumed that the line is isolated from 
perturbing objects, so that at any position along the line the currents 
at every instant may be equal and opposite in the two component lines. 
The properties of the line are specified by its distributed parameters: 
(1) the series impedance per unit length, 

Fig. 2*5.—Two-wire line. 

«3(*) — -R(z) + jo>L(z), (13a) 

where R(z) is the series resistance and L(z) the series inductance per 
unit length, taking both component lines together, and (2) the shunt 

1W. L. Everitt, op. oil. For a very complete treatment the reader is referred 
to R. W. King, H. R. Mimno, A. H. Wing, Transmission Lino«, Antenna., and Wave 
Guides, McGraw-Hill, New York, IMS, Chap. 1. 
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admittance per unit length, 

»(*) =G{z) +jo*C(z), (136) 

where 0(z) is the transverse conductance and C(z) the capacitance per 
unit length between the component members of the line. These param¬ 
eters may be functions of position because of variations in the conductors, 
in the spacing between the latter, or in the structure of the surrounding 
dielectric medium. 

Taking either conductor for reference, let i(z) be the current at the 
point z and V(z) the voltage drop from the reference conductor to the 
other member at the same point. To obtain the space dependence of 
i(z) and V(z), consider a section of line of length dz about the point z. 
Applying Ohm’s law, we have 

and 
V(z + dz) - V(z) = -i{z)£(z) dz 

i(z + dz) — i(z) = — V(z)yi(z) dz 

for, respectively, the series and shunt relations across the element of 
line. The terms on the left-hand side, by use of Taylor’s theorem, 
become (fiV/dz) dz and (di/dz) dz respectively. Thus the differential 
equations of the line are found to be 

J (14a) 

jz = -mmz). (i46) 

Second-order differential equations for voltage and current alone are 
obtained by eliminating voltage or current from one or the other of 
these equations: 

w - [a <■" ®] £ - ww - »■ <«■» 

<i6i> 

From a generalized point of view, Eqs. (14) can be regarded as the 
definition of a "two-wire” transmission line. That is, given a physical 
system supporting a wave with time dependence e,“‘, the propagation 
of which is expressible in terms of a single coordinate s and two quan¬ 
tities (i,F) related by equations of the form of Eqs. (14), it is possible to 
set up a two-wire line representation for the system. The voltage and 
current of the equivalent line are directly proportional to the Wave quan¬ 
tities entering the differential equations, and the series impedance and 
shunt admittance per unit length of the equivalent line are proportional 
to the coefficients of the wave quantities in the differential equations. 
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The generalized concept of a transmission line will be made use of in the 
discussion of waveguides in Chap. 7, where it will be seen that the elec¬ 
tric and magnetic field vectors satisfy transmission-line equations. 

2*6. The Homogeneous Transmission Line.—Equations (15) are the 
general equations for a line whose parameters 3 and 9? are functions of 
position. We shall be concerned mainly with lines for which the param¬ 
eters are independent of position, and the subsequent discussion will be 
confined to the so-called homogeneous line. For such a line the coeffi¬ 
cients of dV/de and di/dz in Eqs. (15) vanish; consequently, voltage and 
current satisfy the same differential equation. The voltage equation 
becomes 

U - mw = o. (i6) 

Defining the complex number 7 by 

7 - « + 30 = C8»)* (17) 

with the square root taken to be such that both a and 0 are positive 
quantities, we find the solution of Eq. (16) to be 

V(z) = A + A*’7* (18) 
or 

V(z) = A ie~ate^z + r (18a) 

The current i(z) has the same form but is not independent of the voltage. 
The relation between them is established by Eq. (14a). On inserting 
Eq. (18) into this equation, it is found that 

i(z) = -i- XAie~7* - A2e7'). (19) 

The constant Zq is known as the characteristic impedance of the line; it 
is given by 

z. - ($)" (20) 

If Eq. (18a/ is multiplied through by the time factor eiat, it will be seen 
that the right-hand side is the sum of two waves: The term e-#* represents 
a wave traveling in the positive z-direction, whereas eif* represents a 
wave traveling in the negative z-direction. The wavelength of propaga¬ 
tion is related to the phase constant 0 by 

X = j- (21) 

The amplitude of each component wave undergoes attenuation along the 
direction of propagation as represented by the factors and «** respec¬ 
tively; a is known as the village attenuation constant. It is seen from 
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Eq. (17) that a may be different from zero, that is, the line may be lossy 
if one or both of the distributed parameters 3 and Sft are complex, and 
that the line is nonlossy, a =* 0, if the distributed parameters are both 
pure imaginary quantities of the same sign. In the case of the two-wire 
line for which the distributed parameters are given by Eqs. (13) this 
means that the line is nonlossy if the series resistance and shunt conduc¬ 
tance are zero, that is, if the distributed impedance along the line is 
purely reactive. 

The amplitudes A i and Aa of the component waves are determined by 
the excitation conditions at the input end of the line and the nature of 
the termination of the line. Consider a line of total length L, fed by a 
generator of emf F<? and internal impedance ZG, and terminated in a load 
impedance Zh as shown in Fig. 2-5. In this case the component waves 
are interpreted simply as a wave of amplitude A\ incident on the load 
Zh and a wave of amplitude A 2 reflected by it. Let the origin z = 0 be 
taken at the termination; the generator is thus located at 2 = — L. 
The impedance at any point z along the line looking toward the termina¬ 
tion is the ratio Z(z) = V(z)/i(z), which is, by Eqs. (18) and (19), 

7(^ _ 7 (Atrv + A*r\ Z{z) - (22) 

At the terminal point, z = 0, this must be equal to the terminating 
impedance ZL; we have then 

A' + A’~ Z- (23) 
A, z 0 

Thus the ratio of the amplitudes A 2/A1 is determined solely by the 
termination. This shows also the significance of the characteristic 
impedance: If Z* = Zo, then A2 = 0; there is no reflected wave. A line 
terminated in an impedance equal to its characteristic impedance thus 
behaves as though it extended to infinity. 

A second relation between the amplitudes is obtained from the con¬ 
ditions at the input end of the line. The input impedance Ztn to the 
line is obtained from Eq. (22) by setting z = —L, and the current at 
the point is obtained from Eq. (19) by the same substitution. We have 
then 

Vo = t(#—- L)(Zff + Zin)t 
whence we obtain 

(i + 0 Axer* + (l - §;) - Vo. (24) 

From Eqs. (23) and (24) we finally get 

VoZq(Zz, + Zo) 
At (to + ZoXZt + Zo)ert> - {Za - t»)(ZL - (m) 
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A _ _VgZq(Zl ~ Z o)_ /2ttx 
~ (Z* + Z«)(ZL + Zo)^L - (Zo - Zo)(ZL - Zo)e~yL ^00) 

It should be noted that these expressions give the amplitudes of the inci¬ 
dent and reflected waves at the termination, or more specifically at 
3 — 0. The respective amplitudes A[(z) and A2{z) at an arbitrary point 
z are given in terms of the above by 

A\{z) * Aie-y*; A'2(z) « A2ey*. (26) 

The ratio of the amplitudes of the waves at any given point is known as 
the voltage reflection coefficient r(z) at that point. We have 

or 
r(z) = r(0)c2^, (27 a) 

where r(0) is the reflection coefficient at the point z = 0. On making 
use of Eqs. (26) and (27) together with (22), we find that the relation 
between T(z) and the impedance Z(z) is 

r(z) = 
Z(z) - Zo 
Z(z) + Zo 

(28) 

It is convenient for many purposes to introduce the normalized impedance 

Uz): 

(29) 

The relations between 
impedance are then 

r(z) 

the reflection coefficient and the normalized 

m -1. 

m +1* 
r = 

i + r 
l - r 

(30) 

Equation (27a) expresses the transformation property of a transmis¬ 
sion line. It is readily seen that Eq. (27a) can be generalized to the 
form 

r(z ± 0 = r(z)e±2?' = r(z)e±2“ie±,2ai. (31) 

The phase of the reflection coeflicient has a space periodicity of X/2. 
The amplitude of the reflection coefficient is independent of position 
in a nonlossy line. In a lossy line it decreases as we move along the line 
toward the generator from the load, corresponding to the increase in the 
amplitude of the incident wave and the attenuation of the reflected 
wave. The transformation property of the line applies to the impedance 
likewise. From Eqs. (28) and (31) it follows that the impedance at a 
point z — lie related to the impedance at the point z by 
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Z(* ~ Z) 
^ [£(*) + Zo tanh (yl) 
*0[Zq + Z(z) tanh (7Z)/ 

or, in terms of the normalized impedance, 

v/- 7\ _ fOO + tanh (yl) 
a l) " 1 + f tanh (7Z) 

(32) 

(32a) 

A section of line of length Z thus serves as an impedance-transformation 
device, converting an impedance Z(z) at the output end into an imped¬ 
ance Z(z — Z) at the input end. The impedance transformation is asso¬ 
ciated with the reflected wave; if the terminal impedance is equal to the 
characteristic impedance, the reflection coefficient vanishes and the input 
impedance at any point on the line (looking toward the termination) 
is equal to Z0. If the reflection coefficient is zero, the termination is said 
to be matched to the line; otherwise, it is said to be mismatched. 

The properties of the line can be discussed in terms of admittance as 
well as impedance. The corresponding relations are obtained by replac¬ 
ing Z by 1/F. The admittance transformation effected by a section of 

line is 

Y(z - l) = Y0 
Y(z) + Y0 tanh (yl) 
Y0 + Y(z) tanh (yl)/ 

(33) 

where the characteristic admittance is defined to be 

Y0 = y- (34) 

A normalized admittance 17(2) is defined in a similar manner as the 
normalized impedance 

viz) = -P- (35) 
10 

and the relations between it and the reflection coefficient are 

r = 1 ~ V. 
1 +v’ 

1 - r 
v 1 + r (36) 

2*7. The Lossless Line.—The further discussion of the transmission 
line will be particularized to the case of a lossless line. The microwave 
lines to be treated in Chap. 7 can be considered to be lossless over the 
length of line that enters into the problem of the design of an antenna. 
If the line is lossless, a = 0 and the propagation constant 7 is a pure 
imaginary, 

7 = j&- 

The voltage and current relations in this case are 

V(z) = A ie~’0‘ + Ate’13’, 

i(z) - ~ - A«?»), 

(37a) 
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and the impedance and admittance transformation formulas become 

27 

fa - D 

fa - l) 

fa) + j tan pi 
1 + jt tan pi ’ 

fa) + j tan pi 
1 + jr\ tan pi 

(38) 

(39) 

The transformations have a space periodicity of a half wavelength: 

f (2 ± ^ = fa); 

the impedance and admittance take on the same values at intervals of a 
half wavelength. The reflection coefficient is likewise periodic; if in 
Eq. (31) a is set equal to zero, we get 

T(z ± l) = T{z)e±W. (40) 

Since r passes through a complete cycle of phase over a half-wavelength 
section of line, there are two points within every such interval at which 
F is a real number. It follows from Eq. (30) that at these points the 
impedance and admittance are real numbers. The magnitude of r does 
not vary along the line. Consequently, at every point the reflection 
coefficient is a measure of the power loss arising from the impedance 
mismatch at the termination. The power carried by the incident wave 
is proportional to |4i|2, and that carried by the reflected wave is propor¬ 
tional to \At\2. The magnitude of T, is given by 

irl (41) 

hence |Tj2 is the fraction of the incident power reflected by the termina¬ 
tion, and 1 — |T|2 is the fraction of the incident power extracted by the 
termination. 

In measurements on a transmission line the significant quantity is 
the square of the magnitude of the voltage averaged over a time cycle, 
given directly by i|F(z)|2. In computing this from Eq. (37a) it must be 
remembered that the amplitudes Ai and At are in general complex. 
Writing 

A1 = \Ax\et*, At — \A *]&+*, (42) 

in Eq. (37a), we obtain 

i|F(*)|* * $VV* * * + \A%\* + 2\AtA*\ cos (20* - <h + *,)]. (43) 

Thus the time average |F|* takes the form of a standing-wave pattern 
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along the line. The maxima and minima occur at those points for which 

202 — <£l + “ ±2ft7T 

and 
202 ~ + <i>2 = ± (2n + 1)*-, n = 0, 1, 2, • • • , 

respectively, the distance between a maximum and adjacent minimum 
being a quarter wavelength. The maximum and minimum values are 

WL, - (lAal + |A,|)* 
IFIL, = (|A»| - M,D*. 

The ratio of the maximum to minimum value is known as the power 
standing-wave ratio, designated here by r2: 

E|L* _ (\Ai\ + |i4*|V 
F|L„ 

The square root of power standing-wave ratio r is known as the voltage 
standing-wave ratio. It follows from Eq. (41) that 

with the inverse relation 

r 
i + r| 
l - "if 

r — 1 
r + 1* 

(44a) 

(4 lb) 

The magnitude of T may be determined from the measured standing- 
wave ratio by means of Eq. (446). The phase of T can be deduced from 
the positions of the maxima and minima. On inserting Eq. (42) into 
Eq. (27a) and replacing y by j0, we have 

T(z) - |r|***-*+*>. (45) 

Thus T takes on real values at the points where the standing-wave pat¬ 
tern takes on maximum and minimum values. The phase of T may be 
taken to be zero at a maximum point, with 

r = lrl = ^1? (4*0 

then at a minimum point the phase of r will correspondingly be r, and 

T - |iy* - (466) 

The phase of T at any other point, taking a maximum or minimum posi¬ 
tion as a reference point, is then readily deduced by means of Eq. (40). 

The impedance at any point can likewise be deduced from measured 
values of the standing-wave ratio and the positions of maxima or minima. 
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It was noted previously that the impedance and admittance is real at the 
points where T is a real number; hence the impedance is real at the 
maximum and minimum points of the standing-wave pattern. Making 
use of Eq. (30) together with Eqs. (46), we find in fact that the impedance 
takes on the following values at those points: 

r = y-j: jp = r (max); (47a) 

f - 5~T |r = l (min)- (47*>) 

Given the value of f at any one such point, the value at any other point 
is obtained by means of the transformation formula [Eq. (38)]. Similar 
considerations apply to the admittance values. At the points of maxima 
and minima the admittance is a pure conductance with the values 

V = 1 (max), (48a) 
T 

r\ - r (min). (486) 

2*8. Transformation Charts.—The impedance and reflection coeffi¬ 
cient transformations along a line can be presented graphically in forms 
that are very useful in experi¬ 
mental work. There are many |^T/m 
types of charts, of which two, the 
so-called circle diagrams, will be 
discussed here. They are especi¬ 
ally suited to lossless lines. 

The Reflection Coefficient 
(Smith) Charts,3—Consider first 
the reflection coefficient transfor¬ 
mation along a lossless line as ex¬ 
pressed by Eq. (45): 

T(z) « |r[e*2*-4r*»>. (2-45) 

Let us set up a complex plane, as 
shown in Fig. 2-6, with the real 
and imaginary axes associated 
with corresponding components of r, designated by Ir, and Tim. T is 
then represented by a vector from the origin. The magnitude of T can 
never exceed unity because the amplitude of the reflected wave must be 
less than that of the incident wave; consequently we are confined 
to the portion of the complex plane circumscribed by the unit circle. 
It is evident that polar coordinates in the complex plane are more 
appropriate than the cartesian coordinates la*, Ttm for discussing 

*P. H. Smith, Electronics, January, 1944. 
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the line transformation of Eq. (45). The family of circles centered about 
the origin correspond to curves |r| » constant or, by virtue of Eq, (44a), 
to curves of constant voltage standing-wave ratio. The curves of con¬ 
stant phase of r are the family of radial lines from the origin. The line 
transformation given by Eq. (45) corresponds to a rotation of Y about the 
origin without change in length: displacement along the line in the direc¬ 
tion of increasing that is, away from the generator, produces an increase 
in the phase of T, thus rotating T in the positive sense (counterclockwise), 
whereas a displacement along the line toward the generator rotates Y 
in the negative sense. 

The polar coordinate curves are of such simple form that usually they 
are not drawn in explicitly on the chart. Instead, another pair of families 
of curves are introduced, the circles of constant resistive and reactive 
components of the impedance, R and X respectively. Writing 

and r = Tro + jYitnj in Eq. (30), 

i -u r 
f - l-ZTf’ (2*30) 

and separating' real and imaginary parts, one finds 

R = l - (rt +JL) 
Zo (1 - T^r + YiJ 
X _ 2Tlm 

Zo (1 - Yne)2 + YL 

These can be written as 

respectively. It is seen from Eq. (50a) that the curve R/Z0 = constant 
is a circle with its center on the positive real axis at (R/Z0)/(l + R/Z0) 
and radius 1/(1 + R/Zo). Every such circle is tangent to the line 
Tr. 1 at its point of intersection with the real axis* The circle cor¬ 
responding to R/Zq = 1 passes through the origin and encloses all the 
circles for which R/Z0 > 1. 

Similarly Eq. (505) shows that the curves X/Zo « constant are a 
family of circles. For a given value of X/Za, the center of the circle is 
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at the point (1, Zo/X) and its radius is |Z0/Z|. Every such circus is 
tangent to the real axis at the point = 1. The curves lying in the 
upper half of the plane correspond to positive (inductive) reactance, and 
those in the lower half plane to negative (capacitive) reactance. It 
can be shown that the circles X/Zo = constant are orthogonal to the 
circles R/Za = constant. 

Fig. 2-7.— Th$ Smith chart. 

The Smith chart consists of the circles just described. A typical 
chart is shown in Fig. 2-7, the circles being labeled with the corresponding 
values of the parameters R/Zo, X/Zo. These curves serve as a system 
of coordinate lines. The terminal point of the vector r associated with 
the complex number £ = (R/Zo) + j(X/Zo) is located at the intersection 
of the circles R/Zo and X/Zo. The distance from the origin to the inter¬ 
section of the circle R/Zo with the real axis is equal to the magnitude of 
the vector T that corresponds to a standing-wave ratio 
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This follows from the fact that T is real when f is real and from the rela¬ 
tions of Eq. (47) between the value of f when it is a real number and the 
standing-wave ratio. 

To illustrate these relationships let us suppose that the standing-wave 
ratio r has been measured on a given line, together with the position of 
a voltage minimum; the reflection coefficient and impedance are desired 
at a point a distance l from the minimum position away from the gen¬ 
erator. It will be recalled [Eq. (46f>)] that at a maximum position the 
phase of r is equal to t; T is then directed along the negative real axis. 
The impedance at this point is real, being R/Zo « 1/r. The vector r 
thus extends from the origin to the circle corresponding to R/Zq = 1/r. 
Counterclockwise rotation of this vector through an angle 2/31 carries us 
to the desired point on the chart; the components of f at that point are 
read off from the pair of intersecting circles. It will be noted on Fig. 
2-7 that the periphery of the chart carries a phase angle scale with the 
phase designated by the ratio of line length to wavelength. 

The Smith chart can also be used to study the admittance transforma¬ 
tion. First it should be noted that there are two conventions for the 
definition of admittance. The convention adopted in this book defines 
the normalized admittance ri = (G/Yo) +j(B/Y0) to be the reciprocal 
of the normalized impedance f = (R/Z0) + j(X/Zo); positive susceptance 
B thus corresponds to negative (capacitive) reactance. The other 
convention defines the admittance to be the conjugate of the reciprocal 
impedance, in order that positive susceptance (like positive reactance) 
should be inductive. The use of the latter convention changes the use 
of the chart in ways which the reader can easily develop. 

Equation (36) gives the relation between the admittance and the 
voltage reflection coefficient: 

i - r 
v l + r' 

Let us define a new coefficient 
T = -r (51) 

and associate with it a complex plane with axes Ta. and Tim. (Actually 
the same complex plane serves for both T and T, the two vectors making 
an angle of 180° with each other.) The vector T is, in fact, the current 
reflection coefficient, expressing the ratio of the amplitude of the reflected 
current wave to the amplitude of the incident current wave. The law 
of transformation of T along the line is precisely the same as that given 
for T by Eq. (49). On substituting Eq. (51) into the relation between ij 
and T, we obtain 

v 
1 + T 
1 - T 

(52) 

This is the same as the relation between f and T; it follows that the curves 
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G/Yo = constant are a family of circles that coincide with the constant 
R/Zo family in the £-r transformation and that the curves B/Yo = con¬ 
stant coincide with the X/Zq circles. With respect to the latter it 
should be noted (in using the chart for admittance) that the curves lying 
in the upper half plane represent capacitive susceptance. The dis¬ 
tinction that need be made between the use of the chart for impedance 
and admittance can be made clear by considering the problem of finding 
the admittance at a point distant l from a voltage minimum in the direc¬ 
tion away from the generator, the standing-wave ratio again being r. 
At a voltage minimum T lies along the negative real axis; hence T extends 
along the positive real axis to the circle 

The starting point thus lies on the positive real axis, instead of on the 
negative axis. Moving along the line away from the generator again 
rotates T in the positive sense (counterclockwise) through an angle 2/M. 
The admittance at the new point is determined from the pair of inter¬ 
secting coordinate curves, just as in the case of the impedance. It 
should be clear that the admit¬ 
tance and impedance points on the 
Smith chart for one and the same 
point on the line are diametri¬ 
cally opposite to one another. 

The Smith chart is particularly 
suited to the study of an imped¬ 
ance mismatch that arises from 
the superposition of reflections. 
For example, there may be a series 
of discontinuities on a transmis¬ 
sion line; the overall reflection co¬ 
efficient at a given point is, to a 
good approximation, the vector 
sum of the reflection coefficients 
that would be produced at the 
point by the individual discontinuities acting separately in the absence of 
all the others. The vector addition of the component coefficients yields 
good results if the components are small. The subject will be considered 
further in later chapters in connection with specific problems. 

The Bipolar Charts.—A complex plane can be Set up of which the 
real and imaginary axes are associated with corresponding components 
of the normalised impedance f (or normalized admittance ij) just as in 
the case of the reflection coefficients. Since the real parts R/Zd of the 
impedance and O/Yd of the admittance can never be negative, only the 

Fig. 2*8.—The relation between impedance 
and admittance. 
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half plane containing the positive real axis comes under consideration. 
The impedance (admittance) is represented in this plane by a vector 
from the origin. With reference to the admittance we note again that it 
is taken here to be the reciprocal of the impedance. One and the same 
plane serves for both impedance and admittance; Fig. 2*8 shows the 
relation between the impedance and admittance points in the plane 
for a given point on a transmission line. 

The impedance transformation 

v/. /n f OO + J tan pi 
f(2 “ Z) “ 1 -j-jf taiT/EM 

(2-30) 

does not take so simple a form in the f-plane as did the reflection coeffi¬ 
cient transformation in the F-plane. Displacement along the line pro¬ 
duces a change in both the magnitude and phase of the impedance. 
The geometrical transformation is simplified by introducing two 
families of circles: the curves |T| = constant and the curves F-phase = 
constant. These curves are obtained from the T-f transformation 
r = (f - l)/(f + 1) of Eq. (30). Writing F = \T\e3*y we find that 

|F|2 - 

and 

tan 4> = 

These can be rewritten as 

(tii©' 
(i+1)+ (i) 

(t)’ +”(!)’ - > 

/«_i + iri*Y / 2in V 
\Zo r=ifi»; +\Zo) vrqrrv’ 

(I) +(l"cot$) ==csc2#> 
(63) 

(54) 

respectively. It will be seen that the curves |r|. = constant and $ = con¬ 
stant are circles. The circle for a given |r| has its center on the real 
axis at a distance (I + |r|2)/(l — |r|2) from the origin; its radius is 
2|r[/(l — |r|2). Curves of constant |r| are also curves of constant 
standing-wave ratio. By Eq. (436), we find that the center of the circle 
is at (r* + l)/2r and that its radius is (r2 — l)/2r. The circle intersects 
the real axis at the points 1/r and r, corresponding to the values that we 
obtained previously [Eq. (4*7)] for the impedance at these points on the 
line where it is red. These two points on the chart thus correspond to 
points on the line at which the voltage minima and voltage maxima, 
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respectively, occur. The family of circles |T| = constant is shown in 
Fig. 2*9, where they are labeled according to the power standing-wave ratio 
r2. 

A circle of constant phase, $ = constant, has its center on the imagi¬ 
nary axis at the point (0, cot 3>), and has a radius |csc <f>|. This second 
family of circles is orthogonal to the first, just as in the T-plane the curves 
of constant |r| and constant phase are orthogonal. In the {“-plane all 

the constant-phase circles intersect in a point (1, 0), corresponding to 
the intersection of all the constant phase lines at the origin in the T-plane. 
The two families of curves in the f-plane, taken together with their 
image families in the left-hand portion of the plane, constitute a system 
of curvilinear coordinates known as the bipolar coordinates; hence the 
name of the chart. 

The constant-phase curves are labeled in Fig. 2*9 so as to give directly 
the change in the phase of T corresponding to a displacement along the 
line from a voltage-minimum point. All voltage-minimum points must 
be on the segment of the real axis between zero and unity; this is there¬ 
fore taken as the zero-phase line. The separation between a voltage 
minimum and the adjacent maximum on a line is J ® X/4, which cor¬ 
responds to a phase shift 2ftl * 180°, All voltage-maximum points must 
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lie on the real axis between 1 to *; hence this segment of the real axis 
is taken as the phase line = 180°. 

By means of the bipolar curves the line transformation can be fol¬ 
lowed easily. It is clear that displacement along a given transmission 
line causes the .impedance point in the f-plane to move around a circle 
of constant standing-wave ratio. Displacement in the counterclockwise 
sense corresponds to the same sense of rotation in the T-plane. A half 
wavelength of line produces a phase shift of 2/61 = 360° and hence a 
complete revolution around the r = constant circle. This periodic 
property of the impedance transformation was noted previously (Sec. 
2-7). To illustrate the use of the chart, consider again a line in which a 
standing-wave ratio r has been measured and a voltage minimum point 
has been located. It is desired to find the impedance at a distance 
l from the minimum point away from the generator. The starting point 
is the intersection between the r2-circle and the real axis on the segment 
(0, 1). We then move counterclockwise on the r2-circle until it inter¬ 
sects the constant phase circle = —2!/B; this is the desired impedance 
point. 

The same families of bipolar curves serve for the admittance diagram 
likewise. In using the chart for admittance it must be noted that volt¬ 
age minimum points are on the segment of the real axis (1, oo) while 
voltage maximum points lie on the segment (0, 1). If the voltage mini¬ 
mum is retained as a zero-phase reference point, the real axis segment 
(1, oo) must be taken as the zero-phase line and the segment (0, 1) as 
the 180° line. The sense of rotation about a circle r = constant remains 
the same. 

It should be kept in mind that the normalized impedance is dis¬ 
continuous across a junction between lines of different characteristic 
impedances; the impedance itself is continuous. On moving across such 
a junction the point in both the reflection coefficient and the bipolar 
charts in general will move from one circle r = constant to another. If 
we pass from a line of characteristic impedance Z0l to a line of charac¬ 
teristic impedance Zoa, the normalized impedance undergoes a change 
given by 

2*9. The Four-terminal Network Equivalent of a Section of Trans¬ 
mission Line.—For many purposes, in the analysis of systems involving 
transmission fines it is convenient to replace a section of fine by its 
equivalent four-terminal network. The elements of the network will 
be derived here for the case of the lossy homogeneous line. Consider 
a section of fine of length l, and take the origin z m 0 at the input end; 
let Ft, it be the voltage and current at this end, and let Ft, i* be thq volt- 
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age and current at the output end z = 1. From the line equations [Eqs* 
(18) and (19)] we have then 

2 = 0: « Ai + At, 

i\ = (A l A2) y 
Ato 

z = l: V2 = Aie-i1 + A2eyl, 

*> = i- - -4^')- 
Using the two current equations to solve for Ai and A 2 in terms of i\ 
and %2 and substituting into the voltage equations, we obtain 

Vi = Z\\ii — Zniz, ) 

V2 = Z2\i\ ““ Z22^2y ) 
with 

Zn = Z22 — Zo coth (yZ), 
Z12 =*• Z21 ~ Zo csch (yl)» 

We thus find directly that the network is linear and that the transfer 
impedance coefficients satisfy the reciprocity relations. Since the line 
is homogeneous, the network is symmetrical with respect to its two ends; 
hence Zn = Z22. For a nonlossy line 7 = i/3; on substitution into the 
above, the network parameters are found to be 

Zn = Z22 == —jZo cot fil, (57a) 
Z12 — Z21 = ~iZ0 esc pL (576) 

TRANSMITTING AND RECEIVING ANTENNAS 

240. The Antenna as a Terminating Impedance.—The impedance 
relations between a transmitting or receiving antenna and its transmis¬ 
sion line are of particular interest. In the following sections several 
general ideas that are associated with the analysis of these relations will 
be discussed. Let us consider first the case of a line feeding a transmit¬ 
ting antenna. It will be assumed for the present that the antenna is 
isolated—in particular, that it is removed from all other antennas—so 
that interactions with other systems need not be considered. The 
antenna functions like a dissipative load on the line in that it extracts 
power from it; part of this energy is radiated into space, and part is 
dissipated into heat in the antenna structure. In general, the antenna 
does not absorb all of the power incident on it from the line but gives rise 
to a reflected wave in the line; in effect the line* is terminated by an 
impedance different from its characteristic impedance. However, the 
definition of the terminal impedance representing the antenna is not free 
from ambiguity and requires some consideration. 

It is to be noted first that the definition of a terminal impedance 

(55) 

(56 a) 
(566) 
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implies the identification of a driving point, or set of input terminals, for 
the antenna. In some cases, such as the half-wave dipole or rhombic 
loop antennas fed from a two-wire line as illustrated in Fig. 1*2, the 
structural discontinuity between the line and the radiator suggests a 
driving point. This, however, is not enough; it is necessary that the 
current distribution in the line be that characteristic of a transmission 
line up to the assigned driving point. At long wavelengths this condi¬ 
tion is realized with the antennas cited above: the interaction between 
the antenna and line can be represented by a lumped reactive impedance 
across the driving terminals in parallel with the impedance charac¬ 
teristic of the antenna itself. At short wavelengths, however, the inter¬ 
action between the radiating system and the line causes a perturbation 
of the current distribution on the latter that may extend back over an 
appreciable distance; electrically there is no point of transition from trans- 
mission-line currents to antenna currents. This is a particularly cogent 
point in the case of microwave systems that make use of waveguide 
lines, in which the electromagnetic fields exist in the form of a number of 
modes.1 A waveguide is equivalent to a two-wire line only when it is 
supporting propagation of a wave in a single mode. Microwave lines 
are, in fact, generally so designed that they can support free propagation 
of only one mode. Nevertheless, though a single mode is incident on the 
antenna, the antenna itself excites other modes, in addition to giving rise 
to a reflected wave in the incident mode. It is only at points so far 
from the antenna that the other modes have been attenuated to negligible 
amplitudes that a waveguide is equivalent to a two-wire line. Attention 
should also be called to the absence of a unique driving point in cases 
where the transition from the line to the radiator is effected by a con¬ 
tinuous structural transition. An example of this is a waveguide flaring 
gradually into a horn without structural discontinuities in the walls. 
In these cases, again, the transition from transmission-line currents to 
antenna currents cannot be localized to a point. 

The action of an arbitrary antenna as a terminal load on the line can 
be specified in terms of the reflection coefficient V measured in the trans¬ 
mission line, at a point so far from the antenna that its only effect is the 
production of the reflected transmission-line wave. At any point in the 
transmission-line region an impedance (or admittance) can be determined 
from the measured T, by means of Eq. (30); this can be taken as the load 
impedance terminating the line at that point. Furthermore, any such 
point may be regarded as the junction between the line and the input 
terminals to the antenna in so far as the practical analysis of the system 
is concerned. 

This raises the question of the representation of an antenna by an 
equivalent network. There is no unique network associated with a 

1 See Chap. 7. 
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given value of T. The load to be associated with r at a point taken 
arbitrarily as the input to the antenna may be represented by an imped¬ 
ance in the form of a series combination of a resistance and reactance or 
equally well by an admittance made up of a resistance and reactance in 
parallel. In either case the resistance measures the power dissipated in 
the region beyond the input terminals to the antenna; this, if the line is 
lossless, is the power dissipated by the antenna in radiation and ohmic 
losses. If P is the total power (averaged over a cycle) dissipated by 
the antenna and l and V are respectively the effective current and voltage 
at the input terminals, the resistance of the impedance representation is 
given by 

P » l2R (58a) 

and that of the admittance representation is given by 

* V2 
P = (586) 

It is tempting to carry over the concept of radiation resistance, used 
so extensively in the long-wavelength region. The total power dissipated 
by the antenna is the sum of the radiated power Pr and the power P0 
dissipated in ohmic losses in the antenna structure. Correspondingly, 
the resistive component of the impedance representing the antenna would 
be taken as the sum of two elements: an ohmic resistance R0 and a radia¬ 
tion resistance Rr. Each element would be given in terms of the power 
component by a defining relation such as Eq. (58), for example, the radia¬ 
tion resistance by 

Pr = l2Rr. (59) 

In the long-wavelength region this resolution is possible because one can 
define uniquely a driving point at which the antenna network can be 
dissociated from the line and because it is possible, on the basis of field 
theory, to set up an unambiguous network that is characteristic of the 
antenna itself. In the case of the dipole and loop antennas referred to 
earlier the network is a series combination of a resistance and reactance. 
However, in the general case, where the driving point is merely an arbi¬ 
trary reference point on the line, the antenna network cannot be dissociated 
from the line, and either an impedance or an admittance representation 
can be used. In the admittance representation the resolution of R into 
an ohmic component R0 and a radiation component Rr (if it is to be 
made at all) must place the two components in parallel. In view of the 
transformation properties of the line, it is evident that these resistances 
will be functions of the position of toe reference point. 

The practical significance of the reference point and of the “antenna 
impedance” Z4 determined from the measured value of T at that point 
may be illustrated by reference to the matching problem. Let l be the 
length of line from the reference point (regarded now as the terminal 
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point of the line) to the generator. It follows from Secs. 2-4 and 2*9, 
the line will transfer maximum power from the generator to a terminal 
load of impedance 

Zl jZ0 cot ffl + + .Zf> cQt ^ (60) 

where Zq is the internal impedance of the generator and Zq is the char¬ 
acteristic impedance of the line. If the “antenna impedance” ZA is 
different from Zl} it is possible to introduce a reactive network between 
the input terminals of ZA and the line, which (at one frequency at least) 
transforms ZA into Zl) this network will effect maximum-power transfer 
to the antenna. 

It is to be noted that in microwave systems another matching prob¬ 
lem exists: The characteristics of the generator are such that the reflected 
wave in the line must be eliminated. This requires that the antenna 
impedance ZA be transformed into Zq—in general a different transforma¬ 
tion from that required by the maximum-power-transfer condition. In 
these systems the generator must be independently matched to the line; 
the generator internal impedance Zq is transformed into Zq with the 
result |c/. Eq. (60)] that the maximum-power condition then coincides 
with the condition for eliminating the reflected wave in the line. 

2-11, The Receiving Antenna System.—The equivalent circuit repre¬ 
sentations used in discussing receiving antennas also need examination. 
Consider an arbitrary antenna—it may be a center-driven dipole, a horn, 
or a combination of such elements with reflectors and lenses—feeding 
into one end of a transmission line that at the other end is terminated 
in a passive load impedance. (That is, the receiving circuit is free from 
generators.) When an external electromagnetic field falls on the receiv¬ 
ing-antenna system, the interaction between the antenna and the field 
gives rise to a wave in the line. The antenna may be regarded as a 
device that transforms energy carried by a free wave in space into energy 
carried by a guided wave on the transmission line. From the point of 
view of the terminal load, however, the antenna functions as a generator, 
and it is customary to replace it by a generator in discussing the efficiency 
of the receiving system as it depends on the antenna, line, and load 
impedances. It is our purpose to discuss the nature of the Equivalent 
generator. In this connection the problem of modes in microwave sys¬ 
tems again arises. The field excited in the line by the antenna always 
consists of a number of the modes that are possible in the given line. 
It will be assumed that the line is designed to support free propagation 
of a single mode and that the length of line between the antenna and 
load is more than sufficient to attenuate the other modes to negligible 
amplitudes; there will then be an appreciable region over which the guide 
m equivalent to a two-wire line. 
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Before discussing the equivalent generator representation, it will be 
well to consider briefly the physical processes of the interaction between 
the receiving system and the external field. For this purpose it will be 
assumed that an essentially plane wave from a very distant source is 
falling on the receiving antenna. In the neighborhood of the receiving 
antenna the incident wavefront may be regarded as a plane surface, 
over which the electric and magnetic field intensities are sensibly con¬ 
stant in magnitude; furthermore, the electric and magnetic field vectors 
lie in the plane, normal to the direction of propagation of the wavefront.1 
We shall assume for the moment that the load impedance terminating the 
line is equal to the characteristic impedance of the line. Under the action 
of the incident wave a distribution of currents and charges is excited in 
the antenna structure; the currents are communicated to the transmission 
line and give rise to a wave in this which proceeds toward the load. 
Since the load is matched to the line, this wave is completely absorbed by 
the load. The current and charge distribution existing on the antenna 
under this matched-load condition will be designated as the primary 
induced distribution. 

Consider now an arbitrary load impedance. This will absorb only 
part of the wave excited by the primary induced distribution and will 
give rise to a reflected wave, which will proceed to the antenna and excite 
there a charge and current distribution, as if the system were a trans¬ 
mitting system. This new distribution of charges and currents will be 
termed a secondary induced distribution. The reaction of the antenna 
to the reflected wave depends on the impedance of the antenna relative 
to the line, as discussed in the preceding section. If the antenna imped¬ 
ance is equal to the line characteristic impedance, there will exist in the 
line only the two component waves already mentioned. On the other 
hand, if the antenna is mismatched, there will occur a process of multiple 
reflection between the antenna and the load. The resultant secondary 
induced distribution on the antenna is the sum of the component distribu¬ 
tions arising from the multiple reflections between the antenna and load; 
its magnitude and phase relative to the primary distribution are deter¬ 
mined by the antenna and load impedances and the length of line between 
them. It will be recognized that since the component waves are all of 
the same frequency, the net result inside the line is two waves, one—the 
resultant incident wave—traveling toward the load, and the second— 
the resultant reflected wave—traveling away from it. Their relative 
amplitudes are given by the reflection coefficient corresponding to the 
impedance mismatch between the load and the line. 

Since the primary and secondary induced distributions on the antenna 
both vary with time (with a frequency equal to that of the incident 
wave), they radiate and set up an electromagnetic wave in space. This* 

1A general treatment of electromagnetic fields is given in Chap. 3. 
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wave is known as the scattered wave. The interaction between the 
receiving system and the incident wave is completely expressed in the 
relation between the scattered wave and the incident wave fields. There 
are two interaction effects: (1) energy is taken from the incident wave and 
dissipated in heat in the antenna, the line and the load, being thus com¬ 
pletely lost to the field in space, and (2) energy is taken from the incident 
wave and reradiated into all directions about the antenna. The first 
effect is known as absorption; the second as scattering. If the dimensions 
of the antenna are large compared with the wavelength, the interaction 
between the scattered wave field and the incident wrave is such as to 
give rise to a rather sharply defined shadow region behind the antenna, 
that is, on the side of the antenna away from the source of the incident 
wave. In this direction the scattered wave set up by the induced dis¬ 
tribution on the antenna is out of phase with the incident wave; the 
destructive interference betwreen the two fields results in the removal of 
energy from the incident wave. This energy includes both the absorbed 

and scattered energy.1 If the dimensions of the antenna are of the order 
of magnitude of the wavelength or are small compared with it, there is 
no sharply defined shadowr region. The fundamental process is the same, 
however, in that destructive interference between the scattered wave and 
the incident wave in various directions removes energy from the latter 
wave; this energy is in part absorbed and in part scattered by the antenna. 

The interaction between the antenna and the incident wave may be 
visualized by thinking of the antenna as presenting a certain interception 
area or cross section to the incident wave and removing from it all the 
energy incident on the cross section. The total interception area is 
resolved into two parts: the absorption cross section and the scattering 

cross section. Reference was made to cross sections in Sec. 1*2. To 
repeat: Let S be the power intensity, that is, power flow per unit area 
of the incident wave, Pah* and P8C<u the absorbed and scattered powers, 
and Ar and A, the corresponding cross sections; then 

Pabt — ArS, (61a) 
P'cat - A,s. (61 b) 

The cross sections are functions of the aspect presented by the antenna 
to the incident wave. The reader is referred to Sec. T2 for the definition 
of the receiving pattern. 

The definition and measurement of the absorbed power is unambiguous 
in principle. In microwave systems the power dissipation in the antenna 
and line is generally small compared with that in the load; hence the 

1 The significance of the shadow has been discussed in great detail for the case of a 
plane wave incident on a sphere by L. Brillouin, “On Light Scattering by Spheres/' 
Applied Math. Panel Reports, NDRC, Columbia University, 87.1, December 1948, and 
87.2, April 1944. 
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jZQ tan ^ 

-}Z0 CSC 01 

Fia. 2*10.—Circuit representation of the 
receiving antenna system. 

absorption cross section—or receiving cross section—can be evaluated 
with small error from the power absorbed by the load. The scattered 
power, however, is not directly measurable, and its theoretical evaluation 
is subject to ambiguities. Although electromagnetic fields are additive, 
their energies are not additive, the resultant energy being modified by 
the interaction between the fields. Consequently the energy flow com¬ 
puted for the scattered wave field, regarded as isolated from the incident 
wave field, does not necessarily ^ 
represent the energy removed ^;^otan2 i£0tan-j- 

from the latter and reradiated in WW) i 
all other directions. This is par- z < l 
ticularly true when the antenna A*> <-jZ0 esc 01 
dimensions are comparable to the 1 < 
wavelength and the interaction CY 
between the scattered and inci- ° • ° 

dent Waves, which results in re- receiving antenna system, 

moval of energy from the latter, 
cannot be localized to a well-defined shadow region. 

The equivalent circuit representation of the receiving system is based 
on the fact that the antenna functions like a generator in so far as the 
load is concerned. In replacing the antenna by an equivalent generator 
it is generally assumed (1) that for a given aspect of the antenna toward 
the incident wave, the emf of the generator is proportional to the field 
intensity of the wave and (2) that the generator has an internal impedance 
equal to the input impedance which the antenna presents to the line when 
used as a transmitter. The complete circuit is shown in Fig. 2*10, where 
the line, assumed to be nonlossy, is replaced by its equivalent T-section; 
Za and Zl are the antenna and the load impedance respectively. It is 
evident that this circuit representation involves the same difficulties as 
the representation of the antenna by a load impedance—the definition of 
Za and of the input terminals to the antenna. When a driving point can 
be localized in the transmission problem, the same point also serves for 
the output terminals of the generator feeding the line in the receiver 
problem. More generally, when the input terminals to the antenna 
can be defined only as an arbitrary reference point on the line, the gen¬ 
erator voltage must be a function of the position of that point; it is not 
a priori evident that the power relations between the antenna and load 
calculated on the basis of the equivalent circuit are independent of the 
choice of antenna terminals. It will be shown in a later section that the 
results for the absorption cross section are independent of that choice. 

It will be noted that in Fig. 2-10 power is dissipated both in the load 
impedance Zl and in the internal impedance of the generator. The 
power dissipated in Zl is interpreted as the power absorbed from the 
incident wave by the antenna and delivered to the load. The power 
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dissipated in Za is frequently interpreted as the scattered power—the 
power absorbed by the antenna (dissipated in its ohmic resistance) plus 
the power reradiated. Neglecting the ohmic losses, the power dissipated 
in Z± would thus measure the scattering cross section. It will, however, 
be seen in Sec. 2*12 that the power dissipated in the internal impedance 
of the equivalent generator has no direct relation to the energy reradiated 
by the antenna and in general cannot be used in discussing the scattering 
cross section. Two important cases in which the above interpretation 
is valid are that of the dipole antenna and the small (compared with 
wavelength) loop antenna. In these antennas, the current distributions 
induced by the incident wave under conditions of matched load termina¬ 
tions are the same as the currents excited on the antennas when they 
are driven by the line in transmission. 

The equivalent circuit representation can thus in general be used only 
for the treatment of absorption. It is readily found that the power 
delivered to the load by the generator is given by 

P* 

where 

jWRe 
2 Z>2 

D2 = 

* & jZn tan 2 

& ZA+jZotan^ - 

jZo esc pi (zL + jZ0 tan 

Zl + jZo tan ^ ~ jZo esc pi 

jZ0 esc pi ('Zi. + jZo tan ^ 

Zl + jZo tan yji — jZo esc pi 

(62) 

(62a) 

The condition for maximum-power transfer from the generator to the 
load in the equivalent circuit gives the impedance relations required for 
maximum absorption cross section: the load impedance Zl must be 
such that its impedance, transformed through the T-network of Fig. 2-10, 
is equal to the complex conjugate of ZA. It was noted before that if a con¬ 
jugate impedance relationship exists across any point in the line, it 
exists at all points on the line; consequently the load impedance deter¬ 
mined by the conjugate condition is independent of the arbitrary point 
taken to be the input terminals of the antenna. 

It follows from Eq. (62) that the absorption cross section is zero when 
the line is terminated in either a short circuit {Zl — 0) or an open cir¬ 
cuit {Zl = »). In each case the reflection coefficient of the termination 
has the magnitude unity, and all power incident on the termination is 
reflected. It is of interest for these cases to compute the power dissipated 
in ZA on the basis of the circuit representation. We find 

" 2\Za - jZo cot pl\2 ** Za’ 
P, (63a) 
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P- " 2fZj T^WW ^Z* (Z‘ ' °>- m) 

In both cases there are certain lengths of line 

for ZL * oo, (jf') ~~ 0) ^°r ~ n ^ng an *nteSer] 

for which the power given by these equations is equal to zero. For 
cases in which the dissipation in ZA may be interpreted as scattered 
power, this means that the scattering cross section vanishes for the 
stated terminations and associated line lengths. This can be under¬ 
stood readily from physical considerations. Since the reflection coeffi¬ 
cient of the load is unity, the voltage impressed across the driving point 
of the antenna by the reflected wave in the line is equal in magnitude 
to that impressed by the external incident wave. The current distribu¬ 
tions excited on the antenna by the two waves are the same except for 
phase; hence, by suitable adjustment of the line length, the primary 
and secondary induced distributions on the antenna can be put 180° out 
of phase, with the result that they give rise to no resultant scattered 
wave. The absorption and scattering cross sections are then both equal 
to zero. Similar phenomena can be observed with more general types 
of antennas. The phase between the primary and secondary induced 
antenna distributions is determined by the load impedance and the line 
length. If the load reflection coefficient is unity, the component dis¬ 
tributions on the antenna will be comparable in magnitude, and by suit¬ 
able adjustment of the line length their relative phase can be adjusted 
to give a minimum scattering cross section. 

2*12. The Transmitter and Receiver as a Coupled System.—The 
preceding sections treat the transmitting and receiving antennas as iso¬ 
lated systems and neglect the significant feature of the interaction between 
them. Any discussion of a transmitting pattern implies the presence 
of a receiving antenna to explore the field; conversely, a discussion of a 
receiving antenna assumes the existence of a radiating system. The 
interaction between the transmitter and receiver is a result of scattering. 
Consider a transmitting antenna that, when completely isolated, is 
matched to its line. When a receiving antenna is introduced into the 
field of this transmitting antenna, it gives rise to a scattered wave. 
This, when intercepted by the transmitting antenna, in turn gives rise 
to a wave transmitted down the feed line of that antenna. The net effect 
is that the transmitting antenna no longer presents a matched impedance 
to its line. The transmitting antenna also in turn gives rise to a scat¬ 
tered wave that is partly absorbed by the receiving system and partly 
rescattered. The interaction between the two antennas is thus due to 
multiple scattering and absorption. 
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From the point of view of the transmission lines, the antennas and 
the external space form a network that couples the lines together. In 
Fig. 2*11, A and B represent the transmitter and receiver respectively, 
and O and O' are arbitrary but fixed reference points on the respective 
lines. It will be assumed that there is no activated generator other 
than the one feeding the transmitter A; the network between 0 and O' 

Fig. 2*11. Four-terminal network representation of the coupled tiansmitter-receiver. 

is passive. It will also be assumed that the network is a four-terminal 
network in the sense of Sec. 2*2. Thus the voltages and currents Vh 
%i at O and F2, i2 at O', are linearly related: 

V\ = Z\\i\ — Z 12^2; 
F2 = Zt\i\ — Z^in', 

and the transfer impedance coefficients obey the reciprocity condition 
Z12 = Z2X. The transfer impedance expresses the coupling between the 
antennas. The basis for these assumptions concerning the properties 
of the network is discussed in Secs. 2T6 to 2T8. 

The network may be replaced by an equivalent T-section in the 
manner discussed in Sec. 2*2. This has been indicated in Fig. 2*11. 
The impedance coefficients are functions of the antennas, their relative 
configurations, the properties of the external medium and of the trans¬ 
mission lines, and the distance between the antennas. In the case of 
waveguide lines, the reference points 0 and O' defining the network 
terminals must be at such distances from the antennas that all modes 
other than that for which the line is designed have negligible amplitudes. 

As the distance Rab between the antennas increases, the importance of 
multiple scattering diminishes. The amplitude of the wave returning 
to a given antenna as a result of a single scattering process is attenuated 
by a distance factor (Rab)*2; that due to stage multiple scattering process 
is attenuated by a factor (Rab)**- In the limit Rab « <*> the coupling 
between the two antennas vanishes—the terminals 0 and 0' are isolated 
from each other. In this limit the impedance arm Zu of the T-section 
becomes a short circuit: 

lim Zn <* 0. 
Rab-> * 

(64) 
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Also, in this limiting case, Zi and Z2 reduce to the input impedances 
Z\ and Z% (referred to 0 and 0' respectively) of antennas A and B in 
their isolated states. When Rab is large but not infinite and A is trans¬ 
mitting, the scattered wave from B has a small amplitude when it reaches 
A; the input impedance of A is but slightly different from Z\. If the 
impedance at 0 is sensibly independent of the position and orientation 
of antenna J3, we have one of the requisite conditions under which J3, 
acting as a receiver, may be considered to be measuring the transmission 
pattern of A. In this situation the antennas are weakly coupled; the 
transfer impedance is negligible in its effect on the transmitting antenna. 
As concerns the receiver, however, the transfer impedance is not negligible, 
for it represents the transfer of energy from the transmitting antenna to 
the receiving system. The same considerations apply when B is trans- 

(ZG) equiv 

Fia. 2-12.—On the receiving system circuit. 

mitting and A is the receiver. For the weakly coupled case we may then 
set Z\ and Z2 equal to the respective values at Rab ~ <*> and to a first 
approximation write 

Zu « Z\ + Z12, (65a) 
Z22 « Z\ + JZ12. (655) 

This coupled network representation provides the correct approach 
to the equivalent circuit of the receiving system discussed in Sec. 2-11. 
That case was actually one of a weakly coupled transmitter-receiver 
system. Without loss of generality we may consider a generator of emf 
Vq and internal impedance ZQ to be applied directly to the terminals at 
0 and a load impedance ZL to be applied directly at 0' (Fig. 242). By 
Th^venin's theorem (Sec. 2-4) the system is equivalent to one in which 
the load is connected to a generator producing an emf 

{V a) equiv 
VgZ12 

Zq + Z\ + Zt2 

and having an internal impedance 

(Ztf)*!«hr ** Z\ + 
Zu{Z\ + Zq) ' 

Z I* + Z\ + Za 

(66) 

(67) 

In obtaining these results the weak-qoupling approximations for Zn and 



48 CIRCUIT RELATIONS, RECIPROCITY THEOREMS [Sec, 213 

Z22 given by Eqs. (65) have been used. The receiving antenna is thus 
represented by an equivalent generator; the emf of the generator is 
proportional to the amplitude of the incident wave (which is propor¬ 
tional to V0). The effect of the orientation of the antenna with respect 
to the wave is contained in the functional dependence of the transfer 
coefficient Zi2 cm orientation. The internal impedance differs from Z\ 
by the small quantity Zi2; neglecting the latter, we have the result 
(assumed previously) that the equivalent generator impedance is equal 
to the input impedance of the antenna when it is transmitting. The 
present analysis shows explicitly that the equivalent circuit applies only 
to absorption, for Th^venin’s theorem is applicable only to the treatment 
of the power transferred to ZL. In general the power dissipation com¬ 
puted for the equivalent generator impedance is not equal to the power 
dissipated in the network between Va and the load; hence it cannot be 
interpreted as scattered power. 

243. Reciprocity between the Transmitting and Receiving Patterns 
of an Antenna.—The four-terminal network analysis leads to the very 
important theorem that the transmitting and receiving patterns of an 
antenna are the same. In this connection the meaning of a pattern must 
be understood from the practical standpoint of the coupled system. 
One condition has already been stated: In the case of the transmission 
pattern, the distance from the transmitter to the receiver must be so 
large that the former is not affected (within the limits of measurements) 
by the wave scattered from the latter. In addition, however, one must 
consider the interactions between the receiving antenna and objects in 
its immediate neighborhood. Multiple reflection and scattering will take 
place between the receiver and such objects; the receiving antenna con¬ 
sists, in fact, of the antenna proper together with all neighboring objects 
with which its interactions are significant. If the receiving antenna is to 
measure the field at a point, its directive properties must be such that all 
such interactions are negligible. These interactions at the receiving 
antenna are similar to but are to be distinguished from the interactions 
between the transmitter and surrounding objects such as ground. The 
receiver measures the resultant of the field produced by the transmitter 
and any neighboring objects that interact with it; these together form, 
in fact, an extended radiating system. 

In Fig. 243, A represents the antenna under consideration. In taking 
a transmitting pattern a receiver B is, in principle, moved over a large 
sphere about A, and the relative amounts of power absorbed by the load 
terminating the line B in successive positions give the transmitting 
pattern of A, Conversely, the receiving pattern of A is obtained as the 
relative amounts of power absorbed by a load terminating A when it is 
receiving from the antenna B at successive positions on the sphere. In 



Sec. 2*13] RECIPROCITY BETWEEN PATTERNS 49 

accordance with the usual experimental conditions, no restrictions are 
made as to the generator impedance or load impedance; the only require¬ 
ment is that they remain constant in the course of taking a given pattern. 
The load in the receiving system will again be taken to be applied directly 
to the reference point 0 or O'. 

There is an equivalent four-terminal network between 0 and O' for 
every position of B. Consider the 
transmitting pattern. If ZL is the 
load impedance at O', the network 
equations give (without approxi¬ 
mations) 

i%Zl = V2 ~ Z12I1 — Z22^*2 

or 

*2 = 
Z12 

zl, + ZL tlm 

0 
I 

((58) f=@ 

The currents have the usual sig¬ 
nificance, indicated in Fig. 2*11. 
The power absorbed in the load is 

1 

Fig. 2-13.—On the pattern reciprocity 
theorem. 

P- = % W* 
Z 12 

Z22 + Zi 
He Zl* (69) 

Since the coupling is weak, the dependence of the input current ii on the 
position of antenna B is negligible. In the denominator of Eq. (69), 
the coefficient Z22 may be replaced by Z\, for it follows from the weak- 
coupling approximation of Eq. (65) that this introduces an error of the 
magnitude (Re Z12)3. For two successive positions of B the ratio of the 
absorbed powers is given by 

(P*.h _ M. 
(P aba) 2 |Z lajf 

(70) 

The transmitting pattern is thus determined by the transfer impedance 
coefficient alone. 

If now B is transmitting and the power absorbed by a fixed load 
terminating A at the point 0 is measured, the result should be the same 
as in Eq. (69) except that i\ is replaced by the input current U at O' 
and Z%2 is replaced by Zn. The variation in power with the position of 
B (assuming again weak-coupling conditions) is then likewise given by 
the transfer impedance alone—in fact, by Eq. (70). Hence, subject to 
the condition that the transfer impedance coefficients obey the reciprocity 
relation, it is found that the transmitting and receiving patterns of an antenna 
are the same. If then <?(£,<£) is the gain function of the antenna as a 
transmitter in the direction 9, 4>, the absorption cross section Ar(9,<l>) 
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presented by the antenna to a plane wave incident from the direction 6, 
4> is 

Ar(e,<t>) - G(6,<t>)Ar, (71) 
where 

Ar 5=1 5r J J sin Bded<f> (72) 

is the average cross section over all aspects. The practical result of the 
reciprocity theorem is that no distinction need be made between the 
transmitting and receiving functions of an antenna in the analysis of 
design problems. 

2*14. The Average Cross Section for a Matched System.—In conse¬ 
quence of the reciprocal relation between the transfer impedance coeffi¬ 
cients Z12 = Z21, the four-terminal network representation of the 
transmitter-receiver system obeys the Rayleigh theorem of Eq. (11). 
This, taken together with the pattern reciprocity theorem established in the 
preceding section, leads to a further important result: The average absorp¬ 
tion cross section of receiving system in which the load is matched to the 
antenna impedance is a universal constant. The demonstration given here 
applies strictly to the case in which the ohmic losses in the antenna and 
line are negligible. 

Consider again a weakly coupled transmitter-receiver system made 
up of antennas A and B, with input terminals at assigned reference 
points 0 and 0' as in Fig. 2T1. Let the input impedances of the respec¬ 
tive antennas be 

Z\ - RA+jXA, 
Z\ = Rb + jXB. 

For a weakly coupled system these are but negligibly different from the 
input impedances at 0 and 0' when the respective antennas are trans¬ 
mitting. Let us apply a generator of emf VG and internal impedance 
ZJ*, equal to the conjugate of the impedance of antenna A, across the 
terminals at 0. The receiving system is assumed to be so matched that 
the load impedance across 0' is Zg*. If h is the current at O', the power 
absorbed by the receiver is 

Pab - $\h\2 Re Z°2* - (73) 

This power can be computed in another way. Let PA be the total 
power radiated by the antenna A; the power radiated per unit solid angle 
in the direction of B is (PA/Ajr)GAB, Gab being the gain function of A 
in the direction AB. The absorption cross section presented by B to 
the wave from A is by Eq. (71) equal to GbaAtB) Gba being the gain func¬ 
tion of B in the direction of A. The solid angle subtended by the cross 

section at A is GbaAtb/R^i whence the power absorbed by B is 



Sec. 2-15] DEPENDENCE OF THE CROSS SECTION 51 

~r — GauGbaAtB 
4r R\b 

(74) 

However, PA is equal to the power supplied to antenna A by the generator: 

Pa (75) 

Collecting these results, we obtain 

GauGhaAtb — H5ir\i2\2R\BR aRb 
\Vq\‘ 

(76) 

If the situation is reversed so that B transmits and A receives, with a 
generator of emf F« and internal impedance Z%* applied across 0' and 
a load impedance ZJ* across 0, we obtain by the same calculation as 
before: 

GabGbaAtA 
IjHii\2R2abRaRb 

\Va\2 
(77) 

In this case i[ is the current at the terminals at O. 
theorem we have 

i[ = U) 

By the Rayleigh 

(78) 

hence, on comparing Eqs. (76) and (77), we find 

ArA = ArB) (79) 

The average cross sections of the two antennas are equal. Since the 
antennas are purely arbitrary, this means that the average cross section 
of a matched system is a universal constant. 

The evaluation of the constant requires at least one detailed analysis 
of* the interaction between an antenna and a plane wave on the basis of 
electromagnetic field theory. The reader is referred to Slater1 for such 
a treatment of the electric dipole antenna. It is shown there that the 
value of the constant is 

Ar = (80) 

The cross section Ar(0,4) presented by an antenna to a plane wave inci¬ 
dent from the direction 9, 4> is therefore 

Ar(e,4>) - 0(0,*) (81) 

2*15. Dependence of the Cross Section on Antenna Mismatch.—The 
matched-impedance condition between the antenna and the load—that 
the load impedance be the conjugate of that of the antenna—is the same 

* J. C. Slater, Microwave Trantmiteion, McGraw-Hill, New York, 1942. Chap. VI. 
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as the condition for maximum-power transfer from a generator to a load. 
This condition can be realized by separately matching the antenna and 
load to the characteristic impedance of the transmission line if the char¬ 
acteristic impedance is real, as it is for a nonlossy line. The line-matched 
system is of particular interest in the study of microwave antennas and 
is generally taken as a reference system, since transmitting antennas are 

Consequently, it is of interest to 
determine the effect of a mismatch 
between the antenna and the line 
on the absorption cross section. 

The functional dependence ot 
the cross section on line mismatch 
is of considerable importance in 
the measurement of the gain of 
microwave antennas. It may be 
desired, for example, to study the 
dependence of the gain on configu¬ 
rational parameters, such as the 
relative positions of a radiator and 
a reflector in a scanning antenna 
It is impractical in such investiga¬ 
tions to match the antenna to the 

line in each configuration; rather, a line-matched detector is used through¬ 
out, and the results are corrected for the antenna mismatch of the given 
configurations. 

Consider the receiving system in Fig. 2T4, composed of an antenna 
A feeding a line terminated in a load equal to the characteristic impedance 
Z0 of line. Let T be the reflection coefficient of the antenna (in trans¬ 
mission) at a given reference point 0 and ZA = Ra + jXA the associated 
impedance. We may replace the antenna by an equivalent generator 
of internal impedance ZA; the emf of the generator will be designated by 
Ve. Consider now two cases: (1) Fig. 2T4a, in which the antenna is 
mismatched and feeds directly to the line at 0, and (2) Fig. 2T4b—the 
line-matched system—in which a lossless network has been introduced 
between the antenna terminals at 0 and the line to transform the antenna 
impedance into Zo at the output terminals O'. It is readily verified that 
such a network which transforms the impedance ZA at 0 into Zo at O' trans¬ 
forms the impedance Zo at O' into the complex conjugate ZJ at 0. Case 6 
therefore meets the conditions of Sec. 2-14. The power absorbed in the 
load in the two cases is 

Com a: 

required to be matched to the line. 

*ig. 2-14.—On the dependence of the 
absorption cross section on mismatch (a) the 
mismatched system; (6) the lmo-matched 
system in which a network transforms ZA 
into Zo. 

CP*). 
W.\* Zo 

2 |Z8 TZJ? 
(82) 
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Case b: 

(Pabt)b 1 lid* Pfi7 
2 Jzl + Z*T‘ Re Za 

ILH. J_ 
2 4Ra 

(83) 

The ratio of the power absorbed in the t\\ o cases is the ratio of the respec¬ 
tive absorption cross sections: 

Wr) mi a ±Z,Ra 

(Ar) 0 IZo + ZA\* 
(84) 

Here (Ar)0 designates the cross section of the matched system. 
The antenna impedance can be evaluated in terms of the reflection 

coefficient r. Thus 

and 

Ra = g (Za + Z*) 
z*(i - |r|2) 
"|i - rl2'' 

Substituting into Eq. (83), we obtain the desired result: 

(Ar)mis = (Ar)o(l ~ |r|2). . (85) 

The decrease in cross section—or reception efficiency—is precisely the 
same as the reflection loss introduced by the mismatch on transmission. 
Also it will be noted that the mismatch depends only on |r|2; hence the 
result is independent of the choice of the reference point O taken as the 
input terminals to the antenna. 

2*16. The Four-terminal Network Representation.—This and the 
following sections summarize the considerations underlying the postulate 
(Sec. 2*12) that the transmitter-receiver system is equivalent to a four- 
terminal network between the respective transmission lines. Use will 
be made of results proved later in Chaps. 3 and 7. The treatment is 
formulated primarily for microwave systems in which the transmission 
lines are waveguides. The systems are assumed to be ideal, in the sense 
that ohmic losses in the lines and the antennas are negligible. 

Consider a pair of antennas A and B, each of which is fed from a 
waveguide, as shown in Fig. 2*15. It is assumed that the guides are 
designed to support free propagation of a single mode only. The refer¬ 
ence planes 0 and O' which serve as the input terminals to the antennas 
are perpendicular to the respective guide axes and are taken in the trans- 
mission-line region of the guides, where only the freely propagated mode 
has an amplitude significantly different from zero. We shall consider 
the closed surface S made up of the surface 0 inside the guide Af the 
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interior surface of the guide, the surfaces of the conductors comprising 
the antenna, and finally the exterior surface of guide A; this encloses the 
A-system completely. A similar surface S' encloses the 2?-system. We 
shall be concerned with the electromagnetic field in the region V bounded 
by a sphere of infinite radius and by the surfaces S and S'. 

Fig. 2*15.—On the foui-terminal network analysis of the transmitter-receiver system. 

It will be assumed that there are no generators in the region F. As 
regards antennas A and B, either we may have the one transmitting and 
the other receiving or generators may be applied to both antennas simul¬ 
taneously. However, the particular case involved is of no concern, since 
we are interested in the general nature of the relation between the 
tangential components Ei, Hi of the field over the plane O in guide A 
and the tangential components E2, H2 over the plane O' in B. 

The magnitudes of the tangential electric and magnetic fields are 
determined by voltage and current parameters F and i, respectively, 
which are analogous to the voltage and current in a balanced two-wire 
line. In order to set up a four-terminal network representation, we must 
show that the relation between the voltage and current parameters Fi, 
ii at the plane 0 and the parameters F2, U at 0' is linear: 

Fi = Zuti — Zi2z2; | 
F2 =» Z*nii — Z22^2* J 

(86) 

To validate the various reciprocity theorems developed in Secs. 2*13 to 
2*15 we must then show that the transfer impedance coefficients satisfy 
the reciprocity relation 

£i* * Zn. (87) 

The remainder of this section will concern itself with the definition 
of the voltage and current parameters and an exposition of certain of 
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their properties that are needed in developing the proof of the four- 
terminal network representation. The latter subject proper will be 
treated in the following section, and in Sec. 2T8 the reciprocity relation 
between the transfer impedance coefficients will be established. 

The fields in a waveguide are functions of position both over the 
cross section of the guide and along its axis. It will be shown in Chap. 7 
that the tangential components of the field over any cross section of a 
guide, for a given mode, have the form 

— Fg(:c,2/), 
Htan« ~ th(x)y)J m 

where the coordinates x, y refer to position on the cross-section plane. 
The functions g(x>y) and h(x,y) are characteristic of the given mode and 
satisfy the relation 

/ U • [g&,y) x h(x,y)] dS = 1. (88a) 

The quantities V and i—the voltage and current parameters, respectively 
—are functions of position along the guide axis. If position along the 
latter is designated by 2, the voltage and current parameters for a general 
field of a given mode take the form 

V = V+e-’P* + V-e+’t*, (89a) 
i = r0(V+e->t* - F-e+tf‘); (896) 

that is, the general field is made up of two waves traveling in opposite 
directions along the guide axis, the subscript ± in Eqs. (89) referring to 
the direction of propagation of the component wave with respect to the 
positive 2-direction. The quantity T0 is a constant, characteristic of the 
given mode. Thus the voltage and current parameters obey the same 
equations as do the voltage and current in a two-wire line, of charac¬ 
teristic admittance T0. As in the case of the two-wire line the amplitudes 
V+ and F_ are determined by the boundary conditions at the input and 
terminal points in the guide. 

If Va and V/3 are the voltage parameters of two fields of the same 
mode, for different boundary conditions on the line, and t« and ip are 
the respective current parameters, it follows from Eqs. (89) that the 
field with a voltage parameter 

Vy = 7tla Va “h ffysFs (90a) 
has a current parameter 

iy «* mJa 4- rrifiifi. (90b) 

This leads at once, by virtue of Eqs. (88), to the corresponding property 
of the electric and magnetic fields: Let E«, H* and E*, be two linearly 
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independent fields, of the same mode; then, if we construct the field 

Ey = m« E* + m/3 E^, (91a) 

where ma and m^ are both different from zero, the magnetic field H7 

associated with Ey is correspondingly 

Ky = m*H* + mpHfl. (916) 

This relation between the fields is of fundamental importance to the 
discussion in the following section. 

217, Development of the Network Equations.—We may now pass to 
tha details of the four-terminal network problem. The procedure is to 
consider the relation between the fields within the respective guides 
and the fields in the external space, thereby arriving at a relation betw een 
the fields in the two guides A and B. For this purpose the interior regions 
of the guides are thought of as connected with external space to form a 
composite region V bounded by the surfaces S and as was outlined 
in the previous section and illustrated schematically in Fig. 2*15. 

Every set of values of electric and magnetic fields Ej, Hi over 0 and 
E2, h2 over O' (and hence voltage and current parameters Vh ih F2, it) 
is associated with a field E, H in the region V. Consider three such fields 
that are not simple multiples of one another: 

(Ei«, Hi*; E2*, H2*; E*, H*), 
(Ei/s, Hi/s; E20, H2/S; E/3, H/s), 
(Ely, Hi7; E27, H27; E7, H7). 

It follows from Eq. (88) that over the planes 0 and O' the successive 
fields differ from each other only in their voltage parameters. (Only 
a single mode exists in each guide in the regions of the reference planes.) 
Any one of the three fields can be obtained as a linear combination of the 
other two, with coefficients m* and m^ which satisfy the relations 

Viy = maVla + m$Vv> J 
Viy — maVta + rtifiVf 

By virtue of Eq. (88) the voltage parameters can be replaced by the elec¬ 
tric fields Ei. . . . E27. By Eqs. (91), the associated magnetic fields 
follow the same law of resolution: 

Hi7 — TflaS-la *1" VtfiSLijSf I /Ann 
HSr - maHj. + meHw. ) K ’ 

This resolution can be effected regardless of the behavior of the fields 
throughout the region V. However, it is meaningful only if the field 

Hr is the same linear combination of the fields E„ H„ and E«, H# 
throughout V as it is over the reference planes, that is, if 

Ey -* maE. + m$Ee. (92c) 
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Proof of Eq. (92c) follows from the uniqueness theorem of the elec¬ 
tromagnetic field.1 The application of the theorem, however, involves 
restrictions on the fields. The medium in the region V is characterized 
by three constitutive parameters: the conductivity <r, the electric induc¬ 
tive capacity e, and the magnetic permeability /u.2 These in general vary 
from point to point and are functions of frequencies. In special cases 
(such as ferromagnetic media) they are functions of the field intensities; 
such nonlinear regions are excluded in the formulation of the uniqueness 
theorem. Since the region V includes virtually all space, ferromagnetic 
media cannot be simply excluded; we must instead impose the restric¬ 
tion that the fields set up by the antennas be such that their amplitudes 
are negligible in the neighborhood of such media. Subject to this 
condition, the uniqueness theorem states that in a region V which is free 
from generators the field is determined completely by the values of 
n x E over the boundary surfaces S and S'. The reader is referred to 
Stratton for the proof. The same technique that is employed in the 
development of the uniqueness theorem leads to the following superposi¬ 
tion principle: If Ert is the field in V corresponding to the boundary condi¬ 
tion n x E = Fa over S and S' and Ef, the field with the boundary 
condition nxE =FtJ then the field E, associated with the boundary 
conditions 

n x E = maEa tfhFbi 

ma and being constants, is 

E c = mflEa + wJEh. 

It will be noted that since the waveguides and antennas are all ideal 
conductors, all fields E, H, with which we are concerned in the region V, 
satisfy the same boundary conditions 

nxE = 0 

over the surfaces S and S' exclusive of the cross sections 0 and O'. Over 
the regions 0 and O' the tangential component of E assumes prescribed 
values Ei and E2 respectively. Hence the resolution of Eit and E*y in 
Eq. (92) becomes, in fact, a resolution of the tangential components of 
the field Ey over S and S' in terms of a pair of linearly independent fields: 

nxEr = m«(n x E«) + m$(n x Eg). 

From the superposition theorem we have then that everywhere in V 

Ey = maEa + mp E$f 

which was the desired result stated in Eq. (92c). Thus given any pair 

1 See for example, J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 
1941, See. 9*2. 

4 C/, Chap. 3, Sec. 3*2. 
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of linearly independent fields over the reference planes 0 and O', all other 
fields may be expressed as a linear combination of the two, the law of 
combination holding for all points in the region F. 

It is convenient to take as the basic set of linearly independent fields 
the two fields corresponding to short-circuit terminations over the plane 
O' and the plane 0 respectively. Consider first the short-circuit termina¬ 
tion over O', and let the fields over 0 be designated by Eia, Hi«, the fields 
over O' by E2<*, H2a; let Fi« . . . Ua be the corresponding voltage and 
current parameters. Since the short-circuit means that O' is the surface 
of the perfect conductor, we must have E2a = 0, and hence F2« = 0. 
Of the three remaining quantities, one may be regarded as an independent 
variable, being adjustable, for example, by a generator applied over the 
surface 0. Let Fi« be the independent variable. From Eqs. (89) it 
follows that for fixed conditions in F, that is, a prescribed termination in 
antenna B and hence a fixed terminal condition in guide A, the current 
parameter i\a varies directly with the voltage parameter Fja: 

Via — (iniia, (93) 

where an is a constant independent of the field amplitude. Furthermore 
since O' is short-circuited, the field in V must satisfy the condition 
nxE = O over- all of S', for all values of Ei„. From the superposition 
principle it follows then that the field at all points in V is proportional 
to the magnitude of Eia; in particular, then, the current ?2a is proportional 
to Fi«: 

^2a ~ baV la == baQ\\i\ct, (94) 

with 6a also a constant independent of the field amplitude. 
Similar relations are obtained for the case of a short-circuit termina¬ 

tion over 0. Letting V\p, iip, F2js, iip be the voltages and currents over 
O and O' respectively, we have in this case 

Vip = 0, (95a) 
V2p = a22i2/s, (956) 
tip 3=8 6pV 2p ~ 6/*a22z2/3. (95c) 

The general field can be written as a linear combination of this basic set: 

Fi = maVia + rripVie - maVia = an(maiia), 
V2 588 fftaV2a + WlpV2p “ 'M'pVty = ®22(^^2/3)> 

and 

ii = maiia + mpiip = (maiia) + bpa22(mpt2$), 

U = mJta + mpiw = baan(mJia) + (mpHe). 

Solution of Eqs. (97) for mai\a and and substitution into Eq. (96) 
give the linear relation between the voltages and currents in the two 
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guides: 

V\ = Zuil ~~ Z 12^*2, | 
V2 = z2lt’l — Z22t2, f 

(98) 

where 

rj Uu r/ Q22 \ 
/jn ” Z22 = ~ T’ / 

V 0 lia22b r/ UjlU22 ba / 
Al2 - ^ > A 21 = ~ A f l 

(98o) 

-1 =1 — babpci nU22* / 

It is necessary to observe sign conventions in using Eqs. (98) to relate 
the fields over O' to the fields over 0. The convention will be adopted 
here to correspond to that used in Sec. 2-2: regarding 0 as the input 
terminals to the four-terminal network, the positive ^-direction in guide A 
is toward the antenna, and i\ is the positive current entering the network; 
at the input terminals O', the positive current leaves the network, the 
positive ^-direction in the second guide being away from the antenna. 

2*18. The Reciprocity Relation between the Transfer Impedance 
Coefficients.—Equations (98) establish a four-terminal network repre¬ 
sentation for the coupled transmitter-receiver system. The final prob¬ 
lem to be considered is the justification of the assumption that the 
transfer impedance coefficients satisfy the reciprocity relation 

Z\2 “ Z%\. 

We shall make use of the Lorentz reciprocity theorem:1 Let Ett> Ha and 
E/j, H/3 be two linearly independent fields in the region Tr; then 

j>R+s, (n x E.) • HsdS = <fg+sl (n x E») • H„ dS. (99) 

The conditions for the validity of the Lorentz theorem are the same as 
those stipulated for the uniqueness theorem and superposition principle 
in the preceding section. 

Let us apply the theorem to the two basic fields employed in the 
preceding section. The relation (99) in this case reduces to 

f (n x E«) • H0dS = [ (n x B,) • H« dS. (100) 
Jo Jof 

Making use of Eq. (88) and taking into account the sign conventions on 
the current parameters, we obtain 

1 See the article by A. Sommerfeld in Frank and V. Mises, Die Differential- und 
Integralgleichungen der Mechanic und Physik, Vol. II, p. 953, reprinted by Mary S. 
Rosenberg, New York, 1943. 
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— V lai\0 Lu-it 1 (x,y) x hi(x,y)] dS 

= V2a / i* • [gi(x,y) x hj(a-,y)l dS. (101) 
Jo' 

By virtue of the property of the functions g, h of Eq. (88a) it follows that 

— Vial 10 ~ V 2fi^2a* (lOlfl) 

If nowr the currents are expressed in terms of the voltages by means of 
Eqs. (94) and (95c), it is seen that the coefficients ba and bp of the pre¬ 
vious section are related: 

ba = —bp. 

It then follows from Eqs. (98a) that the transfer impedance coefficients 
obey the reciprocity relation 

% 12 = 2i. 



CHAPTER 3 

RADIATION FROM CURRENT DISTRIBUTIONS 

By S. Silver 

The fundamental approach to an understanding of microwave 
antennas is necessarily based on electromagnetic theory. This chapter 
therefore begins with a discussion of the field equations and the general 
properties of an electromagnetic field; the treatment is necessarily cursory, 
being intended as a summary of material that is familiar to the reader.1 
This theory is then applied to the simplest problem of antenna theory, 
the calculation of the radiation fields due to known current distributions. 
A discussion of certain idealized current distributions illustrates the 
principles of superposition and interference and furnishes a theoretical 
guide to the design of various antenna feeds. 

3*1. The Field Equations.—The field equations relate the electric 
field vectors E and D and the magnetic field vectors B and .H to each 
other and to the sources of the field, the electric charges and currents. 

Sources of the Field.—The sources will be specified in terms of density 
functions. 

The excess of positive over negative charge in a volume V is 

where p is the charge density per unit volume. 
The rate of transport of charge across a surface S, that is, the net 

current passing through S, is 

/ = JsJ-ndS, (2) 

where J is the current density and n is the unit normal to the surface S 
in the direction defined as positive. The current J has the direction of 
flow of positive charge, a negative charge moving in one direction being 
equivalent to a positive charge moving in the opposite direction. 

In the rationalized meter-kilogram-second (mks) system of units,2 

1 The reader is referred to J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 
New York, 1941, for a more detailed treatment of many of the subjects covered in this 
chapter. 

* Stratton, op. cit.t pp. 16, 602. 
61 
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which is used in this book, the charge density is measured in coulombs 
per cubic meter and the current density in amperes per square meter. 

As a consequence of the conservation of charge, the charge density 
and current density are subject to an important relation. The total 
current passing out of a closed surface S must equal the rate of decrease 
of positive charge in the enclosed volume. That is, 

where n is the unit vector normal to the surface and directed out from 
the region V. By the divergence theorem1 

<f>sJ-n dS = frV.J dv. (4) 

Substitution of this into Eq. (3) gives 

/„('’•>+ 5r)*-°- <5> 
This must hold for any arbitrary volume, no matter how small; conse¬ 
quently the integrand itself must be zero: 

v • J + ^ = °. («) 

This is the so-called “equation of continuity.” 
Finite charges and currents are sometimes limited to surfaces of dis¬ 

continuity. In such cases the excess of positive over negative charge 
on a surface S is 

Q = JsvdS, (7) 

where i) is the charge density per unit area. Similarly if we let C be a 
curve on the surface of discontinuity and ni a unit vector normal to C 
in the tangent plane, then the total current crossing (7, that is, the rate 
of transport of charge across C, is 

/ = K • nj ds, (8) 

where K is the surface-current density. The surface-current density K 
and the charge distribution rj on the boundary of an infinitely conducting 
medium must satisfy an equation of continuity analogous to the volume 

1A treatment of the divergence theorem and Stokes's and Green's theorems, which 
are used subsequently, may be found in any text on vector analysis. See for example, 
H. B. Phillips, Vector Analysis, Wiley, New York, 1933. 
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distributions. This equation of continuity, in integral form, is 

fcK-n,d.-- fa%iS, 

where C is any closed curve enclosing an area S. 
Another form of this relation is 

(9) 

Vs • K + £2 = 0, (10) 

where the “surface divergence” of K, V* • K, is defined by 

Vs • K = lim - (f K • ni ds, (11) 
a-+o A J c 

A being the area circumscribed by the curve C. 

Definitions of the Field Quantities.—The field vectors E and B measure 
the forces exerted on charges and currents respectively. The force on a 
stationary charge q at any point in the field is 

F * Eg. (12) 

The total force on a current distribution through a volume V of space is 

F = J' J x B dv, (13) 

the integrand being the vector product of J and B. The vector E is meas¬ 
ured in volts per meter and B in webers per square meter. 

The field vectors D and H are determined by the field sources and 
are independent of the medium. The net outward flux of D through a 
closed surface S is a direct measure of the enclosed charge Q: 

£sD.n dS-Q, (14) 

where n is the unit vector normal outward from the enclosed region. The 
magnetic field H is related to the current. If / is the net current passing 
through a surface S bounded by a curve C, then 

H • ds = I. (15) 

The integral on the left is the line integral of the tangential component 
of H along the curve C; the direction of integration is such that an observer 
traversing the curve in that direction will have on his left the positive 
normal n used in defining the current L 

The Field Equations.—The field equations expressing the relations 
between the field vectors and the sources may be set up either in differ¬ 
ential or integral form. 
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The differential relationships, Maxwell’s equations, are 

V xs + 2-o, 

VxH=J+ 
dD 
dt’ 

V • B = 0, 
V • D = p. 

(16a) 

(166) 

(16r) 
(16d) 

Equation (16c) may be derived from Eq. (16a) by taking the divergence 
of the latter. Similarly, Eq. (1 Cxi) may be derived by taking the diver¬ 
gence of Eq. (166) and comparing the result with the equation of continuity 

J + l-o- (1 6c) 

Equations (16a) to (16c) must be obeyed simultaneously by the field 
components and sources of any electromagnetic field. 

The corresponding integral relations are the following. Let C be a 
closed curve spanned by an arbitrary surface S; then 

<£cE • ds = - |/sB -ndS, (17a) 

the positive direction of integration around the curve C being that 
defined previously. The first of these relations is Faraday's law of elec¬ 
tromagnetic induction, and the second is the generalization of Amp&re's 
law in which the current density J due to charge is supplemented by the 
“displacement-current density" d'D/dL These equations can be derived 
from Eqs. (16a) and (166) by the use of Stokes's theorem. By applica¬ 
tion of the divergence theorem to Eqs. (16c) and (16d) one obtains two 
more integral relations: 

) B • n dS = 0, 8 7 (17 e) 

i D • n dS — 1 p dv =* Q, 
s Jv 

(17 d) 

where the integrals extend over the closed surface S of a volume V. 
Equivalent Magnetic Charge and Current.—Equations (16c) and (17c) 

express the fact that there exist no free magnetic charges and correspond¬ 
ing magnetic currents. However, it is at times convenient to introduce 
equivalent distributions of such charges and currents. A simple example 
is provided by the infinitesimal current loop. This is equivalent to a 
magnetic dipole normal to the plane of the loop. If the current in the 
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loop varies with time, the dipole strength varies likewise; the effect is 
that of a magnetic-current element. 

In diffraction theory, equivalent magnetic-charge and magnetic-cur- 
rent distributions are introduced in a more general way. In the presence 
of a magnetic-charge distribution of density pm and a magnetic-current 
distribution of density Jm, Maxwell’s equations assume the more sym¬ 
metrical form 

^ X E Jm 
ot 

(18a) 

VxH = J + §, (186) 

V • B = Pm, 

V • D = p, 
(18c) 
(18d) 

with two equations of continuity 

o“ 
II 

•SI* 
+

 
*—% 

>
 (18c) 

V.J- + ^ = 0. (18/) 

It is to be emphasized that the magnetic-source densities are mere 
formalisms. We introduce them here to avoid later repetition of certain 
mathematical developments. They will be different from zero only under 
very special circumstances. 

3*2. The Constitutive Parameters; Linearity and Superposition.— 
There exist between the various field vectors further relations that depend 
on the medium. 

In isotropic media the vectors D and E have the same direction 
at any given point, as do the vectors B and H. The ratios of their 
magnitudes are constitutive parameters of the medium: 

D 
* = E’ 

the electric inductive capacity, and 

B 

(19a) 

(196) 

the magnetic inductive capacity. These quantities may be functions of 
the field intensities and the frequencies. They depend on the field 
intensities only for a small group of substances which we shall exclude 
from our discussion. The frequency dependence is a very general prop¬ 
erty. In vacuo these parameters are constants and have the values 

co — 8.85 X 10~12 farad/meter, 
Mo = 4r X 10~7 henry/meter 
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The constitutive parameters are more commonly specified in terms 
of the specific inductive capacities 

h = (20 a) 
to 

km = -M • (206) 
Mo 

The quantity ke is known as the dielectric constant; km as the magnetic 
permeability. These ratios are dimensionless and independent of the 
units. For practically all materials of interest in antenna work km is 
but negligibly different from unity and will be taken equal to unity unless 
otherwise indicated. 

It is important to note that although D and E are in the same direc¬ 
tion, they are not necessarily in phase. Such phase differences depend 
on the molecular structure of the medium and are connected with dis¬ 
sipation of electromagnetic energy in the medium. They are conveniently 
taken into account by expressing c as a complex number, 

€ = €r — (21) 

The energy losses associated with the imaginary part of e are to be dis¬ 
tinguished from the conduction loss associated with conduction currents. 

Two types of currents may contribute to the source function J: con¬ 
vection currents and conduction currents. In the present volume we 
shall be concerned only with conduction currents, for which the current 
density is proportional to the electric field vector E: 

J « <rB. (22) 

The constant <r is the conductivity of the medium. Like the other con¬ 
stitutive parameters it may be frequency dependent. A conducting 
medium cannot support a free volume-charge density p; if the conduc¬ 
tivity is at all appreciable, p may be taken to be zero at all times. 

If the constitutive parameters are independent of the field strength, 
all relations between the field vectors—MaxwelPs equations and the 
constitutive relations [Eqs. (19a), (196), and (22)]—are linear. Under 
such circumstances the superposition principle applies. This states that 
if a set of field vectors Ei, . . . , Hi and source functions Pl and 
satisfies the field equations and a second set of field vectors E2| . . . , H2 
and source functions p2 and J2 does so also, then the sum of these two 
solutions Ei + E2, . . . , pi + p2, Ji + J2 also satisfies the field and 
constitutive equations and describes a possible electromagnetic field. 

3*8# Boundary Conditions*—In addition to the field equations, which 
give the relations between the elements of the field in a medium with 
continuously varying properties, we must know the relations that exist 
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at a boundary where the properties of the medium change discontinu- 
ously. The derivation of these boundary conditions starts from the 
integral forms of the field equations; the procedure is standard and will 
be found in any text on electromagnetic theory; we shall simply state 
the results. 

Let us consider the boundary surface between two media with 
constitutive parameters €1, gi, <ri, and €2, M2, <t2, respectively. Let the 
positive unit vector n normal to the boundary surface be directed from 
medium 1 into medium 2. If Ei, E2, . . . , Hi, H2 are the field vectors 
at contiguous points on either side of the boundary, the boundary con¬ 
ditions are the following: 

1. The tangential component of the electric field intensity is con¬ 
tinuous across the boundary: 

n x (E2 — E,) = 0. (23) 

It can be shown that a field penetrates into a conducting medium 
a distance inversely proportional to the square root of the con¬ 
ductivity.1 Thus if ctj = oo, Ei must be zero; this boundary con¬ 
dition then reduces to 

nxE2 = 0 (cr i = oo). (24) 

2. There is a discontinuity in the normal component of D at the 
boundary if there exists a surface layer of charge: 

n • (D2 — Di) = n • (e2E2 — eiEi) = rj7 (25) 

the charge density per unit area being tj. Such layers of charge 
occur, in general, only when one of the media has infinite 

conductivity. 
3. The normal component of B varies continuously across a boundary: 

n • (B2 — Bi) = n • (m2H2 — = 0. (26) 

4. A discontinuity in the tangential component of H occurs only 
when there is a surface-current sheet on the boundary 

n x (H2 — HO « K, (27a) 

K being the surface-current density. Such current sheets exist 
only if one of the media, say the first, is infinitely conducting. 
In this case, however, the field cannot penetrate the medium; Hi 
must be zero. We have then 

nxHj {<ri =* oo) (27b) 

and likewise 
n • B2 — 0 (<n * oo). (28) 

1J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, p. 504. 
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Under all other conditions K is zero, and the tangential component 
of H as well as the normal component of B is continuous. 

These boundary conditions apply to fields that satisfy Maxwell’s 
equations [Eqs. (11)] everywhere. We shall have occasion in diffraction 
problems to consider a boundary surface between two regions of the 
same medium. From solutions of Maxwell’s equations in these two 
regions wre shall form functions that are solutions of Maxwell’s equations 
everywhere except on this surface, where they are discontinuous. These 
discontinuities can be formally associated with distributions of magnetic 
charges and currents on the boundary surface by equations that can be 
obtained from the Maxwell equations [Eqs (13)] in which magnetic 
sources have been introduced: 

and 
n x (E, - Ex) = — Km, (29) 

n • (B2 — Bi) = rjmy (30) 

respectively, wrhere Km is the density of the fictitious magnetic-current 
sheet over the boundary and Tjm is the density of the fictitious surface 
layer of magnetic charge. As in the case of electric current and charge, the 
magnetic-source functions must satisfy a surface equation of continuity, 

v, . Km + -lm = 0, 
of (31) 

wrhere as before Vs* is the surface-divergence operator. 
3*4. The Field Equations for Harmonic Time Dependence.—It will 

be sufficient for most of our purposes to consider fields having a harmonic 
time dependence. In such cases we shall take all field and source dis¬ 
tributions to depend on time through the same factor eJ<j>i. The real 
and imaginary parts of these complex solutions of the field equations 
will themselves be solutions of the field equations and will describe real 
fields. The assumption of harmonic time dependence will not greatly 
affect the generality of our results because an arbitrary field and source 
distribution can be resolved into harmonic components. 

With the restriction of the time dependence to the time factor ei<aty 
the field equations may be written as 

V X E + joinH = — Jm, (32a) 
V X H = (<r + jut)E, (32b) 

V • (pH) = pm, (3 2c) 
V • («E) * p, (32d) 

V • J + jup = 0, (32e) 
V * Jm + jupm * 0. 
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These equations apply equally to the field quantities and their space- 
dependent factors. Equations (19a), (196), and (22) have been applied 
in this formulation. Equations (32c) and (32d) have been written in 
the general form, for inhomogeneous media in which e and n are func¬ 
tions of position. It should be noted that the equation of continuity 
determines the charge density directly from the current. 

3*5. Poynting’s Theorem.—Discussions of the energy relations in an 
electromagnetic field are usually based on Poynting’s theorem. From 
the first two of Maxwell’s equations, (16a) and (166), we obtain 

H.T.E-E.VxH.-H.f-E.f-E.J. (33) 

The quantity on the left is equal to V • (E x H). On use of the con¬ 
stitutive relations [Equations. (19a) and 196)], Eq. (33) becomes 

T.(ExH)+E-J=-i(e| + !f). (34) 

This is Poynting’s theorem. Formally, Poynting’s theorem resembles the 
equations of continuity previously considered; it expresses the conserva¬ 
tion of energy, rather than that of charge. The Poynting vector 

S = ExH (35) 

is interpreted as the intensity of flow of energy, that is, the rate of flow 
of energy per unit area normal to the direction of S. The quantities 
eE2/2 and nH2/2 represent the densities of electric and magnetic energy, 
respectively. The term E • J measures the rate of dissipation or produc¬ 
tion of electromagnetic energy per unit volume. If E • J is positive, it 
is a dissipation term; if it is negative, it represents production of electro¬ 
magnetic energy. 

The analogy of Poynting's theorem to the equation of continuity 
is brought out more clearly in the corresponding integral form. Let us 
integrate Eq. (34) over a volume V enclosed by a surface S: 

Making use of the divergence theorem, we can transform the first integral 
into a surface integral over the boundary, obtaining 

dS+ /VE'J* - -S /vCf+lr)*' 

With the interpretations of the integrands given above, Eq. (37) states 
that the net rate of flow of energy out through the boundary surface 
plus the rate of dissipation of electromagnetic energy within the volume 
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(or minus the rate of production) is equal to the rate of decrease of elec¬ 
tromagnetic energy stored in the volume V. 

Equation (34) is quite general in its applications. We have now to 
express Poynting’s theorem in a form applicable to fields varying peri¬ 
odically with time. In this connection it must be noted that the complex 
exponential representation of periodic fields can be carried through all 
linear operations but that in nonlinear operations (such as formation of 
the products occurring in the Poynting theorem) the real expressions 
for the field quantities must be used. The complex field vectors may be 
expressed as 

E = (Ec^O = (Er + jE,)(’ut1 
H = (H<»«) = (Hr 

The corresponding real fields are 

Re E = (E, cos bit — Et sin mt)y 
Re H = (Hr cos bit — H, sin oil). 

The Poynting vector is thus 

S = Re E x Re H (40) 
= [Er x Hr cos2 bit + Et x H, sin2 bit — (Er xH, +Etx Hr) sin bit cos w/] 

In general we are not interested in the instantaneous flow but in the 
energy flow averaged over a cycle. That is, we wish to know 

s -;/>"• ('-v> <*" 
the overline denoting the time-average value. Now the time average 
of sin bit cos bit vanishes, and the time average of both cos2 bit and sin2 bit 
is i. Hence 

§ = i(Er x Hr + E, x H,). (42) 

It will be observed that except for the factor the right-hand side of 
Eq. (42) is the real part of E xH*, where H* lepresents the complex 
conjugate of H. We have then 

S = ille (E X H*). (43) 

We shall seldom be concerned with the instantaneous Poynting vector. 
Unless explicitly stated otherwise, all future reference to the Poynting 
vector will be to the time-average value given by Eq. (43); the overline 
will be omitted hereafter except where a distinction must be made. 

It is of interest to formulate Poynting’s theorem in terms of time- 
♦ averaged quantities. Since the divergence is a linear operator, involving 
space derivatives only, 

. V • § - V • Re *(£ X H*) - * Re V • (E x H*). (44) 

(38a) 
(38/>) 

(39a) 
(396) 
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In the absence of magnetic charges or currents one has, for a field with 
harmonic time dependence, 

i V • (E x H*) = -2 (H* • V x E - E • V x H*) 

= - \ («r - jut*)E • E* — H • H* (45) 

Taking the real part of Eq. (45), with due regard for the complex form 
of €* [Eq. (21)], we obtain the modified Poynting’s theorem 

V-S - -£(<r + a*,)E.E,* (46) 

or, in integral form, 

- j>s S • n dS = 2 (<r + "oE ■E* dv• (47) 

Since the unit normal n is directed outward from the region enclosed by 
the surface S, the term on the left of Eq. (47) is the net average power 
flowT across S into the region V. In view of the harmonic time depend¬ 
ence of the field, there can be no average increase in the energy stored; 
the terms on the right must be interpreted as electromagnetic energy 
dissipated within the region V. Thus, the imaginary component of the 
electric inductive capacity, like conductivity of the material, results 
in energy dissipation. A material with a complex dielectric constant is 
called a “lossy dielectric.” By Eq. (47), if a medium is neither a con¬ 
ductor nor a lossy dielectric, the net power flow across a closed surface 
S into the region enclosed by it is zero. 

3*6. The Wave Equations.—We turn now to a consideration of the 
wave equations satisfied by electromagnetic fields. We begin wdth 
Maxwell's equations in the form [Eqs. (18)] that includes magnetic 
sources but confine our discussion to linear homogeneous media; e and 
fx are constants independent of position. 

Taking the curl of Eq. (18a), eliminating the magnetic vector B by 
means of Eqs. (186) and (196), we obtain 

V X V X E + ^E = -IX ^ - V X Jm. (48) 

Similarly, interchanging the roles of Eqs. (18a) and (186), we get 

TxTxH + ^^=-{|+VxJ. (49) 

We now make use of the vector identity 

txTxP = V(V • P) - T2P. (50) 
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On application of this to both the previous equations and replacement 
of V • E and V • H by p/t and pm/p respectively, Eqs. (48) and (49) become 

T!E-„^.p^ + TxJ, + j.Tp, (51a) 

= (516) 

On the left sides of these equations are the familiar differential terms of 
the wave equation; the terms on the right represent the effects of dis¬ 
tributions of sources. In a source-free medium these equations reduce 
to the homogeneous wave equations 

= (52a I 

V’H - pe = 0, (526) 

with the speed of propagation of the wave given by 

1 
* * —=-, (53) 

The speed of propagation in free space is a constant, independent of 
frequency: 

c 
VM0€0 

= 3 X 108 meters/sec. (54) 

The index of refraction of a medium is defined as 

n — j — \/kmk\. (55a) 

For most media the magnetic permeability km is unity, and 

n = y/kt. (556) 

The wave equations simplify for fields with time dependence e’at, in 
that the time can be totally eliminated from the equations. There result 
the so-called “vector Helmholtz” equations for the space dependence 
of the fields: 

where 

V x V x E — k2E = —jupj — V x Jm, 
VxVxH-f‘H = -jut Jm + v X J, 

k2 = w2pe. 

The constant k is known as the propagation constant, 
media it is real and is related to the wavelength by 

(56a) 
(566) 

(57) 

In nonlossy 
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If e is complex, both the speed of propagation defined by Eq. (53) and 
the propagation constant are complex. The attenuation of a wave as 
it propagates in a lossy medium is directly connected with the imaginary 
part of the propagation constant. 

Applying Eq. (50) to Eqs. (56) yields 

V*E + fc2E = junJ + T x Jm + ]• Vp, (59a) 

V2H + km = juejm - Vxj + J VPm. (596) 

In a source-free medium these reduce to the homogeneous equations 

V2E + k* E = 0, (60a) 
vm + km = o. (606) 

It should be emphasized that Eqs. (60) imply that each rectangular 
component of the field vectors Ex, Eyy ... , Hz satisfies the seajar Helm¬ 
holtz equation 

Vhp + khp = 0. (61) 

Though all fields that satisfy Maxwell’s equations necessarily satisfy 
the wave equations, the converse is not true. A set of field vectors E 
and H that satisfy the wave equations constitute an admissible electro¬ 
magnetic field only if at the same time they satisfy Maxwell’s equations. 
Furthermore, the fields must behave properly at the boundaries of the 
region concerned in accordance with the boundary conditions formulated 
in Sec. 3*3. If the region is infinite in extent, separate attention must be 
paid to the behavior at infinity. 

3*7. Simple Wave Solutions.—General considerations relative to 
wave propagation will be developed in the next chapter. We shall con¬ 
sider here several simple waveforms, solutions of Eqs. (60), that recur 
frequently in general antenna theory. These are (1) the homogeneous 
plane wave, (2) the circularly symmetrical cylindrical waves, and (3) 
the isotropic spherical wave. In each case the medium is assumed to be 
homogeneous, nonconducting, and free from sources. 

Plane Waves.—The plane wave is mathematically the simplest type 
of electromagnetic wave; its propagation is essentially one-dimensional. 
Let us attempt to find a field such that the directions and magnitudes of 
the field vectors are constant over any plane normal to the direction of a 
vector s (Fig. 3*1) but vary periodically along lines parallel to s. In the 
case of the electric field vector E, the conditions stated above will be 
satisfied if the field has the form 

E(s,s/,z,0 * E0e(*w*~*r,#), (62) 

when r is the position vector from the origin to the field point 
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and k is the propagation constant defined by Eq. (57); the amplitude Eo 
is independent of position and time. Since the planes normal to the 
unit vector s are defined by r • s = constant, this field must be uniform 

over every such plane. These 
planes are equiphase surfaces for 
the wave, and its propagation can be 
visualized as a continuous progres¬ 
sion of one equiphase surface into 
the contiguous one. It is seen 
further that at any instant the field 
has the same magnitude over each 
of the family of parallel planes 

y 
„ , 2irn „ 

T • S = C ± —j— = ( ± ll\, 
A* 

Fits. .‘M. The plane wave. W = 0, 1, 2, ’ * * . (63) 

It is readily verified that the electric field vector defined by Eq. (62) 
satisfies the wave equation [Eq. (52a)]. Obviously a similar expression 
for the magnetic field vector H(x,y,zj) is a solution of Eq. (525). How¬ 
ever, if these field vectors are to describe an electromagnetic field, they 
must be so related as to satisfy Maxwell’s equations. The required 
relation is Eq. (32a): 

H=UXE. (64) 
a>/i 

On introduction of Eq. (62) this becomes 

H = ^ (s X E) = yjj (s X E(65) 

The space-time dependence of H is the same as that of E, but the direc¬ 
tion of H is normal to that of both s and E0. Equation (32d) requires 
T * E to be zero in a source-free medium. Thus 

V • E = -jk s • E =0; (66) 

that is, E is normal to s. To satisfy Maxwell’s equations, the electric 
and magnetic field vectors must thus lie in the plane normal to s. It 
follows at once that the energy flow, that is, the Poynting vector, 

S - i Re (E X H*) = \ |£0|2s, (67) 

is in the direction of propagation of the wave, normal to the equiphase 
surfaces. 

It is of interest to determine whether or not there can exist a plane 
wave of the form of that in Eq. (62) if the magnitude of Bo is an arbitrary 
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function of position over an equiphase plane. Without loss of generality 
we can take the direction of propagation along the z-axis and the direc¬ 
tion of E0 along the T-axis. We are thus considering the field 

Ex = Eo(x,y)e-Jkt, Ey - Et = 0 (68) 

(omitting the time factor e3<at). If this is to be a possible field, Ex must 
satisfy the scalar Helmholtz equation [Eq. (61)]. This will be true only 
if Eo(x,y) is a solution of the two-dimensional Laplace equation: 

d2£o d2E o 
dx2 + By2 

(69) 

Since there are no sources, E«(x,y) must be finite and continuous over the 
infinite #,2/-domain. However, being a solution to Laplace’s equation, 
Eo can have no maxima or minima in this infinite region. Consequently, 
Eo(x,y) must be a constant; arbitrary amplitude distributions and infinite 
plane equiphase surfaces are incompatible. 

It should be noted that the infinite plane wave is impossible physically 
because the total energy transported across an equiphase surface is 
infinite. The practical importance of the plane wave lies in its use in the 
analysis of other waves. There are two parameters characterizing the 
plane wave: its angular frequency a> and the direction of propagation s. 
By superposing time-periodic plane waves, all traveling in the same 
direction but with various values of co and amplitudes 2?o(w), it is pos¬ 
sible to build up a plane wave of more general time dependence—a pulse- 
modulated or otherwise modulated wave. By superposing plane waves 
with the same frequency o> but with various directions of propagation 
and amplitudes E0(s), it is possible to synthesize a time-periodic wave 
with a more general type of equiphase surface. Because each component 
wave satisfies Maxwell’s equations, the resultant obtained by superposi¬ 
tion likewise satisfies the field equations. 

Cylindrical Waves.—Circularly symmetrical cylindrical waves are the 
elementary forms of two-dimensional propagation. The equiphase sur¬ 
faces of these waves are coaxial circular cylinders; the wave is propagated 
along the radii of the phase surfaces. 

Cylindrical coordinates, as defined in Fig. 3*2, are appropriate for the 
analysis. The z-axis is taken as the axis of symmetry, and r and B are 
polar coordinates in a plane normal to the z-axis. At each point we 
define unit vectors ir, ie> i* in the direction of increasing r, 0, and z, 
respectively; the field vectors may, on occasion, be resolved into com¬ 
ponents in these directions. 

We shall now seek solutions of the field equations in which the field 
vectors are everywhere tangential to the cylindrical equiphase surfaces 
and have constant amplitude over each such surface (that is, the ampli- 
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tudes are functions of r only). We shall seek solutions of two different 

x 
Fiu. 3*2.—Cylindrical coordinates. 

types, distinguished with reference to the 
directions of the field vectors: 

Case a: 

Hz = 0, Ez(r) ^ 0. 

Case b: 

Ez = 0, lh{r) jA 0. 

Tn each solution, of course, Hr = Er = 0. 
We begin by determining the form of 

the ^-component of the field as a solution 
of the wave equation; later we shall deter¬ 
mine the remaining field components by 
means of the field equations. 

Since Ez(r) and Hz{r) are components 
of the respective field vectors in a rectan¬ 

gular coordinate system, they must satisfy the scalar Helmholtz equation 
[Eq. (61)]. In cylindrical coordinates this becomes 

2 d ( d\p\ 2 _i_ 
r dr \ dr) r2 dd2 dz2 

+ = 0, (70) 

where \p may represent either Ez or H*. Since \f/ is independent of 8 and 
z, this reduces to 

dV , 
dr2 "r 

if + iv-o. (71) 

On introduction of 
£ = kr, (72) 

this becomes 

+
 

+
 II o
 

(73) 

This is the differential equation satisfied by the Bessel functions or, more 
generally speaking, by the cylinder functions or order zero.1 Of the 
many solutions of this equation which we might identify with the func¬ 
tions Ez or Hzy those of immediate interest here are the Hankel functions 

and The nature of these functions is most evident in 
their asymptotic behavior for large values of £ = kr: 

(fcr » 1). 
(74a) 

(746) 

1Q. N. Watson, Theory of Bessel Functions, Macmillan, 1944. 
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The second of these functions, multiplied by the time factor eiut, repre¬ 
sents a wave traveling in the positive r-direction; the phase quantity 
cof — kr is the analogue of the quantity w( — kx for a plane wave traveling 
in the positive x-direction. Thus J/(02)(fcr) represents a cylindrical wave 
diverging from a line source on the 0-axis. Similarly, H^ikr) represents 
a wave traveling in the negative r-direction, that is, a wave from infinity 
converging to a line focus along the 0-axis. 

Restricting attention to the diverging wave function 7/(02)(At), we 
consider first Case a. We assume 

E = Hg>(kr)<’«% (75) 

and use the field equations to determine the associated magnetic field. 
The curl of a vector P, expressed in cylindrical coordinates, is 

_ ~ (l BP* dP9\. dPr dl A. .ltd, D N dPr~\. _ 
VxP V 30 dz)lr + \dz dr)le^r\_dr^rP^ dO y” (7b) 

Taking the curl of the vector E and making use of Eq. (32a), we obtain 

H= ~ i[Tr1I("){kr)]("%' (77) 

It is left to the reader to verify that the field vectors E and H defined 
by Eqs. (75) and (77) satisfy the other field equations. Over the cylin¬ 
drical surfaces of constant r, E and H are perpendicular to each other 
at every point and lie in the tangent plane to the surface; as in the case 
of a plane wave, E and H are normal to the direction of propagation, and 
the Poynting vector is normal to the equiphase surface. As the radius 
of the equiphase surface becomes large, it becomes sensibly plane in 
the neighborhood of any point. We must, therefore, expect that as 
r —> oc, the relationship between E and H approaches that existing in a 
plane wave. The asymptotic form for H may be obtained by introduc¬ 
ing Eq. (746) into Eq. (77). Neglecting terms of higher order in 1/r, 
we find 

(78) 

w hence 

H « - — H\?>(kr)e’“% (kr» 1). (79) 
(i)fi 

Thus, in the limit as r —► oe, 

as was to be expected. 
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The derivation of the field for Case 6 proceeds in a similar manner. 
We assume 

H = H^(kr)e1<atu; (81) 

the associated electric field follows by application of Eq. (326), which, in 
the case at hand, becomes 

E = J- V x H. (82) 

It follows that 

E = e’“%. (83) 

The general remarks concerning Case a apply to the present case also. 
It is easily verified that here too the relationships approach those in a 
plane wave as the radius of the cylindrical phase surface becomes very 
large; that is, 

lim H = x - (ir x E). (84) 
r—» « \ M 

We have thus obtained two independent field distributions with 
cylindrical equiphase surfaces. We shall refer to these as cylindrical 
modes of free-space propagation. The first field, Case a, can arise from 
a linear distribution of electric current along the z-axis and will be spoken 
of as a field of the electric type; Case 6 can be associated with a linear 
distribution of magnetic current along the z-axis and is correspondingly 
referred to as a field of the magnetic type. These are the simplest cylin¬ 
drical modes of free-space propagation. A treatment of the general 
theory of cylindrical waves will be found in Stratton.1 

Isotropic Spherical Waves.—Next we shall consider the isotropic 
spherical wave with equiphase surfaces that are concentric spheres and 
field amplitudes that are constant in magnitude over each equiphase 
surface. 

The spherical coordinates r, 6, and <£, illustrated in Fig. 3-3, are 
appropriate for this discussion. With the spherical coordinates are 
associated a set of orthogonal unit vectors ir, i*, 4 at each point in space, 
in the directions of increasing r, 6, and <t> respectively. 

Let the center of the family of equiphase spheres be at the origin of 
the coordinate system. An attempt to construct a field that is a func¬ 
tion of r alone, as in the case of cylind ical waves, will fail. For example, 
suppose that we try to construct a field in which the field vectors have 
only the components 

4 E - E(r)U, 
H - H(r)U. , 

(85) 

1 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, Chap VI. 
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It will be seen that there is an essential ambiguity in the directions of these 
vectors at all points for which 0 « 0 or ic. The ambiguity can be ren¬ 
dered trivial only by making the magnitudes of the fields vanish for 
0 = 0 and ir; the field can then be independent of 0 only if it vanishes 
identically. 

The isotropic spherical wave is, in general, a possible waveform only 
for scalar fields such as are encountered in acoustics. However, it is 
often useful for reference and comparison with electromagnetic waves. 

z 

Accordingly we shall note briefly the spherically symmetrical solutions 
of the scalar Helmholtz equation [Eq. (61)]. In spherical coordinates, 
the Laplacian V2 is 

V2 = 
i a 

H) + 1 d3 
r3 dr \ dr) ' r2 sin 0 dd v dd) ' r2 sin2 d d<f>3 

When ^ is a function of r only, the Helmholtz equation becomes 

r2 dr \ dr) 
+ k3* - 0. 

It is readily verified that 

(86) 

(87) 

(88) 

are solutions of this equation. The solution multiplied by the time 
factor e’at, represents a wave diverging from a source at the origin, while 
'l'+eiut represents a spherical wave converging to a point focus at the 
origin. 
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3*8. General Solution of the Field Equations in Terms of the Sources, 
for a Time-periodic Field.—The plane and cylindrical waves discussed in 
the preceding section are solutions of the homogeneous field equations 
which apply in regions of space free from charge and current distributions. 
In deriving the form of these fields, no attention was paid to their ulti¬ 
mate sources, which lay outside the domain of validity of the solution. 
Our present task is the more exacting one of determining what fields 

will arise from a prescribed set of 
sources in a homogeneous medium. 

For reference the complete set of 
field equations is repeated here. 
Magnetic charge and current distri- 
1 utions are included for later use. 

V X E + ico/xH = - Jm, (3-32a) 
V x H - jcoeE = J, (3-32fr) 

V . H = (3-32c) 

V . E = J, (3-32rf) 

V • J + jup = 0, (3-32e) 
Fig. 3-4- Notation for Green’is theorem V * Jm + j<apm = 0, (3*32/) 

also the pair of vector Helmholtz equations, 

VxVxE-i2E = -i«/J - V x JU (89) 
VxVxH-FH = + V x J. (90) 

The integration of these equations is based on a vector Green's 
theorem:1 Consider the region F, illustrated in Fig. 3-4, bounded by the 
surfaces Si, . . . , Sn- Let F and G be two vector functions of position 
in this region, each continuous and having continuous first and second 
derivatives everywhere within F and on the boundary surfaces. Then, 
if n is the unit vector normal to a bounding surface, directed into the 
region F, 

^(F*VxVxG-G-VxVxF)dt> 

- - f (G x V (G x V x F - F x V x G) • n dS. (91) 

As indicated, the surface integral extends over all boundary surfaces. 
Let us suppose that there exists in a volume F, such as that consid¬ 

ered above, an electromagnetic field such that E and H meet the condi- 

1 The procedure adopted here is due to J. A. Stratton and L. J. Chu, Phya. Rev., 
(6,99 (1939). A proof of the Green's theorem is given in this paper. 
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tions of continuity required of the vector function F of the Green’s 
theorem. We shall now see, with the aid of this theorem, how one can 
express the field at an arbitrary point P in the volume V in terms of the 
field sources within this volume and the values of the field itself over the 
boundaries of the region 

We define the vector function of position 

(r-jkr 

G = —a = *&, (92) 

where r is the distance from P to any other point in the region and a is 
an arbitrary but otherwise constant vector. This will satisfy the con¬ 
tinuity conditions required of the function G in the Green’s theorem 
everywhere, except at P, where it has a singularity. Accordingly, we 
surround P by a sphere 2 of radius r0 and consider that portion V' of V 
which is bounded by the surfaces Si, ... , Sn and 2; in this restricted 
region, G as defined by Eq. (92) and F — E of the electromagnetic field 
satisfy the conditions required for application of the Green’s theorem. 
We have then 

(^a - VxVxE-E'V x V x ^a) dv 

(E x V x \^a — \^a x V x E) • n dS. 
• • +8, + 1 

(93) 

As the first step in the manipulation of this equation, we shall trans¬ 
form the volume integral involving the electric field into an equivalent 
integral involving only the field sources. Introduction of the vector tpa, 
into the vector identity [Eq. (50)] and use of the facts that yp satisfies 
thfe scalar Helmholtz equation and a is a constant vector will suffice to 
show that 

V x V x fa = V(a • Vf) + k2ypa. (94) 

Taking this in conjunction with Eq. (89), we obtain 

^a • V x V xE — E • V x V x^a = a • ( — juiijyp — ^ V x Jm) 
— E • V(a • TVO. (95) 

A few additional transformations are necessary: 

E • V(a * Vyp) - V • [E(a • V*)] - (a • Vyp)V • E (96) 

= V • [E(a • V^)] — ^ a • V\f/, 

and 

x J„ - V x + Jm x Vf. (97) 
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By use of these, Eq. (93) can be given the desired form: 

fjf 

/, 

)*+*•/. V x tfjm dy 

+ / V • [E(a • V^)] dy 

= / [(E x V x tfa) • n - (^a x V x E) • n] dS. (98) 
«/<S’t4- • • • 4“2 

We can now bring each term in Eq. (98) into the form of a scalar 
product with the vector a and then completely eliminate this vector 
from the problem. The second and third volume integrals can be trans¬ 
formed into surface integral: 

a • / V x dv =- —a* / xjmdS, (99) 
Jv JiSi+-..+S 

/ V • [E(a • V})] dv = - / (n • E)(a • AS 
./V' 7-Si+*'-4*S 

= -a • / (n • E) V* AS. (100) 

To the surface integrals on the right-hand side of Eq. (98) we apply the 
following transformations: 

[E x (V x ^a)] • n == [E x (Vf x a)] • n = [(n x E) x V^] • a, (101) 
^(a x V x E) • n = —jwM^(a x H) • n — ^(a x Jm) • n 

= jwta • (n x H) + *a • (n x Jm). (102) 

Collecting these results, we obtain finally 

*7v(/' 

-7. 
juHlpJ + Jm X 

;v*) 
dv 

£i+ +2 
x H) + (n x E) x V* + (n • E) V*] AS. (103) 

Since Eq. (103) must hold for every vector a, the integrals themselves 
must be equal. That is, 

[-JwmKn x H) + (n X E) X w + (n • E) Vfl dS 

= / (j«M^J + Jm x — - Vip) dy — / [—jw^(n x H) 
Jv'\ « / M+...+S, 

+ (n X E) X V* + (n. E) Tfl dS, (104) 

where for convenience we have split off the integral over the sphere 2. 
In the limit as 2 shrinks down on P, this integral will depend only on the 
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field at P. Thus we have a relation between the field at P and a volume 
integral over the sources of the field, plus surface integrals involving the 

field itself. 
Next let us consider the integral over 2. On the surface of this 

sphere we have 

The normal n is directed along the radius out from P. Let dll be the 
solid angle subtended at P by an element of surface diS on 2; the surface 
integral can then be written 

J [ ] dS = — jroe~1kr» j {a>M(n xH) + £[(n x E) x n + fn • E)n]j dll 

— e-]kr" J [(n x E) x n + (n • E)n] dQ 

= —,/47r/v ik,° (conn x H + A’E) — 4?re *kr»E, (100) 

where the overline denotes the mean value of the function over the sur¬ 
face of the sphere. If now wo let the sphere shrink to zero, the term 
containing r<> vanishes because by hypothesis the field vectors are finite 
in the neighborhood of P. At the same time E approaches E/>, the value 
of the field vector at P. Thus 

lim / I] dS = -4ttEp. (107) 
r«—>0 ./ 1 

In this limit the region V' comes to include the whole of the region V, 
and Eq. (104) becomes 

EP = — ~ {iw4'J + Jm x di 

+ / [— ja)/ty(n x H) + (n x E) x Tty + (n • E) Vrft] dS. 

(108) 

The analysis follows the same course for the magnetic vector H, with 
the corresponding result: 

HP = — 4l- - J dr 

+ T- [ x EW + (nxH)xtH(n-H) Vf] dS. (109) 
**■ Jsi+ ■■ -a. 

The fields at the observation point P have thus been expressed as the 
sum of contributions from the sources distributed through the region V 
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and from fields existing on the bounding surfaces. These latter surface 
integrals represent contributions to the field from sources lying outside V; 
specifically, the surface integral over a surface S, enclosing an exterior 
volume Ft represents the effect of sources within F*. 

Each of the three terms in the surface integral can be correlated with 
a corresponding term in the volume integral according to the way in 
which the function 

e -jkr 

* = V (HO) 

is involved. In Eq. (108), for example, (n x H), (n x E), and (n * E) 
enter the surface integral exactly as the electric-current density J, mag¬ 
netic-current density Jw, and the charge density p, respectively, enter the 
volume integral; a similar correspondence will be observed in Eq. (109). 
Thus the effects of sources lying in an exterior region F„ bounded by 
the surface Sly are represented formally as arising from a surface distribu¬ 
tion of charges and currents on the boundary S„ with surface densities 

K = (nxH), \ 
Km = — (n x E), j 

rj = e(n • E), ( 

Vm = ju(n • H), / 

(111) 

E and H being the fields existing over that surface. 
3*9. Field Due to Sources in an Unbounded Region.—We have now to 

consider the case in which the region V is unbounded and the sources 
of the field are confined to a region of finite extent. There is then only 
one boundary surface /?„, which we shall at first take to be a sphere of 
large radius R about the point P, enclosing all sources of the field. Equa¬ 
tions (108) and (109) then reduce to a single surface integral over this 
large sphere S(R). 

Let Ri be a unit vector directed out along the radius of this sphere; 
that is, let Ri = — n. On introduction of this vector and the explicit 
form of the surface integral of Eq. (108) becomes 

[ *—x H) + (n x E) x + (n • E) dS 

- S Jm {*>•<*> * B> - (* + b) I*. * (*. * *> 
- <R, • E)Rj} jm {** [(Ri xH) + 

(112) 
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If we now let the radius ft become infinite, the surface of the sphere 
increases as R2. The surface integral will vanish as R —> <x> if the fields 
satisfy the conditions 

lim ftE is finite, (113a) 
ft— oo 

^lim R £(Ri x H) + B j =0. (113&J 

In the case of Eq. (109), the surface integral will vanish if 

lim ftH is finite, 
ft— 00 

[0)h(R‘>‘E)_H]"0 
Conditions (113a) and (113c) require that at large distances from the 
sources, the magnitudes of the field vectors decrease at least as rapidly 
as R~l. Conditions (1136) and (113c?), the so-called “radiation condi- 
tions,,, ensure that all radiation across the bounding sphere consist of 
waves diverging to infinity. This may be seen as follows: Taking the 
scalar product of Eq. (1136) with Ri, we obtain 

lim (ftE)-Rx = 0. (114) 
ft— so 

The component of E in the direction Ri thus diminishes more rapidly 
than ft-1; we may say that E is perpendicular to Ri, to terms of the order 
of ft"*1. On the other hand, Eq. (113d) states that 

lim RK = (-Y (R, xER). (115) 
ff— * w 

It follows that to terms of the order of ft"*1, H is perpendicular to both 
E and Ri and E and H are related in the same manner as in a plane wave 
progressing away from the center of the sphere S(R). 

If (as will be shown in Sec. 3T1 to be the case) the fields arising from 
sources confined to a finite region of space satisfy Eqs. (113) at infinity, 
then the surface integrals over the infinite spheres vanish and the field 
vectors in the unbounded region are given by 

(113 c) 

(113d) 

E p — 

HP « 

4it 

4t 

fr [m ^ + J- x * (~) - ; * (“)] *• (,19»> 

<n“> 

The fields are expressed here entirely in terms of the sources. 
These fields can be expressed in terms of the current distributions 

alone by use of the equations of continuity [Eqs, (32e) and (32/)], which 
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relate the charge densities to the current distributions Thus Eq. (116a) 
becomes 

*' - iL fv[-k'3'-T + (117) 

Let ia, a - 1, 2, 3 be unit vectors in the x-, yand ^-directions, respec¬ 
tively. Then 

(V-J>*^-2<W)£(^)i. (118«) 

- c,-T,T(?r) om< 
at 

Now 

L v v 

S(R) Of a 
(119) 

as soon as R is taken so large that S(R) lies outside the region to v hich the 
current distribution is confined. It follows that the first terms on the 
right of Eq. (118b) contribute nothing to the integral in Eq. (117). Thus 
we obtain 

Ej> = - Jut fv KJ • T)v + *2J - J* X v) e-j-r dv. (120) 

Similarly, for the magnetic held we obtain 

Hr - - Jv [(JL • V)T + k*Jm + jwnJ X V] dv. (121) 

3*10. Field in a Region Bounded by Surfaces of Infinitely Conductive 
Media.—A second case of importance is that in which the region V is 
hounded by surfaces S, which are the surfaces of bodies of infinite con¬ 
ductivity and by the surface S„ at infinity. We again assume that the 
fields at infinity satisfy the condition of Eq. (113). The integrals over 
Sa in Eqs. (108) and (109) then vanish, and we have to consider only the 
integrals over the surfaces of the conductors. At the surface of an 
infinitely conducting body the boundary conditions of Sec. 3-3 are 

nxE-0, n • H = 0, 

n • E = 9 n xH = K, 
€ 

(122) 

V and K being the surface distributions of electric charge and current. 
Thus Eqs. (108) and (109) become 
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(123) 

H- — c - - J 

+lhK*v(e7)ds- <i24> 

It will be observed that the expressions for the fields due to surface 
currents and charges could have been obtained from the volume integrals 
as limiting forms, on considering that the volume distribution passes 
into a surface-layer distribution. 

The results of this section will form the basis for the general theory 
of reflectors to be developed in Chap. 5. 

3*11. The Far-zone Fields.—Let us now return to the case of the 
unbounded region and examine in more detail the relations between the 
field solutions 

Ef = ~ Jue Jv [CJ • + *2J - M.Jm X V] e~ dv, (3-120) 

Hr = - jv [(J- • V)V + k -J„ + j x V] dv (3-121) 

and the radiation conditions developed in Sec. 3*9. 
These solutions are based on the assumption that the sources are 

confined to a finite region of space. Let us choose an origin in the neigh¬ 
borhood of these sources, and let p be the vector from the origin to the 
source element at the point x, y, z (Fig. 3-5). The vector from the origin 
to the field pointP we shall write as PRi, Ri being a unit vector; similarly, 
rri will be the vector from the source element to the point P. 

In the integrands of Eqs. (120) and (121), the operator V acts on the 
coordinates of the source element, whereas the point P is treated as a 
fixed origin. For example, 

and 

(jr-v)v 

(125) 

e~ikr 
r 

• (126) 

Thus the integrands in these equations are power series in r”1; for the 



88 RADIATION FROM CURRENT DISTRIBUTIONS [Sec. 311 

first-degree terms in Eq. (120) we have 

[*2J - k*{J ■ r1)r1 + kcoeJ„, x n] — dv. 
r 

In evaluating these integrals we must take into account the variation of 
r and of the unit vector ri with the position of the source element. 

x 
Fig. 3*5. —On the fai-zone field (a) arbi¬ 

trary field point P; (b) simplifying relation¬ 
ships for a point m the far zone 

In general this offers serious diffi¬ 
culties, but simplifications can be 
effected if the field point is at a 
very great distance from the cur¬ 
rent distribution and the origin. 
First, the angle between the vec¬ 
tors Ti and Ri, which decreases 
with R~\ can be neglected; rj can 
be replaced by Ri in the integrals. 
Next, the factor r~1 in the inte¬ 
grand can be replaced by the con¬ 
stant R~~l, from which it differs by 
the terms of the second order in 
R~\ The variation of r cannot 
be neglected wholly in the phase 
factor. Here, making use of the 
fact that ri and Ri are effectively 
parallel, we ’write 

r = i? - 9 • Rl (127) 

With these approximations, Eqs (120) and (121) take on forms valid 
for the far-zone fields: 

EP - ^ e~*« fv[j~ (J- R0Ri + (ff Jm x Rt j *+»***• dv 
+ 0 Q-2), (128) 

and 

H, - - <r»* f [j. - (J. • Ri)Ri - J x R,1 «■*•■>. * 

+ °(s») <129> 
The calculation of the terms of order Rr2 is tedious but straightforward 
and will be left to the reader. 

The integrals in Eqs. (128) and (129) are independent of r. Thus it 
is evident that REP and RHp remain finite as R —» as required hy 
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the boundary conditions [Eqs. (113a) and (113c)]. It is further evident 
that the field vectors are transverse to the unit vector Ri; the J term in 
the integrand has a component in the direction of Ri, but this is always 
canceled by subtraction of the second term (J • Ri)Ri. A simple cal¬ 
culation shows that the radiation conditions [Eqs. (1136) and (113d)] 
are satisfied; for example, 

Rj x H + E = fv\ -jm(.Ri x J,) + M»e)HR, x (J x R.) 

- Men)* U - (J • RORil - jmiJm x R,) j *-+»*•*• dv = 0 (130) 

Thus, E and H are related as in a plane wave, being mutually perpendicular 
and in a plane normal to Ri„ 

We must now examine the integrals of Eqs (128) and (129) in a little 
more detail. We introduce the system of spherical coordinates R, 0, 
<j>t defined in Fig. 3-5, with polar axis along the 2-axis. Let U andi* 
be unit vectors having the directions of increasing 0 and <f> at the point 
P; Ri is, of course, the unit vector in the radial direction. In terms of 
Cartesian components 

p = xix -+- yiv + zin (131) 
Ri = sin 0 cos <f>i* + sin 0 sin </>iv + cos 0L; (132) 

thus 

g • Ri = (x cos $ + y sin</>) sin 0 + z cos 0. (133) 

The components of the electric field vector along ie and i* are easily 
found to be 

E• - - 

=-&ke~''RF'(*■*) (134a) 

and 

- - S/, [ j ■■ <♦ - ($j‘ j- • <•] * 
e~'UCFM,<t>)- 0346) 

As indicated, the integrals are functions of only the angular coordinates 
0 and 4>. The components of the electric field and the resultant far- 
field vector have the form to be expected for a source located at the 
origin. However, the far field is only a quasi-point-source field; the 
equiphase surfaces are not the family of spheres of constant R because 
the space factors Fi and Ft are in general complex. This is to be expected 
because the choice of origin was purely arbitrary. 
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The point-source character of the far field becomes more evident on 
considering the power flow in the far zone. The Poynting vector is 

S = |lte (E xH*) = Re [E x (R, x B*)] 

= 2 (£)'* (W + l^!2)R> (i3«) 

or 

s=sk*R*(*y(i36) 
where 

*(M) = |Pi(*,*)|2 + |P2(0,0)|2. (137) 

The power flow is radially outward from the origin, with an intensity of 
flow that falls off with the square of R and depends also upon 0 and <f>; 
with respect to power flow the current distribution is, in effect, a directive 
point source at the origin. 

In discussing the pover flow it is convenient to use, instead of the 
Poynting vector, the power P(0,0) radiated per unit solid angle in the 
direction 0, 0. This is given by 

P(0,0) = /?*IS| = g*2 Q ' no,+), (138) 

which is independent of the radial distance R. The angular distribution 
of the power flow may be represented graphically by a three-dimensional 
plot in spherical coordinates, in which the angular coordinates 0 and 0 

are those of the direction of observation and the radial coordinate is 
proportional to P(0,0). It is customary to normalize the maximum of 
the power pattern to unity. The resulting figure is spoken of as the 
“polar diagram” or “radiation pattern” of the current distribution. 

The power distribution is also specified in terms of a gain function 
<7(0,0) with respect to an isotropic radiator, as defined in Chap. 1; in 
terms of P(0,0) we have 

0(6,4) = - P(M) 

t- f [ P(0,0) sin 0 d$ d4 
4*r Jo Jo 

n; 

4 TV(6,<t>) 

ty(6,<f>) sin 0d0d<f> 
(139) 

The maximum value of the gain function is termed the “absolute gain.” 
In design specifications this is generally quoted in decibels above the gain 
of an isotropic radiator (which is unity): 

Gain in db * 10 logio [0(0,0)]™, (140) 
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3*12. Polarization.—In the preceding section we have considered the 
separate components Ee and E+ of the electric field vector in the far zone; 
we have now to note some properties of the resultant field vector. 

The factors F\(0,<t>) and /^(fl,#) in the expressions for Ee and E+ are 
in general complex quantities, which we may write thus: 

Fi(0,4>) = Ai(0,4>)e-mi9*\ (141a) 
F*(6,4>) = A2(d,<t>)e-^e>*\ (1416) 

Here the A’s and y’s are real, and 71 and 72 are in general not equal. 
The vector EP is thus the resultant of a pair of time-periodic vectors 
EeU and E^i* at right angles to each other, with relative amplitude and 

Fig. 3*6." Elliptical polarization: (o) orientation of the ellipse; (6) light-handed polanza* 
tion; (c) left-handed polarization, with direction of propagation toward the reader 

phase which vary with 6 and <t>. This resultant vector EP simultane¬ 
ously rotates in space and varies in magnitude in such a way that its 
terminal point describes an ellipse; the radiation field is ellipticallv 
polarized. To show this we note that the real parts of Eee+1(at and 
E4>e*ut, as given by Eq. (134), are the real Ee- and /^-components of the 
electric field. These become, on use of Eqs. (141), 

E, = sin (ut — IcR — yt) = a, sin (at - kR - 71), (142a) 

E+ = sin (q,/ — kft — y2) = a+ sin (cof — kR — 71 — 5), (1426) 

where & = 72 — 71 is the phase of E+ with respect to Ee. Expanding 
the sine term in E+ and eliminating the terms involving wl — kR — yh 
we obtain a relation between E# and Ee that holds at all times: 

^ ^ - 2 cos 5 — ^ = sin2 S. (143) 
crQ a\ as a* 

This is the equation of an ellipse traced out by the terminus of the 
vector Ej>. The relation of the ellipse to the component vectors is shown 
in Fig. 3*6. The sense of polarization is defined for an observer watching 
the oncoming wave: The polarization is termed “right-handed” or “left- 
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handed” according as the terminus of the vector EP traces out the ellipse 
in the clockwise or counterclockwise sense, respectively. 

If the phase difference 8 is an odd multiple of t/2 and the amplitudes 
are equal, the ellipse becomes a circle; right-handed and left-handed 
circular polarization are defined in the same manner as for elliptical 
polarization. If the phase 8 is an integral multiple of x, the ellipse degen¬ 
erates into a straight line traced out by a linearly polarized resultant. 

