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EDITOR’S PREFACE 

The editors believe that the reader who has finished the study of this 

book will see the full justification for including it in a series of volumes 

dealing with aeronautical subjects. 

However, the editor's preface usually is addressed to the reader who 

starts with the reading of the volume, and therefore a few words on our 

reasons for including Professor Michal's book on matrices and tensors 

in the GALCIT series seem to be appropriate. 

Since the beginnings of the modern age of the aeronautical sciences 

a close cooperation has existed between applied mathematics and 

aeronautics. Engineers at large have always appreciated the help of 

applied mathematics in furnishing them practical methods for numerical 

and graphical solutions of algebraic and differential equations. How¬ 

ever, aeronautical and also electrical engineers are faced with problems 

reaching much further into several domains of modern mathematics. 

As a matter of fact, these branches of engineering vscience have often 

exerted an inspiring influence on the development of novel methods in 

applied mathematics. 

One branch of applied mathematics which fits especially the needs 

of the scientific aeronautical engineer is the matrix and tensor calculus. 

The matrix operations represent a powerful method for the solution of 

problems dealing with mechanical s3^stems with a certain number of 

degrees of freedom. The tensor calculus gives admirable insight into 

complex problems of the mechanics of continuous media, the mechanics 

of fluids, and elastic and plastic media. 

Professor MichaPs course on the subject given in the frame of the 

war-training program on engineering science and management has 

found a surprisingly favorable response among engineers of the aero¬ 

nautical industry in the Southern Californian region. The editors be¬ 

lieve that the engineers throughout the country will welcome a book 

which skillfully unites exact and clear presentation of mathematical 

statements with fitness for immediate practical applications. 

Theodore von KArmXn 

Clark B. Millikan 
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PREFACE 

This volume is based on a series of lectures on matrix calculus and 
tensor calculus, and their applications, given under the sponsorship 
of the Engineering, Scienc'e, and Management War Training (ESMWT) 
program, from August 1942 to March 1943. The group taking the 
course iinduded a (‘onsiderable number of outstanding research en¬ 
gineers and directors of engineering research and development. I am 
very grateful to these men who welcomed me and by their interest 
in my lectures eiu‘ouraged me. 

The purpose of this book is to give the reader a working knowledge 
of the fundamentals of matrix calculus and tensor calculus, which he 
may api)ly to his own field. Mathematicians, physicists, meteorologists, 
and electrical engineers, as well as mechanical and aeronautical en- 
ginexa’s, will discover principles apiilicable to their respective fields. 
The last group, for instance, will find material on vibrations, aircraft 
flutter, elasticity, hydrodynamics, and fluid mechanics. 

The book is divided into two independent parts, the first dealing 
with the matrix calculus and its applications, the second with the 
tensor calculus and its applications. The minimum of mathematical 
concepts is pn'sented in the introduction to each part, the more ad¬ 
vanced mathematical ideas being developed as they are needed in 
connection with the applications in the later chapters. 

The two-part division of the book is primarily due to the fact that 
matrix and tensor calculus are essentially two distinct mathematical 
studies. The matrix calculus is a purely analytic and algebraic sub¬ 
ject, whereas the tensor calculus is geometric, being connected with 
transformations of coordinates and other geometric concepts. A care¬ 
ful reading of the first chapter in each part of the book will clarify 
the meaning of the word ^Tensor,which is occasionally misused in 
modern scientific and engineering literature. 

I wish to acknowledge with gratitude the kind cooperation of the 
Douglas Aircraft Ck)mpany in making available some of its work in 
connection with the last part of Chapter 7 on aircraft flutter. It is a 
pleasure to thank several of my students, especially Dr. J. E. Lipp 
and Messrs. C. H. Putt and Paul Lieber of the Douglas Aircraft 
Company, for making available the material worked out by Mr. Lieber 
and his research group. I am also very glad to thank the members of 
my seminar on applied mathematics at the California Institute for 
their helpful suggestions. I wish to make special mention of Dr. C. C. 
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Lin, who not only took an active part in the seminar but who also 

kindly consented to have his unpublished rcsearcihes on some dramatic 
applications of the tensor calculus to boundary-layer theory in aero¬ 

nautics incorporated in Chapter 18. This furnishes an application of 

the Riemannian tensor calculus described in Chapter 17. I should 

like also to thank Dr. W. Z. Cliien for his timely help. 

I gratefully acknowledge the suggestions of my colleague Professor 

Clark B. Millikan concerning ways of making the book more useful 

to aeronautical engineers. 

Above all, I am indebted to my distinguished colleague and friend, 

Professor Theodore von Karnnin, director of the Guggenheim Graduate 
School of Aeronautics at the ("alifornia Institute, for honoring me by 

an invitation to put my lecture notes in book form for publication in 

the GALCIT series. I have also the delightful privilege of expressing 
my indebtedness to Dr. Karman for his inspiring conversations and 

wise counsel on applied mathematics in gcaieral and this volume in 

particular, and for en(‘ouraging me to make contacts with the aircraft 

industry on an advanced mathematical level. 

I regret that, in order not to delay unduly the publication of this 

book, 1 am unable to include some of my more recent unpublished 

researches on the applications of the tensor calculus of curved infinite 
dimensional spaces to the vibrations of clastic beams and other clastic 
media. 

Aristotle D. Michal 

California Institute of Technology 

October, 1946 
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PART I. MATRIX CALCULUS 
AND ITS APPLICATIONS 

CHAPTER 1 

ALGEBRAIC PRELIMINARIES 

Introduction. 

Although matrices have been investigated by mathematicians for al¬ 

most a century, their thoroughgoing application to physics,engineer¬ 
ing, and other subjects^ — sucii as cryptography, psychology, and 

educational and other statistical measurements — has taken place only 

since 1925. In particular, the use of matrices in aeronautical engi¬ 

neering in connection with small oscillations, aircraft flutter, and elastic 

deformations did not receive much attention before 1935. It is inter¬ 

esting to note that the only book on matrices with systematic chapters 

on the differential and integral calculus of matrices was written by 

three aeronautical engineers.^ 

Definitions and Notations. 

A table of mn numbers, called elements, arranged in a rectangular 

array of m rows and n columns is called a matrix ^ with m rows and n 

columns. If a] is the element in the iih. row and jth column, then the 

matrix can be written down in the following pictorial form with the 

conventional double bar on each side. 

a\, 02, • • ■, o’„ 
2 2 2 

j 

In- the expression aj the index i is called a superscript and the index j a 

subscript. It is to be emphasized that the superscript i in a} is not the 

ith power of a variable aj. 
If the number m of rows is equal to the number n of columns, then 

t Superior numbers refer to the notes at the end of the book. 
X Frazer, Duncan, and Collar, Elementary Matrices and Some Applications to 

Dynamics and Differential EquationSf Cambridge University Press, 1938. 

1 



2 ALGEBRAIC PRELIMINARIES 

the matrix is called a square matrix.] The number of rows, or equiva¬ 
lently the number of columns, will be called the order of the square 
matrix. Besides square matrices, two other general types of matrices 
occur frequently. One is the row matrix 

jj Ul, 0/2y ' * ' j II j 

the other is the column matrix 

a} 
a^ 

It is to be observed that the superscript 1 in the elements of the row 
matrix was omitted. Similarly the subscript 1 in the elements of the 
column matrix was also omitted. All this is done in the interest of 
brevity; the index notation is unnecessary when the index, whether a 
subscript or superscript, cannot have at least two values. 

It is often very convenient to have a more compact notation for 
matrices than the one just given. This compact notation is as follows: 
if aj is the element of a matrix in the ith row and jth column we can 
write simply 

II a] II 
instead of stringing out all the mn elements of the matrix. In par¬ 
ticular, a row matrix with element ak in the fcth column will be written 

IIII, 
and a column matrix with element a^ in the fcth row will be written 

II II • 

Elementary Operations on Matrices. 

Before we can use matrices effectively we must define the addition of 
matrices and the multiplication of matrices. The definitions are those 
that have been found most useful in the general theory and in the 
applications. 

Let A and B be matrices of the same type^ i.e., matrices with the same 
number m of rows and the same number n of columns. Let 

A = II a} II , B=\\hi\\. 
Then by the sum A + B of the matrices A and B we shall mean the 

t It will occasioaally be convenient to write aij for the element in the zth row 
and jth column of a square matrix. See Chapter 5 and the following chapters. 
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uniquely obtainable matrix 
C = II C* II , 

where 
Cy = a) + bj {i= 1,2, ■■■ , m; j = 1, 2, ■■■ , n). 

In other words, to add two viatrices of the Hamr. type, calculate the 
matrix whose elements are precisely the numerical sum of the cor¬ 
responding elements of the two given matrices. The addition of two 
matrices of different type lias no meaning for us. 

To comjilete the preliminary definitions we must make clear what we 
mean when we say that two matrices are equal. Two matrices A ^ || a} || 
and B ^ \\ h] || of iho same type are equal, written as A = if and 
only if the numeric^al equalities a} = b] hold for each i and j. 

Exercise 

1, -1, V2, 5 
A = 0, 0, 3, -2 • 

1.1, 2, -4, 1 

0, 0, 1 
5= 0, 0, -1, 3 • 

1, 0, 2, -4 
Then 

1, -1, 0, 6 
A + 5 - 0, 0, 2, 1 • 

2.1, 2, -2, -3 

The following results embodied in a tlu'orem show that matric 
addition has some of the projKU’ties of numerical addition. 

Theorem. If A and B arc any two matrices of the same type, then 

A-\-B = B + A. 

If C is any third matrix of the sarne type as A and B, then 

(A + i?) + C = A + (/? + C). 

Before we proceed with the definition of midtiplication of matrices, 
a word or two must be said about two very important special square 
matrices. One is the zero matrix, i.e., a square matrix all of whose 
elements are zero, 
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We can denote the zero matrix by the capital letter 0. Occasionally 
we shall use the terminology zero matrix for a non-square matrix with 
zero elements. 

The other is the unit matrixy i.e., a matrix 

where 
5} = 1 if f = j, 

= 0 if i 9^ j. 

In the more explicit notation 

1, 0, 0, “,0 
0, 1, o, -.,o 
0, 0, 1, 0,*-', 0 

7 - . 

II 0, 0, 0, *,0, 1 

One of the most useful and simplifying conventions in all mathe¬ 
matics is the summation convention: the repetition of an index once as a 

subscript and once as a superscript will indicate a summation over the 

total range of that index. For example, if the range of the indices is 
1 to 5, then 

6 

ai¥ means ^ai¥ or ai¥ + + asV -f ai¥ 4* ad)^. 

Again we warn the reader that the superscript ^ in 6' is not the zth power 
of a variable b. 

The definition of the multiplication of two matrices can now be given 
in a neat form with the aid of the summation convention. Let 



ELEMENTARY OPERATIONS ON MATRICES 5 

Then, by the product AB of the two matrices, we shall mean the matrix 

C- = II cj II , 
where 

c) = a'J>f {i = 1, 2, ■ • n; j = 1, 2, • • •, p). 

If c) is written out in extenso without the aid of the summation con- 
vention, we have 

c} = atfej + + • • • + 

It should be emphasized hero that, in order that the product AB oi 
two matrices be well defined, the number of rows in the matrix B must 
be precisely equal to the number of columns in the matrix A. It follows 
in particular that, if A and B are square matrices of the same typCy then 

AB as well as BA is always well defined. However, it must be empha¬ 
sized that in general .4^ is not equal to BA, written as AB 9^ BAy 

even if both AB and BA are well defined. In other words, matrix 
multiplication of matrices, unlike numerical multiplication, is not 
always commutative. 

Exercise 

The following example illustrates the non-commutativity of matrix 
multiplication. Take 

and 

A = 
0 1 
1 0 

B = 
-1 0 

0 1 

so that a[ = 0, aj = 1, a? = 1, Ug = 0, 

so that 6} = -1, hi = 0, 6? = 0, hi - 1. 

Now 
c} = aim = (0)(-l) + (1)(0) = 0, 

4 = aim = (0)(0) 4- (1)(1) = 1, 
cf = aim = (1)(-1) + (0)(0) = - 
4 = aim = (1)(0) + (0)(1) = 0. 

Hence 

AB = 
0 1 

-1 0 
• 

Similarly 

BA = 
0 -1 
1 0 

• 

But obviously AB 7^ BA. 

The unit matrix I of order n has the interesting property that it 
commutes with all square matrices of the same order. In fact, if A is 
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an arbitrary square matrix of order n, then 

A1 A. 

The multiplication of row and column matrices with the same 
number of elements is instructive. Let 

^ = II«. II 
be the row matrix and 

B = II 6- II 
the column matrix. Then AB aib\ a number, or a matrix with one 

element (the double-bar notation lias been omitted). 

Exercise 

If A = II 1, 1, 0 II and B = , then 

A^ = (l)(0) + (1)(0) + (0)(1)=0. 

This example also illustrates the fact that ike. 'product of two matrices 

can be a zero inatrix although neither of the multiplied matrices is a zero 

matrix. 

The multiplication of a square matrix with a column matrix occurs 

frequently in the applicaUons. A system of n linear algebraic equations 

in n unknowns x\ x-^ • • • , x” 

a]xd = b^ 

can be written as a single matrix equation 

AX = B 

in the unknown column matrix X 

matrix ^4 = || a] |1 and column matrix == |1 6* 
A system of first-order differential ociuations 

dx^ 

dt 

can be written as one matric differential equation 

dX 

and the given square 

dt 
= AX, 

Finally a system of second-order differential equations occurring 
in the theory of small oscillations 

.. . 
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can be written as one matiic second-order differential equation 

(PX 

dP 
= AX. 

The above illustrations suffice to show the coin})actn(\ss and sim¬ 
plicity of matric ecpiations when use is made of matrix multiplication. 

Exercises 

1. Compute the matrix AB when 

A - 
1, 0 

0, 1 

1, 0 

and 

Is BA defined? J'Lxplain. 

2. Compute the matrix AX when 

B = 
0, 0, 2 

-1, 0, 0 

1, 3, 0 1 

A = -1, 2, 1 and X = 0 

0, 0, 2 -2 

Is XA defined? Explain. 



CHAPTER 2 

ALGEBRAIC PRELIMINARIES (Continued) 

Inverse of a Matrix and the Solution of Linear Equations.^ 

The inverse a~\ or reciprocal, of a real number a is well defined if 
a 9^ 0. There is an analogous operation for square matrices. If A is a 
square matrix 

4 = II «; II 
of order n and if the determinant | oj | 0, or in more extended no¬ 
tation 

a?, “2, • • •, al 

^ 0, 

Ou a.„ 

then there exists a unique matrixj written A~^ in analogy to the inverse of 
a numbery with the important properties 

(/ is the unit matrix.) (2-1) 
AA-^ 
A-^A 

The matrix if exists, is called the inverse matrix of A. 
In fact, the following more extensive result holds good. A necessary 

and sufficient condition that a matrix A = || a) || have an inverse is that 
the associated determinant | a) | 0. 

From now on we shall refer to the determinant a = | a] | as the 
determinant a of the matrix A. Occasionally we shall write | A | for 
the determinant of A. 

The general form of the inverse of a matrix can be given with the 
aid of a few results from the theory of determinants. Let a = | a) \ 
be a determinant, not necessarily different from zero. Let a) be the 
cofactor f of in the determinant a; note that the indices i and j are 
interchanged in a} as compared with ai. Then the following results 

t The (n - l)-rowed determinant obtained from the determinant a by striking 
out the yth row and ith column in a, and then multiplying the result by (-1)*^"^. 

8 
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come from the properties of determinants: 

a)ai ^ a (expansion by elements of ^th row); 
a}ai = a dl (expansion by elements of A:th column). 

If then the determinant a 5*^ 0, we obtain the following relations, 

(2.2) 

on defining 

(aH = 

Let = II a) ||, B = || ||; then relations 2-2 state, in terms of 
matrix multiplication, that 

AB = /, BA^ L 

In other words, the matrix B is precisely the inverse matrix of A. 
To summarize, we have the following computational result: if the 

determinant a of a square matrix ^ == || a] || is different from zero, then 
the inverse matrix A'~^ of A exists and is given by 

= II II, 
I 

* C^ * • 

where 0} = — and a} is the cofactor of al in the determinant a of the 
a 

matrix A. 
These results on the inverse of a matrix have a simple application to 

the solution of n non-hornogeneous linear (algebraic) equations in n 
unknowns x^, x^, • • •, x^. Let the n equations be 

a)x^ = ¥ 

(the numbers a] are given and the n numbers ¥ are given). On de¬ 
fining the matrices 

^ = II a} II, X = II X-- II, B = II ¥ II, 

we can, as in the first chapter, write the n linear equations as one matric 
equation 

AX = B 

in the unknown column matrix X. If we now assume that the de¬ 
terminant a of the matrix A is not zero, the inverse matrix A^^ will 
exist and we shall have by matrix multiplication 

A-\AX) = A-^B, 

Since A'^^A = I and IX = X, we obtain the solution 

X = A-^B 

of the equation AX — B, In other words, if a) is the cofactor of aj in 
the determinant a of -4, then x" = oLp^fa is the solution of the system 
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of n equations a)x^ = under the condition a 9^ 0. This is equivalent 

to Cramer’s rulc“ for the solution of non-hoinogeneous linear equations 

as ratios of determinants. It is more explicit than Crarner^s rule in 

that the determinants in the numerator of the solution expressions are 

expanded in terms of the given right-hand sides h'\ • • •, 6” of the 

linear equations. It is sometimes j)ossible to solve the equations a]x^ = 

readily and obtain x^ =- \]bK The inverse matrix A~^ to A = \\ a) || 

can then be read off by inspection — in fact, A~^ |l X} ||. 

Practical methods, including approximate methods, for the calcula¬ 

tion of the inveu'se (sometimes called reciprocal) of a matrix are given in 

Chapter IV of tlu^ book on matric,(‘s by Frazer, Duncan, and Collar. 

A method based on the (kxyley-llamilton theorem will be presented at 

the end of the chapter. 

A simple example on the inverse of a matrix would be instructive at 

this point. 

Exercise 

Consider the two-rowed matrix 

A 
0 1 

-1 0 
According to our notations 

= 0, aj = 1, a? = -1, al = 0. 

Hence the cofactors a] of A will be 

a\ = (cofactor of a\) =0, al = (cofactor of af) = -1, 

ai = (cofactor of a!) == 1, al = (cofactor of dl) ~ 0. 

Now A~^ = II II , where = a]/a. But the determinant of A is 

a = 1. This gives us immediately I3\ = 0, fSl ^ -I, = 1, 01 = 0. 

In other words, 

0 -1 

1 0 

Approximate numerical examples abound in the study of airplane¬ 

wing oscillations. For (ixample, if 

0.0176, 0.000128, 0.00289 

A = 0.000128, 0.00000824, 0.0000413 

I 0.00289, 0.0000413, 0.000725 

then approximately 

170.9, 1,063., -741.7 

A-i = 1063., 176,500., -14,290. 

-741.7, -14,290., 5,150. 

See exercise 2 at the end of Chapter 7. 
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From the rule for the product of two determinants,the following 

result is immediate on observing closely the definition of the product 

of two matrices; 

If A and B arc two square matrices with determinants a and b respec¬ 

tively, then the determinant c of the matric product C = AB is given by the 

nurnsrical multiplication of the two numbers a and b, i.e., c = ab. 

This result enables us to calculate immediately the determinant of 

the inverse of a matrix. Since AA~ ^ = I, and since the determinant of 

the unit matrix 7 is 1, the above i-esult shows that the determinant of 

A is 1/a, where a is the determittard of A. 

From the asso(*iati\'ity of the operation of multiplication of square 

matrices and the pro]:>erties of invcTses of matrices, the usual index 

laws for powers of numbers hold good for powers of matrices even 

though matric multiplication is not commutative. By the associativity 

of the operation of matric multiplication we mean that, if A, J5, C are 

any three square matrices of the same order, then j 

A{BC) = {AB)C, 

If then A is a square matrix, there is a unique matrix A A ••• A with 

s factors for any given positive integer s. We shall write this matrix 

as A"* and call it the .sth power of the matrix A. Now if we define 

A^ = 7, the unit matrix, then the following index laws hold for all 

positive integral and zero indices r and s: 

A^A^ = /IvU = 
{A^y - (A^y = A^\ 

Furthermore, these index laws hold for all integral r and s, positive or 

negative, whenever A~^ exists. This is with the understanding that 

negative powers of matrices arc defined as positive powers of their inverses, 

i.e., A~^ is defined for any positive integer r by 

A-r = (A~^y. 

Multiplication of Matrices by Numbers, and Matric Polynomials. 

Besides the operations on matrices that have been discussed up to 

this section, there is still another one that is of great importance. If 

A = \\ a] II is a matrix, not necessarily a square matrix, and a is a 

number, real or complex, then by aA we shall mean the matrix || aa] ||. 

This operation of multiplication by numbers enables us to consider 

matrix polynomials of type 

(2-3) aoA^ 4- -j. ... 4. ^n-lA + an/. 

t Similarly, if the two square matrices A and B and the column matrix X have 
the same number of rows, then {AB)X = A{BX). 
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In expression 2-3, ao, ai, * • * , «n are numbers, A is a square matrix, 
and I is the unit matrix of the same order as ^4. In a given matric 
polynomial, the a^’s are given numbers, and ^ is a variable square 
matrix. 

Characteristic Equation of a Matrix and the Cayley-Hamilton Theorem. 

We are now in a position to discuvss some results whose importance 
cannot be overestimated in the study of vibrations of all sorts (see 
Chapter 6). 

If = II a] II is a given square matrix of order n, one can form the 
matrix X/ — called the characteristic matrix of A, The determinant 
of this matrix, considered as a function of X, is a (numerical) poly¬ 
nomial of degree n in X, called the characteristic fun,ction of A, More 
explicitly, let /(X) = | X/ — yl | ; then /(X) has the form /(X) = X” + 

+ • • • + On-iX + an. Since an = /(O), we see that an = | -A | ; 
i.e., an is (—1)” times the determinant of the matrix A. The algebraic 
equation of degree n for X. 

/(X) = 0 

is called the characteristic equation of the matrix A, and the roots of the 
equation arc called the characteristic roots of A. 

We shall close this chapter with what is, perhaps, the most famous 
theorem in the algebra of matrices. 

The Cayley-Hamilton Theorem. Let 

/(X) - X^ + aiX'*”! + ' * • + an-iX + an 

he the characteristic function of a matrix A, and let I and 0 he the unit 

matrix and zero matrix respectively with an order equal to that of A. 

Then the matric polynomial equation 

‘ + Un-iX -h an/ = 0 

is satisfied hy X ^ A, 

Example 

Take A = 
0 1 
1 0 

then /(X) = 

n = 2, and ai = 0, 02 = -1. But = 

X -1 
-1 X 

1 0 
0 1 

I == X^ — 1. Here 

Hence A^ -/ = 0. 

The Cayley-Hamilton theorem is often laconically stated in the 
form A matrix satisfies its own characteristic equation.In symbols, 
if /(X) is the characteristic function for a matrix A, then /(A) = 0. 
Such statements are, of course, nonsensical if taken literally at their 
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face value. However, such mnemonics are useful to those who thor¬ 
oughly understand the statement of the Cayley-Hamilton theorem. 

A knowledge of the characieristic function of a matrix enables one 

to compute the inverse of a matrix^ if it exists, with the aid of the Cayley- 

Hamilton theorem. In fact, let A be an n-rowed square matrix with an 
inverse A~^. This implies that the determinant a oi A is not zero. 
Since 0 an = (- l)"a, we find with the aid of the Cayley-Hamilton 
theorem that A satisfies the matric equation 

I — — []i4” -h a\A^ ^ + • • • Un—2-^^ + an—iA~]. 
Ufi 

Multiplying both sides by A~^, we see that the inverse rnatrix A~^ can 

be computed by the following formula: 

(2-4) A'-^'^ = —+ aiA^-^ + • • • + an-iA + Un-i/]. 
Un 

To compute A~'^ by formula 2-4 one has to know the coefficients Oi. 
02, • • •, ttn-i, On in the characteristic function of the given matrix A. 

Let ^ = li a} II ; then the trace of the matrix A, written tr (A), is 
defined by tr (^) = a], the sum of the diagonal elements a\, al, • • •, 
aJJ. Define the numbers'^ Si, S2, • • *, 5n by 

(2-5) Si = tr (A), 6*2 = tr (A^), • • •, 6v = tr (AO, * * •, = tr (A”) 

so that Sr is the trace of the rth power of the given matrix A. It can be 
shown^ by a long algebraic argument that the numbers Oi, ••*, On 
can be computed successively by the following recurrence formulas: 

f 
Oi ~ —6*1 

02 = —2 + 62) 

as = -Ka^si + aiS2 + ss) 

(2-6) < ■ 

On = — “■(an-l6i an-2S2 + * * ' + + 6nj. 
I n 

We can summarize our results in the following rule for the calculation 
of the inverse matrix A“^ to a given matrix A. 