As 6 and <f> are varied, both 8(6,<t>) and Eq/E# will vary; the polariza¬ 
tion of the radiation from an extended source may change from linear 
to elliptical to circular and back again as one changes the direction of the 
observation. 

3*13. The Electric Dipole.—In the preceding sections we have seen 
how a radiation field arises from a 
distribution of time-varying currents. 
We now turn to a discussion of some 
special idealized current distribu¬ 
tions and their associated electromag¬ 
netic fields, leaving aside the question 
of their physical realizability. 

The most elementary form of 
idealized radiator is the oscillating 
electric dipole (Fig. 3*7). A dipole 
consists mathematically of a pair of 

equal and opposite charges, each of magnitude q, separated by an infi¬ 
nitesimal distance 8. If the vector 5 is directed from — q to +<7, the 
dipole moment of the dipole is defined to be the vector 

z 

(a) (6) 
Fig. 3*7.—The electric dipole: (a) 

mathematical dipole; (b) antenna repre¬ 
sentation of a dipole, l < < X. 

p = qh. (144) 

An antenna equivalent to a dipole is shown in Fig. 3*7. It consists 
of thin wires terminated in small spheres, the over-all dimensions of the 
structure being very small compared with a wavelength. The spheres 
form the capacitive element of the structure, and the charge at any 
instant can be considered to be localized on them. If the antenna is 
energized by a harmonic emf applied across the gap at the center, the 
charges on the spheres are given by 

q = qae*1; (145) 

the magnitude of the dipole moment of the antenna is 

with amplitude 

p = q0leJ'wt = poe’”*, 

Po = qol- 

(146) 

Since l <£ X, the current at any instant may be taken to be the same at 
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all points along the wings of the antenna. The current I is related to 
the charge q by I = dq/dt = jwq and to the magnitude of the dipole 
moment by 

(147) 

The electromagnetic field set up by a dipole is best described in 
spherical coordinates with the origin at the center and the polar axis 
along the axis of the dipole (Fig. 3*8). The derivation of the field will 
be found in any text on electromagnetic theory;1 we shall simply state 
the results: 

Er = (p + cos* U)> (148a) 

E* = ^ 05 + -p ~ 7) sinfl (1486) 

H+ = 4? 02 + ) sin0 Vue’'“‘ WK (148c) 

As a consequence of the axial symmetry of the radiator, the field is inde¬ 
pendent of 0. It can be resolved into three partial fields according to 
the dependence on r: (1) the % 
“static field” varying inversely 
with r8, (2) the “induction field” 
varying inversely with r2, and (3) 
the “radiation field” varying in¬ 
versely with r. The static field 
is, in fact, that which would be 
computed for a static dipole with 

fixed moment p0e;M“'AT). The in¬ 
duction field is the quasi-station¬ 
ary-state field commonly observed 
in the neighborhood of circuit ele¬ 
ments at low frequencies; the 
magnetic component of the induc¬ 
tion field is that which would be 
calculated on the basis of the Biot-Savart law for stationary currents. 
At small distances from the dipole the static and induction fields predom¬ 
inate. At a distance, 

^ 1 X 
r>k~w 

*iu. 3*8.- -Field of an electric dipole oriented 
along the 2-axis. 

the radiation field becomes the leading term, and at sufficiently large 
distances the static and induction fields become negligible relative to 

1 For example, J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 
1941, Chap. VIII. 
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the radiation field. However, it is only at distances much greater than 
r = X/2?r that one can entirely neglect the static and induction fields. 

The radiation field represents a flow of energy away from the dipole. 
There is no corresponding energy loss in the static and induction fields; 
the energy associated with these fields pulsates periodically back and forth 
between space and the antenna and its associated circuit just as do the 
energies in capacitances and inductances at low frequencies. The far- 
field Poynting vector computed by Eq. (43) arises entirely from the r~1 

terms in the fields. It is 70® 

60° 

50° 

40° 

20° 

001 
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m jm 
!pl M 

120° 

130° 

140° 

160° 

180° 
Fig. 3*9.—Meridional polar diagram of the 

power pattern of an electric dipole. 

s = wk3 
32^ M 

sin2 0, 
(149) 

where ir is the unit vector in the 
outward radial direction. 

The dipole is a true point 
source because the equiphase sur¬ 
faces are spheres with centers at 
the origin; it is directive because 
the intensity of the field varies 
with the direction of observation. 
The power pattern of the dipole is 
independent of azimuth <t> and is 
sufficiently represented by a cut 
in any one meridian plane, like 
that shown in Fig. 3-9. In design 

specifications it is customary to characterize such cuts in the 
three-dimensional polar diagram by two widths if they exist: (I) the 
“half-power width” ©, which is the full angle in that cut between 
the two directions in which the power radiated is one-half the maximum 
value, and (2) the “tenth-power width” © (TV)> the angle between the 
directions in which the power radiated is one-tenth of the maximum. 
These widths for the meridional polar diagram of an electric dipole are 

© - 90°, 

©(A) - 146°. 

Since the pattern is uniform in azimuth, the polar diagram in a cut taken 
normally to the dipole axis is a circle. The gain function of the dipole 
[Eq. (139)] is 

G(e,<t>) - | sin2 6, (160) 

and the absolute gain is 

Gm m (#) * 1.76 db. (151) 
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The impedance presented by the dipole to its feed line consists of a 
resistive component and a reactive component. We shall here consider 
only the resistive component, which corresponds to the power dissi¬ 
pated by the dipole. There are two elements in the power dissipation: (1) 
ohmic losses in the conductors of the dipole structure and (2) power 
radiated to space. In the idealized case, to which we restrict ourselves, 
the dipole consists of perfectly conducting elements. There is then only 
radiation loss to consider; the resistive component of the impedance is its 
radiation resistance. Let P be the average power radiated per unit time. 
The radiation resistance Rr is defined by 

P = Vh\*Rr, (152) 

where I0 is the maximum value of the current. The radiated power P 
is computed by integrating the Poynting vector [Eq. (149)] over a com¬ 
plete sphere. By use of Eqs. (147) and (152) the radiation resistance is 
then found to be 

z ' 

3*14. The Magnetic Dipole. —The magnetic counterpart of the electric 
dipole antenna is a current loop with radius 
small compared with the wavelength (Fig. 
3*10). Such a current loop is equivalent to a 
magnetic dipole along the axis normal to the 
plane of the loop; this axis has been taken to 
be the ?-axis in the figure. If I is the current 
in the loop and A is a vector normal to the 
loop, with magnitude equal to its area, the 
magnetic moment at any instant is 

_ 7 A /’l *1G‘ 3 “Magnetic di- 
ni = iA. (154) pole antenna: current loop and 

equivalent magnetic dipole. 

If /o is the amplitude of the time-periodic cur¬ 
rent and mo the corresponding amplitude of the magnetic moment, the 
magnitude of the magnetic moment is given by 

m — IoAe1’** = moe*1’*. (155) 

The direction of the dipole in relation to the direction of the current is 
shown in Fig. 3-10. 

The field of the magnetic dipole, like that of the electric dipole, is 
most conveniently described in spherical coordinates. The field com¬ 
ponents are 

E* 
k* 
4* (ft) ~~ far*) s*n ® (156a) 
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Hr = ^ coed m0e’<at~iT',t (1666) 

H> - h (p + $ “ 7)sin® (156f) 

As with the electric dipole, the field is independent of the azimuth 
angle <£. Comparison of Eqs. (156) with the electric dipole field [Eqs. 
(148)1 will show that the roles of E and H are interchanged. With minor 
revisions required by this interchange, the discussion of the electric 
dipole as a directive point source can be carried over to the magnetic 
dipole. The power patterns are identical, and the absolute gain of the 
magnetic dipole, like that of the electric dipole, is 1.76 db. The radiation 
resistance of the loop is found to be 

The reader should note that the far-zone fields of the electric and 
magnetic dipoles show the general properties mentioned in Sec. 311. 
In particular, he should note that in the far zone (and there only) 

H « Q"(UE); (158) 

E and H are mutually perpendicular and lie in a plane transverse to the 
direction of propagation. 

3*16. The Far-zone Fields of Line- 
current Distributions.—We shall next 
compute the far-zone fields due to a time- 
periodic current in a thin straight wire 
extending along the z-axis from z = — Z/2 
to z = +1/2, that is, along the polar axis 
of the r, 9, <f> coordinate system. We 
shall allow the length of the wire to be 
comparable to a wavelength or even equal 
to a number of wavelengths. The phase 
differences between the currents at sepa¬ 
rated points on the wire will then be sig¬ 
nificant, and we shall need to consider the 

current to be a function of position along the wire: 

I * I(z)e’«% (159) 

Since the properties of the field in the far zone are those of a plane 
wave, it will be sufficient to calculate the electric field intensity. In 
Eqs. (134) we can first of all discard the magnetic-current density JTO* 

z 

Fig. 3*11.—Far-aone field of a line- 
current distribution. 
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We note further that J • i* is zero; consequently, 

97 

E+ - 0. (160) 

By Eq. (133), with x = y = 0, g • Ri is simply z cos $, and the volume 
integral for E$ degenerates into a line integral: 

ri/2 

Ee = - e~'kR j I(z)iz • i*c***“-® dz, (161a) 

or 

E* = + ;Ar* / I(z) smd eiUtxm9 dz 
4*/? J —1/2 

= &lie~,kKm- (1616) 

(As usual, the time factor eJ(at is understood implicitly.) 
Again, because of the axial symmetry of the radiator, the field is 

independent of the azimuth angle <£. As with an electric dipole, the 
electric-field vector lies in the meridian plane; the magnetic-field vector 
is at right angles to this, parallel to i^,. The function F(0), known as the 
‘‘form factor” of the field pattern, will in general be complex; the equi- 
phase surfaces are not spheres of constant R. 

The integral expression in Eq. (1616) admits of an interesting inter¬ 
pretation. On comparing the integrand with the far field of an electric 
dipole [Eq. (148)] it will be noted that the integral can be interpreted 
as a sum of the fields of a distribution of dipoles along the wire, the dipole 
moment dp associated with the element of conductor dz at the point z 
(Fig. 3*11) being given by 

dp = / (z) dz iz. (162) 

In superposing the component fields at the field point one must, of course, 
take account of the phase differences between the contributions from 
different dipole elements, due to the differences in path length to the 
field point. If A is the path difference between two elements, the phase 
difference is 2ttA/X = kA. Taking the origin as a reference point for 
path length, the path difference corresponding to a point z on the wire 
is A(z) = z cos 6; hence the phase factor e*hzeo*d in the integrand. It will 
be noted that Eq. (162) is essentially the relation between the current 
and dipole moment set down in Eq. (147). 

The precise form of the current function I(z) can be controlled by 
changing the point at which the driving voltage is applied to the wire 
and the way in which the wire is terminated. We shall now consider 
the case in which the wire is driven at the center, for example, by a 
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parallel-wire line feeding across a small gap at the origin, and there is 
no load at the ends of the wire. In this case the current is necessarily 
zero at the ends of the wire; its distribution along the wire can always 
be expressed as a sum of standing waves, each of which vanishes at the 
ends. Such standing waves have the form 

Tm{z) == h(m) cos > m = 1, 3, 5, 

Im{z) = Io(m) sin *-JZ, m = 2, 4, 6, 

where /o(m) is the value of the current at a current antinode. In general 
the current will consist of a superposition of standing waves. It will, 
however, consist of a single standing wave if / = m\/2; this is the case 
which we shall treat. Substituting the corresponding I(z) into Eq. (1616), 
one finds with little difficulty 

(163) 

Et 

E$ 

-*<s) 
h Io(m) bin 

2rR 

mir 

-jkR 

(mir _\ 
-g- cos 6 J 

sin $ 
m = 1,3, 5, 

2 Io(m) cos 

2 irR 

mr (mr a\ 
2 cos 6 j 
2 

sin 6 
m = 2, 4, 

, (164«) 

. (1646) 

The term “form factor” is here applied to the terms in brackets. The 
surfaces of constant R are equiphase surfaces; the far-zone field of a 
standing-wave current is that of a true point source at the center of the 
current distribution. The field intensity in the equatorial plane 6 = tt/2 
is zero when m is an even integer because the current distribution is 
antisymmetrical with respect to the origin; the contributions to the field 
from current elements at +z and — z are 180° out of phase at points in the 
equatorial plane and there annul each other. 

3*16. The “Half-wave Dipole.”—The most important line-current 
distribution in microwave antenna theory is that with l = X/2. This is 
usually called the “half-wave dipole”—a misnomer due, perhaps, to its 
diminutive structure at microwave frequencies and here retained because 
of its convenience. On setting m = 1 in Eq. (164a) we obtain the field 
pattern of this radiator: 

(165) 
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The corresponding power pattern is 

-(f)” 
R 
8tt2 

COS (leos(?) 
sin 0 

(166) 

The pattern differs only slightly from that of the electric dipole; it is 
uniform in azimuth and has its single maximum in the equatorial plane. 

0° 20° 40° 50° 60° 
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90° 

100° 

110® 

180® 160® 140® 130® 120® 

(6) 
Fig. 3-12.—Tho half-wave dipole: (o) current distribution along the wire; (6) meridional 

polar diagram compared with that of the electric dipole: — - dipole. —- infinitesimal 

dipole. 

Figure 3*12 shows the meridional polar diagram in comparison with that 
of the dipole. The gain of the half-wave dipole is 

J /(z)=J0cos(^~) 

(a) 

Gm = (1.G5) - 2.17 db. (167) 

The slight increase in directivity over that of the electric dipole arises 
from the fact that at points off the equatorial plane there is partial 
destructive interference between contributions from different portions 
of the wire, which lie at different distances from the point of observation; 
this leaves the radiation in the equatorial plane relatively stronger. 

3® 17. Superposition of Fields.—We shall often have occasion to deal 
with sources that consist of a number of separate current distributions. 
As long as the total system is confined to a finite region of space—the 
only practical case—this problem is in principle covered adequately by 
the general theory of Secs. 3*9 to 311. It will, however, be useful to 
reconsider it from the point of view of the superposition principle stated 
in Sec. 3*2. The total field is the sum of the component fields due to 
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each component current system. We shall confine our attention to the 
far-zone fields, existing at field points far removed from every source in 
the total system. 

The notation to be employed is illustrated in Fig. 3*13. We choose 
an origin 0 within the neighborhood of the sources; a primary system 
of rectangular coordinates x, y, and z; and an associated spherical system 
r, 0, and <f>. The distance from the origin to the field point will, as before, 
be It; Ro is a unit vector in that direction. In connection with any of the 
component radiating systems, say the zth, we use a secondary coordinate 

AT 

X 

Fig. 3*13.—Superposition of fields. 

system, with axes parallel to those of the primary system and origin 0, 
within that source distribution at the vector position R, with respect to 
0. The polar coordinates of the field point P in this secondary coordi¬ 
nate system will be denoted by r,-, 6i, fa. 

As in the general discussion of far-zone fields, we may consider all 
the OJP to be parallel to OP and all the 0„ fa to be equal to 6 and <t> respec¬ 
tively. Furthermore, the field due to the ith radiating system can be 
expressed in terms of an equivalent quasi-point source at 0,. That is, 
the component fields are, by Eqs. (134), 

e~ikr‘ jY> [j* • *• + J»* • U] e***' dv 

- - (168a) 
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and 

- Z“ <*• /,. [*•*•- CTj- • **]* 
= (1686) 

The total field is obtained by summing the component fields. We 
note, however, as in the discussion in Sec. 311, that we can replace r~l by 
R~\ with an error of the order of R~2; in the phase factors we can simi¬ 
larly write 

U = R — Ro • R,. 

The total field is, therefore, given by 

(169) 

II sq 
ix

r
 

II <*> - £5 e-*"M W, (170a) 

i 
where 

mw = ^ Fh(6,<l>)eJkRo'Rt, 
f 

(1706) 

i 
and 

E+ = ^ E= -g£e--MW, (171a) 

X 
where 

mw - y ' F2t(8,<t>)c>kR<"R'. (1716) 
Lt 

The space factors ffi and ft* are complex, and the discussion of polariza¬ 
tion in Sec. 3-12 applies without change. 

The problem is thus reduced to the superposition of quasi-point- 
source fields arising from sources Oi and described by the space factors Fu 
and F2t. The composition of the over-all space factors £Fi and in 
terms of these and the phase differences arising from the relative positions 
of the sources is a procedure useful in many other fields—for example, 
the theory of X-ray diffraction. 

3*18. The Double-dipole System.—The radiation patterns of com¬ 
pound systems are usually more directive than the patterns of the 
component systems; destructive interference between the fields of the com¬ 
ponent systems takes place in certain directions, constructive interference 
in others, with the consequence that the total power density changes 
more rapidly with angle and reaches more extreme values than does the 
power density for any component system. 

An important compound system with wide application to microwave 
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antennas is obtained by superposing two half-wave dipoles. We shall 
here restrict ourselves to the case in which the dipole axes are parallel 
and the currents are of equal strength, though of arbitrary relative phase. 
We consider, then, two half-wave dipoles with centers at (0, —a/2, 0) 
and (0, a/2, 0) and axes parallel to the z-axis, carrying currents of ampli¬ 
tudes /q and 1 (Fig- 3*14). Since neither source gives rise to an 

z 

^-component in the far field, the total field can have no such component. 
The space factors of the dipoles are alike, except for the current phase 
term e~3+. Combining Eqs. (165) and (1706), we find the resultant field: 

he~’kR 
2 tR 

cos 

♦ 

On making the substitutions 

sin 0 
JgjA:Ro‘Rt 0j(fcRo*R2—tfOj. (172) 

_ Q . 
R0 • Ri = — g sin ^ sin 

Ro • R2 — ^ sin 0 sin </>, 

(icose) 
we obtain finally 

E, = j 
*R 

(173) 

cos 

sin 6 sin 0 sin $ — (174) 

This is a dipole field modified by the presence of the last factor. The 
spheres of constant R are the equiphase surfaces; at large R the field is 
that of a directive point source at the origin midway between the dipoles. 
The pattern is symmetrical in <f> about <t> = */2 and in 0 about 0 *» t/2; 
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that is, it is symmetrical with respect to the 2/z-plane, which contains the 
dipoles, and the a^-plane, to which they are perpendicular. These 
planes of symmetry are known, respectively, as the principal 2?-plane 
and the principal //-plane of the radiation pattern. Since the pattern 
is a function of both $ and <£, a three-dimensional polar diagram is required 

490° +80° +70° +60° 

0.8 

0.6 

0.4 

0.2 

V 

.-90° -70° -50° -40° -30° 
//=plane 

+70° +80° +90° 

-40° -50° -70° -90° 
£»plane 

Fig. 3*15.—E- and //-plane polar diagrams in the power pattern of the double-dipole 
system. 

for a complete presentation of its properties. However, in practice it is 
usually sufficient to consider the principal E- and //-plane cuts. 

The details of the pattern depend on the precise values of a and 
We shall here consider one special case, in which a — X/4, and = x/2. 
The form factor is then (except for constant terms) 

cosf~cos0y r -i 

5(6,<t>) = -- OOS [i l1 “ e si*1 (175) 

The principal E- and //-plane cuts of the power pattern (proportional to 
the square of the form factor) are shown in Fig. 3-15. Only a small 
fraction of the power is radiated in the hemisphere to the left of the 
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xz-plane; no power is radiated in the negative ^-direction; maximum 
power in the positive ^/-direction. In the negative ^-direction the radia¬ 
tion from the dipole at y — +a/2 must travel a distance greater by a 
quarter wavelength than the radiation from y — —a/2 with resulting 
phase retardation of 90°. Since the current in the first dipole is 90° 
behind that in the other dipole, the fields from the two dipoles are 180° 
out of phase and annul each other. In the positive ^-direction, the phase 
retardation in the field from the dipole at y = —a/ 2, due to the additional 
path length traversed, is just compensated by the 90° phase lead ot the 
radiating current; the fields from the two dipoles are in phase and rein¬ 
force each other. Since each dipole has maximum field intensity in the 
£2/-plane, this has the consequence that the maximum in the total field 
intensity lies in the +2/-direction. 

As a measure of the directivity of the power pattern, we may take the 
half- and tenth-power widths of the polar diagram in each ot the principal 
planes. These are designated by ©* and W*(ro) tor the £-plane half- and 
tenth-power widths respectively; corresponding notation applies in the 
//-plane. For the system under consideration 

0, = 70°, ©* = 180°, } 

0js(tcr) = 130°, ©//(tV) — 252°. ) 

3*19. Regular Space Arrays.—The double-dipole system is the sim¬ 
plest possible example of an important class of directive systems: regular 
space arrays of similar radiators. Let us consider a system of current 
distributions, identical in structure but perhaps differing from one another 
in over-all amplitude and phase. The radiating units need not be simple 
dipoles; they may be double-dipole systems or more complex current 
systems, but all must have the same orientation in space and be described 
by similar space factors Fi($,<l>) and F2(0,</>), with respect to similarly 
situated origins 0%. Now let these radiating units and their origins Ot 
be arranged into a space array at the intersection points of a three- 
dimensional rectangular lattice (see Fig. 316). Let ai, a2, and a8 be 
the basis vectors of the lattice in the x-, yand ^-directions, respectively, 
and let the extents of the lattice in these directions be NiUi, AVis, and 
Nzai. Choosing one of the corner elements of this lattice as a reference 
point, we can specify the position of an arbitrary lattice point Ot by the 
relative-position vector 

R< = ai + n2a2 + n8a3, (177) 

where nx, n*, and n8 are integers less than or equal to Ni, AT2, and N$, 
respectively. We shall let the amplitude of the ith system be An,nm, 
and shall admit the possibility of a progressive phase delay in each of 
the three basis directions of the lattice: the phase of the tth radiating 
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system, relative to the reference system, shall be 

105 

Iprun n i = n 1^1 + n2\p2 + ^3^3. (178) 

We need consider only the space factors £1 and $2 defined in Eqs. (1706) 
and (1716). The space factors Fh and F& are independent of i except for 

the constant multipliers Anininie~^n^n*. Accordingly, the space factors 
for the system as a whole are given by 

fHW) = F i(e,<t>)A{e,<t>), 
= F,(8,4>) A(6,<f>),\ 

(179) 

where 

N1 N> 

. A (£,</>) = A nifisna exp ^ n,(kRn -a, — >p,) J. (180) 

ni*»0 r?2 ~0 r?s = 0 

Here 

R0 • ai = a,i sin 0 cos <t> = <iiUi, 
Ro • = Os sin 0 sin <j> = 02M2, 
R0 • a3 = os cos 0 = o3os- 

(181a) 
(1816) 
(181c) 

The total space factor is thus a product of the space factor for a radiating 
unit by a lattice factor. The lattice factor, it will be noted, is itself the 
space factor of a lattice array of isotropic radiators with relative ampli¬ 
tudes Anminx and relative phases 

If the radiating units all have the same amplitude, say equal to unity, 
the sums in Eq. (180) can be evaluated. The term on the right becomes 
a product of three factors: 

A.(0,4>) = AiAjAj, (182) 
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where 
Nt 

-X At = > eln^katU'-+t) 

,k 

This geometric series is easily summed. One finds 

. Nt + 1 

A, = 
an - ~~~~ (ka,u, — \f/l) 

sin vikchUt — \p,) pimiaiu —fa) 

The power pattern of the space array is proportional to 

N2 + N2 

and is consequently given by 

P(6,<t>) = Po(0,<j>)\/i(0,<t>)\2 

(183) 

(184) 

(185) 

except for the multiplicative constants. The second factor is the product 
of three factors, 

(f - 1, 2, 3), (186) 

each of the form sin Nx/sin x. Such a function has principal maxima 
at x — far, h being an integer; if N is large, the maxima are very sharp, 
the function being only slightly different from zero between successive 
peaks. The composite lattice factor will then have its principal maxima 
only for those values of ux for which the three factors simultaneously 
achieve their maximum values, that is, when 

Ui = sin 0 cos <t> = ( 
,hl + ai 

(187 a) 

u% = sin 0 sin <£ = | 
' a% 

(187 b) 

u% = cos 6 = | 
+U) f az 

(187c) 

h\, fa, fa being positive or negative integers. These conditions cannot 
be satisfied simultaneously by any choice of 6 and <t> for arbitrarily chosen 
h\, hi, hz; the possibility of simultaneously satisfying the three conditions 
is determined by the values of the phases & and the lattice dimensions 
a%/h. Except when Po(0,<£) has a zero in direction 6, <f> determined by 
the above conditions, the lattice space factor of a very large lattice deter¬ 
mines, essentially completely, the direction of the principal maxima in the 
total radiation pattern. 



CHAPTER 4 

WAVEFRONTS AND RAYS 

By S. Silver 

The preceding chapter dealt with radiation fields in their direct rela¬ 
tion to the sources. It was found that the field represents a flow of 
energy outward from the region of the sources; also it was demonstrated 
separately that the energy flow in a time-varying field is a wave phe¬ 
nomenon. We now turn our attention to the study of wave propagation 
and the associated energy flow, without direct reference to the sources. 
Several simple waveforms have already been discussed: plane, cylin¬ 
drical, and spherical waves. In each case the wave was described by a 
family of equiphase surfaces or wavefronts, and the propagation of the 
wave was visualized as a progression of each wavefront into a contiguous 
one; furthermore, the energy flow at every point was in a direction normal 
to the wavefront. The main subject of this chapter is the extension of 
these ideas to general waveforms. 

4*1. The Huygens-Green Formula for the Electromagnetic Field.— 
We have now to consider the following problem: Given the values of the 
electric and magnetic field vectors 
over an equiphase surface, how can 
we determine the field vectors at a 
specified field point? 

The solution to this problem is, 
in fact, contained in the general 
integral of the field equations ob¬ 
tained in Sec. 3-8. Let the fields be 
specified over an equiphase surface S 
(Fig. 4-1) which encloses all sources 
of the field, and let P be the field point at which the vectors E and H are 
to be determined. We now apply the general relations of Eqs. (3*108) 
and (3*109) to the region bounded by S and the sphere at infinity. Since 
the sources of the field lie outside this region, the volume integrals vanish 
and we have 

Ep *= x H)^ + (a x E) x -f (n • E) V^] dS (la) 

107 

Fig. 4*1.—On the Huygens-Green relation. 
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and 

HP 
1_ 

4T 
[^(n x E)^ + (n x H) x + (n • H) V\[/] dS, (lb) 

where \p = e~Jkr/n and n is the unit vector normal to S indicated in Fig. 
4*1. These equations provide the solution of the stated problem. 

Equations (1) may be regarded as an analytical formulation of the 
Huygem-Frcsnel principle, which serves generally as a basis for the study 
of wave propagation. The Huygens-Fresnel principle states that each 
point on a given wavefront can be regarded as a secondary source which 
gives rise to a spherical wavelet; the wave at a field point is to be obtained 
by superposition of these elementary wavelets, with due regard to their 
phase differences when they reach the point in question. Equations (1) 
specify the nature of the wavelets arising at the various points on the 
equiphase surface;1 as was pointed out in connection with Eq. (3*111), 
the sources of the wavelets can be regarded as surface layers of electric 
and magnetic currents and charges. 

For the further purposes of this chapter it is desirable to write the 
surface integrals in somewhat different form. By means of a rather 
laborious calculation they can be transformed into 

and 

respectively.2 Relations of the same form must, of course, hold for the 

1 A comprehensive treatment of Huygens’ principle and its Application to scalar 
and vector waves has been given by Baker and Oopson, The Mathematical Theory of 
Huygens’ Principle, Oxford, New York, 1939. It should be noted that the integral 
expression for the fields, and hence the interpretation of the sources, is not unique; 
it is possible to add to Eqs. (1) any surface integral that is equal to zero. This is 
actually done in making the transformation from Eqs. (1) to Eqs. (2) in this chapter. 

2 This transformation can be effected only if the surface S is completely closed; 
otherwise additional terms appear. The results can be obtained by a simpler and for 
our purposes more useful procedure than by direct transformation of Eqs. (1). It was 
shown in Sec. 3*6 that in a source-free region each rectangular component of a field 
vector satisfies the scalar Helmholtz equation 

V2u + k*u — 0. 

The integration of this equation can be performed by means of Green's theorem in a 
manner analogous to that by which we integrated the field equations. The scalar 
Green's theorem states that given two continuous scalar functions F and G having 
continuous first and second derivatives in a region V such as was illustrated in Fig. 34, 
then 
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components of E and H in any rectangular coordinate system. We can 
therefore develop most of our considerations in terms of the scalar 
relation 

where u will stand for any one of the rectangular components of E or H. 
Equation (3) can be regarded as the mathematical expression of 

Huygens’ principle lor a scalar wave; the resultant wave amplitude at P 
is again expressed as a sum of contributions for the elements of surface 
dS. The first part of the integral is a summation of terms of the form 
(e~jkT/r)(du/dn) dS—a summation of the amplitudes of isotropic spherical 
wavelets arising from sources of strength proportional to (du/dn) dS on 
the surface elements dS. The second part of the integral can be inter¬ 
preted similarly. We note that 

= t C~r“)008 (n’r) “ - (jk +1) e-r008 <“*>’ 

because the field point P is the origin in the integral formulation. The 
second part of the integral is thus a summation of anisotropic wavelets 
from sources of strength proportional to u dS on the surface elements dS. 
The directivity of the sources is expressed by the factor cos (n,r); each 
wavelet includes a term for which the amplitude falls off with r~2, like 
the induction field of a dipole source. Substituting this result into Eq. 
(3), we obtain 

*' " ■ 5 /r? [“ (* + r ) c“ (“'r) + s] iS- (»> 
• Despite the arbitrary feature of the integral formulations pointed out 

in the footnote on page 108, we shall consider the Huygens-Green rela¬ 
tions [Eqs. (1) and (5)] as the analytical formulations of the Huygens- 
Fresnel principle for electromagnetic and scalar waves respectively. It 

s(pg-0°£)*S. 

The co vention as to the direction of n is the same as shown in the figure. Let F be 
the spherical wave function ^ «* e~ikr/r and G the function u satisfying the Helmholtz 
equation for the same value of k. The field point P is again surrounded by a sphere 2, 
the radius of which later is allowed to approach zero. In the region bounded by 
Si . . . Sn and 2 the volume integral vanishes. The details of the limiting process 
that is then applied to 2 follow very closely those for the vector case; the result gives 
the value of u at the field point P, namely, 
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should be emphasized that according to the Huygens-Fresnel principle, 
there is no one-to-one correspondence between the field at the point P 
and the field at any point on the wave surface; the field at P is an inte¬ 
grated effect of contributions from every point on the wave surface. 

4*2. Geometrical Optics: Wavefronts and Rays.— The Huygens- 
Fresnel principle, as expressed by the Green’s theorem integrals, gives a 
rigorous solution of the wave equation. It is frequently convenient, 
however, to approach the subject of wave propagation from the less 
rigorous point of view of geometrical optics, in which attention is focused 
on the successive positions of equiphase surfaces, or wavefronts, and an 

associated system of rays. 
Let the wavefront at time /<> 

be the surface L(x,y,z) = Lq ot I ig 
4-2 and the new wavefront attei 
passage of a very short time 8t be 
the surface L(x,y,z) = L0 + &L 
Geometrical optics is then con¬ 
cerned not only with the form of 
these surfaces but also with a 
point-to-point transformation 
from one wravefront into the suc¬ 
ceeding one. This is, of course, in 
fundamental contrast to the point 
of view of the Huygens-Fresnel 
principle.1 The point-to-point 
correlation of the wavefronts is 

established by the “rays,” a family of curves having at each point the 
direction of the energy flow in the field. In the case of electromagnetic 
waves, a ray can be traced out by proceeding at each point in the direc¬ 
tion of the Poynting vector at that point. The rays are nearly normal to 
the wavefront—exactly normal in the wave systems to be discussed in this 
volume—and pass through corresponding points in successive wavefronts. 

In an arbitrary medium the wave field is characterized by a ray 
velocity and a wave velocity at every point. The ray velocity is the 
velocity of energy propagation; it is represented at each point by a vector 
that is tangent to the ray passing through that point. The wave velocity, 
on the other hand, is always normal to the wavefront; it is the rate of 
displacement of the wavefront in the direction normal to that surface. 
Thus if v(zyy,z) is the wave velocity at a point (x,y,z) of the first wave- 

1 Treatments of geometrical optics as a self-contained theory are given by J. L, 
Synge, Geometrical Optic8f Cambridge, London, 1937, and by Ph. Frank and V. Miseg, 
BiffwmHalrylm'chunffen der Physik, VoL II, Chap. 1, reprinted by Mary S. Rosenberg, 
New York, 1943. 

Fig. 4*2.—On the propagation of a wavefront 
m geometrical optics 
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front in Fig. 4*2, the vector v M will extend from that point to the cor¬ 
responding point on the second wavefront. The case illustrated is that 
of an inhomogeneous medium in which v(x,y,z) is a function of position. 

In an anisotropic medium the ray velocity and wave velocity differ, 
m general, both in magnitude and direction; in isotropic media the 
ray velocity and wave velocity are identical We shall here restrict our 
attention to isotropic but possibly inhomogeneous media; more gen¬ 
eral discussions will be found in the references of the footnote on page 110. 
As a result of the identity of the ray velocity and wave velocity, the rays 
in an isotropic medium make up a family of curves orthogonal to the 
family of wavefronts; the energy flow at any point is normal to the wave- 
front passing through that point. 

The form of the wavefronts and rays can be determined as soon as the 
function L(x,y,z) is given This function is not uniquely determined by 
the foregoing remarks. We shall, in addition, require that it be chosen so 
that the wavefront L{x,y,z) = JU shall be one of constant phase (o>/c)L0 
relative to the phase at some chosen point The function L(x,y,z) thus 
defined is of basic importance in the analytic theory of geometrical optics. 
It satisfies a differential equation which we shall now derive. 

The phase increment between the two successive surfaces of Fig. 4*2 
is (co/c) 5L. Moreover, since the wave proceeds from one surface to the 
next in time 6t while the phase at any fixed position changes at the rate 
g>, this phase difference must be ao8t. Finally if 8sn is the distance between 
the surfaces at (x,y,z) and v is the wave velocity at that point, we have 

- OJj = 03 01 = 0) -- (6) 
C V 

However, we must also have 

8L = \TL\ 8sn. (7) 
It follows that 

|VL| = = n, (8) 

where n is the index of refraction—in general a function of position in the 
medium. The function L must therefore satisfy the differential equation 

w - (#)-+(I)’+(§)’=**• <»> 
4-8. Curvature of the Rays in an Inhomogeneous Medium.—In a 

homogeneous medium the rays are straight lines; in an inhomogeneous 
medium they have a curvature that we shall now compute. Let 8 be a 
unit vector in the direction of the ray at a chosen point. This is normal 
to the wavefront and must have the direction of VL; so by Eq. (8) we 
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have then 
VL 

s * — (10) 

Let N be a unit vector in the direction of the radius of curvature of the 
ray at the same point and p the radius of curvature; the vector curvature 
of the ray is then N/p. This curvature, however, is also given by ds/ds, 
where $ is distance measured along the ray. By the vector identity 

-T- = (s • V)s = -sx (V x s) (11) 
as 

we have then 

- = — s x (V x s). (12) 
P 

On taking the scalar product with N, Eq. (12) becomes 

- = — N . (s x V x s) = -(Nxs)'(Vxs). 
P 

(13) 

Using Eq. (10) to compute V x s, and replacing V 

we obtain finally 

by — (l/n)V(ln n) 

- = N • V(ln n). (14) 

Since the radius of curvature is an essentially positive quantity, it 
follows from Eq. (14) that the rate of change of the refractive index in 
the direction of the radius of curvature is positive; that is, the ray bends 
toward the region of higher index of refraction. In a homogeneous 
medium where n is independent of position, the right-hand side of Eq. 
(14) is zero, the radius of curvature is infinite, and the rays are straight 
lines. From Eq. (12) it follows also that in a homogeneous medium the 
vector field of the rays satisfies the condition 

V x s = 0. (15) 

This is a sufficient condition for the existence of a family of surfaces 
orthogonal to the field of vectors s. 

4.4. Energy Flow in Geometrical Optics.—Consideration, of the rays 
leads to a simple hydrodynamic picture of the energy flow. It was 
pointed out previously that the rays are lines of flow of energy. Let us 
consider the two wave surfaces L\ and L% of Fig. 4-3 and a tube of rays 
that cuts out elements dA i and dA% on the respective surfaces. No power 
will flow across the sides of the tube; the flow across any section normal to 
the tubes will be constant. If S is the rate of flow per unit area, the con¬ 
dition of constant power flow through the tube is 

5icLii =* S% dA*. (16) 
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In the case of electromagnetic waves the quantity S is the magnitude of 
the Poynting vector; we shall assume that as in the case of plane and 
cylindrical waves (Sec. 3*7) 

If the permeability m is independent of position, the relation between the 
electric amplitudes at dA\ and dA* is 

^\El\2dAl - e2»\E2\*dA2. (18) 

In terms of the refractive index n = (c/co) ^ we have 

Ui\Ei\2dAi = n^E^dA*. (19) 

Unlike the Huygens-Fresnel principle, geometrical optics sets up a one- 
to-one correspondence between the amplitude at one field point and the 
amplitude at another. 

Fig. 4*3.-—Energy relations in geometric optics: (a) tube of rays in an inhomogeneous 
medium; (b) relations between wavefronts in a homogeneous medium. 

It will be of interest to apply Eq. (19) to the case of a homogeneous 
medium in which the rays consist of straight lines. The segments of 
rays between the wavefronts L\ and Lt, as shown in Fig. 4*36, will have 
equal lengths p. Let the ray through the point A on surface L\ be the 
3-axis, and let the xz- and 2/3-planes coincide with the principal planes 
of Li at A. A ray through an adjacent point B lying in L\and the xz-plane 
will intersect the ray through A at the point 0X, at a distance R\ which is 
one of the principal radii of curvature of Li at point A; a ray through an 
adjacent point C in the 2/3-plane will similarly intersect the ray through 
A at the point 0Vf at a distance R2 which is the second principal radius 
of curvature of Za at A. The radii of'curvature will be considered to be 
positive if the centers of curvature lie on the negative 3-axis, as shown. 
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The point A' on the surface L2 lies on the ray through A. It can be 
shown that the principal planes of L% at A' are coincident with those of 
L\) through A' we can pass coordinate axes xyr which correspond to the 
axes of. x, y, respectively. It is obvious that the principal radii of 
curvature of the surface Li at the point A' are R, + p and R2 + V- 

Let us now* consider an element of area dA 1 which includes A and is 
bounded by the curve T. The rays through the curve intersect Li in 
the curve T'y which bounds an element of area dA% around the point A 
These areas are given by 

dA, = ^ (xdy - ydx), 

dAi = (.r’dy' - y'dx’). 
(20) 

It is evident from the figure that the coordinates ot corresponding points 
(x,y) and (xf,yf), near A and A' respectively, are thus related: 

y' = 

1^1+j»i 
R1 

\K* + p\ 
/?2 

(21 a) 

(216) 

Substitution of these relations into Eq (20) gives the relation between 
the cross sections of the tube of rays at L, and Li\ 

dAi 
(p ~h R\)(p + R2I dA,. (22) 

Inserting this result into Eq. (19) and recalling that in the present case 
n1 = 712, we obtain the relation 

m 
R1R2 

Ri + p)(R 2 + p) 
(23) 

When i?i and Ri are both finite and the surface L% is so far from L\ that 
p f2i and Rs, this reduces to 

\E*\ (24) 

This last relation will be of use to us in the discussion of scattering of 
radiation by curved surfaces. 

4*5. Geometrical Optics as a Zero-wavelength Limit—We shall now 
investigate the relation between geometrical optics and the held equa¬ 
tions,1 taking up in the succeeding section its connection with the 

* The subject is treated from the point of view of the scalar wave equation by P. 
Debye, Polar Molecules> Chap. 8, reprint by Dover Publications, New York, 1945; 
also in the article by A. Sommerfeld in Ph. Frank and V. Mises, Differ entudgleichungen 
der Physik, Chap. 20, reprint by Mary Rosenberg, New York, 1943. 
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Huygens-Fresnel principle; the analysis will be confined to homogeneous 
media. 

A careful review of the ideas of the preceding sections will make it 
evident that geometrical optics is based on the idea that a wavefront 
behaves locally like a plane wave. The corresponding solution to the 
scalar wave equation is 

u = A{xiy,z)e^t~'M^x'y^)\ (25) 

where fc0 = 27r/X0, A(x,y,z) is the amplitude of the wave (usually a func¬ 
tion of position) and L(x,y,z) is the characteristic function defining sur¬ 
faces of equal phase. We are here concerned with a linearly polarized 
electromagnetic field and must consider the vector counterparts of this 
solution. Let us then investigate the possibility of satisfying the field 
equations by electric- and magetic-held vectors having the form 

E = a(x ,yjZ)e-JkoL(x'1'’*\ (26 a) 
H = §(x,y,z)e->k"l^V’*\ (266) 

The amplitude vectors a and (5 may be complex, but their phases in that 
case must be independent of position. 

On substituting these expressions into the homogeneous forms of the 
held equations [Eqs. (3*32)], it will be found that the amplitude and 
phase functions must satisfy the relations 

8 ~ % W x «> - i * •). <«*> 

(276) 

On eliminating (5 from Eq (276) by means of Eq (27a) and replacing 
A'o by «(Mo€o)li it will be found that a must satisfy the equation 

« = - ~5 * VD ~ «W] + W X (V x «) 

+ V x (VL x «)] + Jki [V x (V x a)]; (28) 

n is again the indent of refraction. Similarly, on eliminating a from Eq. 
(27a) we find that g must also satisfy Eq. (28). 

If VL and the derivatives of a and g are finite, the last two terms on 
the right are of the orders 1/fco and 1 /k\, ftspeetively, as compared with 
the first. As X goes to zero, ko approaches infinity and the last two terms 
approach zero. For Eq. (28) and the analogous equation in g to be 
satisfied under these conditions we must have 

a • VL — 0, 
g • VL = 0, 

|V£j2 * n2. 

(29a) 
(296) 
(29c) 
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The last of these conditions is the differential equation for the charac¬ 
teristic function that was developed in Sec. 4*2. The first two conditions 
state that a and g must be transverse to VL; it follows that a and $ he 
in a plane transverse to the direction of propagation. Furthermore, 
Eq. (27a) can be written as 

e * 
i 

jk0n 
(V x a), (30) 

the second term being of order l/k0 compared with the first. In the 
limit X —> 0 the second term vanishes. Since VL/n is a unit vector in 
the direction of propagation, we see that in the limit X —» 0, (5 must be 
perpendicular to a as well as to the direction of propagation. It follows 
that the Poynting vector is normal to the wavefront and that its magni¬ 
tude is 

\s\ « Q) " M2, (31) 

to terms of the order of l/k0 
We have thus seen that the field vectors of geometrical optics [Eqs 

(26)] possess the properties which were shown m Sec. 311 to be possessed 
by the far-zone fields. In this region, at least, we may expect geometrical 
optics to serve as a reasonable approximation to the exact theory. 

It should be emphasized that the terms of order 1 /ko and l/k\ in 
Eqs. (28) and (30) may be considered negligible for short wavelengths 
only if the derivatives entering into these terms are finite. In the 
neighborhood of a geometrical focal point the function L varies rapidly 
and its derivatives assume large values; at the boundary of a geometrical 
shadow the amplitude varies rapidly. In these regions the geometrical- 
optics approximation fails, and phenomena are observed that are not 
covered by the simple theory of wavefronts and rays. 

4-6. The Huygens-Fresnel Principle and Geometrical Optics: The 
Far-zone Approximation.—It will be instructive to investigate the rela¬ 
tion between the Huygens-Fresnel principle and geometrical optics to 
see under what conditions the point-to-point amplitude relation [Eq. (23)] 
that was obtained in Sec. 4*4 on the basis of the geometrical-optics con¬ 
cept of the flow of energy in tubes of rays can be derived from the 
Huygens-Fresnel principle in the limit of zero wavelength. The discus¬ 
sion will be restricted again to homogeneous media. 

For our present purposes it is sufficient to consider any one scalar 
component of a field vector; we therefore take as our starting point the 
scalar integral formula [Eq. (5)]: 

ttp “ “ h JBe-f [u (jk + f) cos M + S] ^ (4‘5) 
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where the surface S encloses all the sources of the field. In view of the 
results obtained in the previous section we confine our attention to 
the field far from the sources; the present section is directed toward the 
development of an approximation to Eq. (5) suitable for equiphase sur¬ 
faces in this region. 

In the far zone the field is a quasi-point-source field (Sec 3-11); that 
is, the amplitude function takes the form 

u = p + 0 (32) 

where p, 6, <f> are the spherical coordinates of a point in the far zone with 
respect to an arbitrary origin in the neighborhood of the sources. If n 
is the unit normal to S directed out from the region containing the sources 
(Fig. 4*1) and 91, 0i, <j>i are unit vectors in the directions of increasing p, 
6 and <£, respectively, at a point on S, the normal derivative of u on this 
surface is 

= n • Vu -c 
By use of Eq. (32) we obtain 

du 
dn 

du , 1 du a . 1 du 
dp Q1 p dd 1 p sin 6 dcj>^ 

(33) 

Vu = -jku9l + * (-<>1 + f f^) + 0 (I). (34) 

In the far zone <>»X; consequently 

and 
Vu « —jku91, 

du 
dn 

—jku cos (n,pi), 

(35) 

(36) 

providing also that the variation of the amplitude in the $ and <f> direc¬ 
tions is small compared to that in the radial direction. The integral 
relation thus becomes 

1 / 6~~ikr I U 1 
Up ** iJP Jg ~r~ jjAiufcos (n,j»i) — cos (n,r)] — - cos (n,r) J dS. (37) 

Finally, if we consider only field points P such that r » X for all points 
on S, the last term in the integrand is negligible with respect to the first. 
We then have, as an approximation valid in the far zone, 

u/> ~ / u[cos (n,pO — cos (n,r)] dS, r»X. (38) 
*■ ^ 

In the limit X —*0 this equation can be applied with virtually no restric¬ 
tion as to the location of the field point P. 
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Equation (38) applies to any surface in the far-zone region that 
encloses the sources of the field. Let us now consider the surface S to 
be an equiphase surface and assume on the basis of the preceding section 
that the field can be expressed in the form of Eq. (25), 

u = A(x,yfz)e~ikoL{x'Vt9K (4-25) 
* 

It was seen that in the limit X —> 0 this leads to a solution of the field 
equations such that the Poynting vector is normal to the equiphase sur¬ 
face. On the other hand, in the investigation of the far-zone fields in 
Sec. 3*11 it was found that neglecting terms of order 1/p3 the Poynting 
vector is in the direction of pi independent of the choice of the origin in 
the neighborhood of the sources Consequently, if S is an equiphase sur¬ 
face, we have as an approximation valid for short wavelengths 

cos (n,pi) « 1. (39) 

The integral relation [Eq. (38)] in this case reduces to 

up « ^ ~ <*<>s (n,r)]€ dS. (40) 
** J s r 

It will be recognized that Eq. (39) is tantamount to assuming that the 
equiphase surfaces do not differ widely from spheres about the source 
distribution. Also in view of the condition associated with Eq. (35) 
that p X, the assumption is implied that the radii of curvature of the 
equiphase surfaces are large compared with the wavelength. 

A consideration of the normal derivative du/dn in terms of field 
expression of Eq. (25) shows an additional assumption, concerning the 
amplitude A(x,y,z), which underlies the use of the far-zone integral [Eq. 
(40)]. Taking Eq. (25), we have for the normal derivative of u on an 
equiphase surface 

s-(-* + is) <4» 
In obtaining this result use is made of Eq. (29c). Substituting Eq. (41) 
into Eq. (5) shows that we pass from the latter to Eq. (40) under the 
condition that 

JL <r<f — 
J T‘ 

(42) 

This is satisfied, of course, in the limit X —» 0 provided that (l/A)(dA/dn) 
is finite everywhere. In the practical case, where the wavelength is 
small but not equal to zero, the contribution of (l/A)(dA/dn) can be 
neglected to a good approximation if the fractional change in amplitude 
over a distance equal to the wavelength is small compared with unity. 
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4*7. The Principle of Stationary Phase.—Equation (40) still expresses 
the field at point P as a superposition of spherical wavelets arising from 
every point on the equiphase surface. The transition to the geometrical 
optics result of Sec. 4*4 is carried through on the basis of the principle of 
stationary phase which we shall discuss in this section. 

Let the surface S of Fig. 4*4 be the equiphase surface and P be the 
field point. There are at least two points on S at which the normal to 
the surface lies along the line passing through P. Let N be the nearest 
of such points to the latter, and let NP be the 2-axis of our coordinate 
system; the x- and y-axes are taken in the principal planes of curvature 

P(o, o, p) 

I'm. 4*4. -On the principle of stationary phase. 

of the surface at the point N. The surface is divided into segments Si 
and S2 by the curve T along which the tangent planes to the surface are 
parallel to the 2-axis. We shall assume that in each segment there is only 
one point at which the line of the normal passes through P. This condi¬ 
tion implies that P is not a focal point of the rays associated with the 
surface S. 

‘Denoting the distance NP by p, the integral of Eq. (40) can be 
rewritten as 

Jkp IIi M[l - cos (n£)] e_ihir _p) dx dy 
Sl+Sj r cos (iv) 

(43) 

The integral is a sum of vector elements and can be treated graphically 
by the customary procedures of vector addition. The magnitude of the 
vector element contributed by an arbitrary element of surface dS is 
(«/r)[l — cos (n,r)] dS, and the angle between it and the vector from the 
element of area at the point N is (2r/X)(r — p). Consider now the con¬ 
tribution from an arbitrary portion of the surface as a function of the 
wavelength. If the wavelength is large, the angle between vectors 
from adjacent surface elements is small; the vector diagram in this case 
takes the form of a gradual curve, as is illustrated in Fig. 4-5a, and we 
may in general expect a resultant vector u* significantly different from 
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zero. On the other hand, if the wavelength is small, the angle between 
adjacent elements is large and the vector diagram takes the form of a 
tightly wound curve as is shown in Fig. 4*56. In the latter case the result¬ 
ant vector ur may in general be expected to be virtually zero, the more 
so as X —► 0. Thus, as a result of the rapid variation in the phase of the 

integrand of Eq. (43), we have de¬ 
structive interference and virtually 
complete cancellation between the 
spherical wavelets from an arbitrary 
portion of the phase surface. 

The situation is different, how¬ 
ever, for those portions of the surface 
in the neighborhood of the point N 
on the segment Si and the correspond¬ 

ing point on $2. It is observed that the phase function 

y) = r — p = [x2 + y2 + (p — z)2]^ — p (44) 

is stationary in the neighborhood of these points; at these points 

(a) (b) 
Fig. 4*5.—The vector representation 

of the Huygenb-Fiesnel integral: (a) the 
long-wavelength case; (6) the short- 
wavelength case. 

H = H = o 
dx dy 

(45) 

Consequently, jn the neighborhood of these points the phase varies 
slowly, despite the short wavelength, and the vector diagrams represent¬ 
ing the contributions of the areas around these points take the form of 
Fig. 4-5a rather than that of Fig. 4-56. The stationary phase areas yield 
contributions to the integral [Eq. (43)] compared with which the con¬ 
tributions of other portions of the surface are negligible. We are thus 
led to the principle of stationary phase: For short wavelengths, the 
integral of Eq. (43) representing the effect of the whole surface S is 
negligibly different from the sum of the contributions of the areas about 
those points on S at which the phase has a stationary value. 

It will be observed further that at the stationary point on the seg¬ 
ment $2, cos (n,r) = 1 and that the cos (n,r) will not be very different 
from unity over the area in the neighborhood of the stationary point in 
view of our earlier assumptions (Sec. 4*6) as to the nature of the surface. 
The contribution from this area is again zero, since 1 — cos (n>r) vanishes, 
and we are left then solely with the contribution of the area around the 
point N. The amplitude of the integrand of Eq. (43) may be considered 
constant—equal to its value at the point N— over this area, and Eq. (43) 
then reduces to 

Up 

where is a small area around the point N. 

(46) 
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The equation of the surface in the neighborhood of N is 

(47) 

R\ and R2 being the principal radii of curvature. Inserting this into Eq. 
(44), we find that to second-order terms the phase function over the 
area is 

this is to be inserted into Eq. (46). We may now, however, reverse the 
application of the stationary phase principle and argue that the integral 
of Eq. (46) may be extended over the infinite (:r,2/)-domain with negligible 
error. We thus obtain 

with 

(49) 

(60) 

The integral of Eq. (49) can be transformed to Fresnel integrals, 

J e~3*e’d£ = V2 e~]\ 

with the final result1 

1 The argument may be applied in, general to integrals 

u //„ F(u,v)e~jk*(u.v) du fo 

over a region R in which F(u,v) has bounded variation in each variable. If (tto,t>o) is 
a stationary point of the function $ in the region R, and if the coefficients « and 0 
of the canonical form of d24> at that point, 

d*4 - h(a? -f ftrt, 

are both different from zero, the asymptotic value of the integral for large k is 
00 90 

w « F(u,,Vo)e-’”*^^ / / d{ dr, 

or, 

u » -^^5 f e-’’i(ra+lfl). 

If <f> has more than one stationary point in the region, the total value of the integral is 
obtained by summing the latter expression over the stationary points. 

The principle was formulated by Lord Kelvin, Math. Phys. Papers IV, 303-306 
(1910), for one-dimensional integrals; the latter has been discussed recently in a 
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Up as Un _Mi_V*> 
(Ri + p)(R2 + V) 

(51) 

The amplitude relation is seen to be identical with that obtained on 
the energy flow basis. The factor e~*kv simply represents the phase 
change corresponding to the displacement of the wavefront S along the 
optical rays to the wavefront containing the point P. 

4-8. Fermat’s Principle.—We shall now return to the discussion of the 
methods of geometrical optics and shall consider several principles that 
underlie the design of reflectors and lenses. The first of these is Fermat’s 
principle, which is often taken as the basic postulate in the development 
of the general theory.1 

Before stating Fermat’s principle we must introduce the idea of 
“optical path length.” The optical path length AL along a curve V 
between points Pi and P2 is defined by a line integral along this curve: 

AL = (52) 

where n is the refractive index at the line element ds. 
This concept is intimately connected with the ideas discussed in 

Sec. 4-2. Between two adjacent phase surfaces L(x,y,z) = L0 and 
L(x,y,z) = L0 + 5L, there is an increment in the value of the character¬ 
istic function L which is, by Eq. (6), 

(53) 

The distance dsn between the two surfaces is a function of position, but 
the quantity 8L = n 6sn is a constant; this, it will be noted, is the optical 
path length along any ray between the two surfaces. It follows imme¬ 
diately that the optical path length, as given by Eq. (51), is the same for 
every ray between any two wavefronts L(x,y>z) = L0 and L{xty}z) = L%; 
it is, in fact, 

AL = |Li — L0|. ^ (54) 

Thus the characteristic function L(x,y,z) can be interpreted as the optical ' 
path length along a ray from the wavefront L(x,y,z) = 0 to the wave- 
front in which the point (x,y,z) lies. 

rigorous manner by A. Wintner, J. Math. Phys., 24, 127 (1945). As yet, rigorous 
extension to the two-dimensional case has not been made. The convergence of the 
integrals that is required for the process outlined here to be valid is assured in the 
case that a and 0 are both positive and k has a small negative imaginary com¬ 
ponent hi) the final result is then to be interpreted as the limit (after integration) as 

1 Cf. J. L. Synge, Geometrical Optic*, Cambridge, London, 1937. 
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The idea of optical path length is not restricted in its application to 
rays. One can determine the optical path length between two points 
Pi and P2 along any curve r whatever; its value will in general vary with 
the choice of r. Fermat's principle provides a method for using these 
values in selecting possible ray paths from Pi to P2 from all other paths. 
It may be stated thus: 

Fermat's principle: The optical ray or rays from a source at a point 
Pi to a point of observation P2 is the curve along which the optical path length 
is stationary with respect to infinitesimal variations in path. 

Usually the optical path along a ray has a maximum or minimum 
value with respect to neighboring paths. The inclusion of the plural 
possibility “rays'* in the above formulation of Fermat's principle is 

(a) (6) 
Fig. 4*6. — Notation for the derivation of Snell’s laws: (a) reflection; (b) refraction. 

required to cover situations in which the point Pt may be reached by 
rays from Pi by a direct path or by reflection from surfaces at which 
there are discontinuities in the index of refraction. 

It follows directly from Fermat’s principle that in a homogeneous 
medium (n = constant) the rays are straight lines. The optical path 
length is in this case proportional to the geometrical path length, and a 
straight line gives a minimum value for both. 

Fermat’s principle can also be used in deriving Snell’s laws of reflec¬ 
tion and refraction at the interface between two homogeneous media. 
Let us consider first the laws of reflection. Let the point 0 of Fig. 4*6o 
be the point on the reflecting surface M for which the optical path length 
from Pi to O to Ps has a stationary value. The optical path must con¬ 
sist of straight line segments from Pi to 0 and 0 to P*, since these paths 
are in a homogeneous medium. The optical path length is then certainly 
stationary with respect to neighboring curved paths from Pi to Pj by 
way of M which leave the point 0 unchanged; but by our postulate it is 
stationary also with respect to straight-line paths with near-by reflection 
points O'. Let us then consider a neighboring point O', displaced with 
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respect to 0 by x dl, x being a unit vector in the tangent plane. We shall 
now compute the variation in optical path length as O' is changed. 
Let Si and S2 (Fig. 4-6) be unit vectors in the direction P\0 and OP2, 
respectively, and m the unit vector normal to the surface at 0. Then we 
may write the vector P\0 as piSi and the vector OP2 as P2S2* Similarly 
let Si + $Si and S2 4** 6S2 be unit vectors along the lines P\Of and O'P*, 
respectively, and pi + dpi and P2 + dp2 the lengths of these lines. The 
variation in optical path by way of 0' with respect to the path by way 
of the point 0 is 

6L = n(8pi + 6P2)', (55) 

by our postulate this must vanish to terms of the first order in 6L From 
Fig. 4*6 it is clear that 

(pi + 6pi)(si + 6Si) = piSi + x 81, (56a) 

(P2 4- 6p2)(s2 + 8S2) — P2S2 — x 81. (566) 

To terms of the first order we have then 

6p\Si + pi 5Si = x 81, 
8p2S2 4“ P2 5s2 = — x 81, 

whence 
dpi = Si • x 81, 
dp2 ~ — S2 • x 81, 

since Si • dSi = 0. By Fermat’s principle, then, 

8L = n(si — S2) • x 81 = 0 (59) 

for all variations ll; hence 

(Si - Ss) - * « 0 (60) 

for every unit vector x in the tangent plane. This gives immediately 
the two laws of reflection: 

1. The incident ray, the reflected ray, and the normal to the reflecting 
surface all lie in the same plane. (The plane defined by Si and 
s* is normal to the tangent plane.) 

2. The incident and reflected Tays make equal angles with the normal, 
[cos (si,*) « cos (S2,*); that is, the angles (Si,*) and (s*,*) are 
equal.] 

The law of refraction is derived in a similar manner in Fig. 4*66. The 
variations in actual length of the paths P\0f and O'P* are given again by 
Eqs. (58); the optical path variation is, however, 

(57a) 
(576) 

(58a) 
(586) 

6L =* 7t 1 dpi + %2 dpi ** (w-iSi — ftiSf)* x 61* (61) 
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By Fermat's principle this again vanishes for every dl, whence 

(niSi — n2s2) • x = 0 (62) 

for every vector t in the tangent plane. This implies the two laws of 
refraction: 

1 The incident ray, reflected ray, and the normal lie in a plane. 

2. fti cos (Si,t) = r?2 cos (s2,t), (63a) 

or in terms of the angles between the rays and the normal 

tti sin (m,Si) = n2 sin (m,s2). (636) 

Snell's laws of reflection and refraction are again an expression of the 
fundamental assumption of geometrical optics that the wavefront 
behaves locally like a plane wave; in addition, they assume that the 
boundary surface can be treated locally like its tangent plane. In field 
theory Snell's laws derive rigorously from application of the boundary 
conditions of Sec. 3*3 only for the case of an infinite plane wave incident 
upon an infinite plane boundary.1 They follow in a good approximation 
from these boundary relations if the radii of curvature of the two wave- 
fronts (incident and reflected or refracted) and of the boundary are large 
compared with the wavelength. 

4*9. The Law of the Optical Path,—Fermat's principle provides an 
independent formulation of optical rays from the method of the charac¬ 
teristic function L(x,y,z) and equiphase surfaces developed in Sec. 4-2. 
It was shown in the latter section that the rays are orthogonal to the 
equiphase surfaces, and it was observed further in the preceding section 
that the optical path along the rays between a pair of equiphase surfaces 
is a constant. The treatment of Sec 4*2 applies, however, only to 
media in which the index of refraction is a continuous function of 
position. We shall now show that the system of rays arising by refrac¬ 
tion or reflection (in accordance with Snell's laws) at a boundary of 
discontinuity in the refractive index have associated with them a family 
of equiphase surfaces, so that the law of constant optical path holds for 
any pair of wavefronts, one a member of the incident system and one 
of the refracted (reflected) system. 

It was seen that in a homogeneous medium the rays are straight lines. 
A family of straight lines for which there exists a family of orthogonal 
surfaces is said to constitute a normal congruence. Thus, the rays 
defined in Sec. 4*2—the normals to the surfaces L(z,y,z) * constant— 
constitute a normal congruence. Let us now consider the problem of 
refraction or reflection, it being given that the incident system of rays 
form a normal congruence associated with a family of equiphase surfaces 

1 See M. Born, Optik, p. 15^ reprint by Edwards Bros., Ann Arbor, Mich., 1943% 
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— constant. The first question is whether the refracted (or 
reflected) system of rays is likewise a normal congruence. This is 
answered in the affirmative by the theorem of Malus which we state with¬ 
out proof:1 

Theorem of Matos: A normal congruence after any number of reflections 
and refractions is again a normal congruence. The system of refracted 
rays thus has associated therewith a family of orthogonal surfaces. 

We shall now investigate the optical path along the rays between a 
member of the incident wavefronts and a member of the surfaces ortho¬ 
gonal to the refracted system of rays. Let Li of Fig. 4*7 be a wavefront 

Fi«. 4*7.—On the law of the optical path. 

in the incident system and L2 one of the orthogonal surfaces of the 
refracted system of rays and consider an incident tube of rays passing 
through the closed curve T\ on L\\ let be the curve of intersection 
of the tube with the refracting surface M and r2 the curve of intersection 
of the refracted tube of rays with the surface L2. 

We shall evaluate the optical path from L\ to L2 along any pair of 
rays, say the paths ABC and A'B'C' shown in Fig. 4*7. Let us consider 
first the integrals 

fB rB' fA' 

I niSi • dl + I rii&i • dl + / nxSx * dl 
Ja Jb Jb' 

(I'm) 

+ ttiSi * dlr (64) 

1 See for example R. K. Luneberg, Mathematical Theory of Optics, Lectures in 
Applied Mathematics, Brown University, 1944. 
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^2^2 * dl W2S2 • dl -(- 712S2 * dl **f" n%s2 * dl 

W2S2 • dl, (65) 

where Si and S2 are unit vectors along the incident and refracted rays, 
respectively. Since Si and s2 are both normal congruences, they each 
satisfy the equation [see Eq. (15)] 

V x s = 0; 

therefore, the line integrals around the closed paths w and w are 
J (i) •/ (ii) 

zero. Furthermore the integrals over Ti and r2 are zero, since Si and 
s2 are normal to these respective curves. Adding the above integrals 
(I) and (II) and transposing suitable terms, we then obtain 

cb rc cb' rc' 
/ n 1S1 * dl + / a2s2 • dl = / niSi • dl + / n2s2 • dl 

y/* J b* 

+ / (niSi ~ /i2s2) * dl. (66) 

U'm) 

The last integral of Eq. (66) vanishes as a result of SnelFs law of 
refraction. The left-hand side is the optical path ABC, while the first 
two integrals on the right-hand side constitute the optical path A'B'C'. 
We have, therefore, 

-( J A'B'C 

The optical path and hence the phase increment are constant along all 
rays from the equiphase surface Li in the incident system to the surface 
Lt in the refracted region. The family of surfaces orthogonal to the 
refracted rays thus constitutes the refracted system of equiphase surfaces. 

The law of the optical path often provides a simpler approach to 
the determination of reflecting or refracting surfaces than do Snell’s 
laws. As an example, let us design a reflector that transforms a spherical 
wave into a plane wave. It is evident that the surface is a surface of 
revolution and that it is sufficient to consider a plane section containing 
the axis of revolution. In Fig. 4-8 let F be a point source, the center of 
curvature of the spherical wave; M the reflecting surface; and Lo any one 
of the family of plane wavefronts into which the spherical waves are to 
be transformed. The optical path from F to the wavefront Lo is 

FP -f AP » const. = f + d. (68) 
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The constant may be evaluated by considering the path along the axis; 
if the distance OF = /, the optical path is equal to / + d. When FP 
and AP are evaluated in terms of p and Eq. (68) becomes the equation 

Fig 4 8 Application of the law of the optical path 

of the surface in polar form 

= __ 2/ _ 
1 + COS \p 

(69) 

This is the equation of a parabola of focal length /. 
In contrast to the above calculation, application of Snell's laws would 

lead to the setting up of the differential equation of the surface; it would 
then be necessary to integrate this equation. Further examples of the 
application of the law of the optical path will be discussed in later chap¬ 
ters in the design of mirrors and lenses. 



CHAPTER 5 

SCATTERING AND DIFFRACTION 

By S. Silver 

The introduction of an obstacle into the path of a wave gives rise to 
phenomena that are not covered by the geometrical theory of wave- 
fronts and rays developed in the preceding chapter. These phenomena 
—scattering and diffraction—are of fundamental importance in micro- 
wave antennas, for they underlie the formation of antenna patterns by 
reflectors and lenses. In the present chapter the theory of scattering 
and diffraction is developed with reference to general techniques; the 
specific problems associated with antenna patterns will be taken up in 
Chap. 6. 

5*1. General Considerations.—The discussion of the scattering 
problem will be restricted to the case of an obstacle of infinite conduc¬ 
tivity. The problem with which we are concerned is the following: 
Given a primary system of sources that produces an electromagnetic 
field E0, Ho ; an infinitely conducting body is introduced into the field, 
and it is required to find the new field E, H. 

In practice the primary sources are distributions of currents and 
charges over a system of conductors activated by generators We shall 
refer to the latter system of conductors and generators as the source 
system, in distinction to the currents and charges over the obstacles. 

. The solution to our problem is based on the superposition principle 
of Sec. 3-2. On introducing the body into the field of the sources a dis¬ 
tribution of current and charge is induced over its surface. We then 
have two component fields: one arising from the induced distribution 
over the body and the second arising from the currents and charges in 
the source system. The total field E, H results from the superposition 
of the component fields. It should be noted, however, that the field of 
the body reacts on the source system with a resulting perturbation of its 
current distribution, so that the component field of the latter differs 

from the original field E0> H0. 
The interaction between the body and the source system—and the 

total field E, H—can be analyzed as a superposition of multiple scattering 
processes. First we consider the interaction of the body with the original 
field Eo, Ho, assuming no change in the source currents. The body sets 
up a scattered wave EJ, H', arising from an induced distribution over its 
surface* The scattered wave falling on the source-system conductors 

129 
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induces a current distribution in the latter that gives rise to a secondary 
scattered wave EJ, HJ. The interaction of the secondary wave with the 
body is again a scattering process leading to an induced distribution over 
the body and a scattered wave E'/, H", and so on. The total induced 
distribution over the body is the sum of the distributions associated with 
the component scattered waves E', B''» . . . , and the resultant distribu¬ 
tion in the source system is the sum of the distributions associated with 
Eo, EJ, . , respectively. 

If the distance R between the source system and the body is large 
compared with the dimensions of either, the scattering processes of ordei 

higher than the first can generally be neglected; foi 
example, in general the ratio E^/Eo evaluated at the 
body is of order 1/i?2 and the ratio Eq/Eq is of the 
order l//?4. Also, in special cases, where, although 
the distance R is not large, the geometry of the body 
is such that the amplitude of the scattered wave E„, 
H, at the source system is small, multiple scattering 
may be neglected in the analysis of the total held E, H. 

These conditions are usually met in microwrave antennas, and the multiple 
scattering will be neglected in the study of the antenna pattern. 

5.2. Boundary Conditions.—With attention restricted to a single 
scattering process, our problem is that of finding the scattered held Ej, 
Hi set up by an infinitely conducting body when it is introduced into an 
initial field E0, H0; the total field is then 

E = Eo 4* Ei, (la) 
H = Ho + H,. (16) 

It is assumed that the initial field is prescribed for all space. 
Let V in Fig. 5*1 be the region occupied by the body; n is a unit vector 

normal to the boundary surface S of 7, directed outward into the sur¬ 
rounding space. Since the conductivity of the body is infinite, the total 
field E, H is zero everywhere inside the region V; according to the bound¬ 
ary conditions of Sec. 3*3 there is a distribution of charge and current 
over the surface S: 

B)» (2a) 
K * n x H, ' (26) 

respectively. E and H are the total fields just outside V, and € and m 
are the constitutive parameters of the surrounding medium at the bound¬ 
ary surface. These charge and current distributions are the sources 
of the scattered wave Ei, Hi. 

Jfrom Eqs. (1) it is seen immediately that at all points in the interior 
of the body the scattered wave is out of phase with the original field: 

Ei » -So, Hi « ~*Ho» (3> 
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since the total field is zero. Accordingly we need concern ourselves only 
with the region exterior to 7. Here the scattered field must be deter¬ 
mined as a solution of Maxwell’s equations that satisfies appropriate 
boundary conditions at infinity and over the surface S. The boundary 
conditions to be imposed at infinity are the radiation conditions [Eqs. 
(3*113)], since the field arises from a current distribution confined to a 
finite region of space. Over the surface S, the scattered field must be 
such that the total field satisfies the boundary conditions [Eqs. (3*24) 
and (3*28)]: 

n x E = 0, (4a) 
n • H = 0. (46) 

From Eqs. (1) we have that the corresponding boundary conditions on 
Ei and Hi are 

n x Ei = —n x E0> (5a) 
n • Hi = —n * Ho. (56) 

Since the field Eo, H0 is known, Eqs. (5) prescribe the tangential compo¬ 
nent of Ei and the normal component of Hi as known functions over S. 

The boundary conditions [Eqs. (4a) and (46) or (5)] are not independ¬ 
ent. If the field satisfies Maxwell’s equations and one of the boundary 
conditions, it necessarily satisfies the other. Let us assume, for example, 
that condition (4a) is satisfied by the total field. Applying the integral 
relation between the field vectors [Eq. (3* 17a)] to any area on S bounded 
by an arbitrary curve T, we have 

E • ds = - 4 [ B • n dS = 0, (6) 
r at Js 

since E • ds = 0 by virtue of the boundary condition (4a). The result 
holds for an arbitrary area, no matter how small; consequently n • B = 0 
over the surface. Therefore only one of the boundary conditions need be 
considered in selecting the appropriate solutions of Maxwell’s equations. 

The problem can be approached from another point of view. We 
shall restrict ourselves at this point to an elut time dependence and to 
homogeneous media. It is evident that if the surface distributions 
[Eqs. (2)] are known, the scattered field is obtained directly by the meth¬ 
ods of Secs. 3-9 and 3-10. It can be verified readily that the surface 
distributions [Eqs. (2)], satisfy the equation of continuity [Eq. (3*9)], 
over the surface (E, H being required to satisfy Maxwell’s equations); 
as a result the field vectors Ex, Hi can be expressed in terms of the current 
distribution alone, as was done in Sec. 3-9. In fact, the appropriate' 
expressions are obtained from Eqs. (3*120) and (3*121) by passing from 
volume to surface integrals. The scattered wave is then 
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El - ~ 4^ jst(K * V)V + k2K] e'T-dS> (7) 

= l Js(KxV)e~dS, (8) 

where r is the distance from the field point to the element of surface dS. 

The fields given by Eqs. (7) and (8) necessarily satisfy Maxwell's 
equations and the radiation conditions at infinity. To determine the 
current density K on the boundary surface S we must use condition (5a) 
or (56). Letting n' denote the unit vector normal to S at the point of 
observation, we have 

n'xE, = /- f n' x [(K • V)V + k*K] - ^ dS. (9) 
47TO)€ J S T 

The left-hand side is a known function, and Eq. (9) is an integral equa¬ 
tion for the determination of the unknown current distribution K. The 
scattering problem is thus transformed to the problem of solving the 
integral equation rather than Maxwell's equations. 

It will be observed that the current distribution which satisfies the 
integral equation leads through Eq. (7) to an electric field that satisfies 
the requisite boundary conditions over S and at infinity. It was pointed 
out earlier that the electric and magnetic fields [Eqs. (7) and (8)] satisfy 
Maxwell's equations. Solution of the integral equation (9) thus yields 
the unique solution of the problem.1 

5*3. Reflection by an Infinite Plane Surface: the Principle of Images. 
The simplest obstacle problem is that of an infinite plane conductor. 
Here the solution can be obtained on the basis of geometrical considera¬ 
tions. Two cases will be discussed: (1) the initial field is a plane wave, 
and (2) the initial field arises from a dipole source. 

Reflection of a Plane Wave.—Although the reflection of a plane wave 
by a plane surface has been treated frequently elsewhere, it will be of 
interest to treat the problem here in terms of the general ideas set forth 
in the preceding section. 

Let us consider a plane wave, of the type discussed in Sec. 3*7, travel¬ 
ing in the direction defined by the unit vector So* The initial field is 
then [Eq. (3-62)] 

Ei « Eo^"*-**0**. (10) 

An infinite plane conducting sheet is now introduced into the field. For 
convenience the conductor will be taken to lie in the xy-plane (Fig. 5*2). 
The unit vector n, normal to the sheet, is taken to be in the positive 

1 For a discussion of the uniqueness theorem see J Stratton, Electromagnetic 
Theory, McGraw-Hill, New York, 1941, Chap. 9, Sec. 2. 
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s-direction, and the angle of incidence, which is the acute angle between 
the lines of direction of s0 and n, is designated as 6. 

The field set up by the current and charge distribution over the sur¬ 
face of the conductor must be such as to produce zero resultant field in 
the negative 3-region The scattered field in this region is therefore a 

plane wave traveling in the same direction as E, but 180° out of phase 
with it; denoting the former by E*, we have then 

Ei = -E0<*++»*K (11) 

It is evident, however, that the infinite plane current sheet sets up in 
the positive 2-region a field that is the mirror image of that in the nega¬ 
tive 3-region. Hence the scattered field in the region of interest is a 
plane wave 

Er = (12) 
* 

traveling in the direction Si which is the mirror image of Sot with an ampli¬ 
tude Ei bearing the following relations to the amplitude of £< and thereby 
to the incident wave amplitude E0: (1) Their magnitudes are equal, 

|*i| - 13.|; (13) 
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(2) their respective components parallel to the zy-plane are equal in 
magnitude and direction 

n x Ei = n x (-E„) = -n x E„; (14) 

(3) their components normal to the xy-plane are equal in magnitude but 
opposite in direction, 

n • Ei == —n • ( —E0) = n • E0. (15) 

It is seen that as a result of Eq. (14) the boundary conditions [Eqs. (5)] 
are satisfied 

It follows from the image relation between So and Si that the vectors 
s0, n, and Si all lie in the same plane and that 

So • n = — Si • n. (16) 

The relations between these vectors can also be expressed as 

Si = So — 2(n • s0)n, (17a) 
So = Si — 2(n • Si)n. (175) 

From the point of view of geometrical optics the unit vectors s0 and Si 
define the directions of the rays in the w aves E, and E , respectively 
It will be recognized that the relations among s0, n, and Si are just the 
laws of reflection derived in Chap. 4. It is thus seen that in this case 
the scattering reduces to geometrical reflection of the initial w ave. 

The magnetic-field vectors are obtained from the respective electric- 
field vectors by the plane wave relation of Eq. (3-65). Lelting H, and 
Hr be the magnetic vectors of the incident and reflected waves, respec¬ 
tively, we have 

H, = Qy* (So X E,), (18a) 

Hr = (0 (S1 * (186) 

The total magnetic field is H = Ht + Hr, whence by Eq. (26) the surface 
current density on the reflector is 

K = n x (H. + Hr). (19) 

Either by symmetry considerations or by direct calculation, it can be 
shown that 

nxHt*nx Hr; 

consequently, Eq. (19) becomes 

K «= 2(n x H<) - 2 (-0* [n x (s. x Ed], 

(20) 

(21) 
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or, alternatively, 

K - 2(n x Hr) - 2 (£)* [n x (s, x Er)]. (22) 

In the case of a linearly polarized wave it is convenient for some pur¬ 
poses to express the field amplitudes in another way. Let 8 be the ampli¬ 
tude of Et in magnitude and phase at any given point on the surface. 
The vector amplitude is 

Eo — 8e0, (23) 

where eo is a unit vector that is constant over the reflecting surface. 
Similarly the vector amplitude of Er at the same given point on the sur¬ 
face is 

Er = 8ei, (24) 

with ei likewise a unit vector. The unit vectors e0 and ei are related 
by Eqs. (14) and (15): 

n x (e0 + ei) = 0, 
n * eo — n * e 

(25a) 
(256) 

In terms of these the current density expressions [Eqs. (21) and (22) | 
become 

and 

K = 

K = 

2 

2 

[s0(n • e0) — e0(n • s0)] S 

[si(n • ei) - ei(n • s,)] 8, 

(26) 

(27) 

respectively. 
•Dipole Sources.—Let us now consider the case where the initial field 

is due to an infinitesimal electric dipole. The infinite plane reflector will 
again be taken to be the jy-plane, and the dipole is located on the 2-axis 

^at a distance a from the reflector as shown in Fig. 5-3 The orientation 
of the dipole axis with respect to the reflector is arbitrary. 

The current on the dipole is, of course, changed by the presence of 
the reflector. In this case, however, the reaction of the reflector merely 
produces a new dipole moment M in the source. This is due to the fact 
that the current induced in the source by the reflector is necessarily that 
of an infinitesimal dipole of, say, moment Mi. The latter is along the 
same line as the original dipole moment Mo, and the superposition of these 
two is, therefore, again a simple dipole. The resultant moment of the 
source will be designated by M; the field of the dipole is given in Sec. 
313. 

As in the case of the plane wave, the current distribution over the 
surface of the conductor must be such that the total field is zero in the 
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hemisphere of space of the negative 2-axis. In so far as this region is 
concerned, the reflector is, therefore, equivalent to a dipole —JM coinci¬ 
dent with the source. By symmetry, however, the reflector produces 
a field in the region of the positive 2-axis that is the mirror image of its 
field in the negative 2-region; with respect to the positive 2-region the 
reflector is equivalent to a dipole located at a distance a on the negative 

x 

Fig. 5*3.—Dipole images, (a) arbitrary orientation; (b) dipole parallel to the reflector; (c) 
dipole normal to the reflector. 

z-axis. The sense of the dipole with respect to the source is easily deter¬ 
mined from the requirement that the fields of the image and the source 
must combine to give a zero resultant tangential electric field over the 
reflector. This leads at once to the result that the image dipole is 
obtained by reflection of —M in the plane. The total field in the positive 
r-region is that of a double-dipole system made up of the source and the 
image dipole; the field is obtained by the methods discussed in Secs. 
3-18 and 3*19. 

The arbitrarily oriented dipole can always be resolved into a com¬ 
ponent parallel to the plane (Big. 5*36) and a component normal to the 
plane (Big. 5*3c). The images for these two cases with respect to the 
source M are an antiphase dipole and a synphase dipole, respectively. 
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By considering the fields for these two cases, the reader can verify that 
the image sources correspond to geometrical reflection of the spherical 
wave from the source by the conducting plane; at each point on the 
latter the reflection takes place as though the incident wave were an 
infinite plane wave. 

The image sources for magnetic dipoles are easily arrived at either 
by direct consideration of magnetic dipole fields (Sec. 3*14) or by con¬ 
sidering the image of a small rectangular current loop, which is equivalent 
to a magnetic dipole normal to its plane. The image of a current loop 
can be obtained by regarding it as an array of electric dipoles. It is 
then found that the image of a magnetic dipole is obtained by direct 
reflection of the source in the plane: images for dipoles parallel and normal 
to the plane are synphase and antiphase, respectively. 

The method of images can be applied to any source distribution. If 
only the radiation field is desired, the source distribution can be consid¬ 
ered as a system of electric dipoles, the dipole moment distribution being 
given in terms of the current density J by 

dM = l J dv, (28) 

dv being an element of volume in the source distribution [c/. Eq. (3*162)]. 
Every dipole moment is resolved into a parallel and a normal component 
with respect to the reflector, and the total field is the sum of the com¬ 
ponent fields of the dipole elements and their images. With arbitrary 
current distributions, however, it must be kept in mind that the reflector 
plays an important part in determining the distribution. Only in special 
cases, such as a half-wave dipole radiator of negligible thickness, does 
the reaction of the reflector produce a change in the magnitude and phase 
of the amplitude of the distribution as a whole without affecting the 
relative magnitude and phase throughout the entire distribution. The 
half-wave dipole can be treated on the same basis as the infinitesimal 
dipole, substituting for the field of the latter the field of the half-wave 
radiator given in Sec. 3T6. 

APPROXIMATE METHODS FOR REFLECTORS OF ARBITRARY SHAPE 

Exact solutions of the scattering problem have been obtained for only 
a limited number of cases involving simple primary fields and reflectors 
of simple geometry, such as spheres and cylinders. These problems are 
treated in standard works on electromagnetic theory, to which the reader 
is referred for the results.1 In treating reflectors of arbitrary shape it is 
necessary to resort to approximation techniques. Several such methods, 

*866, for example, J, A. Stratton, Electromagnetic Theory y McGraw-Hill, New 
York, im, Chap. 9. 
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which yield very good results at high frequencies, are discussed in the 
following sections. 

5*4. The Geometrical-optics Method.—The first method to be con¬ 
sidered belongs more properly to the field of geometrical optics than to 
that of electromagnetic theory. It is applicable to the case of a point 
source, which has a broad radiation pattern in the absence of a reflector, 
together with a defocusing reflector. A reflector of this type renders 
every divergent pencil of rays incident on it more divergent on reflection, 
as is illustrated below in Fig 5-4 The scattering pattern of the reflector 
is, therefore, very broad, energy being scattered in almost every direction 
in space. In such a system the salient features of the total field, such 

Fig. 5 4.—On the geometrical-optics method 

as the directions of zero and maximum amplitude, arise from the inter¬ 
action between the scattered field and the primary source field. The 
finer details of the structure of the scattered field are of secondary interest, 
and therefore an analysis of the scattering on the basis of geometrical 
optics suffices. 

Illustrative of the type of problem to which the method can be applied 
successfully is the analysis of the effects of the fuselage or wing structure 
of an airplane on the radiation pattern of a microwave beacon antenna 
mounted on it. The primary interest is in the lobe structure introduced 
into the beacon pattern by interaction with the scattered field from the 
aircraft structure, whereas the fine structure of the scattered field arising 
from deviations from geometrical optics is of negligible significance. 

Let the primary source be located at the point 0 in Fig. 5-4a. The 
assumption that the source is a point radiator is justified in the practical 
case of a more general source system if the reflector is in the far-zone 
field of the former. It was shown in Sec. 3T1 that in so far as the far* 
cone field is concerned any current distribution reduces to a directive 
point source, and in Chap. 4 it was found that the far-zone field can be 
described adequately in terms of wavefronts and rays. We shall assume 
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further that the wavefronts from the source differ negligibly from spheres 
about the point 0. 

The geometrical-optics analysis of the scattering assumes that at each 
point on the reflector the incident ray from the source is reflected by the 
tangent plane according to the laws of reflection developed in Sec. 4*7. 
The intensity of the scattered radiation in a given direction is obtained 
by applying the principle of conservation of energy to the total power 
contained in an incident cone of rays and the total power contained in 
the associated reflected pencil of rays. The use of the laws of reflection 
assumes that the reflector can be regarded locally as a plane surface and 
the incident wavefront can be regarded locally as a plane wave. It is, 
therefore, necessary to require that the radii of curvature of the reflector 
and of the incident wavefront be large compared with the wavelength. 
The latter condition, however, has already been assured by the fact that 
the reflector is in the far-zone field of the sources. 

5*5. Calculation of the Scattered Field.—The procedure followed 
here1 to determine the scattered power in a given direction is to consider 
the local transformation from the incident to the reflected wavefront at 
every point on the surface of the reflector. This determines the principal 
radii of curvature Ri and of the reflected wavefront, together with the 
value of the field amplitude Sr at the point of reflection. The magnitude 
of the field amplitude 8P at a distance p along the reflected ray from a 
given point on the reflector is then obtained by means of Eq. (4*23): 

We shall first investigate the amplitude transformation from the inci¬ 
dent to the reflected wavefront. Let us consider an infinitesimal cone 
of rays from 0 incident on the reflector as shown in Fig. 5*4a; the cone 
intersects the reflector in an element of surface dS. The cone will be 
taken to have a circular cross section; the ray along the axis of symmetry 
is referred to as the central or principal ray. The vector n is a unit 
vector normal to dS at the point of incidence of the central ray; let i be 
the angle of incidence between the central ray and the normal. If 8^ 
and Sr are the magnitudes at the surface of the reflector of the field ampli¬ 
tudes in the incident and reflected tubes of rays, respectively, and dSi 
and dS* are the cross-sectional areas of the respective tubes at the same 
point, the relation 

8? dSi - 8* dS, (29) 

expresses the conservation of power in passing from the incident to the 

* Alternative techniques have been developed by It. C. Spencer, “Reflections from 
Smooth Curved Surfaces,” RL Report No. 661, January 1946; C. B. Barker and 
H. J. Riblet, “Reflections from Curved Surfaces/' RL Report No. 976, February 1946, 

(*i + P)(*« + V)\ 
(4*23) 
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reflected tubes of rays. From the law of reflection we have that the 
angle between the reflected principal ray and the normal is likewise i% so 
that 

dSi = (IS2 = dS cos if (30) 
whence 

|8.| = N- (31) 

The transformation of the polarization on reflection is obtained 
directly from the results of the plane wave problem of Sec. 5*3. Let 
Et be the incident electric-field vector at the surface and Er the reflected- 
field vector; we have then from Eqs. (14) and (15) 

n x (Er + Et) = 0, (32a) 
n • Er = n • Ft, (32b) 

or, 
Er = (n • Et)n - (n x Et) x n. (32c) 

The determination of the radii of curvature of the reflected wavefront 
is a somewhat more difficult task. It will be necessary to make slight 
changes in notation: The point of incidence of the central ray on the 
reflector, at which the transformation of the wavefront is desired, will 
be designated by P, and the unit vector normal to the surface at that point 
by nP\ the unit-vector normal to the surface at any other point is n 
The point P is taken as the origin of the coordinate system (Fig. 5-46) 
with the 2-axis along nP and the xy-plane tangent to the surface; the 
yz-plane is the plane of incidence (containing the central ray and nP). 
The axes £, 17 are the lines of intersection of the principal planes of curva¬ 
ture of the surface with zy-plane; the principal radii of curvature of the 
reflector at P will be designated by R% and Rv, respectively. The plane 
of incidence makes an angle co with one of the principal planes, say the 
plane containing the 17-axis. Let r0 be the distance OP; the distance from 
0 to an arbitrary point x, y, z on the reflector is 

r = [x* + y2 + z2 + A — 2r0(y sin i + z cos i)]*4. (33) 

Consider now the member of the family of reflected wavefronts that 
intersects the reflected central ray at a distance p from the reflector. 
Let uf v, w be the coordinates of a point on the wavefront, and let x, y, z 
be the coordinates of the point on the reflector for which the reflected 
ray “passes through a given point (u,vfw) on the wavefront. By the 
law of the optical path (Sec. 4*8) the equation of the reflected wavefront 
is then 

r + [(w - x)* + (v - y)2 + (w — z)2]* - r0 + p. (34) 

Now let 80 be a unit vector in the direction of an arbitrary incident 
ray and 8 a unit vector along the associated reflected ray. From the 
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law of reflection [Eq. (5-17a)] we have 

S! = So — 2(so • n)n. (35) 

If u,v,w are the coordinates of any point on the reflected ray, the unit 
vector St is given in component form by 

8U [(« - xY + (V - yY + (w- zY]» K ’ 

with corresponding expressions for Siv, su. Similarly, the components 
of So are 

x V — sin i z — r0 cos i 
So* — ; Soy — — ; So* y' • (37) 

Let 
z - F(x,y) (38) 

denote the equation of the reflector surface. The components of the 
normal n at an arbitrary point on the surface are then 

A F, . fdFY _i_ /(tf’YF a-[1 + (s) + WJ ’ 
Substitution of Eqs. (36), (37), and (39) into Eq. (35) gives 

« = x + Gi(x,y)U(u,v,w; x,y,z), ' 
v = y + G2(x,y)U(u,v,w; c,y,z), 

w = z + Gs(x,y)U(u,v,w; x,y,z), 

U = [(u — xY + (f — yY + (w — «)*] 2, i 
where 

Gi(x,y) =5 + 2(s0.n)i^, 

Gt(x,y) = V - r° — * + 2(s0 • n) 

G*(x,y) = 
Z — To COS t 

2(s0 • n) -> 

. if dF f . dF , , 
So • n * r - I -x — - (y - r0 sin i) ^ + (z - r0 cos *) J. 

Equations (40) give the coordinates of arbitrary points on the system 
of reflected rays. If, in particular, we consider the family of points 
lying on the reflected wavefront that is defined by Eq. (34), the coordinates! 
», v, w of the system of Eqs. (40) must satisfy Eq. (34); in particular 
V(u,v,vr, x,y^c) must satisfy the latter equation. Substitution for U 
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into Eq. (40) then leads to 

u - x + Gi(x,y)(r0 - r + p), 
v = y + Gi(x,y) (r0 - r + p), 

w = z + Gz(x>y)(ro — r + p). t 
(43) 

The coordinate z is eliminated from these equations by means of the 
equation z = F(x,y) for the surface of the reflector. Equations (43) 
then become a set of parametric equations (x,y being the parameters) 
for the reflected wavefront that intersects the central reflected ray at a 
distance p from the reflector. On setting p = 0, we obtain 

u = x + Gi(x,2/)(r0 - r), \ 
v = y + G%{x,y)(n - r), > (44) 

w = z + Gz(x,y)(ro - r), J 
the parametric equations for a surface that intersects the reflector at the 
point P and there represents the reflected wavefront arising from the 
segment of the incident wavefront defined by a small cone of rays about 
the central ray. 

The procedure for finding the principal radii of curvature of a surface 
from its parametric equations is straightforward and can be found in any 
book on differential geometry;1 the details of the calculation will not 
be reproduced here. We are interested in the radii of curvature of the 
wave surface at the point u = v = w = 0; i.e., x = y = 0 In elimi¬ 
nating z from Eqs. (44) it is, therefore, necessary to use only the equation 
for the reflector surface in the neighborhood of the point P. Referred 
to the principal axes £, rj, the equation of the surface of the reflector is 

z = (45) 

By a simple transformation, the equation of the surface with respect to 
the z, y-axes is then found to be 

. _ * 17cos* * isin* gi .i. (sin* * icos2 A y* 2 L\ + R, ) + \ R( + R, )y 

2 sin o cos 
"Gr,-3T,H+ •' ' ■ <“> 

radii of curvature R(, R, are considered to be positive if the surface is 
convex with respect to the positive z-axis. 

We are chiefly concerned with the over-all pattern produced by the 
reflector and the source system; hence we are interested in the Scattered ' 
field lit large distances from the reflector. Provided that neither one 

* For example, L. P. Eisenhart, A Treatise on the Differential Geometry iff Curve* and 
Stafaoes, Ginn, Boston, 1009. 
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of the radii of curvature Ri, Rt of the reflected wavefront is infinite, it is 
physically possible to consider distances p so large that p»fii,p» Rt- 
In that case the calculation of the scattered field intensity is somewhat 
simplified; instead of Eq. (4-23) we can use Eq. (4.24), 

|Sp| 16.1 W. 

The product of the radii of curvature of the reflected wave surface at 
the point P is 

COS l 

4 cos i , cos i , 
r;rv + + n*2 

ro 

si sin2 

Rl 

Cl) , COST C 

The result can be put into a more symmetrical form by introducing the 
angles 0i and 02 between the incident ray and the principal axes of the 
reflector £ and 17, respectively. The scattered field at a distance p from 
the reflector in the direction defined by the reflected ray is then given by 

R$Rr, cos ^ 
(4r\ + RsRv) cos 1 + 2rn(/?$ sin2 0i + R„ sin2 02) 

The bracketed term is known as the divergence factor of the surface, 

r> _ _irjf.1.* r™ *_. (aq\ 
(4rg + RsRv) cos i + 2r0(/?$ sin2 + Rv sin2 02)’ ' 

it is the ratio of scattered power per unit solid angle in the direction of 
the reflected ray to the incident power per unit solid angle. By use of 
Eqs. (31) and (32c), together with Eq. (48), the scattered field can be 
obtained in magnitude, phase, and direction: 

Ep = — {(n • E,)n - (n x E.) x n (50) 
V 

5*6. Superposition of the Source Field and the Scattered Field.— 
The method of superposing the scattered field on the original field of the 
sources is fundamentally the same as that used in Chip. 3 in treating the 
far-zone fields of current distributions. It will be assumed that the 
source field is linearly polarized. The fundamental elements are illus¬ 
trated in Fig. 5*5. Let P, be the total power radiated by the source, 
and let G(s) be the gain function in the direction defined by the unit 
vector s. The field of the source alone over a sphere of radius R is 

Eo = f2 (?) £'H e°TT {51} 
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The unit vector eo describes the polarization of the field over a sphere 
with radius such that kR = 2wr, n — 0, 1, 2, ... . The total field 
in a given direction s is the sum of the scattered field produced in that 
direction by the reflector and the source field. In the far-zone treatment 
the ray from the source to the given field point is taken to be parallel 
to the ray from the reflector. 

Fig. 5 5 —Superposition of the scattered field on the source field. 

The field intensity incident on the reflector is 

Ei=t2 (f)f1 s g(so) r e°(so) (52) 

The scattered field is then, by Eq. (50), 

Ep = 1 [2 (t) liT^80^] * e°)n “ (n * e°) * (53) 

the distance p has been set equal to R in the expression for the amplitude. 
In so far as the phase is concerned, it is seen from the figure that 

Rsi = r«s, + psi, (54) 

whence 

ro + p = R + r0(l + cos 2i). (55) 

The total field in the direction Si is, therefore, 

E(«i) - [2 Ynr U<?(«01*eo(si)+[«?(«,)]vw^*+r wl, (56) 

where 

e, * [n • e0(s0)]n - [n x e0(s0)] x n. (56a) 

6*7. The Current-distribution Method.—The geometrical-optics 
method discussed in the preceding sections can furnish no information 
on the structure of the scattered field that results from deviations from 
geometrical propagation of the reflected wavefront. By geometrical 
optics this wave is discontinuous (geometrical shadow behind the reflee- 
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tor), and it was pointed out in Sec, 4*5 that in the presence of a discon¬ 
tinuity geometrical optics does not give accurate results. The deviations 
decrease in significance as the wavelength goes to zero; the geometricalr 
optics method is to be regarded as a zero-wavelength approximation to 
the scattered field. 

The current-distribution method which will be formulated in this 
section leads to a better approximation for the scattered field and also 
makes possible the analysis of secondary effects such as the reaction of 
the reflector on the sources. The cardinal feature of the method is that 
it attempts to approximate the current distribution over the surface of 
the reflector; the scattered field is obtained from the current distribution 
by Eqs. (7) and (8) and is thus an electromagnetic field that satisfies 
Maxweirs equations. We shall be interested primarily in the far-zone 
field of the current distribution in obtain¬ 
ing the composite pattern of the reflector 
and the sources. 

The current distribution over the re¬ 
flector is obtained on the basis of geomet¬ 
rical optics, which can be expected to 
yield good results only if the reflector is 
far enough from the sources for the field 
of these to be described adequately m 
terms of wavefronts and rays. On the 
basis of ray optics there is a sharply de¬ 
fined shadow region behind the reflector 
in which the total field is equal to zero. In Fig. 5*6, S is the reflecting 
surface and T is the boundary curve between the geometrically illumi¬ 
nated area and the shadow area. According to the boundary condition 
[Eq. (26)], since the total field is zero, the current distribution over the 
shadow area is zero. It is a matter of experience that the shadow region 
is more sharply defined the smaller the wavelength and the larger the 
ratio of the reflector dimensions to the wavelength. The first assumption 
of our approximation technique, then, is that there is no current over the 
shadow area of the reflector. The current distribution over the illumi¬ 
nated region of S is obtained on the assumption that at every point the 
incident field is reflected as though an infinite plane wave were incident 
on the infinite tangent plane. Let E„ Ht again be the initial field; let 
So be a unit vector in the direction of the Poynting vector, that is, along 
the incident ray. If n is the unit vector normal to the surface at the 
point of incidence and Si a unit vector in the direction of the reflected 
ray, the surface current density, according to Eqs. (21) and (22), is 

K - 2fn x H.) - 2 [n x (s0 x B,)J, (57«> 

1 ig 5 6 —On the current-distribu¬ 
tion method. 
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or, in terms of the reflected field E„ Hr at the surface, 

K = 2(n x Hr) = 2 Q [n x (sx x E)J. (67b) 

The surface charge density is obtained from the total field E, + Er by 
means of Eq. (2a); making use of the plane wave relations [Kq. (15)], 
we then find that the charge density is 

7j = 2c(n • Et) = 2e(n • Er). (58) 

From the discussion of Sec. 5-4 it is seen that the procedure for obtain¬ 
ing the current and charge distributions is based on the assumption that 
the radii of curvature of the incident wavefront are large compared with 
the wavelength as are also the radii of curvature of the reflector. On the 
other hand, in the present case there are no conditions imposed on the 
focusing or defocusing characteristics of the reflector. It is clear that 
Eqs. (57) and (58) represent high-frequency approximations to the actual 
currents and charges and may be expected to approach the latter in the 
limit of zero wavelength. The current method differs from the previous 
wavefront procedure in that a frequency dependence of the scattered field 
is introduced into the subsequent calculation of the field arising from the 
current and charge distributions. Also, the field at a given point in 
space is the resultant of contributions from all points on the illuminated 
area So rather than from the point of geometrical reflection alone. 

5*8. Calculation of the Scattered Field.—The expressions for the 
electric and magnetic fields in terms of the currents and charges were 
derived in Secs. 3-9 and 3*10. It will be recalled that the fields thus 
obtained satisfy Maxwell's equations only if the source-density functions 
satisfy the equation of continuity [Eqs. (3*6) and (3-9)]. The reader can 
readily verify that if the initial field Et, Ht satisfies Maxwell's equations, 
the current and charge distributions given by Eqs. (57a) and (58) do, 
in fact, satisfy the surface equation of continuity given in integral form 
by Eq. (3*9). The situation is different, however, at the boundary line 
T between the illuminated and shadow regions. The current distribu¬ 
tion is discontinuous across the boundary, being zero over the shadow 
area; compatibility with the equation of continuity can be achieved only 
by introducing a line distribution of charge along the curve r.1 

In Fig. 6-7 t is a unit vector along the boundary curve T; ni is a unit 
vector in the tangent plane normal to x. The linear charge density along 
T will be denoted by <r. Considering a small area of sides ds and SI 
(the latter normal to T) and expressing the condition that the net current 

1 The discussion that follows parallels that given by Stratton and Chu in their 
treatment of diffraction; see J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 
New York, 1941, Sec. 8-15. 
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flow from the area is equal to the rate of decrease of the charge enclosed, 
we obtain 

—n.-Kds = — %ds; (59) 
Ot 

the contributions from the sides 81 vanish as 81 —> 0 while ds remains 
fixed. We have then 

nt • K = jt- (59a) 

Substituting from Eqs. (57a) and (57b) for the current distribution, we 
find 

| = 2n,.(nx H,) = -2? • H. (60a) 
Ol 

and 

^=-2*-Hr. (606) 

For time periodic fields these give 1 
we have da/di = jcaa, w hence 

2 2 
<r « — ~ x • Hx = - ~ t • Hr. 

Jo> Jw 
(61) 

The scattered field is thus the 
sum of the contributions of three 
source distributions: (1) the surface 
currents over the illuminated area, 
(2) the surface charges over the 
same area, and (3) the line distribu¬ 
tion of charge along the boundary 
curve T. We shall now restrict our e 
plying the results of Secs. 3*9 and 3 

charge distribution directly; for 

I ig. 5 7. Calculation of the electric charge 
on the shadow boundary curve T. 

malysis to time-periodic fields. Ap- 
•10, we find the scattered field to be 

E« = / L?wju(n x H*)^ — (n • E,) V\p] dS 
#ir J So 

-sssfc’W’-*)*- <62o) 
H s = J-[ (n x H<) x V* dS, (626) 

» J s, 

Ikr 

where ^ = e~, with r the distance from the field point to the element 
of area dS on the reflector; So designates the geometrically illuminated 
area; the sense of the line integral around r is such that the outward 
normal to S0 is on the left. The fields can also be expressed in the same 
way in terms of the reflected fields Er, Hr at the surface So- 
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It was shown in Sec. 3*9 that if the current and charge distributions 
satisfy the equation of continuity, the fields can be expressed in terms of 
integrals involving the currents alone. In view of the introduction of 
the boundary line distribution it will be well to carry through the details 
of the transformation for this special case. It will be recalled (cf. Sec. 
3-8) that the gradient operations in the integrands of Eqs. (62a) and 
(626) are referred to the field point as an origin. Taking a rectangular 
system of coordinates with the origin at the field point, let the coordinates 
of a point on So be xa (x\ = x, x2 = y, xs = z), and let ia be unit vectors 
along the x«-axes. The line integral of Eq. (62a) is then 

3 

fr T*(, • H,) * - £ i- fT * ' («. £) *• (63) 
a = 1 

By Stokes’ theorem each integral on the right-hand side transforms into 
a surface integral: 

(h. 
dxj 

(64) 

But 

V X (H‘ dxa) -t£xh'+St*h- (66) 

and 

(▼? 
\ dx 

x H, ) (66) 

(p.* 
\dxa 

xH, )-n 
-*-w. 

(67) 

In the last of these use has been made of the field equation [Eq. (3-23b)]. 
Collecting these together, we have 

a 

— X (n X H.) • V 1^1 dS, 
Jut dxaj 

or 

- X (n x H.) • VV*] dS. (68) 

Substituting into Eq. (62a), we then obtain 

. Es « — ^[(n xH,)- V(V*) + fc’(n x H.)*] dS. (69) 



Sec. 5*9] APPLICATION TO POINT-SOURCE FEEDS 149 

It will be recognized that this is obtainable directly from Eq. (5-7) by 
inserting the value for the surface current density given by Eq. (57a). 
It was shown in Sec. 3-11 that the field integral, taking the form of Eq. 
(69), leads to a far-zone field in which the field vectors are transverse 
to the direction of propagation. The effect of the boundary line distri¬ 
bution is therefore to cancel the longitudinal field component introduced 
by the surface charge and current 
distributions. Subsequent calcula¬ 
tions can be made on the basis of 
Eq. (69); the contributions of the 
charge distributions need not be 
evaluated explicitly. 

Let p be the vector from a given 
origin (see Fig. 5 8) to the element 
of surface dS; let Ri be a unit vec¬ 
tor from the origin to the field 
point, the distance between them 
being R. The scattered field inten- lM* 58 ~ralrulat,on of the total fieId 
sity in the far-zone is then, according to Eq. (3 128), 

Ea-r** |n x H, - [(n x H,) • R,]R,!e’*eR' dS. (70) 

The magnetic field need not be calculated separately but is given by the 
far-zone relation 

Hs = Q (Rt x E&). (71) 

5*9. Application to Point-source and Line-source Feeds.—Two cases 
of major interest are those in which the initial field Et, H* arises from a 
point-source system and a line-source system, respectively. Where the 
reflector enters into the problem by intention as a component of the 
antenna, the source system will be referred to as the feed; this term is 
used extensively in later chapters. 

The Point-source Feed.—It was noted previously that at sufficiently 
large distances from any radiating system, the latter is equivalent to a 
directive point source. Microwave point-source feeds are specially 
designed so that the required distances are within practical ranges for 
use with a reflector. 

Let the point 0 in Fig. 5*8 be the point-source equivalent of the feed; 
it MU be assumed again that within the cone of illumination falling on 
the reflector the incident wavefronts differ negligibly from spheres about 
the point 0. The reference system of coordinates will be taken with the 
origin at the source system. Spherical coordinates will be designated 
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generally by p, 0, <t>; the coordinates of a field point in the far-zone region 
of the system as a whole—reflector and feed—will be R, 0, #. If Gf(6,<f>) 
is the gain function of the feed and P is the total radiated power, the 
primary radiation field—of the feed alone is 

E.(*«,*) = \ [2 £ Gf(8,4>) ] " e,(0,4>)<-*o, (72a) 

h*~or(pi * e,)’ (?26) 
where pi is a unit vector along p and e,(0,0) is a unit vector defining the 
polarization of the elect lie field intensity The current density K at a 
point p, 0, <t> on the reflector is then 

K = 2(n x H.) = -p [^ Gf{6\<f>) j ' [n x (g, x e,)> >k>- (73) 

Substitution of the expression for nxH, from Eq. (73) into Eq. (70) 
gives the scattered field in the far-zone. Equation (70) shows explicitly 
that there is no field component in the Redirection Let i(„) and i$ 
be unit vectors in the direction of increasing <H) and <t>, respectively The 
transverse components of the scattered field are then 

E*b = 
jwfi e~’LB (eVJ P 
2 t R \pj 2tt _ 

H 
i« • I. (74 a) 

Es^ = 
jo>fx P~‘kK [ /eY' P ' 
2w R LV/ 2tt 

i» • I, (74 b) 

I = x el)]<’-,*<',“PR,) dS; (74 c) 

the vector p = ppi is the radius vector from O to the element of surface 
dS. The total field at the point R, 0, <£ is 

E0 = Et(, + ESw - €~** [£ (fj'f *<«*). 

Pi(0i^) = {[G/(0,4>)]^e ■ e,(0,<i>) - l iH • IJ; 

e, = e„+e„ - [£ (;)l,]Kw), 

F,(0,$) = j [<?,(©,4>)]Hi«,. e, - 3- i* • i). 

(75) 

(76) 

The magnetic field is obtained by means of Eq. (71). The Poynting 
vector of the total field is S = £ Re (E x H*), and the power per unit 
solid angle P(0,4>), radiated by the system as a whole in the direction 
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(0,4>), is J22|S|; hence, the gain function of the composite system is 

<?(©,«>) = 
47rP(0,4>) 'fe) {|^el 2 + |£*|2|fl2 

<?(©,<*>) - |/',i|2 + |Fs|2. 

The Line-source Feed.—Line-source feeds are generally used with 
a cylindrical reflector, the generating element of which is parallel to the 
line source. The following analysis will be confined to such systems. 

Fio. 5*9. -The cylindrical reflector with a line-source feed. 

The line source may be a system of point-source radiators distributed 
along a line, such as the linear-array antennas discussed in Chap. 9, 
or it may take the form of a long, narrow, rectangular aperture through 
which energy is being radiated into space. It will be assumed that the 
length l of the source is large compared with the wavelength. 

The reflector and source system are illustrated in Fig. 5-9, with the 
source along the z-axis. We shall assume that the maximum distance 
from the latter to the reflector does not exceed l2/X and that the minimum 
distance is large compared with the wavelength. Within such distances 
from the source its field is essentially in the form of a cylindrical wave 
(c/. Sec. 3*7). The wave incident on the reflector is, therefore, best dis¬ 
cussed in terms of cylindrical coordinates. The #-axis in Fig. 5-9 serves 
as the axis for the cylindrical coordinate system, the polar coordinates 
of which, in the planes normal to the x-axis, are denoted by p and 

The cylindrical-wave zone can be divided into two general regions: 
(1) a near-zone region in the immediate vicinity of the source and (2) 
a quasi-radiation zone at distances large compared with the wavelength 
but less than P/k. In the latter region the predominant components of 
the field lie in the tangent plane of the cylindrical wavefront and ar& 
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mutually perpendicular as in the case of the isotropic cylindrical wave 
discussed in Sec. 3-7. With a general line source, the field intensity is not 
uniform over the wavefront but varies both along the ^-direction and 
about the cylinder axis. The radiation-zone field can be written 

p—jkp 

E(p,t,x) = A(#,x) (78a) 

and 

H = 0 (e. x E), (78b) 

where pi is a unit vector in the direction of increasing p. The radiation 
zone of the cylindrical wave field is to be distinguished from the general 
far-zone field with respect to which the line source behaves like a point 
source. 

We shall confine our attention to fields in which the polarization is 
uniform over the wavefront. Two fundamental cases are to be consid¬ 
ered: (1) longitudinal polarization in which the E-vector is parallel to 
the x-axis, so that 

A(*,x) = A(*,x) ix, (79a) 

and (2) transverse polarization in which the electric vector lies in the 
planes transverse to the x-axis, that is, 

A(iM) = A(*,x)4; (796) 

the vectors ix and i* are the basis vectors of the cylindrical coordinate 
system. In most cases of interest the amplitude function A (^,x) is sepa¬ 
rable in its dependence on the two coordinates. Referring to the power 
flow rather than the amplitude, we shall introduce a two-dimensional 
gain function (?(^). Let P be the total powder radiated by the source; 
let (.P/l)F(x) dx be the total power in the cylindrical wave field between 
the planes x — constant and x + dx = constant. The power radiated 
per radian between these planes in the direction \p is then 

P(x,t) dx df = ^ y F(x) dx G(ip) d+. (80) 

The gain function G(tp) must obviously satisfy the condition 

J* (?(*) # = 2r. (81) 

The function F(x) expresses the distribution of intensity along the indirec¬ 
tion; it must satisfy the condition 

(82) 
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it being assumed that the origin of the coordinate system is at the center 
of the line source. The amplitude A (x,\p) may be evaluated in terms of 
the power-distribution functions as in the case of the point-source feed. 
The magnitude of the Poynting vector is 

|S|-i|Re(ExH*)|-i(l) i /«Y‘ 1AL2. 
p 

We have then 

or 

2 14|2 d* dx = F(x) dx G(*) # (83o) 

(836) 

The current densities, or rather n x for the two types of polariza¬ 
tion are the following: 

1. Longitudinal polarization. 

or 

nxH, GW]U 
P . 

n x (pi x ix)e~Jkp, 

n x H» = ix GWl'2 
P J 

cosz e~Jkp. 

2. Transverse polarization 

(84a) 

(846) 

n x H, = j" F(x) j n x (pi x (86o) 

or 

n x H, = £ F(x) ^ J* (856) 

The angle i is the angle of incidence, and * is a unit vector tangent to 
the cylinder in the cross-section plane. The positive directions of the 
angles and vectors are shown in Fig. 5*9. 

The far-zone field is expressed in terms of spherical coordinates. 
Because of the geometry of the system it is convenient to use a set of 
spherical coordinates somewhat different ^om that used in the treatment 
of the point-source field, the a>axis being taken as the polar axis; the 
definition of the coordinates is given in Fig. 5*9. Let and i* again be 
unit vectors in the increasing ®- and ^-directions. For the case of the 
longitudinally polarized source, the scattered field is 

2fwB 
e-lkB 

COS i (fa dx] J (86) 
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ds is the element of arc length along the cross section, or 

M-GDT- <s7) 
The scattered field has no 0-component, the electric vector lying entirely 
in the meridional plane passing through the x-axis. The scattered field 
for the transversely polarized source is 

X e~’k lp-(Q+-nr) RW ds dx. (88) 

In this case there is also a ^-component proportional to sm <f> in 
magnitude. However, if l X, the beam is confined to the neighborhood 
of 4> = 0 and the cross-polarization component is small. 

On expressing the vectors p and Ri in rectangular components, one 
finds the phase factor of the integrands of Eqs. (80) and (88) to be 

p — (p + Hz) • Ri = p[l + cos 4> cos(^ + 0)] — x sin <t>. (89) 

It is apparent that the integrands are factorable into a function of j 

and a function of Considering the central plane 4> = 0, we see that 
the ©-dependence of the field arises entirely from the integral over 
the field distribution is determined by the angular characteristic G(yp) 
of the source and the cross-section contour of the reflector. As regards 
the planes © = constant, both aspects of the reflector contribute to 
some degree. However, it mil be shown in Chap. 6 that if the length 
/ is large compared with the wavelength, the major portion of the field 
is confined within a small angular region <i> about the central plane. Ovei 
this region the variation of cos <f> in Eq. (89) is of second order compared 
with sin on setting cos $ = 1, separability is obtained, the field dis¬ 
tribution in the planes © = constant being determined entirely by the 
linear characteristic of the source F(x). The transverse distribution of 
the field is thus virtually the same for all transverse planes. 

The primary field of the source alone must be added, of course, to 
the scattered field to obtain the total field. Here the far-zone field 
of the source (for which it ^effectively a point source) must be used 
instead of the cylindrical wave field of the radiation zone. It will be 
assumed that this is known and expressed in a form similar to Eq. (72a), 
in terms, of course, of the spherical coordinates shown in Fig. 5*9. It is 
also assumed that the equivalent point source is located at the origin 
of the coordinate system, since the phase terms entering into the reflector 
field have been referred to that origin. The procedure for superposing 
the fields is exactly the same as that delineated in the previous case and 
need not be discussed further here. 

E, e 2tR 
-jkli 
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Attention should be called to one point in the procedures discussed in 
this section that has been the cause of some concern in the past. It will 
be found in general that the radiation field of a current distribution- 
such as is given by Eqs. (72) and (78)—does not satisfy Maxwell's 
equations exactly. Consequently, except in special cases, the current 
and charge distributions on the surface of the reflector, as found by the 
methods already outlined, do not satisfy the equation of continuity 
exactly. However, the terms that are neglected, which would result in 
satisfying the required conditions exactly, are smaller in order of magni¬ 
tude than the radiation field components and are in general in time 
quadrature with the latter; they therefore introduce a nonessenfial con¬ 
tribution to the scattered field and the scattered power pattern. 

5*10. Reaction of a Reflector on a Point-source Feed,—One of the 
fundamental problems in the design of an antenna employing a reflector 
is the effect of the latter on the impedance characteristics of the antenna. 
The problem can be treated on the basis of re-radiation from the current 
distribution on the reflector;1 the analysis will be carried out here for 
the case of a point-source feed. 

The radiating system that constitutes the feed must be considered 
in its relation to a transmission line. The basic idea of the following 
analysis is that the interaction between the feed and the field/>f the cur¬ 
rent distribution on the reflector gives rise to a “reflected” wave in the 
transmission line and thus an impedance mismatch from the point of 
view of thte line. Our object is to calculate the reflection coefficient— 
ratio of the reflected to incident wave amplitudes—in the transmission 
line due to the reflector. The field of the reflector, which is given in 
general by Eq. (69), is regarded as a superposition of spherical wavelets 
arising from every element of surface dS. The total reflected wave in 
the transmission line is then considered to be the sum of component 
waves arising from the interaction between the feed and the separate 
wavelets. The current element K dS is regarded as a dipole source, and 
only the radiation terms are retained for the individual wavelets. The 
interaction between one of these and the feed is evaluated on the assump¬ 
tion that the distance from the reflector to the feed is so large that the 
wavelet can be regarded as a plane wave over the effective area of the 
feed. This assumption is consistent with our previous condition that 
the reflector be in the far-zone of the feed system. Multiple scattering 
between the feed and the reflector is neglected; this is likewise consis¬ 
tent with the previous assumptions. 

It will be assumed that in the absence of the reflector the feed is 
matched to the transmission line; there is then only an incident wave 
within the line. Let Vi be the voltage at some reference cross section 

1S. Silver, “Analysis and Correction of the Impedance Mismatch Due to a 
Reflector/' RL Report No. 810, September 1945. 
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of the line. The total power transported across the reference cross sec¬ 
tion is 

P = a\V%\*, (90) 

where a is a constant characteristic of the line and the field distribution 
over the cross section of the line. If the dielectric and ohmic losses in 
the line and the radiating system are negligible, P is the total power 
radiated by the feed. By Eq. (73), the current density at a point p, 

0, 4> on the reflector, with its phase referred to that of the voltage at the 
reference cross section in the line, is 

K = 2(n x H.) = ^ (*) ' <?/(*,*) ]* n x foi x *)*-*• (91) 

Expanding the vector term, we have 

n x (pi x e,) = (n • et)pi + e, cos t, (92) 

where i is the angle of incidence. The current is here resolved into one 
component along the incident ray and one component parallel to the 
polarization of the primary field 

The field of the wavelet arising trom the current element K dS is the 
integrand of Eq. (69): 

[(n x H.) • V(Vi) + k\n x H,)*J dS. 

Applying the results of Eqs. (3 125) and (3*126), one sees that the radia¬ 
tion field components arise only from the component of the current that 
is transverse to the direction of propagation of the wavelet. Conse¬ 
quently, to the order of approximation that all the other terms are 
neglected, the component of the current in the direction pi contributes 
nothing to the reaction on the feed. 4s regards the component in the 
direction et it is observed that this coincides with the polarization of the 
feed and therefore no polarization obliquity factor enters into the inter¬ 
action with the feed. The field intensity of the spherical wavelet with 
which we are concerned is then 

dEr - (n X H.) • e, dS 

or 

dEr " Vi [ir 0)' ]* 008 *' <*** dS- <93> 
The magnitude of the Poynting vector of the spherical wavelet is 
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If the wavelet may be considered plane over the receiving cross section 
of the feed [see Eq. (2*80)], the power that would be extracted from the 
wavelet acting alone is 

dPr = \Sr\Gs{e,4>) (94) 

The voltage dVr of the reflected wave set up thereby in the line, at the 
given reference point, is 

dVr = = |^2- (^0/(0,<*>)]' dEre-‘^>+*>. (95) 

The phase term 5 is a constant determined by the feed and the choice 
of the reference point; we need not be concerned with its precise value. 
Substituting Eq. (93) into (95), we obtain the reflection coefficient con¬ 
tributed by the element of surface dS of the reflector: 

dV 1 
dT * * 4^2 GOsi e-’Wr+v dS. (96) 

The phase term 5' absorbs the —j of Eq. (93). The reflection coefficient 
due to the entire reflector is, therefore, 

r = r-** [ -!r~ COS ie->2k»dS. . (97) 
Js. 

Use will be made of this result in Chap. 12 to devise a method for elimi¬ 
nating the mismatch. 

The principle of stationary phase (Sec. 4*7) may be applied to the 
integral of Eq. (97) to obtain an estimate of the mismatch for the case 
of short wavelengths. It will be recognized that the phase is stationary 
at those points on the reflector at which the rays from the feed strike at 
normal incidence. The essential contribution to r arises from the area 
in the immediate neighborhood of the stationary point. The calculation 
is hardly different from that used for Eqs. (4*46) to (4-51) and will not 
be given here. If On is the gain of the feed in the direction of normal 
incidence, pn the feed-to-reflector distance, and Rv the principal radii 
of curvature of the reflector at the stationary point, we have 

rn f Rfo 
8WPn L(#i + Pn)(Ri, + Pn) r- }(2kpn+6') (98) 

If there is more than one point of normal incidence, the total effect is 
obtained by summing the separate values of r«. 

The same result [Eq. (98)] can be obtained directly on the basis of 
geometrical optics.1 The reflected field intensity at the feed is deter- 

1S. Silver, “Contribution of the Dish to the Impedance of an Antenna,” Bh 
Report No. 442, September 194?. 
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mined by considering the dispersion of a small incident cone of rays by 
the reflector, making use of the techniques of Sec. 5*5. 

5*11. The Aperture-field Method.—It was shown in Sec. 3*8 that the 
field at a point in space lying outside a surface that encloses all the sources 
of the field can be expressed in terms of integrals of the field vectors over 
the surface. Thus, if the scattered field E«, HB is known over any surface 
2 that surrounds the reflector completely, the scattered field at an 
external point P in space is given by Eqs, (3*108) and (3*109): 

E.(P) “5/. X fl«W 

+ (n X E.) X vt + (n • E.)V*] (1S; (99o) 

H.(P) -&f, X E.)* 

+ (n x H.) x Vi + (n • H.) V^] d$. (996) 

In applications to antenna problems, the field over 2 may not be 
known. The aperture-field method formula! es a high-frequency approxi¬ 
mation to the field. The surface 2 is taken in the immediate vicinity 
of the reflector, and it is assumed that energy passes to 2 from the 
reflector by propagation along the reflected rays. The field over 2 is 
then calculated by the methods of Sec. 5*5 in conjunction with Eq. (4*23); 
the same conditions must therefore be imposed on the radii of curvature 
of the incident wavefront and the reflecting surface. 

The present method has no special advantages over the current-dis¬ 
tribution method for the treatment of an arbitrary reflector. However, 
there is one class of reflectors for which it has decided advantages, both 
in ease of application and in establishing relations with other phe¬ 
nomena. The reflectors to which the method is particularly suited— 
and to which the subsequent discussion is restricted—have the property 
that the entire family of rays reflected from the illuminated area So lie 
in one hemisphere of space, as shown in Fig. 5T0-; also, in the neighbor¬ 
hood of the reflector it is possible in general to draw a finite curve Ta 

circumscribing the entire family of reflected rays. The shadow boundary 
T on the reflector then defines an aperture and serves as an exit pupil for 
the reflected rays, which can be regarded as arising from a distribution of 
image sources behind the reflector. 

On the basis of the ray diagram it is to be expected that the scattered 
field will be concentrated largely in the hemisphere of space containing 
the reflected rays. Our discussion will pertain to points in this region, 
and the surface 2 will, therefore, be taken to be made up of an infinite 
plane containing a curve such as Ta, plus the hemispherical cap of infinite 
radiufc. The aperture of the system may be defined as the area A on 
the infinite plane circumscribed by the curve Ta obtained by projection 
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of the shadow boundary r along the reflected rays. It may be noted at 
this point that since the scattered field must satisfy the radiation condi¬ 
tions [Eqs. (3*113) and (3*114)] at infinity, the hemispherical cap will 
make no contribution to the field integrals in Eqs. (99a) and (996). 

It is evident that the determination of the scattered field over the 
plane 2 by reference to the reflected rays leads to a discontinuous dis¬ 
tribution, with a nonzero field over the area circumscribed by TA and 
zero field over the area of 2 outside IV This introduces into the problem 
a feature that is equivalent to the discontinuity in the current distribu¬ 
tion over the reflector at the shadow boundary in the previous method. 

Fig. 5*10.—On the apeituie-field method 

It was pointed out at the close of Sec. 3-8 that the terms entering into the 
integrands of Eqs. (99a) and (996) can be set into correspondence with 
surface distributions of electric currents and charges and magnetic cur¬ 
rents and charges. The electric and magnetic fields over the surface 
cannot be assigned arbitrarily; they must be assigned in such a way that 
the equivalent current and charge distributions satisfy the surface equa¬ 
tion of continuity [Eq. (3-9)] if the integrals are to give field components 
that satisfy Maxwell’s equations. In order to make the distributions 
over 2 compatible with the equation of continuity it is necessary to 
introduce line distributions of electric and magnetic charges along the 
boundary curve IY 

The computation of the boundary charge distributions proceeds along 
exactly the same lines as in the case of the current-distribution methods.1 
With Er, Hr denoting components of the scattered field over 2, the 
density a, of the boundary line distribution of electric charge and the 

1 See .also J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, 
Sec. 815. 
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density <tm of the magnetic charge are 

<r. = - X (« • Hr); <rm = l (* • Er). (100) 

The unit vector t and the positive normal n to the surface 2 are defined 
in Fig. 5*10. The amended expressions for the fields are then 

+ ~ [-jW(n x HJ* + (n x E,) x V* + (n • E,) Tfl dS 001a) 

and 

.*«'■*-’>* 

+ ^f [)'«(n x E,)# + (a x H,i x V* + (n • H.) Tfl dS, (1014) 

where A is the area enclosed by 
The integrals over the boundary TA Can be transformed into surface 

integrals by the same process used in transforming Eq. (5-62a). It is 
then found that the field expressions are 

E,(P) = -j-4- / [k*(n x Hr)* + (n x Hr) • V(V*) 
4irjwt J A 

+ jo)e(n x Er) x V\f/] dS, (102a) 

H.(P) = - Jj— [A:2(n x E,)* + (n x Er) • T(T*) 

- jw/.<(n x Hr) x V*] dS. (102b) 

The boundary line charges have the same effect here as in the case of 
the current distribution: They cancel the longitudinal field component 
of the far-zone field that arises from the surface current and charge 
distributions. 

The discussion has been developed with reference to a plane area. 
This is not necessary for the application of Eqs. (99a) and (996); the 
surface 2 may be any curved surface of infinite extent that divides the 
space into two regions—one of the reflector and one of the scattered field. 
The aperture area in that case will be a curved surface bounded by a 
curve Ya that is the projection of the shadow boundary along the reflected 
rays. There is no change in the final result; the integrals (102a) and 
(1026) apply to the curved aperture surface A. 

5*12* The Fraunhofer Region.—We shall now carry through the 
reduction of the integrals for the far-zone field. The latter will be referred 
to henceforth as the Fraunhofer region because of the relation of the 
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problem to optical diffraction problems. The latter will be discussed in 
a later section. 

Let q again be the vector from the origin of the coordinate system to 
the element dS of the aperture area and Ri a unit vector from the origin 
to the field point in the direction 0, <t>. Applying the results of Sec. 
3*11 and inserting therein the expressions for the electric and magnetic 
currents given in terms of the fields by Eqs. (3T11), we find that Eq. 
(102a) reduces to 

E.(i>)_^ge-«R,x /].»«, 

- ($' Ri x (n x Hr) j dS. (103) 

Let s be a unit vector along a ray through the aperture. In the geomet¬ 
rical-optics approximation, the electric and magnetic fields over the 
aperture are related by 

H = a(8 x E). (104) 

[In free space a = (c//*)5*. However, as we shall see later, the reflector 
is only one special case of an aperture problem; the theory can be applied 
to problems such as the radiation from horns in which a will have some 
other value.] Substituting for Hr in Eq. (103), we obtain 

E.(P) = Ri x jn x Er - « [R, • (s x Er)n 

- (s x Er)(n • RO] J eM*' dS. (105) 

For some purposes it may prove convenient to take as the aperture 
area A the wavefront of the system of rays. In that case the unit 
vectors s and n are identical, since the rays are normal to the wavefront. 
More generally, however, it is convenient to use a plane aperture; the 
vector n is then constant over the surface and in the direction of the polar 
axis of the spherical coordinate system. The field Er over the aperture 
is generally specified in terms of the polarization, magnitude, and phase 
distribution ¥(a:,y). If the wavefronts associated with the rays through 
the aperture are the surfaces L(x,y,z) = constant (c/. Sec. 4-2), the phase 
distribution is , 

*{x,y) = koL(x,y,0), (106) 

where ko = 2w/X0 is the free-space propagation constant. From Eq. 
(4*10) it follows that the components of the vector s over the aperture 

plane are 
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1 dV 1 d'J' /, 2 o\ Lf, „n,s 
8* = kaJ’ Sv = kW; *’ = ( " x ~8l) (107) 

The total power passing through the aperture is the integral of the normal 

component of the Poynting vector: 

P = ^ j t Re (Er x H*) • n dS = | \Er\*s, dS. (108) 

The gain function for the aperture is therefore 

(/ = §?[ P-\K(P)V . (io<») 

“ jA \Er\b, dS 

It is overlooked in many treatments of aperture problems that if 

there is a phase distribution over the aperture other than a constant 

phase, the field vectors Er, Hr do not lie in the aperture plane and the 

Poynting vector is not normal to the plane. In cases where the phase 

distribution >k(.r,i/) represents small deviations from constant phase, 

these factors can be neglected without too serious an error. Subject 

to this approximation, Eq. (105) simplifies to 

E,(P) = 3~nkH R, x | (n + « Q R,)xN 

where the vector N is 

(110) 

N = x Hin ft i oh 0 -f- u nin ft dS. (110 a) 

The expression for g • Ri for the plane aperture has been inserted. In 
using these relations it must be kept in mind that the field vectors are 
assumed to lie in the aperture plane. The 0- and ^-components of Eq. 
(110) are 

Ea$ = [l + a cos 0 j (Nx cos <t> + Ny sin <t>), (11 la) 

Ea<f> = —[cos $+ at j (Nt sin <f> ~ Nv cos $). (Illb) 

DIFFRACTION 

5*13. General Considerations on the Approximate Methods.—Both 
the current-distribution and aperture-field methods led to a calculation 
of the scattered field as arising from a distribution of sources over an 
open surface, the boundary of which is defined by the system of reflected 
rays. In contrast to the geometrical-optics method, the field at any 
point was found as the superposition of contributions from all elements of 
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the source distribution. In general, therefore, the last two methods will 
lead to nonzero field intensities in the region of space not covered by 
the system of rays; also, in the region of the rays, the fields will differ from 
those obtained on the basis of geometrical scattering. These deviations 
from geometrical propagation of the scattered field are known as diffrac¬ 
tion phenomena. 

The diffraction effects are due fundamentally to the fact that the 
sources are distributed over an open surface; that is, the reflected wave- 
front is not a closed surface. The same effects will arise no matter by 
what process a field distribution is generated over a finite open area in 
space. Thus a lens illuminated by a point-source or line-source feed 
likewise defines an exit pupil for the system of rays incident in it and 
produces a segment of a wavefront in its aperture plane. Lenses and 
reflectors that have aperture areas of the same size and shape and produce 
the same field distributions over the apertures have field patterns that 
differ in no essential detail. The same phenomena are observed when a 
wave passes through an aperture in an infinite opaque screen or through 
the mouth of a horn into free space. 

Experiment shows that whenever the dimensions of the aperture are 
large compared with the wavelength, the diffraction effects are small and 
the major portion of the field pattern is concentrated in the region covered 
by the rays from the aperture. On the basis of this fact a common high- 
frequency approximation technique is used for all problems of the type 
mentioned above. The mathematical details have already been devel¬ 
oped in Secs. 5*11 to 5*12, and we need only summarize here the general 
ideas in the application of the results to the various types of problems. In 
each case the aperture area is associated with a surface 2 of infinite extent 
w^hich divides all space into two separate regions. The problem is then 
equivalent to that of an aperture in an infinite screen on the surface 2. It 
is assumed that the field over 2 is zero everywhere except over the aper¬ 
ture area; in effect, it is assumed that diffraction effects at wide angles 
with respect to the aperture-ray system are negligible. In the case of the 
reflector and lens it is assumed that the aperture field is produced by geo¬ 
metrical reflection or refraction of the rays from the primary feed. In the 
case of a horn the aperture field is taken to be that which would exist over 
the aperture area in a horn of infinite extent—possibly after correction is 
made for reflection from the opening. In the infinite screen problem, 
the aperture field is taken to be that which exists over the area in the 
unperturbed wave in the absence of the screen. 