A Rule for Calculation of the Inverse Matrix A~\ First 
compute the first n — 1 powers A, A^, ••*, A”~^ of the given n- 
rowed matrix A. Then compute the diagonal elements only of A'*. 
Next compute the n numbers 5i, 62, • * *, 6n as defined in 2-5. Insert 
these values for the Si in formula 2 • 6, and calculate Oi, 02, • • *, On 

successively by means of 2-6. Finally by formula 2*4 one can calcu- 
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late A~'^ from the knowledge of ai, • • •, a„, and the matrices A, A‘^y 

• • A”'~''^, Notice that the whole A^ is not needed in the calculation 

but merely Sn = tr (A'O, the trace of A^. 

Punched-card methods can be used to c.alculate the powers of the 

matrix A. The rest of the calculations are easily made by standard 

calculating machines. Hence one method of getting ?iu7nerical solutions 

of a system of n linear equations in the n unknowns 

4^ = 6‘ (I a} I 0) 

is to compute ^4“^ of ^ = || a) || by tlui above rule wdth the aid of 

punched-card methods and then to compute A~^By where i? = || ||, 

by punched-card methods. The solution column matrix X = \\ || 

is given by Z = A~^B. 

Exercises 

1. Calculate the inverse matrix to A = 

Solution. 

0 1 
1 0 

by the last method of this chapter. 

A2 = 
1 0 

0 I 
y Si = 0, 52 = 2, Oi = 0, ~~L 

Now A-^ = - — [A + fli/] = A. Hence 
0/2 

2. See the exercise given in M. D. Bingham’s paper. See the bibliography. 

3. Calculate A~^ by the above rule when 

15 11 0 -9 -15 
1 3 9 -3 -8 

7 6 6 -3 -11 

7 7 5 -3 -11 

17 12 5 -10 -16 

After calculating A^, A^y A‘\ and the diagonal elements of A^, calculate 5i = 5, 

S2 =« -41, S3 » -217, Si = -17, 55 = 3185. Inserting these values in 2-6, find 

Oi — —5, 02 — 33, CI3 — —51, Oi = 135, (Z5 — 225. 

Incidentally the characteristic equation of A is 

/(X) = X5 _ 4- 33X3 _ 51X2 135X 4. 225 

= (X 4- 1)(X2 - 3X + 15)2 = 0. 

Finally, using formula 2-4, find 

-207 64 -124 111 171 

-315 30 195 -180 270 

-315 30 -30 45 270 

-225 75 -75 0 225 

-414 53 52 -3 342 



CHAPTER 3 

DIFFERENTIAL AND INTEGRAL CALCULUS OF 

MATRICES 

Power Series in Matrices. 

Before we discuss the subject of power series, it is convenient to 

make a few introductory remarks on general series in matrices. Let 

Ao, Ai, /I2, A3 • • * be an infinite sequence of inatric.es of the same type 

(i.e., same number of rows and columns) and let Sp = Ao -i- Ai A2 

+ • • • + Ap be the matric, sum of the matrices Ao, Ai, A2, • • and Ap. 

If every element in the matrix Sp converges (in the ordinary numerical 

sense) as p baids to infinity, then by S = lim Sp we shall mean the 
p-> CO 

matrix S of the limiting elements. If then the matrix S = lim Sp exists 
p—> CO 

in the above sensCy we shall say, by definitioUy that the matric infinite series 
CO 

ZAr converges to the matrix S, 
r = 0 

Example 

I h 1 
Take Ao = /, Ai = /, A2 = —A3 = • • •, Ai = -7;/, * • Then 

ZI 61 11 

>Sp = Ao + Ai + A2 + * • • + Ap = + 1 + — + — + • • • + 

Hence, on recalling the expansion for the exponential c, we find that 
CO 

lim Sp == el. In other words, X^Ar = el. 
p—^00 r —0 

If A is a square matrix and the ai, 02, * * • are numbers, one can 

consider matric power series in A 

r=0 

In other words, matric power series are particular matric series in which 

each matrix Ar is of special type t Ar = cirA% where A^ is the rth power 

of a square matrix A. (A^ = / is the identity matrix.) Clearly matric 

polynomials (see Chapter 2) are special matric power series in which all 

the numbers a^ after a certain value of i are zero. 

An important example of a matric power series is the matric expo¬ 

nential Junction e^ defined by the following matric power series: 

= 7 + 4 + • • • + • • 

t The index r is not summed. 
15 
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The following properties of the matrix exponential have been used 
frequently in investigations on the matrix calculus: 

1. The matric power series expansion for is convergent^ for all 
square matrices A, 

2. whenever A and B are commutative matrices, 

i.e., whenever AB = BA. 

3. e^e~^ = c~^e^ = 1. (These relations express the fact that 
is the inverse matrix of e^.) 

Every numerical power series has its matric analogue. However, 
the corresponding matric power series have more complicated proper¬ 
ties — for example, Other examples are, say, the matric sine, sin 
A, and the matric cosine, cos A, defined by 

Bin A == A - ^A^ + ~A^ - • • • 
o! o I 

cos 4 ^ I -l-A^ -. 
2! 4! 

The usual trigonometric identities are not always satisfied by sin A 

and cos A for arbitrary matrices. 

Differentiation and Integration of Matrices Depending on a Numeri¬ 
cal Variable. 

Let A{t) be a matrix depending on a numerical variable t so that 
the elements of A(t) are numerical functions of t. 

«i(0, «2(0, ■■■, aUi) 

■■■, aliO 

A(t) = . 

<(0, <(0, • • •, C(0 

Then we define the derivative of A{t), and write it 

dA{t) 

dt 

da\{t) da\{t) 

dt ^ dt ^ ^ dt 

da\{t) da\{t) dal{t) 

dt ^ dt ^ dt 

daf (t) da^ (t) da^ (t) 

dt ^ dt ^ ^ dt 
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Similarly we define the integral of A (t) by 

y*a](0 dt, fal{t) dt, f a\(t) dt 

fa\{t) dt, fc^fit) dt, 

fA{t) dt = 

faTit) dt, faJfit) dt, ■■■, dt 

■, fO-nil) dt 

It is no mathematical feat to show that differentiation of matrices 
has the following properties: 

(3-1) 

(3-2) 

(3-3) 

etc. 

d[_A{t) + B{t)'} dA(t) ^dB{t) 

dt dt 

d!iA{t)B{t)'] dA{t) 

dt 

dt dt 
Bit) + Ait) 

dBjt) 

dt 

^^AiOBiOCm = ^B(0C(0 + Ait)^Cit) 

+ A(t)Bit) 
dCit) 

dt ’ 

There are important immediate consequences of properties 3-2 and 
3*3. For example, from 3*2 and A~^{t)A(i) = /, we see that 

(3*4) 

Also, from 3*3, we obtain 

dA^(t) dA{t) 
(3*5) 

dt dt 
A^it) + Ait)'^^^Ait) + A\t)^^’"^^ 

dt dt 

There are similar formulas for the derivative of any positive integral 
power of A(t). 

If f is a real variable and A a constant square matrix, then one obtains 

d{t^A) 

dt 
rt^~^A. 

Then, with the usual term-by-term differentiation of the numerical 
exponential, the following differentiation can be justified: 

(3-6) 

= Ad tA „IA e'M. 
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There is an important theorem in the matrix calculus that turns up 
in the mathematical theory of aircraft flutter (see Chapter 7). The 
proof, into which we can not enter here, makes use of the modem 
theory of functionals. 

Theorem. If F{\) is a power scries that converges for all X, then the 

matric power series F(A) can be computed by the expansion^ 

(3-7) F{A) = 
1 = 1 

where A is an n-rowed square matrix with n distinct characteristic roots 

Xi, X2, • • X„, and Ci, (?2, * * *, arc n matrices defined by^ 

(3-8) Gi IJCX/ - A). 

There are a few matters that must be kept in mind in order to have 
a clear understanding of the moaning of this result. In the first place 
the matric power series F{A) = a^I + a\A -f a^A'^ 4- ... -f. . .. when¬ 
ever F(X) = ao -f oti\ + afS?- +••• + •••. In other words X^^ = 1 is 
‘^replaced” by A^ = 7, the unit matrix, in the transition from F(\) to 
F{A). Secondly to avoid ambiguities we must write explicitly the 
compact products occurring in equation 3-8. 

IlCXy - Xi) = (Xi - Xi)(X2 - Xi) • • • (Xi_, - Xi)(Xi+i - X.) • • • (X„ - Xi), 

Ilex/ - A) ^ (XiZ - 4)(X2/ - A) ■■■ (Xi-J - ^)(Xi+i/ - A) ■■■ 
jy&i 

(XJ - A). 

There are special cases of particular interest in vibration theory (see 
Chapters 6 and 7). They correspond to the power of a matrix A"' and 
the matrix exponential e^. The expansion 3*7 yields immediately 

(3-9) 

and 

(3 10) 

A^ = ZXiGi 
i=ti 

= ie^Gi, 
t = l 

where the matrices Gi have the same meaning as in 3-8. 

Exercise 

Calculate the matrix when A is the matrix A 

by calculating directly. 

0 1 
1 0 

Check the result 
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Solution. The characteristic roots are Xi == 1, X2 = -E 

Gi and G2 are as follows: 

^ X2/-A 1 ^ 1 11 

‘ X2 - X, “ 2 2 1 1 

G „ bl-zA ^ 1 (/ _ ^), 1 ^ . 
X, - X2 2 2-1 1 

2e\Gi e 1 1 ^ 1-1 

2 1 1 2 -1 1 

cosh 1 sinh 1 
sinh ] cosh 1 

Hence the matrices 



CHAPTER 4 

DIFFERENTIAL AND INTEGRAL CALCULUS OF 

MATRICES (Continued) 

Systems of Linear Differential Equations with Constant Coefficients. 

The matric exponential has important applications to the solution of 
systems of n linear differential equations in n unknown functions x^ii), 

xr(t), • • • , x^(t) and with constant coefficients a]. The variable t 

is usually the time in physical and engineering problems. Without 
dJC 

defining the derivative —, we merely mentioned in the first chapter 
at 

that we can write such a system of equations as one matric equation 

(4-1) 
dX{i) 

dt 
= AX{t). 

Having defined the matric derivative, we are enabled to view this 
equation with complete understanding. 

From formula 3*6 of the previous chapter we find that 

(4.2) ^ 
dt 

where is an arbitrarily given value of t. But this result is equivalent 
to saying that X{t) = is a solution of the matric differential 
equation 4-1 for an arbitrary column matrix Xq. A glance at the 
expansion for the matric exponential shows that the solution 
X (t) has the property 

X(to) = Xo. 

In summary, we have the result ^ that 

(4-3) Xit) = 

is a solution'^ o/ 4 • 1 with the property that X(to) = X^ for any preassigned 

constant column matrix Xq, 

so that 

Example 

dx^it) 

dt 

dx\i) 
—-— = 

dt 

dt 
= AX, 

20 
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where 

A = 
0 1 

1 0 
and X = 

Now Xi = 1, X2 = — 1, and we saw in the last exercise of the previous 
chapter that 

Gi 
1 1 1 , ^ 1 -1 

2 1 1 2 -1 1 
Hence 

cosh (t - t 0) sinh (t - to) 

sinh (t — t 0) cosh {t - to) 

AX, X(/o) = Xo 4 

4 

cosh (t - to) sinh it - to) 

sinh (t — to) cosh it — to) 

= xi, x"(to) = Xo 

Therefore the unique solution of the differential system 

dX 

(it 

is 

Xit) ^ 

This means that the unique solution of the differential system 

dx^ 2 

dt ^ ^ dt 

is 
ix\i) = [cosh {t - <o)>J + [sinh {t - ^())]x? 
\x\t) = [sinh {t - fo)]4 4- [cosh {t - ^())>o* 

Systems of Linear Differential Equations with Variable Coefficients. 

Although the matric exponential is not applicable to the solution of 
a system of linear differential cciuations with variable coefficients 
a){t), there are some analogous matric expansions that enter into the 
solution of such a system. The system of differential equations 

dx\t) 
(4.4) 

dt 
= a){t)x^{t) 

is written as one matric differential equation 

dX{t) 
(4-5) 

dt 
= A{t)X(t) 

where A{t) = || a){t) || and X{t) is the column matrix of the n un¬ 
known functions x^t). 

On integrating both sides of 4*5 between <0 and t we obtain the 
equivalent matric equation 

(4*6) Xit) = X(/o) + rA(s)X(s) ds, 
Jto 
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By the method of successive substitutions, we are led to consider the 
following expansion as a solution of 4-6: 

(4-7) X{t) = [/ + r A{s) ds + f A{s) ds f ^(^i) dsi 
*/io vtQ Jh 

+ + ■••] 

X(io). 

Now the method of successive substitutions for equation 4*6 can be 
described as follows. In the integral term in 4 • 6 substitute for X{s) its 
equivalent as given by formula 4 • 6 itself. This yields 

X(t) = X(to) + r^(s) ds X(to) + f A(s) ds rA(si)X(si) dsi. 
_•/ to J ^ to ^ to 

Again substituting for X(si) its equal as given by 4*6 we are led to a 
new expansion for X{t). Continuing indefinitely this way we are led 
to the matric infinite series 4 • 7. 

If we define the matrix 

(4-8) J2UA) = / + fA{s) ds + fAis) ds CaCsi) dsi 
•Jto m/to */to 

+ 
Jf*t ns nsi 

A (s) ds I A (si) dsi I A ($2) ds2 + 
to %) to to 

+ 

then it can be proved that, for a]{t) continuous in ^ ^ ^ ^1, 

(4*9) X{t)^itXA)X, 

is the unique solution of the matric differential equation 4*5 that takes 

on the arbitrarily given constant matric value Xo for ^ It is often 
simpler to carry out the matrix multiplications first in 4-8 and 4*9 
before carrying out the successive integrations. If the matrix is inde¬ 
pendent of t, then, by an evident calculation, solution 4*9 reduces 
precisely to the matrix exponential type 4-3. 

For approximate numerical calculations, a few terms in the expansion 
for may suflSce in 4-9 to give a good approximation to the 
solution of the matric differential equation 4-5. 

Exercises 

1. Integrate by matrix methods the second-order differential equation 

(Px{t) 
dP 

■ - x{t) - 0 

subject to the initial conditions xito) « xo, 2/0. 

(Hint. Write the differential equation as a system of two first-order equations 

dx^ ^ dx^ 



SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 23 

with initial conditions x^to) = xo, x\U) = yo, and use the results of the example il¬ 

lustrating formula 4-3.) 

2. Integrate by matrix methods the second-order differential system for har¬ 

monic oscillations with frequency CO 

dH{t) / dx\ 
+ CO^x{t) = 0, x{U) = Xo, ( ~ 1 = ?/o. 

(Hint. Write the equation as a system of two first-order linear equations.) 

3. Discuss the solutions of the differential equation 

d^x dx 
m — + d — + = 0 

dt^ dt 

for free damped oscillations by matrix methods with the restriction that (3 2\//cw. 

m •= mass, /3 = damping factor, and k = elastic constant, so that all three m, k 

are positive constants. Clearly the restriction rules out the critical damping case. 

(Hint. Write the differential equation as a first-order matric differential equation 

where 

di 
= AX, 

0 1 
A « - h 

m m 

and notice that the characteristic equation of this matrix is the characteristic 

equation*’ of the given second-order differential equation in the usual elementary 

sense.) 

4. Integrate by matrix methods the second-order differential equation 

dt^ 
- tx(t) = 0 

subject to the initial conditions x(0) = Xo, 



CHAPTER 5 

MATRIX METHODS IN PROBLEMS OF SMALL 

OSCILLATIONS 

Differential Equations of Motion.^ 

The problem of small oscillations^ (of conservative dynamical sys~ 
terns) about an equilibrium position concerns itself with the solution 

of the Lagrangian differential equations of motion in which the kinetic 

and potential energies are liomogeneous cjuadratic forms, in the veloci¬ 
ties and coordinates respectively, with constant coefficients. The 

theory is approximate in that the constancy of the coefficients in the 

kinetic energy and the quadratic type of the potential energy are due 
to approximations in the actual form of the kinetic and potential 

energies respectively. If, without loss of generality, we take all the 

coordinates of the equilibrium position to be zero, these approximations 

are due to the assumed smallness of the coordinates and velocities 
about the equilibrium position. 

Let 
^ dq^ 

^dt 
and 

V = ^hijq'q^' {bij = bji) 

be the kinetic and potential energies respectively of our oscillating 
system with n degrees of freedom. In view of what wo have already 

said, the and by are constants. We shall consider the case in which 
the equilibrium point is stabky i.c., the potential energ}^ V has a mini¬ 

mum at q^ ^ 0. Now it can be proved that the positive definiteness of V 

is a necessary and sufficient condition that (0, 0, • • •, 0) be a stable 

equilibrium point. V is, by definition, positive definite if F ^ 0 for 

all and F = 0 if and only if q' = 0. Clearly the kinetic energy T 

is positive definite in the velocities 
CLL 

Lagrange^s equations of motion for our oscillating system are 

d 

dt' ©■ 
on using the notation g* 

dq' 

dq' 

H' 

{i = 1, 2, • • •, n) 

If we use the explicit form for the 

24 
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kinetic and potential energies, Lagrange^s equations reduce to the 
system of n second-order differential equations 

(5-1) 

, _ , , (Pqj 
where we have used the notation q^ --If we define two square 

df 

matrices t 

^ = II II , II II , 
and the unknown column matrix 

Q{i) = II m 11, 
then we can write our differential ecjuations 5-1 of motion as the one 
matric differential equation 

(5*2) 

Since the kinetic energy is positive definite, it can be proved that 
the determinant | A \ 9^ 0. Hence it follows from our discussion in 
Chapter 2 that the inverse matrix A~^ exists. On multiplying both 
sides of equation 5 * 2 on thcj left by A and remembering that A~^A = /, 
the unit matrix, we obtain the following equivalent matric differential 
equation 

(5-3) 
dm) 

dt^ 
-CQ{t\ 

where C is the (constant) square matrix C = A^^B, 

To summarize, we have the following result. If A and B are the 

constant square matrices of the coefficients of the kinetic and ^potential 

energies respectively, then the motion of our oscillatory system is governed 

by the matric differential equation 5*3. 

Illustrative Example 

Two equal masses, each of mass m, are connected by a spring with 
elastic constant k while each mass is connected to a fixed wall by a 
spring with elastic constant k. The kinetic and potential energies of 
this two-degree-of-freedom problem are 

V = + (q^ - q^n 

t Recall the notations for matrices given in Chapter 1. 
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where and are the respective displacements of the centers of the 
two masses ^‘paralleU^ to the springs and are measured from the 
equilibrium position in which all three springs are unstressed. Hence 
by a direct calculation from the kinetic and potential energies we find 
that the matric equations of motion are 

(5*4) 

where 

-CQ{t), 

2k k 

m m 

k 2k 

m m 

If we define the column matrix R(t) = 
r-{t) 

1 dQ{t) 
by = iJ(0, we 

can write the second-order matric differential equation 5*4 as a first- 
order matric differential equation 

dS(t) 
(5-5) 

where 
dt 

US(t), 

and 

(5-6) U ^ 

?'(<) 
S(t) = q\t) 

r>(<) 
r^{t) 

0 0 1 0 
0 0 0 1 

-2k k 
- 0 0 

m m 

k - ■2k 
— 0 0 

\ m m 

The characteristic equation of the matrix U turns out to be 

^ 4A: , „ + _ = 0. 
m 

Now — > 0, so that there are four distinct pure imaginary character- 
m 

istic roots of IJ given by 

(5*7) 
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Exercise 

A shaft of length 2^, fixed at one end, carries one disk at the free end and another 

in the middle. If is the moment of inertia of each disk, and arc the respec¬ 

tive angular deflections of the two disks, then the kinetic and potential energies are 

^ = I [(«')’“ + (.<f - 9’)’’] 

under the assum[)tion that the shaft has a uniform torsional stiffness T. Find the 

matric differential equation of motion. Write this equation as a system of two 

first-order matric equations. Discuss the solutions of this system and then the mo¬ 

tion of the disks. 



CHAPTER 6 

MATRIX METHODS IN PROBLEMS OF SMALL 

OSCILLATIONS (Continued) 

Calculation of Frequencies and Amplitudes. 

Let us inquire into the pure harmonic solutions of our differential 
equation of motion 

(6-1) 
d^Qjt) 

dt^ 

where C = We thus seek solutions of 6-1 of type 

(6*2) Q(t) = sin {wt 4- ^)r, 

where o) is an angular frequency, xp an arbitrary phase angle, and T 

a column matrix of amplitudes. On substituting 6 • 2 in 6 • 1 we obtain 

-0)2 sin (oot 4- ^)r = -sin (o)t + xl/)CT. 

Hence a necessary and sufficient condition that 6-2 be a solution of 
6*1 is that the frequency co and the corresponding column matrix F of 

amplitudes satisfy the matrix equation 

(6-3) (0)2/-OF = 0. 

In order that there exist a solution matrix F 0 of 6-3, it is clear 

from the theory of systems of linear homogeneous algebraic equations 
that 0)2 must be a characteristic root of the matrix C. Since C = 

we verify immediately the statement that 

(6*4) -C ^ - B), 

On recalling that the determinant of the product of two matrices is 
equal to the product of their determinants, we see that the determinant 

I A-^iic^A - S) I = I A-i I I 0)2^ - JS I 
and hence, by 6 • 4, 

I 0)2/ - C I = 1 I I 0)2^ - 5 I . 

But 1 A~^ I 7*^ 0, so that the characteristic roots of the matrix C are 
identical with the roots of the frequency” equation 

(6‘5) I XA - B I =0. 

Since the kinetic and potential energies are positive definite quadratic 

forms^ it can be proved (see any book on dynamics such as Whittaker^s) 
that all the roots of the frequency equation are positive. Hence all the 

characteristic roots of the matrix C = A~~^B are positive. 

28 
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Since the potential energy is a positive definite quadratic form, it 
follows that I B I > 0 and hence that exists. Therefore C~^ 

exists and is given by C~^ = B~^A. On multiplying both sides of equa¬ 
tion 6 • 1 by C~^f we obtain the matric differential equation 

(6-6) Qit) = -D 
d?Q{t)^ 

df 

where D = = ^“^^4. This equation is obviously equivalent to equa¬ 
tion 6*1. If we now proceed with G-G as we did with G* 1, we are led 
to the equation 

(0-7) 

This equation can also be derived by operating directly with equation 
G-3. It is clear from equations G-3 and G-7 that the characteristic 

roots of the matrix D = are the corresponding reciprocals of the 

characteristic roots of the matrix C. We shall call D the dynamical 

matrix. 

Let us write 6 • 7 in the equivalent form 

(6-8) r = o>^DV. 

The classical method of finding the frequencies and amplitudes of 
our oscillating system consists in first finding the frequencies by solving 
the frequency equation 6* 5, or equivalently in finding the characteristic 
roots of the matrix C = A~^B, and then in detennining the ampli¬ 
tudes by solving the system of linear homogeneous equations that 
corresponds to the matrix equation G*3. Such a direct way of 
calculating the frequencies and amplitudes often involves laborious 
calculations. For approximate numerical calculations, the method 

of successive approximations when applied to equation G-8 greatly re¬ 
duces the laborious calculations. This is especially true when only the 
fundamental frequency (lowest frequency) and the corresponding 
amplitudes are desired. ^ We shall assume now that all the frequencies of 

our oscillating system are distinct. The method of successive approxi¬ 
mations for equation G • 8 is as follows. Let To be an arbitrarily given 
column matrix. Define 

Fi = 

Fa = co^DFi 

and in general 

Tr = oxDTr-x. 
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By successive use of this recurrence relation we can express Tr in terms 
of Tq. In fact, we have 

(6-9) r, - 

where is the rth power of the dynamical matrix D. Now it can be 
shown that for large r the ratio of the elements of the column matrix 

to the corresponding elements of the column inatrix DT'o is approxi¬ 

mately a constant equal to ajJ, the square of the fundamejital frequency oji 
of our fundamental mode of oscillation with distinct frequencies. The 

matrix To is only restricted by the non-variishing of R (see equality 6*11 
below). 

The proof of this result is a little involved and makes use of the 
Cayley-Hamilton theorem, a theorem f of Sylvester, and a few other 
theorems on matrices.^ These theorems are instrumental in showing 
that, for r large enough, the following approximate equality holds: 

(6.10) DTo = 
(X2 - Xi)(X3 - Xi) . . . (Xn - Xi) 

where (a) Xi > X2 > • • * > Xn are the characteristic roots of D, and 

hence Xi = in terms of the fundamental frequency coi; (b) the num- 
COi 

bers or, •••,«” are proportional to the amplitudes of the funda¬ 
mental mode of oscillation; and (c) 

(6-11) R^-Aal 

In 6* 11, the yl are the elements of the arbitrarily chosen column matrix 
To and the Ai, •••, An are n constants that are themselves obtainable 
by a successive approximation method. 

Clearly, Z>To is a column matrix. Hence the approximate formula 
6*10 shows that for r large enough, and for arbitrarily chosen To, such 
that i? 7^ 0, the column matrix DTo has elements proportional to the 

amplitudes of the fundamental mode of oscillation. All this is subject to 

the restriction that all the frequencies are distinct. 

On using equation 6*3 instead of 0*7, one can similarly obtain the 

„ n(x./ - A) 
t F{A) = 53 F(\r)Gr, where Gr = -T S'ld Xi, • • Xn are characteristic 

r=l 11(X« — Xr) 

roots of A. See the discussion in Chapter 3. 
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greatest frequen(*y and corresponding amplitudes of our oscillating 

system. The intermediate overtoruis and corresponding amplitudes 

can be obtained by the above successive approximation methods 

on reducing the number of degrees of freedom successively by one. 

Any one interested in these topics will find the following paper by 

W. J. Duncan and A. R. Collar very useful: ^^A Method for the 

Solution of Oscillation Problems by Matrices/’ Philosophical Magazine 

and Journal of Science^ vol. 17 (1934), pp. 865-909. By approximating 

oscillating continuous systems^ such as beams, by oscillating systems 

with a large hut finite number of degrees of freedom, tlui Dunc.an-Collar 

paper shows how the methods of this cha})ter are applicable in solving 

oscillation problems for continuous systeias. 



CHAPTER 7 

MATRIX METHODS IN THE MATHEMATICAL THEORY 

OF AIRCRAFT FLUTTER 

In recent years a group of phenomena known under the caption 
flutter has engaged the attention of aeronautical engineers. The 

vibrations taking place in flutter phenomena can often lead to loss of 
control or even to structural failure in such aircraft parts as wing, 
aileron, and tail. Such dangerous situations may arise when the 
airplane is flown at a high speed. It is of the greatest practical im¬ 
portance therefore so to design the plane as to have the maximum 
operating speed less than the critical speed at which flutter occurs. 
Unfortunately experiments in wind tunnels are idealized and difficult, 
and actual flight testing is obviously highly dangerous. It is here 
that mathematics enters the stage at a most opportune moment. 
Although the results of mathematical theories of flutter are now being 

applied in the design of aircraft, the need for an adequate mathe¬ 
matical theory is becoming critical. There is no time in this brief set 
of mathematical lectures to deal adequately with the present simplified 
mathematical theories of the mechanism of flutter. We shall only 

give the matric form for the equations of motion and say a few words 
about the approximate solutions with the aid of matrix iteration 

methods. 
The vibrations of an airplane wing and aileron can be considered as 

those of a mechanigal system with three degrees of freedom: the bend¬ 
ing and twisting of the wing accounts for two degrees of freedom, and 
the relative deflection of the aileron gives rise to the third degree of 
freedom. Not only is the system non-conservative, but there is the 
additional complication of damping forces leading to terms depending 

on the velocities in the equations of motion. The differential equations 
of motion are of type 

(7*1) + = 0. 

a system of three linear differential equations in the three unknowns 
q\t)y q^{t)j q^{t). Since there are three degrees of freedom, all indices 
have the range 1 to 3. The constant coefficients a^, by, Cij are com¬ 
puted from a large number of aerodynamic constants of our aircraft 

32 
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structure; see T. Theodorsen^s “General Theory of Aerodynamic 
Instability and the Mechanism of Flutter/^ N. A. C. A, Report 496, 
for 1934, pp. 413-433, especially pp. 419-420. Now the general 
structure of equations 7*1 differs from the equations of motion of the 
preceding two chapters in that 6^ hji (giving rise to a non-conserva¬ 

tive system) and in the presence of the linear damping terms 
at 

If we define A = || a^j ||, B = || b^j ||, C = || ||, Q(t) = i| q^(t) ||, 
then the e’quations of motion 7-1 can be written as the one matric 
differential equation 

(7*2) 
df dt 

+ BQ(t) ~ 0 

in terms of the three known constant matric^es A, B, C, and the un¬ 
known column matrix Q{t). As we are interested in small oscillations 
around an unstable point of equilibrium, it is to be expected that 
complex imaginary frequencies will play a role in the work. 

Since A arises from the kinetic energy, A~^ exists and hence 7.2 is 
equivalent to 

(7-3) 
d^Q{t) 

dt^ 

dQ(i) 

dt 
A~^BQ{t), 

We can replace the one second-order differential equation 7-3 by an 
equivalent pair of two first-order differential equations with the column 
matrices Q{t) and R{t) as unknowns 

(7-4) 

'dQ{t) 

dt 

dRjt) 

> dt 
= -A-^BQ(t) - A-^CR{t), 

Define the column matrix of six elements 

Q{i) m- 
R(t) 

and the constant square matrix of six rows 

0, I 

(7-5) 

where 0 and I are the three-rowed zero and unit matrices respectively. 
Then equations 7-4 can be written as the one first-order matric differen¬ 
tial equation 

(7-6) 
dS{t) 

- US{t), 
dt 
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We are led therefore to consider solutions 

S(t) = (A, a constant column matrix of six elements) 

of 7 *6. This obviously leads us to the equation 

(7-7) ' (X/~!7)A = 0, 

where I is the six-row unit matrix. To solve the problem we must 
get good approximations to the values of X and the matrix A that will 
satisfy 7 • 7. The matrix iteration method for small oscillations of 
conservative systems can now be applied with some modifications made 
necessary by the fact that the possible values of X in 7 • 7 are in general 
complex imaginary. If Xi, X2, • • *, \n are the characteristic roots of 
the matrix U lexicographically arranged so that their moduli f are in 
descending order, i.c., | Xi | > | X2 | > • • • > | Xn | , then the 
characteristic root Xi with the largest modulus can be obtained by the 
methods of the previous (‘hapter. Some further aids in computation 
of the real and imaginary parts of (complex characteristic roots are 
given on pp. 148-150 and 327-331 of the Frazer-Duncan-Collar book 
on matrices. A more readable and self-contained account is given in 
the paper by W. J. Duncan and A. R. Collar entitled ‘^Matrices 
Applied to the Motions of Damped Systems,Phil, Mag., vol. 19 
(1935), pp. 197-219. An illuminating discussion of a specialized 
flutter problem with two degrees of freedom is given in a 1940 book by 
Karman and Biot, Mathematical Methods in Engineering, pp. 220-228. 
It would be interesting and instructive to solve such specialized flutter 
problems with the aid of the matrix calculus. 

Another useful method of solving flutter problems is the combi¬ 
nation of matrix methods and Laplace transform methods. The 
Laplace transform of a function x{i) is a function x{'p) defined by J^oo 

e~^*x{t) dt. 
0 

If one is willing to omit the proofs of one or two theorems, the whole 
Laplace transform theory needed does not require one to be conversant 
with the residue theory of complex variable theory. For such an 
elementary treatment of Laplace transforms see Operational Calculus in 
Applied Mathematics by Carslaw and Jaeger, Chapters I-III. The 
methods given there can be immediately extended in the obvious way 
to apply directly to the matric differential equations 7 • 3 for flutter 
problems. A good table of Laplace transforms together with mechan¬ 
ical or electric methods can cut down the labor of flutter calculations 

tThe modulus of a complex number 2: = x + y is denoted by \z\ and is 

defined by \z\ = 
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materially. Unfortunately there is no time to take up these matters 
in detail in our brief introductory treatment. 

Exercises 

1. Show that the matric differential equation 7*6 for flutter can be written as 

S{i) = dS{t\ 

(it 

where the inverse matrix of U, Is given by the six-row square matrix 

(• 

^ I O \ 

2. A model airplane wing is placed at a small angle of incidence in a uniform air 

stream. The thrcie degrees of freedom are the wing bending, wing twist, and aileron 

angle measured relative to the wing chord at the wing tip. When the wind speed 

is 12 feet per second, the matrices for the differential equations of flutter are as 

follows. The data are obtained from R. A. lYazer and W. J. Duncan, ‘‘The Flutter 

of Aeroplane Wings,” lieports and Memoranda of the Aeronautical Research Com¬ 

mittee^ No. 1155, August, 1928. 

Show that 

17.6 0.128 2.89 1 
A = 0.128 0.00824125 0.0413 

2.89 0.0413 0.725 1 

121.042 1.89 15.9497 

B = 0 0.027 0.0145 

11.9097 0.364 15.4722 

7.65833 0.245 2.10 

C = 0.023 0.0104 0.0223 

0.60 0.0756 0.658333 

= matrix of damping coefficients. 

0.170883 1.06301 -0.741731 

A-i - 1.06301 176.433 -14.2880 

-0.741731 -14.2880 5.14994 

and that the matric differential equation for flutter is 

dS{t) 

dt 
= US{t), 

where the flutter matrix” U is given by 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

-11.8502 -0.08168 8.73526 -0.888089 0.003153 0.105747 

41.4969 -1.57195 201.554 -3.62604 -1.01517 3.23949 

28.4464 -0.086931 -67.6433 2.91908 -0.059016 -1.51412 

For the lengthy details of the calculations of flutter frequencies and amplitudes 

see the Phit. Mag. 1935 paper by Duncan and Collar. 
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More recent developments in aircraft design require an extension of 
the flutter theory to handle four-degree- (or more) of-freedom problems 
in which the motion of the tab defines the fourth degree f of freedom 
with generalized coordinate 7^. The aerodynamic forces and moments 
are obtained theoretically in accordance with T. Theodorsen^s and 
I. E. Garrick’s investigations and not from wind-tunnel data. It is 
for this reason that the coefficients in the differential equations of 
motion will be in general complex. See Fig. 7 • 1. The four differential 
equations of motion are of the form % 

(7-8) ^ 

where all the indices, in contradistinction to 7-1, have the range 1 to 
4 and the coefficients and are in general complex. 

The flutter velocity v appears in general in the coefficients Cij and 6^ 

and is replaced by the quantity where &, w, and k are the airfoil 
fc 

V 
semi-chord, flutter frequency, and the flutter parameter A; = — respec- 

b(j} 

tively. This yields a system of four linear differential equations 7 • 8 

t In accordance with the flutter notation used in this country, =• h, ^ a, 

g® = »= 7. See Fig. 7-1. 

t The differential equations of motion and the contributions of the aerodynamic 

forces and moments to the coefficients of the differential equations for the four- 

degree«of-freedom problem are given in the Douglas reports. 
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in which cy and are expressed as functions of the flutter frequency w 

and not of the flutter velocity v. If one then considers solutions of the 

form 

= qie*^ {i = V^) 

of the differential equations, one is led to a system of four linear alge¬ 

braic equations with complex coefficients, some of which are functions 

of CO and the structural damping coefficients The damping coeffi¬ 

cients gij are defined by 

F,-= V-l gijKij-q’ (?„ = 0 if tV;), 

where Fi is the damping force in the g"th direction and the Ky are the 

spring constants. Upon obtaining the characteristic roots of the 

matrix of the linear algebraic equations by matric iteration methods, 

one ultimately finds the flutter velocity v as a function of the flutter 

frequency w and the structural damping coefficients Flutter is 

likely to occur if the structural damping coefficients g^ from the 

pure imaginary part of the characteristic root exceeds 0.03, provided 

that no extraneous damping devices are used. The algebraic equa¬ 

tions are so arranged — and this constitutes an important aspect of 

the development in that it lends itself to matric iteration procedures — 

that the characteristic roots are of the form 

where c is some constant, co is the flutter frequency, and gr is a structural 

damping coefficient. 

The flutter analyst is attempting to approximate the actual flutter 

characteristics of the airplane by representing them by as small a 

number of degrees of freedom as possible. The design of faster and 

larger aircraft requires the consideration of a larger number of degrees 

of freedom so as to make the flutter analysis an adequate approximation. 

When many degrees of freedom are required to represent the flutter 

characteristics of an airplane, the need for matrix methods becomes 

acute. Matrix methods f also serve to improve the theory of the 

mechanism of flutter. 

t Matrix methods are also used in treating other phenomena related to flutter. 
See Douglas reports. 



CHAPTER 8 

MATRIX METHODS IN ELASTIC DEFORMATION 

THEORY 

Although the tensor calculus is the most natural and powerful mathe¬ 
matical method in the treatment of the fundamentals of cilastic def¬ 
ormation of bodies, the matrix calculus can also be used to advantage 

in furnishing a short and neat treatment. This chapter is purely 

introductory and suggestiv^e. 
Let a medium be acted on by d('forming forces. The position of the 

medium before and after deformation will be called the initial and 

final state of the medium resi)ectively. Let a\ be the rectangular 
cartesian coordinates of a representative particle of the medium in the 
initial state, and x\ x-, x^ the lec'tangular cartesian coordinates of the 

corresponding particle in the final state. Then tlu^ elastic deforma¬ 

tion is represented by particle-to-particle transformations 

(8-1) x'^ - f'{a\ d\ a*0. 

Hence by the ordinary differential calculus 

(8-2) dxJ =f]da\ 

where 

A _ 5/^ (ah a^) 

The classical theory of clastic bodies assumes that the deformations 8 -1 
are infinitesimal.^^ Such crude approximations have been found 

inadequate in some investigations on thin plates and shells.t As a 
result the finite deformation theory is beginning to be used in engineer¬ 

ing problems. In what we shall have to say we shall make the restric¬ 
tive assumptions of the classical infinitesimal theory only toward the 

end of the chapter. 
Let A and X be defined as the column matrices of three elements: 

A = II II and X = || || . 

Similarly the differential matrices are dA = || da^ || , dX = || dx^ || . 
Define the square matrix F by 

t See the Kdrmdn Anniversary Volume^ California Institute of Technology, 1941, 
for various papers and other references. 
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i.e., the matrix of the partial derivatives of the deformation 8*1. Then 
the differential relations 8 • 2 can be written in matric form as 

(8-3) dX = FdA. 

Definition. The adjoint M* of a matrix M is the matrix obtained 

from M by interchanging the rows and columns of M, 

Thus A* and X* are row matrices while 

dx^ bx- 

ba' 

dx^ bx^ 

da“ bd- bd' 

dx} bx^ 

dd'^ da‘ bd< 

It can be proved b}^ a routine procedure that (M1M2)* ~ MImI. 
In other words, the adjoint of the product of two matrices is the 
product of their adjoints in the reverse order. For example, 

rfZ* = dA*F\ 

Hence the square of the differential lin(3 element in the final state of 
the medium will be 
(8-4) dsi^ = dA^F^FdA 
since 

dsic = {dx^y 4- {dxry + {dx^y - rfX* dX. 

By a direct computation it can })e shown that the matrix 

(8'5) F^F= II II , 
where 

(8-6) ^ij 
da ' da^ 

Note that This is expressed by saying that is a symmetric 
matrix. 

The square of the differential line element in the initial state is 

(8-7) dsl = rfA* d/l (= rM*/ dA, where I is the unit matrix) 

and hence with the aid of 8-4 we find the formula 

(8-8) ds^ - dsl = - I) dA. 

On defining the matrix, called the deformation or strain matrix^ 

(8-9) H^\{F^F^I), 

we find 

(8-10) dsl -dsl =^2 dA^ dA. 
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Now, if dsx = dsl for all particles of the initial state and for all 
dA, we have, by definition, a rigid displacement of the medium from 
the initial state to the final state. A glance at 8*10 shows that a 

necessary and sufficient condition that the change of the medium from the 

initial to the final state be a rigid displacement is that the strain matrix 

H be a zero matrix. In other words, when H = 0, the medium is not 

deformed or strained but is merely transported to a different po¬ 
sition by a rigid displacement. This property then justifies the 
terminology “strain matrix since H measures, in a sense, the 
amount of strain or deformation undergone by the medium. It is clear 
from definition 8-9 that the strain matrix H is a symmetric matrix. 

Let rjij be the elements (more commonly called components in elasticity 
theory) of the strain matrix //, i.e., iY = || 7;^ || . On using result 
8 • 5 and definition 8-9, we see that 

where 

Vij 
1/^ bx^ bx^ 

2\^ida* da^ 

dij — 1 if i — jy 

= 0 if i ^ j. 

Let = x^ - a\ then 

Define the matrix 

and obtain the relation 

du' 

i>a’ 

F=V + I. 

Hence, from definition 8 • 9, for the strain matrix H we obtain 

H = IC(F* + /)(F 4- /) - /]. 
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Expanding the right-hand side gives 

H = \[y^v + v* + vj 
In the classical infinitesimal theory of elasticity only first-degree terms 

in — are kept. Hence, to the degree of approximation contemplated by 
oa^ 

infinitesimal theory of elastic deformations^ the strain matrix is given by 

H = 4- V) 

in rectangular cartesian coordinates. In other words, the components 
of H are given by the familiar 

From the symmetry of rjij there are thus in general five distinct com¬ 
ponents of the strain matrix in three dimensions while there are three 
components for plane elastic problems. 



PART IL TENSOR CALCULUS AND 
ITS APPLICATIONS 

CHAPTER 9 

SPACE LINE ELEMENT IN CURVILINEAR 

COORDINATES 

Introductory Remarks. 

The vague beginnings of the tensor calculus, or absolute differential 
calculus as it is sometimes called, can be traced back more than a 
century to Gauss’s researches on curved surfaces. The systematic 
investigation of tensor calculi by a considerable number of mathema¬ 
ticians has taken place since 1920. With few exc(‘ptions, the applica¬ 
tions of tensor calculus were confined to the general theory of relativity. 

The result was an undue emphasis on the tensor calculus of carved 

spaces as distinguished from the tensor calculus of Euclidean spaces. 
The subjects of elasticity^ and hydrodynamics,- as studied and used 
by aeronautical engineers, are developed and have their being in plane 
and solid Euclidean space. It is for this reason that we shall be pri¬ 
marily concerned with Euclidean tensor calculus in this book. We 
shall, however, devote two chapters to curved tensor calculus in con¬ 
nection with the fundamentals of classic^al mechanics^ and fluid 
mechanics. 

It is worthy of notice that the tensor calculus is a generalization of 
the widely studied differential calculus of freshman and sophomore 
fame. In fact, as we shall see, a detailed study of the classical dif¬ 
ferential calculus along a certain direction demands the introduction 
of the tensor calculus. 

Notation and Summation Convention. 

Before we begin the stud}^ of tensor calculus, we must embark on 
some formal preliminaries including some matters of notation. 

Consider a linear function in the n real variables x, Zj • • •, it? 

(9-1) ax + I3y + yz +••• + \w. 

Define 
Oi = a, a2 ~ /3, 03 = 7, • • *, On = X, 

= Xj x"^ IJj x^ = z, • • •, x^ = w. 

42 
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NOTATION AND SUMMATION CONVENTION 43 

We emphasize once for all that x\ are n independent vari¬ 
ables and not the first n powers of one variable x. In terms of the 
notations of 9-2 we can rewrite 9-1 in the form 

(9-3) 

or as 

aix^ + + 03X* H- •' 

n 

■ ■ + anX", 

(9-4) ^aix'. 
i=l 

The set of n integer values 1 to n is called the raiige of the index i in 
9*4. A lower index i as in a^ will be called a subscript^ and an upper 
index i as in :r' will be called a .w/pcrscript. Throughout our work we 
shall adopt the following useful summation convention: 

The repetition of an index in a term once as a subscript and once as a 

superscript will denote a summation with respect to that index over its 

range. An index that is not summed out will be called a free index. 

In accordance with this convention then we shall write the sum 
9 • 4 simply as 

(9 • 5) UiX^. 

A summation index as i in 9 • 5 is called a dummy or an umbral, since it 
is immaterial what symbol is used for the index. For example, ajx^ 

is the same sum as 9-5. All this is analogous to the (umbral) variable 
of integration x in an integral 

dx. 

Any other letter, say ?/, could be used in the place of x. 

f f{y) dy=f /e) dx. 
%/a %/a 

Thus 

Aside from compactness, the subscript and superscript notation 
together with the summation convention has advantages that will 
become evident later. 

As a further illustration of the summation convention, consider the 

square of the line element 

(9 • 6) ds^ = + dy^ + dz^ 

in a three-dimensional Euclidean space with rectangular cartesian 

coordinates x^ y, and z. Define 

(9-7) -- x,y'^ --y,y^ 

and 

dn == 622 = ^33 = 1, 

612 = ^21 = dis = dsi = 523 = 532 = 0* 
(9-8) 
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Then 9 • 6 can be rewritten 

(9-9) d^ = j2idy'y, 

or again 

(9 • 10) ds^ == 8ij dy^ dy^ 

with the understanding that the range of the indices i and j is 1 to 3. 
Note that there are two summations in 9*10 one over the index i and 
one over the index j. 

Let f{x\ x^) be a function of n numerical variables x^, 

• • •, x^\ then its differential can be written 

df = — dx' 

with the understanding that the summation convention has been extended 

so as to apply to repeated superscripts in differentiation formulas. We 
shall adhere to this extension of th(^ summation convention. 

It is worth while at this early stage to give an example of a tensor 
and show the fundamental nature of such a concept even for ele¬ 
mentary portions of the usual differential and integral calculus. This 
will dispel, I hope, any illusions common among educated laymen 
that the tensor calculus is a very ^diighbrow^^ and esoteric subject 
and that its main applications are to the physical speculations of 
relativistic cosmology. 

Euclidean Metric Tensor/ 

In the following example, free as well as umbral indices will have 
the range 1 to 3 as we shall deal with a three-dimensional Euclidean 
space. Let 

(9-11) X'== f'(^\ y\ y*) 

be a transformation of coordinates from the rectangular cartesian 
coordinates y^, 2/^, 2/® to some general coordinates x^, x® not neces¬ 
sarily rectangular cartesian coordinates; for example, they may be 
spherical coordinates. The inverse transformation of coordinates to 
9*11 is the transformation of coordinates that takes one from the 
coordinates x^, x^, x^ to the rectangular cartesian coordinates y^, y^, y^. 

Let 

(9-12) y^ = g^{x\ x^, x^) 

be the inverse transformation of coordinates to 9*11. 
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Example 

Let 2/S be rectangular cartesian coordinates and 
polar spherical coordinates. The transformation of coordinates from 
rectangular cartesian to polar spheri¬ 
cal coordinates is clearly 

= V(2/‘)2 + {y-^Y + {y^Y 

X^ =* COS'" 

x^ ^ tan“ 

y (^0’^“+ {yr + (y^y :) 

'© 
The inverse transformation of coordinates is given by 

= x^ sin x- cos x^ 

= x^ sin x^ sin x^ 

- x^ cos x‘^. 

The diJHFerentials of the transformation functions in 9-12 may be 
written 

(9-13) 
dv’ 

On using 9-13 we obtain, after an evident rearrangement, the formula 

(9 • 14) = E ^ ^ dx°‘ dx^. 
i ~l OX UX^ 

If we define the functions Qa^ix^, x^j x^) of the three independent vari¬ 
ables xS x^ by 

(9.15) - 

we see that the square of the line element in the general x^, x^, x^ coordi¬ 

nates takes the form 

(9-16) d^^g^pdx^dx^ 

This is a homogeneous quadratic polynomial, called quadratic differen¬ 

tial form in the three independent variables dx^, dx\ dx^. 

Caution: Once an index has been used in one summation of a series 
of repeated summations, it cannot be used again in another summation 
of the same series. For example, dx“ dx® has a meaning and is equal 
to gn{dx^y + g2i{dx^y 4- g^zidx^y, but that is not what one gets by 
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carrying out the double repeated summation in 9-16. Expanded in 
extenso, 9*16 stands for 

. 17^ = gn{dx^Y 4- 2gi2 dx^ dx^ 4- 2^i3 dx^ dx^ 
^ \ 4* g22{dx"y + 2^/23 dx^ dx^ + gzz{dx^Y, 

The factor 2 in three of the terms in 9 • 17 comes from combining terms 
due to the fact that g^^ is symmetric in a and jS; a glance at the defi¬ 
nition 9*15 shows that 

= Qfia for each a and 0 

and hence 

gi2 = g2ij gis = guj g23 = gz2- 

Now let 'X^j x^ be any chosen general coordinates, not necessarily 
distinct from the general coordinates x^, x\ x^. Let 

(9-18) x^ ^ F^{x\ x^, Ji?) 

be the transformation of coordinates from the general coordinates 
x^j x^ to the general coordinates x\ x\ x^. Clearly the differentials dx“ 

have the form 

(9 • 19) = —- dx^. 

Define the functions gys{x\ i:-, x^) of the three variables x^ by 

^x^ Dx^ 
(9*20) ^^5(xS x\ x^) = g^^(x\ x^, x^)— 

Then, if we use 9-19 in 9*16, we obtain, with the aid of the definition 
9 • 20, the formula 

(9-21) = gysix^y x^, x^) dx'^ dx^, 

which gives the square of the line element in the x^, x^, x® coordinates. 
We have thus arrived at the following result: 

If x^j x^y x^ and x^, x^, x^ are two arbitrarihj chosen sets of general 

coordinatesy and if the transformation of coordinates 9-18 from the x^s 

to the x^s has suitable differentiability 'properties, then the coefficients 

ga^{x^y x^y x^) of the square of the line element 9-16 in the x^, x\ x^ co¬ 

ordinates are related to the coefficients g^pi^^y x^) of the square of the 

line element 9 • 21 in the coordinates x^, x^, x^ hy means of the law of trans¬ 

formation 9-20. 