As was pointed out in Sec. 511, the calculation of the diffraction field 
is based on the integrals of the field equations obtained in Sec. 3*8 by 
means of Green’s theorem. However, the application of Green’s theorem 
was predicated on certain assumptions concerning the continuity of the 
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distribution over the surface—assumptions that are not fulfilled by the 
distribution over 2 in the approximation technique. The method should 
rather be considered to be based on the Huygens-Fresnel principle which 
postulates that each point on a wave surface is a source of elementary 
fields (c/. Sec. 4*1), and the results of the Green's theorem integration 
are to be regarded as furnishing the appropriate identification for the 
sources as stated in Eqs. (3111). The requirement that the source 
distribution must satisfy the equation of continuity then leads to the 
addition of a line distribution of electric and magnetic charge along the 
boundary of the aperture surface. Thus Eqs. (101a) and (1016) and 
hence Eqs. (102a) and (1026) derived from them apply to all diffraction 
problems in the high-frequency approximation method; the fields Er, Hr are 
to be interpreted quite generally as the fields over the aperture surface. 

6*14. Reduction to a Scalar Diffraction Problem.—In many antennas 
the field over the aperture is almost completely linearly polarized, only 
a small fraction of the energy being in the cross-polarization component 
of the field. If the latter is neglected, the calculation of the diffraction 
field is simplified; by a further approximation, consistent with the 
high-frequency approximations made already, the problem can be reduced 
to a scalar diffraction problem. 

The analysis will be restricted to a plane aperture; the aperture will 
be taken in the xt/-plane as in Fig. 5* 10, and the electric field will be taken 
to be polarized in the ^-direction. 

It was pointed out in Sec. 4.1 that the integrals of Eqs. (99a) and 
(996) can be transformed into 

W'-e/.H- es]«‘8’ <112“> 

provided that 2 is a closed surface over the whole of which E and H 
are continuous. Equations (112a) and (1126) are each a set of three 
equations for the three cartesian components of the field vectors; the 
normal derivative d/bn is applied component by component. If 2 is an 
open surface, as in the case of the diffraction problem, a similar trans¬ 
formation can be effected; additional terms appear that vanish in the 
former case of integration over a closed surface. The reader can verify 
that for the aperture the integrals transform as follows: 

5r Jj, x + (a x E) *V* + (n.E) ViMdS 

--»/,[*£+ ,.***'*•■■ <»*> 



Sec. 514] REDUCTION TO A SCALAR DIFFRACTION PROBLEM 165 

a similar expression holds for Eq. (996). The line integral around the 
boundary is different from that of the line distribution of charge but 
arises from the transformation of the surface integrals into one another. 
The diffraction field is the sum of the contribution of the surface integral 
and the line distribution of charges on the boundary. The complete 
expression is then 

KP)- “C fA(*i£~Es!ii)dS + Jrf'‘H1!X')d‘ 

(,14> 
If the field over the aperture is linearly polarized with, say, 

Ev — Et = 0, 

the surface integral contributes only to EX(P). As is seen in Fig. 5T1, 
this leads to a component of the field in the direction of propagation. 

Fig. 5 11 —Reduction to a scalar diffi action problem. 

For a given angle 0, the order of magnitude of this longitudinal component 
is at most EX(P) sin 0. The vector E xt is normal to the aperture. 
It therefore gives rise only to a component Et{P); the contribution of the 
latter to the transverse field is again proportional to sin 0. Now the 
high-frequency approximation method is based on the assumption that 
the diffraction field is contained almost entirely in the region of small 
values of 0; therefore in the significant region of the field the longi¬ 
tudinal and transverse components arising from the surface integral and 
E x * respectively are negligible, and the surface integral may be taken 
alone to calculate the transverse field. As regards the longitudinal com¬ 
ponent introduced by E x t, it will be recalled that the third integral 
of Eq. (110) was such as just to cancel the longitudinal component of the 
field introduced by the first two terms. Therefore, the last two integrals 
of Eqs. (110) virtually cancel each other for small angles 0. 

The diffraction field is thus given by the scalar integral formula 

(U$) , 
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where u stands for the particular component of the field involved. It 
will be recognized that this is the Kirchhoff diffraction formula used in 
physical optics.1 

In the geometrical-optics approximation the field in the region of 
the aperture has the form (Sec. 4*5) 

u = (11(5) 

where A (x,y,z) is the amplitude and L(x,y,z) = constant are the equiphase 
surfaces. Then 

= n . vu = -jkoun ■ VL + u \ $4. (117) 
dn A dn 

If the wavelength is short, A*o is large and the second term may be neg¬ 
lected in comparison with the first: 

« -jkoun • VL. (118) 

The field over the aperture is usually given in terms of the amplitude 
A{x,y,z) and the phase distribution ^(x,y) = koL(x,y}0). It s is the unit 
vector in the direction of ray at a given point on the aperture, wre have 
by Eq. (4-10)2 

koVL = *s; (119) 

then 
du .. 
- « -jkun-s. (120) 

The components of s in terms of the phase distribution ty(x,y) have been 
given previously in Eq. (5 107). 

With regard to dty/dn it is observed that 

where ri is a unit vector from the point on the aperture to the field point. 
Collecting the terms in Eq. (115), we obtain 

«p - fa fAu<^jr [(i* + f)n*r> + M• ®jjd$. (122) 

* flee, for example, M. Bom, Optik, reprint by Edwards Bros., Ann Arbor, Mich., 
1943. 

* This, covers the general case in which the wavelength in the region of the aperture 
differs from that in free space. 
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For the far-Zone field the customary approximations are made with 
regard to e~ikr/r. In addition, n • ri = n • Ri = cos 6 is constant over 
the aperture, and 1/r is negligible compared with jk. The far-zone field 
is, therefore, 

up ~ e~JkR J uelk9‘Rl (n ‘ s + cos 0) dS, (123) 

where p is the vector from the origin to the surface element dS. Atten¬ 
tion should be directed to the n • s term. Only if the phase distribution 
over the aperture represents a small deviation from constant phase can 
n • s be set equal to unity with little error. In that case, we have 

up « e-’hli (1 + cos 0) I ue]kQ,Rl dS. (124) 
Aw It J A 

5*15. Babinet’s Principle for the Electromagnetic Field.—Consider¬ 
able progress has been made during the past few years in obtaining rigor¬ 
ous solutions of diffraction problems. Discussion of these would carry 
us beyond the scope of this work. Attention must be called, however, to 
the relation of Babinet’s principle to the electromagnetic field that results 
from the solution of the problem of the diffraction of a wave by a plane 
metal screen of infinite conductivity.1 

It will be well to recall the form of Babinet’s principle as it applies 
to a scalar wave field.2 Suppose that we have a plane opaque screen in 
the xy-plane; Am is the area covered by the screen and Ao is the aperture 
area. The complementary screen is defined to be that covering the area 
Ao and having aperture area Am. In both cases let there be an initial 
field u% arising from sources in the negative z-region of space, and let 
ui and U2 be the diffraction field produced in the positive z-region by the 
respective screens. The optical Babinet’s principle states that the sum 
of the two complementary fields at any point is equal to the initial wave 
amplitude at the point in the absence of any screen: 

u% = U\ + w2. (126) 

This relates the problem of diffraction around a metal sheet of finite 
area to the diffraction of a wave through an aperture of the same size 
and shape in an infinite plane sheet. 

The principle for the electromagnetic field is fundamentally different 
in that the initial fields are complementary as well as the screens. Let 
Et * F, H» *a G be the initial field arising from sources in the negative 
z-region in the case of one of the screens, and let Ei, Hi be the diffraction 

1 H. G. Booker, “Babinet's Principle and the Theory of Resonant Slots,” TRE 
(Great Britain) Report No. 29, December 1941; E. T. Copson, Proc. Roy, Soc., A, 
186, 100 (1946). 

* M. Bom, Op, cit. 
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field in the positive z-region. Let E> — — G, H» = F be the initial field 
in the case of the complementary screen and E2, H2 its diffraction field. 
Then 

Ex + H2 - F, (126) 
Hi ~ H2 = G. (127) 

The incident field for the complementary screen is rotated 90° with 
respect to the first field, and the complementary relation exists between 

(a) (6) 
Fia. 5 12 -Relation between a slot and a dipole radiator 

the electric and magnetic field vector of the respective diffraction fields. 
This principle leads to a useful relation between the radiation field 

of a slot and that of a dipole. Let S be a slot in an infinite plane con¬ 
ducting sheet, excited by a generator across its center as shown in Fig. 
5*12a. The complementary dipole is a similar thin metal strip (Fig. 5*126) 
energized by a generator across an infinitesimal gap at its center. The 
field vectors over the slot are perpendicular to the corresponding field 
vectors in the case of the dipole. It then follows from the Babinet’s 
principle that the radiation field of the slot is the same as that for the 
dipole, but with the electric and magnetic field vectors interchanged; full 
details of the proof will be found in the paper by Booker. 



CHAPTER 6 

APERTURE ILLUMINATION AND ANTENNA PATTERNS 

By S. Silver 

6*1. Primary and Secondary Patterns,—The discussion of aperture 
systems will be continued in the present chapter with the object of 
developing in more detail the relations between the aperture field and the 
diffraction field. The results will furnish a basis for the design of the 
reflectors and lenses used in directive microwave antennas. The design 
considerations for such systems fall into two major groups: (1) trans¬ 
formation of the specifications that the radiation pattern of the antenna 
as a whole is required to meet into requirements on the aperture-field 
distribution, and (2) the design of the primary feed and reflector or lens to 
produce the required aperture field. The radiation pattern of the com¬ 
posite antenna will be referred to as the secondary pattern in distinction 
to the primary pattern of the feed system. 

It must be kept in mind that strictly speaking the secondary pattern 
is a superposition of the diffraction field from the aperture and the field 
of the primary feed* (cf. Sec. 5T). Microwave feeds, however, are 
designed to have such directivity that the major portion of their energy 
is directed into illuminating the optical device. The overlapping of the 
field of the primary feed and the diffraction field gives rise, therefore, only 
to 'second-order effects; these will be treated in later chapters in the 
discussion of specific antennas. The secondary pattern can thus be 
resolved into two parts: (1) the diffraction field of the aperture and (2) 
the portion of the primary feed field that is not intercepted by the optical 
system. Specifications imposed on the secondary pattern (intensity level 
relative to peak intensity) in the second region are therefore require¬ 
ments imposed on the primary feed pattern in addition to the require¬ 
ments pertaining to the production of a desired aperture field. 

6*2. The Diffraction Field.—The discussion will be restricted to a 
plane aperture and will be based on the scalar field approximation devel¬ 
oped in Sec. 5-14. It is therefore being assumed that the field over the 
aperture is uniformly polarized in one direction, which, to fix our ideas, is, 
say, the ^-direction, the aperture being taken in the sy-plane (Fig. 6-1). 

Let the coordinates of a point in the aperture be f, rj and those of a 
field point P be x, y, z. It will prove convenient to change the notation 
somewhat from that used in the preceding chapter. The field over the 
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aperture will be designated by F(tv); A (tv) will be the amplitude distribu¬ 
tion, and 'Sr(tv) the phase distribution, so that 

F(tv) = A(tv)e-’*«". (1) 

The method of determining the system of optical rays through the apei- 
ture associated with the phase distribution ^r(tv) vvas discussed in Sec. 

x 

, F it* 6 1 —On the diffraction field 

6*12; the explicit relations between the components of a unit vector s 
along a ray and the phase function are given in Eq (5 107) If rj is a 
unit vector in the direction from the aperture point (£,77) to the held point 
P, then according to Eq. (5*122) the diffraction field Up is given by 

UP = ^ JA F(tv) ~ [ (jk + J) i. • rx + Jku • sJ dt dv. (2) 

The diffraction field may be divided into three general zones which 
are determined mathematically by the nature of the approximations 
that may be made in the integral [Eq. (2)]. The three zones are also 
differentiated by the structure of the field, but it should be noted that the 
boundaries of these regions are not sharply defined. 

First there is the near-zone, region of points in the immediate neighbor¬ 
hood of the aperture for which no simplifying approximations can be 
made in Eq. (2). Although the dimensions of the aperture are large 
compared with the wavelength—an assumption that underlies the use of 
Eq. (2)—there is in general, for a given field point in this region, an 
appreciable area of the aperture for the points on which the 1/r term in 
the brackets of the integral is not negligible compared with k *• 2v/\. 
The region extends several wavelengths outward from the aperture, and 
it will be readily appreciated that this is not exactly infinitesimal for the 
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wavelengths of the orders of magnitude of the microwave region. Also, 
for the near-zone region, the variation of i* • ti over the aperture for a 
given field point must be taken into account. The integrations are in 
general difficult to carry out, and a detailed study of the integral for this 
region is beyond the scope and purpose of our present discussion. In 
such cases where the field has been worked out in detail it has been found 
that the near-zone field is determined essentially by geometrical propaga¬ 
tion along the aperture-ray system with fluctuations in intensity over the 
phase surface due to interference effects; the mean value of the intensity, 
however, differs little from that of the geometrically propagated field. 
The shadow region boundary is quite sharply defined. 

Attention should be called to the fact that the scalar diffraction 
integral [Eq. (2)] can at best yield only qualitative results for the near 
field zone. In this region the contributions of the line integrals along the 
aperture boundary in Eq. (5T14) will make significant contributions to 
the field and must be taken into account if the results are to have a 
quantitative value. 

From the near zone we pass into the region of the diffraction field 
which we shall call the optical-Fresnel field by virtue of its correspond¬ 
ence to the Fresnel region of optical diffraction problems. Several 
simplifying approximations are introduced; the orders of magnitudes of 
the errors involved must necessarily be evaluated for each case separately 
To start with, the term 1/r in the brackets of Eq. (2) is considered to be 
negligible with respect to A ; at a distance of several wavelengths from the 
aperture this approximation is reasonable. Second, the variation of 
(i, • Ti) over the aperture is neglected, and the term is replaced by the 
constant i, • Ri = cos 6, where Ri is a unit vector directed from the origin 
to the field point. A third approximation in the same category is to 
neglect the variation of the 1 /r term outside the brackets; it is set equal 
to the reciprocal distance 1/R from the origin to the field point. 

The variation of r over the aperture must be treated more carefully 
in the phase term c“>;r. We have in general 

r = |0r — £)2 + {y — t/)2 + z2f\ (3) 

If the field is concentrated in the region around the z-axis, a distance z 
from the aperture will be reached at which for the points in the significant 
region of the field z» \x — £|, \y — n\. Equation (3) can then be 
expanded as follows: 

r «« + £- 2 z 
*)2 , (v - n)2 + 2z + * + r. + • • • . (4) 

Terms higher than the second order are neglected in the Fresnel field 
approximation. An alternative form of expansion is obtained by express¬ 
ing the coordinates of the field point in spherical coordinates: 



172 APERTURE ILLUMINATION AND ANTENNA PATTERNS [Sec. 6*2 

x — R sin 0 cos ** 
y *= R sin 6 sin <f> = R0, 
z = R cos 0. 

(5) 

Introducing these into Eq. (3), we obtain 

r * R - (a* + fiv) + 
f2 + V2 - (a* + M2 

2R 
= R + n, (6) 

neglecting terms of order higher than the second. It is seen that this 
assumes a£/R « 1, fiy/R « 1. The expansion in the form of Eq. (4) 
is suited for discussing the field over planes z — constant, whereas Eq. (6) 
is best for discussing the field over a sphere of radius R about the origin. 
Since both expansions actually assume that the field is concentrated in 
the neighborhood of the 2-axis, there is no significant difference between 
the results obtained with one or the other. The diffraction integral for 
the optical-Fresnel region thus becomes 

U*mhrw JA F^e~’kr<cos 0 + i'-*)d( dn (7a) 

or 

UP - ^ e~~ fA F«,„)e—(cos e + U • ■) df dr,. (76) 

Eqs. (7a) and (76) differ from the expressions for the Fresnel field 
generally found in the literature in the presence of the term i* • s which 
arises from a nonuniform phase distribution over the aperture. It is to 
be noted that a phase distribution which represents wide deviations from 
constant phase has associated with it a highly dispersed system of rays. 
Under such conditions the assumption that the energy in the diffraction 
field is concentrated around the z-axis is not valid and the approximations 
entering into Eqs. (4) and (6) may not be justified. If, however, the 
phase distribution represents only small deviations from uniform phase, 
the deviation of the rays from a system of parallel rays that are normal 
to the aperture is small; the term i« • s may then be treated as constant 
and equal to unity over the aperture. 

The Fresnel region is characterized by the onset of diffusion of the 
field and the wavefront outside the boundaries defined by the extension 
of the rays through the aperture. The latter, however, still define the 
propagation of the major portion of the field; further details of the Fresnel 
region will be developed in later sections. 

With increasing distance from the aperture we finally pass into the 
Fraunhofer or far-zone region of the field. This is the region with which 
the secondary pattern is concerned. The far-zone approximations have 
beta discussed a number of times before. In the present connection it 
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will be noted that the Fraunhofer region is differentiated from the 
Fresnel region by further approximations that are made in the phase term 
e~ikr: the Fraunhofer field approximation neglects all terms in Eq. (6) 
above the first order in the aperture coordinates thereby considering in 
Fig. 6*1 that the unit vector rx is 
parallel to Rx. We have then 

'•'-ASr //«**':«“» 'WxTT 
+ iz • s)f>,fc8ln^c^c<w^+n,dn^ drj. (8) 

Like all other far-zone fields en¬ 
countered previously, the Fraun¬ 
hofer field is a quasi-point source 
field. The field distribution is the 
same over all spheres about the 
origin; in a given direction 6, <j> 
the amplitude varies monotonically 
as \/R and the intensity as 1 /R2. 

Again if the phase error over the 
aperture—deviations from constant 
phase—are small, the i* • s term may 
be replaced by unity. Equation 
(8) then becomes 

^7 

sr 
6 o 

i 
l 

JL A 

/ 
<6) 

\ 
(d) 

__ 

(/)' 

(1 + cos 6)e~ 
Fig. 6*2.—Transition from Fresnel to 

Fraunhofer diffraction for a slit; (a) . . . 
(/) depict the field distribution across planes 
in the Fresnel region at increasing distances 
from the slit, showing progressive diffusion 
of the field into the shadow region; (g) is the 
Fraunhofer pattern. {Reproduced from J. 
C. Slater and N. H. Frank, Introduction to 
Theoretical Physics, McGraw-Hill, New 
York, by courtesy of the authors.) 

TJ. meoreiicai rnysics, mcuraw-nui, i\ew 
It Will be found that with nearly um- York, by courtesy of the authors.) 

form phase over the aperture, al¬ 
most all of the energy in the field is contained in a small angular region 
about the ^-axis (corresponding to the geometrical property that the aper¬ 
ture rays are all parallel to the 2-axis). The variation of cos 6 over the im¬ 
portant region of the secondary pattern may then be neglected, and we have 
as our final approximation 

(%,ri)ejk °°" t**1 *** & d^drj. 

Equation (9) is frequently used indiscriminately for both small and large 
phase errors over the aperture. This will be done in the present chapter 
and it should be remembered that for the latter cases the results have only 
qualitative value. 
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It was pointed out earlier that the boundaries of the three regions 
of the field cannot be sharply defined. It is clear that the passage from 
the Fresnel approximations to the Fraunhofer approximations is a gradual 
one and is determined to a large extent by the criteria of the acceptable 
error in the approximations that are made. In later sections we shall 
attempt to define an inner boundary for the Fraunhofer region on prac¬ 
tical considerations for special types of apertures. The gradual transi¬ 
tion of the physical characteristics of the field from one region to (he next 
is illustrated very nicely in Fig. 6-2 taken from Slater and Frank.1 The 
figures pertain to a slit over which the field is uniform in amplitude and 
phase. The near-zone pattern (Fig. G-2b) is seen to consist essentially 
of the column of radiation propagated geometrically from the aperture. 
With increasing distance from the apertuie the field diffuses into the 
shadow region, the system of parallel aperture lays finally passing over 
into a cone of rays in the Fraunhofer region 

6.3. Fourier Integral Representation of the Fraunhofer Region.— The 
final approximate expression that was obtained lor the Fraunhofer region 
[Eq. (9)] has an interesting interpretation. Let us define 

kx = k sin 6 cos <£, (10a) 
ky = k sin 6 sin <£; (106) 

Eq. (9) then becomes 

Up = ^ c-’kRg(kx,kv) (Ho) 

with 

gikjc,) - Ja F(t,v)e’<k’^ dl- dr,. (116) 

Consider the plane z = 0. The aperture field can be regarded as the 
function u(x}y) over the entire plane: 

u(x,y) = F(x,y) inside A, j 
v(x,y) = 0 outside A. j (12) 

The function v(x,y) is stepwdse continuous over the entire plane and can, 
therefore, be expressed as a Fourier expansion in the form of the Fourier 
integral: 

u(x,y) 

or 

d£ dii dkx dkv, 

g(kx,kv)e-l(k’T+k‘v) dkm dkv, 

(13) 

(13a) 

1 Introduction to Theoretical Physics, McGraw-Hill, New York, 1033, Chap. 37. 
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with 

g(K kv) = 2w 

2x 

00 OC 

u(t,ij)ei{k*i+ku1l) d% dy, 

s 

J J F(£,ri)e’tk'l+k‘'') d£ ch). (13 b) 

It will be observed that except for the factor of \/2tt Eq. (136) is identical 
with Eq. (116). 

Let us now examine Eq. (13a) If we define a vector k, 

k: kx; ky;k. = + -A■*-**)', (14) 

the function e~jkr satisfies the wave equation and represents a plane wrave 
of unit amplitude traveling in the direction of the vector k. Over the 
plane 2 = 0, the wave produces a distribution 

g—jk*r = g—j(kxx+kyv)' 

J*=o (15) 

The integrand of Eq. (13a) is thus the distribution over the plane 2 = 0 
produced by a plane wave in the direction k writh an amplitude g(kx,ky), 
and the arbitrary distribution u(x}y) is given by Eq. (13a) as a super¬ 
position of plane waves traveling in all directions. Referring to Eq. (11a) 
it is then seen that the amplitude of the field in the Fraunhofer region 
in the direction defined by kx and ky [Eqs. (10)] is the amplitude of the 
plane wave component in that direction wThich enters into the synthesis 
of the arbitrary distribution over the aperture. 

Equations (13a) and (136) are referred to as the pair of mates of a 
Fourier transform. If the function g(kXyk^ is given, that is, the Fraun¬ 
hofer field is prescribed completely both as regards to amplitude and 
phase, Eq. (13a) serves to determine the field distribution over the plane 
2 = 0 that is required to produce the prescribed secondary field pattern. 
In practice the use of the transform is limited by the fact that the second¬ 
ary pattern is prescribed only in power; the phase of g{kx,ky) can be assigned 
at will, and therefore the aperture distribution is not determined uniquely. 
Two different choices* of the phase of g{kxyky) lead to two different 
aperture fields, one of which it may be physically possible to produce, 
whereas the other may not be realizable physically at all, 

64, General Features of the Secondary Pattern.—The results of 
later sections will be anticipated here with a general summary of the 
relation between the secondary pattern and the aperture field. Consid¬ 
ering Eq. (8) or (9) again from the point of view of the superposition of 
contributions from each element of surface on the aperture, the field 
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at a given point is visualized as the resultant of a system of vector 
elements. The magnitude of the vector from the element of surface 
at a point £, 17 is \F(£,ti) \ dri; the angle that it makes with the element 
from the origin (which is taken as a reference) is determined by the 
intrinsic phase difference between them over the aperture and the phase 
difference arising from different path lengths to the field point. The 
absolute maximum value that the resultant of the system of vectors can 
have is equal to the sum of their magnitudes, obtained when the contribu¬ 
tions are all in phase. If the phase over the aperture is constant, the 
absolute maximum is attained in the direction normal to the aperture, for 
in that direction the path length is the same from all aperture points 
to the field point. Since the path-length phase factor 

A sin 6(1; cos <j> + 77 sin <£) 

is a linear function of the coordinates on the aperture, the absolute 
maximum cannot be obtained in any direction in the case of arbitrary 
phase distributions over the aperture unless the distribution is a linear 
function of the aperture coordinates In general, however, there will 
always exist directions in space for w hich the path phase factor makes the 
optimum compensation for the aperture phase differences between the 
elements as compared with neighboring directions. The secondary 
pattern thus has series of maxima and minima If the phase distribution 
does not deviate too widely from constant phase over the aperture, there 
will in general be one maximum that is considerably greater in value 
than the others. The portion of the secondary pattern possessing this 
maximum and contained within the angular region bounded by the 
directions of the adjacent minima is known as the main lobe or sometimes 
as the main beam. The subsidiary maxima are referred to as side lobes. 
The line through the origin and the peak of the main beam is referred to 
as the beam axis. 

From the practical point of viewr the pattern is specified by certain 
beam characteristics: the direction of the peak intensity; the gain, half¬ 
power, and tenth-power widths of the main lobe; and the magnitudes and 
positions of the side lobes. To define the beam widths consider any 
plane containing the axis of the beam; the half-power width © in that 
plane is the angular distance between the two directions about the axis 
in which the power radiated per unit solid angle is one-half the peak 
value; the tenth-power width @(TV) is defined correspondingly. If the 
aperture is symmetrical in shape and the field distribution over the 
aperture has certain symmetry elements in common with the aperture, 
the main lobe will reflect the symmetry of the field distribution. The 
symmetry elements are generally planes of symmetry; these are referred 
to as the principal planes of the pattern. 
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Gain.—Let us consider first the relation between the gain and the 
aperture field. The power radiated per unit solid angle in a given direc¬ 
tion is [c/. Eq. (5*77a)l 

'W,!*. (i») 

The total power Pa radiated by the aperture is equal to the power flow 
across the aperture, which is the integral of the normal component of the 
Poynting vector. The total power is then 

Pa = \ (~f2 jA ■ 8) di dv, (17) 

and the gain function in the direction (6}<t>) is 

0(0,4) = ~2 
T | fA ^(f^Xcos 0 + sz)eikKm9{S'<»<p+'t™<t>) ({£ 

jA |F(£,t?)| 2*z dt drj 
(18) 

The more exact form [Eq. (8)] has been used in Eq. (18) for the field 
intensity Up in the Fraunhofer region. 

It was seen that if the phase is constant over the aperture, the second¬ 
ary pattern attains the absolute maximum in the direction of the 2-axis, 
6 = 0. The aperture rays are parallel to the 2-axis so that sz = 1; the 
maximum value of the gain function, or simply the gain, is, therefore, 

^ i/>(*>*) 
* jAm,r,)VdWv 

(19) 

A case of especial interest is that of uniform illumination over the aper¬ 
ture. F(£,jj) is a constant; from Eq. (19) the gain Go for that case is 

found to be 

Go — 
4vA 

X2 ' 
(20) 

Consider now any other intensity distribution. Making use of the 

Schwartz inequality, 

J fgd(di) < J pd^dr) J g2d£dri, (21) 

where f and g are any two functions; by taking / = F(£,jj) and g = 1, 
we find 

|IU»)I *«*€«**• (22) 



178 APERTURE ILLUMINATION AND ANTENNA PATTERNiS (8^c. t>-4 

Hence, 

Gv < 
4tA 
U" 

(23) 

Thus, the uniform field distribution over the aperture gives the highest 
gain of all constant-phase distributions over the aperture. The ratio 
9 = Gm/Gq, known as the gain factor, may be regarded as the efficiency 
of the aperture in concentrating the available energy into the peak 
intensity of the beam. 

The proof given above that uniform illumination gives maximum gain 
is valid strictly for constant-phase distributions only, since Eq. (19) 
applies only to such distributions. A proof for the more general case 
must be based on Eq. (18); so far, to the author’s knowledge, no such 
proof has been established. If the phase distribution represents a small 
deviation from constant phase, however, and is such that the peak 
intensity lies in the direction 6 = 0, it is certain that the gain is less than 
that of the uniform field. The value of the peak intensity is more 
sensitive to the interference effects between the vector elements from 
the aperture than is the value of the total power to the slight deviations 
of the aperture rays from the normal to the latter. The effect of such 
phase errors is, therefore, a reduction in the aperture efficiency. 

The aperture efficiency can be given more pictorial significance by 
considering the performance of the antenna system on reception. Let 
us suppose for the moment that the primary feed is designed to illuminate 
the reflector or the lens but to have no radiation in other directions. In 
that case the secondary pattern arises entirely from the aperture, and the 
gain of the antenna is equal to the aperture gain 6\f. If now a plane 
wave is incident on a matched antenna along the beam axis, by Eq. 
(2-80), the absorption cross section presented by the antenna to the plane 
wave is 

ArM = ^ Gm- (24) 

From Eq. (20), it is then seen that if the aperture is uniformly illuminated, 
the absorption cross section is equal to the physical cross section presented 
by the antenna to the incident wave. In the case of any other type of 
constant-phase illumination we have 

A 
VM 

(25) 

The effective area is reduced by the gain factor. The aperture efficiency 
may thus be regarded as measuring the effective aperture area presented 
by the antenna to the incident wave. 

In the practical case the primary feed radiates in dirations other 
than that required to illuminate the optical device. The energy not 
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intercepted by the latter is referred to as the spill-over energy. Except 
for secondary effects the total power in the secondary pattern can be 
considered as consisting additively of the power in the Fraunhofer region 
of the aperture diffraction field and the spill-over energy of the feed. 
The over-all gain of the antenna must be referred to the total energy 
radiated in all directions. If Pm is the peak intensity in the secondary 
pattern and P is the total power radiated by the feed, the over-all gain is 

G = 
4irPm 

P 
(26) 

If the aperture intercepts a fraction a of the total power from the feed, 
the power radiated by the aperture is P„ = aP, whence 

A—P 
G - « = aG„. (27) 

* a 

Taking again the uniformly illuminated aperture with an idealized feed 
as the reference, the over-all efficiency of the system is 

S 
a 

Go 
(28) 

The efficiency of the antenna is thus seen to be a product of two factors: 
(1) the fraction of the total power intercepted by the optical device and 
(2) the efficiency of the aperture in concentrating the available energy 
into the peak of the main lobe. 

Beamwidths and Side Lobes.— The beamwidth and side-lobe character¬ 
istics are, of course, intimately related to the dependence of gain on 
the aperture field distributions. The following remarks are based on the 
results of the investigation of a number of special cases. Taking the 
constant-phase distribution first, we have seen that maximum gain is 
realized with uniform illumination. If the illumination over the aperture 
is modified so that the intensity is peaked in the central area of the 
aperture and tapered down in magnitude toward the aperture boundary, 
the diminution in gain is accompanied by an increase in beamwidth and a 
decrease in side-lobe intensity relative to the peak intensity of the main 
lobe. The prominence of the side lobes can be traced to the discontinuity 
at the edge of the aperture, considering the field distribution with regard 
to the plane z = 0 as a whole. 

The effect of phase errors over the aperture, with the types of aperture 
fields that are commonly encountered, is in general to reduce the gain 
and broaden the main lobe. Side-lobe levels may be either raised or 
depressed depending on both the type of phase distortion and the inten¬ 
sity distribution over the aperture. Quite generally the sharpness of the 
minima is reduced and their levels are raised. Severe phase errors over 
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the aperture may result in splitting of the main lobe and enhancement 
of the side lobes to such an extent that it is no longer possible to identify 

a major lobe. 
6.5. The Rectangular Aperture.—A number of special problems 

associated with rectangular and circular apertures will be investigated 
to illustrate the general ideas formulated in the preceding section. The 
rectangular aperture will be treated first. Let the dimensions of the 
aperture be designated by a and &, the orientation of the aperture in 
the ary-plane being shown in Fig. 6*3. The secondary pattern depends 
only on the relative distribution over the aperture, and in the following 
discussion it will be assumed that the distribution F(^rj) is normalized 
to have a maximum value of unity. For the present purposes the com¬ 
pletely simplified expression for the Fraunhofer region [Eq. (9)] will 
be used; in so far as the pattern is concerned we need consider only the 
factor /a/2 f b/2 

/ F(£,r))eJk*m fjyj (29) 
-o/2 J -b/2 

Uniform Amplitude and Phase.—F(%,rj) = 1 for a uniformly illumi¬ 
nated aperture; the integral of Eq. (29) is easily evaluated, and one 
finds that the secondary amplitude pattern is 

0(0,0) = A 

• /V a . n \ . (irb . . . 
sin 1 — sm 6 cos <f> J sin 1 — sm 6 sm </> 

ira . . wb . . . 
-r- sin 6 cos 0 

A 
— sm 6 sm <f> 
A 

(30) 

The patterns in the principal planes (the xz- and yz-planes) are of par¬ 
ticular interest. For the xz-plane <t> = 0, Eq. (30) simplifies to 

sin sin d\ 

0(M) - A-^-A- 
ra . A 

Tme 
(31) 

For the 2/2-plane </> = x/2; the pattern in this plane is likewise given 
by Eq. (31) with a replaced by b. Both patterns are of the same form, 
sin u/u, but are scaled in the angle 6 according to the aperture dimensions 
in the respective planes. The secondary power pattern, normalized to 
a peak value of unity, is plotted in Fig. 6-3 on a logarithmic scale as a 

function of the reduced variable u — (x/X) sin 6. The minima in 

this case are equal to zero and occur at the points u„ = mr, n == ±1, 
±2, • • • . The full widths of the main lobe measured from null point 
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Fig. 6*3. -Seeondaiy pattern of a uniformly illuminated rectangular aperture. 

to null point on either side of the axis are 

22-plane: 2 sin""1 ~ 

2X 
6 * 

2/2-plane: 2 sin”1 

The half-power point on the main lobe is very closely at u = 1.39; hence 
the half widths in the principal planes are 

22-plane: 0 = 2 sin”1 ** 0-88 (32o) 

2/2-plane: 0 = 2 sin”1 ~ 0-88 (326) 
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These illustrate two fundamental points: (1) In a plane of symmetry the 
width of the beam is determined by the aperture dimension in that plane, 
and (2) the diffraction pattern is confined to a smaller angular region the 
larger the dimensions of the aperture as measured in wavelengths. 

The side lobes (peaks) are located at the points um that satisfy the 
relation u = tan u. The first of these comes at ui = 4.51; the second at 
U2 — 7.73. The side-lobe intensities relative to the peak intensities are 
readily found to be 1/(1 + ult), which, from the values of ui and u2, is 
seen to be very nearly equal to l//*£. Referring to the amplitude 
expression [Eq. (31)], it is seen that g(d) is positive over the entire main 
lobe, changing sign in passing through the first zero, returning to a 
positive value on passing through the second zero, and so on. The 
odd-numbered side lobes are, therefore, out of phase with the main lobe, 
and the even-numbered ones are in phase. Such phase reversals are 
characteristic of all power patterns in w hich the minima are equal to zero. 

Separable Aperturc-jicid Distributions.— A common type of aperture- 
field distribution is that which arises writh a cylindrical reflector or lens 
and a line source (c/. Sec. 5*9) where the distribution over the aperture is 
separable into a product of two functions: 

F&i) = FiWFtW- (33) 

Substituting into Eq. (29), we find that the integral is likewise separable: 

g(e 

/a/2 

F i 
-a/2 

(£)ejkS* 
/W 2 

F2{yi)c'kl''"n6'"»+ dy. (34) 
-6/2 

If we consider again the principal plane patterns, wTe see that the pattern 
in a given plane is determined entirely by the field distribution along the 
corresponding aspect of the aperture. The principal plane patterns are 

rrz-plane: g(8) 

yz-plane: g{6) 

F2(v) dy 

Fi(& *1 

Fi(S)e>kt«*9 d£; 

F2(rj)ejkl,,,ane drj. 

(35 a) 

(356) 

The effects of tapered illumination and phase errors on the principal 
plane patterns can thus be studied as two-dimensional problems, provid¬ 
ing, of course, that the aperture field is separable in the form of Eq. (33) 
both in amplitude and in phase. 

6*6. Two-dimensional Problems,—The remaining analysis of the 
secondary pattern of a rectangular aperture will be restricted to a separ¬ 
able distribution m which the field is uniform along, say, the ^-direction; 
that is, Ftirj) = 1. The pattern in the plane x *= 0 is just the sin u/u 
pattern, 
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9(0) = 

and we are left with only the pattern in the plane y = 0, 

g(8) = F ,(«)«*« 8in # (36) 

to consider. Multiplicative constants are being ignored in Eq. (36). 
It is convenient to introduce new variables 

x = — t u = ^ sin 0; (37) 
a A 

the function Fi(£) goes over into a function f(x), and g($) becomes a 
function of u which to avoid difficulties of notation will be designated 
as g(u). Equation (36) then becomes 

9(M) -if.. f(x)e>',x dx. (38) 

It is seen at once that if the same relative distribution, for example, 
f(x) = [1 — (4(2/a2)] = (1 — x2)y is produced over two apertures of 
different size, the two apertures will produce the same secondary patterns 
when regarded as functions of u. The side-lobe intensities relative to the 
peak intensity will be the same in the two cases. However, since 
sin 0 = \u/wa, the angular distributions will differ; the diffraction field 
of the larger aperture will be contained in a smaller angular region than 
that of the smaller aperture, and in particular the main lobe will have a 
smaller beamwidth. The larger aperture will yield higher gain, cor¬ 
responding to the fact that the pattern is confined to a smaller angular 
region in space. This can be seen directly from the expression for the 
gain [Eq. (19)]. For the present we shall consider only constant-phase 
distributions. Equation (19) reduces to 

"x< if.ttM’rff 
(39a) 

for the separable type of distribution. On introducing the variable x, 

this becomes 

Gm = 
2t o6 |/_\ /(*) dx2 

/_\ i mvdx 
(396) 

showing explicitly that the gain is proportional to the area of the aperture. 
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The distribution over the aperture can be characterized completely 
by its moments Mm, 

Mm = xmf(x) dx (m = 0, 1, 2, • • •)• (40) 

These are very useful in relating the properties of the secondary pattern 
to those of the aperture distribution.1 Expanding the exponential in 
Eq. (38) we obtain 

m = 0 

(41) 

or 

g(u) = 
Moa y 
2 m'Mo 

m “0 

(42) 

The power pattern p(u) = |^(m)|2 is then 

u2 + ( 
\12mo 

MiM3 , 
1,2 ' 

A 
3 A ' 4mI )“■ ■ V 

(43) 

It is seen from Eq. (42) that an asymmetrical distribution over the aper¬ 
ture results in a g(u) that is complex so that the equiphase surfaces in 
the Fraunhofer region are not spheres centered at the origin. If, how¬ 
ever, the aperture distribution is symmetrical, that is, f(x) is an even 
function, its odd moments vanish and g(u) is real: 

g(u) = 

2mo 
u 

)■ (44) 

For the latter case, convenient expressions for the beamwidth can be 
obtained by simple approximations. In the neighborhood of the beam 
axis, we shall approximate the pattern by neglecting all terms in Eq. (44) 
beyond the second: 

(>-£-> i«> 
The half-power point in the power pattern corresponds to point u at 
which the amplitude has fallen to \/y/2 of its peak value. Hence 

1 R. C. Spencer, “Fourier Integral Methods of Pattern Analysis,” RL Report No. 
702-1, Jan. 21, 1940. 
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and the half-power width is 

e-2Si„-([(2-V2)t.]“A} 

or 

The effect of tapering the illumination down toward the edges of the 
aperture can be seen directly from this expression. Since the moment 
//2 is the average of the distribution function weighted by the factor x2, 
peaking the function in the neighborhood of x = 0 decreases the second 
moment more rapidly than ju0 which is the average of the function itself. 
The effect of such tapering is to increase the ratio M0/M2 and hence to 
increase the beamwidth. 

A more accurate expression for the beamwidth has been obtained,1 
vhich can be used to construct the main lobe down to its tenth-power 
width. The results are applicable only to the cases of symmetrical 
aperture distributions. For the latter the expansion of the power 
pattern [Eq. (43)] reduces to 

*■>->-© ”,+.1 [(;:)'+£]**■-•"• <«> 
The factor (/x0a/2)2 has been dropped to normalize the pattern to a 
peak value of unity. The power drop in the pattern relative to the peak 
expressed in napiers is N = — In p(u). Considering Eq. (47) to be of 
the form 1 — z, the expansion for In (1 — z) is used to obtain 

Solving for u, we then get 

u = AN*Q - BN), (49) 

where 

a-(£)"■’ <49“> 

Since In p(u) = 2.303 log p(w), the corresponding expression in terms of 
the decibel drop D is 

u = A'DHl - B'D), (50) 
where 

A' = 1.518.4; B' - 2.303B. (50a) 

* R. C. Spencer, op. cit. 
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The full angular width of the main lobe at a given decibel level is, there¬ 
fore, 

©i> = 2 sin-1 (1 - B'D) (51) 

The aperture*field-secondary-pattern relationships are further illus¬ 
trated by the results in Table 61, in which the major secondary-pattern 
characteristics are given for several typical aperture distributions. The 
integration of Eq. (38) is easy to perform for each of these distributions, 
and the details need not be given here. The effect of reducing the 
discontinuity at the edge of the aperture is shown by the series of para¬ 
bolic distributions 1 — (1 — A)x2. It is seen that the gain decreases 
rapidly as A gets in the neighborhood of zero; and the beam width increases. 
The series cosn (irx/2) shows the effect of a higher-order taper of illumina¬ 
tion. All members of the series (n = 1, 2, . . .) reduce to zero at the 
edge of the aperture, but in addition the nth member has n — 1 deriva¬ 
tives equal to zero at the edge of the aperture. The gain decreases and 
the beamwidth increases with increasing n\ the side lobes appear at 
increasingly larger angles and with reduced intensity relative to the main 
lobe. 

6.7. Phase-error Effects.— A phase-error distribution may arise over 
the aperture of an optical system from various causes such as a displace¬ 
ment of the primary feed from the focus or distortion of the reflector or 
lens, or it may be caused by phase error in the field of the primary feed; 
that is, the wavefront is not spherical or cylindrical as is presupposed in 
the design of the optical system. 

It will again be assumed in the following that the aperture field is 
separable, the field being uniform in the ^/-direction and the phase error 
existing in the ^-direction only. If ^ (2{/o) = denotes the phase- 
error distribution, the expression for the secondary pattern [Eq. (38)] 
becomes 

ffM = | jdx, (52) 

where f(x) now denotes the amplitude of the aperture field. As in the 
preceding section, f(x) is assumed to be normalized to unity. 

The discussion will be limited to a consideration of special forms of 
¥(a0, specifically to the following:1 

Linear error: ty(x) = fix. 
Quadratic error: ^(2) = fix2. 

Cubic error: ’J'(x) = fix.3 

1 The results presented here are taken largely from R. C. Spencer and P. M. 
Austin, “Tables and Methods of Calculation for Line Sources,” RL Report No. 762-2, 
Mar. 30,1946. 



Table 6-1.—Secondary Pattern Characteristics produced by Various Types of 

Aperture Distributions. 

*09 
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Linear Error.—Inserting the appropriate expression for ^(x) into 
Eq. (52) we obtain 

gin) = 2 jl (53) 

It is directly evident that this is of the same form as Kq. (38) with u 
replaced by (u — ft). The pattern is, therefore, the same as that of the 
constant-phase distribution but displaced by an amount 0. The peak 
intensity comes at u = 0, that is, in the direction 

0o = sin~1 —• (54) 
aw 

The pattern is thus the secondary pattern of a constant-phase aperture 
field rotated through the angle 0o. The physical basis for this is very 
simple. On expressing the phase distribution in terms of the original 
aperture variable £ = ax/2 and making use of Eq. (5T07), it will be 
found that the aperture rays form a system of parallel rays traveling in 
the direction 0O given by Eq. (54). The aperture field can be considered 
to have arisen from a plane wave incident on the aperture in the direction 

0o. 
If the aperture is projected onto a plane normal to the aperture rays, 

a new aperture is obtained over which the field distribution has constant 
phase. The projected aperture dimension a' is 

a' = a cos 0O, 

and therefore the gain GfM in the case of linear-phase error will be related 
to the gain Gm of the constant-phase distribution by 

G'm = Gm cos 0o. (55) 

This can be verified by a direct calculation on the basis of Eq. (18). 
Quadratic Error.—The secondary amplitude pattern for this case is 

g(u) = | j f{x)e^ux^xt) dx. (50) 

The evaluation of such integrals is generally laborious. For small 
phase errors, however, a convenient approximate method can be used. 
Expanding the exponential factor we obtain 

ff(u) - | ^ /_j x2mf(x)e>u* te- (57) 
0 

The integrals of Eq. (57) can be expressed as derivatives of the pattern 
go(u) obtained in the absence of phase error (0 = 0), for 
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dk 
duk 

J f(x)c‘UI dx = (J)* J xkf(x)e‘ux dx. (58) 

Hence 

, v a V 0‘)”VJm d2m r , M 

^ = 2 Lj ~m\ 
(59) 

m- 0 

Retaining only the first two terms, we have 

g(u) ~ |[ffo(w) + jPg'o(u)]. (60) 

If the amplitude distribution F(x) is symmetrical, go(u) is real; the power 

pattern p(u) is then 

P(«) « * {[ffo(ii)]2 + «(«)]*}. (61) 

The effect of quadratic phase errors is illustrated in Fig. 6*4 for two 
types of illumination: uniform amplitude, f(x) = 1, and tapered illumina¬ 
tion, /(:r) = cos2 (wx/2). In both cases /J = w/2, representing a path 
length deviation of X/4 from constant phase at the edges of the aperture. 
The value of 0 is rather large for the use of Eq. (61) to be valid, but the 
qualitative features are not seriously affected by the errors involved. 
It is seen that the peak intensity still appears in the direction 6 = 0. 
Since the phase error is symmetrical with respect to the center of the 
aperture, the secondary pattern will always be symmetrical about the 
6 = 0 axis. However, it will be found that when 0 gets sufficiently large 
the main lobe becomes bifurcated, with maxima appearing on either side 
of the 6 == 0 axis. The general effect of the phase error is to raise both 
the side-lobe level and the level of the minima. In the case of the tapered 
illumination these effects are so large that the first side lobe is almost 
completely absorbed into an extremely broadened main lobe. The effect 
of phase error on gain is exemplified by Fig. 6-5 which shows the gain 
relative to the constant-phase distribution for a uniformly illuminated 
aperture. The phase error is expressed in terms of path length deviation 
from constant phase. The loss in gain that can be tolerated in practice 
depends, of course, on the operational requirements on the antenna and 

the associated system. 
Cubic Phase Errors.—The cubic phase errors can be treated by the 

same approximation technique as was employed in Eq. (60). The 
corresponding expression for the amplitude pattern is 

g{u) = ; + 0g'o"(u)}. (62) 
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In the case of a symmetrical distribution f(x) over the aperture go(u) is 
real and the power pattern is 

Pin) = £ + A/'o"(«)P- (63) 

If f(x) is an even function, g0(u) is likewise even and hence g"'(u) is odd. 
In the neighborhood of u — 0, g'o”(u) is positive for u > 0 and negative 
for u < 0. It is then directly evident from the form of p{u) that the 
peak will occur at some value u > 0. The effect of the phase error is to 

Fig. 6*4.—Effect of quadratic phase error, maximum phase enoi of rr/2 at the edge of the 
aperture* (a) constant amplitude, (b) tapered illumination,/(x) = cos-2 (ttx/2). 

tilt the beam as in the case of a linear error. In addition, however, the 
main lobe becomes asymmetrical and the side lobes increase on the side 
of the main lobe nearer 0 = 0 and decrease on the other side of the main 
lobe. The shift in the main lobe is also accompanied by a loss in gain. 

Aperture Blocking.—The problem of an obstacle in the aperture is of 
interest in connection with the use of reflectors, for the primary feed is 
located in the path of the reflected rays, thus blocking out a portion of the 
aperture. The obstacle may be considered as a particular type of phase 
error. Assuming that over the exposed area the presence of the obstacle 
does not alter the distribution f(x) which would exist in its absence, the 
obstacle can be regarded as producing a field 180° out of phase with f(x) 
over the area that it covers. 
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Let us consider the particular case1 illustrated in Fig. 6-6o of an 
obstacle located in the center of the aperture. The width w of the 
obstacle will be taken to be small compared with the total aperture width 
a. To express the pattern in 
terms of the variables of Eq. (37), 
we define the normalized width 
25 = w/a. Equation (38) for the 
pattern then becomes 

100 

90 

g(u) a\r 2 l 7-1 J f(x)eJUX dx 

+ f f(x)eJ“*dx 1, (64) 

80 

.S 70 
3 

which can be rewritten as 

0(u) f(x)e’ux dx -it/: 
— J f(x)elux cfcrj. (65) 
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Fig. 6-5. Los.s of gain as a function of 
quadratic pha.se error over a. uniformly 
illuminated aperture. 

g(u) /(.r)e’VT dx - 2b' (66) 

It is seen explicitly that the ob¬ 
stacle can be regarded as an out- 
of-phase field superimposed on the 
original distribution. Over the region of the obstacle f(x) may be con¬ 
sidered constant and equal to unity; hence 

, sin (118) 

W _ 
Since the width of the obstacle is small compared with the aperture width, 
the pattern produced by the former will be very broad compared with 
that of the aperture. For qualitative results the obstacle pattern may be 
regarded as constant over the region of the main lobe and near in side 
lobes of the aperture pattern. The effect of the obstacle is then simply 
that illustrated in Fig. 6*66 of subtracting a constant 25 from the original 
amplitude pattern. If the peak amplitude of the original pattern is 

(lo /: /Or) dx 

and the amplitude of the first side lobe is pa0, the intensity of the first 
side lobe relative to the peak in the modified pattern is 

2b a0 
V = 

do 

pa0 + 25 
+ 2 

do 

(67) 

1 R. C. Spencer, “Fourier Integral Methods of Pattern Analysis,” RL Report No. 
761-1, Jan. 21, 1946. 
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The effect of the obstacle is to increase the magnitude of the first side 
lobe. 

6,8. The Circular Aperture.—The fundamental considerations and 
results developed for the rectangular aperture pertaining to the relation 
between the aperture field and the secondary pattern apply in general 
to the circular aperture, but the quantitative details differ because of the 
difference in aperture geometry. In treating circular aperture problems 

(a) 
Ft<». 6*6—The effect of aperture blocking, (a) modified aperturo distribution, (h) second¬ 

ary pattern. 

it is usually convenient to use polar coordinates p, </>' (Fig. 6*7), which are 
related to £, rj by 

{ = p cos 0', r\ = p sin <£'. (68) 

Denoting the aperture field distribution by F(p,<f>'), the expression for 
the secondary pattern [Eq. (9)] becomes na 

F(p,0')^fcp"in<,co*‘(^"^)P dp 
i 

where a is the radius of the aperture. Introducing the variables 

2 TQ 
X 

„ _ p. r ~ - 
a 

2wa . tD. 
u = -r- sin 8 = — sin 0, 

(69) 

(70) 

the function F(p,<l>') goes over into a function /(r,<£')> and g(6}<f>) goes 
over into a new function which we shall denote simply as g(uf<t>). It will 
be assumed, as before, that is normalized to unity. The pattern 
is then 

[2* r 1 

g(u}4>) ■» a2 J / dr (71) 
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It is observed that as in the case of the rectangular aperture, all apertures 
having the same relative distributions produce the same secondary 
patterns regarded as functions of u. The angular distribution in 0 is 
the same for all, reflecting the symmetry of the distribution over the 
aperture; as seen from Eq. (70), the distribution in 0 again scales by the 

factor X/D; the larger the diameter the smaller is the angular spread 
of the pattern about the (0 = 0)-axis. 

Uniform Phase and Amplitude.—Setting /(r,0') = 1 in Eq. (71) and 
carrying out the integration over 0', we obtain 

g(u) = 2ira2 j rJo(ur) dr, (72) 
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where Jo(ur) is the Bessel function of order zero.1 The integration over 
r leads to 

g(u) = W—(73) 

The power pattern p(u) normalized to unity is shown in Fig. 0*7, plotted 
on a logarithmic scale, as a function of u The half width of the main 
lobe is 

0 = 2 sin"1 (o.51 » 1 02 (74) 

and the first side lobe is 17.5 db down from the peak. These are to be 
compared with the half width of 0.88\/a and the 14-db side lobe of the 
secondary pattern of a rectangular aperture. 

Tapered Illumination.—The effect of tapering the illumination down 
toward the edge is the same as with a rectangular aperture: reduction 
in gain, increase in beamwidth, and reduction in side lobes. The effects 
can be illustrated by considering the series of aperture field distributions 
(1 — r2)p, p = 1, 2, * • • .2 The secondary patterns are given by 

or 

gp(u) = 2 ira2 (1 — r2)pJo(ur)r dr (75) 

9v(y) 
.... > 2pp\Jp+1(u) 
— na --tzt- 

it a2 

p + 1 
APi i(u). (75 a) 

The functions Ap are available m tabular form. * The major character¬ 
istics of the patterns are summarized in Table 6*2 and will not be dis¬ 
cussed further. 

The circular symmetry of the secondary pattern is associated of 
course with the corresponding symmetry of the field distribution. It is 
of interest to consider a distribution of the form 

f(r,4>') - 1 - r2 cos2 <t>' (76) 

which is tapered in the plane </>' = 0 and uniform in the plane 0' = w/2. 
Substituting Eq. (76) into Eq. (71), we obtain 

g(u,<t>) = 2ra2 “ Jo f0r2 cos2 <£'eJur °°* (+~+'>r dr (77) 

1 G. N. Watson, Theory of Bessel Functions, 2d ed., Macmillan, New York, 1945. 
* R. C. Spencer, “Paraboloid Diffraction Patterns from the Standpoint of Physical 

Optics,” KL Report T-7, Oct. 21, 1942. 
* E. Jahnke and F. Emde, Tables of Fundions} reprint by Dover Publications, 

New York, 1948. 
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Table 6*2.—Secondary Pattern Characteristics Produced by a Distribution 

(1 — r2)p over a Circular Aperture 

V 8, gain factor 
©, half-power 

width 
position 

of first zero 

First side lobe, 
db below peak 

intensity 

0 1.00 102 i 
. . 1 22X 

8111 D 17.6 

1 0.75 1.27 £ 
. . 1 63\ 

sin D 24.6 

2 0.56 1 47 Y) 
. t 2 03X 

Mn TT 30.6 

3 0.44 165 i> 
. . 2.42X 

8111 1 n 

4 0 36 181 i 
i 

. 2 79X 
Bill D .... 

This can be evaluated by means of the expansion1 

ejur C ON (j) nJn (ur)eJ n( i-*'*. 

n — — «• 

(78) 

Of particular interest are the patterns in the planes of symmetry, <t> = 0 
and <t> — t/2. We find that these are 

<t> = 0, 

g{u) = 2jto2 {^> — ~ r2[J0(ur) — «/*(w)]rdrj 

= ~ Mu). (79) 

+ -i 
g(u) = 2iras ~ % fQ r*[J0(ur) + Jt(ur)]r dr j 

= ra2 [a1(m) - (80) 

The two patterns are shown in Fig. 6-8. It is seen that the beamwidth 
is greater in the plane <t> * 0 than in the plane <t> = ir/2, corresponding 
to the fact that in the first principal plane the illumination over the 
aperture is tapered whereas in the second the aperture illumination is 
uniform. 

1 Watson, op. cit.f Sec. 2*22. 
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6-9. The Field on the Axis in the Fresnel Region.—An important 
consideration in making measurements of secondary patterns is the 
minimum distance from the aperture at which the field may be regarded 
as being in the Fraunhofer region. To aid in arriving at a criterion it 

2 4 6 8 10 
U s^psin $ 

Fig, 6*8.—Principal plane patterns for the aperture distribution /(r,<£') *■ 1 — r2 cos2 

will be well to discuss briefly the field on the axis in the Fresnel region 
and the transition to the Fraunhofer region. The aperture field will be 
taken to be uniform in amplitude and phase. 

The method of Fresnel zones used extensively in optics affords a 
simple physical basis for understanding the effects that are observed 
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in the Fresnel region. In Fig. 6-9 let the point P at distance R on the 
axis be the field point under consideration. Taking the point P as a 
center, we shall describe a family of spheres of radii R + X/2, R + 2(X/2) 
.... Their intersections with the aperture divide the latter into annu¬ 
lar regions; these are known as the Fresnel zones. The zones will be 
numbered as shown in the figure. Taking any two adjacent zones n and 
n + 1, it is seen from the method of construction that for every contribu¬ 
tion to the field at P arising from an element of surface in the first zone 

x 

there is a contribution from an element in the second zone 180° out of 
phase therewith, and the integrated contributions of the two zones are, 
therefore, very nearly 180° out of phase with one another. Denoting 
the magnitude of the contribution of the rcth zone by Sn, the effect of the 
entire aperture is 

S = Si — S% “h" $3 — 8a + * * * . (81) 

The contributions Sn decrease slowly with increasing n; the resultant 
effect of pairs of adjacent zones is therefore virtually equal to zero. A 
careful analysis1 shows that if the aperture contains a full number of 
zones N, the resultant is very closely equal to 

S = i(Si ± Sn) (82) 

depending upon whether N is odd or even. As R increases, N decreases 
and S fluctuates between the values 

S = i(5i — Sn) « 0 for N even (83a) 
and 

s = i(Si + Sn) « Si for N odd. (836) 

The amplitude of the field along the axis, therefore, passes through 
maxima and minima, the maxima coming at the points that subtend an 
odd number of Fresnel zones, the minima at the points subtending an 

1 See, for example, M. Born, Optik, p. 145, reprint by Edwards Bros., Ann Arbor, 
Mich., 1943. 
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even number. There will be no further fluctuations beyond the point 
on the axis for which the entire aperture consists of a single Fresnel zone; 
this distance is 

D D2 — X2 D2 
R) 4X ~ 4X' 

(84) 

D being the diameter of the aperture. However, the distance Rf cannot 
be taken as the beginning point of the Fraunhofer region, for at that point 
the contribution from the edge of the aperture is still 180° out of phase 
with that from the center; whereas the calculation of the Fraunhofer 

Fig. 6*10.—The transition region between the Fresnel and the Fiaunliofei regions: (a) 
R « Rf « JO*/4X, (b) R « />V2X; (c) R = D*/K (d) R = 00 

region, on axis, assumes that the path differences between points on the 
aperture to the field point are negligible. Considering the aperture to be 
subdivided into small annular zones and resolving the resultant effect 
of the aperture into the superposition of the vector elements of these 
zones, one finds that the vector diagrams take the forms shown in Fig. (HO 
for distances greater than 7?/.1 The slope angle of the vector diagram 
at the terminal point is equal to the phase difference between the edge 
of the aperture and the center, corresponding to the difference in path 
length to the field point. At a distance greater than D2/2\ (Fig. 6-106) 
there is no longer any cancellation between horizontal coipponents of the 
vector elements; at a distance D2/\ the resultanl is a good approximation 
to the value for R — <*>. 

To make a more quantitative evaluation we must consider the actual 
values of the field intensity and the gain. For this purpose we will 
start from the Fresnel approximation [Eq. (7a)], which in the present case 
takes the form 

A p—jkR ffa 

UP = { -R- J0 j0 F{p,dp dtf. (85) 

It will be recognized that this is equivalent to the expression for the 
on-axis field intensity in the Fraunhofer region of an aperture having a 
quadratic phase error p2/2R. Equation (78) is easily integrated for 
uniform illumination giving 

Up = 2j sin Qj2) (86) 

*The vector diagrams depict the variation of only the form factors of the field— 
that is, the integrals of Eqs. (7)—with increasing distance R. 
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This corresponds to radiated power per unit solid angle 

F- ' 2 (O' 4B’[“”(«?)] 

(87) 

The total power radiated by the aperture is simply whence the 
gain is 

4ttA /sin x 
G = x*’ V ~r 

The factor (sin &/x)2 expresses the ratio of the gain measured at a distance 
R to the gain G0 of the true Fraunhofer field at infinity. The accepted 
values of the minimum distance at which pattern measurements may 
properly be made vary between R = Z)2/X and R = 2Z>2/X. The 
values of the gain ratio of Eq. (89) for the two cases are 

D'1 
/e = T’ Go = o. 

(89) 

U _ 2/J2 
S = 0.99; 
(70 

(90) 

There is a little difference between them; for the cases most commonly 
encountered the 27)2/X criterion is to be favored. Other considerations 
which are discussed in Chap. 15 also point in that direction. 



CHAPTER 7 

MICROWAVE TRANSMISSION LINES 

By S. Silvkk 

We have dwelt at considerable length on general theoretical consider¬ 
ations underlying the design and operation of microwave antennas as a 
whole. We now enter upon a program of studying the components of an 
antenna, starting with an investigation of microwave transmission lines. 

Usually about a foot, or perhaps two, of the line immediately preced¬ 
ing the radiating system is at the disposal of the engineer for the insertion 
of matching devices to compensate for the impedance mismatch of his 
antenna; this section will be referred to as the feed line. The following 
discussion of feed lines will be confined to elementary transmission-line 
theory and problems; for more extensive treatments, in particular for the 
analysis of matching devices, the reader is referred to the sources indi¬ 
cated below'.1 

7*1. Microwave and Long-wave Transmission Lines.—A brief com¬ 
parison of long-wave and microwave lines was made in Sec. 1-4. It wras 
pointed out that the use of unshielded parallel wire lines becomes imprac¬ 
tical at microwave frequencies largely because the power-carrying 
capacity is so sharply limited by the small interline spacing required 
if the line is not to radiate. The relation between the interline spacing 
and radiation follows from the ideas developed in Chap. 3. We may 
consider the alternating current in a wire as a line distribution of oscillat¬ 
ing dipoles; corresponding points on a pair of wires carrying equal and 
opposite currents are occupied by similar dipoles in opposite phase. If 
the spacing between the dipoles is small compared with a wavelength, 
their radiation fields will be out of phase at all points in space and annul 
each other. On the other hand, if the spacing is comparable to the wave¬ 
length, the double-dipole system can radiate, there being directions in 
space for which path-length differences will compensate for the intrinsic 
phase difference of the members of the pair. In addition, it should be 
noted that large interline spacings can be used at long wavelengths, since 
the radiation-field intensity of a dipole varies inversely as the square 
of the wavelength [cf. Eqs. (3*148)]. 

1J. C. Slater, Microwave Transmission, McGraw-Hill, New York, 1941, Chaps. 3,4; 
R, L. Lamont, Wave Guides, Methuen, London, 1942; Montgomery, Purcell, and 
Dickie, The Principles of Microwave Circuits, Vol. 8; and N. Marcuvitz, The Waveguide 
Handbook, Vol. 10, of this series. 
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Another hindrance in the use of unshielded lines is their susceptibility 
to interference, which would cause serious installation difficulties. If 
the line is not to radiate, its elements must be symmetrically disposed 
with respect to near-by conductors, in order that equal and opposite 
currents be maintained at all paired points on the line. Perturbation 
of the line balance would also give rise to impedance difficulties. 

It accordingly becomes clear that shielded lines are required for 
transmission at microwave frequencies. Two types are in use: (1) two- 
conductor lines consisting of one conductor surrounded by a second, 
separated by dielectric, and (2) hollow metal tubes. These lines are 
to be considered as waveguides for electromagnetic waves in the enclosed 
dielectric rather than as transmission lines carrying current and voltage 
waves. In fact, in the hollow waveguide it is not possible to establish 
definitions of line current and line voltage that are comparable to the 
quantities defined in a parallel wire line; under special conditions current 
and voltage can be defined for the two-conductor line. However, while 
a new approach must be taken in the fundamental analysis, it is found 
that under suitable conditions transmission-line analogues of voltage and 
current can be defined and use can be made of the line theory summarized 
in Chap. 2. 

7*2. Propagation in Waveguides of Uniform Cross Section.—.We shall 
confine our discussion to lines of arbitrary but uniform cross section, 
that is, waveguides with cylindrical 
walls. The guide walls will be taken 
to have infinite conductivity; the di¬ 
electric in the interior will be assumed 
to be homogeneous, with dielectric 
constant €, permeability ju, and zero 
conductivity; the dielectric will also 
be assumed to be free of charge. 
We shall consider electromagnetic 
fields in these waveguides wdiich have 
a harmonic time dependence; they 
will satisfy the homogeneous field equations obtained from Eqs. (3-32) by 
setting the source functions and the conductivity equal to zero. 

We shall take the 2-axis of the coordinate system to be parallel to the 
generator of the cylindrical wralls of the waveguide. Since the guide is 
homogeneous in structure along the z-direction, a wave of a single fre¬ 
quency will depend on z only through a phase factor and possibly a 
damping factor corresponding to progressive attenuation of the wave. 
That is, the 2-dependence of all field components is of the form where 
y is possibly complex: 

x 

Fig. 7*1.- On waveguide propagation. 

y = a + j/3. (1) 
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With the convention that a and are both to be positive quantities, the 
upper sign in the exponential corresponds to propagation in the positive 
2-direction, the lower sign to propagation in the negative 2-direetion. 
Writing out the field equations in component form and taking into 
account the postulated form of the 2-dependence, 
traveling in the positive 2-direction 

we obtain for a wave 

juiiHx = - ^ - yE„, (2a) 

= fx- + yEx, (26) 

. BEy . dEx 
JuixH, = - ^ + -dJ, (2c) 

and 
. dHt j. 

= -q + y Hv, (3a) 

jwtEy --- — y Hx, (36) 

■ tp dHy dHx 
J(atE' = ax ~ W 

(3c) 

For most purposes an alternative set of equations is more convenient 
to use. Taking Eqs. (2a), (26), (3a), and (36) we 
and rearrangement, 

find, on substitution 

2„ . dll, BEt 
kE* = -jm ~y -y-^, (4a) 

• 9H, BE, 
k*Ev = jun — -y-, (46) 

and 

2„ . BE, BH, 
(6a) 

. BE, BH, 
(56) 

On substitution of these into Eqs. (2c) and (3c), we obtain 

* 
with 

d2E’ + = 0, Bx2 
B*H, , 62H, 
Bxi 

+ + k?H, — 0, 

k* = wfye + y2 = k3 + 72. 

(ба) 

(бб) 

(7) 

The structure of this second set of equations shows that there are 
• two independent field components E,, H. from which the others can be 
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derived by Eqs. (4) and (5). We can consequently classify waves in 
uniform guides into three fundamental types: 

1. riJM-waves (transverse electromagnetic waves) with Ez » H9 = 0. 
2. TS-waves (transverse electric waves) with Ez = 0, Ht s* 0. 
3. 7W-waves (transverse magnetic waves) with Hz = 0, Ez ^ 0. 
TEM-waves.—These are also known as the principal waves. The 

electric and magnetic field vectors lie in a plane transverse to the direc¬ 
tion of propagation as they do in a plane wave. From Eqs. (4) and (5) 
it is evident that the principal wave will vanish identically unless k2 = 0. 
With this condition on k, we find from Eq. (7) 

7 = (a + 3 ft) = jk = jco One)**. (8) 

If such a wave can exist, it will propagate without attenuation and 
with a phase constant ft = o>(/ltc)^ = 2t/\ which is the same as that 
for a plane wave in an unbounded medium. 

To obtain information about the field vectors we must return to 
Eqs. (2) and (3). It is directly evident from Eqs. (2a) and (26) that 

H = (ij2 (i, X E). (9) 

Thus E and H are related as in a plane wave; they are mutually perpen¬ 
dicular and transverse to the direction of propagation. Equation (2c) 
becomes 

dEy dEx _ 
dx dy ’ 

whereas substitution of Eqs. (2a) and (2b) into Eq. (3c) yields 

dEc , dEy _ 
dx 'dy 

The first of these states that in the dependence on x and y the field is 
derivable from a potential function U(x,y); that is, we can write 

E = er~i‘ XTJ(x,y). (10) 

It then follows from the second of the above equations that U(x,y) must 
be a solution of the two-dimensional Laplace equation: 

dHJ , dH? = 
da:2 dy7- (ID 

The electric vector of Eq. (10) is everywhere normal to the equipoten- 
tial surfaces U — constant. Since the conductivity of the guide walls 
is infinite, E must be normal to the walls by the boundary conditions 
formulated in Sec. 3-3; consequently, the walls of the guide must cor- 
reapond to equipotential lines of U. This, however, raises an important 
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distinction between «et»gte-6onductor and two-conductor lines. In the 
case of a single-conductor line we are concerned with a solution of 
Laplace’s equation in a simply connected region—a solution that assumes 
a constant value over the boundary. The only such solution is that 
for which U is a constant over the entire region; hence the gradient and 
the field vectors are zero. There is no TEM-wave possible in a hollow 
waveguide. In the two-conductor line we seek solutions of Laplace’s 
equation in a multiply connected region. The required solution assumes 
one constant value over one boundary and another constant value over 
the second boundary, as in the electrostatic problem of two conductors 
at different potentials. Such solutions exist; consequently a TEM-wave 
is possible in any two-conductor line. Fvrflu rmore since y is a pure 
imaginary for all frequencies, the lossless two-conductor line supports free 
propagation of this wave type at all frequencies. 

TE-waves.—These are known also as '//-waves. The electric field is 
wholly transverse to the direction of propagation, while the magnetic 
field has a longitudinal component Hz in the direction of propagation. 
It is clear from Eqs. (4) and (5) that all the other components can be 
derived from Hz. If we write 

Hz = yKx,y)c~y(12) 
41 must satisfy Eq. (0b): 

VV + = 0. (7.66) 

We must find solutions of Eq. (66) that lead to field components satisfy¬ 
ing appropriate boundary conditions at the guide walls. By Eqs. (3*24) 
and (3*28), these conditions are 

(n x E) = (nxEv - nyEx)iz = 0, (I) 
(n • H) = nxHx + nyHy = 0, (II) 

where n is a unit normal to the boundary, directed into the interior of the 
guide. From Eqs. (5a) and (56) it follows that (II) is equivalent to 
requiring 

dHt __ df/ _ q 
dn dn 

(13) 

over the boundary. On inserting the values of Ex, Eu from Eqs. (4a) 
and (46) into (I), one finds that condition (I) likewise reduces to Eq. (13). 
Thus, the boundary condition (13) is the only one that need be imposed 
on the solution. 

Solutions to Eq. (66) which satisfy Eq. (13) are possible only for 
definite values of k. These are known as the characteristic values; we 
'shall designate them by To each characteristic value there corre¬ 
sponds a set of wave types which are spoken of as modes of propagation; 
in most cases of interest there is only one mode for each value of k. Any 
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one mode is completely specifiecTBy £ 
cross section of the line. The propagation constant ymn toi a 
is 

Jmn = (kL - k*)». 

j^2()5 

ISPBprer a 
ap^imode 

er a 
mode 

(14) 

It is immediately evident that if K2mn < &2, then ymn is a pure imaginary 
and the wave is propagated without attenuation. Conversely, if 
*m« > k2> then ymn is real and the wave is attenuated. A wave of fre¬ 
quency v = 27p/« will, therefore, be freely propagated only in those 
modes for which u(fie)Vi = 2t/\ > Kmn. The phase constant for a given 
mode in which free propagation takes place is 

fitnn = X- = (*’ - «L)’4. 

If we define the cutoff wavelength by the equation 

- 

Kmn xa.’ 

then the wavelength in the guide is 

(15) 

06) 

Ha)7 
(17) 

When the wavelength in unbounded dielectric exceeds the cutoff wave¬ 
length, the wave cannot propagate in that particular mode. A hollow 
waveguide thus behaves like a high-pass filter, for there is a definite 
upper limit to the cutoff wavelength, corresponding to the smallest 
characteristic value Kmn. In terms of the free-space wavelength X0 and 
the .specific inductive capacity Jct = e/e0, the guide wavelength is given by 

Xo/w 

" _ i/x0 V ■*' 
K \\£n) _ 

(17 a) 

the permeability n of the medium is assumed to be negligibly different 
from that of free space, mo. 

The wave type, or mode, corresponding to a characteristic value 
Kmn is designated as TEmn. It follows from Eqs. (5) and (12) that the 
transverse magnetic field is given by 

H« - 1«-**V*. 

The complete magnetic field is, therefore, 
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H = g-y (- J V* + #,)• (18) 

The electric field is given by E = (1/jue) V xHor 

E,= -^(Hx i*). (19) 
j y 

TM-waves. -The magnetic field is wholly transverse to the direction 
of propagation, whereas the electric field has a component Ez in the 
direction of propagation. These waves are known also as E-waves. If 
we write 

Ez = <t> (x,y)e-i*, (20) 

<t>(xfy) must satisfy Eq. (Ga): 

VV + k24> = 0, (7.0a) 

which is the same equation as that for $(x,y) in the case of 7’A-waves. 
The essential difference between the problems arises from the boundary 
conditions. The boundary condition (I) is a statement that at the walls 
the tangential electric field must be zero. We thus require 

nxEy — nyEx = 0, (21a) 
Ez = 0; i.e., <t>(x,y) = 0, (216) 

over the walls. Substituting from Eqs. (4a) and (46), we find that 
condition (21a) is equivalent to 

(n x V<£) = 0. (21c) 

If condition (216) is satisfied, the boundary corresponds to a curve of 
constant <f>) hence V<f> is normal to the boundary, and condition (21c) is 
automatically satisfied. Further, from Eqs. (5a) and (56) it follows that 
for TM-w&ves Eq. (21a) is equivalent to the boundary condition (II) 
on the magnetic field, stated previously. Again, therefore, we have a 
single boundary condition, namely, Eq. (216), to impose on the solutions 
of Eq. (6a). 

As in the case of TIE-waves, it is found that solutions $(x,y) of Eq. (6a) 
which satisfy the boundary condition exist only for certain character¬ 
istic values Kmn; these are, of course, different from the TE-values. To 
each characteristic value there corresponds at least one wave type or 
TM-mode. The general remarks concerning the propagation constant 
7**n and the conditions for free propagation are equally applicable to the 
TM-mode; the guide wavelength is given again by Eqs. (17) and (17a), 
It follows from Eqs. (4a) and (46) that the complete electric field, for a 
single mode, is given by 
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E e~">" 
(~ ^ + ^*)» (22) 

the magnetic field obtained therefrom by H * — (1 /jo)ix)(V x E) is 

H, = “(Ex i,). (23) 
jy 

7*3. Orthogonality Relations and Power Flow.—Examination of Eqs. 
(18), (19), (22), and (23) shows that in a freely propagated mode, for 
which 7 = jfi is a pure imaginary, the transverse electric and magnetic 
fields are in phase with each other and are in time quadrature with the 
longitudinal field component associated with the given mode. The func¬ 
tions ^ and <t> are arbitrary to within a multiplicative constant; by a 
simple readjustment of constants which does not affect the relative 
magnitudes and phases of the field components, the latter can be put in 
the following form: 

T E-waves: 

Hz = jll 

Et = Ea,e 

H t = Hate-'*"*; 

TM-waves: 

Ez = jEaze 

E t = Eate~^nZ; 

H* = H 

//„ = -=■ *a, 
CO/JL 

(24 a) 

E,„ = Vi/^x U, (246) 

H„, = ^ V<t>a. 
itifX 

(24c) 

Kar = f 
Pa 

(25a) 

E at = ^<t>a> (256) 

Hat Q 1* X V (f)a. 
Pa 

(25c) 

where the functions Haz, Eat1 Ea*, and Hat are all real. The subscript a 

represents the pair of mode indices m, n. Equations (24) and (25) are, 
of course, still to be multiplied by arbitrary constants determining the 
amplitudes of the waves. From these expressions it is seen that the 
Poynting vector S = | Re (E x H*) arises entirely from the transverse 
field components; the power flow is, therefore, entirely along the axis 
of the waveguide, no power flowing into the walls of the guide. 

The same expressions [Eqs. (24) and (25)] with replaced by jya, 7« 
being real, serve also for the modes that are beyond cutoff for the given 
operating wavelength. It is seen that in these modes the transverse 
electric and magnetic fields are in time quadrature; consequently, there 
is no energy flow along the axis of the guide. In fact, the Poynting 
vector S * i Re (E x H*) vanishes completely; the energy associated 
with these modes is stored in the waveguide in the neighborhood of the 
point of their excitation. 
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The modes possess important orthogonality properties.1 The total 
power transported through any cross section of a guide that is supporting 
free propagation of several modes is the sum of the powers transported 
by the separate modes; there is no energy coupling between modes. 
For example, let us consider the power transport Pab of the mixed Poyn- 
ting vector S„& = i(Ea< x H&() of a pair of modes TEa and TEb; we have 

J (E* x Hw) • i; dS 
crows 

section 

[(Nipa x i«) x V'Pb] ■ U dS = Via • V^b dS. (20) 

The last integral transforms as follows: 

J V+a-VtbdS J V ■ (ta Vib) dS - J taV^bdS. (27) 

By means of Green’s theorem, the first integral on the right-hand side 
transforms into a line integral over the boundary: 

J V • (ypa V\f/b) dS = ~ ^ dsy (28) 

the positive normal to the boundary being taken as shown in Fig. 7*1. 
Since the function \f/b satisfies the boundary condition [Eq. (13)] for the 
TE-modes, the integral (28) is equal to zero. Making use of Eq. (66) 
we have then 

/ 'Via • Nib dS = K$ / dS. (29) 

Interchanging the role of \pa and ^ in Eq. (28), we arrive in a similar 
manner to 

/ Via • Vib dS = K.I / 'I'afrb dS. (29 a) 

It is evident that if a ^ 6, Eqs. (29) and (29a) can both be satisfied 
only if 

/ Via • Vib dS J iaib dS = 0. (30) 

We have thus found that 

(31) 

1 H. A. Bethe, u Formal Theory of Waveguides of Arbitrary Cross Section,” ltL 
Report No. 43-26, March 1943. 



Sec. 7-4] TRANSMISSION-LINE CONSIDER A TIONS 209 

It is readily seen that the proof applies without change to the case 
where one or both of the modes are beyond cutoff. Similar techniques 
lead to the result that there is no energy coupling between pairs of 
7W-modes or between a TE- and TM-mode. The power relation is 
only one of a number of orthogonality properties. The others are given 
without proof: if a b, 

1 Ea,Eht dS = f HazHb, dS = 0, (32a) 

II 

w
 

W
 f Kat. Hw dS = 0. (326) 

7-4. Transmission-line Considerations in Waveguides.—We have 
concerned ourselves in the foregoing with a wave propagated in the 
positive 2-direction; this is the physical situation which would exist in a 
waveguide extending to z = + 00 with a generator at some remote point 
along the negative 2-axis. It was found for every wave type that in a 
single mode there is a simple linear relationship between the transverse 
components of the electric and magnetic fields: 

TEM-mode: H = A. (i, x E), 

TE-mode: E = Z® (H x i2), 

TM-mode: H = *-0)- (i* x E), 
"mn 

Z<» -(?)■ (33 a) 

Z«n "ran 
y mn 

(336) 

Z<°) 
^ mn 

_ y mn * 

j&€ 
(33c) 

These are analogous to the current-voltage relationships in a single wave 
on 9*11 infinite two-wire transmission line. The quantity Z^n is known 
as the transverse wave impedance. 

The general field for a single mode in a waveguide that does not 
extend to infinity consists of two waves, one propagating in the positive 
e-direction, the other in the negative ^direction. The field expressions 
for the latter are fundamentally the same as those given by the sets of 
Eqs. (24) and (25), but with e&a* replacing e~^aZ, and with the magnetic 
field components reversed in sign to give the proper direction to the 
Poynting vector of the wave. Consider, for example, the TEa-mode. 
Let Aa and Ba be the amplitudes of the electric field in the waves propagat¬ 
ing in the positive and negative 2-directions, respectively; from Eqs. 
(246) and (24c) we have then that the transverse fields are 

Et = (Aae~J'Pa* + BaeJffat)(V\l/a x i*)> 

H< = {Aae->»“‘ - 

(34a) 

(346) 
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On considering the scalar factors that express the dependence of the 
fields on position along the waveguide axis, it is seen that the mode 
can be set into equivalence with a two-wire transmission line of character¬ 
istic impedance Z(®; the electric and magnetic fields are the analogues 
of the voltage and current, respectively. It must be noted that the 
characteristic impedance of the equivalent line differs from mode to 
mode; and consequently, a waveguide supporting free propagation 
of a number of modes cannot be set into correspondence with any one 
two-wire line. 

The definition of the equivalent two-wire line for a given mode is 
arbitrary to a considerable extent. Given a function \^a(xfy)f we may 
define a pair of vector functions 

ga(x,v) = Cl Vypa x iz, (35a) 
ha(x,y) = r2 V*0, (35b) 

where the constants C\ and c2 are required to be such that 

(ga X ha) • iz dS = C1C2 / |V^a!2 dS 

The constants Ci and c2 are arbitrary. In terms of the new vector func¬ 
tions, Eqs. (34a) and (34b) can then be written 

E t = Vaga(x,y) = [V(„+)e~^aZ + V{~)e^aZ]ga(x1y)1 (36 a) 

a = Iaha(x,y) = a(x,y). (36b) 

The quantities Va and Ia will be named the voltage and current param¬ 
eters of the mode, respectively. The voltage parameter is the sum 
of two “voltage” waves traveling in opposite directions, of amplitudes 
V(+} and V(~\ respectively. 

Equations (36a) and (366) serve to emphasize the arbitrary feature 
of the two-wire line equivalent of a waveguide mode. The ratio ci/c2 
can be chosen at will; given any ratio, the characteristic impedance of 
the equivalent line is 

z0 = Z?> (37) 
Cl 

the voltage and current parameters represent directly the voltage and 
current on the equivalent line. The voltage and current parameters 
possess one property that is unique, independent of the arbitrary choice 
of the constants Ci and Ci, provided Eq. (35c) is satisfied. The net power 
passing through the cross section of the guide in the positive z-direction 
is 

P~i f [Re (Ei x H?)J 'i,dS = f Re VJt- (38) 
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Thus, any choice of definition of the voltage and current parameters 
leads to a two-wire line representation in which the power flow computed 
on the basis of the equivalent voltage and current is equal to the power 
transport along the waveguide of the given mode. 

One possible choice of the definition of the equivalent transmission 
line is to take c\ = c2 = 1. The function yl/a(x,y) is itself arbitrary to 
within a multiplicative constant; it can, therefore, be chosen so that it 
satisfies the normalization condition 

/ |V*.|*dS«l. (39) 
J C I 0*iH StM tion 

The characteristic impedance of the line in this case is equal to the trans¬ 
verse wave impedance. This definition has one shortcoming: It is 
possible to change the dimensions of the waveguide, other than by a 
jscale factor, without changing the characteristic impedance of the 
equivalent line. Consider, for example, a pair of two-conductor lines, 
having different cross-sectional dimensions and configurations, joined 
together to form an infinite line. The wave impedance of the TEM-mode 
is independent of the cross-sectional dimensions, and on that basis alone 
the hybrid line is equivalent to an infinite homogeneous two-wire line. 
The treatment of the junction effect can be simplified considerably by a 
different choice of the definition of the characteristic impedance of the 
line, obtained by multiplying the wave impedance by a factor c2/ci that 
is a function of the cross-section geometry. In Sec. 7-6 it will be shown 
that there is a natural physical definition of the voltage and current 
parameters for a TEM-mode which leads to a characteristic impedance 
having the desired properties. Similar considerations apply to the other 
modes; it is possible to choose the ratio c2/ci in Eq. (37) to be a function 
of the cross-sectional dimensions of the waveguide in such a way as to 
simplify the analysis of problems involving junctions between wave¬ 
guides of different cross section.1 

The transmission-line analogy develops more fully if we consider the 
waveguide to undergo sudden changes in structure. Such changes may 
be produced by obstacles inserted at some point in the guide, a sharp 
transition in the properties of the dielectric medium, or a sudden transi¬ 
tion to a waveguide of different cross section—to mention but a few. 
We shall consider in detail the simplest of these cases—a sharp transition 
in the dielectric in a guide of uniform cross section. For convenience 
the boundary between the two media will be taken to be in the plane 
z = 0, as shown in Fig. 7-2. Let the constants of the medium to the 
left of z « 0 be ci, mi and those of the medium to the right of z «* 0 be 

l For further details see J. C. Slater, Microwave Transmission, McGraw-Hill, 
New York, 1942, Chap. 4. 
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2=0 
Fig. 7-2.—Discontinuity in waveguide strue- 

tute 

As a typical ease consider a TE-wa,ve of a single mode to be 
incident on the boundary from the left. To the right of z = 0 we will 

have a transmitted wave and to the 
left a reflected wave, in addition 
to the incident wave. No other 
waves will occur, since the con¬ 
tours of the cross section are uni¬ 
form and there is no necessary 
distortion of the field configuration 
at the boundary; these three waves 

will suffice to satisfy the boundary conditions on the fields at the discon¬ 
tinuity. 

The field vectors of each of the three wTaves are derived from a scalar 
function ^{xyy) according to Eqs. (24a) to (24c). Furthermore, the 
scalar functions for the three waves all satisfy the same differential 
equation [Eq. (Gb)]y and the same boundary conditions at the w^alls of the 
waveguide; hence, all three fields derive from the same scalar function. 
The ratio c2/ci in Eq. (37) is of no immediate consequence in this case, 
because the cross section is uniform and may be chosen equal to unity; 
the function \p(x,y) may also be required to satisfy the normalization 
condition [Eq. (39)]. The only significant differences between the waves 
are the amplitudes and the transverse wrave impedance. The field in 
region 1 is then1 

and in region 2, 

Ei, = [FJ+’r*.- + V[ W]g(x,y), 

Hi, = j'ylVfW - V[-W]h(x,y); 

Ei, = [V^e~^)g(x,y)} 

Hi, = L [V^e-^]h(x,y). 

(40a) 

(406) 

(41a) 

(416) 

According to the boundary conditions (Sec. 3*3) the transverse 
electric and magnetic fields must be continuous across the plane z = 0; 
we have then 

Fi+> + V[-' = Fjft (42a) 

^_tFi+>_F<-)]=^.n+>. (426) 

As in the case of a two-wire line, these equations express the continuity 
of voltage and current at the junction of two lines of different character¬ 
istic impedance. We can also define an electric-field reflection coefficient 

rw, 
1 The mode subscript a will be dropped to simplify the notation. 
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r(2) = ^ <** = r(0)eW, (43) 

which corresponds to the voltage reflection coefficient of Eq. (2*27). 
From Eqs. (42a) and (42b) the value of the reflection coefficient T(0) at 
z = 0 is found to be 

r(0) = 
Zf - z<°> 
Zf + Zf 

(44) 

It is evident that this is equivalent to the reflection coefficient of a line 
of characteristic impedance Zi0) terminated in an impedance Z(2°\ With 
respect to the terminal impedance, it will be noted that the line to the 
right, extending to infinity, is equivalent to a line terminated in its own 
characteristic impedance and hence presents an input impedance Z(20) at 
the plane z = 0. 

The reflection coefficient T(z) is to be regarded as the fundamental 
transmission-line quantity for a waveguide. Evidently it is free from 
the arbitrary factors entering into the definition of the voltage and current 
parameters and the characteristic impedance of the equivalent trans¬ 
mission line. It is apparent from Eq. (43) that it transforms along the 
line just like a voltage reflection coefficient. Also, on computing the 
Poynting vectors of the incident and reflected waves, it will be seen that 
the electric-field reflection coefficient bears the same relation to the inci¬ 
dent and reflected power as the voltage reflection coefficient (Sec. 2*7). 
At any point along the line we can regard the section to the right as 
presenting an input impedance, normalized to the characteristic imped¬ 
ance of the mode, 

m = 
L± ECO 
l - r(z) 

(45) 

The normalized impedance is also independent of the choice of the 
definition of the equivalent transmission line. Making use of the 
transformation property of F(z) expressed by Eq. (43) it is found that 
the normalized impedance transforms along the waveguide according to 

f(* ± D 
f (z) + j tan ftt 

1 T if («) tan fit 
(46) 

just as it does on a two-wire line. The normalized admittance can also 
be defined in the same manner as was done in Sec. 2*6, 

,w ■ m 
and it is evident that it also transforms along the waveguide according 
to Eq. (46). Thus, the entire discussion in Chap. 2 on impedance mis- 
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match, standing-wave ratios, and line transformations can be carried 
over to the fields on any one mode in a waveguide. 

7*5. Network Equivalents of Junctions and Obstacles.—The develop¬ 
ment of the problem considered above proceeds in a similar manner for 
TEM- and 7W-modes and leads to equivalent two-wire line analogies 
for any single mode. The discontinuity that we have considered in that 
problem is equivalent to a junction between a pair of two-wire lines of 
different characteristic impedances, such that the capacitative and 
inductive effects due to the junction are negligible. At such a junction 
both the current and voltage are continuous, corresponding to the 
continuity in the transverse magnetic and electric fields, respectively, in 
the waveguide problem. As a second step in developing the transmis¬ 
sion-line analysis we shall consider jurction effects and the problem of 
obstacles inserted into a waveguide. The general theory of these prob¬ 
lems is treated extensively in other volumes of this series.1 We shall 
restrict ourselves here to several qualitative remarks. 

As a specific problem let us consider a junction between two wave¬ 
guides of the same cross-sectional shape but different dimensions, joined 

in the plane 2 = 0 (see Fig. 7*3). 
The dimensions of both guides are 
assumed to be such that they can 
support free propagation at the given 
frequency in one mode only; we shall 
refer to the latter as the dominant¬ 
mode wave. We shall assume the 
dominant-mode wave, set up by a 

generator at a remote point on the negative 2-axis, to be incident on the 
junction. Since there is a change in cross section at the junction, we 
should certainly expect to find a reflected wave of the dominant mode on 
the left and a transmitted wave of that mode in the waveguide on the 
right. The fields must join in the plane z = 0 so as to satisfy the appro¬ 
priate boundary conditions. Over the opening in the junction the trans¬ 
verse fields must be continuous; over the metal surface of the junction 
the transverse electric field and the normal component of the magnetic 
field must vanish. The latter conditions cannot be satisfied by the three 
dominant-mode waves alone; higher modes must be excited in both 
waveguides at the junction. 

The generation of the higher modes arises from the necessary distor¬ 
tion of the electric and magnetic fields due to the edge of the junction 
and its metal surface. The electric-field lines must be normal to the 
latter—a condition that cannot be met by the dominant mode alone in 
the waveguide to the right. However, according to our assumptions as 

1 Principles of Microwave Circuits, Vol. 8, and The Waveguide Handbook, Vol. 10. 

2=0 
Fit;. 7*3. Junction effects in wave¬ 

guides*. 
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to the waveguide dimensions, the higher modes cannot propagate; except 
within a short distance of the junction (of the order of a wavelength) 
the fields consist essentially of dominant-mode waves. The higher modes 
represent electric and magnetic energy stored at the junction. It is 
possible to represent these energies as energies stored in a reactive network 
equivalent for the junction.1 In the general case the network takes the 
form of a T- or II-section (see Sec. 2-2). The effect of the junction on 
the dominant-mode wave thus arises from two factors: (1) a discontinuity 
in characteristic impedance and (2) a reactive four-terminal network 
inserted between the lines. The precise values of the elements of the 
latter network again depend on the definition of the characteristic imped¬ 
ance of the equivalent line for the dominant mode. A number of junc¬ 
tion networks are given in the Waveguide Handbook, Vol. 10 of this 
series; in each case, the definition of the characteristic impedance (or its 
reciprocal, the characteristic admittance) is given. The elements of the 
netwrork can, of course, be expressed as normalized values with respect 
to the characteristic impedance of either guide. 

In the waveguide to the left, at a short distance from the junction, 
we have only the incident and reflected dominant-mode waves. Here 
we can apply transmission-line concepts to the dominant mode and 
define the corresponding electric-field reflection coefficient. This reflec¬ 
tion coefficient can be related to an effective impedance terminating the 
line at the junction. This impedance, in turn, may be expressed as due 
to a junction network across the output terminals of which there has been 
connected the characteristic impedance of the guide to the right. These 
procedures lead to consistent definitions of the junction impedance. 
The junction network necessary to represent the stored energies, when 
inserted between the transmission-line representations of the two wave¬ 
guides, gives rise to a reflection coefficient in the region on the left cor¬ 
responding to the electric-field reflection coefficient obtained on the basis 
of field-theory analysis. 

The theory of obstacles develops along similar lines. It is found, as 
in the case of junctions, that an obstacle has the same effects on impedance 
and energy stored as a four-terminal network inserted between a pair of 
transmission lines whose characteristic impedances are the wave imped¬ 
ances of the dominant mode. It must be emphasized that each mode 
which can propagate has its own transmission-line analogue and that 
simple transmission-line theory applies to a waveguide only when it can 
support but one mode. Transmission theory alone can give no informa¬ 
tion as to the network equivalents of junctions and obstacles; these 
must be obtained by field-theory analysis. The equivalent network also 
depends on the particular dominant mode being considered. Once the 
equivalent network has been established, it can be expressed as a T-sec- 

1 See Principles of Microwave Circuits, Vol. 8 of this series. 
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tion, and the impedance transformation properties of such networks can 
be used in the conventional manner. 

7*6. TEM-mode Transmission Lines.—We have pointed out earlier 
that in general it is not possible to set up unique definitions of voltage 
and current in waveguides, and we have therefore set up transmission¬ 
line analogues in terms of wave impedances and field-reflection coefficients. 
In the case of TEM-modes, however, it is possible to set up transmission- 
line quantities that are directly related to the two-wire line quantities 
discussed in Chap. 2. 

It was found in Sec. 7*2 that the electric field over any cross section 
is derivable from a potential. Hence, over a cross section, the line integral 
of the electric field from the inner conductor Ci to the outer conductor 
C2 is independent of the path and indeed is equal to the difference betw een 
the values of the potential over the conductors. This defines the voltage: 

Ve-i* = J E • dr = e~~*z j VC dr = (( 2 - l i)(~ys- (47) 

There exists also a relation between surface integrals over any closed 
region in a cross section: 

^ (V x H) • iz dS — jwe (j) E • iz dS — 0. (47a) 

It follows that the line integral of H over a closed curve surrounding C\ 
is independent of the choice of the curve. In particular, let us take a 
path along the boundary of Cj. H is tangential to Ci and by the bound¬ 
ary condition (Sec. 3*3) is equal in magnitude to the surface current 
density K. Hence the line integral of H gives the total current carried 

by Ci: 

j)c H • ds = 2>“^. (48) 

The line integral of H along the boundary of C2 gives the total current 
carried by the latter; by virtue of the equality of the line integrals the 
two gurrents are equal. On carrying through the details of the vector 
calculation, it will be found that the current on C2 is opposite in direction 
to that on Ci. There is thus a direct two-wire line analogue with voltage 
V and current /. Corresponding to these we define a characteristic 
impedance, 

This is, of course, different from the wave impedance for the mode. 
The relationships between the Z0 defined in Eq. (49) and the two-wire- 

line impedance become more evident on calculating the equivalent series 
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inductance and shunt capacitance per unit length of the two-conductor 
system. The magnetic energy for unit volume is %n\H\2, and therefore 
the magnetic energy per unit length of line is 

-ill. cross section 
|Tf/|2d,S. 

If L is the equivalent inductance per unit length, then 

Wm = ILP; 
hence 

e JI \vU\*dS 
L = —-fi 

(50) 

(50a) 

Similarly the electric energy per unit volume is and the electric 
energy per unit length is 

Wt = //. rows section 
|vt/|2 dS. 

The equivalent capacity C per unit length is then 

(51) 

or 
W, = \CY- 

C = 
t [ f 

V- (51a) 

According to Eq. (2*20) the characteristic impedance of a lossless two- 
wire line is 

Combining this with Eqs. (50a) and (51a), we obtain the quantity defined 
in Eq. (49). 

For most practical purposes a two-conductor guide supporting the 
TEM-mode as its dominant wave can be treated from the voltage-current 
point of view. Applications of this fact will be made in Secs. 7*9 and 
7*10 in discussing impedance transformations and matching devices for 
coaxial lines. 

7*7. Coaxial Lines: TEM-mode.—The only type of two-conductor 
guide of major importance is the coaxial line formed by a pair of concentric 
circular cylinders. Let a be the radius of the inner conductor, b the radius 
of the outer conductor. Cylindrical coordinates r, 0, z are suited for the 
discussion of this system, r and 6 being polar coordinates in a cross section 
of the line. We shall first consider the TEM-mode. The solution to the 
potential problem is well known from electrostatics: 
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where V is the voltage across the line. The electric-field intensity is, 

Fig 7 4.—Coaxial-line modes (a) TEM-mode (no ou+off wavelength); (b) 7\Eai-mode 
[Xn(r) = (a -f fc)7r] -electiic field,-magnetic field. 

therefore, 

and the magnetic-field intensity 

a 

(53) 

(53a) 

where ir and U are unit vectors in the directions of increasing r and 6. 
Here y has been replaced by jft, and the double sign indicates a wave 
traveling in either the positive or negative 2-direction. The field con¬ 
figuration and the current distributions on the conductors are completely 
symmetrical about the 2-axis; the former is shown in Fig. 74. 

The current is given simply by 2ttrH(r): 

I « 

It follows then directly that the characteristic impedance, in the sense 
of the previous section, is 

Z o (54) 

For most dielectrics of interest m differs negligibly from the free-space 
value Mo* On introduction of the specific inductive capacity ke = «/«oi 
the characteristic impedance becomes 
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Zo 
60 

Vk. In (54a) 

The series inductance and shunt capacitance per unit length of the line, 
computed from Eqs. (50a) and (51a), are found to be 

(55a) 

(556) 

7*8. Coaxial Lines: TM- and TE-modes.—In the study of the TE- 
and Tikf-modes we are concerned with the solutions of equations of the 
form 

dW 
dx2 + 

d*F 
by2 

+ k2F = 0, (7-6a) 

where F will stand for either of the functions rfr(x,y) or <f>(x,y) of Eqs. (12) 
and (20) respectively. On introduction of the polar coordinates r, 0, 
the differential equation becomes 

b*F l of 1 aw 
dr2 r dr r2 dd2 

+ k2F = 0. (56) 

The equation is separable in the variables r and 6; in particular we shall 
write 

F = 
cos md' 
sin md ’ 

then R(r) satisfies the equation 

(57) 

This is the differential equation for the cylinder functions of order m, in 
the variable *r. The pair of linearly independent solutions suited to 
the finite region with which we are concerned here consists of the Bessel 
function Jm(icr) and the Neumann function Nm(tcr). The latter becomes 
infinite at r = 0; however, since the origin is excluded by the inner con¬ 
ductor, the Neumann function is admissible as a solution. The general 
solutions of Eq. (56) are therefore 

= [^Uw(#cr) + BNm(Kr)](C cos md + D sin md). 

The field must be single-valued in 6; as a consequence m can have only 
integral values. For any given value of m it is possible to eliminate one 
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of the trigonometric functions by proper orientation of the x,y-axes. 
Without loss of generality we can set D — 0, taking as the solutions 

ffav) [AJm(icr) + BNm(nr)] cos md. (58) 

a. TM-modes.—We must consider the TM- and TE-modes sepa¬ 
rately. In the case of the TM-modes we are concerned with the function 
<t>(x}y) and the boundary condition of Eq. (216); we require <t> = 0 for 
all values of 6 at r = aandr = 6. This gives two homogeneous equal ions, 

AJm(ica) + BNm{m) = 0, | 
AJm(Kb)+BNm(«b) — 0, / ' ' 

for the determination of the ratio B/A. Solutions other than A =/$=() 
exist only if the determinant of the coefficients vanishes: 

Jm(^u) Nmi.KQ’) 

JmW 
«E»(xU)-^Vw,(lc6) Jm(Kh^Nin^KCl) 0. (60) 

This in turn is satisfied only for a discrete set of values of k; the latter are 
the characteristic values which, arranged in order of increasing magnitude, 
we shall designate by Kmn. If we write u = *a, a = 6/a, the equation 
appears in the standard form 

Jm(u)Nm(au) — Nm(u)J m{au) = 0. (60a) 

Roots of this equation are given in Jahnke and Emde.1 For a given value 
of a the smallest value of umn occurs for m = 0; this gives the longest 
cutoff wavelength for these modes. Examination of the roots shows that 
for 1 < a < 7, 

7ra .3 a 
t- > Uoi = a/coi > T- 
6 — a 6 — a 

Therefore the cutoff wavelength X(0CJ for the mode is given approximately 
by 

X& « 2( b- a). (61) 

We recall that propagation in a given mode can take place only if the 
wavelength in unbounded dielectric is shorter than X(c). In all practical 
cases the spacing between the conductors is much smaller than the 
wavelength, and there is no need to be concerned about the simultaneous 
excitation of TM- and TEM-modes. 

b. TE-wave$.—Here we are concerned with the function \f/(x,y) and 
the boundary condition of Eq. (13); for the case at hand the latter 
becomes d^/dr » 0 for r = a and r = 6. This leads to the conditions 

*E. Jahnke and F. Emde, Tables of Functions1 Fig. 204, Dover Publications 
Reprint, New York, v1943. 
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AJ'm{rn) + BN'm{Ka) = 0, i 
AJ'm{Kb) + BN’J&) -0,| ^ 

on the constants A and B. Nontrivial solutions for the latter exist 
again only for the characteristic values nmn that satisfy 

J'MNLW - J’m{Kb)N'm(Ka) = 0. (63) 

For m = 0 we have the relation J$(z) = —J i(z), and similarly for the 
Neumann function; the characteristic values of the r2£o«-modes are there¬ 
fore given by the roots of 

J i(u)N i(av) — Ji(au)Ni(u) = 0, (63a) 

where ?/, a have the same meanings as previously. 
From what has been said about the roots of Eq. (60a), it is evident 

that the cutoff wave-length of the TEoft-modes is shorter than that of 
the T'Afoi-mode and that the former are of no consequence as propa¬ 
gating modes in a practical case. The roots of Eq. (63) for m > 0 have 
been discussed by Truell.1 For our immediate purposes we need con¬ 
cern ourselves only with the lowest mode of the series, the TEhi-mode. 
The field configuration for this mode is illustrated in Fig. 7*4. For this 
case it is found that the characteristic value is given very closely by 

*n 
2 

a + b9 

thus the cutoff wavelength is 

\({l - ir{a + b). 

(64) 

(64a) 

This is the mean circumference of the inner and outer conductors. To 
prevent propagation of the TEn-mode the mean eircumference must be smaller 
than the operating wavelength. This imposes limitations on the dimen¬ 
sions of the line and in particular on the spacing between the conductors; 
the latter in turn limits the power-carrying capacity of the line. 

7*9. Cascade Transformers: TEM-mode.—The termination of the 
line in a radiating system in general gives rise to a reflected TEM-w&ve 
and to excitation of TM- and TZJ-modes. We shall assume that the 
line dimensions are such that the latter modes cannot propagate and 
confine our attention to the region of the line where only the incident 
and reflected TEM-waves exist. The reflected wave represents an 
impedance mismatch, and it is necessary to consider a correction for it. 
Perhaps the most useful device is a cascade transformer, a section of 
coaxial line of characteristic impedance different from that of the main 
line. Two such transformers are illustrated in Fig. 7-5: (a) the sleeve 

i R. Tmell, Jour. Applied Phya.t 14, 350 (1943). 
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type with characteristic impedance smaller than the line impedance and 
(ib) the undercut type with characteristic impedance larger than that of 
the line. As has been pointed out before, the junctions give rise to other 
modes; however, if the change in radius is small, the junction effect is 
small. Data on the latter will be given below'. 

B 

Generator Load 

(a) 

A R 
--1 - ~ 

(6) 

Fia. 7 5. Ca'st ade impedance tiaubfoimeis: (a) slee\e section, (h) undercut section 

The dimensions desired in a transformer can be determined as fol¬ 
lows: Except for junction effects, the voltage and current and the input 
impedance looking toward the right have the same values at adjacent 
points on either side of the junction. Let Z'0 be the characteristic imped¬ 
ance of the transformer, Z0 that of the line, and Z\ the input impedance 
at B. Then, from Eq. (2-32), See. 2*6, the input impedance at A is 

Z(A) = 
7/ (Z +JZ'Q tan f}j\ 

0 V^o + jZ tan fil) 

Impedance matching requires Z(A) = Z0; that is, 

7 _ 7i (Z + jZp tan /3l\ 
/o " /o \Z'0+~jZtai^i)' 

(65a) 

(656) 

Separation of real and imaginary parts gives two equations from which, 
for a given value of X, one can obtain Z'0 and the length of the transformer 
that matches Z into Z0; the dimensions of the transformers are obtained 
from Z'0 by means of Eq. (54a). 

There are points along the line at which Z is real. These points are 
X/4 apart, and the impedance is alternately rZ0 and Z0/r, where r is the 
voltage standing-wave ratio. If either of these is taken as the junction 
point B, it is found from Eq. (656) that l = X/4. The characteristic 
impedance of the quarter-wave section is found to be related to Z0 as 
follows: 
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Z'0 < Z0 if Z = —, 
r 

Zq > Z0 if Z =: rZo. 

The first of these coiresponds to a sleeve si etion; the second to an under¬ 
cut section, hi so tar as matching is concerned, either can be used. 
The sleeve section has the advantage ol simplicity of insertion, since 
it is necessary only to slip a piece of tubing over the inner conductor 
and to solder the seam to ensure good contact; it also has the advantage 
of strengthening the line mechanically. An undercut section requires 
machining and weakens the line*. On the other hand, the sleeve section 
reduces the clearance between the conductors and consequently the power 
capacity. In both cases the edges of the junction increase the break¬ 
down tendency; this difficulty can be minimized by rounding the edges 
of the junction without impairing the matching relations. 

It must be emphasized that a single transformer matches properly 
at only one wavelength. In general the load impedance is a function of 
frequency. Matching over a frequency band, such that the standing- 
wave ratio remains less than a prescribed value, can often be achieved 
by a series of transformer sections of different lengths and characteristic 
impedances. It is difficult to carry the analysis through analytically for 
an arbitrary load Z(\). A method of rather limited applicability employ¬ 
ing a tandem of quarter-wave sections has been developed by Fubini, 
Sutro, and Lewis.1 

While the matching condition of Eq. (656) always leads to a solution 
of the mathematical problem, it is not necessarily true that the trans¬ 
former wall be satisfactory. If a large change in radius is required at the 
junction, the junction effect becomes significant, and we must add to the 
equivalent transmission-line reactive networks at A and B corresponding 
to the junction effects. It is found2 that the network consists of a 
capacity across the transmission line at the junction points. The junc¬ 
tion effect can be studied experimentally by means of a half-wave section. 
From Eq. (65a) it is seen from transmisson-line considerations alone 
that if l = X/2, then Z{A) = Z regardless of the value of Z'0; this means 
that the standing-wave ratio should be the same on either side of the 
transformer. Figure 7*6 shows experimental results obtained with a half¬ 
wavelength sleeve section on a 50-ohm coaxial line with inner diameter 
0.375 in. It is seen that the deviation from simple transmission-line 
behavior increases rapidly with increasing diameter of the sleeve section. 

740. Parallel Stubs and Series Reactances.—Another useful device in 
coaxial-line design is the parallel stub consisting of a section of coaxial 

1 u Frequency Characteristics of Wide-band Matching Sections,” Radio Research 
Laboratory (Harvard University) Report No. 23, April 1943. 

* Waveguide Handbook, Vol. 10 of this series. 
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line at right angles to the main line. The arrangement is shown sche¬ 
matically in Fig. 7*7a. The stub is terminated by a metal cap to prevent 
radiation. Electrically the stub is a shorted section of transmission line. 
If Z'0 is the characteristic impedance of the stub and I its length, then 
its input impedance, obtained from Eq. (65a) by setting Z = 0, is 

Fia. 7*6.—Junction effects with cascade transformers, mismatch of a A/2 traiihfoimer as a 
function of diameter in a coaxial line of dimensions OD = 0.811, ID * 0 375 in. 

Z, — jZ'0 tan pi. It is thus a reactive element. Consideration of the 
current division at A shows that, neglecting junction networks, the stub 
is to be regarded as a reactance shunted across the main line. If l = X/4, 
then Z = oo, and the stub introduces no change in impedance at A; 
such a quarter-wave stub is useful as a mechanical support for the inner 
conductor. We shall not consider here the refinements required to 
eliminate the frequency sensitivity. 

The stub can also serve as a matching device. In this connection it 
is more convenient to speak in terms of admittances. Let Y0 = 1/Z0 be 
the characteristic admittance of the main line, Y the admittance seen 
to the right of A, and Yt » — JY£ cot pi the admittance of the stub. It is 
possible to locate the point A so that the admittance Y is Y « Yq + jB. 
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Insertion of the stub gives an admittance at the left of A equal to 
Y + Y, = F0 + j(B — Y'0 cot p7). For matching we require simply 
that 

Y'0 cot pi = B. (66) 

The structure illustrated in Fig. 7-76 is less widely used but is worth 
consideration. The region between AB and the outer conductor C* acts 

(6) 
Fit* 7 7—(a) Parallel stub reactance; (b) series reactance element 

as a cascade transformer. If Z is the impedance at B, the impedance 
just to the right of A in the transformer space is 

r? - *7" (z Ar jZ'o tan fil\ 
Zac, - ^f + iZ tan Si)7 

where Z" is the characteristic impedance of the transformer space. The 
region AB within the inner conductor acts as a shorted section of line 
which presents an impedance at A equal to ZCxa = jZ'0 tan 01, where Zfn 
is the characteristic impedance of the inner region. At A we have the 
voltage relation Vec, = Vcxa + Vac,; the impedance just to the left of A 
is given by 

Z(A) = ZcxA + Zac2 

-IZi tanOI + Zi'd^f^l) (67) 

The structure thus introduces a series impedance at A. It is of interest 
to note that the length of the inner region can be made shorter than the 
length of the outer region. If the latter is made equal to an integral 
number of half wavelengths, the effect of the transformer region is 
eliminated and at A we have simply an impedance Zcu in series with Z. 
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It is found in practice that stubs and series reactance transformers 
with dimensions calculated on the basis of the transmission-line formulas 
given above do not quite meet the simple theoretical expectations. This 
is due to the junction effects neglected in the transmission-line arguments 
The errors, however, are generally small and can be eliminated by small 
adjustments of the lengths of the structures. In the case of stubs, the 

shorting cap can be replaced by a sliding 
plunger in the experimental model to allow 
easy adjustment of the length. The use of 
series reactance transformers limits the 
power capacity of the line; the standing 
waves in the inner region produce intense 
holds at the open end and increase the 
tendency toward electrical breakdown and 
sparking. An alternative form, which 
mounts the transforms on the outer con¬ 
ductor where the electric field is weaker, is 
more satisfactory with respect to breakdown 
characteristic but is less desirable from 
assembly considerations. 

7-11. Rectangular Waveguides: TE- and 
TM-modes.—The hollow guide of rectangu¬ 
lar cross section is the most widely used 

line in microwave antennas. We shall take the x, y-axes to be oriented 
as shown in Fig. 7*8; a is the broad dimension of the guide; b the narrow 
dimension. The Helmholtz equation 

guide. 

d2F d2F Z£- 4- - f 4- = 0 
dx2 + by2 ^ 

is in this case separable in the form 

<t>(x,y) 
(7-6a) 

F = X{x)Y{y). 

Substitution into Eq. (60) leads to the two equations 

% + 4* = 0; 0 + $Y = 0, (68) 

with 

4 + 4 = k2. (68a) 

The solutions have the same form for both members of Eq. (68); for 
example, 

X(x) = A cos {kzX) + B sin (kjo). 

The general solution of Eq. (6a) is 
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= [4 cos (/Cxi) + B sin (k*i)][C cos (n^y) + D sin (/c»j/)]. (69) 

a. TE-waves.—The solution ip(x,y) must satisfy the boundary con¬ 
dition d\p/dn — 0 over the walls. For the walls x = 0 and x = a, 
d\p/dn — dyp/dx; we thus require that for all values of y 

= KxBY(y) = 0, (70a) 
x-Q 

= —KzlA sin (/txo) — B cos (/Cxa)]F(/y) = 0. (706) 
x 

This requires that B = 0 and that kx have the characteristic values 

kx = m = 0, 1, 2, • • • . (71) 

Over the walls y = 0 and y = b, d\p/dn = d^/dy. This boundary con¬ 
dition requires that D - 0 and that kv have the characteristic values 

d\[/ 
dx 

d^ 
dx 

Hx,y)) 
<l>(x,y) J 

Ky 
nir 

“V 
n = 0, 1, 2, (72) 

The characteristic values Kmn for the TEmn-wave are therefore 

i -(t), + (t)’ <ra> 

By use of Eqs. (18) and (19), the complete set of field components for 
the wave in the positive 2-direction is found to be 

H, = cos cos —— e-7—2, Ex = 0, 

Ht — — X^E, - fp=sm(2Jf')co,(2f),-' 
<!»a V o y \ 1/ (WMrx\ . /ri7r?/\ _ 

-a-)smV_r)e w- #„ = y,m- e: K 2 /> 

(74) 

The significance of the integers ra, n, is directly apparent: They represent 
the number of sinusoids in the intensity of the field components Ey and 
E9> respectively, over the cross section of the guide. 

The cutoff wavelength, the guide wavelength, and the transverse 
wave impedance for a rJSwn-mode are respectively 

X& (75) 
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"'{■:[(s);*©T 
R®r'*«sr * 

The T-Bio-mode (m = 1, n = 0) has the longest cutoff wavelength. It 
is by far the most important mode for antenna Avork. The electric field 
has but one component, which is uniform in the ^-direction and varies 
sinusoidally along the ^-direction with symmetry about the central sec¬ 
tion of the guide. The field configurations for this* and several other 
TE-modes are shown in Fig. 7*9. It will be seen from Eq. (75) that to 

(c) id) 
Fig. 7*9.—TUJ-modes in rectangular waveguides: (a) T E\»-modv [Xiolr) = 2a]; (b) TEn- 

mode fXnfr) * 2ab/\/a2 + &2]; (c) TE*o-mode [X2o(c> = a]; (d) TEoi-modo (\oiir) — 2b). -- 

^electric field;-magnetic field. 

ensure propagation of the T2?io-mode alone the dimensions of the guide 
must be such that 

a < \ <2a; 2b < X. 

6. TM-waves.—The solution <t>{x,y) must satisfy the boundary con¬ 
dition <f> = 0 over the walls. It is evident from Eq. (69) that we must 
set A = C — 0 to satisfy the condition over the surface x — 0 and y - 0. 
Over the walls x = a, y = b the conditions are satisfied only for the 
characteristic values 

** = ~n~’ » - 0, 1, 2, • • • . (7-71) a 

nv 
** “ v n = 0, 1, 2, • • (7-72) 
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Thus the characteristic value *mn for the 7Wmn-mode line, like that of a 
TEmn-wsLve, is given by 

■“ - (¥)'+(?)’• <7ra> 
The cutoff and guide wavelengths are given by Eqs. (75) and (76); the 
characteristic wave impedance, however, differs from that of the TE-wave. 
It is 

■-crH&y+OT- (?8) 

(6) 
Fia, 7‘10. —7TA/-mod©sin rertangulai waveguides: (a) TMn-mode [Xn(f) = 2ably/a2 -f &*]; 

(b) TMii-mode [\2i(r) = 2a6/\/a2 + b2\-electric* field;-magnetic field 

The complete set of field components obtained by means of Eqs. (22) 
and (23) is 

Et = sin X^ sin f’”7'""*; IIz = 0, \ 

Ex = Tmw Hv = - cos (m7rX) sin (nJy) e-y—9 [ (79) 

Ey = Hx - - sin M cos ( W 
\ « / V & / I 

There is no mode for which either m or n is zero; the lowest is the TMn- 
mode. It follows accordingly that a guide designed to cut off the TE- 
modes other than the TEi0 will likewise not support free propagation 
of any of the TVlf-modes. The field configurations for several of the 
latter are shown in Fig. 7*10. 

7*12. Impedance Transformers for Rectangular Guides.—Equivalent 
networks have been established for a number of types of obstacles in 
waveguides; these can serve to match out the reflected dominant mode 
wave set up by the line termination. We shall present here the pertinent 
data on elements designed for the TEho-mode in rectangular guide and 
shall indicate their applicability. The simplest, from the point of view 
of the equivalent networks, are the windows: metal diaphragms inserted 
in the cross section of the guide. Typical forms are illustrated in Fig. 
7*11. In the idealized case of infinite conductivity these elements behave 
like capacities or inductances* shunted across the two-wire transmission- 
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line representation of the 772?i0-mode. Accordingly, in using these ele¬ 
ments it is convenient to treat the line in terms of admittance rather than 
impedance. Let Y = 1/Z[% be the characteristic wave admittance of 
the TIJicrmode line.1 With any arbitrary termination, there exist points 
along the line, at quarter-wavelength intervals, at which the input admit¬ 
tance looking toward the load is alternately (1) Y = Yo — jB and (2) 
Y = Yq + jB. At the points 1 the load susceptance is inductive and a 
parallel capacity is required for matching. Points (2), where the load 
susceptance is capacitative, require a parallel inductance. For the 

(0 (d) 
Fig. 7*11.--Windows for rectangular guides; (a) symmetrical capacitative; (b) symmetrical 

inductive; (c) asymmetrical inductive; (d) resonant. 

former case the capacitative window (Fig. 7-1 la), is suited, while for 
points 2 the inductive windows (Fig. 7-116 and c) are appropriate. For¬ 
mulas and graphs for the susceptance of these and other windows, 
referred to the characteristic wave admittance of the TEi0-mode, are 
available in the literature.2 

In practice the inductive windows are to be preferred, because the 
capacitative window, in presenting an edge across the electric-field lines, 
is more susceptible to electrical breakdown. Asymmetrical windows 
have experimental and design advantages in that only one side of the 
guide need be milled for an insertion.3 This reduces the amount of 
machining required in making test runs on impedance and eliminates the 

1 We shall drop the mode notation hereafter and write simply Z0 and Y0 for the 
characteristic impedance and admittance respectively. 

4 Microwave Transmission Design Data, Sperry Gyroscope Company, 1944; 
“Waveguide Handbook,” RL Group Report No. 43, Feb. 7, 1944; “Waveguide 
Handbook Supplement,” RL Group Report No. 41, Jan. 23, 1945; Waveguide Hand¬ 
book, Vol. 10 of this series. 

3 W. Sichak, “One-sided Inductive Irises and Quarter-wave Capacitative Trans¬ 
formers in Waveguide,” RL Report No. 426, Nov. 17, 1943. 
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problem of alignment of two halves of a symmetrical window. On the 
other hand, symmetrical windows lend themselves to use as pressuriza¬ 
tion devices; the two metal borders can serve as supports for a thin 
dielectric sheet. Such a sheet introduces an additional capacity in 
parallel with the window, the magnitude of which depends on the thick¬ 
ness and dielectric constant. No systematic design information seems 
to be available on this point at present, and the design of the pressurized 
window must be developed experimentally. 

The circuit equivalents of the windows immediately suggest the pos¬ 
sibility of combining a capacitative and inductive window to make the 
net susceptance zero, that is, to produce a resonant device that introduces 
no reflection in the guide. Such a resonant window is illustrated in Fig 

r~ 
d 
jL_ 

nr 
b 

m\\md 
•-a-i 

d b 

riiw i 
--/-. 

(0) Generator Load 

(6) 
Fig. 7*12—Step transfoimer in icctangulai waveguide (a) transveise eioss section, (b) 

longitudinal cross section 

7*lid. To a first approximation, the dimensions 5,, 5i can be so chosen 
that the capacitative and inductive susceptances are equal in magnitude. 
The resonant window transmits all the incident power and, therefore, 
cannot be used as a matching device. It is useful as a pressurizing ele¬ 
ment to seal the waveguide; either the window frame serves as a support 
for a thin dielectric sheet, or the open area of the window is filled with a 
dielectric block. The dimensions of the windowT must be adjusted to 
compensate for the dielectric; this again must be determined empirically. 
It is obvious that true resonance behavior can be achieved at only one 
wavelength with a given window. 

The use of windows at wavelengths shorter than 3 cm is rather limited. 
Several difficulties arise due to the decrease in the dimensions of the 
waveguide with decreasing wavelength. The most striking of these are 
(1) the increased liability to electrical breakdown in the neighborhood 
of a window, (2) errors in determining the position of the element, and 
(3) the machining and insertion of small parts. For wavelengths shorter 
than 3 cm the step transformer, illustrated in Fig. 7*12, is recommended. 
This is analogous to the cascade section discussed for coaxial lines. The 
characteristics of the step transformer can be expressed in terms of the 
input admittance presented at the generator side when the guide is 
terminated beyond the section in a matched load:1 

1 Sichak, op* tit., p. 3. 
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1 
Y 
Y„ 

A 

(80) 

The parameters l, b, d are defined in the figure; X„ is the wavelength 
in the waveguide; and F is a function of d/b alone, a few values of which 
are given in Table 7-1. When l = X„/4, Eq. (81) reduces to 

Table 7 1 —F-function for Step Transformer 

-y % 
F-function 

0 0 
10 0 020 
20 0 063 
30 0 130 
40 0 235 
50 0 395 
60 0 598 
70 0 820 

b2 .2bF f _ b2 4b2F2 
Y _d2+J X„ V d2 + X2 
Yo , 46iE2 

+ ”X2 

To design a transformer from either Eq. (80) or (80a) it is necessary to 
construct a graph, based on Table 7*1, from which the required values 
of F may be obtained. Over the range of useful values of b/d the section 
can be regarded as a quarter-wave transformer with a phase correction 
due to the capacitative effects at the junction. The phase correction 
makes itself felt in that the load end of the transformer is not placed at 
the point of a “voltage” minimum (the point of maximum load admit¬ 
tance) but is displaced slightly from that point toward the generator. 
To a first approximation the matching condition is that the conductance 
in Eq. (80a) be equal to the maximum normalized load admittance, 

hl 
d* 

9* 462F2 

The latter directly equals the voltage standing-wave ratio due to the 
load. Accordingly it is suggested that the designer prepare for himself 
a set of charts of r or gt against d/b over the range of \0 with which he 
will be chiefly concerned. For a given case the transformer with dimen¬ 
sions determined in the indicated manner can be prepared to slide in the 

(80a) 
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guide, the bottom of the transformer being tinned before insertion. The 
transformer is moved along the guide until the best matching position 
is located and then soldered into place by heating the outside of the guide. 

7*13. Circular Waveguide: TM- and TE-Modes.—Let us consider 
next a hollow guide of circular cross section of radius a. As in the case 
of the coaxial line we are here concerned with solutions of the scalar 
Helmholtz equation in a circular region. The general solutions are the 
same as for the coaxial line: 

ttxl) = [AJm{Kr) + BN^Kr^ cos me- (7-58) 

Here again r, 0 are polar coordinates over the cross section, and m is an 
integer. In the present case, since there is no inner conductor, there are 
no sources in the interior and the fields must be finite at all points. The 
Neumann function, however, becomes infinite at r = 0; accordingly it 
must be removed from the solution: B must be equal to zero. The funda¬ 
mental solutions are, therefore, 

= ^m^ C°S (82) 

a. TM-modes.—By the boundary condition of Eq. (21 b) we. require 
<t> = 0 at r = a for all values of 0. This leads to characteristic values 
Kmn which satisfy the relation1 

J w(^mn^) 0. 

The complete set of field components for the TMmn-mode, obtained from 
Eqs. (22) and (23), are 

Ez = 4m cos mdJm{Kmnr)c-^z) Hz = 0, 

Er = 7?^ He = -ymnKmn cos mdJ'm(Kmnr)e-V""'8, 
JO)€ 

E» = - -m~ Hr = mymn sin mO 'L&aril 
j co€ r 

The field configurations for several of these modes, together with the 
cutoff wavelengths, are shown in Fig. 7T3. 

b. TE-modes.—The function ^(x,y) is subject to the boundary con¬ 
dition of Eq. (13): d^/dr]^ = 0 for all 0. The characteristic values Kmn 

satisfy the relation2 

•T»(wO - 0. (84) 

1 For lower roots zmn ™ Kmna of this equation see E. Jahnke and F. Emde, Tables of 

Functions, Dover Publications Reprint, New York, 1943, p. 108. 
* For the lower roots zmn ** Kmna of this equation see ibid. 
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The field components for the general TEmn-mode are found to be 

Ha ” l^mn COS ‘ -Z?* — Oj 

Hr = — Ee = —Kmnym„ cos m0J'm(nmnr)e->""“, 
jun 

tt 7mn wa • n J, He = . - Er = rn7mn sm w?0 —--e *-*. 
Jwm r 

These modes are illustrated in Fig. 7*14. On examination of the roots 
of the Bessel functions and their derivatives it will he seen that the lowest 
mode, that is, the mode with the longest cutoff wavelength, is the TEU- 

(a) (6) 

(c) 
Fio. 7-13.—TM-mode in circular waveguide: (a) TMoi~mode [Xoi(c) «= 1.3Id]; (b) 

TMoz-mode [Xo2(c) ** 1.07d]; (c) 7M/n-mode [Xn(f) « 0.82d]. - — electric field;- 
magnetic field. 

mode. This is the mode generally utilized in antenna systems. It is the 
circular guide analogue of the Tiber mode in rectangular waveguide. 

The use of circular waveguide is limited by several factors, of which 
perhaps the most significant is instability in orientation of the field con¬ 
figurations. Since the guide has rotational symmetry, the field configura¬ 
tion can be rotated about the 2-axis without violating boundary conditions; 
there is no preferred direction $ = 0. Small irregularities in the wall 
of the guide or matching windows can cause such rotation of the fields 
giving rise to subsequent difficulties in designing the radiating system. 
In rectangular guide, on the other hand, the orientation of the field 
configuration is uniquely determined by the orientation of the cross sec¬ 
tion. Another difficulty in round guide is mode control over an appre¬ 
ciable frequency band. The radius is the only parameter available to 
determine the cutoff wavelength; in rectangular guide, both the dimen¬ 
sions a and b enter into the characteristic values of the higher modes. 
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Other comparative factors will be pointed out in the discussion of wave¬ 
guide and horn feeds. 

7*14. Windows for Use in Circular Guides.—As with rectangular 
guides, metal diaphragms can be inserted into circular guides to serve as 
matching devices for the TJ^n-mode. The circuit equivalents of these 
windows are again reactive elements shunted across the two-wire line 
representation of the dominant mode. Capacitative windows cut across 
the 2?-lines, while inductive windows cut across the transverse magnetic 
field in the cross section. The admittance characteristics of such windows 

(0 
Fig. 7*14.—77£-mode& in circular waveguides: (a) 7TA’oi-mode [\oi(f) ~ 0.82dJ; (b) 

!T^n-mode [\u(rJ = 1.71dj; (c) TEn-mode [\2i(,) = 1.03d]. - electric field;-- 
magnetic field. 

may be found in the literature on the subject.1 There is also available 
a resonant window which can be used as a frame to support a thin dielec¬ 
tric sheet to seal the waveguide. 

7*15. Parallel-plate Waveguide.—Another type of waveguide that is 
used in microwave antennas is that formed by a pair of parallel plates. 
The modes can be derived, as in the previous sections, by a direct solu¬ 
tion of the field equations, in the present case for a region bounded by a 
pair of parallel perfectly conducting surfaces of infinite extent. It will 
be instructive, however, to treat the parallel-plate system as a limiting 
case of the coaxial line and the rectangular waveguide. 

The parallel-plate waveguide can be derived from the coaxial line 

1 Microwave Transmission Design Data, Sperry Gyroscope Company, 1944; “ Wave¬ 
guide Handbook,’7 RL Group Report No. 43, Feb. 7, 1945; “Waveguide Handbook 
Supplement,” RL Group Report No. 41, Jan. 23, 1945; Waveguide Handbook, Vol. 10 
of this series. 
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by allowing the radii a and b of the inner and outer conductors to become 
infinite in such a way that the spacing b — a between the conductors 
remains constant: 

b — a s. (86) 

It will be recalled that the TEM-mode is independent of the radii of the 
conductors and is supported by the line for all frequencies with a wave¬ 
length equal to that in free space. We thus arrive directly at the result 
that the parallel-plate guide supports free propagation of a TEM-mode 

at all frequencies. The electric vector is perpendicular to the plates, 

Fig. 7*15.—The parallel-plate waveguide as a limiting ease of a coaxial line 

and the magnetic vector is parallel to the plates; neither field vector has 
a component in the direction of propagation. Taking Eq. (53) for the 
electric vector of the TEM-mode and writing r = a + y, b = a + s {cf. 

Fig. 7*15), we find that the magnitude of the electric field is 

__1__ 
(o + y) s 

a 

Letting a become infinite we obtain 

(87) 

lim \E\ = -■ (88) 
7-- OO ” 

The magnitude of the electric-field vector is independent of position 
between the plates; the same result is obtained for the magnetic field. 
It will be recognized that Eq. (88) is the same expression as for the static 
electric field between a pair of plates at a difference of potential V. 

Considering next the TE- and TM-modes of the coaxial line we note 
that as the radii become infinite, the periodicity condition disappears; 
that is, we need concern ourselves only with the modes of order rrt = 0 
[Eq. (58)]. 

TM~modes.—The longitudinal component of the electric field [the 
function <t>(x9y) in Eq. (58)] is 

Eg = AJo(kt) + BNo(nr). (89) 

Making use of the asymptotic forms of the Bessel functions1 for large 
(*r), we get 

1 G. N. Watson, Bessel Functions, 2d ed., Macmillan, New York, 1945, Chap. 7. 
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E-« « cos ^ + Ka “ + B sin (ty + *a — 

We have here introduced again r = a + y. In the limit a = °o, the 
solution takes the form 

= A' cos (ay + r). (90) 

Applying the boundary conditions Ez = 0 at y = 0 and y = s, we find 
that r = (7r/2) ± 2m7r and that the characteristic values of the modes are 

Kn n = 1,2, (91) 

Equation (90) can thus be rewritten as 

B.-A’s 

The cutoff wavelength for the TMn-mode is [Eq. (16)] 

(92) 

(93) 

and the guide wavelength for the freely propagated mode [Eq. (17)] is 

X gn (94) 

The transverse components of the field are obtained from E, by means 
of the set of Eqs. (4) and (5): 

Ev = ~~ A' cos Ex = 0, (95a) 

Hx = Jw6 A' cos (—\, Hy = 0; 
Kn \ S / 

(955) 

the constant y» is defined by Eq. (14). 
TE-modes.—The derivation of the 7'U-modes proceeds in a similar 

manner. Equation (90) in this case represents the longitudinal com¬ 
ponent of the magnetic field; that is, 

H, — A' cos (icy + t). (96) 

The boundary conditions dH,/dy = 0 at y — 0 and y = s lead to the 
result that r — ±2mv and 

n = 1, 2, • • • . (97) 
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The cutoff wavelength for the 772Jw-mode is given by Eq. (93), and the 
guide wavelength by Eq. (94). The complete set of field components is 

H, = A' cos("p^ (97a) 

Ez = J"M A' sin ("^), Ev = 0, (97/;) 

IIy =yA' sin (rT); 111 = a (97r) 

It will be recognized that the field distributions and guide wave¬ 
lengths correspond to Till- and 77E-modes of the rectangular guide. 
The jTMn-modes of the parallel-plate system are the analogues of the 
7Wi,«-modes, and the 2T£„-modes are the analogues of the 7\Eo,»rmodes. 
As the broadside dimension a of the rectangular guide becomes infinite, 
the modes of the latter pass into parallel plate modes. 