In each coordinate system with coordinates x^ x^, x^, we have a 
set of functions called the components of the Euclidean 
metric tensor (field), and the components of the Euclidean metric 
tensor in any two coordinate systems with coordinates x\ x^, x^ and 
xS x^y X? respectively are related by means of the characteristic rule 

9-20. 
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An analogous discussion can obviously be given for the line element 
and Euclidean metric tensor of the plane (a two-dimensional Eu¬ 
clidean space). We now have two coordinates instead of three so 
that the range of the indices is 1 to 2. For example, the line elements 
ds in rectangular coordinates 

ds^ = {dy^Y -f {di/Y 

will become 
dx^ 

in general coordinates xPj, and the components of the plane Eu¬ 
clidean metric tensor x?-) will undergo the transformation 

gyi{x\ = gaii{x\ x“) ” 

Exercises 

1, Find the components of the i)lane Euclidean metric tensor in polar coordi¬ 

nates (xh x^) and tlic corresponding expression for the line element. 

Therefore ^ ^ ^ 
Fig. 9-2. 

^u(xh x^) = cos2 + sin^ = 1, 

gi2{x^, x^) = (cos X“)(-x^ sin x-) + (sin x‘)(x^ cos X“) = 0 = 

&22(x\ x^) = (-x^ sin x-y + (x^ cos x^)- = (xO^- 

The line element ds"^ = ^a/3 dx“ dx^ in polar coordinates (xh x^) is then 

= {dx^f + {x^Yidx'^f, 

which in the usual notation is written 

= dr^ + dG^. 

2. Find the components of the (space) Euclidean metric tensor and the expres¬ 

sion for the line element in polar spherical coordinates. 

Answer. 

^ii(xh x^, x^) = 1, ^22(a;S x\ x^) = (xU^ g^z{x\ x^, x^) = (xi)2(sin 

and all other ^y(xh x®, x®) = 0, so that 

ds^ « {dx^y + {x^y{dx^y + (xUKsin x^y(dx^y. 



CHAPTER 10 

VECTOR FIELDS, TENSOR FIELDS, AND EUCLIDEAN 

CHRISTOFFEL SYMBOLS 

The Strain Tensor. 

Another interesting example of a tensor is to be found in elasticity. 

Let a', a^, a* be the curvilinear coordinates of a representative particle 

in an elastic medium, and let a;’, be the coordinates of the repre¬ 

sentative particle after an elastic deformation of the medium. 

(f^ 
^(aSo*,a*) 

Medium Deformed medium 

Fig. 10-1. 

Let 

(10-1) dsl = Cafi da^ da^ 

be the square of the line element in the mei^ium, and let 

(10-2) ds^ = g^f, dx°‘ dxP 

be the corresponding square of the line element in the deformed medium 

induced by the elastic deformation whose equations are 

(10-3) X* =/‘(a‘, a^, a^). 

In terms of the coordinates x‘, x“, x® the line element 10-1 can be 

written 

(10-4) ii 

where 

(10-5) 
do"^ da* 

On subtracting corresponding sides of 10-2 and 10-4 we find 

(10 • 6) ds^ - dsl - dx“ dx^, 

48 
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if we define by 

^a/3 - KOafi — ^a/s)* 

Now are functions of the coordinates x^j x^. If then we calcu¬ 
late ds^ - dso in any other curvilinear coordinates x^, x®, we would 
obtain by the method of the preceding chapter 

where 

(10.8) 

ds^ — dso = dx“ dx^, 

^a/3 
dx”^ dx® 

dx“ dx^ 

Because of the characteristic law 10-8, are the components of a 
tensor (field), and because in 10-6 is a measure of the strain of the 
elastic medium, e^p are the components of a strain tensor. We shall 
have a good deal to say about the strain tensor in some of the later 
chapters. 

Scalars, Contravariant Vectors, and Covariant Vectors. 

We shall now begin the subject of the tensor calculus by defining 
the simplest types of tensors. An object is called a scalar (field) if in 
each coordinate system there corresponds a function, called a com¬ 
ponent, such that the relationship betwc^en the components in (x^, x^, x^) 
coordinates and (x^ x^, .r"*) coordinates respectively is 

(10*9) 6‘(x^, x^ x^) = 5(x^ x% x^). 

An object is called a contravariont vector field (an equivalent termi¬ 
nology is contravariant tensor field of rank one) if in each coordinate 
system there corresponds a set of three functions, called components, 
such that the relationship between the components in any two coordi¬ 
nate systems is given by the characteristics law 

bx^ 
(10-10) S?, i’) = X?) — • 

An object is called a covariant vector field (an equivalent terminology 
is covariant tensor field of rank one) if in each coordinate system there 
corresponds a set of three functions, called components, such that the 
relationship between the components in any two coordinate systems 

is given by the characteristic law 

(10-11) rii(x\ x^, X®) = 7)^(x\ x^, 3?) ^ - 
OX* 

It is to be noticed at this point that the. laws of transformation 
10*10 and 10*11 are in general distinct so that there is a difference^ 
between the notions of contravariant vector field and covariant vector 
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field. However, if only rectangular cartesian coordinates are con¬ 
sidered, this distinction disappears. It is for this reason that the 
notions of contravariant as distinguished from covariant vector fields 
are not introduced in elementary vector analysis. That the char¬ 
acteristic laws 10*10 and 10*11 are identical in rectangular cartesian 
coordinates follows from some calculations leading to the result 

(10*12) 
dx“ “ dx* 

between rectangular coordinates (xh x^, x^) and any other rectangular 
coordinates (x^, x", x^). 

Tensor Fields of Rank Two. 

In all three objects — scalar fields, contravariant vector fields, and 
covariant vector fields — there an^ components in any two coordinate 
systems, and the components in any two coordinate systenis ai’e re¬ 
lated by characteristic transformation laws. We have to consider 
other objects, called tensor fields (of various sorts), whose components 
in any two coordinate systems are related by a characteristic trans¬ 
formation law. To shorten the statements of the following definitions 
we shall merely give the characteristic transformation law of com¬ 
ponents. 

Covariant Tensor Field of Rank Two. 

(10-13) 

Contravariant Tensor Field of Rank Two. 

(10-14) = &{x\ x% x^) 

Mixed Tensor Field of Rank Two. 
dx“ da:" 

(10-15) fp {x\ x‘, X?) = tl{x\ x^, ^ ^ • 

Again because of relation 10*12, the difference between the above 
three types of tensor fields is non-existent as long as one considers 
only rectangular cartesian coordinates. 

It is worthy of notice at this point that the indices in the various 
characteristic transformation laws tell a story which depends on 
whether the index is a superscript, called contravariant index, or a 
subscript, called covariant index. 

Before proceeding any further with the development of our subject, 
it would be illuminating to have some examples of vector fields and 
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other tensor fields. Perhaps the most important example of a contra- 
variant vector field is a velocity field. Suppose that the motion of a 
particle is governed by the differential equations 

dx^ 

dt 
x% x^), 

where t is the time variable. If = /'(xb x\ x^) is a transformation 
of coordinates to new coordinates x\ then 

dx^ bx^dxJ 

dt bx^ dt 

dx" 

dx^ 
X", x^). 

Thus the components x“, x^) of the velocity field in the x" co¬ 
ordinates are related to the components J'(x^, X“, x^) in the x^ coordi¬ 
nates by the rule 

l^(x\ x\ x*0 = 

dx^ 

which is precisely the contravariant vector field rule. 
bs 

If s(x\ x\ x^) is a scalar field, then the ‘^gradient^^ are the corn- 
ax' 

ponents of a covariant vector field. An important example of a scalar 
field is the potential energy of a moving particle. 

We gave two examples of a covariant tensor field of rank two: the 
Euclidean metric tensor and the sti*ain tensor. A little later in the 
chapter we shall give an example of a contravariant tensor field of rank 
two, the associated with the Euclid(^an metric tensor 

As an example of a mixed tensor field of rank two, we have the 
mixed tensor field with constant components 

in the x' coordinates. 

5^ = 0 if 
if 

But 

a 9^- P 
a — P 

dx'^dx^ 
«(*■, 

Hence 

bx^ bx^ 

8^ (x^, x^, X®) = 0 if a 9^ 0 
— 1 if a = /3. 

In other words, not only are the components constant throughout space, 
but they are also the same constants in all coordinates. 

One of the first fundamental problems in the tensor calculus is to 
extend the notion of partial derivative to the notion of covariant deriva¬ 
tive in such a manner that the covariant derivative of a tensor field is 



52 VECTOR FIELDS AND TENSOR FIELDS 

also some tensor field. It is true that, if one restricts his work only 
to cartesian coordinates (oblique axes), then the partial derivatives 
of any tensor field behave like the components of a tensor field under 
a transformation of cartesian coordinates to cartesian coordinates. 
For example, suppose that x\ xP) are (^artesian coordinates and 
(x^, x^) are any other cartesian coordinates; then it can be shown 
that for suitable constants a) and a" 

(10*16) X" = a]x^ + a" 

is the transformation of coordinates taking the cartesian coordinates 
x^ to the cartesian coordinates x\ Hence 

(10*17) 

a set of constants, and so 

(10*18) 

dx^ ^ 

dx^ dx* 

Now, if ^"(x^, x^j x^) are the components of a contravariant tensor 
field, then 

(10-19) 

On differentiating corresponding sides of 10 * 19, we obtain 

df" dx^ c)x' ^ d“x' 5x^ 

dx^ dx^ dx^ dx" ^ dx“ dx^ dx^ 

But both X" and x" are cartesian coordinates. Hence on using 10*18 
in 10*20 we obtain 

(10-21) 
^ ’ ax' ” dx' dx“ 

which states that the partial derivatives behave as though they were the 
dx^ 

components of a mixed tensor field of rank two and this under a trans¬ 
formation from cartesian coordinates to cartesian coordinates. 

The presence of the second derivative terms in 10*20 in curvilinear 

coordinates x" shows that the are not really the components of a 

tensor field. So the fundamental (jiiestion arises whether it is possible 
to add corrective terms (all zero in cartesian coordinates) to the 

partial derivatives so as to make 
Ox 
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the components of a mixed tensor field of rank two for all contravariant 
fields f". The answer to this question is in the affirmative, and the 
possibility of the corrective terms depends on the existence of the 
Euclidean Christoffel symbols.^ 

Euclidean Christoffel Symbols. 

We saw in the previous chapter that the element of arc length 
squared in general coordinates takes the form 

(10*23) (is- = x\ x^) 

where, in the present terminology, are the components of a covari¬ 
ant tensor field of rank two, called the Euclidean metric tensor. Now 
it can be proved that the determinant^ 

(10*24) 

Define 

(10*25) 

9ih ^12, 6^13 

02h (722, ^23 

Qzh (732, 9^ 

^0. 

Cofactor of g^^ in g 

0 

As the notation indicates, it can be proved that the functions are the 
components of a contravariant tensor field of rank two with the following 
properties: 

(10-26) 
g'^’'g,0 - ^ (equals 0 if a j3 and 1 if a = /3). 

Define the Euclidean Christoffel symbols rj,j3(x‘, x^, x-’) as follows: 

(10.27) ».) - ^ 

Since the law of transformation of the components g^^^ and are 
known, one can calculate the law of transformation of the x^) 
under a general transformation of coordinates x^^ x^). 

Let and g^^ be the components of the Euclidean metric tensor 
and its associated contravariant tensor respectively in the x^ coordi¬ 
nates. Then if we define 

(10-28) ri,(x>,x>,J>).ji‘-(^ + ^-^). 

we can prove by a long but straightforward calculation that the 
(x\ x% X®) are related to the fo3(x‘, x®, x®) by the following famous 

transformation law:* 

(10-29) x\ x») = r;),(xi, X®, X®) 
dx“ dx® dx^ ^ 

g>®x^ dx» 

dx“ dx® dx^ 
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In the previous chapter we saw that 

(10-30) 
w dx" dx’ 

where the 2/^s are rectangular cartesian coordinates. Consequently, 
if the x^s are cartesian coordinates, it follows that all the components 

constants. In other words, = 0 in cartesian 
ox/ 

coordinates x\ We have then immediately the important result that 
the Euclidean Christoff el symbols x"^, x^) are identically zero in 
cartesian coordinates. 

If the y^ are cartesian coordinates and the x^ are general coordinates, 
one can calculate the Euclidean Christoffel symbols x^, x^) 
directly in terms of the derivatives of the transformation functions in 
the transformation of coordinates 

= f’(y\ 2/^ 2/®) 

and in the inverse transformation of coordinates 

x% x^). 

Since all the Euclidean Christoffel symbols are zero when they are 
evaluated in cartesian coordinates y\ it follows immediately from the 
transformation law 10-29 that the Euclidean Christoffel symbols in 
general coordinates x^ are given by the simple formula 

(10-31) Kf,{x\ x^) = 

dx“ dx^ dy^ 

This formula is often found to be more convenient in computations 
than in the defining formula 10-27. 

Caution: The Christoffel symbols are not the components of a tensor 
field so that f, a, and (3 are not tensor indices; i.e., i is not a contra- 
variant index and a, are not covariant indices. 

The concepts of tensor fields and Euclidean Christoffel symbols can, 
by the obvious changes, be studied in plane geometry — two-dimen¬ 
sional Euclidean space. Since we have two coordinates for a point in 
the plane, all components of tensors and the Christoffel symbols will 
depend on two variables, and the range of the indices will be from 
1 to 2 instead of 1 to 3. Thus the Euclideaii Christoffel symbols for the 
plane will be 

(10-32) rUx‘, X?) - + ^ - ^) 

in terms of the Euclidean metric tensor ga^ix^y for the plane. The 
alternative expression in terms of the derivatives of the transformation 



EUCLIDEAN CHHISTOFFEL SYMBOLS 55 

functions from rc'ctangular coordinates (y\ y-) to general coordinates 

{x^, x^) and of the inverse transformation functions will be 

(10-33) ra0(a:b x^) 
b-y^ bx'‘ 

Exercise 

Compute from the definition 10*32 the Euclidean Christoff el symbols for the 

plane in polar coordinates. Then cheek the results by computing them from 10*33. 

Hint: Use results of exercise 1 of Chapter 9 and find = 1, = 0, = 7-^* 

Answer. 

Fla = EL = U. = -k> I'll = 0, u, = 0, rh = rl = o, = o. 



CHAPTER 11 

TENSOR ANALYSIS 

Co variant Differentiation of Vector Fields. 

Having shown the existence of the Euclidean Christoffel symbols, 
we are now in a position to give a complete answer to the fundamental 
question — enunciated in the previous chapter — on the extension of 
the notion of partial differentiation. We shall now prove that the 
functions 

(IM) + rLCr’, x% x^) 

are the components of a mixed tensor field of rank two, called the co¬ 
variant derivative of This result holds for eveiy differentiable con- 
travariant vector field with the understanding that the Tl^(x\ x^, x^) 
are the Euclidean Christoffel symbols. We shall use the notation 
for the covariant derivative of By hypothesis we have 

(11-2) x\ x^) = x\ x^) 

If we then differentiate eorresponding sides of equation 11-2 we 
obtain, by the well-known rules of partial differentiation, 

(11-3) 

We also have 

(11-4) 

^ X ^ 
dx’^ ~ dx^ dr dx^ ^ dx>' dx^ dr' 

di;" dx^ ^ d0 dx" dx^ 

If we multiply corresponding sides of 11 -4 by and sum on j we obtain 

(1E5) 

on using 

dx^ dx^ , bx^' d-x^ dx^ 

c)x“ dx^ dx^ dx^ dx“ dx^ 

s - 
r = 

ox^ 
in the first set of terms and 

bx^ 

56 
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in the second set of terms. Since X and /x are summation indices, we 
can interchange X and g in the second derivative terms of 11-5. 
On carrying out the renaming of these umbral indices, we can add 
corresponding sides of 11.3 and 11.5 and obtain 

(11-6) 

Now 

(11-7) 

where 

+ r 

bx' dx** 

dx" dx 

\dx^ dx" dx“ dx‘ 

Si 

dx' dx“ dx"/ ’ 

i ^ O if i = a, 
" (0 if a. 

On differentiating 11-7 with respect to x^, we obtain 

(11-8) 
£)-x' dx" dx‘ brx^ dx’ 

^ ^ dx> dr d'x^ " 

and hence 11-6 reduces to 

(11-9) 
dl* - /df'' , 
— 4- r'. t) = I — - + r’' 

dx“^ Vdx**^ 

Adx" dx' 

/d^d?’ 

+ rj;r 

But 11*9 states that the functions 

are the components of a mixed tensor field of rank two. This completes 
the proof of the result stated at the beginning of this chapter. 

By a slight variation of the above method of proof, it can be es- 
tablished that the functions 

(IMO) 

are the components of a covariant tensor field of rank two whenever are 
the components of a covariant vector ftcld.y called the covariant derivative of 
ft. As before, F^ are the Eluclidean Christoffcl symbols. We shall use 
the notation ft,* ior the covariant derivative of ft. 

Tensor Fields of Rank r = p + q, Contravariant of Rank p and Co¬ 
variant of Rank q. 

It is convenient at this point to give the definition of a general tensor 
field. As in the case of tensor fields of rank two, the definition will be 
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clear if we give the law of transformation of its components under a 
transformation of coordinates. 

(iMi) x^) ^ TZ 
dx'’* 

dr* dr** 

^ dx'*'* dx'*'" 

We are now in a position to consider some problems that arise in 
taking successive covariant derivatives of tensor fields. However, we 
must first say a word or two about the formula for the covariant deriva¬ 
tive of a tensor field. If arc the components of a tensor field of 
rank p + contravariant of rank p ami covariarit of rank g, then the 
functions defined by 

(11-12) 
rnai 
•I 01 

etp 
0Q, y 

^rriai ■ ■ ■ ap 

01--fh , 

dx^ 
poti rptrai 

^ ay ^ 0x‘ 

• ap 

0<i 

+ • • • + 
ap_i<r -p(T rpa\ ' • ' ap' 

0q ^ 0iy ^ a0‘i 0q 

ptr rpa\ 
■* 0Qy^ 01 

ap 

0Q-ior 

are the components of a tensor field of rank p q + f contravariant of 
rank p and covariant of rank q + 1. 

TplI ‘y will be called the covariant derivative of \ .* .* The above 
result ^ stating that the covariant derivative of a tensor field is indeed 
a tensor field can be proved by a long but quite straightforward calcu¬ 
lation analogous to the method of proof given for the covariant deriva¬ 
tive of vector fields. 

Since the covariant derivative of a tensor field is a tensor field, we 
can consider the covariant derivative of the latter tenvsor field, called 
the second covariant derivative of the original tensor field. In symbols, 
if is the original temsor field, we can consider its second suc¬ 
cessive CO variant derivative 

mai • * • ap 
01" ’ 0q. y, 

The fundamental question arises whether covariant differentiation is a 
commutative operation, i.e., whether 

(11-13) rpai 

01- 
ap _ rpai 

0q. y, 5 ~~ -*-01 
Olp 
0q, S, y 

The answer is in the affirmative} In fact, since all the Euclidean Chris- 
toffel symbols are zero in cartesian coordinates, the partial derivatives 
of all orders of the Christoffel symbols are also zero in cartesian coordi¬ 
nates. Hence if y^, y^) are the components of TffV.'^l in 
the cartesian coordinates y\ we find with the obvious repeated use of 
formula 11-12 that 

Z 7. y'y 'f) 
^*Tz::z 
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In other words, we have the result that successive covariant derivatives 

of a tensor field reduce to -partial derivatives of the tensor field whenever 

the tensor field arid the operations are evaluated in cartesian coordinates. 

Properties of Tensor Fields. 

Perhaps the most important property of tensor fields is the following: 

If the components of a tensor field vanish identically {or at one point, or 

at a set of points) in one coordinate system, they vanish likewise in all 

coordinate systems. This result follows immediately on inspecting the 

law of transformation 11-11 of the components of a tensor field. 

If, then, one can demonstrate that a tensor equation 

n- • “p 
= 0 

holds good in one coordinate system, it will necessarily hold good, 

without further calculation, in all coordinate systems. For example, 

consider the covariant derivative gij^ k of the Euclidean metric tensor. 

Now, since 

_ _ -po" _ ^ -ptr 
yij, k “■ ik yta-*- jh 

and since the Qij are constants when evaluated in cartesian coordinates, 

we have k - 0 cartesian coordinates^ and hence the tensor equation 

gij^k = 0 holds in all coordinates throughout space. 

Exercises 

1. Prove that the covariant derivatives of and of 5,' are zero. See equation 
10*26 for the definition of the tensor The mixed tensor 5) = 1 if i = j and 

= 0 if z j. 

2. If i.s any tensor field, then show that Ta i« a scalar field. Similarly, if 
Tfiy is a mixed tensor field of rank three, show that I'ay a covariant vector field.^ 

3. If the tensor field is defined by nan in terms of the two tensor 
fields X“^ and Ma/i, prove that the following formula (reminiscent of the differentia¬ 
tion of a product in the ordinary differential calculus) holds: 

y = \ y + X“®^ Mtr^, 7* 



CHAPTER 12 

LAPLACE EQUATION, WAVE EQUATION, AND POISSON 

EQUATION m CURVILINEAR COORDINATES 

Some Further Concepts and Remarks on the Tensor Calculus. 

We remarked in Chapter 10 that, if s(a;^, x^, a;®) is a scalar field, then 

ds 

da; 
is a covariant vector field. So, to complete the picture of covariant 

ds 
differentiation, we can call . the covariant derivative of the scalar field 

ox' 

s(a:', a:®, a:®). 
For some discussions it is convenient to extend the notion of a tensor 

field. By a relative tensor field of weight w, we shall mean an object 

with components whose transformation law differs from the transforma¬ 

tion law of a tensor field by the appearance of the functional determi¬ 

nant (Jacobian) to the icth power as a factor on the right side of the 

equations. If it) = 0, we have the previous notion of a tensor field. 

For example; 

x^, X®) 

and 

X®, X®) = 

dx^ dx' dx' 

dx^ dx^ dx* 

dx^ dx^ dx^ 

dx^ dx'^ 

dx^ dx* dx* 

dx^ dx^ dx* 

dx' dx' dx' 

dx' dx^ dx* 

dx^ dx^ dx2 

d^2' dx* 

dx3 dx* dx* 

dx' dx^ dx* 

s(x*, X®, X®) 

J'Cx*, X®, X®) 
dx* 

d? 

are the transformation laws for a relative scalar field of weight w and 

a relative contravariant vector field of weight w respectively. A rela¬ 

tive scalar field of weight one is called a scalar density, a terminology 
60 
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suggested by the physical example of the density of a solid or fluid. 
In fact, the mi«5S m is related to the density function p{x\ x^) of the 
solid or fluid by 

m = SSSdx^^ dx^, 

where the triple integral is extended over the whole extent of the solid 
or fluid. 

Another important example of a scalar density is given by 
where g is the determinant of the Euclidean metric tensor g^^. In fact, 

bx"" bx^ 
(12-1) = 

Let ^ = 1 gct0 \ 1 the determinant of the g^^. By a double use of the 
formula for the product of two determinants when applied to 12-1, 
one can prove that 

(12.2) 

where 
dx" 

dr 

bx^ 

dr 
{7, 

stands for the functional determinant of the partial 

derivatives- 
dx“ 

dx"* 
On taking square roots in 12*2 we obviously get 

(12-3) g 

which states that \/g is a vscalar density. 
The \/g enters in an essential manner in the formula for the volume 

enclosed by a closed surface. In fact, the formula for the volume in 
general curvilinear coordinates x" is given by the triple integral 

(12-4) F = f Sdx) dx^ dx^. 

This form for the volume can be calculated readily by the following 
steps. If y^ are rectangular coordinates, then 

F = SfS dy^ dy^ dy\ 
Hence 
(12*5) V = fffJ dx^ dx^ dx\ 

where J stands for the functional determinant 

dx“ 

of the transformation of coordinates from the curvilinear coordinates 
X* to the rectangular coordinates y\ Now 

3 
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and hence the determinant 

9 = 1 I 
is precisely equal to J- on using the rule for the multiplication of two 
determinants. In other words 

(12-6) Vg = J, 
from which the formula 12*4 for the volume becomes clear. 

Since the formula for volume in general coordinates is given by 
12-4 it follows that the mass m of a medium in general coordinates x* 
has the form 

m = y'y'y*Pu(^^ x^)\/g dx^ dx‘^ dx^j 

where po{x^) x^) is an absolute scalar field that defines the (physical) 
density of the medium at each partic^le (x^, X“, x^) of the medium. 
Clearly p(x\ x^, x^) = po(x^ x‘^, x^)\/g is a scalar density and, since 
\/gf = 1 in rectangular coordinates, has the same com})onents as the 
density po(xh x^, x^) of the medium in rectangular cartesian coordinates. 

Other concepts and properties of tensors will be discussed later in 
the book whenever they are needed. 

Laplace’s Equation. 

Let be the contravariant tensor field of rank two defined in 
Chapter 10, i.e., 

(12.7) 
_ Cofactor of in g ^ 

If \l/{x^f x^, x^) is a scalar field, then the second covariant derivative 
is a covariant tensor field of rank two. Now we can show that 

^ scalar field. In fact, 

(12-8) r" 
. dr 

^ dx^dx^ 

(12*9) == ^,0 dr dr 
On multiplying corresponding sides of 12*8 and 12-9 and summing on 
a and we obtain 

bx^ dx" dx^ 

bx^ bx^ bx“ bxP 
and hence the desired result 

rVKx,/3 = 9^^4'^.r 

on using the obvious relations 

bx^ bx’ 
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Let 

(12.11) F{x^, x^) = g'"^(x\ x^, 

for the arbitrarily chosen scalar field x^j x^). We have just shovm 
that F(xh x^, x^) is also a scalar field. In rectangular cartesian coordi¬ 
nates, the FiUclidean metric tensor has components 5^^ equal to 0 for 
a ^ l3 and equal to 1 for o: = (3. Furthermore, we saw in Chapter 11 
that in cartesian coordinates, and hen(‘e in rectangular cartesian 
coordinates, y\ 

if, y^) 

drfby^ 

The component of the scalar field F{x', x^, x^) in rectangular coordinates 
y' is then 

y\ v^) 
c>y" di/ 

or 

(12-12) 
(di/y 

y'K if) ^^*'f'iy\ ?y^ y^) 
(dyT- (dy-r 

the Laplaccan of the function *4'(y', ?/, y^). 
Hence the form of Laplace's equation in curvilinear coordinates x' 

with the scalar field 4'{^\ as unknown is given by 

(12-13) £f“^(-rS x^)4',a.pW> = 0, 

where ^^{x''-, x'^, x^) is the contravariant tensor field 12.7 defined in terms 
of the Euclidean metric tensor g„g, ami where i// „ ^(x‘, xi^, x^) is the second 
covariant derivative of the scalar field fi{x', x\ x^). 

If we write 12.13 explicitly in terms of the filuclidean Christoffel 
symbols rjA:(a:*, x^, x^), we evidently have 

(12-14) 
dhp{x\ X", x^) 

dx"* dx^ 
Tlfix\ x^, x^) 

dik(x\ x\ x^)\ ^ 

da:" / 

as the form of Laplace's equation f in curvilinear coordinates x\ 
It is worth while at this point to give an example of Laplace^s 

equation in curvilinear coordinates and at the same time review 
several concepts and formulas that were studied in previous chapters. 

t There is another form of Laplace’s equation in curvilinear coordinates 

which is sometimes more useful in numerical calculations than 12 • 14. It is given by 

-„ Q Pqj. ^ proof see note 3 to Chapter 13. Similar remarks 
Vg 
could be made for the wave equation and Poisson’s equation since the Laplace 

differential expression occurs in them. 
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Let 2/^ 2/^, if be rectangular cartesian coordinates and x^, x^ polar 
spherical coordinates defined by the coordinate transformation 

(12-15) 
= x^ sin cos x^, 

2/^ = x^ sin x^ sin x^, 
= x> cos x^. 

Clearly the inverse coordinate trans¬ 
formation is given by 

= V(2/')= + {y^Y + (2/“)- 

X^ = COS 

tan" 

V{rj'y+ (y^Tirfr. 

(?)■ 
Fig. 12-1. 

From the definition of the Euclidean metric tensor we find 

(12-16) gn = 1, g22 = (x0^ g-ss (x0“ (sin x^)-, and all other gij = 0, 

so that the line element ds is given by 

(12-17) d5“ = (dxf + (x’)~(dx")^ + (x^)“(sin x-y{dx^y. 

Again, from the definition of the tensor we find 

1 
(12-18) = 

1 
, and all other g^^' = 0. 

{xf^ (x^)“(sin X“)“ 

The Euclidean Christoffel symbols can now be computed in spherical 
polar coordinates; use either formula 10-27 or 10-31. They are as 
follows: 

-x’, rJa = -3:‘(sin x'^Y, 
1 

(12-19) 

(r- 
rL = —, Tm = -sin x'^ cos x\ /y.1 X 

■p3 __ -pS 

^ 31 - A 23 
X^ 

.and all other rjvt = 

Fag = cot x2, 

0. 

On using 12-18 and 12-19 in 12-14 (F^a, F33, F^g are the only non¬ 
zero Christoffel symbols that are actually used), we find that Laplace's 
equation in spherical polar coordinates x\ x^, x^ is 

dV 

(12-20) 
j (dx^ 

i 
4- 

dV 

(x')^ (dx^y (x^)''^(siD x^y (dx^y 
2 dif' cot x^ 

+-— -I-— = 0 
x> dx‘ (x*)* dx<‘ 

whenever the unknown function is a scalar field ^{x\ x\ x*). 
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Laplace’s Equation for Vector Fields. 

We now turn our attention to the related problem of considering 
vector fields whose individual components satisfy Laplace's equation in 
rectangular coordinates. The question arises whether each component 
of the vector field will satisfy J^aplace’s equation 12-14 in curvilinear 
coordinates x'^, rl The answer is in the negative, as a little reflection 
will now show. To be specific, let the unknown be a contravariant 
vector field ^%x\ x\ x^) with components V^) in rectangular 
cartesian coordinate's. By hypothesis 

(12-21) 

By practically the same type of argument used in deriving equations 
12-13, we find that the contravariant vector field ^^(x\ x^, x^) in curvi¬ 
linear coordinates x\ x^, x^ will satisfy the system of three differential 
equations 

(12-22) = 

where is the sc(!ond covariant derivative of x^, x^). If we ex¬ 
pand 12-22 explicitly in terms of the Euclidean Christoffel symbols 
r^pCa;', x^, x^) we find 

(12-23) 

de dr . dr 
r<^ 1 — -L. ^ 

+ 
/dr’ . \ ■ 

- r;.r;,jrj = o, 

a system of three differential erjuations in which all three unknowns 
r, e, r occur in each differential equation. 

Wave Equation. 

The propagation of various disturbances in theory of elasticity, 
hydrodynamics, theory of sound, and electrodynamics is governed by 
the partial differential equation known as the wave equation. In 
rectangular cartesian coordinates y', the wave equation is 

(12-24) 

d^*u(j/', 0 
dt= 

i)'^*u(y\ y% y\ t) ^*u{y\ t) 

and hence in curvilinear coordinates x' 

d^u(x\ x^, 0 
dt= 

(12-25) 
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where is the second covariant derivative of the scalar field 
x^, x^, t). If we write 12*25 explicitly in terms of the Euclidean 

Christoffel symbols we obtain f 

(12*26) 
^'u{x\ 0 ^ _ dll \ 

M ^ V^x“d./ “'*dx7' 

It is to be observed that the right-hand side of 12 * 25, or equivalently 
of 12*26, is the Laplacean. If the x' are spherical polar coordinates, 
Laplace's equation has the form 12*20. Hence, immediately, we see 
that the wave equation has the following form in spherical polar co¬ 
ordinates 

(12*27) 

d‘^u(x\ x^, t) dlhi 1 dihi 1 

W ^ (dx‘)'= (^y- (W (x')"(siii x-y- (W 

2 du cot x- dll 

{x‘y- 

By exactly the same calculaf jons as we used in obtaining Laplace's 
equation for contravariant vector fields in curvilinear coordinates, we 
find that the wave equation in curvilinear coordinates x' takes the follow¬ 
ing form whenever the unknown is a contravariant vector field ^'(x^ x^, 
x^, t) that depends parametrically on the time t: 

(12*28) 

or in expanded form 

d“f’(xb x^, x^, t) 

(12*29) 

x\ t) _ . 

dP' . df' 
ncr ^ I -n'i ^ 

dr /dV' \ 1 

on using the corresponding result 12*23 for Laplace’s equation. Note 
that 12*29 is a system of three differential equations for the three 
unknowns and and not just one differential equation satisfied 
by the three functions and 

Poisson’s Equation. 

As a final exercise in this chapter we consider Poisson's differential 
equation. In rectangular cartesian coordinates y\ Poisson's equation is 

y\ y^) y^) ^'^*k(y\ 2/^ y"^) 
(12*30) {dy^y ^ {dy^y {dy^y 

= -4w*a{y\ y\ if), 

t For another form of the wave equation, see Exercise 1 at the end of the chapter. 
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On the right-hand side of 12 • 30, y^, y^) is the component in rec¬ 
tangular coordinates y* of a scalar field 

(12.31) ,■) . 
Vg 

where p(x*, x^, x’') is a scalar density.t Since A/fir is also a scalar density, 
o-(x', x^, x^) is obviously a scalar field. From the definition of g as the 
determinant of the we see that in rectangular coordinates 

(12-32) 

Hence 

*g{y\ y\ y^) 

10 0 
0 1 0 
0 0 1 

= 1. 

\/*g = 1 

and consequently 

(12-33) 2/^ y^) = *p(2/^ 2/^ 2/^)- 

In other words, the scalar field cr{x\ x'^) and the scalar density 
p{x\ x^) have equal components in rectangular cartesian coordinates. 

On making use of our calculations for Laplace’s equation, we can 
derive corresponding results for Poisson’s differential equation. For 
example, Poisson^s differential equation in curvilinear coordinates x* 
will be 

(12-34) 
Jd'hpjx', x\ x^) _ 

\ dx“ bx”) 
““47rcr(x^, X^, X^), 

whenever the unknown is a scalar field i/'(x\ X“, x^). As before, the are 
the Euclidean Christoffel symbols in the x* coordinates. 

Exercises 

1. Show that the wave equation in curvilinear coordinates x* with scalar u(xS 

X*, x^, t) tus unknown can be written as 

x^, x^ i) 
y/g dx“ 

2. Show that Poisson^s equation in curvilinear coordinates x* with scalar ^(xh x^, 

X*) as unknown can be written as 

y/g dx“ 
~47r(7(xh x^ X®). 

t In most physical problems p(xb x^, x^) = po(xh x^, x^)y/gj where po(xh x^, x®) 

is an absolute scalar field and represents the physical density of a medium. 
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3. Obtain Laplace’s equation 12-20 in spherical polar coordinates from the fol¬ 

lowing form of Laplace’s equation: 

4. Obtain the wave equation and Poisson equation in spherical polar coordi¬ 

nates on using the form of these equations given in exercises 1 and 2 respectively. 



CHAPTER 13 

SOME ELEMENTARY APPLICATIONS OF THE TENSOR 

CALCULUS TO HYDRODYNAMICS 

Navier-Stokes Differential Equations for the Motion of a Viscous 
Fluid. 

As an interesting application of the covariant derivative of a tensor 
field in hydrodynamics, we shall write the famous Navier-Stokes differ- 
ential equations in curvilinear coordinates. Let and y^ be rec¬ 
tangular cartesian coordinates, and let 

u^ = u^y^y y‘^y y^y t)y the contravariant velocity com¬ 
ponents of a viscous fluid. 

i * time. 

V = P(y\ 2/^ 2/^ t)y pressure. 
P = piy\ y\ y\ 0, density. 
y, == coefficient of viscosity, a constant. 

j/ = kinematic viscosity. 
P 

= X^iy^y 2/^ t)y contravariant vector components 
of body force per unit mass. 

Then the motion of a viscous fluid is governed by the four Navier- 
Stokes differential equations.^ 

(13.2) 

du* / a^u^ \ V d/dw^\ 

^ a(pu^) 
U d2/“ 

The last differential equation is the equation of continuityy which 
expresses the requirement that the mass of any portion of the liquid is 
conserved. For a non-viscous fluidy y ^ 0 and hence v - Oy the Navier- 
Stokes equations reduce to the Eulerian hydrodynamical equations? 

The expression within the parenthesis in 13.2 is the Laplacean of wV 
If we then make use of the results of the previous chapter on the form 

69 
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of the Laplacean in curvilinear coordinates, the Navier-Stokes differ¬ 
ential equations take the following form in curvilinear coordinates 

(13-3) 
'u 

u u, 
+ 3^ I? 

+ {py^),ct = 0, 
where, as before, commas denote covariant differentiation based on the 
Euclidean Christoff el symbols x\ x^). If we expand the co¬ 
variant derivatives, we can write the Navitr-Siokes differential equations 
in curvilinear coordinates x* as 

(13*4) ^ 

dp d(pw“) ^ ^ 

It is of interest in itself as well as in tlie al)ove expansions to have 
equivalent expressions for the “divergence” m“ in curvilinear coor¬ 
dinates. We have used the evident formula 

(13-5) < : 

but U can also he 'proved that^ 

dx“ 
+ r:x, 

(13-6) u' 
1 d(\/g if) 

Vg c)x“ 

where g is the determinant of the Euclidean metric tensor Formula 
13*6 is often more useful in the calculation of the divergence than 
formula 13*5. With the aid of formula 13.6 we see that the equation 
of continuity for a moving fluid takes the followmg form in curvilinear 
coordinates x\' 

/,o x^, t) d(pw“) _ log g 

—Si— + + 

Examples 

1. We saw in the last chapter that, if the x' are spherical polar 

coordinates, gu = 1, gn= gsa = (x^T (sin x*)*, and all other 
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Qij = 0. Hence 

9 = 

and 

1, 0, 0 

0, 0 
0, 0, (xO“(sin 

blogg _ £ 
dx' x^' 

= 2 cot x^, 

(x*)‘‘(sin x^y 

blogg 

5x“ 
= 0. 

The equation of continuity in spherical polar coordinates x' then becomes 

i>t dx \ x' ) = o. 

2. As another exercise, we may take the to be cylindrical polar 
coordinates so that 

Fig. 13 L 

ds2 = (dx^y + {x^yidx^y + {dx^y. 

Evidently 

gn = 1, (722 = gzz == 1, and all other = 0. 

Hence the determinant g = (x^y^ and we find readily 
the equation of continuity in cylindrical polar coordi¬ 
nates x' 

dp d(p?/“) u^ 
I I p 

U dx" x' 
= 0. 

Incidentally g^^ == 1, ^ ^ j^j] q, so that 

the Euclidean Christoffel symbols can easily be computed and found 

to be TI2 = Fia = r2i = and all other T]^ = 0. These calcula- 
x^ 

tions for the Christoffel symbols are very much simpler than the cor¬ 
responding ones in Chapter 12 for spherical polar coordinates. 

Multiple-Point Tensor Fields, f 

The tensor fields that have been studied so far in this book have 
components that are functions of the coordinates of only one variable 
point in space. It is possible, however, to consider generalized tensor 
fields, called multiple-point tensor fields,! whose components depend 
on the coordinates of several points in space. Perhaps the simplest 
example of a two-point scalar field is the distance between two points, 

t The first systematic research on multiphi-point tensor fields was initiated by 

the writer many years ago. See A. D. Michal, Transactions of American Mathe^ 
matical Society^ vol. 29 (1927), pp. 612-646. 
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«i = 

Xo " 2 » 3J2» *2^ 

Let d{xi, be the distance between two points having general 
coordinates (x}, xj, x?) and 
{x\y Xg, Xa) respectively. 
Each point may not neces¬ 
sarily be referred to the 
same coordinate system. 
For example, the x\ may 
be spherical coordinates while the Xa may be cylindrical coordinates. 
Under transformation of coordinates 

Fig. 13-2. 

(13-8) x\ = 4, xl) 

and 

(13-9) xi ^ n(xl xl xl), 

the components, of distance transform by the rule 

(13*10) S(xi, X2) = d(xi, X2). 

Of course, if both points yi = {y\, yl, y\) and 2/2 = {yl) vl, vl) Q-re referred 
to the same rectangular cartesian coordinate system, then the distance 
is given by the well-known formula 

(13-11) = 

Another simple example of a two-point tensor field is obtained as 
follows. Define 

(13*12) s(xi, X2) = h[d{xi, X2)]2, 

where d(xi, X2) is the above two-point distance scalar. Obviously 
s(xi, X2) is also a two-point scalar field. Consider the partial derivatives 
of s(xi, X2) with respect to the coordinates of the second point 

(13*13) 
^sjxij X2) 

dxl 

Now under transformations of coordinates 13*8 and 13*9 of the two 
points, we know that 

(13 * 14) s(xi, X2) = s{xi, X2). 

Differentiating 13*14 we obtain 

bsjxu X2) _ ^sjxi, X2) dxg 
dxl dx? 

This shows that the partial derivatives 13 • 13 are the components of 
a two-point tensor field: a covariant vector field with respect to the 
second point and a scalar field with respect to the first point. If both 
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points are referred to the same rectangular cartesian coordinate system^ 
then from 13 ‘ 11 we see that 

(13*16) 

If we define 

(13-17) 

^s{yx, Vi) 

s‘(xi, Xi) *= g' 

= yi- iA- 

^ds(Xi,Xt) 

then obviously 5*(xi, 0^2) is a two-point tensor field: a contravariant 
vector field with respect to the second point and a scalar field with 
respect to the first point. If both points are referred to the same 
rectangular coordinate system, then both two-point tensor fields 

ds(xi, ^2) , V , , it-, 
——I— and X2) have the same components 2/2 - 2/1 that 

0X2 

rectangular coordinate system. 
We shall have occasion to consider a two-point tensor field of rank 

two, a contravariant vector field with respect to each of the two points. 
As in the other examples, the two points need not be referred to the 
same coordinate system. The transformation law for the components 
of such a two-point tensor field are 

dx\ 
(13-18) ^2) = X2) 

dxi dx2 

A Two-Point Correlation Tensor Field in Turbulence. 

Let ^^(t, x\ x^f x^) be the contravariant velocity field of a fluid in 
motion. We shall denote the mean value of a function/(O of the time 
t over the time interval (to, ti) by M\J{t)~]. For example 

(13-19) x'-, x"^, a;’)] = —L- f x‘, x^, x®) dt. 
Cl — Cov'te 

Clearly is a contravariant vector field. Define a 
set of functions (7‘^(xi, X2) of two points, Xi = (x}, x?, x?) and X2 = 

(xj, 4), by 

(13-20) 

Cii(xx X.) =_XxMt, a^)]_ 

^ ^ xx)r«, Xx)]P|(7„(x.)MK>’[«, x,)Ht, a;2)]}‘ 

where gfa^(xS x®) is the Euclidean metric tensor in the general co¬ 
ordinates x\ It is evident that C‘^(xi, X2) is a two-point tensor field of 
rank two^ a contravariant vector field with respect to each of the two points; 
we shall call it the {two-point) correlation tensor field. If both points 
are referred to the same rectangular cartesian coordinate system, then 
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the correlation tensor field has components 

(13.21) 

in terms of the notations 

u\ = Vi), iA = Vi)- 

If we now assume that we are dealing with the special case of isotropic 

turbulence, the correlation tensor field 13-21 in rectangular coordinates 

simplifies still further and has components 

1 M[_ui,u Q 

3 M[(m)'] 

on using the isotropic turbulence conditions that M[_{ui)-'] is inde¬ 

pendent of position and the index a, and equal, sa}”-, to M[(m)^]. 

Except for the numerical factor -J, the above in rectangular coordi¬ 

nates is the correlation tensor used by Karman in isotropic turbulence. 

See his paper entitled “The Fundamentals of the Statistical Theory 

of Turbulence,” Journal of the Aeronautical Sciences, vol. 4 (1937), 

pp. 131-138. 



CHAPTER 14 

APPLICATIONS OF THE TENSOR CALCULUS TO 

ELASTICITY THEORY 

Finite Deformation Theory of Elastic Media.^ 

One of the most natural and fruitful fields of application of the 

tensor calculus is to the deformation of media, elastic or otherwise. 

In the next three chapters we shall consider the fundamentals of the 

deformation of elastic media. We need not and shall not make the 

usual approximations of the classical (^^infinitcsimar’) theory in 

the general development of our sul)je(;t. 

Consider a three-dimensional mcidium (a collection of point particles) 

in three-dimensional physical Euclidean space. We shall consider a 

deformation of the medium from the initial (unstrained) to its final 

(strained) position and obtain the strain tensor field under less stringent 

restrictions than those imposed in Chapter 10. 

Let \ ^a) be the curvilinear coordinates of a representative 

particle in an elastic medium, and let (x\ x^, x^) be the curvilinear 

coordinates of the representative particle after deformation. The 

deformation, a one-one point transformation A<r^X, will be assumed 

given by differentiable functions 

(14-1) x^ \ 

It is convenient, and of some importance for the mathematical founda¬ 

tions, to assume that the representative unstrained particle A is repre¬ 

sented in a coordinate system not necessarily the same as the one in which 

the corresponding strained particle X is represented. For example, 

may be cylindrical coordinates while x^y x^ are spherical polar 

coordinates. 

We shall adopt the following notational conventions with respect to 

one-point and two-point tensor fields. Tensor indices with respect to 

75 
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transformation of coordinates of strained particles will be written to the 
right, and tensor indices with respect to transformation of coordinates 
of unstrained particles will be written to the left. For example, under a 
simultaneous transformation of the coordinates "a of point A in the 
unstrained medium and of the coordinates of point X in the strained 
medium, 

d^a 
(14*2) — 

is a two-point tensor field of rank two, contravariant vector field with 
respect to point A and covariant vector field with respect to point X. 
In other words, under transformations of coordinates 

^ ( X" = x^, x^) 

in the unstrained and strained medium respectively, the two-point 
components undergo the transformation 

..... « dx^ 
(»'4) 

Similarly 

(14.5) = - 

is a two-point tensor field of rank two, covariant vector field with 
respect to point A and contravariant vector field with respect to 
point X. The relationships 

(14-6) CaJG.xO =^5, C.xOraa) =5: 

are clear, where 
r, ;jr/=0 if V ^ S, 

Let the initial and final squared elements of arc length in curvilinear 
coordinates be given respectively by 

. „ Jds^ = „^(a)((fa)(d®a), 

' ' \ds^ =- gafiix) dx“ dxP. 

Clearly, the initial and final squared elements in terms of the final 
coordinates x* and initial coordinates respectively are 

(14-8) 
( ds? = K4x'' dx\ 
(ds'* = pgk(d’’a){d^a), 

where 

(14-9) (Kr = aeC(“a J(Vr), 

We are now in a position to write down the change produced by the 
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deformation in the squared arc element. In fact, in terms of the 
coordinates x\ we have 

(14-10) - dsl = 2e^p(x) dx*^ dx^, 

where 

(14-11) c«^(x) = - K^{x)) 

Similarly, in terms of the coordinates *a, we find 

(14 • 12) ds2 - dsl = 2,^r;(a) (d“a) (d^a), 

where 

(14-13) = Kai9*^(a) ~ a^c(a)). 

Clearly e^p{x) is a covariant tensor field of rank two in the strained” 
coordinates x' while a^nip) is a covariant tensor field of rank two in the 

unstrained” coordinates ^a. We shall call e„^{x) the Eulerian strain 
tensor and the Lagrangean strain tensor. The Eulerian strain 
tensor will often he referred to as the strain tensor. We have chosen this 
terminology in analogy with the two viewpoints in hydrodynamics 
represented respectively by the Eulerian and the Lagrangean differen¬ 
tial equations of motion. As an immediate consequence of formula 
14-10 we find the following fundamental result: A necessary and 
sujficient condition that the elastic deformation of the medium be a rigid 
motion (Le., a degenerate deforynation that merely displaces the medium 
in space with a preservation of distances between particles) is that the Eu¬ 
lerian strain tensor components be zero. Equivalently from 14-12 we 
have: a necessary and sufficient condition for a rigid motion is the van¬ 
ishing of all the Lagrangean strain components. These results justify 
the use of the word “strain’^ in connection with the tensor fields Ca^(x) 
and 0^1?(a). 

Strain Tensors in Rectangular Coordinates. 

If the same rectangular cartesian coordinate system is used for the 
description of both the initial and final positions of the elastic body, 
the Eulerian strain tensor reduces to 

(14.14) *’■ U ij) • 

In terms of the usual notation (a, b, c) 
and (x, y, z) for the rectangular coordi¬ 
nates in the same coordinate system of 
the representative initial and final parti- 

cles respectively, we have Unstrained Strained 

Fi<3. 14-2. 
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(14-15) 

- ifl _ f—Y1 
2L \dx/ \dx/ Vdx/ J 

if do da db db dc del 

2L da; dy dx dy dx dt/J ‘ 

if da da db db dc del 

2L dx dz dx dz dx dzj ’ 

If, /da\2 /dbV /deVl 

2L \d2// \dy) \d?// J 

if da do db db dc del 

2L dy dz dy dz dy dz J ** 

“ 21^ ” Vdz/ " \dz/ ~ \dz) J’ 

Similarly the Lagrangean strain tensor reduces to 

On denoting the ‘Misplacement vector’^ (really a two-point tensor 

field that was discussed in the previous chapter) (x - a, y - b, z - c) 

by {Uf Vj w) we can rewrite 14-15 in the form 

v\^ (dw\^ 

-J + W) J’ 

1/du dw 

(14-17) 

A ir^ 

J “ 2Ld; 

\ ir^ 

/ “ 2Lda 

du du dv dv dw dw 

.dx dy dx dy dx dy. 

du du dv dv dw dw 

dx dz dx dz dx dz _ 

dwl 

If /dw\2 /dvV /dieVl -iW Hd-J +WjJ’ 
dv dw\ if^wdi/ dvdv 

2\dz ^ dy) 2Ldy dz ^ dydz^ 

dw if /duV /dv\^ /diyVl 

dz 2L \d2 / ^ \dz) ^ Vd^; / J 
In the classical theory {the usual approximate theory) of elastic deforma¬ 

tions^ the squares and products of the partial derivatives of Uj Vj and w are 

considered negligible. Hence, to the degree of approximation considered 

in the classical theory, 14 • 17 yields the following well-known formulas 

for the strain tensor: 
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bu l/du dA 
€xx ~ 

bx' 
^xy ~ 

2\by di/ 
— €yx) 

l/bu bw\ ' bv 
’ , “ ^XXf €yy II 

l/dy bw\ bw 

Ad^ 
— ^zyi ezz 

bz 

Change in Volume under Elastic Deformation. 