7-16. Design Notes.—Several remarks on design practice may prove 
of interest to the reader. These are particularly concerned with coaxial 
lines and circular waveguides. Unless an antenna is being developed as 
a single experimental model or for production in very limited numbers, 
some attention should be given to the production problem or the avail¬ 
ability of parts. With respect to the coaxial lines and circular guides, 
dimensions should be chosen as near as possible to those of commercially 
standardized tubing. The primary considerations in the choice of 
dimensions are, of course, the characteristic impedance of the line and 
the control of higher modes; these, however, allow some latitude in 
design. 

Special care should be taken in the inspection of tubing. Erratic 
results in standing-wave measurements on lines have frequently been 
traced to irregularities in the cross section of the line. Ridges and waves 
are found in the tube wall if the die through which the tubing was 
extruded is worn or if the driving unit is faulty. Such ridges and waves 
can be detected only by cutting the tube in half. It is recommended that 
a sample length of tubing from each new lot be cut down the middle 
for inspection before using the material. It is often useful to force a steel 
ball of proper diameter through the tubing under pressure, thus sizing 
and polishing the inside surface. 



CHAPTER 8 

MICROWAVE DIPOLE ANTENNAS AND FEEDS 

By S. Silvkk 

The early trends in microwave antenna design grew out of the prac¬ 
tice of using dipole systems at longer wavelengths. Nevertheless, little 
systematic information has been obtained about microwave dipole sys¬ 
tems. This is partly due to the greater difficulty in applying theory to 
practically useful microwave dipoles and partly to the urgent military 
needs which prevented systematic research during the early development 
in this field. More recently, attention has been concentrated on wave¬ 
guide and horn radiators, which are more amenable to quantitative 
analysis. Consequently, the design of microwave dipole antennas is 
still in the empirical stage; quantitative data are available only with 
reference to particular systems. 

8*1. Characteristics of Antenna Feeds.—The dipole systems that we 
shall consider in this chapter are, with a fewT exceptions, designed to 
serve as primary feeds to illuminate reflectors; it will be assumed through¬ 
out, unless the contrary is noted, that this is the end in view. The 
general design requirements and specifications imposed on primary feeds 
are the following: 

Radiation Pattern.—It is evident that a primary feed radiation pat¬ 
tern must be directive, with the major fraction of the energy radiated 
toward the reflector. We have studied in Chap. 6 the relation between 
the radiation pattern of the antenna as a wThole and the intensity and 
phase distribution over the aperture. The relation between the latter 
and the primary pattern will be developed in later chapters on the design 
problems of special types of antennas. It may be noted here, however, 
that the design of a reflector—or a lens—is generally based on the assump¬ 
tion that the feed is a point source. Deviations of the feed from a point- 
source radiator result in phase errors over the aperture of the antenna. 

Particular attention must be paid to the phase. It was shown in 
Chap. 3 that many idealized radiating systems are effectively point 
sources in the sense that the equiphase surfaces constitute a family of 
concentric spheres. This situation is realized only approximately in the 
case of an actual feed. The patterh of the latter is usually specified in 
terms of the principal E- and //-plane patterns (Sec. 3-18). In each of 
these planes it should be possible to find an equivalent center of feed, 
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with respect to which the equiphase lines are circular (to within a pre¬ 
scribed limit of error) over the region to be covered by the reflector. 
To minimize the problems of reflector design it is essential that the centers 
of feed for the principal planes be coincident. In general, it is desirable 
that on a sphere about the center of feed the phase shall be constant to 
within ±tt/8, corresponding to path differences of ±X/16; for some 
purposes, path differences of ±X/8 can be tolerated. The cone within 
which the feed is a point source in the sense of these criteria will be referred 
to as the 'point-source cone 

Impedance.—Impedance match is required over as broad a frequency 
band as possible. An antenna is generally considered to be usable 
throughout the frequency band in which the voltage standing-wave ratio 
is less than 1 4. Since interactions with the reflector tend to increase 
the total mismatch, it is desirable to keep the feed mismatch belowr the 
figure given above. 

Powei-carrying Capacity. This is limited by electrical breakdown 
w'hich may occur within the feed line and around the feed components 
under the peak voltage of a transmitted signal. The effect of matching 
devices on breakdown characteristics was noted in Sec. 7 9. The break¬ 
down problem is particularly significant in antennas intended for air¬ 
craft, because the breakdown potential decreases with increasing altitude, 
due to the decrease in atmospheric pressure and the increase of free ion 
content. Feeds for high-altitude airborne systems must therefore be so 
designed that air can be held in the r-f line under pressure. The average 
requirement is 10 to 15-lb gauge pressure relative to sea level atmospheric 
pressure. 

Weather Protection.—Antennas must be protected from the weather 
to prevent corrosion and consequent power dissipation in the antenna 
structure. Weatherization is an important consideration in shipbome 
antennas, which are exposed to sea-water sprays. 

Mechanical Strength, Light Weight.—Antennas installed in aircraft 
and ships are subject to high stresses due to rapid changes in the motion 
of the airplane or oscillations of masts of the ship in a high wind. In 
aircraft systems, mechanical strength must be attained with economy of 
weight. 

Reasonable Tolerances.—Tolerances should not be so close that pro¬ 
duction methods cannot be used effectively. 

8*2. Coaxial Line Terminations: The Skirt Dipole.—The theoretical 
prototype of the dipole radiators is the half-wave dipole fed at the center 
from a balanced two-wire transmission line. The significant features of 
this system are the following: 

1. The two wings of the dipole carry equal currents. 
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2. The current distribution is determined by the dipole structure, 
interaction between the dipole and the transmission line being 

negligible. 
3. The dipole termination does not upset the balanced condition of the 

line. 

While it is true that a coaxial line propagating the TEM-mode is equiva¬ 
lent to a balanced two-wire line, it is virtually impossible to make a 

(a) (6) (c) 
Fig. 8 1.—Skirt dipole: (a) simple form; (6) tapeied gap to improve the impedance 
characteristics; (c) decoupling choke Cz to prevent eurient leakage along the outer wall. 

microwave dipole termination that behaves like the theoretical prototype. 
The skirt dipole illustrated in Fig. 8*1 is an example of a coaxial-line 

termination that is used extensively at longer wavelengths and to a lesser 
extent in the microwave region. The two wings of the dipole consist of 
the unshielded section of the inner conductor and the folded-back section 
of the outer conductor (S in Fig. 8*1); we shall refer to the latter as the 
skirt. If the lengths lh hf of the respective elements are each about 
A/4, the system approximates a center-driven half-wave dipole. This 
termination maintains the radial symmetry of the line; the current dis¬ 
tribution over the wings is radially symmetric, and the radiation pattern 
has the axial symmetry of the idealized system. 

It is to be expected, however, that the meridional pattern will differ 
from that of the line radiator. One reason for this is the fact that the 
current distribution is spread over a finite area instead of being confined 
to a line. The currents at different points on a circumference of the 
skirt are consequently at different distances from a field point and give 
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contributions to the field that have correspondingly different phases. 
These phase differences are more significant with microwaves than with 
long waves, since they depend on the ratio of the skirt diameter to the 
wavelength. The pattern is also affected by the finite dimension of the 
gap at the driving point; this causes the current distribution along 
the length of the dipole to deviate from the sinusoidal distribution of the 
line dipole with an infinitesimal gap. 

A further major factor is the coupling between the field of the dipole 
and the outside wall of the line, which produces a current distribution 
dowTn the line beyond the skirl. This current distribution also radiates; 
the total pattern arises from superposition of this field and the dipole 
field. The pattern rapidly becomes less satisfactory as the current on the 
line increases; so the line current mu*t therefore be kept as small as 
possible. It can be controlled in part by changing the cavity C1 formed 
by the skirt and the outside wrall of the line. This region constitutes a 
shorted section of line and as such presents at the open end of the skirt 
a reactive impedance in series with the dipole and the outer wall of the 
line; by making the depth X/4, the reactive impedance can be made 
infinite. In practice it is found that best results are obtained with a skirt 
of length somewhat less than X/4. Proper operation is obtained only 
at the design frequency, since the impedance of the choke Ci varies rapidly 
with frequency. Improved over-all impedance characteristics have been 
obtained by shortening the skirt and compensating for the reduced 
physical length of Ci by filling it wdth dielectric to bring the electrical 
length up to X/4. It has also been found that more efficient decoupling 
between the dipole and the outer line can be effected by means of a second 
choke C2 mounted as shown in Fig. 81c. The electrical depth of C2 

should again be a quarter wavelength, so that the choke presents an 
infinite impedance at the open end. Experimentally it is found that the 
decoupling is most complete when the separation of C\ and C2 is 0.15X. 

The structure of the gap G plays a significant part in determining the 
over-all impedance characteristics of the antenna. Because an abrupt 
discontinuity in structure gives rise to a reflected wave in the line, it is 
natural to replace the region G in Fig. 8* la by the tapered structure shown 
in Fig. 8T6. The increased diameter of the dipole stub also contributes 
to maintaining uniform impedance over a larger frequency band (c/. 
Sec. 8.5). Further methods of controlling the impedance characteristics, 
such as decreasing the length h and loading the stub with a sphere (capaci- 
tative loading), will occur to the reader; we shall not dwell upon them 
here. 

8*3. Asymmetrical Dipole Termination.—The asymmetric dipole 
terminations shown in Fig. 8*2 are designed to give a radiation pattern 
with peak intensity along the axis of the feed line. The dipole in Fig. 
8*2a is center-fed from a two-wire line. The asymmetry of the termina- 
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tion unbalances the current distributions on the inner and outer conduc¬ 
tors of the line, with the result that the two wings of the dipole are not 
equally excited. Also, strong coupling exists between the dipole system 
and the outer wall of the line, giving rise to radiating currents on the 
latter, just as in the case of the skirt dipole. The choke C remedies the 
situation to some extent; with a depth lc of about X/4 the choke presents 
at its open end an infinite impedance, in series between the outer wall of 

(6) 
Fig. 8*2. -Asymmetric dipolo terminations: (a) open-end termination; (b) stub-support 

termination. 

the line to the left of the choke and the region of the line to the right. 
This serves to confine most of the outer-wall currents to the region between 
the dipole and the choke. 

The open-ended termination has poor structural properties. In order 
to maintain alignment of the dipole wings it is necessary to fill the termi¬ 
nal region of the line with a dielectric plug. The latter gives rise to 
further problems of impedance mismatch and to poor contact between 
the dielectric and the conductors, which may lead to electrical breakdown; 
the seals generally deteriorate under exposure to moisture and thermal 
and mechanical stresses. In addition, radiation from the open-ended 
coaxial line distorts the dipole pattern. These defects are absent in the 
stub-support termination shown in Fig. 8*26. The coaxial line is con¬ 
tinued for a distance l9 « X/4 beyond the dipole system and terminated 
there in a metal plate. The latter region, known as the terminating 
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stub, is again a shorted section of line, presenting a reactive impedance 
at the input end. Consideration of the current division at the driving 
point of the dipole shows that the stub is equivalent to an impedance 
shunted across the gap between the dipole wings. With l8 « X/4, this 
impedance is practically infinite; electrically the system is equivalent 
to an open-ended termination. 

The disparity in the currents on the two wings of a stub termination 
is even greater than that in the open-ended termination. The dead 
wing (or stub) D is excited only by leakage currents which make their 

Distance from center of the dipole, cm 
Fig. 8*3.—Leakage currents along the line; stub-supported dipole-disk feed without choke. 

way through the opening in the outer wall and by coupling with the field 
of the live stub L. As in the case of the open-ended termination, coupling 
exists between the dipole system and the center wall of the line. A 
measure of the relative excitation of the dipole stubs is afforded by the 
intensity of the outer-wall line currents along lines in a plane containing 
the dipole axis. Figure 8-3 shows results of line-current studies made on a 
dipole system carrying a reflecting plate on the terminal stub. The 
standing-wave structure in the current is due to some obstruction on the 
outside surface at the input end of the coaxial line. 

Control of the outer wall currents is achieved by means of the choke 
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C (Fig. 8-26), as in the systems discussed previously. To present an 
infinite impedance at its open end the choke should, nominally, have a 
depth of X/4. However, because of junction effects at the open end and 
coupling with the dipole system, 
the optimum value is somewhat 
less than X/4. Figure 8-4 shows 
the line-current strength at a fixed 
point on the outer wall as a func¬ 
tion of choke depth for the system 
studied in Fig. 8*3; the optimum 
depth is 0.23X. Although this 
value is strictly significant only 
for the system illustrated, it has 
been found to give good results in 
other dipole systems employing 
chokes; it is a suitable value for the 
depth of the choke Ci of the skirt 
dipole considered earlier. 

It has been noted that the 
effect of the choke is to confine the 
outerwall current to the region be¬ 
tween the choke and the end of the 
line. This current distribution 
serves as a linear radiator along the axis of the feed line. From the 
general considerations of Sec. 3* 15 it will be evident that this radiates no 
energy in the direction of the line axis; it will, in general, give rise to a 
pattern with peak intensity on a cone having its axis coincident with the 
line axis. The phase of the line current with respect to the dipole cur¬ 
rent is determined by the position of the choke with respect to the dipole 
system. In combination with a paraboloidal mirror, in which the feed 
line lies on the axis of the mirror, the interaction between the dipole and 
line-current system produces a phenomenon known as squint, in which 
the over-all antenna beam is pointed, not along the axis of symmetry of 
the system, but in a direction making a small angle with that axis. Use 
is made of this phenomenon for scanning. 

In closing the discussion of the asymmetric terminations, it should be 
noted that the input impedances of both the choke and the terminating 
stub vary rapidly with frequency. As a result, these structures are 
strong contributing factors in the frequency sensitivity of the impedance 
of these antennas. In addition, the cut-away region of the line introduces 
distributed capacities and inductances. These factors restrict the 
usability of the antenna to a narrow frequency band. 

8*4. Symmetrically Energized Dipoles: Slot-fed Systems.—The 
shortcoming of unequal excitation of the dipole stubs, which charac- 

0.1 0.2 

Choke depth /, wavelengths 

Fig. 8-4. -Leakage cui rent as a function of 
choke depth. 
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terizes the terminations discussed above, is eliminated in the slot-fed 
systems shown in Fig. 8-5. Both wings of the dipole are mounted on the 
outer conductor, in which a pair of slots S is milled in a plane normal to 
the dipole axis. The inner conductor is short-circuited to the outer 
conductor on one side by the post P, which usually is in the line of the 
dipole axis but may be inserted at any point along the line in the slotted 
region. Both open-endod and stub-terminated systems are used, ana- 

v 

s 

(a) 

r 
l 

■ 

_i J_ 

c 

(b) 
Fig. 8*5.—Slot-fed dipole terminations* on coaxial lino: (a) open-ended termination; (6) 

stub termination. 

logous to the systems discussed in the preceding section. The open- 
ended type is used as a radiating element in linear arrays (cf. Sec. 9*8). 

The operation of the dipole can be interpreted from various points of 
view. Perhaps the simplest picture is that the radiating ^system is 
energized by a voltage impressed across the slot. The origin of the 
voltage becomes evident on consideration of mode relationships in the 
slotted region. In the absence of the short-circuiting post P we would 
have the TEM-mode and possibly higher modes generated in the open- 
ended termination or, in the case of a wide slot, generated by the slot 
itself. All these modes, however, would be symmetric with respect to 
the plane containing the axes of the slots and give rise to no impressed 
field across the slot; under these conditions the dipole is not excited. 
With the insertion of the post, modes are generated that are symmetric 
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with respect to the plane determined by the axis of the post and the axis 
of the inner conductor. These modes, when superposed on the preceding 
set, must give rise to a field such that the tangential electric field is 
zero over the surface of the post. In the case of a narrow slot we can 
ignore (for the qualitative picture) the modes generated by the slot itself; 
the prime effect of these modes is to relax the cutoff conditions and allow 
propagation within the slotted region of some of the modes generated 
by the post. The most significant of the latter is the TAhi-mode; Fig. 
8*6 shows how superposition of the TiEn-mode on the TEM-mode leads 

TEM TEn R~E max 

Fi«. 8*6.—Superposition of the TEM- and TEn-modes in the slotted region of the slot-fed 
dipole. 

to a field configuration that satisfies the requisite boundary condition 
on the electric field in the case of a thin post. The resultant configura¬ 
tion gives a field that is zero along the post and increases with angle to a 
maximum value directly opposite to the post. It is readily seen that 
this impresses a voltage across the slot, with resulting excitation of the 
dipole structure. 

The slotted dipole can also be analyzed from the transmission-line 
point of view.1 The slotted region is conceived as a three-wire trans¬ 
mission line; this is the appropriate representation of a waveguide sup¬ 
porting simultaneous propagation of two modes, just as the two-wire 
line represents single-mode propagation. It will carry us too far afield 
to discuss the general theory of three-wire lines.2 The equivalent cir¬ 
cuit representations for the open-ended and stub-terminated systems are 
shown in Fig. 8-7a and b respectively, for the case in which the post 
lies along the dipole axis. Here ZP is the impedance across the pair of 
lines connected by the post; ZG the impedance at the gap opposite to the 
post; ZA is the input impedance of a dipole having the same wing struc¬ 
ture as in the given system, but center-fed from a balanced two-wire line; 
/.' is the length of the slot; and l8" the length of the terminating stub. 
At the end of the slot the outer lines are short-circuited, the three-wire 
line passing into the two-wire line. 

1 H. Hiblet, “Slotted Dipole Impedance Theory,” RL Report No. 772, Nov. 21, 
1945. 

2 See S. O. Rice, “Steady State Solutions of Transmission Line Equations/’ 
Bell System Tech. Jour., 20, 131 (1941). 
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In the case of the open-ended termination with a narrow slot it is 
possible to reduce the system to a two-wire line with appropriate loading, 
as shown in Fig. 8*7c. The impedance ZP has been taken to be zero; 
ZB is the characteristic impedance of the three-wire line under the con¬ 
dition that no current is flowing in the central line. It a\ ill be seen that 

in this particular case the slot con¬ 
tributes only a susceptance, like a 
short-circuited section of two-wire 
line. This circuit representation 
indicates that the length of the slot 
can be so chosen as to match out 
the other reactive impedance ele¬ 
ments involved in the termination. 

The slot not only equalizes the 
excitation of the wings but also 
serves as a choke element to de¬ 
couple the dipole system from the 
outer wall of the line. The result¬ 
ing system is completely tree from 
the squint phenomenon associated 
with the asymmetric termination. 
In the case of open-ended termina¬ 
tions it is possible to design units 
with high power capacity; these 
have found application in linear- 
array antennas. The stub-termin¬ 
ated units, on the other hand, are 
more limited in their power capacity 
than the corresponding asymmetri¬ 
cal terminations and have been 
used in place of the latter only where 
it is imperative to have a squint-free 
system and relatively lower power 
levels are acceptable. 

8*5. Shape and Size of the Dipole.—The impedance probleip has been 
a troublesome one with dipole feeds, largely because of the frequency- 
sensitive elements—such as the choke, terminating stub, and slot— 
needed in making various types of terminations. A certain measure of 
adjustment is available in the size and shape of the dipole. The depend¬ 
ence of the impedance of a center-fed dipole on its size and shape has 
been the subject of considerable theoretical work.1 All of the work 

1S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, 
Chap, 11 ;L. J. Chu and J. A. Stratton, Jour. Applied Phys., 12, 241 (1941); R, W. P. 
King and D. D. King, Jour. Applied Phys., 16,446 (1946). 

tan 

(0 
l icr. 8*7.— Three-wire line representa¬ 

tion of the slot-fed dipole: (a) open-ended 
termination; (6) stub-terminated line, (c) 
reduced equivalent loading for Case a. 
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applies to an idealized system in which the dipole is driven from a balanced 
system across an infinitesimal gap; it is assumed that the coupling 
between the dipole and line plays no part in determining the current 
distribution of the wings. As we have noted above, this condition is 
never realized in microwave systems where the dimensions of the feed¬ 
line cross section are comparable to those of the dipole structure. 

The theoretical results, however, are helpful in a qualitative way. 
The various theories differ in quantitative details concerning the values 
of the impedance, but all show the same general qualitative features. 

0.2 0.3 0.4 0.5 0 6 0.7 0.8 

Vx 
(a) 

Vx 
(b) 

Fig. 8*8.—Input impedance of ‘spheroidal dipoles with major axib L and min6r axis D: 
(a) real component or ladiation resistance; (b) imaginary component or reactance. (From 
L. J. Chu and J. A. Stratton, J, Appl. Physics, by couitesy of the authors and the American 
Institute of Physics.) 

The curves shown in Fig. 8-8 are taken from the work of Chu and 
Stratton. They apply to spheroidal dipoles, the major axis of which is 
designated by L and the minor axis by D. 

The curves show the dependence of the real and imaginary compo¬ 
nents of the impedance on wavelength for various values of the ratio 
L/D. It is observed that in the neighborhood of the resonant point, 
which corresponds closely to a length equal to X/2, the resistive compo¬ 
nent is virtually independent of the value of L/D and is equal to about 
70 ohms. The dependence of the resistance on wavelength does not 
become marked until the length is considerably larger than the resonant 
value. The reactive component, however, is seen to be a decided func¬ 
tion of the frequency. The larger the ratio L/D, that is, the thinner the 
dipole, the more rapidly does the reactance vary and the sharper is the 
resonant point. Thus, a thin dipole is more frequency-sensitive than a 
fat dipole. The dipole dimensions can be chosen such that its reactive 
component balances the reactance which is associated with the termina¬ 
tion; this in general will lead to better over-all impedance characteristics 
for the antenna than the choice of a dipole that alone has a flat reactance 
characteristic. The impedance characteristics of the dipole can also be 
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controlled by such processes as top loading with a sphere or olhei struc¬ 
ture in the same manner as is done at longer wavelengths. Here again 
the procedure is entirely empirical, and we shall not dwell upon it any 

further. 
8*6. Waveguide-line-fed Dipoles.—It is much simpler to teed a dipole 

from a waveguide line than from a coaxial line. The technique of termi¬ 
nation is shown in Fig. 8*9. The dipole is mounted on a web that fits 

into the mouth of fhe guide, parallel 
to the broad face of the guide and 
transverse to the electric vector in 
the dominant TEUrmode. The E- 
vector is thus parallel to the dipole, 
which is driven by the radiation 

incident on it from the mouth of the guide. It is obvious that if the 
web is inserted symmetrically, the two wings of the dipole are excited 
equally. The taper shown in the diagram serves as an impedance¬ 
matching device; it also improves the radiation pattern in that it decouples 
the outer vrall of the line from the dipole. The impedance of the system 
is also determined by the depth of insertion of the web and the position 
of the dipole with respect to the mouth. 

8*7. Directive Dipole Feeds.—The design of directive feeds is based 
on the principle of interference between dipoles properly spaced and 
phased (Sec. 3T7) and on the principle of images (Sec. 5*3). Early 
designs utilized the skirt dipole with a reflecting plate and the open-ended 
asymmetric termination follow ed by a second dipole or a reflecting plate. 
These designs have very poor structural characteristics; they will not be 
discussed here. Stub-terminated coaxial systems and waveguide systems 
lend themselves admirably to the construction of directive feeds, the 
stub or web providing mechanical support for the system of dipoles 
involved or for the reflecting plate. These directive systems are designed 
to radiate maximum power back along the feed line; the reflector that is 
to be illuminated by the feed is then also mounted on the feed line. 
This rear-feed type of installation (examples of which are to be seen in 
Sec. 12T1) minimizes the length of line and the series of bends and joints 
required (factors of considerable importance for generator stability) and 
forms a compact and rugged system. 

The directive system employing a reflecting plate, which may be 
termed a dipole-plate or dipole-disk feed, is based on the principle of 
images. In accordance with the general theory, to produce peak intensity 
along the feed line the reflecting plate is mounted a distance X/4 behind 
’the dipole. The principle of images assumes, of course, a reflecting 
plate of infinite extent. In the case of the feed system the plate must be 
kept as small as possible. Otherwise the feed will present too extended 
an obstruction in the path of the energy reflected from the large mirror; 

Fio 8 9 Dipole termination on m a\ o- 
guide 



Sec. 8-8] DIPOLE-DISK FEEDS 251 

the effects of such aperture blocking on the over-all antenna pattern 
are discussed in Sec. 6-7. It is thus necessary to sacrifice a certain 
measure of directivity, with the result that the primary feed has a back 
lobe, that is, radiation behind the reflector plate; this, too, has a sig¬ 
nificant effect on the over-all antenna pattern (c/. Sec. 12-5). 

The coaxial-line-fed multidipole systems are usually designed so that 
only one dipole is excited directly from the line. The other members 
(dummy or parasitic dipoles), arranged in a linear array, are fed by 
coupling with the directly excited element. Microwave feeds have 
usually included a single dummy element to complete a double-dipole 
system such as that discussed in Hee. 3*18. In that section the case of 
X/4 spacing and relative phase ^ == ir/2 was considered in detail. How¬ 
ever, by reference to Eq. (3* 174) of Sec. 3*18, it may be seen that any 
pair of values of spacing a and phase which satisfy the relation 

wa ^ a i o 
^ 2 WlTT} 771 0, 1, 2, 

wall give peak intensify along the direction normal to both dipole axes, 
that is, along the feed line in the practical case. These other systems, 
however, unlike the (X/4, ir/2) system, in general also give rise to a back 
lobe in the direction 180° aw ay from the peak. In practice, the .phase of 
the dummy relative to the driven element is controlled by the relative 
dimensions of the dipoles as wTell as by their spacing; from Sec. 8*5 we 
see that it is possible to make one dipole capacitative or inductive relative 
to the other, by proper choice of dimensions. 

Directive feeds will be further discussed with reference to particular 
systems. In the following sections design data are presented on a num¬ 
ber of feeds that have been developed in the Radiation Laboratory and 
used extensively. It is not to be assumed that the results given here 
represent the ultimate that can be achieved with these systems. 

8*8. Dipole-disk Feeds.—Two dipole-disk systems have been devel¬ 
oped, employing respectively the stub-terminated asymmetric dipole 
and the stub-terminated slot-fed dipole. 

a. Asymmetric Dipole Termination.—Three such feeds have been 
designed1 to illuminate paraboloidal mirrors, of focal length 10.6 in. and 
30-in. aperture, at wavelengths of 9.1, 10.0, and 10.7 cm respectively. 
Details of the feed assembly are given in Fig. 8*10. The line has a 
characteristic impedance of 46 ohms; its dimensions are outer conductor, 
OD * 0.875 in. with wall thickness of 0.032 to 0.035 in.; inner conductor, 
OD = 0.375 in. Reasonable directivity was obtained with a reflector 
plate with diameter about 0.8X. The principal E- and #-plane feed 
patterns are shown in Fig. 8*11. The peak intensity of the pattern is 

1 S. Breen and R. Hiatt, R L Report No, 54-23, June 21, 1943. 
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directed along the feed line, and the data in this region are, therefore, 
somewhat uncertain. The dotted portion of the curves have been 
obtained by extrapolation. It is observed that the E-plane pattern is 
not symmetrical. This is due to the fact that one wing of the dipole is 
excited more strongly than the other in the asymmetric dipole termina¬ 
tion, as was pointed out in Sec. 8*3. The peak appears on that side of 
the axis which corresponds to the dipole wing carrying the major portion 
of the current. The //-plane pattern, on the other hand, was found to 
be accurately symmetrical corresponding to the symmetry of the dipole 
structure in the plane. For comparison, there are plotted the theoretical 
patterns for the ideal system of a dipole placed X/4 in front of an infinite 
reflecting plane. It is seen that the feed pattern is considerably more 
directive; the gain of the feed is found to be equal to 7. 

The E- and //-plane centers of feed are coincident, lying between the 
dipole and the disk, somewhat nearer to the latter. The point-source 
cone is more than adequate to cover a mirror with dimensions given 
above. The unpressurized feed has a peak power capacity of 350 ± 35 
kw. With suitable matching transformers it has been possible to realize 
an impedance characteristic for the composite system (feed and para¬ 
boloid) such that the standing-wave ratio r did not exceed 1.23 over a 
band of ± 3 per cent about the matching frequency. 

b. Slot-fed Termination.—A unit designed to operate at a wavelength 
of 9.1 cm with a paraboloidal mirror of 3.6-in. focal length and 12-in. 
aperture is illustrated in Fig. 8T2.1 The line has a characteristic imped¬ 
ance of 45 ohms, with an inner conductor of in. diameter. The smaller 
line was used here to reduce weight, the power requirements on the feed 
having been smaller than in the preceding case. It will be noted that 
the disk diameter here is about 0.5X. The system has a single center of 
feed for both principal planes and is completely free from squint. The 
composite antenna made up of the feed and the mirror indicated above 
has an impedance band of ±1.25 per cent about the design frequency 
over which r < 1.23. 

8*9. Double-dipole Feeds, o. Coaxial-line-fed System.—Such a feed2 
is illustrated in Fig. 8T3; it is a lightweight unit employing a in. line 
like that discussed in Sec. 8-86. The spacing between the dipoles is very 
nearly X/8; correspondingly, the parasite element is longer than the driven 
element in order to produce the proper phase relationships. This sys¬ 
tem, like those discussed above, has a unique center of feed. An antenna 
consisting of this feed and a paraboloidal reflector of 3.6-in. focal length 
and 12-in. aperture has a standing-wave ratio r < 1.23 in a band of ± 1 
per cent about the design frequency. 

i W. B. Nowak, RL Report No. 54-26, July 5, 1943. 
* Ibid. 
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b. Waveguide Systems.—A double-dipole feed built up on a waveguide 
termination for use at a wavelength of 3.2 cm is shown in Fig. 8-14.1 
The two dipoles are mounted on the web so that their axes lie on the 
plane of symmetry of the guide. The spacing between the dipoles is 

-£ 

1'IU 8 14 

0 576 
Waveguide double-dipole feed* X = 32 cm. 

about X/2.5; again the coupling (and hence the relative phase) of the 
elements is adjusted by the suitable choice of their relative dimensions. 
The radiation pattern has an appreciable back lobe which is in some 
measure due to the guide itself; this is reduced by tapering the terminal 
region as shown in the figure. The E- and if- plane centers of feed are 
not concident; however, their separation is negligible for most purposes, 
and the equivalent center of feed can be taken to be located just behind 
the first dipole. 

We have previously pointed out the dependence of the impedance on 
the taper, depth of insertion of the web, and the dipole factors. To 
obtain reproducible results, special care must be taken to remove excess 

1 W. Siohak, “Double Dipole Rectangular Wave Guide Antennas,” RL Report 
No. 54-25, June 26, 1043. 
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solder at the base of the dipole and at the seams between web and wave¬ 
guide. Antennas made up of this feed and paraboloidal mirrors of 
18-in. aperture and focal length either 4 5 or 5.67 in. have a bandwidth 
of ±1.5 per cent over which r < 1.23 if the antenna is matched by an 
inductive window at X = 3.2 cm. The unpressurized antenna has a peak 
power capacity of 375 kw, corresponding to 50 kw at 50,000-ft altitude. 

8-10. Multidipole Systems.—The web termination on a waveguide 
provides a convenient base on which to build multidipole systems in the 
form of two-dimensional arrays. Two such airays have been designed 

Fig 8 15—Four-dipole feed 

for the 3-cm band, one a triangular array of three dipoles, the other a 
rectangular array of four dipoles. Only the latter has been used in final 
antenna design. The four-dipole array shown schematically in Fig. 
8T5 can be regarded as a pair of the double dipole units discussed in Sec 
8*96, separated by a distance of approximately X/2. Each double¬ 
dipole unit can be replaced by its equivalent point source, reducing the 
system to two directive sources in phase, spaced X/2 apart. It is evident 
that no appreciable change is to be expected in the JE-plane pattern 
The H-plane pattern, however, must be multiplied by the directivity 
factor of two isotropic sources in phase and with X/2 separation. This 
factor is readily found to be [cos (w/2 cos <t>)]2 where <i> is the angle with 
respect to the axis in the //-plane. Hence if P2(</>) is the //-plane pattern 
of the double-dipole system, the pattern P4(<£) of the four-dipole system 
is given closely by 

P4(4>) = P*(4>) cos cos 



CHAPTER 9 

LINEAR-ARRAY ANTENNAS AND FEEDS 

By J. E. Eaton, L. J. Eygks, and G. G. Macfaiilane 
« 

9*1. General Considerations.—The technique of producing directive 
beams by means of arrays of radiators that are suitably spaced and driven 
with appropriate relative amplitudes and phases has been used widely 
at the longer wavelengths. These arrays have generally been in the 
form of two-dimensional lattices with the possible addition of a reflecting 
surface to confine the radiation to a single hemisphere in space. In the 
microwave region, attention has been confined almost exclusively to the 
one-dimensional, that is, linear, arrays. The wavelength advantage 
becomes evident at once, for with economy in physical size it is still pos¬ 
sible to have an array that is long measured in wavelengths and hence 
highly directive. 

The arrays that have been designed to date can be grouped into two 
general classes: (1) end-fire arrays producing a beam directed along the 
axis of the array and (2) broadside arrays producing beams the peak 
intensity of which is in a direction normal to or nearly normal to the 
axis. End-fire arrays have proved to be particularly useful where it is 
necessary to mount an antenna close to an object; for example, such arrays 
have'been mounted along a gun barrel in airplanes to furnish gunfire 
range information and to serve as gunfire directors. Axially symmetrical 
broadside arrays w’hich produce beams symmetrical about the axis have 
been designed for use as beacons; installed both in ground or ship and 
on aircraft they provide a communication system between ground (or 
ship) and aircraft. The patterns of these arrays are axially symmetrical 
like the dipole patterns but have increased directivity in the meridional 
plane to give increased range. Other types of broadside arrays have been 
developed whose beams have a fair measure of directivity also in the 
plane perpendicular to the array axis. In a fewr cases, arrays of this type 
have been used as the terminal antenna system; more frequently these 
arrays have been used as line sources for illuminating cylindrical reflectors, 
in which case the reflector is placed sufficiently close to the array so as 
to be in its cylindrical wave zone. 

While there is no fundamental difference in principle between long¬ 
wave and microwave arrays, the microwave arrays present problems of 
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their own which are due to the wavelength region involved. In long¬ 
wave arrays it is possible to isolate to a large degree the feeding of one 
element of the array from another. Microwave arrays must be built 
on coaxial line or waveguides with the result that the feeding of the 
element becomes, a mutual interaction problem. This type of feeding 
also requires special designs in the radiating elements of which there is 
quite a variety at microwave frequencies. The physical size of the 
radiating elements is generally small, and tolerance problems are asso¬ 
ciated with microwave arrays that are generally uncommon at longer 
wavelengths. 

The problems and techniques of linear-afray design have been divided 
in this chapter into three general parts. The first concerns itself with 
general pattern theory, that is, the relation between the far-zone pattern 
of an array and the amplitude and phase distribution among the elements 
and their spacing; in this section no attention is paid to the problem of 
realizing a given amplitude and phase distribution. The second part is 
a survey of the radiating elements that have been developed for micro- 
wave arrays. The final division treats the problems associated with 
combination of the elements into linear arrays and the techniques avail¬ 
able to produce the desired amplitude and phase distributions. 

PATTERN THEORY 

9*2. General Array Formula.—A linear array is a specialization of the 
general space array discussed in Sec. 3*19. The space factor of the system 

can be obtained immediately from 
Eqs. (3*179) and (3*180) by impos¬ 
ing on those equations the simpli¬ 
fications gained in working with 
a one-dimensional rather than a 
three-dimensional complex. It 
may be instructive, however, to 
derive the space factor directly 
from the superposition of fields; 
we shall be concerned,only with 
the far-zone field of the array. 

Suppose that there are n ele¬ 
ments in the array under consider¬ 
ation, and let the reference line of 

the array be taken as the polar axis. The ordering of the elements P0, Pi, 
. . . , P„_i is shown in Fig. 9*1 with the element P0 taken at the origin; 
the distance between two adjacent elements is 8. Let us consider the field 
at a point (R, 0, $) in the far zone. According to Eqs. (3* 168a) and 
(3* 1686) the field due to the ith element at a distance r,- from the element is 

/ 

/ 
/ 

/ 
/ \ 

/ 

Ax 

4' 

/ 
/ 

Fig. 9* 1.-“Difference in distance from the 
ith element and from the pole to a distant 
point in the direction 6, <f>. 
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E,, = ,Lr'Fu(6,4>), 

E*. = 

If the customary far-zone held approximations are made, rt can be set 
equal to R in the denominator, while in the phase term we have 

rt = R — is cos 6 (1) 

as shown in Fig. 9-1. The component fields are then 

E<>, = - e-‘^Fu{e,<t>)e‘*, (2a) 

E*. = - S e-**F*(6, +)e*, (25) 

where ^ is the phase difference between the zth element and the origin 
due to the difference in path length to the field point: 

, 2iris cos 6 w. = — — — l A) 

The elements of the array are identical in structure and carry similar 
current distributions. They differ only in the amplitude and phase. 
We can, there!ore, write 

Fu{B,<t>) = aj<\(d,<l>), (4 a) 
F2i(0,<f>) — atF 2(6, <t>). (46) 

The complex coefficients a, express the amplitude and phase of the ith 
element with respect, say, to the zeroth element; they will be called the 
“feeding coefficients.” 

By the superposition principle, the field of the array is 

Ee 

E♦ 

n — 1 

4tR 
e~’kHFi(e,<l>) 7 axe^-™'30*9)/xi 

«-i 

{3 •**,(#,♦) 2, 
2m* con 9)/\ 

*«0 

(5a) 

(56) 

The last twro factors in each instance represent the corresponding space 
factor of the array. The power pattern is proportional to the sum 
of the squares of the absolute value of the two space factors; that is, 

n—1 

P(6,<t>) = |fi(0,<£) ^ ate^2rxt,^9)/ 

n— 1 

j + |f'*(®»^>) i co*8)/>\ 
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Since the absolute value of a product is the product of the absolute values, 

or 

n — 1 

P(9,4) = [|*\(M)|2 + |Fi(M)l*]R 
i =0 

n— 1 

P(M) =Po(M)|T axe,i-r%’"'*>',/)\ 
I s-t 

(6) 

The first factor is the power pattern of an individual element of the 
array. The second factor depends on the number of elements in the 
array, their amplitudes and phases, and their spacing. It is formally 
independent of the type of element used, although in practice the value 
of the feeding coefficients ax is intimately connected with the character¬ 
istics of the elements of the array. We shall call this function the 
“array factor” and denote it by 'F(B). 

r<-i 

2 
Q^gl (2irt# cos 9) /Xj (7) 

This factor is the power pattern of a similar array of isotropic radiators, 
for which Po(B,<t>) = 1. Moreover, it is independent of <t> as was to be 
expected. 

If the feeding coefficient a% is written as 

at = 10.1**, 
the array factor is seen to be the square of the magnitude of the resultant 
of n vectors; the magnitude of the zth element vector is |a,| and the angle 
between it and the zeroth-element vector is x% + fa- The angles between 
the vectors vary with the angular position 0 of the field point, with cor¬ 
responding variation in the resultant vector. In general as 6 covers the 
entire range from 6 = 0 to B = w, the magnitude of the resultant passes 
through maximum and minimum values. The absolute maximum value 
that could be attained by the resultant is the sum of the vectors when they 
are colinear and in the same direction. With arbitrary Xi,’ however, 
there may be no angle B for which this condition is realized and the 
maxima are less than the absolute maximum. Similarly, there may be 
no value of $ for which the minimum value of the resultant takes on the 
absolute minimum value of zero. However, with special relations 
between the Xt it is possible to have directions B for which the path-length 
phases & compensate for the intrinsic phase differences x» between the 
elements to bring all the component field vectors in phase; in this case, 
the absolute maximum resultant is attained. 
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A particularly simple and useful case is that in which the coefficients 
ax are all real. This implies that the angle between any two vectors 
associated with adjacent elements is (27r$ cos 0)/X. 

If the coefficients a% are equal, it is readily apparent that the resultant 
vector is 0 whenever the vectors constituting the sum permute among 
themselves under a rotation of less than 2w. For then the resultant 
vector both rotates and remains unchanged and hence is 0. This occurs 
whenever (2w$ cos 0)/X is any integral multiple of 2r/n less than n. 
When (2ws cos 0)/X = 2ir, the vectors obviously reinforce one another 
and an absolute maximum results. 

Whenever ^(0) = 0, then Ee = E+ = P(S,<t>) = 0 [Eqs. (5a), (5fr), 
and (6)] for all values of <£. The surface in spherical coordinates foi 
which 0 is constant is a right circular cone. The cones on which >k(0) = 0 
are commonly called cones of silence. 

9«3. The Associated Polynomial.—The vector representation of the 
array factor provides a method of rapidly analyzing the simple arrays 
frequently encountered in practice. Vector language is not, however, 
well suited to a more general study of arrays. An alternate method has 
been developed1 that associates a polynomial with any linear array. 
The array factor may be completely analyzed in terms of properties of 
this polynomial. 

Let z be the complex number z = x + jy. The polynomial associ¬ 
ated with the linear array of elements having feeding coefficients at is 

f(z) = a0 + a# + • • • + an-12"-1. 

The value of the polynomial for the complex number 

2 — _ gj(2ir«cos 8)/\ 

is the sum entering into Eqs. (6) and (7); the array factor is thus the 
norm2 of the associated polynomial for z = f, 

*(•) - l/OOl2. (8) 

The complex number f is a vector from the origin in the complex plane, 
of magnitude unity, making an angle \p = (2irs cos 0)/X with the real 
axis. As 0 varies z = f describes a circle of unit radius about the origin. 
In the future we shall not distinguish between z and f; it is to be under¬ 
stood that z lies on the unit circle whenever ^(0) is to be computed from 
the associated polynomial. When 0 = 0, = 2irs/X. As 0 moves 
toward w, z moves along the unit circle clockwise toward the point where 
its angle ^ = —2irs/\. In that interval z may traverse but a portion of 

1S. A. SchelkunolT, “A Mathematical Theory of Linear Arrays,” Bell System Tech. 
Jour., 22, 80 (1943). 

* The norm of a complex number as used here is the square of its absolute value. 
It may have a more general meaning. 
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the unit circle or may complete several circuits of it depending on the 
value of s. Its path will be referred to as the range of z. In Fig. 9*2 
the range of z is shown for three values of $. Since the angular distance 
traversed by z is 47r$/X, the range of z is exactly one circuit of the unit 
circle when $ = X/2, is less than one circuit when s < X/2, and is more 
than one circuit when s > X/2. 

Flo. 9*2.—The portion of the unit circle in the complex plane that is the range of z. 
The real axib is horizontal. The figures on the perimeter show the eoiresponding values of 
6 for certain values of z. 

Any polynomial can be expressed as a product of linear factors. In 
particular the associated polynomial may be written in the form 

f(z) = a*-i(z - Zi) (z - z2) •••(*- Zn-i). (9) 

Since the feeding coefficients give only the relative phases and amplitudes 
of the elements of the array, an-i can be taken to be any convenient non¬ 
zero number. The complex numbers zx (known as the “zeros” of the 
polynomial) are unaffected. Their values depend only on the set of 
ratios Ot/aw-1. The factorization of f(z) in Eq. (9) lends itself to a simple 
geometric interpretation of the array factor. Since the norm of a product 
is the product of the norms, Eq. (9) may be written 

*(0) = \z - Zi\2\z - *2|2 * * * \z - Z*-l|2 

for z on the unit circle. The zeros of f(z) are well-defined points in the 
complex plane but do not necessarily lie on the unit circle. For any value 
of z, \z — z»|2 is the square of the distance between the point z and the 
point zt. The array factor is then the square of the product of the dis¬ 
tances of n — 1 fixed points to a variable point moving on the unit circle. 
It is immediately obvious that ^(0) = 0 if and only if some z< lies on the 
unit circle within the prescribed range of z. Shown in Fig. 9-3 is the range 
of z when s = X/4. The zeros of /(z) are shown for the case n « 9 and 
ao = ax « • • • = an-1 = 1. The array factor then vanishes for four 
values of 0 and attains a maximum value at three points, each lying 
between an adjacent pair of nulls. The predominating influence on 
the value of ^(0) is the distance from the corresponding value of z to the 
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nearest zero of /(z). In this connection it should be noted that the 
zeros of f(z) lying outside the range 
effect on the relative value of ^(0) 
z = 1 (corresponding to 0 = r/2) 
is farthest from a zero of /(z), and 
one would expect, as is the case, 
that ^(0) has an absolute maxi¬ 
mum at 0 = 7r/2. This is directly 
evident from the vector view - 
point of the previous section. The 
elements themselves are all in 
phase, and in the direction 0 = ir/2 
the distance is the same from all 
the elements to the field point. 
The contributions from the ele¬ 
ments in that direction are, there¬ 
fore, in phase, and the vectors are 
all in the same direction. 

It is frequently advantageous 
to separate from the relative phase 
X% of each element as expressed i 

of z have for the most part but small 
For the case illustrated, the point 

J<Kt 9 3—The location of the zeros of 

f(z) = 1 4- z ■+■ z1 + • * * + z*. The range 
of z for 6 — X/4 is also shown together with a 
few of the coi responding values of 0 

the coefficients a, a constant-phase 
delay between each pair of adjacent elements. This is equivalent to 
writing 

ax = dte~/(**fl), 

where now the angle of at is the deviation from of the difference in 
phase between the ?th element and the element with index 0. Let 

z = e-^°z] (10) 

then /(z) transforms into the polynomial 

H— 1 

J(z) = ^ (11) 
1 = 0 

When z lies on the unit circle, z given by Eq. (10) does likewise, and we 
have/(z) = /(z). Since Eq. (10) is equivalent to a rotation of the com¬ 
plex plane through an angle in the clockwise direction, the array factor 
may be computed from the zeros of /(z) in the same manner as before 
save that the range of l is the original range of z rotated clockwise through 
the angle (Fig. 9*4). Symbolically 

- 1/(2)I2, 
where 

l -- ^1(2** 0)/x-^o]# 
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The association of a polynomial with any linear array of prescribed 
spacing provides a simple and elegant method for compounding array 
factors. Suppose >£1(0) and ^2(0) are the respective array factors of two 

arrays with the same spacing. 
If fi(z) and f2(z) are the asso¬ 
ciated polynomials of the arrays, 
then the array whose associated 
polynomial is 

/(-) = /1 («)/*(«) 

will have as its array factor 

*{0) = ¥i(0)*a(0), (12) 

for, as has already been observed, 
the norm of a product is the prod¬ 
uct of the norms. Explicit 
values of the feeding coefficients 
of an array whose array factor is 
given by Eq. (12) can thus be ob¬ 
tained by simply multiplying to¬ 
gether the polynomials/1 (2) and 

h(z)- 
9-4. Uniform Arrays.—A linear array that is made up of elements 

having equal amplitudes and a constant-phase difference between adja¬ 
cent ones is of considerable importance. Such an array is called a “uni¬ 
form array.” Its feeding coefficients are 

ax = e-^°. 

Fig. 9-4.—The range of z due to the con¬ 
stant phase delay rfio =71/2 for s = X/4. 
The dotted curve indicates the range of z 
associated with that of z. The figures on the 
perimeter indicate the corresponding values 
of 8 for certain values of z and z. 

Although the associated polynomial of a uniform array will in general 
have complex coefficients, the related polynomial J(z) may, as was shown 
in the previous section, be used with equal effectiveness. Then 

where 

But 

/(*) = 1 + z + z2 + • • • + zn~\ 

z = 

g(r*-l)/2 
gn/2   g—»/2 

zM — Z~h 

(9-10) 

The array factor is then 

¥(0) = | z""1! 

with 

* = 

gn/2 _ 2~n/2 2 

' gh — z~Yi ' 

2 ITS 

T 
cos 0 — ^0. 

z = e?* 

(13) 
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However, \e3*\ = 1 and \en* — e~}r+\2 = 4 sin2 r^. 
of a uniform array is given by 

. 9 n , 
sm2 ^ $ 

= «2 sin2 U 

Thus the array factor 

(14) 

together with Eq. (13). The number n2 has been inserted in the denomi¬ 
nator as a normalizing factor. 

When ^ = 2kw and k = 0, ±1, ±2, • • • , \F(0) is indeterminate. 
It can be readily shown, however, that it approaches the value unity at 
those points. The corresponding values of 0 are given by 

cos 0 = ^ (2for + *°> (* - o, ±1, ±2, • • • )• (15) 

For every real value of £ satisfying Eq. (15) ^(0) has an absolute maxi¬ 
mum. In these directions the differences in phase between the vector 
contributions of successive elements that are due to differences in path 
to the field point just compensate for the intrinsic phase difference between 
the elements. The contributions are then all in phase, and we have, 
therefore, an absolute maximum equal to the sum of the lengths of the n 
vectors. For values of s < A/2, however, there will be values of for 
which Eq. (15) has no real solution. 

Since ^(0) is never negative, its absolute minima will occur when 
^(0) = 0, that is, for any value of 0 satisfying 

008 6 = 2^5 (^T + *•) (* - o, ±1, ±2 • • • ) (16) 

other than those satisfying Eq. (15); for at those points the numerator 
in Eq. (14) vanishes while the denominator does not. The points 0 = 0 
and 0 = tt may also be minimum points. Certainly 4^(0) is an extremum 
at each of these values because it has the period 2r and is symmetrical 
with respect to the line 0 = 0. 

No other minima of 'F(O) exist.1 The maxima, other than those given 
by Eq. (15), will occur close to the point where the numerator in Eq. (14) 
reaches its maximum value of unity; for the numerator is changing much 

1 Differentiate ¥(0) with respect to 0. 

Bln 2 * |*» - 1 • fn + 1 ,\ » + 1 • fn - 1 ,\1 ( 2its „\ * w " L 2 sln (—*)-2 8in \ T~ *) J ~ Sln •) 
The points at which sin n^/2, and sin Q vanish have already been examined. The 
only other critical values can arise from the factor 

- 1 n — 1 * /w -f* 1 , \ w -f 1 • (ft — 1*\ 
sm (~2~ *) -~2~ 8ln \-2~U 
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more rapidly than the denominator. An excellent approximation then 
for the remaining maximum points of ^(0) is 

cos 0 = T + ^°] = ± 1, ±2, • * • ) 

in which values of k divisible by n are excluded. 
Figure 9-5 shows ^ as a function of \f/ fKc|. (14)] for n = 12. For this 

functional dependence has the peric <1 2t and is symmetrical with respect 

0 

to the line ^ = 0. An idea of the shape of the array lactor for various 
values of s/\ and may be obtained from the graph. Because 

, 2ws cos 0 # /nioN 
t (9-13) 

This function, however, is monotone in any region between adjacent solutions of 

Eq. (16) because its derivative is 

a2 — 1 . n , . 1 , 
-2— 8111 2 * 8in 2 

Thus it can vanish no more than once in the region whose end points are successive 
roots of Eq. (16). 
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the portion of ^ that represents the array factor lies in the region for 
which 

2lTS 2ITS 
^ - *0 < * < ~ - H 

Thus the values of ^ that determine the array factor extend over an inter¬ 
val of length 47t$/A; this may be less than the period of Sk or several of its 
periods. In the language of Sec. 9-3 the range of z (whose angle is \f/) 
may be less than one circuit of the unit circle or several circuits. 

9*6. Broadside Beams.—A linear array whose form factor has its 
absolute maxima only in directions normal to the axis of the array is 
known as a “broadside array.” The array factor of such an array should 
then have a single absolute maximum in the direction 0 = w/2. The 
power pattern of the radiating element employed will, of course, deter¬ 
mine whether, among other possibilities, the array will have a single 
direction of maximum intensity in the plane 0 = t/2 or its intensity will 
be maximum in every direction m that plane. Both of these types of 
arrays have widespread application; the latter is sometimes called an 
omnidirectional antenna.1 In the microwave region the principal use 
of these antennas is as beacons, and in the following sections all such 
antennas will be referred to as beacons. 

We have seen that the array factor for a uniform array has absolute 
maxima for the values 0 satisfying the relation [Eq. (15)] 

COS0 = y + ^ (k = 0, ±1, ±2, • • • ). 

This will have the solution 0 = w/2 if ypo = 0, and it will be the only such 
solution if s < A. Arrays in which the elements all have the same ampli¬ 
tude and phase (fa = 0) are commonly referred to as uniformly illumi¬ 
nated arrays. For the moment let attention be restricted to the case 
s = A/2. It will be shown later that this restriction is desirable. The 
array factor is then, from Eq. (14), 

Equation (17) is plotted in Fig. 9*6 on a decibel scale for n = 6 and n = 12. 
It will be observed that the side lobes (secondary maxima) on either 

side of the main beam decrease. Moreover, on the decibel scale used in 
Fig. 9*6, a straight line joining any two peaks on the same side of the main 
beam lies entirely above any intervening peak. That this is always true 

1 It should be remembered, however, should this usage be encountered, that 
*‘omnidirectional 99 means all directions in a plane. 
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may be verified by noting that the peaks of the side lobes lie approxi¬ 
mately on the curve 

*0 = i . 

n2 sin2 cos 

The second derivative of In with respect to 6 is 

7r esc2 cos 0^ sin2 6 + cot cos dj cos dj* 

Fig. 9*6.—Graphs of 

j^sin2 ^ 

j n2 sin2 

T 008 g)l 
(l 008 *)] 

for n 

curve). 

6 (full curve) and n 12 (dotted 

This is positive in the interval on either side of the main beam; hence the 
peaks of the lobes on each side of the main beam lie on curves that are 
concave upward. 

Direct computation shows that the height of the first side lobe, that 
is, the one nearest the main beam, varies from 0.056 for n = 6 to 0.047 
for n = 12 and 0.045 for all sufficiently large n. The height of the last 
side lobe is 1/n* for odd n and approximately that for even n. 

If the sine appearing in the denominator of Eq. (17) is replaced by it* 
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argument, an approximation for the half-power width of the array factor 
may be obtained namely, 

An indication of the magnitude of the error is contained in Table 9*1 in 
which both the actual half-power widths and those computed by the 
approximate formula are given. 

Table 9 1 —Magnitude of Error Resulting from the Use of the Approximation 

for the Half-power Width 

n 2 3 4 5 6 

i 

12 

i 

50 

101 8 

n 
50 9 33 9 25 4 20 4 16 97 8.48 2 036 

0 60 0 36 3 26 3 20 8 

i 

17 19 8 50 2 039 

The relatively large height of the first side lobe is characteristic of a 
uniform array and at times may be annoying. Broadside arrays may 
readily be formulated, at least in theory, that have side lobes as small as 
desired. For example, consider an array whose associated polynomial is 

f(z) « (1 + Z + Z2 + • • * + 2"1-1)2 
or 

f(z) = 1 + 2z + • • • + mzm~l + * * * + 2z2m~~° + z2m~2. 

The elements are all in phase, but their amplitudes decrease uniformly 
from the central element. This is a special case of what is commonly 
called a gabled illumination. Its array factor is the square of the array 
factor of a uniform array; hence its first side lobe will have a height of 
but i per cent of the height of the main beam instead of the 5 per cent 
height of the uniform array. All of the other side lobes will be reduced 
in a similar fashion, but the main beam will be somewhat broader than 
the main beam of a uniform array with the same number of elements. 
The half-power widths of the gabled and uniform arrays are approxi¬ 
mately 146°/n and 102°/n, respectively, where n is the number of ele¬ 
ments. Successively higher powers of the polynomial may be computed; 
the reduction in side lobes is accompanied by a rapid growth in beam width. 

A general discussion of the problem of constructing high-gain broad¬ 
side arrays with side lobes below a prescribed value will be given in 
Sec. 9*7. Attention may be called here to an array that eliminates side 
lobes completely. The feeding coefficients are equal to the binomial 
coefficients 

*»! r , _ rv 
°r* kKr-k)\ (18) 
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The array is derived from the two-element half-wavelength-spaced uni¬ 
form array. The latter has an array factor 

this has no side lobes and has nulls at 0 = 0 and 6 = v. Its associated 
polynomial is 

f(Z) = 1+2. 

From Eq. (12) it follows then that the array whose polynomial is 

f(z) = (1 + z)r = Cr, 0 + CrAZ + Cr,222 + ‘ * * + Cr,fZr 

has an array factor 

An inspection of the three space factors given in Fig. 9*7 shows that, of 
the three, the uniform broadside array concentrates the greatest per¬ 
centage of the radiated energy in the direction normal to the array. It 
can be readily shown that of all arrays in which the elements have the 

same phase and the spacing is-the uniformly illuminated array has 

the maximum gain. Let 
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n-1 

m - —— 

v ar 

be the polynomial associated with an arbitrary array of n elements, 
normalized so that /(l) = 1. 

Since the elements an* spaced a half wavelength apart, z = 
The gain G in the direction 6 = w/2 (which corresponds to z = 1) is 
given by 

— __ __ ^__, 2 = cos ® 

/07; i/(z) i2 «n 
or 

<7=7 (19) 

wrherc 

7 = / |/(*)|*sin 0</0. (20) 
J o 

To maximize (7, / must be minimized. In Sec. 9*7 it is shown that there 
is no loss in generality by assuming that f(z) has real coefficients. If we 
let yj/ = cos d, then Eq. (20) becomes, after expansion, 

«-1 n -1 

/ - ^_i ^ j ^ (^ «2 + ^ Cr cos rmf^j d\f/, 

where the numbers Cr are combinations of the polynomial coefficients a, 
Hence 

n — 1 

2 1 

7 _ 
n — 1 

(W 
and 

n — 1 

r«0 

n — 1 w — 1 

3/ 
do* 

a*(I a02-I a7 
/ **0 f*0 

w-l 

(l,*Y 
= 0, 1, 

We then have for a minimum the system of equations 

(21) 

» — 1). 
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^ a? = 0 (* - 0, 1, •••,«- 1). (22) 
7m) 

The difference between any two of Eqs. (22) is 

n - \ 

r —0 

Thus ah = at for all i and k. Unit these conditions actually yield a 
minimum may be shown by examining the second derivatives. Equa¬ 
tions (19) and (21) show that the gain of such a uniform array is n, 
the number of elements. 

The situation becomes more complicated if the restriction to half¬ 
wavelength spacing is removed. We shall attempt an ansver only for 
broadside arrays having a total length (the distance between the first and 
last elements) of X/2. In that event, the half-wavelength-spaced uniform 
array has the largest gain of all uniform arrays of the prescribed length. 
However, the uniform array does not yield maximum gam of all arrays of a 
given length. 

The array factor of an n-element uniform broadside array X/2 long is, 
from Eq. (14), 

^(^i'2C°hg) . 

”2 rin* (n- ll COb 9) 
When n = 2, we have 

The two-element array will have maximum gain if 

in the interval 0 ^ 8 < w/2. This inequality, however, is equivalent to 
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Because (sin x)/x is a decreasing function in the first two quadrants, the 
inequality is established and the two-element array has the largest gain 
of all uniform arrays whose total length is X/2. 

To show that the uniform broadside array has not, however, the 
largest gain of all broadside arrays of the same length, we shall consider 
as a specific example the maximum gain of three-element quarter-wave¬ 
length-spaced arrays. Let 

, a + bz + cz2 
m = aTb + c 

be the polynomial associated with any such array. As before, a, 6, and 
c are assumed to be real. Then from Eq. (20) 

4 f */i (a2 + ft2 + r2) + 2 (aft + be) cos i + 2ac cos 2* 
it Jo ~ (a + b + c)- W 

or 

4 \ («2 + ft2 + c2) + 2{ab + be) 

t (a + ft + c)2 

The equations for minimizing I are 

(a + b + c)2(wa + 26) — 2(a + b + c)N 
(a + b + c)2(t6 + 2a + 2c) - 2(a + 6 + r)N 

(a + b + c)2(tc + 26) - 2(a + 6 + c)A^ 

where 

iV = 2 (a- + 1>2 + c2) + 2(aft + 6c). 

Thus 
• a = c, 

ft = *■ “ ^a = -0.7519a. 
7T — ii 

0, 
0, 
0, 

Hence G = 2.4 as contrasted to © = 2.0 for the two-element half-wave- 
length-spaced uniform array. In Fig. 9*8 are drawn the array factors 
of the uniform array and the array whose gain was just computed. Also 
shown is the array factor for the uniform continuous array, that is, one 
in which n has been allowed to increase without limit, subject only to the 
restriction (n — 1)$ = X/2. 

In practice it is frequently desirable to avoid half-wavelength spacing 
because of the resonance that may occur at that spacing. As far as gain 
is concerned this is quite feasible; for the gain of a uniform array suffi¬ 
ciently long is nearly independent of the number of elements, provided 
only that the spacing does not greatly exceed a half wavelength. How¬ 
ever, it is only at resonance that the requirement that the radiating ele- 
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ments be in phase can be readily met.1 Nonetheless, if the spacing does 
not differ by much from a half wavelength, the progressive phase delay 
thereby introduced [^0 in Eq. (13)] causes but a small deflection of the main 
beam from the normal to the array; the exact amount is given by 

5 = s in-JoX- 
2irs 

(23) 

Flo. 9*8. Arra.\ f-actois of foui bioad'side ana\M whoso lengths are X/2 (a) the two- 

element X/2-spaced umfoim arras cos2 (lpos *)’ (h) the four-element X/b-spaeed uni- 

(23 C°h *) _ 

6'°' e) 
form arraj (c) the contimious uniform arras 

16 sin2 (lcoa e) 

three-element X/4-spaced arraj with maximum gam 

cos e 
—; and (d) the 

9*6. End-fire Beams.—The feeding coefficients of a linear array may 
be chosen so that the array factor has an absolute maximum along the 
axis of the array. If an element of the array produces a pattern having 
an absolute maximum in the same direction and if the product of the 
array factor and the element pattern has no other absolute maximum, 
the array is called an “end-fire” array. 

If the elements of the array are not directive, the radiation pattern 
of the array is determined entirely by the array factor 'i'(d). The pattern 
is the surface in spherical coordinates given by 

r = *(0) 

and is therefore a surface of revolution symmetric with respect to the 
axis of the array. It « only by considering the three-dimensional picture 
that the great difference between end-fire and broadside arrays becomes 
apparent. The major lobe of an end-fire array is a pencil beam; thus a 

1 See Sec. 9’17. 
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one-dimensional configuration of sources produces radiation directive in 
two planes and does so without relying on any directivity of the individual 
sources. A broadside array on the other hand is directive in only one 
plane; it is omnidirectional in the plane perpendicular to the axis of the 
array. 

Pencil beams whose half-power widths are in the region from about 
15° to 35° can be produced quite readily by end-fire arrays that have 
lengths ranging from 3 to 18 wavelengths. The length of the array, 
however, varies inversely with the square of the beam width; narrow 
beams would require very long arrays. By properly choosing the feeding 
coefficients, end-fire arrays can be designed whose gains are almost double 
those of broadside arrays with the same length. This increase in gain 
has the greatest practical significance for arrays about 5 wavelengths 
long. 

In order to eliminate from the array factor large lobes in any direction 
except 8 = 0, it is necessary to restrict the spacing of the elements. The 
necessary relations can be obtained 
from a study of the associated poly¬ 
nomial and an examination of the 
range of z on the unit circle in the 
complex plane. Since the angle \p 
of z is given by 

\j/ assumes all values from 2ws/\ 
to — 2t$/\ as 8 ranges from 0 to w. 

Because the array factor has a 

0.33ir 

period 2w as a function of the 
spacing s/\ must be such that 
over the range of 8 the total varia¬ 
tion of 4/ is less than 2x; that is, 
the range of z in the unit circle 
is less than one revolution. In 

0.67 jt 
Fig. 9-9.” The range of the angle of s, 

as 6 varies from 0 to *. The outer ring of 
figures shows corresponding values of $ at 
various points on the unit circle in the 2-plane 
for 8 * A/2. The inner set of figures shows 
values of 6 for s = A/4. 

that case a principal maximum, which in the case of an end-fire occurs 
at ^ = 2ws/\, will not be repeated. In Fig. 9*9 the mapping of 8 on 
4* is shown schematically. On the exterior of the unit circle in the 
2-plane are shown values of 6, corresponding to the indicated points on 
the circle for the spacing s = X/2. The values shown on the interior 
are for the spacing s = X/4. The array factor of a half-wavelength- 
spaced end-fire array will duplicate its value for 8 » 0 again at 0 « 
To suppress such an undesirable back lobe it is necessary to separate the 
end points of the range of z. The quarter-wavelength-spaced array will 
be examined as a typical array that satisfies this condition. Figure 9-9 
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shows that the range of ^ for the quarter-wavelength spacing of elements 
is from x/2 to —x/2. From the discussion in the previous sections it is 
seen that if such an array has equal feeding coefficients, it will have its 
principal maximum at 0 = x/2, that is, at ^ = 0. 

We have seen, however (Sec. 9-3, Fig. 9-4), that if a given array is 
altered by having superimposed on it a constant-phase difference from 
element to element, the effect on the array factor is to rotate the range 
of z through an angle equal to that phase difference. If, in particular, 
a quarter-wavelength-spaced uniform array is adjusted to introduce 

a phase difference of — ^ between each pair of adjacent elements, the 

Fig. 9-10.—The effect of intro¬ 
ducing a constant-phase difference 
—ir/2 on the elements of a quarter- 
wavelength-spaced uniform array. 
The inner semicircle shows the 
original range of z and the correspond¬ 
ing values of 0. The outer semicircle 
is the range of z due to the phase dif¬ 
ference; the corresponding values of 
6 are indicated. 

principal maximum that occurs when 
\p = 0 corresponds to 0 = 0, and an end- 
fire antenna results (Fig. 9-10). The 
array factor of such an array is obtained 
immediately from Eq. (14) and is 

sin2 (cos 0—1) 

*(« ---- • 
n2 sin2 7 (cos 0—1) 

4 

The factor n2 has been inserted in the 
denominator so that 4>(0) = 1. 

The gain is more easily computed 
from the polynomial associated with the 
array 

n—l 

Equation (20) becomes, after substituting and making the change of 
variable yp — x(cos 0 — l)/2, 

n— I 

/ = -—g J + 2 ^ (n — &) cos k\p 

k** i 

Thus from Eq. (19) G = n, the same gain as the longer half-wavelength¬ 
spaced uniform broadside array. 

A uniform array with constant-phase difference between adjacent 
elements is one readily realized in practice. It is then well to inquire 
if the choice —x/2 for the phase difference is optimum for an end-fire 
array. If this difference is slightly less than —x/2, then the range of z 
is displaced slightly more than x/2. The direction 0 = 0 no longer repre¬ 
sents the principal maximum of 
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sm 2 
2 

snr 

(24) 

but is displaced slightly from it (Fig. 9*11). However, the principal 
maximum of Expression (24) is not contained in the range of z. The 
end point of that range corresponds to 6 = 0 which then is a maximum 
of Expression (24) considered as a function of 6. The net effect is two¬ 

fold: Because the value of Expression (24) at 6 = 0 has been reduced, 
the relative heights of the side lobes are increased and the gain tends to 
be reduced. On the other hand, the width of the main beam has been 
diminished, which has an opposite influence on the gain. 

An estimate of the displacement yielding maximum gain may be made 
by approximate methods valid for large n. Suppose the phase difference 
between any two elements is — (7r/2) — ^o; that is, 

^ | (cos 0 — 1) — ^o. 

Then the array factor is 

sin2 ~ sin2 \~ (cos 0 — 1) — 

♦<*>-r —M-tt' 
Bin* sin* I j (cob 9 — 1) — yj 

The first factor has been inserted so that 'I'(O) = 1. An approximation 
of the gain may be obtained. If y = — (n/2)\f/, Eq. (20) becomes 
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If n is large, the distant side lobes have little effect on the gain. We 
may replace sin2 y/n by its argument, thus reducing the height of the 
distant side lobes The range of integration may then be extended to 
x and sin2 ^<>/2 may be replaced by its argument with but a negligible 
effect on the value of /. Then Eq. (25) becomes 

By graphical methods1 it has been shown that I is a minimum when 
= 2.94/n. Then the direction 0 = 0 corresponds to the point where 

the function given in Expression (24) is 40 per cent of its maximum value. 
The main beam is about half as broad as that of a uniform array w ith a 
phase shift of — w/2. On the other hand the heights of the side lobes 
have been more than doubled. The gain of such an array is 

G = 1.82 ft. 

Its half-power width is approximated by 

For a more general spacing s between adjacent elements, maximum 
gain occurs when 

= 2-94x 

4fts 

Here still refers to the additional displacement of the range of z beyond 
x/2. The phase difference between adjacent elements is —2rs/\ — ^0. 
The gain for the general case is 

G = 

However, * is not completely arbitrary. We still must conform to our 
assumption that the distant side lobes have small effect on the gain. It 
has been suggested2 that the approximations are valid for 8 < X/3. 

1 W. W. Hansen and J. R. Woodyard, “A New Principle in Directional Antenna 
Design,” Proc. IRE, 26, 333 (1938). 

* Hansen and Woodyard, op, oil, 
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An entirely different technique for increasing the gain of an end-fire 
array has been given.1 Again we start with a quarter-wavelength-spaced 
uniform array with a phase delay —v/2 between adjacent elements. 
The polynomial associated with such an array is 

n — 1 n — 1 

/(*) = /. = (-j)u 'll (z - juk) (20) 
0 k=1 

wrhere w is the nth root of unity with the smallest positive angle. The 
array factor is then 

* i 

no) = n 2 - i*T- 
1 

The numbers jc*/ lie on the unit circle, and, it will be recalled, the array 
factor is formed by computing the square of the product of the distances 
from these numbers to the variable point z. 
[t is apparent (Fig. 9* 12) that the zeros of 
/(z) lying outside the range of z add little 
to the directivity of the array. Thus, an 
array wrhose polynomial is 

»- i 

m = II (* - M), 

retaining as it does only those zeros which 
lie on the range of z, will have the same Ho. 912. The location of 

nulls .as formerlv and at the same location, the zeros of Eq. (26) with relation 
_ . ' _ ... to the range of z for w — 8. 
Its gam will have been reduced but little, 
while its number of elements has been almost halved. 

9*7. Beam Synthesis.—The preceding sections have dealt principally 
with the problem of analyzing the properties of the array factors of given 
linear arrays. The inverse problem, that of finding an array which will 
yield an array factor having prescribed characteristics, is far more diffi¬ 
cult. The present section will treat some aspects of the synthesis problem. 

The nature of the synthesis problem depends on the manner in which 
the desired pattern is specified. The latter may be prescribed as a 
complete function of B over the physical range 0 g 0 g In general a 
solution is sought that gives an acceptable approximation to the desired 
pattern. There can be no unique solution to such a problem, since the 
pattern is prescribed only as regards intensity distribution of the radia- 

1 8. A. Schelkunoff, “A Mathematical Theory of Linear Arrays,” Bell System 

Tech. Jour., 28, 80 (1943). 
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tion field; the phase distribution is arbitrary, and each choice of such a 
distribution will lead to a different array. Only a partial solution to the 
problem will be given. It will be based on the general characterization 
of the array factor of an n-element array and the formulation of the prop¬ 
erties that a pattern must possess in order to be the array factor of a 
linear array. All n-element arrays will be found that have a given array 
factor. The problem of finding the best approximation to a given pattern 
by a realizable array factor is beyond the scope of the present discussion. 

The desired pattern may be specified with regard to general proper¬ 
ties rather than as a complete function of 6. Examples of such synthesis 
problems are the design of a broadside array having minimum beamwidth 
for a given side-lobe level and the design of one having a minimum side- 
lobe level for a given beamwidth. These problems have exact solutions 
when the spacing of the elements of the array is X/2 or greater; they will 
be discussed later in this section. 

We shall consider first the characterization of the array factor of an 
n-element array. The array factor can be obtained from Eq. (8) by 
replacing f by e3(2T80O*6)/x and expanding. If the real numbers Ak and Bk 
are defined by 

n — 1 — k 

Ak 4- jBk — ^ (iraf+k, (27) 
r = 0 

Eq. (8) becomes 

n — 1 

^(0) = A0 + 2 j'Ak cos (k — cos dj + Bk sin ^A- ~ cos (28) 
k -1 

Thus the array factor of any n-element linear array with spacing s is a 
trigonometric sum of order n — 1 in the angle \[/ = (2ts cos 6) /X. The 
trigonometric sum is nonnegative for all real values of \p. Conversely, 
every nonnegative trigonometric sum can be realized as the array factor 
of a linear array. It follows then that the necessary and sufficient con¬ 
dition that there exists a linear array having the prescribed pattern as its 
array factor is that the prescribed pattern can be expressed as a nonnega¬ 
tive trigonometric sum of a finite number of terms. Expressing the 
prescribed pattern as such a sum determines the coefficients Ak and J5*, 
and in principle the feeding coefficients ar of the array can be determined 
from Eq. (27). 

To find an n-element array that will approximate the prescribed 
pattern, the latter may be approximated1 by the terms of order less than 

1 The method of approximation selected will depend on how the prescribed pattern 
is specified and what deviation from it is acceptable. For a general discussion of this 
problem see C. de la Vallee Poussin, Legons mr V Approximation dee Fonctiom d} une 
Variable retie, Paris, 1919. 
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a in its Fourier series expansion in the angle ^ = (2ws cos 6) /X. When 
5 > A/2, the periodicity of the Fourier series may present difficulty. If 
these terms form a trigonometric sum that is nonnegative for all the 
coefficients Ak and Bk may be used to determine the feeding coefficients 
of the n-element array. 

A direct solution of Eq. (27) is, however, difficult, Instead, define 
an auxiliary polynomial F(z) by 

n — 1 71 — 1 

F{z) = V (A* - jBie)zn~1+k + AoZ"-’ + V (Ak + jBk)zn-1~k. (29) 

I k~\ 

Then Eq. (28) becomes 

*(0) = |F(e7(2,r*OOBe)/x)|. (30) 

If Zk is a zero of F(z), so also is its conjugate reciprocal 1 /z*. The assump¬ 
tion that the trigonometric sum is nonnegative thus implies that the zeros 
lying on the unit circle, which are their own conjugate reciprocals, occur 
with even multiplicities. Hence the zeros of F(z) may be grouped in 
pairs; and aside from a constant multiplier, 

n — 1 

™-n [«■-*> (-*)]■ (3i) 
One zero in each pair may be selected as a zero of a new polynomial 

n — 1 

/(*) = n (2 - Zk). (32) 

ife-1 

For values of z on the unit circle 

i/(«)i4 = (2)1 - no), 
where again a constant multiplier has been dropped. Equation (30) 
then implies that ^(S) is the array factor of the array whose associated 
polynomial is given by Eq. (32). The separation of the zeros of F(z) 
into two sets can in general be done in many ways. Each such partition 
will usually lead to two different arrays; all arrays will have the same 
array factor. When all the zeros lie on the unit circle (as, for example, 
in the uniform array), only one method of division is possible and the 
two sets obtained are the same. It should not be assumed that finding 
an array having a given array factor is an easy computational problem, 
even when »is as small as 5. It is necessary to find the zeros of a poly¬ 
nomial of degree 2» — 2 and then perform the multiplications indicated 
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in Eq. (32) to find the feeding coefficients. Simpler but less general 
methods have been devised.1 

It is now possible to verify the assumption made in Sec. 9*5 that as 
far as the gain of broadside arrays is concerned, attention may be restricted 
to arrays whose elements are either in phase or out of phase by 180°, 
that is, to arrays whose feeding coefficients are real. The array factor 
of an arbitrary array is given by Eq. (28). If the sine terms are dropped, 
the resulting ^(8) is still the array factor of some array. Moreover the 
gain in the direction 8 = t/2 is unchanged, since both the field intensity 
in the direction 8 = t/2 and the integral in Kq. (20) are unchanged by 
eliminating the sine terms. The corresponding polynomial F{z) in Eq. 
(29) will have real coefficients, and its nonreal zeros occur in conjugate 
pairs. Hence in forming the associated polynomial f(z), the pairing of 
conjugate zeros may be maintained and f(z) will have real coefficients. 

Let us consider next the problem of minimizing the side-lobe level of 
broadside arrays with a fixed beamwidth or maximizing the beamwidth 
for a given side-lobe level. The problem has received an exact solution2 
when the spacing between elements is at least X/2 and sufficiently less 
than X to eliminate any large end-fire lobe. For the present purposes 
a convenient definition of beamwidth is the angular difference between the 
position of the two nulls enclosing the main beam. Only those arrays 
will be considered whose main-beam nulls are symmetrically located with 
respect to the direction 6 = t/2. 

The array factor having either the minimum beamwidth or the lowest 
side-lobe level may be expressed in terms of the Tchebyscheff polynomial 
Ttnix) = cos (2n cos-1 x). This polynomial falls between —1 and +1 
in the interval -1 g 1, assumes the value +1 at the end points of 
the interval, increases steadily outside the interval, and is symmetric 
with respect to the line .r = 0. The actual array factor is given by 

no) = \ [1 + T2n(ax)], x = cos (33) 

Figure 9T3 is a graph of £[1 + T^ax)] for n = 4 and a = 1. In Eq. 
(33) the direction 8 = t !2 corresponds to x = 1. If 

i[l + Ttn{a)] = r, (34) 

the relative height of each side lobe is 1 /r. The array factor with this 

1 S. A. Schelkunoff, “A Mathematical Theory of Linear Arrays,” Bell System Tech. 
Jour., 22, 80 (1943); and Irving Wolff, "Determination of the Radiating System 
Which Will Produce a Specified Directional Characteristic,” Proc. IRE, 26,630 (1937). 

* C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the 
Relationship between Beam Width and Side Lobe Level,” Proc. IRE, 84, 336 (1946). 
The results of Dolph have been generalized by Henry J. Riblet, Proc. IRE, 85, 489 
(1947). 
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side-lobe level and having the smallest beam width is given by Eq. (33) 
with a a solution of Eq. (34). The null nearest x — 1 occurs for 

''”5®° *Tn (35) 

This, together with x = cos [(jts cos 9) /X], gives the beam width. If the 
side-lobe level is to be minimized for a prescribed beam width, Eq. (35) 
is used to determine a and Eq. (34) to find the height of the side lobe. 

I'll,. 9-13.—The function + T»(x)]. 

The substitution x = $(z^ + z~^) transforms i[l + T2„{ax)] info 
z~nF{z), where F(z) is a polynomial of the form of Eq. (29) with Bk — 0 
for all k. The symmetry of T2n{ax) ensures that the fractional powers 
of z in F(z) are missing. The same substitution transforms 

into a = e,<2’r*00"*)A. Hence this substitution transforms Eq. (33) into 
Eq. (30), and thus Eq. (33) represents an array factor of some linear 
array. The feeding coefficients are obtained most easily from the zeros 
of i[l + T2n(ax)], for these transform into the zeros of/(z), the associated 
polynomial of the array. 

The optimum properties of the Tchebyscheff array are readily estab¬ 
lished. An argument similar to one used earlier in this section is sufficient 
to show that attention may be restricted to arrays whose associated 
polynomials have real coefficients. The array factor can be represented 
in the form of Eq. (30). The polynomial F(z) defined in Eq. (29) has 
only real coefficients. Hence the substitution x — + z~W) trans¬ 
forms z_nE(z) into a polynomial G(x) symmetric with respect to the line 
x *= 0. Equation (30) is transformed into 
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_ /N (its cos Ox 
6) = G{x)y x = cos (—— - )• 

Suppose G{x) is normalized so that (?(1) = r with r as in Eq. (34). It is 
impossible for G{x) to have a zero for x ^ xi [Eq. (35)] and at the same 
time lie between 0 and 1 for 0 g x ^ xi. Any such polynomial would 
then have (n + I) points in common with -*[1 + !T2«(^)], double points 
being counted as such. The symmetry then shows that the two poly¬ 
nomials, each of degree 2n, have 2n + 2 points of intersection and so 
must coincide. If $ ^ X/2, there are real values of 6 corresponding to 
any x in the interval 0 ^ x ^ 1. Hence if the side-lobe level of the 
array is 1 /r, the requirement that 0 ^ G{x) ^ 1 for 0 ^ x ^ xi must be 
met, and the only array possible is the Tehebyscheff array. 

RADIATING ELEMENTS 

9*8. Dipole Radiators.—The various forms of coaxial line-fed dipoles 
discussed in Chap. 8 can be adapted for use as a linear-array element to 
be mounted on either coaxial line or waveguide. Design and perform¬ 
ance are discussed here in terms of a rectangular guide; however, the 
fundamental ideas apply to all types of lines. The general properties 
desired of a dipole element are (1) a balanced excitation of the wings to 
give a symmetrical pattern, (2) a resistive load presented by the dipole 
because a reactive component means large reflections in the line, (3) an 
easily adjustable resistance with minimum frequency dependence, and 
(4) high power capacity. 

The requirement for balanced excitation of the wings favors the use 
of the slot-fed dipole (cf. Sec. 8-4). The open-end termination has been 
used almost exclusively; the stub-terminated units are more frequency 
sensitive and are also limited in power capacity by the standing waves 
in the stub section. The general arrangement of a slot-fed dipole adapted 
to a rectangular guide is illustrated in Fig. 9T4. The inner conductor 
of the coaxial line serves as a coupling probe to the waveguide; it is evi¬ 
dent that the probe should be parallel to the electric field in the guide for 
efficient coupling. 

The important parameters of the dipole are slot depth, wing length, 
and outer-conductor diameter. The properties of the element are com¬ 
plicated functions of these parameters, and little is available in the form 
of systematic data. Breakdown tends to occur between the conductors 
of the coaxial section. The breakdown potential can be increased by 
increasing the slot width and the outer-conductor diameter; the extent 
to which this can be pursued is limited, however, by the unbalancing df 
the wing excitation. The unbalancing is due to higher modes becoming 
prominent and producing an asymmetrical field across the line; the simple 
mode picture drawn in Fig. 8-6 is applicable only for slot widths and 
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coaxial-line dimensions that suppress the higher modes. The element 
illustrated in Fig. 9-14 designed for use in the 10.7-cm region has a high 
power capacity.1 With the values of the parameters indicated in the 
figure the balanced condition is maintained, as evidenced by a symmetrical 
radiation pattern; furthermore, studies of the phase fronts indicate that 
the unit has a center of feed located in the inner conductor. The wave¬ 
guide serves as a reflector so that the unit mounted in guide forms essen¬ 
tially a dipole-plate system. 

i 

Fig. 9*14.—Cross section of a dipole on rectangular waveguide. 

In the arrangement shown in the figure, the dipole behaves like a 
load shunted across the line. This is proved experimentally by measur¬ 
ing the input admittance of the dipole when it is followed by a variable 
reactance, which is provided by a movable plunger in the end of the guide; 
it is found that the conductance of the system is independent of the ter¬ 
minating reactance. The admittance of the dipole is a function of probe 
depth. With no probe the element presents an inductive susceptance 
component; the probe, like a tuning screw, is a capacitative susceptance 
(except for extreme depths of insertion); accordingly it is possible to 
find a probe depth at which the susceptance of the element as a whole 

1J. Whelpton, “Admittance Characteristics of Some S-band Waveguide Fed 
Dipoles,” RL Report No. 1082, January, 1946. 
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vanishes. These relations are illustrated in Fig. 9*16, a plot of the dipole 
admittance as a function of probe depth. The depth to which the probe 
may be inserted is limited by breakdown, which can occur between the 
end of the probe and the bottom of the guide. This difficulty can be 
obviated in some measure by terminating the probe in a small sphere. 

1.0 

0*1- 

Fig. 9-15.- Dipole admittance a*s a function of probe depth in inches (X = 10.7 cm). 

For a given depth of insertion, the sphere causes a slight increase in the 
capacitative effect of the probe. 

The impedances of these dipoles as single elements are practically 
independent of the orientation with respect to the axis of the line. In 
an assemblage of elements there are mutual interactions w,hich are 
decided functions of orientation. 

For assemblages of elements the question of reproducibility of an 
element in production is of considerable importance: it has been found 
that characteristics can be reproduced quite accurately by centrifugal 
or die-casting production methods. 

9*9. Slots in Waveguide Walls.—It was noted in Chap. 7 that the 
electromagnetic field in the interior of a waveguide has associated with 
it a distribution of current over the boundary surfaces of the guide. 
This current sheet may be regarded properly as that required to prevent 
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penetration of the field into the region exterior to the boundaries; it is 
indeed true that the metallic structure can be removed, providing the 
current sheet is maintained, without leakage of energy across the bound¬ 
aries. If a narrow slot is cut in the wall of a waveguide such that the 
long dimension of the slot runs along a current line or along the region 
of the wall where the current is zero, it produces only a minor perturba¬ 
tion of the current distribution and correspondingly very little coupling 
of the internal field to space. Examples of such slots arc* elements cut 
in a coaxial line with the long dimension parallel to the axis of the line 
or elements of the type c and e cut in a rectangular guide as illustrated in 
Fig. 9-10; the slot c lying along the central line of the guide is in a region 
of zero current density. Nonradialing slots offer a means of entry into 
the guide for studying the internal field and are used for this purpose in 
impedance measurements (cf. Chap. 15). 

On the other hand, a slot cut in a guide vail in a direction transverse 
to the current lines produces a significant perturbation of the current 
sheet, with the result that the in¬ 
ternal field is coupled to space. 
A slot of this type constitutes a 
radiating element. The degree of 
coupling depends on the current 
density intercepted by the slot and 
the component of the length of the 
slot transverse to the current lines. 
Thus the coupling at a given posi¬ 
tion on the guide can be adjusted 
by the orientation of the slot as is 
indicated for the elements d and / 
in I?ig. 9*1(>, or the coupling can be adjusted by position like the radiating 
slot b and non-radiating slot c in the figure. The type of circuit element 
that the radiating slot presents to the transmission-line representation of 
the wave-guide is again a function of position and orientation. Under 
certain conditions the slot is in effect a shunt element; in others a series 
element; under very general conditions the slot can be represented ade¬ 
quately only by a T- or II-section inserted in the line. The general circuit 
relations and the fundamental properties of slots will be developed in the 

following section. 
9*10. Theory of Slot Radiators.—Let us consider a cylindrical wave¬ 

guide of arbitrary cross section with its axis the £-axis. It was found in 
Chap. 7 that the normal modes of such a guide fall into two classes: 
SPE-modes having an Hr but no EV-component and TVlf-modes having 
an Er but no Hr component. Each mode is characterized by its char¬ 
acteristic admittance Y(^n and propagation constant 0™; the latter is 
real for a freely propagated mode but is to be taken equal to —jjmn for a 

Ft<i. 9*1 fi.—Slots in the wall of rectangular 
waveguide. 
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mode beyond cutoff. From the general discussion in Sec. 7-3 it is seen 
that the field components of a TTJ-mode of order a = mn can be written 

Hz = jHag exp (T j&aZ), 
E* = Eat exp (+j/3aZ), ' (36) 
Ht = ±Ha* exp (TjPaZ), i 

where E< and H< represent the transverse electric and magnetic field vec¬ 
tors and the upper or lower signs are taken according as the wave is 
going in the positive or the negative 2-direction. The general form of the 
TM-mode field components is the same as in Eq. (30) with 11 z replaced 
by 

Ez = jEaz exp (+jpaz). (37) 

If 0a is real, the functions Eaz, //<**, Eand Hat are all real and depend 
only on a, x} and y. We have also seen (cf. Sec. 7.3) that the component 
vector functions Eat and Ha* have the orthogonality property 

j (Eat x Hbt) • iz dS = 0, a b, 

Say a 6^ 

wiiere Sn is twice the Poynting energy flux for a freely propagated mode 
and iz is a unit vector in the direction Oz. The normal modes of the guide 
form a complete set in terms of which an arbitrary field distribution over 
the wall of the guide can be expressed in the form of a Fourier expansion. 

Now consider a slot from Z\ to z2 in the wall of the infinite guide. 
We assume that the guide is to be excited by a known field distribution 
along the slot. Then the field in the guide, wrhich is denoted by subscript 
1, will consist of outgoing waves on either side of the slot; that is, it wdll 
contain only waves going to the right for z > z2 and only waves going to 
the left for z < zh 

The amplitudes of waves going to the right and left are not necessarily 
equal and are denoted by Aa and Ba respectively; they must be such 
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that on superposing the two sets of waves a field is produced which 
matches the field over the slot according to the general boundary condi¬ 
tions formulated in Chap. 3. 

In order to evaluate the amplitudes Aa and Ba an auxiliary relation 
must first be derived. Consider two fields Ei, Hi and E2, H2 of the same 
frequency and both satisfying the homogeneous field equations. By 
virtue of these equations we find 

V • (Bi x H2) = V • (E, x HO = -MeEi • E2 + ^H, • Hf). 
Hence 

V • [(Ei x H2) - (E, x HO] = 0. 

If V is any closed region bounded by a surface S, it follows by the diver¬ 
gence theorem that 

js (Ei xHi-Eix Hi) • n' dS = 0, (40) 

where n' is the unit vector normal to dS and directed outward from F. 
First, we shall evaluate Ba. Let the field Ei, Hi be the field set up in 
the guide by the slot as formulated in Eqs. (39). For the field E2, H2 let 
us take a normal mode, free propagation of which is supported by the 
guide, traveling toward the right, and let a be the index of this mode. 
Furthermore, take as the region V the section of the guide containing the 
slot, bounded on the left by the plane z = z3 < Z\ and on the right by the 
plane z = Z4 > z2. The surface S to which Eq. (40) is to be applied 
consists then of these two planes and the wall of the guide. Over the 
plane z = Z\ the fields 1 and 2 consist of systems of waves traveling in 
the same direction. When the indicated substitutions are made and the 
orthogonality property of Eq. 38 is used, the integral vanishes. On 
the plane z = z3 the fields 1 and 2 are composed of waves traveling in 
opposite directions. Making use of the orthogonality relation again 
and noting that for this surface n' = — i*, the integral over this surface 
is — 2BaSa. Considering the integral over the wall, the second term in 
the integrand is zero everywhere, for it can be written as Hi • (n' x E2), 
and n' x E2 is zero o /er the wall, since E2 is a normal mode. Similarly 
the field Ei must satisfy the condition n' x Ei = 0 over the metal wall 
boundary. The only nonvanishing contribution from the wall area arises 
from the first term of the integrand over the region of the slot. One 
thus finds 

2BaSa « - / (Ei x H*) • n dS, (41) 
J slot 

where n is a unit vector normal to the wall and directed into the interior 
of the guide. If x is a unit vector perpendicular to the axis of the guide 
and tangent to the surface of the guide, then 
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(42) n = x x iz» 

Substituting this last relation into Eq. (41), we obtain finally 

2BaSa = / (—jEWHag + EiJlar) exp (-.//*„*) <}&- (43) 

Second, we shall evaluate The field Ei, Hi is again taken to be that 
set up in the guide by the slot, and the field E2, H2 is taken to be the 
normal mode of index a traveling to the left. In this case the plane 
z = Zz does not contribute to the integral in Eq. (40), and the plane 
z = Za contributes — 2AaSa; over the wall of the guide the only non¬ 
vanishing contribution arises again from the first term of the integrand 
over the area of the slot. It is thus found that 

2AaSa (Ej x Ho) • n dS 

(jElrHaz 4 EizHar) exp (jM dS. (44) 

The interpretation of Eqs. (43) and (44) for the amplitudes becomes 
clearer if the magnetic field components IIar and //„, are replaced by 
surface current densities Kaz and — Kar respectively. These are the com¬ 
ponents of the surface current, in the direction of the axis of the guide 
and in the direction transverse to it, that exists over the area of the slot 
in the nonslot ted guide supporting the ath mode. In terms of these 
currents the amplitudes become 

2BaSa =- / {jE]TKar + EuKaz) exp (-j/3az) dS, (45) 
J slut 

2AaSa = / (JEirKar — EuKat) exp (jPaZ) dS. (46) 
J f'lot 

It is evident from these equations that in general the slot does not radiate 
equally in both directions within the guide. The formulas also show that 
the slot will couple the ath mode to space only if it cuts across current 
lines corresponding to that mode. There are various special conditions 
under which a small slot is symmetrical with respect to the ath mode. 
Tf all the dimensions of a slot are small compared with the wavelength, 
the variation of a phase factor exp (+j@az) across the slot can be neglected; 
without loss of generality the slot can be located at z = 0, in which case 
the phase factors are replaced by unity. We then observe that 

1. Aa = Ba if Eu or Ka% is zero. Reference to Eqs. (39) shows that 
as far as the ath-mode contribution is concerned, Eu is continuous 
at the plane z = 0 while the magnetic field is discontinuous; in 
fact, is in opposite phase to H^. With respect to the ath 
mode the slot acts like a shunt element in a transmission line. 
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2. Aa = if or Kar is zero. In this case E« is discontinuous 
and Hlf is continuous at the plane z = 0 as far as the ath mode is 
concerned; the slol behaves like a series element in the ath-mode 
transmission line. 

The slots of more general interest are narrow ones having a length of 
about A/2 and a width small compared with the length. The electric- 
field distribution in such a slot is nearly sinusoidal along the length and 
independent of the feeding system; the direction of the field is transverse 
to the long dimension. Then* are also special conditions under wrhich 
such slots reduce to series or shunt elements: 

1. Axis of the slot perpendicular to the guide axis. In this case the 
phase factor exp (±jpaz) can again be replaced by unity. Further¬ 
more E\r = 0; hence if Kat ^ 0, Aa = — Ba and the slot behaves 
like a series element in the ath-mode transmission line. 

2. Axis of the slot parallel to the guide axis. In this case E\z = 0 and 
the second members of the integrands of Eqs. (45) and (46) 
vanish. The variation of the phase factors exp (+j/3az)* cannot 
be neglected; howrever, Kar is constant, and EXr is an even function 
along the slot; therefore only the real parts of the phase factors 
contribute to non vanishing integrals, and one has Aa — B,,. The 
slot oriented in this manner behaves like a shunt element 

Except wrhen special conditions of symmetry are imposed on the field 
and on the currents in the slot, lor orientations more general than (1) 
and (2) above, Ba ± Aa, and the slot behaves like a more complicated 
combination of shunt and series element. In this case the slot is repre¬ 
sented by a T- or II-section equivalent in the ath-mode transmission line 

9*11. Slots in Rectangular Waveguide; TEio-mode.—The theory of 
slots in rectangular guide that supports only the TEX0-mode will be devel¬ 
oped in detail. The discussion will be based on the following assumptions * 

1. The slot is narrow; i.e., 2 logic (length/width) 1. 
2. The slot is cut so that it is to be near the first resonance (length 

of the slot « A/2). 
3. The field in the slot is transverse to the long dimension and varies 

sinusoidally along the slot, independent of the exciting system. 
4. The guide walls are perfectly conducting and infinitely thin. 
5. The field in the region behind the face containing the slot is 

negligible with respect to the field outside the guide; this is tanta¬ 
mount to extending the face containing the slot into an infinite 
perfectly conducting plane. 

The third assumption concerning the field distribution is closely in 
accord with experimental conditions. The fifth assumption is probably 
the most radical in its departure from the actual conditions* 



292 LINEAR-ARRAY ANTENNAS AND FEEDS [Sec. 9 11 

First the equivalent circuits are given for the common types of slot, 
and then the method is given for calculating the values of the elements 
by means of Eqs. (45) and (46) and the electromagnetic formula¬ 

tion of Babinet’s principle (Sec. 
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Fia. 9 17.—Parameters and equivalent 
circuits of slots in rectangular waveguide 
(reference point for circuit elements is the 
center of the slot), (a) 'waveguide dimen¬ 
sions; (b) longitudinal slot m broad face, 
shunt element; (c) transverse slot in broad 
face, senes element, (d) centered inclined slot 
in broad face, series element; (e) inclined slot 
in narrow face, shunt element. 

5*15), provided the reactive field 
of the slot is zero.1 The rectan¬ 
gular guide has the dimensions 
shown in Fig. 9*17. The shunt 
conductance of a slot normalized 
to the characteristic admittance 
of the 77£io-mode line is g, and the 
series resistance normalized with 
respect to the line characteristic 
impedance is r. We have then 
(1) for a longitudinal slot in the 
broad face (shunt element b in 
Fig. 9*17) 

g = g! sim 

v here 

= 2 09 ~ ~ cos 
A 0 

(irx\ 

w 

(£> 

(47a) 

(475) 

(2) for a transverse slot in the 
broad face (series element c in 
Fig. 9-17) 

r — To cos 

where 

r0 = 0.523 

(t> «*> 

(486) 

(3) for a centered inclined slot in the broad face (series element d in Fig. 
9-17) 

r — 0.131 L |/(0) sin ® cos > (49a) 

where 

7(0)1 00*(t) , cos(t) 
/<*)) i - e * 

(496) 

1 The results to be quoted are due to A. F. Stevenson, “Series of Slots in Rectan¬ 
gular Waveguides,” Parts I and II, Special Committee on Applied Mathematics, 
National Research Council of Canada, Radio Reports 12 and 13, 1944. 
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') + a <49c> 

and (4) for an inclined slot in the narrow face (shunt element e in Fig. 
9*17) 

As an illustration of the method of deriving the above relations we 
shall conclude this section with a summary of the procedure for the 
longitudinal slot in the broad face of the guide, Case (1) above. Choose 
dimensions as indicated in Fig. 9T75. Suppose a TEX0-wave of ampli¬ 
tude unity to be incident on the slot from the left; this field induces a 
field across the slot so that the slot radiates waves in both directions in 
the guide and into space outside the guide. The amplitudes Bio and Aio 
(the mode index a is here replaced by 10) of the waves radiated in the 
interior are given by Eqs. (45) and (46) in terms of the field in the slot; 
the field, according to the third of our initial assumptions, is 

EIt = Eo cos (A 2), 

Eu — 0, 
(51a) 

where Eo is the field at the center of the slot. We have also for the other 
quantities entering into Eqs. (45) and (46) 

(A.-,.), - \ 

si0 = y (t) [ (516) 

«■ - *• - ) 
where is the characteristic wave admittance of the T^io-mode.1 On 
inserting these quantities into the expressions for the amplitudes it is 
seen at once that A i0 = Bio; that is, the slot is a shunt element, in agree¬ 
ment with the previous conclusions relative to slots parallel to the guide 
axis. The amplitudes are given explicitly by 

3 (0 *“(?)-(*£) <62) 
1 The constants of (2Cio)t and £io correspond to the mode being so normalized that 

the electric field across the guide is given by ^sin ~ 
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where w is the width of the slot. It is useful to express the slot excita¬ 
tion in terms of a “voltage” transformation ratio. The “voltage” 
across the slot is defined to be the line integral of the field across the slot 
at its center, i.e., 

Fo * wEq, 

while the voltage in the guide corresponding to any one of the dominant¬ 
mode waves is defined as the line integral of the held across the center of 

the guide, i.e , 
Fj = bA\o — bRio. 

The voltage transformation ratio is then 

Vi 

Fo 
(53; 

It is recognized further that the amplitude Am measures directly the 
reflection coefficient V (at z = 0) in the transmission-line equivalent of 
the dominant-mode wave. If the slot is resonant, the value of V at z = 0 
must be real, because the impedance looking to the right is real at that 
point at resonance. Then if the slot is a shunt element of normalized 
conductance g, the total admittance at z = 0 is 1 -f g; while if the slot 
is a series element of resistance r, the input impedance at z = 0 is 1 + r. 
From Eqs. (2*30) and (2*36) g and r may be expressed in terms of T by 

9 
1 + 

(54) 

The value of V can be evaluated for a resonant slot by energy-balance 
relations. The total energy incident on the slot is equal to the sum of 
the reflected, transmitted, and radiated energy. The incident power is 
Sa/2 for an incident wave of unit amplitude; the reflected power is 

2S 
{A io)~2^* The total amplitude of the dominant-mode wave to the right 

of the slot is 1 + Bm) hence, the transmitted power is 

Re (1 + Rio)2. 

In computing the power radiated by the slot use is made of a result 
obtained, by means of an electromagnetic Babinet’s principle,1 for the 
radiation resistance of a center-driven narrow slot in an infinite perfectly 
conducting plane sheet of zero thickness. In this case the input resistance 
is 

1H. Booker, “Babinet’s Principle and the Theory of Resonant Slots,” THE Report 
No. T-1028. 
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In the infinite sheet problem the slot radiates to both sides of the sheet; 
in our case the slot radiates to one side so that the radiation resistance 
is assumed to be simply twice the above value. The power radiated 
by the slot is then given by 

1 VI 
2 2 Rr \\ atts 

Writing the energy balance equation and remembering that Aio = Buh 
we have 

Y = y Miol2 + ^ [1 + Uio!2 + 2Re (^10)] + 73 F02 

Finally, since Aio = T is real, we obtain from the above 

14-1= _73 !» n '%„.saG410)2 (55) 

Making use of Eqs. (51a) and (516) and substituting this last result into 
Eq. (54), the conductance of the resonant shunt slot is 

120tr a \Vi 

9 73 b\kj |F0 
(56) 

We already have the voltage transformation ratio in Eq. (53); substituting 
this into Eq. (56) gives the final expression for the normalized shunt 
conductance, 

»-^5T °°8'(£,)""*(?)' <57> 
9*12. Experimental Data on Slot Radiators.—Confirmation of the 

theory developed in the last section has been obtained by experiment 
for the longitudinal slot in the broad face of the guide (Case 6, Fig. 9*17) 
and for the inclined slot in the narrow face (Case e, Fig. 917).1 The 
resistance of a longitudinal slot as a function of its position with respect 
to the center of the guide is shown in Fig. 918; the points are in good 
agreement with the formula 

lA. L. Cullen, “The Characteristics of Some Slot Radiators in Rectangular 
Waveguides,” Royal Aircraft Establishment, Great Britain, Tech. Note No. Rad. 200; 
Dodds and Watson, “Frequency Characteristics of Slots,” McGill University, PRA- 
108; Dodds, Guptill, and Watson, “Further Data on Resonant Slots,” McGill Univer¬ 
sity, PRA-109; E. W. Guptill and W. H. Watson, “Longitudinally Polarised Arrays 
of Slots,” McGill University, PRA-104. 
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g = gi sin2 (9.47a) 

but the numerical constant gi is 1.73 whereas the theoretical value given 
by Eq. (47b) is 1.63. The discrepancy is probably due to the assumptions 
underlying the theory. The frequency characteristics of longitudinal 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Slot displacement from center of guide to center of slot, in. 

Fig. 9*18.—Resistance offered by a longitudinal slot as a function of its displacement 
from the center. The slot dimensions are & by 2 in., the waveguide is 1 \ by 3 in., X = 10.7 
cm. The data fit the relation G ■* Zo/R — 1.73 sin2 [{irx/a)!]. {From J. W. Dodds, E W. 
Guptitt, and W. H. Watson by permission of the National Research Council of Canada.) 

» 

slots as a function of slot width are presented in Fig. 9*19, which shows 
that the wider the slot the flatter the frequency response. The maxi¬ 
mum of conductance does not coincide wdth the vanishing of susceptance. 

For practical convenience dumbbell-shaped slots such as the one illus¬ 
trated in Fig. 9*20 have been used in arrays in place of rectangular slots. 
The perimeter of a resonant slot is generally equal to a wavelength. The 
length of a resonant dumbbell slot is therefore less than that of rectangular 
ones; they can be used with less sacrifice of mechanical strength, since 
less guide is cut away. The dumbbell slot is also simpler to machine 



2.7 2.8 3.1 3.2 3.3 2.9 3.0 
Frequency x 109cp$ 

Fig 9*19.—Admittance of longitudinal slot as a function of frequency (center of slot 
is 1.98 cm from the center of the waveguide) (From the work of J W. Dodd* and W. H. 
Watson by permission of the National Research Council of Canada.) 
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because the dumbbell areas are drilled rather than cut by a milling 
machine. Another technique for shortening the resonant length is to 
place a thin sheet of dielectric over the slot; a sheet of polystyrene of 
0.007-in. thickness reduces the resonant length by 1.13 per cent at 10.7 
cm. The dielectric sheet also serves as a pressurizing device. 

If the conductance and frequency characteristics of each element of a 
slotted linear array are known, it is possible to place a given number of 
longitudinal slots X„/2 apart so that they are effectively in parallel and 

to short-circuit the far end of the guide A„/4from 
the last slot so that the admittance in parallel 
with the last slot is zero. Then if there are n 
elements, the relative conductance of each slot 

Fig. 9-20.—Dumbbell-shaped must (by suitably choosing :rj) be made to equal 
slnt- to \/n in order to provide a good match. 

Because the slots are placed in the same way as a set of dipoles, end to 
end, the mutual impedance of the slots is negligible. 

The conductance of a longitudinal slot cut in the broad face of the 
guide can be readily determined by measuring the input impedance of 
n slots in parallel because the mutual impedance between slots is negligi¬ 
ble. This is not so when the slots are cut in the narrow face. The effec¬ 
tive conductance.of this slot may be found by measuring the additional 
conductance produced when one slot is added to an array. In practice 
a number of slots, for example 10, are cut and the input admittance 
determined. The input admittance is then again determined when addi¬ 
tional slots are cut in sets of, say, 3. Eventually the total susceptance 
becomes constant and the conductance linearly proportional to n (if the 
susceptance is also proportional to n, the slot depth is adjusted for 
resonance). The incremental and ordinary conductances are plotted 
in Fig. 9*21 as functions of the angle 8. Both obey very well the law 

g = go sin- 8 

over the measured range. This is in good agreement with Eq. (50) for 
small angles 8. 

Slots cut in the narrow' face have the very useful feature that the 
variation of susceptance with frequency is very small compared with 
that for slots in other positions in the guide. The variation of admittance 
with slot depth is also small as is shown by Fig. 9*22. Thus a change of 
± 1 mm in depth from the resonant point produces a change of only 4 per 
cent in conductance and only a small change in susceptance. Because 
the depth of cut can always be accurately controlled in a milling 
operation, this represents a tolerance w^hich can easily be attained. 
Since the angle of the slot to the guide axis can also be accurately held, 
the system represents a satisfactory array from the constructional point 
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of view. A possible objection is that there is an appreciable degree of 
unwanted polarization in these beams. The field over the slot has a 
longitudinal component proportional to cos 0; the transverse component 
of the field does not reverse direction with reversal of the direction of 
inclination of the slot and gives rise to an unwanted side lobe at about 
40° to the main beam. For tilt angles up to 15°, however, the unwanted 
polarization is less than 1 per cent of the radiated power.1 

9*13. Probe-fed Slots.—It was pointed out in Sec. 9-9 that there are 
various positions in a guide and various orientations of the slot axis for 
which no radiation takes place. It is possible, however, to make any 
slot of this type radiate by inserting a suitable probe into the guide adja¬ 
cent to the slot.2 The probe introduces the necessary asymmetry in the 
field and current distributions for excitation of a field across the slot. 
The probe-fed unit has many advantages. In particular the direction 
of the field across the slot depends on the side in which the probe is 

1 Dodds, Guptill, and Watson, op. tit. 
*R. E. Clapp, “Probe-fed Slots as Radiating Elements in Linear Arrays,” HI, 

Report No, 455, Jan. 25, 1944. 
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inserted; the phase of a given slot can be shifted 180° by switching the 
probe position. An example of this phase reversal is afforded by the 
array of slots on rectangular guide illustrated in Fig. 9-23; here the phase 

Fig. 9*22.—Admittance of a 15° inclined slot on narrow edge of rectangular waveguide. 
The waveguide dimensions are 1| by 21 in., X «= 10.7 cm., and the width of the slot is 1 
in. CFrom the work of J. W. Dodds, E. W. Guptill, and W. H. Watson by permission of 

the National Research Council of Canada.) 

reversal of the probe is used to compensate for the 180° phase difference 
corresponding to the \g/2 spacing of the slots; the result is an array of 

equiphased slot radiators. 
Another advantage of the probe-fed unit is that the amount of energy 

radiated by the slot is controlled by the probe insertion. For the case 
illustrated in Fig. 9*23 where the probe is parallel to the field, the coupling 
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is adjusted by the probe depth. To excite a slot in the narrow side of a 
rectangular guide a bent probe is used, as shown in Fig. 9-24; here the 
coupling can be varied by the angle between the hook of the probe and 
the electric field. In some cases the screw head of the probe introduces 
undesirable impedance characteristics; the head of the screw can be 

Fig. 9*23.- -Probe-fed biota on rectangular waveguide. The arrows show lines of current 
flow. 

ground off after the desired coupling has been obtained, or the unit can 
be balanced externally by a dummy screw head. Many variants of the 
probe can be developed for various types of guides and modes; the reader 
is referred to Clapp’s report for details. 

9*14. Waveguide Radiators.—The impedance of a radiating element 
has been seen to consist in general of a resistive and a reactive component. 
The reactive component is gener¬ 
ally undesirable, since it enhances 
the frequency sensitivity. The 
reactance vanishes under special 
conditions, but these are not 
always optimum operating con¬ 
ditions; for example, in the case 
of the dipole element discussed in 
Sec. 9-8 resonance occurs at a probe depth that is generally too small 
to meet power-extraction requirements. Slots and dipoles suffer another 
severe disadvantage at short wavelengths as in the 1-cm region where 
they become so small that they have an insufficient power-handling capac¬ 
ity and the tolerances on the dimensions become impractically restrictive. 

The waveguide radiators illustrated in Fig. 9*25 are less subject to 
the above limitations.1 The element consists of a waveguide coupled to 
the main guide by a T-junction. As shown in the figure, two arrange- 

1 W. Sichak and £. M. Purcell, "Cosec* Antennas with a Line Source and Shaped 
Cylindrical Reflector,” RL Report No. 624, Nov. 3, 1944, pp. 7-13. 

Fig. 9*24.—Probe-fed transverse slots on the 
narrow face of rectangular waveguide. 
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ments are possible corresponding to longitudinal and transverse polariza¬ 
tions. The longitudinally polarized element, just like a slot with axis 
transverse to the guide axis, presents an impedance in series with the 
main line; the transversely polarized element, like a slot with axis parallel 
to the guide axis, is equivalent to a shunt element across the transmission 
line, inserted in the plane of symmetry of the radiator that is perpendicu¬ 
lar to the guide axis. It has been found experimentally (cf. Sec. 10-11) 
that the open end of a waveguide can be represented by a load admittance 
consisting of the radiation resistance in parallel with a capacitive reaet- 

Fig 9*25—Waveguide radiatois (a) longitudinally polarized, (b) transversely polarized 

ance. The network equivalent of the T-junction consists in a similar 
manner of a capacitative reactance in parallel with the input impedance 
of the branched guide. Both the input and termination capacities are 
junction effects and may be expected to be of the same order of magnitude. 
If the length of the branch guide is A' /4 where A' is the guide wavelength 
in the branch, the terminal capacitative reactance is transformed into an 
inductive component at the input end; and since the inductive component 
is in parallel with the T-junction capacitance, a near-resonant condition 
should result. In actual practice, however, the length of the section is 
different from A'/4. The correct length has been found to be given 
closely by the result of an analysis of a branched waveguide which takes 
the junction effects into account, namely, 

K 
4 ?( 1 + In (58) 

The dimensions b and b' are defined in Fig. 9-25. With the above length 
the element has been found to be very closely a pure resistance. 

The coupling of the element to the line, i.e., its resistance or conduc¬ 
tance, is a function only of the relative dimensions of the branch guide and 
the main guide. It is the particular advantage of the waveguide element 
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that the coupling factor can be adjusted independently of the resonance 
condition. On the assumption that the impedance presented to the 
main guide when the branched guide radiates into free space is not very 
different from that when the branched guide couples to a second guide 
parallel to the main guide, the resistance of the longitudinally polarized 
element has been calculated to be 

The quadratic dependence on h'/b is in accord with the experimental 
results; these results indicate, however, that the numerical factor is not 
No systematic study of a single element has been made as yet. The 
coupling factor for the transversely polarized element has meaning only 
in terms of a complete array because with these elements mutual inter¬ 
actions become very significant. The results will be given later in the 
discussion of nonresonant arrays which make use of these elements. 

The length of the element given in Eq. (58) can be increased by any 
integral multiple of A'/2 without affecting either the resonance or the 
coupling factor. This is advantageous in that it provides a method for 
shifting the phase of the radiator 180°. For the same power extraction 
the bf dimension of the transversely polarized element must be larger 
than that of the longitudinally polarized element because the former cuts 
across transverse currents that are smaller than the longitudinal currents 
on the broad face of the guide. Consequently, the tolerances are less 
restrictive for the transversely polarized element, and it therefore is 
preferred if all other considerations are equal. At short wavelengths, 
e.g., at 1 cm, the length of the radiator is so small that the wrall of the 
main guide can be constructed of that thickness, and the radiating ele¬ 
ment then takes the form of a slot in this wall. This produces a sturdy 
mechanical system. 

945. Axially Symmetrical Radiators.—For general communication 
purposes it is desired to have a stationary antenna with an axially sym¬ 
metrical pattern covering a large region of space. The simplest antenna 
of this type is a half-wave dipole. The gain of the dipole, however, is 
too low to meet the usual requirements on range, and it is therefore 
necessary to design an antenna having the axial symmetry of the dipole 
but with a more directive meridional pattern. The latter can be achieved 
by means of a linear array of axially symmetrical radiating elements, 
an example of which is illustrated schematically in Fig. 9*26. The ele¬ 
ments to be discussed fall into two groups distinguished by the polariza¬ 
tion of the field: (1) transversely polarized radiators producing a field in 
which the electric vector lies in planes normal to the axis of the array, 
(2) longitudinally polarized'radiators producing a field in which the elec- 
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trie vectors lie in meridional planes having the axis of the array as a 
common line of intersection; the transverse element is analogous to a 
magnetic dipole, and the longitudinal element to an electric dipole. 
The transverse element in its ideal form should consist of a circular ring 

of uniform current, while theidealized 
longitudinal radiator should consist 
of a short circular cylindrical current 
sheet of uniform density running 
parallel to the axis of the cylinder. 
In practice these elements can best 
be approximated by an array of ele¬ 
ments located at points disposed 
symmetrically about the array axis in 
a plane normal to it. Thus the an¬ 
tenna as a whole is, in fact, a three- 
dimensional array; however, design 
problems for the azimuthal and merid¬ 
ional patterns are completely separ¬ 
able. The meridional pattern is a 
straightforward linear-array problem. 
The azimuth pattern reflects the 

symmetry of the arrangement of the radiators about the array axis and 
consequently deviates from a uniform pattern, showing maxima and 
minima. The ratio of maximum power to minimum is referred to as the 
azimuth ratio; it is generally required that this ratio be less than 2. 

Fiti. 9*2C>.- -Aira> of axially s\ mmetiieal 
radiatorb. 

The Tridipole Transverse Element.—First the elements designed for 
transverse polarization will be considered. A simple approximation to 
the circular current ring is obtained by arranging three half-wave dipoles 
on the circumference of a circle. The basic unit illustrated in Fig. 9*27 
is a three-wire-line-fed dipole analogous to the slotted dipole discussed 
earlier. The central line serves as a probe to couple the dipole to the 
interior of a waveguide. The axially symmetrical tridipole array shown 
in Fig. 9*28 is designed for use with a coaxial line. The element is made 
so as to slide over the outer conductor and is soldered to the latter at the 
appropriate location. In order to maintain the azimuth pattern sym¬ 
metry it is essential that the three probes be inserted to equal depths. 
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1 

The line coupling can be achieved either by inserting the probes so as to 
make contact with the inner conductor of the line or by capacitive 
coupling in which the probes do not make contact with the inner conduc¬ 
tor. In the former case the probes are soldered to the inner line; a more 
reliable procedure is to have threaded holes in the inner conductor into 
which the probes can be screwed and then soldered to ensure good contact. 
For capacitative coupling, probe settings can 
be made by slipping a shim of suitable thick¬ 
ness over the inner conductor; the shim is 
subsequently removed. 

Satisfactory results have been obtained 
with tridipole elements over the 10-cm band1 
and at various longer wavelengths. The im¬ 
pedance characteristics of a single unit can be 
adjusted in the course of design by the choice 
of the dimensions of the dipole wings; the 
impedance characteristics of an array of units 
are adjustable by means of the probe depth. 
Figure 9*29 shows the frequency sensitivity of 
the pattern of a tridipole unit designed for the Diameter 
10-cm band, the unit being fed from a 50-ohm Flo 9.28._Tridipoie radiator. 
line with a £ in. OD. The pattern exhibits a 
high degree of stability. The same element with its probes 0.5 mm from 
the inner conductor handles 10-kw peak power without breakdown. It 
was found that at 10 cm the dimensions of the unit are not critical and 
the elements can be produced in quantity by die-casting techniques with 
good reproduction of performance. A 3-cm version, however, requires 
manufacturing tolerances too close for practical use. 

Axially Symmetrical Slot Array.—Another type of unit for transverse 
polarization is provided by an array of slots along the circumference in the 
wall of a circular guide or coaxial line, the long dimension of the slots 
being parallel to the axis of the guide. A number of factors enter into the 
design of the unit. 

The most important is that the line must carry a radially symmetrical 
mode so that the slots are excited equally. This condition is fulfilled by 
a coaxial line supporting only the TEM-mode and by a circular wave¬ 
guide propagating the Tilf oi-mode as indicated in Fig. 9*30. However, 
for both cases a slot cut parallel to the guide axis does not radiate. It 
is therefore necessary to excite the slots by means of probes as shown in 
the figure, and to ensure symmetrical excitation the probe depths must 
be uniform. 

1 H. Riblet, “Horizontally Polarized Nondirectional Antennas,” RL Report No. 
517, Feb. 14, 1944. 
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220° 210° 200° 190° 180° 170° 160° 150° 140° 

320° 330° 340° 350° 0° 10° 20° 30° 40° 

Fig. 9*29.—Patterns of a tridipole unit in the plane of the unit. 

-—► Current flow induced by probes. 

_ Transverse electric-field config- 
^ uration of unperturbed mode. 

Fxo. 9*30.—Axially symmetrical radiating unit formed by a circular array of slots. 
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A second factor is the minimum number of slots required to produce 
a pattern having a satisfactory azimuth ratio. This is found to depend 
on the size of the line; the larger the guide diameter the greater the num¬ 
ber of elements. For a 1-in. OD coaxial line operating in the 3-cm band 

210° 200° 190° 180° 170° 160° 150° 

140° 

130° 

120° 

110° 

100° 

90° 

80° 

70° 

60° 

50° 

40° 

330° 340° 350° 0° 10° 20° 30° 
Fia. 9*31.—Patterns of circular arrays of four and six slots on coaxial line of 1 in. OD. 

the minimum number is six; Fig. 9-31 shows the patterns obtained from 
four and six elements; the former reflects strongly the fourfold symmetry 
of the array. Figure 9-32 illustrates the pattern resulting from a seven- 
element array on l±-in. circular guide, again for the 3-cm band. 

The minimum number of elements is also related to a problem of 
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mode control. The conventional coaxial line in the 3-cm band, for which 
all modes other than the TEM-mode are beyond cutoff, is too limited in 
its breakdown properties and mechanical strength, the latter being an 
important factor in long arrays. Line of a larger size is therefore used 
which can support other modes. Considerable care must be taken at 
the input end of the line to ensure 
radially symmetrical excitation. 
The probe inserts for exciting the 
slots likewise excite higher modes. 
No mode will be excited, however, if 
its planes of symmetry do not con¬ 
tain the symmetries of the geomet¬ 
rical configuration. There is thus 
a minimum number of probes for 
which the higher modes excited will 
attenuate. 

180° 

Fig. 9*32.—Pattern of circular array of 
Beven slots on circular waveguide with 1J in. 
OD. 

vorter. 

A similar mode-control problem exists in the circular guide, for a 
circular guide that can support propagation of the 7W0i-mode neces¬ 
sarily supports the TE\ i-mode. It is therefore necessary to feed the guide 
in such a manner that the TE, i-mode is not excited, and again there is a 
minimum number of slots required. The proper feeding of the circular 
guide is achieved by transition from the TEVniode in rectangular guide 
through a TE\r to TM01-mode converter, which is illustrated in Fig. 
P‘33- Briefly the principle of its operation is as follows: The distance l 
is equal to Xu/4 or 3Xu/4 where Xu is the guide wavelength for the TEu- 
mode; this puts a large series reactance for this mode at P between the 
rectangular and circular guide so that the mode is not fed into the latter 
guide. The diameter d is chosen to be Xoi/2 where X0i is the 
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mode guide wavelength; for l = 3An/4, this gives a good match for the 
TWoi-mode. 

Longitudinally Polarized Elements.—Satisfactory elements of this type 
in the microwave region have thus far been developed only for the 10-cm 
band. A longitudinal element analogous 
to the tridipole unit can be produced by 
a circular array of dipoles with axes 
parallel to the guide axis. It is found, 
however, that a longitudinally polarized 
tridipole array gives rise to a pattern 
having a decided threefold symmetry 
while a larger number of dipoles results 
in a unit whose design is very critical. A 
cylindrical element with three-point ex¬ 
citation provides a simple solution; the 
element is shown in Fig. 9*34. It can 
be thought of as being derived from a 
system of three longitudinal dipoles of 
the type illustrated in Fig. 9*27 in which 
the wings have been extended laterally 
and joined into a cylinder. The currents 
tend to spread out uniformly over the sur¬ 
face giving a uniform azimuth pattern. The unit is made in two parts, 
one consisting of a die-cast spider carrying the two outer lines of the 
three-wire line-feeding system and the other the pair of cylinders that 
correspond to the dipole wings. As with the transverse unit the system 

is fed by probes which couple the cylinders to 
the line; the general remarks made previously 
concerning the insertion and alignment of the 
probes likewise apply here. 

Attention should be called to a longitudi¬ 
nally polarized slot radiator which can be design¬ 
ed with a coaxial line. The element illustrated 
in Fig. 9*35 consists of a slot running completely 
around the wall. Mechanical support is pro¬ 
vided by filling the line with dielectric. The 
element obviously gives a uniform pattern but 
suffers from a number of disadvantages. It is 
very frequency-sensitive; mechanical properties, 

particularly of long arrays, are poor; satisfactory contact between the 
dielectric and metal is difficult to maintain particularly under mechanical 
and thermal stresses with the result that the system becomes susceptible to 
electrical breakdown. Development of arrays with these units was 
finally given up because of these limitations and difficulties. 

nally polarised slot radiator 
for coaxial line. 

Fig. 9*34 - Longitudinally polarized 
axially symmetrical radiating unit. 
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9-16. Streamlined Radiators.—Arrays of axially symmetrical radia¬ 
tors have been developed for airborne, ground, and ship installations. 
With the development of high-speed planes, however, aerodynamic con¬ 

siderations have become in- 
30® 0° 330° creasingly significant in antenna 

installations. Arrays of elements 
of the types already discussed 
produce sufficient aerodynamic 
drag to present a serious installa¬ 
tion problem. It has therefore 
been necessary to make some com¬ 
promise betw een pattern and aero¬ 
dynamic requirements and to 
design elements whose geometry 
has a less deleterious effect on the 
aircraft. For this purpose various 
types of streamlined elements have 
been developed which, though 
lacking the uniform coverage of 
the axially symmetrical units, still 
produce patterns with not too 
large an azimuth ratio. 

Two types have been devel¬ 
oped, one for transverse, the other 
for longitudinal polarization Let 

us consider the transverse radiator first. It has been found that twro slots 
cut opposite each other on a coaxial line and excited 180° out of phase 
produce a pattern with an azimuth ratio not exceeding 5 or 6; this is shown 

Pattern produced by a pair of 
antiphased slots 

Fig. 9*37.—Array of three pairs of slots on streamlined elliptical waveguide. 

in Big. 9-36. The currents tend to run completely around the cylinder, 
giving a continuous, if not completely symmetrical, current distribution. 
Starting from this observation, one can proceed in several directions to the 
design of streamlined elements. Blrst, the outer conductor instead “of 
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Fig. 9*38.—Transversely polarized streamlined radiator. 

wmm m 

being cylindrical can be made elliptical or streamlined, or the inner con¬ 
ductor can be omitted entirely and a streamlined section of sufficient 
size used instead as a waveguide. Figure 9*37 for example, shows an 
array of three slots on streamlined 
elliptical guide for the 3-cm band. - —-0_ 3300 
Transition to the elliptical guide 
from rectangular guide is effected 5qo 
by a tapered section. It has been 
found that if the ratio of major to 
the minor axis of the ellipse is at 70° 
least 4 and if the minor axis is 
approximately A/4, the azimuth 900 — 
ratio is in the neighborhood of 2; rTC 
this figure has been obtained with 1100 \ 3A 
the three-unit array referred to \c 
above. 13qo ^X. 

A method of introducing the r-f 
that provides a good impedance v 
match is shown in Fig. 9*38 for a L_L_^_i^ _, 
10-cm band system. Here the two 1500 1890 2100 

slots are cut at the point of maxi- versely polarized streamlined radiator, 

mum width of the guide. A slotted 
dipole on the end of small coaxial line is used to excite the slots. The 
wings of the dipole are cut to fit, and each wing acts as an exciting antenna 
for one slot. The VSWIJ, obtained with a single element is less than 1.2 

mm 
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over a 16 per cent band. The pattern shown in Fig. 9-39 is likewise satisfac¬ 
tory. The only longitudinally polarized unit that has been built is for 
the 10-cm region. It consists essentially of two vertical dipoles about a 
quarter wavelength apart supported on opposite sides of coaxial line. 
Two such dipoles in free space would have an oval pattern which, how¬ 
ever, does not have too large an azimuth ratio. This, of course, is modi¬ 
fied by the coaxial line; but if the line is small enough (ordinarily i in. 

30° 0° 330° 

50° 

70° 

90° 

110° 

150° 180° 210° 

Flo. 9*40. — Longitudinally polarized Fig. 9*41.—Radiation pattern of a Ion- 
streamlined radiator (//-element). gitudinall> polarized streamlined radiator 

(//-element). 

OD), the effect is small and does not seriously impair the pattern. The 
unit, generally referred to as an //-element, is shown in Fig. 9*40. The 
two dipole wings are supported by elliptical straps, and the whole unit is 
placed over the coaxial line and excited by the probes projecting into it. 
The elliptical straps serve also as a wave trap, to prevent currents running 
along the coaxial line. The pattern produced by the unit is shown in 
Fig. 9*41. An array of such elements is ordinarily enclosed 'in a close 
fitting elliptical housing. 

ARRAYS 

It is shown in the sections on general pattern theory that the pattern 
of a linear array is determined essentially by three factors: (1) the rela* 
tive amplitude and phase of the current distributions on the elements of 
the array, (2) the spacing of elements along the axis, and (3) the form 
factor of the pattern of a single element. In practice these factors are 
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not independent variables; the amplitude and phase of the elements are 
determined in part by interactions between the elements, which in turn 
are functions of their spacing. At longer wavelengths feeding techniques 
are available whereby the amplitude and phase, except for external field 
coupling between the radiators, are independent of spacing. In micro- 
wave antennas the elements must be fed in cascade from a transmission 
line; the phase of the radiator thus depends on the phase velocity in the 
line and the position of the element along the line; phase and spacing are 
thereby most intimately related. The relation becomes complicated 
further because the feeding arrangement results in a loaded transmission 
line with propagation constant and characteristic impedance different 
from those of the unloaded line. Finally mutual interactions between 
the elements because of their external fields must be considered. The 
result of these interrelations is that the transition from the properties 
of a single element to a composite airay is not a calculable design pro¬ 
cedure but must be determined to a large extent on an empirical basis. 

9*17. Loaded-line Analysis.—The relation between the parameters of 
loaded and unloaded lines will be investigated first. Consider a line, 
whose unloaded parameters are the characteristic impedance Z0 and the 
complex propagation constant y = a + j/3} loaded at regular intervals l 
with identical radiating elements. Taking a fixed reference point in a 
radiator, the radiator in general can be regarded as a bilateral passive 
four-terminal network inserted at the reference point between two seg¬ 
ments of line. It was showrn in Sec. 2-2 that such a network can be 
replaced by a T- or II-section equivalent; in the notation of Sec. 2*2 the 
three impedance elements of the T-section will be designated by Zh Z2, 
and Z3 and the elements of the II-section by Zx, ZB, and Zc. The rela¬ 
tion .between the T- and II-section elements is given in Eq. (2.10). 
The radiating elements that have been discussed in the earlier sections 
all have at least one plane of symmetry; if the reference point is taken in 
this plane, the T- or II-section equivalent of the radiator is symmetrical; 
i.e., Zi = Z2 and ZA = Z<?. It was shown further in Sec. 2*9 that a sec¬ 
tion of homogeneous transmission line of length l has a symmetrical 
T- and II-section equivalent; from Eqs. (2*8), (2-56a), and (2-566) the 
elements of the T-equivalent are found to be 

3,-3, = Z.tanh(£); 8.-33m 

By means of Eqs. (2-7), (2-8), and (2-10) the elements of the equivalent 
ll-sections are obtained from these. The II-elements are 

3a - Sc « z0 coth (^y, 3m = Z0 sinh (yl). (80) 
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On replacing both the radiators and the line segments by their equivalent 
T-sections, the loaded line is reduced to a cascade of networks as shown 
in Fig. 9'42a; the points A and A' are the reference points in the radiating 
elements. By splitting the shunt element Z8 into a pair of impedances 
2Zs in parallel, the line is further reduced to a chain of symmetrical net¬ 
works, a single unit of which is shown in Fig. 9-426. 

(c) 
Fig. 9*42.—Network system equivalent to a loaded transmission line: (a) T-section 

replacements of radiators and line segments; (b) reduction to symmetrical networks; (c) 
Il-section equivalent of the network in (6). 

The characteristic impedance Z'B and propagation constant 7' of the 
loaded line are obtained by reduction of the network in Fig. 9*426 to its 
equivalent T- or Il-section and subsequently determining the parameters 
of a homogeneous line having a length l for which the above T-section 
(or Il-section) constitutes an equivalent representation. In the present 
case the simplest procedure is to reduce the network to a n-section by 
replacing the T-network of elements Zx + Si and by its IT-equivalent. 
The completely reduced network is shown in Fig. 9-42c. If Sa and Ss 
are the elements of the reduced network, the loaded-line parameters are 
given by 
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Z'a coth (^) = gA; Z'0 sinh (y'l) - (61) 

If the values of Sa and 3b given in Fig. 9-42c together with the values 
of Si and 3s given in Eq. (59) are inserted in Eq. (61), the half-argument 
identities for hyperbolic functions may be used to obtain Campbell's 
formulas: 

cosh (y'l) = ^1 + cosh (yl) 

+ (S,+ i; + 2m)sinh {yl): (62) 

[z,+Z0 tanh(^)]2 
Z'0 sinh (y'l) =-n-- - sinh (yl) 

+ 2 [z, + Z0 tanh (63) 

For the present purposes the attenuation in unloaded waveguides due to 
conduction losses in the walls may be neglected; under these conditions 
7 = j(3 and the propagation constant of the loaded line is given by 

cosh (y'l) = (1+l)cos/W + i( Z]\ 
ZoZj 

sin pi (64) 

It is seen at once that the loaded line has a complex propagation con¬ 
stant y* = a! + jp' in A\hich both the attenuation and phase constants 
are functions of the loading and the spacing of the elements. Equation 
(64) shows, however, that if the spacing is equal to half the wavelength in 
the unloaded line, the relation reduces to 

cosh (y'l) = - (l + §j); l = Xf (65) 

If the radiating element is a pure shunt element so that Z\ = 0, it is 
found directly from Eq. (65) that 

7' = 7. 