Let us now return to our deformation theory without making the 
approximations of the classical theory. One of the first fundamental 
questions that arises is the manner in which volumes behave under a 
deformation of the medium. 

The element of volume in 
the unstrained medium is, 
by 12.4, 

(I4-19)dFo = \^cd^adrad^a, 

where c = | |, the deter¬ 
minant of the Similarly, 

(14-20) dV = \/g dx^ dx‘^ dx^, 

where g ^ \ Qa^ \ i fhe determinant of the 
In terms of the ‘‘strained variables^’ x\ we have 

(14-21) dVo = I I dx^ dx^ dx^j 

I I 
where “a ^ is the determinant of the — - 

Now 
dsl = \yC{o) d^a d^a = h^^{x) dxP, 

where is given by formula 14-9. 
Evidently the determinant h of the is given by 

= C 1 “a,i 12. 

From this 

(14-22) Vh^Vcl^tti] 

and 

(14 ■ 23) dVo = Vh dx^ dx^ dx?. 

Formulas 14-20 and 14-23 imply that 

(14-24) 
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Define 

(14-25) 

and thus obtain 

(14-26) 

by an application of the properties of and <7“^; see formulas 10-26. 
From 14-26 we compute 

(14-27) h = g\K‘,\, 

where | | is the determinant of the On using 14 - 24, we have 
immediately 

(14-28) = 

To express this ratio in terms of the strain tensor we first recall the 
definition 14-11 and obtain 

Kp{^) = ^^a^(^) - 26„^(x). 

On raising the indices with the aid of the we evidently have 

(14-29) 

where the mixed tensor field of rank two is defined by 

(14-30) 

On using 14-29 in 14-28, we arrive at the important result that the 
ratio of the element of volume of a set of particles in the unstrained medium 
to the element of volume of the corresponding particles in the strained 
position is given in terms of the strain tensor ea^(x) hy means of the follow¬ 
ing formula 

(14-31) = \/| 5^-2*^(2:) [. 

Notice that, with rigid motion of the medium, the strain tensor 
« 0 and hence = 0. Hence, from 14-31 and * 0, we see that 

a rigid motion preserves volumes. 
We have developed the fundamentals of elastic deformation and 

strain tensor in three-dimensional space. It is clear, however, that 
everything we have said can be taken over for the corresponding 
elastic deformations in the plane. In all the formulas, there will be 
two variables etc., the indices will have the range 1 to 2, and the 
consequent summations will go from 1 to 2. For example, formulas 
14-14, 14-15, 14-17, and 14-18 for the Eulerian strain tensor will be 
respectively as follows in elasticity theory in the plane. 
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(14-32) 

(14-33) 
if da da d6 dbl ^ 

2L bxi>y dxdyj 

}-\i 

da ir/du 

2LVda;, 
€xar “ ZT 

Ox 

l/da bv\ 

^ 2 W 
dy 

^VV — ^ ^ 
oy 

ir fbu 

(14-34) 

where u ^ x — a and v = y — b. 

du da dv dv 

.dx dy dx dy. 

Exercises 

1. Find the components of the Eulerian strain tensor ca/six^, x*, x®) when the 

deformation of the elastic body is a stretching whose equations are 

X* = A *a (A is a constant greater than unity) 

where both x* and »a are rectangular coordinates referred to the same rectangular 

coordinate system. Discuss the change in volume elements. Work out the cor¬ 

responding problem in plane elasticity. 

2. Work out exercise 1 for a contraction so that the constant A is lees than unity. 



CHAPTER 15 

HOMOGENEOUS AND ISOTROPIC STRAINS, STRAIN IN¬ 

VARIANTS, AND VARIATION OF STRAIN TENSOR 

Strain Invariants. 

If we expand the three-rowed determinant | h’^ |, we find 

(15-1) 1 6; - 2e^ I = 1 - 2/i + 4/2 - 8/3, 

where 

Z2 = sum of the principal two-rowed minors in the determinant 

(15-2) A = I I , and /a = A. 

A function /(^u, g\2y • * en, ^12, • • •, €33) of the Euclidean metric 
tensor g^^ and the strain tensor will be called a strain invariant^ if 

(a) it is a scalar field; (b) under all transformations of coordinates x' to 

(15‘3) figiiy guy • y g^h ^^riy • * €33) ^ f{giiy gi2y • * gzzy en, €12, 
* • *; €33), 

where the function /, on the left^ is the same function of the g^p and 

as it is, on the right, of the g„^ and 
We shall now prove that the three functions Ii, 12, and 13 occurring in 

the expansion of the determinant 15'! arc strain invariants. From the 
law of transformation of the mixed tensor field we readily get 

e^ix\ x\ x^) = eZ{x\ x^), 

from which follows that h is a strain invariant on recalling that 

To prove that h is a strain invariant, we have by hypothesis 

(x) = 

On taking the determinant of corresponding sides, we obtain 

-a X dx^ dx" 

ei8 - ' 
dx^ dx'^ 

But the product of the functional determinants is equal to unity. 

Hence | I = | | , and I3 is a strain invariant. To prove that h 
is a strain invariant, we first observe that 

5? - 24 
82 
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is a mixed tensor field of rank two. Hence, by the argument just com¬ 
pleted for I I, we see that the determinant | 6^ - | is itself a 
strain invariant. But, from the expansion 15-1, we see that 

(15-4) h = 1C| 5^ - I _ 1 + 27i + 8/3]. 

Formula 15-4 expresses h as a linear combination of strain invariants 
with numerical multipliers. Hence obviously is itself a strain in¬ 
variant. 

On using the results 14-31 together with what we have just proved, 
we obtain the result 

(15-5) ~ = Vl - 27, + 4/2 - 8/3, 
dV 

which gives the ratio of the element of the volume of a set of particles in the 
unstrained medium to the element of volume of the corresponding particles 
in the strained medium in terms of the three strain invariants /i, 12, and h. 

Homogeneous and Isotropic Strains. 

Let us now discuss the mathematical description of a homogeneous 
strain. 

Debinition of Homogeneous Strain. A strain is homogeneous if 
the corresponding strain tensor has a zero covariant derivative, 
i.e., .y = 0. 

In rectangular coordinates, the condition reduces to —- == 0 since all 
ox^ 

the Euclidean C'hristoffel symbols are identically zc^ro in rectangular 
coordinates. In other words, the strain tensor components in rec¬ 
tangular coordinates are constants for a homogeneous strain. 

It readily follows from the definition of the strain invariants /i, /2, 
and Iz that for a homogeneous strain 

0 

in rectangular coordinates and hence in all coordinates. (Keep in mind 
that /i, /2, and Iz are three scalars and not the three components of a 

covariant vector.) Hence, for a homogeneous strain 
dy, 

Uv is a numerical 

constant for all coordinates. We thus arrive at the important result 
that for a homogeneous strain 

(15-6) = Vl - 2/1 4- 4/2 - 8/3 = a constant. 

This constant is the same for all unstrained” volumes Fo and their cor- 
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responding strained” volumes V, and is independent of the coordinate 
system. 

For the special case of a homogeneous strain which is also isotropic at 
each pointy we shall have 

(15*7) €^ = €51 

or what amounts to the same thing 

(15*8) = eg^p. {g^^y the Euclidean metric tensor.) 

Since the strain is homogeneous, we have ^ = 0. We also have (see 
the end of Chapter 11) 

Qa^, Y = 0. 

Hence e in 15*7 and 15*8 is a constant scalar field, a numerical constant 
that is independent of position and the coordinate system. 

An example of an isotropic homogeneous strain is found in an iso¬ 
tropic medium subjected to uniform hydrostatic pressure, i.e., an 
isotropic medium subjected to the same pressure in all directions. 

Since 15*6 holds and 

1 - 2J, + 4J, -8/3=1 2es I , 

we see by an evident calculation that for an isotropic homogeneous strain 

(15-9) 7 = C - 2*)'- 

The constant scalar € for an isotropic homogeneous strain is given 
by the formula 

(15-10) 

in terms of any one volume before and after deformation. 
In the usual approximate theory (usual theory of elasticity) higher 

powers of c than the first are neglected; see Chapter 14. Since 

(1 - 2€)^ =■ 1 - Se, approximately, 
we have 

Fo 
(15-11) ^ ^ approximately, 

and 

lF~7o lAF lAF 
(16-12) 6 - - —— = approximately. 

A Fundamental Theorem on Homogeneous Strains. 

We shall now outline the proof of the following theorem. A necessary 
and sufficient condition thai a strain he homogeneous is that, in terms of 
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unstrained cartesian coordinates and strained cartesian coordinates y\ 
the deformation is linear, i.e., 

(15*13) = + 

Outline of Proof. 

From the definition of the strain tensor we have 

“ Qpt ““ ^pg* 

Since gfpg^r = 0, and since under our ^^necessity hypothesis^’ Cpg,r = 0, 
we obtain the vanishing of the covariant derivative of hp^ {x). But 
by definition 

Ka (^) = {a/sc)(“a,p)('’a,) 

SO that the are the independent variables and the "o are the de¬ 
pendent variables. Expanding the covariant derivative in hp^^ (x) = 0, 
and rearranging, we find 

(15-14) /s_ 
a(fi Opr a.a- < 

where 

(15-15) -0 

Since 

(15-16) “a pr =» 

\QT9 

^ pr 

the right side of 15*14 must be symmetric in p and r. Hence 

(15-17) “o.pr Va = - 

On equating the corresponding sides of 15*14 and 15*17, rearranging, 
and interchanging p and q and ^ and a, we obtain 

(15-18) ^ “ap, = - ^“o,p Ve + + a0C “at V«p- 

Adding corresponding sides of 15-17 and 15-18 there results 

(15-19) 2pajC “o,p, '’o,a *= - -^“o **0 +-^‘'0 '.P* 

Recalling that the are functions of the unstrained coordinates ’a, we 
find 
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Multiplying corresponding sides by and summing on q, we obtain 

(15-21) 
if 
215^0 ‘^d“a 

^ “a,r>p. 
> a J 

Finally, if we multiply corresponding sides of 15 • 21 by c'*", we arrive 
readily at the interesting result 

(15-22) 

where .yaF(u) (itc the Euclidean Christoff cl symbols based on the Eicclidean 

metric tensor ^^c{a) in the unstrained coordinates 'a. 
Now from the definition 15-15 of pr and from the vanishing of the 

Euclidean Christoff el symbols r}^.(.T) and when evaluated in 
“strained” cartesian coordinates y' and “unstrained” cartesian co¬ 
ordinates *2 respectively, we see that 15*22 reduces to 

(15-23) 

This implies that the deformation is linear, i.e., of type 15-13. 
To prove the converse part of the fundamental theorem on homo¬ 

geneous strains, we have by hypothesis that the deformation, or strain, 
is given by a linear transformation 15-13 in cartesian coordinates *2 

and y\ Now 

hpq{^) = a0C(«)(“o,J.)(Va) 

and are constants in cartesian coordinates. From 15-13 we 
have 

and hence the components *hpq(y) in cartesian coordinates are 
given by 

^^pqiy) ~ a/3^ 

a set of constants. Hence 

^^Kqjy) _ ^ 

^y^ 

But this condition implies that the covariant derivative 

bpq^r (^) ~ 

and hence the covariant derivative Cpg,r (x) = 0. In other words, the 
strain is homogeneous, and the proof of the theorem is complete. 

Variation of the Strain Tensor. 

In preparation for the subject matter of the next chapter, we need 
to consider deformations that depend on an accessory parameter t. 
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which in dynamical problems can be taken as the time t. So let the 
coordinates x" of a representative particle in the strained medium 
depend on the coordinates of the corresponding particle in the 
unstrained medium and on the accessory parameter L Let 

(15-24) Dx* = 
dx"(*a, t) 

dt 
(It 

be the partial differential of x* in t. If /!!! (x) is any tensor field in the 
strained medium, define 5/!!! (x) by 

(15-25) 5/:;:(x) Dx% 

where is the covariant derivative of Clearly, if the x* are 
cartesian, = D/!;.*. Moreover, 8f(x) = D/(x) for a scalar /(x) in 
general coordinates x\ To have a wcdbiounded notation, define 
Sx’" = Dx^ and refer to 5x^ as the virtual displacement vector. If 
x^(^a, hi, ^a, t) have continuous second derivatives, then from the 
commutativity of second derivatives 

Hence 

r,/ ^(53^'^) 2l(8a:*) , 

D(rfx^0 = — (5x").dx“, 
Ox 

which implies the tensor equation 

(15-26) 5(dx0 = (5x'),, dx“. 

Obviously bg ra — 0, Since gr8,t — d* Hence the above tensor equation 
may be written 

(15-27) b{dxk) == (5x,),.dx«. 

Since bd{'^a) = 0, an evident calculation using 15-26 shows that 

(15-28) 6(^a^) = -’’a,(5x"),^. 

Recalling that 

hpq{pc) — ct/3C(u)( 

and applying formula 15-28 we find 

which can be put in the convenient form 

(15-29) bhpq = -hl{8x,)^p - hp{bxf)^q. 

From this, and from the definition of the strain tensor and the re¬ 
lated formula 
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we arrive at the fundaimrM formula for the variation of the strain tensor. 

(15-30) depg (x) = iC(5Xa).p + (top) J - C«J(5a:J.p + (to,) J. 

This formula becomes 

(15*31) "t" 

within the approximations of the usual approximate theory of elasticity. 

Returning to our finite deformation theory, we define a rigid virtual 

displacement by the condition == 0. On using formulas 15*26 

and 15*27 in an evident calculation, we find 

(15*32) 6(ds2) = l(dxj^0 -f (5x^),a] dx“ dx^ 

for any virtual displacement, rigid or not. Hence the virtual displace¬ 

ment vector must satisfy Killing's differential equations for a rigid 

virtual displacement 

(15*33) (5U/5+(5^)3Xa = 0. 

For the sake of completeness, we shall write down the formula 

(without giving the derivation) for the variation of the Lagrangean 

strain tensor pqrj under an arbitrary virtual displacement. 

^PqV “ ^C(^^'a),/9 ■!" (2^/3).a! p,^ * 

Exercise 

Calculate the three fundamental strain invariants for a homogeneous isotropic 
strain. Hint: since they are constants, calculate them in rectangular cartesian co¬ 
ordinates. 



CHAPTER 16 

STRESS TENSOR, ELASTIC POTENTIAL, AND 

STRESS-STRAIN RELATIONS 

Stress Tensor. 

Let S be the bounding surface of a portion of the elastic medium 
in its strained position. The surface element of S may be described by 
means of the covariant vector dSrf 

(16-1) dSi = y/g d{x^y dS2 = \/g d{:x^, xO, dSz = \/g d{x\ x^), 

where 

(16*2) d(x^, X®) 

dx^ dx^ 

du dv 

dx® 5x® 

dw dv 

du dv 

and Uf V are the surface parameters so that the parametric equations 
of the surface S are given by x‘ == /'(w, v). In rectangular coordinates 
and in the usual notations x, j/, Zj the components of the covariant 
vector dSr are given by 

dSx d(^yj 25), dSy **= d{Zf x)^ dSg ~ d(jXf 

Exercise 

Prove that dSr is a covariant vector under transformations of the 
coordinates x\ Hint: use the fact that is a scalar density. 

Let dS be the magnitude of the surface element, i.e., 

{dSy^g^^dS^dSp. 

Before we introduce the notion of a stress tensor we must define a 
stress vector. A stress vector is a surface force that acts on the surface of 
a volume. An example of a surface force is the tension acting on any 

horizontal section of a steel rod suspended vertically. If one thinks of 
the rod as ciit by a horizontal plane into two parts, then the action of 
the weight of the lower part of the rod is transmitted to the upper part 
across the surface of the cut. A hydrostatic pressure on the surface of 
a submerged solid body provides another example of a surface force. 

There are other kinds of forces called body, volume, or mass forces^ 
89 
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i.e., forces that act throughout the volume. As a typical example of a 
mass force one can take the force of gravity, pg AF, acting on the mass 
contained in the volume AF of the medium whose density is p, and 
where g is the gravitational acceleration. 

A stress tensor is defined implicitly by the relation 

(16-3) F^dS== 

where is the stress vector acting on the surface element dSr- 
Let us now consider a virtual displacement of the strained medium 

corresponding to the accessory parameter t. The virtual work of the 
stresses across the boundary S is 

(16-4) ffFf' 6x3 dS = ffT^ dx^ dS^ = fff{T^ dV, 
S S V 

a volume integral extended over the volume F bounded by S and ob¬ 
tained by Green’s theorem or generalized Stokes’ theorem in curvi¬ 
linear coordinates. 

If there are mass forces (AF per unit mass) acting on the medium, 
the virtual work of these mass forces is 

fffpM^dx^ dV, 
V 

where p is the mass density. Hence, the virtual work of all the forces 
acting on any portion of the medium is 

(16 • 5) J'jrmr'!: + pM^)dx, + T^idx,)^ av. 

We shall now adopt the 
Physical Assumption of Equilibrium: The virtual work of all the 

forces actmg on any portion of the medium is zero for any rigid virtual 
displacement. 

In particular, the translations, characterized by - 0, are 
rigid virtual displacements, and so we must have the condition 

(16*6) + pM^) 5x^ dV = 0. 
V 

Since dx^ is arbitrary at any chosen point and F is arbitrary, we have 
the following differential equations for equilibrium: 

(16-7) !r^ + pM^ = 0. 

Consequently the virtual work of all the forces (mass as well as surface) 
acting upon any portion of the medium in any virtual displacement is 
given (on using 16-5 and 16-7) by 

(16-8) Total virtual work = S f ST^{bxf) „ dV, 
V 

Since this must vanish for any rigid virtual displacement, i.e., for 

(SXp) g -j- (dXq) p ~ 0, 



ELASTIC POTENTIAL 91 

the stress tensor must be symmetric: 

(16.9) rpap ^ 

Hence 16.8 can be written 

(16*10) Total virtual work = + (^^^),a] dV. 

Within the approxirnatioriH of the usual approximate elasticity theory, 
the total virtual work may be written 

(16-11) 
V 

since formula 15-31 holds for the approximate theory. But note that 
this is not a legitimate result for the finite deformation theory; formula 
16*10 is the legitimate result for that theory. 

Elastic Potential. 

We shall now turn our attention to the elastic potential and its 
relation to the stress tensor. Let p l)e the density of tlie volume element 
dY in the strained medium. The clement of mass dm is given then by 
dm = p dV. The principle of conservation of mass in a virtual dis¬ 
placement is expressed by 

d{dm) = 5(p dV) = 0. 

Let T be the temperature of the element of mass dm, a the entropy 
density (per unit mass) so that the entropy of the mass dm is a dm 
= per dT, and u dm the internal energy of the mass dm. Then the 
fundamental energy-conservation law of thermodynamics says that 

(16*12) Tb{(T dm) = d{u dm) 

(virtual work of all forces acting on dm). Let 

(16.13) 0 = w — Tdy 

the free energy density or elastic potential. 
From the principle of conservation of mass, we have, on integrating 

over any portion of the strained medium and making use of equations 
16-8, 16*12, and 16-13, 

(16-14) fffmp dV = dV - dV. 
V V V 

Since V is arbitrary, this yields 

(16* 15) p 50 - T“^(5x,),^ - ptr 8T. 

We shall now work under the following 
Hypothesis on Elastic Potential 0: 0 is a function of the 

Euclidean metric tensor gij{x) in the strained medium, the Euclidean metric 
tensor a^c(a) in the unstrained medium, and the temperature T. 
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We shall restrict ourselves to isothermal variations, so that T is a 
constant parameter in <j). From 16-15 and the symmetry of the stress 
tensor we see that 50 = 0 for any isothermal rigid virtual displace¬ 
ment Now, for any virtual displacement, 8„pC = 0 and 6gra = 0. Hence 
from Killing's differential equation 15-33 we have 

whenever 

(16-17) + (53:^),a = 0. 

Let 

'a^ix) = gr^(x) 

and use the formula 

(see formula 15*28) 

and 16-17 in 16*16 to obtain 

Hence <t> must satisfy the following system of 
equations 

(16-18) 
0("as) 

0. 

partial differential 

This is a complete system of three linear first-order partial differential 
equations in the nine variables “a There are nine conditions in 16 • 18 
but three are identities and only three of the remaining six are inde¬ 
pendent. From the theory of such systems of differential equations^ 
we know that the general solution of IG-18 is a function of six functionally 
independent solutions. It will take us too far afield to give the theory 
of such differential equations; we are content here with this mere state¬ 
ment of the result concerning the most general solution 0. 

There are some particularly interesting solutions of equations 16*18. 
To consider them it is convenient to define an isotropic medium. 

Definition of Isotropic Medium. A medium whose elastic potential 
is a strain invariant that may depend parametrically on the temperature 
T will be called an isotropic medium. 

Now it can be shown, but in this brief volume we have not the time 
to give the details of proof, that the elastic potential for an isotropic 
medium satisfies the differential equations 16 • 18. It can also be shown 
by a long mathematical argument that any strain invariant is a function 
of the three fundamental strain invariants 7i, /2, and Iz of Chapter 16, 
The following important result is immediate. A necessary and sufficient 
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condition that a medium he isotropic is that its elastic potential </> = 
12, /s, T) where /i, /2, and h are the fundam^ental strain invariants. 

In the usual approximate theory of elasticity, the elastic potential 0 
for crystalline media (another name for non-isotropic media) is taken 

as a quadratic function of the strain tensor components. It is tacitly’' 
assumed in the usual approximate theory that a special privileged 
reference frame, determined by the axes of the crystal, has been 
chosen. The coefficients of the quadratic form are accordingly not 
scalars but components of a tensor of rank four which depends on the 
orientation of the crystalline axes. 

Stress-Strain Relations for an Isotropic Medium. 

Consider the elastic potential 0 for an isotropic medium as a function 
of the strain tensor Crs- Since e^a is symmetric, we have era = Kera + €ar). 
In we shall write -J(era + e^r) wherever era occurs, and thus we see that 

(16-19) 
d0 d(/> 

^€rs ^C«r 

with the understanding that in -—, say, all the other e\s (including ear 

for that s, r) ai*e held constant, so that in this differentiation no atten¬ 
tion is paid to the symmetry relations ear = era- 

We saw in Chapter 15 (see 15-29) that under a virtual displacement 
the variation of hpg and hence of the strain tensor epg was given by 

(16-20) 8epq = -l8hpg = lLhl{8x^),p + 

since hpq = gpq- 2ep^. But Sgp^j = 0; hence 

~ = 2 "b ha 

or 

(16-21) 50 = “— h} {8Xr)^ {a and jS are summation indices t) 

on using conditions 16-19. Now, for an isothermal virtual displace¬ 
ment, formula 16 • 15 reduces to p 50 = !r"^(5a;„)^^, and so for an isotropic 
medium 

(16-22) h; idx,)^ = 

From the arbitrariness of the virtual displacement and the fact that 

t Throughout the remaining part of this chapter, a mere repetition of an index 
in a term will denote summation over that index. 
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= dg — 2eg we obtain the stress-strain relations for an isotropic medium 

(16 • 23) = p{~ - ~) ■ 

We shall put this stress-strain relation in another form. Now by 
definition and hence 

^ —9 
Otij 

Obviously 

and hence 

(16-24) 

dtf) 

d<j) b<t> 

deij btj 

Define the mixed stress tensor 7"^ by 

(16-25) 

(= g^yT'^°‘ from the symmetry of the stress tensor). Then with the aid 

of 16-24 in 16-23 one can show readily that i\\Q following stress-strain 
relations hold for an isotropic medium 

(16-26) 
£>4/' 

From the principle of conservation of mass pdV = podVo, and from 
the fundamental result 15-5, we see that 

(16-27) p = po Vl - 27i + ih - 8/3 

in terms of the strain invariants /i, 72, and h for media, whether iso¬ 
tropic or not. Since 7i, /2, and h are respectively first degree, second 
degree, and third degree in the strain tensor comi)onents we see 
that to a first approximation p = po; i.e., volumes are also preserved to 
a first approximation. Hence to the same degree of approximation^ the 
stress-strain relations 16-26 for an isotropic medium reduce to Hookers 
law of the usual approximate theory 

(16-28) ‘ 

where 4?- = p4). 



CHAPTER 17 

TENSOR CALCULUS IN RIEMANNIAN SPACES AND THE 

FUNDAMENTALS OF CLASSICAL MECHANICS 

Multidimensional Euclidean Spaces. 