Similarly if the element is a pure series element, in which case Z* = 00, it 
is found that y1 = 7. Thus there is .1no attenuation in a line loaded with 
pure series or pure shunt elements at half-wavelength intervals. The same 
is true of a line loaded at wavelength intervals. For arbitrary spacings 
the propagation constant of the shunt-loaded line is given by 

cosh (y'l) * cosh (yl) + ^ sinh (yl) (66) 
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and for the series-loaded line 

cosh (7'/) = cosh (71) + sinh (7/), (67) 
A/j 0 

where Z4 is the impedance of a single element. 
The pure series- and shunt-loaded lines with half-u avelength spacing 

have the additional property of producing a uniformly illuminated array 
when the line is suitably terminated in a short circuit. For the series- 
loaded line the short circuit is made an integral number of half wave¬ 
lengths beyond the final element; by virtue of the half-wavelength spacing 
the array is equivalent to a simple series circuit of equal impedances; all 
the elements therefore dissipate equal amounts of power. The shunt- 
loaded line is terminated Xff/4 + n\a/2 beyond the final element, n being 
an integer; this array is equivalent to a system of equal impedances all 
in parallel, and again all the elements dissipate equal amounts of power. 

The loaded-line analysis takes no account of coupling between the 
elements by means of the external fields. Campbell's formulas do show, 
however, the interrelation between the amplitude and phase of the ele¬ 
ments and the spacing and also the relation between the amplitude of 
the element and its phase, for the phase velocity is a function of the 
coupling between the radiator and the guide. 

948. End-fire Array.—The only important examples of end-fire 
arrays for the microwave region were two very similar antennas for opera¬ 
tion at wavelengths of 10.7 and 11.7 cm.1 They consist of 18 individual 
radiators a quarter wavelength apart and fed from a coaxial line. The 
antenna shown in Fig. 9*43 is a 14-element experimental model. An 
antenna of this type must be terminated in a dummy load to absorb 
the unradiated power in the line thereby eliminating a reflected wave; 
otherwise the reflected wave would give rise to an end-fire pattern in its 
direction of propagation, that is, in a direction 180° away from the prin¬ 
cipal beam. 

The elements are built up from the fundamental dipole shown in 
Fig. 9*27. Each consists of two such dipoles having their wings bent into 
arcs of circles and joined to form a unit. Like the axially symmetrical 
tridipole units these elements are simply slipped over the outer .conductor 
of a coaxial line, and they also can be represented by a shunt impedance. 

Two conditions must be satisfied if an end-fire array of this type is to 

1 H. J. Riblet and B. L. Birchard, “End-fire Array Antenna,” RL Report No. 577, 
July 11, 1944. Dielectric-rod antennas may be designed to have end-fire patterns 
with gain, beamwidth, and side-lobe properties as good as those of linear arrays. 
C/. C. E. Mueller, “The Dielectric Antenna or Polyrod,” BTL Report No. 251, Jan. 28, 
1942; J. E. Eaton, “Dielectric Rod End-fire Antennas Close to Metal Surfaces,” RL 
Report No. 969, Jan. 23, 1946; R. E. Dillon and L. J. Eyges, “Compact Homs Inter¬ 
mediate between Polyrods and Reflectors,” RL Report No. 961, Jan. 31,1946. 
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have maximum gain. (1) There is an optimum value for the wavelength 
\g of the coaxial line. It was shown in Sec. 9*9 that maximum gain for 
quarter-wavelength-spaced end-fire arrays with a constant phase delay 
occurred when the phase delay between adjacent elements was 

7T , 2.94 
2 + —'' 

The total phase delay between the first and last elements is then approxi¬ 
mately 

* = X + l)- (68) 

Fiu 9 43.—An experimental model of the 11.7-cm end-fire array. 

If L = wX/4 is taken as the length of the array, Eq. (68) becomes 

(2) The attenuation has a definite optimum value; it must be neither so 
large that most of the power is radiated from the first few elements nor 
so small that an excessive amount of power is lost in the dummy load. 
This optimum attenuation is ordinarily assumed to be that which allows 
from 5 to 10 per cent of the total power to be absorbed in the dummy 
load. 

The desired attenuation and phase shift can be obtained in principle 
in a very simple way. From Sec. 9T7 we have seen that periodic loading 
of a transmission line changes the propagation constant of the line. 
Hence it should be possible to choose the impedance of individual radi* 
ators so that they cause just the right change in attenuation and phase 
velocity. In fact, if the impedances of the elements are known as a func¬ 
tion of several parameters, the propagation constant can be calculated 
from Eq. (62) as a function of the parameters and the best value chosen. 

In the design of the particular arrays described above, the impedances 
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of the individual elements were not known in enough detail to allow this. 
Hence a different approach was used. The gain was measured as a func¬ 
tion of probe depth for various lengths of the dipole wings. This gave 
the two parameters necessary to adjust for the correct phase velocity and 
attenuation. The gain of the 11.7-em array finally obtained in this 
manner was around 15.4 db, slightly greater than the theoretical value of 
15.2 db for such an array; the theoretical value, however, is based on 
isotropic radiators. The gain of the 10.7-cm array, which used 

tern in the direction of the main lobe, and B is the pattern in the direction of the back 
lobe. 

11.7-cm elements, was 14.8 db. The 2L'-plane pattern of the 11.7-cm 
antenna is shown in Fig. 9*44; the i?-plane pattern differs from it only in 
minor details. 

BROADSIDE ARRAYS 

9-19. Suppression of Extraneous Major Lobes.—The majority of the 
applications of microwave arrays have called for a beam having the 
principal maximum in a direction normal to or nearly normal to the axis 
of the array. Arrays of this type will be referred to as broadside arrays 
with the arbitrary limit on the classification that the principal maximum 
lies within 25° of the normal to the array. In general there must be no 
principal maximum other than that of the broadside lobe, that is, all 
other maxima must be in the form of side lobes at considerably lower 
levels. This requirement gives rise to a spacing and phase problem 
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common to all arrays of this type. It was seen in Sec. 9*5 that the ele¬ 
ments of a uniform array must all be in phase for an accurately normal 
main lobe while to produce an off-normal lobe [cf. Eq. (23)] there must be 
a small progressive phase delay. If there are to be no other major lobes, 
the spacing between isotropic radiators must be somewhat loss than X, 
the free-space wavelength. The exact amount depends on n and the 
acceptable side-lobe level; no portion of an accurately normal main beam 
will be repeated in the direction 6 = 0 if $ = (1 — 1 /n)X. To produce 
uniform phase, the radiators must be spaced at intervals of X„, the guide 
wavelength. However, for all the air-filled microwave lines discussed 
in Chap. 7, it was found that \u > X with the result that the spacing 
exceeds the limit stated above. 

There are various techniques for circumventing the difficulty. The 
less-than-wavelength spacing limit applies strictly to an array of isotropic 
radiators. However, in Sec. 9-2 it 
was show n that the pattern of an array 
is a product of an array factor corre¬ 
sponding to the pattern of an array 
of isotropic radiators and the pattern 
of an individual radiator. If the 
latter pattern is made sufficiently dire- 
tive with a maximum in the direc¬ 
tion normal to the arrav, a principal Fig- 9*45—Array of transverse slots 

. , with horns to eliminate end-fire lobes, 
maximum will occur only in the 
region where the array factor and the radiator pattern simultaneously 
have appreciable values. In this case the spacing can exceed X without 
the appearance of extraneous major lobes. Illustrative of such a direc¬ 
tive device is a horn fed by a slot; an array of this type is showm sche¬ 
matically in Fig. 9*45. 

A procedure that suggests itself immediately is to shorten the guide 
wavelength to a value below the allowed spacing limit. The methods that 
have been used to do this are described here because they have been gener¬ 
ally unsatisfactory. The simplest technique is to fill the guide with 
dielectric and thus reduce the guide wavelength. However, the use of 
dielectrics gives rise to a number of problems: the loss, particularly in long 
arrays, results in diminution of the gain; it is difficult to maintain proper 
contact between the guide walls and. the dielectric, with the result that 
electrical breakdown tends to occur and with it reduction in the power¬ 
handling capacity of the array; and also of no small significance is the 
increase in the weight of the antenna. Another method that has been 
tried is that of using a corrugated line. With coaxial line the inner 
conductor is corrugated as shown in Fig. 9-46a, while with rectangular 
guide one of the broad faces is replaced by a corrugated wall as shown in 
Fig. 9*466. The systems can be thought of as a transmission line loaded 
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periodically with reactances. The wavelength in the loaded line1 has been 
found to be given approximately for coaxial line by 

Fig. 9*46.—Corrugated lines for shortening \g: (a) coaxial line; (6) waveguide. 

and for rectangular guide by 

where X. is a solution of 

1 =14-1 
(xTF X* ^ X*’ 

. 2ttL 
d X, taD X, = x 
y\0A_^2irx 

tanh: 

These lines have proved impractical for the same general reasons as the 
dielectric-filled line: There is a significant increase in weight and great 
reduction in power-handling capacity, and in addition the corrugated 
sections are difficult to manufacture. Some of the difficulties, however, 
are due to the high percentage reduction in wavelength that is being 

1H. Goldstein, “The Theory of Corrugated Transmission Lines and Waveguides/* 
EL Report No. 404, Apr. 3, 1944. 
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effected. The corrugated line has been used with more success in other 
antenna designs where only a small wavelength reduction was attempted. 

The most successful technique that has been developed is in the design 
of radiators whose phase can be shifted 180° by simple structural 
changes; the elements can then be spaced at intervals of \/2 and brought 
into phase by the structural phase reversal. Since the guide wavelength 
is generally in the range X g \g g 1.5X, this spacing is acceptable. The 
procedure is also satisfactory from the point of view of the loaded-line 
analysis. If the elements are pure series or shunt elements, the propaga¬ 
tion constant is unaffected by the loading and a uniformly illuminated 
array results. The phase reversal does not alter the impedance presented 
by the radiator to the line. A brief summary of the phase-reversal tech¬ 
niques for the various types of elements discussed previously is given 
below: 

1. Slotted dipole, Fig. 9*47a, the dipole is rotated through 180° about 
the coupling probe. 

2. Tridipole radiator, same as for the slotted dipole. 
3. Shunt slots in broad face of rectangular guide, Fig. 9*476, the slots 

are placed on alternate sides of the axis of the guide. 
4. Shunt inclined slots on the narrow face, Fig. 9*47c, the inclination of 

alternate slots is reversed. 
5. Probe-fed slots, coupling probe is placed on opposite sides in alter¬ 

nate slots, or the orientation of the probe in the guide is reversed 
(see Figs. 9*23 and 9*24). 

6. Longitudinally polarized waveguide radiator, the length of alternate 
slots differs by X^/2. 

7. Transversely polarized waveguide radiator, elements are staggered 
. with respect to the guide axis just like the shunt slots in Fig. 9*476. 

9-20. Resonant Arrays.—Broadside arrays can be divided into two 
general classes: resonant and nonresonant arrays. The resonant type 
yields an accurately normal beam and is well matched at the design fre¬ 
quency; the impedance match, however, deteriorates rapidly with depar¬ 
ture from the design frequency, and the array can be used only over a 
very narrow frequency band. An array of this type consists of a number 
of single series or shunt elements, spaced a guide half-wavelength apart 
on waveguide or coaxial line, with successive elements mechanically 
reversed in their feeding to give the phase reversal discussed in the 
preceding section. The resonant array is uniformly illuminated, since, 
as Eqs. (66) and (67) show, there is no attenuation in a line loaded with 
half-wavelength-spaced single series or shunt elements. The fact that 
uniform illumination is produced has been verified experimentally by 
measurements of the radiation directly in front of the array with a small 
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exploring horn. Furthermore, the secondary patterns of these arrays 
are in agreement with the patterns of an array of uniformly excited ele¬ 
ments. The uniform illumination is an advantageous feature where the 

mm mm 
4-A g -•» 

2 

(C) 
Fig. 9*47.—Phase-reversal technique: (a) phase reversal of dipoles; (6) phase reversal 

of longitudinal slots in the broad face of rectangular waveguide; (c) phase reversal of inclined 
slots in the narrow face of rectangular waveguide. 

prime requirement is high gain; on the other hand the array is unsatis¬ 
factory when side lobes are the major consideration, since the first side 
lobe is over 4 per cent of the peak intensity. 

The impedance match of the array is obtained by choosing the imped¬ 
ances of the elements properly and by adjusting a short-circuiting plunger 
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at the end of the array. The short-circuit termination is a characteristic 
feature of broadside arrays; the reflected wave causes no difficulties such 
as would arise in end-fire arrays; for since the elements are half wave¬ 
lengths apart, the radiation pattern due to the reflected wave is again a 
normal beam. The well-matched condition on the design frequency and 
the narrow bandwidth property of the array will be discussed for nseries 
elements; the argument, phrased in terms of admittances, is similar for 
shunt elements. We assume that the impedance of each element has 
been adjusted to Zo/n, where Z0 is the characteristic impedance of the 
line. The line is terminated in a short circuit at a distance \u/2 from the 
last element. Since the spacing is A„/2, the entire array is equivalent 
to n elements in series. The input impedance is therefore n(Zo/n) = Z0; 
that is, the array is matched 

When the exciting frequency is not the design frequency, the elements 
are no longer exactly a half wavelength apart. Then the impedances 
do not add up to Z0, and the array is not matched. The mismatch for 
frequencies off resonance cannot be calculated unless the frequency varia¬ 
tion of the impedances of the elements is known. Their variation can often 
be neglected over the bands in which one is interested. A simple 
graphical analysis can then be carried out on an impedance chart. Let 
us take for example a 10-element \,/2-spaced array of series elements, 
each of resistance 0.1Z0, and plot on an impedance chart, starting from 
the terminal short circuit, the input impedance seen looking to the right 
from a point just to the left of each successive element. At the design 
frequency these points fall along the R/Z0-axis as indicated on the line S 
in Fig. 9*48. 

Suppose, for example, that the wavelength decreases by 1 percent. 
The spacing between elements is now greater than \g/2. The short 
circuit now presents a small positive reactance in series with the tenth 
element. As one proceeds from element 10 to 9, the path traversed is 
greater than A„/2 so that the reactive component increases more than for 
the resonant wavelength. With each transformation to the next element 
there is an increase in reactive component due to the excess of the path 
over \0/2, with the result that the input impedance to the array as a whole 
has an appreciable reactive element. The transformation is shown as 
line S' in Fig. 9*48. The frequency sensitivity is evidently greater the 
longer the line. Common practice has been to limit the length of the 
array to 15 wavelengths, because longer arrays have been found to be 
too frequency-sensitive. 

There are additional frequency-sensitive characteristics that should 
be noted. (1) Because the spacing is no longer equal to \0/2 for fre¬ 
quencies off resonance, attenuation sets in [cf. Eq. (67)] and the array is 
not uniformly illuminated. (2) The beam is no longer accurately normal 
to the array. These effects are generally less important than the imped- 
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ance sensitivity because they are relatively insignificant for the narrow 
band over which the impedance match is acceptable. 

The impedance characteristics of a resonant array can be improved 
by a process of “overloading” the line, i.e., using elements with imped¬ 
ances greater than Z0/n. Of course, the array is then not matched, and 

a matching transformer must be used. However, the combination of 
overloaded elements and transformer will generally have a broader band 
than the array matched by itself. The theory is best shown by example. 
Let us take again a 10-element X„/2-spaced array with series elements. 
Suppose now that the resistances of the elements are 0.2Z0 and, for 
definiteness, that the array is matched by a tuning screw. As before, 
the line 10, 9, 8, ... in Fig. 9-49 represents the input impedances to 
successive elements for the frequency at which the spacing is X„/2, and 
1 represents the input impedance to the array as a whole. 

The array is matched at the design frequency by traveling clockwise 
on a constant VSWR circle to point P on the unity R/Za line and by 
inserting a tuning screw there to transform to the point Q where Z — Z0. 
If the wavelength is again assumed to decrease by 1 per cent, the imped¬ 
ance to the array is given by 1'. This is quite close to point 1. If this 
impedance is transformed to the screw, it falls on the point P’ and 
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the input impedance to the array is then Q', which is quite close to Z0. 
Thus the array is still fairly well matched. In practice this method is 
quite successful, sometimes to the extent of doubling or tripling the 
bandwidth. 

Fig. 9*49. - Input impedance of overloaded rcbonant arra>. 

As an example of the performance of resonant arrays one antenna of 
this'type will be discussed in detail.1 Figure 9*50 shows an axially sym¬ 
metrical array for transverse polarization designed for the 3-cm band. 

The elements consist of the axially symmetrical units of slot radiators 
shown in Fig. 9*30. The line is a circular waveguide having an outer 
diameter of li in. and supporting the Til/oi-mode. It is fed by the con¬ 
verter shown in Fig. 9*33. The distance from slot to slot along the axis 
of the guide is X*/2. Phase reversal of the slots is achieved by putting 

1H. J. Riblet, "Horizontally Polarized Non-directional Antennas/' RL Report 
No. 489, Apr. 22, 1944. 
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3180 3187 3197 3207 3214 
Wavelength cm 

Fig. 9*51.—Frequency sensitivity of axially symmetrical transveisely point food array. 

Deration, deg 
Fra. 9*52.—Meridional patterns of an axially symmetrical transversely polarised array* 
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the exciting screws on one side of a given slot and on the opposite side 
of the next slot. Between each bay of slots there is shown another set 
of screws. It was found that an array without these screws was exces¬ 
sively frequency-sensitive. The screws partially cancel the reflected 
waves from each bay of slots and hence increase the bandwidth of the 
array. The input VSWR to this 
array is shown in Figs. 9*51 and 
9*52 shows the meridional pattern. 
The beam width is about 4.5°; the 
theoretical width calculated from 
Eq. (14) with s = .870X is 4.9°. 
The first side lobes are about 4\ per 
cent, a value expected for uniform 
illumination. The asymmetry in the 
pattern is due to spurious reflections 
from objects surrounding the pat- 
tern-measuring equipment. 

9-21. Beacon Antenna Systems. 
In beacon systems the responder 
(receiver) and transponder (trans¬ 
mitter) are ordinarily on two differ¬ 
ent frequencies. This necessitates 
two different antennas, one for trans¬ 
mitting and one for receiving. 
These two antennas must be so 
arranged that there is no “cross¬ 
talk” between them; i.e., very little 
energy from the transmitter is pick¬ 
ed up directly by the receiver. 
Actually a little is always picked 
up, but in satisfactory antennas it 
is at least 40 db down. 

The ordinary way of arranging a transmitter and receiver is to place 
one directly above and on the same axis as the other. The major prob¬ 
lem is then to feed the upper antenna. This has been solved in two 
different ways. First, an external feed lineman be used. Such an arrange¬ 
ment is shown in Fig. 9*53. The transmitter and receiver of this beacon 
antenna are resonant arrays of slot-type axially symmetrical radiators. 
The external feed naturally has an effect on the azimuth pattern of the 
bottom antenna. This effect is relatively small and not intolerable. 
It usually takes the form of superimposing a series of sharp maxima and 
minima on the ordinary azimuth pattern. 

Fot* some uses, particularly for airborne beacons, an external feed is 
so bulky and clumsy that an alternative design is used. It is applicable 

Fia. 9*53. --Beacon antenna with an exter¬ 
nal feed line. 



328 LINEAR-ARRAY ANTENNAS AND FEEDS [Sec. 9-22 

only when the antennas are built on coaxial line. In this design the 
inner conductor for the bottom antenna is made hollow and another 
conductor runs inside it, forming a coaxial feed line for the upper antenna. 
This “inner” inner conductor is then tapered to normal size as it enters 
the upper antenna. 

Such double antenna systems have been built at both 3 and 10 cm, 
and almost all the coaxially-fed axially symmetrical radiators previously 
discussed have been used. Figure 9*54 shows such an antenna lor 3 

Tig 9 54. Double antenna system, \ = 3 cm. 

cm.1 The elements are axially symmetrical radiators consisting of slots 
on a coaxial line having a 1 in. 01). The rectangular waveguides A and 
B feed the coaxial lines for the top and bottom antennas respectively. 
C is the hollow tube that serves as inner conductor for the bottom antenna 
and as the outer conductor for the coaxial line feeding the upper antenna. 
D is the inner conductor of the latter coaxial line. E is a tapered section 
of coaxial line. 

9«22. Nonresonant Arrays.—The nonresonant broadside array may 
consist of a number of elements spaced a little more or a little less than 
\g/2 apart. Consequently the beam is not normal to the array but at an 
angle given by Eq. (23). This may be a disadvantage in some applica¬ 
tions. The advantage of this type of array is that its impedance match 
is generally good. Because the elements are not \ti/2 apart, reflections 
from later elements tend to cancel reflections from earlier ones so that the 
array remains matched over a much wider band than the resonant array 
of the same length. 

Although the nonresonant array eliminates the matching problem 
inherent in the resonant array, it presents an illumination problem that 
the resonant array does not have. The elements of the nonresonajit 
array are not equally excited as in the resonant array; less power reaches 
the later elements; and if the elements are all alike, an exponential illu¬ 
mination results. Such illumination is undesirable because it reduces 

1L. J. Eyges, “Omnidirectional Antennas for BUPX,,, EL Report No. 996, Jan. 17, 
*946, 
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the gain. There are a number of ways to control the illumination and in 
particular to make the last elements radiate as much as the first. One 
method is to vary the elements themselves so that the first elements take 
out small fractions of the power incident on them while the later ele¬ 
ments couple out larger and larger fractions. Thus if the elements are 
dipoles, successive dipoles can have deeper probes; if they are inclined 
slots on the narrow side of the guide, the inclination can be increased 
with distance along the array. Another useful and advantageous 
method permits the elements to be all identical. This consists in taper- 

Fig. 9*55. -Traiihverseh polunzed tnra.v of waveguide radiators 

ing the guide in its narrow dimension so that it is smaller toward the end 
of the array. If there were no radiating elements, this wrould mean that 
the energy density wrould become larger toward the end of the array 
because a given amount of energy would be flowing through a smaller and 
smaller area. When there are radiating elements, the taper can be made 
to compensate for the loss of energy, thus maintaining a constant energy 
density in the guide. 

In such an array there must be no appreciable wave reflected from 
the end. If the original w ave radiates a beam at an angle 6 to the normal, 
the reflected wrave will radiate an undesirable lobe at an angle —-0. To 
avoid this lobe the array is usually terminated in a matched load. This 
may be a dissipative load, and ordinarily arrays are designed so that about 
5 per cent of the total power gets beyond the last element and is dissi¬ 
pated as heat. To avoid this waste of power, a matched load can be 
made of one of the radiators backed by a short circuit and matched with 
an iris. With this on the end of the array there is no reflected wave and 
all the energy is radiated. 

Shown in Fig. 9-55 is a section of a nonresonant array, built for the 
1-cm region. The elements are the transversely polarized waveguide 
radiators shown in Fig. 9*256. The wall of the guide in which they are 
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cut is a quarter wavelength thick. The elements are spaced nearly ~ 

apart; and for phase reversal, alternate elements are staggered with 
respect to the center line. The whole array feeds into parallel plates that 
flare out to the proper size for beam shaping in the other plane. The 
guide is tapered for uniform illumination The coupling formula for the 
fraction of incident power abstracted by each element1 is 

h—s—1 ^ 

where P/Po is the average fraction of power abstracted per radiator and 
X„ X', and Xo are respectively the guide wavelengths in the main guide, 
the branching guide, and the parallel plates. The geometrical parameters 
are defined in Fig. 9-5G. The physical length l of the branching guides 
must be chosen so that its effective electrical length is X'/4. An approxi¬ 

mate formula for l is 

Equation (70) has not been checked directly, but arrays based on it 
have been built, and their performance was almost that expected. 

Another type of nonresonant array has been designed that has a 
normal or closely normal beam, like the resonant array, but is much more 
broadband in impedance. Like the resonant array it has its element 
Bpaced at half-wavelength intervals. In order that the array be matched, 

*For a derivation of this formula see W. Sichak and E. M. Purcell, “Cosec* 
Antennae with a Line Source and Shaped Cylindrical Reflector,” RL Report No. 624, 
Nov. a, 1944, pp. 7-13. 
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each element is matched to the guide; i.e., it is nonreflecting when termi¬ 
nated in the characteristic impedance of the guide. 

There are a number of different ways to realize such a matched ele¬ 
ment. One obvious method is to match each element individually by a 
tuning screw or iris in front of it. This is always theoretically possible, 
but in practice it may bo difficult; because the transmission-line equations 
are not valid close to the radiating elements, it is not always easy to find the 
proper size and position of the iris or screw to match the elements. This 
difficulty is avoided by the use of inclined displaced slots. It is possible 
to choose the length, displacement, and inclination of these slots so that 
they present an input conductance of unity, shunted by a susceptance. 

b0.615H 

8° 

Fia. 9-r>7 

A tuning screw placed at the center of the slot will match it. Another 
type of element that is matched without tuning screws or irises has been 
built for the 1-cm band. It combines features of the waveguide radiators 
and inclined displaced slots in that it consists of asymmetrical inclined 
slots cut through the quarter-wavelength thickness of the broad wall of 
the waveguide. Successive slots are sot on opposite sides of the center 
of the guide, and succeeding slots run together. The exact dimensions 
of these slots had to be determined experimentally. Figure 9*57 shows 
a sketch of these slots.1 

It is obvious that an element which has an input impedance of Z0 
when terminated in Z0 cannot be either a simple series or a simple shunt 
element; it must be represented by some T- or II-network. Thus the 
waveguide is equivalent to a line loaded with T- or II-networks, and (see 
Sec. 9*17) there is attenuation in such a line. For uniform illumination 
some device must be used to enable the later elements to abstract as 
much power as the first. This can be done by increasing the coupling 
of later elements or by tapering the guide. 

9*23. Broadband Systems with Normal Beams.—The various arrays 
we have discussed thus far have one feature in common: The direction of 
the beam is a function of frequency. Whether the beam is normal for 
the design frequency as in the resonant and second type of nonresonant 
arrays or is not normal as in the first type of nopresonant array, the beam 

1J. Steinberger and E. B. Chisholm, “Linear Array,” RL Report No. 771, Jan. 31, 
1946. 
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angle shifts when the frequency changes. This feature is disadvantageous 
for many applications. This section treats systems of arrays that have 
the two properties of constant beam angle and broadband impedance 
match. 

The one feature common to all the array systems discussed in this 
section that causes the beam to remain normal over a band is that they 
are excited in the center. Such a system can be considered as two end- 
fed component arrays. Those two arrays are arranged so that at the 
design frequency their component patterns add up exactly to give a result¬ 
ant normal pattern. When the frequency changes, the beams from the 
individual arrays move in opposite directions; the resultant beam is 
still normal to the array. Of course, the resultant beam broadens some¬ 
what and, if the frequency changes excessively, begins to split, but it 
remains normal to the array system. Three different arrays of this type 
have been built; the differences among them lie in the methods of obtain¬ 
ing a broadband impedance match. 

One consists of two nonresonant arrays each with a beam at an angle 
6 to the array.1 The two arrays are arranged in a V of angle 180° — 20, 
and the power is applied at the vertex of the V. Generally a parallel- 
plate waveguide is placed in front of the array to give a satisfactory pat¬ 
tern in the other plane. The impedance properties of such an array are 
very similar to those for a single nonresonant array, and it remains 
matched over a broad frequency band. The main disadvantage of this 
array is that it is not linear. The V-shape and the flaps on the parallel- 
plate section make it clumsy and heavy. 

The disadvantages of size and weight are eliminated in the second 
example of broadband array with a normal beam. This array consists 
also of two component arrays excited in the center, but these are of the 
second type of nonresonant array.2 Since the beam of each component 
array is normal to it, the two arrays can be placed in a straight line. 
Thus, the major disadvantage of the clumsiness of the V-shape is over¬ 
come, but there is a new disadvantage in that the component arrays are 
more complicated. 

The third example of array, like the other two, consists of two com¬ 
ponents excited in the center. In this array, each component is a 
resonant array.3 The broadband impedance match is obtained by dis¬ 
placing one array with respect to the other until the reflections from the 
components cancel each other. Such a system is illustrated in Fig. 9*68 
and is made of two arrays, I and II, with identical spacing and phasing; 

1J. It. Kisser et at., “Linear Array for Use in the AN/AP8-23 Antenna,” RL Report 
No. 973, Mar. 19, 1946, pp. 1-7. 

* J. Steinberger and E. B. Chisholm, “Linear Array,” RL Report No. 771, Jan. 31, 
1946. 

* Bitter et al., op. tit., pp. 7-13. 
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hut array I is placed a distance A ahead of the other, and the distance x 
to the first element of array I is different from d, the corresponding 
distance for array II. There are two requirements for a satisfactory 
pattern and a broadband impedance match. First, for complete can¬ 
cellation of the reflected waves at any point P in the main guide, the length 
from P to the first element of array I must be Xff/4 longer than the cor¬ 
responding distance for array II; then the reflected waves from the two 

Fig 9*58. —Schematic of broadband normal-firing resonant arra> system. 

arrays will be just a half wavelength out of phase and will cancel. The 
condition for this X^/4 path difference is 

a: — d + A = ~ (71) 

For a satisfactory radiation pattern there is another condition. The line 
AB must be a line of constant phase. For generality suppose that array 
II feeds into some sort of parallel-plate system in which the wavelength 
X' is not necessarily the free-space wavelength. The condition for equi- 
phase along AB is then 

* + A = ± , A 
X' 

A simultaneous solution of Eqs. (71) and (72) is A = X'/4 and 

(72) 

If X' *» X„ then x = d. 



CHAPTER 10 

WAVEGUIDE AND HORN FEEDS 

By J. R. Risser 

10*1. Radiation from Waveguide of Arbitrary Cross Section.—The 
problem of radiation from the open end of a waveguide could be dis¬ 
cussed in principle from several points of view. Rigorously, the radiation 
can be considered to arise from the current distribution on the inside 
walls of the guide, which is just the current distribution associated with 
the fields propagated in the interior of the guide, together with the cur¬ 
rents flowing from the open end out upon the exterior guide surface. 
Were it not for difficulties in the analysis, this current distribution and the 
radiation field at an external point could be calculated. This has, how- 
ever, not yet been accomplished. On the other hand, the approximate 
methods of diffraction theory developed in Secs. 5T1 and 5*12 have been 
applied to the problem with some degree of success.1 The guide opening 
is presumed to act like a hole or aperture in an infinite screen, the trans¬ 
verse fields in the aperture being assumed to be identical with those in a 
parallel cross section inside the guide. The vector Huygens principle is 
applied to obtain the radiation field from the aperture field distribution 
as discussed in Secs. 5*11 and 5*12. 

In all important practical cases the guide allows propagation of only 
one mode, called the dominant mode. Over a cross section inside the 
guide sufficiently far from the aperture, any component of the field is 
the vector sum of the components associated with incident and reflected 
waves of the dominant mode. In the aperture, however, additional 
higher-mode fields exist locally, excited by the discontinuity in the guide. 
It is not possible to determine the details of the higher-mode field distri¬ 
bution empirically; they can be obtained only from a rigorous solution of 
the boundary problem. The contribution of the higher-mode-fields are 
neglected in the approximate diffraction theory used in this chapter. 
This is one source of inaccuracy in the method. 

The effects of the reflected dominant mode wave can, however, be 
taken into account. They are expressible in terms of a reflection coeffi¬ 
cient T which can be determined empirically by standing-wave measure¬ 
ments in the guide. The reflection coefficient T is the ratio (Et)r/(Et)i 
at the transverse components of the reflected and incident electric field 

*L. J. Chu, “Calculation of the Radiation Properties of Hollow Pipes and Horn*/' 
Jmtr. Applud Phy$n U, 608-010 (1940). 

884 
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vectors; it varies in phase but not in magnitude along the guide. When 
extrapolated to the plane of the aperture, T can be interpreted in terms of 
an equivalent circuit admittance rj for the aperture by the relation 

r - "> 

the admittance rj is normalized to the characteristic wave admittance of 
the guide. The characteristics of 77 and Y will be discussed later (Sec. 
10*11). It is assumed here that Y is a known quantity. The total trans¬ 
verse electric field E* of the dominant mode in the aperture is then given 

by 
E< = (1 + r)(E<)„ (2) 

where (E,), is the transverse electric field of the incident dominant-mode 
wave. The transverse magnetic field H* can be obtained from E* using 
Eqs. (7*335) and (7*33c): 

where 

(Hi). = t[ig x (Ei)J, } 

(H<)r = -f[i*X(E,)r], j 

- £=? for TE-modes 
a)fx 

— ~ for TM-modes. 

Therefore Hi can be written 

Hi - - r)[i. x (Ei)»] 

[iz x Ei]. 

The relation between the electric and magnetic fields over the aperture 
is thus of the form of Eq. (5-104) with the constant a = /(I — T)/(l + r). 
It should be kept in mind that the value of T is not altered by the inser¬ 
tion of a matching transformer in the guide because the reflected wave 
still exists in the region between the transformer and the aperture. 

To calculate the radiation field at a point P outside the pipe, we sur¬ 
round P by a closed surface containing the aperture. This surface con¬ 
sists of the aperture, the exterior surface of the guide and the sphere al 
infinity. The vector Huygens principle is applied to this surface. As 
in other diffraction problems the sphere at infinity contributes nothing. 
Over the exterior surface of the guide the electric field is necessarily normal 
to the surface, and therefore Et is zero. There is, however, a tangential 
component of the magnetic field associated with currents originating at 
the aperture. As in the case of the higher modes in the aperture, inability 
to solve the boundary problem at the end of the waveguide means that 
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these currents are unknown, and H< is assumed to be zero on the guide 

surface. This is a second source of error in the method. 

The effect of neglecting the higher-mode fields in the aperture and the 

tangential component of the magnetic field on the outside surface of the 
guide depends on the dimensions of the aperture as measured in wave¬ 

lengths. It is reasonable to assume that both factors contribute a smaller 

fraction of the total radiation field as the aperture dimensions increase. 

It is, in fact, the case that the calculated radiation field is in increasingly 

better agreement with experiment as the aperture dimensions increase, 

so that the limitations of the theory are apparent principally for small 

apertures. Unfortunately the dimensions of waveguide actually used are 

fractions of a wavelength. A more rigorous treatment of the problem 

would be desirable. 

By neglecting the higher modes and the current distribution over the 

exterior surface of the waveguide, the problem is reduced to a simple 

aperture problem. The radiation field is calculated by means of Eqs. 

(5*110) and (5*110a). The trans¬ 

verse electric field Er appearing in 

the latter is replaced in the pres¬ 

ent case by the resultant electric 

field Et of the dominant mode over 

the aperture. The latter, in turn, 

is expressed in terms of the inci¬ 

dent electric field by means of Eq. 

(2). 

I 

Fig. 10*1.— Coordinate system used in dis- The Coordinate System is 
cussing radiation from open waveguide. shown in Fig. 10*1. Rectangular 

coordinates {x,y) are used in the aperture, taken to be the plane z = 0, 

and spherical coordinates /?, 0 and <f> are used to locate the point P. From 

Eqs. (5-11 la) and (5*1116) the components of Ep become 

Er = 0, 

E> ~ ^~lirR [* + 1 (i~t) (lr) COS 9] (Nx C0S ^ + N« sin *)» 

E* ~ " 4^R— [COS 6 t F+T i^) ] S’n 4* ~ Ny COS <t>) , 

where N is the vector 

N ss= / T^ cos 4>+V ain 9 sin 

J A 

= (1 + r) J (Et)ie}k('Xaia 0 sin *<*»*) fig, (0) 

10*SL Radiation from Circular Waveguide.—The radiation vector 
H of Eq. (6) can be computed for waveguide of circular cross section using 
the egression for the transverse field vector of the dominant mode given 
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in Sec. 7*13. In computing N it is convenient to express (E*)i, the 
incident wave field in the aperture, in rectangular components. 

Case 1. TE-waves.—In this case the rectangular components of (Et)i 
are3 

Ex = [Jm-i(Kmnp) sin (m - l)\p + Jm+i(icmnp) sin (m + 1)^], 

Ey = [Jrn-l(Kmnp) COS (m — 1)$ ~ Jm+i(nmnp) COS {m + 1 )£|. 

Writing x = p cos \f/, y — p sin \f/, the expressions to be evaluated become 

Nx = JQ JQ pl*P«» •«*(*-*)[Jm^(Kmnp) Sm (ttZ — 1 

+ Jm+i(Kmitp) sin (w + dp; 

AT, = ——”2 JQ JQ ejkp*tn6co* Jm-l(Kmnp) COS (w — 1)^ 

— Jm+l(Kmnp) COS (tfl + l)^]pd^dp. 

These are evaluated with the help of the Bessel-Fourier series 

eApcCH(^) — ,/0(Xp) + 

and the Lommel integral formula 

so 

(Xp) cos n(4> — 

xJn(ax)Jn (^) = -2-—gi /-(«*) gg /.Ote) - /«08x) ^ J.(*r) 

Using these together with the recurrence relations and recalling that 
J'm(KmnCi) = 0, the field components are obtained as follows: 

a-j-+‘^fI+^=c„»* + r(i-fee™*)] \ 

Jm(Hmna) V'sil1 sin i7 I 

=j,n+i ■m+1kao)n fft. 
2/? I A 

+ cos 

Jm(--^"a)/"(fca Pfei). COS 

1 _ A sm g\ 
\ Kwn / 

1 The following recurrence relations are needed for this section: 

J’m(z) - "/•« - Jm+l(z) - | [/_*» - /.+!(*)] 

- - J /„(*) + Jm-l(z), 

- 5 [/-+.(*) +/—.(*)]. 
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Case 2. TM-waves.—Following the same procedure as above, the 
integrals to be evaluated are found to be the same. Specifically the 
integrals in the two cases are related as follows: 

(Nv)tl; OOfJL 

(Nv) j m = — (Nv)rr. 
(12) 

It will be recalled that the characteristic values of nmn for TM-waves are 
obtained from the roots of Jm(Kmna) = 0. On evaluating the field com¬ 
ponents, it is found that due to this condition, E* is zero and there is but 
one component: 

Ee = 
k(lKjn 

2R sin 0 
COS + cos e + r 

(t -•)] 
*/sm 0)*JOT(/cWMtt)  

~7zrZn \~e 
\h sin e) 

(13) 

The TEn-mode which has the lowest cutoff frequency is the one most 
commonly used in circular-guide antenna feeds. The remainder of the 
discussion will be confined to this mode. On setting m = 1 into Eq. (7) 
it can be seen that the electric field over the aperture is symmetrical with 
respect to the 2/z-plane, which is thus the E-plane of the system. Figure 
10*2 taken from Chu's paper shows the calculated E- and //-plane pat¬ 
terns as a function of aperture. The effect of the reflected wave in the 
pipe on the aperture distribution has been neglected1 (i.e., V has been set 
equal to zero) in computing these patterns. Figure 10-3 shows a com¬ 
parison between an observed pattern and the corresponding theoretical 
pattern. The agreement is quite good considering the factors neglected 
in the theory. 

There are various measures of the sharpness of the beam. One cri¬ 
terion that has been used in the literature is the angle from zero to zero 
including the main beam. In the E-plane (<t> = w/2), Ee is zero when 
ka sin 6 = 3.83. The beam angles in the E- and //-planes are then 

The beam is thus sharper in the E-plane than in the //-plane. Equation 
(14) is, of course, meaningless for the E-plane when 2a/A < 1.22 and for 

* This is a good approximation for circular guide. For standard Radiation Labora¬ 
tory waveguide (2a =* 0.75X) r is found to be small. 
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the i?-plane when 2a/\ < 1.7. From a practical standpoint, more useful 
measures of the beam sharpness are the full angular widths between half¬ 
power points and tenth-power points. For values of X/a < 1, the half- 

110° 120° 130° 140° 160° 180° 110° 120° 130° 140° 160° 180° 

te) (6) 
Fig. 10*3.—Theoretical and observed radiation patterns from waveguide of circular cross 

section; X = 3.2 cm (a) i£-plane; (6) //-plane. 

power and tenth-power widths in the principal planes are given in degrees 

by 

Another characteristic of interest is the gain relative to an isotropic 
source. It is given by 

G - 4t 
P( 0,0) 

Pt 

where Pt is the total power radiated and P(0,0) is the maximum power 
radiated per unit solid angle, which is in the direction 6 = 4> = 0. This 
power is 

p(°.°) - 52 (£f k*aW |l + l + r (i - |)|* JIM. (16) 
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To find the total power radiated, the Poynting vector $ Re (E{ x Hf) is 
integrated over the aperture. This is evaluated as follows: 

0(1 - ® r r w+\Ey\*)Pdt dP; 
1 Jo Jo 

inserting the values of Ex and Ev from Eq. (7), we have for the 7T?n-mode, 

Pt = - In2) fa r 
UlUnp) + J\(kup) 

— 2Jo(kup)J2(*}\p) cos 2\fi]p d$ dp 

— lr| 
[Jq(mip) + Jl(kup)]p dp. 

The last integral is evaluated by means of a Lommel formula1 resulting in 

T) 7T/^#cf 1<72C*J)Lt(l — |ri2) r/2/ X , TO/ X , TO/ X 
1t — ”■ ^ Uo(Kua) ~f~ Jii^nd) -f~ *^2(^11^) 

— J ](KUa)J 3(/cnCf)]. 

Making use of the recurrence relations and the boundary condition 

J\(k\\Q) = 0, we obtain finally 

Pt = IH2) Wl«i _ l)Ji(*ll0). (17) 

The gain is, therefore, 

w|i+j’ + r(i-|)f 

4.775/3(1 - |r|2) ’ 

where the value of KUa = 1.841 has been inserted. For the region far 
enough away from cutoff, r « 0, p/k ~ 1, the gain is approximately 

n in r /area of aperture\ 
G 10.5 ^-js-)■ 

10-3. Radiation from Rectangular Guide.2—The tangential field com¬ 
ponents of the dominant mode in the aperture of rectangular guide are 
obtained from Eq. (7-74) or (7-79) by placing z equal to zero. Then, 
in the same manner as for circular guide, the radiation vector N is calcu¬ 

lated from Eq. (6). 

1 G. N. Watson, Bessel Functions, 2d ed., Macmillan, New York, 1945, p. 135, 
Eq. (11). 

»L. J. Chu, Jour. Applied Phys., 11, 603-610 (1940). 
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Case 1. TE-modes.—The components Nx and Nv 

Nx = j —— Y-^ — f COS (?!™\ fikx.to9CO.* fa. 
Kmnk JO \ & / 

j* ^ e,^e.in,dy = ^^^L±r^sinjlcos0 

|   gj(ka am 0 coh <f>+mv) jj 2 gf(kb smOBin 4>-{~nr) 

A-2 sin2 6 cos2 * A;2 sin2 fl sin2 * — 

Ny = — j — f sin eikx.mem*dx 
*La Jo \ a / 

f cosfc^f""”*# = _ y^d +,r)fc qs_gsm » 
yo \ 0 / 

&2 sin2 0 cos2 </> — 

2   ^}(kaHindoo* j j J   gJf (fcfc sin 0 sin ♦+»*■) 

o-o^ o . mV2 70 * a si * o n2 
A-2 sin2 0 sin2 - 

The electric-field components of the radiation field are then 

1 + cos 0 + T | 

sin 0 sin <f> + 

* - - (0” *«-' [' + ^ - • + r (' - %»« •)] \ 

[(y sin </>) - cos *) j y«t»(6,4>), 1 
L, /(wofc)2 sin 0 sin * cos 4> f 

= “ \7) 2\*R- j 

[cos 0 + ^ + T (cos 6 - ¥.*(«,*A (20) 

(ttci * -j , . wwr\ T - fwb . o . . . 1 I 
— sm 0 cos I sin l y sm 0 sm <f> + y ) I 

sin flees*) ~ (ngf) _ (y sin * sin *) - (y) I 

—j kR — ^sm0(acos0-f&8in0) — (ira+n4-l)~; I / 

Case 2. TM-modes.—The components Nx and Nv are related to those 
of the TE'-modes by 

- - 'tt 

As in the case of the JW-modes in a circular guide, the radiation field is 



Sac. 10-3] RADIATION FROM RECTANGULAR GUIDE 

found to have only one component: 

343 

Et = 
mnf}mnir*ab 

4X’/?fcL 
sin 8 + cos 8 

+ r (1 - ~ cos e) 
\ Pmn * /. 

(21) 

while E$ = 0. 
The TJ^-mode, m = 1, n = 0, is of special interest. In this case the 

radiation field reduces to 

^-“(0 
fra (ra n \ 
— sin 8 cos <f> J 

-(s)’ 

sin ^ 
ti-6 . . V 

sm 8 sm <t> J 

/rb . . 
^ sm 0 sm in 

—<?(o cos ^ + bsin 0)J 

E<h — (f) cos * [cos * + T + r (cos 6 ~ t)] 
. (irb . B . \ 
in ( y sm 8 sin </> I 

Ara 

(ra . 0 \ 
— sm 8 cos <£ I 

“•f® 
sin 0 cos 

tI). . 
—- sm 0 sm <j> 
A 

j ^sin 0(a cos ^ +6sin 0) J 

(22) 

where *io has been replaced by w/a. The phase factor 

kR - sin 8 (a cos <f> + b sin <t>) 

can be simplified. It will be recalled that in deriving the field expressions 
the origin was taken at a corner of the guide. It is easily found that if 
the origin is Shifted to the center of the aperture, the phase factor trans¬ 
forms into kR, R now being measured from the new origin. In the case 
of large apertures r « 0, so that the space factor is, therefore, real and 
the guide is a directive point-source feed, the center of feed being the 
center of the aperture. In small apertures where V is complex, there is no 
exact center of feed; the guide is only approximately a point source from 
the point of View of the equiphase surfaces of the radiation pattern. 

The electric field over the aperture is polarized in the F-direction * 
so that the {/z-plane is the E’-plane of the system while the xz-plane is 
the //-plane. The patterns in these two principal planes are 
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(23a) 

(23 b) 

It is observed that the predominant factors in the patterns 

• f • a j (ira.A /T/Va . X *r2l 
sm I y sin 6 ) / sm 0 and cos I — sm 0 1/ ( — sin 6J — -j 

are determined by the dimensions of the apertures in the respective planes. 
It will be further observed that the i£-plane pattern is essentially the pat¬ 
tern due to uniformly illuminated slit of width 6. The pattern in the 
//-plane is essentially that due to a slit of width a over which the illumina¬ 
tion is distributed sinusoidally as it is across the guide in the rr-direction. 
This is illustrative of a fairly general characteristic that the patterns in 
the two principal planes are independent and are determined by the 
aperture dimension and the distribution of illumination across the aper¬ 
ture in the respective planes. The angular distances between the first 
zeros on either side of the peak are given by 

= 2 sin*”1 
b 
Q\ 

. *. = 2sin-g. 

Figure 10*4 is a plot of Z£-plane and //-plane patterns of 3.2-cm wave¬ 
guide calculated from Eqs. (23a) and (236), together with experimentally 
observed values. Since the guide dimensions are appreciably smaller 
than a wavelength (a/X = 0.71; 6/X = 0.32), agreement would not be 
expected to be particularly good in view of the approximations in the 
theory. Better agreement would be expected with larger aperture 
dimensions, although from a practical standpoint limitations on size of 
aperture are imposed by the necessity of suppressing higher modes. 
The predictions of Eqs. (23a) and (236) for large apertures are, however, 
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of interest as a convenient means of predicting the radiation patterns of 
sectoral horns, with small flare angles. Figure 10*5 is a graph of the 
3- and 10-db-widths of the E- and //-plane patterns as a function of the 
respective aperture dimensions. In computing the latter, T was taken 
equal to zero. 

0 0.5 1.0 1.5 2.0 
Wavelength/aperture 

Fig. 10*5.—Relation between the aperture dimension and the 3-db and 10-db widths of the 
radiation pattern of rectangular waveguide;-2?-plane;-47-plane. 

Finally the gain relative to an isotropic point source can be calculated. 
The power radiated per unit solid angle in the peak direction, 6 = <t> = 0, 

p(0l0'-2("r(S)’|1 + T + r(i-^' 

The total power radiated is obtained as in the case of circular guide by 
integrating the Poynting vector i Re (E< x Hf) over the aperture. This 
integration is easy to carry through in the present case. We obtain 

P „ (1 - |r|»Wa»fefl10 
** .. A 9 ’* (25) 
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The gain is, therefore, 

0 = 4* _ 

Q P, i(l 

For large apertures, fi/k 

8 

I IT) kJ,+ T + 
ah 
X*' 

1, T « 0, the gain is approximately 

> 
G ~ IQ 2 ^area of the apertureY 

(26) 

(27) 

10*4. Waveguide Antenna Feeds.—Waveguide can be used satis¬ 
factorily as an antenna feed, but only for very restricted applications. 
It will be shown in a later chapter that the power radiated by the feed 
should be down approximately 10 db in the direction of the reflector 
edge (cf. Chap. 12). This requirement determines the reflector shape 
that can be used efficiently with waveguide feeds. For rectangular wave¬ 
guide with h/X — 0.32 and a/X = 0.71, the reflector aperture should 
subtend an angle at the feed of approximately 180° in the electric plane 
and 120° in the magnetic plane (see Fig. 10*4). For circular waveguide 
with 2a/X — 0.75, these angles should be approximately 150° for the 
electric plane and 140° for the magnetic plane. While these figures are 
necessarily approximate because the 10-db specification has some arbi¬ 
trariness, reflectors of markedly different shape cannot be used without 
sacrifice m gain or side lobes. In general, the reflector dimensions are 
determined by the application, and the feed aperture dimensions must be 
selected accordingly. Flaring the terminal region of the guide to form 
a simple rectangular or conical horn and placing beam-shaping obstacles 
in the aperture of the feed constitute the usual solutions to the problem. 

Circular waveguide has found a more restricted application than rec¬ 
tangular guide as an antenna feed; in fact its use has been confined to 
conically scanning antennas. Since long lengths of circular guide are 
found unsatisfactory, a circular-guide feed is generally excited from rec¬ 
tangular guide through an intermediate tapered section. The feature 
of circular guide that makes it suitable for conically scanning antennas is 
that the terminal section can be rotated without distortion of the mode 
of propagation or rotation of the polarization of the radiated beam. If 
a circular-guide feed is placed a small distance from the axis of a para¬ 
boloidal reflector and is rotated about this axis, the peak of the beam from 
the paraboloid will describe a cone whose axis coincides with the para¬ 
boloid axis. The direction of polarization remains fixed in the course of 
the rotation. The greatest care must be taken not to deform the guide 
in bending, because deformations act as transformers converting plane to 

elliptical polarization. 
A number of structures have been developed to enable waveguide to 

be used in rear feed systems. A u1 rear feed ” is one that enters the para¬ 
boloid at or near the vertex from behind and provides a means of deflect- 
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ing the direction of propagation of the radiation so as to illuminate the 
paraboloid. With circular guide this is done by a reflecting disk (Fig. 

10*6). However, a study of the 
equiphase surfaces shows that 
such a feed does not have a point 

fleeting dibl^ showing position of ring source 
of radiation 

center of feed but behaves rather 
like a ring source. It is, there¬ 
fore, not suited for use with a re¬ 
flector having a point focus. 

In the case of rectangular 
guide, a rear feed system can be 
obtained by making a U-shaped 
bend in the guide; this is feasible 
at short wavelengths where bend¬ 
ing the guide is mechanically feas¬ 
ible and the added weight and feed 
shadow are not important factors. 
A\*hen a more compact rear feed on 
rectangular guide was needed, 

modifications such as the two- and iour-dipole feeds (Secs. 8*10 and 8*11) 
or the double-slot feed were been used 
in the next section 

10*5. The Double-slot Feed.— 
One form of this type of feed is 
shown in Fig. 10*7. Essentially = 
the waveguide splits into two __ 
waveguide-like branches which 
turn back and have their open 
ends directed toward the parabo¬ 
loid. One opening is above and 
the other is below the input wave¬ 
guide, which is tapered to less than 
normal height to decrease the 
separation of the slots and con¬ 
sequently the directivity of the 
feed in the electric plane. As 
shown in the figure, the two 
branch paths are contained in a 
compact cylindrical head designed 
for ease of manufacture. Each 

The latter feed will be described 

Section AA 

Fig. 10*7.—A double-slot feed. 

MU consists of half the cylindrical cavity C and the waveguide-like slot 
S. Hie slots are pressurized by mica windows. The dimensions of the 
feed were worked out empirically to obtain good match and pattern over a 
6 per cent band (AX/X0 — ±3 per cent) centered at 3.2 cm. Over this 
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band the VSWR is less than 1.3. The pattern is somewhat narrower in 
the electric plane than in the magnetic plane. This feed is useful where 
a compact straight rear feed is needed. 

10*6. Electromagnetic Horns.—It appears at first sight that a radia¬ 
tion pattern of any desired directivity can be obtained from a waveguide 
by a suitable choice of its dimensions. However, if the dimensions are 
sufficiently large to allow free propagation of more than one mode, the 
serious problem of controlling the modes arises. It is difficult to excite 
a large-sized waveguide so that only a single mode is generated; if several 
modes are present, their relative phases at the aperture and hence the 
resultant field over the latter are a function of the length of the guide. 
The required large aperture with a ^ingle-mode-field excitation can be 
achieved by a gradual transition produced by flaring the terminal section 
of the waveguide to form an elec* romagnetic horn. Of course, a number 
of modes are excited in the throat of the horn at the junction between the 
latter and the waveguide. However, the throat serves as a filter device, 
allowing only a single mode to be propagated freely to the aperture. 
Each mode in the horn can be set into correspondence with a mode in 
the waveguide into vhich it passes as the flare angle of the horn is reduced 
to zero. The horn will not support free propagation of a particular mode 
until roughly the transverse dimensions of the horn exceed those of a 
waveguide which would support the given mode. Thus, unless the flare 
angle is too large, all but the dominant mode will be attenuated to a 
negligible amplitude in the throat region before free propagation in the 
horn space is possible. j 

The discussion in the following sections will be restricted to horns 
that are derived from a rectangular waveguide. Comparatively little is 
knowrn about conical horns1 derived from a circular wraveguide, and they 
have found comparatively few applications in microwave antennas. 
Rectangular horns are treated in considerable detail in the literature.2 
The reader is referred to the original papers for a complete treatment of 
the modes in a rectangular horn and the analysis of the filter properties 
of the throat. If the horn is to serve as the terminal antenna element, 
there exist optimum relations between the horn length and flare angle 
for achieving maximum directivity; these relations are given in the sources 
referred to previously. Horns are used in microwave antennas primarily 
as a feed to illuminate a reflector or lens. In this case the important 
design considerations are the impedance characteristics and the efficient 

1 G. C. Southworth and A. P. King, Proc. IRE, 27, 95 (1939); A. P. King, Bell 
Laboratories Record, 18, 247 (1940). 

8 W. L. Barrow and L. J. Chu, Proc. IRE, 27, 51 (1939); W. L. Barrow and F. D. 
Lewis, Proc. IRE, 27, 41 (1939) ; L. J. Chu and W. L. Barrow, Trans. AIEE, 68, 333 
(1939). The design data are summarized by F. E. Terman, Radio Engineers9 Hand¬ 
book, McGraw-Hill, New York, 1943, pp. 824-837. 
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illumination of the optical system rather than maximum gain from the 
horn. Only the material not readily available in the literature will be 
presented in the following sections, with attention being centered on the 
microwave design problems. 

Various types of horns are illustrated in Fig. 10*8. The horns shown 
in Fig. 10*8a and 6* are known as sectoral horns; they are flared in one 

plane only. The fields in the sec¬ 
toral horns consist of cylindrical 
waves the axes of w hich coincide with 
the line of intersection of the planes 
containing the flared sides. The 
compound horn (Fig. 10-8c), allows 
variation of both aperture dimen¬ 
sions. An alternative procedure to 
that shown in the figure is to flare 
both sides of the horn directly from 
the junction with the waveguide to 
form a quasi-pyramidal structure 
From the point of view of the im¬ 
pedance characteristics the former 
procedure is preferable. 

10*7. Modes in E-plane Sectoral 
Homs.—The sectoral horns to be 
considered first are those in which 
the flare increases the aperture in the 
direction of the electric vector (Fig. 
10*8a). They will be referred to as 
Z£-plane sectoral horns. The sec¬ 
toral character of the space inside the 
flare and the cylindrical coordinate 
system (x,r,d) appropriate to this 
space can be seen in Fig. 10*9a. 
The x-axis coincides with the line of 

intersection of the planes containing the flared sides; the planes of con¬ 
stant x are thus parallel to the unflared sides of the hom. The polar 
coordinates r and 6 locate points in these planes. The unflared sides of 
the horns are in the planes x = ±aj2. Propagation in the flare is along 
the radius vector, the wavefronts being coaxial cylindrical surfaces of 
constant r. The portion of the flare included between any two of these 
surfaces can be thought of as a length of sectoral guide. In particular, 
the hom flare is a section of sectoral guide whose length is (r2 — ri), 
where the surfaces r ■* rx and r = r2 locate the “throat” and “mouth” 
of the hom respectively. Maxwell’s equations for the sectoral guide 
space may be written 

Fig. 10*8.— Horn feed types (a) 
electric plane horn; (b) magnetic plane 
horn; (c) compound hom. 
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Fia. 10*9,—Coordinate system and lowest-mode field configuration in sectoral guide. 
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where e and m are the inductive capacities of the medium filling the sec¬ 
toral guide. 

The Dominant-mode Fields.—The waveguide feeding the horn is 
assumed to support free propagation of only the 772?io-mode which is then 
the exciting field impressed on the horn. The lowest sectoral guide 
mode, which is the analogue of the 7T?io-mode in the uniform guide, will 
predominate, all the other modes being attenuated in the region of the 
throat. This mode is characterized by vanishing of all field components 
except Hr, and Hx. Maps of the field lines in the cylindrical wave- 
fronts are qualitatively the same as those in the plane wavefronts of the 
uniform guide. The electric lines are arcs normal to the flared sides of 
the guide. The electric field Ee varies sinusoidally in the ^-direction, 
vanishing at the parallel walls of the guide. 

To derive expressions for the dominant-mode field components, the 
simplifications Er = Ex = Ho = 0 are introduced into Maxwell’s equations 
(28a) to (28h)> which then become 

dE$ 
If 

jcaeEe 

JO)fxH r 

dllr __ dHx _ 
~df ~ ~df ~~ 
dHr dllx 
dx dr 1 

dEe 
dx3 

joifiHx = - l^(rEe), 

(29a) 

(296) 

(29c) 

(29d) 

(29e) 

Equations (29c) and (29d) serve to express IIr and Hx in terms of the 
derivatives of Ee. Substituting the expressions so obtained in Eq. (296), 
the following equation is obtained for Ee: 

d2Ee 
dr2 + 1 dE$ . d2Ee 

r dr + dx2 + - = 0. (30) 

As was pointed out previously the electric field Ee varies sinusoidally 
along the z-direction as in the case of the TEio-mode of the uniform 
guide. We have then 

= o°s (~^)/(r), (31) Et 

where f(r) is a function of r only. The expression for Et satisfies the 
boundary condition that Ee — 0 at x = ±a/2. Substituting Eq. (31) 
into Eq. (30), we obtain the following differential equation for/(r): 

jeL+iJL + h 
d(fir)* + Prd(l3r) + |_ 0, (32) 
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** = w V- 

(33) 

Equation (32) is the Bessel equation of order unity in the argument 
(fir). The solutions to the equation take a number of different forms; 
any linearly independent pair of solutions may be taken to construct the 
general solution. Denoting by Zi(0r) any solution, we have 

Ee = cos I — (34a) 

and the corresponding components of the magnetic field are 

Hr = sin ( 
bifid \ (346) 

jr jfi (7T 
Hx — - cos 1 - 

Olfl \ ( 
f) Zo(()r). (34c) 

In obtaining Hx use is made of the recurrence relation:1 

ts
j 

3 II pnZ„_,(p). (35) 

The linearly independent solutions to Eq. (32) which are particularly 
suited to the present problem are the Bessel functions of the second kind— 
the Hankel functions Hi\l3r), Z\{fir) in Eqs. (34a) and (346) 
is to be taken as representing either one of the two functions; similarly 
Zo(fir) denotes either of the Hankel functions H^(fir) of order 
zero. These solutions represent traveling waves as is evident from the 
asymptotic forms of the functions of order n for large (3r: 

Ht'Vr) - (£)" e<‘r-UP’\ ) 
(36) 

It is seen that the first of these represents a wave traveling in the negative 
r direction, i.e., a wave converging on the cylinder axis r = 0, and the 
second a wave traveling in the direction of increasing r. The solutions 
correspond to e*' and in the uniform guide. For large /Sr the phase 
fronts are spaced radially in the sectoral guide exactly as they are in 
the ^-direction in the uniform guide. The amplitude is proportional to 
r-Ai because the energy density associated with a traveling cylinder wave 

»G. N. Watson, Beseel Functions, 2d ed., Macmillan, New York, 1945. 
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is proportional to r"1, that is, to the reciprocal of the area of the wave- 
front. It will be noted that the wavelength of propagation \g = 2r/0 
is the same as in the uniform guide. The cutoff condition for the mode 
is the same as that of the !Ti?io-mode in the uniform guide. In fact, the 
cutoff conditions for the TT^-modes in the horn are all the same as for 
corresponding modes in the uniform guide; this explains the attenuation 
of the higher modes generated at the throat. For small fir values, the 
interpretation of II™ (fir) and is not so simple because there are 
quadrature terms in the function that represent energy stored in the 
electromagnetic fields. These terms become more important as (3r 
becomes smaller. For numerical tables of II™ (&r) and II™ (0r) for small 
(0r) the reader is referred to Watson.1 

Having selected the Hankel functions as particular solutions of Eq. 
(32), the general solution for the dominant-mode field components in the 
sectoral guide can be written down as follows: 

E, = A cos [II?'(fir) + aH?>(pr)V’“‘-, (37a) 

Hr = J— sin ( —) [II?'(/3r) + all?>(pr)]e‘“‘-, (37b) 
Q)/JLd \ G / 

Hx = + j-~ eos (-) [II?>(M + aIl\P(fir)]e,ut, (37c) 

where the constants of integration A and a are in general complex. The 
general field of the dominant mode consists of the incident wave gener¬ 
ated at the throat and the wave reflected by the mouth of the horn. The 
magnitude of a is less than unity because it represents the ratio of the 
amplitude of the field components in the reflected and incident waves. 

Higher-mode Fields.—In addition to the dominant-mode fields wdiich 
have been considered in detail, fields of other modes exist locally in the 
sectoral guide. The mouth and throat discontinuities give rise to these 
modes because the boundary conditions at these points cannot be set up 
in terms of dominant-mode fields alone. At the throat the amplitudes 
of the higher-mode fields are small compared with those of the dominant 
mode unless the flare angle 0o is large, and they exist only in the immediate 
neighborhood of r = n because the sectoral guide dimensions arfe below 
cutoff. It will be shown (Sec. 10-11) that Emplane sectoral guide admit¬ 
tances can be calculated from the dominant-mode fields alone without 
appreciable error. At the horn mouth the effect of higher modes is prob¬ 
ably not negligible, especially for smal lapertures. The boundary problem 
is a difficult one, and no rigorous solution has been obtained. Experi¬ 
mental values of the mouth admittance contain higher-mode contribu¬ 
tions but in an unknown proportion. In calculating the radiation field 

1 Watson, op. cit., Table I, Appendix. 
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from sectoral horns neglect of higher-mode fields in the aperture probably 
introduces an appreciable error. 

10*8. Modes in H-plane Sectoral Homs.—A hom will be referred to 
as an H-plane sectoral horn when flaring increases the aperture in a plane 
perpendicular to the electric vector (Fig. 10*86). The sectoral character 
of the space in the flare dictates the choice of cylindrical coordinates 
as in the /£-plane case. In this case, the coordinates r, 0, and y will be 
used (Fig. 10*96) because the axis of the cylindrical waves in the hom is 
parallel to the i/-axis in the uniform guide. The portion of the flare 
between any two surfaces of constant r can be considered as a length of 
//-plane sectoral guide, the flare as a whole being of length (7*2 — 7*1), 
where r2 and r\ are chosen as shown in Fig. 10*8. Maxwell's equations 
for the //-plane sectoral guide are the same as for the /£-plane guide 
[Eqs. (28a) to (28/i)] except that a* is replaced by y. 

The Dominant-mode Fields.—As in the electric-plane case, energy is 
propagated in only one mode because of the dimensions of the //-plane 
sectoral guide at the horn throat and the nature of the excitation by TE^r 
mode in the uniform guide. The dominant mode is characterized by 
vanishing of all field components except Eu, IIr, and IIe. The cylindrical 
character of the space requires that the wavefronts of this mode be sur¬ 
faces of constant r. To satisfy the boundary conditions Ey must vanish 
at the w alls 0 = ± 0o. 

The expressions for the dominant-mode field components are derived 
from Maxwell's equations for the //-plane sectoral guide after introducing 
the simplifications Er = E$ = 11 y = 0 Substituting y for .r in Eqs. 
(28a) to (28h) and dropping terms involving Ery E»9 and IIv, Maxwell's 
equations for the dominant mode become 

dEy 
dy 

dHr 

dy 
dIU 
dy 

= 0. 

. „ 1 d , l7 v 1 dHr 
= -Tr (rile) - - -5 r dd 

■ rr 1 
J^Hr = - " -ft* 

jo)yH$ = 
dEi Jy 

dr 
d / rr \ « d//g = 0. 

(38a) 

(386) 

(38c) 

(38d) 

(38e) 

Equations (38c) and (38d) serve to express Hr and H$ in terms of the 
derivatives of Ev. Substituting the expressions so obtained in Eq. (386), 
the following equation for Ey is obtained: 

d*E„ , 1 dEv . 1 d*E 



WAVEGUIDE AND HORN FEEDS 356 [Sbc. 10 8 

Since the boundary conditions require that Ev vanish on the walls 
B * ± 0O, Ey is of the form 

Ey = cos pd F(r)y (40) 

where 

V (41) 

and F(r) is a function of r only. Substituting in Eq. (39), the following 
equation for F(r) is obtained: 

where 

(42) 

Equation (42) is the form of BesseFs differential equation whose solu¬ 
tions are cylinder functions of order p. The Hankel functions II™ (kr) 
and //^(/cr) are chosen as particular solutions of this equation again 
because they represent traveling waves (Sec. 10*7). The general solu¬ 
tion for the electric-field Ey is therefore 

Ey = A cos pB[Hf(kr) + aH™(kr)]. (43a) 

From Eqs. (38c) and (38d) 

Hr = [ff»(*r) + aH?(kr)], (436) 

kA 
Ho = ™ cos pd [#<?>'(fcr) + aH^’ikr)], (43c) 

where the primes indicate differentiation with respect to kr. 
The solutions for the field components in the //-plane sectoral guide 

[Eqs. (43)] are of the same form as those for the E-plane sectoral guide, 
but they differ in two noteworthy respects. In the /7-plane guide the 
order p of the functions depends on flare angle 60. It is high for sn^all flare 
angles and is in general not an integer. Thus, for a flare angle of 20°, 
which is often used in practice, the order is $. In the /7-plane guide the 
argument of the Hankel functions is kr(~ 2irr/\). From the asymp¬ 
totic expressions [Eqs. (36)] it is seen that at large kr the equiphase sur¬ 
faces are separated by a free-space wavelength in contrast to the guide 
wavelength of the E-plane horn. This is reasonable because the /7-plane 
flare increases the separation of the walls that determine the guide wave¬ 
length in the uniform guide. For small B0 and high-order p, the asymp¬ 
totic expressions of the Hankel functions are good approximations only 
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at very large At, corresponding to the fact that this wall separation 
becomes large only at very large At. 

Higher-mode Fields.—As in E-plane sectoral guide higher-mode fields 
are necessarily present at throat and mouth discontinuities. The effect 
on impedance and radiation patterns of the higher-mode fields at the 
mouth is not negligible, although it is at present impossible to take them 
into account in sectoral guide theory. 

10*9. Vector Diffraction Theory Applied to Sectoral Homs.—The 
same considerations discussed in connection with radiation from open 
waveguide (Secs. 10-1 to 10*3) apply to radiation from horns. If the 
current distribution on the inside and outside walls of the horn were 
known, it would be possible to calculate the radiation field at a point 
outside the guide from this dis+nbution. In theabsenceof this knowledge, 
the aperture diffraction method is used as in the case of the waveguides.1 
In the present case the aperture surface is taken to coincide with the 
cylindrical wavefront ol the d >minant mode at the mouth of the horn. 
The aperture field is assumed to be that of the incident wave, the effect 
of the reflected wave being neglected. The radiation field is computed by 
means of Eq. (5 103). As usual the radiation field is expressed in terms 
of spherical coordinates, the origin of which is here taken to coincide with 
that of the coordinate systems shown in Fig. 10*9. The 2-axis of the 
latter forms the polar axis of the spherical coordinate system, azimuth 
being measured vith respect to the arz-plane in each case. The results 
are written down in the following paragraphs for the cases in which the 
medium is the same inside and outside the horn. 

Radiation from E-plane Sectoral Horns.—For the .E-plane the radia¬ 
tion field at an external point P, as derived from Eq. (5-103), can be shown 

to be 

XJ1 _ jkrtf I pjk(x un @ com $+r2 nin 0 sin 0 »m $4-f2 tos 0 cos 0) 

4irR Ja 

j (i, X Ro)Et + (j)* [U ~ Ro(U-Ro)ltf*J de dx. (44) 

The quantities R, ©, and 4> are the spherical coordinates of the point P; 
rt, 0, and x are the coordinates on the surface of integration, which is 
taken to coincide with a wavefront (r = r2) at the mouth of the horn; 
i*, iff, and Ro are unit vectors in the directions x, 0, and R increasing. 

For the plane $ = 90° (electric plane): 

h 

[s» - (ff H* cos (0 “ •)] de- (45°) 

1L. J. Chu, Jour. Applied Phys., 11, 603 (1940). 
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For the plane = 0 (magnetic plane): 

t* _ . jkr2e-3kR 
fa fOo 

/ dX JO J-*o 

gjk(x sin 0 -H\j con 9 oo* 0) 

Ee cos 0 — IIx cos 6 dd. (45b) 

Expressions for Ee and Hx over the aperture are given by Eq. (37), Sec 
10*8, when r is replaced by r2. 

Radiation from II-plane Sectoral Horns. For the //-plane sectoral 
horn 

Ej> = 
e-]hR 

4^7? L (>]k{r sin 9 sin 0 cos «in 0 sin co** 9 t on 0) 

L?7c(Ro x u)Eu + jwn(Ro(i» • Ro) - iv)H«]r2 dd dy. (46) 

For the plane 4 = 90° (electric plane): 

„ . jkr2e-'k» fb j fe‘ Ep==1®^/T jo dV J— f>jh (V sin 0 f"r c os 9 * os 0) 

^Ey cos B — He cos 0 j dd, (47a) 

For the plane <$ = 0 (magnetic plane): 

m 9 sm 0+coh 9 < 0s ©) 
. jkrie^,kR 

E" = U “4r« 

/•& CDo 

dy . 
yo y-«o 

cos (6 - 0) - (^J1 He J <70. (476) 

Expressions for Ey and He are given by Eq. (43) when r is replaced by r2. 
10-10. Characteristics of Observed Radiation Patterns from Homs 

of Rectangular Cross Section.—When radiation patterns from sectoral 
horns are observed and compared with the patterns obtained from Eqs 
(45) and (47) by numerical integration, in general it is found that they 
do not agree in detail. In view of the fact that the theory neglects the 
current on the outside walls of the sectoral guide and the higher-mode 
fields in the aperture, this is not particularly surprising. Only a brief 
summary of the experimental data will be attempted here. 

Figures 10*10 to 10*13 are compilations of patterns from a number of 
and H-plane sectoral horns of large aperture; the apertures were plane 

surfaces perpendicular to the axis of the guide. They are classified by 
flare angle and radial length measured in wavelengths (r2/X of Fig. 
10*9). It will be observed that for a horn of constant flare angle the 
main lobe undergoes wide changes in width and structure as the horn 
length increases. This can be correlated qualitatively with the changes 
in the field over the mouth of the horn. For a given flare angle the aper¬ 
ture area increases directly with the horn length; this alone would tend to 
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narrow the beam as the length increases. However, the effect of in¬ 
creasing aperture is overshadowed by the phase-error effects. Let 8 

represent the maximum departure of the wavefront r2 from the aperture 
plane (Fig. 10*14). Then 2t8 '\0, where X* is the wavelength in the 
sectoral guide at the mouth, is tie1 phase difference between the center of 

0° 10° 20° 

(6) 
Fig lO-lO.—Radiation patterns of S-plane seetoral horns of various lengths and flare 

angles: (a) flare angle of 10°, (6) flare anglo of 20 . 
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duced over the aperture that leads to a minimum in the main lobe in the 
forward direction such as may be seen in Fig. 10-11a. 

When the aperture or flare angle of a horn is small, 8/\f/ is small and 
the wavefront at the aperture approximates a plane. Homs are charac- 

0° 10° 20° 

qo iqo 20° 

(b) 
Fig. 10*12.—Radiation patterns of #-plane sectoral horns: (a) flare angle of 10°; (6) flare 

angle of 20°. 
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0° 10° 20° 

Fig 10 13 Radiation patterns of //-plane wet tor al 

terized by uniform amplitude distribution across the aperture in the 
/-plane and sinusoidal distribution in the //-plane [Eqs. (37a) and (43a) 
and Fig. 10*9]. In the case of approximately uniform phase, therefore, 
the gain and main lobe width should be functions of aperture correspond¬ 
ing to uniform illumination in the /7-plane and sinusoidal illumination 
in the //-plane. At present these functions can be determined only from 
experimental data. In Fig. 10*15 the observed 10-db widths of a num¬ 
ber of horn patterns are graphed against the reciprocal of the aperture 
in wavelengths. For all the horns d/\g was less than £. Results have 
been obtained for both the sectoral horns and compound horns of the 
type illustrated in Fig. 10*8; in the latter case the flare again was such that 
the phase over the aperture was substantially uniform. The /7-plane 
10-db width (tenth-power width) for all horns lies on the same curve, 
showing that the /7-plane pattern is a function only of the /-plane aper¬ 
ture. The //-plane patterns, on the other hand, depend on both aperture 
dimensions. Thus, the values obtained from //-plane sectoral horns on 
standard guide (/7-plane aperture approximately A/3) fall on Curve II; 
whereas in the case of the compound horns with an /7-plane aperture of a 
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Qo lQo 

horns; (a) flaie angle of 30°; (h) flme angle of 40°. 

wavelength or greater, the //-plane 10-db widths fall on Curve I. Points 
for intermediate E-plane apertures which fall between Curves I and II 
are not shown. At first glance this is some¬ 
what surprising if one assumes that the pat¬ 
terns depend only on amplitude and phase 
distribution of dominant-mode fields in the 
aperture. It means, however, that the other 
factors, namely, higher-mode fields in the 
aperture and currents on the outside walls 
of the horn, contribute in the case of small E- 

plane apertures and are relatively unimportant phaL^arition^ero^T thl 

for E-plane apertures greater than a wave- aperture of a sectoral horn 

length. These factors are apparently not *2,r5/Xff)‘ 
dependent on //-plane aperture, at least when this aperture is 0.7X or more, 
as in horns on standard rectangular guide, because the observed -E-plane 
widths do not depend on H-plane aperture. 

The phase variation across the aperture of a horn is small, for a given 
aperture dimension A in the plane of the flare, only if the flare angle is 
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less than a maximum value (or the length r2 greater than a minimum 
value) which depends on aperture and can be obtained from the condi- 

0.5 1.0 1.5 2.0 
Wavelength/aperture 

Fig. 10*15.—Experimental 10-db widths of horns having small phase variations over the 

aperture -E- plane;-- — -//-plane sectoral horns;-//-plane 

of compound horns with i?-plane aperture equal to or greater than a wavelength. 

tion that 5/\g shall be small. Using the relation for the separatioif of an 
arc and its chord, it is easily shown that 

Using i as the allowable upper limit for 8/\0t 

(51) 
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For many applications the aperture is small and Eq. (51) is satisfied by 
convenient values of 80 and r2. For large apertures a horn satisfying 
condition (51) is long and possibly too bulky or heavy for practical appli¬ 
cations. In this case the horn designer is forced to compromise on flare 
angle and aperture. If he is to use a horn feed, he must increase the flare 

# angle and allow for broadening due to phase variation in the aperture 
by choosing a larger aperture than that predicted by the curves of Fig. 
1015. 

In horns of small flare angle (or large r2/Xff) the dominant-mode fields 
near the aperture are described by the asymptotic forms of the Hankel 
functions [Eqs. (36)], which are exponential functions with slowly varying 
amplitude. Moreover the departure oi the wavefronts from plane sur¬ 
faces is small. Consequently the dominant-mode fields in the horn 
closely resemble those in unifoim guide. The problem of radiation from 
horns of small flare angle is therefore approximately the same as that 
from uniform waveguide, and the predictions [Eqs. (23)] of the vector 
diffraction theory for waveguide can be applied without serious error to 
horns satisfying condition (51). It is therefore interesting to compare the 
curves of Fig. 10*15 with the corresponding theoretical curves for wave¬ 
guide in Fig. 10*5. Agreement is good for apertures greater than about 
2X/3 in the electric plane and 5X/4 in the magnetic plane, indicating 
the probable lower limits at which the factors neglected in the theory are 
really negligible. It is believed that the predictions of Eq. (23) for wave¬ 
guide patterns can be useful when properly applied to horns because gain, 
main-lobe widths at various power levels, side-lobe amplitudes, etc., can 
be determined for different apertures with relative ease. 

Several empirical formulas have been worked out for the 10-db width 
as a function of aperture for the average horn feed. 

1. For the electric plane: 

0JS Qj) = 8/f (degrees)» f < 2-5- (52) 

2. For the magnetic plane: 

e-(re)-31 + 79 ip t<3- (53) 

The symbol A represents the 10-db width, and B and A are the apertures 
in the electric and magnetic planes respectively. These formulas were 
obtained from a large number of 10-db widths measured at the Radiation 
Laboratory over a period of several years. The flare angle of the average 
horn is probably about 20°. Since phase variation is not taken into 
account, the formulas cannot be expected to predict the 10-db widths of 
individual horns accurately, but they have proved very useful as a first 
approximation in designing horns. 
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1041. Admittance of Waveguide and Horns. Admittance of Open 
Waveguide.—It is observed experimentally that rectangular waveguide of 
ordinary dimensions when open to space is terminated at the plane of 
the opening by a capacitive admittance. This type of admittance is 
to be expected in view of the close spacing between the waveguide walls 
that are perpendicular to the electric vector (about A/3). It is of inter¬ 
est to note that a rigorous treatment of the radiation from the open end 
of a semi-infinite parallel-plate line carrying the TEM-modv leads to the 
result that the line is terminated by a capacitive admittance.1 This 
property of the waveguide will be useful in analyzing the admittance 
characteristics of horns. 

Admittance of Sectoral Horns.—From the transmission-line point of 
view a sectoral horn consists of a length of sectoral guide terminated by 
a mouth admittance at one end and joined to uniform guide at the other. 
The discussion of its admittance characteristics will be based on sectoral 
guide transmission-line arguments. The input horn admittance observed 
in the uniform guide depends on the aperture admittance terminating the 
sectoral guide, the guide length, and the transformation associated with 
the junction to uniform guide at the horn throat.2 In the following dis¬ 
cussion sectoral guide characteristics will be summarized. The sum¬ 
mary will be followed by a discussion of mouth admittances, junction 
effects at the throat, and the influence of both factors on horn admittances. 
Particular attention will be given to i?-plane sectoral horns. In what 
follows, when the term “horn admittance” is used, it will be understood 
to refer to the admittance measured in the uniform guide and referred to 
the plane of the junction between the guide and the horn. 

Characteristics of E-plane Sectoral Guide.—In Sec. 10*7 expressions 
were developed for the lowest-mode field components in 2?-plane sectoral 
guides lEqs. (37)]. As in uniform guide, one can define and use a wave 
admittance, consisting of the ratio of the transverse magnetic to trans¬ 
verse electric fields. If the admittance is expressed in units that make 
the characteristic admittance of the T'JS'io-mode in the uniform guide 
equal to unity, the admittance for the 2?-plane guide becomes 

y « 

By inspection of the expressions for the field components [Eqs. (37)] it 
can be seen that this ratio is a function of fir only: 

Y(Br) = .-Hpm + aHpm 
KP ) 3 H[*>(J3r) + aH[l>(J3r) 

(64) 

1 The results of the analysis are given in “ Waveguide Handbook Supplement,” 
RL Group Report No. 41, Jan. 23, 1945, Sec. 60c. 

* J. R. Risser, “ Characteristics of Horn Feeds on Rectangular Waveguide,” RL 
Report No, 656, December 1945. 
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The complex constant a is determined in magnitude and phase from the 
ratio of incident and reflected waves in the sectoral guide. It can be 
expressed in terms of the output admittance Y2 evaluated at the aperture 
end of the guide where r = r2: 

- _ 

~ jY2H\"((3r2) + m»(J3r2)' 

Substituting this value of a in Eq. (54) an expression is obtained for 
the admittance at a general point r in terms of Y2 and line parameters. 

Y(pr) 
■ 3Coo + jY23Cio 

^ 3Coi rjY2Xn 
(56) 

where the symbol 3C,, is used to ".present combinations of Hankel func¬ 
tions as follows: 

X„ - H[l\fir.^IFl->(fir) - Hl*(0r,)H'»(0r) (57) 

A degree of simplification of Eq. (56) is obtained by expressing the Hankel 
functions in terms of amplitude and phase, using the property that for 
real values of fir, H(*’(fir) is the complex conjugate of H™(fir). Let 

HWfir) = Fe‘*, 1 
Sr) = Qe>*, J 

(58) 

where F, G, 4', and <t> are real functions of fir. Numerical values of these 
functions are listed in tables of Bessel functions1 for small values of fir; 
for large fir the asymptotic values can be used.- Substituting in Eq. 
(56) and using subscripts 2 for the functions evaluated at the aperture 
where r = r2, 

Y (fir) = 

Y.jQ , 
p sin (\p2 — fa + j -pr- sin (fa — fa 

YJh 
Gj sin (fa - <t>) — sin (fa — fa 

(59) 

The characteristic admittance Yc(fir) of A'-plane sectoral guide can 
be written down from Eq. (54) by making a equal to zero, 

Yc(fir) = j 
■ Hp(fir) 

H?'(fir) 
.F 
G' 

(60) 

1 Watson, “ A Treatise on the Theory of Bessel Functions," Cambridge, London, 
1944, Table I. The relation to Watson’s notation is as follows: F(fir) «■ (JGTj1*(as)|; 
G(fir) - |H<J)(*)|; fafir) - arg H^(x); fafir) - argH[l)(x); fir - x. 

*F(fir) - G(fir) - (^)H; fafir) - fir; fafir) - fir - ~ 
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For large 0r, Yc approaches unity, since F/G —> 1 and (<£ — > —w/2. 

For small £r, Yc(Pr) is complex. It is graphed in Fig. 10-16. The com¬ 
plex character of Yc for small is due to the fact that the fields in the 
region of the horn apex store as well as transmit energy. 

(fir) 
Fig. 10 16.— Chiuacteristic wave admittance Yc($r) of a sectoral guide. 

It is often useful to speak is terms of a reflection coefficient r, in 
the sectoral guide and to use its transformation properties along the 
guide; it is defined as the ratio of the electric vector in the reflected wave 
to that in the incident wave. Then 

r. = r.osr) 

M HT(M 
H i»G§r) 

= ae(61) 

Since r,e~'2* is equal to the complex constant a, r, transforms down the 
sectoral guide according to the relation 

r'e-'2*' = r«e-'2*, (62) 

where r„ are evaluated at the point r and T', <£' at r'. It can then be 
shown that 

, Y 
1 Ye 

r* — y (63) 
-- -e’W-v 
10 

Conversely 
Y 1 + 
Yc= i + r. (64) 
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For large fir, 2(\p — <t>) is equal to r, so that Eq. (63) becomes identical 
with the corresponding expression for T in uniform guide. 

Mouth Admittance of E-plane Sectoral Horns.—The admittance of an 
open sectoral guide has not been successfully treated theoretically. 
Qualitative arguments can be applied from the theory of open parallel- 
plate transmission lines. As long as the electric plane aperture is small, 
the mouth admittance should be capacitive as in the case of the wave¬ 
guide. As the electric plane aperture is increased, the capacitive term 
in the admittance should decrease. In the limit of large electric-plane 
aperture the admittance is probably determined by the separation of the 
guide walls in the magnetic plane 

Experimentally, the determination of the mouth admittance of an 
/?-plane sectoral horn is compar¬ 
atively easy. It has been ob¬ 
tained in a number of cases by 
using Eq (59) to extrapolate down 
the sectoral guide from the throat 
where the admittance is deter¬ 
mined from measurements in the 
uniform guide.1 The capacitive 
susceptance term, which decreases 
with increasing aperture, is seen to 
be present. For large apertures 
the admittance is independent of 
aperture to a first approximation. 
The magnitude of r«2, the reflec¬ 
tion coefficient in the sectoral 
guide referred to the aperture, 
decreases rapidly with increasing aperture, being small and approximately 
independent of aperture for apertures above 3X/4 (Fig. 10-17). 

Except in the region near cutoff the mouth admittance and reflection 
coefficient Tb2 are not sensitive to wavelength changes of the order of 
10 per cent. This is due to the fact that at large apertures for which 
the aperture-to-wavelength ratio changes rapidly with wavelength, the 
admittance is practically independent of B, where B is the aperture 
dimension in the jB-plane. 

10*12. Transformation of the E-plane Horn Admittance from the 
Throat to the Uniform Guide. The E-plane Throat Transition.—The 
effect on admittance of the transition from sectoral to uniform guide at 
the horn throat depends primarily on /Sri, where n is the inner radius of 
the sectoral guide (Fig. 10-8). It is informative to consider first the case 
where there is no reflected wave in the sectoral guide, so that the char- 

015 
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x*0*30° 
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B/\ 
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Iig 10 17—Reflection coefficient in 
seetoial guide referred to the aperture Bt 
where B is the aperture dimension m the 
i^-plane 

1 Risser, op. cit., p. 19. 
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acteristic admittance of sectoral guide at r = rx is Yc(firi). As can be 
seen by inspection of Fig. 10*16 for values of fir > 5, Ye(firi) approaches 
unity, that is, it becomes equal to the characteristic admittance of the 
waveguide. The throat mismatch becomes negligible as firx increases or 
as the flare angle decreases; firx depends on waveguide height 6, flare 
angle 0O, and guide wavelength, as follows: 

iSri = 
irb 

\t, sin 0o 
(65) 

To show the effect of 0O on the throat admittance, a plot of calculated 
admittances for a series of 0O values at 10.0 cm for horns built on stand- 

Conductance component $■ 
ro 

• (a) (6) 
Fig. 10-18.—Throat admittance as a function of flare angle and frequency: (o) X ■* 10 cm, 

0o varied; (b) X varied for flare angles of 15° and 30°. 

ard guide (b = 0.34X; X„/X = 1.39) is shown in Fig. 10*18. The throat 
mismatch is small for flare angles less than 10° and increases with increas¬ 
ing 0O. For the 15° and 30° cases the admittances are plotted in Fig. 
10*186 for wavelengths from 9 to 11 cm. From this the mismatch can 
be seen to increase in the direction of the long wavelength end of the band, 
becoming very large when the wavelength approaches cutoff. In choos¬ 
ing 6 values for applications involving nonstandard guide, it is necessary 
to be careful because small values of 6 are equivalent to large values of 
0o or \0. 

When the sectoral guide is not matched, the admittance Y(firi) in 
the sectoral guide at the throat is given by Eq. (59) with n = n. In 
either case, when computing the admittance in the uniform guide at the 
throat, the admittance in the sectoral guide at r = n must be multiplied 
by a factor that ensures continuity of voltage and current at the junction. 
The continuity of current is ensured by continuity in Hx. However, 
voltage is proportional to the product of the length of the electric-field 
lines and the field strength. Thus, in the uniform guide the voltage is 
bEy(=* 2ri sin 6qEv) and in the sectoral guide 2rx$oE$. Therefore, the 
current-voltage ratio is proportional to Hz/(2ri$oE$) in the sectoral guide 
and to Hz/(2rx sin 60EV) in the uniform guide, so that 
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Y„ = Y(firO, (66) 

where Yff is the horn admittance in the uniform guide referred to the 
plane of the junction with the throat of the horn. For values of 0O up to 
30° the ratio (sin 0O) /0o differs only slightly from unity, and the correction 
is not important. In general, when guides of different geometry are 
joined, account must be taken of the contribution of higher-mode fields 
to the admittance. However, in sectoral horns with values of 0O up to 
30° this effect can be neglected. 

Admittances of E-plane Sectoral Horns.—A discussion of the relation 
between the parameters of an 2?-planr horn and its admittance can best 
be carried out in terms of reflection coefficients. If Yu is the reflection 
coefficient in the uniform guide reierred to the junction with horn throat, 
where according to the usual definition of reflection coefficient 

it can be showrn from fiqs. (54), (60), (61), and (66) that if the reflection 
coefficients are small, in particular |ril%i| <K 1, 

where 
Tu = r, + r2, 

Yi 

__ sin do 

So 

sin 0o 
0o 

Ye(firi) 

Ye&ri) 

(67) 

(68) 

r2 = 

. sin floFiOfri) 
0o (?i(/3ri) 

/sin 0« FX - sin 0o Fi ■ ,. , 

Si) 

T.ie->‘. (69) 

1 + 

rtl is the reflection coefficient in the sectoral guide at the horn throat, 
[Eq. (61)], and « is a small angle given by 

e 2 tan-1 

sin 0o Fi(J}ri) 

0o fliQfri) 
sin 0O Fi 

0o Gi 

cos (*h — 0i) 

sin — ^j) 
(70) 

Equation (67) states that is the sum of two components I\ and 
r2; rt is the reflection coefficient in the uniform guide at the throat when 
the sectoral guide is matched, i.e., when r,2 = 0, and the admittance of 
the sectoral guide at r = ri is its characteristic admittance. For any 
of the 10-cm horns whose throat admittances (sin 0o/0»)Ye(firi) are plotted 
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in Fig. 10-18, Ti is the vector drawn from Y/Yo = 1 on the chart to the 
admittance point. From Eqs. (62) and (69) 

4 sin flo Fi(/3ri) 

r __On Gi(firi) __r ,e~lS (7l"» 
rs_. ,/sinOoFA* ~m*eoPi . . *2 ’ K ’ 

1 + (-srs) +2 - «r g, sm ~ « 
where 

A = c + 2[<t>(pr2) - 4>(firi)]. 

For reasonable flare angles (sin 0o)/0o « 1 and Fi(/?ri)/(?i(/?n) « 1 so 
that r2 differs essentially only in phase from rfi2, the reflection coefficient 
at the horn mouth. The phase angle A consists of the sum of a term 

S Open waveguide 

JM 

Conductance component (~ ) 

Mmm 

■ni 
Conductance component (y ) 

0o=2O° 0 
Conductance component (—*) 

0O= 30° * 

Fig. 10*19.—Admittances of 15°, 20°, and 30° electric plane horns for different flare lengths 
(r2 - ri)/\g. 

depending on the horn length, 2[<£(/3r2) — <*>(/3ri)], and t, a small phase 
shift at the throat. For the 10-cm horns of Figs. 10-18, e varies from 3° 
when do — 5° to 15° when 60 = 30°. 

The manner in which the admittance Yh of a sectoral horn and its 
reflection coefficient depend on the vector sum of I\ and Ts is illus¬ 
trated in Fig. 10-19, where the admittances at 10 cm of a series of horns 
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with different lengths are plotted on a reflection coefficient chart for 
three different values of 0O. These admittances were determined experi¬ 
mentally. The admittance of all horns with the same 0O lie on a spiral 
whose center is determined by T\ and whose periphery is determined by 

+ r2. The decrease in the radius of the spiral with increasing horn 
length (and aperture) is due to the decrease in the magnitude of I\2 with 

Flare length, (r2 - rx) 
Fig 10 20.—Stan ding-wave ratio vs flare length for typical electric plane horns 

increasing aperture (Fig. 10-17). Moreover, since the aperture height B 

increases more rapidly with increasing length for larger flare angles, the 
inner portion of the spiral is reached for smaller values of 0(r2 — ri) for 
larger flare angles. The relation between B and (r2 — ri) is 

B = 2(r2 — ri) sin 0O + b. (72) 

Since the inner radii of the spirals are independent of aperture for long 
horns of large aperture, I\2 must have a small constant value independent 
of B/\ for large values of B. 

For a given 0O a series of horn lengths exist for which I\ and r2 are 
180° out of phase and the match is optimum. An empirical formula for 
these optimum lengths is 

(rs - r,)0 - 0.17X, + N^ _ J’£J 
for 9 = 25°, 30° (- 

for 6 = 5°, 10°, 15°, 20°. K ' 

From Eqs. (72) and (73) horns can be designed to be matched at any 
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aperture and wavelength, since the value of do is not critical. The degree 
of match attainable is indicated in Fig. 10*20. 

The mouth and throat admittances and consequently r«2 and Ti are 
not sensitive to wavelength changes of the order of 10 per cent (Fig. 
10*186). The principal frequency sensitivity of an A-plane sectoral horn 
therefore arises from variation of the effective sectoral guide length 
2[0(jSr2) — <#>(0ri)]. This is clearly shown by the admittance-frequency 
curves for several typical horns shown in Fig 10*21 For the long horns 

Conductance component 

(a) (6) (c) 

Tig 10 21.—Admittances of three 15° electric plane horns of different lengths as a func¬ 
tion of wavelength (a) r* — n = 10 6 cm, X varied from 0 0 to 11 5 cm with best match at 
114 cm, (b) r. — n = 22 8 cm, X \aned from 9 1 to 11 5 tin with best match at 10 l < m; 
(c) n — n *= 26 3 cm; X varied from 8 1 to 11 5 cm with best match at 10 9 cm 

the frequency variation causes the admittance to traverse more than a 
complete loop, corresponding to a change in A [Eq. (71)] of more than 
360°. As discussed previously in this section (see Fig. 10*18) increasing 
wavelength results in increasing mismatch at the mouth and throat, so 
that ra2 and Ti both increase in magnitude as the long-wavelength end 
of the band is approached. To obtain a low SWR over a very wide 
band, it is advisable to choose the horn length for optimum match at 
the long-wavelength end of the band; a comparison of curves 6 and c 
of Fig. 10*21 indicates that improvement is obtained by so doing. 

10*13. Admittance Characteristics of H-plane Sectoral Homs.—The 
wave admittance for //-plane sectoral guide is (k / 0)(ii/^{H e/Ev), using 
units in which the characteristic admittance of the Tfi'io-mode in uniform 
guide is unity. Then 

Y(kr) = 
.k§JI™'(kr) +aH™(kr) 1 

3 f3\_Hf(kr) + aH?(kr) J 
(74) 

where the prime indicates the derivative of the function with respect to 
(At). Noting that Eq. (74) for the E-plane differs from Eq. (54) for the 
E-plane in having H$y(kr) in place of H^(fir), Hl^(kr) in place of 

and (—jk/ff) in place of j, equations for the E-plane analogous 
to each of E-plane equations [Eqs. (54) to (64)] can be written down. 
There are practical limitations to the usefulness of the E-plane sectoral 
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(90°\ 
= — 1 is not the same for all horns, 

as it is in the //-plane ease. The order is in general high, horns for most 
applications having small flare 
angles. 

While mouth admittances of 
//-plane sectoral horns are some¬ 
what difficult to calculate because 
of the high p, it is not difficult to 
predict them approximately from 
//-plane horn measurements and 
parallel-plate theory. Since the 
aperture B in the electric plane 
is small compared with the mag¬ 
netic plane aperture and is equal 
to the height b of the uniform 
guide on which the horn is built, 
the mouth admittances of all H- 
plane sectoral horns would be ex¬ 
pected to be approximately equal 
to the mouth admittance of open 
uniform w aveguide and to exhibit 
the same degree of frequency sen¬ 
sitivity. 

The throat transition in mag¬ 
netic plane horns of small angle 
has a minor effect on the horn ad¬ 
mittance, and the throat reflection 
is very small compared with the 
reflection at the mouth. This has 
been showrn experimentally by 
making standing-wave measure¬ 
ment on magnetic plane horns 
over a band of frequencies and 
again at a constant frequency 
while the horn length wras cut 
down (decreasing the aperture simultaneously with the length). In both 
cases the shift in phase in the standing-w^ave pattern indicated that the 
large reflection occurred at the mouth. 

The admittances measured at 10.0 cm of a series of H-plane sectoral 
horns are shown in Fig. 10*22. The admittance values correspond to 
different lengths (and apertures). The form of the plot can be explained 
by postulating two components of the reflection coefficient: a small fixed 
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component representing the throat reflection and a large component due 
to the mouth which has a magnitude independent of aperture and a phase 
dependent on sectoral guide length. Experiments indicate that the 
frequency sensitivity of the horn admittance arises primarily because the 
effective sectoral guide length varit's. 

10*14. Compound Horns.—Doubly flared horns must be used to 
enlarge both the E- and //-plane dimensions. The admittance charac¬ 
teristics of the sectoral horns provide the basis for the design of a broad¬ 
band compound horn of the type illustrated in Fig. 10 8c. The principle 
is to use the frequency characteristics of an E-plane flare to compensate 
those of an //-plane flare. Consider, for example, the problem of pro¬ 
ducing an aperture having an //-plane dimension larger than the E-plane 
dimension. The desired aperture is obtained by first flaring in the 
//-plane to the required dimension and subsequentlv flaring in the E-plane 
Since the //-plane flare introduces a negligible mismatch at the throat, 
the mismatch arises entirely in the E-plane horn, one component at the 
junction with the //-plane sectoral guide and the second component at 
the mouth. The E-plane flare in this case does not differ much from that 
on uniform guide, and the data obtained for E-plane sectoral horns can 
be used to determine the E-plane flare angle and horn length so that the 
mouth reflection cancels the junction reflection (reflection at the throat 
of the E-plane flare). The shortest possible length is chosen for the 
E-plane flare consistent with the matching conditions. This is to 
eliminate the “long-line effect” which wrould cause the phase of the 
mouth reflection transformed to the throat to vary rapidly with respect 
to the throat reflection as the frequency changed. Tn actual practice, the 
mouth reflection is chosen to cancel only partially the throat reflection, 
because it is necessary to close the mouth of the horn by a pressuriz¬ 
ing device which likewise gives rise to a reflection. The reflection coeffi¬ 
cient of the pressurizing device can be designed to be equal to the residual 
mismatch of the mouth and throat and phased properly relative thereto 
by positioning the device wdth respect to the mouth to give an over-all 
reflection-free system (see Sec. 10T7). 

The technique is essentially the same in the case where the E-plane 
aperture dimension is larger than the //-plane dimension. The-E-plane 
flare is introduced first followed by the //-plane flare. In this case, the 
major sources of the mismatch are widely separated—one at the junction 
between the uniform guide and the E-plane sectoral guide and the second 
at the mouth. Although the latter reflection can be chosen to counteract 
the first at some one frequency, the bandwidth is small because of the 
long-line effect. It is preferable to cancel the mouth reflection by means 
of the pressurizing device and to cancel the throat reflection by matching 
window in the uniform guide. In this way the sources between any pair 
of compensating reflections can.be put close together so that rapid phase 
variations due to long electrical paths are eliminated. 
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10-15. The Box Horn.—The box horn is a special horn type devised 
to have greater directivity in the //-plane than a flared horn of the same 
aperture. Tt is so constructed as to introduce a third harmonic 180° 
out of phase with the fundamental mode in the aperture plane. This 
alters the amplitude distribution across the aperture from the cosine 
type associated with the funda- ^^ 
mental mode to one more nearly ^Y~' 

uniform.1 ' 
The box horn is not a true horn _ 

in that there is no throat that is used ^ . 
to filter out higher modes. Its es- I, I A 

sential features are sketched in Fig. A\ I 
10*23a. The horn consists pnma- -i- 
rily of a piece of waveguide of length I 
L, frequently referred to as a “box,” ^ J--»■ 
whose magnetic plane dimension A 

is large enough to support TEn.<r ^ 
modes with values of n up to 4. It 
is open to space at one end and fed 
at the other by a waveguide or //- 
plane sectoral horn of aperture A' ^ 
located centrally so as to excite only |^~1-T| 
the modes having nonzero ampli- T AA 

tude at the center, i.e., the TEio- ^-1-\|\ Jiyo , 
and TE^o-modes. The ratio of the y j ^ °^i \ | yy | ^ 

amplitudes of the TE*0- and TEur i “j ~^ o"j 1 l n ^ 
modes depends on the ratio Af/A. /ITT5 
Since the velocity of propagation U *E 

of the two modes is not the same, | i_ 
the length L of the box determines Ll__. 
their relative phase at the aperture. ^ L 

The horn may be made as directive (6) 
as desired in the Emplane by intro- Fig. io-23.-—Box horn: (a) direct junction 

ducing an E-plane flare. *'1,61 (6) 8ectoral gu,de junotlon type 
It is easy to show approximately how the ratio of the amplitudes of 

the TEZ0- and T’E'io-modes depends on the ratio Af j A of the dimensions 
of the two guides. The fields Ev(xyz) in the box can be represented 
as a superposition of the modes excited at the junction. Neglecting 
the effect of the nonpropagating modes, we have 

Fio. 10*23.—Box horn: (a) direct junction 
pe; (6) sectoral guide junction type 

Ev(x,z) 1 + Oj cos Or)'"** 
The junction between the two guides is taken to be in the plane z = 0. 

1 S. J. Mason, “Blared Box Horn,” RL Report No. 653, July 1945. 



378 WAVEGUIDE AND HORN FEEDS [SBC. 1015 

It is assumed that the field over the common area between the guides is 
that of the dominant mode in the smaller guide; that is, 

Ey{x,0) = COS J7, 1*1 < A.’ 

Eu{xfi) =0, y < |x| < A 

(76) 

On setting z = 0 in Eq. (75) and making use of Eq. (7(>) for the field, we 
__ can obtain the coefficients d\ and a 

n. by the usual procedure for determin- 
ing Fourier coefficients. The ratio 

\ of the harmonic components is found 
\ to be 

i-ln ““(?) "”(?)* 
0 0.5 1.0 

AyA Figure 10-24 is a plot of a8/ai vs. 

Fig. 10*24.—Ratio of the amplitudes ^ • -The ratio dz/d\ decreases 
of the TEio- and r^io-modes in a box with increasing Ar/A, reaching zero 
hom vs. A j a. when A'/A is unity. If it were pos¬ 

sible to make Ar/A very small, values of d%/d\ approximately equal to 1 
could be obtained. The lower limit of Af/A is 0.20, corresponding to 

Fig. 10*25.—Aperture illumination (amplitude) of a box horn for a series of values of the ratio 
at/at. 
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Ar = 0 5X the cutoff in the input guide, so that the maximum as/ai is 0.93. 
Actually much smaller values of a8/ai are desirable Figure 10 25 is a plot 
of amplitude illumination across the aperture for a3/ai values from 0 to 0 5, 
calculated on the assumption that the horn length is correctly chosen to 

0 01 02 03 04 05 0 01 02 03 04 05 

a*/dl a%fa\ 

1 k, 10 2b-—Relative gain of a box horn Jig 1027—Magnitude of the first side 
vs az/ai lobe in the power pattern of a box horn vs 

as/ai 

make the two propagating modes 180° out of phase at z = L vuth respect 
to their relative phase at z — 0 The curve for a-\/ax equal to 0 3 is a 
fairly good approximation to uniform illumination 

The //-plane radiation patterns in the Fraunhofer legion have been 
calculated from scalai diflfiaction ______ 
theory (Chap. 6) for the amplitude 80° - 
distributions of Fig. 10 25. The n 
lesults are summarized m Figs * 
10 26 to 10 28, where Fig 10 26 | ^ 
shows relative gain, Fig 10 27 the § ^_lj 
magnitude of the first side lobe in —-- 3 
the power pattern in decibels g 
down from peak, and Fig 10 28 f _-—^ 2 

the full angular width of the pat- ^0___- 
tern at tenth power. Gam is seen ^ 1 

to be maximum in the neighbor- j---d---h--TT— 
hood of az/a 1 equal to 0 35, where a, 

the amplitude distribution across 'a* 
,. . ... Fig 1028- Pull width at tenth power of a 
the aperture approximates uni- box horn pattern vs aa/a& 
formity. In this region also the 
first side lobes are approximately 13 db down, the theoretical value for 
uniform illumination. Illuminating the edges of the aperture more 
strongly increases side lobes and cuts down gain, although it somewhat 
increases the directivity. 

The length L of the box is obtained from the relation 

v = (0i — 0s )L, (78) 
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where 

The ratio A'/A can be varied over wider limits than that set by the 
uniform guides by means of a sectoral guide transition as shown in Fig. 
10.236. In this case, however, because of the cylindrical waves in the 
sectoral guide, a phase error is introduced into the field over the plane 
of the junction with the box horn. This error is not taken into account 
in Eq. (77); it is usually neglected in designing the horn. From existing 
measurements1 it is difficult to evaluate the influence of this factor on box 
horn performance. It is found true in general that the effect of replacing 
a plane wave front by a cylindrical one is barely detectable experimentally 
where 2ir5/\g is 7r/4 or less. The same criterion would be expected to be 
valid for box horns. In terms of A' and 0O, it is written [Eq. (49)] 

A' sin do < (80) 

The use of a box horn is, of course, limited to applications requiring 
//-plane tenth-power widths from about 30° to 70°. Its principal advan¬ 
tage is compactness. The contrast in size between a box horn and flared 
horn of the same tenth-powrer width is greatest in the region of small 
apertures. Here, near cutoff for the r3o-mode, L is small because 
(0i — 0a) is approximately equal to 01. A box horn with A = 1.6X, 
as/ai = 0.5, and &(&) = 67° is 1.3X long, while the flared horn of the 
same tenth-power width is twice as long. However, for A from 2.0X to 
2.5X, a box horn is only about 20 per cent shorter than the corresponding 
flared horn. The box horn is especially useful therefore for applications 
requiring tenth-power widths from about 55° to 65°, with apertures from 
1.6X to 1.7X. A flared horn has an advantage over the box horn in hav¬ 
ing side lobes 5 to 10 db lower, although this is of no concern in many 
applications. 

10*16. Beam Shaping by Means of Obstacles in Horn and Waveguide 
Apertures.—There are antenna applications requiring very broad or 
very narrow feed patterns for which waveguide and horn feeds are not 
strictly suitable. Thus, to obtain primary patterns in the //-plane with 
10-db widths greater than about 120°, the 10-db width obtained from 
ordinary waveguide, special beam-shaping techniques are required. At 
the other extreme of very narrow 10-db widths, horns become too bulky 
for many applications. To solve these problems beam shaping by means 

1 Mason, op. eft., p 18, Fig. 13. 
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of obstacles in horn and waveguide apertures has been investigated and 
techniques developed.1 

o. Beam Broadening: II-plane. 

To obtain a broader pattern than 
that of ordinary waveguide, the 
device shown in Fig. 10*29 is used. 
A metallic post is inserted across 
the waveguide just inside the aper¬ 
ture at the center, and the wave¬ 
guide corners are removed by 
symmetrical cuts AA. Figure 
10*30 shows the 10-db widths ob¬ 
served with this arrangement on 
3.2 cm guide for a series of values 
of C and 0, where C is the dis¬ 
tance from the w aveguide edge at 
which the diagonal cut begin® and 
0 is the angle of cut. Figure 
10*31 show's a comparison of a 
pattern. 

Fie,. 10 29 Device for bioademng the 
pattern in the //-plane 

waveguide pattern with a broadened 

Fig. 10*30.—10-db widths of the pattern obtained with the device of I* ig 10*29 ab a function 
of C/\ and 0(X * 3.2 cm, a «0.900 cm, b - 0.400 cm, d - 0.063 cm). 

The wavefronts, or surfaces of constant phase, from any device yield¬ 
ing a very broad pattern must receive critical examination by the antenna 

1 C. S. Pao, ‘ ‘Shaping the Primary Pattern of a Horn Feed,” IlL Report No. 665, 
January 1945. 
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designer. The gain obtainable from a properly illuminated secondary 
reflector may not be realized if phase irregularities exist over its aperture. 

Angle 

Fig. 10*31.—Primary patterns of (1) an open waveguide and (2) a cut corner waveguide 
(<*> = 63.4° and C = £). 

The tendency to irregularities on the phase fronts of wide-angle devices 
arises from the fact that they usually consist of several radiating elements 

d 0 j with n<>ncoincident directive pat- 
-yi--v2 terns located an appreciable frac- 

X "^^X \ tion of a wavelength apart. An 
X^"^^ o\ analysis of a simple case (Fig. 

2 ' 10*32) will illustrate this. Con- 
X e ^ sider two identical radiating ele- 

X ments, 1 and 2, separated by a 
X distance 2d which have pattern 

/ 'r maxima in the Fraunhofer region 
P Z at angles 0i and 02 with the for- 

*“• °' ward 2 direction> respectively. 
Then letting /i = (l/r)/(0 - 0i) 

and/2 = (l/r)/(0 — 02) equal the amplitude functions of the two sources, 
the amplitude and phase on a circle of radius R about 0 is given by 

Jg (w<“ kR+kd sin 6) ^^j(u>t—kR—kd Bin 9) 

= [f\ + /| + 2/1/2 cos (2kd sin e)]^enu>t~kR) e>+, (81) 
where 

tan ^ = y-r tan (fai sin 0). 
J1 l J2 

If fi = /», the phase is constant on a circle of radius R. However, if 
fi 9* /«, the phase at angle 6 departs from its value at 0 = 0 by an angle 
A where 

A * tan-"1 f2 tan (kd sin 0) . (82) 
l/i +h J 
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For large values of kd} A may exceed the allowable deviation from con¬ 
stant phase, particularly if /i is appreciably greater or smaller than /2. 
Usually the beam shaping need not be carried to the point where the 
phase departure A has to be reckoned with. 

b. Narrowing the Primary Pattern: H-plane.—The pattern in the 
H-plane is narrowed when several metallic pins are placed in the aperture 
of an H-plane horn. For example, the 10-db width of a 3.2-cm horn with 
a flare angle 30° and magnetic plane aperture 2X decreases from 78° to 
56° when two ^-in.-diameter pins are placed just inside the aperture 
at a distance 0.44X on either side of the center. The impedance match 
is improved rather than impaired by the presence of the pins. A number 
of other arrangements also have been found to be effective.1 

Fig. 10*33.—Flange for E-phine beam 
shaping. 

Fig. 10*34.—Strip for narrowing of the 
beam in the JF-plane. 

Beam Shaping: E-plane.—Since ordinary waveguide has an H-plane 
aperture of about X/3, there is rarely a need for special techniques for 
beam broadening. However, the form of the pattern can be improved 
by adding a flange approximately 0.55X wide in the H-plane as shown in 
Fig. 10*33. With the flange, the power drops off more rapidly at small 
angles from the forward direction and less rapidly at large angles, thereby 
yielding a more nearly uniform illumination across the secondary aperture. 

Narrowing of the H-plane pattern has been accomplished by inserting 
a metallic strip with a considerable H-plane width, as shown in Fig. 
10*34. This strip, however, causes a troublesome mismatch,1 and it 
seems questionable from the data if it is more effective than straightening 
the phase fronts in the horn by making the horn longer (Sec. 10*10). 

10*17. Pressurizing and Matching.—In most applications waveguide 
and horn feeds must be at least weatherproof and preferably capable of 
holding pressure. Several techniques have been evolved to utilize the 

1 Pao, op. cit. 
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pressurizing or weatherizing enclosure as a matching device. One of the 
most successful is illustrated in Fig. 10*35. The enclosure, roughly 
cylindrical in form, is placed over the end of the waveguide or horn with 
the axis of the cylinder approximately in the aperture plane. Matching 
is accomplished by*adjusting the thickness t and position d so that the 
reflections from enclosure and feed are equal in magnitude and 180° 
out of phase in the direction of the generator. While t and d can be 

calculated to a rough approximation for a feed with a given mismatch, 
the matching procedure is actually empirical. Cylinders are formed with 
thicknesses and radii ranging in value about the calculated t and d. 

Each cylinder is placed over the mouth of the feed, and impedance 
measurements are made for a series of d values. From these measure¬ 
ments the final choice of enclosure parameters is made. Figure 10*36 
is a typical impedance plot obtained during this procedure. It will be 
observed that the best impedance match for this example is obtained with 
an enclosure of thickness 0.030 in. and mounted at a distance d = 1.2 cm 
(Curve III). It is desirable, although not essential, that the enclosure 
radius be approximately equal to d. The mounting flange is positioned 
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behind the aperture plane and a position can be found that improves the 
feed SWR; it should be in place during the determination of enclosure 
parameters and the pattern of the horn. 

Fig. 10 36.— Impedance of a typical horn as a function of the position of the pressurizing 
enclosure for diffeient wall thicknesses 

The materials used for pressurizing enclosures have been low-loss or 
glass thermoplastics: plexiglas or lucite 

index of refraction n 
fe)1' - ,-6°. 

for wavelengths above about 6 cm, polystyrene (n = 1.60) and styraloy 
(n — 1.60) at 3 cm and above. Laminates can be used, but because of 
the high dielectric constants of these materials the enclosure walls are 
thin. At 1.25 cm Corning 707 glass has been used for two-dimensional 
pressurizing enclosures, but it presents obvious, although possibly not 
insuperable, difficulties in three dimensions. It also necessitates building 
the feed of metals with low coefficients of thermal expansion, such as 
invar and covar. Plastic enclosures are sealed by means of gaskets; 
glass by platinizing or bonding metal to the edges and soft soldering. 

For a given material the wall thickness t and position d of an enclosure 
can be estimated from the measured reflection coefficient 

IV(« \TF\e>*') (83) 
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of the feed referred to the aperture. The assumption is made that the 
reflection coefficient T* from the enclosure is the same as that of an 
infinite sheet of the same material for plane waves. The latter is given 

by 

(84) 

On this assumption the feed will be matched when the thickness t is 
such that 

and the distance d satisfies the relation 

S"5(tan",[j5TTcot(^)]-,>'-2m'} <8li> 

where m is an integer. If the enclosure were in the Fraunhofer region and 
were designed so that its surfaces coincide with equiphase surfaces from 
the feed, the assumption involved in using Eqs. (84) to (86) Avould be 
justified. Because the enclosure is actually close to the feed aperture 
and cuts across equiphase surfaces, a given thickness t corresponds to 
smaller |IV| than is indicated by Eq. (85). For this reason also, the 
average path from the aperture to the inner surface of the enclosure is 
less than d, so that the experimental optimum d is larger than the value 
indicated by Eq. (86). In fact, for feeds with small A-plane apertures 
(B < 3X/4), where there is a capacitive mismatch localized at the aperture 
(0F is approximately 270°),1 the value of d calculated from Eq. (85) is 
X/4; experimentally d is about 0.35X for a number of typical cases. 
Where the feed mismatch is small or the wavelength very short, it may 
not be practical to use the smallest thickness U calculated from Eq. (85). 
For these cases, as inspection of Eq. (85) will show, a reflection of the 
same magnitude can be obtained by using thicknesses [h + (X/2n)]\ 

the spacing is unaffected. 
The use of an external pressurizing enclosure has a number of advan¬ 

tages to recommend it. The possibility of breakdown at high power is 
minimized because the pressurized region extends beyond the feed aper¬ 
ture and the dielectric housing is located in a region of low field strengths. 
The impedance match is reproducible in the sense that it is independent 

1 “ Waveguide Handbook Supplement,” RL Group Report No. 41, Jan. 23,1945. 
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of small fluctuations in enclosure dimensions and positioning. This is 
in distinct contrast to the properties of pressurizing diaphragms with 
flanges in the plane of the aperture, where the geometry of the flange and 
even the tightness of the retaining bolts have an effect on pattern and 
match. As a matching device the .pressurizing enclosure is especially 
effective when the mismatch of the feed arises at the aperture. This is 
true for open waveguide and properly designed horns whose electric plane 
aperture is less than about 3X/4. Then, since enclosure and aperture 
are closely spaced (d ~ A/3), the impedance match is insensitive to fre- 

Fig. 10‘37.— Impedance -v s frequency for a typical horn with properl> designed pressurizing 
enclosure. 

quency changes in which AX/A is of the order of 10 per cent. The imped¬ 
ance-wavelength curve of a properly designed pressurized horn is shown 
in Fig. 10*37 to illustrate the bandwidth of the device. 

Another successful pressurization technique which has received only 
preliminary trial1 consists in soldering a diaphragm of Corning 707 glass 
with a bonded metal rim inside the feed near the aperture. The glass 
window is somewhat smaller than the inside dimensions of the feed. 
The thickness of the glass and the dimensions of the opening can be 
chosen to make the effect of the diaphragm resonant, inductive, or capaci¬ 
tive so that any feed can be matched by this technique. 

1 M. D. Fiske, “Resonant Windows for Vacuum Seals in Rectangular Wave¬ 
guides/’ Rev. Set. Instruments, 17, 478 (1946). 



CHAPTER 11 

DIELECTRIC AND METAL-PLATE LENSES 

By J. R. Risser 

11*1. Use of Lenses in Microwave Antennas.—The utilization of 
optical methods is an outstanding feature of microwave antenna design. 
It is natural, therefore, to consider a much-used optical device, the lens. 
Dielectric lenses of conventional optical design are, in general, too cum¬ 
bersome for use in microwave antenna systems, but when they are zoned 
so that the dielectric is nowhere more than several wavelengths thick, 
their use is a distinct possibility. At wavelengths in the microwave 
region, a practical lens can also be constructed using parallel metal plates 
spaced a fraction of a wavelength apart, because for radiation with the 
electric vector parallel to the plate surfaces, the space between the plates 
is characterized by a longer wavelength than the free-space wavelength 
and consequently has the properties of a refracting medium with an 
index of refraction less than unity. 

Lenses and reflectors are interchangeable in microwave antennas, 
because both perform the same basic function—modification of phase. 
Thus, for example, lenses can be substituted for reflectors to produce 
pencil beams; cylindrical lenses of suitable contour can be used with line 
sources to obtain asymmetrically flared beams; and line sources can be 
formed by the use of two-dimensional lenses between parallel plates. 
Reflectors have many advantageous features: mechanical simplicity, 
lightness, and freedom from chromatic aberration. Lenses, in turn, have 
characteristics that render them invaluable for many applications. Thus, 
in a lens system, the feed is out of the path of the main beam, a considera¬ 
tion of particular importance in parallel-plate line sources. Lenses are 
also particularly suited for insertion into optical systems to perform special 
corrective functions; for example, correcting lenses of the Schmidt type 
can be used in conjunction with a reflector to obtain a wide afield in 
antennas for rapid scanning, and metal-plate lenses are used for phase- 
front correction in sectoral horns. 

Because of the difference in wavelengths, microwave lens techniques 
are free of certain restrictions which obtain in optics. Surface tolerances 
are large. Dielectric lenses can be made of relatively soft thermoplastics, 
such as lucite or polystyrene, instead of glass, and the lens surfaces can 
be turned on a lathe or molded. Consequently, the surfaces need not 
be spherical but can be cut to contours appropriate to the function of 

388 
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the lens. Metal-plate lenses, likewise, can be produced by ordinary 
machine-shop methods. Since the fundamental function of a lens is to 
modify the phase fronts from a radiating source, the lens surfaces are 
designed using the laws of geometrical optics. However, the radiation 
pattern of the antenna as a whole—lens and primary source—must be 
considered from the standpoint of diffraction theory. The far zone field 
produced by the lens is obtained from the amplitude and phase distribu¬ 
tion over its aperture by the methods of Chaps. 5 and 6. 

It is the aim of this chapter to point out the methods of design, types 
of structure, and general problems involved in the use of lenses. Cor¬ 
recting lenses and other lenses designed for special purposes will not be 
considered. Discussion will be confined to those lenses whose function is 
to convert the spherical (or cylindrical) phase front from a point (or 
line) source at the focus of the lens into a plane phase front across the 
aperture. This is the most frequently recurrent problem in microwave 
antenna design, because, bv diffraction theory, a plane phase front results 
in the most directive pattern for an aperture of a given size with a given 
amplitude distribution across it. 

DIELECTRIC LENSES 

11*2. Principles of Design.—The general principles of geometrical 
optics were formulated in Chap. 4. Lens design is based on two of these 
principles (Secs. 4*8 and 4-9): (1) the principle of equality of optical paths 
along rays between pairs of wavefronts and (2) Snell’s law of refraction. 
The procedure of lens design is commonly referred to as “ray tracing” 
because it deals exclusively with the optical paths or rays, that is, the 
normals to the equiphase surfaces or wavefronts. In a homogeneous 
medium the rays are straight-line segments. In empty space the optical 
path length is just the length of the ray segment; in a dielectric medium, 
it is the length times the index 

of refraction n (equal to -y/fei). 
The rays are refracted at the 
lens surfaces in the way described 
by Snell’s law. The ray-tracing 
method consists in determining 
the lens surfaces, so that the 

. . , , , .* ■ Fig. Ill—Optical paths and equiphase 
combined optical length (fa + surfaces. 

nit + h) (see Fig. 11-1) along 
any one ray between two equiphase surfaces Si and Si on opposite sides 
of the lens is the same as the length (l[ + nl't + ZJ) along any other ray 
between Si and St. The reciprocity theorem can be invoked to show 
that it is immaterial whether the direction of propagation is from /Si 
toward St or the reverse; a lens designed to convert a spherical equiphase 
surface from a point source F, located to the left of the lens, into a plane 
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equiphase surface to the right, will function equally well in bringing to a 
focus at F the energy in a plane wave incident from the right. 

11*3. Simple Lenses without Zoning.—Simple lenses will be divided 
into two categories according to the number of refracting surfaces. If 
one lens surface is an equiphase surface of the incident or emergent wave 
with the result that the rays are normal to the surface and pass through 
undeviated, the term **one-surface lens” will be applied. A “two-surface 
lens” is one in which refraction occurs at both lens surfaces. The design 
of a one-surface lens is a relatively simple problem and will accordingly be 
treated first. 

The first to be considered is shown in Fig. 11*2. The boundary TT' 

between air on the left and the dielectric of index of refraction n on the 
right is to be determined so that the phase front Si from a source at F 

is converted into the plane phase front S2 in the dielectric. The dielectric 
is terminated on the right in a plane parallel to S2. The problem is 
essentially two-dimensional, whether the lens is cylindrical and F is a 
line source—in which case the line source and cylinder axis are perpen¬ 
dicular to the plane of the diagram—or the source at F is a point source 
and the lens is spherical,1 that is, has rotational symmetry about the 
optical axis FQ2, the line through F perpendicular to S2. The equation 
of the lens surface is obtained from the condition that the optical path 
length [(PiP) + n{PP2)] through an arbitrary point P shall be equal to 
the optical path length [(QiQ) + n(QQ2)] on the axis or, more simply, 
that 

(FP) = (FQ) + n(QQf2). (1) 

In terms of FQ (= /) and the polar coordinates (r,6) of the point P, 
Eq. (1) can be written 

r = f + n(r cos 6 — /). (2) 

Solving for r, the equation for TTr, the generating curve of the lens 
surface, is given by 

r - (n ~ 1)/ , 
n cos 6 — 1 (3) 

Since n > 1, this is the equation of a hyperbola of eccentricity n with 
the origin at one focus. The asymptotes make an angle 8a with the lens 
axis given by 

0a = COS"1 (4) 

The angle 8a is 51° for polystyrene and plexiglas for each of which n « 1.6. 
It may be noted that the law of refraction is not used in deriving Eq. 

1 For convenience, a lens will be designated as “spherical” if its surfaces are 
generated by a rotation about the axis and “cylindrical” if the generating motion is a 
translation parallel to the line source F, 
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(3); it is easy to show, however, that the law of refraction is satisfied 
at this boundary for the ray construction of Fig. 11-2, and it is, in fact, 
known from general considerations (Sec. 4-9) that it must be satisfied. 
It is likewise easily seen that the right-hand boundary of the dielectric 
has no effect on the optical paths because it coincides with an equiphase 
surface and, consequently, is normal 
to the rays PP>, QQz, etc. 

In evaluating the usefulness of 
the lens, its effect on the amplitude 
distribution over the aperture must 
be ascertained, because this as well 
as the phase determines the diffrac¬ 
tion pattern. The effect differs in 
spherical and cylindrical lenses. For 
a spherical lens with a point source 
at F that has an axially symmc trie 
pattern, if P(8) is the power radiated 
per unit solid angle by the point 
source in the 0-direction and P(p) 
the corresponding power per unit 
area in the aperture at a distance from the axis p( = r sin 0), then from 
geometrical considerations, 

Pjp) ^ mn 0d0 * 
P(0) p dp W 

Ki«». 11-2. One-hurface lens with hyper¬ 
bolic contour. 

Reflection at the lens surface is being neglected, 
surface generated by the curve of Eq. (3) 

Pip) (n cos 6 — l)3 
P(0) Pin ~ 1 Pin - cos 0) 

whereas the corresponding amplitude ratio is 

For the hyperbolic 

(6) 

Ajp) 
A(9) 

I in 
yjpin - 

cos 9 — l)3 
l)2(n — cos 0) (7) 

For a cylindrical lens with a»line source at F, P(0) d0 is the power radi¬ 
ated per unit length by the line source between the angles 6 and 0 + dd. 
Then if P(y) dy is the power per unit length in the corresponding aperture 
interval between y and y + dy, where y is again the distance r -sin 0 

from the axis, 
Piy) _ d0 
W)~ dy 

For the hyperbolic surface, 

(8) 

Piy) jn cos 6 - l)8 
P(6) (n - l)/(n - cos 0) 

(9) 
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and 

My) = /' 
A (6) \( 

(n cos 8 — l)2 
(10) 

(/i — l)/(« — COb 8) 

The amplitude ratios for spherical and cylindrical lenses normalized 
at 8 = 0 are plotted in Fig. 11*3. They drop off rapidly with increasing 

8, an effect that impairs the usefulness of 
the lens. For the spherical lens of poly¬ 
styrene or ploxiglas, the aperture ampli¬ 
tude has dropped off 50 per cent relative 
to the feed amplitude at an angle of 30° 
with the axis, with the result that it is 
scarcely feasible to use a lens aperture 
extending beyond this point because of the 
high degree of taper in the illumination. 
This results in a serious reduction in the 
gain and an increased width of the main 
lobe of the antenna pattern (cf. Sec. 6*6) 

Another design for a one-surface lens 
can be obtained by considering the source 
F (see Fig. 11*4) to be immersed in a di¬ 
electric medium of index of refraction n 
bounded on the right by a dielectric-air 
surface. In this case the equation for the 

60 0 20 40 
$, deg. 

Fig 11*3.—A(p)/A(0) for a 
spherical lens and A(y)/A{0) for a 
cylindrical lens uith hyperbolic 
contours, » * 1 6. 

generating curve 7\T2 is found to be 

fin - 1) r — 
n — cos 8 do 

where / is the distance along the 
the equation of an ellipse of eccen¬ 
tricity l/n with the origin at the 
focus farther from Q. An actual 
lens would be constructed, as shown 
in Fig. 11*4, where the source F is 
outside the dielectric and the inci¬ 
dent dielectric surface T[T2 is 
spherical or cylindrical, as the case 
may be, and normal to the rays FP 
and FQ. For a given focal length, 
the aperture of the lens cannot be 
larger than 26, where b is the semi¬ 
minor axis of the ellipse: 

axis from the focus to TiT2. This is 

contour. 
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The semiminor axis 6 subtends an angle 6m at the feed given by 

393 

Plots of these amplitude ratios normalized to unity at 0 = 0 are given in 
Fig. 11*5. The amplitude in the aperture increases relative to the feed 
amplitude with increasing 0. This property of the elliptical contours is 
desirable for microwave work, because the lens compensates for the 
directivity of the feed pattern, producing 3Q 
a more efficient illumination over the 
aperture from the standpoint of antenna 
gain. On the other hand, the more uni¬ 
form illumination enhances the side-lobe 
structure of the pattern, and the lens is not 
suited for use with an antenna feed of too 
low a directivity. 

Practical considerations of bulk and 
efficiency place a limit on the useful aper¬ 
ture of this lens. For polystyrene or plexi- 
glas, the maximum diameter 56 is 0.96/, 
and the half angle 6m subtended at the feed 1 
F is 51°. For a 30° half angle, on the * o 20 40 €0 
other hand, the lens diameter is 85 per 

cent of maximum; and in the case of the ^‘cai lens'^d Afof/IWfor a 
Spherical lens, the volume of dielectric is cylindrical lens with elliptical con- 

approximately one-fourth of the volume tours; n * L6‘ 
with maximum diameter. For a spherical lens cut at 0 = 30°, A{p)/A (0) 
is 1.7, with the result that the feed pattern must be down 14.5 db from 
0 « 0 in order to make the power at the edge of the aperture 10 db down 
from center. 
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A “two-surface lens” is one in which neither of the lens surfaces 
coincides with a surface of equal phase and the rays undergo refraction 
upon entering and leaving the lens. The use of a second refracting sur¬ 
face is one way of increasing the versatility of the lens. The optics of a 
two-surface lens will be outlined briefly, although there will be no detailed 
discussion of an example. Figure 11-6 is a sketch of the geometry. As 

before, F is a point or line' source to 
the left of the first surface whose con¬ 
tour is denoted by 7Ti7". Since re¬ 
fraction occurs at both surfaces, there 
is no unique form for the equiphase 
surfaces in the dielectric. It is con¬ 
venient in this case to discuss the 
problem in terms of the angle 0' (Fig. 
11 *0) which a ray entering the di¬ 
electric at the point (r, 0) makes with 
the axis of the lens. The angle 0' is 

determined from the form of the contour TiT[, or vice versa, in accordance 
with Snell's law'. In terms of O' the differential equation for the contour 
TiT[ can be shown to be 

Fig. 11-6.—Coordinate system for a two- 
surface lens. 