In the last two chapters of this book we shall attempt to give some 

indications of a more general tensor calculus and some of its applica¬ 

tions. Although our discussion will of ne^cessity be brief, this fact will 

not keep us from going to the heart of our subject. Our study of 

Euclidean tensor analysis can be used advantageously to accomplish 

this. 

First of all the subject matter of Chapters 9, 10, and 11 can obviously 

be extended to n-dimensional Euclidean spaces, where n is any positive 

integer. There will be n variables wherever there were three before, 

and indices will have the range 1, 2, • • • to n with the consequent 

summations going from 1 to n. For example, the squared element of 

arc in rectangular coordinates y\ ?/’* is 

(17-1) 
i=l 

while in general coordinates x\ x\ • • •, x" 

(17-2) 

where 

(17-3) 

ds^ = Qa^ix^, • • •, a:") dx° dx^, 

^ bv'bv' 

the n-dimensional Euclidean metric tensor (see 9-IS). The n-dimen- 

sional Euclidean Christoffel symbols are 

(17-4) 
\d2“ bxV’ 

where the are defined in 17-3 while 

(17-5) 

95 
9 
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in terms of the n-rowed determinant 

(17-6) 

^iii On, ’ * gin 

^21, ’ * ’? g^n 

gnly gn2y ’ * *5 Qnn 

Riemannian Geometry.^ 

An n-dimensional Riemannian space is an n-dimensional manifold 
with coordinates such that length of curves is determined by means of 
a symmetric covariant tensor field of rank two * * * > 2:^) in 
such a fashion that the squared element of arc 

(17*7) dx^ 

is positive definite, i.e., dx"* dx^ > 0 and is equal to zero if and only 
if all the dx" are zero. The length of a curve x^ = f^{t) given in terms 

of a parameter t is then by definition 
3C ' ( ^ 

(17-8) 
(x) dx^ dx^ 

dt dt 
dt 

Fig. 17*1. 

(17*9) g = 

It can be provc'd by rather long alge¬ 
braic manipulations that from the positive 
definiteness of dx“ dx^ follows the posi¬ 
tive value of the determinant of the g^^y i.e., 

^11, guy * * •, gin 

> 0. 

gnly gn2i ’ * * > gnn 

The theory of a Riemannian space is a Riemannian geometry. 
Exactly as in an ?i-dimensional Euclidean space, we can derive the 

contravariant tensor field of rank two {7"^(x^, x^, • • •, x^) and thus have 
at our disposal the Christoffel symbols of our Riemannian geometry 

(17-10) ^UxSx^ 1 iv ( 
2^ \dx“ ')■ 

Notice that the Riemannian Christoffel symbols depend on the funda¬ 
mental Riemannian metric tensor g^p and its first partial derivatives. 

Unlike the Euclidean Christoffel symbols, it is impossible in general 
to find a coordinate system in which all the Riemannian Christoffel 
S3nnbols are zero everywhere in the Riemannian space. This is due to 
the fact that it is in general impossible to find a coordinate system 
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in which the fundamental metric tensor has constant components 
throughout space. It is to be recalled that in a Euclidean space there 
do exist just such coordinate systems, i.e., cartesian coordinate systems 
and rectangular coordinate systems in particular. 

We can, however, prove that there exists a coordinate system with 
any point of the space as the origin, i.e., the (0, 0, • • •, 0) point, such 
that all the Christoffel symbols vanish at the origin when they are 
evaluated in this coordinate system. Such a coordinate system is called 
a geodesic coordinate system. We shall prove that the coordinates 
defined implicitly by the transformation of coordinates 

(17-11) X' = qi + yi- xS • • - , 

are geodesic coordinates. 
A direct calculation from 17*11 yields the needed formulas 

where the 0 means evaluation at the origin of the coordinates. Now, 
under a transformation of coordinates, the Christoffel symbols of a 
Riemarmian space transform t by the rule 10*29 for Euclidean Chris- 
tofifel symbols. Let ?/’0 be the (Riemannian) Chris¬ 
toff el symbols in the y^ coordinates. Then 

(17• 13) *TU{y\ r) = x") 
dx^ dx* by' 

d^x^ by' 

'^bifby^b^' 

Now we see from the transformation of coordinates 17*11 that x* = 
when 7/" = 0. In other words, the origin of the ?/* coordinates has co¬ 
ordinates X* = in the x* coordinates. 

If we evaluate both sides of 17 * 13 at the origin of the y* coordinates 
and if. we use formulas 17 • 12 in the calculations, we find 

(17-14) C*^•,(^/^^/^ •••,2/")]o = 0. 

In other words, the y'^s are geodesic coordinates. 

t With the difference that the number of variables now is n and the indices 

have the range 1 to n. The proof is practically a repetition of that given in note 4 

to Chapter 10. 
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Ctirved Surfaces as Examples of Riemannian Spaces. 

Obviously any Euclidean space is a very special Riemannian space. 
A simple example of a Riemannian space which is not Euclidean is 
furnished by a curved surface in ordinary three-dimensional Euclidean 
space. This can be seen as follows. Let be rectangular (ioordinates 
in the three-dimensional P^uclidean space, and let the equations of a 
curved surface be 

(17-15) y^=fKx\x^) 

in terms of two parameters and x^. Then the squared element of arc 
for 'points on the surface 17 -15 is 

(17 • 16) ds^ = jz WY = djY 
1=1 

{a and /3 have the range 1 to 2 and corresponding summations go from 
1 to 2), where 

(17-17) ga^{x\ 
^ d/^'(x\ x") '6p{x\ x^) 

So a surface in three-dimensional Euclidean space is a two-dimensional 
Riemannian space. 

Exercise 

The surface of a sphere is a two-dimensional Riemannian space. 
Find its fundamental metric tensor and its Christoffcd symbols. The 

surface of a sphere of fixed radius r is 
given by 

2/^ = r sin cos 
r sin x^ sin X‘ y.2 

y^ ^ r cos x^ 

Therefore the f undamental metric tensor 
is given by <711 = f\ == 0^21 = 0, 
g22 = r^Csin x^y. Hence 

1 
g ^12 ^^21^0, 

1 

The Christoffel symbols are then 

rj2 = -sin x^ cos r?2 = r2i = cot x^j 

and all the other Christoffel symbols of the surface of the sphere are 
zero. 
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The Riemann-Christoffel Curvature Tensor. 

It was seen in Chapter 11 that covariant differentiation is a commu¬ 
tative operation in three-dimensional Euclidean space, and by exactly 
the same type of reasoning this is also true in an n-dimensional Eu¬ 
clidean space. To establish this result explicit use was made of car¬ 
tesian coordinates. Since such coordinates are in general not available 
in a Riemannian space, we cannot use that type of proof. In fact, co- 
variant differentiation in a Riemannian space is not in general commu¬ 
tative, We shall find a formula (see 17*19 below) that makes clear the 
non-commutativity of covariant differentiation in Riemannian spaces. 

In obtaining Laplace’s equation in curvilinear coordinates for con- 
travariant vector fields in a Euclidean space, we had to calculate the 
second covariant derivative of a contravariant vector field. (See the 
bracket term in 12-23.) The calculation for Riemannian spaces is 
practically the same, so that we shall write down the second covariant 
derivative of ?*(a;\ • • *, x") based on the (Riemannian) Christoffel 
symbols rj,^(x\ x^, ••*, x”) without giving any more details (again 
see bracket term in 12*23). The result is 

(17-18) 
dx® dx^ 

- r: 
dx" 

, p* ^ 1 pt 

+ (' dx^ 
+ rtsFL - r* 

From the commutativity of the partial derivatives and the symmetry 
of the Christoffel symbols = F^, we find 

(17-19) 

where 

(17-20) R< 
" dx^ 

dri ^0 
dx“ 

+ r;,r:, - r;,rL. 

To justify the notation and prove that they are the com¬ 
ponents of a tensor field of rank four, contravariant of rank one and 
covariant of rank three, we first note that the left sides of 17*19 are 
the components of a tensor field of rank three, contravariant of rank 
one and covariant of rank two. Hence is a tensor field of the 
same type for all contravariant vector fields f*"; i.e., 

But, writing {'‘(x) in terms of r(x), we evidently have 

BUxfm = B^,(x)r(x) 
dx** dx"' bx” bx* 

dx" dx“ bx^ bx^ 
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But (‘"(x) are arbitrary, and hence, equating corresponding coefficients, 
we obtain the tensor law of transformation for This tensor 
field is the famous Riemann-Christoffel curvature tensor; it is not a 
zero tensor in a general Riemannian space. Hence in a 
Riemannian space with non-vanishing Riernann-Christoffel curvature 
tensor. But obviously the Riemann-Christoffel curvature tensor is 
zero in Euclidean spaces. Hence in Euclidean spaces; 
this checks a result found earlier, in 11.13. 

Geodesics. 

A straight line is the shortest distance between two points in Eu¬ 
clidean spaces. There are curves in Riemannian spaces that play a 
role analogous to the straight lines of Euclidean spaces. Such curves 
are called geodesics. In fact, if a Riemannian space is a Euclidean 
space, then its geodesics are straight lines. To find the differential 
equations satisfied by the geodesics of a Riemannian space, we have 
to get the Euler-Lagrange differential equations for the calculus of 
variations problem 

{* j dx^ dx^ 
(17 • 21) A \ minimum. 

It can be shown that the Euler-Lagrange equations for this calculus 
of variations problem are 

(17-22) 
d^x^is) . , .dx'^dxP -0, 

where s is the arc length and are the Christoff el symbols of the 
Riemannian space. In other words, if the coordinates of points on a 
geodesic are considered as functions x\s) of the arc length parameter 
s, then the n functions x^{s) satisfy the system 17*22 of n differential 
equations of the second order. 

If the Riemannian space is Euclidean and we choose rectangular 
cartesian coordinates y\ equations 17*22 reduce to 

_ f. 

and hence 

yi = a's + (a* and are constants), 

the parametric equations of straight lines in terms of arc length «, 
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Equations of Motion of a Dynamical System with n Degrees of 
Freedom. 

In classical mechanics, it is postulated that the motion of a con¬ 
servative dynamical system of n degrees of freedom with no moving 
constraints is governed by Lagrange^s equations of motion^ 

(17-23) 
dtXdqV dq^ 

If the kinetic energy T, in terms of the generalized coordinates q^y q^y 
dq%t) 

• • - , and the generalized velocities q^(t) == —;—, is 
dt 

T = Q”yiY iOij = Qji) 

and if the potential energy is V(q^y g*, • • - , then the kinetic potential 
or Lagrangean L is given by L = T - V, Now the kinetic energy is 

positive definite in the velocities 7'; i.e., T > 0 and T = 0 if and only 

if q^ = 0. It can be proved by algebraic reasoning that the determinant 

g of the gij is positive so that we can form g^^ in terms of the Qij — ex¬ 

actly as in Riemannian geometry. By direct calculation we find 

dL 

d/bL\ /dfffA. .. /... <Pg'\ 

- 2 W ^ ^ ’ 

“. - -• 

dg* 2 \ dq') dg* 

Hence Lagrange’s equations of motion 17 • 23 can be written in the form 

dg’ 
(17-24) + + 

2\dg^ dg‘ / 

Multiplying corresponding sides "of 17-24 by g"* and summing on 
we obtain the following form for Lagrange^s equation of motion.^ 

• dF 
(17 - 25) r + • • •, r)^¥ = -r 5^/ 

where r“4.(g\ • • - , g”) are the Christofjel symbols based on the Qij (q\ 

• • •, q^) of the kinetic energy of the dynamical system. 
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Exercise 

A symmetrical gyroscope with a point 0 fixed on the axis is acted upon by grav¬ 
ity. Let /, 7, and J be the principal moments of inertia. Then the kinetic energy 
is given by 

T 

and the potential energy by 
V = Mgh cos q\ The coordinates and q^ are the Eiilerian angles, M is the 

mass of the gyroscope, and h is the distance of the center of gravity from 0. Find 
the Lagrangean equations of motion of the symmetrical gyroscope. Compute also 
the element of arc length of the three-dimensional Riemanruan space associated 
with the symmetrical gyroscope. 



CHAPTER 18 

APPLICATIONS OF THE TENSOR CALCULUS TO 

BOUNDARY-LAYER THEORY 

Incompressible and Compressible Fluids. 

The constancy of volume of all parts of a fluid in motion sometimes 

plays an important role in the theory of fluid flows. A fluid in motion 

with this property is called an incompressible fluid, whereas a fluid in 
motion without this property is called a compressible fluid. If are the 

contravariant components of velocity of the fluid in motion in general 
coordinates x\ then 

(18-1) 
dx^ 

dt 

are the differential equations whose integration gives the paths of the 
fluid particles in the coordinates x\ 

It can be proved by a direct calculation that a necessary and sufficient 

condition that the volume 

(18-2) f S S dx^ dx® 

of arbitrary portions of the moving fluid be preserved ^ is that the 

divergence of the velocity field be zero, i.e., 

(18-3) = 0. 

In 18-2, g is the determinant of the Euclidean metric tensor Qij 

(ds- = gij dx^ dx^), and the comma in stands for covariant differen¬ 
tiation based on the Euclidean Christoff cl symbols F};;.. In other words, 
a necessary and sujjicient condition for an incompressible fluid is that the 

velocity vector field satisfy the partial differential equation 18-3. A 

glance at formula 13-6 shows that the condition of incompressibility is 

equivalent to 

(18^4) 
d(VgM°) 

If we recall the Navier-Stokes equations 13-3 for the motion of a 
viscous fluid, incompressible or compressible, we know that the equation 

of continuity 

(18-5) |^+(P«“),« = 0 

103 



104 APPLICATIONS TO BOUNDARY-LAYER THEORY 

in general coordinates x* merely states the constancy ^ of the mass m 

(18*6) m = f f x^, dx^ 

of any portion of the moving fluid. An evident consequence of the con¬ 
ditions 18*3 and 18-5 is that the density p(x^ x^, x®, t) (an absolute 
scalar) satisfies the condition 

which states that 

(18.8) f - 0 

along any chosen path of fluid particles. This means that 18-7 can be 
taken as the defining condition for an incompressible fiuid in view of the 
continuity equation 18.5. The Navier-Stokes equations for an incom¬ 
pressible viscous fluid reduce then to the following system of four 
differential equations in general coordinates x\* 

(18-9) 

w, “ = 0. 

For an incompressible fluid, the density p(xS x^, x®, t) is given subject 
to condition 18-7. Then the four differential equations 18*9 will have 
as unknowns the three velocity components w®, w® and the pressure 
p(x^, x^, X®, t) of the fluid. 

The situation is different for compressible fluids. The Navier-Stokes 
equations 13.3 are four in number with five unknown functions 

p, and p. To make the problem determinate a fifth condition must 
be imposed. This is usually furnished by the ‘‘equation of state,” 
which in the isothermal case is of the form 

(18*10) P = /(p)* 

Boundary-Layer Equations for the Steady Motion of a Homogeneous 
Incompressible Fluid.t 

We shall now restrict ourselves to the steady motion of a fluid with¬ 
out any external forces, so that A* = 0 and all the quantities u\ p, p are 
independent of the time t. If in addition we assume that the fluid is 
homogeneousj i.e., p is a constant, and incompressible, the four unknowns 

t The remaining part of this chapter is an expasition of some unpublished re¬ 
searches of Dr. C. C. Lin. These results were presented by Dr. Lin in my seminar 
on applied mathematics. 
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u', p must, by a reference to 18-9, satisfy the four differential equations 

(18-11) 
LfTT 

u^Uj = 

= 0, 
where t is the pressure p divided by the constant density p of the 
fluid, and the constant v is the kincmatical viscosity. Since the co¬ 
variant derivative of the Euclidean metric tensor Qij is zero, it follows 
from 18-11 that the covariant vector components Ui - gisU* of the 
velocity field and the function tt will satisfy the system of differential 
equations 

(18-12) u^Uij = vg^^Uij^k ~ 

Uy ] = 0. 

bw 

For the treatment of boundary-layer’^ problems connected with 
an arbitrary surface, it is convenient 
to take a system of space coordinates 
in which x\ are surface coordinates 
and x^ is a coordinate measured along 
the normals to the surface. Thus 

== 0 will be the equation of the given 
surface. If we allow Latin indices to 
run over the range (1, 2, 3) and Greek 
indices over the range (1, 2), we have 
the following fundamental metrics: 

Fig. 18-1. 

(18-13) ds^ = 3:^, ^®) dx* dx^ in 3-space, 

and 

(18-14) d^ = S^ap(^S C) da:® dxP 

over the surface 

7? ^ C, a constant. 

From the manner in which the coordinate x? was chosen, it follows that 
in 3-space t 

(18-15) ds^ = gij dx* dx^ = dx“ dx^ + (dx^)l 

t In Riemannian geometry, this is sometimes called the “geodesic form” of the 
line element. Such forms of the line element were used recently by Dr. W. Z. Chien 
in connection with his researches on the intrinsic theory of plates and shells (see 
references). Dr. Chien presented some of his work in my seminar on applied mathe¬ 
matics and made some exceedingly helpful calculations in connection with interest¬ 
ing geometric ideas arising in his and Dr. C. C. Lin^s work. 
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In other words, the Euclidean metric tensor x®) is such that 

(18-16) = 1) = QaZ = 0- 

We shall henceforth consider transformations of surface coordinates x^, x^ 
alone so that the coordinate x® may be rep;arded as a scalar parameter 
under a transformation of surface coordinates. To emphasize this 
fact we shall use the notation x® = Xo = x^. Thus, in the new notation, 
18 • 16 can be written 

(18-17) {7oo = 1, goci = s^cto = 0- 

We saw in the previous chapter that a surface can be considered as a 
two-dimensional Riemannian space. There is thus at our disposal the 
Riemannian tensor calculus of the previous chapter for immediate use 
in connection with the surface = constant. We shall use a semicolon 
to denote surface covariant differentiation in contradistinction to the 
comma for covariant differentiation in the enveloping three-dimensional 
Euclidean space. 

To express all covariant differentiations with respect to space co¬ 
ordinates in terms of covariant differentiations with respect to surface 
coordinates xh x} and partial differentiations with respect to x®, con¬ 
sider first the Euclidean Christoff el symbols T]k in the coordinates 
x\ x^, x^. If j, k are all in the range 1, 2 no reduction is possible 
unless a special surface coordinate system is chosen; if one of the 
three indices is zero, we have 

(18-18) 
lO _ I ^9a/S 

2dx0’ dx® 

These are evidently tensor fields with respect to transformation of 
surface coordinates, and they shall be denoted by and F^ respec¬ 
tively. The other Christoffel symbols Fjjt, in which two or all of the 
i, k are zero, vanish identically. 

With the help of these relations, it can be easily verified that 

(18-19) 

(18-20) 

(18-21) 

^ bUo dUO Q 

I “0.0 “0^ - 

' ““.0 “ + ^“'’“0. 

4 dWo A A 

da:02 + ^0, 

S' dx02^ 
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where 

/$o = + 2r“'’M„;3 - r^rfwo + r“>„, 

(18-22) < $„ = STlT^yU^ + - Ti,^Uo 

( - (r;r? + r^rf)tt3, 

do not involve differentiation of Ui with respect to x®. 
Let us now consider the analytical nature of the system 18 • 12 of 

four partial differential equations in the four unknowns t, Uq^ u^. By 
using 18-19, 18-20, and 18 -21, we can put this system in the normal 

C^TT 
form with respect to by solving for —, —^ from the equations 

i>Un 
of motion and for —^ from the equation of continuity. Thus 

ox" 

(18-23) 

dx 

-(srf 
dx" 

^ - 1/4. r^u 

[dx»~ ^ 

where ^ and in the first equation may be expressed in terms of 
dx" ox"^ 

Uo and ^ by using the last equation. Thus, the highest derivatives 
Ox^ 

of all the variables with respect to have the coefficient unity in 

i)Ua 
these equations. Hence, if tt, Uq, are given as functions of x^ 

and x^ on the surface x^ == 0, the solution of the problem is uniquely 
determined. 

This normal form 18*23 of the system of differential equations, how¬ 
ever is not analytic in the small parameter Vj the important case in 
aeronautics^ in the neighborhood of j' = 0, and is consequently incon¬ 
venient for the application of the method of successive approximations. 
We therefore make the transformation of variables 



108 APPLICATIONS TO BOUNDARY-LAYER THEORY 

to bring it into the desired form. We then have 

(18-25) 

dw « ft / „dw\ d**to ^ 

) 

+ «'«.» + ^ + - 2r; 
^0 

»4>„ 

Let US note that and <i>« are linear in the small parameter through 
the term in Uo (cf. 18 • 22), and also depend on through the geometrical 
quantities, which are functions of Indeed, it can be shown ^ 
that the surface metric tensor is a quadratic f unction of x®, while all 
other geometrical quantities may be expanded as power series of con¬ 
vergent for I I < limy lim being the minimum magnitude of the 
principal radii of curvature over the surface under consideration. 
Hence, the right-hand sides of the equations 18 • 25 are Taylor series in 

and the solution of 18-25 may be carried out by expanding each of 
the dependent variables as a power series of v\ convergent for all finite 
values of for which | | < Rm^ 

If we try to solve 18-23 by the same type of expansion, either the 
series are asymptotic, or they may terminate; but in general we cannot 
find a solution satisfying all the required boundary conditions. In 
fact, the initial approximation is easily verified to satisfy the non- 
viscous equation (r = 0). The boundary conditions at infinity and the 
condition = 0 at x^ = 0 are then sufficient to determine this approxi¬ 
mation completely. Indeed, the boundary conditions at infinity are 
usually such that the resultant solution is potential. Then the initial 
approximation is an exact solution of the complete equations 18-23. 
However, the boundary conditions = 0 at x° = 0 cannot be satisfied 
in general. The effect of viscosity can never be brought into evidence. 
This shows that the more elaborate treatment described above is absolutely 
necessary. The non-viscous solution (usually potential), however, 
serves as a guide for making the exact solutions satisfy the boundary 
conditions at infinity. This point will be discussed in more detail 
below. 

Let us now proceed with the solution of 18.25 by writing 

TT = -h + - - - + - - *, 

w = +••• + •••. 

(18-26) 
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Corresponding developments for the geometrical quantities gaft, • • • 
must also be used. The initial approximation gives 

(18-27) 

Ott 

u% + 

0 

bw 

bir 

= 0, 

where the superscripts of the initial approximation are dropped. In 
these equations, f is a scalar, and the metric tensor is being 
Qa^ix^f a:^, x^) evaluated at = 0. The conditions over the surface 
f = 0 are = 0 and = 0. The condition at infinite f is set according 
to the following considerations. For a large but finite value of f, 
the value of x^ is still small. Hence, the solution may be expected to 
pass into the non-viscous solution close to the surface if f is large. 
Thus, for the initial approximation, we may lay down the conditions 

(18-28) TT = TT for fco, 

where and tt are functions of and being the values of and ir 
of the non-viscous solution at x^ = 0. The initial approximation is 
then completely determined. 

If Ua and TT differ from and tt by quantities of the order of v for 
f = then an approximate solution of 18*12 is usually taken to be 
given (a) by the non-viscous solution for ^ > h, and (f>) by the solu¬ 
tion of 18*27 for f < A. The quantity hy/v is known as the ^ thickness 
of the boundary layer^^ and is arbitrary to a certain extent. For ex¬ 
ample, we may define h to be given by (say) three times h of the 
equation 

(18*29) /■ (Ua - Wa) df = 

which is in general different according to whether a = 1 or 2. This 
initial approximation is usually known as the boundary-layer theory of 
Prandtl. Incidentally, we note that tt is a function of x^ and alone, 
by the second equation of 18*27. Hence, by 18*28, tt = ^(x^, x^), 

which is known from the non-viscous solution. The first and third 
equations of 18*27 then serve as three equations for the velocities 

Ua and w. 
The higher approximations in 18*26 satisfy certain differential equa¬ 

tions obtained together with the derivation of 18-27. The boundary 
conditions at = 0 are u^ = 0, for any approjdmation. The boundary 
conditions for the nth approximation at infinity will be specified by 
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using the nth approximation of the asymptotic solution, which will in 
turn be determined from certain boundary conditions related to the 
(n - l)st approximation of the convergent solution. Since we are 
never concerned with higher approximations in practice, we shall not 
go into further details. 



NOTES ON PART I 

Chapter 1 

1. In the modern quantum mechanics of theoretical physics, matrices with an 
infinite number of elements as well as with a finite number of elements are used 
very widely. The elements of these matrices are often complex numbers. The 
reader is referred to the bibliographical entries under Born, Jordan, and Dirac. 

2. For applications of matrices to the social sciences the reader is referred to 
the references given in a recent paper by Hotelling. 

3. We shall deal for the most part with matrices whose elements are real or 
complex numbers. It is possible, however, to deal with matrices whose elements are 
themselves matrices. We shall have occasion to use a few such matrices in connection 
with our discussion of aircraft flutter in Chapter 7. 

Chapter 2 

1. For the properties of determinants, linear equations, and related questions 
on the algebra of matrices, see Bocher^s Introduction to Higher Algebra. 