1 dr _ n sin (0 — O') 
r dO n cos (0 — O') — 1 

07) 

The coordinates x, y of the point where the ray from (r, 0) intersects 
the second surface T2T2 are determined by the geometrical relationship 

y — r sin 0 
x — r cos 0 

= tan 0' (18) 

and by the condition for the equality of optical paths. Since the equi- 
phase surfaces to the right of T2T'2 are required to be planes, the condition 
on the optical paths is given by 

r + n \/(y — r sin 0)2 + (x — r cos 0)2 — x = constant. (19) 

As is easily seen, Eqs. (17) to (19) are not sufficient to determine uniquely 
the coordinates of both surfaces. Another condition, essentially equiva¬ 
lent to a condition on 0', may be imposed. For example, it may be 
required that the lens be free of coma (to render it suitable for use in a 
scanning antenna) or that the amplitude ratio A(y)/A(0) of Eq. (5) or 
(8) be specified as a function of y or 0. For a general-purpose microwave 
antenna it would be desirable that the amplitude ratio be constant or at 
least a slowly varying function of y or 0, with the result that the taper in 
the angular pattern of the feed is reproduced in the aperture. As far as is 
known, a practical solution of this problem has not yet been obtained. 
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When the contour TiT[ is determined by arbitrarily setting 0' equal to 
0/2, it is found that A(y)/A{6) is very nearly constant for a cylin¬ 
drical lens of moderate aperture and only very slowly varying for a 
spherical lens. This lens is thick, however, for reasonable apertures. 
In general, with the large apertures used in microwave applications, con¬ 
siderations of weight and bulk make zoned construction a practical 
necessity. Consequently, the design of lenses without zoning is of some¬ 
what academic interest, and the conditions on the lens surfaces are not 
complete without provision for the zone steps. This will be treated in 
the next section. 

Before leaving the subject of unzoned lenses, however, we may take 
note of an expression for the thickness of a simple converging lens on 
the axis. This expression is useful in estimating lens proportions 
It can easily be seen from the principle of equality of optical paths that 
if R and 0o are the coordinates of the apex of the lens where the dielectric 
reaches zero thickness, the thickness t on the axis is given by 

7?(1 — cos 0O) = (n — 1)/. (20) 

For example, a polystyrene lens with R equal to 20 wavelengths and 0o 
equal to 30° is 4 5 wavelengths (free-spaec) thick 

11*4. Zoned Dielectric Lenses.—A simple lucite or polystyrene lens 
of the type described in the preceding section is many wavelengths thick 
if its focal length and aperture are large 
compared with a wavelength. For a 
simple lens the optical path length along 
the axis is the same as the length by way 
of the edge. This condition is unneces¬ 
sarily restrictive, however, at microwave 
frequencies where the wavelength is large 
compared with ordinary manufacturing 
tolerances. The surfaces of microwave 
lenses can be divided into zones with the 
optical paths differing by integral multi¬ 
ples of a wavelength from one zone to 
another. A lens may accordingly be 
designed with its cross section similar to 
those shown in Fig. 11*7. Starting with zero thickness at the edge of the 
lens the thickness of dielectric may be progressively increased toward the 
lens axis, as required by the phase condition, until the path difference intro¬ 
duced by the presence of the dielectric is equal to a wavelength. At this 
point the path in the dielectric can be reduced to zero without altering 
the wavefronts from the lens. This is then the outer boundary of another 
zone, through which the optical path lengths are one wavelength less 
than those through the outermost zone. This zone likewise increases 
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in thickness in the direction of the axis until the point is reached where 
reduction of the dielectric thickness to zero results in an optical path 
length smaller by another wavelength, and so on. The resulting lens is 
similar to a conventional zone plate except that the path difference 
between zones is equal to a single wavelength. When the lens has K 
zones, the optical paths through the outermost zone are (K — 1)X longer 
than those passing through the zone on the lens axis. 

The maximum thickness of a zoned lens is approximately equal to 
X/(n — 1), because the maximum path difference (n — l)t introduced in 
a path of length t by the presence of the dielectric is approximately a 
wavelength. In actual practice a small thickness tm (Figs. 11-7 and 11-8) 
must be left at the thinnest points for reasons of mechanical strength, 
so that the maximum thickness is greater than \/(n — 1) by this amount. 

A good example of a zoned two-surface lens which has been tested 
and used1 is shown in Fig. 11*8. This is a plexiglas lens, 13.5 in. in diam¬ 
eter, for use at 3.3 cm. The surface toward the feed is chosen somewhat 
arbitrarily to be a plane. This choice has much to recommend it, how¬ 
ever, because a plane surface should have somewhat less back reflection 
to the feed than a concave surface and better illumination characteristics 
than a convex surface. Except for the inclusion of zones, the fcns is 
designed in the manner described for two-surface lenses in Sec. 11*3. 
Once a plane for the first surface and the distance from this plane to the 
focus (6 in. in this case) are chosen, the lens structure is completely deter¬ 
mined by the requirement that the equiphase surfaces to the right of the 
lens shall be planes: Snell's law determines the directions of the rays in 
the dielectric of the lens; then the second surface is determined from the 
principle of equality of optical paths with the provision that the paths 
differ by a wavelength from one zone to another. The following equa¬ 
tions describe the zoned surface: 

d = 

and 

(K - 1)X + (« - \)D + / - VP + r* h r* 

U V1 n*(ra+7*1 J 
V »*(/* + r*) 

R = r 1 + _ 
L Vn2(/2 + r2) - r2 

(21) 

(22) 

The notation is that of Fig. 11*8. The zone number K is unity for the 
central portion of the lens. This zone is carried out from the axis to a 
point where the thickness of material tm is considered a minimum for 
mechanical strength. There the step is made to the surface determined 
by K =* 2, and so on to the edge of the lens. 

1 A. M. Skellett, “Plexiglas Lens Antenna for Microwaves,” BTL Report MM-43- 
176-15, September 1943. 
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not occur where the step is cut in an equiphase lens surface because the 
directions of the rays are not altered at the surface and hence undergo 
no separation. The effect of shadow regions, of course, shows up in the 
secondary pattern of the lens as a decrease in gain and increase in side 
lobes. Data are lacking at present on the relation between these effects 
and the size and position of the shadow regions. 

Frequency Sensitivity.— Since dielectric constants are independent of 
frequency in the microwave region, an unzoned dielectric lens performs 
its function regardless of frequency. With zoning, however, frequency 
sensitivity is introduced. Let Pi be the length of optical path from the 
focus F along the axis to any plane perpendicular to the axis on the far 
side of the lens. If K is the total number of zones, the optical path P2 
through the Zith zone is Pi + (K — l,Xo where X0 is the design wave¬ 
length. At wavelength X0, the radiation from the first and A'th zones 
wrill be in phase in any plane perpendicular to the optical axis. IIowfcver, 
at a near-by wravelength X0 + AX, the wavefront from the Kth zone will 
be displaced a distance 8 along the axis relative to the wavefront from the 
first zone. When the changes in wavelength are small, 8 in wavelengths 
is given by 

Hi ML-. 
whence 

(K - 1) 

The usual criterion for microwave work is that the displacement 8 shall 
not exceed 0.125X.1 Using this criterion and defining the bandwidth a^ 
twice the maximum allowable fractional change in wavelength expressed 
in per cent, 

t~v i • i.i 25 . 
Bandwidth per cent. 

A lens of 4 per cent bandwidth can have seven zones w ith X0 steps between 
zones. The formula is approximate because AX is assumed small in the 
derivation. It should be noted that (K — 1) is actually the number of 
wavelength steps introduced by zoning; if there are steps of twp or more 
wavelengths, this must be taken into account. It is believed that Eq. 
(24) gives a conservative estimate of bandwidth, because with tapered 
aperture illumination, higher values of 8/\ might be tolerated for certain 
applications. 

11*5. Use of Materials with High Refractive Indexes.—Recently 
materials with high refractive indexes and low losses have been developed. 
The use of these materials would greatly reduce the bulk of microwave 

1 The relation between the gain of a pencil beam antenna and the phase error 
over the aperture is discussed in Sec. 12.5. 
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lenses. Two distinct types exist. Polyglas1 mixtures with titanium 
dioxide or titanate fillers have refractive indexes from 1.7 to 4.9, depend¬ 
ing on composition. Power factors are 0.002 to 0.003 at 1010 cps. These 
materials have the advantage of possessing coefficients of thermal expan¬ 
sion near those of copper and brass. Very high refractive indexes (about 
10) are obtained from titanium dioxide and titanate ceramics.2 The 
titanium dioxide ceramics have power factors below 10”8 at 3 X 10y cps. 
There is no fundamental obstacle preventing the use of these materials 
for microwave lenses. At present lack of development of manufacturing 
techniques for heat treating and molding of large samples is the principal 
difficulty. The degree of control necessary for successful manufacture 
is indicated in the reports on the materials. Because tolerances against 
warpage and twisting are large for lens surfaces (Sec. ll*(>j, a lens could 
be made as an assemblage4 of small sections, in order to decrease the size 
of furnaces and molds. 

Tn addition to techniques of manufacture, materials with high refrac¬ 
tive indexes present several problems to the lens designer. The toler¬ 
ances on lens thickness become important (Sec. 11*6), and reflections 
from lens surfaces result in prohibitively high transmission losses (Sec. 
1T7) unless surface-matching sections are added. 

11-6. Dielectric Losses and Tolerances on Lens Parameters.—In 
evaluating the usefulness of microwave lenses, it is necessary to consider 
the practical problems arising from properties of lens materials and pos¬ 
sible limitations in methods of manufacture. Attenuation in the dielec¬ 
tric must be reasonably small. It must be possible to fabricate the lens 
to satisfactory tolerances on the contours of both surfaces and on the 
thickness. Many materials with suitable refractive indexes are lossy at 
microwave frequencies. The attenuation in decibels per (free-space) 
wavelength in an unbounded dielectric medium is given by 

A = 27.3n y, (25) 

where n is the index of refraction and e' and e" are the real and imaginary 
parts of the complex dielectric constant (e' — jc") characteristic of lossy 
materials. (The index of refraction is the square root of €'/«o, which is 
the inductive capacity ke ordinarily quoted.) The ratio €"/V is equal to 
the power factor of the material when it is small compared with unity. 
Since the maximum thickness times (n — 1) is about a wavelength for a 
zoned microwave lens, the upper limit to the attenuation in a zoned lens 

1 A. von Hippel, S. M. Kingsbury, and L. G. Wesson,1 ‘Low Thermal Expansion 
Plastics,1" NDRC 14-539, October 1945. 

2 A. von Hippel, R. G. Breckeriridge, A. P. de Bretteville, Jr., J. M. Brownlow, 
P. G. Chesley, G. Oster, L. Tisza, and W. B. Westphal, “High Dielectric Constant 
Ceramics,” NDRC 14-300, August 1944. 
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is approximated by 

Am ~ 27.3 n^T (26) 

which is about 706"/€' for polystyrene or lucite and about 35e”/e' for a 
dielectric with n equal to 4.5. Thus, power factors up to 0.003 can be 
used without introducing more than a few tenths of a decibel attenuation. 
For polystyrene (€"/V « 0.0003) the attenuation is negligible. 

The tolerance to be placed on any lens parameter is proportional to 
the maximum allowable irregularity in the wavefronts, or equiphase 
surfaces, formed by the lens. This is again taken to be X/8. The toler¬ 
ances on thickness and index of refraction are interrelated because the 
compensation in optical path introduced by the presence of dielectric 
of thickness Ms (n — 1)?. Setting X/l(> as the upper limit on wave- 
front irregularities arising from variation in either t or n to allow for 
variations in both quantities, we have, approximately, 

and 

A t ^ 
10(n - 1) 

A ^ x 

An - m 

(27) 

(28) 

Since (n — l)t is of the order of a wavelength for zoned microwave lenses, 
Eq. (28) becomes 

An 1 
n~ZT| < 16* 

(29) 

The tolerance on thickness becomes important only for materials with 
high index of refraction. For polystyrene at a wavelength of 3.2 cm, 
Eq. (27) gives a thickness tolerance of | in., whereas for a substance 
with a refractive index of 4.5, it is 0.020 in. at the same wavelength. 
As regards the dielectric constant, a variation greater than 3 per cent is 
not likely to occur when reasonable care is taken in manufacture, even 
in materials of high dielectric constants. This variation is well within 
the limits prescribed by Eq. (29). If variation in thickness alone or 
dielectric constant alone is considered, the tolerances given by Eqs. (27) 
and (28) may be increased by a factor of 2. 

Some restriction on the surface contours of a lens arises from the 
tolerance on the thickness L The two surfaces can be deformed simul¬ 
taneously by warping, however, without affecting the thickness appre¬ 
ciably* From Fermat’s principle, the length of optical path through 
any portion of a lens has an extremum value and consequently, small 
displacements of any section of the lens result in changes in optical 
path thAt are small compared with the displacements. The tolerance 
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on a surface contour, except when it affects thickness, is therefore at 
least as large as the maximum allowable irregularity in the wavefronts. 

11-7. Reflections from Dielectric Surfaces.—Reflections from dielec¬ 
tric surfaces can cause feed mismatch and power loss. Feed mismatch 
is most likely to occur when a lens surface coincides with an equiphase 
surface because the reflection from the entire surface is then in phase at 
the feed. In this case the surface reflection coefficient is given by the 
well-known expression for normal 
incidence 

ft — 1 

+T (30) 

Equation (30) yields a value of 0 23 
for plexiglas or polystyrene and, of 
course, larger values for higher di¬ 
electric constants. A reflection of 
this magnitude is too large if picked 
up by the feed, and so the use of an 
equiphase surface as a lens surface 
is to be avoided whenever possible. 

For high indexes of refraction 
and large angles of incidence, power 
loss itself becomes important. For 
a refractive index of 4.5 the loss is 
40 per cent at normal incidence, so 
that surface-matching sections are 
necessary. The reflection coeffi¬ 
cient R depends not only on n but 
also on the angle of incidence. 
This is shown in Fig. 11*10, where 
|/2| is plotted for a plane wave inci- 

Angle of incidence 

Fig. 11 10.—Fraction of incident power 
reflected from the surface of an infinite 
dielectric slab vs. angle of incidence: (a) 
electric vector perpendicular to the plane 
of incidence; (jb) electric vector in the plane 
of incidence; n *= 1.6. 

dent on the plane surface of an infinite dielectric slab (ft = 1.6) at angles 
up to 90°. The curve for polarization with the electric vector perpendicu¬ 
lar to the plane of incidence is a plot of the well-known relation 

with 

i*i- sin (i — r) 
sin (i + r) 

(31) 

In this case \R\ increases with angle of incidence from its value at normal 
incidence, slowly at small angles and rapidly in the neighborhood of 90°. 
The power loss reaches a value of 10 per cent at about 40° for n * 1.6. 
Account must be taken of this effect in the design of lenses. For polariza- 
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tion with the electric vector in the plane of incidence, 

7? — tan (i — r) 
tan (i + r) 

(32) 

In this case |J?| decreases with angle of incidence until it reaches zero at 
the Brewster angle, tan"-1 n; beyond this angle it again increases. Match¬ 
ing devices can be used to cut down surface reflections, as, for example, 
a quarter-wavelength-thick surface layer of material whose refractive 
index is the geometric mean of the refractive index of the lens dielectric 
and that of air. Such a matching section is, of course, an additional 
complication in the design and manufacture of the lens. 

METAL-PLATE LENSES 

11*8- Parallel-plate Lenses.—A lens structure using spaced conduct¬ 
ing planes instead of a dielectric has been developed1 for use at microwave 
frequencies. A common form consists of parallel strips of sheet metal 
held apart by accurate nonreflecting spacers. Where the electric vector 
is parallel to the plate surfaces and the plate spacing a is less than X, 

but greater than ^ (cf. Sec. 7*15), the wavelength bet v\ pen the plates is 

given by 

Since this wavelength is greater than the free-space wavelength, the 
parallel-plate space has the properties of a refracting medium with index 
of refraction less than unity. When a thickness of this medium is intro¬ 
duced into the paths of the rays, optical path lengths are reduced from 
their free-space values instead of increased as in the case of dielectrics. 
Thus a converging parallel-plate lens is thinner on the axis than at the 
edge of the lens, and a diverging lens is thicker. This is in contrast 
to dielectric-lens structure. A parallel-plate lens can be designed to 
have variable thickness, like a dielectric lens, or it can have a uniform 
thickness and variable plate spacing. The former, a more common 
design, will be considered here. 

The refractive index of the parallel-plate space is given by 

-W <“> 

1 W. E. Kock, “Experiments with Metal Plate Lenses for Microwaves,” BTL 
Report MM-44-180-67, March 1944, “Wire Lens Antennas,” MM-44-160-100, April 
1944; “Metal Plate Lens Design Considerations,” MM-44-160-195, August 1944; 
“Metal Plate Lenses for Microwaves,” MM-45-160-23, March 1945; “Metal-Lens 
Antennas,” Proc. IRE, 84,828-836; November 1946. 
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with X/2 < a < X. Values of n lie between 0 and about 0.86. Naturally 
the smallest practical value of n should be used in order to minimize the 
thickness of the lens. Owing to difficulties arising from the use of plate 
separations near cutoff, namely, 
frequency sensitivity, mismatch at 
the lens surface, and difficulty in 
maintaining the tolerances on 
plate spacing, 0.5 is generally con¬ 
sidered the minimum practical 
value of n. One important differ¬ 
ence between dielectric and paral¬ 
lel-plate lenses consists in the 
constraints placed on the rays in 
the lens by the presence of the par¬ 
allel plates. The direction of 
propagation in the lens must be 
parallel to the plate surfaces. 
Thus Sneirs law does not, in general, describe the change in direction of 
a ray at the lens surface. In the case of cylindrical lenses this fact does 
not essentially change the lens design. Here two cases may be distin¬ 

guish ed. When the electric 
vector and lens plates are perpen¬ 
dicular to the cylinder axis, Snell's 
law is valid and the constraints do 
not enter (Fig. 11-11). When the 
electric vector and plate edges lie in 
planes parallel to the cylinder axis, 
Snell's law is replaced by the con¬ 
dition of the constraint (Fig. 
11-12). However, the design of a 
spherical lens consisting only of 
plates parallel to the E-plane of 
the feed becomes a three-dimen¬ 
sional problem instead of the two- 
dimensional one discussed for 
dielectrics. The constraint exists 

in the magnetic but not in the electric plane, and the lens surface is not 
symmetrical with respect to a rotation about the axis. The design can, of 
course, be reduced to a two-dimensional problem by use of a cellular con¬ 
struction to introduce identical constraint in the electric plane. 

There is one useful example in which the constraint does not enter 
explicitly, and most spherical parallel-plate lenses used hitherto have 
been of this type. This is the one-surface lens in which the refracting 
surface is on the side of the feed with the second surface a plane per- 

Actual direction of 

Fig. "11-12.—Cylindrical parallel-plate 
lens in which change of angle at the lens 
surface is determined by the condition that 
the ray is constrained to pass between the 
plates. 

Fig. 11-11.—Cylindrical parallel-plate 
lens in which change of angle at the surface 
is determined bjr Snell’s law. 
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pendicular to the lens axis. The rays are then parallel to the axis, and 
the constraints are automatically satisfied. As discussed in Sec. 11-3, 
the contour of this lens may be designed solely from the condition of 
equality of optical paths. Referring to Sec. 11*3, to the case where the 
refracting medium is to the right of the contour TT (Fig. 11-2), the 
coordinates of TT are given again by Eq. (3): 

r = ~ "V 
1 — ft cos 0 

(3) 

In the present case, however, with n < 1, this is the equation of an ellipse; 
the hyperbolic face of the dielectric lens is replaced by an elliptical face 
in the metal-plate lens. Since little use is made of unzoned lenses, it is 
desirable to rewrite this equation to apply to a zoned lens. If the zone on 

Fig. 11-13.—Elliptical con¬ 
tour with five zones; n = 0.5; 
/ - 40X. 

the lens axis is taken as the first, the equation 
for the surface of the Kth zone is given by 

with 

= (1 - n)fK 
1 — n cos 0 

/x = fi + 
(K - 1)X 

1 - n 

(35) 

(3<i) 

In this equation the assumption is made that 
there are steps of one wavelength between 
adjacent zones; otherwise (K — 1) in Eq. (30) 

e 
1<ig. 11-14.—Ratio A{p)/A(0) for zoned 

contour of Fig. 11-13. 

must be replaced by the total number of wavelengths in the steps between 
the axis and the ifth zone. Figure 11*13 shows a five-zone arrangement 
of this contour using 0.5 for n and 40X for fi. The ratio of fi to aperture 
is 0.86. The unzoned contour is shown for comparison. The ampli¬ 
tude-illumination ratio (Sec. 11*3) which relates the amplitude across 
the aperture to the amplitude pattern of the feed is given for a “spherical ” 
lens by 

A(p) 
A(6) 



S*,c 11-8] PARALLEL-PLATE LENSES 

and for a cylindrical lens by 

405 

My) ^ / (1 - n cos fl)2 
4(0) \(1 - n)/*(cos 0 - rc)' 

The ratio A(p)/A(6) of Eq (37) for the spherical case is plotted in Fig 
11*14 for the five-zoned elliptical contour of Fig 11*13 The ratio 
exhibits a slow stepwise increase from the center to the edge of the lens 

Fig. 11*15 —Bear view of a 1.25-cm parallel-plate lens. (Courtesy of the Bell Telephone 
Laboratory) 

in a fashion favorable for microwave use. The improvement introduced 
by zoning is seen by comparing with the dotted curve for an unzoned 
contour. Figure 11*15 is a photograph of the rear view of a spherical 
lens;1 it is 48 in. in diameter and designed for use in the 1-cm range. It 
is a zoned single-surface lens with elliptical contours. This lens is 
constructed of thin, equally spaced metal plates parallel to the F-plane of 
the feed. The time involved in cutting the plates for lenses of this type 
is a factor, because the plates differ in contour except for corresponding 
pairs on opposite rides of the optical axis. Since surface tolerances are 
large (Sec. 11*10), the contours can be cut by sawing or filing to a scribe 
line or by stacking the plates with temporary wooden spacers and cutting 
on a lathe. 

1 W. E. Kock, “Metal Plate Lenses for Microwaves,” BIT Report MM-44-160- 

100, April 1944. 
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11*9. Other Metal-lens Structures.—Several other methods of lens 
construction have been tried with success.1 One procedure that leads to 
good structural characteristics makes use of polystyrene foam (e = 1.018 
and weight 1 to 2 lb/ft3) as a dielectric medium between the plates. 

The plates are actually sheets of 
metal foil bonded to the polysty¬ 
rene. The slabs of polystyrene foam 
with the metal foil sidings may be 
molded into a block, and the lens 
contour can then be cut out on a 
lathe 

Another method is to replace the 
lens plates by a system of parallel 
wires Lenses of this type are inter¬ 
esting principally because they point 
to the possibility of using lenses at 
long w avelengths wrhere metal plates 
are out ot question but curtains of 
wire suspended from poles are feas¬ 
ible. The lens structure is based on 
the fact that slots in the wall of a 
waveguide w hich are parallel to the 
The system of parallel wires may be 

thought of as a limiting condition arrived at by cutting slots in the parallel 
plates constituting the lens. The primary problem in the design is the 

Fig. 1116—Pol> styrene-foam lens. 
(Courtesy of the Bell Telephone Labora¬ 
tory.) 

electric-field vector do not radiate. 

Fig 11*17—Wire lenses: (a) parallel-wire lens; (6) wire mesh lens. {Courtesy of the Bell 
Telephone Laboratory.) 

determination of the practical ratio of slot width to conductor width. 
It has been found2 that at a wavelength of 3.2 cm wires of diameter 0.049 
in. and spaced 0.3 in. center to center have a loss of 0.1 db per inch or 
about i db per wavelength. Since the lens is only a few wavelengths 

1 W. E. Kock, ‘‘Metal Plate Lenses for Microwaves,” BTL Report MM-45-160-23, 
March 1945. 

2 W. E. Kock, “Wire Lexis Antennas,” BTL Report MM-44-160-100, April 1944. 
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thick, this is not prohibitive. The over-all performance of a lens of this 
type has been found to compare favorably with an equivalent lens mak¬ 
ing use of solid plates. 

Several of these types of lenses are illustrated in Figs. 11*16 and 
11*17. The former shows a lens making use of a polystyrene-foam base. 
Figure ll*17a shows a parallel wire lens, and Fig. 11*176 shows a wire 
mesh lens. The latter takes as its starting point the use of rectangular 
waveguides as the lens medium. The waveguide walls are replaced by 
wire mesh, again making use of the fact that slots in a waveguide wall, 
when suitably oriented, do not radiate. 

11*10. Metal-plate Lens Tolerances.—Tolerances on the lens surface 
are large with respect to deformation by warping and twisting, as they 
are for dielectric lenses. Extreme rigidity in the cellular structure is 
consequently not necessary. Tolerances on the lens thickness and plate 
spacing are interrelated. Using the same criteria as for the dielectric 
lenses (allowing an error cither in thickness or refractive index alone 
to cause more than half the allowable phase error X/8), 

and 

At ^ 

An ^ 

16(1 - n) 

X 
16/ 

(39) 

(40) 

where An depends both on plate spacing and wavelength. Reserving 
discussion of changes with wavelength until later (Sec. 11*11), the varia¬ 
tion of n with plate spacing a is given by 

An 
(1 — n2) Aa 

n a (41) 

If in addition (1 — n)t is assumed to be approximately a wavelength, 
as it is for zoned lenses, Eq. (40) becomes 

Aa < n 
a “ 16 (n + 1) 

(42) 

When n is equal to 0.5, Aa must be less than 0.024X, which is 0.030 in. 
at 3.2 cm. At this wavelength the tolerance on a would place a lower 
practical limit of about 0.3 on n, because this would lead to a tolerance 
of about 0.014 in. From Eq. (39) a value of 0.5 for n leads to an exceed¬ 
ingly liberal tolerance on t, i.e., At g X/8. This is about twice the 
tolerance on a reflector contour for the same over-all phase error of X/8; 
a discrepancy of X/16 in a reflector contour leads to a phase error of 
approjpmately X/8. The tolerances given here are conservative, based on 
the assumption that both thickness and plate spacing are in error. If 
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the process of fabrication is such as to hold one or the other to better 
than the stated values, the alternate tolerance may be increased. 

11*11. Bandwidth of Metal-plate Lenses; Achromatic Doublets.— 
Since the index of refraction of a metal-plate medium depends on the 
ratio of plate spacing to wavelength, metal-plate lenses are frequency- 
sensitive devices. * The relation between small changes in X and corre¬ 
sponding changes in n is obtained by differentiating Eq. (34): 

An 
1 - n2 AX 

n X 
(43) 

The effect on the wavefronts from an unzoned lens will be considered 
first. Let Lz represent the total length of the line segments FP and 
PPf (Fig. 11T8) passing through the edg^ of the lens and Li the length 

FQQf on the axis. If P2 and Pi are 
the optical lengths of L2 and Li 
respectively and t is the difference 
between the thickness of the lens at 
the edge and at the center, the op¬ 
tical path difference (P2 — Pi) is 
given by 

P2 — Pi — (P2 — / 4“ lit) — /<]. 
(44) 

The path difference (P2 — Pi) is a 
function of wavelength because n depends on wavelength. At the design 
wavelength X0, (P2 — Pi) must be zero in order that P'Q' may represent a 
wavefront. Hence 

L2 — (1 — n0)t = (45) 

11 

Pig. 11*18.—Effect on a wavefront of 
change in wavelength from the design 
wavelength. 

At a near-by wavelength Xo + AX, the wavefront at P' is displaced a dis¬ 
tance 5 along the axis with respect to the wavefront at Q', where i/X 
is given by 

5 
X (23) 

The approximation is good only for very small AX. Substituting from 
Eqs. (43) and (45), 

i - - l±m <1 ~ n»>* ax 
X n0 Xo Xo* W 

If the limits of bandwidth are defined by \8\/\ equal in magnitude to 
0.125, the bandwidth is given by 

25 n0 Xp 

1 + Wo (1 — Uo)t 
Bandwidth per cent. (47) 
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In the special case no equal to 0.5, 

409 

lWwidtl, » 8.3 per cent. (48) 

Since (1 — rio)t is at least several times X0, bandwidths are of the order 
of a few per cent. It is believed that Eq. (48) gives a conservative esti¬ 
mate of the bandwidth, because, with considerable taper in the aperture 
illumination, values of (|6|/X)m»* up to 0.25 might be tolerated for certain 
applications. 

In determining the bandwidth of zoned lenses, the same type of 
procedure is followed. The frequency sensitivity of zoned lenses is due 
not only to the variation in n but also to the steps. As for unzoned 
lenses the maximum deviation in the wavefront can be calculated by 
comparing the optical path along the lens axis with the path by way of 
the edge. Using the same notation as before, we have 

P2 - P1 = (L2 - t + nt) - /,!, (44) 

with the somewhat different condition at X0 introduced by the zoning: 

P2 -P, - (K - 1) Xn = 0. (49) 

Here K is the number of zones, counting the zone on the axis 'as the 
first. In this case 

m± (1\ - Pi\l AX = -(K - \) Q - (L+^ 0 ~ wo)* AX 
d\ \ X ) a == Xo Xo n o Xo Xo 

(50) 

and the bandwidth is approximately given by 
1 

Bandwidth « 25 

(K - 1) + 
1 + n0 (1 — no)t 

per cent. (51) 

no 

For zoned lenses (1 — n0)t is approximately one wavelength at the 
thickest portions. For practical purposes, therefore, 

Bandwidth « 25 -i—  per cent. (52) 
1 + Kn0 

For the special case n0 = 0.5, 
25 

Bandwidth « ——— per cent. (53) 
2 *T“ XV 

Zoning increases the bandwidth of a lens. For example, the use of 
Eqs. (48) and (53) to compare equivalent zoned and unzoned lenses 
which introduce compensation of five wavelengths in the longest optical 
path [(1 — no)t = 5\o for the unzoned lens; (1 — n0)( = Xo, K — 5, for 
the zoned lens] shows that the zoned lens has slightly more than twice 
the bandwidth of the unzoned lens, 3.57 per cent as compared with 1.67 
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per cent. For large values of K the zoned lens with n0 equal to 0.5 has 
approximately three times the bandwidth of the equivalent unzoned lens 
since a lens with K zones is equivalent to an unzoned lens with (1 — n<>)t 
equal to K\o. This indicates the advisability of zoning on the basis of 
bandwidth alone. Moreover it suggests the possibility1 of using a 
doublet consisting of zoned and unzoned lenses with opposite frequency 
characteristics to obtain increased bandwidth. A zoned converging lens, 
for example, is stronger than an unzoned diverging lens of opposite fre¬ 
quency sensitivity, and the combination is a converging lens. It must 
be remembered, however, that the focal length of the doublet is much 
longer than that of the uncorrected converging lens unless the compensat- 

Fig. 11*10.—Power reflection at normal incidence as a function of n. 

ing lens can be made optically thin and given the requisite frequency sen¬ 
sitivity by spacing the plates closely to yield small v. 

For any lens the first-order effect of change in frequency is to alter the 
effective focal length of the lens. For frequencies close to the design 
frequency the deformed wavefronts are so nearly spherical that moving 
the feed along the axis effectively removes the deformation. The effec¬ 
tive bandwidth of a lens is consequently increased by a provision in the 
antenna system for feed motion. 

11*12. Reflections from Surfaces of Parallel-plate Lenses.—While the 
general problem of reflection from the surfaces of a parallel-plate lens 
has not been solved, some indication of magnitude can be obtained from 
a study of the reflection of a plane wave from the edges of an array of 
parallel, equally spaced plates when the edges lie in a plane. This 
problem has received rigorous theoretical treatment.2 It seems reason¬ 
able to expect that the values of R derived for this case at various angle® 
of incidence should be a good approximation to local values of R on a 

1 W. E. Kock, “Experiments with Metal Plate Lenses for Microwaves,” BTL 
Report MM-lflO-67, March 1944. 

2 J. F. Carlson and Albert E. Heins, “The Reflection of an Electromagnetic Plane 
Wave by an Infinite Set of Plates, I,” Quart. Applied Math., 4,313-329, January 1947. 
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lens surface, providing that lens surfaces and wavefronts do not appre¬ 
ciably depart from a plane over distances comparable to a wavelength. 

For normal incidence R is giv^n by 

R = 
\ — n 
1 + n 

e'* (54) 

This expression differs from the expression for normal incidence on a 
dielectric surface only by the presence of the phase angle 3>. Because 
n is less than unity, the magnitude of R is larger, however, than that 
from a dielectric surface with the same value of 11 — n\. The magnitude 

f 

Fia. 11*20.—Planes of incidence at the plane face of an infinite set of parallel plates. 

of |i?|2 at normal incidence is plotted in Fig. 11T9. Its value for small n 
obviously puts a lower practical limit on n, especially for equiphase lens 
surfaces where the reflected wave is in phase at the feed. For n equal 
to 0.5, the reflection is already quite large (11 per cent power reflection). 
Surface-matching devices are, of course, a possibility. 

The average reflection over a lens surface is probably less than the 
value derived for normal incidence because the magnitude of the reflected 
wave probably decreases with the angle of incidence in both planes. 
For the magnetic plane (hh'F in Fig. 11-20) where the change in angle 
at the surface is determined by the constraint and not by Snell’s law, 
an expression has been derived for |U| as follows: 

This expression is valid for a restricted range of angles: 

0 g i S shr*1 — 1 
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with 

1 < - < 2. 
a 

The restriction on i arises from the fact that grating lobes become possible 

for angles of incidence larger than sin-1 C-> Inspection of Fig. 

ll*20andaplot of |jf?|2inFig. 1T21 shows that \R\ decreases with increas¬ 
ing i} reaches zero for i equal to cos-1 n, and increases beyond that angle. 

Angle 

Flu. 11*21.—Power reflection at the plane face of an infinite set of parallel plates as a 
function of angle of incidence 

For the electric plane (ee'F of Fig. 1T20) the expression for the varia¬ 
tion of R with angle of incidence has not been derived. In this plane 
the change of angle upon refraction is described by SnelPs law. One 
might expect some similarity to the dielectric case where the magnitude 
of the reflected wave decreases from its value at normal incidence with 
increasing i until it reaches zero at the Breivster angle, tan"1 n, and then 
increases. It is hoped that a solution for this plane will become available 
in the future. 



CHAPTER 12 

PENCIL-BEAM AND SIMPLE FANNED-BEAM ANTENNAS 

By S. Silvjek 

PENCIL-BEAM ANTENNAS 

12*1. Pencil-beam Requirements and Techniques.—The term “pencil 
beam” is applied to a highly directive antenna pattern consisting of a 
single major lobe contained within a cone of small solid angle and almost 
circularly symmetrical about the direction of peak intensity. As used 
here, it will apply to beams with half-power width less than 15°. These 
beams are analogous to searchlight beams, and, as with an optical search¬ 
light, the elevation and azimuth coordinates of a target in space can be 
simply correlated with the similar coordinates that define the orientations 
of the antenna. In connection with the technique of using radar echoes 
for obtaining range information, the pencil-beam antenna serves to define 
the position of a target completely. 

There are several possible techniques for producing pencil beams. 
The simplest in conception and from the point of view of practical 
design is that of placing a point source at the focus of an “optical” 
system, such as a reflector or lens, to produce a beam of parallel rays. 
It is evident that to produce a circularly symmetrical beam, the optcial 
system should have rotational symmetry with the feed located on the 
axis of rotation (optical axis). This presupposes that the primary feed 
pattern likewise has rotational symmetry about the same axis; in prac¬ 
tice this is approximated by a feed pattern having a pair of orthogonal 
principal planes (symmetry planes) that intersect along the optical axis, 
with nearly equal half-power widths in the two planes. In many calcu¬ 
lations this actual feed pattern can be replaced by an equivalent cir¬ 
cularly symmetric pattern that is the average of the patterns in the two 
principal planes. If the simple geometrical picture—that the beam 
produced by the optical system consists of a family of parallel rays— 
were strictly valid, the beam would have “zero” width as plotted in a 
polar diagram. However, this simple picture is markedly modified by 
diffraction phenomena due to the limited aperture of the optical system. 
The aperture is the projected area of the reflector or lens on a plane 
normal to the optical axis, and for a rotationally symmetrical system it 
is circular in shape. As a result of diffraction the antenna pattern has 
a major lobe of finite width and characteristic side-lobe structure. 

413 
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The general theory of apertures and diffraction has been developed 
in Chap. 6. It was shown there that of all the phase and amplitude dis¬ 
tributions over a plane aperture that give rise to a beam with maximum 
intensity in the direction normal to the aperture, a uniform amplitude 
and phase distribution gives rise to maximum gain; in general, minimum 
beamwidth is concomitant with maximum gain. 

The relation between antenna gain and range in radar systems has 
been noted in Sec. 1*2 [Eq. (1*12)]. The beamwidth is also an important 
factor in the precision with which target location can be effected. The 
considerations here are partly optical (of exactly the same nature as 
those which determine the resolving power of a telescope1) and in part 
involve system factors such as pulse width; a rather complete discussion 
of resolving power of a radar set and its bearing on beamwidth require¬ 
ments is given in Vol. 1 of this series.2 On the basis of gain and beam- 
width considerations a fvndamental design requirement for radar antennas 
is that the phase distribution over the aperture be uniform—in terms of 
geometrical optics, that the optical system produce a beam of parallel rays. 
It should be noted that in addition to the gain and beamwidth require¬ 
ments, the greatest possible suppression of all secondary lobes is desir¬ 
able; for if a target is sufficiently close to be detected by the side lobe, 
it becomes indistinguishable from a target detected by the main lobe 
at the same range. * However, as was found in the treatment of general 
diffraction theory, requirements of maximum gain and minimum side- 
lobe level are generally incompatible. The necessary compromise 
between them in antenna design is made in optical systems by adjusting 
the illumination, that is, the amplitude distribution, over the aperture. 

The advantages of microwaves become strongly evident in the design 
of the pencil-beam antennas. Within reasonable limits on the over-all 
size of the antenna, the distance from the reflector (or lens) to the antenna 
feed can be made so large that the optical device is in the radiation zone 
of the feed. Thus the difficulties associated with the phase quadrature 
of the induction field are avoided; that is, it is possible to operate in 
that region of the feed pattern where the feed is essentially a point 
source. Because the dimensions of the reflectors and lenses are fairly 
large compared with the wavelength, it is possible to simplify the theo¬ 
retical considerations by suitable approximations. As a result the design 
of a pencil-beam antenna becomes to a large extent a calculable procedure. 

Inasmuch as lenses have been discussed in detail in Chap. 11, the 
treatment of design problems in the present chapter will be confined 
almost entirely to reflectors. Many problems are common to both: The 
secondary pattern is determined essentially by the field over the aper¬ 
ture, and the requirements to be imposed on the latter, which will be 

1 M. Bom, Optik, Edwards Bros., Inc., Ann Arbor, Mich., Chap. 4. 
5 Ridenour, Radar System Engineering, Vol. 1, RL Technical Series, Chap. 14. 
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arrived at from the discussion of reflectors, can be transferred directly 
to lenses. The latter just began to commond serious attention at the 
close of the war period, and their study and use are still in the initial 
stages. 

Paraboloidal Reflectors1 

12*2. Geometrical Parameters.—The nature of a reflector that trans¬ 
forms a spherical wave, arising from a point source, into a plane wave- 
front was discussed in Sec. 4*9, where it was found to be a paraboloid 
of revolution with the source at the focus. In discussing these systems 
it is convenient to use several different coordinate systems simultane¬ 
ously; these are defined in Fig. 12-1. A rectangular coordinate system 
x, y} z will be used, with the origin at the vertex ot the paraboloid and 
the 2-axis the axis of revolution. In these coordinates the equation ol 
the paraboloidal surface is 

xl + y2 = 4fz, (1) 

where / = OF is the focal length. We shall also use cylindrical coordi¬ 
nates r, £, 2, where r and £ are polar coordinates in the planes z — constant, 
£ being measured from the ^2-plane. In these coordinates the equation 
of the surface is 

r2 = 4/2. (2) 

In expressing the relation of the primary feed pattern to the reflector, 
there is employed a spherical coordinate system p, £, with the origin 
at the focus F and the polar axis directed in the negative 2-direction; 
the aximuth angle £ is the same as that defined in the cylindrical system, 
and is the polar angle. The equation of the surface referred to these 
spherical coordinates was obtained in Sec. 4-9 [Eq. (4*69)]; it is 

<3> 

Lastly, to discuss the final antenna pattern we use a spherical coordinate 
system with polar axis in the positive 2-direction and origin again at the 

1 The material to be presented in the following sections represents a summary of 
British and American work done during the war period; the following is a partial bibli¬ 
ography of reports on paraboloidal reflectors: L. J. Chu, “Theory of Radiation from 
Paraboloidal Reflectors,” RL Report No. V-18, Feb. 12,1941; E. U. Condon, “Theory 
of Radiation from Paraboloid Reflectors,** Westinghouse Report No. 15, Sept. 24,1941; 
G. F. Hull, Jr., “Application of Principles of Physical Optics to Design of UHF 
Paraboloid Antennas,** BTL Report MM-43-110-2, Feb. 8, 1943; and F. R. N. 
Nabarro, “Theoretical Work on the Paraboloid Mirror,** British Report, Ministry 
of Supply, A. C. 1435, RDF 103, Com. 72, Nov. 27, 1941. References to earlier 
French and German work are given by F. E. Terman, Radio Engineers* Handbook, 
McGraw-Hill, New York, 1943, p. 837. 
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focus; the coordinates are /?, 6, <£, with 6 the polar angle and <t> the 
azimuth angle, the latter being measured from the rrz-plane. 

The reflector is cut off by the “aperture plane” A at z =*= z0. The 
diameter of the aperture will be designated by D, and its area by A. 
The “shape” of the reflector is specified by the ratio of focal length to 

Fig. 12*1.— Geometrical parameters for the paraboloidal reflector. 

diameter, //D, or alternatively by the angular aperture that is, the 
angle subtended at the focus by a radius of the aperture. The relation 
between the f/D ratio and the angular aperture is given by 

One of the most important design problems is the determination of the 
shape that gives maximum antenna gain for a given aperture diameter 
and a given primary feed pattern. 

The geometrical properties of paraboloids are well known. Any sec¬ 
tion of the surface containing the z-axis is, of course, a parabola with 
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focus at F. In addition, however, the curve of intersection of the surface 
with any plane parallel to the z-axis (normal to the zy-plane) is also a 
parabola of the same focal length / as the paraboloid. As a consequence 
of the property, only a single parabolic template is needed in the con¬ 
struction of the reflector to test the accuracy of all parts of the surface. 
The normal to the surface at a point p, £, yj/ lies in the plane containing 
this point and the 2-axis and makes an angle \p/2 with the incident ray 
from F. 

12*3. The Surface-current and Aperture-field Distributions.—In the 
treatment of the general theory of reflectors developed in Chap. 5 it 
is shown that the over-all pattern of the antenna, that is, the secondary 
pattern, arises by the superposition upon the radiation field of the antenna 
feed of the radiation field of the distribution of current generated on the 
surface of the reflector in the presence of the feed. It was shown further 
that the reflector field can be determined either from the surface-current 
distribution directly or in the form of a diffraction pattern from the field 
distribution over the aperture of the mirror. Before proceeding with 
the calculation of the surface-current and aperture-field distributions, 
some fundamental ideas and assumptions which underlie all of the sub¬ 
sequent discussions should be noted. The feed pattern in the presence 
of a reflector, in general, differs from its free-space pattern, because the 
reaction of the reflector on the antenna feed modifies its current system. 
If, however, the focal length of the paraboloid is at least several wave¬ 
lengths in magnitude and the mirror is in the radiation zone of the free- 
space pattern of the feed, the interaction between the mirror and the 
antenna feed is a second-order effect as far as the primary pattern is 
concerned. These conditions are usually realized in microwave antennas; 
and subject to their realization, it will be assumed that the feed pattern 
in the presence of the reflector is the same as under free-space conditions. 

To avoid the complex problem of interference between the fields 
of the reflector and the antenna feed in the formation of the main struc¬ 
ture of the antenna pattern [cf Eqs. (5-75) and (5-76)], the directivity 
of the feed pattern should be such that the major portion of the energy 
lies within the cone defined by the feed and the reflector. Referring 
to Fig. 12-1, if—taking an ideal case—the primary pattern is zero for 
angles $ > 90°, the main structure of the beam is determined by the 
reflector currents alone. The directive feeds discussed in Chaps. 8 and 
10 approximate this condition rather closely; their back lobes, however, 
are not completely negligible and have significant effects not only on 
the wide-angle side lobes where the back-lobe field is comparable to the 
weak reflector field but also on the peak intensity, that is, on the antenna 
gain. The effect of the back lobe on gain will be investigated in Sec. 
12*5. 

The general approximation procedure based on geometrical optics 
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and plane-wave boundary conditions, which is discussed in Chap. 5, will 
be used to evaluate the surface-current and aperture-field distributions. 
Let the principal E- and //-planes of the primary feed pattern coincide 
with the xz- and yz-planes, respectively, in Fig. 12*1. If PT is the total 
power radiated by the feed and (?/(£,its gain function, the power P(W) 
radiated per unit solid angle in the direction £, $ is 

Pit,*) = <?/(?,*)• 

The electric-field-intensity primary pattern, reduced to the unit sphere 
about the center of feed, is then given by 

[E({,*)],-! = {2 (*y [g e„(£,*), (5) 

where e0 is a unit vector defining the polarization in the primary pattern.1 
The field intensity in the incident wave at a point p, £, on the reflector 
is therefore given by 

The field intensity Ei in the reflected wave at the same point is 

E,-[2 (7) 

where «i defines the polarization in the reflected wave; according to the 
plane-wave boundary condition [Eq. (5-25)] the vectors eo and ei are 
connected by the relation 

n x (e0 + ei) = 0, (8) 

in which n is the unit vector normal to the reflector at the point of inci¬ 
dence. The vector n will be taken to be directed outward from the 
reflector into free space. Following Eq. (5-57a), the surface-current 
density K is given in terms of the incident wave by 

[<?/(*,*)]* 
P 

e-*o [n x (j?o x eo)], (9) 

where p0 is a unit vector in the direction of the incident ray. Expanding 
the vector product, we obtain 

* - (•-)..]. <m 
The current can be expressed in a similar manner in terms of the reflected 

1 It is bring assumed that the radiation field of the primary feed is linearly polarised 
at every point but that eo is a function of (?, 
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field by making use of Eq. (5-576), noting that the reflected ray is parallel 
to the z-axis; we have then 

-[■era e~,kf [n x (i, x «i)] 

cos | + i*(n • ei 

(10) 

(10a) 

To obtain the field over the aperture we note that since the reflected 
rays are all parallel, the field intensity remains constant in magnitude 

Fig. 12*2.—Typical aperture-field distribution; the field is resolved into principal and 
cross-polarization components. 

along the reflected ray (cf. Sec. 4*4). The electric-field intensity E(r,£) 
at a point (r,£) on the aperture is thus given directly by Ei at the cor¬ 
responding point (p,£,^), except for the phase retardation corresponding 
to the path from the reflector to the aperture plane. The relation is 

E(r,£) « Ei(p,£,*)e-'*<‘«-*> 

(11) 

The distance p + Zo — z is the total optical path from F to the aperture 
plane; it is therefore independent of the point (r,£), and more specifically 
it is equal to / + Zo. Comparing the surface-current distribution as 
given by Eq. (10a) with the aperture-field distribution [Eq. (11)], it is 
seen that except for constants, the aperture field is the projection of the 
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surface-current distribution into the aperture plane. In this connection 
it should be noted that the longitudinal component of the current given 
by the term (ei • n)i* in Eq. (10) finds no counterpart in the aperture 
distribution because the field over the aperture is wholly transverse to 
the z-axis. This longitudinal component of the current has generally 
been neglected in p*araboloid theory. It contributes nothing to the field 
in the forward direction and therefore does not enter into the computa¬ 
tion of the peak intensity, but it does modify the side-lobe structure of 
the beam. The general character of the aperture distribution (and the 
transverse component of the current distribution) is illustrated in Fig. 
12-2. It is seen that the polarization reflects the symmetry of the pri¬ 
mary feed pattern. The component elx of the aperture polarization 
which is parallel to the principal i£-plane of the feed is known as the 
principal polarization component, and the component eiy, which is 
transverse thereto, is known as the cross-polarization component. By 
virtue of the symmetry conditions thq* cross-polarization components 
at any pair of points that are symmetrical with respect to the principal 
planes are effectively 180° out of phase with one another. 

12*4. The Radiation Field of the Reflector.—The secondary pattern 
produced by the reflector may now be calculated from either the current 
distribution or the aperture field, using the methods of Secs. 5*9 and 5*12, 
respectively. The fwo calculations do not lead to completely concordant 
results; the differences between them vanish, however, in the limit of 
zero wavelength. The discrepancy lies in the fact that the aperture 
field which would be calculated as produced by the surface currents is 
equal to that calculated on the basis of the reflected rays only under 
the limiting condition of zero wavelength. To exhibit the relationships 
we shall set up the expressions for the radiation field as obtained from 
the current distribution. Letting Ri, 4, 4 be unit vectors associated 
with the spherical coordinates R, 6, <t> (Fig. 121), we have, by Eqs. 
(5*74a) to (5-74c), that the radiation field of the reflector is 

Eb 
E♦ 

l _ _ e-ikR r(iV Erlh f if I 
j 2tR LW 2ttJ (4-1 (12) 

where the vector I, expressed in terms of the incident field on the reflector 

ns 

> 
11 X (po X 6o)^_0 — urn tf'nin Boon 

and, in terms of the reflected field, 

X p2 sin ^ sec | d\p (12a) 

ns 

► 
iGAwm [n x (4 x ei)]<r'fc'fl+eo<* ios 0— «in ^ un 0 eoft ($r“4)l 

♦ 
X p2 sin ^ sec h # d£. (126) 



Sec 12-4] THE RADIATION FIELD OF THE REFLECTOR 421 

Comparing with Eqs. (10) and (10a) it is seen that in the form of Eq. 
(126), the vector I is resolved into a transverse component parallel to 
the xy-plane, 

h = f* J* (-e, cos fj y sin ^ soc | (i3a) 

and a longitudinal component 

I* = U f [ (n • ei)e“,fcp{ *p2 sin ^ sec ~ dty d£. (136) 

As regards the longitudinal component it is observed that Iz makes no 
contribution to the ^-component of the field because i* is always in a 
plane normal to i*. Furthermore, since \z • i* = sin 0, the longitudinal 
component makes no contribution to the field in the direction 0 = 0— 
the physical basis for this being that a current element is equivalent to 
a dipole and does not radiate in the direction along its axis. The con¬ 
tribution of I* is significant only at wide angles. For the systems with 
which we are concerned that produce narrow beams, the contribution 
of I* is a second-order effect; it vanishes in the limit of zero wavelength. 
There is no counterpart of the I* contribution in the calculation of the 
pattern from the aperture-field distribution. 

Considering the transverse component It, it will be observed that if 
the radiation field is confined to a small angular region about the 0 = 0 
axis, the variation of cos 0 in the phase term of Eq. (13a) can be neglected; 
we have then p(l + cos \p cos 0) « 2/. Also it will be noted on com¬ 
paring with Eq. (11) that except for a multiplicative constant—which is 
contained in the field expressions [Eq. (12)]—the factor [(?/($,^)]>*ei/p 
is the field in the aperture plane at the point (r,£) which corresponds to 
the point (p,£,^) on the reflector. Equation (13a) is, therefore, given 
approximately by the integral 

I* « — e32kf f f —eielkrnu gtos d% dr (14) 
Jo Jo P 

over the aperture plane. On setting up the radiation field on the basis 
of the aperture field by the methods of Sec. 5T2 it will be found that the 
same result is obtained for the pattern as that from the use of Eq. (14) 
in conjunction with Eqs. (12). Thus, the current-distribution method 
passes into the aperture-field method as the angular spread of the pat¬ 
tern decreases, that is, as the ratio of the wavelength to aperture diam¬ 
eter, X/D, approaches zero. The significant difference between the 
results of the two methods is the dependence of the pattern on the ratio 
X/D. It was shown in Sec. 6-8 that on the basis of the aperture-field 
calculation, the angular distribution of the secondary pattern is propor¬ 
tional to A/D for a given relative distribution over the aperture and the 
side-lobe intensities are independent of A/D. On the other hand, it has 
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been found in a study of special forms of (?/(£,0) by the current-distribu¬ 
tion method, using the complete expressions Eqs. (12a) and (126), that 
the side-lobe intensity is also a function of \/D, which asymptotically 
approaches the value given by the aperture method as \/D approaches 
zero. 

Principal E- and H-plane Patterns.—In an arbitrary direction the 
field has both the Ee- and the E^-component. They are generally out of 
phase with the result that the field is elliptically polarized (cf. Sec. 3*12). 
However, in the principal planes—the planes 0 = 0 and 0 = w/2—the 
field is linearly polarized in the direction determined essentially by the 
principal polarization component of the aperture field. Considering 
the /?-plane, 0 = 0, we see that the ^-component of lt which arises from 
the cross-polarization component of the current distribution (or aperture 
field) vanishes because contributions from points in the reflector that 
are symmetrically located with respect to the .rz-plane are 180° out of 
phase. The field is produced by the Iz- and /^-components and, 
therefore, has only an /^-component which lies in the A-plane. 
Similarly it is found that in the //-plane the field has only an ^-compo¬ 
nent and is, therefore, everywhere normal to the //-plane and parallel 
to the principal component of the aperture field. Again, since the 
cross-polarization components of the current at a pair of points on the 
reflector that are symmetrically located with respect to the yz-plane are 
180° out of phase, their resultant contribution to the //-plane vanishes. 
It was noted earlier that the longitudinal current element contributes 
nothing to the /^-component; therefore the //-plane field is produced 
entirely by the principal component of the aperture field. Using the 
aperture-field approximation [Eq. (14)], we find that the principal plane 
patterns are 

a. £,-plane: 

E>==S e~‘kH [(0 £]cos 61 (15 o) 

with 

Itx = r**” p j* e» e>k'«*» -«r d$ dr; . (1») 

b. //-plane: 

(16a) 

with 

4 = e-,(St/) /° f' «„ e>*r.to em ( r dr> (166) 

The two patterns have the same value, of course, along the axis (in the 
direction $ = 0). 
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Cross Polarization.—The polarization of the field in a pencil beam is 
generally expressed with reference to the x- and y-axes rather than 
the spherical coordinate directions as we have done above. The use 
of the cartesian components has associated with it an error in that the 
field is transverse to the radial direction from the origin and not to the 
z-axis; but if the beam is narrow, the error is small. The latter mode of 
description has the advantage that the AVcomponenf is associated directly 
with principal polarization component of the aperture field and the 
^-component with the cross-polarization component. The Ex- and 
/^-components are designated correspondingly as the principal polariza¬ 
tion and cross-polarization components of the secondary pattern. They 
are given by relations equivalent to Eqs. (12) with ie • I and i* • I replaced 
by Itx and ItVt respectively. 

By using the cartesian components, the secondary pattern is resolved 
into a principal polarization pattern and a cross-polarization pattern. 
The A- and //-plane patterns given by Eqs. (15a) and (16a) belong to 
the former. It is obvious that the symmetry properties of the aperture 
field with respect to the principal planes, which lead to zero cross polari¬ 
zation in those planes, do not hold for other directions in space. The 
cross-polarization pattern must, therefore, have maxima in the four 
quadrants between the principal planes. A detailed analysis1’ shows 
that the cross-polarization pattern takes the form of four lobes whose 
maxima lie in the 45° planes between the principal planes. Any 
two lobes related by reflection in a given principal plane are out of 
phase by 180°. The maxima of one set of lobes occur at angular dis¬ 
tances from the paraboloid axis equal to the position of the first minimum 
of the principal polarization pattern, which is very closely equal to 
the half-power width of the main lobe. A second set of cross-polarization 
lobes appears at much wider angles; the peaks are quite low, but the 
lobes are very broad and therefore represent a not completely negligible 
fraction of the total energy. 

Cross-polarization studies should be made on all antennas on which 
the side-lobe specifications are very stringent. Although the principal 
polarization lobes may meet the operational requirements, the cross¬ 
polarization lobes may not. Furthermore, since they lie close into the 
main beam, they effectively increase its width. 

12*5. The Antenna Gain,—The gain is generally the primary con¬ 
sideration in the design of the antenna. The factors affecting the gain 
are treated conveniently in three parts: (1) the dependence of the opti¬ 
mum angular aperture ¥ on the feed pattern, for a fixed diameter D in 
the aperture plane, assuming that Gy(£,^) = 0 for 90°; (2) the back- 
lobe interference effect; and (3) phase-error considerations. In this 

1 E. U. Condon, “Theory of Radiation from Paraboloid Reflectors,” Westinghouse 
Report No. 15, Sept. 24, 1941. 
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discussion the primary pattern will be taken to be circularly symmetrical, 
independent of £; as was noted in Sec. 12*1 this means that in practice 
the feed pattern is replaced by the arithmetic mean of its principal 
E- and iZ-plane patterns. It is immaterial for the calculation of gain 
whether the surface-current or aperture-field distribution is taken as 
the starting point, because as was pointed out above, the longitudinal 
component of the current is ineffective in determining the peak intensity. 

Optimum Angular Aperture Relations.—The field intensity in the 
secondary pattern on the axis at a distance J?o from the focus is given by 
either Eq. (15a) or (16a) for 6 = 0. For the present purpose, it is more 
convenient to express Itx in the form of Eq. (13a) as an integral over the 
surface of the reflector rather than in the form of Eq. (156); we have 
then 

E(/?,0,0) - i* 

J J ci x[G/(^)]^e~/*p<1+p<"*> P sin ^ d\p d£. (17) 

The polarization component e\x is in general a function of £ and because 
of the presence of cross polarization. However, in most cases of interest 
the cross polarization e\v is a very small fraction of the total field and the 
variation of ei* over the aperture may then be neglected. Introducing 
the equation of the paraboloid [Eq. (3)] and performing the integration 
over £, we get 

E ~ [8 (mT e~’k(Ro+2/) J* [<?/(*)]* tan | #. (]8) 

The power per unit solid angle P(0,0) radiated in the forward direction 
is given by 

mo) (£)" W .,0,0)1*, (19) 

and the antenna gain is obtained from it as 

G = f(0,0) 
Pt 
4tt 

(20) 

because the total power radiated by the antenna as a whole equals that 
radiated by the feed. The gain is thus found to be 

<?= |/o* [G/«01» tan | d^. (21) 

The focal length is related to the angular aperture and the aperture diam¬ 
eter D by 

(22) 
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Substituting into the preceding relation, we obtain finally the working 
formula 

G = cot2 |1J* tGM)]» tan \ d*|*. (23) 

The factor (ttZ)/A)2 is the gain for a uniformly illuminated constant- 
phase aperture; the rest is the gain factor or efficiency 

g = cot2 ^ [G,(f)]u tan | . (23a) 

Thus the efficiency is a function only of the feed pattern and the angular 
aperture; that is, for a given feed pattern, the efficiency is the same for 
all paraboloids having the same f/D ratio. 

It is instructive to consider the class of feed patterns defined by 

Gf{$) = 6T> cos" i, 0 ^ i 

= 0 * £ J (24) 

Many feed patterns can be represented by some one member of this class 
over a sizable portion of the main lobe. The gain G(0n) is determined by 
the condition that 

J (?,(*) dS2 = 4t, 

dtl being the element of solid angle; this gives 

GP = 2(» + 1). (24a) 

Substituting Eqs. (24) and (24a) into Eq. (23a), we obtain 

8 = 2(n + 1) [cot ~ J cosn/2 ^ tan dyp > (25) 

with the following explicit expressions for the even values of n between 
n = 2 and n — 8: 

(Str \Ir\ 2 ^ 
sin2 + In cos 1 cot2 ^ ! 

('Sr 4>V ^ 
sin4 -g + In cos ^ ) cot2 

n ,, r„ *, (i - cos *)*, i..T i* .. * 
s, = 14 2 In cos ^-- + 2 sm2 cot* jjS 

,nfl - cos4* 'S' (1 — cos 4')* 1 . ,.J* i4* 
9* = 18 -1-2 In cos g - --3-'-jj an *J cot Y 

These results are shown graphically in Fig. 12-3, where 9» is plotted as 

+ In cos 

„ , ¥ , (1 — cos 40s , 
2 In cos ^-- + 

* 
cot* J; 
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a function of the angular aperture For each primary pattern there 
is an optimum aperture for which the maximum gain factor is attained. 
The more directive the feed pattern the smaller is the optimum aper¬ 
ture and, since the diameter of the aperture plane is constant, the longer 
is the optimum focal length. The general course of the curves and the 

0 UkL_I_I_I_I_l_l_I_l_l_I_\ \ \ i ill 
0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

Angular aperture 
Fio. 12*3.—Dependence of the gain factor on angular aperture and primary feed pattern. 

OfW) - 2(» + 1) cob” 0 < | 

- 0, * > f ■ 

existence of a maximum are readily understood when it is recognized 
that the gain factor arises essentially as a product of two factors: (1) 
the fraction of the total power radiated by the antenna feed that is 
intercepted by the reflector and is thus made available to its aperture 
for the main beam and (2) the efficiency with which the aperture 
concentrates the available energy in the forward direction. The first 
factor obviously increases with increasing angular aperture. The 
second factor, determined by the field distribution over the aperture, 
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decreases with increasing for as ^ increases, the illumination over the 
aperture becomes more and more tapered toward the edge relative to 
the center. This tapering is accentuated by the superposition of the 
space attenuation factor 1/p on the already directive feed pattern 
[Gy WO]**; as was shown in Chap. 0, such tapering of the illumination 
results in a decrease in aperture efficiency. The optimum angular 
aperture represents the proper compromise between spillover of the 
feed energy and aperture efficiency. For an arbitrary (jy(^), the optimum 
angular aperture is obtained as a solution of 

^sin2i IGA'P)?- tan | (26) 

a relation obtained by setting the derivative of Eq. (23a), dg/r/M', equal 
to zero. 

The values of the gain factor at the maxima in Fig. 12*3 are consid¬ 
erably higher than the values realized in practice. This is because ideal¬ 
ized feed patterns have been assumed in which no feed energy is radiated 
beyond \p = 90°. As a result the gain Gi>n> of the idealized pattern is 
much greater than the gain Of 0 of an actual feed whose main lobe can 
be represented closely by Gf0 cos" \f/ but \\ liich in addition radiates 
beyond 90°. The gain factor g re¬ 
alized with the actual feed is re¬ 
lated to Sn by * cno 

8 = 2(n + 1) 8n- (27) |100 

The value of the optimum angular gQ 
aperture is unaffected by this seal- i 
ing in the primary feed gain. It J* 80 
will be observed that the value of % 
the maximum varies but slowly g 70 
with the illumination function. 
The broader the primary feed 60 
pattern the broader is the maxi¬ 
mum in the g-CUrve and the less 1<iq. 12.4-Cutoff point m primary feed 

critical is the choice of angular pattern for maximum gam as a function of the 
. , sharpne&H of the feed pattern. 

aperture. It is convement to 
designate the optimum angular aperture in terms of the decibel level 
of the primary pattern at the edge of the aperture relative to its maxi¬ 
mum. Thus for a cosine-squared pattern the optimum value of Sfr cor¬ 
responds to that angle in the primary feed pattern at which the power 
is 8 db down from the peak intensity. The decibel-cutoff point in the 
primary pattern is plotted as a function of the directivity in Fig. 12*4. 
The decibel-cutoff point again is not a sensitive function of the directivity. 
For most feeds the average optimum figure is from 9 to 10 db. 
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The optimum angular aperture can also be expressed in terms of the 
intensity of illumination at the edge of the reflector relative to that at 
the vertex. This is obtained by multiplying the ratio of the primary 
pattern intensities Gw/Gfty) by the ratio of the space attenuation 
factors p2//2. If is found in the case of each of the distributions studied 
above that the optimum angular aperture corresponds to an edge illu¬ 
mination 11 db below the vertex illumination. 

Back-lobe Interference.—The above results may be modified signifi¬ 
cantly by the effect of interference between the back lobe of the primary 
feed pattern and the reflector field. Let be the gain of the antenna 
feed in the direction \p = 180°. The back-lobe field intensity at the field 
point (/20,0,0) along the axis is then 

The choice of positive or negative sign is made according to whether the 
field of the feed in the direction \f/ = ir is parallel (in phase) or antiparallel 
(180° out of phase) to that in the direction = 0. Superposition of the 
back-lobe field on the reflector field [Eq. (18)] yields the total field 
intensity 

r ill.--(¥-s) 
r* 

Jo 
[G/(*)J* tan | df ± G*» } (29) 

By the procedure followed previously the gain factor is found to be 

_ (tt * *\Ti ,2X(?xH * . (tD ,*\ , XV, , + 
(irDUayt&ni2 } 

where 

u„ = jf tan | #. 

(30) 

(30a) 

In most cases of interest Gr is so small that the last term in Eq. (30) is 
negligible; under this condition the gain factor becomes 

8 = (c/o cot |) [l ± ^ tan f sin cot f)} (31) 

The term in brackets is the modification of the previous result introduced 
by the back-lobe interference. This modification introduces an addi¬ 
tional X/D dependence; the interference effect depends on the ratio of 
the back-lobe field intensity to the reflector field intensity, and the latter 
is proportional to D/\. For a given primary pattern 8 is no longer a 
function of the paraboloid shape alone. 
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The back-lobe effect is illustrated graphically in Fig. 12-5. The 
curves pertain to an actual feed—the |-in. stub-supported dipole-disk 
feed of Sec. 8*8—and a reflector with a 30-in. aperture diameter; the 
wavelength is 10 cm. The main lobe of this particular feed is fitted 
closely by the function 

G(\p) = 7.0 cos4 \p. 

It will be noted that the gain is 7, as compared with G&4) = 10 for the 
idealized cos4 ^ pattern used previously. The back-lobe gain Gx is 
0.142. Curve A is the relation between the gain factor and aperture, 

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
Angular aperture 

Fig. 12*5.—Effect of back lobe on gain. 

neglecting the back lobe, while Curve B includes the interference effect. 
The gain falls above or below Curve A according to whether the back 
lobe is in phase or out of phase with the reflector field. The two fields 
add when the focal distance is such that, together with the 180° phase 
change at the reflector, the field of the latter is brought into phase with 
the back lobe. The points of maximum deviation from Curve A corre¬ 
spond to differences in focal length very nearly equal to X/2. The 
optimum aperture is not altered noticeably, but the maximum realizable 
gain factor increases by 2.5 per cent. The effect is small for this par¬ 
ticular feed because the back-lobe level is so low relative to the main lobe. 
With feeds such as the 3-cm-band double-dipole feed discussed in Sec. 
(8*9), having a comparatively high back-lobe level, the back-lobe inter¬ 
ference effect is much more significant. 
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Phase-error Effects.—It was pointed out earlier that a diminution of 
gain results from any departure from uniform phase over the aperture 
that, however, leaves the peak intensity on the axis of the paraboloid. 
The direction of peak intensity remains unchanged if the phase-error 
distribution over the aperture is independent of £; this discussion is con¬ 
fined to such distributions. The phase deviation can arise from a 
number of sources: (1) deviation of the reflector from a paraboloidal 
shape, (2) defocusing (displacement of the feed center from the focus), or 
(3) deviation of the antenna-feed wavefronts from spherical wavefronts. 
From the point of view of the aperture it is immaterial which of the three 
factors is operative. To tie in with the preceding discussion of the rela¬ 
tion between the reflector and the feed pattern, the phase-error source will 
be taken to be the third of the above, that is, the absence of a true center 
of feed. Back-lobe interference will be neglected. The final results can 
easily be interpreted in terms of equivalent errors arising from surface 
distortion or defocusing. Let us then assume that the field-intensity 
pattern of the antenna feed has the form 

e - [2 (fy 5 e~,km) eM)’ (32) 
where 5(^) represents the phase error in the feed pattern. A review 
of the steps leading to the field intensity E(R0,0,0) of the secondary 
pattern on the axis, given in Eq. (18), will show that the only change 
introduced in Eq. (18) is the replacement of [Gf(\p)]M by [Gf(\l/)]1/1e~3k8^K 
By precisely the same development as before, the gain factor is given by 

S = cot2 f (|y*0 [G/d)]* cos j tan | df J 
+ lio G/^H sin tan t d^\ )‘ 

By way of illustration, the effect of a quadratic phase error has been 
computed for the primary pattern of the dipole-disk feed considered 
above in connection with back-lobe interference. The phase function 
is taken to be 

The optimum angular aperture in the absence of phase error is taken as a 
base for comparison and a is adjusted to produce a preassigned phase 
error at the edge of the aperture for that case. The curves given in Fig. 
12*6 are for values of a that result in phase errors of X/24, X/16, X/8, and 
X/4 at the edge of an aperture of angle 'f' = 61°. The loss in gain is 2 per 
cent for an error of X/16 at the edge, 6 per cent for X/8, and 20 per cent for 
X/4. The effect of a highly tapered illumination is shown in Fig. 12*6 by 
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the values of the gain factor for the aperture of angle ^ = 90°. For this 
value of the «i curve represents a phase error of approximately X/ll at 
the edge, while the a2 curve represents an error of approximately X/6; the 
corresponding losses in gain relative to the a = 0 curve are 2.7 and 3.6 
per cent respectively. Since the gain curves are not very sensitive to 
the illumination, the results obtained here for the cos4 ^ distribution 
may be taken as characteristic; a conservative evaluation sets X/8 as 
the maximum allowable phase deviation over the aperture. 

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
Angular aperture 

Fig. 12*6.—Phase-error effects on gain. 

There is another aspect of the feed pattern that should be noted in 
connection with phase-error effects. The discussion above is based on 
the assumption that the reflector is illuminated by the main lobe of the 
feed. For some purposes it may be desirable to accept the loss in gain 
associated with a large angular aperture in order to suppress the side 
lobes. The angular aperture, however, must not extend beyond the 
first minimum of the feed pattern. Generally, in passing through a 
minimum (more exactly a null) in the feed pattern there is a discontinuity 
of 180° in the phase. Inclusion of any portion of the pattern beyond 
the minimum thus introduces completely out-of-phase illumination at 
the periphery of the aperture, with a very serious reduction in gain. 

Results similar to those obtained above are obtained when the phase 
error arises from defocusing. As shown in Fig. 12-7, if the center of feed 
is displaced a distance do from theffocus along the axis, the phase-error 
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function is 
8 
X 

5o . 
-r- COS 
A 

(34) 

The X/8 criterion indicates a focusing tolerance related to the angular 
aperture by 

<50 = g sec 

6 ss cos ^ In practice, the focusing condi¬ 
tion is not adhered to rigidly. It 
is not practicable to tailor every 
reflector to the feed, because fre¬ 
quently it is necessary to inter¬ 
change feed systems. In these 
cases the back-lobe interference 

effect may be a decided asset; by defocusing to bring the back lobe in 
phase with the main beam it may be possible to achieve an increase in 
gain that far exceeds the loss due to defocusing phase errors. This is 
particularly true with feeds such as the 3-cm-band double-dipole feed 
which has a very large back lobe. 

Design Procedures.—The theoretical analysis may be summed up in 
terms of design procedures for realizing a maximum gain factor: 

Fio. 12*7.—Defocusing phase errors. 

1. The shape factor f/D is to be chosen so that the full angle sub¬ 
tended by the reflector at the feed is in the range between the 9- and 
10-db widths of the primary feed pattern. A more exact value for 
a given primary pattern is obtained by solving Eq. (26). 

2. The focal length of the paraboloid should be an integral number of 
half wavelengths fm = mX/2 if the back lobe of the primary pat¬ 
tern is 180° out of phase with the main lobe; if the back lobe and 
main lobe of the primary pattern are in phase, the focal length 
should be/m = (2m + l)X/4 where m again is an integer. Under 
these conditions the back lobe will be in phase with the paraboloid 
beam and add to the gain. If it is not possible to satisfy these 
requirements exactly, the feed should be placed at the point, 
nearest the focus, at which the distance to the vertex satisfies the 
half- or quarter-wavelength requirement. 

3. Deviations from constant phase of the aperture should be kept 
within X/8 and certainly should not exceed X/4. Two factors 
contribute to phase error: distortion of the paraboloid surface and 
deviation of the primary wavefronts from spherical waves. With 
reference to the first of these the phase-error criterion can readily 
be converted to tolerances that may be allowed in constructing the 
reflector. As concerns the feed, the phase-error criterion serves 
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to define the point-source cone (cf. Sec. 8-1). The angular aperture 
of the paraboloid should lie within the point-source cone. 

12*6. Primary Pattern Designs for Maximizing Gain.—Mention 
should be made of the technique of shaping the primary feed pattern 
so as to produce uniform illumination over the aperture and thereby to 
maximize the gain. The required primary pattern is obtained directly 
from the expression for the aperture field in Eq. (11). For E(r,£) to be 
constant, the primary pattern must be such that within the cone sub¬ 
tended by the reflector at the feed 

In addition, the feed must radiate no energy outside the angular aperture 
^ in order to realize the gain of At A /X2. The value of Gf0 is obtained 
from the condition 

Gy(£,^) sin d\f/ = At, 

whence 

It is, of course, impossible to produce a pattern having a sharp cut¬ 
off, but the required pattern can be approximated quite closely. Tech¬ 
niques of shaping the primary patterns of horn feeds are discussed in 
Sec. 10-16. It will be noted that the pattern [Eq. (35a)] has a minimum 
in the direction $ = 0. In order to produce such a minimum consid¬ 
erable phase distortion must be introduced over the mouth of the horn. 
Such feeds must be used with caution, for a concomitant effect of the phase 
distortion to that of producing the desired intensity distribution may be 
that of eliminating the center of feed. This will result in phase errors in 
the field over the aperture of the reflector that may well cancel the gains 
which might have been made by the uniform illumination. 

12*7. Experimental Results on Secondary Patterns.—The relation 
between the secondary pattern and the aperture-field distribution can 
be studied by evaluating the expressions in Sec. 12-4 for the secondary 
pattern for a number of different types of gain functions Gy(£,^). The 
essential results of such calculations have been summarized in Sec. 6.8. 
In this section the relation between the principal-plane patterns and the 
aperture will be discussed by reference to experimental data. The 
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material will also serve as a presentation of the performance of several 
of the more important types of feeds described in earlier chapters. 
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Fig. 12*8.—Principal plane patterns as a function of diameter for a series of paraboloids of 
f/D — 0.25; X = 4.00 in.: (a) 2?-plane; (b) /f-plane. 

The dependence of the pattern on the diameter for a given relative 
distribution over’the aperture is exemplified by the series of patterns,1 

10,-----,-,—, o shown in Fig. 12-8, for a set of 
| H ~ J j - 2 paraboloidal antennas all of the 

JS * —1V*^**.. T * 4»J», f/D - 0.25, »d il- 
.2 \\ 11 - 6 luminated by the same antenna 
•| N>t7irs : side lobe -8 feed. The latter is a coaxial-line¬ 
's *3-~--- 10 fed double-dipole feed of the same 
'g 3-L_J 1__-= 12 general type as was discussed in 
8 4-^—Ca[ -.-14 ]§ Sec. 8*9. The installations are 

. 2_\ vside lobe_- 16 g the rear-feed type m which the 
- 18 feed line lies along the axis of the 

1 Z=^Sidelo& _N^^= 20 reflector, passing through its ver- 
j 3-^ ——= 22 tex (c/. Sec. 12-11). The focal 
§ 4-^L- 24 length in each case is an integral 

06 2_I 26 multiple of a half wavelength so 
“ 28 that the interaction between the 

0,01 q—£—16 24 32 40 48J 30 aperture beam and back lobe of 
Diameter, in. the feed along the axis is the 

Fig. 12*9.—Dependence of relative height of same for all members of the 
side lobes on aperture diameter. series. 

It is observed that with increasing diameter the beamwidth decreases 

lL. C. Van Atta, “Effect of Paraboloid Sise and Shape on Beam Patterns,” 
EL Report No. 54-9, Aug. 5, 1942. 

Large angle\ 
t side lobe J 
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and the side lobes move in toward the axis. The intensities of the side 
lobes are diameter dependent, contrary to the results of the aperture 
theory. However, as was noted in Sec. 12-4, such deviations are to be 
expected for large values of X/D. Figure 12-9 shows the variation of 
side-lobe intensity with diameter. The intensity approaches an asymp¬ 
totic value as X/Z) decreases, becoming independent of the diameter as 
the latter becomes large compared with the wavelength; the asymptotic 
limit agrees writh aperture theory predictions. The diameter dependence 
of the side lobes may be accounted for only in part by the corrections 
to the aperture theory that are contained in the current-distribution 
method for calculating the pattern (X* Sec. 12*4). Another significant 
factor is the overlapping between the primary feed pattern and the 
aperture pattern. The overlapping also has the effect of filling in the 
minima. It is seen that in some cases the side lobes have been fused 
into the main lobe and appear only as shoulders. The same effect is 
produced by phase errors in the aperture field (c/. Sec. 6-7). 

The beamwidth also shows an anomalous behavior from the point 
of view' of aperture theory. According to the latter the product of the 
beamwidth and D is a constant for a given distribution over the 
aperture. The products for each of the principal plane patterns of 

Table 121.— Beamwidth and Gain Factor as a Function of Diameters. 

O is m radians 

D ]) 
Diam , in \ He 

A A 8 
i 

8 1 22 1 07 0 66 
ia 1 44 1 15 0 63 
24 1 42 1 25 0.62 
32 1 40 1 28 0 59 
48 1 47 1 38 0.50 

Fig. 12*8 are listed in Table 12T; it is seen that the product, for each of 
the principal planes, varies with the diameter. The i-plane half width 
appears to be approaching an asymptotic value that is proportional to 
X/Z). The difference between the E- and H-plane beamwidths can be 
correlated with the directivity of the feed. Because of the directivity 
of a single dipole in the ZF-plane, the pattern of the double-dipole system 
is likewise more directive in the 2?-plane than in the ZZ-plane. Conse¬ 
quently, the aperture field is more tapered in the j£-plane than the 
ff-plane, and the former has a broader secondary pattern. 

The variation of the gain factor g with diameter, as shown by Table 
12-1, arises from, the back-lobe interference effect. Along the axis in 
each case, the back lobe of the feed adds to the field produced by the 
reflector. Since the latter is proportional to Z)/X, the addition of the 
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back-lobe intensity produces a greater fractional increase in the total 
intensity and peak power for smaller diameters than for large diameters 
and correspondingly larger gain factors. 

It will be of interest to record the data on the performance of the 
waveguide double-dipole feed shown in Fig. 8-14 and of the stub-ter¬ 
minated dipole-disk feed shown in Fig. 8*10 because of their extensive 
use. The beam characteristics obtained with the double-dipole feed1 

Table 12-2.—Performance of the Double-dipole Feed in Variou sParaboloids. 

V is the distance from the vertex of the paraboloid to the front edge of the waveguide 

Paraboloid 

V, 
cm (±1%) 

i 

Beamwidths Side lobes, db down 

Diam, 
in. ■ 

Focal 
length, 

in 
ff, ff. Ei Et 

18 4 5 10 8 0 61 
1 2 1 27 27 30 25 30 

18 5 67 13 9 0 61 
1 25 1 2 24 29 25 29 

18 6 0 14 2 0 64 
1 15 1 15 26 27 26 30 

24 8 0 19 5 0 63 
1 13 1 20 22 28 23 28 

30 24 0 0 60 
1 25 1 16 22 28 25 28 

at a wavelength of 3.2 cm are summarized in Table 12*2. Hi and H2 
are the first and second side lobes in the 17-plane; E\ and E2 designate 
the corresponding lobes in the -E-plane. 

The data for the three 18-in. diameter paraboloids can be compared 
for the effect of tapered illumination; the longer the focal length the 
less tapered is the aperture illumination with a given primary pattern. 
The effects are quite evident in the decrease in the E-plane beamwidth 
and the rise in the E-plane side-lobe intensity levels; the Hi lobe of the 
paraboloid of 5.67-in. focal length is an exception to the general behavior. 
The E-plane characteristics are also anomalous. The discrepancies are 
caused by the peculiar properties of the feed. As was pointed out in 
Sec. 8-9, the centers of feed are different in the E- and E-planes; this 
gives rise to small defocusing phase errors. In addition, the back-lobe 
intensity is large, and the position of the feed on the axis is determined 
primarily by the optimum interaction between the back lobe and main 
lobe rather than by the focal point of the reflector. The last three rows 
form a sequence of paraboloids of the same shape; here too it is seen that 
the behavior is not in accord with the more systematic characteristics 
observed in the set of patterns considered in Fig. 12*8. While the char¬ 
acteristics of the feed leave much to be desired from the standpoint of 
theoretical analysis of the patterns, the pattern characteristics given in 
Table 12*2 are highly satisfactory for operational purposes. 

1W. Sichak, “ Double-dipole Rectangular Wave Guide Antennas/1 EL Report No. 
54-25, June 26, 1943. 
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The stub-supported dipole-disk feed is the one to which the gain 
factor curves in Fig. 12*5 apply. The patterns obtained1 with a reflector 
of 30-in. diameter and 10.6-in. focal length, at a wavelength of 10 cm, 
are shown in Fig. 12*10. The angular aperture of the paraboloid is 

Angle 
Fig. 12*10.—Principal plane patterns of 30-in.-diameter paraboloid (///> = 0.364) 

illuminated by the dipole-disk feed; X ■» 10 cm;-i?-plane;-//-plane; @j® ** 10.2°; 
&h - 9.6°. 

yfr = 70.5°, larger than the theoretical value of 60° for a maximum gain 
factor. Whereas this represents a small loss in gain, the larger angular 
aperture results in a more tapered illumination over the aperture plane 
and better side-lobe characteristics. The half-power widths (in radians) 

are 

0, = 1.40 0* - 1.26 fi¬ 

ts. Breen and R. Hiatt, “Antenna Feeds for f-m. Stub-supported Coaxial line,” 

RL Report No. 84-23, June 21, 1943. 
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Attention was called in Sec. 8'3 to the fact that with a feed of this 
type the axis of the beam does not coincide with the axis of the reflector. 
The deviation is not shown in Fig. 12-10 because of its small magnitude; 
it is less than half a degree. The squint phenomenon has great opera¬ 
tional value; by rotating the feed about its axis, the antenna beam 
is made to describe a cone, thus creating an effective cusp-shaped mini- 

I 
I 

I 
I 

/Phase 
/ front 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

(6) 
Fig. 12*11.—Production of squint by the asymmetric dipole: (a) current on the feed; (b) 

distortion of the phase front. 

mum along the axis of the paraboloid. The intensity differentiation in 
the cusp is more sensitive than on the peak of the beam, and by this 
technique the accuracy of pointing the antenna at a target is increased. 

The production of the squint may be understood by reference to 
Pig. 12-11. It will be recalled (Sec. 8*3) that the asymmetric dipole 
termination gives rise to currents along the outer conductor of the coaxial 
line, and the effect of the choke is to confine the line current to the 
terminal region as shown in Fig. 12*1 la. The feed can be regarded as 
two radiating elements: A the transverse dipole current and B the axial 
current. The relative magnitudes and phases are determined by the 
position of the choke. The primary pattern of A is the normal type 
of pattern shown in Fig. 12*116 and gives rise to the field distribution in 
the aperture that we have discussed previously (c/. Fig. 12*2). The 
pattern of the element B has a null along the axis; it produces a 
field distribution over the aperture in which the electric vector along 
any diameter undergoes a reversal in direction through the center, 
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which is equivalent to a 180° reversal in phase. The space relationship 
between the aperture fields of A and B in the 2?-plane are shown in Fig. 
12-116. If the current elements A and B are in phase, the fields at two 
diametrically opposite points in the A-plane, such as xi and x2 in the 
figure, are a — 6 and a + 6, respectively; there is no distortion of the 
phase front, providing b is always less than a. If, however, there is a 
phase difference <£ between the currents, the resultant fields at the same 
two points are a — be~3* and a + 6c“'?*, respectively; the resultant phases 
are 

Xi) tan-1 

0*2; — tan- 

b sin $ 
— b cos V 

6 sin $ 
a + 6 cos $ 

The aperture is no longer an equiphase surface; the phase front is tipped 
with respect to the aperture as shown in the figure. 

For a given position of the choke, the beam deviation varies with 
frequency. In the case of the antenna whose patterns are shown in Fig. 
12*10, the observed variation is as follows: X = 9.7 cm, deviation = 0.3°; 
X = 10.0 cm, deviation = 0.19°; X = 10.3 cm, deviation = 0.38°. 

Finally, it should be mentioned that the current element B produces 
cross polarization in the ii-plane. This, however, does not affect the 
accuracy of pointing, since the cross polarization is zero along the axis. 

12*8. Impedance Characteristics.—Another consideration of major 
importance in the design of an antenna is the impedance bandwidth. 
The impedance characteristics are the resultant effects of the impedance 
characteristics of the antenna feed in free space and the mismatch pro¬ 
duced by the interaction between the reflector and the antenna feed. 
The latter problem was treated quite generally in Sec. 5*10. It was 
shown that if the feed in free space is itself matched to the line, the 
reflector gives rise to a reflection coefficient 

rr = cos dS (5.97) 
Js. W 

in the transmission line. Gy(^,£) is the gain function of the feed; i is 
the angle of incidence at the point (p,^,£) on the reflector. If the feed 
in free space is mismatched, with a reflection coefficient Tf} measured 
at the same point in the line to which Tr is referred, the total mismatch 
of the antenna is to a good approximation the sum 

r - r, + rf; (37) 

that is, the reflection coefficients add vectorially on the reflection 

coefficient chart (Sec. 2*8). 
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If the wavelength is small compared with the focal length and aper¬ 
ture diameter, the asymptotic value of Eq. (5-97), given by Eq. (5-98), 
may be used. For the present case of the feed at the focus of the parab¬ 
oloid, the radii of curvature R$ and Rv at the point of normal incidence, 
which is the vertex, are both equal to —2/, and pn is equal to /. We have 
then 

r as e-;(2A/+fi) 
r 4trf6 

(38) 

More generally, if the feed is on the axis near the focus, but at a distance 
p from the vertex, the reflection coefficient of the reflector is 

Tr « ~ (38a) 
Qirj 

The magnitude of the reflection coefficient 

|rr| - ^ (39) 

Fig. 12*12.—Variation of the reflection coefficient with position of the feed along the axis; 
-experimental,-theoretical curve as obtained from Eq. (38a). 

can be determined by measuring the total reflection coefficient r as a 
function of position of the feed along the axis. The feed reflection coeffi¬ 
cient r, remains fixed, whereas r, undergoes a cyclic variation by virtue of 
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the changing distance to the reflector. Over small distances about the 
focal point |rr| is essentially constant. As the feed is moved along the axis, 
the total reflection coefficient therefore describes a circle in the reflection 
coefficient plane corresponding to the rotation of rr about the terminal 
point of the vector T/; this is illustrated in Fig. 12-12. The magnitude of 
Tr is determined directly from the radius of the circle.1 The measure¬ 
ments can, in fact, be used to obtain the gain Go/ of the feed pattern by use 
of Eq. (39). 

- 
Magnitude of T vs.f 
Feedi-g'in. stub-supported- 

dipole-disk. 

Wavelength: 9.1 cm 

-Theoretical 

-Experimental 

- 

[-24” 
s' 

s' ^S 
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- 
y 
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- -30” 

l30” 
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-48” 
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.0.3 
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jr(cnfl) x 102 

Fig. 12*13.—Contribution of the paraboloid to the reflection coefficient as a function of 
focal length. 

The data presented in Fig. 12*12 were obtained with the stub-sup- 
ported dipole-disk feed shown in Fig. 8-10 and a paraboloidal reflector 
of 10.6 in focal length and having an aperture diameter of 30 in. The 
gain of the feed was evaluated by graphical integration of its primary 
pattern, and the theoretical curve of Fig. 12*12 was then obtained from 
Eq. (38a), the constant 5 being adjusted to make the theoretical and 
experimental values agree at the focal point. Similar studies with the 
same feed in a series of reflectors of different focal lengths gave the results 
shown in Fig. 12*13, demonstrating the applicability of Eq. (39).2 

It is seen from Eq. (37) that the process of matching the antenna— 

1S. Silver, “ Contribution of the Dish to the Impedance Mismatch of an Antenna," 

EL Report No. 442, Sept. 17, 1943. 

* Ibid. 
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reducing r to zero—by means of a transformer in the line can be regarded 
as that of transforming the mismatch Tf of the feed in free space into 
— rr. Therefore, if an antenna is matched with the feed at a position 
pi, it will also be matched with the feed at positions pi ± rik/2, where n 
is an integer, for rr has the same value at all these points [c/. Eq. (38a)] 
Furthermore, the* feed can be placed in an entirely different paraboloid; 
and providing the distance from the vertex is p2 = Pi ± nX/2, a good 
impedance match will be obtained. A small difference will be observed 
from the value obtained with the original reflector because of the different 
magnitude of Tr, but the phase relations between Tf and Tr in each case 
are the optimum for minimizing the total reflection coefficient. If the 
distance pi is chosen to be the closest to the focal length that is equal to 
an integral number of half wavelengths, the feed may be placed at the 
corresponding half-wave points in other paraboloids with both the proper 
conditions for impedance match and the constructive superposition of 
the back lobe and main lobe being maintained.1 

The seriousness of the mismatch caused by the reflector lies in its 
frequency sensitivity. Since the focal length is large compared with X, 
a small change in the latter produces a large change in the phase of I\. 
The antenna can easily be matched at one wavelength X0 by a conven¬ 
tional type of matching transformer (cf. Chap. 7). However, the char¬ 
acteristics of the transformer do not vary rapidly enough with frequency 
to follow the rapid change in the phase of rr and in any case do not 
necessarily vary in the proper direction. The total reflection coefficient, 
therefore, varies rapidly with frequency. For this reason it is necessary 
to eliminate the mismatch caused by the reflector by other methods in 
order to realize satisfactory impedance characteristics over a wide fre¬ 
quency band. 

There are two obvious solutions to the problem. One is to reduce the 
reflection coefficient of the reflector to zero.2 For this purpose we must 
return to Eq. (5*97), which formulates the reflection coefficient as a 
superposition of contributions from the entire reflector surface. The 
matching technique that suggests itself immediately is to divide the 
reflector into two areas, which give integrated effects of equal mag¬ 
nitude, and then by a small displacement of one of the areas with 
respect to the other to make their contributions 180° out of phase. 
Since only a small displacement of one area with respect to the other is 

1H. Knitter, R. Hiatt, J. Bohnert, “Some Matching Properties of Antenna 
Feeds,” RL Report No. 64-13, Nov. 17, 1942. 

# N. Elson and A. B. Pippard, “Wide Band Matching of Waveguide Radiators and 
Paraboloids,” ADRDE (British) Report No. 220; W. Kock, “Method for Reducing 
Reflection Effects in Antenna Feeds,” BTL Report MM-42-160-92; S. Silver, “Analy¬ 
sis and Correction of the Impedance Mismatch Due to a Reflector,” RL Report No. 
810. 
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involved, the matching process is not very frequency sensitive. The 
bandwidth of the antenna is then largely determined by the impedance 
characteristics of the feed in free space. A second solution is to render 
the feed insensitive to the reflected radiation. This will be accomplished 
if the polarization of the latter is rotated through 90° by the reflecting 
surface. Such a rotation can be effected by introducing a suitable grating 
over the surface of the reflector. The details of the two methods will 
be developed in the following two sections. 

12*9. The Vertex-plate Matching Technique.—A complete evalua¬ 
tion of Eq. (5-97) involves considerable numerical work. For the present 
purposes the computation can be simplified by replacing by a 
circularly symmetrical function G{yp) which is the mean value of the gain 
functions in the E- and //-pianos of the feed pattern. By virtue of the 
symmetry we can take as the element of area dS the circular zone sub¬ 
tending the angle d\p at the focus. It is more convenient to base the 
integral upon the projection of dS on the aperture plane: 

dS 
2irr dr 

(40) 

The gain function G(\p) can be expressed as a function of r through the 
relation 

sin yp (41) 

Since i = ^/2, we have for the reflection coefficient contributed by the 
portion of the reflector of aperture radius r, 

r(r) = e * \pJ ? dry (42) 

constant terms in the phase being discarded, ('hanging variables to 

we get 

(43) 

(44) 
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If we take the real and imaginary parts of TO), 

and plot I(v) against R(v)} we obtain a reflection coefficient spiral for the 
paraboloid as shown in Fig. 12-14a. The vector r„ from the origin to any 
point on the spiral is the reflection coefficient due to the portion of the 

I(v) 

(0 
Fig. 12*14.—Elimination of the mismatch caused by the reflector: (a) reflection coefficient 

spiral; (b) effect of infinitely thin zone plate; (c) final position of zone plate. 

paraboloid whose aperture radius r corresponds to that point v on the 
spiral. The reflection coefficient due to the entire paraboloid is given by 
the vector to the terminal point corresponding to 

D* 
* = (46) 

For any particular case R(v) and I(v) can be evaluated numerically once 
the gain function of the feed has been measured, and the spiral con¬ 
structed accordingly. It has been found that in many cases the function 
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can be fitted satisfactorily by an exponential 

grg 

Goe-'P -*G0e-ar, (47) 

Go being the gain of the feed. Assuming this form we can evaluate 
R(v), l(v) analytically: 

R(v) - 

m = r) + !?cos(!?'’)]) ) 
(48) 

The limit point of the spiral, corresponding to v = oo, comes at 

This is to be contrasted on the one hand with the Cornu spiral in which 
Roo ~ and on the other hand with the circular aperture diffraction 
spiral in which R^ = 0 and /w is the radius of curvature of the initial 
portion of the spiral. The magnitude of the vector to the limit point is 

|rj = 
GoX 
M 

(50) 

If the aperture of the paraboloid is large, the difference between |r*|, the 
reflection coefficient due to the entire paraboloid, and |rj is small. 
We observe further that if /» X, |r J becomes G0X/4t/, independent of 
the illumination function. This is the result obtained previously from 
Eq. (38). 

It is further of interest to note that the radius of curvature of the 
spiral is 

Gok _ _ /i—av 

W 
(51) 

In the limit of a very large aperture and/» X, the center of curvature of 
the spiral in the neighborhood of v — 0 coincides with the limit point. 
Under these conditions we obtain the result that the spiral has the 
form of the diffraction spiral for a point on the axis of a circular aperture, 
independent of the feed illumination function. 



446 PENCIL-BEAM AND SIMPLEFANNED-BEAM ANTENNAS [Sec. 1210 

The method of impedance correction is as follows: The perpendicular 
bisector of Th the reflection coefficient due to the reflector, is erected, 

' and its intersection point vc on the spiral is determined (refer back to 
Fig. 12* 14a). This divides the surface into two zones, one within the 
radius re = contributing the vector Ta, the other the region outside 
re contributing The magnitudes of ra and F& are equal. Now sup¬ 
pose that an infinitely thin plate of radius rc is placed against the 
surface (Fig. 12* 14c). The path from F to the edge is/ + zc; the path to 
the center is / — zc; the average path length is /. The plate thus 
rotates Ta onto the i?-axis to coincide in phase with the contribution 
from the vertex area of the paraboloid (Fig. 12*146). It is desired to 
bring Ta 180° out of phase with Th. This is achieved by rotating r« 
by moving the plate forward a distance i (or making the plate of that 
thickness), 

t = (2m + 1) 5 - n = 0, 1, 2, • • • , (52) 

being the angle between r& and the R-axis. It is evident that only 
a small portion of the spiral in the neighborhood of v = 0 and the terminal 
vector Tt are required to determine the parameters of the correction 
plate. In most cases Tt can be replaced for this purpose by r*, and the 
final position of the plate is adjusted empirically to compensate for the 
error. 

In the limit A// — 0 and large apertures, the parameters of the correc¬ 
tion plate become practically independent of the aperture and primary 
feed illumination, providing the latter is not too sharply peaked. We 
have noted above that in the limit indicated the resultant Tt differs 
negligibly from T^ which (in this case) lies on the /-axis. Also from 
Eq. (51) it is seen that if the primary feed illumination is not too sharp, 
i.e., magnitude of a is not too large, the initial portion of the spiral can 
be regarded with small error as a circle of constant radius |rj and center 
on the /-axis. When the procedure outlined in the preceding paragraph 
is applied to this case, it is found that the diameter of the correction 
plate is 

M¥)h 
and its thickness 

We have assumed that the current distribution over the correction 
plate is, except for phase, the same as that over the corresponding area 
of the paraboloid. In general the area of the correction plate is small, and 
when a small obstacle is irradiated, there is an appreciable current dis¬ 
tribution over the shadow area of the obstacle as well as on the illuminated 

(53) 

(54) 



Sbc. 1210] ROTATION OF POLARIZATION TECHNIQUE 447 

region. To eliminate the former it is preferable to use a plate of the 
thickness specified by Eq. (52), making good electrical contact with the 
paraboloid, rather than a thin plate set at the specified distance. 

The one major objection to the vertex plate is the deleterious effect 
on the secondary pattern. The displacement of the vertex area produces 
a phase error in the field over a corresponding area of the aperture, with 
a resulting loss in gain, increase in beamwidth and side-lobe intensity 
If the specifications on the side lobes are very stringent, the vertex-plate 
technique cannot be used 

Fig 12 15.—Quarter-'wave grating to rotate the polarization of the electric vector and 
eliminate the mismatch 

12-10. Rotation of Polarization Technique.—The electric vector of 
the wave reflected by the paraboloid can be rotated through 90° with 
respect to the incident wave by means of a quarter-wave grating. The 
system is illustrated in Fig. 12-15. The grating is made up of parallel 
plates cut to the contour of the reflector; the plates are oriented to make 
an angle of 45° with the E-plane of the feed. 

The grating makes use of the property of parallel plates (Sec. 7*15) 
that they will not support free propagation of a wave having the electric 
vector parallel to the plates unless the spacing s between them is greater 
than A/2. If s < A/2, the wave is attenuated; if 8 < A/8, the parallel 
plates reflect almost completely an incident wave with the electric vector 
parallel to the plates. With the grating oriented at angle of 45° with 
respect to the E-plane, the incident electric vector can be resolved into 
two equal components, one parallel to the plates and one perpendicular 
to them. The plate spacing is such that the parallel component is 
reflected, with a change in phase of 180°. The perpendicular component, 
on the other hand, propagates between the plates with free-space velocity. 
If the depth of the plates d is A/4, the latter component after reflection 
from the paraboloid emerges from the plates in the same direction as it 
had on entry. Combination with the reversed parallel component then 
results in a resultant vector perpendicular to the E-plane. 
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Preliminary experiments conducted at the Radiation Laboratory to 
test the effectiveness of the technique gave promising results in so far 
as the impedance characteristics were concerned. The effects on the 
secondary pattern were not determined. It is to be expected that the 
grating does not function properly at the edges because of the oblique 
incidence of the*primary radiation, thus introducing phase distortion. 
Further study of the subject is needed in order to evaluate the relative 
values of the grating and vertex-plate techniques. 

12* 11. Structural Design Problems.—An antenna must generally 
meet certain mechanical specifications such as a minimum weight/strength 
factor, low wind resistance, and visual transparency in addition to ful¬ 
filling the requirements on the secondary pattern. 

feed; (6) rear-feed technique for a horn; (c) front-feed technique for a horn. 

Rear-feed and Front-feed Systems.—The first factor to be considered 
is the type of feed installation. Two general methods—rear-feed and 
front-feed installation—are illustrated in Fig. 12*16. The rear-feed 
installations (Fig. 12* 16a and b) have the advantages of compactness 
and requiring a minimum length of transmission line. The latter has 
important bearing on the impedance presented by the system at the 
generator terminals. If the focal length is short, a simple flange con¬ 
nection between the transmission line and reflector is sufficient to 
support the feed system. If the focal length is large, a more extended 
collar such as is shown diagrammatically in Fig. 12*16a is necessary to 
prevent free play of the feed. The rear-feed installation of a horn, such 
as illustrated in Fig. 12*166, is feasible only at short wavelengths (3 cm 
or less). Even for the latter it is not to be recommended because of the 
asymmetry and possible phase distortion introduced into the primary 
pattern. 

The front-feed installation (Fig. 12*16c) is recommended for all horn 
feeds. It suffers from one serious defect of obstructing too much of the 
aperture. The interference is reduced somewhat if the waveguide is 
placed in the //-plane. This may make it necessary to put a twist in 
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the waveguide in order to orient the horn properly with respect to the 
horizontal plane. 

Grating and Screen Reflectors.—The weight and wind resistance of 
the paraboloid can be reduced considerably by replacing the continuous 
reflector surface by a perforated surface or a grating structure. An 
example of an antenna using a perforated paraboloid is shown in Fig. 
1-5; examples of grating reflectors will be found in Fig. 12-23 and in 
several photographs in Chap. 13. 

The reflectivity of the perforated surface is insensitive to polarization. 
The perforations can be regarded as short waveguides designed to be 
far beyond cutoff for the frequency band over which the antenna is to be 
used. For example, if the reflector is a wire screen with square openings, 
the edge length a of the openings must be such that 

« < (66) 

This is the condition for cutoff in a square waveguide. 
The gratings are sensitive to polarization. The space between the 

grating elements may be thought of as waveguides beyond cutoff for 
the electric vector parallel to grating element. The grating elements 

may be divided into three groups: (1) broadside strips, (2) bars, and (3) 
edgewise strips; these are illustrated in Fig. 12-17. The various types 
of gratings have been studied experimentally1 to determine the relation¬ 
ships between the grating dimensions and wind resistance and transmis¬ 
sivity. There are two major restrictions that apply to all gratings: 

1. The electric vector of the incident wave must be in the plane 
determined by the incident ray and the axis of the grating element. 

2. The center to center spacing of the elements must be less than 
X/(l + sin 0), where 6 is the angle between the incident ray and 

* W. D. Hayes, “Grating and Screens as Microwave Reflectors,’1 RL Report No. 
54-20, Apr. 1, 1943. 
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the normal to the axis of the grating element. Larger spacings 
cause the appearance of undesirable higher-order lobes in the 
secondary pattern. 

The edgewise strips are generally to be preferred. Their transmission 
characteristics are summarized in Fig. 12*18, which gives the relation 
between the strip depth and the spacing for fixed values of transmissivity. 
The properties vary, of course, with the width of the strips; the reader 
is referred to the report by Hayes for more extensive data. The variation 
of the depth of the strips to control the r-f transmission has a negligible 
effect on wind resistance; both can be made quite low. Mechanical 

s/\, center to center spacing, wavelengths 

Fig. 12*18.—Grating of edgewise strips: Relation between strip depth and spacing for 
constant transmission. 

rigidity can be obtained by proper bracing. The strips also,have the 
advantage that the reflector shape can be obtained by a cutting oper¬ 
ation; in making up a paraboloid all the strips can be identical punchings 
of flat sheet metal. 

SIMPLE FANNED-BEAM ANTENNAS 

12*12. Applications of Fanned Beams and Methods of Production.— 
The singular advantage of a pencil beam for locating a target with accu¬ 
racy is offset by the difficulty of intercepting a target in the course of a 
random search because the beam covers only a narrow cone oi space at a 
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given instant. Further difficulties are encountered in the case of 
antennas on ships; in the course of the roll and pitch of the ship the beam 
swings into the water where it serves no purpose or up above the horizon 
losing its effectiveness in locating surface vessels. To counter these 
various difficulties it is necessary to sacrifice the directivity by flaring 
the beam in one of its principal planes—generally the vertical plane. 
By retaining the narrow width in azimuth, resolution is maintained in 
this aspect and the radar echo technique supplies information on range. 

The present chapter concerns itself only with simple fanned beams 
which may be thought of as being developed by distorting the almost 
circularly symmetrical beam into a svmmetrical elliptical beam. The 
more complex fanned beams which are designed for highly specialized 
operational functions will be treated in the next chapter. From the 
general relations developed in Chap. 6, between the symmetry of the 
aperture and aperture field and the symmetry of the beam, two basic 
techniques suggest themselves (1) to use an aperture with two highly 
different dimensions in the principal planes, the beamwidths in the prin¬ 
cipal planes being inversely proportional to the aperture dimensions, and 
(2) to taper the illumination differently in the two principal planes. 
The second of these may be dismissed as an isolated technique because 
the beamwidth is not sufficiently sensitive to the illumination. The 
only practical technique, therefore, is the first, of using an aperture with 
suitable dimensions in the principal planes. The illumination technique 
may be used as auxiliary to the other method. 

The fanned-beam antennas take the following forms: (1) an ovoid 
section of a paraboloidal reflector with a point-source feed at the focus, 
(2) a parabolic cylinder with a line source producing a rectangular 
aperture, and (3) a parallel-plate antenna consisting of a parabolic cylin¬ 
drical reflector illuminated by a simple feed at the focus and located 
between parallel plates that are perpendicular to the generator of tho 
cylinder; this likewise produces a rectangular aperture. Design tech¬ 
niques will be presented for each of these types of antennas. 

1243. Symmetrically Cut Paraboloids.—The simplest procedure 
is to cut a paraboloid symmetrically by a pair of parallel planes as shown 
in Fig. 12-19a. The long dimension will be denoted by dh and the nar¬ 
row dimension by d2. The results obtained from a circular aperture with 
many types of feeds and paraboloid shapes show that the beamwidth 
is in the range (1.2 ± 0.2)X/Z>. These results have been extrapolated 
to the cut paraboloid, and the relations between the dimensions of the 
latter and the principal-plane beam widths are generally taken to be 

©1 = 1.2-T-; ©,-1.2y- (56) 

It is quite evident that a circularly symmetrical primary feed pattern 
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is unsuited to illuminate the reflector; a large fraction of the energy would 
be wasted in spillover. The primary feed pattern must be shaped to 
the same symmetry as the reflector. Taking the results for optimum 
performance of a circular aperture again as a criterion, we may require 
that the 10-db width of the feed pattern in a given principal plane be 
equal to the angle subtended by the reflector at the feed in the given 
principal plane. 

Horns with rectangular apertures lend themselves particularly well 
to the design of suitable feeds, since the beamwidths in the two principal 

(a) (6) 
Fig, 12*19.—Symmetrically cut paraboloids; (a) simple line cut; (6) equi-intensity contour 

cut. 

planes can be controlled virtually independently of one another by choice 
of the principal plane dimensions. The relation betweens the primary 
pattern 10-db beamwidth and the horn dimensions are given by Eqs. 
(10.52) and (10.53). The primary pattern beamwidths that are required 
are determined by the dimensions d\ and d2 of the reflector aperture and 
the focal length. The latter should be chosen as small as possible to keep 
the primary pattern 10-db width large; otherwise the design of a practical 
horn becomes very difficult. Difficulties are encountered if the ratio 
di/d2 is too large; since the dimension of the horn in the di-plane must be 
so much smaller than that in the deplane that the resulting horn has 
widely different centers of feed in the two planes. This will give rise to 
serious phase errors and loss in gain. 

The primary pattern of the horn designed to meet the principal plane 
requirements has an elliptical cross section. Consequently, the equi- 
intensity illumination contours on the reflector are also elliptical in shape. 
There are several reasons for cutting the reflector along such a contour 
as shown in Fig. 12*196. It is found in general that the gain factor 
increases and the general features of the pattern are improved by a reduc¬ 
tion in side lobes in the principal planes. The basis for this lies in the 
fact that the effective illumination for say the ds-principal plane at a 
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given point on the d2-axis is the integrated intensity across the aperture 
parallel to the di-plane. With the aperture of the type shown in Fig. 
12-196 the integrated area tapers along the d2-axis, and the effective 
illumination is, therefore, more tapered than in the corresponding case 
of Fig. 12-19a, hence the improved side-lobe characteristics. The ovoid 
shape of Fig. 12-196 also has advantages of low wind resistance and 
smaller moments of area and inertia which are of considerable importance 
in connection with the mechanical problems of support and rotation of 
the antenna. 

Fig. 12-20.—2£- and H-plane patterns of the beavertail antenna, shown in Fig. 13-12a. 

An antenna using the symmetrical ovoid-shaped reflector1 is shown in 
the following chapter in Fig. 13-12a. The dimensions of the reflector 
are d\ = 20 ft, d2 = 5 ft, and the focal length / = 5 ft. The 
feed that was finally adopted for this antenna is a flared box horn2 
designed to meet the illumination requirements in the principal planes. 
The secondary patterns of the antenna are shown in Fig. 12-20. The 
ratio of the half-power widths ®e/&h is 0.29, and the ratio of the aperture 
dimensions d2/di = 0.25. The //-plane side-lobe levels are all down 
below 17 db with no prominent wide-angles lobes; the /£-plane side 
lobes are all below 23 db, showing that the illumination is properly dis¬ 
tributed over the reflector. 

1244. Feed Offset and Contour Cutting of Reflectors.—The symmet¬ 
rically cut paraboloids have the drawback that the feed must be located 

1 C. S. Pao, “The Beavertail Antenna,” RL Report No. 1027, Apr. 9, 1946. 
. *S. J. Mason, “Flared Box Horn,” RL Report No. 653, July 9, 1945; see also 

Chap. 10. 
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in the center of the aperture. In this position it is in the path of the 
reflected rays from the most intensely illuminated area, and hence the 
mismatch introduced by the reflector is quite significant. Furthermore, 
the use of a horn feed introduces a large section of w aveguide, which in 
large reflectors necessitates additional supporting structures; these 
together with the feed block out aperture area, causing a loss in gain and 
increase in side lobes (c/. Sec. 6*7). 

Both of these defects are eliminated by the offset feeding technique 
which is illustrated schematically in Fig. 12-21. The center of feed is 
placed at focus of the paraboloid as in the previous case, but the horn is 

tipped so that the peak of the primary pat¬ 
tern makes some angle with the para¬ 
boloid axis. The major portion of the 
low er section of the paraboloid is discarded. 
The dimension d2 is again determined from 
the secondary pattern beamwidth by Eq. 
(56). The offset feeding removes the horn 
and its supporting structure out of the way 
of the most intensely illuminated area of 
the aperture with resulting improvement 
in gain and in side-lobe characteristics. 

The reduction of the mismatch can be understood in terms of the geomet¬ 
rical-optics picture that the radiation returning to the feed comes from the 
area around the vertex of the paraboloid. The magnitude of the mismatch 
is given by a relation equivalent to Eq. (39): 

ir | = g/(\MX 
' r| 4tt/ ' 

(57) 

where G/(\f/o) is now the gain of the feed in the direction along the axis. 
By offsetting the feed the reflection coefficient is reduced by the ratio 
Gf(\f/o)/Gf0, where G/0 is the peak gain. 

The design procedure is essentially the following: The dimensions d\ 
and d2 are chosen in accordance with the beamwidth relations [Eq. (56)]. 
The focal length and the dimensions of the horn aperture are chosen as 
though the reflector is to be cut symmetrically; the angle subtended by 
di at the focus should not exceed 160°. The horn is const meted, pres¬ 
surized, and matched by the methods discussed in Chap. 10. Let T/ be 
the residual mismatch of the feed and r the allowable total mismatch 
of the antenna; the allowable reflector mismatch is then 

|r,| - |r| - |r,|. (58) 

Using a circular paraboloid of the focal length of the final antenna, the 
paraboloid reflection coefficient is determined as a function of the feed 
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offset by the circle diagram method referred to previously (c/. Fig. 
12-12), or the peak gain Gfo is determined from the mismatch at the 
angle = 0, and the mismatch at any other angle is computed by means 
of Eq. (57) from the knowledge of the primary pattern. 

For the chosen value of the primary feed pattern is transformed 
into equi-intensity illumination contours on the surface of the paraboloid 
by taking into account space attenuation according to the inverse square 

Fig. 12*22.— Constant intensity contours in paraboloid aperture (horn feed axis tilted 20° 
relative to paraboloid axis). 

law. An example of such an equi-intensity contour plot is shown in 
Fig. 12-22. The paraboloid is then cut to follow an equi-intensity con¬ 
tour, generally chosen as the 14-db contour. 

A number of antennas have been designed according to this procedure 
with very successful results.1 Figure 12-23 is a photograph of the 
antenna2 to which the constant intensity contours (Fig. 12-22) apply. 
The reflector dimensions are di = 54 in., = 24 in., / = 14.5 in. The 
horn aperture dimensions are 2 cm in the F-plane, 6.0 cm in the H-plane 
with flare angles of 10° and 40° in the respective planes. The offset 
angle is 20°; this was chosen so that Tr < 0.04 in order that the resultant 
mismatch of the feed and paraboloid over the entire band of 8600 to 

1T. J. Keary and J. I. Bohnert, RL Report No. 659, Mar. 7, 1945; RL Report No. 
660, Feb. 19, 1945; RL Report No. 779, Aug. 30, 1945; J. I. Bohnert and H. Krutter, 
RL Report No. 665, Feb. 7, 1945. 

* T, J. Keary and J. I. Bohnert, RL Report No. 659, Mar. 7,1945. 
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IIP WS 'It-'*'* 

Fig. 12*23.—ranned-beam antenna using the offset feed technique. 
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Fmj. 12*24.—Principal E- and #-plane polar diagrams of the antenna shown in Fig. 12*J 
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9700 Me per sec should represent a reflection coefficient less than 0.091. 
The performance of the antenna is demonstrated by the E- and //-plane 
patterns shown in Fig. 12-24. The ratio of the beamwidths ©*/©h 
again is very closely equal to the ratio d2/di. The low level of the side 
lobes attest further to the validity of the design procedure. 

The elimination of one of the planes of symmetry by the offset feeding 
technique produces one serious effect. The process destroys the sym¬ 
metry of the cross-polarization component of the aperture field leading 
to cross polarization in the plane of the large dimension of the aperture. 
The cross-polarization pattern has lobes on either side of the main lobe 
in the plane of the narrower beamwidth, which may seriously affect the 

I<ig. 12*25.— Paiabolio cylinder and lino source 

performance of the system. Cross-polarization studies should be made 
in the narrow-width plane for all antennas of this type. 

12*15. The Parabolic Cylinder and Line Source.—In principle a sim¬ 
ple fanned beam is most easily produced by using a rectangular aperture 
with a separable type of aperture field such as was discussed in Secs. 6*5 
and 6*6. The principal plane patterns are then determined completely 
by the aperture dimension in the given plane and the field distribution in 
that aspect. There is no interaction between the distributions in the 
principal planes. A second advantage is the reduction of cross 
polarization. 

The required aperture configuration and field distribution are readily 
obtained by illuminating a parabolic cylinder by a line source located 
along its focal line. An antenna of this type is shown in Chap. 1, Fig. 
1*6. The general theory of such systems has been developed from the 
standpoint of the reflector currents in Sec. 5*9 and from the aperture 
field standpoint in Secs. 6*8 and 6*9. We shall here simply state the 
results which are particular to the parabolic cylinder. In Fig. 12*25, 
the line source is taken along the #-axis which is also the focal line of the 
parabolic cylinder. Let l be the length of the source and ¥ be the angular 
aperture of the reflector. The performance of the system depends on the 
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fact that the reflector is in the cylindrical wave cone of the source. It is, 
therefore, necessary that 

l X, Pmmx ^ (59) 

where p*** is the maximum radial distance from the source to the reflector. 
For wavelengths greater than about 10 cm conditions (59) imply that 
the length of the cylinder is greater than the height of the aperture. 

It is clear that all rays from the source incident on the reflector in a 
plane parallel to the yz-pl&ne are reflected in that plane into a family 
of rays parallel to the 3-axis. The reflector thus produces a uniform 
phase distribution over the aperture. Also, since the reflected rays are 
parallel, the field intensity at a given point on the aperture is the same 
in magnitude as that of the reflected field (or incident field) at the corre¬ 
sponding point on the reflector. The intensity distribution, F(x)f in the 
^-direction over the aperture is, therefore, the same as that of the line 
source, and the aperture distribution in the transverse direction is deter¬ 
mined entirely by the two-dimensional gain function G{\p) of the cylin¬ 
drical wave zone of the line source (e/. Sec. 5*9). Evaluating the field in 
the forward direction by means of Eqs. (5-86) and (5*88), we find that 
for both the longitudinally and transversely polarized systems the gain 
is given by 

The gain factor 9 = Gm\2/±tA is, therefore, 

^= sicot f [r J-i/2 [/_* 860 f <**] • (61) 
The term involving F(z) gives the effect of the deviation from uniform 
illumination along the ^-direction. The second term gives the depend¬ 
ence on the angular distribution of the primary pattern. As in the case 
of the paraboloid of revolution there is an optimum angular aperture 
for a given feed pattern that represents the compromise between spill¬ 
over and tapered illumination over the aperture in the ^-direction. The 
optimum angular aperture can be found by graphical methods as was 
done in Sec. 12*5 for the paraboloid of revolution. 

For maximum gain, the distribution F(x) should be equal to unity. 
This, however, gives maximum side lobes in the longitudinal pattern— 
that is, in the planes containing the line source—as compared with 
tapered distributions. The longitudinal pattern can be studied as a two- 
dimensional problem, independently of the transverse pattern. All of 
the results of Sec. 6*6, other than the actual values of the gain, can be 
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applied here without modification. The gain is affected by the trans¬ 
verse distribution as is shown by Eq. (60). 

The essential difficulty with antennas of this type is in producing an 
efficient line source. Linear arrays such as are discussed in Chap. 9 are 
frequently used. The impedance characteristics are generally poor due 
to strong interaction between the reflector and the source. 

12-16. Parallel-plate Systems. Cheese and Pillbox Antennas.—The 
limitations imposed on the antenna design by conditions (59) can be 
eliminated by placing the parabolic cylinder between parallel plates as 
shown in Fig. 12*26. The feed may then be a waveguide or a horn with 
one of its aperture dimensions equal to the distance h between the plates. 

Fig. 12-26.—Parallel-plate systems: (fe) pillbox antenna; (a) cheese antenna. 

From the point of view of the rays between the plates, the system is 
equivalent to a segment of an extended line source and parabolic cylinder. 

The antennas differ from the open system of the preceding section 
in that propagation can take place between the plates in various modes 
(c/. Sec. 7*15). The parallel plates support free propagation of a principal 
wave—the TEM-mode—in which the electric vector is normal to the 
plates; the velocity of propagation and the wavelength is the same as in 
free space. TE- and TM-modes are also possible, which are equivalent 
to the modes in a rectangular waveguide. We need concern ourselves 
only with the lowest TE-mode in which the electric vector is parallel to 
the plates and varies in magnitude along the line normal to the plates 
according to sin (x/h), where h is the distance between them. The plates 
will support propagation in this mode only for free-space wavelengths that 

satisfy the condition 

X <2h. (62) 
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The wavelength of propagation is 

The cutoff condition for the next higher mode is 

h<\. 

(63) 

(64) 

The parallel-plate systems may be classed into two groups: (1) those 
with spacing h < X which support free propagation in the TEM-mode 
and possibly the T2?i-mode if A > X/2, (2) those with spacing h > X 
which support additional modes. The two groups are labeled pictorially, 
the former being called the pillbox antennas, the latter cheese antennas. 

The cheese antennas can be designed to meet any length-to-height 
ratio desired. If only the TEM-mode is desired, the feed must be 
designed with great care in order to avoid the excitation of other modes. 
The difficulty of eliminating other modes is the major objection to the 
TEM-cheese antenna. On the other hand, the feed can be designed to 
excite various TE- and TM-modes purposefully. Each mode travels with 
a characteristic phase velocity, and the superposition of the modes is 
used to synthesize various types of phase distributions over the aperture.1 

The limitations imposed on the secondary pattern of a pillbox in the 
plane containing the ^-dimension, because of the restrictions on the latter, 
can be obviated to some extent by flaring the mouth of the pillbox into 
a two-dimensional horn. This has a further advantage of reducing the 
reflection by the aperture of the wave between the plates. Another 
method of controlling the pattern is by means of flaps such as are shown 
in the half-beacon antenna2 in Fig. 12-27. Half a pillbox is used in this 
particular case; it is fed by an iZ-plane sectoral horn. The A-dimension 
is equal to A/3 so that the plates can support only the TEM-mode. 
Attention should be called to the curled edge of the flap; the curl follows 
an exponential spiral in order to reduce the impedance mismatch arising 
from the discontinuity at the edge of the flap. The pattern obtained 
in the plane of the A-dimension is shown in Fig. 12-28. 

r 12*17. Pillbox Design Problems.—There are three major problems to 
be considered in the design of the pillbox: (1) the f/d ratio for maximum 
gain factor, (2) impedance mismatch, (3) structural problems. 

1 The cheese antenna received more attention in Britain than in the United States. 
Information pertaining to British reports may be obtained from the British Scientific 
Commission office in Washington, D.C. or the British Central Radio Bureau in 
London. Much of the British work is appearing in the new section Part Ilia, “Radio¬ 
location,” of the journal of the Institute of Electrical Engineers. 

* A. Braunlich, “Half Beacon Antenna,” RL Report No. 419, Sept. 6,1943. 
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Optimum Shape.—The analysis of the gain factor1 proceeds along the 
same lines as for the parabolic cylinder in Sec. 12*15. The result is 
essentially that of Eq. (61) except for multiplicative constants. The 

C 
T 

Kg°I o 
h—3.13 X—H 

l ££_waveguide 

Fig. 12*27.—Half-beacon antenna. 

optimum angular aperture (cf. Fig. 12*29) is the value for which the 
expression 

cot [<?,(*)]* sec |# (65) 

has its maximum value. The gain function G/ty) is that of the feed 
radiating between parallel plates, not in free space; like that of the cylin¬ 
drical wave zone of a line source it is two-dimensional. 

The optimum angular aperture is generally less than 90°. The pill¬ 
box is then constructed as shown in Fig. 12-29 with the parallel plates 

i t. J. Keary, A. R. Poole, J. R. Risser, H. Wolfe, “Airborne Navigational Radar 
Antennas,” RL Report No. 808, Mar. 15, 1946. 
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220° 210° 200° 190° 180° 170° 160° 150° 140° 
Fig 12 28.—Pattern of the half-beacon antenna in the A-dimenmon plane. 

Fig. 12-29.—A pillbox of angular aperture 
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extending a little beyond the focal point. The gain factors realized by 
pillboxes are considerably higher than that of paraboloidal antennas, 
ranging in value upward from 0.8. 

Impedance Mismatch.—The mismatch produced by the parallel-plate 
system arises from the parabolic strip and from reflection at the aperture 
The latter can be reduced, as was noted before, by flaring the mouth of 
the pillbox into a two-dimensional horn. The reflection coefficient pro¬ 
duced by the parabolic strip can be developed along lines similar to 
that followed in the case of the paraboloid.1 The essential difference is 
that the field between the parallel plates is in the form of a cylindrical 
wave rather than a spherical wave. The reflection coefficient is found 
to be 

1 f ^ s € yj/ 
Tr = - / 0(yp)- cos \ ds, (66) 

T J 0 p l 

where ds is the element of length along the reflecting strip. Let x measure 
position along a line parallel to the aperture; on introducing the variable 

V = J = 2 tan | (67) 

the reflection coefficient becomes 

G(v) 
dVy (68) 

disregarding all constant-phase terms. If / \y> 1, the integral of Eq. 
(68) is very closely equal to 

where Go is the peak gain of the feed. This is the two-dimensional 
analogue of Eq. (39). 

The mismatch can be eliminated by means of a vertex plate as in 
the case of the circular paraboloid. The technique of determining the 
dimensions of the plate is the same as that described in Sec. 12*9. It 
should be noted that the intersection point vc on the spiral gives xc which 
is only half the length of the plate. The vertex plate has the same unde¬ 
sirable effects on the secondary pattern as in the paraboloid: reduction in 
gain, increase in side-lobe intensity. 

Structural Problems.—Special attention must be paid to the structure 
and assembly of the pillbox. The feed must make good electrical con¬ 
tact with the parallel plates. The contact can be established by solder- 

1 Details are given by S, Silver, “Analysis and Correction of the Impedance Mis- 
oiateh Due to a Reflector/1 RL Report No. 810, Sept. 25,1945. 
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ing; a better technique, however, is to make a choke joint between the 
feed and the pillbox.1 Good electrical contact must also be maintained 
between the reflecting strip and the parallel plates. This is a more 
important consideration for the TEM-mode, in which the electric-field 
vector is normal to the plates, than the TE-mode, in which it is parallel 
to the plates, and zero at the surface of the plates. The space between 
the reflecting strip and the parallel plate, in the case of poor contact, is 
too small to propagate a !T2£-mode. 

It is recommended that the parabolic strip be cut out of a metal 
plate and cut to a sizable thickness so that the plates can be bolted to 
the strip without warping the parabolic curve. 

Fig. 12-30.- Structural design of a pillbox. 

Maintaining a uniform spacing between the plates poses a number 
of difficult problems. The spacing problem is not too serious for the 
TEM-mode. If the spacing h is well below X/2, there is no significant 
mode control problem. In this case, proper reinforcement of the parallel 
plates2 as shown in Fig. 12*30 together with the spacing support pro¬ 
vided by the feed is sufficient. Additional support is necessary only in 
extremely large structures. 

The tolerances on the spacing are more restrictive in the case of the 
!T2?-mode. The phase velocity varies with the spacing [Eq. (63)]; a 
nonuniform spacing produces phase distortion over the aperture. The 
spacing can be maintained by a distribution of metal or dielectric posts. 
These scatter the energy, however, producing both a mismatch and dis¬ 
tortion of the field over the aperture. The pins should be kept out of 
the high intensity region of the primary pattern of the feed. 

1 T. J. Keary et al, “Airborne Navigational Radar Antennas,” RL Report No. 
808, Mar. 15, 1946. 

* W. Sichak and E. Purcell, “Cosec* Antennas with a Line Source and Shaped 
Cylindrical Reflector,” RL Report No. 624, Nov. 3, 1944. 



CHAPTER 13 

SHAPED-BEAM ANTENNAS 

By L. C. Van Atta and T. J. Keary 

The highly directive beams attainable with micro v ave antennas have 
been utilized to achieve large antenna gain, precision direction finding, 
and a high degree of resolution of complex targets. The exploration 
of a wide angular region with such sharp beams requires an involved 
scanning operation in which the scanning time becomes a limiting factor. 
This problem is much simplified if the required scanning can be reduced 
to only one direction, the coverage of the angular region being completed 
by fanning the beam broadly. The characteristics of simple fanned- 
beam antennas have been discussed in Chap. 12. For many applica¬ 
tions, however, the characteristic shape of the fanned beam obtained 

* ig 13 1 -Beam from ground-based or shipborne antenna providing coverage on aircraft 

by simply reducing the corresponding dimension of the aperture is unsat¬ 
isfactory; it may be wasteful of the limited microwrave power, or it may 
result in a very unequal illumination of targets in different directions. 
To overcome these limitations it is necessary to impose on the beam 
by special design techniques some shape not characteristic of the normal 
diffraction lobe. These beams are referred to as shaped beams, and the 
antennas that produce them as shaped-beam antennas. 

The purpose of this chapter is to describe several applications for 
shaped beams, to discuss requirements imposed on the beam by these 
applications, and to present a number of design techniques for producing 
shaped-beam antennas. 

134. Shaped-beam Applications and Requirements.—There are a 
number of radar applications for microwave systems that impose more 
or less severe beam-shaping requirements upon the antenna. The 
applications and requirements will be considered here; the means for 
realizing the shaped beams will be deferred to later sections. 

Surface Antenna for Air Search.—For use in search for aircraft, an 
antenna on the ground or on a ship is required to produce a beam sharp 
in azimuth but shaped in elevation; the azimuth coverage is obtained 

465 
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by scanning. The elevation shape of the beam must provide coverage 
on aircraft up to a certain altitude and angle of elevation and out to the 
maximum range of the system. This is to be aeeomplished without 
wasteful use of available power. Figure 13-1 indicates the general shape 
of the coverage required in the vertical plane. The antenna beam need 
not meet the coverage requirement very accurately, since conservation 
of power and a relatively constant signal on a plane at a fixed altitude 
are the only objectives. 

In order to maintain a fixed minimum of illumination on the aircraft 
at various points along the upper contour of the coverage diagram, it is 
necessary that the amplitude of the antenna pattern be proportional to 

the distance r from the antenna to the aircraft on that contour. In 
other words, the coverage contour of Fig. 13*1 can be taken to be the 
amplitude pattern of the antenna (cf. Sec. 1-2). Since r = h esc 6, the 
amplitude pattern must be proportional to esc 8, or the power pattern 
must be proportional to esc2 8. The proportionality must hold over the 
region from a minimum angle arc sin h/rm^j to the maximum elevation 
angle for which coverage is required. 

Airborne Antenna for Surface Search.—An airborne antenna is required 
to produce a beam sharp in azimuth but so shaped in elevation as to 
provide uniform illumination on the ground; azimuthal coverage again 
is achieved by scanning. Figure 13*2 illustrates the vertical coverage 
requirement; this was shown in the previous paragraph to be identical 
with the vertical amplitude pattern. Both this and the previous pattern 
assume isotropic scattering by target objects. Deviations from this 
assumption for various target objects will be discussed in the next section. 

When an airborne antenna is used primarily for surface search over 
sea against such point targets as ships and buoys, the purpose of beam 
shaping is to conserve power, to maintain a relatively constant signal as 
the target is approached, and to avoid overloading the indicator scope 
with sea return. None of these objectives impose exacting require¬ 
ments on the beam shape. However, for successful surface search over 
land it is necessary to illuminate the ground very uniformly in order to 
obtain “solid painting” on the indicator scope and a fully intelligible 
picture. The results from the operator’s viewpoint of satisfactory and 
unsatisfactory elevation patterns are described in Sec. 14*4 and its accom- 
panying figures. 
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Shipbome Antenna for Surface Search.—A shipbome antenna for use 
in surface search must scan in azimuth with a sharp azimuth pattern. 
To accommodate roll and pitch the beam of an unstabilized antenna must 
be broad in elevation. This broadening will be more conservative of 
power and will provide a more constant illumination of the target if it is 
accomplished with a shaped beam (Fig. 13-3) rather than a simple fanned 

Tic*. 13-3.'—Sector shaped lieam for surface search by shipljorne antenna. 

* id. 13*4.— Beavertail beam for height-finding antenna (a) elevation pattern; (6) shaped 
azimuth pattern. 

beam. The ideal beam shape for this purpose would be given by / = Im 
for angles in the region + 0i to —0\ and I = 0 for angles outside that 
region. This sector shape can be approximated more closely ns the 
vertical aperture of the antenna is increased, but a close approximation is 
not justified. 

Surface Antenna for Height Finding.—A ground or ship antenna 
designed for height finding must have a sharp elevation beam for obtain¬ 
ing precise elevation information and a rapid elevation scan. Provision 
must also be made for scanning the antenna slowly in azimuth or for 
turning the antenna to an assigned azimuth. The beam must be rela¬ 
tively broad in azimuth in order that the target will be held in the beam 
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long enough to obtain height information. If the beam is assumed to 
be stationary in azimuth, an airplane flying across the beam will be illu¬ 
minated for a period proportional to its distance away. To increase 
the time of illumination on near-by crossing targets, a low-intensity 
broadening of the azimuth beam is required. If a fixed minimum of 
illumination is to be achieved at a given linear distance on both sides 
of the center line of the azimuth beam, the amplitude pattern must have 
the so-called “ double esc 6 ” or “beavertail ” shape illustrated in Fig. 13*4. 

13*2. Effect of a Directional Target Response.—In the previous sec¬ 
tion it was assumed that the target response is isotropic. The effect of a 
directional target response is to alter the beam shape required of the 
antenna from that predicted by simple “inverse-square” considerations. 
The power received by a radar system from a target in a given direction 
is proportional to the “radar cross section” of the target; the radar 
cross section1 may be defined as the interception cross section multiplied 
by the scattering gain for that direction. Since the radar cross section 
of some targets varies widely with direction, this effect must be taken into 
consideration in establishing the required beam shape for the antenna. 
The power transmitted in a communication system from a shaped-beam 
antenna to a receiving antenna in a given direction is proportional to the 
product of the gains of the two antennas along the line joining them. 
A directional receiving antenna will modify, therefore, the beam shape 
required of the transmitting antenna. 

Let us consider in greater detail the case of a radar antenna located 
a perpendicular distance h from a plane (Fig. 13-2) and required to 
obtain equal signals from identical targets located arbitrarily in that 
plane. Let us assume that the antenna is to scan with a sharp beam in 
azimuth, as in the case of the first two shaped-beam applications described 
in the previous section. Then the specifications for the vertical polar 
diagram may be derived if quantities are defined as follows: 

P = power emitted by the antenna 
G(6) = power gain of the antenna at depression angle $ 

r = slant range to the target 
<r(0) = interception cross section of the target for a plane wave from 

the direction of the antenna2 

1 Also known as the back-scattering coefficient. 
2 The definition of the scattering cross section is being set up here in more detailed 

form than was done in Sec. 1*2. It is based on the physical picture that the target 
presents an interception area such that it removes from the plane wave all the energy 
incident thereon and redistributes it in space in a scattering pattern. Both the 
interception area and the scattering pattern vary with the aspect presented by the 
target to the incident wave. The back-scattering cross section is the product of the 
interception area and the gain of the scatteiing pattern in the direction of the trans¬ 
mitter. It is the cross section of the equivalent sphere that would produce the same 
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y(6) = power gain of the scattering object in the direction of the 
antenna 

p = power received by the antenna from the target 

Fig. 13»5 —Effective ground target area and its interception cross section for airborne 
pulsed radar 

The fraction of the transmitted power received by the antenna is given 

by 
p _ 0(0) <r(0b(0) b O(0)\2 
P 4w r2 Air 47rr2 

[O(0)]2X2 
(47r)3r4 

a(e)y(e). (1) 

To impose the condition that equal signals be received from identical 
targets in the plane, let us note that r = h esc 0 and write p/P = C2, 
a constant Then 

«« = C(4v),42r|^- (2) 

If [^(0)7(0)] is independent of angle, we obtain the earlier result that 
0(0) for the shaped-beam antenna is proportional to esc2 0. This should 
be recognized as only a crude approximation in the majority of cases of 
actual interest. 

In the particular case of reflections from ground targets, serious con¬ 
sideration has been given to the angular dependence of the quantity 
[o'(0)7(0)].1 The effective area of the target on the ground depends upon 
beamwidth (©*$), range (r), pulse length (r), and depression angle (0). 
By reference to Fig. 13*5, it is evident that the effective target area Am 
on the ground as determined by the pulse length is related to depression 
angle by the proportionality 

Am a r sec 0 oc esc 0 sec 0 

return signal at the transmitter as does the target; thus, the product <r(0)y(0) used 
here is equal to the scattering cross section <r of Sec. 1*2. 

1 E. E. Clapp, “A Theoretical and Experimental Study of Radar Ground Return,” 
EL Report No. 1024, Apr. 10, 1946. 
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and that the projection of this area in the direction of incident radiation is 

<r(0) = Aea sin 0 « sec 0. (3) 

The angular distribution y(6) of the radiation scattered by the area <r(0) 
will depend upon the nature of the target or terrain. A mathematical 
expression derived for y(8) will depend upon the simplified target model 
assumed. Best agreement with experience is obtained by assuming a 
flat plane made up of closely spaced components which scatter isotrop¬ 
ically. The radiation will then be equal in all directions for any given 
condition of illumination; i.e., 

TW = 1. (4) 

Combining Eqs. (3) and (4) gives the angular dependence 

[<r(0)7(0)] cc sec 0. (5) 

Introducing this dependence into Eq. 2 gives the proportion 

G($) oc esc2 0 %/cos $ (6) 

for the assumed ground target model. 
An antenna with a vertical pattern shaped according to Eq. (6) would 

produce, wdthin the limits of the assumptions, a range trace of uniform 
brightness on an indicator scope for any given azimuth setting of the 
antenna. A succession of range traces from an antenna scanning in 
azimuth w'ould still be displayed with uniform brightness on a B-scope 
presentation wrhich makes a rectangular plot of range vs. azimuth On 
a plan position indicator (PPI), however, the range traces are presented 
radially and the azimuth angle, as polar angle. The spacing between 
range traces therefore varies in direct proportion to the range with the 
result that the scope is brightened toward the center. This effect can 
be compensated if the vertical pattern of the antenna is used to modify 
the received powder by a factor of 1/r; i.e., the gain function (?(0) of the 
antenna should be modified by a factor r « esc 0. For the case of PPI 
presentation then, Eq. (6) becomes 

G(6) oc esc2-5 0 Vcos 0 = esc2 0 \/icot 0. # (7) 

The several “ideal” curves for (?(0) discussed above are presented 
in Fig. 13*6: 

Curve A. esc2 0 dependence for a uniform range trace with isolated 
isotropic targets._ 

Curve B. esc2 0 \/cos 0 dependence for a uniform range trace with 
closely packed isotropic targets. 

Curve C. esc2 0 Vcot 0 dependence for uniform PPI presentation 
with closely packed isotropic targets. ♦ 
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Curve D. esc2 8 • cos 8 dependence which approximates the experi¬ 
mental optimum pattern shape obtained from considerable flight 
experience with a number of antenna designs at wavelengths 
between 10 and 1.0 cm. 

These curves are all plotted for a minimum depression angle of 10°; this 
corresponds to the case of an airborne radar system with a maximum 

10° 

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

Fig. 13-6.—Ideal curves for dependence of vertical pattern on depression angle. 

range about six times the altitude of the aircraft. Several curves of 
esc2 8 • cos 6 for different values of minimum depression angle are pre¬ 
sented in Fig. 13-7. 

13*3. Survey of Beam-shaping Techniques.—In the preceding sec¬ 
tions we considered various applications for shaped-beam antennas and 
the requirements that they impose on the beam shape. In this section 
we will discuss the physical principles involved in various beam-shaping 
techniques and survey a number of antenna designs that have been used 
for producing beams of various shapes. 

Physical Principles.—In Chap. 12, the characteristics of pencil beams 
and simple fanned beams were described. Such beams were shown to 
have a common shape, characteristic of the main lobe in the diffraction 
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pattern of a constant-phase aperture. This is true independent of the 
shape or size of the aperture—for apertures larger than about 2X—and 
independent of the intensity of illumination across the aperture. The 
effect of these variables is to change only the scale factor for the angular 
coordinate of the pattern. The only means available for altering this 
characteristic shape is to vary the phase of the illumination across the 
aperture. 

Fio. 13*7.—A family of curves, esc2 6 cos 0, for different values of minimum depression angle. 

The elementary principles of beam shaping can be understood in 
terms of geometrical optics. From Huygens’ principle of propagation 
normal to the phase front, it is evident that a curved phase front will 
produce a more dispersed beam than a plane phase front. For a fixed 
aperture size, beam shaping can be accomplished only at the expense of 
antenna gain, since the curved portion of the phase front subtracts from 
the total aperture available for contribution in the direction of mmnnniim 
gain. The radiation intensity for a given direction in a shaped beam will 
depend upon the radius of curvature of the phase front normal to the 
given direction and upon the intensity of illumination in that region; the 
exact relations involved will be derived in Sec. 13*6. Any shaped-beam 
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antenna can be considered to be a device for obtaining the proper phase 
and intensity of illumination across an aperture to realize a specified 
beam shape.1 

In the language of ray optics, a constant phase front across an aper¬ 
ture produces a collimated beam of rays from that aperture. This col¬ 
limated beam is obtained usually by focusing the diverging rays from 
an antenna feed either with a parabolic reflector or with a lens. The 
process of forming a shaped beam can then be visualized as a defocusing 

process; the rays emerging from the aperture will not all be collimated 
but will be distributed through a range of angles with a variable density 
dependent upon the pattern required. Defocusing in one plane can be 
accomplished either by extending the point source into a line source in 
that .plane or by modifying the reflector or lens in that plane. 

The extension of a point source into a line source can be accomplished 
by disposing an array of dipoles or horn feeds in a line in or near the focal 
plane and by exciting them in the proper intensity and phase. The for¬ 
mation of a shaped beam by such a feed array in a paraboloid reflector 
is illustrated in Fig. 13-8. Each of the elements in the array can be 
visualized as a point source that forms its own sharp beam in the parab¬ 
oloid. The intensity of this beam will depend upon the intensity of 
excitation of its feed; the angular displacement of the beam from the 
axis will be proportional to the angular displacement of the feed point 
about the vertex on the opposite side of the axis. The overlapping 
beams formed by an array of point sources will synthesize by amplitude 
addition into a shaped beam, as illustrated in Fig. 13*8. The resulting 
beam can be quite smooth if the component beams are properly spaced 
and phased. 

1R. C* Spencer, “Synthesis of Microwave Diffraction Patterns with Application to 
Cse* * Patterns/' RL Report No. 54-24, June 23, 1943. 



474 SHAPED-BEAM ANTENNAS [Sjsc. 13*3 

It has been assumed above that a feed moved off axis from the focal 
point will form in a paraboloid a sharp beam on the other side of the 
axis. This is true for small displacements from the axis; for large dis¬ 
placements of a point source, its individual beam is broadened in the 
plane of displacement, which is not serious, since the beam is being broad¬ 

ened intentionally in that plane, 
but it is also broadened in the per¬ 
pendicular plane, w hich is serious, 
since it reduces resolution and gain 
(Sec. 13*4). The extended feed 
method of beam shaping is there¬ 
fore not recommended as a means 
for forming wide-angle patterns. 
It is recommended for forming 
shaped beams confined to small 
angles, since it accomplishes the 
beam shaping by increasing the size 
of the small feed rather than by in¬ 
creasing—for equal gains—the size 
of the relatively large reflector or 
lens. 

A sharp beam formed by a point 
source and paraboloid reflector or 
by a line source and parabolic cyl¬ 
inder can be dispersed in a con¬ 
trolled way by modifying the shape 
of the reflector. The process can 
be thought of as one of dispersing 
collimated rays into new directions 
dictated by the shaped-beam pat¬ 
tern, or it can be visualized as one 
of controlling the phase and intens¬ 
ity of illumination across the aper¬ 
ture. In the latter case, the next 
step to the far-field pattern can be 
made by use of Huygens, principle 

Fig. 13-9.—Reflector modifications for 
producing an asymmetrical flared beam: 
(o) bv shaping the reflector on the op¬ 
posite side from the flare; (b) by shaping 
the reflector on the adjacent side to the 
flare. 

in some cases and by a Fourier transform process in other cases (cf. Chap. 
6). Figure 13-9 shows two reflector modifications for obtaining an asym¬ 
metrical flared beam. It has been shown that one aperture illumination 
which gives an asymmetrical beam consists of a sharply peaked ampli¬ 
tude distribution with a sudden 180° phase reversal in the region of maxi¬ 
mum amplitude. One means of realizing this is to use a point source feed 
with two paraboloid reflectors of foca^l lengths fi and /a /i + X/4 for 
the top and bottom halves of the aperture respectively. Other methods 
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of beam shaping will be described in connection with specific beam-shap¬ 
ing problems. 

Symmetrical Shaped Beams.—A sector shaped beam with sharp sideh 
and a square end, approximating the requirement illustrated in Fig. 13*3, 

feed 
(P) ie) 

Fig, IS* 10.—Two-element array and paraboloid for producing sector shaped beam: (a) 
antenna; (b) overlapping beams; (c) aperture illumination. 



476 SHAPED-BEAM ANTENNAS [Sec. 13*3 

can be produced by means of either an extended feed or a shaped reflector. 
If an array of radiating elements in the focal plane are equally excited, 
so spaced that their individual patterns cross over at the half-amplitude 
point and so phased that the patterns add in amplitude, the result will 
be a beam with sharp sides—determined by the size of the aperture— 
and a square end. Figure 13-lOa shows two elements combined in this 
way. The design procedure can be interpreted as above and illustrated 
in Fig 13 106, or the following. The two feeds excited equally and in 
phase will form a symmetrical interference pattern. If each feed is so 
dimensioned that its individual pattern properly illuminates the reflector, 

Fig. 13 11.—Cut paraboloid method for obtaining sector shaped beam, (a) antenna; (6) 
aperture illumination. 

and if the two feeds are correctly spaced, their interference pattern will 
result in the (sin u)/u aperture illumination shown in Fig. 13 10c. The 
Fourier transform of this illumination curve will be approximately the 
sector shaped pattern required (Chap. 6). The antenna shown in Fig. 
13-10 produces its sector shaped beam in the horizontal plane. The 
reflector is cut with a slight asymmetry to bring the null in the illumina¬ 
tion pattern opposite the feed for improved impedance performance. 

The sector shaped beam can also be obtained with a point-source and 
modified paraboloid reflector. Let the aperture be divided into three 
parts along the lines corresponding to the nulls of Fig. 13-10c. Let the 
two outer portions of the aperture be illuminated with segments of a 
paraboloid having a focal length X/4 longer than that of the central parab¬ 
oloid. This situation is illustrated in Fig. 13-lla. Then the phase of 
the illumination over the outer portions of the aperture will be delayed 
by A/2. If the antenna feed provides a normal primary pattern, the 
aperture illumination shown in Fig. 13*116 will then be obtained. This 
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will be a crude approximation to the (sin u)/u aperture illumination 
required for a sector shaped beam. 

The beavertail beam illustrated in Fig. 13*4 is not obtained conven¬ 
iently by means of an extended feed; the angle of coverage in actual 
applications is too large, and the taper in two directions from the center 
complicates the feed. It is obtained very easily, however, with a reflector 
modification. The simplest arrangement is a narrow vertical strip down 
the middle of the reflector set out from the surface of the main reflector 
by a fraction of a wavelength. The factors affecting the width and 
offset of the strip can be appreciated by reference to Fig. 13*12 which 
illustrates the design and the mechanism of beam shaping for an actual 
case. The width of the strip affects the total power that it intercepts 
and the directivity of its pattern. Its offset from the main reflector 
establishes the phase relationship for amplitude addition which is impor¬ 
tant in the region where the two amplitudes are of the same order of 
magnitude. In the actual case1 at X = 10 cm, a reflector with a 20- by 
5-ft aperture and a 5-ft focal length was fitted with a strip running the 
long way of the reflector. The optimum width of the strip proved to 
be 8 in., and the offset, £ in. It is evident that the presence of a strip 
of this width will introduce interference side lobes in the pattern of the 
remainder of the reflector, which will impair the quality of the final 
beavertail pattern. An improved pattern would be obtained if the 
flaring of the beam were accomplished by modification at the two edges 
of the reflector rather than at the center, in which case the interference 
lobes would be less prominent. 

Asymmetrical Shaped Beams.—Extended feed and modified reflector 
designs have both been used successfully to obtain asymmetrical shaped 
beams. Extended feed designs have been used in general for ground and 
ship antennas for which the required elevation coverage was limited 
usually to small angles and for which the reflectors were too large for 
convenient modification. Extended feeds are readily adapted also to 
the use of multiple transmitters when the prescribed coverage requires 
high power. Modified reflector designs have been used almost exclu¬ 
sively in airborne antennas which are required to provide wide-angle ele¬ 
vation coverage and to possess smooth and stable pattern characteristics. 

Both dipoles and horns have been used in linear-array feeds for 
shaped-beam antennas; in some cases both have been used in the same 
array. The choice between a dipole and a horn as the radiating element 
in a given situation depends upon the power to be handled, the required 
impedance characteristics, and convenience in construction. The design 
and performance of three extended feed antennas will be described in 
order of increasing complexity, A cut paraboloid reflector with a two- 

1C. S. Pao, “The Beavertail Antenna/' RL Report No. 1027, Apr. 9,1946. 
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dipole array feed1 for operation at X = 10 cm is illustrated in Fig. 13*13. 
The aperture dimensions are 8 by 4 ft, and the focal length, 27.5 in. 
The elevation pattern is shown in Fig. 13* 16a. This pattern and the 
impedance match (VSWR <1.2) were maintained satisfactorily over a 
2 per cent bandwidth. A cut paraboloid reflector with the long dimen¬ 
sion horizontal and with a four-horn array feed2 for X = 10 cm is shown 
in Fig. 13*14. The aperture dimensions are 5 by 14 ft, and the focal 
length, 60 in. The feed design will be discussed in the next section. 
The elevation pattern is shown in Fig. 13*166. In impedance match, the 
feed showed a VSWR <1.12 for a 6 per cent band when tested in free 
space and a VSWR < 1.25 for a 3 per cent band when tested in the 

1C. F. Porterfield and L. J. Chu, “A Simplified Search Antenna,” RL Report No. 
486, Jan. 1, 1945. 

* W. J. West, “A Four-Horn Feed to Give Csc* 6 Antenna Patterns,” RL Report 
No. S96, Mar. 15, 1946. 
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Reflector 

out strip, (b) central horizontal section showing strip, (c) mechanism of beam shaping 

reflector A large and complicated antenna1 for X = 10 cm is shown in 
Fig 13 15. The reflector is a cut paraboloid 10 by 25 ft with a 78-in 
focal length. Of the eleven elements m the feed array, one element is 
fed from a first transmitter, two elements from a second transmitter, 
and eight elements from a third transmitter Horn radiators are used 
with the first two transmitters because of the concentration of power, 
and dipoles with the third transmitter The three-lobe pattern is shown 
in Fig. 13* 16c. This elevation coverage represents the limit practicable 
writh this antenna, since the azimuth beamwidth of a point feed 30 in 
off axis (or 21° referred to the vertex) is increased by about 70 per 
cent. The impedance match presented to all three transmitters was 
VSWR <1.12 over at least a 4 per cent band. 

A variety of reflector shapes have been used for beam shaping in 
airborne antenna designs. Of these the most common and successful 

1C. G. Stergiopoulos, BL Report No 951, Feb 12, 1946 
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was the so-called barrel reflector antenna.1 The shape of this reflector is 
obtained by replacing the top half of a paraboloid reflector with a figure 
of revolution produced by rotating the generating parabola of the parab- 

(b) 
Fxo. 13*13.—Cut paraboloid reflector with two-dipole array feed: (o) assembly; (b) feed. 

oloid about a horizontal line through the focal point. The centred 
vertical section through this reflector is of the type shown in Fig. 13-176. 
The complete antenna is illustrated in Fig. 13-17 and will be discussed 

1 A. S. Dunbar, RL Report No. 411, Aug. 3, 1943. 
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further in Sec. 13*8. Its elevation pattern, shown in Fig. 13*20a, is 
best suited to high-altitude use. Elevation patterns suitable for low 
altitude can be obtained with several reflector shapes. The shovel 
reflector1 belongs to the family defined in Fig. 13*96. It is obtained by 

(6) 
Fig. 13*14.—Cut paraboloid reflector with four-horn array feed: (o) antenna; (6) central 

vertical section. 

i J. H. Gardner, “Low Altitude Navigation Antennas,” jRL Report No. 615, 
Oct. 3, 1944. 
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replacing the lower third or so of a paraboloid reflector with a parabolic 
cylinder. The shovel-reflector antenna is illustrated in Fig. 13-18; its 
elevation pattern is given in Fig. 13-20b. The general shape and smooth¬ 
ness of the pattern depend upon the point of attachment of the shovel, 

-6° -4° -2° 0° 2° 4° 6° 8° 10° 12° 14° 16° 18° 20° 22° 24° 26° 28° 30° 
Elevation angle 

(0 
Fia. 13*16.—Elevation patterns obtained with cut paraboloid reflectors and linear- 

array feeds: (a) two-element array of Fig. 13-13; (b) four-element array of Fig. 13-14; («) 
eleven-element, three-transmitter array of Fig. 13-15, 
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its displacement normal to the surface of attachment, and its tilt with 
respect to the tangential direction. A low-altitude beam can be obtained 
also by inserting a narrow horizontal strip just above the center of a 

(6) 

Fit*. 13*17.—Barrel-reflector antenna for high-altitude beam shaping: (a) photograph; 
(b) drawing. 

paraboloid reflector with the proper width, offset, and tilt.1 A strip- 
reflector antenna is illustrated in Fig. 13*19, and its elevation pattern is 
given in Fig. 13*20c. The basic limitation with this strip-reflector design, 
as pointed out earlier in connection with the beavertail-shaped beam, 
is that the strip divides the aperture into two parts between which inter- 

1C. C, Cutler, “Notes on the Design of .Asymmetrical (Cosecant) Antennas,” 
BTL Report MM-43-1G0-192, Nov 12, 1943, J. H. Gardner, “Low Altitude Naviga¬ 
tion Antennas,” RL Report No. 615, Oct. 3, 1944. 
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ference occurs. Even with the relatively narrow strips required for low- 
altitude beams, the interference lobe that appears on the opposite side of 
the peak from the flared portion is only 10 db down from the peak gain. 
In many aircraft installations this upward-directed interference lobe would 

Fig. 13*18.—Shovel-reflector antenna for low-altitude beam: (a) antenna; (b) central 
vertical section of reflector. 

Fig. 13*19.—Strip-reflector antenna for low-altitude beam: (a) antenna; (b) central 
vertical section of reflector. 

be reflected from the under side of the fuselage and wings and produce 
an interference ripple in the pattern on the ground. The best simple 
design for a low-altitude shaped-beam antenna has been one that uses 
a cut-down barrel reflector. This antenna1 consists of a 29-in. diameter 
by 10.6-in. focal length paraboloid with a barrel insert cut down in 

1J. H. Gardner, “Low Altitude Cec* $ Antenna,” BL Report No, 1073, Feb, 21, 
1946. 
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the vertical to 19 in. (71 in. above the axis, 111 in. below) in order to 
eliminate that part of the barrel which contributes to the steep angle 
portion of the pattern. This reflector is then fed with a horn so directed 

-40° -30° -20° -10° 0° 10° 20° 30° 40° -30° -20° -10° 0° 10° 20° 30° 40° 50® 

(C) (d) 
Fig. 13*20.—Elevation patterns obtained with airborne shaped-reflector antennas: (o) 

barrel-reflector antenna of Fig. 13*17; (6) shovel-reflector antenna of Fig. 13*18; (c) strip- 
reflector antenna of Fig. 13*19; (d) cut-down barrel-reflector antenna. 

as to obtain proper illumination. The antenna can be visualized by 
reference to the uncut antenna shown in Fig. 13T7. Its vertical pattern 
is shown in Fig. 13-20d. 
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A number of shaped-beam antennas obtained by reflector modifica¬ 
tions were described in the previous paragraph. These were truly 
reflector modifications in the sense that the design started with an existing 
paraboloid reflector and proceeded on the basis of obtaining the required 
beam shape with a minimum of remodeling. Time-consuming cut-and- 
try processes were involved, and the ultimate result was frequently less 
than satisfactory. A satisfactory design is obtainable more rapidly 
and reliably if the reflector is visualized as a device for transforming the 
primary pattern of the feed into the required secondary pattern. In this 
sense the reflector shape is dictated by specifying the two patterns; the 
problem is one for computation rather than cut-and-try. The computa¬ 
tion of shaped cylindrical reflectors is a straightforward problem and 
has received experimental confirmation in a number of antenna designs. 
These results will be described in detail in Sec. 13-0. The line source 
used with a cylindrical reflector could be used equally well with a shaped 
cylindrical lens1 to obtain an antenna with certain advantages over the 
reflector antenna. The calculation of the complete shape of a double 
curvature reflector for beam shaping is more involved and subject to 
further study, but experimental confirmation of present design procedures 
has been obtained in a limited number of cases. 

13*4. Design of Extended Feeds.—In the previous section, several 
shaped-beam antennas utilizing extended feeds were described as to 
over-all design and performance. In actual fact the principal r-f design 
problem is concentrated in the extended feed itself. It has been pointed 
out that both dipoles and horns have been used as the radiating elements 
in linear-array extended feeds and that the choice between them depends 
upon power-handling, impedance, and mechanical considerations. These 
questions and others involved in the design of these arrays will be con¬ 
sidered in this section. We will consider first, however, some optical 
focusing problems common to all extended feeds used in paraboloids 
(c/. Sec. 6-7). 

Optical Focusing Properties of Paraboloid Reflectors.—Let us begin with 
a single radiating element at the focal point of a circular (uncut) parab¬ 
oloid reflector. The resulting diffraction pattern will depend upon the 
directivity of the feed and upon the shape (focal length to diameter ratio, 
F/D) of the paraboloid. As the feed is moved off axis2 by a rotation 
about the vertex, the beam will move off axis on the side opposite the 
feed and in direct proportion to the feed displacement. This propor¬ 
tionality factor would be unity for a flat plate according to Snell's law; 
it is slightly less than unity for paraboloids in the useful range of shapes, 

1 A. S. Dunbar, “ Metal Plate Lens for Csc* Antenna/' RL Report No. 1070, Feb. 
15, 1946. 

* $. Silver and C. S. Pao, “Paraboloid Antenna Characteristics as a Function of 
Feed Tilt” RL Report No. 479, Feb. 16, 1944. 
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as shown in Fig. 13-21. As the beam moves off axis, it deteriorates, at 
first slowly and then more rapidly as the angle increases. The gain 
decreases; the beamwidths increase; and a series of side lobes (the so-called 

coma lobes) appear on the axis side 
of the displaced beam. These 
effects can be described uniquely 
in terms of the angular displace¬ 
ment expressed in beamwidths, 
but only if the reflector shape and 
feed directivity are held constant 
The variation of gain with feed tilt 
for reflectors of different shapes 
with a relatively directive feed is 
plotted in Fig. 13-22. In addition 
to these pattern changes, an an¬ 
tenna initially matched in imped¬ 

ance with the feed on axis will undergo a series of impedance changes with 
feed tilt. These effects are illustrated by the measured data plotted in 
Fig. 13*23, which are susceptible of quite accurate theoretical verification. 
The curves have been rotated into separate quadrants of the Smith Chart 
for clarity in presentation. 
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Fig. 13-22.—Dependence of antenna gain on feed tilt and paraboloid shape. F/D is the 
focal length to diameter ratio. 

When the paraboloid is cut to reduce the aperture in one dimension 
or the other, its off-axis focusing properties are modified considerably. 
These effects can be understood qualitatively by reference to Fig. 13*24. 
The circle represents the aperture of a paraboloid reflector. When the 
feed is moved off axis in the vertical plane to some position in the ree- 

' % 
Fig 13 21 —Beam deviation propor¬ 

tionality factor as a function of reflector 
shape 
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tangle shown at the center of the circle, rays reflected from various por¬ 
tions of the paraboloid will deviate from parallelism with the ray reflected 
from the vertex. The equal deviation contours plotted in the figure 
are purely schematic, since actual contours would depend upon reflector 
shape and feed displacement. However, they serve to illustrate the 
fact that the outer portions of the reflector lying between the principal 
planes are responsible for the most serious deviations. From Fig. 13*24a 

10 0 

0o 

Fig. 13*23.—Impedance changes at X *» 10 cm in 30-in. paraboloid reflectors of different 
shapes (F/D) as the feed is tilted off axis 

it is evident that cutting down the aperture along lines BB' will eliminate 
regions of high deviation and increase the allowable angle of feed dis¬ 
placement. It is misleading now to express this angle in beamwidths, 
since there are two different beamwidths in the two planes. 

In actual practice the reflector of a carefully designed antenna is not 
cut along the straight lines shown in Pig. 13-24a, but rather along one 
of the equal illumination curves of the feed (c/. Chap. 12), e.g., the equal 
illumination curve 14 db down from the point of maximum illumination. 
Three such curves are shown in Fig. 13-246 superimposed on the equal 
deviation contours: Curve A is appropriate to a feed on axis and pointed 
at the vertex of the paraboloid; Curve B, to a feed on axis but pointed 
into the top half of the reflector; and Curve C, to a feed below the axis 
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but pointed at the vertex. Whereas a reflector shape that follows Curve 
B is satisfactory for a point-source feed on axis, it would introduce serious 
defocusing when used with an extended feed because of the high devia¬ 
tion contours that it includes. For this reason symmetrically cut reflec¬ 
tors are always used with extended feeds. In the case of a feed array 
extending downward from the axis, the top element would favor the 
reflector shape given by Curve A while the bottom element would favor 
the shape given by Curve C. The actual reflector shape vill therefore 
be a compromise between these 

.(a) (6) 
Fig. 13 24.—Aperture of paraboloid reflector showing contours of equal deviation of rays 

from direction of central ray as feed is moved off focus in vertical plane (a) Lines BB' 
represent straight cuts to narrow the aperture in one plane, (b) Curves A, B, and C repre¬ 
sent equal illumination contours for different feed positions and orientations 

In the preceding discussion the feed displacement has been described 
as a simple rotation about the vertex. It is not necessarily true that this 
places the feed at the distance from the vortex corresponding to maximum 
gain. Measurements made under a variety of conditions have shown 
that the feed must then be moved away from the vertex to or slightly 
beyond the vertical plane through the focal point. This optimum dis¬ 
tance for a given displacement angle will depend upon how the reflector 
has been cut. 

To obtain optimum performance of a cut paraboloid with an extended 
feed, it is necessary to carry out an experimental design procedure. This 
procedure with its results will be described for the 10 by 25-ft reflector 
shown in Fig. 13T5 at X » 10 cm.1 A dipole feed was moved transversely 
over a rajige of 30 in. off axis (21° referred to the vertex). At each 
displacement the feed was then moved parallel with the axis to find the 
point of maximum gain. The optimum feed point proved to be 5 in. 
farther out along the axis for the maximum feed displacement than for 
the feed on axis. For these optimum feed points, the variation with 

1 C. G. Stergiopouloa, BL Report No. 951, Feb. 12, 1946. 
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displacement of gain and azimuth beamwidth (perpendicular to the dis¬ 
placement plane) were measured with the results shown in Fig. 13-25. 
The reduction in gain is not so serious as it appears, since a major part 
of the reduction is due to beam spreading in the vertical plane in which 
a flared beam is required. The increase in azimuth beamwidth is 
serious and sets the limit for this reflector on the angular range over which 
it is practicable to flare the beam. 

Fig. 13-25 Variation of gain and azimuth beamwidth with dipole feed displacement for the 
reflector of Fig. 13 15 

Dipole-array Extended Feeds.—Several problems arise in the design 
of a dipole array to be placed near the focal plane of a paraboloid for 
the -purpose of obtaining a flared beam. First the array should be 
located with reference to the focal plane so that the individual overlapping 
lobes comprising the flared beam have maximum gain. The dipoles 
along the waveguide must be so spaced that the individual lobes are all 
in phase with each other. The input impedance of the dipole array 
must be such as to terminate the transmission line properly. Finally, 
the available power must be divided among the several dipoles in such 
proportions as to obtain the desired beam shape. 

The array is oriented with respect to the paraboloid axis and focal 
plane on the basis of gain and beamwidth information of the type pre¬ 
sented earlier in this section. The individual lobes will combine in phase 
if the radiations from successive dipoles arrive at the vertex in phase. 
With the waveguide oriented for maximum gain of the individual lobes, 
the relative phases are controlled by the spacing between dipoles along 
the waveguide. In terms of the quantities shown in Fig. 13-26, the 
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spacing for reversed dipoles is given by the relation 

&_ 4- _ r*+i 1, 
X, A A ~ 2 

The dipole array is usually fed from a traveling wave which is realized 
by terminating the array in a dummy load or preferably by using the 
last dipole in tKe array as a load. If the latter technique is used, the 
last dipole in the array must have its impedance such that it absorbs 
all the power transmitted down the waveguide to it. This condition 
is attained by proper adjustments of the depth of the probe feeding the 

Fig. 13*26.—Array of dipoles on waveguide in paraboloid reflector, showing dipole spacing 
and orientation of array with respect to vertex. 

last dipole and of the distance from the probe to the shorting plug at the 
end of the waveguide. The probes of the other dipoles are next inserted 
into the waveguide in succession starting from the last dipole in the array 
and proceeding to the first dipole. The depths to which the successive 
dipole probes are inserted are determined by the power division among the 
dipoles necessary to produce the required flared beam. Once the desired 
antenna pattern is obtained, the final impedance match of the array may 
be accomplished by inserting an inductive iris of appropriate dimensions 
at the proper location in the waveguide. 

The principal advantage of the dipole array is its simplicity in design 
and construction. The disadvantage of this array is the interdependence 
of spacing and phasing of the individual elements. Each element of the 
array independently should provide proper illumination of the reflector. 
The dipole elements suffer from the disadvantage that their radiation 
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patterns are dependent upon the polarization required and are relatively 
inflexible. 

Horn-array Extended Feeds.—The problems in the design of a horn 
array are similar to those arising in the design of a dipole array. Opti¬ 
mum gain locations for the horns near the focal plane of the‘paraboloid 
are determined in the same manner as for the dipole elements. The 
radiation from the several horns of the array is made to arrive at the 

£ 

Fiq. 13*27.—Multiple horn feeds for illuminating a cut paraboloid: (a) multiple F-j unction; 
. (b) successive T-j unctions. 

paraboloid vertex in phase by a proper choice of the lengths of wave¬ 
guide extending to the individual horns. 

Various methods of dividing the power in multiple horn feeds exist; 
two methods are illustrated in Fig. 13-27. In the multiple Y-junction, 
the power is proportioned among the several horns by septums extending 
into the main waveguide. The impedance match of this multiple feed 
may be accomplished by a single iris in the main waveguide. In the 
array employing successive T-junctions (Fig. 13-276), the division of 
power between the upper horn and the middle horn is determined by an 
iris in the section of waveguide feeding the middle horn. The impedance 
match of the combination of upper and middle horns to the waveguide 
is accomplished by an iris just below the junction. The division of 
power between the combination of top and middle horns and the lower 
horn is determined by the iris in the section of waveguide feeding the 



494 SHAPED-BEAM ANTENNAS 18m<\ 13*5 

lower horn. The over-all impedance match of the multiple feed is accom¬ 
plished by the iris in the main waveguide. A four-horn array of the 
latter type is used in the antenna shown in Fig. 13-14. 

The advantage of the horn array lies in the fact that the phasing 
between successive elements and the radiation pattern of each element 
are completely at the disposal of the designer and are susceptible of 
calculation. The disadvantages of this type of array are the extreme 
complexity of the design and the bulk and weight of the resulting feed 

Fig 13 28 -Shaped cylindrical reflector illuminated by a pillbox line source 

13«6. Cylindrical Reflector Antennas.—The technique of obtaining an 
asymmetrical beam by a shaped cylindrical reflector and line source has 
been used extensively in airborne navigational radar antenna design 
where sharp azimuth beams and uide-angle vertical coverages are 
required. Figure 13-28 illustrates a shaped cylindrical reflector illu¬ 
minated by a pillbox which serves as a line source parallel to the gener¬ 
ating line of the reflector. 

The general theory of cylindrical reflectors and line sources is treated 
in Sec. 5-9. It was shown there that the pattern in the plane perpen¬ 
dicular to the generator of the cylinder—the vertical plane in the present 
discussion—is determined by the energy distribution of th? source in 
that plane and the cross-section contour of the reflector, and that the 
pattern in the transverse planes is determined by the energy distribution 
along the axis of the source. The cross-section contour of the reflector 
is so shaped and oriented with respect to the line source that its lower 
section concentrates the rays from the source into approximately parallel 
directions, thereby concentrating the energy into the peak of the beam. 
The upper part of the reflector is bent forward with increasing curvature 
to disperse its rays into a broad flare. The net result is an asymmetrical 
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beam, the exact vertical diffraction pattern of which depends upon the 
shape of the cylinder and t|ie distribution of illumination from the line 
source on the reflector surface. 

General Requirements.—The specifications on the vertical polar dia¬ 
gram are determined by the operational requirements. For example, 
if a navigational radar is to be designed for an aircraft flying at an alti¬ 
tude of about 1 mile and is to be capable of covering a radius of about 
20 miles, then the peak of the antenna beam should be depressed about 
3° from the horizontal and the beam should be asymmetrical so as to 
produce approximately constant illumination of the terrain. Whereas 
the beam specifications depend on operational requirements, the over¬ 
all size of the reflector usually depends on the available installation space. 
If the antenna is part of an airborne radar, the allowable over-all height 
of the reflector is limited; the antenna is installed with the sharply curved 
upper portion of the reflector retracted into the fuselage, so that the 
protuberance below the fuselage for housing the antenna need not be 
large (cf. Sec. 14-3). 

In order that the power reflected from the cylinder back into the line 
source be negligible and that the line source have no destructive effect 
on the vertical polar diagram of the reflector, it is necessary that the 
reflector be so shaped that the complete system of reflected rays clears 
the line source. To achieve this condition the radiation from’the latter 
is directed down into the reflector and the major part of the reflector is 
below the line source. It is also important that the radiation reflected 
optically from the top of the reflector should not strike the bottom of the 
reflector. A profile view of a typical reflector and line source is shown in 
Fig. 13*29. The orientation of the top of the reflector is such that the 
radiation reflected there passes clear of the line source and the bottom 
of the reflector. 

Line Sources.—With the reflector height limited, it is necessary so to 
design the reflector contour and feed aperture that the angle subtended 
by the reflector at the feed includes most of its radiation; the illumination 
should taper to a low value at the top and bottom of the reflector. This 

‘precaution is necessary if the amplitude of radiation from the line source 
going past the edge of the reflector is to be maintained low and if the 
side lobes in the vertical diffraction pattern of the reflected radiation are 
to be kept down. In addition, the feed must be designed and oriented 
in the reflector with a view to minimizing the amount of feed back-lobe 
radiation in the angular region of the flared beam. The azimuth diffrac¬ 
tion pattern of the antenna is determined by the design of the line source. 
Since the beamwidth should be as narrow as possible in azimuth to secure 
good resolution on objects, and since relatively high side lobes in the 
azimuth pattern are allowable, the line source is required to have as 
sharp an azimuth beam as can’be obtained with the length of line source 
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used. This means that the intensity of the source should be uniform 
along its axis. 

The various designs of line-source foods used in this connection can 
be classified according to two general types: (1) arrays of radiating ele¬ 
ments arranged in a line on a waveguide and radiating approximately 
broadside and (2) parallel-plate linear focusing systems that have red 

Fig. 13*29.—Vertical section through shaped cylindrical reflector and li$e source. 

tangular apertures with a large length-to-breadth ratio. Ip the terra 
used in the treatment of linear arrays in Chap. 9, either resonant c 
nonresonant arrays may be used;1 design procedures and performanc 
characteristics are treated in detail in Chap. 9. The advantages ( 
linear arrays for this application are their compactness and light weigh' 
The disadvantages of the nonresonant array are (1) that the beam scar 
through a small conical angle as the result of frequency fluctuations an 

1J. R. Risser, A. M. Steenland, J. Steinberger, L. J. Eyges, RL Report No. 971 
\r_ 1A inic 
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(2) that the beAm must be ke|*t off normal to avoid cumulative impedance 
mismatch; thii results in a $t>nical beam that illuminates a hyperbolic 
trace on the ground. The remnant array suffers from the disadvantages 
of frequency Mtafeitivity in impedance match and pattern. 

A variety t>t p&rallel-platq focusing systems have been examined for 
their usefulness in this connec|}pn. One type consists of a rapidly flaring 
sectoral horn With either a electric1 or metallic lens2 in the horn so 
designed that ridUtion acros§ the horn aperture is all in phase. 

Another typS of parallel-pl^te line source is the pillbox antenna dis¬ 
cussed in Sec. 12*16. The pfjlbox line source is simple to design and 
relatively simple to construct Ipyt suffers from certain basic disadvantages. 
The center of the at»erture jn necessarily obstructed by the feed at the 
focus of the parabola; this results not only in side lobes in the azimuth 
pattern but also in an impedance frequency sensitivity as the result 
of radiation reflected back do\yn the feed line. Efforts to correct one 
or both of these effects, have taken various forms: the design of a matching 
plate to be put at the Vertex of the parabola,3 the design of new pillbox 
feeds,4 and the design of double pillboxes to obtain canceling reflections.6 

13*6. Reflector Design on the Basis of Ray Theory.—A successful 
procedure has been developed for designing the shape of the reflector 
that is required to produce a specified vertical-plane pattern. The latter 
is usually specified in idealized form: the power distribution is to be a 
prescribed function P(0) between the depression (or elevation) angles 0i 
and 02, and zero for all other angles. It must be recognized, however, 
that it is impossible to realize a discontinuous power distribution of this 
type accurately with a reflector of finite extent. Diffraction phenomena 
are unavoidable, and the best that dtie can hope to achieve is to approach 
the idealized pattern within acceptable limits of deviation from the pre¬ 
scribed P(0) in the range (0i,02) and with an acceptable low level of inten¬ 
sity outside the given range. 

A good first approximation to the cross-section curve can be arrived 
at on the basis of geometrical optics.6 If it then proves to be necessary, 

1 C. C. Cutler, “Line Sources of Microwave Energy fot Feeding Cylindrical Reflec¬ 
tors,M BTL Report MM-45-160-3, Jan. 5, 1945. 

1 M. A. Taggart, “Horn with Metal Lens,” RL Report fto. 863, Nov. 13, 1945. 
8 S. Silver, “Analysis and Correction of the Impedance Mismatch Due to a Reflec¬ 

tor,” RL Report No. 810, Sept. 25, 1945. 
4 M. A. Taggart, “A New Pillbox Feed,” RL Report No. 662, Nov. 7, 1945; L. J. 

Eygea, “Lens Feed for Pillboxes,” RL Report No. 869, Jan. 23, 1946. 
* W. O. Smith, “A Broad-band TEM Pillbox,” RL Report No. 901, Jan. 11, 1946. 
• R. C. Spencer, “Synthesis of Microwave Diffraction Patterns with Application 

to Cscf 0 Patterns,” RL Report No. 64-24, June 23,1943, describes L. J. Chu’s method 
for calculating the reflector shape. See also C. C. Cutlef, BTL Reports MM-44-160- 
87, Feb. 14, 1944; MM-45-160-4, Jan. 5, 1945. 
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the curve is modified by means of the more exact analysis given in the 
following section. We shall consider here the geometrical-optics tech¬ 
nique. The cross-section configuration of the reflector, the line source, 
and the rays is shown in Fig. 13-30. The 2-axis is taken in the horizontal 
direction; F is the trace of the line source. Positive angles are measured 
in the clockwise sense as shown. The reflector subtend^, a total angle 

at the source F. Let p be the radius vector from F to an arbi- 

Fig. 13-30. -Geometry of ray reflection at surface of reflector. 

trary point on the curve. From the law of reflection it follows that the 
angle between the normal to the curve and the incident or reflected ray 
is (0 — ^)/2; the differential equation of the curve is then readily found 
to be 

1 dp , i 
= tan (8) 

The functional relation between 6 and yp must be determined to pro¬ 
duce the proper dispersion of the primary feed energy into the secondary 
pattern distribution. To this end consider the wedge of incident rays 
between ^ and $ + d\p; on reflection this-becomes a wedge of rays between 
0 and 0 + d$. By the energy balance principle of geometrical optics the 
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power in the incident wedge is equal to the power in the reflected wedge. 
Let 1(4/) be the distribution in the primary pattern about the line source 
F. The incident power is then proportional to 1(4/) df. Similarly the 
reflected power is proportional to P(8) dd. We have then 

1(4/) d4/ = KP(6) dd. (9) 

The constant K is determined from the condition that the total primary 
feed energy intercepted by the reflector must appear in the secondary 
pattern in the required range (0id2), whence 

[* m K __ /Ii  _. 

1 ~ /,' ««> •» 
(10) 

Similarly the total primary feed energy in an arbitrary range (titf) must 
appear in a corresponding range (6hd) of the secondary pattern. This 
leads to the integral relation 

f'P(0)de = J*md4/ (li) 

which serves to determine 6 as a function of xp for proscribed distributions 
Ity) and P(0). For example, if P(6) is esc2 6, Eq. (11) gives • 

cot 6 = cot 61 + 
cot 92 — cot 61 

Jh m (i+ 

I(xp) (12) 

The primary pattern function I (xf/) is generally known only in numerical 
form from experimental data. The integrations over ^ must therefore 
be carried out numerically or graphically. 

The functional relation 6(\p) determined from Eq. (11) is then sub¬ 
stituted into Eq. (8) to obtain the equation of the curve. The integral 
of Eq. (8) is 

<i3> 

This integration must also be performed graphically or numerically. 
It is seen that this leads Only to the shape and not the absolute scale of 
the reflector. The distance po from F to the reflector along the axis is 
determined so that the required height of the reflector conforms to the 
total angle subtended at F. 

There are a number of arbitrary variables in the procedure, the choice 
of which can be determined only by experience. It will be observed 
that the line source is oriented so that its peak intensity is in a direction 
fa. This takes cognizance of the fact that the lower portion of the 
reflector is required to produce the high-intensity region of the secondary 
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pattern. The choice is not critical, and may be as low as 0° and as 
much as —25°. The angle — ypi subtended by the reflector should be 
sufficiently large to make efficient use of the primary feed energy. As a 
general guide \p2 *“ should correspond closely to the 10-db width of 
the primary pattern 1(4/). 

It is interesting to observe that the lower section of the reflector in 
general turns out to be very nearly a parabola with focus at F and axis 
FV parallel to the reflected ray in the direction 0X. The physical basis 
for this property is readily evident, for this portion of the reflector must 
converge the divergent rays from the feed into a narrow beam to produce 
the required peak intensity. The total flared pattern may be regarded 
as a superposition of a narrow beam produced by the parabolic segment 
and a broad beam produced by the dispersive section of the reflector. 

13*7. Radiation Pattern Analysis.—The secondary pattern that will 
actually be obtained with the reflector determined on the basis of geo¬ 
metrical optics can be calculated to a high degree of accuracy by the 
methods of Sec. 5*9. Such a calculation serves a several-fold purpose. 
The extent of the deviations from the idealized pattern can be determined 
prior to construction and test of an experimental model. The diffrac¬ 
tion effects are quite sensitive to the scale factor p0 in Eq. (13). If there 
is some latitude allowed in choice of the reflector dimensions, the radiation 
pattern can be calculated for several values of p0 for a given shape to 
determine the best dimensions within the allowed range. For a given 
choice of dimensions, the effect of small alterations in the cross-section 
contour from the geometrical-optics curve can be studied to arrive at a 
curve that yields an acceptable pattern. These results also serve as a 
basis for setting the tolerances that are to be required on the reflector 
shape in the production of the antenna. 

The reader is referred to Secs. 5*7 to 5*9 for the theoretical details. 
The calculation is based on the assumptions that the reflector is in the 
cylindrical wave zone of the source, that the minimum value of p is 
large compared with the wavelength, and that the maximum value of 

Z2 
p is less than where l is the length of the source. The primary pattern 

of the source is specified by the distribution function F(x) along the length 
of the source and the angular distribution G(\p) Around the source. Thus, 
if P is the total power radiated, the power radiated in a segment of angular 
width dand length dx is 

dP = ^ F(x)G(t) dx d*. (14) 

The properties of the distribution functions are given in more detail in 
Eqs. (5-81) and (5-82). 

The procedure is to calculate the current distribution induced on the 
reflector by the primary field and then to calculate the radiation pattern 
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of the surface-current distribution. Two oases are to be distinguished: 
(1) longitudinal polarization—horizontal polarization in the present dis¬ 
cussion—in which the electric vector of the primary field is parallel to the 
line source and (2) transverse—vertical—polarization in which the electric 
vector is parallel to the planes perpendicular to the line source. The 
coordinate system is described in detail in Fig. 5*9 and will not be repro¬ 
duced here. Only one change need be noted: In the present section the 
positive direction of the angle © is reversed with respect to that chosen 
in Sec. 5*9.’ The complete expressions for the patterns are given for 
the two types of polarization by Eqs. (5*86) and (5*87), respectively. 
For the vertical plane pattern, that is, the plane $ = 0 in Fig. 5*9, these 
reduce to 

1. Horizontal polarization: 

Em - -jA J*' fpOmH eos i [l + -p (|)*JH (i5) 

2. Vertical polarization: 

E(&) = —jA [pCWPcos (n,Ri) j\ + ~p(^j J p-'MH-«»<*-©)] #, 

P (16) 
where 

<i7) 

The angV i is the angle between p and the normal n to the surface; the 
angle (n,Ri) is between the normal and the unit vector Ri in the given 
direction of observation in the secondary pattern. We note also that 
from the preceding section 

[i+C^)j=sect- (i8) 

The reflector curve being given, p, cos i, and cos (n,Ri) are known func¬ 
tions of position on the reflector. The integrals are then evaluated 
numerically for successive values of ©. The power pattern is then 
obtained by the usual methods which are discussed in Chap. 5: 

P(0) (19a) 

and the gain in a given direction is 

<?(©) = (196) 

The calculations are laborious but straightforward. The reliability 
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of the method may be judged by the comparison between the calculated 
and measured patterns shown in Fig. 13*31.1 The positions of the 
maxima and minima are predicted accurately, and the maximum devia¬ 
tion from the measured values is 2 db. The performance of the reflector 
could have been improved by the procedure, outlined at the beginning 

Angle 
Fig. 13*31.—Calculated and observed vertical patterns of cylindrical reflector antenna with 

horizontal polarization. 

of the section, of modifying the reflector curve until the amplitude fluc¬ 
tuations in the calculated pattern are reduced to an acceptable value. 

13-8. Double-curvature Reflector Antennas.—The line-source feeds 
required to illuminate the cylindrical reflectors discussed in the preceding 
section have a number of disadvantages as compared with point-source 
feeds. They are in general bulkier, heavier, less satisfactory as to imped¬ 
ance properties, and more complicated to design, build, and pressurize. 
When a reflector is used with a point-source feed to form a shaped beam, 
it is required to provide a pattern of the specified shape in one plane and 
to focus in transverse planes. A number of cut-and-try improvisations 
for accomplishing this end were described in Sec. 13*3 under Asymmetrical 
Shaped Beams. 

1 Taken from T. J. Keary, u Calculation of Vertical Polar Diagrams and Power 
Gains of Antennas for Airborne Navigational Radars,” RL Report No. 750, Sept. 10, 
1945. 
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Barrel Reflector Antenna.—The barrel reflector antenna shown in Fig. 
13*17 was the most successful of these improvisations but is subject to 
some serious limitations. A consideration of these limitations will pro¬ 
vide helpful guide lines in the design of double-curvature reflectors. In 
the first place, the shape of the central vertical section of the reflector 
was determined, not as the proper transformation from primary to 
secondary pattern, but by the simplest geometry which provides a focus 
in transverse planes. The bottom 
half of the reflector focuses half 
of the radiation from the feed 
into a pencil beam. The barrel¬ 
shaped top half of the reflector 
focuses the primary pattern in 
transverse planes but reflects it 
unchanged in the vertical plane. 
The superposition of the two 
portions of the secondary pattern, 
shown schematically in Fig. 13-32, 
inevitably results in a depression in the pattern near the peak of the 
beam, as can be seen in the pattern of Fig. 13-20a. Second, since the 
feed is at the center of curvature of the barrel section in the plane of 
symmetry, all the reflected rays in that plane pass through* the feed. 
This causes an excessive amount of power to be returned to the transmission 
line resulting in a frequency-sensitive impedance mismatch. A third 
difficulty is that the right and left upper portions of the barrel reflector 
are set at such angles as to give rise to strong cross-polarized components 
in the wide-angle portion of the flared beam. These cancel in the median 
plane but add to the sides of the normal polarization lobe to give a con¬ 
siderably broader effective transverse pattern. These several difficulties 
with the barrel reflector antenna can be avoided by proper design1 of the 
generalized surfaces to be discussed below. 

General Considerations.—The primary feed pattern and the reflector 
are to have as a common plane of symmetry the plane in which the beam 
is flared—plane XFZ of Fig. 13*33. Two considerations enter the design: 
The central vertical section of the reflector is to be adjusted on the basis 
of the central vertical pattern of the feed to give the specified secondary 
pattern; the remainder of the surface is to be so shaped as to obtain 
pencil-beam characteristics in the transverse planes. The second con¬ 
sideration requires that all rays from the point source after reflection 

1 R. C. Spencer, “Synthesis of Microwave Diffraction Patterns with Applications 
to Csc* 6 Patterns,” RL Report No. 54-24, June 23, 1943; J. F. Hill, G. G. Macfarlane, 
W. Walkinshaw, TRE Report No. 1878, May 17, 1945; 8. Silver, “Double Curvature 
Surfaces for Beam Shaping with Point Source Feeds,” RL Report No. 691, June 15, 
1945. 

Fig. 1.3-32.- Superposition of barrel and 
paraboloidal amplitude patterns. 
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from the surface emerge parallel to the central plane; the reflected wave- 
front is thus a cylinder whose generator is normal to the central plane. 

Transverse Sections of the Reflector.—The transverse sections of the 
surface are determined by the requirement that the reflector is to convert 

a spherical wave into a cylindrical 
wave. The condition is easier to 
formulate from the point of view 
of reception. Referring to Fig. 
13*34, consider the sheet of rays, 
all parallel to the central plane, 
incident on the reflector in the 
plane OANP. The latter is per¬ 
pendicular to the central plane. 
We require all these rays to be 
brought to a focus at F. If then 
we take any line in the plane 
OANP perpendicular to the rays, 

the optical path from that line to F is the same for all rays in the sheet. 
Let p be the radius vector from F to the central section curve, <t> its angle 

X 

of elevation, and <r the angle between the incident and reflected ray in 
the central section. Through F draw Ox normal to the plane OANP. 
In the plane OANP set up the orthogonal axes Oy, Ozt with Oy normal 
to the central plane. Writing the condition of the optical path (<?/. Sec. 
4*9) we have 

AN + NF - OP + p 

(pa sin2 9 + y% + z*)V — z « p(l + cos <r). 

spherical coordinate system. 

or 
(20) 
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This gives 

y* = 4p cos2 ^ (z + p cos a). (21) 

The section of the surface in the plane OANP is, therefore, a parabola 
with vertex at P and focal length 

/(<*>) = p(<t>) cos2 (22) 

Given the central section curve, p(<£), /(<£) and the associated reflec¬ 
tion plane are determined. It is readily seen that the whole family of 
reflection planes corresponds to a cylindrical wavefront. The barrel 
section reflector is obtained by setting p = constant, cr(<£) = 0. 

Central Section Curve.—The central section curve is to be determined 
so that the system will radiate a desired Fraunhofer pattern. There is 
no simple decisive procedure for relating the central curve to this pattern, 
which takes diffraction effects into account properly. The method dis¬ 
cussed here is based on geometri¬ 
cal concepts of energy balance 
between the primary feed and 
Fraunhofer patterns. The latter 
is a three dimensional pattern for 
whose specification we shall use 
spherical coordinates such as are 
shown in Fig. 13*33. The angle 
of elevation with respect to the 
.XT-plane will be denoted by 0 
(<t> being used for the primary feed 
pattern). ^ is the azimuth angle in the planes 0 = constant. The pat¬ 
tern is specified in the form P(0, ^), the power radiated per unit solid angle 
in direction (0,^). The central plane pattern P(0,O), hereafter designated 
as P(0), is assumed to be specified. 

Referring to Fig. 13*35 it is seen that the differential equation of the 
central curve is given by 

x 

1 dp 
p d<t> 

a being the angle between the incident and reflected ray. Or since 

<r = 0— <t>, 

The positive directions of 0 and <t> are shown in the figure. The relation 
between 0 and <£, which is necessary for integrating the above equation! 
is obtained from energy balance considerations. 

Ibis method is based strictly on geometrical optics. The assumptions 
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involved are that the beam is narrow in the transverse ty) directions 
and that the transverse aspect of the beam is virtually independent of 0. 
The effect of diffraction is assumed to be the same in all such planes. 
Accordingly we assume that we have a cylindrical wavefront in the far 
field corresponding to geometrical optics and that the energy flow through 
the cylindrical wavefront between the planes 8 and 8 + d$ per unit length 
along the generating element is of the form 

P(8)d8F(y), 

where F(y) represents the distribution in the transverse aspect of the 
beam. 

Let us take a small cone of rays from the source F in the central section 
defined by the planes <t> and <t> + d(f> and azimuth extent d\p. The energy 
in this cone is 

/(</>) d<j> rty, 

where I(4>) is the power radiated per unit solid angle in direction (<j>,0) 1 
On reflection this energy appears in a wedge defined by the planes 0 
and 8 + dd, since the reflected rays are parallel.2 The x\ idth of the wedge 
is p dip, so that in terms of P(8) the energy contained therein is 

P(0) ddp d\p. 

Equating this to'the incident energy gives 

pP(8) dd = I(<t>) d6 (24) 
or 

™ % - "f 
Because of the factor p occurring in Eq. (24), the latter cannot be inte¬ 
grated as in the case of the cylindrical reflector to give the relation between 
8 and <p. Taking logarithmic derivatives with respect to </> of Eq. (24a) 
and substituting from Eq. (23), we get instead the differential equation 

d*e , T* (+- e\ /'(*)! de P'(e) (de\ _ _ /0„ 
dtf + |tan \ 2 ) 1(4,) J d4, + P(6) \d4>) ~ °» (25) 

which is to be integrated numerically. Here 

/'<*) = dim, p'(e) = ~ 

The general arrangement of the central curve and feed is shown in 

1 The solid angle in the spherical coordinates used here is cos \p dj> d\j/. For the 
central section cos ^ - 1. 

* The correspondence is not strictly true, since rays in an incident sheet do not lie 
in a plane on reflection. We are assuming that the error is negligible in the neighbor¬ 
hood of the central section. 
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Fig. 13*36. The angular limits </>i, </>2 of the reflector are arbitrary. 
A satisfactory choice is to take these to correspond to the 10-db points 
in the primary pattern. The angular aperture </>2 — 4n must be taken 
fairly large, or the surface will be found to curl in too rapidly in 
the transverse aspects. By setting up the reflected rays as shown in the 
figure the feed is kept out of their paths and the mismatch due to the 
reflector is kept at a low level. Since the region <t>\ < 4> <0 contributes 
to the high energy region of the Fraunhofer pattern, the primary feed 

Peak illumination 
of the primary 
feed pattern 

Fi«. 13*36.—General arrangement of central curve and feed. 

pattern is tipped to illuminate that area more strongly. The angle of 
tip is arbitrary. For cylindrical reflectors with a line source this is 
usually taken in the neighborhood of 15°. This should be satisfactory 
here. With the choice of these various factors decided upon, the integra¬ 
tion problem is defined. 

Integration for the esc2 0 Pattern.—We shall discuss the integration 
of the central curve equations with particular reference to the esc2 0 pat¬ 
tern used in airborne navigational antennas. P(0) is required to be a 
esc2 0 distribution between the angular limits 0i and 02. That is, 

P{6) = K2 esc2 0, 0i < 0 < 02, 0i > 0 
- 0 

outside this range. Using Eq. (25), we first find 0(0) so that 

0 = 0i when <t> — 0 i, 
0 = 02 when <t> = 02. 

For the esc2 0 pattern we get 

d*0 , T (<t> - e\ /'(*)! do 0 . Jde2\2 

The numerical integration of this equation subject to the end-point eon- 
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ditions at fa and fa requires a guess as to the value of the slope d$/d<l> 

at the starting point. The integration is carried through for the trial 
value of initial slope, and the resulting end value 02 is determined. On 
the basis of this result a second assumption is made for the initial slope, 
and the integration is repeated. The second or, at most, a third guess 
is sufficient, especially since the end value 02 is not critical. The initial 
slope may be expected to be small, since this region of the reflector con¬ 
tributes to the peak of the beam and the reflected rays are very nearly 
parallel. Throughout the course of the curve d9/d<!> must be positive. 

13*9. Variable Beam Shape.—It is frequently specified for an airborne 
navigational radar antenna that the shaped elevation pattern be con¬ 
trollable, either continuously or in a limited number of steps. This 
requirement is imposed because of the need to operate the aircraft at a 
range of altitudes, whereas the esc2 9 pattern is designed for a single alti¬ 
tude. Several means have been employed to exercise control over the 
elevation beam shape. In one cylindrical reflector antenna the direc¬ 
tivity of the feed was altered by means of a flap1 to direct more of the 
radiation onfb the sharply curved portion of the reflector and thus put 
more power into the wide-angle part of the elevation pattern for high- 
altitude operation. In the case of the cylindrical reflector—pillbox 
antenna, measurements have been made on the change in shape of the 
secondary pattern of the antenna as the pillbox is rotated about the 
long axis of its aperture. Similar measurements have been made with 
encouraging results by rotating a directive horn feed in the barrel reflec¬ 
tor.2 In all such cases, after the altered pattern shape has been obtained 
by a change in feed, it is then necessary to rotate the entire antenna to 
obtain the correct minimum depression angle. Rotation of the reflector 
about a horizontal axis near the vertex changes the illumination and 
depression angle together in such a way as to give satisfactory patterns 
in an actual case3 for depression angles from 3° to 13°. 

It is sometimes necessary to compensate for roll and pitch of the air¬ 
craft by line-of-sight stabilization which maintains a fixed elevation angle 
of the beam with respect to the horizon. For simplified mechanical 
control and to eliminate mechanical interferences, there are advantages 
in obtaining stabilization in the beam by rotating the reflector alone in 
the vertical plane. In this case, it is desirable to change the position 
of the beam without changing its shape. This is difficult because dis¬ 
placement of the feed causes changes in the illumination over the reflector. 

Both of these problems would be much simplified if the reflector were 

1 C. C. Cutler, BTL Report MM-45-160-4. 
* J. H. Gardner, “Low Altitude Csc* 6 Antenna/' RL Report No. 1073, Feb. 21, 

1946. 
8 T. J, Keary, A. R. Poole, J. R. Risser, H, Wolfe, “Airborne Navigational Radar 

Antennas/' RL Report No. 808, Mar. 15, 1946. 
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not asked to perform the dual function of focusing and shaping the beam. 
In one antenna design1 a point source and cut paraboloid produced a 
collimated beam which was then shaped in the vertical plane by a second 
reflector. In this case an excellent elevation pattern was obtained. By 
control of the second reflector alone it was possible to change the shape 
and direction of the beam for depression angles ranging from 1° to 9° 
and to accomplish line-of-sight stabilization over a range of ± 15°. The 
serious disadvantage of the double-reflector antenna is the space that 
it requires. 

1 E. B. Chisholm and B R Vogel, “Double Reflector \ntenna,” RL Report 
No. 775, July 16, 1945. 



CHAPTER 14 

ANTENNA INSTALLATION PROBLEMS 

By L. C. Van Atta and R. M. Redheffp:r 

GENERAL SURVEY OF INSTALLATION PROBLEMS 

The customary procedure in microwave radar antenna development 
has been to design the antenna and to carry out the early experimental 
tests on the assumption of free-space conditions surrounding the antenna. 
Whereas this represents a good approximation in general, it is necessary 
eventually to consider the effect upon the antenna performance of the 
supporting structure on which it must be mounted. Also, it is generally 
necessary to place the antenna in a dielectric housing—the radome— 
which likewise affects its performance. It is sometimes possible so to 
choose the antenna location on the structure and to design the radome 
that the original performance of the antenna is unimpaired. The final 
result can be predicted with greater certainty, however, if the electrical 
design of the antenna is considered from the beginning in conjunction 
with that of the radome and with a view to the structure and location 
that the antenna-radome system must occupy. 

The purpose of this chapter is to present the problems imposed by 
installation requirements and the practices that have been adopted for 
dealing with them. These considerations are intended to serve merely 
as background for one engaged in antenna design. 

144. Ground Antennas.—The mechanical design of an antenna for 
ground use must effect a compromise between the factors of electrical 
reliability, mechanical ruggedness, and portability. An antenna in a 
permanent site has moderate weight and portability requirements, is 
not required to survive repeated rough handling, but should be ideally 
sited and should be designed to operate reliably over an extended period 
in the face of local conditions of weather and wind. 

The antenna of a high-performance radar set which must be moved 
quickly from time to time over considerable distance to a new site is 
still not seriously restricted in weight but must disassemble into rela¬ 
tively lightweight components of limited dimensions for transportation 
by air or truck. Its construction must permit precision reassembly after 
repeated handling. Components must be susceptible to repair or replace¬ 
ment under field conditions. 

The antenna of a somewhat lighter radar set may be truck-mounted 
with the rest of the set. Thi\ eliminates the necessity for disassembly 

510 
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and facilitates ground transport when relocation of the set is required. 
At the same time it rules out the desirable features of air transportability. 
Very lightweight sets have been designed for transport by mule or pack 
for use in inaccessible regions. So much is sacrificed in reliability and per¬ 
formance, however, by this severe portability requirement that such 
sets have not been demonstrated to be practicable. 

Some ground antennas, particularly truck-mounted units, are pro¬ 
vided with radomes. More often the antenna is exposed. It proves to 
be more practicable in these cases to design the antenna for operation in 
the open than to provide a satisfactory housing. The antenna feed 
must then be weatherized by means of a dielectric cup or plate. The 
reflector is generally of mesh, peiiorated, or grating construction to 
reduce windage effects. Mechanical and electrical components must 
be enclosed in a metal housing. 

14*2. Ship Antennas.—The distinctive features of a ship as an antenna 
location are the small number of suitable sites and the large amount of 
other gear that invariably interferes with the placement and performance 
of an antenna. The top of a mast is obviously the ideal location either 
for an antenna with an omnidirectional pattern or for one with a com¬ 
plete azimuth scan. Any other location will involve obstruction of the 
beam by the mast or by other parts of the superstructure. Such obstruc¬ 
tion will result in blind regions, false signals, or transmitter pulling. 
In addition to competing for favorable sites, antennas obstruct each 
other’s view and jam each other when frequency relations permit. 
Furthermore, mechanical and electrical considerations are frequently 
at cross purposes. A consideration of each antenna’s performance 
argues for placing it at the top of the mast, whereas a consideration of 
ship stability would place it below deck. An antenna mounted alongside 
a mast on a bracket should be far out from the mast for electrical reasons 
but close in for mechanical reasons The electrical performance is seldom 
improved by the modifications introduced to provide resistance to shock 
and vibration. 

A structure of limited extent equipped with a large number of antennas 
is referred to as an antenna system. The antenna system problem then 
is to obtain satisfactory performance from the several antennas by relo¬ 
cating them, by combining their functions or otherwise reducing their 
number, by redesigning them, or by redesigning the supporting structure. 
The ship antenna system problem is still far from solution, and each new 
ship type and new equipment serve to increase the over-all problem. 
Extensive measurements, including model measurements, are required to 
assess the performance of existing antennas in present locations and to 
predict their performance in other locations. Ship superstructures and 
antennas must be more closely integrated in the design stages. One 
approach to the problem that is commanding considerable attention is 
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the design of series or parallel coupling circuits to permit the multiple use 
of antennas of certain types. Rejection filters can be designed to 
eliminate jamming between antennas and to reduce background noise. 

Special arrangements have been employed for improving the per¬ 
formance of individual equipments in the presence of screening Structures 
Radars with scanning antennas may be duplicated fore and aft so that 
their regions of effectiveness supplement one another. An antenna with 
an omnidirectional pattern may be replaced by two antennas on opposite 
sides of the superstructure with 180° azimuth patterns. 

Another coverage problem is introduced by interference nulls in the 
elevation pattern when sufficient radiation from the antenna is reflected 
from the deck or sea. One solution to this problem which has been 
employed in the case of nonscanning antennas is to replace the antenna 
by several properly distributed in height. Such a set of nonscanning 
antennas may be connected to different receivers or may be connected 
to a single receiver with a “diversity” hookup which leaves the antenna 
receiving the strongest signal actually connected to the receiver 

In designing an antenna for shipboard use, the effects of dampness, 
salt spray, condensation, temperature extremes, high wind velocities, 
and icing conditions must be considered. Some small nondirectional 
antennas and scanning antennas are enclosed in radomes. The larger 
scanning antennas are weatherized at the feed and are provided with 
openwork reflectors of perforated plate or grating construction to reduce 
windage effects. 

14*3. Aircraft Antennas.—An aircraft with its many antennas for 
communication, navigation, instrument landing, radar, identification, 
and radar countermeasures provides an antenna system problem of great 
complexity. To the problems of siting, avoiding interference between 
antennas, and obtaining a proper pattern with the antenna on the struc¬ 
ture is added the problem of meeting serious aerodynamic requirements. 
In the faster aircraft it is desirable to have the antenna totally contained 
within the airframe. % When this is not possible, the extension should 
present minimum frontal area and should be streamlined with a housing 
that must have a greater elongation in the direction of motion for a 
higher design speed of the aircraft. Any changes in airframe imposed 
by antenna requirements must be incorporated in the very eafly stages 
of the aircraft design. To reduce drag, to protect the antenna from 
wind forces and weather, and in some cases to provide for pressurization, 
every scanning antenna must be provided with a radome. This is true 
whether the antenna is totally included within the airframe or is exposed 
in A streamlined housing, often referred to as a blister or nacelle. The 
electrical and mechanical design requirements imposed on such radomes 
have become increasingly severe because of the trend toward shorter 
w&vehty&ks, larger antennas, and more complete streamlining; the saris* 
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factory solution of the radome design problem has required increasingly 
more sophisticated engineering. 

Improper siting of the antenna on the aircraft or unsatisfactory design 
of the radome may result in a variety of performance defects in the 
system. The radiation pattern of the antenna may be seriously altered 
by near-by conducting edges or surfaces. Excessive absorption or reflec¬ 
tion by the dielectric wall of the radome may introduce a number of 
undesirable pattern and impedance effects. Such defects have been 
tolerated to a certain extent in the recent past as unavoidable in the face 
of the rapid development in aircraft design ancfin the variety of antenna 
installations. However, with a better understanding of the design prob¬ 
lems involved and with the possibility of accommodating antennas more 
satisfactorily in new aircraft designs, performance defects in aircraft radio 
systems can be diastically reduced. It will be necessary, however, to 
accomplish this improvement in electrical performance with antenna 
designs that are at the same time more satisfactory aerodynamically. 

14*4. Scanning Antennas bn Aircraft.—A scanning antenna employed 
in air-to-air search is required to have a narrow pencil beam and to scan 
a forward angular region only. Such an antenna can be located in the 
nose of a multiengine plane or in a wing nacelle in a single-engine plane. 
The wing nacelle can be located in the leading edge or at the tip of the 
wing without introducing serious drag. The performance of a narrow 
pencil-beam antenna is not appreciably affected by metal parts of the 
aircraft. It need not be affected seriously by the radome wall except in 
cases of poor radome design. The effect of the latter will be discussed 
later and is illustrated in Fig. 14-8. Difficulty is also encountered with 
streamlined radomes designed to meet the aerodynamic requirements of 
very high mach numbers, since this necessitates near-grazing angles of 
incidence of radiation upon the walls. 

An antenna scanning in azimuth for air-to-ground search is required 
to have a beam that is sharp in azimuth and achieves with high accuracy 
a prescribed shape in elevation such as was described in Chap. 13. If an 
intelligible picture of the ground is to be presented on the cathode-ray 
screen of the radar set, the elevation pattern must follow the esc2 6 shape 
over a wide range of angles with an accuracy of 1 db for closely spaced 
variations. If a maximum range of 50 miles is to be covered from an 
altitude of 5 miles, the steep-angle portion of the pattern is at least 20 
db down from the near-horizontal portion. Surfaces or edges near the 
antenna can reflect or diffract a small amount of power from near¬ 
horizontal portions of the beam into directions corresponding to steep 
angle portions of the beam. If such an unwanted contribution at steep 
angles is present even in power intensities 40 db down from t^e peak or 20 
4b down from steep-angle portions of the beam, the resulting interference 
effect will produce a 1-db ripple in this portion of the elevation pattern. 
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The most serious installation problem is encountered when an antenna 
that is employed in air-to-ground search is required to scan through 360° 
in azimuth. The ideal location for this antenna is at the lowest point 
in the fuselage. Since obstructions on this portion of the airframe intro¬ 
duce serious drag, the antenna and radome must be so designed as to 
minimize the transverse area exposed and to realize streamlined flow. 
The problem is aggravated by the fact that these antennas are generally 
large. Certain design features may be incorporated to meet this situa¬ 
tion. The antenna may be so shaped (Sec. 13*4) that the upper por¬ 
tions of the reflector contribute to the steep-angle pattern and only the 
lower portion of the reflector protrudes from the fuselage. The well 
into which the antenna is recessed may be made large so that metal 
edges are further removed from the antenna and are more complete^ 
cleared by the slightly depressed beam. However, we still have a situa¬ 
tion in which an antenna that is required to produce very accurately a 
prescribed pattern is closely surrounded by a metal surface into which it 
is partially recessed. Furthermore the beam is required to pass through 
a radome wall at near-grazing incidence. This combination of conditions 
makes these antennas particularly subject to the performance defects 
mentioned in the previous section. Experience with scanning antennas 
will serve therefore to illustrate some of the major defects encountered 
in airborne microwave radar performance due to faulty design or siting 
of the antenna-radome component. 

Performance defects from the operator’s viewpoint are best illustrated 
by actual photographs of the cathode-ray tube that supplies him with 
visual information. A PPI photograph substantially free of defects is 
first presented for the sake of comparison. PPI stands for plan-position- 
indicator in which slant range is displayed radially and azimuth angle is 
represented by polar angle. Figure 14T is a PPI photograph of fairly 
flat wooded terrain taken with 3.2-cm radiation. The antenna employed 
a 29-in. paraboloid reflector with a barrel-shaped insert in the upper half 
to obtain a shaped beam. The uniform illumination of the ground and 
especially the absence of lobes in the elevation pattern allow such details 

*as the small lakes and the river with its islands and bridges to be clearly 
'recognized. The black disk in the center is a measure of the distance 
of the aircraft above the ground; the bright circle surrounding the disk 
is caused by perpendicular reflection from the earth and is called the 
altitude circle. This photograph is to be compared with some less satis¬ 
factory ones which follow. 

There are certain defects in performance that can be traced to the 
presence of conducting edges or surfaces near the antenna and can be 
interpreted in terms of such physical phenomena as reflection, refraction, 
and interference. Microwave radiation shows a sufficiently optical type 
qi behavior that antenna sites which would involve total obstruction 
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of the beam by portions of the aircraft in important directions are recog¬ 
nized and generally avoided. Two examples of excusable obstruction 
are shown, however, to illustrate the effect. Figure 14*2 is a PPI photo¬ 
graph taken with 1.25-cm radiation in a shaped beam produced by a 
42-in. shaped cylindrical reflector. In addition to hills, a river, and three 

Fig. 14*1.—PPI photograph of wooded terrain. This photograph is essentially free of 
defects due to antenna pattern. 

airfield runways, the photograph shows two black sectors extending in 
to steep angles and caused by the lowered landing wheels. In this 
PPI the altitude circle had been subtracted out. In Fig. 14-3 the 
shaped beam of 3.2-cm radiation from a 30-in. paraboloidal reflector 
with a barrel insert has been obstructed by a second aircraft below the 
antenna. The effect of this obstruction is to block off a portion of the 
radiation and to create a radar ‘‘shadow” against the illuminated 
background. 

The two elevation patterns shown in Fig. 14-4 illustrate an effect that 
can result from mounting the antenna on an aircraft. This antenna. 
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designed to give a shaped beam of 3.2-cm radiation, employs a pillbox 
line-source feed and a 60-in. shaped cylindrical reflector. The reflector 
is 12-in. high but extends only 4 in. below the center line of the fuselage 
for the pattern shown in Fig. 14*4a. The beam is directed forward along 
the line of flight with the peak tilted down 6° below horizontal; as the 
tilt angle is decreased from 6°, the pattern becomes rapidly worse. The 
interference effect which is evident in this pattern results from a combina¬ 
tion of the direct radiation from the antenna with a small amount of 
radiation scattered by the straight rim of the rectangular hole into which 

Frd. 14*2.—PPI photograph showing blank sectors produced by landing wheels. 

the antenna is recessed. This scattered radiation is spread broadly in 
elevation but is essentially confined in azimuth to the sector of the 
original beam when the antenna is pointed forward. Reflection from 
the underside of the fuselage can be shown by geometrical arguments not 
to be a contributing factor. Figure 14*5 shows the appearance of this 
interference effect in the central portion of a PPI photograph. This 
photograph was taken from an altitude of 25,700 ft over Lake Okeechobee, 
Florida, with a 50-mile maximum range setting. 

Whereas flat surface reflections did not contribute to the effects 
described above, there were a number of cases observed in which inter¬ 
ference effects were due'to reflections from the undersurfaces of fuselage 
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or wings. Some PPI photographs show small regions of interference 
fringes at right angles to the direction of flight. These fringes occur with 
very close spacing in angle and can be shown to result from interference 
between the direct beam and radiation reflected from the undersurfaces 
of the wings. The fringe pattern observable in Fig. 14-6, on the other 
hand, is quite extensive fore and aft with a wider angular spacing between 
fringes which also varies with azimuth angle. Calculations confirm the 
assumption that this interference pattern is due to reflections from the 
curved undersurface of the fuselage. 

Fig. 14*3.—PPI photograph showing blank area due to obstruction by another aircraft. 

There are other defects in the performance of a radar set which can 
be traced to electrical effects upon the beam caused by the dielectric 
walls of the radome housing the antenna. These defects may be listed 
as complete blanking out of all signals in certain azimuth sectors, reduc¬ 
tion in range, obscuring of the screen, false signals, and displacement of 
the* target. Severe blanking in certain sectors, as shown in Fig. 147, is 
due to reflections at the radome wall. These reflections direct radiation 
ba^k down the r-f line to the transmitter which is thereby pulled in 
frequency off the pass band of the receiver. A smaller reduction in range 
wMch is at the same time more uniform in azimuth results from excessive 
absorption of radiation in the wall of the radome. 



Fxa. 14-5.—PPI photograph showing interference fringe due to edge reflection. 
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Other effects than transmitter pulling can result from radome wall 
reflections. Figure 14-8 presents four photographs of a B-scope (range 
vs. azimuth angle) taken with 10-cm Radiation and a 29-in. paraboloid 
antenna located in the streamlined dielectric nose of a two-engine air- 

Fig. 14*8.—B-scope photographs illustrating varioufe degrees of obscuration of target 
signal by altitude signal: (a) thick radome and horizontal,polarization; (6) thick radome 
and vertical polarization; (c) thin radome and horizontal polarization; (d) thin radome and 
vertical polarization. * 

craft. In each case the altitude of the aircraft is 3000 ft, the range sweep is 
15,000 ft, the electronic range marker is at 10,000 ft, and the target air¬ 
craft is at 3000 ft so that its indication coincides with the altitude signed. 
Trouble experienced in following the target aircraft through the altitude 
signal was traced to reflections from the upper half of the radome. These 
reflections directed a small fraction of the radiation downward toward the 
ground which then returned a signal by the same path. Two methods 
of reducing this ground signal were proposed: the use of vertical polarisa- 
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tion apd the use of a radome with a thinner wall. Figure 14*8a shows 
the partial obscuration of the target signal by the altitude signal even 
with optimum gain setting, when the thick radome and horizontal polari¬ 
zation are used. The reduction ip altitude signal accomplished by 
changing to vertical polarization is ^hown in Fig. 14*86. The improve¬ 
ment resulting from the use of a radome with the wall thickness reduced 
by one-third is shown in Fig. 14*8c. The improvement realized when 
both vertical polarization and the thin radome are employed is evident 
in Fig. 14*8d, since it has been possible to bring the target signal out 
quite strongly without bringing out the altitude signal. Effects of the 
radome on system performance will be discussed more fully later in the 
chapter. 

14*5. Beacon Antennas on Aircraft.—The majority of long-wave 
antennas on aircraft are required to have omnidirectional patterns. 
Because of the strong and unavoidable influence of the aircraft on the 
antenna pattern at these wavelengths, the omnidirectional requirement 
is usually not well satisfied. In the case of microwave beacon antennas, 
which are also required to have omnidirectional patterns, the influence 
of the aircraft on the pattern is still strong but is more predictable and 
also more nearly avoidable There are a limited number of sites on an 
aircraft suitable for a microwave beacon antenna; the top of the vertical 
stabilizer, the highest point on the upper side of the fuselage/and the 
lowest point on the underside of the fuselage are three favored locations. 
In selecting such a site the influence of the supporting structure on the 
pattern must be considered, not only with the aircraft in level flight but 
also under conditions of roll and pitch. The ideal elevation pattern 
would have uniform intensity for 10° about the horizontal plane to allow 
for roll and pitch of the aircraft and would have an approximately 
cosecant-squared decrease in intensity on the lower side of the beam to 
provide uniform illumination of the ground in to steep angles. The 
lowest point on the underside of the fuselage is the only location from 
which an unobstructed view of the ground at steep angles can be obtained. 
Even with this location the view in near-horizontal directions may be 
obstructed by roll of the aircraft if the bottom of the fuselage is flat. 

Let us consider the elevation patterns that are obtained with a beacon 
antenna mounted on the underside of a fuselage. The various factors 
that must be considered are the polarization of the radiation, the vertical 
directivity of the antenna, the distance between the radiating elements 
and the fuselage, and the extent and curvature of the fuselage. A radi¬ 
ating element located below the fuselage will send some radiation directly 
toward the ground and some indirectly toward the ground by reflection 
in the fuselage. The over-all effect can be simply described by postulat¬ 
ing an image of the radiating element in the fuselage. Because of the 
nature of the reflection process, the image of a vertically polarized element 
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will be in phase, while the image of a horizontally polarized element will 
be 180° out of phase with the radiating element. If for the moment 
we consider the underside of the fuselage to be an infinite horizontal 
plane, it is evident that the over-all elevation pattern from a radiating 
element and its image will have a maximum in the horizontal plane in the 
case of vertical polarization and a minimum in the horizontal plane in 
the case of horizontal polarization. 

Let us now assume a requirement of continuous elevation coverage for 
an angular range from 2° to 30° below horizontal. For vertical polariza¬ 
tion the coverage requirement in the horizontal plane is automatically 
met except for the effects of roll and pitch. The steep-angle requirement 
can be met by limiting the combined length of the array and its image 
in accordance with the relation d = X/sin 0 where 0 is chosen somewhat 
greater than 30°. For horizontal polarization it is more difficult to 
obtain coverage in directions near the horizontal. Under the assumption 
of an infinite plane fuselage it would be necessary to make the linear 
array long and to accept an interference pattern in the region to be 
covered. Since the fuselage is actually curved and of limited extent, it 
is possible to obtain the required coverage by the use of a relatively 
directive array either located near the fuselage or set off at some dis¬ 
tance from it, depending upon the shape of the fuselage. It is evident 
that this amounts to solving the electrical problem by creating an aero¬ 
dynamic problem. 

Microwave beacon antennas have regularly been enclosed in radomes. 
Many of the smaller arrays originally were provided with cylindrical 
radomes, but later it was recognized that no antenna protrusion is small 
enough to justify the omission of streamlining. In the case of vertical 
polarization the streamlined radome can have serious effects on the azi¬ 
muth pattern. This situation favors large reflections, since it involves 
wide angles of incidence for radiation polarized perpendicular to the plane 
of incidence. A solid radome of low-density material affects the azimuth 
pattern also because of the focusing effect due to path-length variation 

sin the material with azimuth direction. Vertical wires properly spaced 
in the dielectric offer a possible means to maintain unity dielectric 
constant. 

RADOME DESIGN PROBLEMS AND PROCEDURES 

The relation of the dielectric housing, or radome, to the general 
installation problem has been considered in the previous sections. The 
principal purpose of this part of the chapter is to analyze the problems 
and to describe the procedures associated with radome design.1*2 It 

1 This subject has been treated more fully in Radar Scanners and Radomes, Vol. 26, 
Radiation Laboratory Series. 

* This material is a severe condensation of the subject matter in a series of RL 
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will be necessary to consider several wall designs and two general radome 
types in terms of the mechanical and aerodynamic, as well as the r-f 
requirements that are involved. These considerations will be assisted 
by a preliminary examination of the nature and magnitude of the effects 
that radomes can have on system performance. An appreciation of these 
effects establishes the need for further investigation and indicates the 
difficulties that must be avoided in order to achieve good radome design. 

14*6. Relation of the Radome to System Performance.—In Sec. 144 
radar system performance defects caused by faulty radome design were 
presented from the operator’s viewpoint. In the present section various 
reactions of the radome on the radar system will be presented from the 
radome designer’s viewpoint. 
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Range.—A radome does not transmit all the r-f energy incident upon 
it but reflects and absorbs certain fractions of that energy. If sufficient 
reflected r-f energy finds its way back down the feed line to the trans¬ 
mitter, frequency pulling of the transmitter can result in total blanking 
of the receiver or in the very severe range reduction illustrated in Fig. 
14*7. Independent of this effect, an appreciable reduction in range can 
result from attehuation of the transmitted signal, especially since attenua¬ 
tion in the outgoing signal is repeated on the return signal. Radar range 
is proportional to the fourth root of the transmitter power [c/. Eq. (1*17)], 
so that range reduction is related to radome transmission by Eq. (1): 

i one-way transmission loss (%) 
Range reduction (%) =--^(1) 

To pick large but not unusual values, if ono-v ay attenuation due to 
radome wall reflection is 12 per cent and due to absorption is 8 per cent, 
then the range will be reduced by 10 per cent. 

Pattern.—Reflection and absorption at the radome wall can reduce 
the absolute value of the radiation pattern by the processes described 
above. Due to a variation in effectiveness of these processes with direc¬ 
tion and to related mechanisms, the shape of the pattern as well as its 
magnitude can be altered. Several mechanisms that have been guilty 
of pattern distortion will be described because of the seriousness of this 
effect in certain cases. Pattern distortion is especially objectionable in 
the case of a pencil beam that is being used in a conical scan for precision 
direction finding and in the case of a shaped beam that is being used for 
uniform illumination of the ground. 

Pattern distortions have been traced to a variety of causes. In some 
cases the effects were barely appreciable, but in most cases they were 
serious enough to require study and elimination. Some of the causative 
mechanisms are listed below with brief descriptions. 

1. In a streamlined radome the reduction in transmission due to 
absorption and reflection varies considerably with azimuth angle 
and can therefore produce a minor change in the shape of the 
main lobe. 

2. An antenna transmitting through a spherical portion of a radome 
can experience trouble owing to focusing of reflections from the 
radome wall. The focal point of these reflections may lie near 
the focal point of the antenna reflector and act as a secondary 
source. The beam produced by the focused rays from this 
secondary source can combine in various ways with the original 
beam to produce distorted patterns. This process is illustrated 
in Big. 14-9o. 



Fig, 14 9.—Mechanisms by which radome wall reflections can distort patterns: (a) 
secondary source produced by focused reflections; (b) wide-angle lobe produced by reflec¬ 
tion from the upper portion of a radome; (c) wide-angle lobe produced by a double reflec¬ 
tion involving the undersurface of the fuselage. 
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3. With the geometry illustrated in Fig. 14-96, excessive reflections 
from the upper portion of the radome can produce a broad down¬ 
ward lobe at a wide angle from the original beam. This lobe can 
produce a strong ground return capable of obscuring aircraft 
targets at the same range, as illustrated in Fig. 14-8. In case the 
antenna* beam is shaped for surface search, a spurious downward 
lobe will produce a very objectionable interference ripple in the 
elevation pattern when combined with the original beam. 

Fig. 14*10.—Distortion of the phase front of the radiation from an antenna by variable 
phase delays in sharply curved portions of the radome. 

4. A streamlined radome mounted on the undersurface of an aircraft 
can produce a downward lobe by the process illustrated in Fig. 
14*9c. This lobe will have the objectionable features described 
in the preceding paragraph. 

5. Phase delays in the transmitted radiation caused by the dielectric of 
the radome wall vary appreciably over sharply curved portions 
of the wall. When the antenna aperture spans such a portion 
of the radome, the constant phase fronts in the near zone of the 
antenna are distorted upon transmission through the wall. The 
result upon the pattern is a distortion of the main lobe. This 
process is illustrated in Fig. 1410. 

Apparent Pattern.—The discussion of the previous paragraphs referred 
to the radiation pattern which can be defined as the variation of radiation 
intensity or receiving sensitivity with angle for a fixed position of the 
antenna. In distinction to the radiation pattern, the apparent pattern 
from the radar observer’s viewpoint can be defined in terms of the return 
signal from an effective point-source target as presented on his radar 
scope while the antenna is scanning. In particular, the apparent pattern 
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can be defined as the ejttent along an angular coordinate in the radar 
scope of the return from a point target. Because of the limited range in 
spot intensity on the scope, the description of an apparent pattern con¬ 
sists simply of a statement of the angular region on the scope coordinate 
that is occupied by the target signal. 

The apparent pattern depends upon the beamwidth of the radiation 
pattern, but it depends on other factors as well. An important modifica¬ 
tion of apparent pattern is introduced by a transmitter frequency pulling 
which varies with the scan angle of the antenna. This variation in 
pulling arises from a variation in the phase or magnitude of the reflection 
back in the r-f line toward the transmitter. 

The modification in apparent pattern most pertinent to the subject 
matter of this section is that which arises as the result of an angular 
variation in the reflection from the radome wall. This pulling effect can 
be senous even in the case of a radome that has not appreciably attenu¬ 
ated or distorted the transmitted beam. An antenna mounted slightly 
off axis in a cylindrical radome and scanning in azimuth will be subject 
to a reflection of constant magnitude but slowly changing phase. A 
streamlined radome can introduce large variations of magnitude as well 
as more abrupt changes in phase of the reflected wrave. The most 
abrupt changes in both magnitude and phase are encountered in the 
case of a relatively thin walled radome with internal reenforcing ribs. 

Serious operational effects can be traced to a variable frequency pulling 
by radome reflections. The resulting change in the apparent pattern, 
even though not accompanied by a noticeable reduction in range, can 
affect the apparent direction of the target in sufficient amount to ruin 
the performance of a radar employed in precision direction finding. This 
effect is especially serious, since it is not revealed by careful measurements 
of fthe radiation pattern. 

Automatic Frequency Control.—No discussion of radomes and system 
performance is complete without mention of automatic frequency con¬ 
trol (AFC), since its use profoundly modifies radome design requirements. 
AFC causes the local oscillator frequency to follow the transmitter fre¬ 
quency in such a way as to maintain between them a constant difference, 
the i-f frequency. AFC is strong enough in the case of a relatively 
stable magnetron to follow larger frequency changes than those ordinarily 
produced by radomes. However, the AFC circuit involves a time con¬ 
stant that may be considerably longer than the interval required for 
the change in the radome reflection. An extreme example of a rapid 
change in radome reflection is that which occurs as the antenna sweeps 
by an internal supporting rib in the radome wall. The AFC will not 
follow rapidly enough to correct for the changing reflection and, in addi¬ 
tion, Will not return to the original frequency setting until long after 
the radome reflection has returned to its original value. In this case 



528 ANTENNA INSTALLATION PROBLEMS [Sec* 14-7 

the frequency shift has been extended in time rather than reduced by 
AFC. This is not to be interpreted as an argument against the use of 
AFC but rather against the use of localized supporting ribs in radome 
design. In general, AFC changes the radome design problem from one 
of reducing reflection to one of reducing rate of change of reflection. 

Classification 6f Radomes.—The system performance effects described 
in this section are not all present simultaneously for a given radome, 
but some are emphasized and some minimized according to the type of 
radome considered. For this reason it is convenient to classify radomes 
under several headings and to follow a different design procedure in each 
case. A natural classification on the basis of use provides three general 
groups: pressurizing seals for antenna feeds, beacon housings, and hous¬ 
ings for scanning antennas. The first group, pressurizing seals, will not 
be discussed here. For the other two it is convenient to make a further 
subdivision into cylindrical radomes and streamlined radomes, a dis¬ 
tinction that is of considerable importance in practical work. Not 
only are the equations for radome wall design different in the two 
cases, but the underlying objectives are altered. The objective in the 
case of cylindrical radomes (normal incidence) is to reduce the reflection, 
but in the case of streamlined radomes it is primarily to improve trans¬ 
mission. After presenting the quantitative considerations of the next 
section, it will be' possible to state this distinction more precisely. 

14*7. Radome Wall Design.—An ideal radome wall would completely 
transmit an incident electromagnetic wave with neither reflection nor 
absorption, and for such a radome wall the deleterious effects associated 
with one or the other of these causes would be eliminated. Although this 
ideal situation cannot be attained in practice, the transmission can be 
maximized or the reflection minimized, depending upon the type of 
radome under consideration 

The calculation of transmission and reflection by the radome wall is 
most conveniently carried out in terms of transmission and reflection 
coefficients. Whereas such coefficients cannot be defined suitably for a 
curved surface, a curved surface can be replaced by a plane sheet for 
approximate analysis if the radius of curvature is large. The complex 
field distribution of the antenna that provides the incident wave is also 
replaced by a plane wave of uniform amplitude. The investigation is 
thus based on the coefficients that exist and are easily defined for the 
simpler situation of plane sheets and uniform plane waves. 

Physical Principles.—Reflection of an electromagnetic wave occurs 
only at a discontinuity, that is, at the transition from one medium to 
another. Every radome wall without exception may be regarded as a 
set of pairs of such discontinuities. The over-all reflection will result 
from superposition of the individual reflections; its magnitude will be 
determined by their magnitudes and relative phases. Reflections can 
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be reduced or transmission increased either by reducing each of the 
individual reflections or by adjusting the spacing between the discon¬ 
tinuities to obtain partial or complete phase cancellation. 

In Fig. 14*11 a generalized radome wall is represented as a pair of 
discontinuities, or sheets. Individual transmission and reflection coeffi¬ 
cients for sheets 1 and 2 and over-all transmission and reflection coeffi¬ 
cients for the wall are defined in the figure. In terms of these coefficients, 
the advantage to be gained from minimizing the individual reflections 
and adjusting their phases for cancellation can be expressed by the 
relations 

— |ri| + M, 
Sheet 1 Sheet 2 

= M - |r*|; (3) i ^ yO i ^ yy 
these neglect higher-order interaction yy • yy 
terms and absorption. y/! * r2 yyt2 

A precise phase cancellation of the yy yy 
component reflections requires an ac- _s_+>yy 
curate spacing between their sources. yy 
Since deviations from this optimum 
spacing must be allowed in manu- yy/Jy 'OyyyT?', 
facture, the effect of such deviations 
on transmission and reflection must ^_////^////////_^ 
be investigated. The investigation R ~y//// /// /////XT* 

can be carried out by dividing the wall '////S//// / //// 
configuration into two groups and by jLLLL/jL /UU 
expressing the over-all transmission Radome wall 
and reflection in terms of the indi- Fig- 14-11.—-Generalized radome 

. . . , n ,. wall showing division into two groups or 
Vldual transmission and reflection CO- sheets which are treated as separate 
efficients of the two groups. In the sources of reflection. The figure Berves 

- . , , , ., , to define symbols used in the text for 
Case of a Single, uniform sheet, the two reflection and transmission coefficients. 

groups would be the two air-dielectric 
interfaces of the sheet. In the case of a double-wall configuration each 
group would represent the total effect of one of the walls. The method 
can be extended to more complicated configurations. In any case the 
nomenclature of Fig. 14*11 applies. 

As the geometrical spacing s between the sheets of Fig. 14*11 is 
varied, the over-all transmission coefficient T will reach the maximum 
value 

in* __M_ tA\ 

for the optimum spacing s0 given by 

*# " T fri 4- n = 0, 1, 2, 
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where X is the wavelength in the region between the sheets and <h and 
</>2 are the phases of ri and r2 respectively. If 5 = s0 — «is the deviation 
from optimum spacing, the over-all transmission will be 

T|* = -- (6) 
1 — 2|rir2| cos ~ + \riT2\2 

The corresponding over-all reflection, for the case of zero absorption, is 

4ir5 
|r*x|2 — 2|rir*2l cos —f- |r2|2 

|*|* = -T-T- (7) 
1 ~ 2|rir*| cos — + |rir2|2 

From these equation® nearly all the results needed for radome wall design 
may be obtained directly. 
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Fig. 14*12.—Over-all reflection coefficient (R) for a symmetrical configuration of aero 
absorption plotted as a function of the error in spacing ($) and the individual reflection 
coefficient (r). 

The symmetrical radome wall consisting of identical groups of approxi¬ 
mately aero absorption spaced in accordance with Eq. (5) will be encoun¬ 
tered almost invariably in practice. For the symmetrical configuration, 
h «■ h ■» t, ri « ta =* r, fa « £t «■ 4 and Eqs. (4), (5), (6), and (7) 
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assume simplified forms which will not be repeated here. The expression 
for the over-all reflection can be simplified further to 

4irH5 

for small 5/X, or alternatively to 

| R\ 2|r| sin \S, (9) 

when \r\ is small enough to be neglected. The exact value of |/2| from 
Eq. (7) is plotted in Fig. 14*12 for the symmetrical configuration. 

Single Wall.—The simplest radome wall design is a single, uniform 
sheet of dielectric material. In this case the two sources of reflection 
treated above and illustrated in Fig. 14-11 are the two air-dielectric 
interfaces. If the specific inductive capacity ke of the material is denoted 
by p, the over-all reflection is given by Eq. (7) with 

hi = hi Vp -1 

Vp +1 
(10) 

Equation (10) is plotted in Fig. 1413. The optimum spacing is 

So - Y~ 
n\ o 

2 Vp’’ 
n - 0,1, 2, 

since 4>i = fa = 0; X0 is the free- 
space wavelength. 

The two design procedures 
mentioned above—reduction of r 
or adjustment of phase—permit of 
simple interpretation for single- 
walled radomes. The first 
method indicates the use of a low- 
dielectric-constant material to re¬ 
duce r [Eq. (10)]. The second 
method requires the use of a thin 
sheet or in general one that satis¬ 
fies Eq. (11). If a thin sheet is 
used, the tolerance d in the equa¬ 
tions above stands for the thick¬ 
ness itself. The single-wall con- 
struction becomes increasingly 

Dielectric constant^) 

Fig. 14-13.—The reflection coefficient (r) 
of an air-dielectric interface as a function of * 
the specific inductive capacity ((f) 

attractive at longer wavelengths where a small value of 5/X can be realized 
with a wall thickness sufficient for mechanical strength. 
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The assumption of zero absorption loss, even in the case of actual 
radome materials, does not invalidate the results for reflection and opti¬ 
mum spacing, but the results for transmission must be modified appro¬ 
priately. The general equation for a single sheet is quite complicated 
except when the thickness satisfies Eq. (11). For a half-wavelength 
thickness of relatively low-loss dielectric 

(12) 

L is the loss tangent t*/V for the material where and e" are the real 
and imaginary components of the complex dielectric constant (see Sec. 

Thickness, wavelengths (d/\) 

Fig. 14*14.—Power transmission j T2\ as a function of thickness for various values of loss 
tangent L « e"/V. 

3*2). The exact values of the power transmission |77|2 as a function of 
thickness for various values of L is given in Fig. 14-14 for the particular 
specific inductive capacity fi = 4. 

The single-wall design is usually not practicable at microwave fre¬ 
quencies. The half-wavelength wall is frequently too heavy for airborne 
installations, whereas the wall thin enough to have good electrical prop¬ 
erties is not satisfactory mechanically. 

Sandwich Wall.—A major improvement both mechanically and elec¬ 
trically is realized by substituting sandwich-wall for single-wall design. 
The sandwich-wall design consists of a sheet of low-density core material 
faced on both sides with thin, high-density skins. Sandwich construction 
has seen considerable use in purely mechanical installations where the 
strength-to-weight ratio must be high. From the electrical point of 
view, the skins show low reflection because they are thin, and the core, 
because it has a low dielectric constant. Furthermore the core provides 
a means of accurately holding the skin separation to a value favorable 
fpr canceling reflections. 
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A double-wall construction which is obtained by omitting the core 
material from between the skins loses most of the advantages of the 
sandwich construction. It has been used, however, since it provides 
means for deicing by circulating hot air between the skins of the radome 
wall. The optimum spacing of the skins for reducing reflection when 
separated by air is given in terms of their thickness d and specific induc¬ 
tive capacity a by the approximate re¬ 
lation 

'V \ 

yy, W\vvv\v v/> 

k 

Dielectric 
constants 

Geometrical 
dimensions 

- Electrical 
dimensions 

So Si (2n + 1) J - d, y/a (13) 

The over-all reflection is nearly propor¬ 
tional to the spacing error and to the 
reflection from a single sheet when these 
are small and is given by Eqs. (7), (8), 
and (9). The power transmission is 
given by Eq. (6) in the general case and 
by 1 —• i?2 when the loss is zero. 

The general sandwich wall is shown 
in Fig. 14*15 which serves to define some 
of the symbols to be used in the discus¬ 
sion. The electrical thicknesses are 
D = d V«Aoand5 = $ y/p/Xo The 
individual reflection coefficient is now 
that for the three-medium transition from the air through the skin to the 
core. It is given by 

A ~ 4a y/p 

Skin Skin 
Core 

lot - ' ' a v/M 

^W\\ Xxx 

v,N 

til 
Sandwich wall 

hio 14 15 Sandwich-wall design 
The figure serves to define s\ inbols 
used in the text 

\rr = 
A +4 a y/ P 

where 

A = (a + P)(a + 1) — (a — p)(a — 1) cos (4irD). 

(14) 

(14o) 

The value of r obtained from Eq. (14) can be used in Fig. 14-12 together 
with the appropriate value of the spacing tolerance to determine the 
over-all reflection coefficient. The optimum electrical spacing is similarly 
found to be 

o _ n _ 1 ._2 Voifl (a — 1) sin (4yD)_ 
*# “ 2 2^ 08 -«)(« + 1) + (a + 0)(a - 1) cos (4brD) 

Under certain conditions this equation can be approximated by 

- 2D («- d (&\* 
iff - i) w 

(15) 

(16) 

The range of validity of Eq. (16) is indicated in Fig. 14-16 which is a 
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typical family of curves calculated from Eq. (15) for a fixed value of a 
and a range of values of 0. 

In certain methods of sandwich-wall fabrication the skins are glued 
rather than molded to the core. The layer of glue introduced by this 
process effectively increases the skin thickness and introduces appreciable 
error into the calculations. This concept of an effective skin thickness 
which includes the effect of the glue is an approximation that ceases to 
be valid when the angle of incidence is variable or when both tolerance 

Fig. 14*16.—Optimum core thickness as a function of skin thickness for a = 4 and # 
ranging from 1.0 to 2.0. 

and spacing are involved. It has proved very useful and is entirely justi¬ 
fied when one is concerned with optimum spacing alone at a fixed angle 
of incidence. 

Arbitrary Incidence.—The results derived hitherto apply to normal 
incidence only. They may be Used for arbitrary incidence at either 
polarization, however, if the quantities D, S, So, a, and 0 are replaced 
by appropriate quantities as given in Table 14-1. Similar equivalence 
relations for arbitrary loss will not be given here. Limiting values for 

Table 14*1.—Equivalence Relations for Converting from Normal to Arbi¬ 

trary Incidence Values 

p *• sm20o; 6t> *» angle of incidence measured from normal 

Normal incidence quantities D s So a 0 

Arbitrary incidence values, 
perpendicular polarization. 

Arbitrary incidence values, 
parallel polarization._ 

d y- 
- V« - p 

d /—8—— 
-Va-P j ^ 

“ZJ2 
1 ~ P 

«f(l— P) 

& - V 
1 - p 

P(l-pi 

m fi-r 
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grazing incidence, simplified forms at Brewster’s angle, and approximate 
relations for thin skins, though useful for computation, illustrate no new 
principles and will not be included in the present discussion. 

Considerations up to this point have been based upon the assumption 
of a single angle of incidence—whether normal br otherwise—and a single 
plane of polarization for the incident wave. It will be shown in Sec. 
14-9 that a given portion of the wall of a streamlined radome will be 
required to transmit for a range of angles of incidence and for a range of 
polarizations. If all portions of the radome wall are considered, the 
ranges involved will be correspondingly increased. In the interest of 
simplicity m fabrication it is very desirable to use the same wall structure 
throughout the radome The resulting problem, therefore, is to find a 
wall design that will be satisfactory for a range of angles of incidence and 
for both polarizations. 

To this end the equations for arbitrary incidence are plotted as shown 
in Fig. 14-17 where contours of constant reflection for a sandwich wall 
are presented as a function of core thickness and angle of incidence. 
Similar charts can be used for single-wall construction. With such 
diagrams the optimum thickness is readily determined for a specified 
range of 6 and for a specified tolerance in thickness; the thickness referred 
to here is the total wall thickness of the single-wall design or the core 
thickness of the sandwich design. 

The representation for the single wall requires only three variables; 
the angle of incidence, the dielectric constant, and the thickness in wave¬ 
lengths. A single series of charts for various dielectric constants there¬ 
fore provides complete information for single-wall design work. In the 
case of the sandwich wall, five variables are required: skin dielectric 
constant and thickness in wavelengths, core dielectric constant and 
thickness in wavelengths, and angle of incidence. A very large number 
of charts are required; in practice percentage reflection contours are 
plotted against core thickness and angle of incidence, each chart being 
for specific values of skin thickness, skin e', and core ef. 

Mechanical Requirements.—Besides satisfying the electrical require¬ 
ments that form the main subject of the present chapter, a radome must 
satisfy certain mechanical requirements as well. An airborne radome 
must withstand the distributed load produced by windage; it must not 
deform when a concentrated load is applied as is necessary in installation 
procedures; and it must often stand the impact of rocks and water in 
landings. To these mechanical requirements must be added certain 
requirements in physical properties; e.g., the radome should not be 
soluble in gasoline or in any other solvent likely to be brought in contact 
with it; it should withstand high temperatures without softening, low 
temperatures without becoming brittle; it must not absorb moisture to 
any appreciable extent; and in certain cases it must be provided with 
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means for removing ice deposits as they are formed. Some of these 
requirements are clearly of the utmost importance; particularly in air¬ 
borne systems, failure of the radome can have very serious consequences 
and should be avoided even at the expense of electrical performance. 
It is this simultaneous presence of mechanical and electrical require¬ 
ments, which must be satisfied without excessive complication in 
manufacture, that constitutes the radome problem. These mechanical 
requirements are met by methods standard in the aircraft industry; the 
significant change introduced by electrical requirements is the restriction 
to suitable materials and to suitable relations, as determined above, for the 
linear dimensions. Without giving a detailed discussion of fabrication 
or mechanical design techniques, it is therefore sufficient here to observe 
their great importance. 

14*8. Normal Incidence Radomes.—There have been earlier allusions 
in Secs. 14-4, 14 5, and 14*6 to the fact that the most serious problem with 
normal incidence (cylindrical) radomes is the resulting impedance 
mismatch at the transmitter, while the most serious problem with stream¬ 
lined radomes is the resulting attenuation and distortion m the trans¬ 
mitted pattern. These problems and procedures for solving them will 
be considered further in this and the following section. First considera¬ 
tion will be given to the pattern and impedance effects encountered in 
normal incidence radomes. 

Pattern Effects.—The effect of a cylindrical radome on antenna gain 
can be minimized in a straightforward manner by use of the normal 
incidence relations of Sec. 14*7. In case the radome wall is uniform, this 
procedure also minimizes the effect on pattern, since it leads to small 
reflection as well as to large transmission. There is another source for 
pattern distortion, however, even in a radome having complete trans¬ 
mission. A radome wall having a structural rib, overlap, or buttstrap 
could be designed for complete transmission through both the thin part 
and the thick part of the wall. Whereas this would maintain the ampli¬ 
tude of the transmitted wave unchanged, it would not compensate for 
the change in phase. A double thickness section of wall would introduce 
twice the phase delay and so distort the transmitted phase front. This 
phase distortion can become so serious that the presence of a thick dielec¬ 
tric rib may be more harmful than a metal rib of the same dimensions. 
A similar effect introduced by sharply curved surfaces is illustrated in 
Fig. 14*10. If discontinuities are avoided and the reflection is minimized, 
then a cylindrical radome will not have an appreciable effect upon the 

antenna pattern. 
Impedance Effects.—The problem of antenna mismatch and trans¬ 

mitter pulling is much more serious for normal incidence radomes. For 
quantitative consideration of the case of a slightly tilted antenna in a 
cylindrical radome, the amplitude of the reflection back into the line may 
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be written ___ 

Pl = ~i&T^ (17) 

where the symbols have the following definitions: 
R = over-all reflection coeflicient for the radome wall flattened into a 

plane sheet 
X0 = free-space wavelength 
p = radius of the cylindrical radome 
a = radius of the antenna aperture 

<t> = angle between axis of the pencil beam and a line normal to the 
generator of the cylinder 

0 = half-power width of the antenna beam 
Equation (17) is valid only for small values of <j>, but this is obviously 
the condition for maximum reflection into the line and therefore the 
condition of greatest interest. 

If the antenna has a sharp vertical beam fixed at zero elevation, pL 
can be greatly reduced by the use of a truncated cone instead of a cylinder 
for the radome shape. In general it must be assumed that the scanning 
range will cause the maximum reflection to be attained; furthermore it 
must be assumed that the phase of the reflection will vary by at least a 
half wavelength.- Under these conditions the frequency pulling of the 
transmitter will be 

A/ = 5 pL(p./.), (18) 

where the symbols have the following definitions: 
Af = frequency pulling of the transmitter in megacycles 
Px, = value from Eq. (17) with the exponential factor set equal to unity 

p.f. = the pulling figure1 of the transmitter. 
A modified investigation is required if the radar system is equipped 

with AFC. The problem is then to estimate the rate of change of fre¬ 
quency due to transmitter pulling. This involves the use of the Bieke 
diagram for the transmitter, results from Eq. (17), similar results for the 
phase of the reflection, and a time factor introduced by the scan rate.2 
These calculations become important in estimating the apparent shift in 
the direction of a pencil beam or in the crossover point of a lobe switching 
beam. 

Design CormderaMons.—The considerations bearing on the design of 
cylindrical radomes will be summarized in several quasi-chronological 
steps. For this purpose it is assumed that the designer is equipped with 

1 The pulling figure of a magnetron has been defined as the maximum frequency 
shift in megacycles from the initial frequency, which can be induced by a (VSWR) «* 
1A of arbitrary phase. 

* Radar System Engineering, VoL 1, and Radar Scanners and Radomes, Vol 26, 
Radiation Laboratory Series. 
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considerable information regarding the dielectric constants and loss tan¬ 
gents of materials known to be available commercially and to be suitable 
for fabrication purposes. It is assumed also that he is equipped with 
radome wall design charts showing the proper dimensional relationships 
for different wall designs, dielectric constants, losses, and incident angles 
and polarizations. 

1. A background of pertinent information must be obtained from 
several sources: tactical application of the system; r-f requirements 
of the system including allowable maximum mismatch and rate 
of change of mismatch; information regarding the antenna, such 
as size, angle and rate of scan, impedance match, far-field pattern, 
near-field ray diagram; mechanical requirements of the actual 
installation including method of mounting, windage, shock loading, 
chemical exposure, weather conditions. 

2. The most favorable wall design must be selected in the light of 
available materials and on the basis of electrical and mechanical 
requirements from among the several possibilities: thin wall of 
arbitrary dielectric constant, low-dielectric-constant material of 
arbitrary thickness, half-wave thick wall, double wall, sandwich 
construction. 

3. The specific materials to be used in the selected wall design must 
be determined. This involves using the dielectric constants and 
loss tangents of the several alternative materials and the design 
charts for the radome wall to calculate the transmission and reflec¬ 
tion that would result from the choice of each material. A com¬ 
parison can then be made between these r-f performance figures 
and the r-f requirements and between similar mechanical per¬ 
formance figures and mechanical requirements to arrive at the 
final choice of materials. 

4. A number of flat panels must be fabricated using the materials 
and dimensions selected. These dimensions and the method of 
fabrication may be varied somewhat to obtain optimum perform¬ 
ance. The panels are tested for all properties deemed relevant 
in the radome under design, e.g., structural strength, moisture 
absorption, temperature resistance, transmission, and reflection. 

5. A complete radome must be fabricated on the basis of results 
obtained in the panel tests. Final tests are made of those char¬ 
acteristics requiring the entire radome, e.g., strains due to con¬ 
tinuous loading and effects on the antenna pattern. 

In the sequence of operations outlined above the less expensive and 
time-consuming operations are carried out first, whereas the major under¬ 
taking of building the complete radome is delayed until all preliminary 

problems have been resolved. 
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14*9. Streamlined Radomes.—The cylindrical radomes discussed in 
the previous section are suitable for ground and ship installations and 
have been used in the past on slow aircraft. For modern airborne instal¬ 
lations, however, it is necessary for the radome to be severely streamlined, 
preferably to the extent of being completely incorporated into the original 
airframe. These streamlined radomes present problems quite different 
from those discussed above; antenna gain and pattern require detailed 
investigation, whereas the problem of transmitter pulling assumes 
secondary importance. Both favorable and unfavorable aspects stem 
from the wide angles of incidence usually encountered. A nonscanning 
antenna, such as a linear-array beacon antenna, is free of transmitter 
pulling because of the fixed relationship of antenna to radome. 

l*io 14*18.—Beacon radome designs: (a) uniform wall, (6) solid wall, (c) perforated solid 
construction 

Pattern Effects.—The pattern effects caused by streamlined radomes 
for beacon antennas can best be discussed in terms of the several beacon 
radome designs illustrated in Fig. 14-18. In transmission through 
sharply curved portions of the uniform radome wall shown in Fig. 14-18a, 
the cylindrical phase front is appreciably distorted by variable phase 
delays. This mechanism is similar to that illustrated for a plane phase 
front in Fig. 14-10. The pattern is further distorted in the case of vertical 
polarization by large reflections from the tapered portion of the radome 
wall. The use of high-density material in the streamlined shape can 
be confined -to a single thin skin if a low-density filler is used. This 
design (Fig. 14*186) reduces the reflections below those resulting from 
the uniform wall but increases the variations in phase delay. A system 
of perforations (Fig. 14-18c) determined partly by experiment reduces 
these variations in phase delay to such a degree that the azimuth pattern 
is not seriously affected by the radome. Amplitude reduction in the 
transmitted wave is present in sufficient amount to cause appreciable 
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distortion in the pattern but is not nearly so serious as the other effects 
just discussed. 

The pattern effects to be expected from a proposed streamlined 
radome design for a scanning antenna can be predicted qualitatively by 
drawing elevation and plan views of the antenna with its ray diagram 
and located in the radome. This type of drawing is illustrated schemat¬ 
ically in Fig. 14-19 of a streamlined belly radome and an antenna employ- 

Fig. 14*19.—Schematic drawing of a shaped-beam antenna with its ray diagram and 
located in a streamlined radome: (a) plan view, antenna looking backward; (6) elevation, 
antenna looking backward; (c) elevation, antenna looking forward. 

ing a shaped cylindrical reflector. The rays from the antenna are incident 
upon the radome wall under a wide variety of conditions, as can be seen 
by a study of the figure. The angle of incidence varies from 0° for 
steeply deflected rays to almost 90° for near-horizontal rays looking 
backward. One polarization with respect to the plane of incidence will 
prevail over the bottom of the radome, the opposite over the sides, with 
intermediate polarizations in intermediate directions. A specific por¬ 
tion of the radome may be required to transmit rays having a wide range 
of angles of incidence at each of two opposite polarizations; this can be 
seen by studying parts (b) and (c) of the figure with the antenna sta¬ 
tionary as shown or by examining a portion of the side wall of the radome 
in part (<*) of the figure with the antenna scanning. The procedures to 
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be followed in radome wall design to meet situations of this type were 
discussed in Sec. 14*7 under Arbitrary Incidence. 

Design Considerations.—It is possible now to outline in several steps 
the considerations involved in the procedure of designing a streamlined 
radome for a scanning antenna. In the early stages this procedure is 
similar tq that described for normal incidence radomes in Sec. 14*8. 
The following description is based on the antenna-radome system shown 
in Fig. 14*19: 

1. The major dimensions of the radome must be determined. These 
depend upon the size of the antenna, the size of the hole in the 
fuselage, the amount of retraction of the antenna. These last 
two items are interrelated, since a larger fuselage hole will permit 
more retraction in the case of a slightly depressed beam. Amount 
of roll and pitch of the airplane and presence or absence of antenna 
stabilization are also involved. 

2. The shape of the radome must be established. The first approxi¬ 
mation is based strictly upon aerodynamic considerations. This 
shape is then used together with the antenna shape and ray diagram 
to construct an accurately dimensioned figure of the type indicated 
schematically in Fig. 14*19. The radome shape is modified to 
keep angles of incidence below some maximum figure, say 70°, 
but subject to approval from aerodynamic considerations. 

3. The radome wall design must be calculated. Further study of the 
antenna-radome diagram is necessary to fix the ranges of incidence 
angles at both polarizations. The wall must be designed to meet 
the system mismatch requirements by keeping down reflections 
at small angles of incidence and to meet pattern and gain require¬ 
ments by keeping down reflection and absorption at large angles 
of incidence. 

Further steps, as in the case of cylindrical radomes, are construction 
and testing of flat panels of the radome wall and construction and testing 
of the complete radome. Mechanical as well as electrical tests are made 
on the panels, while tests on the complete radome include aerodynamic 
performance and effect on antenna patterns. 



CHAPTER 15 

ANTENNA MEASUREMENTS—TECHNIQUES 

By H. Krutter 

15*1. Introduction.—The principles and techniques of antenna design 
were developed in the preceding chapters without consideration of the 
methods for obtaining design data and for testing the performance of the 
completed antenna. This and the following chapter will be devoted to 
a discussion of measurement techniques and a survey of the equipment 
required for such measurements. 

The antenna characteristics to be measured fall into four groups* 
impedance, primary feed patterns, secondary patterns, and gain. The 
impedance measurement techniques differ little in detail from those for 
other r-f components of microwave systems; the problem is complicated 
to a small degree by the fact that the antenna is a radiating load. The 
importance of the primary feed pattern increases with the progress that 
is made in reducing antenna design from an empirical to a calculable 
procedure. The study of pencil beams and fanned beams has shown the 
need for a detailed knowledge of both the phase and intensity distribu¬ 
tion in the primary feed pattern. The over-all characteristics of the 
antenna are particularly sensitive to the phase characteristics of the feed. 
It is evident from Chap. 13 that the design of shaped-beam antennas 
would be decidedly limited in scope without a complete knowledge of 
this primary feed pattern. 

. The pattern of the antenna as a whole, referred to as the secondary 
pattern, is taken partly in the course of the design and developmental 
research and finally, of course, as a test of the antenna performance 
A particular advantage of the microwave region is that, on the one hand, 
the secondary pattern can be determined so as to be closely identical 
with that of the antenna in free space and, on the other, by use of full- 
scale models, the distortion of the free-space pattern due to the installa¬ 
tion and housing can be studied. Secondary patterns of pencil-beam and 
fanned-beam antennas are generally confined to the principal 1?- and 
27-planes; however, the importance of complete space patterns is being 
recognized particularly in regard to the effect of cross polarization in 
reducing the resolving power of the antenna beam. Complete space 
patterns are, of course, always necessary in the design of shaped-beam 
antennas; here again the polarization of the field must be determined 
completely in order to arrive at a correct evaluation of the antenna 
performance. 

543 
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The range of a system for a given amount of available power is limited 
by the gain of the antenna (Sec. 1 -2). From the point of view of technique, 
the direct measurement of gain is perhaps more exacting than that of 
other antenna measurements. A necessary complement to the instru¬ 
mentation of an antenna laboratory is a set of primary and secondary 
gain standards. 

IMPEDANCE MEASUREMENTS 

15*2. Transmission-line Relations.—The subject of two-wire lines 
and the relation of waveguides thereto were treated in considerable 
detail in Chaps. 2 and 7, respectively. For the sake of continuity of the 
discussion in the present chapter the principal transmission-line relations 
will be reviewed here briefly. 

The voltage and current at a position z along the line are 

V(z) = Aie-y* + A2ey* (2*18) 

*(z) = - Aiey*), (2-19) 
6 0 

where y is the propagation constant, in general a complex number 

y — a + j/3. (2-17) 

The constants a -and 0 are respectively the attenuation and phase con¬ 
stants; the latter is related to the wavelength on the line by 

X9 
2tt 

The amplitudes of the component waves A i and A 2 are evaluated in terms 
of the conditions at the two ends of the line. The origin z = 0 will be 
taken at the termination, and the input end of the line will be located 
at z = —L. If Zl is the terminating (load) impedance, we have by 
Eq. (2-23) 

Aj Zi, — Zo 

A\ Zl + Zo 
: = r*; (1) 

Ti is the load reflection coefficient defined by Eq. (2-27) on setting z = 0. 
At the input end of the line z = —L, we have 

Vo - V(—L) + Zoii-L), (2) 

where Vo is the generator emf and Zo is its internal impedance. A reflec¬ 
tion coefficient rG may be defined corresponding to the mismatch between 
the generator impedance Zo and the characteristic impedance of the line:' 

_ Zo — Zo 

T° zTTWo (3) 

Upon substitution of these relations into Eqs. (2*25o) and (2-2S&), we 
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obtain 

Al = ( VoZo ) i e—<L 

and 
1 Uo + Zo) ' 1 - ToT^-w 

A,-( FoZo 1 
1 TLe-<L 

2 \z0 + zJ 1 - YoTLe~^L 
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(4) 

(5) 

The voltage and current at any point in the line are therefore expressed 
in terms of the source, the transmission line, and the load by 

1 + VLe^‘ 
1 - 

g-Yd+L), 

1 — VLe^‘ 

i - r0rie-si't 
0—7 <*+£)# 

(6) 

(7) 

The line has impedance transformation properties that are described 
by Eq. (2-32), from which we may obtain the impedance at a point 
z = —l relative to the load impedance at z = 0; i.e., 

V(—l) _ rwi __i\ _ ry Zl + Zo tanh (yl) 
t(-l) K ’ [Zo + ZL tanh (y/). ’ (8) 

Similarly the reflection coefficient transforms along the line, and we have 
from Eq. (2-31) 

T(-l) = Tte-^K (9) 

It is evident that Zj. or Ti, can be determined by these relations from 
measured values of Z(—/) or r( — l) at any point along the line a distance 
l from the load. 

For a lossless line Eqs. (8) and (9) simplify to 

and 

Z(-Q (g£_± jjj'P ^an §j\ 
\Zo •+• ]Zl tan (31/ 

00) 

T(-l) = Tutr**. (11) 

The relations for admittance (F = 1/Z) are given by Eqs. (8) and (10) 
with Z everywhere replaced by F. Also Tt in terms of admittance is 

given by 
__ F0 - Yl 
~ Fo + Yt 

(12) 

15*3. Standing-wave Ratios.—Instruments for voltage measurement 
used in impedance determinations indicate some function (not neces¬ 
sarily linear) of tfce time average of the square of the real voltage; this 
is given in terms of the complex voltage by iVV*, where V* is the complete; 
conjugate of V. Carrying out the indicated operation on Eq. (6), we 
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obtain 

\ w* = 1^1! [e-*« _ 2|r*| cos (2/fe + S) + |r*| V], (13) 

where 5 is the phase angle of rz,(rz, = |Tl|^8) 
The attenuation constant in microwave transmission lines is small 

and may usually be neglected in impedance measurements of antennas 
The simplified expressions that follow are strictly true only for a lossless 
line. Assuming that a = 0, Eq. (13) simplifies to 

1 yy* = I^lII [1 + 2\Tl\ cos (2pz + 5) + |r£|*]. (14) 

?VV* is a periodic function of z with maxima occurring at 20z + 8 equal 
to even multiples of w and minima at 2fiz + 8 equal to odd multiples of t 
Voltage maxima occur, therefore, every half wavelength, and minima 
occur every half wavelength, with adjacent maxima and minima sepa¬ 
rated by a quarter wavelength. 

The ratio of maximum voltage squared to minimum voltage squared, 
obtained from Eq (14), is called the power standing-wave ratio and is 

r 2 = i + |rx 
i - \vL 

(15) 

The square root of r2 is referred to as the voltage standing-wave ratio and 
is given by 

i + |rL|. 
l - |r*| (16) 

Accordingly, the magnitude of the reflection coefficient of the load is 
given by 

r*| 
r — 1 

r + 1 
(2-446) 

Following the argument of Sec. 2-7 it is observed that the reflection 
coefficient is equal to |Tt| at a voltage maximum and to — |rx.| at a voltage 
minimum. Correspondingly at a voltage maximum the impedance is 
real and equal to rZo, and at a voltage minimum the impedance is real 
and equal to Z0/r. If l is the distance from a voltage minimum to the 
load terminals, the load impedance can be expressed in tern^s of r and 
l by replacing Z(—l) in Eq. (10) by Z0/r, thus obtaining 

Zz, — Zo 
1 — jr tan 01 
r — j tan pi 

or, separating ZL into a resistive component Ri, and reactive component 
Xt, 
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The load impedance can thus be calculated by means of Eq. (17) 
from the measured values of the standing-wave ratio and the distance 
from a voltage minimum point to the load. The calculation may be 
performed graphically on the reflection coefficient or bipolar charts as 
was discussed in Sec. 2*8. 

154. Measurement of Voltage Standing-wave Ratio.—The most 
common method of determining VSWR is by means of the apparatus1 

Indicator 

Fig. 15U.—Block diagram of impedance-measurement apparatus. 

shown schematically in Fig. 15*1. The first unit is an r-f power source 
which at microwaves is usually a velocity-modulated tube capable of 
being tuned over the wavelength band on which measurements are to 
be made. Since these tubes are sensitive to the impedance mismatch, 
an r-f tuner is generally connected close to the source and tuned for 
maximum stable output. The tuner is then followed by a variable 
attenuator which is preferably matched. The attenuator serves to 
control the r-f power level and to reduce the pulling effect of a variable 
load. A wavemeter should be in the set but should be detuned dur¬ 
ing standing-wave measurements. The attenuator is followed by a 
slotted section of line; the slot is narrow and cut in such a way that it 
does not interrupt the current lines in the waveguide wall appreciably. 
The latter is necessary in order that the coupling between the line and 
space be negligible; then the characteristic impedance of the slotted sec¬ 
tion does not differ significantly from that of the uncut line. The field 
inside the guide is explored by means of a probe mounted on the slotted 
section. The microwave instruments generally employ an electric-field 
probe—a wire or needle entering into the guide parallel to the electric 
vector of the field. Such a probe measures the voltage standing wave. 
Mounted in the probe is a detector that supplies direct current or audio 
frequency to an indicator. The response of the detector-indicator com¬ 
bination is a measure of the field intensity at the probe. The slotted 

* The details of various r-f components Such as tuners, attenuators, wavemeters, 
slotted sections, and probes together with the techniques of their use are given in VoL 
11 of this series. 
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section is placed as close to the antenna as possible in order to reduce 
errors in measurement of electrical length. 

The actual measurements consist of moving the probe along the line 
and determining the maximum response and minimum response which 
should be separated by a distance of Xa/4. From the calibrated response 
the VSWR is obtained. The distance of a voltage minimum (the reason 
for choosing a voltage minimum rather than a voltage maximum is 
given later) from the load is noted. These two quantities together with 
knowledge of the wavelength in the transmission line suffice to determine 
the impedance of the load. 

Precautions in Standing-wwe Measurements.—The procedure described 
above is exactly the same as that used in measuring any r-f component, 
except for one very important difference. The antenna is a radiating 
load and therefore precautions must be taken so that reflections from 
near-by walls or objects do not affect the measurements of VSWR or 
phase (position of minimum or maximum voltage). To avoid or diminish 
the effect of reflections the most intense portions of the radiation should 
be directed toward an open space with as much open space in all other 
directions as possible. Measurements may be taken inside the laboratory 
by directing the main beam at an angle of approximately 45° toward a 
wall, preferably of low reflection. To ensure that the space in which 
measurements are being made is satisfactory, the antenna should be 
moved to several positions (varying the distance to the wall and changing 
the angle of incidence plus or minus a few degrees from 45°) and the 
effect on phase as well as VSWR observed. If no changes occur, the site is 
satisfactory. Particular caution must be exercised when impedance 
measurements on low gain, nondirective antennas such as beacons are to 
be made. If such antennas are to be mounted on a metallic sheet in actual 
use, impedance measurements should be made in such a way as to simulate 
as closely as possible the actual final conditions. 

Several other precautions must be taken to ensure the accuracy of 
VSWR and phase measurements. The probe should be loosely coupled 
to the line in order to avoid alteration in the standing wave pattern which 
will occur if the probe has an appreciable reflection coefficient. The 
reflection coefficient of a probe is a function of the tuning of the probe 
as well as the probe insertion. The effects of this will be discussed in 
more detail in Sec. 15*7. For a matched generator this reflection results 
in apparent VSWR less than the true VSWR and asymmetry in the 
standing-wave pattern with the maxima and minima not separated by a 
quarter wavelength. The position of the minimum is not affected appro* 
ciably. If IV is the reflection coefficient of a tuned probe when the 
line is terminated in its characteristic impedance, the measured VSWR 
corresponding to a load of reflection coefficient Tt is less than the ^rue 
value by the factor (1 - |rjVj)/(l + (rjV|). Thus, for e&unple, a 
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probe presenting a reflection coefficient TP = 0.05 will measure a stand¬ 
ing-wave ratio r2 = 4 as r2 = 3.75. If the internal impedance of the 
generator is different from the characteristic impedance of the line 
(mismatched generator), these effects will be even more aggravated. 

The probe mount should be tunable so as to obtain maximum output 
for various frequencies and for a given probe insertion. Tuning should 
be smooth and not subject to erratic contact; the probe is generally a 
fairly high Q device, and the response will be affected easily by instability. 
Furthermore, for a given probe insertion the reflection coefficient of the 
probe will be real when the probe is tuned; under the latter condition no 
asymmetry will result in the standing-wave pattern although the meas¬ 
ured VSWR will still be less than the true VSWR. 

The response of the probe and indicator must be calibrated. It is 
not safe to assume that the response is proportional to the square of the 
voltage. A crystal detector1 is accurately square law only for very 
low r-f power levels. The law of the crystal varies from crystal to crystal; 
for a given crystal it is a function of the power level and the load of the 
indicating system. A current-biased bolometer element, such as a Littel- 
fuse, is very accurately square law over a very large range of power 
levels except in the neighborhood of burnout. A simple and convenient 
method for calibrating the detector will be given in Sec. 15*6. 