2. Cramer^s rule for the solution of linear algebraic equations is given in most 
books on algebra. In our notations it can be stated in the following manner. If the 
determinant a - \ \ of the n equations 

a\xP = 6* 

in the n unknowns •••, is not zeroy then the equations have a unique solution 
given by 

A' 
X* = —» 

a 

where A* is the n-rotoed determinant obtained from a by replacing the elements aj, a?, 
off of the Uh column by the corresponding elements b^t b^, • • •, 

3. The rule for the multiplication of two determinants takes the following form 
in our notations. // a = | oj | and & * | | ore two n-rowed determinantSy then 

the numerical product c ^ ab is itself an n-rowed determinant with elements Cj given 

by the formula 

4. It can be shown that Sr, the trace of the matrix A**, is also equal to the sum 
of the rth powers of the n characteristic roots of the matrix A. 

6. The recurrence formula 2 • 6 for the coefficients Oi, •••, on of the characteristic 
function of a matrix can be derived from Newton’s formulas; see Bocher’s IrUroduc- 
tion to Higher Algebra, pp. 243-244, for a derivation of Newton’s formulaa. 

Ill 
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Chapter 3 

1. To prove that the matric exponential is convergent for all square matrices 

A, let A = II oj II be an n-rowed square matrix, and let F(A) be the greatest of the 

numerical values of the n* numbers oj. — the greatest of the moduli of the a*, if the 

Oy are complex numbers. Then each element in the matrix A»will not exceed 

in numerical value. Hence each of the n* infinite series in will be dominated by 

series 
„ nV^ 

Hence all the n* numerical series in converge. This means that is convergent 

for all square matrices A. 

In the terminology of modern functional analysis and topological spaces, the 

F(A) is called the norm of the matrix A, and the class of n-rowed matrices with 

the operations of addition and multiplication of matrices, multiplication by num¬ 

bers, and convergence of matrices defined by means of the norm F(A) — in other 

words, F(A) plays an analogous role to the absolute value or modulus of a number 

in the convergence of numbers — is called a normcd linear ring. Other equivalent 

definitions of the norm of a matrix are possible. For example, F(A) can be 

taken as 

r 

if the elements oj of the matrix A are real numbers. Whatever suitable definition 

of a norm is adopted, the norm F(A) of a matrix will have the following properties: 

(1) P(A) ^ 0 and = 0 if and only if A is the zero matrix. 

(2) F(A 4- R) ^ F(A) + F(B) (triangular inequality). 

(3) F(Ai?) ^ F(A)F(R). 

From property 3 it follows that V(A^) ^ (F(A))”, a result that makes obvious the 

usefulness of the notion of a norm for matrices in the treatment of convergence 

properties of matrices. 

The class of matrices discussed above is only one example of a normed linear 

ring. The first general theory of normed linear rings was initiated in 1932 by 

Michal and Martin in a paper entitled ‘‘Some Expansions in Vector Space,” Journal 

de maiMrnatiques pures et appliquies. 

2. The special case of the expansion 3*7 when F(A) is a matric polynomial is 

known as Sylvester* s theorem. 

If the characteristic equation of a matrix A has multiple roots, then the expansion 

3-7 is not valid. However, a more general result can be proved. For the case of 

matrix polynomials F(A) see the Duncan, Frazer, and Collar book. The more 

general cases of matric power series expansions are treated briefly in a paper by 

L. Fantappie with the aid of the theory of functionals, since the elements F}(A) 

in the F{A) are functionals of the numerical function F(X). See Volterra^s book on 

functionals (Blackie, 1930). 

3. Another equivalent form for the n matrices ft, ft, • • •, is 

M(\i) 
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where the are the characteristic roots of the matrix A, /(X) is the characteristic 

determinant of A, and M(\) - || MJ(X) || is a matrix whose element Mj(X) is the 

cofactor of X5^ — aj in the characteristic determinant /(X). Notice carefully the 

position of the indices i and j. 

Chapter 4 

1. A good approximation to the solution X{t) = of ----- * AX{t) 
at 

{t — io)2 {t — IqY 
can be obtained by taking 1 + (^ — k)A + —A* + • • • -f-;—A'* in the 

2! n! 

place of the infinite expansion for For many practical purposes n = 2 would 

be large enough to give a good approximate solution. The approximate solution 

can then be written 

X{1) = Zo + « - U)AX, + 

where Xo is the column matrix for i to initially given. 

2, If the solution of the matric differential equation 

(1) ^ - AZ(t) (X(U) - Xo) 

has been found, then the solution of 

dX(t) 
(2) « (A 4- bl)X(t) (X(to) « Xo) 

at 

can be written down immediately. In fact, from the second property of the matric 

exponential given in Chapter 2, we see that where is the numerical 

exponential. Hence by formula 4 • 3 we see that the solution of equation 2 is ob¬ 

tained by a mere multiplication by e** of the solution of equation 1. 

Chapter 5 

1. The reader is referred to Whittaker’s Analytical Dynamics for a treatment 

of Lagrange's differential equations of motion of particle dynamics. For some 

engineering applications, the reader is referred to Mathematical Methods in Engi¬ 

neering by Kdrmdn and Biot. 

2. Consult the references in the above note. 

Chapter 6 

1. If only the fundamental frequency is wanted but not the corresponding 

amplitudes, then the application of Rayleigh’s principle may be preferable. See 

Elementary Matrices by Frazer, Duncan, and Collar, pp. 310, 299-301. 

2. A special case of Sylvester’s theorem is what is actually used; see expansion 

3-9. 
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NOTES ON PART U 

Chapter 9 

1. Although little use has been made of the tensor calculus in plastic deforma¬ 

tions, one would suspect that a thoroughgoing application of the tensor calculus 

to the fundamentals of plastic deformation theory would prove fruitful. 

2. For some elementary applications of the tensor calculus to dynamic meteor¬ 

ology, the reader is referred to Ertel’s monograph. 

3. We shall deal briefly with Riemannian spaces'(certain curved spaces) and 

their applications to classical dynamical systems with a finite number of degrees 

of freedom (see Chapter 17), and to fluid mechanics (see Chapter 18). 

4. A discussion of the fundamentals of coordinates, coordinate systems, and 

the transformation of coordinates in the various spaces, including Euclidean spaces, 

is out of the question here. The readers who are interested in modern differential 

geometry and topology will find ample references in the bibliography under the 

entries for Veblen, Whitehead, Thomas, and Michal. 

Chapter 10 

1. Some writers, especially those dealing with physical applications, like to think 

of the contravariant and covariant components of one object called a vector. For 

example, if are the contravariant components of a velocity vector field, then 

and can be considered the contravariant vector and covariant vector “repre¬ 

sentations” respectively of the same physical object called “velocity vector field.” 

This point of view, however, is untenable in spaces without a metric gij. 

2. The importance of the Euclidean Christoffel symbols for Euclidean spaces 

is, even now, not very well known. 

3. Since 

gafi{x\ x») » {y\ are rectangular coordinates), 

we obtain, from the rule for the multiplication of two determinants, the result that 

d?/* I 
is the Jacobian determinant, or the functional ^ = 1 I •» t/S where J 

determinant, of the transformation of coordinates to rectangular coordinates 

from general coordinates x*. Hence J 0 since we deal with transformations of 

coordinates that have inverses. This means that the determinant p 5*^ 0 for all our 

“admissible” transformations of coordinates. 

4. The following steps establish the law of transformation 10*29 of the Eu¬ 

clidean Christoffel symbols; exactly the same method establishes the corresponding 

law of transformation for the Riemannian Christoffel symbols to be discussed in 

Chapter 17. 

Since are the components of the Euclidean metric tensor we have under a 

transformation of coordinates from coordinates x' to coordinates 

— ^X^ ^3?*^ 
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Differentiating corresponding sides of (a) we obtain (considering the x* as inde¬ 

pendent variables) 

^ ^ 55" dxP d£^ dx^ 55" L^^"55‘^ 55“ 55^J ^^"55*^ 55^ 55"* 

Interchange a and a in (6) and, noting that 

5‘^x^ 5"x^ 

55*^ 55“ "" 55" 55‘"' 

obtain 

r 5a^ 5V 1 

'''dx^drj' 

Interchange /3 and or in (c) and, noting that 

^ga0 ^OtAv 2)^ ” 5^3;^ ^ 

di" “ Si“ Si^ di" dx” di“ dx^_ 

yx” _ dV 
dx^ dx" “ 5#’ 

obtain 

^ ^X'‘ dx^ r dx** yx" ~|^ 

^ ^ “ dx*' dx“ dx" dx^ dx^ Sx" 62' 32“ d2^ 32" J ‘ 

Add corresponding sides of (b) and (d) and subtract corresponding sides of (c) after 

interchanging fi and p in the first terms of (6) and after interchanging v and p in the 

first terms of (d). Tlien take J of both sides, obtaining 

(e) 
^ /^ga/3 dggy 5ffa;3\ 1 /bQfip bgpy\dx^ 5x*' 5a;^ 1 5x^ 5V 

^ " <)2‘' / ~ ^2^ /di“a2^£>2' ‘'’2*^'“d?d2'’d2“ 

1 a^x** bx' 

'''2^'"d2^d2“d2"’ 

the terms enclosed in brackets in (6), (c) and (d) canceling out in the additions and 

subtractions. On interchanging p and v in the last terms of (e) and on recalling that 

g,n “ g,xu, we get 

( I (1 (^ 
2\a2“ a2^ “ 52"/ “ A&a/* dx' “ ax'"/dx^dx^dx'’dx^di^' 

Now 

(fir) = fl^ 
ax’'ax“' 

Multiplying corresponding sides of (/) and (g)^ summing on <t, and using the identi¬ 

ties 

dxP 55*^ -„ gp 
55^^53:“ 

we readily obtain 

_ ^gag\ _ 1 xp/^ ^ 

2*’' \a2“ dx^' bxf )” 2^ \ax^ ax' ax" /a2“ Ix^ ai^' a2g a2“ ax’'’ 

from which the desired transformation law 10*29 follows immediately on recalling 

the definition of f and . 
ap m 
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Chapter 11 

1. Formula 11*12 for the covariant derivative of a tensor field can be estab¬ 

lished very quickly with the aid of normal coordinate methods of modern differential 
geometry. See the two Michal and Thomas 1927 papers. 

2. In Chapter 17, we shall see that the answer is in general in the negative 

for the more general Riemannian spaces. 

3. The operation of putting a covariant index equal to a contravariant index in 

a tensor and summing over that common index is called contraction. A contraction 

reduces the rank of a tensor by two: by one contravariant index and by one covari¬ 

ant index. 

Chapter 13 

1. The Navier-Stokes differential equations of hydrodynamics are discussed 

in Lamb’s Hydrodynamics. 

2. There are two viewpoints in hydrodynamics: one is the Eulerian point ot 

view in terms of the h^ulerian variables; the other is the Lagrangean point of view 

in terms of the Lagrangean variables. For a non-viscous fluid, the Eulerian hydro- 

dynamical equations are the equations of motion of the fluid from the Eulerian point 

of view, and the Lagrangean hydrodynamical equations are the equations of motion 

of the fluid from the Lagrangean point of view. The Eulerian hydrodynamical 

equations in rectangular coordinates ?/‘ are obtained by putting = 0 in the Navier- 

Stokes equations 13*2. 

Etfferian Hydrodynamical Equations. 

C dw* bu* 1 dp 
2 U p dp* 

pp d(pO_ 

If a* are the rectangular coordinates of a fluid particle in the initial state of the 

fluid, and if the p'Cah a^, t) are the coordinates of the particle at time then the 

Lagrangean hydrodynamical equations are 

dp’ 1 dp 

do*^ ^ p da^ 
0, 

^ ^ ^ 
da^ da^ da® 

f>{y\ y\ y^)\ 
dp^ dp^ dp2 

da* da® da® 

dp® dp® dp® 

da' da® da® 

Po{a\ a\ o®). 

For a treatment of classical hydrodynamics, including treatments of the Eu¬ 

lerian differential equations and the Lagrangean differential equations, the reader is 

referred to Lamb’s Hydrodynamics and to Webster’s Dynamics) cf. the references 

at the end of Part IL Ertel’s monograph on dynamic meteorology has some 

interesting remarks. 
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3. To obtain expansion 13 -6 for the divergence u% we can proceed as follows. 

Since g, the determinant of the Euclidean metric tensor gijy is a relative scalar of 

weight two, it can be shown by the usual methods of obtaining covariant derivatives 

of absolute tensors that the covariant derivative g,i is given by 

Q.i 
bx' 

But, in rectangular coordinates, g is unity and the Euclidean Christoff el symbols 

are zero. Hence g^i is zero in rectangular coordinates and consequently g^i » 0 in 

all coordinates. This means that 

dlog</7 _ ^ 
dx' “ 

But the divergence of is by definition 

: — + r? 

so that by the above result we find the following equivalent expression Jor the divert 

gence 

•“ Vg dif" 

If in particular u* 

this u* 

V? ^ 
’ where x^) is a scalar field, we see that for 

Vg c)x“ 

But in rectangular cartesian coordinates & 1, = 5“^, and so this scalar u“a 

reduces to the Laplacean in rectangular cartesian coordinates. Hence Laplace's 

equation in general coordinates x' is given by 

1 

VS 
^ 0 when the unknown ^(xS x*, x^) tea scalar field* 

Chapter 14 

1. The fundamentals of a finite elastic deformation theory are not new. Kirch- 

hoff in 1852 made the first systematic study, and E. and F. Cosserat in 1896 made 

an extensive investigation of the subject. Ricci and Levi-Civita in 1900 made 

brief but important contributions to the applications of the tensor calculus to 

elasticity theory. L^on Brillouin in 1924 simplified and recast Cosserat’s treatment 

with the aid of the tensor calculus, and in 1937 F. D. Murnaghan, among several 

other authors, made contributions to the tensor theoretic treatment of elasticity 

theory. 

Chapter 16 

1. One can consider strain differential invariants of order r, i.e., scalar fields 

that retain their forms as functions of the metric tensor the strain tensor Cap, 
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and the derivatives of eaff up to order r. Since successive covariant differentiation 

reduces to a corresponding order of partial differentiation in cartesian coordinates, 

a strain differential invariant can be written exclusively in terms of tensor fields by 

merely replacing the derivatives of by corresponding covariant derivatives. The 

Michal-Thomas methods (see the 1927 papers of these authors) can be used to carry 

on some interesting researches on strain differential invariants. Strain differential 

tensors can also be considered. 

Examples of strain differential invariants of order one are 

and 

where €a/3,y is the first covariant derivative of the strain tensor ca/3, and where Ij, 

I2, and h are the three fundamental strain invariants. The question arises whether 

successive covariant differentiation of /i, h, li and combination with Qap would 

yield all the fundamental strain differential invariants. Clearly there exist no strain 

differential invariants for homogeneous strains. Note that the vanishing of H is the 

necessary and sufficient condition for a homogeneous strain. 

Chapter 16 

1. The theory of complete systems of partial differential equations is discussed 

in Hedrick’s translation of Goursat’s Cours d'analyscy Vol. II, part II. 

Chapter 17 

1. For an account of Riemannian geometry, see Eisenhart’s Riemannian Geom-‘ 

etry. This reference, of course, treats the (classical) finite dimensional Riemannian 

geometries. Infinite dimensional and dimensionless “Riemannian” geometries were 

first studied by A. D. Michal (see paper 2 under Michal in the references for Part II). 

The applications to vibrations of elastic media are now being studied (see papers 

4, 5, and 6 under Michal in the references). 

2. Several engineering applications of Lagrange’s equations of motion are to 

be found in the Kdrmdn and Biot book. 

3. We have seen that the Lagrangean equations of motion for a conservative 

dynamical system with no constraints and n degrees of freedom were 

(a) 3“+ 

This means that the dynamical trajectories can be considered as curves in an nrdimenr 

sional Riemannian space whose element of arc length ds is given by 

(b) ds^ * gij(g\ • • •, g^)dq* dg\ 

where the gij are the functions occurring in the kinetic energy T « hQijk'k^- The 

differential equations of the dynamical curves are the second-order differential 

equations (a). 

These curves are not, in general, geodesics in the Riemannian space with arc 

lengths ds given by formula (b). The question then arises whether it is possible to 

define a Riemannian space whose geodesics are some of the curves whose differential 

equations are Lagrange’s equations of motion (a) for the given 71-degree dynamical 
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S3^tem. We shall show briefly that it is possible to define such a Riemannian 

space. To do this we must first show that the Lagrangean equations of motion have 

the energy integral 

i.e., the sum of the kinetic and potential energies is a constant along any chosen dy¬ 

namical trajectory. In fact, 

dL bL ... bL .. 
— « — Q* + — 0*. 
dt bq^ dg* 

Hence on using Lagrange's equations of motion 

dL bL_ d/blV, 

dt ~ dl\i>q'f 

We have then immediately T + V = a constant, since the kinetic potential 

L^T -V. 

Consider now the dynamical curves that correspond to any chosen energy constant 

C. We shall show that these particular dynamical curves are the geodesics of the 

nrdimensional Riemannian space whose element of arc length ds is given hy 

(c) ds^ « 2(C - V)gij{q\ ..., g«) dq^ dq\ 

where, as in (a), the ga are the coefficients in the kinetic energy T. For convenience in 

computation, let us define A « 2(0 - V) and aij = Agij so that (c) can be written 

(d) =» aij dq' dqK 

By definition 
• . Cofactor of aji in a qI] „ - 

a 

where o - the determinant of the aij. Hence, since A factors out in the nu¬ 

merator and A” in the denominator respectively of we see that 

Let be the Christoffel symbols based on the metric tensor Oij, Clearly 

*r»' -i-ow( 
\ dq’ d3* dg' / 

. l/.aA ,hA .dA \ 
>*'‘‘2AV ^ 

(e) 

By definition 

ds^ = 2(C - V)gij dq' dq^ 

and hence along a dynamical trajectory with energy constant C we have 

C2(C-F)? (!)■ 
SO that 

(/) 
ds 
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along a dynamical trajectory with energy constant C. By elementary calculus we 
have therefore 

ds dt * ds^ dt^ di dt 

The differential equations for the geodesics of the Riemannian space whose ds is 

given by (c) is 

{h) 
^*ds ds 

0. 

On emplo3dng results (e), (/), and {g) in {h\ we get after obvious simplifications 

(0 

But 

<fi> dt~2A^ dt' 

m 
dt dt 

=. A 

along a dynamical trajectory with energy constant C. Hence equations (f) reduce to 

O') 
. dqJ dq^ . dV 

dt^ ^^dt dt ^ dg^ 

But these differential equations are another form of the Lagrangean differential 

equations of motion for our dynamical system. We have thus proved that the 

geodesics of the Riemannian space with a ds given by (c) are dynamical trajectories of 

dq' dq^ 
the dynamical system with kinetic energy T =* \gij'~,—r potential energy V. 

dt dt 

By retracing our steps of proof, we can show that any dynamical trajectory with 

energy constant C, f.e., any curve that satisfies (j) with energy constant C, can he con- 

sidered a geodesic in the Riemannian space with an element of arc length ds given in (c). 

Illustrative Example of a Shaft Carrying Four Disks. 

A shaft is fixed at one end and carries four disks at a distance I apart. If is 

the moment of inertia of each disk and q\ q^y q^y q^ the respective angular deflections 

of the four disks, then, if the shaft has a uniform torsional stiffness r, the kinetic 

and potential energies are given respectively by 

and 

V - + (q^ - q^y + (9» ~ q^y + (9^ - q^yj 

This is a conservative dynamical system of four degrees of freedom with no 

moving constraints. Hence the dynamical trajectories with total energy constant 

C can be represented as the geodesics of the four-dimensional Riemannian space 

whose element of arc length ds is given by 

- F{q\ fy qy, t)i{dq^y + wy + wy + {dqyy^y 
where 

3*, 3*) - 2m jc - + (3* - 3*)* + (3* - <ff + (3* - 3'?][ • 

Numerous other engineering examples can be given, some simpler and some 
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more sophisticated. For example, if the above shaft carries only two disJcSf the 

dynamical trajectories with total energy constant C can be represented as the 

geodesics of the surface whose ds is given by 

= 2m jc - + (9* - IWY + Wfl 

A more sophisticated example is given by the symmetrical gyroscope; see the 

exercise at the end of Chapter 17. Here the dynamical trajectories with total 

energy constant C can be represented as the geodesics of the three-dimensional 

Riemannian space whose element of arc length ds is given V)y 

ds^ « 2[C - Mgh cos ?’][/(+ (/ sin^ J cos^ q^){dq^y + 

2J cos q^ dq^ dq^ + »/(dg*)*]. 

Chapter 18 

1. The conditions for an incompressible fluid and the continuity equations for 

a fluid flow state the invariance of two integrals: the integral for volume and the 

integral for mass, respectively. In other words, here we have two important ex¬ 

amples of integral invariants. For the theory of integral invariants and its modern 

generalizations, the reader is referred to paper 1 under Michal in the references. 

There the reader will find ample references to the earlier work on integral invariants 

by H. Poincar^, S. Lie, E. Cartan, and E. Goursat. 

2. We saw in Chapter 17 that the Riemann-Christoffel curvature tensor Bjki 

is a zero tensor in any Euclidean space and hence in our three-dimensional Eu¬ 

clidean space. Define the tensor (field) Rijki by 

(fl) Rijki — QirBj ki¬ 

lt is evident that 

(b) Rijki » 0 

holds throughout our three-dimensional Euclidean space. It can be shown that 

there are only six independent equations in (5). Three of them are included in 

(c) Raopo “ Oj 

Rafiyo 0) 

two of them are included in 

(d) 

and the sixth one is given by 

(e) Ri212 0. 

By straightforward calculation it can be shown that. 

J? 1 1 ^905 

2 dx'’* 4^ dx® dx° 

\Rapyo ” P/Sy.a Pay;/? 

yRi2i2 = *Ri2i2 -f (riir22 — ri2r2i), 

where, it is to be recalled, a semicolon denotes covariant differentiation on the 

surface x*’ « C and Tap « *Rapy5 stands for the curvature tensor on 

the surface. Define 

1 ^9aB 
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If we evaluate the last two sets of conditions (/) on the surface « 0, we now see 

readily that the vanishing of the curvature tensor Rijki in the three-dimensional 

Euclidean space implies the following three sets of conditions: 

(<?) 
^^ga0 1 pv^ffap^g^ 

~2^ dxf> difi 

(h) bac/Siy — bcty\fi = 0 

(i) *Rpa9y = bpgbay bpyba^. 

Equations {h) and (0 are the well-known Codazzi and Gauss equations of the 

surface “ 0. (Cf. McConnell’s Applications of the Absolute Differential Calculus^ 

p. 204, 1931.) 

Conversely it can be shown that equations {g) in S~space and equations {h) and 

(i) over the surface = 0 imply Rijki = 0 throughout the 3-space. But we shall not go 

into this matter any further. 

If we differentiate (g) with respect to x” and if in this result we eliminate the 

second derivatives by means of (^), we find 

(i) 
2 1 \y ^g^y 

" 2 dx® dx» 2^ ^ bx® bx^ ’ 

On differentiating the well-known identity 

we can solve for -— and obtain 
bx° 

bx® dx^ 

If we substitute this expression in (j), we evidently obtain 

bxo» ’ 
*0. 

Hence the surface tensor components a^) ore quadratic expressions of x°- 

Indeed, if we write 

then 

(k) Qap - aa0 4- 2ba^ + Co/jCa:®)*- 

A glance at {g) shows that 

Cct/3 “ ^^bairb^ff- 
Hence, aa0, bafi) and Ca0 are respectively the tensor coefficients of the first, second, and 

third fundamental forms of the surface x® » 0. 

It can be shown that we may write (i) in the form 

(0 Ke^yipa = bp^bay “• bpybe^, 

where 

eafi " oSria^, a « | Oa/S |, ^ii -■ »722 » 0, *1, «■ —1, 
and 

K * h^e^^*Rpafiy » - b^^bral. 
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the total curvature {Gaussian curvature) of the surface « 0. If we apply the tensor 

to (/), we find 

{m) "i“ Ka^p ** 0^ 

where H is the mean curvature of the surface aP = 0, 

H = 

If Ri and R2 are the principal radii of curvature, it is well known in surface theory 

that 

With these relations, we can easily calculate 

17 * I M I “ 
For this purpose, we have to calculate the quantities 

jf'^ri'^^aayapsy v^^v^^aayh^b, v^^v'^^bocybpsi 

if similar quantities involving Cf^y have been reduced with the help of (m). Now 

rf^^tpf^aay = aa^^. 

Hence 

(n) if^^v^^CLayafii = 2a, rf^^n^^aaybfi^ - 2Ea. 

Applying to (0, we obtain 

(0) 'f^if^^bayb^^ « 2K, 

If we substitute (n) and (0) in the determinant gf, we find 

» - (1 + 2Hx« + - a^l + + ij'- 

Hence 

Thus, if we expand as a power series in x”, the series are convergent if | x® | 

< Rmy where Rm is the minimum value of the principal radii of curvature of the 

surface a:® =» 0. The same is true of many other geometrical quantities derived 

from Qafi and 
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