Irregularities in the standing-wave pattern are frequently due to 
structural defects in the slotted section such as erratic contact between 
the probe carriage and the line. A common failing of coaxial-line sec¬ 
tions is that the inner conductor is not accurately concentric with the 
outer. The usual effect is a probe depth varying almost linearly along 
the section resulting in a standing-wave pattern that appears to be super¬ 
imposed on a monotonic voltage; this effect is known as slope. The 
effect of slope can be compensated for by calculating the VSWR from the 
ratio of the geometric mean of two maximum values of response separated 
by X/2 to the minimum value between them or by taking a maximum 
response divided by the geometric mean of the two minimum responses 
on both sides of the maximum. Both procedures should give the same 
result. Actually an arithmetic average is satisfactory. The average of 
two maxima divided by the average of two minima should not be used in 
correcting for slope. Maximum and minimum values should be taken 
near the center of the slotted section so as to avoid the edge effect at the 
ends of the slotted section. 

The impedance of the slotted section should be the same as that of 
the feed line of the antenna being investigated, and good electrical contact 
between the two lines should occur. For most accurate results the lines 
should also be geometrically the same. For example, if two 50-ohm" 
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coaxial lines with an appreciable difference in the radii of their respective 
conductors are connected together, the two lines will not be matched 
because of the capacitance introduced by the junction. 

16*5. Determination of Electrical Length.—In determining the 
proper position for insertion of impedance-matching devices, accurate 
knowledge of the position of a voltage minimum point close to the antenna 
terminals is required. For good impedance matching, this information 
frequently must be known to a higher degree of accuracy than the value 
of VSWR. To reduce the error in determining the position of the voltage 
minimum the standing-wave section is always put as close to the antenna 
as is physically possible. 

Voltage minima in the slotted section are first determined. Deter¬ 
mination of the position of a minimum by adjustment of the probe posi¬ 
tion so that the response is a minimum is inaccurate, since with normal 
VSWR the minima are broad and the position is hard to determine 
exactly. A more accurate method is to determine the position of the 
probe for equal response on both sides of the minimum; the average of 
these positions will then be the location of the minimum. For greater 
accuracy the average position for several different responses may be 
taken. Having located such a minimum position, it may be transferred 
up the line an integral number of half wavelengths to a point near the 
antenna terminals. In actual practice, except for certain simple cases, 
this is easier said than done. 

Perhaps the best method for transferring the position of the minimum 
is to short-circuit the transmission line at a point close to the antenna 
terminals and to use this as a reference point. This method, of course, 
assumes that such a short circuit can be made. This will usually be true 
for experimental antennas, but not usually with production antennas. 
Consider as an illustration Fig. 15 2 which shows the experimental setup 
for determining the voltage minimum near the terminals of a coaxial- 
line-fed antenna. Let h be the position of a voltage minimum in the 
slotted section in Fig. 15-2a. The feed is now removed at the fitting, 
and a shorting plate is placed at the end of the coaxial line as in Fig. 15-26. 
A new voltage minimum (zero) is located at U on the load side of position 
l\. Transferred up the line, this new minimum is at the short circuit 
or an integral number of half wavelengths from the short circuit and 
therefore provides a convenient reference point to which the load voltage 
minimum may be referred. Measuring a distance \h — Z2| toward the 
generator from the shorting plate determines the load voltage minimum 
position relative to the short circuit. 

For air-filled coaxial lines, the measured physical lengths and elec¬ 
trical lengths will show good agreement, because the wavelength is inde¬ 
pendent of variations in line impedance. However, in waveguides the 
guide wavelength depends on the dimensions of the guide; hence the use 
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of an incorrect guide wavelength will lead to an error in the location of a 
transferred voltage minimum. For example, suppose that were 
actually 4.52 cm in the transmission line and a guide wavelength as 
determined in the slotted section were 4.50 cm. If one wished to find 
the position of the voltage minimum approximately 90 cm (about 20X„) 
from the minimum in the slotted section, then the error resulting from 
the use of the value 4.50 cm instead of 4.52 cm would be 20 X 0.02 = 0.4 
cm. The shorting method discussed in the previous section would almost 

* Fig. 15*2.—Short-circuited line technique for determining electrical length. 

completely cancel this error. It should be emphasized that this proce¬ 
dure assumes that the connectors, bends, or small variations in impedance 
in the transmission line are reflectionless and therefore cause no phase 
shift. 

When the shorting method cannot be used, the problem becomes more 
difficult, and various tricks may be used with more or less accuracy to 
give the desired information. One method frequently used in waveguide 
matching problems is to have made a set of experimental inductive 
irises of various openings, similar to that in Fig. 15*3, so that the outside 
dimensions of the frame of the experimental iris are such as to ensure a 
snug fit inside the waveguide with just sufficient clearance to permit 
sliding. To a given percentage open area of the inductive iris there cor¬ 
responds a definite mismatch which will be eliminated by locating the 
Iris in the proper position. Knowing the VSWR erf the load from meas- 
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urement, an iris whose open area is most nearly that required to cancel 
the mismatch is chosen from the set and slid along inside the waveguide 
to a point in that portion of the waveguide where it is desired that the 

matching transformer should be. The position of 
the experimental iris is varied until a matched (or 
nearly matched) condition is obtained. The posi¬ 
tion of the iris so determined for a minimum VSWR 
then determines the proper point for actual inser¬ 
tion of an inductive iris. This method has been 
found to give the proper position to within a milli¬ 
meter in 1 by i-in waveguide The size of the 
actual iris to be inserted is obtained from the 

VSWR of the load and knowledge of the inductive susceptance intro¬ 
duced by an iris as a function of the iris opening 1 

Another method that may be used in waveguides is to cut a small 
hole in the center of the broad side of the waveguide near the antenna 
terminals and to introduce a capacitive screw. The VSWR and position 
of the minima are obtained for several screw depths. A voltage mini¬ 
mum position is assumed to be at the screw position. Referring to this 
point, the admittance of each value of VSWR and phase are plotted on 
the admittance diagram.2 It will then be observed that the points do not 
fall along a vertical straight line corresponding to capacitance being added 
with increasing screw depth. The points will all be on a straight 
line when they have all been rotated the same phase angle on their 
respective r2 circles. In the example shown in Fig. 15*4, rotating each 
point 30° on its corresponding VSWR circle the points then fall on a 
vertical straight line with added screw insertion increasing the capacitance 
in parallel. This then means for this example that the true voltage 
minimum is located a distance l = 30X/720 toward the generator from the 
position of the center of the screw. In practice, this method is subject 
to error because there is, in addition to the capacitance of the screw, a 
small shunt conductance which increases with increasing diameter of 
the screw. For small screw diameters and small screw depths this 
method gives an approximate position for the minimum. 

15*6. Calibration of Detection System.—As has been stated pre¬ 
viously, the law of response of the detection system must be known for 
accurate measurement of VSWR. If an accurate attenuator is available 
and the power level isimown, the response as a function of power input 
can easily be determined. Or a calibration is available if the response 
system can be compared with a known response system. Both of these 
methods have been used. However, the method discussed below is a 
simple one, utilizes the apparatus already available for VSWR measure* 

1 Wwpgmde Handbook. (Vol, 10 of this series.) 
«S*eS*o.2‘8. 
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ments, and can be carried out easily from time to time if a variation in the 
law of the detection system is suspected (as may happen when a crystal 
is being used). . 

0 0.5 1.0 1.5 2.0 2.5 
Fia. 15-4.—Admittance diagram for capacitive screw. Increasing sciew depths correspond 

to increasing capacitance in parallel. 

Indicator 

section 
Flo. 15*5.—Block diagram for calibration of detector. 

Figure 15-5 shows a schematic setup for this experiment showing a 
shotted standing-wave section being fed by a generator, the power level 
of which is adjusted by a variable matched attenuator. Since with a 
short circuit, the voltage is a sinusoidal function of position [Eq. (14) 
with |r*| 1, 4 -• r] with period X,/2, the response I for the detection 
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system as rfcad on a meter will be given by 

where the exponent n is the so-called “law” of the system and I is the 
maximum response at l = 0 (note that l = 0 here refers to the position 
of maximum response). The law of the detector may be a function of 
power level, a not uncommon occurrence in the case of crystals. Equa¬ 
tion (18) can be written 

logic 1- 

” -,-Ia- (18o) 
logio COS — 

*0 

It is advisable to plot the experimental values of logio I/Io vs. logio 
cos 2wl/\0 in order to smooth out experimental irregularities. The slope 
of the curve at any indicated level I is equal to n. 

If n = 2, the system is a square-law system and the meter readings 
are therefore proportional to the square of the voltage. The ratio of 
maximum response to minimum response for a load then gives directly the 
r* of the load. If n ^ 2, r2 is given by 

(maximum response)2/Wl 
(minimum response)2/w* 

if the law of the system is nx at the maximum reading and rt2 at the mini¬ 
mum reading. For low (VSWR)2 the ratio of maximum to minimum 
response may be used uncorrected if n does not differ greatly from 2. 
For example, suppose that the meter reading were 15 and 10; then 
(VSWR)2 would be written as 1.5; but if the law of the system at both 
levels were 2.2, the true VSWR would be (1.5)2/2 2 = 1.45. 

It is much simpler, when n does not vary greatly for different power 
levels, to determine n experimentally over 3-db power intervals. If 
21 « d corresponds to the separation of half response, that is, when 
I - i/o, then Eq. (18a) may be approximated by 

0.2206 
n = -3- 

f- - 0.1397 
kg 

The error in this approximation is less than 0.02 for the range' 

1.8 < n < 2.4. 

(19) 

Figure 15*0 is a plot of n as given by Eq. (18a) as a function of the full 
width d/X„ at half response. It should be noted that d/X» must be deter¬ 
mined accurately because an error of 0.01 in d/\a results in an error in n 
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of 0.2. For small wavelengths a dial indicator calibrated in thousandths 
of an inch is mounted on the standing-wave section for accurate measure- 

0.20 0.22 0.24 0.26 0.26 0.30 

A/\g-- 
Fig. 15*6.—Detector law vs lull width df\g at half response. 

A possible procedure to be used is as follows: (1) Use the same 
micfoammeter or audio amplifier that will be used with the crystal or 
bolometer in practice. This is necessary, since the apparent law of the 
detector depends on the impedance of the metering arrangement as well 
as on the r>f'power level. (2) Adjust the power level by varying the line 
power level or by varying the probe insertion. The probe insertion should 
be cio small that the standing-wave pattern is not disturbed as it is moved 
along ‘This may be tested by monitoring with a second probe held at a 
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fixed position in a slotted section between the generator and the section 
carrying the detector being calibrated. If the fixed probe reading is 
independent of the position of the moving probe, the insertion depth of 
the latter is acceptable. (3) Measure the separation of the points 3 db 
down from the maximum for several maxima positions along the standing- 
wave detector. Average these values of d. (4) The distance between 
alternate minima will be the wavelength \0 in the transmission line. 
In the case of coaxial lines the wavelength is best obtained by means of a 
precision wavemeter. (5) The average value of n for these conditions is 
then determined from Fig. 15 6. (6) Determine n at other power levels 
by a similar procedure 

15*7. Probe Reflections.—The whole of the previous discussion in 
regard to making standing-wave measurements by means of a probe in 
a standing-wave detector is based on the assumption that the probe itself 
does not affect the field being measured. If the probe has a reflection 
coefficient different from zero, considerable error may result in the deter¬ 
mination of the law of a detector or m the measurement of standing-wave 
ratios, especially if the mismatch being measured is great.1 The most 
noticeable effect of probe reflections is a distortion of the observed stand¬ 
ing-wave pattern. 

For the most part, results that occur in standing-wave measurements 
may be accounted for by assuming that the probe is a shunt admittance 
We may obtain the voltage V at any point of the line by Eq. (6) upon 
replacing Tl by the combined reflection coefficient of the load and of the 
probe. For simplicity, assume that the generator is matched so that 
To = 0. The voltage will be proportional to (1 + r«ff), where T^t is the 
total reflection coefficient at the probe. The latter can be shown to be 

1 

reff 
t'l + iv + 2 r'jv 

i - r'LrP ’ (20) 

in which TP is the reflection coefficient of the probe, given in terms of the 
probe admittance YP by 

„ —YP 
P YP + 2IV 

and Ti jta the reflection coefficient of the load referred to the probe 
position 

T'l - Teat**. 

The voltage variation, therefore, in terms of r* and I> is given as a 
function of t by 

V - const e - /*. (21) 

* Y. Dowker and XL M. Redheffer, “An Investigation of R-F Probes," EL Report 
No, 483*14; W, Altar, F. B. Marshall, L. P. Hunter, “Probe Errors in Standing-wave 
Deteeton,” Proe. IJtM, U, 1,38-44. 
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The effect of a finite reflection coefficient as given by Eq. (21) in 
measuring VSWR and phase shows the following results for a matched 
generator (for a mismatched generator the state of affairs becomes even 
more complicated). For a tuned probe the measured VSWR will always 
be less than the true VSWR; however, the minima and maxima will occur 
in their proper positions. For an untuned probe the measured VSWR 
will also be less than the true VSWR; the standing-wave pattern, how¬ 
ever, becomes asymmetric with maxima and minima displaced from their 
correct positions and maxima and minima no longer separated by Xff/4, 
despite the fact that adjacent minima are still separated by X/2 as are 
also adjacent maxima. The position of the minimum is less affected 
than the position of the maximum; the higher the VSWR the less the 
minima are affected; and it is for this reason that minimum position has 
been recommended instead of maximum position for phase determina¬ 
tions. For example, for a load mismatch \VL\ = 0.1 (r2 = 1.49), with 
Tp = —0.1e?T/4 the minimum position is displaced only 0.00fi3Xff from its 
true position: and for TL = —1, the minimum is not displaced at all. 
In the calibration method of Sec. 15*6 a probe reflection as small as 
Tp — —.005 will lead to an apparent value of n = 1.97 where the correct 
value is n = 2. 

PRIMARY FEED PATTERN MEASUREMENTS 

15*8. Primary Pattern Apparatus for Point-source Feeds.—The 
dimensions of microwave radiating systems that are employed as point- 
source feeds for reflectors and lenses are such that the physical distance 
from the feed at which the radiation zone sets in is within the dimensions 
of normal laboratory space. The distance is, of course, large compared 
with the feed dimensions in conformity Avith the requirements of the 
far-zone fields (Sec. 3T1). A complete primary pattern consists of the 
spatial distribution of radiated energy about the feed, the surfaces of 
constant phase, and the orientation of the electric vector (polarization) 
at all points on a sphere centered at the feed. The techniques for deter¬ 
mining each of these components of the pattern in the radiation zone will 
be considered in the following sections. 

The technique of measurement is, in general, the choice of the experi¬ 
menter. It has been found convenient, however, to take transmitting 
patterns of primary feeds; that is, the particular feed in question is made 
to transmit microwave energy of the required frequency, and a small 
horn or pickup is then used to measure the intensity of the radiated 
energy, phase, and polarization. Later, in discussing the measurement of 
secondary patterns—the pattern of the composite antenna—it will be 
convenient to consider receiving patterns. 

Transmitting patterns may be obtained in principle by receiving the 
radiated energy from the transmitting antenna in a polarized pickup 
antenna at all points on a large sphere centered about the transmitting 
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antenna. A suitable form of apparatus to accomplish this for an essen¬ 
tially point-source primary feed is sketched in Fig. 15*7. The r-f com¬ 
ponents illustrated are typical 9400-Mc equipment. The general layout 

Fia. 15*7.—Apparatus for primary pattern measurements on point-source feeds. 

and ideas, however, may be used throughout the microwave region. 
As an r-f source, a square wave modulated klystron has been utilized 
to give a steady output. The output from the generator is connected 
by means of coaxial cable to the waveguide that is terminated by the 
feed under study, which is shown here as a horn. A cavity wavemeter 
is included in the r-f line. The line and feed are clamped in an adjust¬ 
able mount so that the apparatus may be properly aligned. These 
adjustments include horizontal and vertical displacements as well as 
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means of rotating the feed about its axis (feed axis being here defined as 
the direction of peak radiation). The feed is mounted so that its approxi¬ 
mate center of phase is located on the aximuth axis of rotation of the 
pickup antenna. The pickup antenna is mounted on a turntable illus¬ 
trated here as a 30-in. gun mount, the upper ring of which is free to rotate 
on ball bearings between it and the lower ring. The pickup may be 
rotated about a horizontal axis, and its distance from the axis of the gun 
mount is adjustable. 

If only intensity and polarization measurements are of interest, the 
detecting element may be placed behind the pickup and the output 
delivered directly to the indicating system. Illustrated in Fig. 15-7, 
however, is a system suitable for the measurement of phase as well as 
of intensity and polarization. In order to eliminate cable flexing which 
may produce phase errors, the energy is delivered to the detecting system 
via a cable, fastened to the pickup mount, to a rotating joint mounted 
with its axis coinciding with tbe turntable axis, and from the joint to 
the detecting system by a fixed cable or a rigid wraveguide. The detect¬ 
ing system consists of a tuner, a slotted section on wrhich is mounted a 
movable tunable probe through wrhich r-f energy from the source may be 
introduced for phase determinations,1 and finally the detecting element, 
crystal or Littelfuse. For intensity measurements the cable from the 
r-f source to the probe is disconnected. 

A detecting element, which has been found to be very satisfactory, 
is a current-biased Littelfuse or Wollaston wire. This is in series with the 
transformer input of a low-noise, narrow' bandpass, 10,000-gain, linear 
amplifier. The change in the resistance of the element is proportional 
to the modulated r-f power input over a very wide range of power level, 
and the resultant readings on a model 300 Ballantine voltmeter or 
other suitable electronic voltmeter are very accurately proportional to the 
square of the field intensity. A crystal may be used as a detector with 
the above apparatus; but although the sensitivity is of the order of 10 db 
greater than the Littelfuse, the law of the crystal varies as a function of 
the r-f power level. Consequently, it is necessary to know the calibration 
or lawr of the crystal as a function of the power level before correct field 
intensities may be obtained. This objection to crystals holds only for 
intensity measurements and not for phase measurements. In addition, 
the law of the crystal has been known to change with time and handling. 
Crystals are preferable for both intensity and phase measurements if a 
c-w source and superheterodyne detection system are used instead of the 
modulated source and amplifier-voltmeter system, since the r-f power 
level required is greatly reduced and the crystal is square law for low 
power levels. 

As far as possible, all r-f components should be well matched to obtain 
1 An alternative method for providing a phase reference is discussed in Sec. 15 12. 
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maximum-power transfer and to prevent possible interactions. Gen¬ 
erators should usually be loosely coupled to avoid a change in power 
output and frequency due to a variable load. The same techniques 
and cautions required in other r-f measurements are generally true for 
antenna measurements. However, in some cases, mismatch in the var¬ 
ious elements does not result in incorrect measurements. Wherever good 
matching is required, this will be emphasized in the text. 

There are several requirements that the pickup antenna should 
satisfy. (1) It should be polarized and arranged so that reflections from 
its mount will be negligible. (2) The pickup should be mounted so that 
its feed axis is perpendicular to and intersects the turntable azimuth 
axis. (3) The pickup should have some directivity in order to minimize 
the effect of possible reflections. (4) The pickup should be capable of 
being rotated about its axis in order to determine the polarization of the 
antenna being studied as well as to measure intensity for various orienta¬ 
tions of the transmitting antenna. It is also desirable to be able to vary 
the distance of the pickup from the turntable axis so that the field 
may be measured at different distances from the feed when necessary. 
A simple and suitable pickup antenna consists of a rectangular waveguide 
horn of mouth dimensions such that the aperture in the electric plane is 
equal to the width of the waveguide in the magnetic plane. For exam¬ 
ple, in the 3-cm region a fairly well matched polarized pickup horn is 
obtained by flaring 1- by f-in. rectangular waveguide to an aperture 
1 by 1 in. 

The primary pattern apparatus should be located in as open a space 
as possible to eliminate undesirable reflections from surrounding objects. 
It is very difficult to establish a criterion for this because it is a function 
of the desired accuracy, the size and directivity of the feed as well as 
of the pickup, and the scattering cross sections of the various objects in 
the neighborhood of the apparatus. In many cases it is difficult to 
ascertain the cause of unexpected peculiarities in the pattern. If there 
are objects near-by suspected of reflecting, the effects of their removal 
naturally should be observed. If a symmetrically constructed feed is 
being studied, the presence of a side lobe on one side and not on the other 
at the same angle denotes either an error in the alignment of apparatus 
or the presence of a reflecting object on one side. A usefiri precaution 
against the effect of reflections, in particular those of near-by walls, 
is to cover the scattering objects with microwave absorbing material. 
One must be certain that the material is actually an absorber in the 
wavelength region being considered, particularly if a lossy material 
baeked up by a metal sheet is used as an absorber.1 In this case, the 
angle of incidence as well as the wavelength must be considered. 

1 An effective absorbing screen can be constructed by backing a slab of wood a 
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In general, the apparatus itself should be as free as possible of reflecting 
surfaces or objects. Patterns should be taken preferably in azimuth 
because reflections from a horizontal surface may be made symmetrical 
and with the usual directivity of feed and pickup they will be negligible. 
The primary radiator and pickup should be located as far as possible 
from horizontal surfaces such as the table and ceiling in order to minimize 
the effect of these reflections. In most cases, if the distance between 
the table and the feed is of the order of 10 wavelengths or greater, very 
little trouble will be encountered. 

A number of other more elaborate primary pattern setups have been 
devised, primarily with a view to greater accuracy in phase measure¬ 
ments. One possibility is to use a vertical transmission path, thus 
eliminating reflections from either the floor or the ceiling which may 
conceivably cause errors in phase measurements made on the apparatus 
described above. However, a vertical-path device is considerably more 
complex mechanically and is warranted only where definitive measure¬ 
ments are required. 

15*9. Intensity Measurements.—The intensity patterns in the princi¬ 
pal electric and magnetic planes (hereafter to be denoted by E- and 
//-planes respectively) are usually sufficient for simple antenna designs; 
sometimes, however, a knowledge of a greater portion of the space pat¬ 
tern is required in more careful antenna design. The method for deter¬ 
mining the field intensity as a function of direction will be discussed first 
for the principal E- and //-planes and then for other planes or cuts. 

The r-f components need not be well matched when only relative 
intensity measurements are required. Mismatch in the various com¬ 
ponents will affect only the power level at the detector and will not 
therefore affect the measurement unless the mismatch is variable. The 
separation of feed and pickup should be of the order of 2d2/\ or greater, 
where d is the maximum aperture of the feed. For small d of the order 
of a wavelength, this requirement may be open to question, and one 
should in this case have a feed-to-pickup separation of at least several 
wavelengths. These criteria ensure that the feed is being examined in 
its Fraunhofer region. The distances suggested will minimize interaction 
between the transmitter and receiver. If the feed is to be used in com¬ 
bination with a reflector such as a paraboloid, it is desirable that the dis- 

qu&rter wavelength (dielectric) thick with a metal sheet and facing it with resistive 
doth. The latter is an aquadug-impregnated fabric sold by the U.S. Rubber Company. 
On the assumption that the thickness of the fabric is negligible the surface resistance 
of the cloth should be 377 ohms. It has been found, however, that the fabric thick¬ 
ness is not negligible and that a surface resistance in the neighborhood of 600 ohms 

is more effective. The screen with j thickness is most effective at normal incidence. 
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tance from the pickup to the feed should be roughly equal to the distance 
from the feed to the contemplated reflector. 

A check on whether the Fraunhofer pattern is being measured may 
be obtained by moving the pickup away from the feed at a fixed angle, 
say the peak direction, and determining whether the power response, as 
measured on the electronic voltmeter, varies inversely with the square 
of the distance’ Figure 15*8 illustrates the dependence of the measured 

Fig. 15*8.— Tenth-power width 0 j*0 as a function of the path distance R between test horn 
and pickup horn. 

10-db width of the intensity pattern upon the separation between a 
feed and the pickup. It will be seen that the beamwidth becomes prac¬ 
tically constant for path distances greater than 1.5d2/\. This is in agree¬ 
ment with the choice of 2d2/\ as a minimum separation (cf. also Sec. 6*9). 

To measure the Jf-plane intensity distribution, the primary feed 
under study is mounted so that the estimated center of feed1 is located 
directly over the center of rotation of the turntable and the feed oriented 
so that the 2?-vector is vertical. The pickup horn with Z?-vector vertical 
is aligned with the feed so that the axes of the feed and of the pickup, if 
extended, become a common horizontal line. The ff-plane intensity 
pattern is then determined by moving the pickup feed in azimuth at a 
fixed distance and taking readings from the voltmeter as a function of 

1 The center of feed or center of phase is that point in the primary feed which is the 
center of the circle that most nearly approximates the curve of equiphase (see Sec. 
15*11). 
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Pickup 
horn 

angle. With a square-law detection system the relative power per unit 
solid angle is thereby determined as a function of angle for the principal 
//-plane of the radiation field. By rotating the pickup and feed 90° 
about their own axes and carrying out the procedure described for the 
//-plane, the principal E-plane pattern is determined. 

Various methods of presenting this data have been used, each 
with its own merit. All too fre- 

v 
quently in the literature and re¬ 
ports there is a failure to label 
properly the intensity axis as field 
intensity or square of field inten¬ 
sity (power pattern). A semi- 
logarithmic plot of the power as a 
function of angle is commonly 
used and has the advantage of 
emphasizing the lobe structure. 
The relative field intensity (or 
simply the relative field intensity 
squared) as a function of angle on 
a polar plot is valuable for obtain¬ 
ing a good picture of the field dis¬ 
tribution; in particular for field 
intensity, this plot gives the rela¬ 
tive range as a function of angle at 
which a given receiver will receive a constant signal from the fixed trans¬ 
mitting antenna (cf. Sec. 1*2). 

We now have the principal A- and //-plane intensity patterns; 
let us consider the problem of obtaining the space distribution of intensity 
and the polarization. We define a coordinate system a and shown in 
Fig. 15-9. The z-axis is the axis of the primary feed; represents rotation 
of the pickup about the axis of the turntable; and a represents the orien¬ 
tation of the E-vector at points on the feed axis relative to the plane 
defined by the y- and z-axes. The apparatus is first lined up, as described 
before so as to obtain the principal E-plane pattern. To check the 
polarization in this plane, at each azimuth position of the pickup, the 
pickup is rotated about its axis until the maximum power is received. 
The angle of the pickup then determines the angle of polarization of the 
radiation at that point. After the polarization and intensity have been 
determined for the principal E-plane pattern, the feed and pickup are 
returned to their initial condition of a = 0 and \p = 0. The feed is then 
rotated through an angle a (say 10°) about its axis, and the pickup is 
rotated through a similar angle so that their polarizations are parallel. 
The intensity reading should be exactly the same as the initial reading. 
Note that this method has the desirable feature that as each cut is taken 

J<ig. 15*9.- 

I « 
Turntable axis 

-Coordinate system for primary 
patterns. 
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the power level is checked at \f/ = 0, that is, for peak intensity. The 
pickup is again moved in azimuth; and at each angle the maximum 
intensity and polarization are obtained as above. This procedure is 
repeated for successive values of a. If the field-intensity-squared data 
are plotted as a function of a and \f/ on suitable coordinate paper, contours 
of constant intensity can be drawn. 

Direct polarization on a paraboloid is that component of the radiated 
primary field which, after reflection from the paraboloid, is parallel to 
the dominant polarization of the antenna pattern. Direct- and cross¬ 
polarization components exist for each point on the paraboloid. If one 
is interested only in the direct-polarization component of this feed for 
use with a paraboloid, the procedure discussed above is considerably 
simplified. For example, the ff-plane pattern is taken without rotating 
the pickup about its axis for polarization determination. Likewise, if the 
feed is rotated by an angle a for the a cut, then the pickup is rotated 
the same angle a and kept there while the intensity as a function of ^ 
is observed by moving the pickup in azimuth. This procedure is correct 
as may be observed by considering the properties of a paraboloid of 
revolution. If for any reason the cross-polarization pattern of the feed 
is desired, it may be obtained exactly as above with the exception that 
when the feed is rotated a degrees, the pickup is rotated a + 90°. 

If we now desire to determine the contours of constant intensity on a 
paraboloidal reflector, in order to obtain optimum illumination of the 
reflector area,1 we may, by a suitable transformation of coordinates and 
remembering to account for space attenuation, project the contours of 
constant intensity already drawn on the sphere onto the paraboloid.2 

15*10. Phase Determinations.—In determining the phase front of a 
primary radiator it is usually considered sufficient to examine the phase 
in only the principal E- and H-planes, since, if the curves of constant 
phase in these two planes are circles with a common center, it is reasonable 
to expect that the phase front is spherical. However, if other planes are 
of interest, they may be examined in a manner similar to that employed 
for intensity measurements. The methods for determining phase involve 
the comparison of energy from the pickup horn with energy from the r-f 
source. The apparatus for the method described here is illustrated in 
Fig. 15*7. The power from the r-f source is divided between the pri¬ 
mary radiator and the tunable sliding probe inserted in the waveguide. 
Energy from the pickup and from the source will then add in or out of 
phase at the detector depending on the probe position. 

If the phase distribution in the LT-plane is being investigated, then 

i See Sec. 12-14 
* J. I. Bohnert and T. J. Keary, RL Report No. 659, March 1945; J. X. Bohnert, 

RL Report No. 665, February 1945; S. J. Mason, '‘Horn Feeds for Parabolic Reflec¬ 
tors,” RL Report No. 690, January 1946, pp. 21-22. 
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the apparatus is lined up as before for ff-plane intensity measurements 
with the axes of the pickup horn and primary radiator coinciding. 
Keeping the pickup fixed, the position of the probe is varied until a 
minimum signal is observed on the electronic voltmeter. For this situa¬ 
tion, the monitored power and the pickup power are out of phase. This 
will be the reference value, and the position of the probe is recorded. It 
will be noted that a similar minimum will occur if the probe is moved a 
distance X„ (X if the detection components 
are coaxial), since this represents a 360° 
change in phase. For this setup, motion of 
the probe toward the bolometer is equivalent, 
so far as phase is concerned, to keeping the 
probe fixed and moving the pickup toward 
the primary radiator along a radius through 
the center of feed. Therefore, moving the 
pickup a distance d toward the radiator is 
equivalent to moving the probe a distance 
p = d(\0/\) toward the bolometer. The 
reference value for the probe position hav¬ 
ing been determined, additional points on 
the phase front are determined in he follow¬ 
ing manner. The pickup is moved in azi¬ 
muth through an angle \p; again the position 
of the minimum is noted; and the difference 
p from the reference minimum position is obtained This is carried out 
through the required range in angle \p. 

If the position of minimum deflection is independent of then the 
phase front in that plane is a circle whose center is exactly the point on 
the feed directly over the turntable axis of rotation. This determines 
the center of feed in that plane. If the minima positions are different, the 
estimated center of feed, whose location is known to be on the z-axis as 
shown in Fig. 15*10, may be corrected by means of the equation 

i-± 
oz> 

r — R - d-(22) 
1 - cos ^ - if 

where r — 22 is the correction to be added to the assumed center of feed 
located in this plane and on the axis of the turntable. Values of d at 
corresponding angles ^ are obtained from d = ± p(k/\,) with due regard 
to the choice of sign, the plus sign corresponding to motion of probe away 
from bolometer. Since 22 is large and r — 22 is small, the correction term 
may be obtained with a high degree of accuracy. 'I'he relation above may 
be obtained by considering Fig. 15*10. It will be noted that d or p(\/\c) 

correction Pickup moves on 
circle of radius R True wave- 
front is circle of radius r. 
Reference point ^ ■* 0. 
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is measured along the radius r. By the law of cosines, 

(r - dY = B2 + (r - R)2 + 2B(r - B) cos 

or solving for r, 

when B is subtracted from both sides, the desired relation is obtained. 
Experimental Precautions.—Several practical precautions should be 

taken in order to ensure proper phase measurements. The power from 
the probe and from the pickup into the bolometer should be of approxi¬ 
mately the same level in order that well-defined minima should occur. 
It is undesirable to change the power level from the generator or the 
probe tuning during the phase measurements, since not only is it a 
nuisance but there is also the possibility of a change in phase. A recom¬ 
mended procedure is to adjust the tunable probe at first so that the 
power which it delivers to the bolometer is 6 db below the power delivered 
by the pickup in peak position. This may |pe accomplished by first dis¬ 
connecting the probe and then rotating the pickup in azimuth until the 
power delivered to the bolometer is 6 db below peak value. The probe 
connection is then made; the probe moved to a minimum position; the 
probe tuning adjusted to deepen the minimum; and finally, the minimum 
may be sharpened by adjusting the probe depth. Slightly more tuning 
may be necessary after the probe depth is changed. The probe depth 
should not be so great as to have a large reflection coefficient. After the 
above adjustments have been made the probe tuning is not varied during 
the phase measurements. The least change between maxima and 
minima over a 12-db range of pickup power will then be that in which the 
powers from the pickup and the probe differ by a factor of 4 (6 db), and 
therefore the amplitudes will differ by a factor of 2. The resulting ratio 
of the maxima amplitude to the minima will be (2 + l)/(2 — 1) * 3, and 
the ratio of maximum to minimum voltage as observed on the Ballantine 
voltmeter will be 9, which is sufficiently large for accurately* determining 
nrnniTym. 

With the system described above it is necessary that a good match be 
ensured looking from the bolometer to the pickup, since the power 
radiated by the probe into the line divides, part going to the bolometer, 
part going toward the pickup horn. To obtain a good match a tuner is 
placed between the probe section and the r-f line connected to the pickup 
horn, as in Fig. 16*7. If this section is mismatched, the power delivered 
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by the probe to the bolometer is a function of its position along the line, 
with a maximum to minimum ratio proportional to the (VSWR)2 (looking 
from bolometer to pickup), and a period of \g/2. As a result false minima 

may occur with roughly \g/2 spacing instead of the expected X* spacing. 
A good check on the phase-measuring equipment is to make sure that 
no maxima or minima occur other than those exactly X* apart. 

The effect of a mismatched pickup may be illustrated by the following 
example. Suppose that the voltage amplitude at the bolometer from a 
matched pickup is unity and that the amplitude from the probe at the 

Fig. 15 11. —Power at the bolometer E2 vs distance z along the line for both a matched and 
mismatched pickup, <f> « t. 

bolometer is 2, its phase being dependent on its position; then the resultant 
field at the bolometer is 

E = 1 + 2e»<*+*>, (23) 

where z is the distance of the probe from the pickup and <A is a phase angle 
that represents the relative phase between the voltage at the probe and 
at the pickup. The power into the bolometer is proportional to EE* 
which is 

EE* - 5 + 4 cos (2pz + *). (24) 

Illustrated in Fig. 15-11 is a plot of EE* as a function of * for the case 
4> — r. Here \E\l has a minimum value of 1 at z = 0 and a maximum 
value of 9 at z — X„/2 and other minima at X„, 2X„ . . . and other maxima 
at 3X„/2, 5X„/2 .... This example shows the proper periodicity that is 
obtained with a well-matched pickup. 

If, however, the pickup is mismatched (for example VSWR = 3), the 
resultant field at the bolometer depends on the probe position and is 

given by 
E *=• 1 + 2e>if“+*) + e><-*t+++*\ (25) 

where the voltage amplitudes are the same as in the above example; 
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a depends on the phase of the reflection coefficient of the pickup and 
will be chosen equal to zero in this example without affecting the qualita¬ 
tive nature of the illustration. The bolometer power, for 4> “ *■> will be 

|E\2 = 2 — 6 cos fig + 8 cos* fits. (26) 

The dashed curve in Fig. 15*11 shows the variation of \E\2 vs. z. It will 
be noted that instead of a minimum at z = 0, there is actually a maxi¬ 
mum, and likewise minima do not occur at \0 spacing but at spacings of 
0.378X* and 0 622A0 and are poorly defined By variation of the ampli¬ 
tudes, and phases other undesirable configurations may be obtained. 

Bolometer 

Fig 15 12 Equivalent circuit of i-f probe. 

That the variation of power as determined by the probe position is a 
function of the mismatch of the pickup may be verified by the following 
analysis. If a generator of voltage Vo and internal impedance Zo is 
connected to a load ZL by means of a transmission line whose charac¬ 
teristic impedance is Zo and length is L, and if Z l and Zo are assumed to 
be real (this assumption will not affect the general result), the power 
delivered to the load is F(0)/*(0)/2 as obtained from Eqs. (6) and (7); 
setting y = j(3, we have 

Power to the load ml Tl 
2(Z0 + ZoY 0- 

2rtr0 cos ~z~ + r*r* ') 
(27) 

Note that the power delivered is a function of the line length. The inter¬ 
action between the generator and the load is contained in the expression 
(1 — 2ri.ro cos 4*L/\g + r|rj) which varies between (1 + TiTo)* and 
(1 — TlToY, depending upon the line length. 

The properties of the probe in the phase-measuring circuit, as repre¬ 
sented In the equivalent circuit of Fig. 15-12a, may be determined from 
Eq. (27). The impedance of the pickup arm is represented by Z*. Th$ 
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probe is to be considered as a source with very high impedance; motion of 
the probe will cause i2 and h to vary, but their sum will be fixed. By 
means of Th6venin’s theorem (Sec. 2-4), the above circuit can be replaced 
by the circuit in Fig. 15*126 in which Zf2 is the impedance Z2 transformed 
to the terminals aa. The replacement of Va in Eq. (27) by VoZ*J{Z\ + Zo) 
and of Zq by Z2Z<?/ (Z'2 + Zo) gives as the power into the load 

_ ZoVi (1 - rj)(i + 2r2 cos 20h + ri) r9i2. 
8z% (1 - 2r2r7, cos 2/3L +rt r2) i ; 

for Zq » ZL or Z2. The only factor that contains the position of the 
probe is (1 + 2r2 cos 2/3i2 + ri) which has a maximum value of 
(1 + r2)2 and a minimum value of (1 — r2)2. Thus the ratio of maxi¬ 
mum to minimum power received by the bolometer by varying the probe 
position is (1 + r*)2/(l — F2)2 or the (VSWR)2 of the pickup arm. 

To remove this variable effect of position a tuner may be used effec¬ 
tively to make Is = 0. Another possibility is to use a well-matched 
attenuator pad. A 3-db matched pad or attenuator (looking both ways) 
reduces the reflection coefficient by one-half; a 6-db pad, by one-quarter. 
Suppose, for example, that the pickup (VSWR)2 is 9 (r2 = £) and that a 
6-db pad is put between the pickup and the probe section; then the square 
of the resulting mismatch will be 

- - <“> 
thus appreciably reducing the effect of the pickup mismatch. The latter 
method can be used only if the loss in power level can be tolerated. 

Frequency Sensitivity.—In order to reduce frequency sensitivity in 
the primary pattern phase measurements, the path lengths from the 
r-f source to the mixer must be chosen so as to minimize the change in 
phase of the two paths as a function of the wavelength. Consider the 
path from tuner A (Fig. 15*7) to the mixer via the feed and pickup, and 
let there be a length La for which the wavelength is the free space wave¬ 
length X0 and a length Lg for which the wavelength is Xff. If the path 
length La includes a section of dielectric-filled coaxial line of length lc, 
then La = la + IJcf1, where la is the path length in free space or air-filled 
coaxial line and k§ is the specific inductive capacity of the dielectric 
section. The corresponding distances from point A to bolometer via the 
probe will be Sa and Sg. The difference in phase between the two paths is 
this: 
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For waveguide \9 — Xo/v^l — (Xo/2a)2sothat<iXa/<iXo *= (X<,/X0)8, whence, 
on differentiating <t> with respect to X0, we have 

For a minimum phase variation d<t>/d\0 — 0, and we see that the difference 
in path in waveguide for the two paths should be related to the difference 
in path lengths in coaxial line or free space by 

8, - Lt = £-° (La - So). (32) 
Xo 

It will be noted that this is not the same result which one would obtain 
by simply making the electrical path lengths equal, which gives the 
result S0 — Lg = (Xt,/X0)(La — Sa). Of course, if only transmission lines 
with wavelength X0 are used, equal path lengths in the two directions are 
necessary to minimize the frequency sensitivity. 

As an example of the decrease in frequency sensitivity, suppose 
that Xff/Xo = 1.4 and that the frequency of the source changes by 0.2 per 
cent. Calculating from Eq. (30a) the change in phase that occurs for 
this change in frequency when the proper distance given by Eq. (32) is 
used, one finds.it to be rifanr of the phase change obtained by using equal 
path lengths. If La — Sa = 50X0, the change in phase is 0.034° using 
proper path lengths, whereas with equal electrical path lengths a phase 
error of the 34.6° results. The former is negligible in phase measure¬ 
ments. In actual practice the requirements of Eq. (32) need be met only 
approximately if the line lengths in terms of wavelength are not large. 

15*11. Line-source Primary Pattern.—The measurement of the 
intensity and phase distribution along the length of a line source such 
as a linear array or pillbox is of interest. The measurement of the field 
close to the line source, which usually has a small effective vertical 
aperture and wide horizontal aperture, affords a valuable check on the 
design of the line source. The techniques involved in this measurement 
are exactly the same as those discussed above in connection with point 
sources, with the exception that motion of the pickup must be parallel 
to the line source as the intensity and phase measurements are taken. 
This does not represept any difficulty if intensity distribution alone is 
desired. For phase determinations, however, the apparatus becomes 
more complicated, since several rotating joints must be utilized in order 
to eliminate the flexing cables which may cause apparent changes in 
phase. Figure 15*13 is a sketch of a suitable apparatus, containing 
three rotating joints in order to make possible the required linear motion. 
These three are necessary if the line source being studied is horizontally 
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polarized. For vertical polarization the rotary joint attached to the 
optical bench can be eliminated by using a coaxial pickup mounted in a 
bearing. Care must be taken that the rotary joints are properly designed 
so as not to show a change in phase with rotation. They should be 
fastened in such a way that they will not go out of alignment. The 

Fig. 15*15.—Apparatus for primary pattern measurements on line-source feeds. 
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rotary joints are all mounted in a plane with the first joint fastened to 
the traveling arm of the optical bench, the second movable about a 
circle whose center is the third fixed rotary joint. The r-f output from 
the third rotary joint is shown here being fed into the phase detection 
system. The mixing system illustrated here utilizes the so-called Magic 
T that will be discussed below. The power coupled from the generator 
output for a phase reference is fed into a tunable sliding probe which 
excites the waveguide, one end of which is terminated in a matched load 
and the other end connected by cable to the Magic T. A dial indicator 
(calibrated in 0.001 in.) is shown mounted on the probe section so that 
the motion of the probe may be accurately measured. For intensity 
measurements the cable to the probe is disconnected. Usually the dis¬ 
tance between line source and pickup is only of the order of 2 to 4X in 
order to stay within the cylindrical wave zone of the source. The 
pickup should be as small as feasible in order to prevent any interactions 
of the pickup in the field of the line source. The sketch also indicates 
that the movable parts of the apparatus are removed from the intense 
portion of the radiated field so as to reduce extraneous reflections. The 
operator should likewise be out of the strong field. 

15-12. Magic T .—The “ Magic T”1 may be advantageously used in 
phase measurements to reduce interaction effects discussed in connection 
with the apparatus shown in Fig. 15-7. The waveguide form of this 
device is shown’ in Fig. 15*14. If power is fed into branch P (parallel 
arm) and A and B are terminated by matched loads, then the power 
divides equally between branches A and B, since a symmetric condition 

exists and there is no component of field 
available to excite arm S. If power is 
fed into arm S (series arm), the power 
again divides equally between A and B 
but the fields in each arm are 180° out 
of phase and no power is delivered to 
branch P. In order to prevent reflected 
power in arms P and S respectively, it 
is necessary that a match exist looking 
into arms P and S respectively when arms 

A and B are terminated by matched loads. In this way interaction 
between the two sources delivering power from P and S to arms A and B 
is made negligible. 

In the Magic T as used in the primary pattern apparatus, arm A is 
terminated by a matched load and arm B is terminated by a matched 
bolometer. Power from the pickup is fed to P as shown in Fig. 15-13, 
and power from the source is fed to arm S (this order can, of course, be 

1 See Vol. 11 of this series. 
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reversed). The relative phase of the fields from the two effective sources 
is varied by means of the sliding probe. Motion of the probe a distance 
p = d(\0/\) toward the bolometer is exactly equivalent to motion of 
the pickup horn a distance d perpendicular to its path toward the 
source. 

15*13. Beacon Azimuth Patterns.—A microwave beacon antenna 
may be examined for uniformity of azimuth pattern by utilizing the 
apparatus described for point sources, with the simplification mentioned 
where intensity only is measured.1 The accuracy required for azimuth 
patterns is not very high because one is usually interested in uniformity 
to within 1 or 2 db. Because of the essentially uniform azimuth patterns, 
reflections from many sources ma}* affect the results; therefore particu¬ 
lar care must be taken that reflections from surrounding walls and objects 
are negligible and the apparatus should be located in as open a space as 
possible, since a 360° pattern is desired. The pickup should be as small 
as possible if measurements close to the beacon are being made. How¬ 
ever, if sufficient r-f power is available so that a larger distance between 
pickup and beacon can be used, then the pickup may be larger and more 
directive. Since in the measurement of azimuth patterns only a few deci¬ 
bels variation are observed, greater sensitivity in the apparatus may be 
obtained by the use of crystal instead of a bolometer as a. detecting 
element. Over a range of several decibels the law of the crystal will 
not appreciably affect the relative readings. For example, assuming a 
square-law crystal, the ratio of peak power to minimum power might 
be 100 to 50 or 2} if the exponent in the law of the crystal were 2.3; 
the corresponding readings would have a ratio of 2.2 which is within 
i db. For a little more accuracy, the ratio may be corrected to a suffi¬ 
cient degree if the approximate law of the crystal is known. 

There may be some question about the distance required for measure¬ 
ment; obviously a distance between pickup and beacon of 2L2/X, where 
L is the vertical length of the beacon, would certainly be safe. However, 
because the directivity in the azimuth plane is almost nonexistent, this 
distance could easily be reduced by a factor of 2 or 4 before an appre¬ 
ciable change in azimuth pattern is observed. 

Two schemes have been used for beacon measurements. In one of 
these the transmitting beacon is kept fixed and the pickup is rotated in 
azimuth about the vertical axis passing through the beacon. The other 
procedure is to rotate the beacon about its vertical axis, feeding power 
into the beacon by means of a rotary joint, while the pickup is kept 
fixed. In lining up the apparatus, the pickup is adjusted vertically so 
that a cut through the peak of the beam is taken. Usually the axis of 
the pickup will be in a horizontal plane bisecting the beacon. 

* Sec. 15*8. 
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SECONDARY PATTERN MEASUREMENTS 

15*14. Siting Considerations.—In general, the term “secondary 
pattern” is associated with directive antennas that are large, measured 
in wavelengths, and with a large distance between the transmitter and 
receiver. A directive antenna will usually consist of a primary radiator 
together with-a reflector or lens or combination of reflectors or lenses. 
The secondary pattern is the Fraunhofer pattern of the antenna in 
question. The techniques involved in measurement are fairly simple and 
closely related to those in the discussion of primary feed patterns. The 
simplifying consideration here lies in the fact that only the relative field 
intensity or power per unit solid angle, and not the phase, is of interest. 

The discussion will center about the method of taking receiving pat¬ 
terns. In brief, a distant transmitter sends an essentially plane-polar¬ 
ized wave toward the receiving antenna. The power received by the 
receiving antenna as a function of its orientation with respect to the line 
of sight between the transmitting and receiving antennas is recorded 
either manually or by a recording device; the data thus obtained provide 
a pattern of relative field intensity or relative power per unit solid angle 
for the antenna under study. 

The distance between the transmitting and receiving antennas is dic¬ 
tated by the size of the antenna being investigated. The site should 

^ be chosen with the largest antenna 
to be investigated in mind. It is 

“F T4-* —^ required by theory that a plane 
I 1 --. 0 _j_ wave be incident on the receiving 

D -r antenna; actually, this requirement 

_^ *— Transmitter *s met w^n a certain tolerance. 
■*- A paraboloidal antenna as a trans- 

Fig. 15-15. On t^e^paU^Jbngth for second- mitter ^ appear to be a point 

source when viewed from a large 
distance. If the distance is sufficiently large, the wavefront over a small 
portion of the main beam will deviate from a plane wave by only a small 
amount. 

Referring to Fig. 15T5, let D be the aperture dimension over which 
a plane wave is desired for pattern measurements and R be the distance 
between the transmitter, of aperture d, and the antenna to be investi¬ 
gated; then the difference in path length between the outer edge of D 
and the center is given by 

AR = R' — R. 

Summing the squares of the sides of the right triangle OAB we have 

(R + A R)2. 
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If we require that AR shall be a small fraction of a wavelength, 
is negligible, and there results 

R « 
D2 

8A R 

(AR)2 

(33) 

For a path difference AR = X/I6 we have 

(34) 

which is a safe distance to use. The effect of such small deviation from 
a plane wave only slightly affects any gain determinations1 and causes 
very slight changes in the pattern obtained as compared with that which 
would be obtained if the wave werc truly plane. This distance will also 
minimize any interaction between transmitter and receiver.2 Actually 
if space or power limitations do not allow such a great distance, then a 
distance of D2/\ may be tolerated. This will lead, in general, to an 
apparent decrease in measured gain, an apparent increase in the minima 
of the side-lobe structure, practically no effect on the maxima of the side 
lobes, and greater possibility of transmitter and receiver interaction. 
Calculations may be carried out for certain ideal cases illustrating the 
semiquantitative nature of the above remarks. 

In the foregoing discussion the distance R is determined by a con¬ 
sideration of the phase deviation of the incident wave. Another factor 
to be considered is the uniformity of the power distribution over the 
aperture D. If we require that the power at the edge of the aperture 
shall be a certain fraction of the power at the center, another criterion 
for R results In the vicinity of the peak of the beam of the transmitter 
of aperture d, the power in direction 6 may be approximated by 

p-p. [i-*(4)‘]> (38) 

where ® = 1.2\/d is the full width of the transmitting beam at half 
power. Then if P - 0.9P0 and 0 ^ D/2R radians at the edge of the 
aperture, there results by substitution 

(36) 

Accordingly, if the transmitter aperture is equal to the receiving aper¬ 
ture, the criteria of distance for proper phase and for intensity over the 
receiving aperture are the same. The transmitting antenna is usually 
smaller than the receiving aperture; and therefore under the previous 
criterion [Eq. (34)], the power at the edge of the receiving aperture is 
the same within a few per cent as that at the center of the aperture. 

1 See Sec. 6*9. 
* See Sec. 15-22. 
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Other factors determining the separation of transmitter and receiver 
are the power available in the r-f source and the sensitivity of the receiv¬ 
ing system. Given two antennas separated by a distance R, the power 
received, Pr, by the receiving antenna when power Pt is transmitted with 
gain Gt is given by 

. D _ PtGr Ar __ PtGiGiiX2 
~ 4t R2 ~ (4t)*R* K n 

with the absorption cross section (Ar) given by GR\2/4w. Here one is 
really concerned with the smallest antenna that can be investigated, 
since this will be the limiting factor on Vr. 

To illustrate the application of the criteria consider the problem of 
choosing a site for measurement of antennas at wavelengths varying from 
3 to 10 cm. Assume (1) that r-f (magnetron) sources of 50 watts average 
power are available, (2) that antennas to be studied vary from 1 to 
10 ft, and (3) that 1 mw of average power received in the bolometer 
detecting system corresponds to 100 volts on the electronic voltmeter. 
The limiting conditions are most stringent at the shortest wavelength; 
and if satisfactory for this wavelength, they will be more than suitable 
for the larger wavelengths as far as distances and power are concerned. 
Also, higher power sources are usually available at the longer wavelengths. 
For the above assumptions the following conditions result: 

1. Specifying that the phase variation over the aperture D, which is 
taken equal to 10 ft, shall not exceed X/16 for a wavelength of 
3 cm, the distance R required is found to be 2130 ft by Eq. (34). 

2. The maximum diameter d of the transmitting antenna can be as 
large as 10 ft and still satisfy the 90 per cent power requirement 
at the edge of D. 

3. To read 100 volts on the voltmeter for the smallest antenna being 
studied, namely, D = 1 ft, a conservative estimate for the gains of 
the receiving and transmitting antennas is given by Gr = i(rD/\)2 
and Gt = i(wd/\)2. Setting R = 2000 ft in accordance with 
condition 1, we have by Eq. (37) that the minimum aperture of the 
transmitter is d = 2.5 ft. Thus all the conditions of the problem 
are satisfied. 

At a wavelength of 10 cm the transmitter aperture required 
would be approximately 7 ft in order to receive power of 1 mw at 
the detector of a 1-ft antenna at the receiver, assuming the trans¬ 
mitter power is 50 watts as before. 

The next most important condition for choosing a site, when the 
power and distance requirements are satisfied, is the absence of reflecting 
objects, particularly buildings. If 360° patterns are desired, then clear 
surroundings for 360° must be available* For distances as great as those 
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required for studying large microwave antennas, one usually must 
choose a site between two high points, such as buildings or hills. The 
interference between the direct beam from the transmitter and the 
reflected beam from the ground may result in a poor field distribution 
over the aperture that is being 
studied. To eliminate this inter¬ 
ference, the transmitting antenna 
should be as directive as possible 
so that its first minimum will be 
in such a direction that even a 
specular reflection will not affect 
the field. This is illustrated in 
Fig. 15*16. Since the first minimum i: 
at approximately \/d radians from the 

Ground 
15-16.— On the conditions for the height 

of the transmitter. 

i the transmitting beam will occur 
peak, then 2h/R ^ \/d or 

(38a) 

the larger the transmitting dish the lower the height required, and the 
longer the wavelength the greater the height for a given distance R. 
If R » 2D2/X, then 

D2 
h = . (386) 

In the problem discussed before with D = 10 ft and d = 2.5 ft, Eq. 
(386) would mean a required height of 100/2.5 = 40 ft. However, since 
the criterion for the 10-cm wavelength is not fulfilled, bad reflections 
may occur at the longer wavelengths. This is one of the difficulties 
involved in having one site for a large spread in wavelengths. A pos¬ 
sible method to minimize the effect of the reflected beam is to place 
absorption screens or diffracting edges halfway between the two sites. 
It might appear that a reflection of 1 per cent in power may be negligible; 
however, one must remember that if we have two waves of respective 
powers 100 and 1, and if they interfere constructively or destructively, 
the resulting variation in power received is not 101 to 99 but rather 
(10 + l)2 to (10 — l)2 or 121 to 81, since it is the amplitudes that add, not 

the powers. 
The various conditions have been stated, and a suitable compromise 

must be made between the various factors involved, such as heights 
and separation of sites, spread of wavelengths being considered, power 
available, sensitivity of the detection system, and the accuracy desired 
in the radiation pattern. In the example discussed, it might be neces¬ 
sary to resolve the conflict between the various conditions by the use of 

several sites. 
After the site has been chosen, it should be checked for uniformity 
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of field. The procedure to be followed is to direct the transmitter beam 
so that the center of its peak is on the center of the receiving site. A 
pickup antenna, either a paraboloid or a horn, is then moved over the 
aperture of interest, and the field intensity is examined for uniformity. 
The field should also be examined in depth to be sure that the intensity 
does not fluctuate seriously for motions toward or away from the trans¬ 
mitter corresponding to the depth of the antenna system. If the distance 
requirement is satisfied and the field intensity is uniform over the aper¬ 
ture, it will not be necessary to check the phase. 

15*16. Pattern Measurements.—The mount on which the receiving 
antenna is to be placed should have at least two rotation axes: an azimuth 
axis and an elevation axis, so that complete space patterns may be 
obtained without too much difficulty. Although other axes may be more 
convenient for some purposes, the cwo stated are certainly sufficient. 
Whenever possible, patterns should be taken in azimuth, since reflections 
from the ground can usually be minimized. For mechanical reasons the 
azimuth patterns are likewise desirable, as it is easier to make an accurate 
mount for azimuth rotations than for elevation. 

The transmitting antenna should be on a mount which permits motion 
through an angle sufficient to direct the peak of the beam at the receiving 
antenna, and there should be provision for locking the antenna in place. 
For convenience, the mount should also have the property that turning 
the antenna 90° for changing the polarization does not require shutting 
off the transmitter source and does not change the direction of the peak 
of the beam. If a paraboloid antenna is used as a transmitter, the unde¬ 
sirable cross-polarization component may be reduced by fastening to the 
aperture of the paraboloid a grating structure with spacing approxi¬ 
mately 3X/8 and depth approximately X/4, with polarization of the 
antenna perpendicular to the grating slats. Such a waveguide-beyond- 
cutoff grating will decrease the cross polarization of the transmitting 
antenna about 10 db below its normal value. Magnetron sources have 
proved satisfactory as a fairly constant, high-level r-f source for the 
transmitting antenna. Modulated high-power klystrons may be used 
if the power requirements are satisfied, or an unmodulated c-w transmit¬ 
ter, if a superheterodyne detection system is used. 

The antenna under study is mounted, for example, with its dominant 
polarization vertical so that the ff-plane pattern may be studied in azi¬ 
muth. The transmitter must have vertical polarization. The antenna 
is adjusted in azimuth and elevation to receive maximum power. The 
transmitter is then adjusted to be sure that its peak is directly pointed 
toward the receiving antenna. The antenna is then repeaked for maxi¬ 
mum power, and the mechanism controlling elevation is locked. These 
last two steps should be necessary only if the transmitter has been 

replaced ,or moved* since the original siting measurements. A raoni- 
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toring receiving antenna roughly peaked on the transmitter should be 
available to check the transmitting power level at any time. The vertical 
axis of the antenna mount should be perpendicular to the line of sight 
between the transmitter and test antenna to ensure that the proper azi¬ 
muth cut is taken. This condition is particularly important when 
narrow-beam antennas are being investigated. The bolometer detection 
system need not be matched to the transmission line, since the mismatch 
of the bolometer does not affect relative response. The antenna is then 
rotated in azimuth, and the power received as a function of angle is 
recorded either manually or by means of a recorder. The value of a 
recorder lies mainly in its speed when the effects on the pattern caused by 
changing variables are being studied and in the continuity of data as 
well as in the permanent value as a record. For single patterns its value 
is questionable as far as time sa\ ed is concerned, since most of the time 
required for antenna measurements is used in setting up the antenna and 
preparing the electrical equipment for measurements. 

To obtain the J5?-plane pattern, the antenna is returned to its peak 
direction and locked in azimuth. The antenna is then rotated in eleva¬ 
tion, and its 2?-plane pattern taken. Data taken pointing into the ground 
may be questionable; to get the remaining 180° of the pattern it will be 
necessary to reverse the mounting of the antenna. A better procedure 
is to rotate the antenna 90° so that its polarization is horizontal (the 
transmitter must also be rotated 90°) and its Z?-plane pattern taken in 
azimuth. 

The simplest procedure for obtaining complete space coverage pat¬ 
terns with a two-axis mount is to take the normal E- or H-plane pattern 
in azimuth and then to rotate the antenna 6° in elevation and take an 
azimuth pattern, thus obtaining the 6° cut. This is repeated for all 
angles 6 of interest. Space patterns are usually taken only for fanned 
beams of the type used for navigation purposes. Certain precautions 
must be observed, however, in the choice of axes in the event that pattern 
cuts are required for a shaped-beam antenna such as described in Chap. 
13. The antenna should be mounted so that the plane containing the 
flare of the beam is vertical. The angular widths measured in the trans¬ 
verse cut patterns will then be true. If the antenna is mounted with the 
fanned beam in the horizontal plane, the angular widths, now measured 
in the vertical plane, are too large by a factor of sec 6, where B is the 
cut angle. These conditions are imposed by the mechanical aspects 
of the mount design. 

The cross-polarization pattern for any desired cut is obtained by 
simply rotating the transmitting antenna 90° and taking the pattern as 
usual. The grating in front of the transmitting paraboloid ensures that 
the cross polarization of the receiving antenna is measured and not that 
of the transmitter. Together with this precaution lies the additional 
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large factor of safety that if the transmitter is a symmetric paraboloidal 
antenna, the cross polarization along the peak of the beam is negligible. 
The maximum of the cross polarization occurs roughly at an angle of 
\/d radians from the peak and is usually at least 16 db down from peak 
power. 

15*16. Gain Measurements.—Thus far the procedures for determin¬ 
ing relative fifeld intensity or relative power per unit solid angle in all 
directions have been discussed. However, for the calculation of the 
transmission or reception of radiated energy it is necessary to place the 
radiation pattern on an absolute basis. To do this a standard uniform 
radiator is assumed, and the directive gain of an antenna is then defined 
as the ratio of the peak radiated power per unit solid angle to the radi¬ 
ated power per unit solid angle from an isotropic radiator, assuming the 
same total radiated power in each case. Knowledge of the gain and the 
radiation pattern therefore fixes the radiation in any direction. 

For practical applications, one would like to have a quantity that 
expresses the power per unit solid angle in the direction of maximum 
radiated power in terms of the power delivered to the antenna terminals. 
Or conversely, if the antenna is used as a receiving antenna, one would 
like to know the maximum power delivered to a load matched to the 
antenna transmission line of assumed zero loss when the power per unit 
solid angle incident on the antenna is known. This effective gain, as 
defined above; will differ from the definition of directive gain that was 
used in previous chapters only in so far as it takes into account heating 
losses in the antenna and the loss of power due to reflection as a result of 
having a mismatched antenna. It is assumed that the same losses will 
result whether the antenna is used as a transmitter or a receiver, and 
therefore the receiving and transmitting gains of an antenna are identical. 

Typical procedures for determining directive gain and effective gain 
will be discussed, and procedures for determining effective gain standards 
will be outlined. 

15*17. Directive Gain.—The directive gain of a transmitting antenna 
referred to an ideal isotropic radiator is given by 

. peak power radiated/unit solid angle 
Directive gam =  -;--vv-y -v/A-— > 

B total power radiated/4x 

or that of a receiving antenna by 

Directive gain 
peak power received 

average power received 

This definition does not take into account any heating losses or reflection 
losses. 

Experimentally the directive gain is obtained directly from the radia¬ 
tion pattern (either receiving or transmitting). If the relative power 



GAIN COMPARISON Sue 15 18| 581 

per unit solid angle P{0,<t>) as a function of orientation 0 and <t> has been 
determined, then 

Directive gain 
_4x7-* (0,0) 

fj fo* sin dde d<*> (39) 

where 0 = 0 and = 0 is the direction of peak radiation. For accuracy 
a complete space pattern is required. 

For an antenna vith essentially a pencil-beam pattern, the assump¬ 
tion is frequently made that P(d,4>) may be replaced by the average of 
the radiation pattern in the principal'/?- and II-planes with no depend¬ 
ence on <f>. If Pr(6) and Pn(0) are the patterns in the principal E- and 
/7-planes respectively, then 

Directive gain 
_4P(0,0)_ 

J0 Ph{0) sin Odd + JjPa(0) sin 0 <10 (40) 

For integration purposes (planimeter or Simpson’s rule), it is convenient 
to write x = 1 cos 0 and plot PE and PH as a function of x, leading to 
the equation 

Directive gain = 
4P(0,0) 

// [P.(*) + P«(x)} dx 
(41) 

This approximate procedure has been found to be fairly accurate (within 
10 per cent) for pencil-beam antennas in which not too large a portion 
of the radiated energy is contained within the side-lobe structure). 

The experimental determination of directive gain is very tedious 
and is subject to many possible errors such as incompleteness of radiation 
pattern measurements, spurious lobes due to improper setting, inaccuracy 
of angle determinations, improper evaluation of noise, and errors in 
graphical integration. It also suffers from the fact that the time required 
for such a measurement is long and thus rapid gain determinations can¬ 
not be made. 

15* 18. Gain Comparison.—The best method for determining effective 
gain, which is the quantity of most interest, is by comparison of the 
antenna under investigation with that of a gain standard, either on 
reception or on transmission. The procedure for determining such a 
gain standard is discussed later. 

The experimental setup for gain comparisons of a receiving antenna 
is the same as that utilized for receiving pattern measurements. Uni¬ 
formity of field across the pattern mount is essential for accurate gain 
comparisons. The antenna is first peaked in azimuth, and elevation for 
maximum received power and the received power Pu is noted. The 
antenna is then replaced by the standard antenna which is also peaked 
in azimuth and elevation for maximum received power P» using the same 



582 ANTENNA MEASUREMENTS—TECHNIQUES [Sec. 1519 

detection apparatus. The effective gain of the antenna is then 

p 
0 = X gain of standard. 

* * 

If the field is uniform, the gain standard may be clamped to the mount 
near the antenna under study. The reciprocal procedure is utilized for 
measuring gain on transmission. 

Several precautions must be taken to ensure accurate gain com¬ 
parisons. (1) It is essential that the field distribution be uniform; other¬ 
wise the gain comparison will depend on the relative positions of the two 
antennas. (2) A monitoring antenna at the receiving station peaked 
on the transmitter should always be available to check the constancy of 
the transmitter output. If the output has varied during the measure¬ 
ments, the ratio Pu/Ps must be corrected for the change in power level. 
(3) The same detection system should be used for both the antenna and 
antenna gain standard. (4) The detection system should be matched 
to the transmission line. This may be accomplished either by means of 
a tuner or by a suitable matching transformer. In any case, the match¬ 
ing device should be considered as part of the detection system and not 
changed during the determination of Pu and P*. (5) The readings P„ 
and P, must be corrected if the response of the detection system is not 
square law. (6) The matched gain standard should be directive and pref¬ 
erably have a gain comparable (within 10 db) to that of the antenna 
under study. 

Assuming that the gain standard is matched to the transmission line 
and that the detector is likewise matched to the line, the gain determined 
in the above procedure measures the efficiency of the test antenna com¬ 
pared with the gain standard. If the mismatch of the test antenna is 
known, the measured gain under matched conditions may be corrected 
by multiplying by 1/(1 — |T|2), where VL is the reflection coefficient of 
the antenna.1 In principle the effective gain of the matched antenna can 
be obtained by inserting a tuner in the transmission line and adjusting 
the tuner for maximum received power. This serves to emphasize the 
fact that there is actually no difference between (1) matching both the 
detector and the antenna to the line and (2) matching the detector to 
the antenna, but owing to unavoidable losses in most tuning devices it is 
more satisfactory to match the detector to the transmission line by other 
methods and then make corrections for the mismatch of the antenna. 

15*19, Primary Gain Standard Determination.—Given two identical 
matched antennas separated by a large distance R with power Pt being 
delivered to the transmitting antenna, how much power will be received 
in the terminating load at the receiving antenna? It will be assumed that 
free-space propagation exists, that the transmission line between the 
receiving antenna terminals and the load is lossless, and that the load 

iSee Sec. 2.15. 
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is matched to the transmission line. The two antennas are peaked so 
that maximum power is received in the receiving antenna. 

The maximum power transmitted per unit solid angle is given by 
PtG/4ir, where G is the effective gain of the antenna. The solid angle 
subtended at the transmitter by the effective absorption area Ar of the 
receiving antenna is given by Ar/R2. The power PR received by the latter 
is therefore 

p _ PrGAr _ PjGW 
4T R2 (iir)2R2, (42) 

where Ar has been replaced by G\2/Air. 
It will be noted that losses in the antenna have been combined into 

the factor G and that the receiving gain and transmission gain have been 
assumed equal. The factor G determined by means of this equation 
is what is meant by effective gain. If such an experiment is performed 
and a number G obtained, all other antennas at the same wavelength may 
be compared with this antenna and their effective gains may then be 
obtained. The effective gain defined in this manner may be expressed 
on transmission by 

Q — Peak power radiated/unit solid angle 
? power delivered to antenna/47r 

The experimental determination of 

r, = W* 
X \P T 

(43) 

requires the determination of ft, X, PH and PT- Wavelength can be very 
accurately measured by means of a wavemeter. ft, the separation 
between the two antennas, can be determined by measurement with good 
accuracy. The exact points between which ft should be measured is a 
little doubtful; however, with ft large (ft ^ 2d2/X, corresponding to a 
phase variation of less than X/16 over the aperture of width d) the use 
of the aperture to aperture distance is sufficiently exact. By utilizing a 
method that involves measuring the ratio Pr/Pt instead of Pr and PT 
separately, G can be determined quite accurately. With suitable pre¬ 
cautions in experimental technique G can easily be measured to better 
than 5 per cent. 

The procedure for determining G is to first match two practically 
identical antennas and match the calibrated detection system to the 
transmission line. The antennas should be separated by a distance ft 
greater than 2d2/X and in a clear space so that reflections from the ground 
or near-by objects are negligible in comparison with the direct beam 
between the two antennas. The setup is shown schematically in Fig. 
15* 17. The electrical apparatus used is the same as that used in pattern 
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measurements. The transmitting and receiving antennas are peaked for 
maximum received power. The procedure for this is first to line up the 
antennas roughly and, with the transmitting antenna fixed, to adjust 
the receiving antenna for maximum received power. The receiver is 
then fixed and the transmitter adjusted so as to make the received power 
a maximum. Tfhe transmitting antenna is again fixed, and the receiving 
antenna repeaked. This should be sufficient for accurately lining up 
the antennas. The r-f transmitter should be loosely coupled to the trans¬ 
mission line by means of a matched attenuator pad so that removing the 

Transmitter Bolometer 

antenna does not affect the power output of the r-f transmitter (this can 
be verified by using a monitoring probe in the line between transmitter 
and attenuator). Assuming the use of a bolometer-linear-amplifier- 
detection system the electronic voltmeter reading is recorded at the 
receiving end and is proportional to Pr. The bolometer system is then 
disconnected from the receiving antenna, and the transmitting antenna 
is disconnected. The bolometer detecting system is then brought over 
and attached to the transmitter, and a reading on the electronic voltmeter 
proportional to Pt is obtained. The ratio of these readings is then 
Pr/Pt. The usual experimental procedure of repeating the experiment 
several times and with several distances R should be followed in order to 
obtain a good degree of accuracy. There is no technical reason for 
not being able to perform this experiment to an accuracy within 5 per 
cent. 

Actually in this experiment G = y/GiG* is obtained where G\ and 
C?2? although supposedly identical, may differ by a few per cent due to 
inability to make two exactly duplicate antennas. In order to differ¬ 
entiate between the two, a comparison experiment, which has been 
described for determining the gain of an unknown antenna, is made. 
Antenna G\ is placed on the receiving mount for secondary pattern 
antenna measurements and set up in the usual fashion, and the power 
received is noted on the voltmeter as Pi. It is then replaced by antenna 
<?*, and the voltmeter reading P* is noted. The gain of antenna Gx will 
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be G\ = P&t/Pi so that 

(?, = -/Eg and G2 - J^G. 
\Jr 2 i 

This experiment then produces two absolute gain standards at the oper¬ 
ating wavelength. 

Even if these two gain standards were lossy, the result of the experi¬ 
ment would be the determination of the desired value of G for practical 
application. With no heating losses the value G obtained in this fashion 
would be exactly that obtained on the basis of the definition of the 
directive gain. 

15*20. Reflection Method for Gain Determination.—A modification1 
of the preceding method for determining absolute gain utilizes a single 

Fig 15 18.—On the reflection method for gain determination. 

matched antenna and a plane metallic reflecting surface as shown in 
Fig. 15*18. The second antenna used in the method discussed in the 
preceding section is replaced here by the image in the reflector. Energy 
incident on the latter is reflected and absorbed by antenna A giving 
rise to a reflected wave in the transmission line. The ratio Pr/Pt is 
then found by measuring the standing-wave voltage ratio in the line: 

Pr _(r - lY _ <?2X2 
Pt \r + l) (4ir)2S2’ 

(44) 

where S is the distance from the antenna to its image in the reflector. 
Solving for G, we obtain 

The practicality of the method depends on the distance 8/2 that is 
required from the antenna to the mirror and the required dimensions of 
the latter. The use of the image antenna is based on the ideal situation 
of an infinite reflector. The criterion for the distance S is the same as 
previously discussed, S ^ 2d2/\ although experimentally distances less 
than 2d2/X have been tried without appreciable error. The mirror must 

1 E. M. Purcell, “A Method for Measuring the Absolute Gain of Microwave 
Antennas,” RL Report No. 41-9. 
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be large enough to intercept most of the main beam whose width is of 
the order 2X/d radians. For a square mirror of edge length h, we have 
then 

2X < 2h 
d = S 

or 

For S — 2d2/\,. the dimension h required is equal to or greater than 2d. 

(e) 
Fig. 15*19.—Electromagnetic horns: 

(a) E-plane sectoral horn; (b) //-plane sec¬ 
toral horn; (c) pyramidal horn. 

The mirror must be flat to a small 
fraction of a wavelength, at least 
A/16. 

The experimental procedure con¬ 
sists of setting up the matched an¬ 
tenna on a mount, peaking the 
antenna in azimuth and elevation so 
that the reflected power, as denoted 
by the maximum standing-wave 
ratio, is a maximum. The generator 
should be well padded so that it ap¬ 
pears as a matched load to the return¬ 
ing energy. The next step is to 
measure the VSWR at a distance 
S/2 from the mirror at the position 
chosen, and again at a position just 
A/4 nearer or farther from the mir¬ 
ror. The A/4 displacement reverses 
the phase of the returning signal, 
with negligible effect on its intensity; 
and by taking the arithmetic mean 
of the gains computed for the two 
positions, most of the error caused by 
any small residual mismatch in the 
antenna and line is eliminated. This 
procedure also compensates for mul¬ 
tiple reflections from the metallic 
surface. The experiment should be 
repeated at several distances. The 
difficulty in the method lies in deter¬ 
mining VSWR accurately, since the 
order of magnitude of VSWR will 

be small. The method is not so accurate as the two-antenna method. 
15*21. Secondary Gain Standards.—The theoretical gain has been 

calculated1 for a pyramidal horn with an aperture a in the IT-plane, an 

1S. A. Seheikunoff, Electromagnetic Waves, Van Nostrand, New York, 1948, 
Chap. 9. 
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aperture b in the <E-plane, and corresponding slant heights la and k as 
shown in Fig. 15*19. A few pyramidal horns have been compared with 
gain standards at 1, 3, and 10 cm, and the calculated values have agreed 
with the comparison values to within 5 per cent. Accordingly, horns 
may be used as secondary gain standards having a high degree of accu¬ 
racy. This is particularly valuable when exploring a new wavelength 
region because the horns are easy to make and are fairly well matched. 

The pyramidal horn may be thought of as a superposition of an 
15-plane sectoral horn and an //-plane sectoral horn. The gain is 
expressed in terms of the gains of the component horns. Defining the 
Fresnel integrals, 

C(x) = cos dq; S(x) = sin dq, 

we have the following expressions fir gain: 
2?-plane sectoral horn: 

°- - 135 (vs) + s’ (via)]' 

//-plane sectoral horn: 

where 

u 

n 4jt bla 
iru = —z- 

Xa 

i[v^ 

V2L a 

Pyramidal horn: 

UC(u) - C(tOP + [S(u) - S(»)]*}, 

+ « 1; v = _L -a 1 
VxU V2L a VXU 

(46) 

(47) 

(48) 

(49) 

(50) 

Curves of (\/a)GE as a function of 6/X are plotted in Fig. 15-20. Cor¬ 
responding curves for (\/b)Gu as a function of a/X are plotted in Fig. 
15-21. These curves obviate the necessity of evaluating the Fresnel 
integrals of Eq. (46) for most horn sizes, since the ranges of a/X, Z„/X, 
ft/X, are within the limits that have been found convenient for horn 

16*22. Interaction between Antennas.—The interaction between 
antennas has been mentioned in the discussion of pattern and gain meas¬ 
urements without reference to the orders of magnitude involved. We 
shall now discuss the interaction between antennas such as may occur 
in the determination of gain. Consider, as shown in Fig. 15-22, two 
matched systems; one a transmitter, the antenna and generator of which 
are both matched to the transmission line; the other the receiver, in 
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which the antenna and load are also both matched to their line. The 
voltage across the load may be considered as the superposition of com¬ 
ponent voltages generated by a series of waves arising by multiple scat¬ 
tering between the antennas. Also, as a result of the interaction between 

Fig. 15-20.—Gain of F-plane sectoral horns as a function of b/\. 

the antennas, a reflected wave will be observed in the transmission line 
of the transmitter system that may likewise be analyzed in terms of 
multiple scattering. 

The scattering process of an antenna may be described, as in the 
case of absorption, in terms of an interception area, or scattering cross 
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section, presented to a plane wave.1 The scattered field set up by an 
antenna is directive and can be specified by a gain function analogous to 
the gain function of its transmission field. Let S be the magnitude of the 
Poynting vector in an incident plane wave, AB the scattering cross section 

of the antenna; then the amplitude of the scattered field at a distance R 
in a given direction may be written 

, (SA.G.y 
E. = const , (51) 

* Cf. Secs. 1*2 and 211. 



590 ANTENNA MEASUREMENTS—TECHNIQUES [Sec. 15-22 

where 09 is the scattering gain function in the given direction. The 
scattering cross section is a function of the aspect presented by the 
antenna to the incident wave; for a given direction in space Ga is likewise 
a function of the aspect of the antenna. It should be noted that the 

h-*-H 
Fig. 15-22.—On the interaction of antennas. 

scattered field pattern differs in general from the transmission field pattern. 
Consider now the problem of the two antennas. Let Ao be the absorp¬ 

tion cross section and Go the transmission gain of the transmitting system 
in the direction of the line of sight between the two antennas; let A9 
and Ga be respectively its scattering cross section and scattering gain 
for the same direction. The corresponding quantities for the receiver 
are ao, go, a„ g9, respectively. We shall compute the voltage in the 
transmission line of the receiving system in detail. Let Pt be the total 
power radiated by the transmitter in the absence of interacting systems. 
The transmitter radiates a primary wave to the receiver with power per 
unit solid angle in the direction of the latter given by G?oP</4tt. The 
receiver would extract from this wave alone the power 

giving rise to a voltage 

Vx 

(52) 

(52a) 

at a fixed reference point in the line; a and 5 are constants of the deceiv¬ 
ing system, the precise values of which are not needed here. The scat¬ 
tering cross section of the receivei intercepts the power GoPta»/4^rR2 of 
the incident wave and sets up a scattered wave carrying power per unit 
solid angle 

p _ GoPta9 g9 
4ttR2 4tt 

in the direction of the transmitter. The latter is rescattered by the 
transmitter; the scattering cross section of the transmitter intercepts the 
power P9A9/R2 and reradiates in the direction of the receiver the power 
per unit solid angle 

zv _ P9A9G9 
R2 4tt 

From this secondary wave alone the receiving antenna would abstract 
power 

Pt 
(?oP«ao (o>$aA£l\ 
±*r* \ i&ry 
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corresponding to a voltage 

where 
* _ (atg,A,G,)» 

(53) 

(54) 

The factor e~ii*vRrK) is introduced to express the phase delay introduced 
by the path 2R traversed by the scattered wave from the receiver to 
the transmitter and back. The secondary wave is rescattered by the 
receiver; and following the process through as before, it is seen that the 
voltage excited in the receiver line as a result of the second scattering 
stage is 

F3 = Fap^,((4ir/e/X)+6l. (55) 

The total voltage, as a result of successive multiple-scattering processes, 
is then 

V = Vx + Vt+V* - - • 
8 Vt[l 4 j8r,|(4rJ*/AH*) -f 0V"2>f(4,rW/X)+5i + • • • } 

or 

V = a($ZGow) \~ (56) 

The net power absorbed by the receiver is Pr = <*2|V|2, or 

Pr 
Pt 

Gog<)\2 1 

1 + jS2 - 20 cos 
(4rR 
\ x 

(57) 

the absorption cross section of the receiving antenna has been replaced by 
ao = ffoX2/4tt. 

The reflected line wave voltage of the transmitter can be computed 
in the same way. The magnitude of the reflection coefficient in the line 
is then found to be 

|r| 
[<7odo0.<l,l^ 

4tR2 
1 

1 + /3s - 2/3 cos 

(58) 

It is seen that the power absorbed by the receiver and the standing-wave 
ratio observed in the transmitter are periodic functions of R with a period 
of X/4. 

Very little information is available on the subject of the scattering 
cross section and gain functions. To obtain an order of magnitude of 
the interaction effect we shall make the ad hoc assumption that the 
scattering cross section and gain are related in the same way as the absorp¬ 
tion cross section and transmission gain: 

G. 
4tA, 

(59) 
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If the two antennas are identical, the introduction of Eq. (59) into Eqs. 
(57) and (58) expresses the latter in terms of only two parameters A o 
and Aa. The values of A0 and Aa both can then be found from studies 
of Pr/Pt or |r| as a function of R. In an experiment with a paraboloidal 
antenna by the mirror method it was found that As = Taking this 
as a general estimate, the power received in the two-antenna experiment 
with identical antennas is seen to vary between limits 

(GO) 

for a displacement of X/4 in distance. If we wish to reduce this variation 
in power to less than \ db, we arrive at a distance of R — 2d2/\ [assuming 
ao = 0.6(7rd2/4) which is approximately correct for paraboloidal anten¬ 
nas]. For a distance d2/\ there is almost a 1-db variation. This is, 
therefore, another reason for the choice of R = 2d2/X rather than d2/\ 
in pattern and gain comparison measurements, and perhaps R = 3d2/\ 
is required for accurate gain standard measurements. The magnitude 
of the power reflected back into the transmitting antenna will be appre¬ 
ciable and results in a mismatch with respect to the generator of 
magnitude 

In the case of two paraboloidal antennas, assuming again that a0 = 0.6 

we find r = 1.25 for R = d2/\ and r = 1.04 for R = 2d2/\. 

A similar argument for the mirror method leads to the relation that 
the power received is given by 

G oX 
iVs 

i 

e-j[(2r,S/X)+<fr] 
(62) 

It will be noted that in this case \/Pr/Pt is more sensitive to distance 
variations, since the correction term is proportional to the reciprocal 
of the distance rather than the square of the distance as in the two-antenna 
system. At a given distance S/2, taking the maximum and minimum 
VSWR separated by X/4 enables one to determine G9A, as well as G0; 
experimentally of course, several distances S/2 are chosen for accuracy. 



CHAPTER 16 

ANTENNA MEASUREMENTS—EQUIPMENT 

By O. A. Tyson 

16*1. Survey of Equipment Requirements.—Measurements on micro- 
wave antennas differ in character from those carried out on most other 
radar components. A high order of amplitude stability is required of 
measuring equipment for the study of antennas and associated compo¬ 
nents, whereas high accuracy in timing and frequency control are the 
main requisites in measurements on other radar components. These 
requirements make the design of special equipment for antenna measure¬ 
ments most desirable. 

The preceding chapter has mentioned briefly the chief items of equip¬ 
ment used in making antenna measurements. It has been pointed out 
that either a klystron or a magnetron is the most satisfactory source of 
power in the microwave region (2000 Mc/sec and higher). The reflex 
klystron has a definite advantage when the power requirement is 250 
mw or less. The multicavity klystron, if available at the desired fre¬ 
quency, is useful when the power requirement is 10 watts or less; if the 
power requirement is greater than 10 watts, magnetrons must be used. 

Mention has also been made of the demodulators or detectors com¬ 
monly used, that is, bolometers and crystals. Some work has been 
done with diodes, but as yet they are not generally accepted for use above 
1000 Mc/sec. Bolometers are especially useful because of their uniform 
square-law behavior. Crystals are approximately 15 db more sensitive 
than a bolometer but are not uniform in their behavior; they must be 
individually calibrated over the entire power range for which they are 
to be used. When a bolometer is used together with an amplitude- 
modulated power source, it is best to employ a tuned audio amplifier 
and stable vacuum-tube voltmeter for a sensitive indicating system. 
If a crystal or a diode is used, the amplifier-voltmeter combination may 
be used with an amplitude-modulated source; or with a c-w source, the 
detector may be connected to a microammeter or galvanometer as an 
indicating device. Another c-w method is to use the crystal or diode 
as a mixer, to amplify its output at some suitable i-f frequency, and to 
use as an indicator the low-current meter in the second detector circuit. 

A very important instrument in antenna work is the automatic 
recorder, which can be used to record any r-f amplitude as a function of 

angle, position, or time. 
593 
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16*2. Sources of R-f Power.—The discussion is here confined to a 
relative evaluation of various types of sources for antenna measurements. 
For details on the operation of these tubes, the reader is referred to 
Microwave Magnetrons, Vol. 6, and Klystrons and Microwave Triodesf 
Vol. 7, of this series. 

Reflex Klystrons.—In measuring impedances, primary patterns of 
antennas, attenuations, etc., where the power required is between 25 
and 250 mw, reflex-klystron sources may be conveniently used. This 
type of oscillator has several advantages, among which are 

1. Wide tuning range with a single adjustment. 
2. Electronic tuning for fine adjustments when precise frequency is 

sought. 
3. Relatively small power-supply-and-modulator combination. 
4. Ease of air cooling, accomplished with low-velocity quiet-operat¬ 

ing blowers. 

The circuit of a typical signal generator is shown schematically in 
Fig. 16*1. It consists generally of an electronically regulated anode 

power supply, readily adjustable over a 2-to-l voltage range, and a 
regulated reflector supply consisting of a string of VR tubes capable of 
producing the required maximum reflector voltage and a means (usually 
a potentiometer) for varying this reflector voltage continuously from the 
maximum to a very small minimum. The potentiometer .in this circuit 
allows satisfactory adjustment because the reflector is always negative 
with respect to the cathode and draws no current; hence, no appreciable 
change of resistance as a function of applied voltage is encountered in 
the load element. Modulation is most suitably introduced in the 
reflector circuit by a square-wave voltage superimposed on the steady- 
state reflector voltage, which keys (i.e., switches) the oscillator off and 
on at the modulation rate. A limiting tube, which consists of a shunting 
diode, is used in this arrangement to cut off the positive half cycle of the 
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modulation wave, thus preventing the reflector from being driven posi¬ 
tive. Any high-vacuum diode with a low voltage drop, capable of 
supporting a peak voltage of several hundred volts, can serve as a limit¬ 
ing tube. The 6X5 is frequently used for this purpose. 

This modulation and biasing procedure avoids the frequency modula¬ 
tion that would exist if a sinusoidal modulation wave were being used. 
The relation between the frequency 
modulation that results and the type 
of modulation wave used is best dis¬ 
cussed with reference to Fig. 16-2. 
Figure 16*2a shows the r-f power out¬ 
put of a klystron as a function of re¬ 
flector voltage (the numerical values 
indicated are merely illustrative of 
the order of magnitude). It is seen 
that power is obtained only over dis¬ 
crete voltage ranges corresponding to 
the “power modes” of the tube. 
The frequency of oscillation of the 
tube as a function of reflector volt¬ 
age, within any power mode, is of the 
general form illustrated in Fig. 16*26. 
Since the frequency is a function of 
reflector voltage, a sinusoidal modu¬ 
lation voltage would result in a wide frequency variation in the output. 
Further, since the r-f power is not a linear function of reflector voltage, 
a sinusoidal modulation will not produce a sinusoidal power envelope 
but one that is considerably distorted. This is avoided with on-off 
square-wave modulation. 

Tt should be noted that the power output can be switched off and on 
with a square wave of amplitude considerably less than the maximum 
reflector voltage. This means that only a relatively small modulation 
amplitude need be superimposed on the steady-state reflector voltage to 
obtain complete modulation. For instance, as illustrated in Fig. 16*3, the 
steady-state voltage Fo may be somewhat less than that required to 
activate any one of the possible modes, and the keyed voltage F added in 
series to this may be just equal to the interval between the nonoscillating 
condition and the point of maximum power. The steady-state voltage Fo 
is generally so chosen that the amplitude of the keying voltage does not 
exceed 100 volts, axis to peak, for complete modulation. The keying is 
generally sustained at a regular rate of some 100 to 2000 cps. 
♦ To illustrate the operating behavior of the signal generator let us 

take the Sperry 419B klystron. The anode voltage would then be 
adjusted for 1000 volts; the square-wave generator would be set for full 

-/<.-X- 
y ioo >200 rpt. 400 100 S200 

Reflector voltage 

(b) 
Fig. 10*2.—Operating characteristics 

of a reflex klystron: (a) variation in out¬ 
put r-f power with voltage; (b) change 
in output frequency with respect to the 
frequency vm of the maximum power of 
the mode. 
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output of 100 volts, axis to peak, if modulation is desired. The reflector 
voltage can now be increased from the minimum of 25 volts until a mode 
of oscillation is found. At the instant the tube goes into oscillation the 
anode current suddenly begins to increase from its normal steady-state 
value of about 40 to 45 ma to a value of perhaps 43 to 48 ma at maximum 
power output- It will be noted that for any tuning adjustment of the 
tube cavity and for a fixed anode voltage, there will be from two to 
three modes of oscillation with the various possible reflector voltages in 
the range of 25 to 450 volts. 

Reflector voltage 
Fig. 16*3.—On the klystron operating point. 

If, in coupling the klystron to the load, a rather large mismatch is 
unavoidable, then it is desirable to use a tuner between the klystron 
and load in order to obtain both maximum power and stability. 

Double-cavity Klystrons.—The measurement of antenna secondary 
patterns, large attenuations, etc., usually requires somewhat higher 
power (approximately 10 watts) than is obtainable from the reflex kly¬ 
stron. Therefore, a different source is necessary: for example, a double¬ 
cavity klystron, such as the Sperry 410-R klystron, for the range of 
approximately 7 cm upward. A magnetron also may be used in this 
range. 

A power-supply-and-modulator combination similar to that shown 
for the reflex tube (Fig. 16T) may be used for the double-cavity klystron, 
with the elimination of the reflector supply and a modification of the 
method of modulation. A typical circuit for use with the 410-R klystron 
is shown schematically in Fig. 16-4. 

The output power is a function of anode potential; if the output power 
is plotted as a function of applied voltage, it is found that there is a set 
of power modes similar to those shown in Fig. 16*2 for the reflex klystron. 
The double^cavity klystron differs from the reflex klystron in that there 
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is very little change in the frequency of oscillation with the variation 
of the anode voltage. 

Since power does exist in these discrete modes, it is again necessary 
only to add a square wave to a constant d-c voltage when modulation is 
desired. This is accomplished by setting the constant d-c voltage to a 
value corresponding to a position just out of the desired mode on the 
low side. The square-wave amplitude is then chosen such that the sum 
of the constant d-c and the square-wave voltages causes the anode poten¬ 
tial to rise to the optimum value for the power mode during the peak 
position of the wave. In a practical case the constant d-c potential 

Fiq. 16*4.—Schematic diagram of a signal generator employing a double-cavity klystron. 

might be approximately 1700 volts, and the square wave about 200 to 
300 volts, axis to peak. The modulator is required to deliver some 4 or 
6 watts. The klystron anode current will be approximately 100 ma; 
the cathode bias voltage from 0 to 30 volts positive. 

The use of the 410-R klystron as an oscillator requires that an 
external feedback path be provided, because this tube has been designed 
for use as an amplifier as well as an oscillator. This feedback path may 
consist of 6 in. or more of flexible coaxial cable of low loss and a coaxial¬ 
line stretcher adjustable over possibly 3 in. of length. This line stretcher 
is used to adjust the phase of the feedback to the optimum point. This 
can be done readily by setting the anode and square-wave voltages to 
the values previously mentioned and then moving the line stretcher over 
its length while observing the relative power received from the klystron. 
If oscillations do not occur anywhere in the range of the feedback path, 
a new anode voltage should be tried, approximately 200 volts higher or 
lower than the value originally suggested. The Sperry 410-R klystron 
is shown in Fig. 16.5 from two aspects. Any two of the coaxial-line out¬ 
put leads, one from the upper pair and one from the lower pair, may be 
connected to provide the feedback path. The remaining member of the 
upper pair is then used as a power output lead. 

Double-cavity tubes will function only if the two cavities are very 
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nearly resonant at the same frequency. Since it is often required that 
the tube be used at a frequency not obtainable with a narrow-range 
micrometer tuner, a few words pertaining to the adjustment of these 
cavities are in order. This adjustment can best be made by using each 
individual cavity as an absorption device; a reduction in power to a 
detector will then be noticed when the cavity is adjusted to exact reso- 

tiG 16 5 —Photograph of the Sperry 410-R klystron. 

410R-klystron 
Fro 16 6—Schematic diagram of a circuit for adjusting a cavity to resonance. 

nance. Figure 16-6 shows a suggested r-f circuit. The method is to set 
the geherator to the exact desired wavelength as read on the wavemeter 
and indicated by the microammeter. The klystron cavity is connected 
to the circuit as shown, and the three adjustment screws are manipulated 
until resonance at the generated frequency is obtained (if this frequency 
is in the range of the klystron). It is well to note that tightening the 
tuning screws (clockwise motion) will cause the frequency to increase; 
tiie screws should not be tightened to the point of causing excessive bulg¬ 
ing of the diaphragm. Also, in the tuning process care should be taken 
to keep the tuner frames substantially parallel. When this adjustment 
has been made on both cavities, they will be resonant at the fre¬ 
quency and in a condition to be installed in the signal generator. It is 
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possible that final adjustments will be needed after installation; one of 
the top tuner screws can then be moved back and forth slightly until 
satisfactory oscillation is obtained. 

Magnetrons.—The investigation of the secondary pattern of large 
antennas requires that a long transmission path be used in order to ensure 
a uniform plane wave across the antefina aperture. In view of the rela¬ 
tive insensitivity of accurate measuring devices, this generally means 
that an average power in excess of 10 watts is necessary. The magnetron 
is the source of power usually employed for these power levels; at wave¬ 
lengths less than 7 cm the magnetron is the only oscillator capable of 
generating power high enough for the majority of secondary-pattern 
measurements. This type of oscill°for is available for most of the ranges 
throughout the explored microwave regions. They are constructed in 
three principal types: 

1. Spot frequency, pulsed operation. 
2. Tunable, pulsed operation. 
3. C-wr, spot frequency, or 1 unable. 
For antenna work it is generally desirable to use pulsed magnetrons 

because of the fairly high efficiency and small dimensions of both the 
tube and the driving modulators required. There are several ways in 
which a magnetron can be pulse modulated, but for antenna work the 
so-called “soft-tube” line-type modulator is preferred, except Tor powers 
in excess of 200-kw pulse peaks. This method of modulation is shown 
schematically in Fig. 16-7. 

The modulator provides very short pulses of very large current to 
the magnetron, which is to have a duty ratio (v St) of about 0.001 or less. 
(Here 6t is the duration of the pulse, and v is the repetition frequency, the 
number of pulses per unit of time.) The magnetrons used in this fashion 
are, of course, designed for radar use, where the short pulses of high 
power are needed for measurement of echo time. However, they serve 
very well for antenna work when a power-integrating demodulator, such 
as a bolometer, is used for the detecting element. 

The circuit functions in the following manner. A variable d-c voltage 
source charges a pulse-forming network (synthetic transmission line) 
through a 60-henry choke during the time that the thyratron is not con¬ 
ducting. At regular intervals a trigger circuit drives the thyratron grid 
sufficiently positive to render the thyratron conducting whereupon the 
pulse-forming network discharges through the primary of the pulse 
transformer. This causes a voltage four to five times greater to appear 
aeross the magnetron, connected to the secondary of this transformer. 
If the original d-c voltage is adjusted properly, the amplitude of the pulse 
to the magnetron will be correct for operation. In this system the pulse 
width and shape are controlled by the pulse-forming network. The 
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number of pulses per unit of time is determined by the repetition rate 

of the trigger. 
In a typical case the d-c voltage may be adjusted to provide a 12-kv 

pulse across the magnetron for a period of 1 /*sec, a thousand times each 
second. (The applied voltage is approximately the product of the d-c 
supply voltage and the pulse-transformer stepup ratio.) The magnetron 

will then pass an average current of about 10 to 12 ma. The approxi¬ 
mate input power to the magnetron, exclusive of filament power, is 
1.2 X 104 peak volts X 10~2 amp or 120 watts. The peak input power 

is given by 

Average power input _ P _ 120 watts 
Duty ratio v 8t 10~3 

120 kw, 

and the peak current is 

1.2 X 106 watts 
1.2 X 104 volts 

10 amp. 

The filament voltage is measured by the ammeter in the filament 
circuit, which has previously been calibrated for a measured potential 
difference at the magnetron filament of about 6 volts. This method is 
chosen because of the voltage drop across the pulse transformer, which is 
dependent on the current through it; a voltage measured at the filament 
transformer will not be the true voltage at the filament. The magnetron 
filament voltage should be reduced to about 3 volts—for a 6-volt tube— 



Sec. 16-3] DETECTORS 601 

after oscillation starts in order to maintain the cathode at a safe operating 
temperature. This is necessary because of the large electron bombard¬ 
ment of the cathode under operating conditions. 

The load to which power is being supplied by the transmission line 
from the magnetron must be very well matched to the line if it is not to 
pull the magnetron frequency excessively.1 If the mismatch is sufficient 
to cause a power standing-wave ratio of several to 1 with a practical 
length of feed line, the tube will probably not oscillate at all; at least it 
will have poor stability. Poor stability must particularly be avoided in 
antenna work, where a high order of amplitude stability, of 1 or 2 per 
cent, is absolutely necessary. Any of the undesirable effects just men¬ 
tioned can usually be avoided by coupling the magnetron to the trans¬ 
mitting antenna by as short a transmission line as is mechanically feasible 
—2 ft or less—and maintaining 
the mismatch below 2 to 1 in 
power. 

16*8. Detectors.—Bolometers 
and crystals are most frequently 
used as detectors in microwave an¬ 
tenna measurements. The bo¬ 
lometer has the decided advantage 
that its resistance-power curve is 
linear over a wide range of power, 
whereas crystals, although much 
more sensitive than bolometers, 
have a nonlinear response. 

The crystal detector is a ve*y 
small barrier layer rectifier com¬ 
posed of a chip of silicon in con¬ 
tact with a fine tungsten wire. 
When this element is properly in¬ 
troduced into an r-f circuit, a very 
sensitive and efficient rectification 
even at very high frequencies results. In spite of their sensitivity, how¬ 
ever, crystals find comparatively limited application in antenna measure¬ 
ments because of their nonlinear character. 

The graph (a) in Fig. 16-8 shows the static relation between resistance 
and applied power in a bolometer, and it may be noted that this relation 
is linear in the power range Pi to P«. A relation exists between the power 
P applied to the measuring device and the output voltage V developed 

across the load: 

P « KV*'\ 

1 Microwave Magnetrons, Vol. 6, RL Technical Series. 

. v 
Bias power 

(a) 

3*1 

Pi 

<w 

—i 

i 
~r 

Fig. 16*8.—Characteristics of a bolometer 
and a silicon crystal: (a) resistance vs. power 
applied to bolometer; (b) “law of behavior’' 
n vs. power above bias point; (c) “law of 
behavior” n vs. power for typical crystal. 
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where K is a proportionality factor and n the law of behavior. In the 
range Pi to P2, n = 2 for the bolometer. In crystals for this same range 
of applied signal power, however, n varies considerably. This compari¬ 

son for a typical case is shown 
graphically in (b) and (c) of Fig. 
16*8. As a result of this nonlinear 
behavior, the crystal, while about 
15 db more sensitive than a bolom¬ 
eter, cannot be used for measure¬ 
ments without being previously 
calibrated and the measured data 
corrected accordingly. 

The bolometer element con¬ 
sists of a short platinum wire from 
30 to 70 microinches in diameter. 
This element has an extremely low 
thermal capacity and because of 
its very small diameter possesses a 
very favorable surface-to-volume 
ratio. 

It has been shown that the re¬ 
sistance of a platinum wire bolom¬ 

eter is linear with power above a certain minimum. Therefore, when a 
bolometer element is used in a circuit, it is necessary to provide a bias in 
order to work on the linear portion of the curve. Figure 16-9 shows the 
two most common circuit arrangements used with bolometers. 

In circuit a the proper bias is obtained by choosing the current in the 
bolometer branch of the bridge which yields an initial power dissipation 
in the bolometer equal at least to Pi of the curve a of Fig. 16*8. Then 
if the power dissipation of the bolometer is increased by coupling it to 
an r-f field, the consequent linear rise in resistance will cause the deflec¬ 
tion of the linear null meter to be directly proportional to the absorbed 
r-f power. 

Similarly in circuit b the bolometer current is controlled by adjusting 
the rheostat to a point where the uncoupled power dissipation is equal 
to or greater than Pi. When modulated r-f is coupled to the bolometer, 
a periodic resistance change will occur, causing a varying current that 
is proportional to power to flow in the transformer primary. There is 
then induced in the secondary a voltage that is likewise proportional to 
power. 

The best workable range of modulation frequencies lies between 100 
and 2000 cps. In Fig. 16*10 is graphed bolometer sensitivity vs* fre¬ 
quency for a wire 70 microinches in diameter. It is clear from this curve 
that greatest sensitivity appears below 100 cps but on the other hand 

(a) 
R-f 

Fig. 16*9.—Common bolometer circuits. 
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difficulties in construction of a suitable amplifier eliminate the use of 
lower frequencies for this purpose. 

The particular bolometer used depends on the radio frequency 
involved. For frequencies of less than about 4000 Me the standard 
8 AG meter fuse of xihr or amp made by Littelfuse Company of 
Chicago is an excellent performer. For frequencies above 4000 Me it 
becomes necessary to design the element for the particular application.1 

Fig. 16*10.—Bolometer senpitivity vo modulation frequency for platinum wire (70 micro- 
inches in diameter). 

Fig. 16*11.—Methods of coupling bolometer to r-f field: (a) coaxial termination; (6) 
bolometer wire stretched directly across small dimension of waveguide; (c) bolometer in 
housing across small dimension of waveguide. 

Figure 16*11 shows several methods of coupling the bolometer element to 
the r-f field. These methods of coupling along with the geometry and 
loss characteristics of the protective enclosure greatly influence the 
bolometer element design for use with microwaves. 

With frequencies below 4000 Me coaxial bolometer terminations are 
most frequently used. It is generally quite satisfactory at such fre¬ 
quencies to use either a or i-hramp Littelfuse as the r-f integrating 
element. The choice is dictated by the operating resistance of these 
units, since their reactive components are quite similar. The TO*amp 
fuse ha» an operating resistance of about 200 ohms at 10 ma, while the 
rlramp fuse operates at about 400 ohms at 5 ma. 

Matching a coaxial termination to the line may be achieved by varying 
the length of the stub, which is nominally* X/4, and/or the distance 

1 A detailed description of the construction of Wallaston wire bolometers may be 
found in Vol. 11, Chap. 3, of this series. 
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between the center conductor and the point at which contact is made with 
the fuse. By adjusting these two parameters properly a reasonable 
match (VSWR ~ 2) may be achieved on in. (46-ohm) line for about 
a 10 per cent bandwidth. If a better match is desired (VSWR of 1.2), 
it may be effected by introducing a coaxial transformer1 of correct dimen¬ 
sion, but the bandwidth for which this improved match will hold is 
reduced to about 1 per cent. 

For frequencies above 4000 Me waveguide bolometer terminations 
are most frequently employed. These are shown in Fig. 16T16 and c. 

When used directly in waveguide the bolometer element must have 
axial electrodes that are parallel to the 2?-vector so as to achieve a rea¬ 
sonably large coupling. The material of the protective envelope, if used, 
must have a very low loss and in general should be no larger in diameter 
than absolutely necessary for mechanical support. It has been found 
that this envelope need not exceed T% in. in diameter and can be suc¬ 
cessfully made of polystyrene with ^rV-in. wall. 

The match in guide is influenced by the choice of the effective resistance 
of the wire and the distance d between the wire and the short circuit in 
Fig. 16T16 and c. With proper choice of variables very close matching 
(VSWR =1.1) can be achieved for a bandwidth of 1 per cent or less. How¬ 
ever by using a window (Fig. 16Tlc) that is resonant at one frequency, 
the impedance match may be held for a bandwidth of, say, 8 per cent; 
the reactance of the window varies with frequency in the opposite sense 
to the variation of the reactance of the bolometer element with the short- 
circuited waveguide termination. 

16-4. Amplifiers.—The power available at the detecting element 
is very small (6 mw or less) in the majority of the methods used in 
antenna measurements. For this reason the available voltage at the 
detector output terminals will likewise be small. For instance, the volt¬ 
age at the terminals of a sensitive bolometer ranges from 10~7 to 10~2 
volt rms over the linear part of the detection curve. Crystals also have 
an upper useful terminal voltage of about the same order of magnitude, 
but the lower limit extends down to around 10~8 volt for the audio 
region. It is evident, therefore, that some amplification is needed with 
these microwave detectors in order that a practical indicating meter be 
used for measurements. 

The required performance characteristics of such an amplifier are: 

1. Linearity over a range of at least 100 db. 
2. An inherent noise level at least 6 db below the minimum input 

signal. ' 
3. Good stability. 
4. Freedom from response to outside fields. 

1 Sea See. 7*9. 



Sec. 164] AMPLIFIERS 605 

Figure 16*12 stows the schematic diagram of a tuned audio amplifier 
meeting the above requirements which was designed to operate a Bal- 
lantine Model 300 voltmeter as the indicating device. This unit is 
linear from 0.001 to 100 volts rms output, or in other words over a range 
of 100 db, which corresponds to the range of the Ballantine meter. 

Voltage gain 10,000. R lw R 1 w 

Fig. 16* 12.—Tuned audio amplifier. 

The voltage gain is 10,000, which permits operation of the input from 

10-7 to 10~* volt. 
The tuned audio amplifier is based upon the use of a twin-T flC-bridge 

as & feedback element to reduce the bandwidth. This reduced band¬ 
width I'm an appreciable effect on the signal-to-noise ratio; in fact, the 
average pm-lr noise voltage at the output terminal is about 5 X 10~*. 
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This is equivalent to an input voltage of 5 X 10~8, or 6 db below the 
minimum signal voltage. Typical performance curves are presented in 
Fig. 16*13. In (a) is plotted voltage gain against logarithm of the voltage 
output of the amplifier. This curve is clearly linear for practical pur¬ 
poses, over the range from 0.001 to 100 volts. The graph in (6) is a 
plot of relative voltage amplitude vs. frequency for the amplifier, showing 
the discrimination of the filter at 1000 cps. 

Considerable care must be taken in selecting the components for the 
amplifier, also in the layout of the parts and wiring. For instance, it 

Frequency, cps 

(b) 
Fig. 16-13.—Performance curves for tuned audio amplifier: (a) output-gain curve; (b) 

curve showing discrimination of filter at 1000 cps. 

is imperative to assure excellent magnetic shielding for the input trans¬ 
former and the output choke; otherwise undesirable currents can be 
induced in the windings by surrounding fields. For a similar reason it is 
necessary that ground wires be short and connected to a common point. 
Tubes must have very low microphonic response, hence the use of the 
1620 tube in the first stage. Also, the first tube should be shock-mounted. 
The power transformer is best packaged separately; it is not included in 
the amplifier cabinet but housed in a separate container and connected to 
the amplifier by a flexible cable about 3 ft long. This permits the trans¬ 
former to be placed 2 or 3 ft away when in actual operation, a procedure 
that is not inconvenient, since the required transformer is quite am nil 

and light in weight. 

The filters are constructed as small fixed-tuned plug-in units which 
are arranged in the amplifier for easy replacement. The frequency range 
is normally about 100 to 5000 cps. 

There we many variations possible with this type of amplifier, most 
of which are just adaptations to special requirements. However, one 
modification is very desirable for impedance work. It consists essentially 
of the system already shown with the exception that the vacuum- 
tube voltmeter is built as part of the amplifier with an indicating mater 
placed in the front panel. This meter is generally calibrated in voltage 
Standing-wave ratio with full-scale deflection as unity. The cali- 
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bration is based on a square-law detector regardless of the type of detector 
used. 

Another type receiver, based on a heterodyne principle, is used to 
some extent in antenna work, especially in the measurement of secondary 
patterns either where space attenuation is large or where for some reason 
the transmitted power is low. This method is capable of considerably 
greater sensitivity than is realizable with the audio method and also 
does not require the signal source to be modulated. The order of maxi¬ 
mum practical power sensitivity with the heterodyne system, when using 

Synchronizing pulse 
to trigger transmitter 

Linear sweep to 
frequency modulate 
klystron 

Fio. 16*14.—Block diagram of heterodyne receiver. 

a crystal mixer, is about 10~12 watt, whereas the audio amplifier and 
crystal combination has a maximum power sensitivity of about 10~9 
watt.1 Figure 16T4 is a block diagram of a typical heterodyne receiver 
arranged for measurement work. 

This setup makes use of either an r-f or an i-f attenuator or both 
and depends largely upon the attenuator as the measuring element. 
The attenuator, which is previously calibrated, is adjusted to have a 
minimum insertion in the circuit when the received signal is a minimum, 
and the indication on either of the meters or the oscilloscope is noted. 
Then for any signal of greater amplitude the attenuator is adjusted to 
an insertion greater than the original setting until the output indicator 

1 See Vacuum Tube Amplifier«, Vbl. 18 of this series. 



608 ANTENNA MEASUREMENTS—EQUIPMENT [Sbc. 164 

returns to the value observed for minimum signal. The change in signal 
amplitude then, of course, is the difference indicated by the calibrated 
attenuator. Actually either the c-w meter or the video meter may be 
calibrated for a range of, say, 6 or 10 db. Thus, signal differences can 
be measured by the indicating meter and the attenuator in combination. 
This provides a simple means of measuring the smaller variations that 
may be within the limits of the indicating meter without readjusting 
the attenuator. 

The use of an i-f attenuator as the measuring element is to be pre¬ 
ferred if the mixer can be shown to be linear over the desired range to 
be covered. Usually, for crystal mixers, this is true to about 30 db 
above the minimum detectable signal and to about 20 db further with 
carefully selected crystals. This method does not require a different 
attenuator for widely different frequencies of received signal but, on the 
contrary, functions equally well at any region for which a suitable mixer 
can be introduced. For very large power changes in the received signal 
(60 db or more), it may be necessary to use an r-f attenuator solely or 
in combination with an i-f attenuator to maintain the desired accuracy. 

The heterodyne circuit contains three output indicating devices. 
Choice will depend upon such conditions as character of signal and flexi¬ 
bility of indication: (1) If the signal is appreciably modulated, either 
the oscilloscope or meter may be used following the video amplifier. 
The scope has the advantage of interval-timing, and therefore the desired 
signal and any spurious signal can usually be distinguished when using 
synchronized short-time pulse modulation on the transmitter. The 
undesired components are usually reflections from surrounding objects 
which produce an echo of different time delay from the desired signal. 
However, the oscilloscope is difficult to calibrate accurately over even a 
few decibels of power range. Thus, the attenuator must be continually 
readjusted to maintain a constant deflection on the scope when measuring 
the power changes. The meter cannot distinguish between the desired 
signal and an interfering signal but is capable, as has been previously 
pointed out, of being calibrated quite accurately over a range of possibly 
10 db. A synchronized source is not used with the meter. (2) If the 
transmitted signal is a continuous wave, no alternating component will be 
available at the second detector. Therefore, a d-e amplifier and meter 
combination or a meter alone, if the detector signal level is high enough, 
is used. The oscilloscope is of little advantage in this arrangement, since, 
with a c-w source, interval-timing cannot be used and therefore the 
desired signal cannot be distinguished from those caused by reflections. 

The i-f amplifier for any of the mentioned methods should be wide 
enough to allow for the instability of the source generator. Usually 
an amplifier with a 6- to 10-Mc bandwidth is used for microwave work, 

A slight modification of the heterodyne circuit results in a system 
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that is sometimes useful in c-w measurements. Here the i-f amplifier 
is designed to have a very narrow bandwidth, and the oscilloscope saw¬ 
tooth sweep is used to frequency modulate the local oscillator. Thus, 
there will be an output pulse from the second detector at the instant the 
local oscillator passes through a frequency that is equal to the inter¬ 
mediate frequency above or below the frequency of the received signal. 
This pulse is then amplified by the video circuit and applied as a deflec¬ 
tion voltage to the oscilloscope on which the signal appears as a sharp 
pip or vertical line. This pip can be controlled and measured by the 
attenuator as previously described. The advantage of this system for 
intensity measurements lies chiefly in the fact that the i-f amplifier has 
a quite narrow bandwidth and r\msequently a higher signal-to-noise 
ratio. In addition the video amplifier is used which is less complicated 
than a stable d-c amplifier. Tt is apparent that any number of separate 
pips can appear on the oscilloscope screen if a like number of slightly 
different signal frequencies are being produced by the signal source. 
Thus, a very accurate means is provided for measuring the frequency 
distribution and relative amplitude of the energy given off from the source. 
Units are built using this circuit and are known as spectrum analyzers 
and, as such, are frequently used for amplitude measurements with 
single-frequency sources. 

16*6. Recorders.—The use of an automatic antenna pattern recorder 
has been pointed out previously in the general discussion of secondary 
patterns. The following is a discussion of the various methods for auto¬ 
matically plotting receiving power patterns. 

The simplest recorder consists merely of a recording current meter. 
This meter is attached to the output of a linear peaked audio amplifier, 
the input of which is fed from the antenna under test through a square- 
law detector. If the angular coordinate is synchronized with the angular 
displacement of the antenna, it is possible to obtain a very satisfactory 
linear plot of power. However, for any antenna of appreciable gain, 
much of the desired information involving the side lobes will be lost, 
because such a linear recorder will not visibly resolve powers that are 
from 20 to 40 db below the main peak power. Also, most recording 
meters of this type have the stylus attached to a central pivot about 
which it rotates as a function of varying current. This does not yield 
a plot in rectangular coordinates, frequently giving rise to confusion 
regarding the picture portrayed. It is evident, then, that in order 
to record side lobes and for reasons of clarity other methods must be 

contrived. 
Experience has shown that the most desirable scale to use with an 

automatic system is a decibel scale extending over a range of about 
40 db. This may be accomplished in two distinct ways. (1) The linear 
recording current meter may be driven by a logarithmic amplifier which 
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is fed by the square-law detector, thus obtaining the desired result by 
the use of the nonlinear amplifier. (2) A system can be built around a 
nonlinear potentiometer or attenuator with servo follow-up for stylus 

Fi$. 16*15.—Audio antenna pattern recorder. 

displacement. The latter method is generally preferred, since it does 
not require a nonlmear amplifier; accuracy of such an amplifier is usually 
difficult to maintain. Systems based on this second method will be 
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Figure 16*15 shows a block diagram of a typical recorder designed to 
operate on the audio voltage developed by a bolometer or crystal wed 
as the antenna feed termination. It should 
be understood, of' course, that the trans¬ 
mitter is modulated at the pass frequency 
of the audio system of the recorder. 

The system operates as follows: The 
angular displacement of the mount to 
which the antenna is affixed is trans¬ 
mitted to the recording drum by a Selsyn 
generator-and-motor combination which 
synchronizes the angular rotation of the 
drum with that of the antenna.1 The input 
to the signal amplifier varies with the 
orientation of the antenna; since this ampli¬ 
fier is linear, the voltage appearing across 
the calibrated potentiometer is directly 
proportional to the power picked up by the 
antenna. The tap-off voltage from the 
potentiometer is fed into the potentiometer 
amplifier, the output of which is compared 
with a constant voltage. The difference 
between the latter two voltages is applied 
to the servo amplifier; the servomechanism 
then drives the potentiometer tap-off to 
a point such as to reduce the difference 
voltage to zero. Since the stylus is attached 
to the same mechanism that drives the 
potentiometer, it is displaced in a like 
manner; consequently, the stylus displace¬ 
ment is proportional to the amplitude of 
the signal. 

An instrument based essentially on the system just described has been 
built and used.2 Photographs of the control and recording console and 
the electronic cabinet of this instrument are shown in Fig. 16*16. With 
this instrument it is possible to obtain side-lobe information in fine 

1 Good accuracy may be achieved in this manner, sineethe Selsyn generator on the 
mount is geared to the motion through a precision gear train with a stepup ratio of 
about 1 to 36 and the Selsyn motor driving the drum is geared down a like amount; 
This means that the electrical inaccuracies of the Selsyn system are divided by 36, 
and by the choice of good gearing, mechanical errors may be held quite small. 

* O. A. Tyson, “ Antenna Measuring Equipment/’ EL Report No. 601-4, January 
1945. 
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detail; a typical plot of power variation vs. displacement angle is shown 
in Fig. 16-17. 

Alternative methods of supplying the information to the servomecha¬ 
nism make use of the r-f carrier wave rather than the audio-modulated 
output of a square-law detector. One method uses a calibrated i-f 
attenuator in a* heterodyne circuit1 in place of the a-f attenuator. This 
setup is shown in block diagram in Fig. 16-18. Angular coordinates 

-900-80° -700-600-500-40°-30°-20°-10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
Angle 

Fig. 16-17.—Antenna pattern showing detail obtainable with audio recorder. 

are transmitted in a manner similar to that shown in Fig. 16-16. This 
consists of a Selsyn generator geared to the antenna mount and a Selsyn 
motor geared to the recording drum. If the antenna under test is illu¬ 
minated by either a modulated or a c-w wave, an i-f voltage is developed 
at the output of a small mixer and local oscillator which is used to ter¬ 
minate the antenna feed. The i-f voltage is passed through a calibrated 
logarithmic attenuator and amplified; it is then rectified and used to 
control a servomotor just as is done in the audio system. The stylus, 
of course, is again geared to the servomotor, which drives the calibrated 
attenuator and traces a signal amplitude plot on the synchronized graph 
drum. 

The chief advantage of the heterodyne system is that it is very much 
more sensitive to weak signal input than bolometers or crystals used as 

1R. J. Symondg, “Microwave Antenna Pattern Recorder,” BTL Report MM-44- 
170-55, Not. 15,1944. 
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rectifiers, as was indicated in Sec. 16*4. As a result it is possible to 
reduce transmitter power by possibly 10 db or to extend the range of 
power coverage from 40 to approximately 60 db under ideal conditions. 
The limitations to this method arise in the mixer, which is often not 

Fig. 16*18—Antenna pattern recorder utilizing an r-f attenuator m a heterodyne circuit 

completely linear over the higher portions of the desired power range. 
Also, difficulty sometimes arises from the large bulk of the mixer-oscil¬ 
lator termination which must be attached to a relatively small antenna. 
Bolometers, on the other hand, are more adaptable because of their size. 





Index 

A 

Absorbing material, 560 
Achromatic doublets, 410 
Admittance, characteristic, 26 

normalized, 26, 213 
terminal, of waveguide, 366 

Admittance characteristics, of F-plane 
sectoral horns, 369-374 

of il-plane sectoral horns, 374-376 
AFC, 527, 538 
Air«t©-surface search, 466 
Aircraft antennas, 512 
Aircraft installations, interference effects 

in, 515-519 
Altar, W., 556 
Altitude circle, 514 
Amplifiers, 604-609 

audio, 605 
Antenna feed, definition of, 12 
Antenna mismatch, dependence of ab¬ 

sorption cross section on, 51-53 
Antenna pattern recorder, automatic, 

609-613 
Antenna system, 511 
Antennas, beavertail, 453, 477 

cheese, 459 
conically scanning, 347 
ground, 510 
half-beacon, 460 
interaction between, 587-592 
pencil-beam (see Pencil-beam antennas) 
pill-box, 459-464 

impedance correction for, 463 
receiving, equivalent circuit of, 40-45 
scanning, 513-521 
shaped-beam, line sources for, 495-497 

secondary pattern of, measurement 
of, 579 

ship, installation problems of, 511 
shipbome, for surface search, 467 
skirt-dipole, 240-242 

Antennas, strip reflector, 484 
surface, for air search, 465 
transmitting, equivalent circuit of, 

37-40 
Aperture, angular, 416 

circular, 192-195 
far-zone region of, 172 
gain function for, 162 
near-zone region of, 170 
rectangular, uniformly illuminated, 

180-182 
Aperture blocking, effects of, 190-192 
Aperture efficiency, 178 
Aperture-field distributions, moments of, 

184 
separable, 182 

Aperture-field method for reflectors, 158- 
160 

Aperture gain, maximum, condition for, 
177, 178 

Aperture relations, optimum angular, 424 
Aperture treatment, of radiation from 

horns, 357 
of radiation from waveguides, 334-336 

Array designs, broadside, 318-333 
end-fire, 316-318 
nonresonant, 328-333 

Array element, longitudinally polarized, 
302, 309, 312 

slot-fed dipole as, 284-286 
slots as, 291-301 
streamlined, longitudinally polarized, 

312 
transversely polarized, 310, 311 

tridipole radiator as, 304, 305 
waveguide radiators as, 301-303, 329 

Array factor, 200 
Arrays, binomial, 269 

broadside (see Broadside arrays) 
end-fire, gain of, 277-278 
horn, 319 
linear, pattern synthesis by, 279-284 

615 



616 MICROWAVE ANTENNA THEORY AND DESIGN 

Arrays, polynomial associated with, 261- 
264 

Tchebyscheff, 282-284 
uniform, 264-267 
uniformly illuminated, 267-269 

Austin, P. M., 186 
Azimuth ratio, 304 

B 

Babinet’s principle, 167 
Back-lobe interference, 428, 435 
Back-scattering coefficient, 468 
Baker, B. B., 108 
Bandwidth, of dielectric lens, 398 

of metal-plate lens, 408-410 
Barker, C. B., 139 
Barrow, W. L., 349 
Beacon antenna systems, 327 
Beacon antennas, on aircraft, 521 
Beacon elements (see Radiators, axially 

symmetrical) 
Beacon pattern measurements, 573 
Beacon radome designs, 540 
Beam, beavertail, 477, 478 

broadside, 267-274 
end-fire, 274-278* 
fanned, 7 

applications of, 450 
low-altitude, 484 
omnidirectional, 6 
pencil, 7 
sector shaped, 475 
shaped (see Shaped beam) 
toroidal, 6 

Beam deviation factor, 488 
Beam shape, variable, 508-509 
Beam shaping, by obstacles in horn and 

wave-guide apertures, 380-383 
Beamwidths vs. aperture illumination, 

179, 183-187, 195 
Bethe, H. A., 208 
Biconical horn, 9 
Bipolar charts, 33-36 
Birchard, B. L., 316 
Blister, 512 
Bohnert, JM 442, 455, 564 
Bolometer, 555, 601, 604 
Bolometer element, 549 
Booker, H. G., 167, 294 1 
Bom, M., 125, 166, 167, 197, 414 

Boundary conditions, general formulation 
of, 66-68 

at infinity, 84-86 
for scattering problems, 130-132 

Box horns, 377-380 
Braunlich, A., 460 
Breckenridge, R. G., 399 
Breen, S., 251, 437 
Brewster angle, 402 
Brillouin, L., 42 
Broadband-normal-firing arrays, 331-333 
Broadside arrays, binomial illumination 

of, 269 
gabled illumination of, 269 
gain of, 271-274 
maximum gain conditions for, 270, 271 
resonant, 321-327 

Brownlow, J. M., 399 

C 

Campbell's loaded-line formulas, 313-316 
Carlson, J. F., 410 
Center of feed, 239, 343, 562 

determination of, 564-570 
Chesley, F. G., 399 
Chisholm, E. B., 331, 332, 509 
Choke, 242, 243, 245 
Chu, L. J., 80, 146, 248, 334, 341, 349, 

357, 415, 478, 497 
Clapp, R. E., 299, 469 
Coaxial lines, 217-226 

cascade transformers in, 221-123 
parallel stubs for, 223-225 
series reactance transformer for, 225 
TEM-mode of, 217-219 

Coma lobes, 488 
Condon, E. U., 415, 423 
Conductance, incremental, 298 
Copson, E. T., 108, 167 
Coupling, between transmitter and re¬ 

ceiver, 45-48 
Coverage pattern, one-way, 4* 

two-way, 5 
Cross polarization, of barrel-reflector 

antenna, 503 
of fanned beam antennas, 457 
measurement of, 579-580 
of pencil-beam antennas, 419, 423 

Cross section, absorption, 8, 42 
average, for matched system, 50, 51 



INDEX 

Cross section, dependence of, on antenna 

mismatch, 51-53 

interception, 468 

radar, 468 

receiving, 3 

scattering {see Scattering cross section) 

Crystal, 555, 559, 601, 604 

calibration of law of, 552-556 

Csc2 0 pattern, 466, 470, 507 

Cullen, A. L., 295 

Current distribution, discontinuous, 146- 

149 

far-zone fields of, 87-91 

over reflector, 144-149 

Cut paraboloid, feed-tilt effects in, 488, 

489 

offset feeding of, 454 

for shaped beams, 477-483, 487-491 

for simple fanned beams, 451-457 

Cutler, C. C., 484, 497, 508 

Cutoff wavelength, 205 

Cylinder, parabolic, 457-459 

D 

De Bretteville, A. P., Jr., 399 

Debye, P., 114 

Detection, superheterodyne, 559, 578, 

607-609 

Detection system, calibration of, 552-556 

Detector, bolometer, 555, 601-604 

crystal, 549, 554, 555, 601, 604 

Detector response, 601-603 

Dickie, R. H., 200 

Dillon, R. E., 316 

Dipole, electric, 92-95 

half-wave, 98 

gain of, 99 

magnetic, 95 

slot-fed, 245-248 

as array element, 284-286 

spheroidal, 249 

impedance of, 249 

Dipole-disk feeds, 251-253 

Dipole feeds, directive, 250 

Divergence factor, 143 

Dodds, J. W., 295, 299 

Dolph, C. L., 282 

Double-dipole system, on coaxial line, 

253-254 
coaxial-line-fed, 253 

617 

Double-dipole system, theory of, 101-104 

on waveguide, 255-256 

Doublet lens, 410 

Dowker, Y., 523, 556 

Dunbar, A. S., 480, 487 

E 

E-plane, principal, 103 

E-plane patterns, principal, of pencil- 

beam antennas, 422-423, 433-437 

E-plane sectoral horns, admittance char¬ 

acteristics of, 369-374 

modes in, 350-354 

mouth admittance of, 369 

radiation from, 357, 358-365 

tenth-power widths of, 364, 365 

throat transition, 369-371 

transmission-line equations for, 366- 

369 

Eaton, J. E., 316 

Edge diffraction, 516 

Edge reflection, 518 

Eisenhart, L. P., 142 

Electrical length, 550-552 

Elson, N., 442 

Emde, F., 194, 220, 233 

Error, cubic phase, 189 

linear, 188 

quadratic, 188 

Everhart, E., 523 

Everitt, W. L., 17, 19-21 

Eyges, L. J., 316, 328, 496 

F 

Far-zone fields, of current distributions, 

87-91 

of line-current distributions, 96-98 

Far-zone region of apertures, 172 

Feed, center of (see Center of feed) 

dipole-disk, 251-253 

double-dipole, 253-256, 434 

double-slot, 348-349 

extended, 473, 474, 477, 487-494 

dipole-array, 491-493 

horn-array, 493-494 

four-dipole, 256 

point-source {see Point-source feed) 
primary, 12 

Feed requirements, primary, 239-240 



MICROWAVE ANTENNA THEORY AND DESIGN 618 

Feed systems, front, 448 
rear, 347, 434, 448 

Feed tilt, impedance changes with, 488 
Feed-tilt effects, in cut paraboloids, 488, 

489 
in paraboloidal reflectors, 487, 488 

Feeding coefficients, 259 
Fermat's principle, 122-125 
Field equations for cylindrical waveguide, 

201-203 
Fields, dominant-mode, of sectoral horns, 

352, 355 
superposition of, 99-101 
time-periodic, Maxwell's equations for, 

68 
Fiske, M. D., 387 
Fourier integral representation of Fraun¬ 

hofer region, 174-175 
Frank, N. H., 173, 174 
Frank, P., 110 
Fraunhofer region, 160-162, 172 

criteria for, 198, 199, 561, 574 
Fourier integral representation of, 

174-175 
Frequency control, automatic {see AFC) 
Frequency pulling,. 538 
Fresnel region, of circular aperture, 196- 

199 
general characteristics of, 171-172 

Fresnel zones, 196 
Front-feed systems, 448 

G 

Gain, 3, 90, 177 
absolute, 90 
of broadside arrays, 271-274 

maximum, condition for, 271 
of circular waveguides, 340-341 
dependence of, on aperture illumina¬ 

tion, 177-178 
directive, 580-581 
effective, 583 
of end-fire arrays, 277-278 
of half-wave dipole, 99 
of parabolic cylindrical antennas, 458 
of pencil-beam antennas, 423-432 
of pyramidal horns, 587 
of rectangular waveguides, 346 
of scattering pattern, 468 
el sectoral horns, 587 

Gain comparison, 581 
Gain determination, reflection method 

for, 585-586 
Gain factor, 178, 425 

vs. aperture illumination, 187, 195 
Gain function, 2, 90, 94 

for aperture, 162 
scattering, 590 

Gain measurements, 580-586 
Gain standard determination, 582-585 
Gam standards, secondary, 586 
Gardner, J. H., 481, 484, 485, 508 
Goldstein, H , 320 
Grating, quarter-wave, 447 
Grating reflectors, 449 450 
Green’s theorem, scalar, 108 

vector, 80 
Ground antennas, 510 
Ground target area, effective, 469 
Guillomin, E A., 17, 18 
Guptill, E W., 295, 299 

H 

If-plane, principal, 103 
ff-plane patterns, principal, of pencil- 

beam antennas, 422-423, 433-437 
If-plane sectoral horns, admittance char¬ 

acteristics of, 374-376 
modes in, 355-357 
mouth admittances of, 375 
radiation from, 358-365 
tenth-power widths of, 365 
throat transition, 375 

Half-power width, 94, 104 
Hansen, W. W., 278 
Hayes, W. D., 449 
Hegarty, M., 523 
Height finding, 167 
Heins, A. E.,^410 
Hiatt, R., 251, 437, 442 
Hill, J. F., 503 
Horn arrays, 319 

as extended feeds, 481, 493-494 
Homs, biconical, 9 

box, 377-380 
compound, 350, 376 
pyramidal, 587 
sectoral (see 2£-plane sectoral horns; 

IT-plane sectoral horns) 
Hull, G. F., Jr., 415 



INDEX 619 

Hunter, L. P., 556 
Huygens-Fresnel principle, 108 

I 

Illumination, aperture, beamwidths vs., 
179, 183-187, 195 

dependence of gain on, 177-178 
gain factor vs., 187, 195 
side lobes vs., 179, 187, 195 

binomial, of broadside arrays, 269 
gabled, of broadside arrays, 269 

Images, of dipole radiators, 135-137 
principle of, 132-137 

for dipole-sources, 135-137 
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gain of, 423-432 
impedance correction for, 443-448 
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Phase measurement, line-length effect in, 
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334 
Radiation conditions, 85 
Radiation pattern, 90 
Radiation resistance, 39, 95 
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dipole, 92-96 
images of, 135-137 

streamlined, 310-313 
waveguide, 301-303, 329 

Radio Research Laboratory, 223 
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Reflector mismatch, 155-158 
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mismatch introduced by, 155-158, 

439-443, 454 
modified, 474, 477, 479-495, 503 
paraboloidal, feed-tilt effects in, 487, 

488 
structural design problems, 448-450 
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TEM-mode, of coaxial lines, 217-219 

current of, 216 
of cylindrical waveguide, 203, 204 
of parallel-plate waveguides, 235-236 
voltage of, 216 

Tenth-power width, 94, 104 
Terman, F. E., 349, 415 
Th^venin’s theorem, 20 
Tisza, L., 399 
TAf-mode, of circular waveguide, 233 

of coaxial line, 220 
of cylindrical waveguide, 206 
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